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ABSTRACT 

The construction industry is expressing great demand for innovative and durable structural 

members such as bridge decks and piers, piling, and poles. Many steel-reinforced concrete 

structures subjected to de-icing salts and marine environments require extensive and expensive 

maintenance. Fiber-reinforced polymers (FRPs) have recently gained wide acceptance as a 

viable construction material for repair, rehabilitation, or new construction of the aging 

infrastructures particularly those exposed to harsh environment conditions. The promising 

concept of concrete-filled FRP tube (CFFT) system, that may be further reinforced with steel or 

FRP bars, has raised great interest amongst researchers in the last decade. The CFFT technique 

has been used successfully in different concrete structure elements such as pier column and 

girder for bridges and also as fender piles in marine structures. The FRP tube acts as a stay-in-

place structural formwork, a noncorrosive reinforcement for the concrete for flexure and shear, 

provides confinement to the concrete in compression, and the contained concrete is protected 

from intrusion of moisture with corrosive agents that could otherwise deteriorate the concrete 

core. Using FRP bars instead of conventional steel bars in the CFFT columns can provide a 

step forward to develop a promising totally corrosion-free new structural system. Nonetheless, 

the axial behaviour of FRP bars as longitudinal reinforcement in compression members has yet 

to be explored, especially for the CFFT columns. 

To date, most of the experimental investigations performed on FRP confined concrete 

columns have considered short, unreinforced, small-scale concrete cylinders, tested under 

concentric, monotonic, and axial load. The slenderness ratio, internal longitudinal 

reinforcement type (steel or FRP bars), and axial cyclic loading effects on the behaviour of 

FRP confined concrete long columns, however, have received only limited research attention. 

To address such knowledge gaps, this study aimed at investigating the behaviour of the CFFT 

long columns internally reinforced with steel or FRP bars tested under monotonic and cyclic 

axial loading. A total of ten reinforced concrete (RC) and CFFT columns were constructed and 

tested until failure. All columns had 1900-mm in height and 213-mm in diameter. The 

investigated parameters were: i) the effect of internal reinforcement type (steel, glass FRP 
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(GFRP), or carbon FRP (CFRP)) and amount, ii) GFRP tube thicknesses, and iii) nature of 

loading (i.e. monotonic and cyclic). The effect of the different parameters on the axial 

behaviour of the tested columns is presented and discussed. The research work presented in 

this dissertation has resulted in one paper submitted to the Elsevier Journal of Engineering 

Structures (manuscript ID: ENGSTRUCT-D-15-01381) and one accepted conference paper 

submitted to the 5 th International Structural Specialty Conference (CSCE 2016), London, 

Ontario, June 1st - 4th, 2016.  

The experimental test results showed that the CFFT columns reinforced with GFRP bars 

exhibited similar responses compared to their counterparts reinforced with steel bars with no 

significant difference in terms of ultimate axial strength and strain capacities. The GFRP tubes 

provided significant confinement of the tested specimens attributing to shift the mode of 

failure from axially dominated material failure to flexural-dominated instability failure. The 

results also indicated that the plastic strains of the FRP-reinforced CFFT columns was linearly 

proportional to the envelop unloading strains (εun,env). The relationship depended little on level 

of confinement, but strongly on the longitudinal reinforcement amount and type, particularly 

when εun,env  > 0.0035. On the other hand, an analytical investigation was conducted to 

examine the validity of the available design provisions for predicting the ultimate load 

capacity of tested columns. The results of the analysis were compared with the experimental 

values. It was found that the ACI 440.R1 (2015), CSA S806 (2012), and CSA S6-06 (2010) 

design provisions provided higher conservative results for the GFRP-reinforced control 

specimens than that of steel-reinforced specimen. This might be due to neglecting the 

contribution of the compressive resistance of the GFRP bars to the axial carrying capacity. 

Furthermore, for FRP-reinforced CFFT columns, the ACI 440.2R (2008), CSA S806 (2012), 

and CSA S6-06 (2010) provisions results over the experimental results were an average of 

1.68±0.31, 1.57±0.18, and 1.72±0.35 with a COV of 18.4%, 11.3%, and 20.5%, respectively. 

By considering the confinement codes limits, the CSA S806 (2012) showed better correlation 

for the ultimate carrying capacity based on the average than the CSA S6-06 (2010) and ACI 

440.2R (2008), particularly for specimens cast with tube Type B.  

Keywords: Columns; FRP; CFFT, Tube; Cyclic loading; Confinement; Slender; and Plastic 

Strain.
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RÉSUMÉ 

L'industrie de la construction exprime une grande demande pour les structures innovantes et 

durables tels que les tabliers de ponts et les quais, les pieux et les poteaux. Plusieurs structures 

en béton armé sont soumises à des sels de déglaçage et à des environnements marins qui 

exigent un entretien coûteux. Les polymères renforcés de fibres (PRF) ont récemment été 

reconnus en tant que matériau de construction viable pour la réparation, la réhabilitation ou la 

construction de nouvelles infrastructures vieillissantes en particulier celles exposées à des 

conditions d'environnement sévères. Le concept prometteur du système de tube rempli de 

béton PRF (CFFT), qui peut être encore renforcé avec de l'acier ou des barres en PRF, a 

amorcé un grand intérêt parmi les chercheurs durant la dernière décennie. La technique CFFT 

a été utilisée avec succès dans les différents éléments de structure en béton tels que les 

colonnes et les poutres de ponts et aussi comme des pieux pour les structures marines. Le tube 

en PRF agit comme un coffrage structural sur place, un renforcement non corrosif pour le 

béton en flexion et au cisaillement en utilisant l'orientation des fibres multidirectionnelle, 

fournit un confinement au béton en compression, et le béton est protégé de toute intrusion 

d'humidité des agents corrosifs qui, autrement, pourraient détériorer le noyau de béton (ACI 

440. R-07 (2007)). L’utilisation des barres de PRF au lieu de barres d'acier conventionnelles 

dans les colonnes CFFT peut fournir un pas en avant pour développer un nouveau système 

structurel. Néanmoins, le comportement axial des barres en PRF comme armatures 

longitudinales dans les membrures en compression n'a pas encore été exploré, en particulier 

pour les colonnes CFFT. 

À ce jour, la plupart des études expérimentales effectuées sur les colonnes en béton 

confinés de PRF, ont considéré des cylindres en béton, courts, à petite échelle non armés, et 

testés sous un charge concentrique, monotone, et axiale. Le rapport d'élancement, le renfort 

longitudinal interne (acier ou barres en PRF), et les effets du chargement axial cyclique sur le 

comportement des colonnes élancées de béton confinés et en PRF, ont connu une recherche 

limitée. Pour combler ce manque de connaissance, cette étude vise à étudier le comportement 

des colonnes élancées CFFT armé en acier ou en barres de PRF testées sous charges axiales 

monotones et cycliques. Un total de dix colonnes en béton armé (RC) et CFFT été fabriquées 
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et testées jusqu'à la rupture. Toutes les colonnes ont 1900 mm de hauteur et 213 mm de 

diamètre. Les paramètres étudiés sont les suivants: i) l'effet de type de renforcement interne et 

la quantité de renforcement, ii) les épaisseurs de tubes PRV, et iii) le type de chargement 

(monotone et cyclique). L'effet des variables considérées sur le comportement axial des 

colonnes testées dans le travail expérimental est présenté et discuté. Le travail de recherche 

présenté dans cette analyse a fait l’objet d’un article scientifique soumis à Elsevier Journal of 

Engineering Structures (manuscrit ID: ENGSTRUCT-D-15-01381) et un article lors d’une 

conférence acceptée soumis à la 5ième International Structural Specialty Conference (CSCE 

2016), London, Ontario, Juin 1er - 4ième, 2016.  

Les résultats des essais expérimentaux ont montré que les colonnes CFFT renforcées de 

barres en PRFV présentaient des réponses similaires par rapport à leurs homologues 

renforcées avec des barres d'acier sans différence significative en termes de capacité ultime de 

résistance axiale et de déformation. Les tubes en PRFV fournissent un confinement significatif 

des échantillons testés attribuant à changer le mode de rupture, c’est-à-dire d’une rupture des 

matériaux axialement à une rupture d’instabilité en flexion. En outre, l'augmentation de 

l'épaisseur du tube en PRFV de 2,9 à 6,4 mm améliore les rapports de résistance et de 

déformation de 25 % et 12 %, respectivement. Les résultats indiquent également que les 

déformations plastiques des colonnes renforcées de PRF sont linéairement proportionnelles 

aux enveloppes de tension de déchargement (εde,env). La relation dépend un peu du niveau de 

confinement, mais fortement de la quantité et du type de renfort longitudinal, en particulier 

lorsque εde,env > 0,0035. D'autre part, une investigation a été menée pour examiner la validité 

des dispositions de conception disponibles pour prédire la capacité de la charge ultime des 

colonnes testées. Les résultats de l'analyse ont été comparés avec les valeurs expérimentales. Il 

a été constaté que les prévisions de l'ACI 440.R1 (2015), CSA S806 (2012), et CSA S6-06 

(2010) ont fourni des résultats conservateurs plus élevés pour les échantillons de contrôle en 

PRFV que celui de l'échantillon d'acier. Cela peut être dû à la négligence de la contribution de 

la résistance à la compression des barres de PRFV à la capacité de charge axiale. En outre, 

pour les colonnes de CFFT renforcées de PRF, les prévisions de l'ACI 440.2R (2008), du CSA 

S806 (2012), et du CSA S6-06 (2010) étaient de 1,68 ± 0,31, 1,57 ± 0,18 et 1,72 ± 0,35 avec 

un COV de 18,4 %, 11,3%, et 20,5%, respectivement. En considérant les limites des codes de 

confinement, le code CSA S806 (2012) a révélé les meilleures prévisions pour la capacité de 
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charge ultime basée sur la moyenne que celui du code CSA S6-06 (2010) et de l’ACI 440.2R 

(2008), en particulier pour les échantillons réalisés avec des tubes de Type B. 

Mots-clés: Colonnes; PRF; CFFT, Tube; Chargement cyclique; Confinement; Élancement; et 

déformation plastique. 
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CHAPTER 1  

INTRODUCTION 

1.1 Context and Problem Definition 

Concrete-filled steel tubes (CFST) have been used as alternative to typical reinforced concrete 

(RC) columns, due to the full confinement effects for concrete and the construction efficiency 

of the tube as permanent formwork. The tube interacts with the core in three ways: i) it 

confines the core, thereby enhancing its compressive strength and ductility; ii) it provides 

additional shear strength for the core; and iii) depending on its bond strength with concrete and 

its stiffness in the axial direction, it develops some level of composite action, thereby also 

enhancing the flexural strength of concrete (Mirmiran and Shahawy 1997). Since steel is an 

isotropic material, its resistance in the axial and hoop directions cannot be uncoupled nor 

optimized. Steel high modulus of elasticity causes a large portion of axial loads to be carried 

by the tube, resulting in premature buckling. In addition, its Poisson's ratio is higher than that 

of concrete at early stages of loading. This differential expansion results in partial separation 

of the two materials, delaying the activation of confinement mechanism (Fam and Rizkalla, 

2001). In cold regions or Canadian climates in an aging highway and marine infrastructure, 

steel tubes are exposed to harsh environment conditions such as significant temperature 

fluctuations, freeze-thaw cycles, marine sea spray, and chlorides accelerating the corrosion of 

steel tubes, which typically lead to significant deterioration and rehabilitation needs. These 

problems can be eliminated by using fiber-reinforced-polymer (FRP) tubes as an alternative to 

the steel tubes particularly where steel corrosion is a major concern.  

The FRP tube provides lightweight structural component, permanent formwork, non-

corrosive characteristics, protected the contained concrete from intrusion of moisture with 

corrosive agents that could otherwise deteriorate the concrete core and saving of construction 

time and effort. Furthermore, the laminate structure of FRP tubes could be optimized by 

controlling the proportions of fibers in the axial and hoop directions to suit the application 
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(Rizkalla and Fam, 2002). For instance the axial members, larger stiffness is required in the 

hoop direction as well as a minimum Poisson’s ratio in order to produce the maximum 

confinement of concrete. The composite system thus formed is commonly referred to as 

concrete-filled FRP tubes (CFFTs), and is found to be a viable alternative and has showed 

superior performance to RC or CFST for use as columns, piles, and beams. The promising 

concept of concrete-filled FRP tube (CFFT) system, that may be further reinforced with steel 

or FRP bars, has raised great interest amongst researchers in the last decade. The CFFT 

technique has been used successfully in different concrete structure elements such as pier 

column and girder for bridges and also as fender piles in marine structures (Fam et al 2003b).  

Using FRP bars instead of conventional steel bars in the CFFT columns can provide a 

step forward to develop a promising totally corrosion-free new structural system. Nonetheless, 

investigation of the axial behaviour of FRP bars as longitudinal reinforcement in CFFT 

columns has been quite limited. To date, most of the experimental investigations performed on 

FRP confined concrete columns have considered short, unreinforced, small-scale concrete 

cylinders, tested under concentric, monotonic, and axial load (Mirmiran et al. 2001; Fam et al 

2003a; Lam and Teng 2009; Ozbakkaloglu et al 2013; Vincent and Ozbakkaloglu 2014). The 

slenderness ratio and internal longitudinal reinforcement type (steel or FRP bars) effects on the 

behaviour of FRP confined concrete long columns have received only limited research 

attention. Thus, this experimental study is designed to investigate the axial behaviour of CFFT 

long columns reinforced with longitudinal steel and FRP bars under monotonic and axial 

cyclic compression loading. 

1.2 Research Significance 

This study, which presents experimental test results of circular CFFT long columns 

reinforced with steel or FRP bars, contributes to expand the knowledge in the area of CFFT, 

used as structural members, by addressing new parameters intended to simulate practical 

applications. Using FRP bars in the CFFT columns can provide a step forward to develop a 

totally corrosion-free new structural system. The effect of glass FRP (GFRP) tubes wall 

thicknesses, internal reinforcement type and amount, and nature of loading (monotonic and 

cyclic) on the strength and mode of failure of CFFT long columns is investigated.  
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1.3 Objectives  

The main objectives of this research project can be summarized as follows: 

1. Evaluate the axial behaviour of reinforced concrete and GFRP-CFFT long 

columns reinforced with steel and FRP bars. 

2. Investigate the influencing of internal reinforcement type and amount, GFRP 

tubes thicknesses, axial monotonic and cyclic loading of the strength, strain 

capacity, and mode of failure of the tested columns. 

3. Investigate the influencing of the investigated parameters on the shape of 

unloading/reloading paths, the ultimate axial strain, and plastic strain values of 

steel and FRP-reinforced CFFT columns. 

4. Evaluate the accuracy of the existing design equations as provided in ACI and 

CSA codes and design guidelines to predicate the axial compression capacity of 

the test specimens. 

1.4 Methodology  

In order to achieve these objectives, an experimental program is designed. The 

experimental program focuses on axial behaviour of RC and CFFT circular columns internally 

reinforced with steel and FRP bars. The test specimens included construction and testing of ten 

fixed-fixed columns measuring 1900 mm in-height and 203 mm-in diameter. The test 

specimens were divided into two series denoted as Series I and II. Series I included three 

control RC specimens reinforced with a longitudinal reinforcement ratio (ρL) equals to (3.4%), 

one specimen reinforced with steel bars and two identical specimens reinforced with GFRP 

bars. Steel spiral stirrups (pitch = 50.6 mm) were used as transverse reinforcement to have 

approximately similar hoop stiffness of the GFRP tube (Type A). Series II consisted of seven 

reinforced CFFT columns laterally confined with GFRP tubes (Type A or B). One specimen 

reinforced steel bars and laterally confined with tube type (A). Four specimens reinforced with 

GFRP bars (ρL = 1.2 and 3.4%) and laterally confined with tubes type (A and B). In addition, 

two identical specimens reinforced with CFRP bars (ρL = 1.2 %) and laterally confined with 

tube type (A). All specimens were tested under single complete unloading/reloading cyclic 

axial compression loading, except for one specimen, which was tested under monotonic axial 
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compression loading. The investigated test parameters were: (i) GFRP tubes thicknesses (2.9 

and 6.4 mm); (ii) internal reinforcement type (steel; GFRP; or CFRP bars) and amount; and 

(iii) nature of loading (i.e. monotonic and cyclic).  

1.5 Organization of the Dissertation 

This dissertation consists of five chapters. The following is a brief description of each: 

Chapter 1: This chapter defines the problem and summarizes the main objectives and 

originality of the research program. The methodology undertaken to achieve these objectives 

is also emphasized. 

Chapter 2: This chapter provides general information on the FRP composites materials and 

their characteristics. The chapter also presents background and review on modeling FRP tubes 

and test methods to evaluate the mechanical properties of FRP tubes. An overview of the 

background literature carried out to investigate the structural behaviour of CFFT column with 

different parameters is reviewed. Furthermore, design guide (recently published in Canada and 

USA) of the concrete infill columns structures are also covered.  

Chapter 3: This chapter describes the experimental program conducted at the University of 

Sherbrooke to test 10 RC and CFFT columns internally reinforced with (steel and FRP bars). 

In this chapter, the details of test specimens, test setup, and instrumentation are given. The 

chapter provides detailed characteristics of the materials used in the research program. 

Chapter 4: This chapter presents the results obtained from the experimental investigation. The 

influence of each test parameter on the axial behaviour of the tested columns is also discussed.  

The behaviour of the tested columns in each series is discussed in terms of failure mode, axial 

and lateral stress strain responses, the plastic strains and stress deterioration. Furthermore, the 

effect of the GFRP tube thickness on confinements, internal longitudinal reinforcement steel 

or FRP bar and loading pattern (monotonic and cyclic) are discussed as well. The accuracy of 

the existing design equations as provided in ACI and CSA codes and design guidelines to 

predicate the axial compression capacity of the test specimens is also highlighted. 

Chapter 5: A summary of this investigation is given in this chapter. The chapter also presents 

the general conclusions drawn from the work presented in this dissertation. Recommendations 

for future research are also given. 
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CHAPTER 2                                

LITERATURE REVIEW 

2.1 General 

Harsh environmental effects, such as significant temperature fluctuations, freeze-thaw cycles, 

and high concentrations of chlorides, on concrete bridge pier columns and piles have resulted 

in their steady deterioration that shortens their long-term durability and structural integrity. 

The key problems are permeability of concrete and corrosion of the embedded steel 

reinforcement. One promising innovative structural system is concrete filled fiber-reinforced 

polymer (FRP) tubes, which provide many unique advantages (Seible 1996). The FRP tube 

acts as a stay-in-place structural formwork to contain the fresh concrete, which may save the 

costs of formwork and labor used by the cast-in-place or precast industries. At the same time, 

the FRP tube acts as non-corrosive reinforcement for the concrete for flexure and shear. More 

importantly, the FRP tube provides confinement to the concrete in compression, which 

significantly improves the strength and ductility. The contained concrete is protected from 

severe environmental effects and deterioration resulting from moisture intrusion (Mirmiran 

1995). 

This chapter provides brief information on the FRP materials and their characteristics 

compared to steel reinforcement, modeling FRP tubes and test methods to evaluate the 

mechanical properties of FRP tubes. An overview of the background literature carried out to 

investigate the structural behaviour of CFFT column with different parameters is reviewed. 

Furthermore, codes design guides (recently published in Canada and USA) of the concrete 

infill columns structures are also examined.  

2.2 FRP Composite Materials 

“FRP” is an acronym for fiber-reinforced polymers. The term composite material is a 

generic term used to describe combination of two or more materials, which yield a product 

that is more efficient from its strength. The fibers provide the tensile strength, which are 
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embedded in the matrix. The matrix provides protection and support for the sensitive fibers as 

well as local stress transfer from one fiber to another. The matrix, such as a cured resin-like 

epoxy, polyester, vinyl ester, or other matrix acts as a binder and holds the fibers in the 

intended position, giving the composite material its structural integrity by providing shear 

transfer capability. Three FRPs are commonly used (among others): composites containing 

glass fibers are called glass fiber reinforced polymers (GFRP); those containing carbon fibers 

are called carbon fiber reinforced polymers (CFRP); and those reinforced with aramid fibers 

are referred to as aramid fiber reinforced polymers (AFRP). GFRPs are the most inexpensive 

compared to the other commercially available FRPs, consequently the most commonly used 

fibers in structural engineering applications. Moreover, the latest FRP composite is namely 

Basalt FRP (BFRP), which has developed within the last ten years and has higher tensile 

strength than E-glass fibers but lower than S-glass; however, its cost is near the cost of E-glass 

(Zhishen et al., 2012). 

 

Figure 2.1: Typical stress-strain relationships of different FRPs compared to steel bars 

(Zhishen et al., 2012) 
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Typical stress-strain relationships of different FRPs compared to steel bars relationship 

are shown in Figure 2.1. FRP is linear elastic up to final brittle rupture when subject to tension 

while steel shows an elastic-plastic region. These curves give a clear contrast between the 

brittle behaviour of FRP composite and the ductile behaviour of steel. The fundamental 

difference between steel and FRP materials is due to the stress-strain behaviour of steel, which 

after the initial linearly elastic phase displays the yielding plateau. Therefore, after reaching 

the maximum value corresponding to the yielding stress the confinement pressure remains 

constant (neglecting strain hardening). 

2.3 Modeling of FRP Tubes  

Mechanical properties of FRP materials depend on the fabrication technique, type and 

properties of its components, particularly the fibers, and the volume fraction of the fibers in 

the overall mix. Pressure or vacuum molding generally results in a higher fiber volume 

fraction as compared to hand lay-up. While the ultimate strength of FRP materials depends on 

the strength and modulus of the fibers, its in-service properties are functions of the matrix. 

Fibers generally exhibit linear elastic behaviour, while resins are visco-elastic or visco-plastic. 

As such, linear elastic behaviour of fibers is generally the dominant factor in the response of 

unidirectional FRP materials loaded in the direction of the fibers. However, a nonlinear 

behaviour is often observed in the off-axis direction, under certain fiber orientations and fiber 

volume ratios, as the matrix resists the pull out of broken fibers in shear. 

FRP materials are laminate structures made up of a stack of lamina with various fiber 

orientations. Bonding of the plies or layers of a laminate is often made with the same matrix 

used in the lamina. In the filament-winding of a tube, for example, each fiber orientation 

represents a ply, and the entire laminate is made with the same matrix in a single batch. Figure 

2.2 shows the different modes of failure in laminate structures, including fiber rupture, 

transverse or longitudinal cracking of the matrix, debonding at the fiber-matrix interface, and 

delamination between different layers. 
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Figure 2.2: Modes of failure in a laminate (Berthlot 1995) 

Because of their inherent heterogeneous and anisotropic nature, FRP materials are 

studied from two points of view: micromechanics and macro-mechanics. The former is a study 

of FRP at the level of its constituent materials and their interaction at a microscopic scale, 

whereas the latter is a study of FRP materials at a macroscopic scale, assuming homogeneity 

along with the average properties of the constituent materials. On the other hand, FRP 

materials are more advantageous than their isotropic counterparts, because they can be 

engineered or tailored for optimum properties in different directions. The tailoring process 

includes selecting appropriate constituents, fiber volume fraction, fiber orientation, and the 

stacking sequence of layers.  

Figure 2.3 shows fibers uniformly dispersed within a matrix in a unidirectional lamina. 

Perfect bond is assumed at the interface between fibers and the matrix. The lamina, therefore, 

has orthotropic properties with the greatest stiffness and strength in the direction of fibers. The 

primary modulus of elasticity E11 can be calculated as 

                                              mmff VEVEE 11                                                                   (2.1) 
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where E and V are the elastic modulus and volume fraction, respectively, and subscripts f and 

m denote fibers and the matrix, respectively. The above equation, known as the “law of 

mixture,” can be derived from the resultant axial force P11 in the lamina, as given by 

                                                                 fm PPP 11                                                          (2.2) 

where Pm and Pf are the resultant forces in the matrix and the fibers, respectively. The equation 

can be written in terms of stresses as 

                                                          ffmm AAA  1111                                              (2.3) 

where σ and A are the stress and area identified with subscripts for each phase, and therefore, 

in terms of volume fractions, it can be written as 

                                                ffmm VV  11                                                             (2.4) 

from which, one can derive Equation (2.1), assuming strain compatibility. Similarly, the 

Poisson's ratio ν12 of the lamina can also be written as 

                                              ffmm VVv  12                                                               (2.5) 

where νm and νf are the Poisson’s rations for the matrix and the fibers, respectively. The 

transverse modulus of elasticity E22 can be written as 

                                           mffmmf VEVEEEE  /22                                                    (2.6) 

Finally, the shear modulus G12 is expressed as 

                                       mffmmf VGVGGGG  /22                                                    (2.7) 

At the macromechanics level, the stress-strain relationship of uni-directional lamina can 

be sufficiently described using the generalized Hooke's law, as 
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where σi (i = 1, 2, 3) and εi (i = 1, 2, 3) are the normal stresses and strains in the three principal 

material directions (see Figure 2.3), respectively, and τij (i,j = 1, 2, 3) and γij (i,j = 1, 2, 3) are 

the shear stresses and strains, respectively, and Cij are stiffness coefficients. For a thin 

orthotropic shell, transverse strains are negligible, and therefore, it can be shown that 
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As such, the constitutive equations can be simplified in the principal material directions 

of the orthotropic material as 
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where Qij denote the reduced stiffness of an orthotropic lamina, and are related to the 

engineering properties measured along the principal directions, as given by 
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The above relations were developed for the principal materials directions in an 

orthotropic material. However, the principal directions of orthotropy often do not coincide 

with the geometric coordinate system, as evident in a helically wound glass FRP tube (see 

Figure 2.4). Transformation from the principal materials direction to an arbitrary coordinate 

system can easily be done, as shown in Figure 2.5, using the following equation: 
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where φ is the angle of rotation. Similar transformations can be applied to the strains and 

material properties of the shell. 

 
Figure 2.3: Macromechanics of FRP composites (Hollaway 1990) 

As stated earlier, nonlinearity in the off-axis direction could be significant. Hahn and 

Tsai (1973) used a complementary energy density function to derive nonlinear relations for in-

plane shear. Hahn (1973) extended the nonlinear theory of unidirectional lamina to that of 

laminated composites. Lifshitz (1998) studied the shear modulus of T300-934 graphite/epoxy 

lamina with four layers at fiber orientations of ±45º. Hu (1993) reported that unidirectional 

FRP may exhibit severe nonlinearity in its in-plane shear stress-strain relation. Also, some 

deviation from linearity may be observed under in-plane transverse loading, but the degree of 

nonlinearity is not comparable to that of the in-plane shear.  
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Figure 2.4: Helically wound fiber reinforced cylindrical shell (Jones 1975) 

Haj-Ali and Kilic (2002) made coupon tests to calibrate three-dimensional 

micromechanical models for E-glass/vinyl-ester pultruded FRP. Tension, compression, and 

shear tests were performed on off-axis coupons cut at different angles of 0°, 15°, 30°, 45°, 60°, 

and 90°. The overall linear elastic properties were identified along with the nonlinear stress-

strain behaviour under in-plane multi-axial tension and compression loading. The material had 

a lower ultimate tensile stress and initial stiffness in tension compared to the corresponding 

values from compression tests, regardless of thickness and orientation. This was attributed to 

the existing voids and micro-cracks that are more pronounced in matrix mode tensile loading. 

The difference between the compressive and tensile properties increased for off-axis angles 

approaching 90°. 

 
Figure 2.5: Positive rotation of principal material axes from arbitrary XY axes (Jones 1975) 



                                                                                                                                       Chapter 2: Literature Review  

 13 

2.3.1 Test Methods 

The classical lamination theory provides a feasible method to evaluate the mechanical 

properties of FRP tubes. This theory, however, involves complicated calculations for FRP 

laminates, practically those with asymmetric unbalanced laminate structures. In addition, non-

linear behaviour may be dominated for FRP tubes with angle-ply laminate structures, which 

cannot be predicted by lamination theory. Moreover, some previous research (e.g. Fam 2000) 

showed that the error of predications of the lamination theory may be up to 40% for the 

ultimate strength up to 25% for the elastic modulus and up to 50% for Poisson’s ratio. Thus, 

standard tests are important for more accurate evaluation of the mechanical properties of FRP 

tubes.  

The most popular test standards for tensile properties of FRP appear to be ASTM D638–

10 (2010) and ASTM D2290–12 (2012) which provide test methods for the determination of 

the tensile properties for FRP tubes using a flat coupon test and split disk test, respectively. On 

the other hand, the most popular test standard for the compressive properties of FRP includes 

ASTM D3410/D3410M-08 (2008) which provides a test method for the compressive 

properties of FRP through shear loading tests.  Typical test samples of this standard are shown 

in Figure 2.6. Figure 2.7 presents the axial tensile stress-strain responses resulted from the 

coupon tests and Figure 2.8 shows the average stress-strain relationships for the split-disk test 

in the hoop direction. Lam and Teng (2004) concluded that the ultimate strength obtained by 

the ring-splitting test is in general lower than that obtained from the corresponding flat coupon 

test, mainly due to the effect of curvature. Despite the difference in the ultimate strength, Lam 

and Teng (2004) also found that the elastic modules obtained from these two test methods are 

almost the same.  

 
Figure 2.6: Specimens of FRP tubes for the split-disk test and coupon tensile test (Masmoudi 

and Mohamed 2011) 
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Figure 2.7: Test setup and load-strain curve for the FRP tubes for coupon tensile test 

(Masmoudi and Mohamed 2011) 

  

Figure 2.8: Test setup and stress-hoop strain behaviour of the FRP tubes for split-disk test 

(Masmoudi and Mohamed 2011) 

2.4 Confinement of Concrete 

Concrete is one of the most commonly analyzed structural civil engineering materials in 

use today. The difficulty in characterizing the mechanical behaviour of concrete is due to its 

highly nonhomogeneous structure. In addition, the interaction between the cement paste and 
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aggregate causes the nonlinearity of the concrete stress-stain response. At relatively low stress 

levels, the development and propagation of micro-cracks at the aggregate-paste interfaces 

soften the concrete, resulting in a somewhat parabolic stress-strain curve (Collins and Mitchell 

1997). It was demonstrated that with the increase in concrete strength, the ductility decreases, 

whereas initial stiffness and linearity of the curve increase (see Figure 2.9). Once the 

maximum stress (f’c) is reached at a strain εo, concrete cannot support this high level of stress 

with increasing deformation. For concrete strengths less than about 41MPa, the stress-strain 

relationship can be reasonably described by a simple parabola (Collins and Mitchell 1997). 

 
Figure 2.9: Typical compressive stress-strain curves (Collins and Mitchell 1997) 

The basic principle of confinement, which adds another dimension to columns analysis, 

consists of imposing a restriction on the lateral expansion of the concrete, and its 

corresponding crack growth, due to axial stress. When properly confined, the concrete can 

sustain plastic deformation with axial strains and stresses higher than its unconfined failure 

values (Considere 1903; Richart et al. 1928; Mirmiran et al. 1998; Saafi et al. 1999; Fam and 

Rizkalla 2001; Hong and Kim 2004; Fam et al. 2005; Ozbakkaloglu and Oehlers 2008 a, b; 

Mohamed and Masmoudi 2010; Park et al. 2011; and Ozbakkaloglu 2013a, b, c, etc.). Figure 
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2.10 shows the effect of hydraulic confining pressure on stress-strain response. Confinement 

considerably increases the energy absorption capacity of concrete. Thus, in seismic regions, 

appropriately detailed transverse reinforcement and/or wrapped with FRP or encasing concrete 

in tubes (steel or FRP) is provided to confine the concrete and hence increase the ductility of 

columns and beams (Kent and Park 1971; Sheikh 1978; Sheikh and Uzumeri 1980; Seible et 

al. 1996; Yamakawa et al. 2003; Zhu et al. 2006; Ozbakkaloglu and Saatcioglu 2006, 2007; 

Saatcioglu et al. 2008; and Idris and Ozbakkaloglu 2013).  

 
Figure 2.10: Effect of lateral pressure on stress-strain response (Richart et al. 1928) 

2.5 Confinement Mechanism  

2.5.1 Confinement by lateral steel reinforcement 

In practice, columns are confined by lateral reinforcement, commonly in the form of 

closely spaced steel spirals or hoops. At low levels of stress in the concrete, the lateral 

reinforcement is hardly stressed, thus the concrete exhibits unconfined behaviour. When 

stresses approach the uniaxial strength, the progressive internal cracking cause high lateral 
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strains. The concrete bears out against the lateral reinforcement, which then apply a confining 

reaction to the concrete and hence the concrete exhibits a confined behaviour (Park and Paulay 

1975). Confinement of different column shapes is presented in the following: 

(a) Circular columns: Circular spirals, because of their shape, are in axial hoop tension and 

provide continuous confining pressure around the circumference. The pressure provided by 

closely spaced circular spirals and vertical column reinforcement can be considered to be 

uniform around the perimeter of the core (Saatcioglu and Razvi 1992). Figure 2.11 shows the 

lateral pressure of circular column. 

 

Figure 2.11: Lateral pressure in circular columns: (a) uniform buildup of pressure; and (b) 

computation of lateral pressure from hoop tension (Saatcioglu and Razvi 1992) 

(b) Square columns: Square and rectangular hoops can apply confining pressure only at the 

corners of the ties, thus causing a portion of the core concrete to remain unconfined (See 

Figure 2.12). Passive confinement pressure exerted by a square hoop is dependent on the 

restraining force developed in the hoop steel. The hoop steel can develop high restraining 

forces at the corners, where it is supported laterally by transverse legs, and low restraining 

action between the laterally supported corners. The restraining force at the corners depends on 

the force that can be developed in the transverse legs, which, in turn, is related to the area and 

strength of the hoop steel. The restraining action of the hoop, between the corners is related to 

the flexural rigidity of the hoop steel, which depends on the size and unsupported length of the 

bar. This restraining action is proportional to the elastic rigidity of the hoop steel until 
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yielding. Beyond yielding, the restraining action remains approximately constant until the 

strain hardening of steel produces additional restraining action. However, the flexural rigidity 

of the hoop between the laterally supported nodal points and the resulting restraining action is 

very small as compared to the restraining action of the corners and the other nodal points. 

Therefore, as the concrete expands laterally under axial compression, there will be higher 

reactive pressures building up at the nodal points than at locations away from the nodes. 

Figure 2.13 (a) illustrates the buildup of passive confinement pressure in a square column. If 

cross ties or inside hoops are used to support the middle bars, additional points of high lateral 

restraint are generated. It is clear that the shape of the pressure distribution is a function of the 

reinforcement arrangement. Shapes of pressure distributions for various tie arrangements are 

shown in Figure 2.13 (b). 

 

Figure 2.12: Arching action and confined concrete core shape for poorly and well-detailed 

transverse reinforcement (Adopted from Tobbi et al. 2012) 
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Figure 2.13: Lateral pressure in square columns: (a) Lateral pressure buildup in square 

columns; and (b) pressure distributions resulting from different reinforcement arrangements 

(Saatcioglu and Razvi 1992) 

(c) Rectangular columns: Rectangular columns may have different confinement 

reinforcement in two orthogonal directions. This may lead to different levels of confinement 

pressure along the long and short sides of the section. Figure 2.14 illustrates lateral pressure 

distributions along the long and short sides of a rectangular-column section. Confinement 

pressure along the long side plays a more dominant role on concrete strength than that along 

the short side. Examination of experimental data indicates that the effects of confinement 

pressures along the long and short sides can be considered to be proportional to the cross 

sectional dimensions. 
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Figure 2.14: Lateral pressure in distribution in rectangular columns (Saatcioglu and Razvi 

1992) 

2.5.2 Confinement by steel tubes  

Another form of concrete confinement is by encasing concrete in a steel tube (Kloppel 

and Goder 1957). The steel tube acts as longitudinal, transversal, and shear reinforcement; 

formwork; and as a continuous confining jacket, which provides a tri-axial state of stress for 

concrete under compression. In return, concrete delays local buckling of the tube (Gardner and 

Jacobson 1967). Moreover, circular sections provide uniform flexural strength and stiffness in 

all directions. Due to the large shear capacity of concrete-filled steel tubular members, they 

predominantly fail in flexure in a ductile manner (Fam 2000).  

It should be noted, however, that in addition to the corrosion problems of steel tubes, the 

confinement effectiveness is reduced at low levels of loading if the tube is also loaded in the 

axial direction. This is attributed to the fact that Poisson’s ratio of concrete at low levels of 

loading, 0.15 to 0.2, is smaller than the 0.3 value of steel, which rather tends to separate (Prion 

and Boehme 1994; Wei, Mau, and Mantrala 1995). As loading increases, lateral expansion of 

unconfined concrete approaches that of steel as micro cracking of the concrete increases and 

Poisson's ratio reaches up to 0.6. Consequently, a radial pressure develops at the steel-concrete 

interface, thereby, restraining the concrete core and setting up hoop tension in the tube. 
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Normally, after the unconfined cylinder strength is attained, concrete would tend to spall and 

disintegrate in the absence of the confining jacket. However, if the jacket buckles before 

strains are large enough to develop the unconfined cylinder strength; the full strength of 

concrete cannot be utilized. It was reported that concrete begins to increase in volume at a 

strain level of about 0.002 (Knowles and Park 1969) and confinement is activated at stress 

level of 95 percent of the concrete strength (Prion and Boehme 1994). At this stage, the 

concrete is stressed tri-axially and the tube bi-axially. The interaction between the tube and the 

core results in a synergistic effect where the capacity of the composite column exceeds the 

sum of the individual strengths of steel and concrete (Kilpatrick and Rangan 1997). Prion and 

Boehme (1994) reported that the confining level is higher if the axial load is applied to the 

concrete only as the steel shell will not expand laterally and keep in contact with concrete. 

However, in practice, bond stresses and friction cause longitudinal strain in steel, which also 

reduces the yield strength in both directions. 

2.5.3 Confinement by FRP tubes  

Concrete filled FRP tubes (CFFTs) are a simple system comprised of filling 

prefabricated hollow FRP tubes with concrete. The FRP tubes are fabricated in a number of 

different ways, which include pultrusion, filament winding, spin casting or hand lay-up. The 

layers of fibre may also be oriented in a number of different directions, including longitudinal, 

circumferential or at angles, depending on the desired structural requirements. These CFFTs 

may or may not be further strengthened with the addition of conventional internal reinforcing 

steel bars and/or prestressing steel strands. CFFTs are particularly advantageous because the 

prefabricated hollow FRP tube serves as stay-in-place formwork, which greatly simplifies 

construction. In addition, these FRP tubes provide confinement for the inner concrete core, 

which not only increases its compressive strength, but also protects the core from the 

aggressive environmental conditions.  

FRP jackets, other than being much lighter than steel jackets and non-corrosive, provide 

other advantages from the structural point of view. FRP-confined concrete is insensitive to 

small lateral expansion due to its lower Young’s modulus which forces concrete to carry most 

of the axial load, therefore, allowing the shell to be more solicitude in the hoop direction rather 

than failing prematurely by outward local buckling in the axial direction (Rizkalla and Fam 
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2002).  As the unconfined strength is approached, high lateral expansion occurs due to major 

microcracking, which activates the FRP jacket. Passive confining pressure, continuously 

increasing due to the linear characteristics of the FRP, is induced. Once the jacket reaches its 

hoop strength, it ruptures, and the concrete fails. Unlike steel jackets, the FRP expansion in the 

hoop direction due to axial load is less than that of concrete at the early stage of loading for 

most laminates. This results in eliminating any separation of the FRP tube with the concrete or 

delay of the confinement process. In addition, the orthotropic laminate structure of FRP shells 

allows uncoupling of the two fiber orientations for design optimization as reported by 

Shahawy and Mirmiran (1998). 

The fundamental difference between FRP and steel tubes is that the stress-strain 

behaviour of steel, which after the initial linearly elastic phase, displays the yielding plateau. 

Therefore, after reaching the maximum value corresponding to the yielding stress, the 

confinement pressure remains constant (neglecting strain hardening). Another difference is the 

greater stiffness of steel when compared to FRP (especially to GFRP, whereas CFRP may 

reach even higher values of elastic modulus). Both differences are reflected in the typical axial 

stress-strain behaviour of steel-confined and FRP-confined concrete, illustrated in Figure 2.15. 

Stresses and strains are normalized with respect to the unconfined concrete strength and peak 

strain. The steel-confined concrete follows an approximately linear trend before reaching the 

peak stress ( f’cc) after which it follows a gradual post-peak descending branch, therefore, the 

ultimate stress ( fcu) is lower than the peak stress. 

The FRP confined concrete displays a distinct bilinear response with a sharp softening 

and a transition zone at the level of its unconfined strength (f’co), after which the tangent 

stiffness stabilizes at a constant value until reaching the ultimate strength. Thus, the peak point 

coincides with the ultimate point and they both correspond to tensile rupture of the FRP 

confining device. It has been noted that the strain measured in the confining FRP at rupture is 

in most cases lower than the ultimate strain of the FRP tested in uniaxial tension (see, for 

example, Matthys et al. 1999; Lorenzis and Tepfers 2003). The ever-increasing response is 

associated to the absence of yielding. The decrease in stiffness at the level of the concrete 

unconfined strength is due to the lower stiffness of the FRP confining device with respect to 

steel (in Figure 2.15 it can be seen that it is more pronounced for GFRP than for CFRP 
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confinement, the latter being very close to the response of the steel-confined column). From 

the observed behaviour, it has been noted that the value of the confined strength is essentially 

dependent on the maximum confining pressure that the FRP may apply, whereas the slope of 

the second branch of the stress-strain relationship (and, as a consequence, the value of the 

strain at peak stress) is mainly related to the confinement stiffness.  

 

Figure 2.15: Axial stress-strain behaviour of confined concrete (Spoelstra and Monti 1999)  

Samaan et al. (1998) attributed the difference in behaviour between steel-confined 

concrete and FRP-confined concrete to the distinctly different dilation behaviour of concrete 

as shown in Figure 2.16. The dilation response of FRP-confined concrete is initially similar to 

unconfined concrete. It reaches a peak value, after which it decreases and finally stabilizes. 

Steel jackets effectively confine the concrete and control dilation before yielding. After 

yielding of the confining steel, the lateral confining pressure from steel confinement becomes 

essentially constant, thus allowing for increasing lateral dilation of confined concrete with 

increasing axial strains. 
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Figure 2.16: Dilation curves of GFRP-confined concrete versus steel-confined concrete 

(Samaan et al 1998) 

Fam and Rizkalla (2001b) reported the following equation that summarizes the critical 

parameters affecting the confinement pressure σR in circular CFFT, which directly contributes 

to the enhanced axial strength of the concrete. 
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                                                                               (2.13) 

At any axial strain level εcc, σR is increased as the stiffness of the tube in the hoop direction (Ef 

t/R) is increased, where Ef is the equivalent orthotropic elastic modulus of the tube in the hoop 

direction, t is the thickness of the tube, and R is the radius. The confinement pressure σR also 

increases as the dilation of concrete increases as reflected by its Poisson’s ratio νc. Ec is the 

modulus of the concrete core. Equation (2.13) represents an FRP tube fully utilized in the 

circumferential direction (debonded from concrete and not loaded axially), as shown in Figure 

2.23.  
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2.6 Critical Review on the Structure Behaviour of CFFT 

Members Subjected to Axial Forces or Combined Axial and 

Bending    

The axial stress-strain behaviour of unconfined and confined concrete differs 

significantly as mentioned previously. Confining a concrete member is accomplished by 

orienting the fibers transverse to the longitudinal axis of the member. In this orientation, the 

transverse or hoop fibers are similar to conventional spirals or reinforcing steel ties. Any 

contribution of longitudinally aligned fibers to the axial compression strength of a concrete 

member should be neglected (ACI 440.2R-08 (2008)). FRP jackets provide passive 

confinement to the compression member, remaining unstressed until dilation and cracking of 

the wrapped compression member occur. This means that confining pressure is engaged by the 

transverse dilation of concrete resulting from principal axial strains—the Poisson effect 

(shown schematically in Figure 2.17). For this reason, intimate contact between the FRP jacket 

and the concrete member is critical.  

Passive confinement may be constant or variable through an axial load history. Constant 

confining pressure is generated in cases where the confining material behaves in a plastic 

manner. This is typically assumed to be the case where confinement is provided by 

conventional transverse reinforcing steel. Variable confining pressure is generated when the 

confining material has an appreciable stiffness. FRP jackets and steel that is still elastic 

generate variable confining pressures. Variable passive confinement is dependent on the axial 

and transverse behaviour of the concrete, which in turn is dependent on the amount and 

stiffness of confinement provided.  

As reported by (Harris and Kharel 2002) the confinement of the concrete with FRP 

depends on the stiffness of the FRP confining material. These behaviours and the transition 

between them are described in Figure 2.18 as follows:  

(a) Lightly confined concrete:  In the case of lightly confined one- and two-ply E-glass 

confined cylinders, the jackets did not fail at the peak axial load. A significant post-peak 

behaviour is observed. This is because the jacket is not stiff enough to provide sufficient 
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confining pressure at lower axial strains to increase the load-carrying capacity of the concrete. 

The FRP jacket is ruptured when rupture strain of the jacket is achieved. The confined 

concrete, at this point, is confined rubble. For lightly confined concrete, the limiting dilation 

ratio is not reached due to the limited strain capacity of the jacket. 

 
Figure 2.17: Confining pressure engaged by dilation of concrete (Harris and Kharel 2002) 

(b) Heavily confined concrete: In the case of heavily confined 12- and 15-ply E-glass and 

three-ply carbon-confined cylinders, the jackets are stiff enough to provide enough confining 

pressure to increase the load capacity, resulting in larger dilation strains. When the confining 

material fails, the now-overloaded unconfined concrete experiences a very brittle failure. In 

this case, no Post-peak behaviour is observed. In the case of heavily confined concrete, an 

approximately bilinear stress-strain behaviour is seen. In these cases, the dilation ratio 

increases to some limiting value after which it remains essentially constant. The ultimate axial 

stress and strain achieved is, therefore, related to the strain rupture of the confining material by 

the dilation ratio. 
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Figure 2.18: Representative axial stress versus axial and transverse strain responses (Harris 

and Kharel 2002) 

(c) Moderately confined concrete:  The behaviour of moderately confined concrete falls 

between the behaviours as described previously. A relatively smooth transition of response 

parameters between lightly and heavily confined concrete is observed. In these tests, this 

transition between responses appears around the six-ply E-glass- confined specimens. 

When CFFT circular members are subjected to bending, experimental studies (Davol et 

al. 2001; Fam and Rizkalla 2002) have shown that the benefits of concrete confinement are 

less in bending than in purely axial loading case however, the ductility of the member is 
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improved. The studies also showed that the behaviour is controlled by the laminate 

architecture of the FRP tubes and that concrete-filled FRP tubes with thick walls typically fail 

in compression. Figure 2.19 shows the axial strain versus the lateral strain behaviour of the 

FRP tube in the compression zone of a beam, tested by Fam and Rizkalla (2002), versus that 

of a column of the same type. The figure shows that the behaviour is bilinear for columns, 

with significant increase in lateral strains due to confinement. For beams, however, the 

behaviour is linear, with a slope proportional to the longitudinal Poisson’s ratio of the tube, 

which indicates lack of confinement. This is attributed to the strain gradient, where most of the 

cross section of the beam is in tension. In addition, their study showed that the flexural 

behaviour is highly dependent on the stiffness and diameter-to-thickness ratio of the FRP tube, 

and to a lesser extent on the concrete strength. Fam et al. (2005) tested three concrete-filled 

rectangular FRP tubes (CFRFT) beams. The beams included totally filled tubes and a tube 

partially filled with concrete, which had a central hole for reducing deadweight. The effect of 

reinforcement ratio was examined by using tubes of two different sizes. Flexural behaviour of 

CFRFT was compared to concrete-filled rectangular steel tubes (CFRSTs) of similar 

reinforcement ratios. They showed that CFRFT is a feasible system that could offer similar 

flexural strength to CFRST. The tube laminate structure and its progressive failure contribute 

to the slightly nonlinear behaviour of beams. The CFRFT beam with inner hole had an overall 

strength to- weight ratio, 77% higher than the totally filled beam, but failed in compression. 

Bulging of CFRFT columns has limited their confinement effectiveness.  

Mirmiran and Shahawy (1999) performed a detailed study on concrete-filled FRP tubes 

under various combinations of axial and flexural loads. Two types of FRP tubes were used to 

simulate the conditions of over-reinforcement (where compression failure governs) and under-

reinforcement (where tension failure governs). The over-reinforced specimens were prepared 

using 348 mm diameter tubes with a wall thickness of 14 mm, while the under-reinforced 

specimens used 369 mm tubes with a 6 mm wall thickness. The reinforcement ratios (ratio of 

area of FRP shell to area of concrete core) for the over and under-reinforced concrete-filled 

tubes were 18.27 and 7.56 percent, respectively. Since the strength of the FRP tubes were 

different for these specimens, the authors proposed the use of a reinforcement index, defined 

as the reinforcement ratio multiplied by the ratio of the axial tensile strength of the FRP tube 

to the concrete compressive strength. The reinforcement indices of the over and under–
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reinforced sections were 3.39 and 0.19, respectively. The over-reinforced specimens were 

found to behave better as beam-columns. They deflected to a lesser extent (ultimate 

deflections of the over-reinforced specimens were about 25 to 50 percent lower than the under-

reinforced specimens), and failed at much higher bending moments. Failure of the over-

reinforced specimens while in compression was considered to be gradual or ductile. The 

under-reinforced failure mode was brittle and sudden. Based on this study, the authors 

concluded that concrete-filled FRP tubes could be used for beam-column applications, and 

recommended the use of over-reinforced specimens. Test observations also indicated that 

bond-failure or slippage in beam columns is not as significant as in beam specimens (pure 

flexure), as long as end connections are designed properly. For beam specimens shear transfer 

mechanisms such as internal ribs or treatments of the inner surface of the tubes were 

recommended to enhance the composite action between the FRP shell and the concrete core.  

 
Figure 2.19: Comparison between axial-lateral behaviour in beams and columns (Fam and 

Rizkalla 2002)   

Fam et al. (2003a) studied the axial load/bending moment interaction diagrams of 

concrete-filled FRP tubes, of two different types. The two types of tubes have almost the same 

diameter and wall thickness; however, the laminate structure of the Type I tube resulted in 

higher confinement efficiency compared with Type II due to the lower Poisson’s ratio and 

higher hoop stiffness. They concluded that the laminate structure of FRP tubes significantly 
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affects the interaction diagram. Type I tubes had higher effective elastic modulus in the hoop 

direction and significantly lower Poisson’s ratio than Type II tubes, which resulted in better 

confinement as evident from the larger size of interaction curve and load-axial strain 

behaviour of the columns of Type I. In addition, for both concrete-filled thin and thick tubes, 

increasing the ratio of fibers in the axial direction significantly increases the flexural strength 

while increasing the ratio of fibers in the hoop direction would increase the axial strength of 

concrete-filled thin tubes only. The axial strength of concrete-filled thick tubes tends to 

increase by increasing the amount of fibers in the axial direction rather than in the hoop 

direction. In thick tubes, the contribution from axial stiffness of the tube is more significant 

than the gain from confinement of concrete. For small-thickness tubes, changing the 

proportion of fibers in the axial and hoop directions results in a family of interaction curves, 

intersecting at certain points, which provide an optimum laminate structure for a particular 

eccentricity for a given wall thickness. For relatively thick tubes, the interaction curves do not 

intersect and the optimum laminate seems to be the one with maximum axial stiffness and 

minimum hoop stiffness, regardless of the eccentricity. 

 
Figure 2.20: Normalized interaction diagram for concrete-filled FRP tubes of different 

thickness and laminate structures (Fam et al. 2003a) 

Mohamed and Masmoudi (2008) investigated the performance of the CFFT columns 

under eccentric loads. The experimental program conducted on five unconfined concrete 

cylinders, two confined CFFT cylinders (152 x 305 mm), five CFFT columns, and two control 

steel spiral reinforcement concrete columns (152 x 912 mm). The internal diameter of the 

GFRP tubes which used in this investigation was 152 mm while the tube thickness was 2.70 
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mm and the fiber orientation mainly in the hoop direction (±60 degree). The composite FRP 

tubes were fabricated using the filament winding technique; E-glass fiber and Epoxy resin 

were utilized for manufacturing these tubes. The CFFT columns were loaded with different 

eccentricity 15, 30, 45 and 60 mm from the center of the columns. The results indicated that 

the behaviour of the concrete filled GFRP tubes is significantly affected by the eccentric load. 

The confinement provided by the GFRP tubes improves both the load-carrying capacity and 

the ductility of the concrete columns under concentric load. The stress-strain curve of the 

CFFT tube columns is bilinear and non-linear for the concentric and eccentric loading, 

respectively. Increasing the eccentricity values decrease the ultimate load capacity and 

increase the horizontal and axial deformation of the CFFT columns. The load-axial deflection 

curves and the load-horizontal deformation curves for the concentrically and eccentrically 

loaded CFFT columns are presented in Figure 2.21 and Figure 2.22, respectively.  

 

Figure 2.21: Load-axial deformation relationships (Mohamed and Masmoudi 2008) 
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Figure 2.22: Load-horizontal deformation relationships (Mohamed and Masmoudi 2008) 

2.6.1 Effect of loading tube axially 

For an optimum use of the FRP tube in the hoop direction for confinement, some studies 

considered the case of applying the axial load to the concrete core only (Mirmiran and 

Shahawy 1997) (see Figure 2.23 a). In this case, slip could take place between the concrete 

and the outer tube, and consequently the member would not resist bending (Fam and Rizkalla 

2001a). While axial loading of the tubes is often unavoidable due to friction, adhesion, and 

surface irregularities, which provide some axial load transfer to the shell, as shown in Figure 

2.23 (b). Fam and Rizkalla (2001a&b) investigated the behaviour of concrete-filled (GFRP) 

tubes under axial compression loading conditions to simulate the practical applications to 

carry axial compression loads and possible bending moments. They concluded that ignoring 

the effect of axial loading of the tube in a concrete- filled GFRP tube under compression and 

assuming the development of the full hoop strength overestimates the confinement 

effectiveness. The tube is bi-axially loaded under the effect of axial compressive and hoop 

tensile stresses; therefore, the material strength is governed by the biaxial strength envelope 

(see Figure 2.23 c). In addition, loading the tube causes lateral expansion and results in less 

contact (confining) pressure with concrete. 
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Figure 2.23: Effect of loading FRP tube axially (Fam and Rizkalla 2001 a&b) 

2.6.2 Effect of central holes 

Fam and Rizkalla (2001a) studied completely filled and partially filled GFRP tubes with 

a central hole as well as a tube-in-tube system with concrete filling between the two tubes. The 

GFRP tubes were designed to provide strength in both the axial and transverse directions and 

were axially loaded with the concrete core. The study showed that completely filled GFRP 

tubes provide the most effective confinement. Although an inner hole offers material saving 

and reduced self-weight, it reduces the confinement effect even though a high level of ductility 

is maintained; however, if the hole is maintained by an inner GFRP tube, the confinement 

effectiveness is improved and could approach that of a completely filled tube, depending on 
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the stiffness of the inner tube. The outer and inner tubes are subjected to hoop tensile and 

compressive stresses, respectively. In addition, stress-strain response of GFRP confined 

concrete is bilinear with the transition zone near the peak strength of the unconfined concrete. 

The slope of the second branch is governed by the stiffness of the tube as well as the inner 

hole size. Moreover, initiation of the confinement mechanism can be detected from the 

bilinear axial-lateral strain behaviour of the tube. The slope of the first part almost represents 

Poisson’s ratio of the tube. A change of slope occurs when concrete expands, producing more 

lateral strains in the tube (see Figure 2.19). Figure 2.24 shows the effect of void size on 

confinement level of different column stubs. 

 

Figure 2.24: Effect of void size on confinement level (Fam and Rizkalla 2001a) 

Lignola et al., (2007) conducted a study on hollow square columns wrapped with CFRP 

in the hoop direction and tested them under various eccentricities. The test results showed that 

horizontally oriented wraps could improve strength and ductility of hollow core square 

columns under eccentric loading. However, the strength enhancement was more pronounced 

for specimens loaded with a smaller eccentricity. Ductility increases with the increase of 

eccentricity. When eccentricity was larger, the increase in strength was reduced meanwhile the 

ductility increased.  
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Wong et al., (2008) tested a series of axial compression tests on short FRP-confined 

circular columns with an inner void to examine the behaviour of concrete in such FRP-

confined annular sections. This study was motivated by the need to understand and model the 

behaviour of concrete in a new form of double-skin tubular columns (DSTCs) composed of a 

steel inner tube, an FRP outer tube, and a concrete infill between the two tubes. To this end, 

three types of specimens were tested: FRP-confined solid cylinders (FCSCs), FRP-confined 

hollow cylinders (FCHCs), and short DSTCs (cross-sectional shapes as shown in Figure 2.25). 

The main parameters examined include the section configuration, the void ratio, the diameter-

to-thickness ratio of the inner steel tube, and the thickness of the FRP tube. Wong et al. 

concluded that the presence of an inner void reduces the effect of external FRP confinement, 

but this loss of confinement effectiveness can almost be completely compensated for through 

the provision of a suitable steel tube. In addition, the DSTCs were superior to FCHCs in both 

the general behaviour and the effectiveness of confinement of concrete. They declared that the 

inner steel tube plays an important role in preventing the concrete near the inner edge from 

inward spalling. Thus, the concrete in the new hybrid DSTCs is very effectively confined by 

the two tubes and local buckling of the inner steel tube is either delayed or suppressed by the 

surrounding concrete, leading to a very ductile response and increase in the strength of the 

concrete as a result of in the state of triaxial confinement. Moreover, they stated that the 

thickness of the outer FRP tube has a significant effect on the behaviour of concrete in FCSCs 

and DSTCs, but a smaller significant effect on the behaviour of concrete in FCHCs, especially 

when the void ratio is large. 

Kusumawardaningsih and Hadi (2010) studied the effectiveness of FRP confinement on 

hollow high strength RC columns. Both circular and square columns with either circular or 

square hollow core were cast and tested under axial concentric loading. The FRP in the hoop 

direction was also used to wrap specimens in their experiment. It was found that FRP 

confinement increased the strength and ductility of hollow core high strength RC columns. 

Hollow core columns having circular holes showed better performance as compared to 

columns having square holes. 
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Figure 2.25: Cross-sections of (a) DSTCs, (b) FCSCs, and (c) FCHCs 

2.6.3 Effect of tube stiffness on confinement 

In 1997, Mirmiran and Shahawy tested concrete-filled GFRP tubes with different 

stiffnesses (Et/R) (Stubs 1, 2, 8, 11, and 12 as shown in Figure 2.26). The 152.5 x 305 mm 

stubs included GFRP tube with 1.3, 2.1, and 3.0 mm wall thicknesses, filled with 32 MPa 

concrete, and tested in compression by loading the concrete core only. The tubes consisted of a 

filament-wound angle ply of polyester resin with E-glass fibers at ±15 degrees with the hoop 

direction, resulting in elastic moduli of 37.2 to 40.7 GPa and strengths of 524 to 641 MPa in 

the hoop direction for the 1.3 to 3.0 mm thick tubes. The results of their study and other results 

reported in (Fam and Rizkalla 2001a) are presented in Figure 2.26. The figure shows the 

increase in the strength of confined concrete by increasing the stiffness of the tube. This could 

be achieved by using a higher thickness-diameter ratio or using GFRP tubes with higher 

elastic moduli in the lateral direction (Fam and Rizkalla 2001a). In addition, it is clearly shown 

that axially loaded GFRP tubes showed less confinement effectiveness under the same 

stiffness level. This is mainly attributed to the fact that the GFRP tubes expanded outward due 

to Poisson’s ratio effect under their own share of axial load, which results in less contact 

pressure with concrete. Another factor is that the tubes were also bi-axially loaded under axial 

compression and lateral tension, which reduces their tensile strength in the hoop direction, 

whereas the GFRP tubes in (Mirmiran and Shahawy 1997) were fully utilized in the hoop 

direction under uniaxial tensile stresses, which allows the development of the full tensile 

strength as also described in Figure 2.23. 
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Figure 2.26: Effect of stiffness of tube on confinement effectiveness (Fam and Rizkalla 2001a) 

2.6.4 Slenderness effect 

Generally, the compression axially loaded CFT members can fail in two principal ways: 

in terms of slenderness and material properties. In the case of short columns, mechanical 

properties play an important role in their behaviour. The failure state is attained when the FRP 

tube reaches the maximum tensile strength of FRP and concrete crushing, which is known as a 

strength criterion. On the other hand, stability will essentially govern the ultimate load 

capacity of slender CFT columns, where the members are more likely to fail as a result of 

buckling and second-order effects becoming more critical (Sakino, 2006); therefore, the 

critical buckling load, Pct, which represents the load at which slender column buckles is more 

crucial for the column. It can be seen that the stiffness fundamentally influences the column’s 

strength more in slender columns, but that this is not the case for short columns where the 

strength is mainly depends on the material strength and cross-sectional area.  

Mirmiran et al (1998) tested 24 circular CFFTs with three GFRP tube thicknesses of 

1.45, 2.21, and 2.97 mm and four different lengths, L, including 305, 457, 610 and 762 mm to 

provide (L/D) ratios of 2:1 to 5:1 (within the range for short columns). The unconfmed 
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concrete strength was 44.8 MPa. Although some local buckling was observed, shear failure 

was noted as the primary mode of failure for the tubes. No overall buckling, as a result of 

slenderness, was noticeable since the length effects were insignificant within the range of 

(L/D) ratios studied, however, the ultimate strength was somewhat affected by the length. The 

strengths and strains at ultimate were normalized with respect to those of the 2:1 specimens 

and given in terms of (L/D) ratio in the following equations:  
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Yuan and Mirmiran (2001) conducted a comprehensive parametric study which was 

carried out on the buckling of over 11 500 concrete-filled FRP tubes. Based on their study, 

they recommended that the current slenderness limit of 22 [as provided in CSA A23.3 (2014) 

and ACI 318 (2014)] for steel-reinforced concrete columns bent in single curvature be reduced 

to 11 for concrete-filled FRP tubes. A higher limit may be used for aramid tubes. Besides, they 

stated that the moment magnification method may be used for concrete-filled tubes, provided 

that the current stiffness reduction factor of 0.75 for steel-reinforced concrete sections be 

reduced based on the eccentricity ratio of the load and the modular ratio of the tube relative to 

concrete core. 

Fitzwilliam and Bisby (2010) performed an experimental program to study the effects of 

slenderness on carbon FRP (CFRP) wrapped circular RC columns under eccentric axial loads. 

Eighteen circular RC columns with varying slenderness and CFRP strengthening schemes 

were tested to failure in monotonic eccentric axial compression. All columns were 152 mm in 

diameter and were reinforced internally with four D5 deformed steel bars (6.4-mm diameter) 

in the longitudinal direction and D5 closed circular steel ties spaced at 100 mm on center in 

the hoop direction. The cover was 25 mm to the longitudinal reinforcement. The internal 

reinforcement was chosen to simulate deficient columns with inadequate longitudinal 

reinforcement (a steel reinforcement ratio of only 0.7%) and with minimum hoop ties 

according to Canadian requirements (Canadian Standards Association (CAN/CSA 2005). 



                                                                                                                                       Chapter 2: Literature Review  

 39 

Figure 2.27 shows the effect of slenderness and CFRP warpped on peak load capacity. As 

shown in Figure 2.27 the slenderness effects were more significant for CFRP wrapped 

columns with higher levels of CFRP scheme on the confinement. The authors attributed that 

due to the flexure-dominated behaviour of the slender columns at high load levels, and to the 

fact that FRP hoop wraps do not increase the axial/flexural stiffness of the concrete at axial 

strains of less than about 0.2%. This highlights that engineers applying FRP strengthening in 

practice must take care to ensure that columns will not suffer instability under the envisioned 

increased service loads. On the basis of the tests presented herein, they concluded that CFRP 

hoop wraps increase the strength and deformation capacity of both short and slender circular 

RC columns, although the effects on strength are more significant for short columns and on 

deformability more significant for slender columns. The beneficial effects of CFRP 

confinement appear to be proportionally greater for RC columns subjected to mildly eccentric 

loads than for unreinforced columns subjected to concentric axial compressive loads. The 

specific reasons for this behaviour remain unknown; the writers have postulated that it may be 

influenced by an observed axial strain enhancement effect and by interactions between the 

CFRP wraps and the internal steel reinforcement (i.e., preventing buckling of the longitudinal 

reinforcing bars and spalling of the cover concrete). Longitudinal CFRP wraps can be used to 

improve the behaviour of slender CFRP wrapped circular concrete columns and allow them to 

achieve higher strengths, similar to equivalent short CFRP wrapped columns (although at 

larger lateral deflections). Longitudinal CFRP wraps appear to have no effect on the strength 

or deformation capacity of short columns. 

Mohamed et al., (2010) conducted experimental and theoretical investigations on the 

buckling responses of axially loaded CFFT columns. The test results of this investigation 

contributed to understand the effect of the slenderness ratio on the critical buckling load of 

axially loaded CFFT columns. The effect of three parameters and the parameters’ interaction 

on the buckling behaviour was investigated; namely, the FRP tube thickness, concrete 

compressive strength, and slenderness ratio. The experimental program consisted of testing 22 

circular CFFT columns with a total height ranging from 305 to 1520 mm (12 to 60 in.) and an 

internal tube diameter of 152 mm (6 in.). The experimental results of this investigation showed 

that both the axial strength and stiffness of slender columns were increased as a result of the 

confining effect of the FRP tubes. The enhancement of the axial strength of the slender 
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columns was more pronounced for lower-strength concrete (30 MPa) than for higher-strength 

concrete (45 MPa). Furthermore, the uniaxial compressive strength of CFFT columns was 

reduced by 13 to 23% when the slenderness ratio increased from 4 to 20, depending on the 

concrete compressive strength and the thickness of FRP tubes. Besides, it was found that a 

slenderness ratio of 12 gave a safe value for design purposes. A more precise formula for the 

slenderness ratio, however, was proposed to control the buckling mode of failure. 

 
Figure 2.27: Effect of slenderness and CFRP warpping scheme on peak load capacity 

(Fitzwilliam and Bisby 2010) 

Masmodui and Mohamed (2011) conducted an experimental investigation on the axial 

behaviour of CFFT columns internally reinforced with steel and/or CFRP bars with different 

slenderness ratios ranging from 4 to 20. The test results showed that the CFFT columns 

reinforced with CFRP bars behaved similar to that of CFFT columns reinforced with steel 

bars. The axial capacity of CFRP-reinforced CFFT resulted in 13%, 7%, 5% and 0% reduction 

as compared to steel-reinforced CFFT columns that had slenderness ratios 8, 12, 16 and 20, 

respectively.  
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Jiang and Teng (2013) conducted a systematic theoretical study to examine the 

behaviour of slender FRP-confined circular RC columns. The numerical investigation is 

exclusively studied for hinged columns with equal end eccentricities (i.e., standard hinged 

columns) and employs the assumption that the deflected shape of the column is a half-sine 

wave. Based on the numerical results, they concluded that the effectiveness of FRP 

confinement decreases as the column becomes more slender, which confirms existing 

experimental observations. While a high level of confinement can greatly enhance the 

compressive strength of concrete, it may lead to excessive lateral deflections that are not 

acceptable in practical design. The aforementioned results drew the conclusion that the 

increase of the slenderness ratio of CFFT columns reinforced internally with steel or FRP bars 

might be a critical factor that controls the mode of failure and might prevent such columns 

from attaining their ultimate load capacity. 

2.6.5 Bond effects 

Bond between the FRP jacket and the concrete core is more pronounced in flexural 

members than it is for axial members, and can be achieved by using adhesive or mechanical 

shear connectors. Mirmiran et al. (1998) tested square CFFTs, with shear connector ribs in the 

axial and transverse directions, under axial compression. The effect of bond was investigated, 

however, with the exception of three-square specimens, all circular specimens were fabricated 

by wrapping concrete cylinders, rather than filling prefabricated FRP tubes. Nevertheless, 

adhesive bonding had little effect on the confining pressure of the circular specimens, whereas 

mechanical bond (shear connectors) helped to distribute pressure more evenly around the 

square specimens and minimizing the stress concentrations at the corners, thus increasing its 

confining effect. Longitudinal ribs increased the buckling and compressive resistance. The 

horizontal ribs helped to maintain the cross-sectional shape of the skin and helped the shell in 

resisting hoop stresses. This study concluded that, whereas adhesive bond does not affect the 

load-carrying capacity of FRP-confined concrete, mechanical bond significantly improves the 

performance of the section. Fam and Rizkalla (2001b) have shown that, for circular CFFTs 

under axial compression, the confinement effect is higher if the tube is not loaded axially, 

which can be achieved by debonding and loading the core only while the interface condition 

effect had an insignificant effect on the behaviour, yet the maximum strength was not affected. 
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Figure 2.28: Biaxial stress-strain curves for bond effect specimens with multilayer shells 

(Mirmiran et al. 1998) 

2.6.6 Effect of geometry and cross-section configuration 

Mirmiran et al. (1998) reported twelve 152.5x152.5x305 mm concrete filled GFRP tubes 

with square cross section including round corners of 6.35 mm radius with three varying wall 

thicknesses using 6, 10, and 14 plies. The tubes were filament-wound E-glass with polyester 

resin wound at ±75 degrees with respect to the vertical axis. The unconfined concrete strength 

was 40 MPa and the axial compression load was applied on the concrete core only. Figure 

2.29 shows the normalized stress-strain response of the square specimens, compared to the 

152.5 mm diameter circular specimens with similar jackets, but using 30 MPa concrete. 

Unlike the circular sections, the ultimate strength of square sections is lower than their peak 

strength and stabilizes at about 70 percent of the peak strength, regardless of the tube 

thickness. The circular specimens failed by rupture of fibres near mid-height in the hoop 

direction whereas, in square tubes, significant load drop occurs after the peak strength is 

reached accompanied by noise. The specimens eventually failed due to stress concentration at 

the comers. Results showed that circular shaped tubes have a little more than twice the 

confining effectiveness of square cross-sections in terms of their ultimate compressive 
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strengths. This was explained by the uniform pressure exerted by circular tubes as opposed to 

the varying pressure from corner to edge, typically found in square sections (see Figure 2.29).  

Rochette (1996) conducted a similar study using 33 specimens including circular, square, 

and rectangular cross sections, different fibres including carbon and aramid, different corner 

radius, different concrete strengths, 29 to 44 MPa, and different number of plies, 2 to 5 plies 

for carbon and 3 to 12 plies for aramid. Rochette concluded that the comer radius of the tube 

affects its confinement effectiveness. Using this data, Mirmiran et al (1998) introduced a 

modified confinement ratio MCR defined as follows: 

                                        2 r
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Where R is the comer radius, D is the average diameter of the tube and fr is the confinement 

pressure given by: 

                                         
2 j j

r
j

f t
f

D t



                                                                                  (2.17) 

Where fj is the hoop strength of the tube. fr/f’c is the confinement ratio for circular sections. 

The ratio of ultimate strength to peak strength of the confined concrete, fcu/f’cc was correlated 

to MCR for the specimens tested by Rochette (1996) as well as the square specimens tested by 

Mirmiran et al. (1998) as follows: 

                        32.1ln169.0'
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The MCR dictates whether or not a post peak descending part will be present in the response 

curve. The correlation indicated that for MCR less than 15 percent, the jacket is not very 

effective in confining the concrete core. There may be additional ductility due to crack 

opening containment, but no strength enhancement should be expected. 
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Figure 2.29: Normalized stress-strain curves of concrete-filled GFRP circular and square tubes 

(Mirmiran et al. 1998) 

Fam et al. (2005) tested five concrete-filled rectangular FRP tubes (CFRFT) short 

columns under eccentric and concentric axial compression loads. The short columns were 

tested under eccentricity ratios (e/h) of 0, 0.09, 0.18, and 0.24, where h is the section depth. 

Based on this experimental investigation they concluded that CFRFT provides feasible and 

easy ways to construct structural members for beam and column applications. The FRP tube 

provides permanent formwork and is the sole reinforcement for concrete in the axial and 

transverse directions. Unlike steel tubes, strength and stiffness of FRP tubes can be controlled 

independently in the flanges and webs and also in both directions. Furthermore, the laminate 

stress–strain behaviour of FRP tubes could be quite nonlinear. Laminates with fibers oriented 

at ±45° show significant nonlinearity under tension and compression. Nonlinearity could also 

result from progressive failure of layers oriented at various directions. Short CFRFT columns 

loaded over the entire cross section could fail in a brittle manner by fracture of the FRP tube at 

the round corner, due to a high level of biaxial stresses while the round corners of CFRFT 

columns provide limited confinement. The flat sides of the FRP tube bend outwards and cause 

the column to bulge and the concrete core to lose restraint. Consequently, the confinement 

effect is further reduced. 
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Ozbakkaloglu and Oehlers (2008) conducted axial compression tests to investigate 

confinement effectiveness of rectangular FRP tubes with various arrangements. The tubes 

were designed as column confinement reinforcement and were manufactured using 

unidirectional carbon fiber sheets. The effects of the tube corner radius and the presence of 

internal FRP reinforcement were investigated experimentally. The results of the experimental 

investigation indicated that confinement of rectangular columns with FRP tubes lead to 

substantial improvement in the ductility of the columns. Confinement provided by the FRP 

tube may also improve the axial load-carrying capacity of the columns if the confinement 

effectiveness of the FRP tube is sufficiently high. The authors also studied the corner radius of 

the FRP tube they found that the corner radius has a significant influence on the confinement 

effectiveness of the rectangular FRP tubes while the effectiveness of confinement increases 

with the corner radius. Furthermore, the corner radius has a direct influence on the trend of the 

second branch of the stress–strain curve of confined concrete, and hence on the ultimate 

strength of confined concrete. On the other hand, the distribution of transverse strains along 

the perimeter of FRP-confined concrete columns is significantly affected by both the corner 

radius of the column and existence of internal FRP reinforcement. The uniformity of the 

distribution increases with corner radius and the use of internal transverse FRP reinforcement. 

An experimental study on the behaviour of square and rectangular high-strength concrete 

(HSC)-filled (FRP) tubes (HSCFFT) under concentric compression were performed by 

Ozbakkaloglu (2013). The effects of the tube thickness, sectional aspect ratio, and corner 

radius on the axial compressive behaviour of (CFFTs) were investigated experimentally 

through the tests of 24 CFFTs that were manufactured using unidirectional carbon fiber sheets 

and high-strength concrete with 78 MPa average compressive strength. First and foremost, test 

results indicated that sufficiently confined square and rectangular HSCFFTs can exhibit highly 

ductile behaviour. The results also indicated that confinement effectiveness of FRP tubes 

increases with an increase in corner radius and decreases with an increase in sectional aspect 

ratio (long to short column sides). Both of these parameters significantly influence the overall 

trend of the second portion of the stress strain relationship of HSCFFTs. Increased corner 

radius improves the overall trend of this region, but may result in a reduced ultimate axial 

strain. An increase in sectional aspect ratio may also lead to a decrease in the ultimate strain. It 

is also observed that HSCFFTs having tubes of low confinement effectiveness may experience 
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a significant strength loss at the point of transition on their stress-strain curves. For rectangular 

HSCFFTs develop higher hoop strains along their short-spans than their long-spans at 

ultimate. The ratio of the short-to-long span strains increase with an increase in the aspect 

ratio. Furthermore, it is found that the behaviour of HSCFFTs at this region differs from that 

of normal-strength CFFTs and that it is more sensitive to the effectiveness of a confining tube.  

2.6.7 Nature of loading (monotonic and cyclic) 

An experimental study has been conducted by Ozbakkaloglu and Akin (2012) on the 

behaviour of FRP-confined normal- and high-strength concrete (NSC and HSC) under axial 

compression. A total of 24 aramid and carbon FRP-confined concrete cylinders with different 

concrete strengths and FRP jacket thicknesses were tested under monotonic and cyclic 

loading. The test results have also been compared with two cyclic axial stress-strain models 

for FRP-confined concrete. On the basis of the results, they concluded that the stress-strain 

curve envelope of cyclically loaded FRP confined concrete closely follows the stress-strain 

curve of the same concrete under monotonic loading. This is shown to be true for CFRP-

confined HSC and AFRP-confined NSC and HSC. While the residual plastic strain of FRP-

confined concrete is linearly related to the envelope unloading strain, and this relationship 

does not appear to be influenced significantly by (1) the amount of confinement; (2) the type 

of FRP; or (3) the unconfined concrete strength. 

In general, they reported that the presence of unloading/reloading cycles leads to an 

increase in the ultimate strength and strain of FRP-confined concrete. For a given actual 

confinement ratio (flu,a/f’co), both the strength-enhancement and strain-enhancement ratios 

decrease with the increase of unconfined concrete strength. Furthermore, the average hoop-

rupture strain εh;rup also decreases with increasing unconfined concrete strength. Therefore, 

direct application of the existing FRP-confined concrete stress-strain models to FRP-confined 

HSC can lead to significant overestimation of the ultimate condition of FRP-confined HSC. 

Concrete experiences a similar level of strength enhancement when confined with AFRP and 

CFRP jackets that provide the same actual confining pressure flu,a. On the other hand, the 

ultimate strain of the same concrete increases more significantly through AFRP confinement. 

In addition to the general conclusions of the experimental study reported in this paper, the 
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following observations can be made on the basis of the comparison of the test results of the 

present study with two cyclic axial stress-strain models for FRP-confined concrete: 

a) The axial cyclic stress-strain model proposed by Lam and Teng (2009) is highly 

accurate in predicting both the unloading and reloading paths of FRP-confined NSC. The 

model closely predicts the shapes of the unloading and reloading curves and accurately 

estimates the plastic strains. When the model is applied to HSC specimens, on the other hand, 

the model predictions deviate significantly from the experimental results; this is caused largely 

by the inaccuracies in the calculation of the plastic strains of FRP-confined HSC. 

b) Comparisons between the results of the present study and the predictions of the cyclic 

stress-strain model proposed by Shao et al. (2006) indicated that this model predicts the 

reloading paths reasonably accurately, but consistently overestimates the residual plastic 

strains and does not accurately capture the shape of the unloading paths.  

2.6.8  Effect of unconfined concrete strength (f ’c) 

Mandal et al. (2005) evaluated the effect of the unconfined concrete strength (f’c) 

ranging from 26 to 81 MPa on confinement effectiveness (f’cc/f’c) of FRP circular jackets in 

axial concrete members. On the basis of the experimental results they concluded that in 

general the confinement effectiveness reduces with an increase in the unconfined concrete 

strength for concrete-filled FRP tubes cylinders while the modulus, thickness, and tensile 

strength of the FRP jacket in the hoop direction significantly influence the confinement 

effectiveness for low- and medium-strength concrete. Moreover, the study showed that FRP 

tubes provide a substantial increase in strength and ductility for low- to medium-strength 

concrete, which shows a bilinear stress-strain response with strain hardening and the slope of 

the second linear part of the curve depends on the modulus and thickness of the FRP jackets. 

For high-strength concrete, however, enhancement in strength is very limited, with hardly any 

improvement in ductility. The response in this case shows a steep post-peak strain softening.  

Ozbakkaloglu and Vincent (2013) presented an experimental study on the axial 

compressive behaviour of 83 monotonically loaded circular CFFTs. The effects of fiber type, 

concrete strength, specimen size, and manufacturing method on the compressive behaviour of 

CFFTs were investigated. The CFFTs were manufactured with (CFRP), high-modulus CFRP 
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(HMCFRP), or aramid FRP (AFRP) tubes, and their average unconfined concrete strengths 

ranged between 34–110 MPa. The diameters of the test specimens ranged from 75–300 mm 

with all specimens maintaining a 2∶1 height-to-diameter ratio. The effect of the CFFT 

manufacturing method was investigated through AFRP specimens that were manufactured 

through either an automated filament winding or manual wet layup technique. The results 

clearly indicate that over a certain confinement threshold, high-strength CFFTs (HSCFFTs) 

exhibit a highly ductile behaviour. However, for the same nominal confinement ratio, 

compressive behaviour of CFFTs degrades as concrete strength increases while the behaviour 

of these CFFTs is highly sensitive to the level of confinement, and lightly confined HSCFFTs 

may not be able to maintain their load-carrying capacity after their initial peak strengths are 

attained. In addition, FRP tubes manufactured automatically by using a filament winding 

technique provide greater strength and strain enhancement (f’cc=f’co and εcu=εco) for CFFTs 

compared with tubes manufactured manually using a wet layup process. 

An experimental investigation has been conducted by Vincent and Ozbakkaloglu (2013a) 

on the effect of concrete compressive strength and confinement method on confined high and 

ultra-high-strength concrete (HSC and UHSC) specimens. A total of 55 (FRP) confined 

concrete specimens were tested under monotonic axial compression. All specimens were 

cylinders with 152 mm in diameter and 305 mm in height and confined by (CFRP). Three 

different concrete mixes were examined, with average compressive strengths of 35, 65, and 

100 MPa. The effect of the confinement method was also examined with FRP wrapped 

specimens compared to FRP tube encased specimens. The results of this experimental study 

indicated that above a certain confinement threshold, FRP-confined HSC and UHSC exhibits 

highly ductile behaviour, however for the same normalized confinement pressures, axial 

performance of FRP-confined concrete reduces as concrete strength increases. While at the 

same actual confinement ratios (flu,a/f’co), strength enhancement (f’cc/f’co) and strain 

enhancement ratios (εcu/εco) increase as the in-place concrete compressive strength (f’c) 

decreases. The results also indicated that ultimate conditions of FRP-wrapped specimens were 

similar to those confined by FRP tubes; however, a performance difference is evident at the 

transition region. Furthermore, the authors reported that the performance of the existing 

stress–strain models of FRP confined concrete degrades significantly, in predicting both the 

ultimate strength and strain, when they are applied to HSC or UHSC. None of the assessed 
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models is able to provide sufficient accuracy in predicting the ultimate conditions of FRP-

confined HSC and UHSC, with the majority of them significantly overestimating both the 

strength and strain enhancement ratios.  

2.6.9  Fibre orientation and type 

Hong and Kim (2004) performed both experimental and analytical investigations of axial 

behaviour of large-scale circular and square concrete columns confined by carbon composite 

tubes. The specimens were filament-wound carbon composite with 90° + 90°, 90° ± 60°, 90° ± 

45°, and 90° ± 30° winding angles with respect to a longitudinal axis of a tube. The influence 

of transverse dilation, winding angle, thickness of a tube, as well as shape of the column 

section on stress–strain relationships of the confined columns is discussed. They reported that 

the strength of the confined concrete increases drastically as the winding angle is oriented 

toward circumferential direction of tubes like CFCT with 60° winding angle. The maximum 

confinement was obtained from the specimen with a winding angle of 90° ± 60°. Moreover, 

the stress–strain relationship of circular columns is characterized by bilinear response with 

mild softening of axial response. However, the stress–strain response of square columns is 

represented by bilinear stress–strain relationship with both sharp softening response and 

distinct transition. 

Vincent and Ozbakkaloglu (2013b) conducted an experimental investigation on the 

effect of fiber angle and specimen end condition on axial compressive behaviour of (FRP)-

confined concrete. A total of 24 (AFRP)-confined concrete specimens with circular cross-

sections were tested. 18 of these specimens were manufactured as concrete-filled FRP tubes 

(CFFTs), whereas the remaining 6 specimens were FRP-wrapped concrete cylinders. The 

specimens were manufactured using two different concrete mixes with average compressive 

strengths of 50 (NSC) and 80 MPa (HSC). The influence of fiber orientation was examined 

through a group of CFFT specimens manufactured using an automated filament winding 

technique, with fibers aligned at 45, 60, or 75 degrees with respect to the longitudinal axis. 

Additional filament wound specimens with fibers aligned along the hoop direction were also 

prepared to allow a comparison between specimens with inclined fibers and hoop oriented 

fibers. 
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The authors presented the influence of fiber orientation on the axial stress–strain curves in 

Figure 2.30. As shown in the figure the specimens that displayed descending branches had 

their ultimate conditions defined when the axial stress dropped below a threshold of 0.8f’cc. 

This region is represented by dashed lines in Figure 2.30. It can be clearly seen in this 

comparison that an increase in fiber inclination results in an improved axial stress–strain 

behaviour. It can also be seen in Figure 2.30 that specimens with fibers partially aligned in the 

axial direction (i.e., 45, 60, and 75 degrees orientations) can exhibit regions of unstable 

strength loss and plateau due to the gradual rupture of the fibers that leads to a progressive 

failure of the specimen.  

 
Figure 2.30: Influence of fiber orientation on axial stress-strain behaviour of CFFTs (Vincent 

and Ozbakkaloglu 2013b) 

Figure 2.31 illustrates the influence of fiber angle on axial stress-orientation strain 

relationship for specimens with inclined fibers. It can be seen in the figure that substantial 

differences exist between the relationships of specimens with different fiber orientations, with 

only the specimens with hoop-oriented fibers developing orientation strains close to ultimate 

tensile strain of the fibers (εfu). This observation further indicates that fibers used for FRP-

confinement of concrete are most effective when aligned in the hoop direction, with fiber 

efficiency reducing significantly with an increase in fiber alignment with respect to the hoop 
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direction. In addition, they concluded that adequately confined (HSC) can exhibit highly 

ductile behaviour. While confinement method has no significant influence on axial stress–

strain behaviour of FRP-confined concrete, with FRP wrapped specimens performing similar 

to CFFTs. However, it was observed that FRP-wrapped specimens developed slightly higher 

ultimate strains (εcu) and slightly lower peak stresses (f ’cc) than companion CFFTs.  

 
Figure 2.31: Variation of axial stress-fiber orientation strain relationships with fiber 

orientation (Vincent and Ozbakkaloglu 2013b) 

Hadi and Le (2014) tested twelve hollow core square reinforced concrete columns 

wrapped with (CFRP). The effect of fibre orientation on the performance of specimens under 

concentric and eccentric loads was investigated. Twelve specimens (200 mm x 200 mm in 

cross-section, 800 mm in height and having an 80 mm square hole) were divided into four 

groups with three specimens each. The specimens in the first reference group were unwrapped, 

while the specimens in the remaining groups were wrapped with CFRP of different wrap 

combinations of three fibre orientations (0o, 45o, and 90o with respect to the circumferential 

direction). The specimens in each group were tested under three eccentricities: 0 (concentric), 

25, and 50 mm up to failure. The test results showed that the fibre in the hoop direction can 

significantly increase the ductility of hollow core square reinforced concrete columns under 

concentric or eccentric loading. Compared to VHF (vertically wrapped with one CFRP layer 

along the specimen’s axial axis) and AHF (wrapped with two CFRP layers oriented at ±45o 
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with respect to specimen’s axial axis, and then horizontally wrapped with one layer of CFRP) 

columns, HF (laterally wrapped with three CFRP layers with respect to the specimen’s axial 

axis) columns can sustain much larger deformation before failure. However, the increment of 

the compressive strength of FRP-confined hollow core columns is marginal. Furthermore, 

columns were tested under eccentric loading; the contribution of vertical and ±45° angle layers 

was evident in resisting the bending moment. This contribution was more noticeable as the 

eccentricity increased. In fact, specimens AHF-50 (eccentricity=50 mm) and VHF-50, which 

were wrapped with one and two hoop CFRP layers gained maximum axial load even greater 

than that of Specimen HF-50, which was wrapped with three CFRP layers in the hoop 

direction. Finally, all of the three wrapping combinations used in this study increased the 

performance of hollow core square columns. The enhancement in ductility was more evident 

than the enhancement in strength for all types of wrapping, in particular for columns wrapped 

with only hoop-oriented layers. 

2.7 Codes and Guidelines 

2.7.1 CSA approach [S806-12] 

The factored axial load resistance Pr of the confined columns provided by CAN/CSA-

S806-(2012) building code is equals: 

                          10 85 /
r c cc g s s y sp . f A A f A    

 
                                                      (2.19) 

where the material resistance factors are equal  ke=0.85, ϕc=0.60, ϕs=0.85 and ϕFRP=0.75. The 

CAN/CSA-S806 (2012) uses (Eq. 2.20) to evaluate the confined concrete compressive 

strength /
ccf   

                            lclccc fkkff  // 85.0                                                                          (2.20) 

where kl=6.7( lf )−0.17, and factor kc accounts for the shape of the cross section, which is equal 

to 1.0 for circular section and 0.4 for square and rectangular section. The CAN/CSA-S806 

(2012) limits the FRP hoop strain to 0.006 times its elastic modulus Ef. 
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D

ftnf FFF
l

2
                                                                                         (2.21) 

where Ff = the smaller of 0.006Ef or ϕfffu 

2.7.2 CSA approach [CSA-S6-06] 

According to the Canadian Highway Bridge Design Code (CAN/ CSA-S6-06), the 

factored axial load resistance Pr of a confined column is given by the following equation: 

                                  1
/

r e c cc g s s y sp k f A A f A    
 

                                                 (2.22) 

where ke=a strength reduction factor applied for unexpected eccentricities, which equal to 

0.80, and ϕc=0.75, ϕs=0.9  where ϕc and ϕs =material resistance factors for concrete and steel, 

respectively. The value depends on the unconfined concrete compressive strength α1=0.85–

0.0015 /
cf ≥ 0.39. 

The compressive strength of the confined concrete /
ccf shall be calculated as follows: 

lFRPccc fff 2//                                                                                                               (2.23) 

D
ftf FRPuFRPFRP

lFRP
2

                                                                                                     (2.24) 

where ϕFRP=0.65=material resistance factors for FRP. The CAN/CSA-S6-06 limits the 

confinement pressure lFRPf  at the ultimate limit state (ULS) that shall be designed to be 

between /1.0 cf and /33.0 cf . Note that Eq. 2.22 to Eq. 2.24 is valid only for concrete strength 

less than 50 MPa. 

2.7.3 ACI approach [ACI-440.2R-08] 

Strengthening by FRP jackets of RC members subjected to axial force or combined axial 

and bending forces is presented in Chapter 12 of ACI-440.2R-08. Equations for the axial 

compressive strength of a non-slender, normal-weight concrete member confined with an FRP 

jacket using the confined concrete strength are presented as follows: 

For members subjected to axial force:  
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- For non-prestressed members with existing steel spiral reinforcement 

            0 85 0 85 /
n cc g st y stp . . f A A f A     

 
                                                              (2.25a) 

While for spiral columns ϕ=0.75. Where the axial force acting on an FRP-strengthened 

concrete member should be computed using the load factors required by ACI 318-11 (2011), 

and the axial compression strength should be calculated using the strength reduction factors ϕ 

for spiral and tied members required by ACI 318-11 (2011). 

- For non-prestressed members with existing steel-tie reinforcement 

              0 8 0 85 /
n cc g st y stp . . f A A f A     

 
                                                               (2.25b) 

for tied columns ϕ=0.65. 

The stress-strain model by Lam and Teng (2003) for FRP-confined concrete has been adopted 

by the (ACI 440.2R-08) (see Figure 2.32) and computed using the following expressions: 
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The maximum confined concrete compressive strength f ’cc is based on a model proposed by 

Lam and Teng (2003) as follows: 

            lFRPafccc fkff 3.3//                                                                                            (2.27) 

Where /
cf is the unconfined cylinder compressive strength of concrete, Ѱf (an additional 

reduction factor) = 0.95 and the efficiency factor (ĸa) accounts for the geometry of the section, 

circular, and noncircular. For circular columns (ĸa) = 1 while for noncircular columns the 
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shape factors (ĸa)   depend on two parameters: the cross-sectional area of effectively confined 

concrete Ae, and the side-aspect ratio h/b,  

           
2











h
b

A
Ak

c

e
a                                                                                                  (2.28) 

 
Figure 2.32: Lam and Teng’s stress-strain model for FRP confined concrete (Lam and Teng 

2003) 

Where the generally accepted theoretical approach for the definition of Ae consists of four 

parabolas within which the concrete is fully confined, and outside of which negligible 

confinement occurs (Figure 2.33.). The shape of the parabolas and the resulting effective 

confinement area is a function of the dimensions of the column (b and h), the radius of the 

corners rc, and the longitudinal steel reinforcement ratio ρg, and can be expressed as: 
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The maximum confinement pressure lFRPf are equal: 

D
ntE

f feff
lFRP

2
                                                                                                              (2.30) 

For noncircular cross sections 
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               22 hbD                                                                                                       (2.31) 

Where the effective strain level in the FRP at failure εfe is given by  

              fufe k                                                                                                           (2.32) 

A strain efficiency factor ĸε=0.55 is provided based on the experimental results, which were 

carried out by Pessiki et al. (2001). This factor accounts for the difference between in situ 

jacket rupture strains and FRP rupture strains determined from tensile coupon tests. In the 

same manner, the minimum level of lateral pressure lFRPf  is limited to be not less than /08.0 cf . 

This is the minimum level of confinement required to assure a non-descending second branch 

in the stress-strain behaviour Lam and Teng (2003). In addition, the maximum ultimate strain 

is limited to 0.01 to prevent excessive cracking and the resulting loss of concrete integrity. 

 
Figure 2.33: Equivalent circular cross section Lam and Teng (2003) 

 

For members subjected to combined axial compression and bending: 

Eq. (2.25) is applicable when the eccentricity present in the member is less than or equal to 

0.1h. When the eccentricity is larger than 0.1h, the method and equations 2.25 to 2.32 can be 

used to determine the concrete material properties of the member cross section under 

compressive stress. Based on that, the P-M diagram for the FRP-confined member can be 

constructed using well-established procedures (Bank 2006). 
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The following limitations apply for members subjected to combined axial compression and 

bending: 

1) The effective strain in the FRP jacket should be limited to the value given in (Eq. 2.32) 

to ensure the shear integrity of the confined concrete  fufe k   004.0  

2) The strength enhancement can only be considered when the applied ultimate axial 

force and bending moment, Pu and Mu, fall above the line connecting the origin and the 

balanced point in the P-M diagram for the unconfined member (Figure 2.34). This 

limitation stems from the fact that strength enhancement is only significance for 

members in which compression failure is the controlling mode (Bank 2006). 

 

Figure 2.34: Representative interaction diagram (ACI 440.2R-2008) 

2.8 Summary 

First, this chapter provides brief information on the FRP materials and their 

characteristics compared to steel reinforcement, modeling FRP tubes and test methods to 

evaluate the mechanical properties of FRP tubes. Then, the confinement mechanism by later 

steel reinforcement, steel tubes, as well as FRP tubes was addressed. An overview of the 

background literature carried out to investigate the structural behaviour of CFFT members 

subjected to axial forces or combined axial and bending with different critical factors affecting 

confinement was reviewed. Finally, design guide (recently published in Canada and USA) of 

the concrete infill columns structures were also covered.  
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A number of such studies have been reported in the literature. However, the majority of 

these studies have been concerned with circular short, unreinforced, small-scale concrete 

cylinders and intermediate CFFTs columns, and only few studies have investigated the axial 

compressive behaviour of slender as well as eccentricity and cyclic axial behaviour of CFFT 

columns, particularly those reinforced internally with longitudinal reinforcement steel and/or 

FRP bars. Furthermore, all the FRP design provisions suffer from one important limitation: the 

effect of column slenderness (i.e., the second-order effect) is not included, that is, all these 

design provisions are limited to the design of FRP jackets for short columns for which the 

second-order effect is negligible. This limitation can be attributed to the limited amount of 

research on the behaviour of slender FRP confined reinforced concrete columns. Using FRP 

bars instead of conventional steel bars in the CFFT columns can provide a step forward to 

develop a promise totally corrosion-free new structural system. Nonetheless, the axial 

behaviour of FRP bars as longitudinal reinforcement in CFFT columns has been quite limited. 

Thus, this experimental study is designed to investigate the axial behaviour of CFFT long 

columns reinforced with longitudinal steel and FRP bars under monotonic and cyclic axial 

compression loading. The effect of GFRP tubes wall thicknesses, internal reinforcement type 

and amount, and nature of loading (monotonic and cyclic) on the strength and mode of failure 

of CFFT long columns are addressed.  
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CHAPTER 3                                   

EXPERIMENTAL PROGRAM 

 
3.1 General  

The experimental program aimed at investigating the axial compression behaviour of circular 

CFFT long columns internally reinforced with steel, GFRP and CFRP bars tested under 

monotonic and cyclic axial loading. The experimental program presented herein included 

construction and testing of ten full-scale RC and CFFT long columns reinforced with different 

configurations. Through the experimental program, the effect of the following parameters are 

investigated: 

 GFRP tube thickness (2.9mm and 6.4mm); 

 Internal reinforcement type and amount (steel, GFRP and CFRP) bars;  

 Lateral reinforcement type (steel stirrups and GFRP tube) ; 

 Axial nature of loading pattern (monotonic and cyclic).  

This chapter presents the details of test specimens, fabrication, instrumentation, test 

setup, and test procedure. In addition, this chapter gives the detailed properties of different 

materials used in the experimental program, and obtained by testing representative samples of 

each material. More details regarding the mechanical properties and standard tests of the 

different materials (steel and FRP bars and tubes) that are used in the presented thesis can be 

found elsewhere (Mohamed 2010). 

3.2 Materials Properties        

Four materials were used in fabricating the test specimens. These materials are concrete, 

FRP tubes, steel reinforcing (bars and stirrups), and FRP bars. The following sections provide 

a description of the different experimental tests conducted to evaluate the mechanical 

properties of the different materials used herein.  
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3.2.1 Concrete  

The columns were constructed using a ready-mixed normal weight concrete with an 

entrained-air ratio of 5% to 8%.  The targeted normal concrete compressive strength was 35 

MPa after 28 days for all specimens. The slump of the fresh concrete was measured before 

casting and was between 80 mm to 100 mm. Twelve concrete cylinders 150 × 300 mm were 

cast and cured under the same conditions as the test columns. Six cylinders were tested in 

compression at the day of column testing and the stress–strain relationships were measured. 

The remaining three cylinders were tested in tension by performing the split cylinder test at the 

day of columns testing. Figure 3.1 and Figure 3.2 show the compression and splitting testing 

of concrete cylinders, respectively. Figure 3.3 shows typical axial stress-strain curves for the 

concrete cylinders. The average concrete compressive strength and tensile strength were 44.0 

MPa and 4.2 MPa, respectively.  

 
Figure 3.1: Compression test of the standard concrete cylinders 
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        Figure 3.2: Splitting test of the standard concrete cylinders 

 
        Figure 3.3: Typical axial stress-strain relationships for concrete cylinders 
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3.2.2 FRP tubes 

Two types of GFRP tubes were used as structural stay in-place formwork for the tested 

specimens herein. The GFRP tubes were fabricated using filament-winding technique; E-glass 

fiber and Epoxy resin were used for manufacturing these tubes. The two types of GFRP tubes 

(types A&B) were used with different thicknesses and having the same internal diameters 213 

mm. The tubes were manufactured using continuous filament winding process adopted by 

FRE Composites, St-Andre-d’Argenteuil, Quebec, Canada. The thickness of tube (A) equals 

2.90 mm, while for tube B equals 6.40 mm. Different fibre angles with respect to the 

longitudinal axis of the tubes were used (±60°, ±65°, ±45°, and 90°). The fibre orientations of 

the tubes were mainly in the hoop direction, and no fibres in the longitudinal direction. The 

winding angles of tubes (A) were optimized for below underground pipe applications, while 

tubes (B) were designed for pipe telecommunication applications. Figure 3.4 shows the 

filament wound GFRP tubes used in this study. The glass fibre volume fraction as provided by 

the manufacture was 68% ± 3%. Typical test samples of the coupon tests and split-disk test in 

the hoop direction for GFRP tubes are shown in Figure 3.5 and Figure 3.6, respectively. The 

material properties for both the fibre and the resin, as given by the manufacture, are presented 

in Table 3.1 and Table 3.2. Table 3.3 shows the dimensions and mechanical properties of FRP 

tubes. More details regarding the mechanical properties and standard tests of these tubes can 

be also found elsewhere (Mohamed 2010). 

 
        Figure 3.4: Filament wound GFRP tubes 

Tube B  Tube A  
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Table 3.1: Mechanical properties of glass fibres (Mohamed 2010) 

Fiber 
type 

Linear mass 
(g/km) 

Nominal Yield 
(yards/Ib) 

Tensile modulus 
(MPa) 

Shear modulus 
(MPa) Poisson’s ratio 

Glass  2000 250 80000 30000 0.25 

 
Table 3.2: Mechanical properties of resin (Mohamed 2010) 

Resin type Density 
)3(kg/ m  

Tensile modulus 
(MPa) 

Shear modulus 
(MPa) 

Poisson’s 
ratio 

Epoxy 1200 3380 1600 0.4 

 
Table 3.3: Dimension, details, and mechanical properties of FRP tubes (Mohamed 2010) 

Tube 
type 

D 
(mm) 

frpt  
(mm) 

No. of 
layers Stacking sequence fFRPU 

(MPa) 

εFRPU 
(%) 

EFRPU 
(MPa) 

fX 
(MPa) 

εX 
(%) 

EX 
(MPa) 

A 213 2.90 6 [60 º, 904, 60] 548 1.70 32260 55.2 0.62 8865 
B 213 6.40 12 [±60 º, 902, ±60, 906] 510 1.69 30200 59.2 0.75 7897 

D and tfrp are the internal diameter and thickness of the FRP tubes, respectively. fFRPU, εFRPU, and EFRPU  are, 
respectively, the ultimate strength, ultimate tensile strain, and Young’s modulus in the hoop direction; while fX, 
εX, and Ex are the ultimate strength, ultimate tensile strain, and Young’s modulus in the axial direction, 
respectively; 

 
Figure 3.5: Test setup and load-strain curve for the FRP tubes for coupon tensile test 

(Masmoudi and Mohamed 2011) 
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Figure 3.6: Test setup and stress-hoop strain behaviour of the FRP tubes for split-disk test 

(Masmoudi and Mohamed 2011) 

3.2.3 Steel bars 

In this study, two different steel bars were used to reinforce the control and CFFT 

specimens. Wire mild steel bars 3.4 mm in-diameter were served as transverse spiral 

reinforcement for the control specimens. Deformed steel bars M15 (16 mm in diameter; 200 

mm2 in cross-sectional area); were used as a longitudinal reinforcement for test specimens. 

The mechanical properties of the steel bars obtained from standard tests that were carried out 

according to ASTM A615/A615M-09 (2009), on five specimens for each type of the steel 

bars. The mechanical properties of the steel bars are presented in Table 3.4. 

Table 3.4: Mechanical properties of steel reinforcing bars (Mohamed 2010) 

Reinforcement 
 type 

Nominal 
diameter 

(mm) 

Nominal area 
(mm²) 

Tensile 
modulus 

of elasticity 
(GPa) 

Yield 
strength 
(MPa) 

Ultimate 
strength 
(MPa) 

Yield strain 
(%) 

Wire (mild steel) 3.4 9 200 675 850 0.30 
15M (deformed) 16  200 200 419 686 0.21 
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3.2.4 FRP bars 

Three types of sand-coated FRP bars manufactured by a Canadian company [ADS 

Composites/Pultrall Inc., Thetford Mines, Quebec] were used as longitudinal reinforcement 

for the tested columns. Sand-coated surface was made to improve the bond between the bars 

and surrounding concrete. Two types of FRP bars were made from continuous glass fibres and 

one type was made from continuous carbon fibres with a fibre content of 73% and 

impregnated in a vinyl ester resin through the pultrusion process. GFRP bars No. 3 and No. 5 

(9.5 mm and 15.9 mm in-diameter; 71 mm2 and 199 mm2 in cross-sectional area, respectively) 

and CFRP bars No. 3 (9.5 mm-in diameter; 71 mm2 in cross-sectional area) were used. Table 

3.5 shows the mechanical properties of the FRP bars as provided by the manufacture.  

Table 3.5: Properties of reinforcing FRP bars (Pultrall 2007) 

Reinforcement 
 type 

Nominal 
diameter 

(mm) 

Nominal area 
(mm²) 

Tensile 
modulus 

of elasticity 
(GPa) 

Yield 
strength 
(MPa) 

Ultimate 
strength 
(MPa) 

Ultimate 
strain 
(%) 

GFRP 9.5 71 45.4 - 856 1.89 
15.9 199 48.2 - 751 1.60 

CFRP 9.5 71 128 - 1431 1.20 
 

3.3 Test Specimens’ Details  

A total of 10 RC and CFFT circular columns, comprising 3 RC control columns and 7 

steel or FRP-reinforced CFFT columns, were fabricated and tested under concentric axial 

monotonic or cyclic compression loading. The test specimens were divided into two series 

denoted as Series I and II. Table 3.6 provides complete details of all specimens and Figure 3.7 

shows typical details of the reinforcement layout. The specimens in Table 3.6 were labeled as 

follows: the first letters S, A, or B are defining “the type of lateral reinforcement: steel spiral 

stirrups, GFRP tube type (A), or tube type (B), respectively”. This was followed by a letter S, 

G, or C. These letters were used to indicate “the longitudinal reinforcement type: steel, GFRP, 

or CFRP bars, respectively”, followed by a subscript indicating “the longitudinal 

reinforcement ratio”. The final letter refers to the nature of loading type “M for monotonic or 

C for complete unloading/reloading cyclic loading”. For instance, the specimen (A-S(3.4)-C) 
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was laterally confined with GFRP tube type (A), reinforced internally with steel bars with a 

reinforcement ratio of 3.4%, and tested under cyclic axial compression loading.   

Table 3.6: Specimen’s details 

Series number ID Tube type or spiral stirrups H 
(mm) 

D 
(mm) 

Longitudinal bars 
Type Amount 

I 
S-S(3.4)-C ϕ3.4@50.6 

1900 213 

Steel 6 M 15 
S-G(3.4)-C ϕ3.4@50.6 GFRP 6 No. 5 
S-G(3.4)-C* ϕ3.4@50.6 GFRP 6 No. 5 

II 

A-S(3.4)-C A Steel 6 M 15 
A-G(3.4)-C A GFRP 6 No. 5 
B-G(3.4)-C B GFRP 6 No. 5 
B-G(1.2)-C B GFRP 6 No. 3 
B-G(1.2)-M B GFRP 6 No. 3 
A-C(1.2)-C A CFRP 6 No. 3 
A-C(1.2)-C* A CFRP 6 No. 3         

* X-Y(aa)-Z*: X= lateral reinforcement type, where S=Steel spiral stirrups; A=GFRP tube type; and B= GFRP 
tube type B; Y=longtiudianl reinforcment type, where S=steel bars; G= GFRP bars; and C=CFRP bars; 
aa=longitudianl reinforcment ratio; Z=loading type, where C=cyclic axial loading; and M=monotonic axail 
loading; * inditical speciemens (if any).  

Both series had the same height (h=1900 mm) to diameter (D=213 mm) ratio of 9.0. The 

investigated test parameters were: (i) GFRP tubes thicknesses (2.9 and 6.4 mm); (ii) internal 

reinforcement type (steel; GFRP; or CFRP bars) and amount; and (iii) nature of loading (i.e. 

monotonic and cyclic). Series I includes three control RC specimens reinforced longitudinally 

with reinforcement ratio (ρL) equal to (3.4%), one specimen reinforced with longitudinal steel 

bars and two identical specimens reinforced with GFRP bars. Steel spiral stirrups (pitch = 50.6 

mm) were used as transverse reinforcement to have approximately similar hoop stiffness of the 

GFRP tube (Type A). Series II consists of seven reinforced CFFT columns laterally confined 

with GFRP tubes (Type A or B). One specimen was internally reinforced with deformed steel 

bars (6 M15; ρL = 3.4%) and laterally confined with tube type (A). Four specimens were 

reinforced with 6 GFRP bars No. 3 or No. 5 (ρL = 1.2 and 3.4%, respectively) and laterally 

confined with tubes type (A and B). Besides, two identical specimens were reinforced with 

longitudinal CFRP bars (6 No. 3; ρL = 1.2 %) and laterally confined with tube type (A) and 

were designed to have similar axial stiffness as in specimen (A-G(3.4)-C). In addition, all 

specimens were tested under single complete unloading/reloading cyclic axial compression 
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loading, except for specimen B-G(1.2)-M which was tested under monotonic axial compression 

loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Typical details for the tested specimens and reinforcement layout: (a) CFFT 

columns; (b) control specimens  
 

3.4 Fabrication of the test specimens  

All specimens were casted with concrete in a vertical position. For the CFFT column, the 

GFRP tubes were used as permanent formwork while for control specimens’ stiff cardboard 
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tubes were used as formwork and it were removed after casting (see Figure 3.8 a & b). The 

FRP tubes were cut to the proper length of 1.90 m-long, using a saw and then were cleaned 

and dried carefully. The cardboard tubes were attached with four vertical stiffeners using wood 

plate of 50 x 30 mm, cross section distributed at the perimeter of the tube. Reinforcement 

cages with different configuration were constructed from GFRP, CFRP, and steel bars. The 

rebar cage was designed to have an outside diameter of 193 mm, allowing for 10 mm clear 

spacing on all perimeters of the FRP tubes. All longitudinal bars were uniformly distributed 

inside the cross section (see Figure 3.7). For the CFFT columns, two steel stirrups were used at 

the top and the bottom of each specimen to fix the bars in their positions during casting. 

      

         (a)                                                 (b) 

Figure 3.8: (a) FRP tubes; (b) and cardboard for columns (Mohamed 2010) 

3.5 Instrumentations and Testing Procedures 

Several strain gauges were mounted onto the internal reinforcement prior casting the 

concrete and onto the concrete or tube surface before testing. Two strain gauges were bonded 

on two longitudinal bars at 180o degree apart at the mid-height of the column. Eight strain 

gauges were located at the column mid-height in both axial and lateral directions to measure 

the axial and lateral strains, respectively, as shown in Figure 3.9 and Figure 3.10. Two 

displacement transducers (DTs) were used to measure the axial deformation of the column 
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over the full height. Additionally, two in-plane linear variable displacement transducers 

(LVDTs) were located at the mid-height to record the lateral displacements of each column 

(see Figure 3.11 and Figure 3.12). A thin layer of the high strength sulphur was capped on 

both ends of all specimens to ensure the uniform load distribution during testing (see Figure 

3.13). Before testing, both ends of the columns were further confined with bolted steel collars 

made from 10 mm thick steel plates in order to prevent premature failure at the ends, as shown 

in Figure 3.14. The specimens were loaded under axial compression load using a 6000-kN 

capacity-testing machine. Loading and unloading in compression tests were achieved with 

load control at a rate approximately equal to 2.3 kN/s. During the test, load, axial and lateral 

displacements, and strain gauges were recorded automatically using a data acquisition system 

connected to the computer. Figure 3.15 shows the schematic of the test setup and Figure 3.16 

depicts photograph of the test setup. Figure 3.17 shows the testing machine and a data 

acquisition system.   

 

Figure 3.9: Reinforcement strain gauges instrumentations (Mohamed 2010)  
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Figure 3.10: Vertical and horizontal strain gauges 

 

  
Figure 3.11: Horizontal LVDTs for measuring the lateral displacements 
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Figure 3.12: Vertical DTs for measuring the axial displacements 

 
Figure 3.13: Column capping preparation 
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Figure 3.14: Top and bottom confined steel bolted plates 
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a) CFFT column                                                    b) Control column 

Figure 3.16: Test setup  
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Figure 3.17: Testing machine and a data acquisition system 



                                                                                                                     Chapter 4: Test Results and Discussion  

 76 

CHAPTER 4     

 TEST RESULTS AND DISCUSSION 

4.1 General 

This chapter presents the test results of an experimental study that have been submitted to the 

Elsevier Journal of Engineering Structures. The behaviour of RC and CFFT columns 

internally reinforced with longitudinal steel and FRP bars under axial compression loading is 

investigated. A total of ten RC and CFFT columns measuring 1900-mm in height and 213-mm 

in diameter were constructed and tested until failure. The behaviour of the tested columns is 

discussed in terms of failure mode, axial and lateral stress-strain responses, plastic strains and 

stress deterioration, and stress-strain responses of longitudinal reinforcement. Furthermore, the 

effect of the GFRP tubes thicknesses on confinement and loading pattern are also emphasized. 

Examination of the test results has led to a number of significant conclusions in regards to 

both the trend and ultimate axial strength and strain capacities.  

4.2 General Behaviour and Mode of Failure 

Different failure modes were observed for the tested control and CFFT reinforced 

columns as shown in Figure 4.1 to Figure 4.9. Test results indicated that the control specimens 

that were confined with steel spiral stirrups and reinforced with steel or GFRP bars showed 

similar initial elastic behaviour. Failure typically initiated with vertical cracks started to appear 

at approximately 85% of their peak loads and followed by concrete dilation and lateral 

deformation of transverse and longitudinal reinforcement leading to concrete cover spalling. 

Thereafter, the concrete core crushed and spiral stirrups fractured after buckling of the 

longitudinal bars. Moreover, inclined diagonal shear surface was observed, leading to a 

separation of the concrete core into two column parts, causing a sudden drop after reaching the 

peak load (see Figure 4.1 and Figure 4.2). It should be noted that the GFRP control columns 

failed in a more brittle manner than the steel-reinforced columns.  
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On the other hand, reinforced CFFT columns showed substantially different failure mode 

compared to that occurred for the control columns as shown in Figure 4.3 to Figure 4.9. The 

GFRP tube provided significant confinement attributing to shift the failure mode from axially 

dominated material failure to flexural-dominated instability failure (overall buckling 

associated with considerable bending of the specimens). The instability was evident in a 

significant single curvature mode shape of the bent column. This observation is in agreement 

with the previous research work conducted on slender FRP-confined columns (Mohamed et al 

2010 and Fitzwilliam et al 2010). Despite, the specimens experienced much lateral deflections 

beyond the ultimate load, the deflected columns were still stable and carried more axial load. 

Loading the specimens continued until localized failure occurred near the mid height of the 

column. Finally, the failure happened suddenly and in a brittle manner. Furthermore, the FRP 

rupture, concrete crushing, and local buckling of steel bars or crushing of the FRP bars on the 

compression side of the column were observed in the specimens after removing the FRP tube. 

       

Figure 4.1: Failure mode of specimen S-S(3.4)-C 

Steel bar 

buckling 

Spiral stirrups rupture 

 

Diagonal 

shear surface 
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Figure 4.2: Failure mode of specimen S-G(3.4)-C 

     
Figure 4.3: Failure mode of specimen A-S(3.4)-C 

Buckled 

GFRP bar  

Spiral stirrups rupture 
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Figure 4.4: Failure mode of specimen A-G(3.4)-C 

  
Figure 4.5: Failure mode of specimen B-G(3.4)-C 

Crushed 

GFRP bar  
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Figure 4.6: Failure mode of specimen B-G(1.2)-C 

  
Figure 4.7: Failure mode of specimen B-G(1.2)-M 
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Figure 4.8: Failure mode of specimen B-G(1.2)-C* 

 
Figure 4.9: Overall failure modes of tested specimens     



                                                                                                                     Chapter 4: Test Results and Discussion  

 82 

4.3 Axial and Lateral Stress-Strain Responses  

Figure 4.10 to Figure 4.12 depict the cyclic and monotonic stress-strain relationships for 

reinforced control and CFFT columns. In Figure 4.10 to Figure 4.12, the axial stress and strain 

are presented as positive and the lateral strain as negative. Axial stress was obtained from 

dividing the axial load by the column cross-sectional area. The axial and lateral stress-strain 

curves were plotted from the ultimate strain gauges bonded in the vertical and hoop directions 

at the mid-height of the column. The key experimental results of the tested columns are shown 

in Table 4.1. In this Table 4.1, the experimental ultimate load (Pu), the confined concrete 

compressive strength (fcc
’)-that is the maximum compressive strength at the ultimate load, the 

corresponding axial strain (εcc
’), the unconfined concrete compressive strength (fc

’) from 

cylinders and the corresponding axial strain of unconfined concrete (εco
’) are reported. As 

shown in Figure 4.10  to Figure 4.12, the stress-strain diagrams for all columns exhibited 

almost similar initial stiffness with a relatively linear slope in the elastic range of the stress-

strain curves, indicating that the elastic axial stiffness is not affected by confinement, 

regardless the investigated tested parameters. Lam and Teng 2003 and Karimi et al 2012 also 

noted that in the elastic range with axial strain values smaller than 0.002, the confinement of 

FRP-confined concrete is negligible. In addition, the maximum compressive strain at failure 

exceeds the elastic axial strain limit (taken as 0.002) indicating the inelastic buckling of the 

reinforced CFFT columns (Karimi et al 2012).  

The stress-strain responses of the GFRP-reinforced control columns behaved similar to 

that of the steel-reinforced control column up to their peak load. However, the peak axial 

stress for steel-reinforced column was slightly higher than that of their counterpart reinforced 

with GFRP by 11% on average. In spite of the fact that the steel spiral stirrups for the control 

specimens were designed to have similar lateral stiffness as in Tube A, the ultimate capacity 

was significantly lower than that of CFFT specimens. This can be attributed to the continuity 

of the FRP tubes rather than the discontinuity of the steel stirrups, which reflects the superior 

confining behaviour of the FRP tubes compared to the steel stirrups to increase not only the 

strength but also the ductility of the CFFT columns (Mohamed et al 2010).  
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The envelop curves of the reinforced CFFT- columns, representing the upper boundary of the 

cyclic axial stress-strain responses, showed bilinear responses with a transition zone in the 

vicinity of the unconfined concrete (fc
’) followed by nearly stabilization of the load carrying 

capacity at the end due to excessive lateral buckling until failure (i.e B-G(3.4)-C and B-G(1.2)-

C). The initial slope was almost identical for all the specimens while the second slope is highly 

governed by GFRP tubes stiffness rather than the internal reinforcement type and amount, 

particularly in thicker tube thickness (see Figure 4.11 and Figure 4.12). The axial stress-strain 

curves for GFRP and steel reinforced CFFT columns showed similar shapes of the hysteresis 

loops for the unloading/reloading paths (Figure 4.11). However, the steel-reinforced CFFT 

column hysteresis loop starts to open after the yielding of steel bars. The unloading paths for 

the CFFT columns reinforced with steel or FRP bars exhibited non-linear behaviour. The 

degree of the non-linearity increases as the unloading axial strain increases. Moreover, the 

reloading paths could be represented as straight lines.  

 

Figure 4.10: Axial cyclic stress-strain curves for control columns  
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Figure 4.11: Axial cyclic stress-strain curves for the reinforced-CFFT columns confined with 

tube type A 

 
Figure 4.12: Axial cyclic stress-strain curves for the reinforced-CFFT columns confined with 

tube type B  

Yielding point 
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Table 4.1: Test specimens’ results 

Series 
number ID P u 

(kN) 
'

cf
 

(MPa) 

'
ccf a

 
(MPa) 

' '/cc cf f  
cc 

(µε) cc/co 
h, min. 
(µε) 

h, aver. 
(µε) 

h, max. 
(µε) 

I 
S-S(3.4)-C 1948 

44.1 

54.60 1.23 -2510 1.04 377 599 836 
S-G(3.4)-C 1575 47.20 1.08 -2711 1.12 653 935 1144 
S-G(3.4)-C* 1606 48.64 1.10 -2379 0.99 270 457 605 

II 

A-S(3.4)-C 2402 67.38 1.53 -13749 3.83 2442 4697 9707 
A-G(3.4)-C 2603 73.06 1.66 -13718 4.63 5172 8087 9610 
B-G(3.4)-C 3455 96.97 2.20 -15578 5.49 4435 9745 15135 
B-G(1.2)-C 3272 91.82 2.08 -15563 5.96 11456 13787 16113 
B-G(1.2)-M 3068 86.09 1.95 -15514 5.15 3156 11356 16090 
A-C(1.2)-C 2086 58.55 1.33 -15486 4.65 4190 8240 11913 
A-C(1.2)-C* 2039 57.23 1.30 -15475 5.10 2738 8024 12947 

* X-Y(aa)-Z*: X= lateral reinforcement type, where S=Steel spiral stirrups; A=GFRP tube type; and B= GFRP 

tube type B; Y=longtiudianl reinforcment type, where S=steel bars; G= GFRP bars; and C=CFRP bars; 

aa=longitudianl reinforcment ratio; Z=loading type, where C= axial cyclic loading; and M=monotonic axial 

loading; * inditical speciemens (if any).  
a fcc’=Pu/Ac 

4.4 Plastic Strains 

The relationship between the plastic strain and envelop unloading strain (εun,env..) is an 

important aspect for modelling the unloading/reloading axial cycles. The plastic strain (εpl) in 

this thesis is defined as the residual axial strain when the axial stress is unloaded to zero stress 

of each unloading path (Wang et al 2012 and Lam and Teng 2009) (see Figure 4.13). Previous 

studies for unconfined, steel-confined, and FRP-confined concrete cylinders and square prisms 

(e.g. Saki and Kawashima 2006; Lam and Teng 2009; Abbasina et al 2012; 2013; Wang et al 

2012; Ozabakkalogu and Akin 2012) have shown that the plastic strain is linearly proportional 

to envelop unloading strain. Yet, the proposed model of Lam and Teng (2009) is highly 

accurate in predicating both the unloading and reloading paths and estimate plastic strains for 

FRP-confined normal strength concrete cylinders (Ozabakkalogu and Akin 2012). Lam and 

Teng (2009) proposed the following equations to predicate the plastic strains: (1) εpl1 = 0 when 

εun,env ≤ 0.001; (2) a linear increase in εpl when 0.001 ≤ εun,env  ≤ 0.0035 (Eqn. 4.1); and (3) an 

additional linear increase relationship when εun,env  > 0.0035 (Eqn. 4.2).  

     '
2 ,[1.4 0.87 0.004 0.64] 0.001pl c un envf                                                         (4.1) 
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           '3 ,0.87 0.004 0.0016pl c un envf                                                               (4.2)                                 

 

Figure 4.13: Typical axial cyclic stress-strain curves (Lam and Teng 2009)  

A regression analysis of the CFFT tested columns was conducted by correlating the 

experimental plastic strain and the corresponding unloading envelop strain in each cycle as 

shown in Figure 4.14. In Figure 4.14, it can be observed that the plastic strains of the 

reinforced CFFT columns is linearly proportional with the envelop unloading strains. The 

strain region when (0.001 ≤ εun,env  ≤ 0.0035) indicates that the residual plastic strains does not 

appear influenced significantly by the amount of confinement or the longitudinal 

reinforcement type and ratio. This observation is in a good agreement with the pervious tests 

conducted on FRP-confined unreinforced concrete cylinders (Lam and Teng 2009; 

Ozabakkalogu and Akin 2012) and reinforced concrete square prism (Wang et al 2012). 

However, in the strain region when εun,env  > 0.0035, it was found that it depends little on the 

level of confinement as in the previous strain region but strongly on the internal longitudinal 

reinforcement type and ratio. The statistical characteristics of the trend lines for reinforced 

CFFT columns showed different trends. The slope of the trend lines of the specimens 

reinforced with GFRP bars decreases linearly with increasing the FRP longitudinal 

reinforcement ratio. Besides, the steel-reinforced CFFT column (after steel yielding) exhibited 

Plastic strain point 

Envelop unloading strain point 
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larger plastic strains than the GFRP-reinforced CFFT columns at the same axial envelop 

unloading strain level.  

 

Figure 4.14: Plastic strain versus envelop unloading strain relationships of test specimens 

4.5 Stress Deterioration 

Previous investigations on the cyclic axial behaviour of confined concrete cylinders and 

square prisms unreinforced and reinforced internally with steel bars have shown that under 

unloading/reloading cycles that are subjected to stress deterioration (Lam and Teng  2009; 

Abbasina et al 2012; 2013; Wang et al 2012). In order to evaluate the degree of stress 

deterioration for the unloading/reloading paths of each cycle for the reinforced CFFT tested 

columns, a stress deterioration ratio is defined as follows:  

                                             
envul

new

f
f

,

1,
1                                                                                      (4.3) 

where ful,env is the envelop unloading stress, and fnew,1 is the stress where the first reloading path 

reaches to the point corresponding to εul,max (the maximum axial strain in the envelop 
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unloading path) (Abbasina et al 2012; 2013). Figure 4.15 shows the relationship between β1 

and εul,env. As shown in Figure 4.15, the stress deterioration for the CFFT columns reinforced 

with FRP bars is almost negligible when the envelop unloading strain is small and decreases 

gradually as the envelop unloading strain increases and remains approximately a constant 

value about 0.90, with a standard deviation equal to 0.009 at εun,env  > 0.002. This is in 

agreement with Shao et al 2006 and Abbasina et al 2012; 2013 for FRP- confined concrete 

cylinders and square prisms, respectively. Besides, Figure 4.15 indicates that for FRP 

reinforced CFFT columns with different characteristics the stress deterioration ratio has the 

same trend. Thus, it can be concluded that the stress deterioration is independent of the FRP 

internal reinforcement and tubes thicknesses.  

 
 

Figure 4.15: Stress deterioration ratio (β1) versus envelop unloading strain 

4.6 Stress-Strain Responses of Longitudinal Reinforcement 

Figure 4.16 to Figure 4.18 shows the axial stress-strain relationships for the longitudinal 

reinforcement of the tested specimens. As shown in Figure 4.16 that the axial stress-strain 

curves for steel and GFRP bars for control specimens exhibited a linear ascending branch 
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approximately at a strain level of 2100 µε followed by a softening stress-strain response until 

failure. At the peak load level, the average axial strains for the GFRP and steel bars reached to 

2495 and 2100 µε, respectively. While the load carried by the reinforcement (computed by 

multiplying the area of the longitudinal reinforcement by the average axial strain and modulus 

of elasticity of the material) indicated that the GFRP and steel bars contributed to the ultimate 

load capacity of the columns by 10 and 15%, respectively. This confirms the integration of the 

GFRP bars used as the steel bars in compression for the tested columns (Mohamed et al 2014).  

For steel-reinforced CFFT column, the stress-strain curve for steel bars showed a linear 

response until yielding stress at a stain approximately equal to 2100 µε (Figure 4.17). After 

yielding, the axial stress- steel strain increased progressively in the horizontal direction until 

failure. It was observed that the yield load occurred at load level 83% of the ultimate capacity. 

This indicated that, for steel CFFT column, specimen (A-S(3.4)- C) did not show much 

enhancement in the ultimate capacity after yielding. On the other hand, the GFRP-reinforced 

CFFT column initiated almost similarly response as steel-reinforced ones before steel yielding. 

However, the axial stress-strain response for steel-reinforced CFFT column at a strain level of 

2000 µε (close to yielding strain of steel) was slightly higher. This may attribute to axial 

rigidity of steel bars is higher than GFRP bars. While after strain level of 2000 µε, the axial 

cyclic stress-strain curve for the GFRP-reinforced CFFT column started to deviate and 

continued to increase slightly until failure. This can be attributed to the linear behaviour of the 

FRP material. It should be noted that both specimens (A-S(3.4)-C and A-G(3.4)-C) at the same 

longitudinal ratio (ρ=3.4%) achieved similar axial strength. This indicated that the contribution 

of the GFRP bars in the axial capacity of the CFFT column is comparable to that of the steel 

bars (Masmoudi and Mohamed 2011).  

The influence of the amount of longitudinal reinforcement was more pronounced for the 

specimens confined with thinner tube (Type A) than that with thicker tube (Type B). The 

specimens A-C(1.2)-C and A-G(3.4)-C (designed with similar axial stiffness) and confined with 

tube (A) did not maintain similar axial strength, the specimen A-G(3.4)-C with higher 

reinforcement ratio exhibited higher axial capacity by 26%. On the other hand, increasing the 

longitudinal reinforcement ratio from 1.2 to 3.4% in the tested specimens (B-G(3.4)-C and B-

G(1.2)-C) resulted in a increase in the axial load carrying capacity by only 5%. 
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Figure 4.16: Axial stress-strain relationships for longitudinal bars for the control columns  

 
Figure 4.17: Axial stress-strain relationships for longitudinal bars for the reinforced-CFFT 

columns confined with tube type A  
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Figure 4.18: Axial stress-strain relationships for longitudinal bars for the reinforced-CFFT 

columns confined with tube type B  

4.7 GFRP Tube Thickness Effect on Confinement 

Table 4.1 shows the strength and strain enhancement ratios ( ccc ff  and cocc  ).Table 

4.1 indicates that the strength and strain enhancement ratios of the CFFT columns (A-S(3.4)-C 

and A-G(3.4)-C) were increased ranging from 1.3 to 1.5 and 3.7 to 4.4 times their counterpart 

control specimens (S-S(3.4)-C and S-G(3.4)-C), respectively. Increasing the GFRP tube thickness 

from 2.9 to 6.4 mm enhanced both the strength and strain ratios by 25% and 12%, 

respectively. This can be attributed to the enhancement of lateral confinement, as a result of 

increasing the stiffness of the tube, which increased the ultimate axial stress capacities and 

strain of the tested CFFT columns. Typical distributions of axial and lateral strains at various 

loads of selected reinforced CFFT columns over the perimeter of the GFRP tube at the column 

mid-height are presented in Figure 4.19 to Figure 4.22. As shown in these figures, the uniform 

distribution of the lateral strains in the FRP tubes near loading level of 2000 kN indicates 

efficient confinement of the tubes. As a result of the instability failure of the reinforced CFFT 

columns due to buckling produced highly variable lateral confinement and induced significant 
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bending in the column before failure. The maximum, minimum, and average lateral strains in 

the hoop direction (εh,max, min, aver.) of the FRP tube at the ultimate load are reported in Table 

4.1. 

 
a) Axial strain distribution 

 
b) Lateral strain distribution    

Figure 4.19: Strain distribution versus different strain gauges locations surrounding the 

column perimeter at the mid-height for specimen A-S(3.4)-C   
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a) Axial strain distribution 

 
b) Lateral strain distribution    

Figure 4.20: Strain distribution versus different strain gauges locations surrounding the 

column perimeter at the mid-height for specimen A-G(3.4)-C   
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a) Axial strain distribution 

 
b) Lateral strain distribution    

Figure 4.21: Strain distribution versus different strain gauges locations surrounding the 

column perimeter at the mid-height for specimen B-G(3.4)-C   
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a) Axial strain distribution 

 
b) Lateral strain distribution    

Figure 4.22: Strain distribution versus different strain gauges locations surrounding the 

column perimeter at the mid-height for specimen B-G(1.2)-M   

4.8 Effect of Loading Pattern 

 The responses in Figure 4.12 imply that the envelop curve of the long GFRP-reinforced 

CFFT column (B-G(1.2)-C) subjected to cyclic loading was almost identical to the axial stress-
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strain response of the monotonically loaded specimen (B-G(1.2)-M). Generally, the ultimate 

axial strain of the cyclic loading specimen was slightly larger than that of the specimen 

subjected to monotonic loading. This observation is consistent with the tests on FRP-confined 

concrete cylinders (Lam and Teng 2009; Sho et al. 2006; Ozbakkaloglu and Akin 2012). 

Furthermore, the average ultimate lateral strains of specimen (B-G(1.2)-C) were 18% (on 

average) higher than the specimen (B-G(1.2)-M). This indicates that the unloading/reloading 

cycles can postpone the failure of the column. Lam and Teng 2009; Theodoros 2001 also 

reported the higher FRP ultimate lateral strains for cyclically loaded cylinders.   

4.9 Code Predictions of the Axial Load Carrying Capacity 

This section presents the predications of the axial load carrying capacity computed by the 

available North American design codes for steel and FRP bars with and without FRP 

confinement. The North American codes use the following equation to represent the 

theoretical nominal axial load capacity or yield point of short loaded steel-reinforced concrete 

(RC) columns under pure axial load (Po):  

               stystgcco AfAAfkp  /                                                                                    (4.4) 

Where Ag is the gross sectional area of concrete, f ‘c is the ultimate concrete strength, fy and 

Ast are the yielding strength and area of steel reinforcement bars, receptively. The parameter kc 

is defined as the ratio between the in-place strength of concrete to concrete cylinder strength, 

 // / cco ff . The difference is attributed to the size effect, shape, and concrete casting practice 

between columns and concrete cylinders, a value of 0.85 is being suggested for kc (Lyse and 

Kreidler 1932). The two Canadian codes CSA-S6-06 (2010) and CSA-A23.3 (2014) provide 

similar equations as in the ACI 318 (2014), except for introducing a material resistance factor 

for steel and concrete instead of the strength reduction factor specified in the ACI 318 (2014). 

In addition, the Canadian codes use the factor α1 instead of kc, which depends on the value of 

the unconfined concrete compressive strength. The ACI 440.R1 (2015), CSA S806 (2012), 

and S6-06 (2010) were used to calculate the maximum loading carrying capacity for the FRP-

reinforced control specimens. However, the contribution of FRP bars in the ultimate capacity 

of the columns is neglected as specified by the design codes.   
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For the specimens confined with FRP tubes, the ACI 440.2R (2008) and the two Canadian 

codes (CSA S806 (2012), S6-06 (2010)) use the same equations of the conventional steel (RC) 

columns to predict the compressive strength but using  /
ccf  instead of  /

cf . The confinement 

models and the design equations for short FRP-confined-RC columns under axial load, as 

reported by the ACI 440.2R (2008) design guidelines and the two Canadian codes CSA-S6-06 

(2010) and CSA S806 (2012) are summarized in Table 4.2 as more details have been given in 

Chapter 2.  

Table 4.2: Axial load carrying capacity design equations for CFFT columns 

Code Equation 
CAN/CSA S806 (2012)  10 85 /

r c cc g s s y sp . f A A f A    
 

 

where: ke=0.85, ϕc=0.60, ϕs=0.85 and ϕFRP=0.75 
lclccc fkkff  // 85.0                                                                    

where: kl=6.7( lf )−0.17     kc=1    

D
ftnf FFF

l
2

                                                                               

where: Ff = the smaller of 0.006Ef or ϕfffu 

(4.5) 
 
 
(4.6)                                                                                              
 
(4.7) 

CAN/CSA S6-06 (2010)  1
/

r e c cc g s s y sp k f A A f A    
 

  

where: ke=0.8, ϕc=0.75, ϕs=0.9 and ϕFRP=0.65 
α1=0.85–0.0015 /

cf ≥ 0.39 

lFRPccc fff 2//                

D
ftf FRPuFRPFRP

lFRP
2

                                                                  

where: /
lFRP

/ 33.01.0 cc fff                                                      

(4.11)                                                                                             
  

(4.12) 
 
(4.13) 
 
(4.14) 

ACI-440.2R-08  0 85 0 85 /
n cc g st y stp . . f A A f A     

 
 

where: ϕ=0.75 
lFRPafccc fkff 3.3//                                                            

Where: Ѱf=0.95,  (ka) = 1    

D
ntE

f feff
lFRP

2
                                                                    

fufe k   ,  kε=0.55 

where: lFRP
/08.0 ffc  , 01.0ccu                                                     

(4.8) 
 
 
(4.9) 
 
 
(4.10) 
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4.9.1 Comparisons of predications versus experimental results  

This section evaluates the applicability of the confinement models of the Canadian codes and 

the ACI design codes and guidelines to the tested columns and identifies the most and least 

conservative model’s predictions. Table 4.3 and Table 4.4 present the predicated axial load 

carrying capacity versus the experimental test results for the control and CFFT-reinforced 

specimens as specified by the North American codes for steel and FRP bars, respectively. 

Figure 4.23 shows comparisons between the experimental results to the predicated axial 

carrying capacities of the tested specimens from different codes and guidelines. The safety and 

environmental reductions factors included in all the design equations were set to 1.0. Several 

limitations were also considered to control the  /
ccf  predications as recommended by the 

design codes and guidelines for instant the CAN/CSA-S806 (2012) limits the FRP hoop strain 

to 0.006 times its elastic modulus Ef while the CAN/CSA-S6-06 (2010) limits the confinement 

pressure lFRPf at the ultimate limit state (ULS) to be between /1.0 cf and /33.0 cf . Furthermore, 

the ACI 440.2R (2008) limits the maximum ultimate strain to 0.01 to prevent excessive 

cracking and the resulting loss of concrete integrity. When this limit is applicable, the 

corresponding maximum value of  /
ccf  should be recalculated from the stress-strain curve. 

The confining pressure flFRP was calculated based on the ultimate hoop tensile strength fFRPu, 

which equals to the value obtained from the split disk test. 

For the GFRP-reinforced control specimens, the ACI 440.R1 (2015), CSA S806 (2012), 

and CSA S6-06 (2010) predication values were an average (Ptest/Ppred) of 1.45±0.02, 

1.57±0.02, and 1.67±0.02 and COVs of 1.38%, respectively. The ACI 440.R1 (2015) was the 

closest predication values to the experimental results. However, all codes showed slightly 

higher conservative predication values for the GFRP-reinforced control specimens than for the 

steel-reinforced column. This might be due to neglecting the contribution of the compressive 

resistance of the GFRP bars to the axial carrying capacity. Tobbi et al. (2012) and Afifi el al 

(2014) reported that the compressive strength of the GFRP bars could be taken as a function of 

its tensile strength. Therefore, a new factor was introduced equal to 0.35 to account for the 

reduction in the compressive strength of the GFRP bars.  
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Table 4.3: Code predications comparisons versus test results for control (RC) columns 

ID Ptest 
ACI 440.R1 (2015) CSA S806 (2012) CSA S6-06 (2010) 
PPredict Ptest / PPredict PPredict Ptest / PPredict PPredict Ptest / PPredict 

S-S(3.4)-C 1948 1524* 1.28* 1439* 1.35* 1354* 1.44* 
S-G(3.4)-C 1575 1097 1.44 1012 1.56 952 1.65 
S-G(3.4)-C* 1606 1097 1.46 1012 1.59 952 1.69 

  Aver. 1.45† Aver. 1.57† Aver. 1.67† 
  SD 0.02† SD 0.02† SD 0.02† 
  COV% 1.38† COV% 1.38† COV% 1.38† 

Note:  
(*) Values calculated according to the ACI and CSA codes for steel. 
(†) Average, SD and COV calculated for GFRP-reinforced control specimens only. 

For FRP-reinforced CFFT columns, the ACI 440.2R (2008), CSA S806 (2012), and CSA 

S6-06 (2010) predication values were 1.68±0.31, 1.57±0.18, and 1.72±0.35 and a COV of 

18.4%, 11.3%, and 20.5%, respectively. As shown in Table 4.4 the CSA S806 (2012) 

predications were better based on the average than the ones of the CSA S6-06 (2010) and ACI 

440.2R (2008), particularly for specimens cast with tube Type B. However, all design codes 

and guidelines overestimated the values for the FRP-reinforced CFFT columns, particularly 

those specimens with tube Type B. It should be mentioned that the  /
ccf  provided by CSA 

S806 (2012) is governed by limiting the hoop tensile strain to be not more than 0.006. In 

addition, limiting the confinement pressure flFRP ≤  /33.0 cf  according to the CSAS6-06 (2010) 

and the maximum ultimate strain to 0.01 according to the ACI 440.2R (2008) for the 

specimens cast with tube Type B leads also to be more conservative predictions. However, 

with no consideration for the confinement codes limits, the CSA S806 (2012) predication 

values was underestimation while the CSA S6-06 (2010) and ACI 440.2R (2008) yielded good 

yet conservative predication values (See Table 4.5 and Figure 4.24). It should be noted also 

that the final mode of failure of all CFFT specimens was instability failure. Moreover, 

omitting the contribution of the FRP bars in compression might also led to inaccurate 

predications values for the design codes. Therefore, further experimental investigations are 

needed to better understand and model the behaviour of CFFT columns internally reinforced 

with FRP and steel bars subjected to cyclic axial compression loading. 
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Table 4.4: Code predications comparisons versus test results for CFFT-reinforced columns 

(with allowable confinement codes limits)  

ID Ptest 
ACI 440.2R(2008) CSA S806 (2012) CSA S6-06 (2010) 
PPredict Ptest / PPredict PPredict Ptest / PPredict PPredict Ptest / PPredict 

A-S(3.4)-C 2402 1998* 1.20* 1898 1.27* 1986* 1.21* 
A-G(3.4)-C 2603 1571 1.66 1471 1.77 1584 1.64 
B-G(3.4)-C 3455 1650 2.09 1976 1.75 1581 2.19 
B-G(1.2)-C 3272 1687 1.94 2020 1.62 1616 2.02 
B-G(1.2)-M 3068 1687 1.82 2020 1.52 1616 1.90 
A-C(1.2)-C 2086 1606 1.30 1504 1.39 1619 1.29 
A-C(1.2)-C* 2039 1606 1.27 1504 1.36 1619 1.26 

  Aver. 1.68† Aver. 1.57† Aver. 1.72† 
  SD 0.31† SD 0.18† SD 0.35† 
  COV% 18.4† COV% 11.3† COV% 20.5† 

Note:  
(*) Values calculated according to the ACI and CSA codes for steel. 
(†) Average, SD and COV calculated for FRP-reinforced CFFT specimens only (in bold). 

 

Table 4.5: Code predications comparisons versus test results for CFFT-reinforced columns 

(with no consideration for allowable confinement codes limits)  

ID Ptest 
ACI 440.2R(2008) CSA S806 (2012) CSA S6-06 (2010) 
PPredict Ptest / PPredict PPredict Ptest / PPredict PPredict Ptest / PPredict 

A-S(3.4)-C 2402 2185 1.10* 2712 0.89* 1986 1.21* 
A-G(3.4)-C 2603 1758 1.48 2285 1.14 1584 1.64 
B-G(3.4)-C 3455 2449 1.41 3442 1.00 2245 1.54 
B-G(1.2)-C 3272 2503 1.31 3519 0.93 2295 1.43 
B-G(1.2)-M 3068 2503 1.23 3519 0.87 2295 1.34 
A-C(1.2)-C 2086 1797 1.16 2336 0.89 1619 1.29 
A-C(1.2)-C* 2039 1797 1.13 2336 0.87 1619 1.26 

  Aver. 1.29† Aver. 0.95 Aver. 1.42 
  SD 0.13† SD 0.10 SD 0.14 
  COV% 9.8† COV% 11.0 COV% 9.7 

Note:  
(*) Values calculated according to the ACI and CSA codes for steel. 
(†) Average, SD and COV calculated for FRP-reinforced CFFT specimens only (in bold). 
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Figure 4.23: Experimental loads versus predicted values for the tested specimens (considering 

confinement codes limits)   

 
Figure 4.24: Experimental loads versus predicted values for the tested specimens (with no 

considering confinement codes limits)   
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CHAPTER 5  

   SUMMARY AND CONCLUSIONS 

5.1  Summary 

This research work presents the test results of an experimental study aimed at investigating the 

behaviour of concrete-filled fiber-reinforced-polymer (FRP) tubes (CFFT) long columns 

internally reinforced with longitudinal steel and FRP bars under axial compression loading. A 

total of ten reinforced concrete (RC) and CFFT columns measuring 1900-mm in height and 

213-mm in diameter were constructed and tested until failure. The test specimens were divided 

into two series denoted as Series I and II. Series I included three control RC specimens 

reinforced with longitudinal reinforcement ratio (ρL) equal to (3.4%), one specimen reinforced 

with steel bars and two identical specimens reinforced with GFRP bars. Steel spiral stirrups 

were used as transverse reinforcement. Series II consisted of seven reinforced CFFT columns 

laterally confined with GFRP tubes (Type A or B). One specimen reinforced steel bars and 

laterally confined with tube type (A). Four specimens reinforced with GFRP bars (ρL = 1.2 and 

3.4%) and laterally confined with tubes type (A and B). Besides, two identical specimens 

reinforced with CFRP bars (ρL = 1.2 %) and laterally confined with tube type (A). All 

specimens were tested under single complete unloading/reloading cyclic axial compression 

loading, except for one specimen, which was tested under monotonic axial compression 

loading. The investigated test parameters were: (i) GFRP tubes thicknesses (2.9 and 6.4 mm); 

(ii) internal reinforcement type (steel; GFRP; or CFRP bars) and amount; and (iii) natural of 

loading (i.e. monotonic and cyclic. The completion of this research program led to the 

following conclusions and recommendations. 

5.2 Conclusions 

The following general conclusions can be drawn based on the experimental test results and 

discussions of research work presented in this dissertation: 
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1. The CFFT columns reinforced with GFRP bars exhibited similar responses compare to 

their counterparts reinforced with steel bars at the same longitudinal reinforcement 

amount. No significant difference was observed in terms of ultimate axial strength and 

strain capacities.  

2. The reinforced CFFT tested columns showed substantially different mode of failure 

compared to that occurred for the control columns. The FRP tube provided significant 

confinement attributing to shift the mode of failure from axially dominated material 

failure to flexural-dominated instability failure. 

3. In general, the envelop curves for the CFFT tested specimens showed bilinear 

responses with a transition zone near of the peak strength of the unconfined concrete 

(fc
’). The slope of the second branch is highly governed by GFRP tube stiffness rather 

than the longitudinal reinforcement amount and type.  

4. The envelop curve of the CFFT reinforced column under cyclic loading is almost 

identical to the axial stress-strain curve of the same specimen under monotonic 

loading. However, the ultimate axial and hoop rupture strain was slightly larger for the 

specimen subjected to cyclic loading.  

5. The unloading paths for the CFFT tested columns with steel or FRP bars exhibited 

non-linear behaviour. The degree of the non-linearity increases as the unloading axial 

strain increases. Moreover, the reloading paths could be resembled as straight lines. 

6. Increasing the thickness of the GFRP tubes significantly increased the ultimate axial 

and strain capacities of the CFFT reinforced tested columns.  

7. The plastic strains of the FRP-reinforced CFFT columns is linearly proportional to the 

envelop unloading strains. The relationship is depended little on level of confinement 

but strongly on the longitudinal reinforcement amount and type, particularly when 

εun,env  > 0.0035.  

8. Using FRP bars instead of conventional steel bars in the CFFT columns can provide a 

step forward to develop a totally corrosion-free new structural system. 

9. For the GFRP-reinforced control specimens, the ACI 440.R1 (2015), CSA S806 

(2012), and CSA S6-06 (2010) predication values were an average (Ptest/Ppred) of 

1.45±0.02, 1.57±0.02, and 1.67±0.02 and COVs of 1.38%, respectively. The ACI 

440.R1 (2015) was the closest predication values to the experimental results. However,  



                                                                                                                       Chapter 5: Summary and conclusions  

 104 

10. The ACI 440.R1 (2015), CSA S806 (2012), and CSA S6-06 (2010) design provisions 

provided higher conservative results for the GFRP-reinforced control specimens than 

that of steel-reinforced specimen. This might be due to neglecting the contribution of 

the compressive resistance of the GFRP bars to the axial carrying capacity.  

11. For FRP-reinforced CFFT columns, the ACI 440.2R (2008), CSA S806 (2012), and 

CSA S6-06 (2010) predication values were 1.68±0.31, 1.57±0.18, and 1.72±0.35 with 

a COV of 18.4%, 11.3%, and 20.5%, respectively. By considering the confinement 

codes limits, the CSA S806 (2012) was better predication based on the average than 

that of the CSA S6-06 (2010) and ACI 440.2R (2008), particularly for specimens cast 

with tube Type B.  

12. Removing the FRP hoop tensile strength limit to 0.006 its elastic modulus EFRP by 

CAN/CSA S806 (2012) lead to less conservative predictions for the confined concrete 

compressive strength. While the CAN/CSA S6-06 (2010) and ACI 440.2R (2008) 

confinement models showed good yet conservative predictions. 

Further experimental investigations are needed to better understand and model the behaviour 

of CFFT columns internally reinforced with FRP and steel bars subjected to cyclic axial 

compression loading. 

5.3 Conclusions en Français 

Les conclusions générales suivantes peuvent être émises sur la base des résultats des essais 

expérimentaux et des discussions de travaux de recherche présentés dans cette thèse: 

1. Les colonnes CFFT renforcées avec de barres en PRFV présentaient des réponses 

similaires comparées à celles renforcées de barres d'acier avec la même quantité 

d'armature longitudinale. Aucune différence significative n'a été observée en termes de 

capacités ultimes de résistance axiale et de déformation. 

2. Les colonnes CFFT testées montrent sensiblement différents modes de rupture par 

rapport à ceux obtenus avec des colonnes de contrôle. Le tube en PRF fournit un 

confinement significatif attribuant à changer le mode de rupture d’une rupture des 

matériaux axialement à une rupture au niveau de l’instabilité en flexion. 



                                                                                                                       Chapter 5: Summary and conclusions  

 105 

3. En général, les courbes d'enveloppe pour les échantillons testés ont montré des 

réponses bilinéaires avec une zone de transition proche de la pointe de la résistance du 

béton non confiné (fc
’). La pente de la deuxième branche est fortement régie par la 

rigidité du tube PRFV plutôt que la quantité et le type d'armatures longitudinales. 

4. La courbe de l'enveloppe des colonnes CFFT sous chargement cyclique est presque 

identique à la courbe charge axiale-déformation du même échantillon sous chargement 

monotone. Cependant, la déformation axiale et la rupture en déformation étaievt 

légèrement plus grandes lorsque l'échantillon est soumis à une charge cyclique. 

5. Les chemins de déchargement pour les colonnes testées avec de l’acier ou des barres en 

PRF montrent un comportement non-linéaire. Le degré de la non-linéarité augmente à 

mesure que la déformation axiale de déchargement augmente. En outre, les chemins de 

rechargement pourraient ressembler à des lignes droites. 

6. L'augmentation de l'épaisseur des tubes en PRFV augmente de manière significative 

les capacités uttimes de déformation et axiale des colonnes testées. 

7. Les déformations plastiques des colonnes renforcées de PRF sont linéairement 

proportionnelles aux tensions d'enveloppe de déchargement. La relation dépend un  

peu du niveau de confinement mais fortement de la quantité et du type de renfort 

longitudinal, en particulier lorsque εde,env > 0,0035. 

8. L’utilisation des barres en PRF au lieu de barres d'acier conventionnelles dans les 

colonnes CFFT peut fournir un pas en avant pour développer un nouveau système 

structural sans corrosion. 

9. Pour les échantillons de contrôle renforcés de PRFV, les valeurs prédites de l’ACI 

440.R1 (2015), du CSA S806 (2012), et du CSA S6-06 (2010) étaient en moyenne 

(Ptest / Ppred) de 1,45 ± 0,02, 1,57 ± 0,02, et 1,67 ± 0,02 et 1,38% de COV, 

respectivement. Les valeurs prédites de l'ACI 440.R1 (2015) étaient plus proches des 

résultats expérimentaux. 

10. Les prévisions de l'ACI 440.R1 (2015), CSA S806 (2012), et CSA S6-06 (2010) ont 

fourni des résultats conservateurs plus élevés pour les échantillons de contrôle en 

PRFV que celui de l'échantillon d'acier. Cela peut être dû à l’effet de la négligence de 

la contribution de la résistance à la compression des barres en PRFV à la capacité de la 

charge axiale. 
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11. Pour les colonnes renforcées de PRFV, les valeurs prédites de l'ACI 440.2R (2008), du 

CSA S806 (2012), et du CSA S6-06 (2010) étaient de 1,68 ± 0,31, 1,57 ± 0,18 et 1,72 

± 0,35 et un COV de 18,4%, 11,3%, et 20,5%, respectivement. En considérant les 

limites des codes de confinement, la prévision du CSA S806 (2012) était mieux basée 

sur la moyenne que celles du CSA S6-06 (2010) et de l’ACI 440.2R (2008), en 

particulier pour les échantillons testés avec le tube de type B. 

12. La suppression de la limite de résistance à la traction du cerceau en PRF à 0,006 de son 

module d'élasticité EFRP par le CAN/CSA S806 (2012) conduit à des prévisions moins 

prudentes pour la résistance à la compression du béton confiné. Alors que les modèles 

de confinement de la norme CAN/CSA S6-06 (2010) et de l’ACI 440.2R (2008) ont 

montré des bonnes prédictions encore conservatrices. 

En outre, des études expérimentales sont nécessaires pour mieux comprendre et modéliser le 

comportement des colonnes CFFT renforcés avec des barres de PRF et de l'acier et soumises à 

des charges de compression axiale cycliques. 

5.4  Recommendations for Future Work 

This chapter presents the conclusions that can be drawn from the research conducted. 

However, more work in related areas still needs to be conducted. A few recommendations for 

future study are also made: 

1. Examine the behaviour of FRP-reinforced CFFT columns under combined axial load 

and bending moment and establish interaction diagrams for the sections. 

2. Examine the behaviour of FRP-reinforced CFFT columns under dynamic lateral loading. 

3. Investigate the effect of cross-section (square and rectangular) on the behaviour of the 

FRP-reinforced CFFT columns. 

4. Investigate the effect of slenderness ratio on the behaviour of the FRP-reinforced CFFT 

square and rectangular columns. 
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