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Abstract

This study investigates the suitability of, and adapts, the multi-guide particle swarm

optimisation (MGPSO) algorithm for dynamic multi-objective optimisation problems

(DMOPs). The MGPSO is a multi-swarm approach, originally developed for static

multi-objective optimisation problems (SMOPs), where each subswarm optimises one

of the objectives. It uses a bounded archive that is based on a crowding distance

archive implementation. Compared to static optimization problems, DMOPs pose a

challenge for meta-heuristics because there is more than one objective to optimise, and

the location of the Pareto-optimal set (POS) and the Pareto-optimal front (POF) can

change over time. To efficiently track the changing POF in DMOPs using MGPSO,

six archive management update approaches, eight archive balance coefficient initial-

ization strategies, and six quantum particle swarm optimisation (QPSO) variants are

proposed. To evaluate the adapted MGPSO for DMOPs, a total of twenty-nine well-

known benchmark functions and six performance measures were implemented. Three

experiments were run against five different environment types with varying temporal

and spatial severities. The best strategies from each experiment were then compared

with the other dynamic multi-objective optimisation algorithms (DMOAs). An ex-

tensive empirical analysis shows that the adapted MGPSO achieves very competitive,

and often better, performance compared to existing DMOAs.
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Chapter 1

Introduction

“Every new beginning comes from some other beginning’s end.” - Seneca

Many real-world problems are dynamic in nature and typically require more than
one objective to be optimised. However, these objectives are often in conflict with
one another, where improving one objective deteriorates the other. This implies
that there does not exist a single solution to a multi-objective problem, but rather a
set of optimal trade-off solutions. The goal, therefore, is to find and track a set of
ever changing optimal trade-off solutions. Such problems are called dynamic multi-
objective optimisation problems (DMOPs), where each DMOP has either two or three
objective functions to optimise. When an optimisation problem has more than three
objectives, it is referred to as many-objective optimisation problem.

Dynamic multi-objective optimisation (DMOO) algorithms have many real world
practical applications in the context of finance [1], scheduling [2, 3, 4], planning
[5], and resource allocation [6, 7]. For over two decades, many state-of-the-art dy-
namic multi-objective optimisation algorithms (DMOAs) have been proposed for solv-
ing DMOPs. Some of the most notable designs include genetic algorithms such as
the dynamic non-dominated sorting algorithm II (DNSGA-II) [2], steady-state and
generational evolutionary algorithm (SGEA) [8], dynamic co-evolutionary algorithm
(dCOEA) [9], and multi-swarm based dynamic vector evaluated particle swarm op-
timisation (DVEPSO) algorithm [10]. One of the main goals of these algorithms is
to develop an efficient and computationally inexpensive environment change strat-
egy so that they can quickly track the ever-changing Pareto-optimal set (POS) and
Pareto-optimal front (POF). The POS refers to the non-dominated set of the de-
cision variables in the entire feasible search space, whereas POF refers to a set of
corresponding optimal solutions in the space of objective functions.
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Section 1.1 provides the motivation for this thesis. The main objective and the
sub-objectives are discussed in Section 1.2, followed by a list of the contributions
made throughout this study in Section 1.3. Lastly, an outline for the remainder of
the thesis is given in Section 1.4.

1.1 Motivation

More recently, the multi-guide particle swarm optimisation (MGPSO) algorithm
was proposed by Scheepers, Engelbrecht, and Cleghorn [11] for solving static multi-
objective optimisation problems (SMOPs). The MGPSO is simple to implement and
is computationally efficient. This multi-swarm approach introduced an archive guide,
selected from a bounded archive, to balance trade-offs between conflicting objectives.
The empirical study has shown that MGPSO is very competitive when compared with
the other multi-objective algorithms (MOAs) [11]. Given the promising results of the
MGPSO for SMOPs, this paper adapts the MGPSO for DMOPs. More specifically,
this study considers archive management strategies to allow MGPSO to track chang-
ing POFs efficiently. This paper also examines the effect that these various archive
management approaches have on the performance of the MGPSO, with the goal of
determining the one that works best on a large variety of DMOPs. The best ap-
proach is then used in a comparative study with the other state-of-the-art DMOAs.
The problems considered in this study have only two or three objectives, and the
exact time of the changes is assumed to be known beforehand.

This study also considers alternative archive balance coefficient initialization strate-
gies to allow MGPSO to more efficiently control the influence that the social guide
and the archive guide have on the particle’s velocity. Once these strategies are de-
fined, a series of experiments are conducted to determine the best strategy for solv-
ing DMOPs. The MGPSO in these experiments also includes the re-evaluation of
non-dominating solutions archive management strategy. The best balance coefficient
initialization strategy is then used in a comparative study with the other DMOAs.

To help MGPSO deal with the diversity loss when solving DMOPs, quantum
particle swarm optimisation (QPSO) strategies are explored. Overall, six QPSO
variants are considered in the experimental analyses. Two distinct experiments, one
where 50% of neutral particles are converted into quantum particles and the other
one at 10% quantum proportion are conducted. The best performing strategies from
both experiments are then then used in a comparative study with other DMOAs as
well as the MGPSO without any quantum particles.
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1.2 Objectives

The main objective of this study is to adapt the multi-guide particle swarm optimiza-
tion algorithm to solve dynamic multi-objective optimization problems. In working
towards this goal, the following sub-objectives have been identified:

• to provide an overview of the dynamic multi-objective optimization background
that subsequent chapters build upon.

• to discuss the particle swarm optimization algorithms and how they govern the
movement of particles to solve single and multi-objective optimization problems.

• to investigate and propose various archive management update approaches to
efficiently re-populate the bounded archive with diverse non-dominated solu-
tions.

• to investigate current archive balance coefficient initialization strategies and
propose new strategies that take into the account the dynamic nature of the
problems.

• to investigate current QPSO techniques used for DMOPs and to propose new
variants that take advantage of the bounded archive.

• to perform an extensive empirical and sensitivity analyses of the above men-
tioned strategies and to study their influence on the performance of the MGPSO.

• to determine the best strategies that allow MGPSO to efficiently track the POS
and the POF.

• to compare the performance of the adapted MGPSO with the other state-of-
the-art DMOO algorithms.

1.3 Contributions

The main contributions of this study are

• The introduction of the adapted MGPSO algorithm for DMOO.

• The finding that the proposed algorithm is capable of solving DMOPs.

• The introduction of six archive management approaches.
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• The finding that utilising a local search algorithm as an archive management
approach is efficient.

• The introduction of eight balance coefficient update strategies.

• The finding that re-initializing the balance coefficient at each environment
change is preferable.

• The introduction of the MGPSO with two QPSO strategies.

• The addition of two alternative sampling methods for both QPSO variants.

• The finding that self-adaptive QPSO outperforms PCX QPSO for most DMOPs.

• The finding that smaller proportion of quantum particles is preferable.

• The finding that the adapted MGPSO is highly competitive and oftentimes
outperforms the other DMOAs.

1.4 Thesis Outline

• Chapter 2 covers formal definitions for dynamic multi-objective optimisation
on which the subsequent chapters build upon. It includes sections on Pareto-
optimal set and Pareto-optimal front, the definition for the dynamic multi-
objective optimisation problems, and provides an overview of various dynamic
environment types. The formal definitions of the current dynamic multi-objective
optimisation benchmark functions and the current performance measures used
to evaluate the performance of the dynamic multi-objective optimisation algo-
rithms are given.

• Chapter 3 covers the original particle swarm optimisation algorithm used for
solving single-objective optimisation problems, and then the modified, multi-
guide particle swarm optimisation used for solving multi-objective optimisation
problems is discussed.

• Chapter 4 introduces the multi-guide particle swarm optimization adapted for
the dynamic multi-objective optimisation problems. Each change to the to the
original algorithm is discussed in detail. It covers the bounded archive update
approaches, quantum particle swarm optimisation implementation, and new
archive balance coefficient initialization strategies.
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• Chapter 5 covers the experimental set-up. It includes sections on performance
measures, benchmark functions, dynamic environment types, dynamic multi-
objective optimisation algorithms, and a step-by-step process on how to rank
the performance of the algorithm that takes into the account the tracking ability
of DMOAs.

• Chapter 6 considers six archive management strategies and the effect that these
approaches have on the performance of the MGPSO is examined. The goal is to
determine the approach that works best on various DMOPs as well as various
frequencies of change and severities of change. The approach that performs best
is then selected for a comparative study with the other DMOAs.

• Chapter 7 presents a parameter sensitivity analysis of the balance coefficient
parameter of the MGPSO. Overall, nine initialization strategies are considered
and the one that performs best on twenty-nine benchmark functions and various
environment types is considered for the final comparison with the other state-
of-the-art DMOAs. The MGPSO considered in these experiments uses the
re-evaluation of non-dominating solutions archive management strategy.

• Chapter 8 presents the experimental results for the MGPSO with the self-
adaptive quantum particles and the parent-centric crossover particles. Varying
proportions of quantum particles are also considered. Then, the best QPSO
approach is used in a comparative study with the other DMOAs. The MGPSO
considered in these experiments uses the re-evaluation of non-dominating solu-
tions archive management strategy and the best performing balance coefficient
strategy from the previous chapter.

• Chapter 9 provides a summary of all the findings and conclusions of the pre-
sented work. Ideas for future research, based on the presented work, are also
given.
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Chapter 2

Formal Definitions

This chapter provides definitions that are required for the rest of the thesis. Sec-
tion 2.1 provides formal definitions with regards to DMOO, followed by Section 2.2
and Section 2.3 that describe DMOPs and performance measures, respectively.

2.1 Dynamic Multi-objective Optimisation

Section 2.1.1 covers the theory and formal definitions introduced by Helbig and Engel-
brecht [12] with regards to DMOO. It provides definitions for vector domination and
Pareto-optimality, and the main goal when solving DMOPs is given. Section 2.1.2
describes four environment types of DMOPs as well as two control parameters that
allow changes to DMOPs with respect to the spatial and temporal severity.

2.1.1 Optimisation Definitions

Let the nx-dimensional search space (also referred to as the decision space) be rep-
resented by S ⊆ Rnx and the feasible space represented by F ⊆ S, where F = S for
boundary constrained optimisation problems. Let x = (x1, x2, . . . , xnx) ∈ S represent
a vector of the decision variables, i.e. a decision vector, and let a single objective func-
tion be defined as fk : Rnx → R. Then f(x) = (f1(x), f2(x), . . . , fnk

(x)) ∈ O ⊆ Rnx

represents an objective vector containing nk objective function evaluations, and O is
the objective space. A boundary constrained DMOP is then defined as:

minimise f(x, W(t))

subject to x ∈ [xmin, xmax]nx
(2.1)
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where W(t) is a matrix of time-dependent control parameters of objective functions
at time t, W(t) = (w1(t), . . . , wnk

(t)), nx is the number of decision variables, x =
(x1, . . . , xnk

) ∈ Rnx and x ∈ [xmin, xmax]nx refers to the domain of x, with xmin

and xmax referring to the lower and upper bounds of the feasible values for decision
variables x.

Two solutions are compared using vector domination, and are defined as follows:

Definition 2.1.1 (Vector Domination). Let fk be an objective function. Then, a
decision vector x1 dominates another decision vector x2, denoted by x1 ≺ x2, if and
only if

• x1 is at least as good as x2 for all the objectives, i.e. fk(x1) ≤ fk(x2), ∀k =
1, . . . , nk; and

• x1 is strictly better than x2 for at least one objective, i.e. ∃l = 1, . . . , nk :
fl(x1) < fl(x2).

The best decision vectors are referred to as being Pareto-optimal, defined as:

Definition 2.1.2 (Pareto-optimal). A decision vector x∗ is Pareto-optimal if there
does not exist a decision vector x ̸= x∗ ∈ F that dominates it, i.e. ∄k : fk(x) ≺ fk(x∗).
If x∗ is Pareto-optimal, the objective vector, f(x∗), is also Pareto-optimal.

The Pareto-optimal set (POS) is the set that contains all the Pareto-optimal
decision vectors, defined as:

Definition 2.1.3 (Pareto-optimal Set). The POS is formed by the set of all Pareto-
optimal decision vectors, i.e.

POS = {x∗ ∈ F | ∄x ∈ F : x ≺ x∗} (2.2)

The set of corresponding objective vectors is referred to as the Pareto-optimal
front (POF):

Definition 2.1.4 (Pareto-optimal Front). For the objective vector f(x) and the POS,
the POF, POF ⊆ O, is defined as

POF = {f = (f1(x∗), f2(x∗), . . . , fnk
(x∗)) | x∗ ∈ POS} (2.3)
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When solving a DMOP, the goal of a dynamic multi-objective optimisation algo-
rithm (DMOA) is to track the POF over time, i.e. for each time step t, to find

POF (t) = {f(t) = (f1(x∗, w1(t)), f2(x∗, w2(t)), . . . ,

fnk
(x∗, wnk

(t))) | x∗ ∈ POS(t)}
(2.4)

2.1.2 Dynamic Environment Types

Farina, Deb, and Amato [13] classified dynamic environments for DMOPs into four
distinct environment types, namely:

• Type I environment: The optimal variables in the decision space (POS)
changes, but the optimal objective values in the objective space (POF) remains
unchanged.

• Type II environment: Both the POS and the POF change.

• Type III environment: The POS remains unchanged, but the POF changes.

• Type IV environment: Both the POS and the POF remain unchanged,
although other regions of the fitness landscape may change.

The time t of each DMOP is calculated by t = 1
nt

⌊
τ
τt

⌋
where τ is the current

iteration number, τt is the number of iterations for which t remains fixed, and nt

is the number of distinct steps in t. Both nt and τt were introduced by Branke,
Salihoglu, and Uyar [14] to allow changes to DMOPs with respect to the spatial
severity and the temporal severity, respectively. Spatial severity, often referred to
as severity of change, measures the distance between the current and the previous
POF; big nt value makes small changes to the POF, whereas a low nt value makes the
changes bigger. On the other hand, the temporal severity (or frequency of change)
determines how often the environment changes; big τt value changes the environment
slowly compared to a small τt value that results in changes being more frequent. For
example, nt = 1 and τt = 10 modifies a DMOP so that the severity of changes is large
and the frequency of changes happens fast. When nt = 20 and τt = 50, the spatial
severity is very small and the frequency of changes is slow.

Over the years, many benchmark functions for DMOO have been proposed to
evaluate the performance of DMOAs. In the next section, twenty-nine DMOPs are
formally defined and their main characteristics are given.
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2.2 Dynamic Multi-objective Optimisation Prob-
lems

Based on the analysis of DMOPs by Helbig and Engelbrecht [12], this section dis-
cusses twenty-nine benchmark functions used to evaluate the performance of DMOO
algorithms. The FDA and DIMP test functions are discussed in Section 2.2.1 and in
Section 2.2.2, respectively. Sections 2.2.3 covers the dMOP test suite, followed by the
DMOPs with isolated and deceptive POF in Section 2.2.4. The HE test suite is cov-
ered in Section 2.2.5 and some of the more recently proposed functions are discussed
in Section 2.2.6. Section 2.2.7 provides a summary of each DMOP considered in this
study.

2.2.1 FDA Test Suite

Farina, Deb, and Amato [13] developed the first DMOPs based on the ZDT [15] and
DTLZ [16] benchmark functions for SMOPs. The DMOPs inside the FDA test suite
were constructed to have the POS or the POF change over time (Type I or Type
III environment), or to have both the POS and the POF change over time (Type II
environment). The FDA1-FDA3 are bi-objective DMOPs, whereas FDA4 and FDA5
are tri-objective DMOPs. The POF of these DMOPs are either convex, non-convex
or changes from convex to concave over time.

(a) POS (b) POF

Figure 2.1 POS and POF of FDA1 with nt = 10 and τt = 10 for 1000 iterations.
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FDA1 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t)))
f1(xI) = x1

g(xII, t) = 1 +∑
xi∈xII (xi − G(t))2

f2(f1, g) = g ·
(
1 −

√
f1
g

)
where :
G(t) = sin (0.5πt), t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(2.5)

The FDA1 is a Type I DMOP where variables in the decision space (i.e. POS)
change over time, but the values in the objective space (i.e. POF) remain the same. It
has a convex POF as illustrated in Figure 2.1b and the POS is depicted in Figure 2.1a.
The number of decision variables, nx, is set to 20 as suggested by Farina, Deb, and
Amato [13]. The POS and POF of FDA1 is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1, 0 ≤ f1 ≤ 1
(2.6)

(a) POS (b) POF

Figure 2.2 The POS and POF of ZJZ with nt = 10 and τt = 10 for 1000 iterations.

Another characteristic of the FDA test suite is that there is linear correlation
between the decision variables. Since there is no reason that the POS of a real world
problem to be this simple, Zhou et al. [17] modified FDA1 to incorporate dependencies
between the decision variables. The modified FDA1, called ZJZ, is defined as follows
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ZJZ =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t), t))
f1(xI) = x1

g(xII, t) = 1 +∑
xi∈xII

(
xi − G(t) − x

H(t)
1

)2

f2(f1, g, t) = g ·
(

1 −
(

f1
g

)H(t)
)

where :
G(t) = sin (0.5πt)
H(t) = 1.5 + G(t), t = 1

nt

⌊
τ
τt

⌋
xI ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 2]n−1

(2.7)

For ZJZ, the values of both the POS and the POF change over time, as illustrated
in Figure 2.2a and Figure 2.2b, respectively. The POF changes from convex to concave
and the number of decision variables, nx, is set to 10. The POS and the POF is given
by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t) + x
H(t)
1 , ∀i = 2, . . . , n

POF (t) : f2 = 1 − f
H(t)
1 , 0 ≤ f1 ≤ 1

(2.8)

(a) POS (b) POF

Figure 2.3 The POS and POF of FDA2Cam with nt = 10 and τt = 10 for 1000
iterations.

For FDA2 DMOP, the POF changes from a convex to a concave shape only for
specific values of the decision variables, making it very difficult to find convex POF
instead of concave POF. The following modifications to FDA2 have been proposed
by Cámara, Ortega, and Toro [18] to address this issue
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FDA2Cam =



Minimize : f(x, t) = (f1(xI), f2(x, g(xII), h(xIII, f1(xI), t)))
f1(xI) = x1

f2(x, g, h) = g · h

g(xII) = 1 +∑
xi∈xII x2

i

h(xIII, f1, t) = 1 −
(

f1
g

)H2(t)

where :
H(t) = z− cos (πt/4), t = 1

nt

⌊
τ
τt

⌋
H2(t) = H(t) +∑

xi∈xIII (xi − H(t)/2)2

xI ∈ [0, 1]; xII, xIII ∈ [−1, 1]n−1

(2.9)

The FDA2Cam is a Type III DMOP since values of the solutions move only in the
objective space. The change to the original FDA2 was made to functions h(x) and
H(t) and authors suggest a value of z = 5. The sizes are |xII| = |xIII| = 15, so there
are 31 decision variables. Its POF changes from convex to concave, as illustrated in
Figure 2.3b, and it has a rather simple POS, as depicted in Figure 2.3a. The POS
and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = 0, ∀xi ∈ xII and xi = H(t)
2 , ∀xi ∈ xIII

POF (t) : f2 = 1 − f
H(t)
1 , 0 ≤ f1 ≤ 1

(2.10)

(a) POS (b) POF

Figure 2.4 The POS and POF of FDA3Cam with nt = 10 and τt = 10 for 1000
iterations.
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The underlying problems with FDA3 have also lead to several modifications being
suggested. This study considers the modification by Cámara, Ortega, and Toro [18],
formally defined as

FDA3Cam =



Minimize : f(x, t) = (f1(xI, t), f2(f1(xI, t), g(xII, t)))
f1(xI, t) = x

F (t)
1

g(xII, t) = 1 + G(t) +∑
xi∈xII (xi − G(t))2

f2(f1, g) = g ·
(
1 −

√
f1
g

)
where :
G(t) = | sin (0.5πt)|
F (t) = 102 sin (0.5πt), t = 1

nt

⌊
τ
τt

⌋
xI = [0, 1]; xII = [−1, 1]n−1

(2.11)

In this function, both the decision and the objective space changes over time. The
suggested modification was made only to f1(x), and |xII| = 29 as suggested by Coello,
Dhaenens, and Jourdan [19]. In total, there are 30 decision variables. Both the POS
and POF is depicted in Figure 2.4a and Figure 2.4b, respectively. The POS and POF
of FDA3Cam is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = (1 + G(t))
(

1 −
√

f1

1 + G(t)

)
, ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1, 0 ≤ f1 ≤ 1
(2.12)

FDA4 =



Minimize : f(x, t) = (f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))
f1(x, g, t) = (1 + g(xII, t))∏M−1

i=1 cos (xiπ
2 )

fk(x, g, t) = (1 + g(xII, t))
(∏M−1

i=1 cos (xiπ
2 )
)

sin (yM−k+1π
2 ), ∀k = 2, . . . , M − 1

...
fm(x, g, t) = (1 + g(xII, t))∏M−1

i=1 sin (x1π
2 )

where :
g(xII) = ∑

xi∈xII (xi − G(t))2

G(t) = | sin (0.5πt)|, t = 1
nt

⌊
τ
τt

⌋
xII = (xM , . . . , xn); xi ∈ [0, 1], ∀i = 1, . . . , n

(2.13)

For FDA4, values in the decision space change over time, but the values in the
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(a) POF of FDA4 (b) POF of FDA5

Figure 2.5 The POF of FDA4 and FDA5 with nt = 1 and τt = 10 for 1000 iterations.

objective space remain the same. Therefore, it is a Type I DMOP. It has a non-convex
POF, as illustrated in Figure 2.5a. The POS is similar to FDA1 and is depicted in
Figure 2.1a. The M = 3 and the number of decision variables is set to 12. Thus,
FDA4 has three objectives to optimise. The POS and POF is given by

POS(t) : 0 ≤ x1, x2 ≤ 1, xi = G(t), ∀i = 3, . . . , n

POF (t) : f1 = cos (u) cos (v), f2 = cos (u) sin (v), f3 = sin (u), 0 ≤ u, v ≤ π/2
(2.14)

FDA5 =



Minimize : f(x, t) = (f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))
f1(x, g, t) = (1 + g(xII, t))∏M−1

i=1 cos (yiπ
2 )

fk(x, g, t) = (1 + g(xII, t))
(∏M−1

i=1 cos (yiπ
2 )
)

sin (yM−k+1π
2 ), ∀k = 2, . . . , M − 1

...
fm(x, g, t) = (1 + g(xII, t))∏M−1

i=1 sin (y1π
2 )

where :
g(xII, t) = G(t) +∑

xi∈xII (xi − G(t))2

G(t) = | sin (0.5πt)|, t = 1
nt

⌊
τ
τt

⌋
yi = xF (t)

y , ∀i = 1, . . . , (M − 1)
F (t) = 1 + 100 sin4 (0.5πt)
xII = (xM , . . . , xn); xi ∈ [0, 1], ∀i = 1, . . . , n

(2.15)
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FDA5 has a non-convex POF, where both POS and POF changes over time.
Therefore, it is a Type II DMOP. The POF is depicted in Figure 2.5b and the POS is
similar to FDA1 as in Figure 2.1a. The M = 3 and the number of decision variables
is set to 12. Thus, FDA5 has three objectives to optimise. The POS and POF of
FDA5 is given by

POS(t) : 0 ≤ x1, x2 ≤ 1, xi = G(t), ∀i = 3, . . . , n

POF (t) : f1 = cos (u) cos (v), f2 = cos (u) sin (v), f3 = sin (u), 0 ≤ u, v ≤ π/2
(2.16)

2.2.2 DIMP Test Suite

A major drawback of the FDA test suite is that all DMOPs objective functions
consist of decision variables with the same rate of change over time. To overcome this
shortcoming, Koo, Goh, and Tan [20] proposed two DMOPs, DIMP1 and DIMP2,
where each decision variable has different rate of change. For both problems, only
the first variable, x1, remains unchanged since it controls the spread of the solutions.
The DIMP1 DMOP is defined as follows

DIMP1 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t)))
f1(xI) = x1

g(xII, t) = 1 +∑
xi∈xII (xi − Gi(t))2

f2(f1, g) = g ·
(

1 −
(

f1
g

)2
)

where :
Gi(t) = sin2

(
0.5πt + 2π

(
i

n+1

))
, t = 1

nt

⌊
τ
τt

⌋
xI = (x1) ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−1, 1]n−1

(2.17)

The POS of DIMP1 changes over time and is similar to the POS of FDA1 (refer
to Figure 2.1a). The POF remains the same, as illustrated in Figure 2.6b. Therefore,
it belongs to a Type I environment. The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f2 = 1 − f 2
1 , 0 ≤ f1 ≤ 1

(2.18)
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DIMP2 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t)))
f1(xI) = x1

g(xII, t) = 1 + 2(n − 1) +∑
xi∈xII [(xi − Gi(t))2 − 2 cos (3π(xi − Gi(t)))]

f2(f1, g) = g ·
(
1 −

√
f1
g

)
where :
Gi(t) = sin2

(
0.5πt + 2π

(
i

n+1

))
, t = 1

nt

⌊
τ
τt

⌋
xI = (x1) ∈ [0, 1]; xII = (x2, . . . , xn) ∈ [−2, 2]n−1

(2.19)
The DIMP2 DMOP also belongs to a Type I environment, since its POS changes

over time (refer to Figure 2.1a), but its POF remains the same (refer to Figure 2.1b).
Both the POS and POF of DIMP2 is similar to the POS and POF of the FDA1
DMOP. The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1, 0 ≤ f1 ≤ 1
(2.20)

2.2.3 dMOP Test Suite

Goh and Tan [9] presented three DMOPs of Type I, Type II, and Type III, called
dMOP1, dMOP2 and dMOP3, respectively. The dMOP1 benchmark function is
defined as follows

(a) POF of dMOP1 (b) POF of DIMP1

Figure 2.6 The POF of dMOP1 and DIMP1 with nt = 10 and τt = 10 for 1000
iterations.
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dMOP1 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII), t))
f1(xI) = x1

g(xII) = 1 + 9∑xi∈xII (xi)2

f2(f1, g, t) = g ·
(

1 −
(

f1
g

)H(t)
)

where :
H(t) = 0.75 sin (0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(2.21)

The dMOP1 has a convex POF, as illustrated in Figure 2.6a, where the values
in the objective space change. However, the values in the decision space remain the
same and the POS is similar to the one from FDA2Cam (refer to Figure 2.3a). The
number of decision variables for this Type III problem should be set to nx = 10 as
suggested by Goh and Tan [9]. The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = 0, ∀i = 2, . . . , n

POF (t) : f2 = 1 − f
H(t)
1 , 0 ≤ f1 ≤ 1

(2.22)

dMOP2 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t), t))
f1(xI) = x1

g(xII, t) = 1 + 9∑xi∈xII (xi − G(t))2

f2(f1, g, t) = g ·
(

1 −
(

f1
g

)H(t)
)

where :
H(t) = 0.75 sin (0.5πt) + 1.25
G(t) = sin (0.5πt), t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(2.23)

The dMOP2 is Type II problem where POF changes from convex to concave (refer
to Figure 2.6a), and POS changes in a similar way to FDA1 (refer to Figure 2.1a).
The number of decision variables should be set to 10 as suggested by Goh and Tan
[9]. The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1, 0 ≤ f1 ≤ 1
(2.24)
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dMOP3 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t)))
f1(xI) = xr

g(xII, t) = 1 + 9∑xi∈xII\xr
(xi − G(t))2

f2(f1, g) = g ·
(
1 −

√
f1
g

)
where :
G(t) = | sin (0.5πt)|, t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; r = ⋃ (1, 2, . . . , n)

(2.25)

dMOP3mod =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t)))
f1(xI) = xr

g(xII, t) = 1 +∑
xi∈xII\xr

(xi − G(t))2

f2(f1, g) = g ·
(
1 −

√
f1
g

)
where :
r = 1 + ⌊(n − 1)G(t)⌋
G(t) = | sin (0.5πt)|, t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]

(2.26)

Both dMOP3 and dMOP3mod have a convex POF (similar to FDA1 from Fig-
ure 2.1b) that remains the same, and a simple POS (similar to FDA3Cam from Fig-
ure 2.4a) that changes over time. Therefore, they belong to a Type I environment.
The switch of the position-related variable, xr, is a challenging dynamic, as it can
cause severe diversity loss to population. The dimension, nx, should be set to 10 for
both problems as suggested by Goh and Tan [9]. The POS and POF of dMOP3 is
given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1, 0 ≤ f1 ≤ 1
(2.27)

The POS and POF of dMOP3mod is given by

POS(t) : 0 ≤ xr ≤ 1, xi ̸=r = G(t), ∀i = 1, . . . , n

POF (t) : f2 = 1 −
√

f1, 0 ≤ f1 ≤ 1
(2.28)
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2.2.4 Isolated and Deceptive Test Problems

Helbig and Engelbrecht [12] have made the following modifications to dMOP2 and
FDA5 functions, so that they have an isolated POF and a deceptive POF. When a
DMOP has an isolated POF, the majority of the search space is fairly flat, making
it more difficult to solve because no useful information is provided with regards to
the location of the POF. In order to convert FDA5 and dMOP2 DMOPs such that
they have an isolated POF, a new function, y∗, creates flat regions by mapping the
decision variables to new values. It is defined as

y∗(xi, A, B, C) = A + min(0, ⌊xi − B⌋)A(B − xi)
B

− min(0, ⌊C − xi⌋)(1 − A)(xi − C)
1 − C

(2.29)
where values for A, B, and C are G(t), 0.001, and 0.05, respectively [12]. The modified
DMOPs with an isolated POF are referred to as FDA5iso and dMOP2iso for the rest
of the paper.

On the other hand, a DMOP with a deceptive POF is a multi-modal problem,
since there exist more than one optima. It is more difficult to solve because the search
space favors the deceptive optimum and the algorithm might get stuck in the local
POF. In order to convert FDA5 and dMOP2 into DMOPs with a deceptive POF, a
different definition for the y∗ function is used. It is defined as

y∗(xi, A, B, C) = 1 + (|xi − A| − B)⌊xi − A + B⌋
(
1 − C + A−B

B

)
A − B

+ 1
B

+
⌊A + B − xi⌋

(
1 − C + 1−A−B

B

)
1 − A − B

 (2.30)

where values for A, B, and C are G(t), 0.001, and 0.05, respectively [12]. The modified
DMOPs with a deceptive POF are referred to as FDA5dec and dMOP2dec for the rest
of the paper.
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The modified FDA5 DMOPs, FDA5iso and FDA5dec, are defined as

FDA5iso
FDA5dec

=



Minimize : f(x, t) = (f1(x, g(xII, t)), . . . , fk(x, g(xII, t)))
f1(x, g, t) = (1 + g(xII, t))∏M−1

i=1 cos (yiπ
2 )

fk(x, g, t) = (1 + g(xII, t))
(∏M−1

i=1 cos (yiπ
2 )
)

sin (yM−k+1π
2 ), ∀k = 2, . . . , M − 1

...
fm(x, g, t) = (1 + g(xII, t))∏M−1

i=1 sin (y1π
2 )

where :
g(xII, t) = ∑

xj∈xII (xi − G(t))2

G(t) = | sin (0.5πt)|, t = 1
nt

⌊
τ
τt

⌋
F (t) = 1 + 100 sin4 (0.5πt)
yi = xF (t)

y , ∀i = 1, . . . , (M − 1)
yj = y∗(xj, A, B, C), ∀xi ∈ xII

xII = (xM , . . . , xn); xi ∈ [0, 1], ∀i = 1, . . . , n

(2.31)

where the POS and POF of FDA5iso and FDA5dec is given by

POS(t) : 0 ≤ x1, x2 ≤ 1, xi = G(t), ∀i = 3, . . . , n

POF (t) : f1 = cos (u) cos (v), f2 = cos (u) sin (v), f3 = sin (u), 0 ≤ u, v ≤ π/2
(2.32)

The modified dMOP2 DMOPs, dMOP2iso and dMOP2dec, are defined as

dMOP2iso
dMOP2dec

=



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII, t), t))
f1(xI) = x1

g(xII, t) = 1 + 9∑xi∈xII (xi − G(t))2

f2(f1, g, t) = g ·
(

1 −
(

f1
g

)H(t)
)

where :
yi = y∗(xi, A, B, C), ∀xi ∈ xII

H(t) = 0.75 sin (0.5πt) + 1.25
G(t) = sin (0.5πt), t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(2.33)
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where the POS and POF of dMOP2iso and dMOP2dec is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f2 = 1 − f
H(t)
1 , 0 ≤ f1 ≤ 1

(2.34)

2.2.5 HE Test Suite

The FDA and dMOP test suites contain DMOPs with only a continuous POF. More
recently, Helbig and Engelbrecht [21] presented two DMOPs with a discontinuous
POF, namely HE1 and HE2. These two functions are based on the ZDT3 [15] MOP.
The HE1 DMOP is defined as

(a) POF of HE1 (b) POF of HE2

Figure 2.7 The POF of HE1 and HE2 with nt = 10 and τt = 10 for 1000 iterations.

HE1 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII), t))
f1(xI) = x1

g(xII) = 1 + 9
n−1

∑
xi∈xII xi

f2(f1, g, t) = g ·
(
1 −

√
f1
g

− f1
g

sin (10πtf1)
)

where :
t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(2.35)

The HE1 DMOP has a discontinuous POF with various disconnected continuous
sub-regions, as illustrated in Figure 2.7a. The POS is rather simple and is similar to
the POS of FDA2Cam (refer to Figure 2.3a). Therefore, HE1 belongs to a Type III
environment. The dimension, nx, is set to 30 as suggested by Helbig and Engelbrecht
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[21] and the POS and the POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = 0, ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1 − f1 sin (10πtf1), 0 ≤ f1 ≤ 1
(2.36)

HE2 =



Minimize : f(x, t) = (f1(xI), f2(f1(xI), g(xII), t))
f1(xI) = xi

g(xII) = 1 + 9
n−1

∑
xi∈xII xi

f2(f1, g, t) = g ·
(

1 −
(√

f1
g

)H(t)
−
(

f1
g

)H(t)
sin (10πf1)

)
where :
H(t) = 0.75 sin (0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
xi ∈ [0, 1]; xI = (x1); xII = (x2, . . . , xn)

(2.37)

The HE2 DMOP also has a discontinuous POF with various disconnected continuous
sub-regions, as depicted in Figure 2.7b. The POS remains unchanged and is similar
to the POS of FDA2Cam (refer to Figure 2.3a) Therefore, HE2 belongs to a Type III
environment. The dimension, nx, is set to 30 as suggested by Helbig and Engelbrecht
[21] and the POS and the POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = −, ∀i = 2, . . . , n

POF (t) : f2 = 1 −
√

f1
H(t)

− f
H(t)
1 sin (0.5πf1), 0 ≤ f1 ≤ 1

(2.38)

(a) POS (b) POF

Figure 2.8 The POS and POF of HE7 with nt = 10 and τt = 10 for 1000 iterations.
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Most of the DMOPs introduced so far have a rather simplistic POS. To address
this issue, Helbig and Engelbrecht [12] introduced the following two DMOPs, HE7
and HE9, to have a complex POS. The POS for both of these problems is defined
by non-linear curves and are different for each decision variable. The HE7 DMOP is
defined as

HE7 =



Minimize : f(x, t) = (f1(x), f2(f1(x), g(x), t))
f1(x) = x1 + 2

|J1| ·∑
j∈J1

(
xj − [0.3x2

1 cos
(
24πx1 + 4jπ

n

)
+ 0.6x1] cos

(
6πx1 + jπ

n

))2

g(x) = 2 − √
x1 + 2

|J2| ·∑
j∈J2

(
xj − [0.3x2

1 cos
(
24πx1 + 4jπ

n

)
+ 0.6x1] sin

(
6πx1 + jπ

n

))2

f2(f1, g, t) = g ·
(

1 −
(

f1
g

)H(t)
)

where :
H(t) = 0.75 sin (0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = {j | j is odd and 2 ≤ j ≤ n}
J2 = {j | j is even and 2 ≤ j ≤ n}
x1 ∈ [0, 1]; xi ∈ [−1, 1]; ∀i = 2, 3, . . . , n

(2.39)
The HE7 DMOP belongs to a Type III environment, since the POF changes over

time (refer to Figure 2.8b), but the POS remains the same (refer to Figure 2.8a). The
number of decision variables is set to 30 and the POS and POF is given by

POS : xj =



a cos
(

6πx1+ jπ
n

3

)
, j ∈ J1

a cos
(
6πx1 + jπ

n

)
, j ∈ J2

with :
a =

[
0.3x2

1 cos
(
24πx1 + 4jπ

n

)
+ 0.6x1

]
POF : y = (2 −

√
x1)

1 −
(

x1

2 − √
x1

)H(t)
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The HE9 DMOP is defined as

HE9 =



Minimize : f(x, t) = (f1(x), f2(f1(x), g(x), t))
f1(x) = x1 + 2

|J1|
∑

j∈J1

(
4∑j∈J1 y2

j −∏
j∈J1 cos

(
20yjπ√

j

)
+ 2.0

)
g(x) = 2 − √

x1 + 2
|J2|

∑
j∈J2

(
4∑j∈J2 y2

j −∏
j∈J2 cos

(
20yjπ√

j

)
+ 2.0

)
f2(f1, g, t) = g ·

(
1 −

(
f1
g

)H(t)
)

where :
H(t) = 0.75 sin (0.5πt) + 1.25, t = 1

nt

⌊
τ
τt

⌋
J1 = {j | j is odd and 2 ≤ j ≤ n}
J2 = {j | j is even and 2 ≤ j ≤ n}

yj = xj − x
0.5(1.0+ 3(j−2)

n−2 )
1 , ∀j = 2, 3, . . . , n

x1 ∈ [0, 1]; xi ∈ [−1, 1]; ∀i = 2, 3, . . . , n

(2.40)
The HE9 also belongs to a Type III environment and its POF is similar to HE7

(refer to Figure 2.8a). The number of decision variables is set to 30 and the POS and
POF is given by

POS : xj = x
0.5( 3(j−2)

n−2 )
1 , ∀j = 2, 3, . . . , n

POF : y = (2 −
√

x1)
1 −

(
x1

2 − √
x1

)H(t)
 (2.41)

2.2.6 Recently Proposed Test Problems

This section contains recently proposed DMOPs that belong to a Type II environment.
The F5-F7 DMOPs were introduced by Zhou, Jin, and Zhang [22] and DF4-DF9
DMOPs were introduced by Jiang et al. [23]. All of the following DMOPs have the
number of decision variables, nx, set to 10.

The F5 DMOP, unlike benchmark functions from the FDA test suite, has non-
linear correlation between decision variables and is defined as
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(a) POS (b) POF

Figure 2.9 The POS and POF of F5 with nt = 10 and τt = 10 for 1000 iterations.

F5 =



Minimize : f(x, t) = (f1(x, t), f2(x, t))
f1(x, t) = |x1 − a|H +∑

i∈I1 y2
i

f2(x, t) = |x1 − a − 1|H +∑
i∈I2 y2

i

where :
H(t) = 1.25 + 0.75 sin (πt), t = 1

nt

⌊
τ
τt

⌋
yi = xi − b − 1 + |x1 − a|H+ i

n

a = 2 cos (πt) + 2, b = 2 sin (2πt) + 2
I1 = {i | i is odd and 1 ≤ i ≤ n}
I2 = {i | i is even and 1 ≤ i ≤ n}
xi ∈ [0, 5]; ∀i = 1, 2, . . . , n

(2.42)

The POF and POS change over time, as illustrated in Figure 2.9b and 2.9a,
respectively. The POF and POS is given by

POS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ 1
n , ∀i = 2, . . . , n

POF (t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1
(2.43)
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(a) POS of F6 (b) POS of F7

Figure 2.10 The POS of F6 and F7 with nt = 10 and τt = 10 for 1000 iterations.

F6 =



Minimize : f(x, t) = (f1(x, t), f2(x, t))
f1(x, t) = |x1 − a|H +∑

i∈I1 y2
i

f2(x, t) = |x1 − a − 1|H +∑
i∈I2 y2

i

where :
H(t) = 1.25 + 0.75 sin (πt), t = 1

nt

⌊
τ
τt

⌋
yi = xi − b − 1 + |x1 − a|H+ i

n

a = 2 cos (πt) + 2, b = 2 sin (2πt) + 2
I1 = {i | i is odd and 1 ≤ i ≤ n}
I2 = {i | i is even and 1 ≤ i ≤ n}
xi ∈ [0, 5]; ∀i = 1, 2, . . . , n

(2.44)

The POF and POS change over time, as illustrated in Figure 2.9b and 2.10a,
respectively. The POF and POS is given by

POS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ 1
n , ∀i = 2, . . . , n

POF (t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1
(2.45)
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F7 =



Minimize : f(x, t) = (f1(x, t), f2(x, t))
f1(x, t) = |x1 − a|H +∑

i∈I1 y2
i

f2(x, t) = |x1 − a − 1|H +∑
i∈I2 y2

i

where :
H(t) = 1.25 + 0.75 sin (πt), t = 1

nt

⌊
τ
τt

⌋
yi = xi − b − 1 + |x1 − a|H+ i

n

a = 2 cos (πt) + 2, b = 2 sin (2πt) + 2
I1 = {i | i is odd and 1 ≤ i ≤ n}
I2 = {i | i is even and 1 ≤ i ≤ n}
xi ∈ [0, 5]; ∀i = 1, 2, . . . , n

(2.46)

The POF and POS change over time, as illustrated in Figure 2.9b and 2.10b,
respectively. The POF and POS is given by

POS(t) : a ≤ x1 ≤ a + 1, xi = b + 1 − |x1 − a|H+ 1
n , ∀i = 2, . . . , n

POF (t) : f1 = sH , f2 = (1 − s)H , 0 ≤ s ≤ 1
(2.47)

(a) POS (b) POF

Figure 2.11 The POS and POF of DF4 with nt = 10 and τt = 10 for 1000 iterations.
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DF4 =



Minimize : f(x, t) = (f1(x, g(x, t), t), f2(x1, g(x, t), t))
f1(x, g, t) = g · |x1 − a|H(t)

g(x, t) = 1 +∑n
i=2

(
xi − ax2

1
i

)2

f2(x1, g, t) = g · |x1 − a − b|H(t)

where :
H(t) = 1.5 + a, t = 1

nt

⌊
τ
τt

⌋
a = sin (0.5πt), b = 1 + | cos (0.5πt)|
xi ∈ [−2, 2]; ∀i = 1, 2, . . . , n

(2.48)

The DF4 has dynamics on both the POS and POF, as illustrated in Figure 2.11a
and in Figure 2.11b. The length and position of the POS changes over time and the
POF segments change from convex to concave. The POS and POF is given by

POS(t) : a ≤ x1 ≤ a + b, xi = ax2
1

i
, ∀i = 2, . . . , n

POF (t) : f2 =
(

b − f
1

H(t)
1

)H(t)
, 0 ≤ f1 ≤ bH(t)

(2.49)

(a) POF of DF5 (b) POF of DF6

Figure 2.12 The POF of DF5 and DF6 with nt = 10 and τt = 10 for 1000 iterations.
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DF5 =



Minimize : f(x, t) = (f1(x, g(x, t), t), f2(x1, g(x, t), t))
f1(x, g, t) = g · (x1 + 0.02 sin (wtπx1))
g(x, t) = 1 +∑n

i=2 (xi − G(t))2

f2(x1, g, t) = g · (1 − x1 + 0.02 sin (wtπx1))
where :
G(t) = sin (0.5πt), wt = ⌊10G(t)⌋, t = 1

nt

⌊
τ
τt

⌋
x1 ∈ [0, 1]; xi ∈ [−1, 1]; ∀i = 2, 3, . . . , n

(2.50)

The POS of DF5 is rather simple and is similar to FDA1 (refer to Figure 2.1a).
The POF has time-varying curves, as depicted in Figure 2.12a, where it starts linear
and then contains several locally concave/convex segments. The POS and POF is
given by

POS(t) : a ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f1 + f2 = 1 + 0.04 sin
(

wtπ
f1 − f2 + 1

2

)
, 0 ≤ f1 ≤ 1

(2.51)

DF6 =



Minimize : f(x, t) = (f1(x, g(x, t), t), f2(x1, g(x, t), t))
f1(x, g, t) = g · (x1 + 0.1 sin (3πx1))αt

g(x, t) = 1 +∑n
i=2 (|G(t)|y2

i − 10 cos (2πyi) + 10)
f2(x1, g, t) = g · (1 − x1 + 0.1 sin (3πx1))αt

where :
G(t) = sin (0.5πt), t = 1

nt

⌊
τ
τt

⌋
yi = xi − G(t), αt = 0.2 + 2.8|G(t)|,
x1 ∈ [0, 1]; xi ∈ [−1, 1]; ∀i = 2, 3, . . . , n

(2.52)

For DF6, the POF geometry is different from the previous DMOPs as it contains
knee regions and long tails. The POS is similar to FDA1 POS, as illustrated in
Figure 2.1a, and the POF is depicted in Figure 2.12b. The POS and POF is given by

POS(t) : a ≤ x1 ≤ 1, xi = G(t), ∀i = 2, . . . , n

POF (t) : f
1

αt
1 + f

1
αt

2 = 1 + 0.2 sin

3π
f

1
αt

1 − f
1

αt
2 + 1

2

, 0 ≤ f1 ≤ 1
(2.53)
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(a) POS (b) POF

Figure 2.13 The POS and POF of DF7 with nt = 10 and τt = 10 for 1000 iterations.

DF7 =



Minimize : f(x, t) = (f1(x, g(x, t), t), f2(x1, g(x, t), t))
f1(x, g, t) = g ·

(
1+t
x1

)
g(x, t) = 1 +∑n

i=2

(
xi − 1

1+eαt(x1−2.5)

)2

f2(x1, g, t) = g ·
(

x1
1+t

)
where :
αt = 5 cos (0.5πt), t = 1

nt

⌊
τ
τt

⌋
x1 ∈ [1, 4]; xi ∈ [0, 1]; ∀i = 2, 3, . . . , n

(2.54)

The POF of DF7, as depicted in Figure 2.13b, changes over time. The POS, as
illustrated in Figure 2.13a, also changes over time but has a centroid that remains
unchanged. The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = 1
1 + eαt(x1−0.5) , ∀i = 2, . . . , n

POF (t) : f2 = 1
f1

,
1 + t

4 ≤ f1 ≤ (1 + t)
(2.55)
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(a) POS (b) POF

Figure 2.14 The POS and POF of DF8 with nt = 10 and τt = 10 for 1000 iterations.

DF8 =



Minimize : f(x, t) = (f1(x, g(x, t)), f2(x1, g(x, t)))
f1(x, g) = g · (x1 + 0.1 sin (3πx1))

g(x, t) = 1 +∑n
i=2

(
xi − G(t) sin (4πx

βt
1 )

1+|G(t)|

)2

f2(x1, g) = g · (1 − x1 + 0.1 sin (3πx1))
where :
G(t) = sin (0.5πt), t = 1

nt

⌊
τ
τt

⌋
αt = 2.25 + 2 cos (2πt), βt = 100G2(t)
x1 ∈ [0, 1]; xi ∈ [−1, 1]; ∀i = 2, 3, . . . , n

(2.56)

Similar to DF7, the POS of DF8 varies over time and has a stationary POS
centroid (refer to Figure 2.14a). The POF of DF8, as illustrated in Figure 2.14a,
contains knee regions and long tails, which can be a challenging property [24, 25].
The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = G(t) sin (G(t) sin (4πxβt
1 ))

1 + |G(t)| , ∀i = 2, . . . , n

POF (t) : f1 + f
1

nt
2 = 1 + 0.2 sin

3π
f1 − f

1
αt

2 + 1
2

, 0 ≤ f1 ≤ 1
(2.57)
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(a) POS (b) POF

Figure 2.15 The POS and POF of DF9 with nt = 10 and τt = 10 for 1000 iterations.

DF9 =



Minimize : f(x, t) = (f1(x, g(x, t), t), f2(x1, g(x, t), t))
f1(x, g, t) = g ·

(
x1 + max

{
0,
(

1
2Nt

+ 0.1
)

sin (2Ntπx1)
})

g(x, t) = 1 +∑n
i=2 (xi − cos (4t + x1 + xi1))2

f2(x1, g, t) = g ·
(
1 − x1 + max

{
0,
(

1
2Nt

+ 0.1
)

sin (2Ntπx1)
})

where :
Nt = 1 + ⌊10| sin (0.5πt)|⌋, t = 1

nt

⌊
τ
τt

⌋
x1 ∈ [0, 1]; xi ∈ [−1, 1]; ∀i = 2, 3, . . . , n

(2.58)

For DF9, the POS and the POF change over time. The POS of DF9 is illus-
trated in Figure 2.15a, and the POF, as depicted in Figure 2.15b, has a time-varying
disconnected segments. The POS and POF is given by

POS(t) : 0 ≤ x1 ≤ 1, xi = cos (4t + x1 + xi−1), ∀i = 2, . . . , n

POF (t) : f2 = 1 − f1, f1 ∈
Nt⋃
i=1

[2i − 1
2Nt

,
i

Nt

]⋃
{0}

(2.59)
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2.2.7 Summary of Dynamic Multi-objective Optimisation Prob-
lems

This study considers DMOPs that belong only to the first three environment types
that were formally defined in Section 2.1.2. All of the twenty-nine DMOPs discussed in
this chapter have been classified in Table 2.1, where the number of decision variables,
nx, is given for each DMOP. The number of decision variables was selected based on
the suggested values from the original authors of these problems.

Table 2.1 Benchmark functions classified into three dynamic environment types,
where nx is the number of decision variables

Type I nx Type II nx Type III nx

FDA1 20 ZJZ 20 FDA2Cam 31
FDA4 12 FDA3Cam 30 dMOP1 10
DIMP1 10 FDA5 12 HE1 30
DIMP2 10 FDA5iso 12 HE2 30
dMOP3 10 FDA5dec 12 HE7 30
dMOP3mod 10 dMOP2 10 HE9 30

dMOP2iso 10
dMOP2dec 10
F5-F7 10
DF4-DF9 10

2.3 Dynamic Multi-objective Optimisation Perfor-
mance Measures

It is useful to have a metric that provides an overall estimate of the performance
at the end of the experiment. These metrics, or performance measures, allow for
an easy comparison between various algorithms or parameter setting combinations.
Based on the analysis of the performance measures by Helbig and Engelbrecht [26],
six performance measures were selected for this study: Variational Distance (V D),
Spacing (S), Maximum Spread (MS), the number of non-dominated solutions (NS),
Accuracy (acc), and Stability (stab). They can be categorized into four distinct types,
that is

• Accuracy Performance Measures: These performance measures are used
to measure the accuracy of POF ∗ found by a DMOO algorithm. They estimate
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how close the found POF ∗ is to the true POF ′ (i.e. V D).

• Diversity Performance Measures: These performance measures are used
to measure the diversity of the non-dominated solutions contained in POF ∗.
Diversity can be measured either by measuring how evenly the solutions are
spread along POF ∗ (i.e. S), the extent of POF ∗ (i.e. MS), or by the number
of non-dominated solutions (i.e. NS).

• Robustness Performance Measures: These performance measures quantify
the robustness of the algorithm (i.e. stab). They measure how well the algorithm
recovers after the environment change.

• Combined Performance Measures: These performance measures assess the
overall quality of the non-dominated solutions of the approximated POF ∗. They
are called combined metrics because they take into account both the accuracy
and diversity of the found solutions (i.e. acc).

Formal definitions and an in-depth description of each performance measure is
given below.

2.3.1 Variational Distance

Zhou et al. [17] adapted the generational distance (GD) for DMOO and dubbed it
the variational distance. The V D measures the accuracy of POF ∗ found by a DMOO
algorithm by estimating how close the found POF ∗ is to the true POF ′. The V D is
formally defined as:

V D = 1
nc

nc∑
i=1

V D(t) (2.60)

with

V D(t) =

√
nP OF ∗

∑nP OF ∗
i=1 d2

i (t%τt)
nP OF ∗

where nP OF ∗ is the number of solutions in POF ∗ and di is the Euclidean distance in
the objective space between solution i of POF ∗ and the nearest member of POF ′.
The current iteration number is t, τt is the frequency of change, and nc is the number
of environment changes. The performance measure is calculated every iteration just
before a change in the environment occurs. Prior knowledge of when changes occur
is required and the POF ∗ needs to be normalised.
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2.3.2 Number of Non-dominated Solutions

The number of non-dominated solutions in POF ∗ is most likely the easiest perfor-
mance measure to calculate, but it should be noted that it does not provide any
information with regards to the quality of the solutions. For example, one algorithm
might become stuck in a local POF optimum and have a higher NS than the algo-
rithm that successfully tracked the true POF ′ but has a smaller NS. This could lead
to an incorrect conclusion that the algorithm with higher NS value is better. The
NS metric can still be useful when used in tandem with other performance measures.

2.3.3 Spacing

The metric of spacing [27] was designed to be used with other performance measures.
It has a low computational cost, and provides useful information about how evenly
the non-dominated solutions are distributed along POF ∗ [26]. It is formally defined
as:

S(t) =

√√√√ 1
nP OF ∗ − 1

nP OF ∗∑
i=1

(di − d)2, S = 1
nc

nc∑
i=1

S(t) (2.61)

with
di = minj=1,...,nP OF ∗ ;j ̸=i

{
nk∑

k=1
|fk(x) − fkj(x)|

}

and
d = 1

nP OF ∗

nP OF ∗∑
i=1

di

where nP OF ∗ is the number of non-dominated solutions found and di is the minimum
value of the sum of the absolute difference in objective function values between the
i-th solution in POF ∗ and any other solution in POF ∗, and d is the average of all di

values. The lower the S value is, the more uniformly spread the solutions in POF ∗

are. However, this does not mean that the solutions are necessarily good, since they
can be uniformly spaced in POF ∗, but not close to the true POF ′ [10]. The POF ∗

needs to be normalised prior to the calculation of the S metric.
It should be noted that hypervolume (HV ) performance measure is sometimes

referred to as S-metric [10]. However, in this paper, the S performance measure
refers to the metric of Spacing from Equation 2.61.
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2.3.4 Maximum Spread

The maximum spread measure, introduced by Zitzler [28], measures the length of
the diagonal of the hyperbox that is created by the extreme function values of the
non-dominated solutions in POF ∗ [26].

Goh and Tan [9] introduced an adapted version of MS for DMOPs to measure
how well POF ∗ covers POF ′ by taking into account the proximity of POF ∗ to the
POF ′. The MS is defined as:

MS = 1
nc

nc∑
i=1

MS(t) (2.62)

with

MS(t) =

√√√√√ 1
nk

nk∑
k=1

min{POF ∗
k , POF ′

k} − max{POF ∗
k , POF ′

k}
POF ′

k − POF ′
k

2

where POF ∗
k and POF ∗

k are the maximum and minimum value of the k-th objective
in POF ∗, respectively. A high MS ′ value (i.e. MS = 1) indicates a good spread of
solutions. However, when the algorithm losses track of the true POF ′, the MS value
might be bigger than one (i.e. MS ≥ 1), which will rank higher than the algorithm
that tracked the true POF ′ properly and obtained a value closer to 1.

2.3.5 Accuracy

Cámara, Ortega, and Toro [29] introduced the accuracy measure that uses the hy-
pervolume difference (HVD) [17] when the true POF ′ is known. It is called the
alternative accuracy accalt measure to not confuse it with the acc measure introduced
by Weicker [30]. The alternative accuracy measure is formally defined as:

accalt = 1
nc

nc∑
i=1

accalt(t) (2.63)

with
accalt(t) = |HV (POF ′(t)) − HV (POF ∗(t))|

where accalt(t) is the absolute HV D at time t. The absolute values ensure that
accalt(t) ≥ 0. However, when the true POF ′ is unknown, the accalt cannot be used.
The mean of accalt can be calculated by averaging all the computed values by the
number of changes nc. The accalt will be referred to as acc for the rest of the paper.
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2.3.6 Stability

Cámara, Ortega, and Toro [31] adapted the stability measure for DMOPs by quanti-
fying the effect of the changes in the environment on the accuracy of the algorithm.
Stability is defined as:

stab(t) = max{0, acc(t − 1) − acc(t)}, stab = 1
nc

nc∑
i=1

stab(t) (2.64)

where a low stab value indicates good performance. The stability measure indicates
how well the DMOA recovers after an environment change. To calculate the stab

measure, the accuracy (acc defined in Equation 2.63) from the previous environment
change has to be known. Therefore, if there are nc changes, there will be nc − 1
stability measures calculated after the experiment.

2.4 Summary

Many real life problems are dynamic in nature where more than one objectives needs
to be optimised. Choosing the right set of benchmark functions to test the perfor-
mance of the newly proposed DMOAs can be challenging, and to help with this task,
researchers have developed many dynamic multi-objective optimisation problems and
performance measures. This chapter covered the formal definitions for DMOO and
discussed the concepts of the POS and the POF that subsequent chapters build upon.
Then, twenty-nine DMOPs and six performance measures that will be used in the
experimental section of the thesis were discussed.

Next chapter provides an overview of the particle swarm optimisation algorithm
for SOPs and the recently proposed multi-guide particle swarm optimisation algo-
rithm for SMOPs.

37



Chapter 3

Overview of Particle Swarm
Optimisation Algorithms

This chapter covers the particle swarm optimisation (PSO) algorithm for single-
objective optimisation and the multi-guide PSO for multi-objective optimisation.
Section 3.1 covers the original PSO implementation, followed by the MGPSO im-
plementation in Section 3.2

3.1 Particle Swarm Optimisation for Single-objective
Optimisation

The particle swarm optimisation algorithm by Kennedy and Eberhart [32], originally
developed for simulating social behavior of bird flocks, was later adapted as an ef-
fective computational method for single objective optimisation problems. The PSO
algorithm solves problems by maintaining a swarm of particles, where each particle
represents a candidate solution, and then iteratively improves the solutions by mov-
ing them around the search space. In the original implementation of the PSO, the
movement of particles is governed by the particle’s personal best (pbest) position, and
the neighbourhood best (nbest) position of the pre-defined neighbourhood that the
particle belongs to. In other words, the pbest position contains the cognitive infor-
mation of each particle, and the nbest position contains the social information of the
neighbourhood. When the neighbourhood of each particle is the entire swarm, then
the nbest position is referred to as the global best (gbest) position. The pseudo-code
of the PSO algorithm is given in Algorithm 1.
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Algorithm 1 PSO Algorithm
1: create and initialise a swarm
2: while stopping condition has not been reached do
3: for each particle in a swarm do
4: set pbest position
5: end for
6: set nbest position
7: for each particle in a swarm do
8: calculate new velocity
9: calculate new position

10: end for
11: end while

Initialising the Swarm

The following process covers the initialisation of the PSO algorithm with inertia
weight [33]. The PSO algorithm is initialized with a single swarm that contains ns

particles. Each of the particle’s position is then initialised within the domain of the
problem under consideration, as in

xj(0) = xmin,j + rj(xmax,j − xmin,j), ∀j = 1, 2, . . . , nx (3.1)

where rj ∼ U(0, 1), nx is the number decision variables, x, and xj is the j-th dimension
of x. The xmin,j and xmax,j refer to the minimum and maximum feasible values in
each dimension, j.

The pbest of each particle in swarm is set to the initial position of the particle,
i.e. yi(0) = xi(0). The nbest values, ŷi(0), are then determined by considering all
the pbest positions of all particles from their respective neighbourhoods, and velocity
vector of each particle is set to vi(0) = 0. The cognitive component (c1), social
component (c2), and inertia weight (ω) are typically fine-tuned based on the problem
under consideration, but c1 = c2 = 1.49, and ω = 0.72 are common values that lead
to a convergent behavior.

Calculating a New Velocity and Position of a Particle

Movement of particles is primarily based on the cognitive component, social compo-
nent, inertia weight, and the previous position of a particle. Following is the formal
definition of a velocity calculation

vi(t + 1) = ωvi(t) + c1r1(t)[yi(t) − xi(t)] + c2r2(t)[ŷi(t) − xi(t)] (3.2)
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where vi(t) and xi(t) are the velocity and position of particle i at time step t, respec-
tively; ŷi represents the nbest of particles î, with particle i in their neighbourhood.
The yi(t) represents the pbest at time t; c1r1(t)[yi(t) − xi(t)] is the cognitive com-
ponent and c2r2(t)[ŷi(t) − xi(t)] is the social component. Both c1 and c2 are positive
acceleration coefficients that control the influence of the cognitive and social com-
ponents, respectively. The random vectors, r1 and r2 are sampled from a uniform
distribution, i.e. r1, r2 ∼ U(0, 1)nx . The inertia weight, ω, influences the contribution
of the previous flight magnitude on the new velocity.

Once the new velocity of a particle has been calculated, its new position is deter-
mined by adding the velocity to its current position, as follows

xi(t + 1) = xi(t) + vi(t + 1) (3.3)

For a boundary constraint problem, there exists a possibility where a particle will
move outside the boundaries of the search space, which can be problematic since the
true POS can only be found within the bounds of the search space. Therefore, an
effective strategy is required to overcome the boundary violations. The following are
some of the common strategies that have been identified by Chu, Gao, and Sorooshian
[34] and Engelbrecht [35] to address this issue. The first strategy involves an absorp-
tion technique where the dimension of the particle that violates the constraint is set
to the boundary of that dimension. Another basic strategy involves generating a
random value within the bounds of the feasible values for the dimension that violated
the boundary constraint. The above techniques can be used by any DMOA, but there
is a strategy that can only be used by a PSO-based algorithm, called pbest selection.
In pbest selection, the particle is allowed to exit the feasible region, but pbest updates
are disallowed when the position is infeasible.

Calculating Personal Best and Neighbourhood Best Positions

For minimisation problems, the pbest at time t + 1 is calculated as

yi(t + 1) = xi(t + 1) if f(xi(t + 1)) < f(yi(t)) (3.4)

where the fitness function is represented by f : Rnx → R. The nbest is calculated
by computing the pbest found so far by all particles in the neighborhood. Then,
nbest is going to be replaced by the value that corresponds to a minimum, m, among
all of the pbest of particles in that neighborhood, as long as m is smaller than the
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current nbest value. Furthermore, the pbest and nbest values can be updated in
either synchronous or asynchronous manner [36]. In synchronous updates, the
nbest positions are updated after the pbest of every particle is calculated, whereas
with asynchronous updates, the nbest is calculated after each particle’s pbest update.

Topologies in a PSO are used to allow communication between particles. They
can be viewed as social networks that, depending on the implementation, can control
the flow of information between particles. The gbest and lbest implementations are
described below, but there exist other variants of neighborhood topologies and the
reader is referred to [37, 38, 39, 40] for more information and experimentation on
the topologies used in a PSO. In a gbest PSO, all particles are connected to one
another with a star topology, where each particle can see the pbest of the every
particle in the swarm. In a local best (lbest) topology, each particle is divided into a
predefined number of neighbourhoods where the particle can only communicate with
its neighbors. However, in lbest topology a particle can still be a part of more than one
neighbourhood. The main implication of the lbest topology is that there is a slower
information exchange compared to the star topology. Some of the notable examples
of the PSO with lbest topologies include the Von Neumann or ring topologies.

The other topologies and PSO variants are out of scope of this thesis. The reader
is referred to [35, 41] for a more thorough overview of the various networks used in a
PSO as well as the other variants of the PSO algorithm.

3.2 Multi-guide Particle Swarm Optimisation for
Multi-objective Optimisation

The multi-guide particle swarm optimisation (MGPSO) algorithm [11], as illustrated
in Algorithm 2, makes use of multiple swarms and assigns each objective function to
a corresponding subswarm. The quality of particles in a subswarm is evaluated using
the objective function assigned to that subswarm. Similar to the inertia weight PSO
by Shi and Eberhart [33], the personal best particle (pbest) and the neighbourhood
best particle (nbest) positions within a subswarm are also updated based on the
corresponding objective function. However, the MGPSO expands the velocity update
equation to include an archive guide to find solutions that balance the objective
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Algorithm 2 Multi-guide Particle Swarm Optimisation [11]
1: for each objective k = 1, . . . , nk do
2: Let fk be the objective function;
3: Create and initialise a swarm, Sk, to contain nsk

particles;
4: for each particle i = 1, . . . , nsk

do
5: Initialise position xki(0) uniformly within a predefined hypercube of dimen-

sion nx;
6: Initialise the pbest position as yki(0) = xki(0);
7: Determine the nbest, ŷki(0);
8: Initialise the velocity as vki(0) = 0;
9: Initialise λki ∼ U(0, 1);

10: end for
11: end for
12: Let t = 0;
13: repeat
14: for each objective k = 1, . . . , nk do
15: for each particle i = 1, . . . , nsk

do
16: if fk(xki(t)) < fk(yki(t)) then
17: yki(t) = xki(t);
18: end if
19: for particles î with particle i in their neighborhood do
20: if fk(yki(t)) < fk(ŷkî(t)) then
21: ŷkî(t) = yki(t);
22: end if
23: end for
24: Update the archive with the solution xki(t);
25: end for
26: end for
27: for each objective k = 1, . . . , nk do
28: for each particle i = 1, . . . , nsk

do
29: Select a solution, âki(t), from the archive using tournament selection;
30: vki(t + 1) = ωvki(t)

+ c1r1(t)(yki(t) − xki(t))
+ λkic2r2(t)(ŷki(t) − xki(t))
+ (1 − λki)c3r3(t)(âki(t) − xki(t));

31: xki(t + 1) = xki(t) + vki(t + 1);
32: end for
33: end for
34: t = t + 1;
35: until stopping condition is true
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functions. The MGPSO velocity update equation is defined as

vki(t + 1) = ωvki(t) + c1r1(t)(yki(t) − xki(t))

+ λkic2r2(t)(ŷki(t) − xki(t))

+ (1 − λki)c3r3(t)(âki(t) − xki(t))

(3.5)

where vki(t) and xki(t) are the velocity and position of particle ki at time step t

respectively; ŷki represents the nbest of neighbourhood î and yki(t) represents the
pbest at time t; c1r1(t)[yki(t) − xki(t)] is the cognitive component of the velocity and
c2r2(t)[ŷki(t) − xki(t)] is the social component of the velocity; c1 and c2 are positive
acceleration coefficients that influence the contributions of the cognitive and social
components respectively; r1, r2 ∼ U(0, 1)nx are vectors of random values sampled
from an uniform distribution with nx representing the number of decision variables or
the dimension of the search space [42]; ω represents the inertia weight, which controls
the influence of previous step sizes and direction on the new velocity.

The MGPSO introduced the following parameters to the velocity equation: c3 is
an archive acceleration coefficient, r3 is a random vector, where each element of r3

is sampled from an uniform distribution in (0, 1); âki(t) is the archive guide for a
particle ki, sampled from the archive at iteration t; and λki is the archive balance
coefficient for particle ki. The control parameter, λki balances the influence of the
social and archive guides on the particle’s velocity and thus the amount of exploitation
of the already found candidate solutions in POF. Smaller λki values increase the
influence of the archive guide while simultaneously decreasing the influence of the
social/neighbourhood guide. Scheepers, Engelbrecht, and Cleghorn [11] proposed
that random values be sampled for the archive balance coefficient to increase the
stochasticity of the search process and to eliminate the need for tuning the archive
balance coefficient.

The archive guide, âki(t), is selected for each particle i in each subswarm k using
the following procedure: Three non-dominated solutions are randomly selected from
the archive, and the solution with the largest crowding distance [43] in the archive is
selected as the archive guide. In other words, the least populated solution is selected
to diversify sparsely populated regions along the found POF.

Once the new velocity of a particle has been calculated, its new position is deter-
mined by adding the velocity to its current position as follows

xki(t + 1) = xki(t) + vki(t + 1) (3.6)
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3.2.1 Bounded Archive

The MGPSO uses a bounded archive [44] that limits the number of solutions that
can be kept in the archive. The pseudo-code for the bounded archive maintenance is
provided in Algorithm 3

When a particle is considered for addition to the archive, which happens right
after the evaluation of the particle as in Algorithm 2, the archive must check for the
dominance relation between the particles already in the archive and the new particle
that is being considered for addition to the archive. If the new particle is dominated
by any of the solutions in the archive, it is discarded. Otherwise, the particle is added
to the archive, and any archive solution that becomes dominated is removed from the
archive. If the archive is full, crowding distance [43] is used to determine the most
crowded solution in the archive, which is then removed. This process ensures that
only non-dominated solutions are stored in the archive.

Algorithm 3 Bounded Archive Maintenance
1: for each particle, p, in swarm do
2: if p is not dominated by any solution in the archive

and p is not similar to any solutions in the archive then
3: if p dominates any solution in the archive then
4: Remove all archive solutions that are dominated by p;
5: Add p to the archive;
6: else
7: Add p to the archive;
8: if archive size exceeds the archive size limit then
9: Select the most crowded solution, a, from the archive;

10: Remove solution a from the archive;
11: end if
12: end if
13: end if
14: end for

3.3 Summary

This chapter defined the original PSO algorithm used for single-objective optimisation
and the multi-guide PSO used for multi-objective optimisation. In the next chapter,
several components to adapt the multi-guide particle swarm optimisation algorithm
for dynamic multi-objective optimisation are proposed.
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Chapter 4

Proposed Multi-guide Particle
Swarm Optimisation for Dynamic
Multi-objective Optimisation

This thesis presents an adapted multi-guide particle swarm optimization algorithm
capable of solving dynamic multi-objective optimization problems. The MGPSO,
proposed by Scheepers, Engelbrecht, and Cleghorn [11], is a multi-swarm approach,
where each subswarm optimizes one of the objectives. It takes advantage of the
bounded archive to keep track of the changing Pareto optimal front (POF) of non-
dominated solutions and adds an archive guide to the velocity update equation to
facilitate convergence to a new POF. This work extends the original algorithm by
introducing six archive management update approaches and eight alternative archive
balance coefficient initialization strategies. Moreover, two recently proposed quantum
PSO algorithms, self-adaptive QPSO [45] and parent centric crossover QPSO [46], are
incorporated into the MGPSO to deal with the diversity loss.

Section 4.1 introduces the archive update strategies to re-initialize the archive
when the change to the environment occurs. Section 4.2 covers eight alternative ini-
tialization approaches to set the archive balance coefficient parameter. Self-adaptive
QPSO and parent centric corssover QPSO and are discussed in Section 4.3. Lastly,
Section 4.4 contains the summary of the chapter.

4.1 Archive Management

The objective of this section is to provide an overview of the environment changes
that occur in DMOO and then to develop effective environment change mechanisms
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for the bounded archive used by the MGPSO. Specifically, Section 4.1.1 describes
in more detail the consequences of changes in objective functions for DMOO and
Section 4.1.2 proposes six new archive management update strategies.

4.1.1 Consequences of the Environment Changes

One of the main goals of DMOAs is to develop an effective and computationally
efficient environment change strategy so that the DMOAs can quickly track the ever-
changing Pareto-optimal set and Pareto-optimal front. Dynamic environments are
challenging because DMOAs have limited time to explore and exploit the decision
space. It is very likely that when a change to the environment occurs, the new true
POS and POF will be different from the last true POS and POF, and so the algorithm
needs to adapt quickly to these changes. The extent of changes to both POS and POF
depend on the type of the environment that the DMOP belongs to. The DMOPs and
different environment types are described in Section 2.2.

One question remains: How is the change to the environment detected? In most
real-world scenarios, changes to the environment are usually visible with the use
of sensors, agents, etc. However, when the exact time of changes is unknown, an
environment change detection strategy is required. The most common strategy is to
re-evaluate 10% of the population as in Deb, Rao, and Sindhya [2], Goh and Tan [9],
and Zhang et al. [47], but this strategy may fail if the change did not occur in any
of the selected individuals. Other strategies do exist, but this paper does not take
into account any of the approaches since the exact time of changes is assumed to be
known beforehand.

4.1.2 Proposed Archive Management Approaches

The archive guide, as described in Section 3.2, is selected from the non-dominated
solution in the bounded archive. Since the original implementation of the MGPSO was
developed for SMOPs, the algorithm did not have to worry about any environment
change approaches. The following six archive management update approaches are
considered, namely

Clear the archive

When the environment changes, the archive is completely cleared from all solutions.
This approach is clearly inefficient since the solutions in the archive may not become
dominated, or could be repaired with little effort to become non-dominated. In other
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words, the algorithm looses valuable information about the objective space. For
instance, the MGPSO algorithm uses the velocity update equation to govern the
movement of the particles towards better areas of the search space. As in Equation
(3.5), one of the main components in the calculation is the archive guide. So, by
clearing the archive, none of the particles will use the information from the archive to
improve the results since all previously gained knowledge about the potentially good
areas of the decision space is now lost. This approach is referred to as cl for the rest
of the paper.

Re-evaluate solutions

When a change in the environment is detected, some of the solutions in the archive
that were non-dominated might have become dominated since DMOPs change over
time. This means that there has to be an effective archive management strategy
implemented to remove dominated solutions and to keep the non-dominated solutions
in the archive. This adapted MGPSO uses the following archive management strategy:
When a change to the environment occurs, re-evaluate all of the archive’s solutions
and remove the solutions that became dominated. This strategy is referred to as re
for the rest of the paper.

Local search with a fixed step size

When a change is detected, all solutions in the archive are optimised through a
hill-climbing process where successor solutions are created for each particle in the
archive. These new solutions are then added to the archive and all of the particles in
the archive are re-evaluated for dominance. This process repeats four times to keep
the computational complexity of the algorithm low. Furthermore, preliminary results
have shown that the MGPSO performs well when the local search repeats four times.
The pseudo-code for the local search is provided in Algorithm 4.

The successor solutions are created as follows: Let xI represent a vector of decision
variables used in a calculation of the first objective, and xII represent a vector of
decision variables used in a calculation of the other objective(s). Then, successor
solutions are generated, for each solution in the archive, by moving decision variables
in xI and xII by a % of the domain’s extent, i.e. a % of (xmax − xmin), as follows

• First successor: Add sI to xI and leave xII unchanged

• Second successor: Subtract sI from xI and leave xII unchanged
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• Third successor: Leave xI unchanged and add sII to xII

• Fourth successor: Leave xI unchanged and subtract sII from xII

• Fifth successor: Add sI to xI and add sII to xII

• Sixth successor: Add sI to xI and subtract sII from xII

• Seventh successor: Subtract sI from xI and add sII to xII

• Eight successor: Subtract sI from xI and subtract sII from xII

where sI and sII are vectors representing a % of the domain’s extent for decision
variables in xI and xII, respectively. The percentages selected for this study are 2%,
5%, and 10%. These approaches are referred to as h2, h5, and h10 for the rest of the
paper.

The rationale behind this algorithm is that hill-climbing is known for quickly
finding better solutions when the current solutions are bad. In most cases, this is
exactly what happens when an environment change occurs. The previously found
POF will not be close to the new true POF, and so hill-climbing will re-populate the
archive with more feasible solutions.

Algorithm 4 Local Search
1: repeat
2: Initialize successors, S, to an empty set
3: Copy the bounded archive to A
4: Clear the bounded archive
5: for each particle, p, in A do
6: Generate eight successor solutions using the process described in Section 4.1.2

7: Add the new successors to S
8: end for
9: Add each successor to A using Algorithm 3

10: until stopping condition is true

Local search with a decreasing step size

This approach is similar to the one defined in the previous section. However, a % of
the domain’s extent is not fixed anymore. During the first iteration, it is set to 10%
and then the value is decreased by a factor of 2 with each iteration. The implication
of this strategy is that the successor solutions will initially move large distances in
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the the search space, then gradually slow down until the last iteration is finished.
The idea is to combine the strengths of the h2, h5, and h10 approaches into a single
strategy. This hill-climbing archive management strategy is referred to as hd for the
rest of the paper.

4.1.3 Worst-case Computational Complexity Analysis

This section discusses the worst-case computational complexity of the different archive
management strategies.

The original MGPSO used a bounded archive size equal to the total number of
particles, ns = nknsk

. With reference to Section 3.2.1, the worst-case computational
complexity of the original archive management strategy is calculated as the cost to
evaluate the dominance relation and the cost of the crowding distance calculation
[43]:

O(nsnk) + O(nkns log ns) = O(nkns log ns) (4.1)

This cost is incurred for each particle considered for addition to the archive.
The archive management strategies proposed in Section 4.1.2 add an additional

cost at each environment change. This additional cost for each archive management
strategy is as follows:

• Clear the archive: O(ns), because the only additional action is to delete all of
the solutions that are currently in the archive.

• Re-evaluate solutions: O(n2
snk), due to the evaluation of the dominance relation

for each pair of solutions in the archive.

• Local search strategies: Let nl be the number of local search iterations and let
n′

a be the number of successors created for each solution in the archive. Then
both local search strategies have a cost of O(nlnsn

′
a + n′

ankns log ns). However,
note that small constant values are used for the local search parameters, i.e.
nl = 4 and n′

a = 8, in which case the cost becomes O(nkns log ns).

The re-evaluate strategy is therefore the most costly, followed by the local search
strategies. Clear the archive has linear cost in the size of the archive.

Next section covers the current λi initialization strategies and then introduces
alternative strategies adapted for DMOPs.
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4.2 Balance Coefficient

The objective of this section is to provide an overview of the balance coefficient ini-
tialization approaches from the previous studies and then to introduce alternative
initialization approaches adapted for dynamic multi-objective optimisation. Specifi-
cally, Section 4.2.1 describes in more detail the original λi initialization approach and
then explores other strategies developed by Erwin and Engelbrecht [48]. Section 4.2.2
introduces new initialization approaches adapted for DMOO.

4.2.1 Current Balance Coefficient Initialization Approaches

The initial implementation of the MGPSO used only one way to initialize the balance
coefficient (λi) parameter. The λi is a critical part of the update velocity calculation
from Equation 3.5 as it controls the weighted contribution trade-off between the social
guide and the archive guide.

The standard approach (std) to deal with the balance coefficients is to randomly
initialize λi, per particle as a constant, that is

λi(0) ∼ U(0, 1) (4.2)

The following five approaches to initialize the λi parameter were recently pro-
posed by Erwin and Engelbrecht [48]. The goal of the study was to determine if the
alternative initialization strategies result in a more diverse POF.

Random Update (r)

The random strategy samples a new balance coefficient at every iteration. This value
is used by all particles. Thus, every particle will have the same balance coefficient at
each iteration, that is

λi(t) = λi(t) ∼ U(0, 1) (4.3)

Random Update Per Particle (ri)

A different λi assigned to every particle, re-sampled at every iteration, as follows

λi(t) ∼ U(0, 1) (4.4)
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Random Update Per Particle Per Dimension (rij)

A different balance coefficient, λij is assigned to each dimension for every particle,
re-sampled at every iteration

λij(t) ∼ U(0, 1) (4.5)

This is the most stochastic strategy since every decision variable of the particle used
in the velocity update calculation is initialized differently.

Linearly Decreasing (ld)

For every particle, the balance coefficient is initialized to 1.0. Thereafter, λi updated
as follows

λi(t + 1) = λi(t) − 1.0
n

(4.6)

where n is the max number of iterations. When λi is set to 1.0, the archive component
has no influence over the movement of particles. The implication of this strategy is
that with each iteration, the archive component is slowly increasing the control of the
way particles move.

Linearly Increasing (li)

Similar to the linearly decreasing strategy, but the balance coefficient is initialized to
0.0 and increases linearly over time:

λi(t + 1) = λi(t) + 1.0
n

(4.7)

The implication of this strategy is that initially, the archive component has a very
large influence of the way particles move, but with each iteration it becomes less
important.

It was determined that, for bi-objective SMOPs, the linearly increasing (li) strat-
egy significantly outperformed other initialization approaches [48]. The MGPSO was
able to reach high levels of diversity for all of the tested MOO benchmark functions
early on. As a consequence, this allowed the algorithm to exploit the feasible search
areas more efficiently as the social guide’s influence increased.
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4.2.2 Balance Coefficient Initialization Approaches Adapted
for DMOPs

The standard, random initialization strategy was shown to lead to a good performance
[11] on static multi-objective optimization problems, and a more thorough sensitivity
analysis on initialization strategies was conducted by Erwin and Engelbrecht [48]
where it was determined that there are better ways to initialize λi parameter.

Based on the λi sensitivity analysis from [48], three alternative approaches are
introduced that take into account the changing behaviour of DMOPs, namely:

Standard Approach, Re-initialized Every Environment Change (stdτt)

The standard update approach (std), initializes the balance coefficient for every par-
ticle once during the initialization phase. The following change adapts the parameter
for dynamic problems by re-sampling it again

λi(t) ∼ U(1, 0) (4.8)

at time t right after the environment change has occured.

Linearly Decreasing, Re-initialized Every Environment Change (ldτt)

For every particle, the balance coefficient is initialized to 1.0. Thereafter, λi is updated
as follows

λi(t + 1) = λi(t) − 1.0
τt

(4.9)

where τt is the frequency of change that controls how often the environment changes.
After the change to the environment is detected, the balance coefficient is re-initialized
to 1.0.

Linearly Increasing, Re-initialized Every Environment Change (liτt)

Similar to the linearly decreasing strategy, but the balance coefficient is initialized to
0.0 and increases linearly over time

λi(t + 1) = λi(t) + 1.0
τt

(4.10)

After the change to the environment is detected, the balance coefficient is re-initialized
to 0.0. Both ld, and li were adapted because the environment changes every τt

52



iterations, so it makes more sense to linearly decrease or increase λi with regards to
the frequency of change rather than the maximum iteration number.

The last two approaches had to be adapted for dynamic environments because
linearly decreasing/increasing the archive balance coefficient over the maximum it-
eration number could result in a low performance when it comes to exploiting the
feasible regions of the search space. If decreasing strategy is picked, the archive bal-
ance coefficient will have very little influence on the velocity update equation during
the first half of the run. This might work for static MOPs, but for dynamic MOPs,
the changes happen often and the archive guide needs to contribute to the movement
of the particle so that it can effectively exploit the search space.

Next section covers the original QPSO implementation and describes six QPSO
variants to be added into the MGPSO.

4.3 Quantum Particle Swarm Optimization Strate-
gies

This section discusses quantum particle swarm optimisation algorithm in detail and
introduces its two variants. Specifically, Section 4.3.1 describes the original QPSO
implementation, followed by self-adaptive QPSO in Section 4.3.2 and parent-centric
crossover QPSO in Section 4.3.3. Both of these QPSO approaches are incorporated
into the MGPSO to determine whether they can increase its performance when solving
DMOPs. Lastly, the alternative sampling methods for both QPSO strategies are
proposed in Section 4.3.4.

4.3.1 Original Quantum Particle Swarm Optimization

The original PSO was never intended to solve dynamic multi-objective optimisation
problems and, as such, several modifications have been made to the original imple-
mentation to help with this task. Some of the most notable examples of PSO variants
capable of solving DMOPs include DVEPSO [10], QPSO [49, 46, 45], and MGPSO
described in this paper [11]. To this day, original quantum PSO by Blackwell and
Branke [49] remains a popular choice, as it is easy to understand and has a low com-
putational complexity. The QPSO converts a percentage of vanilla particles, referred
to as quantum particles, to move in a manner similar to electrons orbiting the nucleus
of an atom. These quantum particles use a position update that is different to the
one from Equation 3.3. Instead, they are sampled from a probability distribution,
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centered at nbest in a following way

xi(t + 1) ∼ pd(ŷi, rcloud) (4.11)

where pd is a probability distribution and rcloud is a constant determining the size
of the quantum radius within which a quantum particle is allowed to move. Large
rcloud values correspond to a large quantum cloud, allowing for more exploration of
the decision space. On the other hand, small rcloud values make the quantum radius
smaller, which results in more exploitation. However, finding the perfect rcloud value
is impossible due to the dynamic nature of the problems being solved. For example,
small rcloud restricts the exploration ability to that radius value, whereas large rcloud

could result in unnecessary exploration due to the search space being covered by
a large cloud. The probability distribution can also be thought as an additional
parameter, since many different distributions exist that can be used as a sampling
method. Any particle that is not updated using the above equation is called a neutral
particle and follows the standard position calculation from Equation 3.3.

4.3.2 Self-adaptive Quantum Particle Swarm Optimization

To mitigate the issue of a problem dependent tuning of the rcloud parameter, Pamparà
and Engelbrecht [45] proposed a self-adapting QPSO that automatically adapts the
rcloud. The quantum cloud radius is calculated by taking the maximum between the
diversity of neutral and quantum particles, as follows

D(t) = 1
ns

ns∑
i=1

√√√√ nx∑
j=1

(xij(t) − xj(t))2 (4.12)

where ns is the number of the neutral, or quantum particles considered in the diversity
calculation; the particle’s decision vector must be within the problem domain. The
average j-th dimension of the entire swarm, xj(t), is calculated as

xj(t) =
∑ns

i=1 xij(t)
ns

(4.13)

The resulting diversity value is then used as the rcloud value. The rcloud value is fed
into a random distribution as the deviation, from which quantum particle positions
are sampled.

The main idea of this approach is to first start with a large rcloud value and then
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reduce it to a smaller one over time to favour exploitation of the feasible regions of
the search space. However, when the change to the environment occurs, rcloud value
automatically becomes larger - allowing for more exploration of the decision space by
the quantum particles.

4.3.3 Parent-centric Crossover Quantum Particle Swarm Op-
timization

Harrison, Ombuki-Berman, and Engelbrecht [46] examined the use of a parent-centric
crossover (PCX) in PSO as a way to deal with the diversity loss when solving DMOPs.
The PCX operator [50] is a multi-parent crossover that creates offspring solutions
centered around the parents; even more so towards the parent selected for mutation.
Offspring solutions are generated by selecting nµ ≥ 3 parents and computing their
mean, x(t). With equal probability, one of the nµ parents is selected for mutation,
denoted xi, and a direction vector is calculated as

di(t) = xi(t) − x(t) (4.14)

where x(t) is the mean,

x(t) =
nµ∑
l=1

xl(t) (4.15)

of the nµ parents. For each of the remaining nµ - 1 parents, perpendicular distances
to the line di(t) are calculated, δl, and their average, δ, is taken. Offspring are then
generated according to

x̃i(t) = xi(t) + N(0, σ2
1)|di(t)| +

nµ−1∑
l=1,l ̸=i

N(0, σ2
2)δel(t) (4.16)

where δel(t) are the nµ - 1 orthonormal basis vectors that space the subspace perpen-
dicular to di(t), and σ1 and σ2 are deviations of two Gaussian distributions. Thus,
offspring solutions are generated by mutating the selected parent based on the dis-
tance of the selected parent to the mean of all the parents and the distance that each
other parent is from the direction vector, di(t).

Then, for each quantum particle, the new position is determined by

xi(t + 1) = x̃i(t) (4.17)
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Thus, the resulting algorithm completely removes the atom metaphor, replacing
it with a crossover operator instead. While the PCX QPSO removes the rcloud and
the probability distribution, pd, parameters of the original QPSO, it introduces two
additional parameters: σ1 and σ2.

4.3.4 Alternative Sampling Methods for QPSO

Both self-adaptive and parent-centric crossover QPSOs use nbest position in a calcu-
lation of a new quantum particle position. For PCX QPSO, the randomly selected
parent, and the parent corresponding to the nbest position were considered by Har-
rison, Ombuki-Berman, and Engelbrecht [46]. A comprehensive analysis of both
approaches indicates that PCX QPSO with a nbest parent outperforms the randomly
selected parent PCX version. Therefore, only the nbest approach was selected for
this study and will be referred to as PCXn for the rest of the paper. As for the
self-adaptive QPSO, only the original strategy of the QPSO, where the quantum par-
ticle is sampled from a probability distribution centered at nbest, was considered by
Pamparà and Engelbrecht [45]. It will be referred to as QPSOn for the rest of the
paper.

Since the MGPSO introduced the bounded archive and the archive guide, âi, this
paper proposes two alternative sampling methods for both QPSO variants that also
use âi in the calculation of a new quantum particle position. Specifically, a randomly
selected archive guide and the tournament selected archive guide from the bounded
archive is considered. For the randomly selected archive guide, each archive particle
has equal probability of being selected. Self-adaptive and PCX QPSOs that use
this strategy will be referred to as QPSOr and PCXr, respectively, for the rest of
the paper. Tournament selected archive guide uses the same procedure as the one
explained in Section 3.2 used by neutral particles. The self-adaptive and PCX QPSOs
that use this method will be referred to as QPSOt and PCXt, respectively, for the
rest of the paper.

For QPSOr and QPSOt, the following change to the Equation 4.11 is made

xi(t + 1) ∼ pd(âi, rcloud) (4.18)

where âi is the archive guide. Another change is made to the diversity calculation
from Equation 4.12. This time, the quantum cloud radius is calculated using the
particles from the bounded archive, rather than neutral or quantum particles from
their respective swarms.
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For PCXr and PCXt, the archive guide, âi, is selected from nµ ≥ 3 parents
for mutation. The selected parent, denoted as xi, is used in the direction vector
calculation the same way as in Equation 4.14. The nµ parents are populated using
particles from the bounded archive and their mean is calculated as in Equation 4.15.

4.4 Summary

This chapter proposed several changes to the original MGPSO to adapt it for dynamic
multi-objective optimisation. Six archive management update approaches, eight bal-
ance coefficient initialization strategies, and six QPSO techniques were introduced
into the MGPSO to allow efficient tracking of the changing true pareto-optimal front.
To determine the most promising strategies when solving DMOPs, an in-depth sta-
tistical analysis is required.

Next chapter covers the experimental set-up on which the subsequent chapters
build upon.
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Chapter 5

Experimental Set-up

This chapter discusses the experimental set-up of the experiments conducted in this
study. Section 5.1 covers the experiments on archive management update approaches,
balance coefficient initialization strategies, and QPSO techniques. The DMOAs and
their respective parameter settings are discussed in Section 5.2. The benchmark func-
tions and performance measures used to evaluate the performance of the MGPSO and
other DMOAs are covered in Sections 5.3 and 5.4 respectively. Section 5.5 provides
an overview of the statistical methods and the ranking algorithm used to evaluate
the performance of DMOAs. Lastly, the summary is given in Section 5.6.

5.1 Conducted Experiments

Three experiments are conducted in this study, that is

• Archive Management Update Approaches: The archive guide, selected
from the bounded archive, controls the amount of influence that the archive
guide has on the particle’s velocity and thus the amount of exploitation of the
already found POF. Whenever a change to the environment occurs, the particles
in the archive need to be updated to allow efficient tracking of the POF. In this
experiment, six archive management update approaches from Section 4.1, are
evaluated against twenty-nine DMOPs across five nt-τt combinations. The best
performing approach is then used in a comparative study against other DMOAs.

• Balance Coefficient Initialization Strategies: The λi is the archive balance
coefficient that balances the influence of the social and archive guides on the
particle’s velocity. In this experiment, nine archive balance coefficient initial-
ization strategies, as defined in Section 4.2, are evaluated against twenty-nine
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DMOPs across five nt-τt combinations. The best performing strategy is then
used in a comparative study against other DMOAs.

• Self-adaptive QPSO and PCX QPSO Strategies: In this experiment,
six QPSO techniques (refer to Section 4.3) are evaluated against twenty-nine
DMOPs across five nt-τt combinations. These strategies convert a portion of
neutral particles into quantum particles to help the MGPSO deal with the
diversity loss. Both 10% and 50% proportion of quantum particles are analysed
in their respective experiments and then compared with the MGPSO without
any quantum particles. The goal is to determine which QPSO strategy works
best and to see how the MGPSO behaves when the proportion of quantum
particles is high and low.

The main goal of these experiments is to find the strategy that performs best
across various DMOPs and environment types. The strategies that have the best
overall performance in their respective experiments are then selected for the final
comparative studies between other state-of-the-art DMOAs.

5.2 DMOO Algorithms and Parameter Settings

The best strategies from their respective experiments are compared with the baseline
MGPSO as well as other popular DMOAs that represent different classes of meta-
heuristics. The DMOAs selected for this study are: the dynamic version of NSGA-
II (DNSGA-II) [2], SGEA [8], and DMOES [47]. To ensure the comparisons are
conducted fairly, each DMOA has a population size set to 100 so that an equal number
of fitness evaluations are performed by each algorithm. Performance measures from
Section 2.3 are computed, right after the environment change has occurred, using
1000 and 900 true Pareto-optimal solutions uniformly generated for bi-objective and
tri-objective DMOPs, respectively. No parameter tuning has been done, because
such tuned parameters will be optimal for only the first environment. This decision
is supported by the findings in [51] and [52]. Below is a short description of each
DMOA and the parameter settings are given for each algorithm.

5.2.1 MGPSO

The adapted MGPSO algorithm described in this paper. All of the 100 particles are
evenly distributed among swarms, i.e. 50-50 split for bi-objective and 34-33-33 split
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for tri-objective DMOPs. When the proportion of quantum particles is at 50%, there
are 25-25 neutral particles and 25-25 quantum particles for bi-objective DMOPs, and
17-17-17 neutral particles and 17-16-16 quantum particles for tri-objective DMOPs.
When the proportion of quantum particles is at 10%, there are 45-45 neutral particles
and 5-5 quantum particles for bi-objective DMOPs, and 30-30-30 neutral particles and
4-3-3 quantum particles for tri-objective DMOPs. The cognitive, social and archive
components are set to c1 = 0.1, c2 = 0.02, and c3 = 1.8. Inertia weight is set to
ω = 0.6. These values were selected based on the preliminary investigations of c1, c2,
c3, and ω parameters when solving the problem set. The preliminary results indicated
that the archive was the most influential component when approximating the POF, as
it resulted in a more diverse and accurate POF when compared with MGPSO where
c3 was set to a lower value. On the other hand, large cognitive and social values were
detrimental when solving the problem set and it was determined that a value in the
range [0.02, 0.1] for both c1 and c2 worked best. One explanation as to why a large
influence of the archive component works well when solving DMOPs is that solutions
found in the bounded archive, at time t, can be considered the best non-dominating
solutions found so far by the MGPSO. Therefore, it makes sense to guide the rest of the
particles towards trade-off solutions from the archive - it will result in the archive being
populated more quickly when compared with the strategy where particles are guided
primarily by the cognitive and social guides. The archive guide, âi is selected for each
particle i using tournament selection with tournament size of 3. The MGPSO uses
a local best (l-best) topology of size 3 with asynchronous nbest updates [53], where
the nbest of the neighbourhood is updated right after the particle that belongs to
the neighbourhood has been evaluated. As an environment change reaction strategy,
neutral particle’s pbest values are reset to the current particle’s position, then re-
evaluated, and quantum particles are re-initialized within the problem domain since
they do not use pbest in the position update calculation [45]. The balance coefficient,
λi, is randomly initialized from a uniform distribution in the range (0, 1). Balance
coefficient values are re-sampled right after the environment change has occurred.
Better performance due to re-sampling during the search process is confirmed by a
study of Erwin and Engelbrecht [48] for SMOPs. The iteration number of the local
search strategies is set to 4.
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5.2.2 DNSGA-II

This dynamic version of the popular NSGA-II algorithm by Deb et al. [43] is a
representative of Pareto-dominance based multi-objective evolutionary algorithms
(MOEAs). Deb, Rao, and Sindhya [2] adapted NSGA-II for DMOO by replacing
some population members with either randomly created solutions or mutated solu-
tions of existing solutions whenever environment change is detected. The mutated
version has been selected for this study as it shows slightly better results than the
random approach [2]. DNSGA-II does not use a bounded archive. The parameters of
DNSGA-II are as follows: simulated binary crossover probability of 0.9, polynomial
mutation probability of 1/nx (where nx is the number of decision variables), ζ = 30,
and distribution indices for crossover and mutation are 10 and 4, respectively. The
population size is set to 100.

5.2.3 SGEA

Jiang and Yang [8] developed the steady-state and generational evolutionary algo-
rithm (SGEA) for DMOO that combines the fast and steady tracking ability of
steady-state algorithms and good diversity preservation of generational algorithms.
If a change is detected, SGEA reuses a portion of the outdated solutions with good
distribution and relocates a number of solutions close to the new POF based on the in-
formation collected from previous environments and the current environment. SGEA
incorporates a bounded archive to store non-dominated solutions. The parameters
of SGEA are as follows: simulated binary crossover probability of 1.0, polynomial
mutation probability of 1/nx (where nx is the number of decision variables), ζ = 80,
and distribution indices for crossover and mutation are 20 and 20, respectively [8].
The population size is set to 100.

5.2.4 DMOES

More recently, Zhang et al. [47] proposed an evolution strategy based evolutionary
algorithm, called DMOES, that has been shown to efficiently and effectively solve
DMOPs. DMOES uses four self-adaptive precision-controllable mutation operators
designed for individuals to explore and exploit the decision space. Simulated isotropic
magnetic particle niching guides the individuals to keep a uniform distance and ex-
tent to approximate the entire POF automatically. Moreover, the non-dominated
solution guided immigration facilitates the population convergence with two different
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strategies for the non-dominated solutions and the dominated solutions, respectively.
DMOES does not use a bounded archive. The population size is set to 100 and
precision-controllable mutation parameters p and q are set to 3 and 1, respectively
[47]. The population size is set to 100.

5.3 Benchmark Functions

Based on the analysis of DMOPs in Section 2.2, twenty-nine benchmark functions were
selected to evaluate the performance of the MGPSO between various archive manage-
ment update approaches, balance coefficient initialization strategies, and QPSO tech-
niques. The benchmark set includes: FDA1 [13], ZJZ [17], FDA2Cam and FDA3Cam

[18], FDA4 and FDA5 [13], FDA5iso and FDA5dec [12], DIMP1 and DIMP2 [20],
dMOP1-dMOP3 [9], dMOP3mod [23], dMOP2iso and dMOP2dec [12], HE1 and HE2
[21], HE7 and HE9 [12], F5-F7 [22], and DF4-DF9 [23].

The dynamic environment DMOP types, formally defined in Section 2.1.2, are
summarized in Table 5.1. All of the chosen DMOPs belong only to the first three
environment types and the reader is referred to the Section 2.2.7 where the summary
of each DMOP is provided in Table 2.1.

Table 5.1 Dynamic environment types for DMOO problems

POS
POF No Change Change

No Change Type IV Type I
Change Type III Type II

For each benchmark function, the following severity of change (nt) and frequency
of change (τt) combinations were used: nt = 10 and τt = 10, nt = 10 and τt = 25,
nt = 10 and τt = 50, nt = 1 and τt = 10, and nt = 20 and τt = 10. Both the spatial
severity and temporal severity has been defined in Section 2.1.2.

Each DMOP is optimised over 1000 iterations and no pre-emptive termination of
the algorithm was used by any DMOA considered in this study. Each nt-τt combina-
tion, as well as the number of changes (nc = 1000/τt) that was used for each DMOP,
is presented in Table 5.2.
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Table 5.2 The nt-τt combinations with regards to the spatial and temporal severity

Severity of Change Frequency of Change nt τt nc

Medium Fast 10 10 100
Medium Medium 10 25 40
Medium Slow 10 50 20

Big Fast 1 10 100
Small Fast 20 10 100

5.4 Performance Measures

Based on the analysis of performance measures in Section 2.3, six performance mea-
sures were selected for this study, namely

• The number of non-dominated solutions (NS) in the found POF.

• Variational distance [17]. Low V D value indicates good performance with re-
gards to how closely the found POF is to the true POF.

• Spacing of Schott [27]. Low S value indicates that the solutions are evenly
spread along the found POF.

• Maximum spread [9]. High MS value (close to one) indicates good spread of
solutions.

• The alternative accuracy measure, accalt [29], referred to as acc in this study.
Low acc value indicates good performance.

• Stability [31] that quantifies the effect of changes in the environment on acc of
the DMOA. Low stab value indicates good performance.

5.5 Evaluating the Performance

Section 5.5.1 provides definitions of the statistical tests that are used in the calculation
of wins and losses between DMOAs. The ranking algorithm is covered in Section 5.5.2.

5.5.1 Statistical Tests

Mann-Whitney U Test

In statistics, the two-tailed Mann Whitney U test is a non-parametric test performed
on exactly two samples. The median for both samples is calculated and compared to
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determine if there is a significant difference between them. The null and alternative
hypothesises are

H0: Median 1 = Median 2

H1: Median 1 ̸= Median 2
(5.1)

If a 95% confidence is used (i.e. α = 0.05) and the test fails to reject the null
hypothesis (i.e. p-value ≥ α), it means that there is no statistically significant differ-
ence between the two algorithms. Otherwise, the algorithms differ from one another
and the severity of the differences should be explored along with all of the contribut-
ing factors. If more than two algorithms are present, then a Mann-Whitney U test is
not applicable; in such case, the Kruskal-Wallis test is a more appropriate alternative.

Kruskal-Wallis Test

This test is a nonparametric alternative to the ANOVA test. The procedure is per-
formed to compare the medians between every sample and to determine whether
samples differ from each other or not. The null and alternative hypothesises are

H0: Median 1 = Median 2 = ... = Median k

H1: At least one pair Median i ̸= Median j
(5.2)

If the test fails to reject the null hypothesis, it means that the samples in all groups
are equal (or similar to each other). Otherwise, at least one median of the group differs
from a median in another group. It is important to note that the Kruskal-Wallis test
provides no information as to which one of the samples differ from the rest.

5.5.2 Ranking Algorithm

Performance evaluation of the DMOAs is usually done by averaging the performance
measures obtained at each time step, right before the change to the environment
occurs. The overall rank is calculated for each algorithm, and the one with the best
performance obtained against various DMOPs is ranked the highest. However, this
approach does not take into account the tracking ability of the algorithm because
the averaged metric looses that information. It does not say how well the algorithm
adapts to the changes and might lead to incorrect conclusions. For the above reasons,
Helbig and Engelbrecht [54] proposed a different approach to ranking DMOAs and
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the general calculation of wins and losses that is performed for each performance
measure is presented in Algorithm 5.

Algorithm 5 Calculation of wins and losses [54]
1: for each DMOP do
2: for each nt-τt combination do
3: for each pm do
4: perform Kruskal-Wallis tests on pm
5: if statistical significant difference then
6: for each DMOA-pair do
7: perform Mann-Whitney U test on pm
8: if statistical significant difference then
9: assign wins and losses

10: end if
11: end for
12: end if
13: end for
14: calculate Diff for the pm
15: end for
16: calculate Diff for the nt-τt combination
17: end for
18: calculate Diff for the DMOP

For each DMOP, nt-τt combination and the performance measure, pm, the Kruskal-
Wallis test is used to determine if there is a significant difference with regards to pm

between DMOAs. If the test fails to reject the null hypothesis, this means that there
is at least one DMOA for which results differ from the other DMOAs. If so, for each
DMOA-pair, the two-tailed Mann-Whitney U test is performed to determine which
algorithm performed better, and the ranking algorithm assigns the wins and losses
accordingly. The Diff is the difference between the number of wins and the number
of losses assigned: Diff = #wins − #losses. The DMOA with the highest Diff value
is assigned a rank of 1, and the one with the lowest Diff value ranks the last.

This approach takes into account the tracking ability of the algorithm, because
rather than assigning the wins and losses on the overall averaged pm value (averaged
across all the environment changes), the pm values are compared between DMOAs at
each time step t just before a change in the environment occurs. The pm values for
each environment change are averaged over 30 independent runs to make the results
statistically significant.
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To ensure that a DMOA that tracks the changing POF very well for a DMOP does
not lead to skewed results, the number of wins and losses are normalised as follows
[54]:

#winsnorm = #wins

#changes

#lossesnorm = #losses

#changes

(5.3)

where #changes represents the number of changes that occurred during the entire
run.

5.6 Summary

This chapter covered the experimental set-up on which the subsequent chapters build
upon. Section 5.1 provided an overview of each experiment performed in this study.
The DMOO algorithms and their respective parameter settings were discussed in
Section 5.2. Section 5.3 covered twenty-nine benchmark functions as well as five
severity of change and frequency of change combinations. Performance measures and
the ranking algorithm used to evaluate the performance of DMOAs was discussed in
Section 5.4 and 5.5, respectively.

Next chapter conducts detailed analysis of the experimental results for archive
management update approaches.
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Chapter 6

Archive Management Experiments

The purpose of this section is to go over all the experiments done in this study and
to perform an extensive analysis of the results. Firstly, six archive management ap-
proaches for all DMOP types are compared in Section 6.1. Then, the results are
broken down into each of the three environment types considered in this study. Sec-
tion 6.2 discusses type I DMOPs, Section 6.3 covers type II DMOPs, and an analysis
of the type III DMOPs is provided in Section 6.4. The goal of these experiments is to
find the archive management approach that performs best across all of the twenty-nine
benchmark functions and then use it in a comparative study with the other state-of-
the-art DMOAs in Section 6.5. Performance measures used in the experiments are S,
V D, MS, acc, stab, and NS as defined in Section 2.3. When the table with results
says that pm = all, it means that the results of the wins and losses calculations for
these six performance measures are combined in the calculation of ranks.

6.1 Results for all DMOP Types

This section compares the six archive management strategies over all the DMOP
types, with the goal to identify the best archive management strategy to use in the
later comparisons with state-of-the-art DMOAs. Table 6.1 displays the overall results
by the various archive management approaches. It is evident that the hill climber
with the decreasing step size (hd) outperformed the other approaches by a large
margin. All the variants of the hill climbing algorithm performed better than the
re-evaluation of non dominated solutions (re) approach and the archive clearing (cl)
approach. While the evaluation algorithm takes into account the tracking ability of
the algorithms, Table 6.1 contains only the overall results - which makes it hard to
assess the performance of each approach with regards to the various frequencies and
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severities of change, as well as the six performance measures. Table 6.2 and Table 6.3
breaks down the results into overall wins and losses by the frequencies and severities
of change, and by the performance measures, respectively.

Table 6.1 Overall wins and losses by the various archive management approaches
for all performance measures and nt-τt combinations

Results Archive Management Approaches
cl re h2 h5 h10 hd

Wins 190.51 251.47 853.08 838.62 832.01 1168.79
Losses 1336.75 1096.16 455.3 439.84 566.42 240.01
Diff -1146.24 -844.69 397.78 398.78 265.59 928.78

Rank 6 5 3 2 4 1

Table 6.2 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

10 10 all Wins 50.65 70.92 279.27 273.27 229.23 391.69
10 10 all Losses 432.05 358.57 141.27 128.51 178.94 55.69
10 10 all Diff -381.4 -287.65 138 144.76 50.29 336
10 10 all Rank 6 5 3 2 4 1
10 25 all Wins 24.54 22.3 94.13 91.97 80.11 136.38
10 25 all Losses 145.25 127.07 50.05 46.45 60.95 19.66
10 25 all Diff -120.71 -104.77 44.08 45.52 19.16 116.72
10 25 all Rank 6 5 3 2 4 1
10 50 all Wins 11.52 10.59 38.74 38.72 33.61 60.77
10 50 all Losses 59.93 53.83 23.96 20.55 26.91 8.77
10 50 all Diff -48.41 -43.24 14.78 18.17 6.7 52
10 50 all Rank 6 5 3 2 4 1
1 10 all Wins 54.8 76.44 129.61 175.47 300.49 203.38
1 10 all Losses 270.4 209.88 148.45 110.26 93.2 108
1 10 all Diff -215.6 -133.44 -18.84 65.21 207.29 95.38
1 10 all Rank 6 5 4 3 1 2
20 10 all Wins 49 71.22 311.33 259.19 188.57 376.57
20 10 all Losses 429.12 346.81 91.57 134.07 206.42 47.89
20 10 all Diff -380.12 -275.59 219.76 125.12 -17.85 328.68
20 10 all Rank 6 5 2 3 4 1
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Table 6.3 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

all all S Wins 40.24 53.09 161.34 147.62 140.92 224.07
all all S Losses 248.51 184.71 83.64 86.93 112.92 50.57
all all S Diff -208.27 -131.62 77.7 60.69 28 173.5
all all S Rank 6 5 2 3 4 1
all all VD Wins 49.4 49.65 182.23 183.23 170.01 256.49
all all VD Losses 278.8 238.09 102.87 94.27 132.1 44.88
all all VD Diff -229.4 -188.44 79.36 88.96 37.91 211.61
all all VD Rank 6 5 3 2 4 1
all all MS Wins 18.56 20.85 63.24 74.02 84.48 92.25
all all MS Losses 120.8 105.3 41.32 28.27 32.25 25.46
all all MS Diff -102.24 -84.45 21.92 45.75 52.23 66.79
all all MS Rank 6 5 4 3 2 1
all all acc Wins 22.62 47.77 222.98 214.14 214.28 308.94
all all acc Losses 346.2 287.54 109.96 109.15 137.36 40.52
all all acc Diff -323.58 -239.77 113.02 104.99 76.92 268.42
all all acc Rank 6 5 2 3 4 1
all all stab Wins 53.21 63.83 108.37 103.66 106.38 126.04
all all stab Losses 151.22 115.92 71.1 74.68 83.54 65.03
all all stab Diff -98.01 -52.09 37.27 28.98 22.84 61.01
all all stab Rank 6 5 2 3 4 1
all all NS Wins 6.48 16.28 114.92 115.95 115.94 161
all all NS Losses 191.22 164.6 46.41 46.54 68.25 13.55
all all NS Diff -184.74 -148.32 68.51 69.41 47.69 147.45
all all NS Rank 6 5 3 2 4 1

With regards to Table 6.2, it can be concluded that while h5 and hd performed
better when nt = 10, both approaches were unable to adapt to severe changes to
the environment (nt = 1) as well as h10. The h10 approach was the clear winner
here, because of the big step size that allowed each decision variable to move a large
distance during the search process. When small changes occurred in the environment
(nt = 20), h2 and hd outperformed the other approaches since each decision variable
moved a small distance, making it unlikely to overshoot the feasible area of the search
space. The ranks received by each approach is the same for various τt values when
nt = 10, which shows that all of the approaches improve at the same rate as the
frequency of changes increases. Overall, hd was the most balanced approach because
it moved each particle in the archive over a large distance in the beginning, then
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gradually slowed down to allow more effective exploitation of the feasible area. In
short, the decreasing hill climber approach was capable of solving problems efficiently
across different environment types.

Table 6.3 breaks down the results by each performance measure. Both the cl
and re approaches were inferior to the hill climbing variants, with re ranking second
last and cl ranking last. The reason behind these results is that while MGPSO has
very strong exploitation capabilities, it struggled to explore the feasible areas of the
search space efficiently. Dynamic environments are challenging because DMOAs have
limited time to explore and exploit the decision space. It is very likely that when
a change to the environment occurs, the new true POF will be different from the
last found POF, and so the MGPSO needs to adapt quickly. That is precisely why
the local search approach provided a steep increase in performance. A hill climber is
known for finding better solutions quickly when the current solutions are bad, which
is exactly the case when the environment changes. Going back to the results, it is
evident that local search-based approaches were able to find new feasible regions of
the search space and re-populated the bounded archive. The MGPSO then used
one of the particles in the archive in the velocity update equation to move the other
particles towards these better solutions. In short, a hill climber allowed the MGPSO
to immediately exploit the feasible region rather than waste time looking for it.

6.2 Type I DMOP Results

A type I environment is the one where the POS changes over time, but the POF
remains unchanged. Comparing the overall results from Table 6.4 to the results across
all DMOP types in Table 6.1, it is clear that the hill climbing approaches consistently
outperformed the cl and re approaches. It is evident that hd was the winner, with h5

receiving a rank of 2 and h10 being slightly worse to h5. These results for the local
search approaches were different from the results in Table 6.1, where h10 performed
significantly worse compared to the h2 and h5 approaches. One of the reasons can be
attributed to the fact that these type I benchmark functions change drastically in the
decision space right after the environment change occurs and the hill climber needs
to move large distances to find the new feasible areas. It is more clearly depicted
in Table 6.5 where the severity of change had a big impact on which hill climbing
variant performed best.
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Table 6.4 Overall wins and losses by the various archive management approaches
for type I DMOPs across all performance measures and nt-τt combinations

Results Archive Management Approaches
cl re h2 h5 h10 hd

Wins 19.07 25.23 140.54 157.5 171.78 191.63
Losses 235.01 221.77 85.28 55.86 73.25 34.58
Diff -215.94 -196.54 55.26 101.64 98.53 157.05

Rank 6 5 4 2 3 1

Table 6.5 Overall wins and losses by various frequencies and severities of change for
type I DMOPs across all performance measures

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

10 10 all Wins 7.34 10.08 49.87 55.4 47.96 64.94
10 10 all Losses 79.29 73.39 28.53 16.71 27.22 10.45
10 10 all Diff -71.95 -63.31 21.34 38.69 20.74 54.49
10 10 all Rank 6 5 3 2 4 1
10 25 all Wins 1.94 2.32 17.43 18.07 16.18 25.12
10 25 all Losses 27.9 27.76 8.85 5.85 8.7 2
10 25 all Diff -25.96 -25.44 8.58 12.22 7.48 23.12
10 25 all Rank 6 5 3 2 4 1
10 50 all Wins 0.8 1.03 7.19 7.4 6.33 10.69
10 50 all Losses 11.15 11.06 3.89 2.66 3.79 0.89
10 50 all Diff -10.35 -10.03 3.3 4.74 2.54 9.8
10 50 all Rank 6 5 3 2 4 1
1 10 all Wins 4.26 4.46 10.62 27 61.03 26.33
1 10 all Losses 36.18 35.48 30.84 13.46 2.71 15.03
1 10 all Diff -31.92 -31.02 -20.22 13.54 58.32 11.3
1 10 all Rank 6 5 4 2 1 3
20 10 all Wins 4.73 7.34 55.43 49.63 40.28 64.55
20 10 all Losses 80.49 74.08 13.17 17.18 30.83 6.21
20 10 all Diff -75.76 -66.74 42.26 32.45 9.45 58.34
20 10 all Rank 6 5 2 3 4 1

With regards to Table 6.6, it can be concluded that h10 approach performed best
for the MS and stab performance measures. The MS indicates how well the solutions
are spread out and stab measures how well the DMOA recovers after the environment
change. The h5 approach outperformed h10 and h2 for the V D and acc measures.
The hd outperformed the other approaches for the S, V D, acc, and NS measures.
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The S metric measures how evenly the non-dominated solutions are distributed along
the found POF. The V D measures the accuracy of the found POF against the true
POF, and acc is computed by taking the absolute hypervolume difference at time
t. It should be noted that when DMOA has a high NS value, these non-dominated
solutions are not necessarily better in terms of accuracy. However, in this case hd

was not only more accurate, but also found more solutions. The cl and re approaches
were vastly inferior, which is not surprising since local search approaches take more
function evaluations.

Table 6.6 Overall wins and losses by various performance measures for type I DMOPs
across all nt-τt combinations

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

all all S Wins 6.37 7.34 17.22 20.56 23.83 24.17
all all S Losses 28.18 26.38 13.05 10.06 12.41 9.41
all all S Diff -21.81 -19.04 4.17 10.5 11.42 14.76
all all S Rank 6 5 4 3 2 1
all all VD Wins 1.16 3.22 37.75 39.82 40.19 53.78
all all VD Losses 60.26 56.44 20.89 14.01 20.75 3.57
all all VD Diff -59.1 -53.22 16.86 25.81 19.44 50.21
all all VD Rank 6 5 4 2 3 1
all all MS Wins 0.41 0.28 12.61 18.38 22.61 17.3
all all MS Losses 29.03 28.61 8.7 1.65 0.29 3.31
all all MS Diff -28.62 -28.33 3.91 16.73 22.32 13.99
all all MS Rank 6 5 4 2 1 3
all all acc Wins 0.87 2.73 32.82 36.15 36.88 46.33
all all acc Losses 52.94 49.24 18.68 11.68 19.11 4.13
all all acc Diff -52.07 -46.51 14.14 24.47 17.77 42.2
all all acc Rank 6 5 4 2 3 1
all all stab Wins 9.65 10.08 14.25 12.69 14.8 14.23
all all stab Losses 16.05 15.57 11.11 11.47 10.66 10.84
all all stab Diff -6.4 -5.49 3.14 1.22 4.14 3.39
all all stab Rank 6 5 3 4 1 2
all all NS Wins 0.61 1.58 25.89 29.9 33.47 35.82
all all NS Losses 48.55 45.53 12.85 6.99 10.03 3.32
all all NS Diff -47.94 -43.95 13.04 22.91 23.44 32.5
all all NS Rank 6 5 4 3 2 1
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6.3 Type II DMOP Results

When both the POS and the POF change after an environment change occurs, the
benchmark function is classified as a type II environment. As can be seen from Table
6.7, the hd approach again outperformed the other approaches by a large margin.
The h2 and h5 approaches were very close to one another when it came to the Diff of
wins and losses. The local search approaches’ Diff value is positive, which indicates
that they had more statistically significant better results compared to the cl and re
approaches, for which the Diff value is negative. When Diff is negative, it means that
there were more losses than wins (i.e. more statistically significant worse results).

Table 6.7 Overall wins and losses by the various archive management approaches
for type II DMOPs

Results Archive Management Approaches
cl re h2 h5 h10 hd

Wins 106.34 162.52 593.41 585.82 558.24 836.75
Losses 867.86 740.98 318.2 319.55 433.85 162.64
Diff -761.52 -578.46 275.21 266.27 124.39 674.11

Rank 6 5 2 3 4 1

Since the difference between h2 and h5 was very small, Table 6.8 is inspected for
more insight. It is evident that h2 ranked higher than h5 and h10 when the changes
were not severe and when the frequency of changes was fast. When the severity
of changes was large or when there was more time to optimise a DMOP, then h5

and h10 approaches respectively outperformed h2. It should be noted that these
results reflect the type of experiments conducted. For example, if there were more
experiments where the severity is large and when changes happen at a rapid pace
(i.e. nt = 1 and τt = 10), the overall results would most likely show that h10 was the
best approach for managing the archive, as it is clearly more superior strategy when
compared with hd. The cl approach ranked last and re ranked second last. The
reason why cl is inferior to re is because clearing the archive results in a complete
loss of information with regards to the previously found POF. If the POF did not
change by much after the environment change, then clearing the archive is a wasteful
procedure.
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Table 6.8 Overall wins and losses by various frequencies and severities of change for
type II DMOPs across all performance measures

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

10 10 all Wins 25.6 44.44 200.53 191.98 155.62 288.69
10 10 all Losses 288.53 250.18 99.49 97.33 136.78 34.55
10 10 all Diff -262.93 -205.74 101.04 94.65 18.84 254.14
10 10 all Rank 6 5 2 3 4 1
10 25 all Wins 13.22 14.99 67.5 66.07 55.71 99.01
10 25 all Losses 97.16 86.83 36.41 35.12 46.97 14.01
10 25 all Diff -83.94 -71.84 31.09 30.95 8.74 85
10 25 all Rank 6 5 2 3 4 1
10 50 all Wins 6.45 7.47 27.8 28.32 24.21 44.07
10 50 all Losses 41.1 36.59 18 15.57 20.58 6.48
10 50 all Diff -34.65 -29.12 9.8 12.75 3.63 37.59
10 50 all Rank 6 5 3 2 4 1
1 10 all Wins 34.47 47.91 71.34 115.04 199.15 129.61
1 10 all Losses 157.94 129.4 99.43 68.61 67.95 74.19
1 10 all Diff -123.47 -81.49 -28.09 46.43 131.2 55.42
1 10 all Rank 6 5 4 3 1 2
20 10 all Wins 26.6 47.71 226.24 184.41 123.55 275.37
20 10 all Losses 283.13 237.98 64.87 102.92 161.57 33.41
20 10 all Diff -256.53 -190.27 161.37 81.49 -38.02 241.96
20 10 all Rank 6 5 2 3 4 1

It can be concluded from Table 6.9 that hd ranked first for all of the performance
measures. Therefore, it is the most accurate approach for managing the bounded
archive. As for the cl and re approaches, the results were in line with the results
for type I DMOPs. They were inferior to the local search, because the hill climber
attempts to improve the quality of solutions, whereas the other two approaches simply
delete or re-evaluate existing non-dominating solutions in the archive.

While the ranking algorithm is useful in evaluating archive management ap-
proaches, it is still useful to visually inspect the overall impact that the local search
has on the MGPSO’s ability to track the true POF. Figure 6.1 should give a general
idea of how effective the hd approach was compared to the re approach for the F7
DMOP. It is clear that hd vastly outperformed the simpler re approach. Similar
results were obtained for the other DMOPs considered in this study.
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Table 6.9 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

all all S Wins 15.81 27.07 114.02 107.42 95.79 159.63
all all S Losses 165.66 134.48 54.54 54.55 79.9 30.61
all all S Diff -149.85 -107.41 59.48 52.87 15.89 129.02
all all S Rank 6 5 2 3 4 1
all all VD Wins 21.21 30.99 135.45 134.34 121.06 191.82
all all VD Losses 197.57 170.31 70.11 68.77 99.56 28.55
all all VD Diff -176.36 -139.32 65.34 65.57 21.5 163.27
all all VD Rank 6 5 3 2 4 1
all all MS Wins 17.49 17.64 36.05 43.39 47.92 59.19
all all MS Losses 61.14 57.39 29.99 23.37 29.17 20.62
all all MS Diff -43.65 -39.75 6.06 20.02 18.75 38.57
all all MS Rank 6 5 4 2 3 1
all all acc Wins 10.6 31.43 148.18 145.23 145.01 213.51
all all acc Losses 220.52 189.27 77.5 79.16 100.54 26.97
all all acc Diff -209.92 -157.84 70.68 66.07 44.47 186.54
all all acc Rank 6 5 2 3 4 1
all all stab Wins 35.6 42.39 78.01 76.68 73.91 95.3
all all stab Losses 98.05 83.7 53.05 54.83 66.53 45.73
all all stab Diff -62.45 -41.31 24.96 21.85 7.38 49.57
all all stab Rank 6 5 2 3 4 1
all all NS Wins 5.63 13 81.7 78.76 74.55 117.3
all all NS Losses 124.92 105.83 33.01 38.87 58.15 10.16
all all NS Diff -119.29 -92.83 48.69 39.89 16.4 107.14
all all NS Rank 6 5 2 3 4 1

6.4 Type III DMOP Results

This section focuses on type III DMOPs. A benchmark function belongs to a type III
category when the POS remains unchanged, but the POF changes overtime. Table
6.10 indicates that, once gain, hd was the superior approach, followed by h2 and then
by h10. This is an interesting development because h5 was clearly inferior to the
other hill climber variants, where for type I and type II problems it ranked higher.

In order to understand these findings better, the results are explored further by
considering various frequencies of change and severities of change as in Table 6.11.
When nt = 1, it was h2 that received a rank of 1. However, for the other DMOP
types, large spatial severity resulted in poor performance for h2 (see Table 6.5 and
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(a) POS (b) POF

Figure 6.1 Obtained POS and POF for the F7 problem where nt = 10 and τt = 25.
Top row shows the results obtained by the re approach whereas bottom row show
the results obtained by the hd approach.

Table 6.10 Overall wins and losses by the various archive management approaches
for type III DMOPs across all performance measures and nt-τt combinations

Results Archive Management Approaches
cl re h2 h5 h10 hd

Wins 65.1 63.72 119.13 95.3 101.99 140.41
Losses 233.88 133.41 51.82 64.43 59.32 42.79
Diff -168.78 -69.69 67.31 30.87 42.67 97.62

Rank 6 5 2 4 3 1

Table 6.8). The difference in ranks when compared to type I and type II DMOPs is
due to the fact that type III DMOPs do not change in the decision space. In other
words, decision variables did not move to a new feasible region far away from the
old region when the change to the environment occurred. This means that MGPSO
was able to focus more on exploitation of the already found solutions rather than
exploring the search space for new, better solutions. A small step size contributed
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Table 6.11 Overall wins and losses for various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

10 10 all Wins 17.71 16.4 28.87 25.89 25.65 38.06
10 10 all Losses 64.23 35 13.25 14.47 14.94 10.69
10 10 all Diff -46.52 -18.6 15.62 11.42 10.71 27.37
10 10 all Rank 6 5 2 3 4 1
10 25 all Wins 9.38 4.99 9.2 7.83 8.22 12.25
10 25 all Losses 20.19 12.48 4.79 5.48 5.28 3.65
10 25 all Diff -10.81 -7.49 4.41 2.35 2.94 8.6
10 25 all Rank 6 5 2 4 3 1
10 50 all Wins 4.27 2.09 3.75 3 3.07 6.01
10 50 all Losses 7.68 6.18 2.07 2.32 2.54 1.4
10 50 all Diff -3.41 -4.09 1.68 0.68 0.53 4.61
10 50 all Rank 5 6 2 3 4 1
1 10 all Wins 16.07 24.07 47.65 33.43 40.31 47.44
1 10 all Losses 76.28 45 18.18 28.19 22.54 18.78
1 10 all Diff -60.21 -20.93 29.47 5.24 17.77 28.66
1 10 all Rank 6 5 1 4 3 2
20 10 all Wins 17.67 16.17 29.66 25.15 24.74 36.65
20 10 all Losses 65.5 34.75 13.53 13.97 14.02 8.27
20 10 all Diff -47.83 -18.58 16.13 11.18 10.72 28.38
20 10 all Rank 6 5 2 3 4 1

more to the exploitation and thus outperformed the other approaches.
When it comes to the performance measures (see Table 6.12), the results for

the V D metric stand out since re and cl approaches outperformed the local search
approaches. A direct comparison with the other performance measures clearly shows
that re and cl approaches performed poorly on the other metrics. It is unclear at this
point why this particular performance measure is deviating from the norm. For type
I and type II DMOPs, the re approach typically ranked second last and cl ranked
last. One way to explain this is that the found POF was very close to the true POF,
but the solutions were not diverse enough. This scenario is precisely the reason why
more than one performance measure should be used when evaluating the performance
of DMOAs - to avoid misleading results.
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Table 6.12 Overall wins and losses for various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results Archive Management Approaches
cl re h2 h5 h10 hd

all all S Wins 18.06 18.68 30.1 19.64 21.3 40.27
all all S Losses 54.67 23.85 16.05 22.32 20.61 10.55
all all S Diff -36.61 -5.17 14.05 -2.68 0.69 29.72
all all S Rank 6 5 2 4 3 1
all all VD Wins 27.03 15.44 9.03 9.07 8.76 10.89
all all VD Losses 20.97 11.34 11.87 11.49 11.79 12.76
all all VD Diff 6.06 4.1 -2.84 -2.42 -3.03 -1.87
all all VD Rank 1 2 5 4 6 3
all all MS Wins 0.66 2.93 14.58 12.25 13.95 15.76
all all MS Losses 30.63 19.3 2.63 3.25 2.79 1.53
all all MS Diff -29.97 -16.37 11.95 9 11.16 14.23
all all MS Rank 6 5 2 4 3 1
all all acc Wins 11.15 13.61 41.98 32.76 32.39 49.1
all all acc Losses 72.74 49.03 13.78 18.31 17.71 9.42
all all acc Diff -61.59 -35.42 28.2 14.45 14.68 39.68
all all acc Rank 6 5 2 4 3 1
all all stab Wins 7.96 11.36 16.11 14.29 17.67 16.51
all all stab Losses 37.12 16.65 6.94 8.38 6.35 8.46
all all stab Diff -29.16 -5.29 9.17 5.91 11.32 8.05
all all stab Rank 6 5 2 4 1 3
all all NS Wins 0.24 1.7 7.33 7.29 7.92 7.88
all all NS Losses 17.75 13.24 0.55 0.68 0.07 0.07
all all NS Diff -17.51 -11.54 6.78 6.61 7.85 7.81
all all NS Rank 6 5 3 4 1 2

6.5 Comparisons with the other DMOAs

Based on findings from the previous section on the archive management approaches,
it can be concluded that hd outperformed the other strategies. Therefore, the hd

approach is used in the final comparative study against baseline MGPSO (re ap-
proach), DMOES, SGEA, and DNSGA-II. Instead of using the re and hd labels, the
approaches are renamed to MGPSO and MGPSOls, respectively. Parameter settings
used by each DMOA can be found in the Section 5.2.

Table 6.13 shows that MGPSOls vastly outperformed the other algorithms. The
rank was calculated by computing wins and losses over the twenty-nine DMOPs across
all performance measures and nt-τt combinations. Table 6.13 itself does not provide
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Table 6.13 Overall wins and losses by the various DMOAs across all performance
measures and nt-τt combinations

Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

Wins 968.35 1534.54 723.58 443.43 810.44
Losses 694.66 247.3 1200.33 1333.44 1004.61
Diff 273.69 1287.24 -476.75 -890.01 -194.17

Rank 2 1 4 5 3

Table 6.14 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

10 10 all Wins 280.66 471.28 204.77 110.33 208.04
10 10 all Losses 194.47 52.23 332.6 392.33 303.45
10 10 all Diff 86.19 419.05 -127.83 -282 -95.41
10 10 all Rank 2 1 4 5 3
10 25 all Wins 98.5 169.85 93.46 46.77 91.72
10 25 all Losses 84.97 28.56 120.7 154.38 111.69
10 25 all Diff 13.53 141.29 -27.24 -107.61 -19.97
10 25 all Rank 2 1 4 5 3
10 50 all Wins 46.31 75.31 47.64 25.21 48.88
10 50 all Losses 43.55 18.63 58.19 71.81 51.17
10 50 all Diff 2.76 56.68 -10.55 -46.6 -2.29
10 50 all Rank 2 1 4 5 3
1 10 all Wins 282.88 359.67 145.55 152.75 257.91
1 10 all Losses 166.68 93.19 384.35 323.1 231.44
1 10 all Diff 116.2 266.48 -238.8 -170.35 26.47
1 10 all Rank 2 1 5 4 3
20 10 all Wins 260 458.43 232.16 108.37 203.89
20 10 all Losses 204.99 54.69 304.49 391.82 306.86
20 10 all Diff 55.01 403.74 -72.33 -283.45 -102.97
20 10 all Rank 2 1 3 5 4

any information with regards to the performance measures or nt-τt combinations.
Therefore, Table 6.14 should be examined more closely to evaluate the performance
of DMOAs with respect to nt-τt combinations, or Table 6.15 for results with respect
to S, V D, MS, acc, stab, and NS performance measures.

It is evident from the results in Table 6.14 that the MGPSO is outranked by the
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MGPSOls, but managed to outperform the other DMOAs. The SGEA algorithm
received a rank of 3 for most nt-τt combinations, except when nt = 20 and τt = 10.
The DMOES algorithm received a rank of 4, followed by DNSGA-II that ranked last
for most of the nt-τt combinations.

Table 6.15 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

all all S Wins 211.95 294.03 82.04 52.94 180.57
all all S Losses 97.52 38.74 244.97 286.56 153.74
all all S Diff 114.43 255.29 -162.93 -233.62 26.83
all all S Rank 2 1 4 5 3
all all VD Wins 185.18 298.51 125.42 66.73 163.91
all all VD Losses 134.83 42.32 205.82 278.36 178.42
all all VD Diff 50.35 256.19 -80.4 -211.63 -14.51
all all VD Rank 2 1 4 5 3
all all MS Wins 184.35 263.92 90.08 126.97 89.58
all all MS Losses 79.35 18.87 267.35 145.12 244.21
all all MS Diff 105 245.05 -177.27 -18.15 -154.63
all all MS Rank 2 1 5 3 4
all all acc Wins 162.38 310.47 246.81 42.26 143.81
all all acc Losses 179.77 56.1 128.73 325.12 216.01
all all acc Diff -17.39 254.37 118.08 -282.86 -72.2
all all acc Rank 3 1 2 5 4
all all stab Wins 112.7 160.94 144.41 76.29 80.64
all all stab Losses 102.83 74.89 93.92 158.47 144.87
all all stab Diff 9.87 86.05 50.49 -82.18 -64.23
all all stab Rank 3 1 2 5 4
all all NS Wins 111.79 206.67 34.82 78.24 151.93
all all NS Losses 100.36 16.38 259.54 139.81 67.36
all all NS Diff 11.43 190.29 -224.72 -61.57 84.57
all all NS Rank 3 1 5 4 2

Table 6.15 provides similar results when it comes to the MGPSOls, where it clearly
won against the other DMOAs across all performance measures. However, MGPSO
this time received a rank of 2 for S, V D, and MS, while it ranked third for acc, stab,
and NS. Good maximum spread and the spread of solutions are important, because
the algorithm needs to have a diverse set of non-dominated solutions to choose from
along the found POF. However, if the accuracy of the algorithm is not adequate,
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then it does not matter much if the spread is good, because the DMOA needs to
successfully approximate the true POF in the first place. DMOES received a rank of
2 for acc, and stab, which indicates that it was more accurate on some of the problems
compared to MGPSO, SGEA, and DNSGA-II. The DNSGA-II algorithm ranked last
on all metrics except for the MS and NS.

While the ranking algorithm is useful in evaluation of the various DMOAs, it still
might be useful to visually inspect DMOAs’ ability to track the true POF. Figure 6.2
depicts six different benchmark functions to visually explain the differences between
each algorithm.

MGPSO

MGPSOls

DMOES

DNSGA-II

SGEA

(a) ZJZ (b) FDA2Cam (c) dMOP2 (d) dMOP3 (e) DIMP2 (f) F5

Figure 6.2 Obtained POFs for some of the problems where nt = 10 and τt = 50 for
DIMP2 and nt = 10 and τt = 25 for the other benchmark functions. Each row shows
the results for a specific DMOA.
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The POFs obtained by the DMOAs for ZJZ, FDA2Cam, dMOP2, dMOP3, DIMP2
and F5 DMOPs are displayed in Figure 6.2. For the ZJZ benchmark function, MG-
PSO with the re archive management approach, SGEA, and DNSGA-II struggled
with approximating the true POF. However, MGPSOls and DMOES successfully
approximated the POF, with MGPSOls being slightly ahead when it comes to the
spacing and diversity of the found solutions. The ZJZ problem is a modified version
of the FDA1 problem, where unlike the POS of FDA1 that has line segments parallel
to the coordinate axes, ZJZ has nonlinear linkages between the decision variables,
thus making it much more difficult to solve [17]. This is a type II problem.

The FDA2Cam problem was an interesting case, because even though it appears
that each DMOA was able to obtain good diversity of solutions, none of the algorithms
were able to approximate the true POF of FDA2Cam at all times. When the POF
began to change from convex to concave, all of the DMOAs started to loose track
of the true POF. Still, DMOES performed slightly better on this problem since the
spacing between solutions was more evenly spread and variational distance was low.
This DMOP is a type III problem, where the POS remains static, but the POF
changes over time.

The dMOP2 problem is classified as a type II problem, where both the POS
and the POF change over time. MGPSO, MGPSOls, DMOES and SGEA performed
quite well on this problem and while DNSGA-II was close to the true POF, it was
not as accurate as the other DMOAs. It is evident that MGPSOls outperformed the
other algorithms in terms of the diversity of solutions, spacing between solutions,
and overall accuracy. Good results can be attributed to the local search archive
management approach that allowed MGPSO, right after the environment change, to
begin to exploit already found good regions of the search space. Otherwise, it would
need to spend more time exploring the search space for a feasible region.

The dMOP3 problem is classified as the type I problem, where the POS changes
over time, but the POF remains static. This time, MGPSO and MGPSOls were able
to approximate the true POF, whereas DMOES, DNSGA-II, and SGEA struggled.
DMOES did not manage to find any solution.

For the DIMP2 problem, the results were opposite to the ones from the dMOP3
problem. This time, DMOES, DNSGA-II, and SGEA were able to find good approx-
imations, with DMOES being the clear winner. SGEA struggled with the maximum
spread of solutions along the found POF, whereas DNSGA was not as accurate as
DMOES and SGEA. MGPSO and MGPSOls were unable to find the global POF
optimum and were stuck in a local POF optimum instead. The maximum spread and
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spacing was quite good for both MGPSO and MGPSOls, but it does not matter much
when the true POF is not found. It has been shown that the MGPSO implementation
for SMOPs struggled with the ZDT4 static MOO problem [11]. The DIMP2 problem
is a modified dynamic version of the ZDT4 problem which might explain why the
results were poor.

The last comparison from Figure 6.2 was performed on the F5 problem, which is
classified as a type II problem, where the POS and the POF changes with regards to
time. Only MGPSOls was able to keep track of the true POF for this problem. The
other DMOAs would require more iterations to be able to find the true POF, because
they were unable to find and exploit the feasible region of the search space within the
limited time-frame.

6.6 Summary

This chapter adapted the multi-guide particle swarm optimisation (MGPSO) al-
gorithm for dynamic multi-objective optimisation (DMOO) by introducing various
archive management strategies to allow MGPSO to track changing Pareto-optimal
fronts. The effect that these various archive management approaches have on the
performance of the MGPSO was examined in this chapter and it was determined
that a hill climber with a decreasing step size worked best on a large variety of dy-
namic optimisation problems. The best performing archive approach was then used
in a comparative study with a baseline MGPSO, DMOES, DNSGA-II, and SGEA.
The extensive empirical analysis showed that MGPSO with a local search archive
management strategy was highly competitive and oftentimes outperformed the other
state-of-the-art dynamic optimisation algorithms.

Next chapter conducts detailed analysis of the experimental results for balance
coefficient update strategies.
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Chapter 7

Balance Coefficient Experiments

The purpose of this section is to go over all the experiments done in this study and
to perform an extensive analysis of the results. Firstly, five balance coefficient update
strategies for all DMOP types are compared in Section 7.1. Then in Section 7.2,
the best performing strategy from the first experiment is compared with the linearly
increasing and linearly decreasing strategies. The goal of these experiments is to find
the balance coefficient update strategy that performs best across all of the twenty-nine
benchmark functions and then use it in a comparative study with the other state-of-
the-art DMOAs in Section 7.3. Performance measures used in the experiments are S,
V D, MS, acc, stab, and NS as defined in Section 2.3. When the table with results
says that pm = all, it means that the results of the wins and losses calculations
for these six performance measures are combined in the calculation of ranks. The
re-evaluation of non-dominating solutions archive management strategy, re, from the
previous experiment is used in every MGPSO variant.

7.1 Results for Standard and Random Approaches

Table 7.1 displays the overall results by the various balance coefficient update strate-
gies. It is evident that the standard strategies (std and stdτt) vastly outperformed
the other approaches by a large margin. Out of these two standard approaches, it
was the stdτt strategy that performed best across all of the twenty-nine benchmark
functions. The random update strategies were inferior due to being too stochastic,
which will be further explored in the next sections. While the evaluation algorithm
takes into account the tracking ability of the algorithms, Table 7.1 contains only
the overall results - which makes it hard to assess the performance of each approach
with regards to the various frequencies and severities of change, as well as the six
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performance measures. Table 7.2 and Table 7.3 breaks down the results into overall
wins and losses by the frequencies and severities of change, and by the performance
measures, respectively.

Table 7.1 Overall wins and losses by the various balance coefficient update strategies
for all performance measures and nt-τt combinations

Results Balance Coefficient Update Strategies
std stdτt r ri rij

Wins 598.51 670.05 185.55 301.67 184.8
Losses 239.71 161.54 503.86 388.31 647.16
Diff 358.8 508.51 -318.31 -86.64 -462.36

Rank 2 1 4 3 5

Table 7.2 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results Balance Coefficient Update Strategies
std stdτt r ri rij

10 10 all Wins 164.51 175 39.22 88.95 52.56
10 10 all Losses 60.81 42.66 149.01 96.21 171.55
10 10 all Diff 103.7 132.34 -109.79 -7.26 -118.99
10 10 all Rank 2 1 4 3 5
10 25 all Wins 60.52 69.25 22.65 39.99 19.53
10 25 all Losses 25.74 17.79 51.14 38.47 78.8
10 25 all Diff 34.78 51.46 -28.49 1.52 -59.27
10 25 all Rank 2 1 4 3 5
10 50 all Wins 29.49 32.49 13.69 20.9 9.44
10 50 all Losses 13.7 9.8 23.03 18.54 40.94
10 50 all Diff 15.79 22.69 -9.34 2.36 -31.5
10 50 all Rank 2 1 4 3 5
1 10 all Wins 194.19 222.71 61.17 58.61 52.84
1 10 all Losses 71.33 46.79 150.56 144.19 176.65
1 10 all Diff 122.86 175.92 -89.39 -85.58 -123.81
1 10 all Rank 2 1 4 3 5
20 10 all Wins 149.8 170.6 48.82 93.22 50.43
20 10 all Losses 68.13 44.5 130.12 90.9 179.22
20 10 all Diff 81.67 126.1 -81.3 2.32 -128.79
20 10 all Rank 2 1 4 3 5

The results from Table 7.2 indicate that for all environment types, stdτt outper-
formed the other approaches, followed by std approach. The ri strategy ranked third,
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r ranked fourth, and rij ranked last on all environment types. This corresponds ex-
actly with the results from Table 7.1. The results for the fast changing environment
(τt = 10) and for the environment with a big spatial severity (nt = 1), showed that
stdτt is the preferable strategy compared to the std approach. However, this differ-
ence became less noticeable when the frequency of change became larger (τt ≤ 25),
but this is due to the fact that the changes to the environment were not as frequent
and each MGPSO variant had more time to optimise each objective. One explanation
on why stdτt is better, is that the std strategy might have randomly initialized the
balance coefficient to a less desirable value, which inhibited the MGPSO’s ability to
approximate the true POF. Since stdτt strategy re-initializes the λi parameter ev-

Table 7.3 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results Balance Coefficient Update Strategies
std stdτt r ri rij

all all S Wins 68.73 79.82 33.24 40.7 23.48
all all S Losses 39.86 24.42 47.22 43.8 90.67
all all S Diff 28.87 55.4 -13.98 -3.1 -67.19
all all S Rank 2 1 4 3 5
all all VD Wins 151.18 176.11 37.01 73.81 52.13
all all VD Losses 55.72 31.11 143.87 104.35 155.19
all all VD Diff 95.46 145 -106.86 -30.54 -103.06
all all VD Rank 2 1 5 3 4
all all MS Wins 46.31 50.3 14.89 30 17.94
all all MS Losses 22.39 14.36 45.43 25.01 52.25
all all MS Diff 23.92 35.94 -30.54 4.99 -34.31
all all MS Rank 2 1 4 3 5
all all acc Wins 161.5 187.28 39.72 78.71 39.3
all all acc Losses 54.39 33.21 139.1 104.61 175.2
all all acc Diff 107.11 154.07 -99.38 -25.9 -135.9
all all acc Rank 2 1 4 3 5
all all stab Wins 50.21 55.01 30.71 41.01 44.11
all all stab Losses 50.7 42.81 46.05 35.64 45.85
all all stab Diff -0.49 12.2 -15.34 5.37 -1.74
all all stab Rank 3 1 5 2 4
all all NS Wins 120.58 121.53 29.98 37.44 7.84
all all NS Losses 16.65 15.63 82.19 74.9 128
all all NS Diff 103.93 105.9 -52.21 -37.46 -120.16
all all NS Rank 2 1 4 3 5
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ery environment change, it overcomes the problem of a bad initial λi value. When it
comes to r, ri, and rij approaches, whose main idea is to re-initialize the λi parameter
at every iteration, the results clearly indicate that these more stochastic strategies
were vastly inferior to the standard approaches.

Table 7.3 breaks down the results by each performance measure. This time, the
ranks were not assigned evenly as in Table 7.2, since ri ranked second for the stab

metric. The differences in ranks are also evident for random approaches. Still, it is
clear that stdτt outperformed the other approaches in every performance measure.
The std approach ranked second for S, V D, MS, acc, and NS and received a rank
of 3 for the stab performance measure. The random strategies were consistently
outperformed by the standard strategies except for the stab metric. Out of the three
random approaches, ri was the more effective strategy, followed by r and then by
rij strategy. Interestingly, re-sampling the balance coefficient, per particle, at every
iteration vastly outperformed the other two random strategies.

7.2 Results for Linearly Increasing and Decreasing
Strategies

Table 7.4 displays the overall results by the stdτt , linearly increasing (li and liτt) and
linearly decreasing (ld and ldτt) balance coefficient update strategies. It is evident
that stdτt approach outperformed the other approaches by a large margin. Both liτt

and ldτt did better compared to li and ld strategies. This implies that re-initializing
the λi parameter, right after the change to the environment occurs, is preferable to
the default strategy where the balance coefficient is set once at the beginning of the
run. To learn more about each approach, Table 7.5 and Table 7.6 breaks down the
results into overall wins and losses by the frequencies and severities of change, and
by the performance measures, respectively.

Table 7.4 Overall wins and losses by the various balance coefficient update strategies
for all performance measures and nt-τt combinations

Results Balance Coefficient Update Strategies
stdτt ld ldτt li liτt

Wins 922.98 503.85 634.07 574.9 750.05
Losses 333.49 1142.15 623.03 832.05 455.13
Diff 589.49 -638.3 11.04 -257.15 294.92

Rank 1 5 3 4 2
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Table 7.5 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results Balance Coefficient Update Strategies
stdτt ld ldτt li liτt

10 10 all Wins 251.07 136.89 171.58 157.28 213.19
10 10 all Losses 82.35 319.25 173.86 237.76 116.79
10 10 all Diff 168.72 -182.36 -2.28 -80.48 96.4
10 10 all Rank 1 5 3 4 2
10 25 all Wins 104 48.73 79.56 64.86 99.66
10 25 all Losses 35.59 144.52 74.13 99.06 43.51
10 25 all Diff 68.41 -95.79 5.43 -34.2 56.15
10 25 all Rank 1 5 3 4 2
10 50 all Wins 52.76 22.84 38.47 35.86 49.68
10 50 all Losses 19.06 74.34 38.56 44.7 22.95
10 50 all Diff 33.7 -51.5 -0.09 -8.84 26.73
10 50 all Rank 1 5 3 4 2
1 10 all Wins 265.94 165.02 154.07 161.1 171.36
1 10 all Losses 110.45 258.96 183.5 207.54 157.04
1 10 all Diff 155.49 -93.94 -29.43 -46.44 14.32
1 10 all Rank 1 5 3 4 2
20 10 all Wins 249.21 130.37 190.39 155.8 216.16
20 10 all Losses 86.04 345.08 152.98 242.99 114.84
20 10 all Diff 163.17 -214.71 37.41 -87.19 101.32
20 10 all Rank 1 5 3 4 2

With regards to Table 7.5, it can be concluded that ranks received by each strat-
egy were evenly spread out across every nt-τt combination. The linearly increasing
and linearly decreasing strategies adapted for dynamic environments (liτt and ldτt)
were more preferable to their default implementations (li and ld). When decreasing
strategy was picked (ld), the balance coefficient had very little influence on the ve-
locity update equation during the first half of the run. This might work for static
MOPs, but for dynamic MOPs, changes happen often and the archive guide needs
to contribute to the movement of the particle so that MGPSO can effectively exploit
the search space. As for the linearly increasing strategy (li), the balance coefficient
had a large influence on the velocity update equation during the first half of the run,
but then the results gradually deteriorated over time.

Overall, stdτt strategy was the clear winner here, because MGPSO performs better
when the λi parameter is re-initialized only once for each environment change. These
results correlate with the previous one where the random strategies were explored. It
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Table 7.6 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results Balance Coefficient Update Strategies
stdτt ld ldτt li liτt

all all S Wins 116.04 90.17 108.97 109.53 131.73
all all S Losses 81.58 187.96 89.98 131.55 65.37
all all S Diff 34.46 -97.79 18.99 -22.02 66.36
all all S Rank 2 5 3 4 1
all all VD Wins 215.83 77.09 130.22 113.26 185.96
all all VD Losses 52.74 262.5 137.11 187.95 82.06
all all VD Diff 163.09 -185.41 -6.89 -74.69 103.9
all all VD Rank 1 5 3 4 2
all all MS Wins 112.63 76.12 83.29 73.54 78.02
all all MS Losses 32.04 163.39 72.52 96.64 59.01
all all MS Diff 80.59 -87.27 10.77 -23.1 19.01
all all MS Rank 1 5 3 4 2
all all acc Wins 243.9 45.52 146.9 91.57 171.42
all all acc Losses 34.91 264.57 118.66 192.96 88.21
all all acc Diff 208.99 -219.05 28.24 -101.39 83.21
all all acc Rank 1 5 3 4 2
all all stab Wins 87.62 116.36 80.3 101.17 79.6
all all stab Losses 87.96 110.8 88.71 95.47 82.11
all all stab Diff -0.34 5.56 -8.41 5.7 -2.51
all all stab Rank 3 2 5 1 4
all all NS Wins 146.96 98.59 84.39 85.83 103.32
all all NS Losses 44.26 152.93 116.05 127.48 78.37
all all NS Diff 102.7 -54.34 -31.66 -41.65 24.95
all all NS Rank 1 5 3 4 2

was evident that changing the λi parameter every iteration had a negative impact on
the performance of the algorithm.

Table 7.6 breaks down the results by each performance measure. The only perfor-
mance measure where ld and li strategies outperformed their dynamic versions was
for stab metric. Still, it can be concluded that re-initializing the λi parameter after
the environment change is a better strategy as these approaches were better for the
other performance measures. The stdτt strategy did receive a rank of 1 for V D, MS,
acc, and NS, a rank of 2 for S, and a rank of 3 for stab metric. In conclusion, stdτt

was the most accurate and diverse approach. These findings match the results from
Table 7.4 and Table 7.5, where stdτt outperformed the other strategies.
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7.3 Comparisons with the other DMOAs

Based on the findings from the previous section on the balance coefficient update
strategies, it can be concluded that stdτt outperformed the other approaches. There-
fore, stdτt update strategy, referred to as MGPSO for the rest of the chapter, is used
in the comparative study against the other state-of-the-art DMOAs. The DMOA’s
used in this study are DMOES, DNSGA-II, and SGEA. Refer to the Section 5.2 for
more information about parameter settings used by each.

Inspecting Table 7.7, it is clear that MGPSO vastly outperformed the other algo-
rithms. The rank was calculated by computing wins and losses over the twenty-nine
DMOPs across all performance measures and nt-τt combinations. Table 7.7 itself
does not provide any information with regards to the performance measures or nt-τt

combinations, therefore, Table 7.8 should be examined to study the differences with
respect to each nt-τt combinations, or Table 7.9 for more information about the S,
V D, MS, acc, stab, and NS performance measures.

Table 7.7 Overall wins and losses by the various DMOAs across all performance
measures and nt-τt combinations

Results DMOAs
MGPSO DMOES DNSGA-II SGEA

Wins 935.44 634.93 401.28 725.06
Losses 394.39 784.57 913.17 604.58
Diff 541.05 -149.64 -511.89 120.48

Rank 1 3 4 2

Examining the results from the Table 7.8, it is evident that MGPSO outperformed
the other DMOAs across every environment type. The SGEA algorithm received a
rank of 2 for most nt-τt combinations, except when the spatial severity was low and
the frequency of changes was fast (nt = 20 and τt = 10). The DMOES algorithm
received a rank of 3 when τt = 10, and ranked second when τt = 20, followed by
DNSGA-II that ranked last for most of the nt-τt combinations.
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Table 7.8 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

10 10 all Wins 270.86 184.36 103.43 193.44
10 10 all Losses 98.03 209.42 265.97 178.67
10 10 all Diff 172.83 -25.06 -162.54 14.77
10 10 all Rank 1 3 4 2
10 25 all Wins 95.54 82.84 43.57 81.87
10 25 all Losses 52.24 77.64 106.27 67.67
10 25 all Diff 43.3 5.2 -62.7 14.2
10 25 all Rank 1 3 4 2
10 50 all Wins 44.54 40.06 22.46 42.74
10 50 all Losses 28.98 38.8 49.87 32.15
10 50 all Diff 15.56 1.26 -27.41 10.59
10 50 all Rank 1 3 4 2
1 10 all Wins 269.47 124.29 132.06 219.88
1 10 all Losses 109.11 267.38 224.87 144.34
1 10 all Diff 160.36 -143.09 -92.81 75.54
1 10 all Rank 1 4 3 2
20 10 all Wins 255.03 203.38 99.76 187.13
20 10 all Losses 106.03 191.33 266.19 181.75
20 10 all Diff 149 12.05 -166.43 5.38
20 10 all Rank 1 2 4 3

Table 7.9 provides similar results when it comes to the MGPSO, where it clearly
won against the other DMOAs for S, V D, and MS performance measures and re-
ceived a rank of 2 for acc, stab, and NS metrics. The DNSGA-II ranked last on all
metrics but NS and MS. The SGEA ranked 2nd for S, V D, and a rank of 1 for NS,
but lost to DMOES in acc and stab performance measures. The DMOES ranked first
for acc and stab, but was inferior in terms of spacing and diversity of solutions. It is
clear that no DMOA was able to win across all the problems and environment types
since each algorithm has losses assigned to them. While the ranking algorithm is
useful in evaluation of the various DMOAs, it still might be useful to visually inspect
DMOAs’ ability to track the true POF. Figure 7.1 depicts six different benchmark
functions to visually explain the differences between each algorithm.

91



Table 7.9 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

all all S Wins 205.35 74.97 49.25 161.01
all all S Losses 45.22 164.43 198.32 82.61
all all S Diff 160.13 -89.46 -149.07 78.4
all all S Rank 1 3 4 2
all all VD Wins 176.81 112.51 61.43 148.54
all all VD Losses 73.34 134.61 190.05 101.29
all all VD Diff 103.47 -22.1 -128.62 47.25
all all VD Rank 1 3 4 2
all all MS Wins 183.32 83.55 120.77 83.1
all all MS Losses 46.64 178.56 87.6 157.94
all all MS Diff 136.68 -95.01 33.17 -74.84
all all MS Rank 1 4 2 3
all all acc Wins 161.34 215.24 37.9 127.65
all all acc Losses 105.46 64.17 234.55 137.95
all all acc Diff 55.88 151.07 -196.65 -10.3
all all acc Rank 2 1 4 3
all all stab Wins 96.63 116.53 57.7 63.39
all all stab Losses 70.06 59 109.88 95.31
all all stab Diff 26.57 57.53 -52.18 -31.92
all all stab Rank 2 1 4 3
all all NS Wins 111.99 32.13 74.23 141.37
all all NS Losses 53.67 183.8 92.77 29.48
all all NS Diff 58.32 -151.67 -18.54 111.89
all all NS Rank 2 4 3 1

The POFs obtained by the DMOAs for FDA1, FDA3Cam, dMOP2dec, HE2, HE9
and F7 DMOPs are displayed in Figure 7.1. For the FDA1 benchmark function,
DMOES and SGEA were the most successful in approximating the true POF. The
MGPSO and DNSGA-II algorithms were close, but would require more iterations to
get the perfect results. The FDA1 DMOP is a type I problem, where the POS changes
over time but the POF remains static. It was one of the first dynamic multi-objective
optimisation problems ever created and it is not a particularly hard problem to solve.
That is because the POS of FDA1 has line segments parallel to the coordinate axes,
and once the DMOA finds the POF at any time t, it usually has no issue tracking
the true POF when the environment changes.
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MGPSO

DMOES

DNSGA-II

SGEA

(a) FDA1 (b) FDA3Cam (c) dMOP2dec (d) HE2 (e) HE9 (f) F7

Figure 7.1 Obtained POFs for some of the problems where nt = 10 and τt = 25.
Each row shows the results for a specific DMOA.

The FDA3Cam modifies the original FDA3 problem by changing the solutions over
time in both the decision and the objective space - making it a type II problem. From
the Figure 7.1, it is evident that DNSGA-II was the only algorithm that was unable
to find the true POF most of the time. Out of the other three DMOAs, DMOES did
achieve the best spacing and accuracy. However, it needs to be noted that none of
the DMOAs were able to obtain good set of solutions at all times, as indicated by
thicker lines (on the right side) of the obtained POFs from the Figure 7.1. The POF
at that particular time t was supposed to be spread out evenly along the convex line,
not clumped up at one point.

The dMOP2dec problem is classified as a type II problem, where both the POS
and the POF change over time. A DMOP with a deceptive POF is a multi-modal
problem, since there exist more than one optima and the search space favours the
deceptive optimum, which is a local POF and not the global POF [12]. Multi-modal
problems are difficult to solve, since a DMOA can get stuck in a local POF. This can
be clearly seen in Figure 7.1, where none of the DMOAs were able to find the global
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optima at all times, as indicated by a straight line slightly above the concave POF at
the top.

The HE2 problem is classified as the type III problem, where the POS remains
static but the POF changes over time. Unlike the other DMOPs, HE2 has a discon-
tinuous POF with various disconnected but continuous subregions. This time, all of
the DMOAs managed to find the true POF at all times, although MGPSO has the
most equally spaced solutions.

The HE9 DMOP is also a type III problem, where the POF changes over time but
the POS remains the same. What sets apart this problem from the rest is that the
POS is defined by a complex function and that the POS is different for each decision
variable. Still, each DMOA considered in this study did not have any problems
approximating the true POF, as can be clearly seen in Figure 7.1.

The last comparison from Figure 7.1 was performed on the F7 function. This
DMOP is classified as a type II problem, where the POS and the POF changes with
regards to time. Even though MGPSO, DNSGA-II, DMOES and SGEA were able
to obtain the general shape of the POF at certain times, they were never able to
successfully change from convex to concave. The DMOES was able to keep track of
the true POF at the beginning of the run, but later on would loose track of the POF.

7.4 Summary

This chapter conducted an extensive control parameter sensitivity analysis of the
multi-guide particle swarm optimisation (MGPSO) algorithm for dynamic multi-
objective optimisation (DMOO). Various balance coefficient initialization strategies
were considered and the effect that these approaches had on the performance of the
MGPSO was examined. It was determined that the original strategy, but re-initialized
each time the environment change was detected, allowed for efficient tracking of the
changing Pareto-optimal front. The best performing balance coefficient strategy was
then used in a comparative study with DMOES, DNSGA-II, and SGEA. The exten-
sive empirical analysis showed that MGPSO with the re-initializing balance coefficient
strategy was highly competitive and oftentimes outperformed the other state-of-the-
art dynamic optimisation algorithms.

Next chapter conducts detailed analysis of the experimental results for the QPSO
strategies.
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Chapter 8

Quantum Particle Swarm
Optimisation Experiments

The goal of this section is to examine the experimental results for various QPSO
strategies at two different quantum proportions. Firstly, six QPSO variants with
50% proportion of quantum particles are compared in Section 8.1. In Section 8.2,
the same six QPSO strategies are analyzed, but with 10% proportion of quantum
particles. The QPSO algorithms considered are self-adaptive QPSO and PCX QPSO.
Each QPSO, as defined in Section 4.3, utilizes three different sampling methods. The
goal of the first two experiments is to find the QPSO strategy that performs best
across all of the twenty-nine benchmark functions and various nt-τt combinations. In
Section 8.3, the best QPSO strategies for both 50% quantum particles (MGPSO50)
and 10% quantum particles (MGPSO10) are included in a comparative study with the
other state-of-the-art DMOAs. The MGPSO without any quantum particles is also
included. Performance measures used in the experiments are S, V D, MS, acc, stab,
and NS as defined in Section 2.3. When the table with results says that pm = all, it
means that the results of the wins and losses calculations for these six performance
measures are combined in the calculation of ranks. Parameter λi is re-sampled at
each environment change and the re-evaluation of non-dominating solutions archive
management strategy is used.
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8.1 Results for MGPSO with 50% Proportion of
Quantum Particles

Table 8.1 displays the overall results by the various QPSO strategies used by MG-
PSO, with 50% proportion of quantum particles. It is evident that strategies that use
the randomly selected and tournament selected archive guide in the calculation of a
new quantum particle position, outperformed the strategies that uses particle corre-
sponding to the nbest position. The self-adaptive QPSO approaches ranked higher
than the PCX QPSO approaches, with PCXt trailing slightly behind the QPSOn.
Overall, it was QPSOt strategy that performed best across all of the twenty-nine
benchmark functions. The results are broken down in Table 8.2 and Table 8.3 into
overall wins and losses by the frequencies and severities of change, and by the perfor-
mance measures, respectively.

Table 8.1 Overall wins and losses by the various QPSO strategies for all performance
measures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 431.89 926.35 987.47 224.46 314.11 317.14
Losses 700.44 252.95 214.28 821.1 610.57 602.08
Diff -268.55 673.4 773.19 -596.64 -296.46 -284.94

Rank 3 2 1 6 5 4

The results from Table 8.2 match the results from Table 8.1, where QPSOt re-
ceived a rank of 1 and QPSOr received a rank of 2 across most environment types.
When the frequency of changes was slow, QPSOr outperformed QPSOt, albeit by
a small Diff value. The QPSOn received a rank of 3 only when changes to the en-
vironment occurred fast and when the severity of changes was large (i.e. nt = 1
and τt = 10), and when nt = 10 and τt = 10. For the other environment types,
QPSOn ranked behind the PCXt or PCXr. The PCXn ranked last for every nt-τt

combination. The reason why the archive based QPSO approaches outperformed the
nbest QPSO approaches is that archive particles are always non-dominated trade-off
solutions and can be considered the most optimal solutions across all of the particles
at time t. It is more likely that the solution from the bounded archive is in the range
of the most optimal regions of the search space, so when the quantum particles are
sampled around the selected archive solution, they can more effectively exploit those
regions.
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Table 8.2 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 111.76 266.07 297.06 48.86 79.94 83
10 10 all Losses 196.08 64.66 45.46 238.15 174 168.34
10 10 all Diff -84.32 201.41 251.6 -189.29 -94.06 -85.34
10 10 all Rank 3 2 1 6 5 4
10 25 all Wins 36.82 110.02 111.4 20.41 30.25 30.8
10 25 all Losses 76.36 22.07 20.45 86.82 67.13 66.87
10 25 all Diff -39.54 87.95 90.95 -66.41 -36.88 -36.07
10 25 all Rank 5 2 1 6 4 3
10 50 all Wins 17.19 51.05 50.84 12.79 15.74 14.98
10 50 all Losses 39.15 11.52 11.4 38.47 31.77 30.28
10 50 all Diff -21.96 39.53 39.44 -25.68 -16.03 -15.3
10 50 all Rank 5 1 2 6 4 3
1 10 all Wins 165.82 240.12 246.8 90.66 114.51 111.84
1 10 all Losses 196.11 95.38 91.44 247.09 169.39 170.34
1 10 all Diff -30.29 144.74 155.36 -156.43 -54.88 -58.5
1 10 all Rank 3 2 1 6 4 5
20 10 all Wins 100.3 259.09 281.37 51.74 73.67 76.52
20 10 all Losses 192.74 59.32 45.53 210.57 168.28 166.25
20 10 all Diff -92.44 199.77 235.84 -158.83 -94.61 -89.73
20 10 all Rank 4 2 1 6 5 3

Table 8.3 breaks down the results by each performance measure. This time,
QPSOt did win for S, MS, acc, stab, and NS metrics, but for the V D, it received a
rank of 2. The V D metric measures the accuracy of the found POF by estimating how
close it is to the true POF, and it was QPSOr that received a rank of 1 for this met-
ric. The PCXt and PCXr outperformed the QPSOn for stab and V D performance
measures, respectively. For the other metrics, PCX approaches were consistently out-
performed by the self-adaptive QPSO approaches. The PCXn ranked last for most
metrics and is a clearly inferior strategy compared to the PCX approaches that use
the archive guide to calculate the new position of a particle.
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Table 8.3 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 73.02 200.67 232.3 26.15 34.5 36.18
all all S Losses 132.16 26.4 12.26 162.73 134.33 134.94
all all S Diff -59.14 174.27 220.04 -136.58 -99.83 -98.76
all all S Rank 3 2 1 6 5 4
all all VD Wins 72.17 206.23 184.08 58.78 86.9 86.13
all all VD Losses 168.89 54.2 66.28 165.12 115.07 124.73
all all VD Diff -96.72 152.03 117.8 -106.34 -28.17 -38.6
all all VD Rank 5 1 2 6 3 4
all all MS Wins 64.53 53.88 84.2 18.61 29.93 26.85
all all MS Losses 46.66 39.07 16.73 75.61 54.21 45.72
all all MS Diff 17.87 14.81 67.47 -57 -24.28 -18.87
all all MS Rank 2 3 1 6 5 4
all all acc Wins 114.51 211.73 226.37 55.93 82.93 87.97
all all acc Losses 160.09 72.52 62.83 202.72 142.81 138.47
all all acc Diff -45.58 139.21 163.54 -146.79 -59.88 -50.5
all all acc Rank 3 2 1 6 5 4
all all stab Wins 49.29 65.81 69.86 42.87 43.29 43.18
all all stab Losses 73.5 41.29 39.53 63.47 48.39 48.12
all all stab Diff -24.21 24.52 30.33 -20.6 -5.1 -4.94
all all stab Rank 6 2 1 5 4 3
all all NS Wins 58.37 188.03 190.66 22.12 36.56 36.83
all all NS Losses 119.14 19.47 16.65 151.45 115.76 110.1
all all NS Diff -60.77 168.56 174.01 -129.33 -79.2 -73.27
all all NS Rank 3 2 1 6 5 4

8.2 Results for MGPSO with 10% Proportion of
Quantum Particles

Table 8.4 displays the overall results by the same QPSO strategies from the last sec-
tion, but with 10% proportion of quantum particles. The ranks received by each
approach closely matches the results from Table 8.1, where QPSOt received a rank
of 1, followed by QPSOr, QPSOn, PCXt, PCXr, and PCXn. However, the Diff
values were not as large as the ones from the previous experiment since more com-
parisons were statistically insignificant. Still, the results indicate that even when
the proportion of quantum particles is small, the selection of an appropriate sampling
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method used by QPSO approaches is important. Table 8.5 and Table 8.6 breaks down
the results into overall wins and losses by the frequencies and severities of change,
and by the performance measures, respectively.

Table 8.4 Overall wins and losses by the various QPSO strategies for all performance
measures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 246.1 266.48 314.93 140.12 150.51 162.65
Losses 251.37 146.71 139.23 307.37 217.67 218.44
Diff -5.27 119.77 175.7 -167.25 -67.16 -55.79

Rank 3 2 1 6 5 4

Table 8.5 Overall Wins and losses for various frequencies and severities of change
across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 68.68 65.95 86.93 29.87 33.34 39.61
10 10 all Losses 66.36 34.6 30.79 73.22 61.27 58.14
10 10 all Diff 2.32 31.35 56.14 -43.35 -27.93 -18.53
10 10 all Rank 3 2 1 6 5 4
10 25 all Wins 19.62 33.93 37.96 9.49 11.46 13.93
10 25 all Losses 26.06 10.2 9.57 33.15 24.96 22.45
10 25 all Diff -6.44 23.73 28.39 -23.66 -13.5 -8.52
10 25 all Rank 3 2 1 6 5 4
10 50 all Wins 6.58 16.87 19.66 6.5 6.3 6.29
10 50 all Losses 14.33 5.45 5.75 14.45 11.22 11
10 50 all Diff -7.75 11.42 13.91 -7.95 -4.92 -4.71
10 50 all Rank 5 2 1 6 4 3
1 10 all Wins 106.99 72.09 77.86 65.19 69.77 67.3
1 10 all Losses 80.22 67.82 66.13 115.42 62.04 67.57
1 10 all Diff 26.77 4.27 11.73 -50.23 7.73 -0.27
1 10 all Rank 1 4 2 6 3 5
20 10 all Wins 44.23 77.64 92.52 29.07 29.64 35.52
20 10 all Losses 64.4 28.64 26.99 71.13 58.18 59.28
20 10 all Diff -20.17 49 65.53 -42.06 -28.54 -23.76
20 10 all Rank 3 2 1 6 5 4

99



Table 8.6 Overall wins and losses for various performance measures across all nt-τt

combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 38.44 40.57 51.24 20.14 16.99 16.85
all all S Losses 34.29 15.95 15.09 46.94 35.33 36.63
all all S Diff 4.15 24.62 36.15 -26.8 -18.34 -19.78
all all S Rank 3 2 1 6 4 5
all all VD Wins 52.69 73.69 76.8 28.66 44.14 44.47
all all VD Losses 68.08 31.85 37.19 81.82 49.61 51.9
all all VD Diff -15.39 41.84 39.61 -53.16 -5.47 -7.43
all all VD Rank 5 1 2 6 3 4
all all MS Wins 26.14 14.46 27.05 15 10.09 15.44
all all MS Losses 15.64 19.96 13.16 24.64 18.19 16.59
all all MS Diff 10.5 -5.5 13.89 -9.64 -8.1 -1.15
all all MS Rank 2 4 1 6 5 3
all all acc Wins 64.32 70.54 82.37 32.37 41.54 44.3
all all acc Losses 66.44 42.24 37.04 76.48 56.86 56.38
all all acc Diff -2.12 28.3 45.33 -44.11 -15.32 -12.08
all all acc Rank 3 2 1 6 5 4
all all stab Wins 21.75 22.34 25.01 24.24 21.3 22.24
all all stab Losses 36.89 19.01 18.8 25.75 18.77 17.66
all all stab Diff -15.14 3.33 6.21 -1.51 2.53 4.58
all all stab Rank 6 3 1 5 4 2
all all NS Wins 42.76 44.88 52.46 19.71 16.45 19.35
all all NS Losses 30.03 17.7 17.95 51.74 38.91 39.28
all all NS Diff 12.73 27.18 34.51 -32.03 -22.46 -19.93
all all NS Rank 3 2 1 6 5 4

From Table 8.5, it can be concluded that when there are only 10% of quantum
particles utilized, the QPSOt outperforms the other approaches on most environment
types. However, when the severity of changes was large, it was QPSOn that received
a rank of 1. One explanation is that the QPSOn approach is better at exploring the
search space, because when nt = 1 and τt = 10, the optimal regions drastically change
in location. Each of the self-adaptive QPSO approaches consistently outranked PCX
QPSO approaches, except for QPSOr that lost to PCXr when nt = 1 and τt = 10.
The PCXt received a rank of 4 on most environment types, followed by PCXr, and
then by PCXn which ranked last.
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Table 8.6 breaks down the results by each performance measure. The results
indicate that for all of the twenty-nine benchmark functions and five environment
types, the QPSOt received a rank of 1 on most performance measures. For V D

metric, it was QPSOr that won against the other strategies. Interestingly, QPSOn

lost to PCX approaches on V D and stab, but did better on S, MS, acc, and NS

performance measures. Since QPSOt received a rank of 1 for most metrics, it can be
concluded that self-adaptive QPSO approach, sampled around tournament selected
archive solution, was the most successful strategy when faced with a diversity loss.
Consequently, it allowed for efficient tracking of the true POF and will be used in a
final comparative study against the other DMOAs.

8.3 Comparisons with the other DMOAs

Based on the findings from the previous section on the QPSO strategies, it can be
concluded that QPSOt, for most DMOPs, was the most effective strategy. Therefore,
QPSOt at 50% (MGPSO50) and 10% (MGPSO10) of quantum particles will be used
in the comparative study against the other DMOAs. The DMOA’s used in this study
are DMOES, DNSGA-II, and SGEA. The baseline MGPSO without any quantum
particles is also included, and will be referred to as MGPSO for the rest of the paper.

With regards to Table 8.7, it is clear that MGPSO10 vastly outperformed the
MGPSO50 and the baseline MGPSO. The difference between the other DMOAs was
even more significant. Table 8.7 itself does not provide any information with regards
to the performance measures or individual nt-τt combinations. Therefore, Table 8.8
should be examined more closely to evaluate the performance of DMOAs with respect
to the nt-τt combinations, or Table 8.9 for results with respect to S, V D, MS, acc,
stab, and NS performance measures.

Table 8.7 Overall wins and losses by the various DMOAs across all performance
measures and nt-τt combinations

Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

Wins 1091.4 1164.97 1203.38 918.74 555.87 1019.47
Losses 599.77 627.71 453.57 1466.15 1613.14 1193.49
Diff 491.63 537.26 749.81 -547.41 -1057.27 -174.02

Rank 3 2 1 5 6 4
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Table 8.8 Overall wins and losses for various frequencies and severities of change
across all performance measures

nt τt Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

10 10 Wins 309.19 328.69 343.51 266.07 139.56 266.06
10 10 Losses 153.49 168.29 113 395.73 471.2 351.37
10 10 Diff 155.7 160.4 230.51 -129.66 -331.64 -85.31
10 10 Rank 3 2 1 5 6 4
10 25 Wins 111.83 117.65 124.85 120.97 60.74 123.28
10 25 Losses 69.82 78.38 56.03 146.49 182.67 125.93
10 25 Diff 42.01 39.27 68.82 -25.52 -121.93 -2.65
10 25 Rank 2 3 1 5 6 4
10 50 Wins 52.82 54.21 58.64 61.2 34.3 65.29
10 50 Losses 37.52 42.61 32.64 70.55 83.78 59.36
10 50 Diff 15.3 11.6 26 -9.35 -49.48 5.93
10 50 Rank 2 3 1 5 6 4
1 10 Wins 324.83 358.71 350.97 170.46 184.45 301.32
1 10 Losses 179.25 161.18 129.85 500.36 412.29 307.81
1 10 Diff 145.58 197.53 221.12 -329.9 -227.84 -6.49
1 10 Rank 3 2 1 6 5 4
20 10 Wins 292.73 305.71 325.41 300.04 136.82 263.52
20 10 Losses 159.69 177.25 122.05 353.02 463.2 349.02
20 10 Diff 133.04 128.46 203.36 -52.98 -326.38 -85.5
20 10 Rank 2 3 1 4 6 5

It is evident from the results in Table 8.8 that both the MGPSO with quantum
particles and the MGPSO without any quantum particles outperformed the other
DMOAs. The MGPSO10 received a rank of 1 for all of the environment types, followed
by the MGPSO50 and the baseline MGPSO. The MGPSO50 received a rank of 2 when
nt = 10 and τt = 10, and when nt = 1 and τt = 10. The baseline MGPSO ranked
second for the other environment types. Overall, the Diff values for both MGPSO
and MGPSO50 were close, except when the severity and frequency of changes were
high. These results are not surprising since quantum particles are effective way to
explore the search space and this type of environment requires DMOA to exhibit
strong exploratory capabilities to be successful. The SGEA consistently outperformed
DMOES and DNSGA-II on all environment types except when nt = 20 and τt = 10.
The DNSGA-II ranked last on most environment types, followed by DMOES.

Table 8.9 shows that MGPSO10 outperformed the other DMOAs for S and V D

metrics. The MGPSO50 received a rank of 1 for the MS value, which shows that it
had a good spread of solutions. The DMOES received a rank of 1 for the acc and stab
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metrics, and when it comes to the NS value, it was SGEA that outperformed the
other DMOAs. However, a high NS value does not mean much when the accuracy
of solutions is low. The results also show that it is better when a small proportion of
neutral particles is converted into quantum particles, as taking away too many of the
neutral particles deteriorates the performance. The positive effect of adding quantum
particles to the MGPSO is visualized in Figure 8.1. The figure clearly shows that
MGPSO without any quantum particles would sometimes converge at a single point
and was then unable to approximate the POF. The self-adapting quantum particles
were successful at exploring the nearby regions and helped MGPSO overcome the
diversity loss.

Table 8.9 Overall wins and losses for various performance measures across all nt-τt

combinations

PM Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

S Wins 237.15 244.1 238.27 90.87 66.6 210.69
S Losses 74.31 83.76 63.76 316.25 354.34 195.26
S Diff 162.84 160.34 174.51 -225.38 -287.74 15.43
S Rank 2 3 1 5 6 4

VD Wins 227.34 203.31 238.36 159 83.91 219.9
VD Losses 108.58 153.68 89.36 241.56 334.69 203.95
VD Diff 118.76 49.63 149 -82.56 -250.78 15.95
VD Rank 2 3 1 5 6 4
MS Wins 180.6 228.84 219.65 116.87 136.43 97.5
MS Losses 83.91 39.35 40.18 320.8 184.58 311.07
MS Diff 96.69 189.49 179.47 -203.93 -48.15 -213.57
MS Rank 3 1 2 5 4 6
acc Wins 194.89 208.43 235.52 320.98 72.67 193.41
acc Losses 157.92 178.83 116.45 142.94 381.72 248.04
acc Diff 36.97 29.6 119.07 178.04 -309.05 -54.63
acc Rank 3 4 2 1 6 5
stab Wins 117.64 121.5 116.27 182.35 96.14 100.84
stab Losses 90.87 91.17 84.81 114.35 186.37 167.17
stab Diff 26.77 30.33 31.46 68 -90.23 -66.33
stab Rank 4 3 2 1 6 5
NS Wins 133.78 158.79 155.31 48.67 100.12 197.13
NS Losses 84.18 80.92 59.01 330.25 171.44 68
NS Diff 49.6 77.87 96.3 -281.58 -71.32 129.13
NS Rank 4 3 2 6 5 1
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(a) MGPSO (b) MGPSO10

Figure 8.1 Obtained POFs for FDA2Cam DMOP by MGPSO and MGPSO10. Figure
on the left depicts all of the MGPSO particles converged at a single point. The
MGPSO with quantum particles was able to overcome the diversity loss.

While the ranking algorithm is useful in evaluating various DMOAs, it still is
helpful to visually inspect DMOAs’ ability to track the true POF. Figure 8.2 depicts
POFs of six benchmark functions to visually explain the differences between each
algorithm. These benchmark functions include: FDA4, FDA5dec, F6, DIMP1, DF4
and DF6. The FDA4 and FDA5dec DMOPs have three objectives where nt = 1 and
τt = 10, while the rest have two objectives where nt = 1 and τt = 10.

For FDA4 DMOP, DMOES, DNSGA-II, and SGEA were unable to approximate
the true POF as well as MGPSO, MGSPO50, and MGSPO10. The MGPSO with
quantum particles were the most successful approaches since the particles were less
scattered across the objective space. This is a type I DMOP.

The FDA5dec modifies the original FDA5 problem by making it a DMOP with
at least two optima, but the search space favours the deceptive one [12]. Similar
to FDA4, FDA5dec has a non-convex POF and is a tri-objective DMOP. This time,
SGEA was able to successfully track the POF with a high rate of accuracy. The
POF along the outer sphere for MGPSO, MGPSO50, MGPSO10, and DMOES was
not populated with evenly spaced solutions.

Next comparison was performed on the F6 function. This DMOP is classified as
a type II problem, where the POS and the POF changes with regards to time. None
of the DMOAs were able to keep track of the true POF, as indicated by the scattered
solutions in the objective space. This is a difficult problem to solve and typically
requires more iterations to successfully track the POF as it changes from convex to
concave.
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MGPSO

MGPSO50

MGPSO10

DMOES

DNSGA-II

SGEA

(a) FDA4 (b) FDA5dec (c) F6 (d) DIMP1 (e) DF4 (f) DF6

Figure 8.2 Obtained POFs for some of the problems where nt = 1 and τt = 10 for
FDA4 and FDA5dec, and nt = 10 and τt = 10 for the rest of the problems. Each row
shows the results for a specific DMOA.

Both DIMP1 and DF4 DMOPs were successfully optimised by all DMOAs con-
sidered in this study since all of the results from Figure 8.2 closely resemble the true
POF for these benchmark functions. Only DNSGA-II was not as close to the true
POF for DIMP1 DMOP as the other DMOAs. The DIMP1 is a type I problem,
whereas DF4 is a type II problem.
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The last comparison from Figure 8.2 was performed on the DF6 function. This
is a type II problem, but unlike the other DMOPs, its POF contains knee regions
and long tails that are known to be a challenging property [24], [25]. While MGPSO,
MGPSO50, MGPSO10, and SGEA were able to somewhat approximate the true POF
at one point, none of the approaches were accurate at all times.

8.4 Summary

This chapter conducted an extensive analysis of the quantum particle swarm optimi-
sation (QPSO) strategies for the multi-guide particle swarm optimisation (MGPSO)
algorithm used for dynamic multi-objective optimisation (DMOO). Two QPSO ap-
proaches with different proportion of quantum particles, as well as three sampling
methods used by each were considered. The effect that these strategies had on the
performance of the MGPSO was examined, and it was determined that self-adaptive
quantum particles, with a normal distribution centered at a tournament selected
archive guide, allowed for efficient tracking of the changing Pareto-optimal front.
The PCX QPSO was outperformed by the self-adaptive QPSO across all of the per-
formance measures.

The best performing QPSO strategies at both 50% and 10% proportion of quan-
tum particles were then used in a comparative study against a baseline MGPSO,
DMOES, DNSGA-II, and SGEA. The extensive empirical analysis showed that, across
every environment type combination, the MGPSO with 10% of self-adaptive quan-
tum particles received a rank of 1, followed by the MGPSO with 50% of self-adaptive
quantum particles, and then by the baseline MGPSO that did not use any quantum
particles. The results indicate that a small proportion of quantum particles used
by the MGPSO is desirable. The SGEA received a rank of 4, followed by DMOES
and then by DNSGA-II. In conclusion, the results showed that MGPSO with self-
adaptive quantum particles was highly competitive and oftentimes outperformed the
other state-of-the-art dynamic optimisation algorithms.

Next chapter concludes the thesis and the suggested future work is provided.
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Chapter 9

Conclusion and Future Directions

This chapter summarises the major findings of the work done in this study, and
provides a number of suggestions for future work that can be pursued as a result of
this work. Section 9.1 presents the summary of findings and conclusions, followed by
suggestions for future work in Section 9.2.

9.1 Summary of Conclusions

This study aimed to adapt the multi-guide particle swarm optimization (MGPSO)
algorithm to solve dynamic multi-objective optimization (DMOO) problems. The
MGPSO is a multi-objective particle swarm-based algorithm, originally used for static
multi-objective optimisation problems, where each sub-swarm optimises one of the
objectives.

Background on DMOO was provided. It included sections on Pareto-optimal set
(POS) and Pareto-optimal front (POF), and the main goal when solving the dy-
namic multi-objective optimisation problems (DMOPs) was given. Moreover, various
dynamic environment types, the current DMOPs, and the current performance mea-
sures used to evaluate the dynamic multi-objective optimisation algorithms (DMOAs)
was described in detail. The test sets and performance measures presented were used
throughout this study to benchmark the performance of various DMOAs and varia-
tions of the MGPSO algorithm.

An investigation of the alternative archive management update approaches, and
the effect these approaches have on the exploration and exploitation of the feasible
regions of the search space has led to development of the local search archive man-
agement strategy. It was determined that a hill climber with a decreasing step size
performed better than the other hill climbing strategies on most environment type
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combinations. Only when the spatial severity was large and the frequency of changes
was fast, the hill climber with a fixed step size of 10 outranked the other approaches.
The archive clearing approach ranked last and the re-evaluation of non-dominated
solutions approach ranked second last.

The best performing local search strategy was then used in a comparative study
against a baseline MGPSO, DMOES, DNSGA-II, and SGEA. The baseline MGPSO
used a re-evaluation approach to make the comparisons against the other DMOAs
fair as the local search strategy takes more function evaluations than competing al-
gorithms. The extensive empirical analysis showed that baseline MGPSO received a
rank of 2 across all environment type combinations. The SGEA received a rank of 3,
followed by DMOES and then by DNSGA-II. The MGPSO with a local search archive
management strategy received a rank of 1 in every performance measure considered
in this study. In conclusion, the extensive empirical analysis showed that baseline
MGPSO and MGPSO with a local search performed on-par, or exceeded competing
algorithms in terms of performance.

The next step involved investigation of the current archive balance coefficient
initialization strategies. The analysis has led to development of three variants of
the balance coefficient parameter that take into account the dynamic nature of the
problems. An extensive control parameter sensitivity analysis of the nine approaches
was conducted and the effect that these strategies had on the performance of the
MGPSO was examined. It was determined that the original strategy, but re-initialized
each time the environment change was detected, allowed for efficient tracking of the
changing POF and it outperformed the other strategies. The best performing balance
coefficient strategy was then used in a comparative study with the other DMOAs and
the results have shown that MGPSO exceeded competing algorithms across every
environment type.

The last step involved an extensive analysis of the quantum particle swarm op-
timisation (QPSO) strategies. The self-adaptive QPSO and parent centric crossover
QPSO were considered, and sampling methods used by each were defined. The in-
vestigation of the bounded archive used by the MGPSO has led to development of
two alternative sampling methods, where the archive guide is used in the calculation
of the new particle’s position. In total, six QPSO variants were considered in the
experimental analyses, where MGPSO at both 50% and 10% proportion of quantum
particles was examined. The effect that these strategies had on the performance of
the MGPSO was explored, and it was determined that self-adaptive QPSO, with
a normal distribution centered at a tournament selected archive guide, allowed for
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efficient tracking of the changing POF. The best performing QPSO strategies from
both experiments were then used in a comparative study with a baseline MGPSO as
well as the other DMOAs. The results indicate that MGPSO with 10% self-adaptive
particles outperformed the other algorithms.

In conclusion, the lessons learned from the three experiments conducted in this
study were combined into the final version of the MGPSO. The improvements gained
from the local-search archive management strategy, combined with re-initialization
approach to the archive balance coefficient as well as the addition of 10% of the self-
adaptive quantum particles, has demonstrated that the MGPSO is capable of solving
DMOPs. Overall, twenty-nine benchmark functions and six performance measures
were used to evaluate DMOAs included in this study. The experiments were run
against five different environment types where both the frequency of change and the
severity of change parameters controlled how often and how big the changes were
during the optimisation process. The overwhelming evidence presented in this study
indicate that the MGPSO is highly competitive and performs on-par, or exceeds the
performance of the competing algorithms.

9.2 Future Work

Throughout this study, several new ideas for future research have been identified. A
summary of each of these ideas is given below.

Dynamic Many-objective Optimisation

While the adapted MGPSO is clearly capable of solving dynamic multi-objective op-
timisation problems, the effectiveness of the MGPSO for dynamic many-objective
optimisation is still unknown. Therefore, a scalability of the adapted MGPSO to
dynamic many-objective optimisation problems should be considered. The key dif-
ference between many-objective optimisation and multi-objective optimisation is in
the number of objectives being optimised. Multi-objective optimisation considers only
two or three objectives whereas many-objective optimisation involves more than three
objectives. This change will require an alternative to the Pareto-dominance approach
that was extensively used in this study, since Pareto-based DMOAs are known to
suffer from the deterioration of searchability on many-objective problems.
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Empirical Study of Different Topologies

In this study, the local best topology of size 3 was used by the MGPSO as it showed a
significant improvement over the global best topology. However, a more comprehen-
sive empirical analysis of different topologies and the effect they have on the perfor-
mance of the MGPSO for DMOPs should be considered. Neighbourhood topologies
such as the local best allows for a slower information exchange and a larger coverage
of the search space by particles when compared to a fully connected topology.

Effectiveness of MGPSO on Constrained DMOO Real-world Problems

Only unconstrained dynamic multi-objective optimisation problems were considered
in this study. These type of DMOPs only have one boundary constraint where the
values of the decision variables beyond the defined bounds are not allowed. However,
the effectiveness of the MGPSO on constrained DMOO real-world problems should
be investigated. These type of problems often involve more than one constraint, and
are generally more difficult to optimise. Both discrete and real optimisation problems
should be considered.
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Appendix A

Additional Results

A.1 Archive Management Experiments Broken Down
by DMOP Type

This appendix lists experimental results for Type I, Type II, and Type III DMOPs
by the baseline MGPSO, MGPSO with local search archive management strategy,
DMOES, DNSGA-II, and SGEA.

Table A.1 Overall wins and losses for type I DMOPs across all performance measures
and nt-τt combinations

Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

Wins 197.11 310.18 150.39 95.6 186.17
Losses 147.26 61.53 254.8 281.97 193.89
Diff 49.85 248.65 -104.41 -186.37 -7.72

Rank 2 1 4 5 3
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Table A.2 Overall wins and losses by various frequencies and severities of change for
type I DMOPs across all performance measures

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

10 10 all Wins 60.8 95.3 43.7 22.3 48.24
10 10 all Losses 40.56 14.03 71.12 85.8 58.83
10 10 all Diff 20.24 81.27 -27.42 -63.5 -10.59
10 10 all Rank 2 1 4 5 3
10 25 all Wins 20.3 35.72 18.59 10.5 21.13
10 25 all Losses 18.49 7.44 26.83 32.39 21.09
10 25 all Diff 1.81 28.28 -8.24 -21.89 0.04
10 25 all Rank 2 1 4 5 3
10 50 all Wins 10.11 15.51 9.56 5.3 11.43
10 50 all Losses 8.95 4.68 12.62 15.78 9.88
10 50 all Diff 1.16 10.83 -3.06 -10.48 1.55
10 50 all Rank 3 1 4 5 2
1 10 all Wins 53.72 68.82 29.49 35.74 60.77
1 10 all Losses 38.96 21.33 81.26 65.12 41.87
1 10 all Diff 14.76 47.49 -51.77 -29.38 18.9
1 10 all Rank 3 1 5 4 2
20 10 all Wins 52.18 94.83 49.05 21.76 44.6
20 10 all Losses 40.3 14.05 62.97 82.88 62.22
20 10 all Diff 11.88 80.78 -13.92 -61.12 -17.62
20 10 all Rank 2 1 3 5 4
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Table A.3 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

all all S Wins 44.8 53.02 9.66 10.91 43.37
all all S Losses 15.04 9.2 58.12 56.51 22.89
all all S Diff 29.76 43.82 -48.46 -45.6 20.48
all all S Rank 2 1 5 4 3
all all VD Wins 38.4 64.75 24.9 15.98 39.94
all all VD Losses 31.81 9.25 45.66 61.46 35.79
all all VD Diff 6.59 55.5 -20.76 -45.48 4.15
all all VD Rank 2 1 4 5 3
all all MS Wins 34 56.76 25.17 24.35 14.86
all all MS Losses 21.69 5.51 45.14 34.95 47.85
all all MS Diff 12.31 51.25 -19.97 -10.6 -32.99
all all MS Rank 2 1 4 3 5
all all acc Wins 27.46 51.89 54.01 8.23 33.21
all all acc Losses 35.83 16.48 23.08 61.12 38.29
all all acc Diff -8.37 35.41 30.93 -52.89 -5.08
all all acc Rank 4 1 2 5 3
all all stab Wins 24.48 28.89 28.14 18.35 11.91
all all stab Losses 16.73 16.27 20.94 26.11 31.72
all all stab Diff 7.75 12.62 7.2 -7.76 -19.81
all all stab Rank 2 1 3 4 5
all all NS Wins 27.97 54.87 8.51 17.78 42.88
all all NS Losses 26.16 4.82 61.86 41.82 17.35
all all NS Diff 1.81 50.05 -53.35 -24.04 25.53
all all NS Rank 3 1 5 4 2
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Table A.4 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

Wins 561.4 948.71 439.77 264.1 508.05
Losses 459.81 156.82 716.95 807.76 580.69
Diff 101.59 791.89 -277.18 -543.66 -72.64

Rank 2 1 4 5 3

Table A.5 Overall wins and losses by various frequencies and severities of change for
type II DMOPs across all performance measures

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

10 10 all Wins 160.56 298.02 122.1 66.84 127.95
10 10 all Losses 130.07 31.52 199.5 235.72 178.66
10 10 all Diff 30.49 266.5 -77.4 -168.88 -50.71
10 10 all Rank 2 1 4 5 3
10 25 all Wins 55.67 104.33 60.6 26.89 56.88
10 25 all Losses 57.14 17.83 69.17 94.93 65.3
10 25 all Diff -1.47 86.5 -8.57 -68.04 -8.42
10 25 all Rank 2 1 4 5 3
10 50 all Wins 25.1 45.43 30.36 15.1 30.32
10 50 all Losses 29.54 11.93 33.34 42.6 28.9
10 50 all Diff -4.44 33.5 -2.98 -27.5 1.42
10 50 all Rank 4 1 3 5 2
1 10 all Wins 168.27 212.97 81.53 90.76 165.85
1 10 all Losses 102.95 61.52 234.21 193.74 126.96
1 10 all Diff 65.32 151.45 -152.68 -102.98 38.89
1 10 all Rank 2 1 5 4 3
20 10 all Wins 151.8 287.96 145.18 64.51 127.05
20 10 all Losses 140.11 34.02 180.73 240.77 180.87
20 10 all Diff 11.69 253.94 -35.55 -176.26 -53.82
20 10 all Rank 2 1 3 5 4
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Table A.6 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

all all S Wins 110.05 175.99 48.73 31.8 111.58
all all S Losses 72.53 25.6 136.34 163.07 80.61
all all S Diff 37.52 150.39 -87.61 -131.27 30.97
all all S Rank 2 1 4 5 3
all all VD Wins 96.56 188.21 88.51 31.95 108.25
all all VD Losses 100.39 24.87 113.15 179.03 96.04
all all VD Diff -3.83 163.34 -24.64 -147.08 12.21
all all VD Rank 3 1 4 5 2
all all MS Wins 122.43 155.74 50.61 72.73 48.08
all all MS Losses 37.99 12.21 161.4 89.16 148.83
all all MS Diff 84.44 143.53 -110.79 -16.43 -100.75
all all MS Rank 2 1 5 3 4
all all acc Wins 92.25 189.42 142.5 24.87 85.29
all all acc Losses 113.78 32.49 73.79 191.47 122.8
all all acc Diff -21.53 156.93 68.71 -166.6 -37.51
all all acc Rank 3 1 2 5 4
all all stab Wins 61.83 100.36 85.14 52.7 55.52
all all stab Losses 70.78 50.37 60.43 89.07 84.9
all all stab Diff -8.95 49.99 24.71 -36.37 -29.38
all all stab Rank 3 1 2 5 4
all all NS Wins 78.28 138.99 24.28 50.05 99.33
all all NS Losses 64.34 11.28 171.84 95.96 47.51
all all NS Diff 13.94 127.71 -147.56 -45.91 51.82
all all NS Rank 3 1 5 4 2
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Table A.7 Overall wins and losses for type III DMOPs across all performance mea-
sures and nt-τt combinations

Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

Wins 209.84 275.65 133.42 83.73 116.22
Losses 87.59 28.95 228.58 243.71 230.03
Diff 122.25 246.7 -95.16 -159.98 -113.81

Rank 2 1 3 5 4

Table A.8 Overall wins and losses by various frequencies and severities of change for
type III DMOPs across all performance measures

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

10 10 all Wins 59.3 77.96 38.97 21.19 31.85
10 10 all Losses 23.84 6.68 61.98 70.81 65.96
10 10 all Diff 35.46 71.28 -23.01 -49.62 -34.11
10 10 all Rank 2 1 3 5 4
10 25 all Wins 22.53 29.8 14.27 9.38 13.71
10 25 all Losses 9.34 3.29 24.7 27.06 25.3
10 25 all Diff 13.19 26.51 -10.43 -17.68 -11.59
10 25 all Rank 2 1 3 5 4
10 50 all Wins 11.1 14.37 7.72 4.81 7.13
10 50 all Losses 5.06 2.02 12.23 13.43 12.39
10 50 all Diff 6.04 12.35 -4.51 -8.62 -5.26
10 50 all Rank 2 1 3 5 4
1 10 all Wins 60.89 77.88 34.53 26.25 31.29
1 10 all Losses 24.77 10.34 68.88 64.24 62.61
1 10 all Diff 36.12 67.54 -34.35 -37.99 -31.32
1 10 all Rank 2 1 4 5 3
20 10 all Wins 56.02 75.64 37.93 22.1 32.24
20 10 all Losses 24.58 6.62 60.79 68.17 63.77
20 10 all Diff 31.44 69.02 -22.86 -46.07 -31.53
20 10 all Rank 2 1 3 5 4
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Table A.9 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results DMOAs
MGPSO MGPSOls DMOES DNSGA-II SGEA

all all S Wins 57.1 65.02 23.65 10.23 25.62
all all S Losses 9.95 3.94 50.51 66.98 50.24
all all S Diff 47.15 61.08 -26.86 -56.75 -24.62
all all S Rank 2 1 4 5 3
all all VD Wins 50.22 45.55 12.01 18.8 15.72
all all VD Losses 2.63 8.2 47.01 37.87 46.59
all all VD Diff 47.59 37.35 -35 -19.07 -30.87
all all VD Rank 1 2 5 3 4
all all MS Wins 27.92 51.42 14.3 29.89 26.64
all all MS Losses 19.67 1.15 60.81 21.01 47.53
all all MS Diff 8.25 50.27 -46.51 8.88 -20.89
all all MS Rank 3 1 5 2 4
all all acc Wins 42.67 69.16 50.3 9.16 25.31
all all acc Losses 30.16 7.13 31.86 72.53 54.92
all all acc Diff 12.51 62.03 18.44 -63.37 -29.61
all all acc Rank 3 1 2 5 4
all all stab Wins 26.39 31.69 31.13 5.24 13.21
all all stab Losses 15.32 8.25 12.55 43.29 28.25
all all stab Diff 11.07 23.44 18.58 -38.05 -15.04
all all stab Rank 3 1 2 5 4
all all NS Wins 5.54 12.81 2.03 10.41 9.72
all all NS Losses 9.86 0.28 25.84 2.03 2.5
all all NS Diff -4.32 12.53 -23.81 8.38 7.22
all all NS Rank 4 1 5 2 3

A.2 Balance Coefficient Experiments Broken Down
by DMOP Type

A.2.1 Standard and Random Approaches

This appendix lists experimental results for Type I, Type II, and Type III DMOPs
by the standard and random balance coefficient initialization strategies.
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Table A.10 Overall wins and losses for type I DMOPs across all performance mea-
sures and nt-τt combinations

Results Balance Coefficient Strategies
std stdτt r ri rij

Wins 104.37 143.86 34.35 65.8 49.32
Losses 66.7 34.04 113.61 81.17 102.18
Diff 37.67 109.82 -79.26 -15.37 -52.86

Rank 2 1 5 3 4

Table A.11 Overall wins and losses by various frequencies and severities of change
for type I DMOPs across all performance measures

nt τt PM Results Balance Coefficient Strategies
std stdτt r ri rij

10 10 all Wins 28.07 37.74 4.75 20.28 16.61
10 10 all Losses 19.4 9.35 36.36 18.79 23.55
10 10 all Diff 8.67 28.39 -31.61 1.49 -6.94
10 10 all Rank 2 1 5 3 4
10 25 all Wins 8.41 12.92 3.15 8.45 3.9
10 25 all Losses 6.14 3.07 9.74 6.23 11.65
10 25 all Diff 2.27 9.85 -6.59 2.22 -7.75
10 25 all Rank 2 1 4 3 5
10 50 all Wins 4.77 6.11 1.62 4.51 1.7
10 50 all Losses 3.06 1.34 4.65 2.76 6.9
10 50 all Diff 1.71 4.77 -3.03 1.75 -5.2
10 50 all Rank 3 1 4 2 5
1 10 all Wins 41.76 56.28 18.42 13.09 13.93
1 10 all Losses 19.11 11.81 37.34 39.03 36.19
1 10 all Diff 22.65 44.47 -18.92 -25.94 -22.26
1 10 all Rank 2 1 3 5 4
20 10 all Wins 21.36 30.81 6.41 19.47 13.18
20 10 all Losses 18.99 8.47 25.52 14.36 23.89
20 10 all Diff 2.37 22.34 -19.11 5.11 -10.71
20 10 all Rank 3 1 5 2 4
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Table A.12 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

nt τt PM Results Balance Coefficient Strategies
std stdτt r ri rij

all all S Wins 11.09 16.58 4.74 8.15 4.47
all all S Losses 7.62 3.44 11.07 8.67 14.23
all all S Diff 3.47 13.14 -6.33 -0.52 -9.76
all all S Rank 2 1 4 3 5
all all VD Wins 33.8 47.84 6.38 21.8 14.45
all all VD Losses 19.61 6.7 40.39 25.16 32.41
all all VD Diff 14.19 41.14 -34.01 -3.36 -17.96
all all VD Rank 2 1 5 3 4
all all MS Wins 5.23 7.11 3.42 3.94 5.36
all all MS Losses 5.33 4.79 6.76 4.23 3.95
all all MS Diff -0.1 2.32 -3.34 -0.29 1.41
all all MS Rank 3 1 5 4 2
all all acc Wins 28.04 38.64 6.04 15.81 12.27
all all acc Losses 15.65 7.44 30.78 21.83 25.1
all all acc Diff 12.39 31.2 -24.74 -6.02 -12.83
all all acc Rank 2 1 5 3 4
all all stab Wins 6.45 9.51 6.42 9.2 9.44
all all stab Losses 11.94 8.18 9.75 5.38 5.77
all all stab Diff -5.49 1.33 -3.33 3.82 3.67
all all stab Rank 5 3 4 1 2
all all NS Wins 19.76 24.18 7.35 6.9 3.33
all all NS Losses 6.55 3.49 14.86 15.9 20.72
all all NS Diff 13.21 20.69 -7.51 -9 -17.39
all all NS Rank 2 1 3 4 5

Table A.13 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results Balance Coefficient Strategies
std stdτt r ri rij

Wins 445.14 472.17 121.96 197.55 100.76
Losses 124.57 95.32 352.52 277.11 488.06
Diff 320.57 376.85 -230.56 -79.56 -387.3

Rank 2 1 4 3 5

126



Table A.14 Overall wins and losses by various frequencies and severities of change
for type II DMOPs across all performance measures

nt τt PM Results Balance Coefficient Strategies
std stdτt r ri rij

10 10 all Wins 124.16 121.32 26.84 58.99 26.89
10 10 all Losses 27.87 26.48 102.5 68.87 132.48
10 10 all Diff 96.29 94.84 -75.66 -9.88 -105.59
10 10 all Rank 1 2 4 3 5
10 25 all Wins 46.67 50.29 15.25 26.39 10.88
10 25 all Losses 12.88 9.54 37.2 28.5 61.36
10 25 all Diff 33.79 40.75 -21.95 -2.11 -50.48
10 25 all Rank 2 1 4 3 5
10 50 all Wins 22.09 23.7 9.29 13.37 5.17
10 50 all Losses 6.6 4.75 16.63 14.03 31.61
10 50 all Diff 15.49 18.95 -7.34 -0.66 -26.44
10 50 all Rank 2 1 4 3 5
1 10 all Wins 138.83 153.02 36.8 36.74 31.89
1 10 all Losses 43.28 29.97 102.67 98.29 123.07
1 10 all Diff 95.55 123.05 -65.87 -61.55 -91.18
1 10 all Rank 2 1 4 3 5
20 10 all Wins 113.39 123.84 33.78 62.06 25.93
20 10 all Losses 33.94 24.58 93.52 67.42 139.54
20 10 all Diff 79.45 99.26 -59.74 -5.36 -113.61
20 10 all Rank 2 1 4 3 5
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Table A.15 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

nt τt PM Results Balance Coefficient Strategies
std stdτt r ri rij

all all S Wins 57.45 61.87 19.13 24.07 7.64
all all S Losses 14.71 9.53 35.87 34.13 75.92
all all S Diff 42.74 52.34 -16.74 -10.06 -68.28
all all S Rank 2 1 4 3 5
all all VD Wins 115.2 124.18 24.29 47.46 27.63
all all VD Losses 26.02 17.17 99.68 77.82 118.07
all all VD Diff 89.18 107.01 -75.39 -30.36 -90.44
all all VD Rank 2 1 4 3 5
all all MS Wins 29.92 32.87 10.15 20.94 11.01
all all MS Losses 13.68 8.44 31.02 14.46 37.29
all all MS Diff 16.24 24.43 -20.87 6.48 -26.28
all all MS Rank 2 1 4 3 5
all all acc Wins 117.04 129.53 26.55 51 20.18
all all acc Losses 26.46 18.01 95.36 74.54 129.93
all all acc Diff 90.58 111.52 -68.81 -23.54 -109.75
all all acc Rank 2 1 4 3 5
all all stab Wins 35.49 37.06 20.92 26.96 29.8
all all stab Losses 33.62 30.14 30.45 24.26 31.76
all all stab Diff 1.87 6.92 -9.53 2.7 -1.96
all all stab Rank 3 1 5 2 4
all all NS Wins 90.04 86.66 20.92 27.12 4.5
all all NS Losses 10.08 12.03 60.14 51.9 95.09
all all NS Diff 79.96 74.63 -39.22 -24.78 -90.59
all all NS Rank 1 2 4 3 5

Table A.16 Overall wins and losses for type III DMOPs across all performance
measures and nt-τt combinations

Results Balance Coefficient Strategies
std stdτt r ri rij

Wins 49 54.02 29.24 38.32 34.72
Losses 48.44 32.18 37.73 30.03 56.92
Diff 0.56 21.84 -8.49 8.29 -22.2

Rank 3 1 4 2 5
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Table A.17 Overall wins and losses by various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt PM Results Balance Coefficient Strategies
std stdτt r ri rij

10 10 all Wins 12.28 15.94 7.63 9.68 9.06
10 10 all Losses 13.54 6.83 10.15 8.55 15.52
10 10 all Diff -1.26 9.11 -2.52 1.13 -6.46
10 10 all Rank 3 1 4 2 5
10 25 all Wins 5.44 6.04 4.25 5.15 4.75
10 25 all Losses 6.72 5.18 4.2 3.74 5.79
10 25 all Diff -1.28 0.86 0.05 1.41 -1.04
10 25 all Rank 5 2 3 1 4
10 50 all Wins 2.63 2.68 2.78 3.02 2.57
10 50 all Losses 4.04 3.71 1.75 1.75 2.43
10 50 all Diff -1.41 -1.03 1.03 1.27 0.14
10 50 all Rank 5 4 2 1 3
1 10 all Wins 13.6 13.41 5.95 8.78 7.02
1 10 all Losses 8.94 5.01 10.55 6.87 17.39
1 10 all Diff 4.66 8.4 -4.6 1.91 -10.37
1 10 all Rank 2 1 4 3 5
20 10 all Wins 15.05 15.95 8.63 11.69 11.32
20 10 all Losses 15.2 11.45 11.08 9.12 15.79
20 10 all Diff -0.15 4.5 -2.45 2.57 -4.47
20 10 all Rank 3 1 4 2 5
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Table A.18 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results Balance Coefficient Strategies
std stdτt r ri rij

all all S Wins 0.19 1.37 9.37 8.48 11.37
all all S Losses 17.53 11.45 0.28 1 0.52
all all S Diff -17.34 -10.08 9.09 7.48 10.85
all all S Rank 5 4 2 3 1
all all VD Wins 2.18 4.09 6.34 4.55 10.05
all all VD Losses 10.09 7.24 3.8 1.37 4.71
all all VD Diff -7.91 -3.15 2.54 3.18 5.34
all all VD Rank 5 4 3 2 1
all all MS Wins 11.16 10.32 1.32 5.12 1.57
all all MS Losses 3.38 1.13 7.65 6.32 11.01
all all MS Diff 7.78 9.19 -6.33 -1.2 -9.44
all all MS Rank 2 1 4 3 5
all all acc Wins 16.42 19.11 7.13 11.9 6.85
all all acc Losses 12.28 7.76 12.96 8.24 20.17
all all acc Diff 4.14 11.35 -5.83 3.66 -13.32
all all acc Rank 2 1 4 3 5
all all stab Wins 8.27 8.44 3.37 4.85 4.87
all all stab Losses 5.14 4.49 5.85 6 8.32
all all stab Diff 3.13 3.95 -2.48 -1.15 -3.45
all all stab Rank 2 1 4 3 5
all all NS Wins 10.78 10.69 1.71 3.42 0.01
all all NS Losses 0.02 0.11 7.19 7.1 12.19
all all NS Diff 10.76 10.58 -5.48 -3.68 -12.18
all all NS Rank 1 2 4 3 5

130



A.2.2 Standard and Linearly Increasing/Decreasing Results

This appendix lists experimental results for Type I, Type II, and Type III DMOPs by
the stdτt , linearly increasing and linearly decreasing coefficient initialization strategies.

Table A.19 Overall wins and losses for type I DMOPs across all performance mea-
sures and nt-τt combinations

Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

Wins 214.87 130.77 121.32 122.41 196.95
Losses 80.55 237.53 175.6 201.24 91.4
Diff 134.32 -106.76 -54.28 -78.83 105.55

Rank 1 5 3 4 2

Table A.20 Overall wins and losses by various frequencies and severities of change
for type I DMOPs across all performance measures

nt τt PM Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

10 10 all Wins 59.33 36.63 33.33 32.24 61.62
10 10 all Losses 19.61 71.28 52.84 59.84 19.58
10 10 all Diff 39.72 -34.65 -19.51 -27.6 42.04
10 10 all Rank 2 5 3 4 1
10 25 all Wins 23.57 12.29 15.57 13.19 25.09
10 25 all Losses 8.62 28.75 19.69 24.86 7.79
10 25 all Diff 14.95 -16.46 -4.12 -11.67 17.3
10 25 all Rank 2 5 3 4 1
10 50 all Wins 13.26 5.16 7.75 6.91 12.35
10 50 all Losses 3.95 16.26 9.79 11.36 4.07
10 50 all Diff 9.31 -11.1 -2.04 -4.45 8.28
10 50 all Rank 1 5 3 4 2
1 10 all Wins 63.34 46.25 26.77 36.71 38.12
1 10 all Losses 28.11 43.7 52.26 43.87 43.25
1 10 all Diff 35.23 2.55 -25.49 -7.16 -5.13
1 10 all Rank 1 2 5 4 3
20 10 all Wins 55.37 30.44 37.9 33.36 59.77
20 10 all Losses 20.26 77.54 41.02 61.31 16.71
20 10 all Diff 35.11 -47.1 -3.12 -27.95 43.06
20 10 all Rank 2 5 3 4 1
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Table A.21 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

nt τt PM Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

all all S Wins 28.58 23.39 17.86 24.98 35.11
all all S Losses 18.02 39.1 29.93 29.23 13.64
all all S Diff 10.56 -15.71 -12.07 -4.25 21.47
all all S Rank 2 5 4 3 1
all all VD Wins 62.11 17.8 27.79 20.55 52.1
all all VD Losses 9.17 58.89 42.81 53.54 15.94
all all VD Diff 52.94 -41.09 -15.02 -32.99 36.16
all all VD Rank 1 5 3 4 2
all all MS Wins 27.14 16.95 20.97 14.62 21.27
all all MS Losses 7.05 40.45 12.91 28.07 12.47
all all MS Diff 20.09 -23.5 8.06 -13.45 8.8
all all MS Rank 1 5 3 4 2
all all acc Wins 50.03 8.71 23.87 17.45 41.74
all all acc Losses 8.91 49.99 32.39 38.36 12.15
all all acc Diff 41.12 -41.28 -8.52 -20.91 29.59
all all acc Rank 1 5 3 4 2
all all stab Wins 14.03 30.89 13.4 23.12 15.33
all all stab Losses 21.82 14.53 23.3 17.81 19.31
all all stab Diff -7.79 16.36 -9.9 5.31 -3.98
all all stab Rank 4 1 5 2 3
all all NS Wins 32.98 33.03 17.43 21.69 31.4
all all NS Losses 15.58 34.57 34.26 34.23 17.89
all all NS Diff 17.4 -1.54 -16.83 -12.54 13.51
all all NS Rank 1 3 5 4 2
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Table A.22 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

Wins 601.17 298.31 403.16 359.89 462.06
Losses 196.14 720.95 381.35 530.57 295.58
Diff 405.03 -422.64 21.81 -170.68 166.48

Rank 1 5 3 4 2

Table A.23 Overall wins and losses by various frequencies and severities of change
for type II DMOPs across all performance measures

nt τt PM Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

10 10 all Wins 163.79 85.07 109.43 101.03 129.17
10 10 all Losses 49.11 199.64 106.87 152.92 79.95
10 10 all Diff 114.68 -114.57 2.56 -51.89 49.22
10 10 all Rank 1 5 3 4 2
10 25 all Wins 67.57 25.78 49.6 40.05 62.3
10 25 all Losses 18.95 93.76 44.34 62.16 26.09
10 25 all Diff 48.62 -67.98 5.26 -22.11 36.21
10 25 all Rank 1 5 3 4 2
10 50 all Wins 33.37 10.99 23.76 22.58 30.7
10 50 all Losses 9.63 48.08 22.8 27.59 13.3
10 50 all Diff 23.74 -37.09 0.96 -5.01 17.4
10 50 all Rank 1 5 3 4 2
1 10 all Wins 172.15 100.78 98.87 98.84 108.53
1 10 all Losses 70.19 162.4 113.86 134.02 98.7
1 10 all Diff 101.96 -61.62 -14.99 -35.18 9.83
1 10 all Rank 1 5 3 4 2
20 10 all Wins 164.29 75.69 121.5 97.39 131.36
20 10 all Losses 48.26 217.07 93.48 153.88 77.54
20 10 all Diff 116.03 -141.38 28.02 -56.49 53.82
20 10 all Rank 1 5 3 4 2
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Table A.24 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

nt τt PM Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

all all S Wins 74.46 53.48 70.04 63.65 71.1
all all S Losses 44.67 111.02 46.76 84.05 46.23
all all S Diff 29.79 -57.54 23.28 -20.4 24.87
all all S Rank 1 5 3 4 2
all all VD Wins 144.38 42.31 89.97 67.59 114.43
all all VD Losses 26.75 172.68 79.71 123.7 55.84
all all VD Diff 117.63 -130.37 10.26 -56.11 58.59
all all VD Rank 1 5 3 4 2
all all MS Wins 61.58 47.49 39.48 47.23 44.64
all all MS Losses 20.81 86.68 51.79 48.09 33.05
all all MS Diff 40.77 -39.19 -12.31 -0.86 11.59
all all MS Rank 1 5 4 3 2
all all acc Wins 164.28 25.92 95.25 58.27 110.75
all all acc Losses 19.65 174.12 74.23 127.28 59.19
all all acc Diff 144.63 -148.2 21.02 -69.01 51.56
all all acc Rank 1 5 3 4 2
all all stab Wins 58.08 71.42 53.19 64.32 53.44
all all stab Losses 56.55 74.49 53.63 64.79 50.99
all all stab Diff 1.53 -3.07 -0.44 -0.47 2.45
all all stab Rank 2 5 3 4 1
all all NS Wins 98.39 57.69 55.23 58.83 67.7
all all NS Losses 27.71 101.96 75.23 82.66 50.28
all all NS Diff 70.68 -44.27 -20 -23.83 17.42
all all NS Rank 1 5 3 4 2

134



Table A.25 Overall wins and losses for type III DMOPs across all performance
measures and nt-τt combinations

Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

Wins 106.94 74.77 109.59 92.6 91.04
Losses 56.8 183.67 66.08 100.24 68.15
Diff 50.14 -108.9 43.51 -7.64 22.89

Rank 1 5 2 4 3

Table A.26 Overall wins and losses by various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt PM Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

10 10 all Wins 27.95 15.19 28.82 24.01 22.4
10 10 all Losses 13.63 48.33 14.15 25 17.26
10 10 all Diff 14.32 -33.14 14.67 -0.99 5.14
10 10 all Rank 2 5 1 4 3
10 25 all Wins 12.86 10.66 14.39 11.62 12.27
10 25 all Losses 8.02 22.01 10.1 12.04 9.63
10 25 all Diff 4.84 -11.35 4.29 -0.42 2.64
10 25 all Rank 1 5 2 4 3
10 50 all Wins 6.13 6.69 6.96 6.37 6.63
10 50 all Losses 5.48 10 5.97 5.75 5.58
10 50 all Diff 0.65 -3.31 0.99 0.62 1.05
10 50 all Rank 3 5 2 4 1
1 10 all Wins 30.45 17.99 28.43 25.55 24.71
1 10 all Losses 12.15 52.86 17.38 29.65 15.09
1 10 all Diff 18.3 -34.87 11.05 -4.1 9.62
1 10 all Rank 1 5 2 4 3
20 10 all Wins 29.55 24.24 30.99 25.05 25.03
20 10 all Losses 17.52 50.47 18.48 27.8 20.59
20 10 all Diff 12.03 -26.23 12.51 -2.75 4.44
20 10 all Rank 2 5 1 4 3
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Table A.27 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results Balance Coefficient Strategies
stdτt ld ldτt li liτt

all all S Wins 13 13.3 21.07 20.9 25.52
all all S Losses 18.89 37.84 13.29 18.27 5.5
all all S Diff -5.89 -24.54 7.78 2.63 20.02
all all S Rank 4 5 2 3 1
all all VD Wins 9.34 16.98 12.46 25.12 19.43
all all VD Losses 16.82 30.93 14.59 10.71 10.28
all all VD Diff -7.48 -13.95 -2.13 14.41 9.15
all all VD Rank 4 5 3 1 2
all all MS Wins 23.91 11.68 22.84 11.69 12.11
all all MS Losses 4.18 36.26 7.82 20.48 13.49
all all MS Diff 19.73 -24.58 15.02 -8.79 -1.38
all all MS Rank 1 5 2 4 3
all all acc Wins 29.59 10.89 27.78 15.85 18.93
all all acc Losses 6.35 40.46 12.04 27.32 16.87
all all acc Diff 23.24 -29.57 15.74 -11.47 2.06
all all acc Rank 1 5 2 4 3
all all stab Wins 15.51 14.05 13.71 13.73 10.83
all all stab Losses 9.59 21.78 11.78 12.87 11.81
all all stab Diff 5.92 -7.73 1.93 0.86 -0.98
all all stab Rank 1 5 2 3 4
all all NS Wins 15.59 7.87 11.73 5.31 4.22
all all NS Losses 0.97 16.4 6.56 10.59 10.2
all all NS Diff 14.62 -8.53 5.17 -5.28 -5.98
all all NS Rank 1 5 2 3 4
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A.2.3 Comparisons with the other DMOAs

This appendix lists experimental results for Type I, Type II, and Type III DMOPs
by the MGPSO with stdτt balance coefficient update strategy, DMOES, DNSGA-II,
and SGEA.

Table A.28 Overall wins and losses for type I DMOPs across all performance mea-
sures and nt-τt combinations

Results DMOAs
MGPSO DMOES DNSGA-II SGEA

Wins 192.71 125.69 86.34 163
Losses 89.03 169.8 191.31 117.6
Diff 103.68 -44.11 -104.97 45.4

Rank 1 3 4 2
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Table A.29 Overall wins and losses by various frequencies and severities of change
for type I DMOPs across all performance measures

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

10 10 all Wins 58.89 37.4 20.78 43.62
10 10 all Losses 21.13 45.9 58.12 35.54
10 10 all Diff 37.76 -8.5 -37.34 8.08
10 10 all Rank 1 3 4 2
10 25 all Wins 19.94 16.56 10.17 18.03
10 25 all Losses 12.32 17.62 21.6 13.16
10 25 all Diff 7.62 -1.06 -11.43 4.87
10 25 all Rank 1 3 4 2
10 50 all Wins 9.9 7.71 4.81 9.65
10 50 all Losses 6.19 9.15 10.54 6.19
10 50 all Diff 3.71 -1.44 -5.73 3.46
10 50 all Rank 1 3 4 2
1 10 all Wins 52.74 22.85 30.25 51.87
1 10 all Losses 28.85 56.9 46.5 25.46
1 10 all Diff 23.89 -34.05 -16.25 26.41
1 10 all Rank 2 4 3 1
20 10 all Wins 51.24 41.17 20.33 39.83
20 10 all Losses 20.54 40.23 54.55 37.25
20 10 all Diff 30.7 0.94 -34.22 2.58
20 10 all Rank 1 3 4 2
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Table A.30 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

all all S Wins 43.42 8.21 10.41 38.1
all all S Losses 8.23 41.33 38.71 11.87
all all S Diff 35.19 -33.12 -28.3 26.23
all all S Rank 1 4 3 2
all all VD Wins 38.19 22.98 14.58 34.85
all all VD Losses 16.61 29.38 42.74 21.87
all all VD Diff 21.58 -6.4 -28.16 12.98
all all VD Rank 1 3 4 2
all all MS Wins 34.19 22.9 22.25 13.46
all all MS Losses 14.27 27.96 19.56 31.01
all all MS Diff 19.92 -5.06 2.69 -17.55
all all MS Rank 1 3 2 4
all all acc Wins 27.38 42.87 7.86 28.27
all all acc Losses 23.58 14.1 44.34 24.36
all all acc Diff 3.8 28.77 -36.48 3.91
all all acc Rank 3 1 4 2
all all stab Wins 21.33 21.18 14.68 8.39
all all stab Losses 12.37 13.5 18.24 21.47
all all stab Diff 8.96 7.68 -3.56 -13.08
all all stab Rank 1 2 3 4
all all NS Wins 28.2 7.55 16.56 39.93
all all NS Losses 13.97 43.53 27.72 7.02
all all NS Diff 14.23 -35.98 -11.16 32.91
all all NS Rank 2 4 3 1
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Table A.31 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results DMOAs
MGPSO DMOES DNSGA-II SGEA

Wins 544.01 384.69 238.63 453.98
Losses 256 470.23 552.36 342.72
Diff 288.01 -85.54 -313.73 111.26

Rank 1 3 4 2

Table A.32 Overall wins and losses by various frequencies and severities of change
for type II DMOPs across all performance measures

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

10 10 all Wins 156.19 110.98 62.31 119.61
10 10 all Losses 64.17 124.1 158.76 102.06
10 10 all Diff 92.02 -13.12 -96.45 17.55
10 10 all Rank 1 3 4 2
10 25 all Wins 53.96 52.15 25.24 51.5
10 25 all Losses 34.06 44.94 65.3 38.55
10 25 all Diff 19.9 7.21 -40.06 12.95
10 25 all Rank 1 3 4 2
10 50 all Wins 24.03 25.5 13.32 26.61
10 50 all Losses 19.67 22.03 29.76 18
10 50 all Diff 4.36 3.47 -16.44 8.61
10 50 all Rank 2 3 4 1
1 10 all Wins 159.7 69.83 77.63 138.81
1 10 all Losses 66.18 165.68 134.5 79.61
1 10 all Diff 93.52 -95.85 -56.87 59.2
1 10 all Rank 1 4 3 2
20 10 all Wins 150.13 126.23 60.13 117.45
20 10 all Losses 71.92 113.48 164.04 104.5
20 10 all Diff 78.21 12.75 -103.91 12.95
20 10 all Rank 1 3 4 2
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Table A.33 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

all all S Wins 107.33 42.29 30.61 98.12
all all S Losses 34.79 92.84 110.47 40.25
all all S Diff 72.54 -50.55 -79.86 57.87
all all S Rank 1 3 4 2
all all VD Wins 93.22 77.43 29.61 99.95
all all VD Losses 55.76 72.27 123.33 48.85
all all VD Diff 37.46 5.16 -93.72 51.1
all all VD Rank 2 3 4 1
all all MS Wins 121.32 47.25 69.65 45.53
all all MS Losses 20.24 109.27 55.61 98.63
all all MS Diff 101.08 -62.02 14.04 -53.1
all all MS Rank 1 4 2 3
all all acc Wins 92.03 125.53 22.21 75.42
all all acc Losses 64.14 35.66 137.34 78.05
all all acc Diff 27.89 89.87 -115.13 -2.63
all all acc Rank 2 1 4 3
all all stab Wins 51.83 69.14 39.16 43.25
all all stab Losses 47.37 38.6 61.57 55.84
all all stab Diff 4.46 30.54 -22.41 -12.59
all all stab Rank 2 1 4 3
all all NS Wins 78.28 23.05 47.39 91.71
all all NS Losses 33.7 121.59 64.04 21.1
all all NS Diff 44.58 -98.54 -16.65 70.61
all all NS Rank 2 4 3 1
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Table A.34 Overall wins and losses for type III DMOPs across all performance
measures and nt-τt combinations

Results DMOAs
MGPSO DMOES DNSGA-II SGEA

Wins 198.72 124.55 76.31 108.08
Losses 49.36 144.54 169.5 144.26
Diff 149.36 -19.99 -93.19 -36.18

Rank 1 2 4 3

Table A.35 Overall wins and losses by various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

10 10 all Wins 55.78 35.98 20.34 30.21
10 10 all Losses 12.73 39.42 49.09 41.07
10 10 all Diff 43.05 -3.44 -28.75 -10.86
10 10 all Rank 1 2 4 3
10 25 all Wins 21.64 14.13 8.16 12.34
10 25 all Losses 5.86 15.08 19.37 15.96
10 25 all Diff 15.78 -0.95 -11.21 -3.62
10 25 all Rank 1 2 4 3
10 50 all Wins 10.61 6.85 4.33 6.48
10 50 all Losses 3.12 7.62 9.57 7.96
10 50 all Diff 7.49 -0.77 -5.24 -1.48
10 50 all Rank 1 2 4 3
1 10 all Wins 57.03 31.61 24.18 29.2
1 10 all Losses 14.08 44.8 43.87 39.27
1 10 all Diff 42.95 -13.19 -19.69 -10.07
1 10 all Rank 1 3 4 2
20 10 all Wins 53.66 35.98 19.3 29.85
20 10 all Losses 13.57 37.62 47.6 40
20 10 all Diff 40.09 -1.64 -28.3 -10.15
20 10 all Rank 1 2 4 3
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Table A.36 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results DMOAs
MGPSO DMOES DNSGA-II SGEA

all all S Wins 54.6 24.47 8.23 24.79
all all S Losses 2.2 30.26 49.14 30.49
all all S Diff 52.4 -5.79 -40.91 -5.7
all all S Rank 1 3 4 2
all all VD Wins 45.4 12.1 17.24 13.74
all all VD Losses 0.97 32.96 23.98 30.57
all all VD Diff 44.43 -20.86 -6.74 -16.83
all all VD Rank 1 4 2 3
all all MS Wins 27.81 13.4 28.87 24.11
all all MS Losses 12.13 41.33 12.43 28.3
all all MS Diff 15.68 -27.93 16.44 -4.19
all all MS Rank 2 4 1 3
all all acc Wins 41.93 46.84 7.83 23.96
all all acc Losses 17.74 14.41 52.87 35.54
all all acc Diff 24.19 32.43 -45.04 -11.58
all all acc Rank 2 1 4 3
all all stab Wins 23.47 26.21 3.86 11.75
all all stab Losses 10.32 6.9 30.07 18
all all stab Diff 13.15 19.31 -26.21 -6.25
all all stab Rank 2 1 4 3
all all NS Wins 5.51 1.53 10.28 9.73
all all NS Losses 6 18.68 1.01 1.36
all all NS Diff -0.49 -17.15 9.27 8.37
all all NS Rank 3 4 1 2

A.3 QPSO Experiments Broken Down by DMOP
Type

A.3.1 Results for MGPSO with 50% Proportion of Quantum
Particles

This appendix lists experimental results for Type I, Type II, and Type III DMOPs
by the MGPSO with self-adaptive quantum particles and PCX quantum particles at
50% quantum proportion.
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Table A.37 Overall wins and losses for type I DMOPs across all performance mea-
sures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 83.55 232.33 253.99 25.68 56.93 55.58
Losses 154.81 44.37 34.24 195.37 140.12 139.15
Diff -71.26 187.96 219.75 -169.69 -83.19 -83.57

Rank 3 2 1 6 4 5

Table A.38 Overall wins and losses by various frequencies and severities of change
for type I DMOPs across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 19.6 72.35 82.31 4.13 11.79 11.41
10 10 all Losses 44.6 8.91 4.14 57.39 44.07 42.48
10 10 all Diff -25 63.44 78.17 -53.26 -32.28 -31.07
10 10 all Rank 3 2 1 6 5 4
10 25 all Wins 6.67 28.97 30.8 1.63 3.77 4.22
10 25 all Losses 16.85 3.22 1.61 21.74 16.17 16.47
10 25 all Diff -10.18 25.75 29.19 -20.11 -12.4 -12.25
10 25 all Rank 3 2 1 6 5 4
10 50 all Wins 4.64 12.67 13.54 1.57 2.85 2.54
10 50 all Losses 8.81 2.07 1.31 9.82 8.61 7.19
10 50 all Diff -4.17 10.6 12.23 -8.25 -5.76 -4.65
10 50 all Rank 3 2 1 6 5 4
1 10 all Wins 29.3 46.5 49.02 14.01 27.72 27.21
1 10 all Losses 40.93 21.55 22.6 52.43 28.33 27.92
1 10 all Diff -11.63 24.95 26.42 -38.42 -0.61 -0.71
1 10 all Rank 5 2 1 6 3 4
20 10 all Wins 23.34 71.84 78.32 4.34 10.8 10.2
20 10 all Losses 43.62 8.62 4.58 53.99 42.94 45.09
20 10 all Diff -20.28 63.22 73.74 -49.65 -32.14 -34.89
20 10 all Rank 3 2 1 6 4 5
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Table A.39 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 4.2 49.88 60.04 3.06 7.85 8.05
all all S Losses 37.95 5.64 1.37 35.23 25.58 27.31
all all S Diff -33.75 44.24 58.67 -32.17 -17.73 -19.26
all all S Rank 6 2 1 5 3 4
all all VD Wins 20.75 57.29 59.54 5.66 15.67 14.44
all all VD Losses 37.33 9.79 10.03 48.74 33.55 33.91
all all VD Diff -16.58 47.5 49.51 -43.08 -17.88 -19.47
all all VD Rank 3 2 1 6 4 5
all all MS Wins 8.9 6.58 10.86 4.08 3.63 4.17
all all MS Losses 4.89 6.98 2.83 8.15 8.46 6.91
all all MS Diff 4.01 -0.4 8.03 -4.07 -4.83 -2.74
all all MS Rank 2 3 1 5 6 4
all all acc Wins 26.44 43.57 47.28 4.95 15.03 14.74
all all acc Losses 26.84 13.64 11.87 45.44 27.49 26.73
all all acc Diff -0.4 29.93 35.41 -40.49 -12.46 -11.99
all all acc Rank 3 2 1 6 5 4
all all stab Wins 6.5 13.42 14.15 5.84 7.37 6.9
all all stab Losses 15.86 5.25 5.2 11.18 8.35 8.34
all all stab Diff -9.36 8.17 8.95 -5.34 -0.98 -1.44
all all stab Rank 6 2 1 5 3 4
all all NS Wins 16.76 61.59 62.12 2.09 7.38 7.28
all all NS Losses 31.94 3.07 2.94 46.63 36.69 35.95
all all NS Diff -15.18 58.52 59.18 -44.54 -29.31 -28.67
all all NS Rank 3 2 1 6 5 4
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Table A.40 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 237.32 609.19 630.73 159.2 215.93 228.64
Losses 496.25 157.9 153.48 530.08 370 373.3
Diff -258.93 451.29 477.25 -370.88 -154.07 -144.66

Rank 5 2 1 6 4 3

Table A.41 Overall wins and losses by various frequencies and severities of change
for type II DMOPs across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 62.68 172.46 186.12 33.65 58.03 63.78
10 10 all Losses 137.83 39.75 35.79 156.96 103.31 103.08
10 10 all Diff -75.15 132.71 150.33 -123.31 -45.28 -39.3
10 10 all Rank 5 2 1 6 4 3
10 25 all Wins 20.69 73.08 70.89 15.73 22.47 22.95
10 25 all Losses 55.09 14.95 16.39 55.33 42.06 41.99
10 25 all Diff -34.4 58.13 54.5 -39.6 -19.59 -19.04
10 25 all Rank 5 1 2 6 4 3
10 50 all Wins 9.06 34.46 33.42 9.8 11 10.79
10 50 all Losses 28.12 8.28 8.6 24.14 19.56 19.83
10 50 all Diff -19.06 26.18 24.82 -14.34 -8.56 -9.04
10 50 all Rank 6 1 2 5 3 4
1 10 all Wins 93.65 159.93 159.95 60.99 70.63 71.93
1 10 all Losses 138.03 56.66 56.41 157.03 102.98 105.97
1 10 all Diff -44.38 103.27 103.54 -96.04 -32.35 -34.04
1 10 all Rank 5 2 1 6 3 4
20 10 all Wins 51.24 169.26 180.35 39.03 53.8 59.19
20 10 all Losses 137.18 38.26 36.29 136.62 102.09 102.43
20 10 all Diff -85.94 131 144.06 -97.59 -48.29 -43.24
20 10 all Rank 5 2 1 6 4 3
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Table A.42 Overall wins and losses by various performance measures for Type II
DMOPs across all nt-τt combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 34.62 119.9 136.47 20.65 22.94 24.7
all all S Losses 87.93 14.93 9.07 94.09 76.46 76.8
all all S Diff -53.31 104.97 127.4 -73.44 -53.52 -52.1
all all S Rank 4 2 1 6 5 3
all all VD Wins 43.96 133.13 114.66 43.09 64.24 64.47
all all VD Losses 120.46 38.88 48.16 110.09 70.52 75.44
all all VD Diff -76.5 94.25 66.5 -67 -6.28 -10.97
all all VD Rank 6 1 2 5 3 4
all all MS Wins 32.96 45.25 66.18 10.05 16.77 18.9
all all MS Losses 35.8 19.28 10.55 57.44 34.68 32.36
all all MS Diff -2.84 25.97 55.63 -47.39 -17.91 -13.46
all all MS Rank 3 2 1 6 5 4
all all acc Wins 57.26 142.08 141.96 37.55 58.24 62.66
all all acc Losses 119.29 44.83 42.7 126.26 83.06 83.61
all all acc Diff -62.03 97.25 99.26 -88.71 -24.82 -20.95
all all acc Rank 5 2 1 6 4 3
all all stab Wins 35.01 46.45 48.34 31.87 29.61 30.71
all all stab Losses 51.07 30.05 29.58 44.48 33.24 33.57
all all stab Diff -16.06 16.4 18.76 -12.61 -3.63 -2.86
all all stab Rank 6 2 1 5 4 3
all all NS Wins 33.51 122.38 123.12 15.99 24.13 27.2
all all NS Losses 81.7 9.93 13.42 97.72 72.04 71.52
all all NS Diff -48.19 112.45 109.7 -81.73 -47.91 -44.32
all all NS Rank 5 1 2 6 4 3
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Table A.43 Overall wins and losses for type III DMOPs across all performance
measures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 111.02 84.83 102.75 39.58 41.25 32.92
Losses 49.38 50.68 26.56 95.65 100.45 89.63
Diff 61.64 34.15 76.19 -56.07 -59.2 -56.71

Rank 2 3 1 4 6 5

Table A.44 Overall wins and losses by various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 29.48 21.26 28.63 11.08 10.12 7.81
10 10 all Losses 13.65 16 5.53 23.8 26.62 22.78
10 10 all Diff 15.83 5.26 23.1 -12.72 -16.5 -14.97
10 10 all Rank 2 3 1 4 6 5
10 25 all Wins 9.46 7.97 9.71 3.05 4.01 3.63
10 25 all Losses 4.42 3.9 2.45 9.75 8.9 8.41
10 25 all Diff 5.04 4.07 7.26 -6.7 -4.89 -4.78
10 25 all Rank 2 3 1 6 5 4
10 50 all Wins 3.49 3.92 3.88 1.42 1.89 1.65
10 50 all Losses 2.22 1.17 1.49 4.51 3.6 3.26
10 50 all Diff 1.27 2.75 2.39 -3.09 -1.71 -1.61
10 50 all Rank 3 1 2 6 5 4
1 10 all Wins 42.87 33.69 37.83 15.66 16.16 12.7
1 10 all Losses 17.15 17.17 12.43 37.63 38.08 36.45
1 10 all Diff 25.72 16.52 25.4 -21.97 -21.92 -23.75
1 10 all Rank 1 3 2 5 4 6
20 10 all Wins 25.72 17.99 22.7 8.37 9.07 7.13
20 10 all Losses 11.94 12.44 4.66 19.96 23.25 18.73
20 10 all Diff 13.78 5.55 18.04 -11.59 -14.18 -11.6
20 10 all Rank 2 3 1 4 6 5
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Table A.45 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 34.2 30.89 35.79 2.44 3.71 3.43
all all S Losses 6.28 5.83 1.82 33.41 32.29 30.83
all all S Diff 27.92 25.06 33.97 -30.97 -28.58 -27.4
all all S Rank 2 3 1 6 5 4
all all VD Wins 7.46 15.81 9.88 10.03 6.99 7.22
all all VD Losses 11.1 5.53 8.09 6.29 11 15.38
all all VD Diff -3.64 10.28 1.79 3.74 -4.01 -8.16
all all VD Rank 4 1 3 2 5 6
all all MS Wins 22.67 2.05 7.16 4.48 9.53 3.78
all all MS Losses 5.97 12.81 3.35 10.02 11.07 6.45
all all MS Diff 16.7 -10.76 3.81 -5.54 -1.54 -2.67
all all MS Rank 1 6 2 5 3 4
all all acc Wins 30.81 26.08 37.13 13.43 9.66 10.57
all all acc Losses 13.96 14.05 8.26 31.02 32.26 28.13
all all acc Diff 16.85 12.03 28.87 -17.59 -22.6 -17.56
all all acc Rank 2 3 1 5 6 4
all all stab Wins 7.78 5.94 7.37 5.16 6.31 5.57
all all stab Losses 6.57 5.99 4.75 7.81 6.8 6.21
all all stab Diff 1.21 -0.05 2.62 -2.65 -0.49 -0.64
all all stab Rank 2 3 1 6 4 5
all all NS Wins 8.1 4.06 5.42 4.04 5.05 2.35
all all NS Losses 5.5 6.47 0.29 7.1 7.03 2.63
all all NS Diff 2.6 -2.41 5.13 -3.06 -1.98 -0.28
all all NS Rank 2 5 1 6 4 3

A.3.2 Results for MGPSO with 10% Proportion of Quantum
Particles

This appendix lists experimental results for Type I, Type II, and Type III DMOPs
by the MGPSO with self-adaptive quantum particles and PCX quantum particles at
10% quantum proportion.
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Table A.46 Overall wins and losses for type I DMOPs across all performance mea-
sures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 66.37 51.59 71.25 28.81 26.7 27.64
Losses 42.85 34.08 34.01 61.02 48.62 51.78
Diff 23.52 17.51 37.24 -32.21 -21.92 -24.14

Rank 2 3 1 6 4 5

Table A.47 Overall wins and losses by various frequencies and severities of change
for type I DMOPs across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 15.37 11.88 19.73 2.51 2.83 3.27
10 10 all Losses 9.09 4.43 3.39 11.61 14.64 12.43
10 10 all Diff 6.28 7.45 16.34 -9.1 -11.81 -9.16
10 10 all Rank 3 2 1 4 6 5
10 25 all Wins 5.02 7.76 8.95 0.38 0.91 2.53
10 25 all Losses 3.86 0.9 0.59 8.9 6.88 4.42
10 25 all Diff 1.16 6.86 8.36 -8.52 -5.97 -1.89
10 25 all Rank 3 2 1 6 5 4
10 50 all Wins 0.9 3.28 4 0.24 0.58 0.55
10 50 all Losses 2.04 0.31 0.28 3 1.74 2.18
10 50 all Diff -1.14 2.97 3.72 -2.76 -1.16 -1.63
10 50 all Rank 3 2 1 6 4 5
1 10 all Wins 31.95 9.6 12.52 23.02 18.67 18.46
1 10 all Losses 16.59 25.62 27.2 17.65 12.07 15.09
1 10 all Diff 15.36 -16.02 -14.68 5.37 6.6 3.37
1 10 all Rank 1 6 5 3 2 4
20 10 all Wins 13.13 19.07 26.05 2.66 3.71 2.83
20 10 all Losses 11.27 2.82 2.55 19.86 13.29 17.66
20 10 all Diff 1.86 16.25 23.5 -17.2 -9.58 -14.83
20 10 all Rank 3 2 1 6 4 5
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Table A.48 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 4.41 6.17 8.48 6.72 4.25 4.79
all all S Losses 9.78 4.67 5.77 5.7 4.38 4.52
all all S Diff -5.37 1.5 2.71 1.02 -0.13 0.27
all all S Rank 6 2 1 3 5 4
all all VD Wins 18.57 15.85 20.41 5.8 6.3 6.29
all all VD Losses 9.61 8.28 8.83 17.8 13.65 15.05
all all VD Diff 8.96 7.57 11.58 -12 -7.35 -8.76
all all VD Rank 2 3 1 6 4 5
all all MS Wins 8.98 4.46 6.88 2.29 2.74 3.14
all all MS Losses 2.09 3.44 2.12 7.29 6.92 6.63
all all MS Diff 6.89 1.02 4.76 -5 -4.18 -3.49
all all MS Rank 1 3 2 6 5 4
all all acc Wins 16.47 9.68 15.15 5.52 6.36 6.09
all all acc Losses 7.95 9.44 8.96 13.09 9.38 10.45
all all acc Diff 8.52 0.24 6.19 -7.57 -3.02 -4.36
all all acc Rank 1 3 2 6 4 5
all all stab Wins 3.49 2.94 2.98 4.1 3.42 3.27
all all stab Losses 7.03 2.53 2.85 3.29 2.16 2.34
all all stab Diff -3.54 0.41 0.13 0.81 1.26 0.93
all all stab Rank 6 4 5 3 1 2
all all NS Wins 14.45 12.49 17.35 4.38 3.63 4.06
all all NS Losses 6.39 5.72 5.48 13.85 12.13 12.79
all all NS Diff 8.06 6.77 11.87 -9.47 -8.5 -8.73
all all NS Rank 2 3 1 6 4 5

Table A.49 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 160.72 200.88 226.96 92.78 111.54 116.51
Losses 195.93 92.81 89.42 228.3 152.84 150.09
Diff -35.21 108.07 137.54 -135.52 -41.3 -33.58

Rank 4 2 1 6 5 3
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Table A.50 Overall wins and losses by various frequencies and severities of change
for type II DMOPs across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 47.24 50.4 62.9 21.41 28.87 30.16
10 10 all Losses 52.96 25.06 23.3 57.1 41.83 40.73
10 10 all Diff -5.72 25.34 39.6 -35.69 -12.96 -10.57
10 10 all Rank 3 2 1 6 5 4
10 25 all Wins 12.18 24.55 27.09 8.14 9.93 10.67
10 25 all Losses 21.13 8.48 8.21 22.07 16.54 16.13
10 25 all Diff -8.95 16.07 18.88 -13.93 -6.61 -5.46
10 25 all Rank 5 2 1 6 4 3
10 50 all Wins 5.24 12.99 14.65 5.15 5.13 5.06
10 50 all Losses 11.78 3.95 4.7 10.76 8.89 8.14
10 50 all Diff -6.54 9.04 9.95 -5.61 -3.76 -3.08
10 50 all Rank 6 2 1 5 4 3
1 10 all Wins 69.3 56.74 59.19 36.37 43.95 42.89
1 10 all Losses 59.51 34.78 33.13 90.08 44.39 46.55
1 10 all Diff 9.79 21.96 26.06 -53.71 -0.44 -3.66
1 10 all Rank 3 2 1 6 4 5
20 10 all Wins 26.76 56.2 63.13 21.71 23.66 27.73
20 10 all Losses 50.55 20.54 20.08 48.29 41.19 38.54
20 10 all Diff -23.79 35.66 43.05 -26.58 -17.53 -10.81
20 10 all Rank 5 2 1 6 4 3
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Table A.51 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 27.44 29.48 36.83 12.82 11.22 11.07
all all S Losses 23.43 9.9 8.71 33.97 25.69 27.16
all all S Diff 4.01 19.58 28.12 -21.15 -14.47 -16.09
all all S Rank 3 2 1 6 4 5
all all VD Wins 32.68 53.13 51.78 21.64 36.22 37.11
all all VD Losses 56.52 22.77 27.62 59.77 33.18 32.7
all all VD Diff -23.84 30.36 24.16 -38.13 3.04 4.41
all all VD Rank 5 1 2 6 4 3
all all MS Wins 14.08 9.69 19.69 5.7 5.21 6.16
all all MS Losses 11.29 8.71 4.86 16.54 10.24 8.89
all all MS Diff 2.79 0.98 14.83 -10.84 -5.03 -2.73
all all MS Rank 2 3 1 6 5 4
all all acc Wins 41.24 57.91 62.93 21.77 31.2 33.56
all all acc Losses 54.48 27.68 24.46 59.64 41.71 40.64
all all acc Diff -13.24 30.23 38.47 -37.87 -10.51 -7.08
all all acc Rank 5 2 1 6 4 3
all all stab Wins 16.97 18.31 20.65 17.65 16.16 16.5
all all stab Losses 27.99 14.03 13.59 21.06 15.31 14.26
all all stab Diff -11.02 4.28 7.06 -3.41 0.85 2.24
all all stab Rank 6 2 1 5 4 3
all all NS Wins 28.31 32.36 35.08 13.2 11.53 12.11
all all NS Losses 22.22 9.72 10.18 37.32 26.71 26.44
all all NS Diff 6.09 22.64 24.9 -24.12 -15.18 -14.33
all all NS Rank 3 2 1 6 5 4

Table A.52 Overall wins and losses for type III DMOPs across all performance
measures and nt-τt combinations

Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

Wins 19.01 14.01 16.72 18.53 12.27 18.5
Losses 12.59 19.82 15.8 18.05 16.21 16.57
Diff 6.42 -5.81 0.92 0.48 -3.94 1.93

Rank 1 6 3 4 5 2
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Table A.53 Overall wins and losses by various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

10 10 all Wins 6.07 3.67 4.3 5.95 1.64 6.18
10 10 all Losses 4.31 5.11 4.1 4.51 4.8 4.98
10 10 all Diff 1.76 -1.44 0.2 1.44 -3.16 1.2
10 10 all Rank 1 5 4 2 6 3
10 25 all Wins 2.42 1.62 1.92 0.97 0.62 0.73
10 25 all Losses 1.07 0.82 0.77 2.18 1.54 1.9
10 25 all Diff 1.35 0.8 1.15 -1.21 -0.92 -1.17
10 25 all Rank 1 3 2 6 4 5
10 50 all Wins 0.44 0.6 1.01 1.11 0.59 0.68
10 50 all Losses 0.51 1.19 0.77 0.69 0.59 0.68
10 50 all Diff -0.07 -0.59 0.24 0.42 0 0
10 50 all Rank 5 6 2 1 4 4
1 10 all Wins 5.74 5.75 6.15 5.8 7.15 5.95
1 10 all Losses 4.12 7.42 5.8 7.69 5.58 5.93
1 10 all Diff 1.62 -1.67 0.35 -1.89 1.57 0.02
1 10 all Rank 1 5 3 6 2 4
20 10 all Wins 4.34 2.37 3.34 4.7 2.27 4.96
20 10 all Losses 2.58 5.28 4.36 2.98 3.7 3.08
20 10 all Diff 1.76 -2.91 -1.02 1.72 -1.43 1.88
20 10 all Rank 2 6 4 3 5 1
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Table A.54 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

nt τt PM Results QPSO Strategies
QPSOn QPSOr QPSOt PCXn PCXr PCXt

all all S Wins 6.59 4.92 5.93 0.6 1.52 0.99
all all S Losses 1.08 1.38 0.61 7.27 5.26 4.95
all all S Diff 5.51 3.54 5.32 -6.67 -3.74 -3.96
all all S Rank 1 3 2 6 4 5
all all VD Wins 1.44 4.71 4.61 1.22 1.62 1.07
all all VD Losses 1.95 0.8 0.74 4.25 2.78 4.15
all all VD Diff -0.51 3.91 3.87 -3.03 -1.16 -3.08
all all VD Rank 3 1 2 5 4 6
all all MS Wins 3.08 0.31 0.48 7.01 2.14 6.14
all all MS Losses 2.26 7.81 6.18 0.81 1.03 1.07
all all MS Diff 0.82 -7.5 -5.7 6.2 1.11 5.07
all all MS Rank 4 6 5 1 3 2
all all acc Wins 6.61 2.95 4.29 5.08 3.98 4.65
all all acc Losses 4.01 5.12 3.62 3.75 5.77 5.29
all all acc Diff 2.6 -2.17 0.67 1.33 -1.79 -0.64
all all acc Rank 1 6 3 2 5 4
all all stab Wins 1.29 1.09 1.38 2.49 1.72 2.47
all all stab Losses 1.87 2.45 2.36 1.4 1.3 1.06
all all stab Diff -0.58 -1.36 -0.98 1.09 0.42 1.41
all all stab Rank 4 6 5 2 3 1
all all NS Wins 0 0.03 0.03 2.13 1.29 3.18
all all NS Losses 1.42 2.26 2.29 0.57 0.07 0.05
all all NS Diff -1.42 -2.23 -2.26 1.56 1.22 3.13
all all NS Rank 4 5 6 2 3 1

A.3.3 Comparisons with the other DMOAs

This appendix lists experimental results for Type I, Type II, and Type III DMOPs
by the MGPSO without any quantum particles, MGPSO with 10% and 50% of self-
adaptive quantum particles, DMOES, DNSGA-II, and SGEA
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Table A.55 Overall wins and losses for type I DMOPs across all performance mea-
sures and nt-τt combinations

Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

Wins 226.14 271.91 265.58 178.8 109.25 214.04
Losses 148.51 112.79 87.26 319.68 352.11 245.37
Diff 77.63 159.12 178.32 -140.88 -242.86 -31.33

Rank 3 2 1 5 6 4

Table A.56 Overall wins and losses by various frequencies and severities of change
for type I DMOPs across all performance measures

nt τt Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

10 10 Wins 67.1 74.89 73.25 56.23 25.37 57.37
10 10 Losses 37.2 31.93 22.37 86.03 105.47 71.21
10 10 Diff 29.9 42.96 50.88 -29.8 -80.1 -13.84
10 10 Rank 3 2 1 5 6 4
10 25 Wins 24.78 26.29 26.36 23.11 12.85 26.46
10 25 Losses 13.81 15.98 11.95 33.46 39.18 25.47
10 25 Diff 10.97 10.31 14.41 -10.35 -26.33 0.99
10 25 Rank 2 3 1 5 6 4
10 50 Wins 11.56 11.42 13.54 11.78 7.09 14.79
10 50 Losses 8.14 9.59 6.76 15.79 18.56 11.34
10 50 Diff 3.42 1.83 6.78 -4.01 -11.47 3.45
10 50 Rank 3 4 1 5 6 2
1 10 Wins 61.63 91.07 80.41 28.61 39.51 63.4
1 10 Losses 56.25 20.62 25.03 109.87 89.78 63.08
1 10 Diff 5.38 70.45 55.38 -81.26 -50.27 0.32
1 10 Rank 3 1 2 6 5 4
20 10 Wins 61.07 68.24 72.02 59.07 24.43 52.02
20 10 Losses 33.11 34.67 21.15 74.53 99.12 74.27
20 10 Diff 27.96 33.57 50.87 -15.46 -74.69 -22.25
20 10 Rank 3 2 1 4 6 5
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Table A.57 Overall wins and losses by various performance measures for type I
DMOPs across all nt-τt combinations

PM Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

S Wins 51.11 55.69 49.7 10.61 10.65 45.68
S Losses 15.33 12.07 11.68 75.1 74.38 34.88
S Diff 35.78 43.62 38.02 -64.49 -63.73 10.8
S Rank 3 1 2 6 5 4

VD Wins 47.99 51 57.6 27.86 18.12 49.63
VD Losses 29.51 28.91 17.81 56.23 75.51 44.23
VD Diff 18.48 22.09 39.79 -28.37 -57.39 5.4
VD Rank 3 2 1 5 6 4
MS Wins 35.52 48.53 46.86 29.61 27.96 16.59
MS Losses 24.61 12.84 7.59 55.57 43.76 60.7
MS Diff 10.91 35.69 39.27 -25.96 -15.8 -44.11
MS Rank 3 2 1 5 4 6
acc Wins 35.04 41.18 44.02 67.86 12.86 40.28
acc Losses 34.37 34.52 24.34 29.37 72.45 46.19
acc Diff 0.67 6.66 19.68 38.49 -59.59 -5.91
acc Rank 4 3 2 1 6 5
stab Wins 26.61 24.14 23.45 34.28 21.64 13.53
stab Losses 15.98 15.94 16.3 25.27 31.89 38.27
stab Diff 10.63 8.2 7.15 9.01 -10.25 -24.74
stab Rank 1 3 4 2 5 6
NS Wins 29.87 51.37 43.95 8.58 18.02 48.33
NS Losses 28.71 8.51 9.54 78.14 54.12 21.1
NS Diff 1.16 42.86 34.41 -69.56 -36.1 27.23
NS Rank 4 1 2 6 5 3

Table A.58 Overall wins and losses for type II DMOPs across all performance mea-
sures and nt-τt combinations

Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

Wins 644.09 665.89 701.71 593.8 337.99 665.53
Losses 390.43 447.82 324.35 823.29 972.49 650.63
Diff 253.66 218.07 377.36 -229.49 -634.5 14.9

Rank 2 3 1 5 6 4
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Table A.59 Overall wins and losses by various frequencies and severities of change
for type II DMOPs across all performance measures

nt τt Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

10 10 Wins 180.01 189 201.83 167.12 85.7 171.64
10 10 Losses 99.52 117.87 81.35 221.7 281.16 193.7
10 10 Diff 80.49 71.13 120.48 -54.58 -195.46 -22.06
10 10 Rank 2 3 1 5 6 4
10 25 Wins 63.24 66.91 72.08 81.41 36.4 80.59
10 25 Losses 49.02 55.43 39.34 78.45 110.43 67.96
10 25 Diff 14.22 11.48 32.74 2.96 -74.03 12.63
10 25 Rank 2 4 1 5 6 3
10 50 Wins 29.77 30.92 32.9 41.03 21.2 41.77
10 50 Losses 25.96 29.5 22.65 37.75 49.45 32.28
10 50 Diff 3.81 1.42 10.25 3.28 -28.25 9.49
10 50 Rank 3 5 1 4 6 2
1 10 Wins 199.23 205.58 207.43 104.67 110.74 198.43
1 10 Losses 107.55 120.47 90.69 293.41 248.44 165.52
1 10 Diff 91.68 85.11 116.74 -188.74 -137.7 32.91
1 10 Rank 2 3 1 6 5 4
20 10 Wins 171.84 173.48 187.47 199.57 83.95 173.1
20 10 Losses 108.38 124.55 90.32 191.98 283.01 191.17
20 10 Diff 63.46 48.93 97.15 7.59 -199.06 -18.07
20 10 Rank 2 3 1 4 6 5
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Table A.60 Overall wins and losses by various performance measures for type II
DMOPs across all nt-τt combinations

PM Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

S Wins 129.66 126.53 130.81 59.24 42.65 137.3
S Losses 52.38 66.94 47.28 167.87 199.51 92.21
S Diff 77.28 59.59 83.53 -108.63 -156.86 45.09
S Rank 2 3 1 5 6 4

VD Wins 128.53 105.94 132.11 119.1 46.31 153.82
VD Losses 75.54 116.08 68.48 124.52 208.55 92.64
VD Diff 52.99 -10.14 63.63 -5.42 -162.24 61.18
VD Rank 3 5 1 4 6 2
MS Wins 116.34 148.03 136.76 64.48 77.4 53.19
MS Losses 44.49 17.53 26.61 196.57 118.69 192.31
MS Diff 71.85 130.5 110.15 -132.09 -41.29 -139.12
MS Rank 3 1 2 5 4 6
acc Wins 111.6 117.63 135.94 201.38 40.24 117.67
acc Losses 100.98 116.57 79.14 63.88 227.33 136.56
acc Diff 10.62 1.06 56.8 137.5 -187.09 -18.89
acc Rank 3 4 2 1 6 5
stab Wins 64.37 69.83 64.47 113.16 66.44 70.87
stab Losses 65.13 64.36 58.76 65.5 102.9 92.49
stab Diff -0.76 5.47 5.71 47.66 -36.46 -21.62
stab Rank 4 3 2 1 6 5
NS Wins 93.59 97.93 101.62 36.44 64.95 132.68
NS Losses 51.91 66.34 44.08 204.95 115.51 44.42
NS Diff 41.68 31.59 57.54 -168.51 -50.56 88.26
NS Rank 3 4 2 6 5 1

Table A.61 Overall wins and losses for type III DMOPs across all performance
measures and nt-τt combinations

Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

Wins 221.17 227.17 236.09 146.14 108.63 139.9
Losses 60.83 67.1 41.96 323.18 288.54 297.49
Diff 160.34 160.07 194.13 -177.04 -179.91 -157.59

Rank 2 3 1 5 6 4
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Table A.62 Overall wins and losses by various frequencies and severities of change
for type III DMOPs across all performance measures

nt τt Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

10 10 Wins 62.08 64.8 68.43 42.72 28.49 37.05
10 10 Losses 16.77 18.49 9.28 88 84.57 86.46
10 10 Diff 45.31 46.31 59.15 -45.28 -56.08 -49.41
10 10 Rank 3 2 1 4 6 5
10 25 Wins 23.81 24.45 26.41 16.45 11.49 16.23
10 25 Losses 6.99 6.97 4.74 34.58 33.06 32.5
10 25 Diff 16.82 17.48 21.67 -18.13 -21.57 -16.27
10 25 Rank 3 2 1 5 6 4
10 50 Wins 11.49 11.87 12.2 8.39 6.01 8.73
10 50 Losses 3.42 3.52 3.23 17.01 15.77 15.74
10 50 Diff 8.07 8.35 8.97 -8.62 -9.76 -7.01
10 50 Rank 3 2 1 5 6 4
1 10 Wins 63.97 62.06 63.13 37.18 34.2 39.49
1 10 Losses 15.45 20.09 14.13 97.08 74.07 79.21
1 10 Diff 48.52 41.97 49 -59.9 -39.87 -39.72
1 10 Rank 2 3 1 6 5 4
20 10 Wins 59.82 63.99 65.92 41.4 28.44 38.4
20 10 Losses 18.2 18.03 10.58 86.51 81.07 83.58
20 10 Diff 41.62 45.96 55.34 -45.11 -52.63 -45.18
20 10 Rank 3 2 1 4 6 5
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Table A.63 Overall wins and losses by various performance measures for type III
DMOPs across all nt-τt combinations

PM Results DMOAs
MGPSO MGPSO50 MGPSO10 DMOES DNSGA-II SGEA

S Wins 56.38 61.88 57.76 21.02 13.3 27.71
S Losses 6.6 4.75 4.8 73.28 80.45 68.17
S Diff 49.78 57.13 52.96 -52.26 -67.15 -40.46
S Rank 3 1 2 5 6 4

VD Wins 50.82 46.37 48.65 12.04 19.48 16.45
VD Losses 3.53 8.69 3.07 60.81 50.63 67.08
VD Diff 47.29 37.68 45.58 -48.77 -31.15 -50.63
VD Rank 1 3 2 5 4 6
MS Wins 28.74 32.28 36.03 22.78 31.07 27.72
MS Losses 14.81 8.98 5.98 68.66 22.13 58.06
MS Diff 13.93 23.3 30.05 -45.88 8.94 -30.34
MS Rank 3 2 1 6 4 5
acc Wins 48.25 49.62 55.56 51.74 19.57 35.46
acc Losses 22.57 27.74 12.97 49.69 81.94 65.29
acc Diff 25.68 21.88 42.59 2.05 -62.37 -29.83
acc Rank 2 3 1 4 6 5
stab Wins 26.66 27.53 28.35 34.91 8.06 16.44
stab Losses 9.76 10.87 9.75 23.58 51.58 36.41
stab Diff 16.9 16.66 18.6 11.33 -43.52 -19.97
stab Rank 2 3 1 4 6 5
NS Wins 10.32 9.49 9.74 3.65 17.15 16.12
NS Losses 3.56 6.07 5.39 47.16 1.81 2.48
NS Diff 6.76 3.42 4.35 -43.51 15.34 13.64
NS Rank 3 5 4 6 1 2
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