
����������
�������

Citation: Fan, R.; Bu, S. Transfer-

Learning-Based Approach for the

Diagnosis of Lung Diseases from Chest

X-ray Images. Entropy 2022, 24, 313.

https://doi.org/10.3390/e24030313

Academic Editors: S. Ejaz Ahmed

and Farouk Nathoo

Received: 12 January 2022

Accepted: 15 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Transfer-Learning-Based Approach for the Diagnosis of Lung
Diseases from Chest X-ray Images
Rong Fan 1 and Shengrong Bu 2,*

1 School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA;
rongfan@seas.upenn.edu

2 Department of Engineering, Brock University, St. Catharines, ON L2S 3A1, Canada
* Correspondence: sbu@brocku.ca

Abstract: Using chest X-ray images is one of the least expensive and easiest ways to diagnose patients
who suffer from lung diseases such as pneumonia and bronchitis. Inspired by existing work, a deep
learning model is proposed to classify chest X-ray images into 14 lung-related pathological conditions.
However, small datasets are not sufficient to train the deep learning model. Two methods were
used to tackle this: (1) transfer learning based on two pretrained neural networks, DenseNet and
ResNet, was employed; (2) data were preprocessed, including checking data leakage, handling class
imbalance, and performing data augmentation, before feeding the neural network. The proposed
model was evaluated according to the classification accuracy and receiver operating characteristic
(ROC) curves, as well as visualized by class activation maps. DenseNet121 and ResNet50 were used
in the simulations, and the results showed that the model trained by DenseNet121 had better accuracy
than that trained by ResNet50.

Keywords: transfer learning; deep learning; pretrained neural networks; chest X-ray images; lung diseases

1. Introduction

Many people suffer from lung diseases such as pneumonia and emphysema every
year. Chest X-ray images are one of the most widely used and low-cost diagnose tools
for lung diseases [1]. However, since there might be more than one pathology to be
detected from chest X-rays for a disease [2], diagnosing by doctors could be challenging
sometimes. Computer-aided diagnosis for various diseases has been researched to improve
the efficiency and accuracy of the diagnosis [3]. Various deep learning methods [4] for
medical image classification have the potential of predicting and diagnosing diseases even
more accurately than the average radiologist [5].

Since the global corona virus pandemic, researchers have developed methods to
analyze radiographic chest images more efficiently to make the diagnosis of COVID-19
easier. Heidari et al. developed a novel deep learning model to detect non-pneumonia, non-
COVID-19-infected pneumonia and COVID-19-infected pneumonia [6]. In [7], the authors
presented a deep learning approach to realize the diagnosis of pulmonary hypertension
by analyzing chest radiographs and compared the performance of ResNet50, Xception,
and Inception V3. Yu et al. built a multi-task deep learning network consisting of an
extraction architecture and three different routes for various functions by using chest X-rays
from peripherally inserted central catheters [8]. Jaiswal et al. realized the localization and
identification of pneumonia in chest X-ray images using a deep learning model derived from
mask-RCNN [9]. In [5], a modified AlexNet with many handcrafted features was proposed
to detect whether the chest X-ray images were in the normal or in the pneumonia class.

However, the medical image dataset could be too small to be used to train a neural
network since the images have to be labeled by professionals. Transfer learning originated
from terms such as knowledge transfer or inductive transfer in 1995 [10], and later, in 2005,
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it was defined as the technique of applying knowledge and skills learned in previous tasks
to novel tasks [11]. Since then, many studies have employed transfer learning on small
medical datasets and trained neural networks to realize image recognition and classification.
Minaee et al. applied transfer learning to process chest X-ray images for the detection
of COVID-19, and DenseNet121, ResNet18, ResNet50, and SqueezeNet were utilized as
the pre-trained networks [12]. In [13], the advantages and challenges of deep transfer
learning were studied. Ravishankar et al. realized ultrasound kidney images’ detection
using transfer learning [14]. A deep convolutional neural network (DCNN) was proposed
to study the advantages of transfer learning in medicine [15]. Subspace-based techniques,
such as in [16], can be used together with transfer learning to increase the accuracy when
the dataset is small.

Class imbalance is a common challenging related to medical image diagnosis [17],
since the amount of positive data and negative ones in each class might not be equivalent.
In this kind of application, the rare or minor occurrences are much more important than
the majority classes [18]. As a result, the contributions of the loss for these two kinds
of data are not the same, and the small data size of some class will affect the overall
training performance. Various methods could be used to handle imbalanced datasets,
including setting appropriate class weights for the model and random under-sampling and
over-sampling.

In this paper, a transfer learning method is proposed to classify 14 lung-related patholo-
gies using frontal-view chest X-ray images. The contributions of this paper are as follows:

• We built image classification models using pretrained networks;
• We preprocessed the data including data augmentation of the ChestX-ray8 dataset

and dealt with the class imbalance problem;
• We trained, validated, and tested the model using pretrained networks and compared

the performance of each model using the ROC curves. We visualized the classification
decision using Grad-CAM.

The structure of this paper is as follows. The methods and principles with respect
to transfer learning, data augmentation, evaluation, and visualization are presented in
Section 2. Section 3 then presents the experimental process and results. Finally, the conclu-
sion of this paper is drawn in Section 4.

2. Proposed Transfer Learning Method

In our work, transfer learning was used for the chest X-ray image classification task.
Transfer learning is an effective method in the image processing domain that can take
advantage of well-developed models to solve new tasks [19]. There are two main ways to
utilize pretrained networks in transfer learning: First, a pretrained model can be used as
the feature extractor for the new dataset. Once the features are extracted, added layers such
as a linear classifier can be trained for the new task. Second, the whole or some part of the
pretrained network will be fine-tuned for the new classification task. Thus, the weights of
the pretrained model are considered as the initial values and will be updated during the
training process. In our work, the first method was used since the dataset was small and the
computing power was limited. Two networks, i.e., DenseNet121 and ResNet50, were used
as the base models for transfer learning. In the following, the principle of transfer learning,
the framework of the networks, and the measures for the evaluation are discussed.

2.1. Transfer Learning with a Data Augmentation Approach

Two pretrained networks were employed as the training models in this project. The
first one is called ResNet50, which won the first prize in the 2015 ImageNet competition.
This model uses a shortcut connection, which is the basis of a residual network, and the
connection ensures that the feature of one preceding layer is the input of the later layers,
skipping some of the layers. Therefore, any layer in this framework has information
from the preceding layers. The design overcomes the problem of learning rate reduction
and invariant classification accuracy as a result of a deeper network. The second one is
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DenseNet121, which was the winner of the 2017 ImageNet competition and has been widely
applied in deep learning. DenseNet consists of DenseBlock layers, each of which receives
additional inputs from all preceding layers and transition layers. Additional inputs from
all preceding layers together with the feature maps of the current layer are all passed on
to other subsequent layers, and thus, the shortcuts of all the former layers and the latter
layer are built densely. For comparison, the traditional CNN with l layers has l connections
between adjacent layers, whereas DenseNet has l(l + 1)/2 layers in total because of its
shortcut feature [6]. Thus, the learned features could be reused and the network has less
channels as a result of the collective knowledge feature of each layer. Besides, this also
leads to better performance under the conditions of fewer parameters and little computing
cost. It also has some other advantages such as vanishing gradient problem mitigation
and parameter reduction. In contrast, since ResNet only has shortcuts between the former
layer and the latter layer, and DenseNet has demonstrated better performance. Due to
the aforementioned reasons, DenseNet is much deeper than ResNet and has more than
100 layers, and the training process could be more effective and the accuracy improved.

One basic problem of deep learning is the opposition of optimization and general-
ization [20]. Optimization is the learning process that adjusts the model to obtain the
best performance, while generalization is the performance of the model on the testing
of new data. The goal of learning is to realize a satisfactory generation, but this cannot
be controlled, so the models are always adjusted based on the training data. When the
training process begins, the generalization can become worse after a number of iterations,
which means the model is overfitting, and this is a common problem in training neural
networks. Among various methods used to prevent the neural networks from overfitting,
data augmentation is the most effective one and is widely used in computer vision, es-
pecially when the dataset is small. In Keras, data augmentation can be realized by using
the ImageDataGenerator class and transforming the image parameters randomly. Some
commonly adjusted parameters include the following: rotation_range is the rotation range
of the image; width_shi f t and height_shi f t are the range of shifting in the horizontal and
vertical direction, respectively; horizontal_ f lip is the flip ratio; sheer_range is the random
sheer angle of the image.

2.2. Evaluation Methods

The performance of the network needs to be evaluated after testing. Accuracy and
receiver operating characteristic (ROC) curves with the AUCROC were used as the metrics
for the evaluation. Accuracy shows the general performance of all testing images, and the
ROC curves with the AUCROC indicate the classification performance for each label.

The classification task in our project was a multi-task classification because one image
might correspond to more than one pathological condition. Therefore, the Accuracy can be
calculated as follows, since there are 14 pathological conditions:

Accuracy =
sumof truly predicted labels
14 ∗ (# of testing images)

(1)

The accurately predicted labels for all testing images were considered together instead of
calculating the accuracy of each image and then averaging them. The sum of the truly predicted
labels was calculated by first finding the number of truly predicted images for each label and
adding them together.

An ROC curve is a classification evaluation tool in deep learning. In real-world
applications, some datasets have the problem of class imbalance. For example, a common
case is that the number of negative images is larger than that of the positive images for
medical datasets. A stable evaluation curve could be achieved by using the ROC curve.
To summarize, the ROC curve has the following features: First, the curve can be used to
check the impact of a specific threshold value on the generalization ability of a classifier.
Second, the ROC can help determine the best threshold value, since the closer it is to the
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upper-left corner, the better the classifier is. Third, the ROC is a good tool to compare the
performance of many different classifiers for each class intuitively.

In the figure of a typical ROC curve, the horizontal coordinate, i.e., false positive rate
(FPR), and the vertical coordinate, i.e., true positive rate (TPR), are defined as follows:

TPR =
TP
P

=
TP

TP + FN
. (2)

FPR =
FP
N

=
FP

TN + FP
, (3)

where P is the number of real positive samples and N is the number of real negative samples.
TP means true positive, which is the positive samples that are predicted positively by the
model. FP mans false positive, which is the negative samples that are predicted positively
by the model; FN means false negative, which is the positive samples that are predicted
negatively by the model; TN means true negative, which is the negative samples that are
predicted negatively by the model. For a specified classifier, a pair of TPR and FPR points can
be obtained according to the testing performance. As a result, this classifier can be mapped
into a point on the ROC plain. The area under ROC curve (AUCROC) is used to quantify
the classification ability, and a larger AUCROC indicates better classification performance.

There are three methods to calculate the AUC manually, the namely trapezoidal
rule, the Mann–Whitney statistics [21], and the parameter rule. The first method uses the
vertical line of each point on the x-axis and calculates the sum of small trapezoidal areas.
The second method is proper for medical images, because it calculates the value of the
possibility that positive samples are larger than the negative samples. The third method
uses the mean and variance value when the samples obey a Gaussian distribution. In our
work, these two functions roc_auc_score, roc_curve can be used by directly importing them
from the sklearn.metrics library. After the AUC value is calculated, the performance of the
classifier can be analyzed: (1) If AUC = 1, the classifier is perfect. (2) If 0.5 < AUC < 1,
the performance is better than guessing randomly. If a proper threshold value is set, the
classifier can predict most of the cases correctly. (3) If AUC = 0.5, the process of prediction
is the same as a random guess, and there is no prediction value. (4) If AUC < 0.5, it is
worse than guessing. However, if predicting inversely, it is similar to the second case.

2.3. Visualization Using Class Activation Maps

Visualization of neural networks increases the interpretability of the networks in the
field of computer vision. The complexity of medical images always makes the visualization
harder. In our work, the class activation map (CAM) was used for visualization. The basic
principle of the CAM is that it will produce a heat map of the input images, indicating the
degree of similarity between the real class and the predicted class. Specifically, the technique
used in this work was gradient-weighted class activation mapping (Grad-CAM) [22]. This
method generates a localization map with the significant parts of the image highlighted
by extracting the gradient of the classification target and letting the gradient flow into the
last layer.

A convolutional neural network normally consists of a feature extractor, which is
used to extract useful features, and a classifier, which classifies according to the extracted
features. There are two kinds of classification models. One is feature extraction with flatten
and softmax layers: A flatten layer is used to transform the three-dimensional images
into one-dimensional vectors. A dense layer will then be added, and finally, there is a
softmax function as the activation function for the output. The other is feature extraction
with global average pooling (GAP) and softmax, where a global average pooling layer
is used to substitute the flatten layer: this has the advantages of reducing the number of
parameters, making the training process easy and preventing from overfitting. Based on
the classification model, the CAM is generated.

For a traditional CNN model that has a flatten layer, if the last layer of the CNN has
n feature maps, which means there are n weights for a neuron in the classifier layer and
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each neuron relates to a class, then the class activation map [22] for class c can be calculated
as follows:

Lc
CAM =

n

∑
i=1

wc
i Ai, (4)

where the weights for the ith neuron are: wi
1, wi

2, wi
3, · · · , wi

n, and Ai indicates the feature
maps in the last layer. If a GAP is used to substitute the flatten layer, the classification score
of class c [22] can be calculated as follows:

Sc =
n

∑
i=1

wc
i GAP(Ai) =

1
Z

n

∑
i=1

c1

∑
k=1

c2

∑
j=1

Ai
kjw

c
i , (5)

where wc
i is the weight for the GAP and the size of a feature map is Z = c1 ∗ c2. The value

of Sc is determined by the pixel value Ai
kj and weights wc

i . If the multiplication of the pixel
value and weights is larger than 1, the sample will be classified into this current class c, and
the model considers the original image as related to this class. This equation helps decide
which part of the original image corresponds to a specific pixel.

CAMs are a very powerful tool for the visualization of the neural network’s decision-
making process. However, they have certain limitations: (1) We can apply CAMs only if the
CNN contains a GAP layer; (2) heat maps can be generated only for the last convolutional
layer. To address these issues, gradient-weighted class activation mapping (Grad-CAM) is
proposed. The class activation mapping for class c [22] can be generated by:

Lc
Grad−CAM =

1
Z

n

∑
i=1

c1

∑
k=1

c2

∑
j=1

∂Sc

∂Ai
kj

Ai. (6)

Grad-CAM is the generalization of the CAM, and the gradient operator indicates the
backpropagation. Grad-CAM was employed in our work due to its advantages. The code
implementation included the following steps: (1) The output of the batch normalization
(BN) layer [23] and the output of the whole network were extracted. (2) Backpropagation
was computed from the output of the whole network to the output of the BN layer by using
function gradients in TensorFlow to calculate the gradient automatically. (3) We used the
gradients as the weights and multiplied them with the output of the BN layer. (4) Function
resize in the OpenCV library was used to compound the feature maps to visualize.

3. Simulation Results

Our simulation process can be divided into three parts: (1) The raw data need to
be preprocessed, including checking the data leakage, handling the class imbalance, per-
forming the data augmentation, and generating new images. (2) The training process was
conducted. (3) The testing and evaluation results showed the generalization ability of the
model. Simulations were conducted on a GPU-equipped computer, using TensorFlow and
Keras.

3.1. Data Preprocessing

The data used in our work were frontal-view chest X-ray images from patients. The
whole dataset was obtained from https://nihcc.app.box.com/v/ChestXray-NIHCC (ac-
cessed on 10 Febuary 2021). Each image in the dataset includes 14 labels for 14 pathological
conditions, such as consolidation, effusion, edema, atelectasis and so on. For each label,
1 means positive and 0 means negative. After classification, the pathological conditions
can be utilized by physicians to detect eight different diseases. The original datasets were
divided into three groups for training, validation, and testing, respectively.

Data leakage is a common problem for processing medical images, because one patient
may have multiple images. Data leakage will lead to the overfitting problem, since it is
difficult for the model to learn from similar features and to predict other new features. To
ensure that there is no data leakage between any two datasets, the datasets should not

https://nihcc.app.box.com/v/ChestXray-NIHCC
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contain the images from the same patient. The identification of unique patents of each set
was collected by using the set function in Python, and then, the intersection function was
used to check whether the two datasets contain information from the same patient.

Neural networks can only process the data in the format of float tensor. Therefore,
formatting is important, since the original dataset contains images in PNG files. In Keras,
there is a class named ImageDataGenerator, which can be used to finish the following tasks
in sequence: read image files; encode the PNG files into RGB pixels; transform these pixels
into a float tensor; scale the pixels in the range of [0,1]. Then, three generators are defined
to load the images into the network. Several parameters can be set to proper values in
ImageDataGenerator:

• Batch size. The batch size, the number of samples for one training, influences the
optimization degree and speed. Since the network was trained on a GPU (2×Tesla
V100)-equipped machine, batch_size = 16 matches the GPU’s performance;

• Resolution. The original images provided in [24] have a size of 1024 × 1024, which
is relatively too big to be processed. With the help of a Python generator in Keras,
the images were scaled to 400 × 400, the value of which was chosen to balance the
accuracy and learning speed.

The data augmentation module was added to the generator, which means that the
data were already augmented before feeding them into the neural network. In order to
compare the image before and after data augmentation, the first image of the dataset is
shown in Figure 1 by using the plt.imshow function. As shown in Figure 2, the image was
shifted and zoomed after augmentation.

Figure 1. A chest X-ray image.

Figure 2. A chest X-ray image with data augmentation.
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Class imbalance was handled by calculating the weight loss as the loss function.
Specifically, for each label, the loss was weighted by the frequency of positive data (wp)
and that of negative data (wn) as shown below:

L(X, y) =

{
wp ∗ (−log(Y = 1|X)), if y = 1,
wn ∗ (−log(Y = 1|X)), if y = 0,

(7)

where Y stands for predication and X means input labels.

3.2. Training

The pretrained network was used as the base model. A global pooling layer was
added using function GlobalAveragePooling2D, and a fully connected layer was placed as
the output layer by employing the Dense function with Softmax activation. In our work,
the aim was to realize the classification of 14 pathological conditions, which is a multi-task
classification problem. In this scenario, the effective activation was Softmax. The final
output of the model is called the prediction, which is a 14-length vector with each element
indicating the probability of a certain pathological condition. In order to compile the whole
model, function compile was used, and several related parameters were set. For example,
compiling the model required the type of loss function and the optimizer. The weighted
loss was considered as the loss function, since the class imbalance problem was handled by
the weighted loss. Adam was used as the optimizer since it has better performance than the
traditional optimizers, such as the Momentum and RMSprop optimizers. Since “accuracy”
was used as the metric, the accuracy of each training step and each validation step was
displayed while running the code.

After all the preparations were completed, the network was trained by using training
labels and images. The goal of the training was optimization, which means the model
itself builds the connection of the output and output and learns the features. By using the
f it_generator function, the model first fits the data to realize training and then performs
the validation. Some parameters are important for the training and/or validation process:

• Steps per epoch means the number of steps for each epoch. Data in its batch size were
the input from the generator to the network for each step. The relationship between
this parameter and the batch size was (# steps per epoch) × batch size = # total training
samples. Since the batch size was set to 16 because of the GPU performance and the
total samples for training were 402, the steps per epoch should be 25;

• The value of the validation steps needs to be assigned, after the steps per epoch are de-
termined. The validation steps were the total number of steps in the validation dataset.
The validation steps should be two, since there were forty images for validation, and
(# validation steps) × batch size = # total validation samples;

• The value of the epoch decides the total number of training samples. In each epoch,
the network learns the features from all of the input images. In this work, the epoch
was set to 80. The reason was that the plots with 80 epochs could clearly show the
variation tendency of the accuracy and loss, and also, overfitting might occur if the
network is trained for too many epochs. Early stopping was also used by stopping
training if the accuracy did not increase for 10 epochs, which can help mitigate the
overfitting problem to some extent.

When each epoch of training was finished, the weights of the current trained network
were saved in a weight file, by calling the model.save function. The later training was based
on the formerly saved weights.

The next step was to plot the loss curve for training and validation, which is useful for
observing network convergence and the overfitting problem. Function Matplotlib in Keras
was used for plotting. After all training and validation epochs, the loss for each epoch can
be retrieved by calling the history function.

The training loss and validation loss of DenseNet121 without DA, DenseNet121 with
DA, and ResNet50 with DA as the base model are shown in Figure 3. The results without
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DA and with DA were firstly compared. Figure 3a,b shows that both of the losses with
or without DA for the training decreased from one to nearly zero with the increase of the
epoch, while those for validation increased from one to almost five, which means that the
model was overfit. Ideally, training loss and validation loss should have the same trends,
if the model is well fit. The figures also demonstrate that the model with DA had better
performance than that without DA. The figures show that the model with DA learned
the model slower than that without DA, since more images needed to be fed into the the
network after data augmentation. The curves for DenseNet121 without DA fluctuated more
than those with DA. The loss curves by using ResNet50 as the base model with DA are also
presented. Compared with DenseNet121, ResNet50 took more time to train because the
training loss converged at around the 70th epoch.

(a) (b) (c)

Figure 3. Loss curves for xx with/without DA. (a) DenseNet121 without DA. (b) DenseNet121 with
DA. (c) ResNet50 with DA.

The training accuracy of using these three models is shown in Table 1. DenseNet121
with DA had the highest training accuracy, followed by DenseNet121 without DA and then
ResNet50. The reason was that the dataset became larger and more diversified after DA,
and thus, the network was trained to be optimal. ResNet50 had the lowest training accuracy,
since there were fewer shortcut connections inside of the base model, and consequently,
the learning ability was poorer.

Table 1. Training accuracy for different networks.

Networks Type of Data Processing Training Accuracy

DenseNet121
Without data augmentation 0.89

With data augmentation 0.92

ResNet50 With data augmentation 0.84

3.3. Testing and Evaluation

All the testing images were fed into the model, and the prediction results could be
obtained. To test the network, function predict_generator was used as the major function.
The output of this function was a list, which included the probability of classification for
each label. When this probability was larger than the threshold value of 0.5, the program
considered the prediction as correct. After comparing the prediction results with the real
label of each image, the generalization ability of the model could be known with the self-
defined function to calculate the testing accuracy. The classification accuracy for testing
the datasets using DenseNet121 without DA, DenseNet121 with DA, and ResNet50 with
DA is shown in Table 2. This table shows that DenseNet121 had better performance than
ResNet50, and DA was beneficial for improving the classification accuracy.
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Table 2. Testing accuracy for different networks.

Networks Type of Data Processing Testing Accuracy

DenseNet121
Without data augmentation 0.82

With data augmentation 0.84

ResNet50 With data augmentation 0.76

In order to evaluate the model, the receiver operating characteristic (ROC) curves were
generated, and the area under the curve (AUC) was calculated. Keras has a library, sklearn,
which can conduct some advanced computations in machine learning and computer vision.
For the evaluation, functions roc_auc_score and roc_curve were imported from the library
to calculate the AUCROC and to derive the ROC curve. Figure 4 illustrates the ROC curves
and the AUCROC values of DenseNet121 without DA for the 14 pathological conditions.
The horizontal axis indicates the false positive rate, while the vertical axis indicates the
true positive rate. The AUCROC score for each class is listed at the lower-right corner
of this figure, e.g., for cardiomegaly, the AUCROC was 0.51, which means that the area
under curve for the label was 0.51. The figure shows that the ROC curves for several
pathologies lie below the straight line that passes through points (0,0) and (1,1). For these
pathologies, the classifier worked even worse than random guessing. The AUCROC values
of five pathologies, i.e., emphysema, infiltration, pneumothorax, pleural thickening, and
pneumonia, were all less than 0.5, which means that the classifier could not diagnose most
of the images in these classes correctly. Therefore, this figure indicates that the classification
ability of DenseNet121 without DA was relatively poor.

Figure 4. The ROC and AUCROC for DenseNet121 without DA.
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Figure 5 illustrates the ROC curves and the AUCROC values of DenseNet121 with
DA for the 14 pathological conditions. This figure shows that most of these ROC curves
are located above the dotted line that passes through points (0,0) and (1,1), and all of the
AUCROC values are larger than 0.5. The reason was that the images were preprocessed
with DA, which led to a better-trained network. For fibrosis, the ROC curve lies signifi-
cantly higher than the other curves and is mostly close to the upper-left corner, and its
AUCROC was the largest with a value of 0.775, which means that its classifier had the best
performance among all 14 classifiers. For nodule and infiltration, their AUCROC values
were just slightly larger than 0.5, which means that these classifiers could help predict these
pathological conditions, but the performance was relatively poor.

Figure 5. The ROC and AUCROC for DenseNet121 with DA.

Figure 6 illustrates the ROC curves and the AUCROC values of ResNet50 with DA for
the 14 pathological conditions. Compared to Figure 5, more ROC curves using ResNet50
with DA lie below the straight dotted line that passes through points (0,0) and (1,1) than
those using DenseNet121 with DA. The largest AUCROC value was for fibrosis, with the
value of 0.68, which was smaller than that of using DenseNet121 with DA. The AUCROC
values of three classes, i.e., emphysema, pneumothorax, and pneumonia, were smaller than
0.5, which means that these classifiers could not help predict these pathological conditions.

The comparison of the ROC curves and AUCROC values for different networks
demonstrated that the classifiers trained by DenseNet121 had better performance than
those trained by ResNet50. The results also indicated that DA improved the classification
capability for all of the classes. Most of the ROC curves lie above the straight dotted line
that passes through points (0,0) and (1,1), but they are not close to the upper-left corner
enough, because the dataset used for testing was relatively small.
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Figure 6. The ROC and AUCROC for ResNet50 with DA.

3.4. Visualization

The visual explanation of classification decision-making was produced by using Grad-
CAM techniques. The heat maps of using DenseNet121 as the base model are shown in
Figures 7 and 8. These chest X-rays were randomly selected from the datasets, and only
the four most probable diagnosis heat maps are shown in the figure. The probability of
diagnosing a certain pathological condition is demonstrated in each of the subfigures. For
example, in Figure 7, the original chest X-ray image is shown in the first subfigure. The
second and third subfigures indicate that it is impossible for the image to be classified
as cardiomegaly or hernia. The fourth and fifth subfigures mean that the image has a
probability of 0.763 and 0.593 to be diagnosed as nodule and edema, respectively. Figure 8
shows that the original image has the possibility of being diagnosed into four pathological
conditions, and the most probable one is nodule with a probability of 0.822.

Figure 7. Visualization of the diagnosis heat maps of one image example by the use of Grad-CAM.
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Figure 8. Visualization of the diagnosis heat maps of the second example by the use of Grad-CAM.

4. Conclusions

A deep learning approach was proposed to use transfer learning and pretrained
networks to recognize and classify chest X-ray images into 14 pathological conditions,
and therefore help with diagnosing diseases related to these pathological conditions. The
performance of the two adopted pretrained networks DenseNet121 and ResNet50 was
compared, and DA was also used to further improve the performance. Evaluation metrics,
such as the accuracy, ROC curves, and AUCROC curves were utilized. The simulation
results showed that the network using DenseNet121 as the base model with DA had
a better generalization ability on the testing datasets. In the future, multiple transfer
learning methods could be used together with ensemble classifiers to further improve
the performance of the proposed work. The potential use of the other datasets, such as
PadChest, ChexPpert, and MIMIC-CXR, will be explored in our future work.
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