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Density-functional theory and the v-representability problem for model strongly

correlated electron systems

Arno Schindlmayr and R. W. Godby
Cavendish Laboratory, University of Cambridge, Madingley Road,

Cambridge CB3 0HE, United Kingdom

(Received 28 November 1994)

Inspired by earlier work on the band-gap problem in insulators, we reexamine the treatment of
strongly correlated Hubbard-type models within density-functional theory. In contrast to previous
studies, the density is fully parametrized by occupation numbers and overlap of orbitals centered
at neighboring atomic sites, as is the local potential by the hopping matrix. This corresponds to a
good formal agreement between density-functional theory in real space and second quantization. It
is shown that density-functional theory is formally applicable to such systems and the theoretical
framework is provided. The question of noninteracting v representability is studied numerically for
finite one-dimensional clusters, for which exact results are available, and qualitatively for infinite
systems. This leads to the conclusion that the electron density corresponding to interacting sys-
tems of the type studied here is in fact not noninteracting v representable because the Kohn-Sham
electrons are unable to reproduce the correlation-induced localization correctly.

I. INTRODUCTION

Originally formulated in the 1960s, density-functional
theory (DFT) has since become the most widely used
method for electronic-structure and total-energy calcula-
tions. It is a general theory that is applicable to finite
molecular systems as well as to bulk solids and, unlike
other computational methods, it has the distinct advan-
tage of being in principle an exact theory that takes
the electronic interaction fully into account. Density-
functional theory is based on the observation that the
total energy and other characteristic ground-state prop-
erties of a system of interacting electrons in an external
potential can be considered as unique functionals of the
one-particle density n(r), which then replaces the wave
functions as the basic variable.

Although potentially powerful, the original Hohen-
berg-Kohn theorem1 does not provide a simple recipe
to calculate the ground-state density of the interacting
electron system, so that practical applications of density-
functional theory rely on the Kohn-Sham scheme,2 in
which the interacting system is replaced by a fictitious
system of noninteracting electrons with the same spa-
tial density moving in an effective potential. The central
assumption is that such an equivalent system of nonin-
teracting electrons always exists, i. e., that all interacting
v representable densities are also noninteracting v repre-
sentable.

In the Kohn-Sham scheme, the total energy is split
into several contributing functionals, all but one of which
are either known explicitly or can be replaced by other
well-known terms. The essential unknown quantity is
the exchange-correlation energy Exc[n], a universal func-
tional of the density, and its functional derivative, the
exchange-correlation potential Vxc([n]; r).

Although, unfortunately, the exact analytic expression
for the exchange-correlation energy remains unknown,

many properties of the functional have been cataloged.3

One of the more surprising features is a finite disconti-
nuity in the exchange-correlation potential with respect
to particle number,4 which has the effect that even ex-
act density-functional theory will underestimate the band
gap of semiconductors. The question whether the poor
agreement between density-functional calculations and
the true band gap is indeed mainly due to this discon-
tinuity or rather to additional approximations such as
the local-density approximation (LDA) is known in the
literature as the band-gap problem.

The Hubbard model, a simple second-quantization
model for strongly correlated electrons, may be solved
exactly for small clusters and so could be used to explore
the properties of exact density-functional theory. This
was done by Gunnarsson and Schönhammer in a study of
the band-gap problem5 and subsequently for comparing
the Kohn-Sham Fermi surface with the exact quasiparti-
cle Fermi surface.6 In their second-quantization version
of density-functional theory, the density is replaced by
the occupation numbers only and the place of the exter-
nal potential is taken by the diagonal on-site energies,
whereas all nondiagonal hopping parameters are treated
as constants. This is a consistent approach to correlated
systems, but it does not follow the second quantization
of the operators in question.

In this paper, we investigate a different formulation
of density-functional theory for correlated Hubbard-type
systems that is closer to the original scheme in the con-
tinuum. Our approach is strictly based on second quan-
tization with a complete parametrization of the density,
which includes the overlap between orbitals centered at
different atomic sites, and no constraints on the local
potential. We demonstrate that density-functional the-
ory, in this formulation, is in principle applicable to
the Hubbard model, but we also show that the ground-
state density is in fact not noninteracting v representable
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under the Kohn-Sham scheme. These findings should
be of particular interest since the results of the above-
mentioned model calculations have often been cited in
connection with the properties of real-space function-
als, especially the band-gap problem:7 Gunnarsson and
Schönhammer found that the discrepancy between the
true band gap and the energy-eigenvalue gap derived by
density-functional theory using the LDA was mainly due
to the LDA itself rather than to the discontinuity in the
exchange-correlation potential; the opposite was found in
a study of more realistic semiconductor models by Godby,
Schlüter and Sham.8

In Section II we will establish a formulation of density-
functional theory appropriate for the Hubbard model and
prove the fundamental theorems. In Section III we will
examine the influence of correlation and the external po-
tential on the density and highlight the importance of
overlap between orbitals centered at different sites. In
Section IV we will discuss the question of v representabil-
ity and demonstrate that the ground-state density of the
interacting Hubbard model and of related models is not

noninteracting v representable.

II. FORMALISM

A. The Hubbard model

The Hubbard Hamiltonian9 is given by

Ĥ =
∑

〈ij〉

∑

σ

tijc
†
iσcjσ + U

∑

i

n̂i↑n̂i↓. (1)

The index i labels the atomic sites and the summation
over 〈ij〉 includes all pairs up to nearest neighbors. σ ∈
{↑, ↓} denotes the two spin orientations.

The first part of the Hamiltonian represents the con-
tribution due to the kinetic energy and the external
(pseudo)potential Vext(r) and is responsible for the elec-

trons hopping between the atomic sites. c†iσ and ciσ are
the creation and annihilation operators for an electron
at site i with spin σ, respectively. The hopping-matrix
elements tij are real and satisfy the symmetry condition
tij = tji. They are the representation of the external
potential in second quantization and are related to it by

tij =

∫

φ∗(r − Ri)

(

−
h̄2

2me

∇2 + Vext(r)

)

φ(r − Rj) dr,

(2)

where φ(r − Ri) is the Wannier-type orbital centered at
Ri of the system in question. The existence of these
orbitals underlies second quantization, but their actual
analytic form is of no consequence for the numerical work
presented below.

The second contribution to the Hamiltonian represents
the on-site Coulomb repulsion, which acts between two

electrons occupying the same atomic site. n̂iσ ≡ c†iσciσ is
the particle-number operator for site i and spin σ. The
interaction parameter U is real and U > 0. Its value is
given by

U =
1

2

∫∫

e2

4πε0

|φ(r)|2 |φ(r′)|2

|r − r′|
dr dr′. (3)

When discussing the adjusted density-functional for-
malism in this section, we will always refer to the Hub-
bard Hamiltonian in the general form (1) without spec-
ifying the dimensionality or configuration of the system.
In particular, no spatial symmetries are assumed, so the
formalism holds for lattices as well as for finite or dis-
ordered systems. In the latter case, the occurence of
different Wannier orbitals may lead to a site-dependent
interaction parameter, but this is not in conflict with the
general formalism. M denotes the number of sites and
N is the number of electrons.

As a prerequisite of density-functional theory, it is es-
sential to define the density in a proper way. As for the
Hamiltonian, we assumed that overlap of the Wannier
orbitals was negligible except between neighboring sites,
and this assumption must be retained for consistency.
The density corresponding to some state |Ψ〉 will there-
fore be of the general form

n(r) = 〈Ψ|n̂(r)|Ψ〉 =
∑

〈ij〉

nijφ
∗(r − Ri)φ(r − Rj). (4)

The density operator n̂(r) is given by

n̂(r) =
∑

〈ij〉

∑

σ

φ∗(r − Ri)φ(r − Rj)c
†
iσcjσ (5)

in second quantization and the density is thus parame-
trized by the coefficients

nij =
∑

σ

〈Ψ|c†iσcjσ |Ψ〉. (6)

The diagonal elements ni ≡ nii are just the orbital oc-
cupation numbers, but we are also left with off-diagonal
elements. Strictly speaking, the dependence of the total
energy on the density coefficients is that of a function
rather than a functional, but for clarity, we will con-
tinue talking about density functionals. It should then
be borne in mind that all densities to be considered are
of the form (4).

B. The Hohenberg-Kohn theorem

The analog of the Hohenberg-Kohn theorem in this
formalism incorporates three important statements.

(i) The ground-state expectation value of any observ-

able Ô is a unique functional O[nGS] of the ground-state
electron density nGS.
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(ii) The ground-state density nGS minimizes the total-
energy functional E[n].

(iii) The total-energy functional can be written in the
form

E[n] = F [n] +
∑

〈ij〉

tijnij (7)

where F [n] is a universal functional of the density.
In proving these statements, we have largely followed

the procedure given by Levy.10 Throughout, the ground
state is assumed to be nondegenerate, but the formalism
can be extended to cover degenerate ground states in
much the same way as conventional density-functional
theory.11 First, we define the energy functional by

E[n] := min
|Ψ〉→n

〈Ψ|Ĥ |Ψ〉. (8)

The constraint |Ψ〉 → n marks all antisymmetric N -body
wave functions that yield the density n as defined above.
This functional is properly defined for allN -representable
densities, i. e., all densities that can be constructed from
N -fermion wave functions. In particular, this includes
all ground-state densities studied here. The variational
principle then guarantees that the ground-state density
indeed minimizes E[n].

At the same time, the definition (8) constitutes a map
nGS 7→ |Ψ[nGS]〉, where |Ψ[nGS]〉 denotes the N -body
wave function that yields the ground-state density nGS

of a particular system and minimizes the energy. We
can therefore properly define the ground-state expecta-
tion value of an arbitrary observable Ô as a functional of
the ground-state density by

O[nGS] := 〈Ψ[nGS]|Ô|Ψ[nGS]〉. (9)

The single-particle contribution to the functional E[n],
which we will henceforth term the hopping energy, can
be essentially simplified. Using the explicit form of the
Hubbard Hamiltonian and the definition of the density
coefficients, (8) can be transformed into the expression

E[n] =
∑

〈ij〉

tijnij + min
|Ψ〉→n

〈

Ψ

∣

∣

∣

∣

∣

U
∑

i

n̂i↑n̂i↓

∣

∣

∣

∣

∣

Ψ

〉

. (10)

We can now define the observable F̂ by

F̂ := U
∑

i

n̂i↑n̂i↓ (11)

and thereby obtain the form (7). F [n] is universal in the
sense that it is independent of the particle number and
the external potential. The upper limit in the sum over i
need not be specified because the number of sites enters
through the constrained search over the wave functions
that yield the density n. Finally, the interaction U is
fixed through its definition (3). This completes the proof
of the Hohenberg-Kohn theorem.

C. The Kohn-Sham scheme

The second part of the Hohenberg-Kohn theorem sug-
gests that if we knew the exact analytic form of E[n], we
could find the ground-state energy by a variational prin-
ciple that minimizes the functional under the constraint
of particle conservation, but it does not provide a prac-
tical procedure to do so. Rather, the constrained search
over the wave functions leaves us with another compli-
cated N -body theory.

The essential simplification is obtained by the Kohn-
Sham scheme, which assumes that the ground-state den-
sity nGS of the Hamiltonian (1) can alternatively be gen-
erated by the ground state of a fictitious system of nonin-
teracting electrons moving in an effective potential. This
is known as the assumption of noninteracting v repre-
sentability. The equivalent system can be used to calcu-
late the exact ground-state energy and the mathematical
expense is reduced to an effective one-particle problem.
This one-particle Hamiltonian is given by

Ĥs =
∑

〈ij〉

∑

σ

teffij c
†
iσcjσ . (12)

The N -body ground state is supposed to be nondegene-
rate. Following the central assumption stated above, the
hopping parameters are chosen so that the ground-state
density matches that of the interacting system. In this
case, the density coefficients are given by

nGS
ij =

N
∑

γ=1

∑

σ

〈ψγ |c
†
iσcjσ|ψγ〉 (13)

in terms of the one-particle wave functions that corre-
spond to the N lowest energy eigenvalues ǫγ of Ĥs. The
ground-state energy of the noninteracting system is a
functional of nGS and can be written directly as

Es[n
GS] =

N
∑

γ=1

ǫγ =
∑

〈ij〉

teffij n
GS
ij . (14)

Due to the Hohenberg-Kohn theorem, this functional has
to be stationary under infinitesimal density variations δn
within the domain of valid N -fermion densities:

0 = δEs =
∑

〈ij〉

teffij δnij . (15)

In order to map the interacting electrons onto the non-
interacting system, we start by separating a Hartree term
out of the total-energy functional (8):

E[n] =
∑

〈ij〉

tijnij +
U

2

∑

i

n2
i + Exc[n]. (16)

The exchange-correlation functional Exc[n] incorporates
all exchange and correlation effects that are not included
in the Hartree term and is formally defined by

3



Exc[n] := F [n] −
U

2

∑

i

n2
i . (17)

At the ground-state density, E[n] must also be stationary
under infinitesimal variations δn that correspond to N -
fermion densities:

0 = δE =
∑

〈ij〉

(

tij + Uδijn
GS
i + vxc

ij [nGS]
)

δnij , (18)

where vxc
ij [nGS] denotes the elements of the exchange-

correlation matrix, which is defined by

vxc
ij [nGS] :=

∂Exc[n]

∂nij

∣

∣

∣

∣

n=nGS

. (19)

By comparison with (15), the effective hopping-matrix
elements can now be uniquely defined as

teffij := tij + Uδijn
GS
i + vxc

ij [nGS]. (20)

This expression for the effective potential can be used
to calculate the ground-state electron density in a self-
consistent manner. The total energy can eventually be
calculated from (16). As usual, it is possible to replace
the term that contains the kinetic energy using the eigen-
values ǫγ of the one-particle Schrödinger equation, but
this is not advisable here because the hopping term is
already of the simplest possible form.

In principle, splittings of the total energy other than
(16) are possible. In Ref. 5 the hopping term is treated
much like the kinetic energy in the conventional formal-
ism. Hence the functional E[n] splits into the hopping
energy of the corresponding system with U = 0, the
Hartree term, and an exchange-correlation energy defined
in a different way from the one used here. However, only
the formulation introduced here shows the distinct fea-
ture that the term F [n] is a universal functional indepen-
dent of the external potential, in practice a prerequisite
for any systematic application of density-functional the-
ory, and a feature of density-functional theory for real
systems. We therefore believe that our formulation of
density-functional theory is the natural counterpart of
that used for ab initio calculations.

D. The problem of v representability

The conceptual idea of the Kohn-Sham scheme, con-
structing the ground-state density by means of a system
of noninteracting electrons, ultimately leads to the ques-
tion of v representability. As a definition, we call a den-
sity interacting v representable if it corresponds to the
ground state of a Hamiltonian of the form (1), which in-
cludes a specified on-site interaction term. On the other
hand, a density that corresponds to the ground state of a
one-particle Hamiltonian of the form (12) is called non-
interacting v representable.

The functionals in second quantization differ from
those in the continuum formulation and we cannot hope
to transfer any previous findings on the question of v rep-
resentability. The constrained search guarantees that all
functionals are well defined for arbitraryN -representable
densities, which includes both interacting and noninter-
acting v representable densities, but the crucial question
is whether the ground-state density of a given interacting
system indeed minimizes a corresponding Kohn-Sham en-
ergy functional Es[n]. As there is no obvious indication
whether the two domains of interacting and noninter-
acting v representable densities overlap or even coincide,
we have investigated this question by means of numeri-
cal simulations and we have come to the conclusion that
they are in fact largely distinct.

III. CORRELATION AND THE OVERLAP

COEFFICIENTS

A. The effect of correlation

We consider a finite one-dimensional Hubbard chain
at half-filling, which we solve numerically by exact diag-
onalization. We assume the on-site energies ei ≡ tii to
be zero and the other hopping parameters to be identical
between all nearest neighbors:

Ĥ = −t
M−1
∑

i=1

∑

σ

(

c†iσc(i+1)σ + c†(i+1)σciσ

)

+ U
M
∑

i=1

n̂i↑n̂i↓

(21)

with t > 0. We give results for an eight-site chain here, a
configuration that has a nondegenerate ground state for
all choices of t and U . Calculations performed for other
chain lengths have produced very similar results.

To visualize the effect of correlation, we fix t = 1 and
calculate the ground-state energy and the density coef-
ficients for different U . The results are shown in Table
I. The total energy E(U) is the lowest eigenvalue of the

Hamiltonian matrix, T (U) = −t
∑M−1

i=1 (ni(i+1) +n(i+1)i)

denotes the hopping energy and EH(U) = U
∑M

i=1 n
2
i /2

is the Hartree energy. The exchange-correlation energy
is calculated from Exc(U) = E(U) − T (U) − EH(U).

We find that the occupation numbers ni = 1 exactly,
independent of U : the electrons are distributed evenly.
On the other hand, the interaction obviously reduces the
overlap between orbitals centered at different sites. The
underlying physical reason is that the on-site Coulomb
repulsion opposes the hopping of electrons to a site that
is already occupied. The correlation thus reduces the
electron fluctuations. For increasing U , the electrons be-
come eventually localized on the atomic sites and the
hopping energy approaches zero.

The localization effect that we have visualized here
is just the mechanism that is responsible for the Mott
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TABLE I. Energy and density coefficients of the eight-site
Hubbard chain for t = 1 and selected values of U . The in-
creasing correlation reduces the overlap and thus leads to a
strong localization of the electrons. In the limit U → ∞, the
orbital overlap reaches zero and the electrons are completely
localized.

U = 0 U = 2 U = 4 U = 8 U → ∞

E(U) -9.52 -6.23 -4.24 -2.42 0.00
T (U) -9.52 -8.82 -7.19 -4.59 0.00
EH(U) 0.00 8.00 16.00 32.00 ∞

Exc(U) 0.00 -5.41 -13.05 -29.83 −∞

n1 = n8 1 1 1 1 1
n2 = n7 1 1 1 1 1
n3 = n6 1 1 1 1 1
n4 = n5 1 1 1 1 1
n12 = n78 0.862 0.793 0.641 0.408 0.000
n23 = n67 0.495 0.455 0.370 0.238 0.000
n34 = n56 0.758 0.714 0.589 0.376 0.000
n45 0.529 0.484 0.391 0.249 0.000

metal-insulator transition,12 although it has been shown
that a true phase transition does not occur for finite U :
the half-filled Hubbard chain is a conductor for U = 0
and a Mott insulator otherwise.13

B. The importance of the overlap parameters

The possibility of electrons hopping between neighbor-
ing atomic sites requires a significant overlap of the or-
bitals. On the mathematical side, this overlap explicitly
enters the expression for the hopping parameters (2). It
is therefore both qualitatively and quantitatively an im-
portant feature of the system. For reasons of consistency,
one must use overlap coefficients as well as occupation
numbers to parametrize the density. On the other hand,
it might be argued that the overlap contribution to the
density in real space was negligible due to the strong lo-
calization of the Wannier-type orbitals. Although this
argument might seem plausible if the Wannier states are
chosen to resemble the localized d orbitals found in tran-
sition metals, there is more to be said: the energy as a
functional of the density depends very sensitively on the
overlap coefficients and it is therefore essential to include
those in all practical applications. To clarify this point,
we now hold the parameter U = 4 fixed and vary t. Re-
sults are given in Table II. The density coefficients are
the same as in Table I, because they depend on the ratio
t/U only.

As the interaction is now specified by fixing U , all en-
ergy expectation values are unique functionals of the den-
sity due to the Hohenberg-Kohn theorem. The important
point to note is that for this particular configuration, the
occupation numbers are identical regardless of the exter-
nal potential represented by t, but the overlap coefficients

are not, which allows us to identify their influence. As

for the hopping energy, the dependence on the overlap is
known explicitly:

T [n] = −t

M−1
∑

i=1

(

ni(i+1) + n(i+1)i

)

. (22)

The exchange-correlation energy Exc[n] also varies, but
its dependence on the overlap is much more subtle. When
applying the Kohn-Sham scheme, whether in exact or ap-
proximate density-functional theory, we must thus make
sure to reproduce both the exact occupation numbers and

overlap coefficients of the interacting system.
In the formalism used in Ref. 5, T [n] is equal to the

hopping energy of the corresponding system with zero
interaction and would therefore be proportional to t,
whereas the Hartree term is constant if the occupation
numbers are. The sum of both then changes linearly
with t. However, from the values given in Table II, it is
clear that the total energy is not linear. The exchange-
correlation energy must therefore depend sensitively on
t, which is treated as a parameter. If an analytic approxi-
mation is used rather than the exact functional, it should
definitely show this feature. It is then clear that an ap-
proximation such as the “local-density approximation”
defined by Eq. (2) in Ref. 5, which depends only on U
and on the occupation numbers and so is independent of
t, has a fundamental flaw not shared by the normal LDA
for real systems. Results that depend on making a con-
nection between such an approximation and the LDA for
real systems, such as the conclusions of Ref. 5 regarding
the LDA band-gap error, are therefore questionable.

TABLE II. Energy and density coefficients of the eight-site
Hubbard chain for U = 4 and selected values of t. As the oc-
cupation numbers remain constant, the change in the energy
values reflects the dependence of the functionals on the non-
diagonal density coefficients.

t → ∞ t = 2 t = 1 t = 0.5 t = 0

E[n] −∞ -12.45 -4.24 -1.21 0.00
T [n] −∞ -17.64 -7.19 -2.29 0.00
EH [n] 16.00 16.00 16.00 16.00 16.00
Exc[n] -8.00 -10.81 -13.05 -14.92 -16.00

n1 = n8 1 1 1 1 1
n2 = n7 1 1 1 1 1
n3 = n6 1 1 1 1 1
n4 = n5 1 1 1 1 1
n12 = n78 0.862 0.793 0.641 0.408 0.000
n23 = n67 0.495 0.455 0.370 0.238 0.000
n34 = n56 0.758 0.714 0.589 0.376 0.000
n45 0.529 0.484 0.391 0.249 0.000
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IV. RESULTS AND DISCUSSION

A. Numerical studies for small M

In order to test the existence of effective hopping pa-
rameters and thereby decide the question of noninteract-
ing v representability, we set up a trial Hamiltonian ma-
trix and use iterative nonlinear optimization techniques
to vary the effective on-site energies and nearest-neighbor
hopping parameters so as to reproduce as closely as pos-
sible the density coefficients of the interacting electron
system. Occupation numbers and nearest-neighbor over-
lap coefficients are taken into account. Both the potential
and the density are thus characterized by two parameters
per site. Considering the complete Hamiltonian (21), we
can obtain an initial guess by setting U = 0. Table I
indicates that the corresponding densities are relatively
close and we can therefore safely assume this to be a
good starting point. The eigenstates of the one-particle
Hamiltonian Ĥs are calculated by exact diagonalization.
We have checked that the optimization is stable and in-
sensitive to any reasonable choice of the initial guess.

We judge the quality of an approximation to the true
density by summing the squared deviations between the
approximate and the true density coefficients. Only the
M independent coefficients are considered; the rest is de-
termined by the intrinsic symmetry nij = nji and the
spatial symmetry with respect the center of the chain.
As the hopping parameters satisfy the same symmetry
conditions, only M are in fact independent.

The results of the optimization for the half-filled eight-
site chain with t = 1 and U = 4 are shown in Table III,
where we give the respective on-site energies and hop-
ping parameters and compare the density of the best-fit
Kohn-Sham system with the true density of the interact-
ing system and that of the initial trial Hamiltonian with
t = 1 and U = 0. Although the Kohn-Sham system gives
the correct occupation numbers ni, it is evidently unable

to reproduce the correct overlap coefficients and thereby
simulate the localization effect: the density is not non-
interacting v representable. In fact, the overall quality
of the approximation to the density, given by the sum of
the deviation squares SUMSQ, is only little better than
the approximation that is obtained by simply neglecting
the interaction in the first place and setting U = 0.

It is interesting to note that the Kohn-Sham system
approaches the true density best at the ends of the chain,
whereas towards the center, it is little different from the
density of the U = 0 system. This fact is reflected by the
effective hopping parameters: towards the ends of the
chain, they drop substantially to approach the atomic
limit, which effectively reduces the overlap. It is this con-
tribution that is responsible for the decrease of SUMSQ

in the first place. In the center of the chain, however, the
hopping parameters are almost constant and the density
resembles that of the U = 0 system.

In Fig. 1 we compare the real-space density of the

TABLE III. Hopping parameters, scaled so that t45 = −1,
and density of the Kohn-Sham system (KS) compared with
the original system with (U = 4) and without (U = 0) interac-
tion for the eight-site Hubbard chain. The nonzero deviation
between the overlap coefficients corresponding to U = 4 and
KS, also represented by SUMSQ, indicates that the density
of the interacting electron system is not noninteracting v rep-
resentable.

U = 4 KS U = 0

e1 = e8 0 0 0
e2 = e7 0 0 0
e3 = e6 0 0 0
e4 = e5 0 0 0
t12 = t78 -1 -0.027 -1
t23 = t67 -1 -0.255 -1
t34 = t56 -1 -1.021 -1
t45 -1 -1.000 -1

n1 = n8 1 1 1
n2 = n7 1 1 1
n3 = n6 1 1 1
n4 = n5 1 1 1
n12 = n78 0.641 0.648 0.862
n23 = n67 0.370 0.428 0.495
n34 = n56 0.589 0.819 0.758
n45 0.391 0.503 0.529

SUMSQ 0.069 0.112

Kohn-Sham system with that of the interacting system.
The increasing deviation towards the center of the chain
is clearly visible. We have used real symmetric orbitals
based on trigonometric functions for the purpose of this
visualization only. These assume a maximum at the posi-
tion of the atom, have one zero at either side, and extend
to the nearest-neighbor atom. The main numerical work
is, of course, independent of a specific choice of orbitals.

Although we are using a nonlinear optimization rou-
tine, the chances of finding a solution will depend on
the ratio of independent variables to residual functions.
Multiplying the Hamiltonian by an arbitrary factor or
adding a constant to the on-site energies only affects the
eigenvalues but leaves the eigenstates and thereby the
density coefficients unchanged. For this reason, the over-
lap throughout the chain cannot be lowered by generally
choosing smaller hopping parameters. Also, because of
these two degrees of freedom in the hopping matrix, the
number of relevant variables is in fact just M −2 instead
of M . As for the target density coefficients, one is triv-
ially determined by the requirement that the occupation
numbers ni add up to N . Besides, the density must be
constructable from the wave function of N interacting
electrons, but this imposes complicated nonlinear rela-
tions that can be expected to be of no relevance for the
optimization procedure. The number of effectively in-
dependent residual functions is therefore reduced by just
one to M−1 and so exceeds the number of free variables.
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FIG. 1. Electron density of the eight-site Hubbard chain
(U = 4) together with that of the Kohn-Sham system that
reproduces it as closely as possible (KS), visualized by as-
suming a particular form of orbitals (see the text). There
is good agreement at the ends of the chain (site 1), but in-
creasing deviation towards the center (site 5). The deviation
illustrates the fact that the density of the interacting system
is not noninteracting v representable.

From a purely mathematical point of view, the nonexis-
tence of an effective potential is thus not surprising.

We have performed calculations for different chain
lengths and always obtained similar results. In conclu-
sion, we note that in the case of small M , the density
of the one-dimensional Hubbard chain is not noninter-
acting v representable because the Kohn-Sham system is
unable to simulate the increased localization of the elec-
trons. This is a systematic feature and will hold for all
nonzero U .

B. The limit M → ∞

The infinite chain is translationally invariant. The
Hamiltonian of the interacting electron system must
therefore be of the form

Ĥ = −t

∞
∑

i=−∞

∑

σ

(

c†iσc(i+1)σ + c†(i+1)σciσ

)

+ U

∞
∑

i=−∞

n̂i↑n̂i↓. (23)

Without performing numerical calculations, we can con-
clude from our previous studies that the interaction will
lead to a certain reduction of the overlap and to an in-
creased localization of the electrons. In any case, the
density of the interacting system will be different from

the density that we obtain after dropping the interaction
term in the Hamiltonian.

As for the noninteracting Kohn-Sham system, the
translational invariance requires that the effective on-site
energies and hopping parameters are constant through-
out the chain. This leaves just two variables, a uniform
eeff and teff . However, these are related to the two triv-
ial transformations described above that leave the eigen-
states unchanged; their values do not affect the density
and may be scaled to zero and −t. As a consequence,
the electron density of the Kohn-Sham system must nec-
essarily be identical to that of the U = 0 system and it
must then be different from the density of the original
system. Again, the Kohn-Sham system proves incapable
of simulating the reduction of the overlap.

C. Discussion

So far, we have proved that for small M as well as in
the limit M → ∞, the density of the interacting Hubbard
chain is not noninteracting v representable. Although
translational invariance is not strictly satisfied in the case
of a finite chain length, from a physical point of view,
the situation of an atom far from the ends, where surface
effects have little influence, is no different from that of
an atom in an infinite chain. It is thus not surprising
that the Kohn-Sham system should approach the U = 0
system in the central region of the chain. In fact, this
effect is already visible in the case of M = 8 and it should
become even more dominant for greater M .

The argument concerning the limit M → ∞ does not
rely on the value of U and holds for any nonzero interac-
tion. We have thus conclusively shown that the density
of the interacting Hubbard chain is not noninteracting v

representable for all values of M and U . Furthermore,
the same argument can be used for regular lattices with
nearest-neighbor hopping in dimensions other than one.

D. A semiconductor model

Another generalized model “with parameters more ap-
propriate for a semiconductor” has been studied in Ref. 5.
The eigenvalue gap obtained by density-functional theory
that reproduced the occupation numbers correctly was
shown to be in good agreement with the true band gap,
whereas the value obtained by a LDA within that frame-
work was much smaller. It was therefore concluded that
the LDA rather than the discontinuity in the exchange-
correlation potential seemed to be responsible for the nu-
merical deviation found in DFT calculations, but doubts
have been raised concerning the implications for the orig-
inal formulation of density-functional theory.14

Mathematically, the semiconductor model is equiva-
lent to a Hubbard Hamiltonian in the presence of a spin-
dependent potential and with the possibility of spin flip-
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ping. It features two nondegenerate orbitals, each of
which forms its own energy band. The electrons can
move within these bands as well as change from one to
the other. The model is understood to represent a semi-
conductor without magnetic properties. Therefore, the
electrons are regarded as spinless fermions and the energy
levels are interpreted as a low-lying s band and a p band.
All orbitals are considered localized, so that overlap is
negligible except on the same site and between nearest
neighbors. The two levels are labeled by α, β ∈ {s, p}.
For a finite one-dimensional chain, the Hamiltonian is
given by

Ĥ =
M
∑

i=1

∑

α

eiαn̂iα +
M
∑

i=1

tis,ip

(

c†iscip + c†ipcis

)

+

M−1
∑

i=1

∑

α,β

tiα,(i+1)β

(

c†iαc(i+1)β + c†(i+1)βciα

)

+
∑

α,β

tMα,1β

(

c†Mαc1β + c†1βcMα

)

+ U

M
∑

i=1

n̂isn̂ip. (24)

The first term contains the on-site energies eiα, the sec-
ond and third govern the hopping between orbitals at the
same site and between nearest neighbors. Likewise, the
following term has been introduced to connect the end
sites. As the orbitals are no longer degenerate, all hop-
ping parameters must depend both on spatial position
and the energy bands involved. The last contribution to
the Hamiltonian is the on-site Coulomb interaction.

The density-functional formalism derived for the Hub-
bard Hamiltonian can be applied with minor changes,
which account for the fact that the two orbitals differ. In
particular, we have to consider occupation numbers and
overlap coefficients for each pair of orbitals separately:

niα,jβ = 〈Ψ|c†iαcjβ |Ψ〉 or niα,jβ =

N
∑

γ=1

〈ψγ |c
†
iαcjβ |ψγ〉.

(25)

We take parameters for the interacting system from
Ref. 5. The energy levels are eis = −4.0 and eip = 0.0. At
the end points, the s state is raised by 1.0 and the p state
is lowered by 0.4 to simulate surface effects. There is no
hopping between bands on the same site; the sign and the
magnitude of the other hopping parameters are consis-
tent with a picture of real symmetric s and antisymmet-
ric p orbitals and set to tis,(i+1)s = −1.8, tip,(i+1)p = 1.0,
and tis,(i+1)p = −tip,(i+1)s = 1.2. The end points are
joined only by tMs,1p = −tMp,1s = 1.2. Finally, the in-
teraction parameter is U = 4.0.

The symmetries of the chain are more subtle than in
the Hubbard case. When varying the effective param-
eters in the one-particle Hamiltonian Ĥs, we constrain
eeffiα = eeff(M+1−i)α. Due to the different signs of the or-

bital lobes, the hopping parameters are related by teffis,ip =

TABLE IV. Deviation between the independent density co-
efficients of the nine-site semiconductor chain and those of the
Kohn-Sham system (KS), the noninteracting system with the
same occupation numbers (niα exact), and the original sys-
tem with interaction set to zero (U = 0), expressed through
SUMSQ per site. Although the approximation becomes bet-
ter with increasing M , the density of the interacting system
is not noninteracting v representable.

M KS niα exact U = 0

3 0.477 × 10−4 2.331 × 10−4 0.0379
5 0.118 × 10−4 1.335 × 10−4 0.0616
7 0.049 × 10−4 1.006 × 10−4 0.0759
9 0.034 × 10−4 0.812 × 10−4 0.0826

−teff(M+1−i)s,(M+1−i)p and teff
iα,(i+1)β = ∓teff(M−i)β,(M−i+1)α

with − for α 6= β and + otherwise. Likewise, at the
end points, teffMα,1β = −teffMβ,1α for α 6= β. The density
coefficients are related by the very same symmetries. A
measure for the accuracy of an approximation to the den-
sity is again given by the sum of squares SUMSQ taken
over the deviations of all independent coefficients.

Calculated values of SUMSQ divided by the chain
length M are listed in Table IV. The columns corre-
spond to (i) the best-fit Kohn-Sham system, (ii) the sys-
tem studied in Ref. 5, in which merely the on-site energies
are varied so as to reproduce the occupation numbers of
the original system exactly, and (iii) the noninteracting
system with the same hopping parameters as the original
interacting chain, which is used as the starting point for
the numerical optimization.

Although SUMSQ assumes significantly lower values
than it did for the Hubbard model, despite the seven-
fold increase in density coefficients, it is still far from
zero. For the chain lengths studied here, the density
of this interacting semiconductor model is therefore not

noninteracting v representable. To give an impression of
the numerical deviations, Table V lists the density coef-
ficients for the central site of the nine-site chain.

It seems that the approximation becomes better for in-
creasing M , but the data are not sufficient for a reliable
extrapolation. A formal repetition of our earlier argu-
ment regarding the limit M → ∞ fails because trans-
lationally invariant systems will still retain five relevant
hopping parameters that determine the density. On the
other hand, particle conservation only helps to reduce
the number of effectively independent density coefficients
to six, so it seems probable that even in this limit the
density is not noninteracting v representable. We have
performed calculations for closed, translationally invari-
ant ring chains up to M = 9 that are governed by the
same ratio of significant hopping parameters and den-
sity coefficients. None of these systems was found to be
noninteracting v representable.

To double-check these findings, we have also taken a
completely different approach by varying the eigenvec-
tors of the Hamiltonian matrix directly and without fur-
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TABLE V. Density coefficients for the central site in a
nine-site semiconductor chain. The columns correspond to
the true interacting system (U = 4), the Kohn-Sham system
(KS), the noninteracting system with the correct occupation
numbers (niα exact), and the initial-guess system with inter-
action set to zero (U = 0).

U = 4 KS niα exact U = 0

n5s 0.9209 0.9215 0.9209 0.7021
n5p 0.0782 0.0780 0.0782 0.2998
n5s,5p 0.0000 0.0000 0.0000 0.0000
n5s,6s 0.0360 0.0367 0.0363 0.1990
n5p,6p -0.0347 -0.0352 -0.0353 -0.2010
n5s,6p 0.1641 0.1647 0.1671 0.2223
n5p,6s -0.1636 -0.1640 -0.1668 -0.2214

ther constraints. A Hamiltonian constructed in this way
corresponds to the unphysical case of hopping not being
restricted by distance. But although the number of vari-
able hopping parameters grows exponentially with M ,
even the overlap between nearest neighbors cannot be
reproduced accurately for M ≤ 7. The formal inclusion
of next-nearest-neighbor hopping in the Kohn-Sham sys-
tem is therefore no solution.

V. CONCLUSION

We have reexamined the treatment of strongly cor-
related Hubbard-type models within density-functional
theory. A formulation of the basic theorems that is re-
lated as closely as possible to the conventional scheme
through second quantization of the external potential and
the density has been provided. Numerical calculations
and qualitative arguments have shown that the electron
density of the original Hubbard model with nonzero in-
teraction is not noninteracting v representable. The same
result was found for a related semiconductor model that
has been used in a study of the band-gap problem.
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