#### The Open University

#### Open Research Online

The Open University's repository of research publications and other research outputs

#### Investigating oboe manufacturing consistency by comparing the acoustical properties of five nominally identical instruments

Conference or Workshop Item

How to cite:

Mamou-Mani, Adrien; Sharp, David; Meurisse, Thibaut and Ring, William (2010). Investigating oboe manufacturing consistency by comparing the acoustical properties of five nominally identical instruments. In: ViennaTalk 2010, 19-21 Sep 2010, Vienna, Austria.

For guidance on citations see FAQs.

 $\odot$  2010 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data <u>policy</u> on reuse of materials please consult the policies page.

oro.open.ac.uk



The Open University



#### Investigating oboe manufacturing consistency by comparing the acoustical properties of five nominally identical instruments

Adrien Mamou-Mani<sup>1</sup>, David Sharp<sup>1</sup>, Thibaut Meurisse<sup>2</sup> and William Ring<sup>3</sup>

<sup>1</sup> Acoustics Research Group, The Open University
<sup>2</sup> Université Pierre et Marie Curie, Paris
<sup>3</sup> Howarth of London

### Introduction

• What is consistency?

"With a **hand-built** guitar, you want every guitar to be different and have its **own sound**. But with **a production model**, you want to **standardize** shape, quality, and performance" Glen Dominick, Senior Manufacturing Engineer, Fender

Increasing the ability to produce instruments that have the exact same qualities is a constant aim for large scale musical instrument manufacturers

#### • Our methodology

Combination of acoustical measurements, geometrical observation and perceptive testing of instruments of the same model:

- Acoustics: Input impedance
- Geometry: Bore profile, holes and pads, potential leaks
- Perception: Discrimination tests (2-AFC) in playing situation
- Already shown its efficiency for comparing two Pearl River low cost trumpets (Applied Acoustics, 2010)

### Introduction

- Oboes under test: Five Howarth S10 student oboes
  - Body made from African Blackwood
  - Thumbplate system
  - Closed hole model with all covered holes

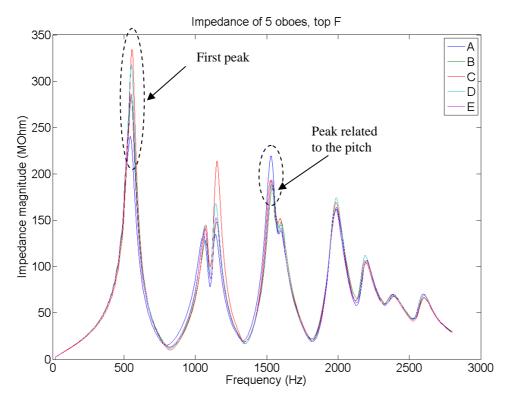
• Are these oboes acoustically, geometrically and/or perceptively different?



### First stage – pilot playing test

- Preliminary blindfold playing test by one amateur oboist (me!) suggested there were small but perceptible differences in the playing properties of the five oboes.
- Differences most apparent when trying to play notes at the higher end of the instrument's range, in particular F6.
- Five oboes ranked by oboist in terms of how easy it was to produce F6 cleanly.
- Easiest and hardest to play instruments (oboes A and C) selected for use in larger scale playing test.

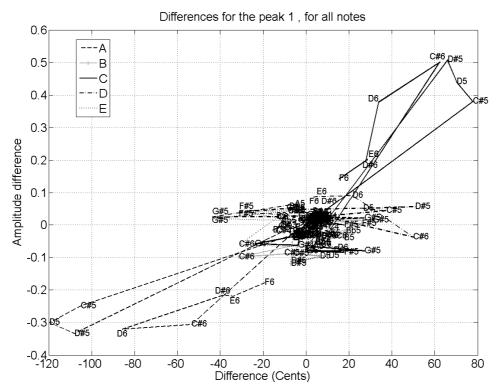
### Discrimination playing test


- Protocol
  - 2 alternative forced choice (2-AFC) with two S10 oboes
  - 9 musicians: 4 professionals, 4 intermediates, 1 beginner
  - Free to play, 30 sec, 20 trials
  - Being considered as able to discriminate the two instruments if number of correct answers at least 16 out of 20 (1% significance level).
- Results
  - 6 musicians out of 9 were unable to discriminate the two oboes (all achieved 12 or less correct answers).
  - 2 musicians out of 9 were able to discriminate the two oboes by comparing the top F (F6) playability (19 or more correct answers).
  - 1 musician out of 9 was able to discriminate the two oboes just by playing in the lower register of the instruments (16 correct answers). He commented that oboe C had a brighter sound than oboe A.

### Input impedance

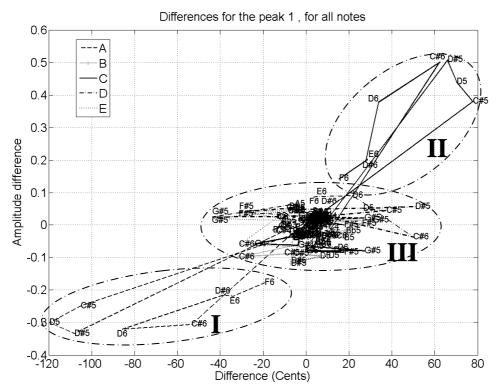
- Input impedance measurements carried out on the five oboes using BIAS system with custom-made adapter.
- Measurements made for every note from Bb3 to F6.
- 32 fingering combinations applied per instrument.
- 32 x 5 = 160 sets of impedance data in total !

### Acoustical differences for F6


• Impedance magnitudes for the F6 fingering



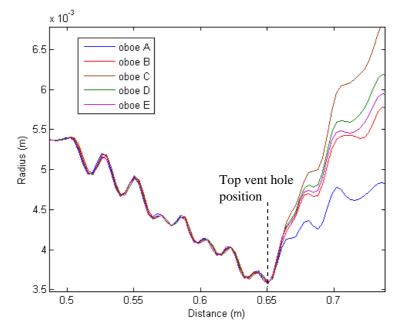
Noticeable differences between the 5 oboes. What are the physical causes of this difference?


## Analysing multiple impedance curves

• New representation of impedance peak data



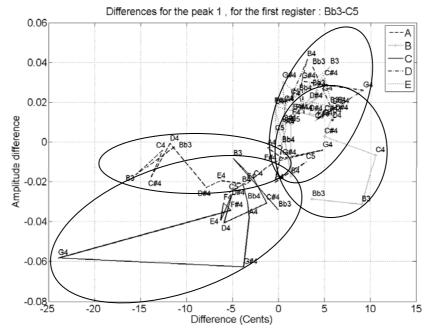
## Analysing multiple impedance curves


• New representation of impedance peak data



I Oboe A: notes ( [C#5, D5, D#5] ; [C#6, D6, D#6, E6, F6] ) II Oboe C: same notes ( [C#5, D5, D#5] ; [C#6, D6, D#6, E6, F6] ) III Oboes A and C remaining notes, and all notes for oboes B, D and E

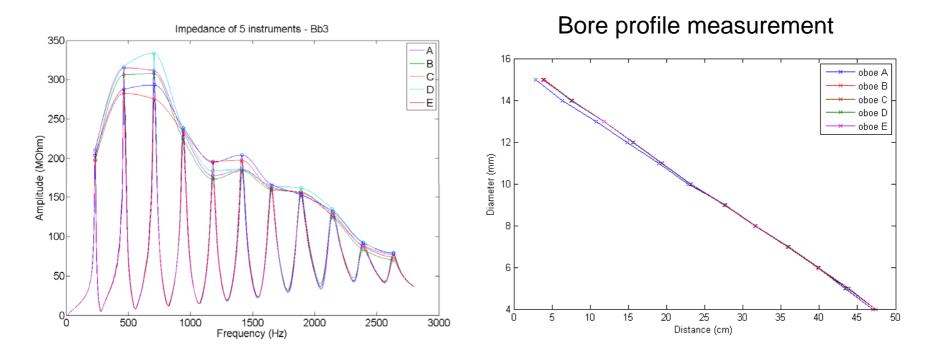
# Geometrical differences affecting certain notes


- Fingerings used for notes [ (C#5, D5, D#5) , (C#6, D6, D#6, E6, F6) ] have an open vent hole in the top joint.
- Reflectometry shows differences in the height of the pad.





# Acoustical and geometrical differences for other notes


• Differences for first impedance peak, first register fingerings



Smaller differences but 4 groups (oboe A, oboe B, oboe C and oboes D & E)

## Acoustical and geometrical differences for other notes

• Differences for Bb3 fingering



Differences in the impedance partially explained by discrepancies in the bore profiles.

#### Conclusion

- These five instruments are perceived and measured as being very similar.
- Noticeable differences for several notes, due to the adjustment of the height of the top vent hole. Most clearly perceptible for F6.
- Small differences in the low register, partly related to differences in the bore profiles.