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ABSTRACT   

The advances in fiber-reinforced-polymer (FRP) technology have spurred interest in introducing 

new fibers, such as basalt FRP (BFRP), which has the potential to offer an efficient solution when 

implemented in concrete structure, such as corrosion resistant, durable and cost-effective. 

Furthermore, the available design codes and guides do not provide any recommendations for the 

use of BFRP bars since fundamental studies and relevant applications are still limited. Therefore, 

investigations are needed to characterize and understand the behavior of BFRP bars in concrete 

members. Consequently, the main objectives of this experimental investigation are to evaluate the 

short- and long-term characteristics of newly developed BFRP bars, as well as evaluate the 

structural performance of these new bars as internal reinforcement for concrete beams and bridge-

deck slabs to introduce these new reinforcing bars to the design codes and guides. 

The experimental tests were completed through three parts. The first part was conducted on three 

newly developed BFRP bars and tendons to investigate their physical and mechanical properties. 

Durability and long-term performance were assessed by conditioning the BFRP bars in an alkaline 

solution simulating the moist concrete environment to determine their suitability as internal 

reinforcement for concrete elements. Thereafter, the properties were assessed and compared with 

the unconditioned (reference) values. The second part of this study was conducted on seven full-

scale edge-restrained concrete bridge-deck slabs simulating actual slab-on-girder bridge-deck that 

is commonly used in North America to evaluate the performance of concrete bridge-deck slabs 

reinforced with BFRP and steel bars. The deck slabs measured 3000 mm long × 2500 mm wide × 

200 mm deep. The slabs were tested up to failure under single concentrated load acting on the 

center of each slab simulating the footprint of sustained truck wheel load. The punching shear 

capacities were predicted using the available provisions, and compared with the experimental 

results. The third part of this study included testing of fourteen concrete beams of 3100 mm long 

× 200 mm wide × 300 mm deep to investigate the flexural behavior and serviceability performance 

of sand-coated and ribbed BFRP bars in concrete beams. The beams were tested under four-point 

bending over a clear span of 2700 mm until failure. The results are introduced and discussed in 
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terms of cracking behavior, deflection, flexure capacity, and failure modes. In addition, the bond-

dependent coefficient (kb) of the BFRP bars was determined and compared with the 

recommendations of the current FRP design codes and guides.  

The findings of this study concluded the feasibility of producing BFRP bars meet the requirements 

of the current FRP standards. Also, the test results revealed that the BFRP bars had good 

mechanical behavior and could be placed in the same category as grade II and grade III GFRP bars. 

Moreover, the behavior of the concrete bridge-deck slabs and beams reinforced with BFRP bars 

was quite similar to the counterparts reinforced with glass- and carbon-FRP bars and the available 

FRP provisions are applicable for BFRP bars. The beam test results yielded an average bond-

dependent coefficient (kb) of 0.76±0.03 and 0.83±0.03 for the sand-coated and ribbed BFRP bars, 

respectively. 

Keywords: Fiber-reinforced polymer (FRP); basalt; physical and mechanical properties; durability; 

restrained bridge-deck slab; punching shear; beams; flexure; deflection; crack width; bond-

dependent coefficient (kb). 
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RÉSUMÉ  

L'avancée de la technologie des PRF a suscité l'intérêt de l'introduction de nouvelles fibres, comme 

la fibre de basalte, qui a un potentiel d'offrir une solution efficace, lorsqu’utilisée dans les structures 

en béton, soit sur la résistance à la corrosion, la durabilité et la rentabilité. En outre, les codes et les 

guides disponibles, ne fournissent pas de recommandations pour l'utilisation de barres en PRFB 

puisque les recherches passées dans ce domaine sont limitées. Donc, des travaux de recherche sont 

nécessaires pour caractériser et comprendre le comportement des barres de PRFB dans les éléments 

en béton armé. En conséquence, les objectifs principaux sont d'évaluer les caractéristiques à court 

et long terme des barres de PRFB nouvellement développées, ainsi que d'évaluer les performances 

structurales de ces nouvelles barres comme renforcement interne dans les poutres et les dalles de 

pont et d'introduire  ce nouveau renforcement dans les codes et les guides de dimensionnement.  

Les tests expérimentaux ont été faits en trois parties. La première partie porte sur le développement 

de trois nouvelles barres et tendons en PRFB pour déterminer leurs propriétés physiques et 

mécaniques. Les performances à long terme et de durabilité ont été réalisées en conditionnant les 

barres de PRFB dans une solution alcaline simulant les conditions humides dans le béton pour 

déterminer la compatibilité comme renforcement interne dans les éléments en béton. Par la suite, 

les propriétés ont été déterminées et comparées avec des spécimens non conditionnés (référence). 

La seconde partie a porté sur sept dalles de pont en béton armé grandeur réelle avec les bords 

restreints, simulant les tabliers de pont les plus utilisés en Amérique du Nord, pour évaluer la 

performance des dalles renforcées de PRFB et d'acier. Les dalles mesurent 3000 mm de long × 

2500 mm de large × 200 mm d'épaisseur. Les dalles ont été testées jusqu'à la rupture sous une 

charge concentrée au centre de celles-ci simulant l'empreinte d'une roue d'un camion. Les capacités 

en poinçonnement sont prédites en utilisant les exigences réglementaires disponibles, et sont 

comparées aux résultats expérimentaux. La troisième partie de cette étude portait sur les essais de 

14 poutres en béton de 3100 mm de long × 200 mm de large × 300 mm de profond pour examiner 

le comportement en flexion et les performances en service des barres de PRFB avec deux états de 

surfaces: fini sablé et crénelé. Les poutres ont été testées en flexion en quatre points avec une portée 
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libre de 2700 mm jusqu'à la rupture. Les résultats sont introduits et discutés en terme : du 

comportement de la fissuration, des flèches, de la capacité en flexion et des modes de ruptures. De 

plus, le coefficient d'adhérence (kb) des barres de PRFB est déterminé et comparé avec les 

recommandations des codes et guides actuels. 

Les résultats sont introduits et discutés en terme : du comportement de la fissuration, des flèches, 

de la capacité en flexion et des modes de ruptures. De plus, le coefficient d'adhérence des barres 

de PRFB est déterminé et comparé avec les recommandations des codes et guides actuels. Les 

résultats de l'étude concluent sur la viables pour la production des barres de PRFB pour respecter 

les exigences des codes actuelles. Également, les résultats d'essai indiquent que les barres de PRFB 

ont de bonnes propriétés mécaniques et peuvent être placées dans la même catégorie que les barres 

de PRFV, soit grade III. De plus, le comportement des poutres et des dalles de pont renforcées  de 

PRFB est similaire que pour un renforcement en PRFV et PRFC et les exigences réglementaires 

sont applicables pour les barres de PRFB.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Problem Definition 

Deterioration of reinforced concrete (RC) structures due to the corrosion of embedded steel 

reinforcement bars is a well-known and well-documented problem, particularly where deicing salts 

are routinely used, such as concrete deck slabs and parking garages. The same problem of steel 

corrosion was observed in marine structures where the chlorides and seawater are available. 

Therefore, routine maintenance is needed to counter this deterioration. The cost of repair, 

rehabilitation, strengthening of steel reinforced concrete structures, or delaying and detouring 

traffic can be high, which has been estimated to be twice the original construction cost, Boyle and 

Karbhari (1994). 

On the other hand, most of the RC bridges are designed for a service life not less than 50 years 

before major rehabilitation or replacement. Due to the premature deterioration of the bridges, the 

actual service life had been recorded and found to be 43 years (Transportation for America 2013). 

There are approximately 583,000 bridges in the United States, about 15% of these bridges are 

structurally deficient because of steel corrosion. The annual total direct costs were estimated to be 

$8.3 billion USD, including $3.8 billion USD to replace deficient bridges over the next 10 years 

and $2 billion for maintenance of concrete bridge-decks (Koch et al. 2002). 

Many techniques such as epoxy-coated steel bars and high performance concrete are used to avoid 

the corrosion. However, it was found that such remedies might not eliminate the problem of 

corrosion of steel reinforcement in the concrete structures. ACI 440.1R (2015) reported that when 

epoxy-coated steel bars were implemented in harsh weather conditions, these bars still corroded. 

Therefore, finding new non-corrosive materials such as fiber-reinforced polymer (FRP) composite 

that can fulfill the above problem is a must, especially in harsh environmental conditions. FRPs 

have clear advantages such as high strength, light weight, good resistance to fatigue and corrosion, 
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ease of forming, in comparison with steel elements (Wu et al. 2007; Bakis et al. 2002). FRP bars 

consist of continuous fibers of glass (GFRP), aramid (AFRP), carbon (CFRP), or a combination of 

these (hybrid FRP), impregnated and bound by a resin matrix through a pultrusion, braiding, or 

weaving manufacturing process. Each of these fiber types is linearly elastic to failure. 

Recently, continuous effort in development and innovation of the FRP technology is devoted 

towards using new types of fibers, such as basalt fibers, in addition to the commonly used glass 

and carbon fibers. Basalt-FRP (BFRP) has been assured to have advantages in achieving the goal 

of enhancing safety and reliability of structural systems compared with the conventional FRP 

composites (Wu et al. 2012).  

Basalt fiber is inorganic fibers like glass fibers fabricated from basalt rocks through the melting 

process. The basalt fibers have high tensile strength and modulus, better chemical resistance, 

extended operating temperature range, better environmental friendliness when compared to E-

glass. Moreover, BFRP has a good impact resistance, and fire with less poisonous fumes. 

Therefore, basalt fibers are ideally suited for applications requiring high temperatures, chemical 

resistance, durability, mechanical strength and low water absorption (InfoMine Research Group 

2007). In addition, the basalt fibers do not need any other additives in the single producing process, 

adding special benefit in cost. These advantages make basalt fiber a promising alternative to glass 

fiber as a reinforcement material in aerospace, metallurgical, chemical, building industries and so 

on (Mingchao et al. 2008). BFRP composite is expected to provide benefits that are comparable or 

superior to other types of FRP while being significantly cost effective (Parnas et al. 2007; Wang et 

al. 2012; Wei et al. 2010a; Lopresto et al. 2011). 

On the other hand, North American design codes and guidelines such as CAN/CSA S806 (2012), 

CAN/CSA S6 (2014) and ACI 440.1R (2015) have been developed to allow engineers to design 

structural element with the advanced composite materials as GFRP, CFRP and AFRP. However, 

these codes are not reflecting any recommendations or design procedure for the BFRP bars as 

reinforcing materials for concrete structures since there are very few researches investigated the 

physical, mechanical and durability characteristics as well as structural performances of BFRP bars 

(Mingchao et al. 2008; Scheffler et al. 2009; Wei et al. 2010&2011; Shi et al. 2011a&b; Bi et al. 

2011; Wang et al. 2012&2014; Elgabbas et al. 2014; Ovitigala and Issa 2013; El Refai et al. 

2014a&b; El Safty et al. 2014; Dhand et al. 2015; Benmokrane et al. 2015; Wu et al. 2015a&b; 
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Altalmas et al. 2015). Consequently, the main objectives of this experimental investigation are to 

evaluate the short- and long-term characteristics of newly developed BFRP bars, as well as evaluate 

the structural performance of these new bars as internal reinforcement for reinforced concrete 

beams and bridge-deck slabs, in terms of serviceability (deflection and crack width) and nominal 

resistance, and to introduce these new reinforcing bars to the design codes. Moreover, compare the 

calculated bond-dependent coefficient (kb) of sand-coated and ribbed BFRP bars with the 

recommendations of the current FRP design codes and guidelines. The outcome of this study is 

expected to provide engineers with more confidence in using FRP bars made with basalt fibers for 

safe and economic reinforced concrete structures in aggressive environments. Also, this study will 

be as a step forward towards introducing BFRP composite materials into the available FRP 

standards and guidelines, such as ACI 440.6M (2008), CAN/CSA S807 (2010), and 

CAN/CSA S806 (2012) CAN/CSA S6 (2014), and ACI 440.1R (2015). 

1.2 Research Objectives 

This research project aims at evaluating the feasibility of manufacturing a new generation of FRP 

bars using basalt fibers (BFRP) and evaluating the use of these bars as internal reinforcement for 

structural concrete elements, with an emphasis on concrete beams and concrete bridge-deck slabs. 

This study consists of three parts, designed to evaluate the short-and long-term characteristics and 

structural performance of newly developed BFRP bars. Part I concerned the physical and 

mechanical properties as well as the durability performance of BFRP bars and tendons under severe 

environmental conditions. Part II concerned the structural performance evaluation of seven full-

scale restrained bridge-deck slabs reinforced with BFRP bars under truck wheel load. Part III 

concerned the flexural behavior and serviceability performance evaluation of fourteen concrete 

beams reinforced with different types and ratios of BFRP and steel bars. This study is expected to 

introduce these new materials to the FRP design codes and guidelines and enrich the FRP industry. 

The specific objectives of the current investigation are to: 

a. Investigate physical and mechanical properties of newly developed BFRP bars and compare 

their characteristics with the current requirements of the FRP specifications. 

b. Evaluate the durability of BFRP bars under the effect of harsh environmental conditions using 

accelerated aging technique (alkaline solution at high temperature). 
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c. Evaluate the structural performance of full-scale restrained concrete bridge deck slabs 

reinforced with BFRP bars under concentrated loads simulating the truck wheel loads and 

evaluate their performance in the light of the Canadian Highway Bridge Design Code 

(CHBDC) requirements. 

d. Compare the structural performance of concrete bridge deck slabs reinforced with BFRP 

reinforcing bars against bridge deck slabs reinforcement with GFRP and CFRP bars, from 

literature, with similar axial stiffness. 

e. Investigate the flexural behavior and serviceability performance of concrete beams reinforced 

with BFRP bars under static loads. 

f. Investigate the cracking behavior and evaluate the bond dependent coefficient (kb) of sand-

coated and ribbed BFRP bars and compare the values with current design codes. 

g. Investigate the immediate deflection of concrete beams reinforced with BFRP bar and compare 

the measured deflection against those values predicted using FRP codes and guides. 

h. Evaluate the applicability/accuracy of the current FRP design approaches on BFRP-RC beams 

and bridge deck slabs at service and ultimate load levels (SLS and ULS). 

i. Provide design recommendations and limits for the BFRP reinforcing bars on the material level 

and when employed in RC elements. 

1.3 Methodology 

This experimental study was designed to achieve the aforementioned objectives of this research. 

The study comprised three parts summarized as follows: 

Part I: Characterization of BFRP Bars 

This part was conducted on three newly-developed BFRP bars and tendons to investigate their 

physical, mechanical, and durability characteristics. The tests were conducted in accordance to 

CAN/CSA S807 (2010) and ACI 440.6M (2008). This part was divided into three phases. Phase I 

focused on physical characterization of the BFRP bars. The physical properties determined in this 

phase served as references for physical properties after conditioning. Phase II focused on 

mechanical characterization of the BFRP bars. The tensile strength, tensile modulus of elasticity, 

ultimate tensile strain, transverse-shear strength, flexural strength, flexural modulus of elasticity, 

interlaminar-shear strength, and bond strength were determined according to the appropriate test 
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methods. The test results also served as references for calculating the residual strengths after 

conditioning. Phase III assessed the durability and long-term performance of the conditioned BFRP 

bars. The durability was assessed by immersing the BFRP specimens in an alkaline solution at high 

temperature for different lengths of time (up to 3000 h at 60 °C) designed to simulate a concrete 

environment so as to validate the performance of the BFRP bars as internal reinforcement for 

concrete elements. Changes in the physical and mechanical characteristics were assessed by 

comparing the characteristics of the conditioned BFRP bars to the reference ones from Phases I 

and II. 

Part II: Concrete Bridge-Deck Slabs Reinforced with BFRP Bars  

This part included six full-scale edge-restrained concrete bridge-deck slabs simulating a slab-on-

girder bridge-deck commonly used in North America and one full-scale unrestrained concrete deck 

slab to evaluate the performance of concrete bridge-deck slabs reinforced with BFRP bars. The 

deck slabs measured 3000 mm long × 2500 mm wide × 200 mm thick. The slabs were tested up to 

failure over a center-to-center span of 2000 mm under single concentrated load acting on the center 

of each slab over a contact area of 600 mm × 250 mm to simulate the footprint of sustained truck 

wheel load (87.5 kN CL-625 truck), as specified in Canadian Highway Bridge Design Code 

(CHBDC). The test parameters investigated herein were: (i) reinforcement type (BFRP and steel); 

(ii) BFRP bar size (12 and 16 mm); (iii) reinforcement ratio in each direction (0.4% to 1.2%); and 

(iv) edge-restraining (restrained or unrestrained [free]). The crack width, deflection, and strains of 

both of reinforcing bars and concrete were observed and recorded up to failure. In addition to the 

crack pattern and mode of failure were remarked. The punching shear capacities were predicted 

using the available equations and provisions and compared with the experimental results. 

Part III: Concrete Beams Reinforced with BFRP Bars  

This part included casting and testing of twelve rectangular concrete beams of 3100 mm long × 

200 mm wide × 300 mm deep reinforced with BFRP bars and two beams reinforced with steel bars 

to investigate the flexural behavior and serviceability performance of concrete beams reinforced 

with sand-coated and ribbed BFRP bars. The beam specimens were designed in accordance with 

Annex S of CSA S806 (2012) and tested under four-point bending over a clear span of 2700 mm 

until failure. The main variables considered in this part were: (i) reinforcement type (BFRP and 

steel); (ii) bar size (8 mm to 16 mm); (iii) reinforcement ratio; (iv) axial stiffness; and (v) 
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reinforcing bar configuration (sand-coated and ribbed). The cracking moments, flexure capacities, 

deflection responses and cracks width of the tested beams reinforced with BFRP and steel bars 

were predicted using the available equations and provisions and compared with the experimental 

results. Moreover, the bond-dependent coefficient (kb) of the BFRP bars were evaluated and 

compared with the recommendations of the current FRP design codes and guidelines. 

1.4 Organization of the Dissertation 

This dissertation consists of eight chapters. The following is a brief description of each: 

Chapter 1: This chapter defines the problem and summarizes the main objectives and originality 

of the research program. The methodology followed to achieve these objectives is also introduced. 

Chapter 2: This chapter introduces a review of the relevant literature. Firstly, the chapter provides 

a review of FRP composite materials in general (mainly referred to carbon, glass and aramid) 

followed by a review about basalt-FRP in particular. After that, it provides a brief review of the 

experimental and theoretical studies carried out using steel and FRP reinforcing bars and grids as 

an internal reinforcement for concrete deck slabs. In addition, the chapter provides a summary of 

the design methods of concrete bridge-deck slabs as specified in CHBDC (CAN/CSA S6 2014). 

Finally, the literature review will be directed to provide a review about the experimental and 

theoretical studies carried out on concrete beams reinforced with FRP bars. 

Chapter 3: This chapter describes in details the experimental program conducted at the structural 

laboratory of University of Sherbrooke to develop a better understanding of basalt fiber-reinforced 

polymer (BFRP) bars. In this chapter, the details of test specimens, configurations, test setups, and 

instrumentations are given. 

The subsequent four chapters respectively correspond to four technical papers that have either been 

accepted or submitted for publication in scientific journals: 

Chapter 4: This chapter presents the first paper in this dissertation entitled “Physical and 

Mechanical Characteristics of New Basalt-FRP Bars for Reinforcing Concrete Structures”. This 

chapter includes the complete physical and mechanical characterization of different BFRP bars. It 

also included long-term durability characterization using accelerated aging techniques in different 
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chemical solutions at high temperatures for certain periods of time in accordance with ACI 440.6M 

(2008) and CAN/CSA S807 (2010). [Reference: Elgabbas, F., Ahmed, E., and Benmokrane, B. 

(2015) “Physical and Mechanical Characteristics of New Basalt-FRP Bars for Reinforcing 

Concrete Structures.” Journal of Construction and Building Materials, 95, 623–635.] 

Chapter 5: This chapter presents the second paper in this dissertation entitled “Experimental 

Testing of Concrete Bridge-Deck Slabs Reinforced with Basalt-FRP Bars under Concentrated 

Loads”. This chapter presents an investigation of the behavior of edge-restrained concrete bridge-

deck slabs reinforced with BFRP bars. The tests included six full-scale edges-restrained concrete 

deck slabs simulating actual slab-on-girder bridge-deck commonly used in North America and one 

full-scale unrestrained concrete deck slab. The deck slabs measured 3000 mm long × 2500 mm 

wide × 200 mm thick. The slabs were tested up to failure over a center-to-center span of 2000 mm 

under single concentrated load acting on the center of each slab over a contact area of 600 mm × 

250 mm to simulate the footprint of sustained truck wheel load (87.5 kN CL-625 truck) as specified 

in Canadian Highway Bridge Design Code. [Reference: Elgabbas, F., Ahmed, E., and 

Benmokrane, B. (2016). “Experimental Testing of Concrete Bridge Deck Slabs Reinforced with 

Basalt FRP Bars under Concentrated Loads.” ASCE Journal of Bridge Engineering, DOI: 

10.1061/(ASCE)BE.1943-5592.0000892 , 04016029.] 

Chapters 6 and 7: These chapters present the third and fourth papers in this dissertation entitled 

“Experimental Testing of Basalt-Fiber-Reinforced Polymer Bars in Concrete Beams” and 

“Flexural Behavior of Concrete Beams Reinforced with Ribbed Basalt-FRP Bars under Static 

Load”. These chapters present an experimental study aimed at determining the bond-dependent 

coefficient (kb) and investigating the structural performance of newly developed sand-coated and 

ribbed BFRP bars in concrete beams. A total of fourteen concrete beams measured 3100 mm length 

× 200 mm width × 300 mm depth were constructed and tested up to failure. Six beams were 

reinforced with 10, 12, 16 mm BFRP bars with sand-coated surface (Described in details in 

Chapter 6), as well as six beams were reinforced with 8, 12, and 16 mm BFRP bars with ribbed 

surfaces and two reference beams were reinforced with 10M and 15M steel bars (Described in 

details in Chapter 7). The main difference between chapters 6 and 7 are the mechanical properties 

and surface configuration of basalt FRP bars. The beam specimens were designed in accordance 

with Annex S of CAN/CSA S806 (2012) and tested under four-point bending over a clear span of 

http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29BE.1943-5592.0000892
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2700 mm until failure. It is worth mentioning that the materials presented in chapter six are 

collaborative joint research work between the author of this dissertation during his doctorate 

studying and a master’s degree student through his master studying at University of Sherbrooke 

(Vincent 2013). [Reference: Elgabbas, F., Vincent, P., Ahmed, E., and Benmokrane, B. (2016). 

“Experimental Testing of Basalt-Fiber-Reinforced Polymer Bars in Concrete Beams.” Journal of 

Composite: Part B, 91, 205-218. Elgabbas, F., Ahmed, E., and Benmokrane, B. (2015). “Flexural 

Behavior of Concrete Beams Reinforced with Ribbed Basalt-FRP Bars under Static Load.” 

Submitted to Journal of Composites for Construction. (December 2015).] 

Chapter 8: This chapter presents a general conclusion of the results drawn from the work presented 

in this dissertation. Recommendations for future research are also given. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

The deterioration of metals due to corrosion is a natural phenomenon. Like other natural hazards 

such as earthquakes, floods or severe weather disturbances, corrosion can cause dangerous and 

expensive damage to everything from automobiles, home appliances, and drinking water systems 

to pipelines, bridges, and public buildings. 

The corrosion of steel reinforcement is the most common source of concrete structural 

deterioration, particularly in severe weather conditions where deicing salts are required or 

structures located by seawater. The U.S. Federal Highway Administration (FHWA) released a 

breakthrough study entitled “Corrosion Costs and Preventive Strategies in the United States” on 

the direct costs associated with the metal corrosion in nearly every U.S. industry sector, from 

infrastructure and transportation to production and manufacturing (Koch et al. 2002). The results 

of the study showed that the total annual direct cost of corrosion in the U.S. is estimated about $276 

billion, which is approximately 3.1% of the nation’s gross domestic product (GDP). Moreover, the 

indirect cost of corrosion is conservatively estimated to be equal to the direct cost which brings the 

cost of corrosion to $552 billion (i.e., 6% of the GDP). Evidences of the large indirect corrosion 

costs are: (1) lost productivity because of outages, delays, failures, and litigation, (2) taxes and 

overhead on the cost of the corrosion portion of goods and services, and (3) indirect costs of non-

owner/operator activities. In addition, Transportation for America (2013) reported that one out of 

every nine bridges that U.S. motorists cross each day is likely to be deteriorating to some degree. 

Nearly 66405, or 11.5%, of the bridges nationwide are rated “structurally deficient” according to 

government standards. In Canada, the direct costs of corrosion are estimated as $23.6 billion, which 

represents about 2-4% of the global national product (GNP) (Ghali et al. 2007). Therefore, finding 
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new non-corrosive materials to be sustainable, environmentally friendly and financially feasible 

structures became a must challenge for the civil engineers. 

Fiber-reinforced-polymer (FRP) material with non-corrosive nature is identified as one of the 

promising materials for the structural applications. At the beginning FRP material was expensive 

and it was limited to niche markets such as space shuttles and air industry (in the 1960s), overtime 

it became cheaper and spread to other industries such as sporting goods (in 1980s-1990s) and then 

towards the infrastructure industry (Ovitigala 2012). The FRP materials have emerged as an 

alternative material to steel reinforcing bars in concrete structures, especially that located in 

corrosive environments, due to their non-corrosive nature (Iyer and Sen 1991; Erki and Rizkalla 

1993; Benmokrane et al. 2002; Benmokrane and El-Salakawy 2002), high strength and stiffness-

to-weight ratios, resistance to corrosion and chemical attack, controllable thermal expansion, 

damping characteristics and electromagnetic neutrality (Nanni 1993; Nanni and Dolan 1993; 

Benmokrane and Wang 2001). 

Since FRP is a linear elastic brittle material, the design guidelines for the concrete elements with 

steel reinforcement became not valid for FRP materials. Worldwide research efforts in this field 

through professional organizations have resulted in the publication of several codes and guidelines 

for the design of concrete structures using FRP materials. The design and construction guidelines 

(ACI 440.1R 2015; CAN/CSA S6 2014; CAN/CSA S806 2012; the JSCE design recommendations 

1997) allow the use of glass, carbon, and aramid FRP bars (GFRP, CFRP, and AFRP), while 

AASHTO (2009) allows the use of glass FRP (GFRP) bars. The FRPs have been used in many 

demonstration projects and field applications, such as bridge-decks (Hill et al. 2003; Nanni and 

Faza 2002; El-Salakawy et al. 2003a; Phillips 2004; Benmokrane et al. 2004a; 2006; 2007; Ahmed 

et al. 2014a), bridge barriers (El-Salakawy et al. 2003b; Matta and Nanni 2009; Ahmed and 

Benmokrane 2011; Ahmed et al. 2013a&b; Azimi et al. 2014; Khederzadeh and Sennah 2014), 

bridge piers (De Luca et al. 2010), parking garages (Benmokrane et al. 2004b; El-Gamal et al. 

2009; Benmokrane et al. 2012), water-treatment plants (Mohamed and Benmokrane 2014), and 

concrete pavement (Eddie 1999; Katz 2004; Benmokrane et al. 2008). Most of these projects 

focused on the use of GFRP bars due to their relatively low cost compared to other FRPs (carbon 

and aramid). 
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Recently, continuous effort in development and innovation of the FRP technology is devoted 

towards using new types of fibers, such as basalt fibers, in addition to the commonly used glass 

and carbon fibers. Basalt fibers-reinforced-polymers (BFRPs) have become available 

commercially at a price comparable to E-glass (Ross 2015; BFCMTD 2015; Kameny Vek 2015; 

Serbescu et al. 2015), which are significantly lower than S-glass or carbon fibers and currently 

attracting the interest of research communities (Fahmy et al. 2009; Ericson 2012; Quagliarini et al. 

2012; Li et al. 2012). Numerous studies have been investigated the traditional FRP products 

manufactured with vinylester or epoxy resin to determine the effect of environmental conditions 

(water, salts, alkalis and high temperature) on their physical and mechanical properties (Mouritz et 

al. 2004; Wang 2005; Zou et al. 2008; Robert et al. 2009; Benmokrane et al. 2015). Few studies, 

however, investigated the characteristics and durability performance of BFRP under a real and 

simulated harsh environmental conditions (Mingchao et al. 2008; Scheffler et al. 2009; Wei et al. 

2010&2011; Shi et al. 2011a&b; Bi et al. 2011; Wang et al. 2012&2014; Elgabbas et al. 2014; 

Ovitigala and Issa 2013; El Refai et al. 2014a&b; El Safty et al. 2014; Dhand et al. 2015; 

Benmokrane et al. 2015; Wu et al. 2015a&b; Altalmas et al. 2015). Moreover, the available design 

codes (ACI 440.1R 2015; CAN/CSA S6 2014; CAN/CSA S806 2012) and material specifications 

(ACI 440.6M 2008; CAN/CSA S807 2010) have been developed to allow engineers to design 

structural element with the advanced composite materials as GFRP, CFRP and AFRP. However, 

these codes are not reflecting any recommendations or design procedure for structural elements 

reinforced with BFRP bars because the fundamental studies and the relevant applications are still 

limited due to the relatively recent development compared with other FRP composites. Therefore, 

BFRP bars are still not used in the United States and Canada like the aforementioned FRP. In spite 

of that and as a result of the expected similarity between BFRP bars as the other common GFRP 

materials, the available design codes and specifications were used to evaluate the characteristics 

and structural performance of the newly developed BFRP bars. 

This chapter introduces a review of the relevant literature. Firstly, the chapter provides a review of 

FRP composite materials in general (mainly referred to carbon, glass and aramid) followed by a 

review about basalt-FRP in particular. After that, it provides a brief review of the experimental and 

theoretical studies carried out using steel and FRP reinforcing bars and grids as an internal 

reinforcement for concrete deck slabs. In addition, the chapter provides a summary of the design 

methods of concrete bridge-deck slabs as specified in CHBDC (CAN/CSA S6 2014). Finally, the 
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literature review will be directed to provide a review about the experimental and theoretical studies 

carried out on concrete beams reinforced FRP reinforcement. 

2.2  Fiber-Reinforced-Polymers (FRPs) 

Fiber-reinforced polymers and plastics (FRPs) are a composite material made of a polymer matrix 

reinforced with fibers, as shown in Figure 2–1. The fibers are usually glass, carbon, aramid, or 

basalt. The polymer is usually an epoxy or vinylester. Since FRP composite is a combination of 

two or more different materials (fiber and resin) with a distinct interface between them, the 

constituent materials maintain their separate identities in the composite. Yet their combination 

produces properties and characteristics that are different from those of the constituents and highly 

dependent on the cohesion between the fibers and resin, as shown in Figure 2–2. The resin system 

acts as a matrix bonding the fibers together and spreading the applied load to the composite between 

each of the individual fibers. The resin system also protects the fibers from the abrasion and impact 

damage as well as the severe environmental conditions, such as water, salts, and alkalis, which 

affect the durability of FRP products (SP System 1998). 

 
Fibers          Matrix          FRP 

Figure 2–1: Formation of fiber reinforced polymer composite 

 

Figure 2–2: Stress-strain relationships for fibers, matrix, and FRP composite 

http://en.wikipedia.org/wiki/Composite_material
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Fiber
http://en.wikipedia.org/wiki/Glass_fibre
http://en.wikipedia.org/wiki/Carbon_(fiber)
http://en.wikipedia.org/wiki/Aramid
http://en.wikipedia.org/wiki/Basalt_fibre
http://en.wikipedia.org/wiki/Epoxy
http://en.wikipedia.org/wiki/Vinylester
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The FRP composites are available with a wide range of mechanical properties (tensile strength, 

tensile modulus of elasticity, shear strength, flexure strength and bond strength) and made with 

high-tensile-strength fibers such as carbon, glass, aramid, and basalt. Moreover, FRPs can be 

produced as bars, ropes, tendons, and grids in a wide variety of shapes and surface configurations, 

as well as varied characteristics (Erki et al. 1993; fib 2007). Figure 2–3 shows some products of 

FRP composites. There are many forms of FRP applications, such as FRP sheets and plates for 

strengthening the structure by attaching them externally to the structure using epoxy or vinylester 

resin, discontinuous FRP fibers mixed with the concrete, and FRP bars for strengthening using near 

surface mounted technique (NSM) or as internal reinforcements. This study mainly focuses on the 

FRP bars as internal reinforcements for concrete structures. 

FRP reinforcing bars are typically made using the pultrusion process. In this method, the fibers are 

impregnated with resin, pulled through a die that compacts and hardens the material, and then cut 

to a prescribed length. 

    

               Roving                           Plates                              Grid                          FRP tendons 

   

Spiral stirrups and curved bars      Chopped                            Sheet 

         

Straight sand-coated bars             Straight ribbed bars 

Figure 2–3: Different FRP products 
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FRP like any other materials have many advantages as well as disadvantages. Therefore, it is 

important to analyze case by case before it is used. These advantages and disadvantages are given 

below (Ovitigala 2012). 

2.2.1  Advantages of FRP 

a. The FRP materials possess a considerable higher strength-to-weight and modulus-to-weight 

ratios in comparison to steel (Karbhari 2007). The specific weight is nearly one fourth of the 

steel. Therefore, it is easy handling and transporting.  

b. High mechanical performance/price ratio (Brik 2003). 

c. High corrosion resistance (Nanni and Dolan 1993; Karbhari 2007). 

d. Low thermal and electric conductivity. 

e. High fatigue resistance. Schwartz (1997) mentioned that the inhomogeneity in the 

microstructure could provide mechanisms for high-energy absorption on a microscopic scale 

that is the reason for increasing the fatigue resistance of the FRP. 

f. The anisotropic nature of the FRP material can be an advantage if the fibers are selectively 

provided in the direction of higher stresses or provided to increase the stiffness in the required 

direction. 

g. Very good damping property. 

2.2.2  Disadvantages of FRP 

a. Usually high costs associated with the fabrication and the raw materials.  

b. The properties are dominated in fiber direction. For instance, the tensile strength of the carbon 

fiber perpendicular to the fiber axis is 10 times less than the strength parallel to the longitudinal 

axis (Schwartz 1997). 

c. Due to lower elastic modulus, large deflections and crack widths at service load occur 

compared to steel bars. 

d. After manufacturing as a bar, it is difficult to bend as needed due to brittleness. Therefore, 

bending of FRP bars should be carried out before the resin is fully cured. 

e. The transverse and off-axis properties are significantly reduced as the temperatures approach 

the so-called glass-transition temperature (Tg) of the polymer matrix. Once this limit is crossed, 

there can be observed significant drop in the strength and the modulus of the material due to 

thermal softening. 
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f. The anisotropy of the FRP material makes the design and analysis of the structure more 

difficult, especially in seismic design. This will be a main factor since FRP does not yield until 

failure and low ductility demand for rigorous analysis and design methodologies.  

g. May be susceptible to fire depending on matrix type and concrete cover thickness. 

h. Low durability of some glass and aramid fibers in an alkaline environment. 

2.3 Basalt-FRP Bars: Background and Review 

Basalt fiber-reinforced polymers (BFRPs) are the most recent FRP composites that have been 

developed within the last decades and assured to have advantages in achieving the goal of 

enhancing safety and reliability of structural systems compared with the conventional carbon, glass 

and aramid FRP composites. Since antiquity basalt is used as crushed rock in construction and 

Romans recognized its strength and durability and used it in road construction as flagstone. Basalt 

is an inorganic-natural material that is found in volcanic rocks originated from frozen lava, with a 

melting temperature comprised between 1500 and 1700 °C (Militký and Kovačič 1996; Militký et 

al. 2002; Ross 2015). The molten rocks are then extruded through small nozzles to produce 

continuous filaments of basalt fibers of diameters ranging from 13 to 20 µm (Pantanik 2009). 

Basalt fibers became available for the use as a reinforcement for concrete structures and found to 

have acceptable mechanical properties (Banibayat and Patnaik 2015).  

The superior properties of basalt fibers (Patnaik et al. 2004) combined with a cost-effective 

manufacturing process have led to development of BFRP bars that are suitable as internal 

reinforcement for concrete structures (Brik 1997&2003; Sim et al. 2005; Patnaik 2011&2013; 

Banibayat and Patnaik 2015; Dhand et al. 2015). Moreover, BFRP bars have gathered attention as 

a replacement for the other FRPs due to its energy-saving, environmentally friendly, natural green 

fiber (Wu et al. 2011), high temperature resistance (Brik 2003; Sim et al. 2005), freeze-thaw 

performance (Wu et al. 2010; Shi et al. 2011a&b), and ease of manufacture (Brik 1997; Sim et al. 

2005). It has also been shown to perform better in acidic environments than GFRP (Wei et al. 2010; 

Wu et al. 2012). However, like GFRP, BFRP has a low elastic modulus relative to steel and 

undergoes degradation from alkali solutions (Sim et al. 2005). Moreover, basalt fibers can be used 

for very low temperatures (i.e. about -200 °C) up to the comparatively high temperatures (i.e. in 

the range of 600 to 800 °C) (Sim et al. 2005; Deák and Czigány 2009; Scheffler et al. 2009; 

http://en.wikipedia.org/wiki/Extrusion
http://en.wikipedia.org/wiki/Micrometre
http://trj.sagepub.com/search?author1=Tam%C3%A1s+De%C3%A1k&sortspec=date&submit=Submit
http://trj.sagepub.com/search?author1=Tibor+Czig%C3%A1ny&sortspec=date&submit=Submit
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Morozov et al. 2001; Cao et al. 2009; Wu et al. 2012). The basalt fibers also have better fatigue 

performance (Wu et al. 2010), over five times of strength and around one third of density than 

commonly used low-carbon steel bars, as shown in Figure 2–4 (Wu et al. 2012). In addition, it has 

good insulation, anti-radiation, and sound wave-transparent properties (Wu et al. 2011). BFRP is 

successfully used for fire (Parnas et al. 2007; Basaltex 2015) and begun to be used in national 

defense industry, aerospace, civil construction, transport infrastructure, energy infrastructure, 

petrochemical, fire protection, automobile, shipbuilding, water conservation and hydropower, 

ocean engineering and other fields (Wu et al. 2012). Table 2–1 shows typical values of the physical 

and mechanical properties of the common used fibers compared to basalt fiber (Kameny Vek 

2015).  

 

Figure 2–4: Stress-strain curve of various FRP (Wu et al. 2012) 

Table 2–1: Comparative characteristics between basalt and other fibers (Kameny Vek 2015) 

Capability Basalt fiber E-glass fiber S-glass fiber Carbon fiber 

Tensile strength (MPa) 3000-4840 3100-3800 4020-4650 3500-6000 

Elastic modulus (GPa) 79.3-93.1 72.5-75.5 83-86 230-600 

Elongation at break (%) 3.1 4.7 5.3 1.5-2.0 

Diameter of filament (µm) 6-21 6-21 6-21 5-15 

Temperature of 

application (°С) 

Minimum -260 -50 -50 -50 

Maximum +500 +380 +300 +700 

Price (USD/kg) 2.5 1.1 1.5 30 
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Basalt is chemically rich with oxides of magnesium, calcium, sodium, potassium, silicon and iron, 

along with traces of alumina. Parnas et al. 2007 stated that the chemical composition of basalt fibers 

closely resembles that of the commonly used E- and S-glass fibers, except that basalt contains a 

high ratio of iron, which yields its brown color, as shown in Table 2–2. Besides the chemical 

compositions, the mechanical properties of basalt fibers from different sources are also different 

(Subramanian et al. 1977; Artemenko 2003; Sim et al. 2005), probably due to different chemical 

components and processing conditions, such as drawing temperature. The tensile strength of basalt 

fibers tends to increase between 1.5 to 2.9 GPa with increasing drawing temperatures between 

1200~1375 °C. This is due to increasing proportions of crystal basalt nuclei at lower temperatures, 

as proved by scanning electron microscopy (SEM), while the Young’s modulus varies between 78 

and 90 GPa from different sources (Subramanian et al. 1977). Figure 2–5 shows different products 

of basalt fibers. In this research the bar shape is of the most interest. 

Table 2–2: Chemical components comparison between different fibers (Parnas et al. 2007) 

Chemical Composition (%) Basalt E-Glass S-Glass 

Silicon Dioxide, SiO2 48.8-51.0 52-56 64-66 

Aluminum Oxide, Al2O3 14.0-15.6 12-16 24-26 

Iron Oxide, FeO+Fe2O3 7.3-13.3 0.05-0.40 0-0.3 

Calcium Oxide, CaO 10.0 16-25 0-0.3 

Magnesium Oxide, MgO 6.2-16.0 0-5 9-11 

Sodium Oxide & Potassium Oxide, Na2O + K2O 1.9-2.2 0-2 0-0.3 

Titanium Oxide, TiO2 0.9-1.6 0-0.8 -- 

MnO 0.10-0.16 -- -- 

Fluorides -- 0-1 -- 

Boron Oxide -- 5-10 -- 
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(a) BFRP bars 

  

  (b) BFRP plate        (c) BFRP Grid            (d) BFRP sheet  

  

   (e) BFRP roving          (f) BFRP sections 

Figure 2–5: Products of basalt-FRP composites  

Sukhanov et al. (2004) investigated the mechanical properties and the chemical resistance of basalt 

fibers subjected to various aggressive media and compared the investigation with glass fiber. 

Comparative investigations indicated that the resistance of some basalt fibers in alkaline solution 

(5% NaOH) exceeding the resistance of the widespread alkali-free E-glass fibers. This indicates 

the possible and prospective use of basalt fiber reinforced composites for concrete reinforcement 

and producing bridge members. In addition, the basalt fiber endurance in acids is higher than E-
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glass. The investigation results of mechanical properties of basalt fiber reinforced produced by 

different techniques (press molding, winding, and pultrusion) show that basalt plastics properties 

are much higher than those of similar fiber glass. 

Sim et al. (2005) investigated the applicability of the basalt fiber as a strengthening material for 

structural concrete members through various experimental works for durability, mechanical 

properties, and flexural strengthening. In addition, the elevated temperature performance of basalt 

fibers was evaluated. The authors reported that when the fibers were immersed in an alkali solution, 

both the basalt and glass fibers lost their volumes and strengths with a reaction product on the 

surface; however the carbon fiber did not show significant strength reduction. For the accelerated 

weathering test, the basalt fiber provided better resistance than the glass fiber. However, the basalt 

fiber kept about 90% of the normal temperature strength after exposure at 600 ⁰C for 2 hours, 

whereas the carbon and the glass fibers did not maintain their volumetric integrity. In the tests for 

flexural strengthening evaluation, the basalt fiber improved both the yielding and the ultimate 

strength of the beam specimen up to 27% depending on the number of layers applied. Based on the 

investigation, the authors suggested that the basalt fiber could be good alternative fiber 

reinforcement among glass and carbon fibers in moderate structural strengthening and 

rehabilitation that required high resistance to fire. 

Parnas et al. (2007) conducted an experimental study to determine if BFRP composites were 

feasible, practical, and a beneficial alternative for transportation applications. They concluded that 

the chemical composition of basalt fibers was close to glass fibers, except that the basalt contains 

a high ratio of iron oxide, conferring its brown color. They found no significant differences in 

stiffness or strength between basalt-fabric-reinforced-polymer composites and glass composites 

reinforced with a fabric of similar weave. Moreover, they found that the strength and stiffness of 

the basalt epoxy reinforced composites were no greater than the glass epoxy reinforced material. 

Aging results indicated that the interface region in basalt composites might be more sensitive to 

environmental damage than in glass composites. The basalt–epoxy interface, however, might also 

be more durable than the glass–epoxy interface in tension–tension fatigue, because basalt 

composites have a longer fatigue life. 
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Mingchao et al. (2008) studied the chemical durability and mechanical properties of basalt fiber 

and its epoxy resin composites. The basalt yarns were boiled for 3 hours in distilled water, sodium 

hydroxide and hydrochloric acid. The yarns mass loss and strength declines in hydrochloric acid 

were more severe than in sodium hydroxide, showing that the alkali resistance of the basalt fiber 

was better than acid resistance. In addition, the flexural properties and surface morphologies of the 

composites were investigated after being immersed in 8 kinds of chemical mediums for 15, 30 and 

90 days at room temperature. After each period of immersion, the flexural properties were 

determined by a three-point flexural test. In acid mediums, the flexural strength and flexural 

modulus declined in the same way. In alkaline mediums, the flexural modulus kept close to the 

original value while the flexural strength declined gradually. Even after being immersed in the 

strong-alkali of sodium hydroxide and ammonia for 90 days, the residual strength was about 70% 

of originals. The results also showed that the interface formed between basalt fiber and epoxy resin 

is better than that of glass fiber and epoxy resin.  

Adhikari (2009) studied the mechanical properties (tensile strength, rupture strain and modulus of 

elasticity) of the BFRP bars and their applicability as internal reinforcement in reinforced concrete 

beams. The reinforcement bars were 3.0, 5.0 and 7.0 mm diameter with the volume fraction of 

44%, 52% and 41%, respectively. Table 2–3 presents the average tensile properties and bond 

strength of the tested BFRP bars. The test results obtained were fairly consistent and satisfactory. 

The standard deviations for the tensile strength were found to be varying from 7.0 to 7.9%. The 

distribution of rupture strains was found to be more variable, varying between 6.0 to 13.7%, the 

maximum being in the case of 3 mm bar which was related to the probable non-uniformity of the 

distribution of fibers in the case of small sized bars. In addition, four pullout cylinder tests were 

conducted for each size of BFRP bars to evaluate the bond-strength. It was concluded that the 

embedment length of 10 inches was sufficient for the 3 mm basalt bar to develop full tensile 

strength. Compared with the results for the 5.0 and 7.0 mm basalt bars, it can be observed that the 

embedment length can be reduced to 7 or 8 inches in the case of 3 mm basalt-FRP bars. In the case 

of 5 and 7 mm bars, it was evident that the provided embedment of 10 inches was insufficient to 

develop their full tensile strength and the authors proposed an equation to predict the embedment 

length of these bars. In addition, the bond behavior of BFRP and GFRP bars were studied by Bi et 

al. (2011) and Ovitigala and Issa (2013). The study revealed that BFRP bars showed bond stress-

slip behavior similar to that of GFRP bars. 
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Table 2–3: Mechanical properties and bond strength of BFRP bars (Adhikari 2009) 

Bar size 

(mm) 

Tensile strength 

(MPa) 

Elastic modulus 

(GPa) 

Rupture strain 

(mm/mm) 

Bond strength 

(MPa) 

3.0 2317±181 86.0 0.0279 4.1±0.22 

5.0 2201±154 86.3 0.0272 6.7±0.41 

7.0 2079±153 88.5 0.0241 7.3±0.90 

Wei et al. (2010) studied the effects of treatment with acidic (HCl) and alkaline (NaOH) media for 

different times on basalt and glass fibers. They examined post-treated fibers in terms of their 

strength maintenance ratio and mass loss ratio. They observed that the tensile strength of the fibers 

decreases with increasing treatment time. It seems that in the same acid environment, the effect of 

the treatment time on the strength reduction of the basalt fibers is not as obvious as that for the 

glass fibers. As for alkali environment, the variation of the strength with treating time is almost the 

same for basalt and glass fibers. For the basalt fibers the acid resistance is much better than the 

alkali resistance, but for the glass fibers the acid resistance is similar to the alkali resistance. They 

concluded that amongst these solutions, alkaline conditions were the most corrosive for basalt. The 

rate of corrosion depends on several intrinsic and extrinsic factors like temperature, fiber 

composition, aging time, solution composition, pH and size of the fibers. On the whole, the 

chemical stability of the basalt fibers is better than the glass fibers especially in an acidic 

environment. 

Wei et al. (2011) reinforced basalt and glass fibers in an epoxy resin to study composite degradation 

in seawater. They observed that the mass gain change of the BFRP and GFRP composites after 

being immersed in seawater is a combination of two effects: water absorption and soluble material 

extraction. At the initial stage the water absorption is predominant, and at the late stage the soluble 

material extraction may play a major role. The tensile and bending strengths decrease with 

increasing immersion time, indicating that the material has experienced some forms of physical 

damage and/ or irreversible chemical degradation. The penetrated water may cause the matrix to 

swell and break, and the soluble material extraction at the interface may damage the coherence 

between the matrix and the fiber. All these effects make the properties of the composite deteriorate. 

Moreover, the tensile strength and bending results of seawater treated composites indicated a 

decreasing trend, based on the time of treatment. They observed that BFRC expressed anti-seawater 
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corrosion properties similar to GFRP. They concluded that by effectively lowering the content of 

Fe2+ ions within the basalt fibers, one can achieve better and improved stability of composites in 

seawater environments.  

Ovitigala (2012) sought to determine the mechanical properties of BFRP bars by testing five 

specimens of each of the five different bar sizes: 6, 10, 13, 16 and 25 mm. The tensile strength 

slightly decreased as the bar diameter increased, with values of 160.2 ksi (110.4 MPa), 162.6 ksi 

(1121.0 MPa) and 156.9 ksi (1081.7 MPa) for the 6 mm, 10 mm, and 13 mm bars, respectively. 

All bar diameters exhibited brittle failure by rupture of the fibers. Similarly, the modulus of 

elasticity of each bar size was also determined and found to decrease with the increase of the bar 

diameter, except for the 6 mm bars. The minimum value of 7260 ksi (50.0 GPa) was obtained from 

the 25 mm bars, while the 8 mm bars had the greatest modulus of 8022 ksi (55.3 GPa). As expected, 

the linear stress-strain curve continued until failure for all specimens. The ultimate strain at failure 

was as high as 20588 μs for the 13 mm bars and 21171 μs for the 6 mm bars.  

Li et al. (2012) studied the durability and fatigue performances of basalt fiber/epoxy FRP 

reinforcing bars exposed to hygrothermal and alkaline environment. The bare basalt fiber (no resin 

protection) immersed in these environments, exhibited a severe degradation of tensile properties, 

due to significant corrosion of the fibers as revealed by scanning electron microscopy. However, 

the BFRP bars evidenced better durability when subjected to the same conditions. For distilled 

water immersion for six months, despite of remarkable fluctuation in the original two weeks, the 

tensile strength of BFRP bars showed a little bit increase (~4%) at 20 °C, but decreased by 26% at 

40 °C, 38% at 60 °C and 49% at 80 °C, respectively. As believed, the increase of the strength at 

20 °C is due to post-curing effect. Immersed in alkali, BFRP bars showed much pronounced 

degradation in both strength and modulus. At relatively low temperatures (e.g., 20 °C and 40 °C), 

the tensile strength firstly increased by about 4% and then decreased. The increase can be assigned 

to the post-curing effect. At relatively higher temperatures, the tensile strength dramatically 

reduced in the first month and then slows down. After six months immersion, the reductions of the 

tensile strengths were 13%, 37%, 56% and 56% at four testing temperatures, respectively. It is 

worth noting that the reduction of the tensile strength is much higher than that immersed in distilled 

water. Moreover, the fatigue performance of basalt fiber reinforcing bars was investigated before 

and after ageing in alkaline solution. The fatigue life of aged samples was remarkably reduced 
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compared to the control samples. From unaged to aged S-N curve, the fatigue resistance moved 

backward to the original point. For example, at stress level of 0.5, the fatigue life fell down from 

102000 circles to only 7000 circles (93% cut off from the initial). 

Wang et al. (2012) studied the degradation of tensile properties of BFRP and the related hybrid 

FRP tendons under salt solution. The researchers concluded that: i) the degradation of tensile 

strength of BFRP tendons was proportional to the increase of stress level, while the corresponding 

modulus was relatively constant; ii) the BFRP tendons under the stress level of 0.6fu after 63 days 

aging maintained the tensile strength of more than 90%, which showed a good resistance to salts 

corrosion; iii) hybrid B/CFRP tendons showed even better resistance to salt corrosion in 

comparison to BFRP but the positive hybrid effect was only observed for the tendons under low 

stress level (0.3fu); iv) the degradation of hybrid B/SFRP tendons was larger than that of the other 

FRP tendons, which was mainly caused by the corrosion of steel wires inside. 

The tensile properties of BFRP bar of 8 mm diameter and 60% fiber content, pultruded with a 

vinylester, has been verified under the temperature up to 300 °C by Wu et al. (2012). The results 

showed that the bar was able to maintain about 85% of its tensile strength due to the high Tg of 

vinylester (around 120 °C). It was also indicated that the pultruded FRP had a good homogeneity 

and could achieve high residual strength. To further clarify the mechanism of tensile degradation 

of BFRP under elevated temperatures, the basalt fiber bundles were tested under the temperatures 

up to 500 °C, subjected to different conditions, tension under heating and after heating. The 

degradation of tensile strength of basalt fibers showed, in general, below 200 °C the tensile strength 

stayed constant and gradually decreased between 200 °C and 300 °C, and noticeably dropped after 

300 °C, and finally reached the minimum at 500 °C. In general, the tensile strength of basalt fibers 

degraded faster when they were tensioned under heating compared with those tensioned after 

heating.  

El Refai (2013) investigated the durability of a novel BFRP bar-anchor system. The BFRP bars 

were exposed to saline and alkaline solutions for ten weeks before being anchored and tested under 

static and fatigue loading. Unconditioned basalt, glass, and carbon specimens were also tested and 

served as controls. The authors concluded that: 
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a. Conditioning of the BFRP bars in saline and alkaline solutions resulted in a decrease of 7% 

and 9%, respectively, in the tensile strength of the bar-anchor systems. No noticeable changes 

in the modulus of elasticity of the NaCl-conditioned specimens were observed, but the NaOH-

conditioned specimens exhibited an average decrease of 11% in their modulus. Therefore, the 

alkaline solution was more aggressive in damaging the BFRP bars than the saline solution. 

b. The fatigue test results showed that the applied stress range primarily affected the fatigue life 

of the bar-anchor system. In addition, continuous immersion of the BFRP bars in the alkaline 

solution increased its tendency to fracture prematurely in the anchor zone. The fatigue limit 

(stress range) of the BFRP bar-anchor system was determined to be 4% of its ultimate capacity, 

compared with 3% and 10% of the glass and carbon systems, respectively. 

c. The fatigue performance of the BFRP bar-anchor system is poorer than that of the CFRP 

system, the former can still be considered in applications involving low to moderate levels of 

fatigue loading to avoid the high cost of carbon fiber composites. 

d. Finally, basalt fibers might be a good alternative to traditional glass fibers in manufacturing 

FRP composites. The durability and fatigue performance of BFRP bar-anchor systems could 

be enhanced by improving the manufacturing quality of the BFRP bars in terms of the fiber, 

matrix, and fiber/matrix interface. 

Vincent et al. (2013) characterized newly developed BFRP bars and evaluated their bond-

dependent coefficient (kb). The investigation included physical and mechanical characterization of 

sand-coated BFRP bars of 10, 12, and 16 mm diameters. In addition, three beams reinforced with 

BFRP bars of the same diameters were constructed and tested to evaluate the bond-dependent 

coefficient and compared the results with the current design recommendations of the FRP design 

codes and guidelines. The test results confirmed that the developed BFRP bars meet the 

requirements of the ACI 440.6M (2008) and CAN/CSA S807 (2010) concerning their physical and 

mechanical properties, as well as, the modulus of elasticity of the BFRP bars close to that of GFRP 

bars of grade I. In addition, the measured bond-dependent coefficient for the tested BFRP bars was 

0.74. This value is very close to that of the CAN/CSA S6.1S1 (2010) for sand-coated FRP bars 

(kb = 0.8). Consequently, the predicted crack widths using CAN/CSA S6.1S1 (2010) provisions 

were very close to the experimentally measured ones. 
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Wang et al. (2014a) studied the degradation of the tensile properties of prestressed basalt FRP and 

hybrid basalt/carbon FRP tendons in a marine environment, as well as addressed the prestressing 

effect and hybrid effect on degradation. The characteristics of prestressed hybrid FRP tendons in a 

marine environment simulated by a salt solution. The authors concluded that BFRP tendon showed 

superior resistance to salt corrosion. The degradation rate of the tensile strength is nonlinearly 

proportional to the prestressing ratios, whereas the elastic modulus remains constant regardless the 

prestressing ratios and aging duration. The tensile properties degradation of BFRP tendons mainly 

lie in the interfacial deterioration instead of the fibers themselves. In addition, the prestressing 

accelerated strength degradation of BFRP tendons as well as decreased the variation of the strength 

retention after aging, which can be explained by the straightening effect of fibers in FRP under 

sustained loads. Moreover, hybridization decreased the degradation rate of non-prestressed 

B/CFRP tendon due to the contribution of carbon fibers to the strength, whereas for prestressed 

B/CFRP, the controlling factor of degradation transfers from the carbon fibers to the relatively 

weak interface between the two kinds of fibers and the resin, consequently resulting in faster 

degradation. Finally, simultaneous degradations of strength and modulus in the hybrid B/SFRP 

were caused by the corrosive steel wires in FRP.  

El Refai et al. (2014b) investigated the effect of five different accelerated environments (tap water, 

seawater, elevated temperature, elevated temperature followed by tap water, and elevated 

temperature followed by seawater) on the bond stress-slip response, adhesion to concrete, and bond 

strength of two types of BFRP bars (sand-coated and helically grooved) and one type of GFRP bar. 

The authors concluded that all specimens failed in pullout mode by the interlaminar shear between 

the bar layers for basalt specimens and by shearing of the surface ribs in the glass specimens. The 

bond stress-slip response was governed mainly by the surface treatment of the bar and its 

manufacturing quality, regardless of the type of fiber used.  Furthermore, the sand-coated BFRP 

bars showed higher bond strength, higher adhesion to concrete, and less slip at peak stress than the 

helically grooved BFRP bars. Exposure to elevated temperatures of up to 80 °C had a minor effect 

on the bond strength of the tested bars, regardless of the fiber material. In addition, immersion in 

aqueous solutions enhanced the adhesion stresses at early stages of pullout loading. Nevertheless, 

such environments had a detrimental effect on the bond strength at later stages depending on the 

bar material’s moisture absorption. Finally, the test results demonstrated the great promise BFRP 

bars show as reinforcing materials. 
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Wang et al. (2014b) investigated the creep behavior of newly developed basalt fiber reinforced 

polymer (BFRP) tendons for prestressing application. Furthermore, the creep rupture stress was 

predicted based on statistical analysis. The results show that the creep strain to time relationship of 

BFRP tendons depends highly on the stress level applied. The creep rate of BFRP tendons under 

low levels of stress remains in low and steady values. Meanwhile, the residual strength of BFRP 

after 1000 h of sustained load still reaches approximately 95% of its initial tensile strength and the 

corresponding coefficient of variation (CV) is much less than the original CV. For prestressing 

application, the creep rupture stress limit for BFRP tendons can be adopted up to 52% of its tensile 

strength according to the reliability based analysis. 

Wu et al. (2015a) investigated the degradation of the tensile properties of basalt fibers and epoxy-

based composites in various corrosive environments, including alkaline, acid, salt and water 

solutions. Accelerated experiments were conducted at temperatures of 25 °C and 55 °C and the 

variation in tensile properties was studied by means of tensile testing, mass loss weighing, scanning 

electron microscope imaging and energy spectrum analysis. The degradation of carbon and glass 

fibers and their composites was also tested for comparison. The findings of the experimental tests 

were as follows: 

a. Basalt fibers exhibited relatively little resistance to corrosion in alkaline and acid solutions, but 

strong resistance to corrosion in salt and water solutions. 

b. Degradation of basalt fibers in both salt and water solutions was induced by local etching of 

the fibers, while in alkaline solutions, the degradation is caused by large-area pitting of the 

fiber, resulting in complete loss of tensile strength. In acid solutions, the damage or change in 

the chemical composition of the fibers is the major reason for the degradation of the tensile 

strength.  

c. BFRP composites exhibited greater improvement in their tensile strength retention under 

different types of corrosion than basalt fibers, primarily due to the protection of the matrix. 

However, this improvement was limited by the degradation of the interface between the fibers 

and the matrix. The elastic modulus of BFRP composites was unaffected by exposure to the 

corrosive environments. 

d. Basalt fibers and their composites exhibit similar resistance to water, salt and alkaline 

corrosion, but less resistant to acid corrosion than glass fibers and their composites. Carbon 
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fibers and their composites were resistant to all types of corrosion tested in the study. The 

corrosion resistance of basalt-FRP composites can be improved by modifying the matrix and 

the coupling agent. 

Wu et al. (2015b) assessed the residual tensile properties of unstressed and stressed BFRP bars 

exposed to four types of simulated harsh environments: alkaline solution, salt solution, acid 

solution, and deionized water at 25, 40, and 55 °C. Microstructural analysis by scanning electronic 

microscopy (SEM) was also performed to reveal the inherent degradation mechanism of BFRP 

bars in an alkaline environment. The residual tensile strength of unstressed BFRP bars exposed to 

an alkaline solution was used to predict long-term performance based on the Arrhenius theory. The 

authors concluded that the effect on the durability of BFRP bars exposed to acid, salt, and deionized 

water was less than that for bars exposed to alkaline solution. While the elastic modulus of the 

BFRP bars was quite stable and nearly unaffected by all four types of solutions and sustained stress 

levels applied. The tensile-strength reductions for an unstressed BFRP bar after conditioning in 

alkaline solution for 63 days were 31.5 and 6.0% at 55 and 25 °C, respectively. Moreover, after 

immersion in 40 °C for 42 days, the tensile strength of the BFRP bar was reduced by 5.5, 5.5, and 

4.2% over bars immersed in deionized water, salt, and acid solutions, respectively, under the same 

conditions. In addition, the effects of sustained stress on the degradation of BFRP bars were not 

obvious when the stress level was less than 20% of ultimate strength, but the degradation processes 

accelerated when the stress exceeded this level. Finally, the predicted exposure time for the 

unstressed BFRP bar immersed in a simulated alkaline solution to produce a 50% reduction in 

strength at 20.3, 14.0, and 5.7 °C, which represent the annual temperatures of areas with northern 

latitudes 30°, 40°, and 50° (which represents an area with a northern latitude of 50°), respectively, 

were 4.2 years, 7.4 years, and 16.1 years. 

Banibayat and Patnaik (2015) performed creep rupture tests on BFRP reinforcing bars of 4.3 mm 

diameter at load levels ranged between 25% and 80% of the corresponding ultimate tensile 

strength. Simulated environmental conditions using an alkaline solution with pH of 13 were used. 

The tests were conducted at an elevated temperature of 60 °C. An alkaline environment was used 

to simulate exposure of the FRP bars to the alkaline environment of concrete, and the elevated 

temperature was used to accelerate the degradation process. The ultimate creep rupture strength 

coefficients for basalt-FRP bars were determined to be approximately 18% for 50 years’ service 
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life and 28% for 5 years’ service life. The ACI 440.1R (2006) approach of using one creep rupture 

strength limit corresponding to 50 year service life, regardless of the length of the service life leads 

to conservative designs for structural elements (such as seawalls) that may be designed for 5 to 10 

years of service life. Finally, the million hours (114 year) creep coefficient of BFRP bars was 

estimated to be 13%, which is marginally smaller than that for other AFRP materials. 

Benmokrane et al. (2015) investigated the physical, mechanical, and durability characteristics of 

three different types of FRP bars made of basalt and glass fibers with vinylester and epoxy resins. 

First, their physical and mechanical properties were assessed. Then, a comparative durability study 

was performed under alkaline exposure simulating a concrete environment. The alkaline exposure 

was achieved by immersing the bars in an alkaline solution for up to 5000 h at 60 °C. Thereafter, 

the properties were assessed and compared with the unconditioned (reference) values. The authors 

found that the Glass/Vinylester bars exhibited the best bond between the fibers and resin, flexural 

strength, flexural modulus of elasticity, and interlaminar shear strength, which is governed by the 

fiber/matrix interface. In addition, they showed the lowest moisture uptake. In contrary, the 

unconditioned Basalt/Vinylester bars exhibited the lowest transverse-shear strength, flexural 

strength, interlaminar shear strength, and worst fiber/resin interface. The transverse-shear strength 

of the Basalt/Vinylester bars was significantly affected by accelerated aging (reduced by 33% after 

5000 h), while the Glass/Vinylester and Basalt/Epoxy bars were slightly affected by accelerated 

aging (reduced by 10% and 9%, respectively, after 5000 h). Moreover, the flexural strength of the 

Basalt/Vinylester and Basalt/Epoxy bars was significantly affected by accelerated aging (reduced 

by 37% and 39%, respectively, after 5000 h), while the Glass/Vinylester bars were slightly affected 

by accelerated aging (reduced by 7% after 5000 h). The interlaminar shear strength of the 

Basalt/Vinylester and Basalt/Epoxy bars was affected by accelerated aging (reduced by 22% and 

14%, respectively, after 5000 h), while the Glass/Vinylester bars were slightly affected by 

accelerated aging (reduced by 5% after 5000 h). The fiber-resin interface plays a significant role in 

controlling the degradation due to conditioning. Finally, the Glass/Vinylester FRP bars showed 

superior durability in the alkaline environment at elevated temperature compared to the 

Basalt/Vinylester and Basalt/Epoxy bars. The results confirmed that the two types of fiber (glass 

and basalt) and resins (vinylester and epoxy) used in this study were not affected by the 

conditioning. 
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Lu et al. (2015) thermally aged a pultruded unidirectional BFRP plate at 135 and 300 °C for 4 

hours, and subsequently immersed in distilled water or strong alkaline solution (simulating 

concrete pore water, pH = 12.6-13.0) for 3 months. The variation of the tensile and interlaminar 

shear properties of the BFRP plates was studied. Thermal aging exhibited a slight effect on both 

the longitudinal tensile properties and the interlaminar shear strength, although thermal 

decomposition of the resin matrix started at 300 °C and brought in a high void content (4.8%). 

FTIR and DMTA results indicated that thermal aging lead to post-curing and oxidation of the resin 

matrix, leading to an increase of the glass transition temperatures. Thermal aging accelerated the 

degradation of the BFRP plates in distilled water or alkaline solution at 20, 40 and 60 °C. In the 

studied hash immersion conditions at 60 °C alkaline solution for 3 months, the un-aged, 135 and 

300 °C aged BFRP samples showed reduction in the tensile strength by 43.2, 62.3 and 74.1%, 

respectively. The higher the thermal aging and immersion temperatures, the more deterioration of 

the mechanical properties occurred. Alkaline solution immersion showed more adverse effects 

compared to the distilled water. The detrimental effects of the thermal aging were attributed to the 

formation of voids and cracks through which water or alkaline solution tended to easily penetrate 

into the BFRPs.  

Serbescu et al. (2015) examined the degradation of BFRP bars after exposure to accelerated 

environmental conditions and proposed a methodology to predict their long-term design strength. 

A total of 132 BFRP specimens comprising two types and seven different diameters were tested in 

tension after conditioning in pH9 and pH13 solutions at 20, 40, and 60 °C for 100, 200, 1000; and 

5000 hours. The tested BFRP bars exhibited a tensile strength ranged from 972 to 1481 MPa while 

the elastic modulus varied from 34 to 47 GPa. The lowest strength retention of 69% was observed 

for bars exposed to pH9 solution at 60 °C for 5000 hours. Despite some strength deterioration, the 

elastic modulus of the tested bars increased by an average of 6.5% (this can be attributed to post 

curing of the resin matrix). In addition, they were estimated to retain about 72% and 80% of their 

strength after 100 years exposure to concrete and mortar environment, respectively. 

http://ascelibrary.org/action/doSearch?ContribStored=lu%2C+z
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2.4 Bridge-Deck Slabs: Background and Review 

2.4.1 General  

The most common type of bridges built in highways is concrete deck slabs constructed on steel or 

prestressed girders. The concrete deck slabs deteriorate faster than any other bridge elements 

because of direct exposure to harsh environmental conditions such as freeze-thaw cycles, wet-dry 

cycles, de-icing chemicals, and traffic loads, which result in corrosion of steel reinforcement. The 

magnitude of deck cracking and delamination due to the corrosion is a major problem when 

measured in rehabilitation costs and traffic disruption (Yunovich and Thompson 2003). In Quebec, 

half of the maintenance budget of the Ministry of Transportation is spent on concrete structures 

damaged by corrosion of steel (El-Salakawy et al. 2003a). 

Fiber-reinforced polymers (FRP) reinforcing bars with non-corrosive nature are beneficial for 

improving the durability of these bridge-decks and reduce – if not eliminating – the maintenance 

and repair cost (ACI 440.1R 2015; ISIS-M3 2007). The service life of concrete deck slabs 

reinforced with steel bars expected to be 25 years before requiring replacement. However, the 

service life of the panels with FRP reinforcement is usually expected to be at least 75 years (i.e. 

the period of use of the bridge) (O’Connor et al. 2003; Wu et al. 2012). 

On the other hand, one of the usual characteristics of the slab constructed on girder bridges is 

composite action between the girders and deck slab that contributes to increase both of the 

longitudinal flexural strength and stiffness (Edalatmanesh and Newhook 2012). Therefore, this 

composite action is recommended to enhance stiffness and economy of structures. To ensure 

composite action between the deck slabs and steel or concrete girders, shear connectors are fixed 

to the top surface of girders, as shown in Figure 2–6. 

Moreover, it is well established that restrained concrete bridge-deck slabs (slab-on-girder type) fail 

in the punching shear failure mode under the effect of concentrated wheel loads because of the 

effects of compressive membrane action (Hewitt and Batchelor 1975; Batchelor et al. 1978; Fang 

et al. 1990; Kuang and Morely 1993; Thorburn and Mufti 2001; Graddy et al. 2002; El-Gamal et 

al. 2005; Newhook et al. 2011; Edalatmanesh and Newhook 2012; Zheng et al. 2012a&b; 2013; 

Zheng et al. 2014; 2015). This arching action is a result of the lateral restraining forces applied to 
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the deck slab due to the continuity of the slabs and the monolithic action of the supporting girders. 

The compressive membrane action significantly increases the carrying capacity of these deck slabs 

compared to that of the slab in pure flexure (Hon et al. 2005).  

  

Figure 2–6: Steel shear connectors fixed to the top flange of steel and concrete girders 

2.4.2 Review about FRP-RC Bridge-Deck Slabs 

The punching shear behavior of steel-RC deck slabs system has been extensively studied (Hweitt 

1972; Hewitt and Btchelor 1975; Perdikaris and Beim 1988; Kuang and Morely 1993; Mufti and 

Newhook 1998) and several code provisions have been established. These provisions cannot be 

directly applied for FRP-RC slabs due to the significant difference in the mechanical and physical 

properties between steel and FRP bars. In the past decade, few researchers studied the behavior of 

restrained concrete deck slabs reinforced with glass and carbon FRP bars (Hassan and Rizkalla 

2004; El-Gamal et al. 2005a&b; 2007; El-Ragaby et al. 2007; Bouguerra et al. 2011; Zheng et al. 

2012a&b; 2013). It has been demonstrated some modifications in the available provisions to be 

convenient to the slabs reinforced with FRP bars.  

One of the early studies on the punching shear of FRP-reinforced concrete slabs was conducted by 

Ahmed et al. (1993). They tested six simply supported square concrete slabs under central 

concentrated loads. All concrete slabs were 690 × 690 × 80 mm. Four of the slabs were reinforced 

with 3-D carbon fiber fabric, and two were reinforced with conventional mild steel. For the four 

CFRP slabs, two were fabricated with column stubs and the other two slabs without the column 

stub. The reinforcement ratios in the three directions for the CFRP slabs were 0.95%. For the two 

slabs reinforced with steel, the reinforcement ratios in the X and Y directions were 1.18% and 

1.35%, respectively. They concluded that all test slabs failed in punching shear before reaching the 
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design flexural capacity and the punching shear behavior of the tested FRP-reinforced slabs were 

different from the slabs reinforced with conventional steel. The FRP-RC slabs exhibit a significant 

non-linear behavior and a reduction in the stiffness in the post cracking stage, and also showed a 

post-maximum load deformation softening response. 

Banthia et al. (1995) tested four concrete slabs measured 600 × 600 × 75 mm to study the behavior 

of concrete slabs reinforced with FRP grids. Three slabs reinforced with FRP grids (NEFMAC) 

were tested and compared to a similar slab reinforced with conventional steel reinforcement. 

Normal strength, high strength and normal strength concrete with fiber were used to manufacture 

the slabs. It was concluded that the ultimate loads supported by slabs reinforced with FRP were 

equal to or higher than that supported by the companion slab reinforced with steel. It was observed, 

however, that because of the brittle nature of fracture in the FRP, slabs reinforced with such grids 

were less energy absorbing than one reinforced with steel. In this context, the use of fiber-

reinforced concrete appeared to be promising. The ultimate loads supported by slabs were 

compared to those predicted by the various code equations. It appeared that not many changes were 

needed to these equations when applying them to slabs reinforced with FRP grids. 

Bakht et al. (2000) presented different types of straps as externally transverse reinforcements for 

steel-free deck slabs. This type of slab derives its strength from its internal arching action, which 

is harnessed longitudinally by making the slab composite with the girders, and transversely by 

restraining the relative transverse movement of the top flanges of adjacent girders. The slab 

included fully studded straps, partially studded straps, cruciform straps, FRP bars and diaphragms. 

Three models of steel-free slabs with different straps were tested to failure under monotonic 

loading. An additional specimen was tested under 1000 cycles of pulsating load between 0 and 

88 kN prior to the static testing. The results of the latter static testing indicated that the forces in 

straps increased, due to shakedown in the slab. The authors concluded that the modes of failure of 

the steel-free deck slabs were mostly punching shear failure as expected, but the actual failure loads 

were more than 10 times the theoretical failure load. The very large differences between the 

theoretical bending and actual failure loads confirmed that the transverse confining systems 

employed were effective in forcing the deck slab to act in arching. It was shown that the steel-free 

deck slab, in addition to being more durable than slabs with steel reinforcement, can also prove to 

be more economical. 
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Hassan et al. (2000) studied the behavior of two full-scale models of a portion of a highway bridge-

deck slab reinforced with FRP reinforcement under concentrated loads through a 225 × 575 mm 

steel plate. The first slab was reinforced totally with CFRP bars, and the second slab was reinforced 

with hybrid GFRP and steel bars. Each model consisted of three continuous spans of 1800 mm 

each and two cantilevers, to simulate the effect of a truck wheel load, with overall dimensions of 

7200 × 3000 × 200 mm, as shown in Figure 2–7. The applied load was cycled three times every 

200 kN. Load–deflection behavior, crack patterns, strain distribution, and failure mode were 

reported. The test results confirmed that the ultimate load carrying capacity of continuous full-scale 

bridge-deck slab models is more than seven times the service load specified by the AASHTO Code 

(1996) and the failure is due to punching shear. The presence of top reinforcement in continuous 

bridge-deck slabs has a negligible effect on the punching shear capacity. In addition, to satisfy 

serviceability and ultimate capacity requirements for span-to-depth ratios ranging between 9 and 

15, the use of 0.3% CFRP (fiber volume ratio of 60% or more) as top and bottom reinforcement in 

each direction was recommended. For GFRP reinforcements (fiber volume ratio of 60% or more), 

using 1.2% for the bottom reinforcement and 0.6% for the top reinforcement in the transverse 

direction, as well as 0.6% as top and bottom reinforcement ratios in the longitudinal direction, 

achieves the code requirements. 

 

Figure 2–7: Full-scale bridge-deck panel (Hassan et al. 2000) 
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Khanna et al. (2000) carried out an experimental study to investigate the influence of each layer of 

reinforcement (steel and glass FRP) on the behavior of conventionally reinforced concrete deck 

slabs. The test model was a 12000 mm long × 175 mm thick slab cast compositely on two steel 

girders spaced at 2000 mm. The slab model was conceptually divided into four segments (3000 mm 

long each), as shown in Figure 2–8. Each segment had a different reinforcement configuration. 

The first segment contained isotropic steel reinforcement in two layers. The second contained only 

the bottom layer of steel reinforcement. The third contained only the bottom transverse steel bars. 

The last segment contained only bottom transverse GFRP bars having the same axial stiffness as 

those of the steel bars in the third segment. Each segment was tested under concentrated load over 

an area measured 250 × 500 mm, simulating the dual tire footprint of a typical commercial vehicle, 

according to the Ontario Highway Bridge Design Code (OHBDC). The test results showed that all 

segments failed in the punching-shear mode at similar load values. Also, it was confirmed that only 

the bottom transverse reinforcement influences the load carrying capacity and deflection behavior 

of a reinforced concrete deck slab. Moreover, the stiffness of the bottom transverse reinforcement, 

rather than its strength, is of paramount importance. Finally, the results indicated the validation and 

competitiveness of the proposed FRP design compared to the conventional steel design. 

 

Figure 2–8: Full-scale bridge-deck panel (Khanna et al. 2000) 

Rahman et al. (2000) tested a full-scale model of a bridge-deck slab reinforced with a mesh of 

CFRP with a reinforcement ratio of 0.3%. The slab dimensions were 6000 mm each side and 185 
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mm thick. It was supported on three steel girders spaced at 2000 mm (center-to-center). The model 

had two 2000 mm continuous spans and 1000 mm cantilevers on both sides, as shown in   

Figure 2–9. The slab was first loaded monotonically at six positions at three stages (using two 

concentrated loads at each span on a footprint of 150 × 250 mm) to crack the concrete. Then it was 

loaded cyclically in three stages of 4 million cycles each at a frequency of 5 Hz, with the load 

varying between 0 and 100 kN in the first two stages and between 0 and 125 kN in the last stage. 

The authors observed that the overall behavior of the slab under the service load was satisfactory, 

the deflection was small (about L/800), and the stresses in the reinforcement were approximately 

7% of its ultimate strength. It was confirmed that the failure mode was punching shear and the 

minimum ultimate load capacity of the slab was more than five times the maximum wheel load of 

100 kN. In addition, the deterioration in the slab’s structural performance under a simulated 50 

years of service loading, indicated by the increase in slab deflection and stress in the FRP 

reinforcement during the course of cyclic loading, is negligible. 

 

Figure 2–9: Plan and cross section of tested bridge-deck (Rahman et al. 2000) 

Thorburn and Mufti (2001) presented a design procedure for an externally restrained highway 

bridge-deck. The method has been developed, based on the Canadian Limit States design 

philosophy, considering both the strength and serviceability requirements. Transverse steel straps, 

placed below the concrete slab (Figure 2–10), eliminate the deleterious effects of corrosion on the 

concrete. Further, the straps can be designed to provide the restraint necessary to promote the 

development of internal arching in the concrete slab in response to a concentrated load. The 

capacity of an externally restrained composite bridge-deck, with no internal steel reinforcing, will 
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be limited by the formation of a local punching failure if sufficient external reinforcement has been 

provided. 

 

Figure 2–10: Section of externally reinforced slab-on-girder bridge with FRP deck slab 

(Thorburn and Mufti 2001)  

El-Salakawy et al. (2003a) tested a new bridge for service performance using standard truckloads. 

The bridge is located in the Municipality of Wotton, Quebec, Canada. The bridge is a girder type 

with four main girders simply supported over a span of 30.6 m. One half of the concrete deck slab 

was reinforced with carbon and glass FRP bars, and the other half with conventional steel bars. 

The design of the reinforced concrete deck slab was made according to the Canadian Highway 

Bridge Design Code. The bridge was well instrumented at critical locations for long-term internal 

temperature and strain data collection using fiber optic sensors. The construction details and the 

results of the field tests and remote monitoring for the bridge-deck slab showed that under the same 

real service and environmental conditions, very similar behavior was obtained from the sand-

coated FRP and steel bars. No obstacles to construction were encountered due to the use of the FRP 

bars. The FRP bars withstood normal on-site handling and placement problems. In addition, the 

maximum tensile strain values in concrete were very small (10-25 μs) and well below the cracking 

strain of concrete, which is 132 μs for normal-weight concrete (fc
′= 37 MPa, Ec = 28 GPa). While 

the maximum tensile strains in FRP and steel bars were 15 and 16 μs, respectively. These values 

are less than 0.13% of the ultimate strain of the FRP material. Moreover, the flexural design 

methods (CAN/CSA S6 2000) for concrete bridge-deck slabs supported on girders and with span 

to depth ratios of less than 15 seem to be conservative. Deflections of the bridge-deck slab and 

girders were less than 5 and 10 mm, respectively, well below the CHBDC and AASHTO allowable 

limits. Finally, the empirical design method (CAN/CSA S6 2000) for concrete bridge-deck slabs 

supported on girders and with a span to depth ratios of less than 15, the following FRP 
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reinforcement ratios were recommended: 0.6% of CFRP reinforcement in the bottom transverse 

direction and 0.6% of GFRP reinforcement in all other directions. This is valid for carbon and glass 

FRP composite bars with a modulus of elasticity of at least 110 and 40 GPa, respectively. 

Hassan and Rizkalla (2004) presented results of nonlinear finite element formulation of typical 

concrete bridge-decks reinforced with different types and configurations of FRP bars to study their 

effectiveness under service and ultimate limit states. Based on the results of the finite element 

analysis and possibility of constructing concrete bridges using FRP reinforcing bars, the proposed 

GFRP bottom transverse reinforcement ratio shall not be less than 1.2%. The top and bottom 

longitudinal GFRP reinforcement as well as the top transverse reinforcement shall not be less than 

0.6% to resist shrinkage and temperature stresses. Using the proposed values for the reinforcement 

ratios will ensure that the deflections under service load level is well below the limiting value 

required by the AASHTO code. The maximum tensile stresses in the bottom and top transverse 

GFRP bars at service load level were 17 MPa and 16 MPa, respectively, which are less than 20% 

of the ultimate tensile strength of the rebars. Consequently, creep rupture problem of GFRP bars is 

not a concern. The failure mode of continuous bridge-deck slabs, having a span-to-depth ratio of 

10 or less is due to punching shear. In addition, the presence of top transverse reinforcement in 

bridge-deck slabs has a negligible effect on the punching shear capacity. 

Hon et al. (2005) carried out an experimental program and nonlinear finite element modeling for 

assessing the restraint stiffness that exists for the slab of typical beam-and-slab bridge-decks and 

the strength enhancement due to compressive membrane action. The tested specimen consisted of 

a slab with a transverse span of 600 mm and a depth of 75 mm. The slab in each specimen was 

designed to be identical, so that the effects of the boundary conditions could be properly evaluated. 

The longitudinal edge beam span of all of the specimens was 3000 mm. The boundary conditions 

consisted of edge beams of varying widths, and transverse end diaphragms. A small gap was 

formed between the slab and the diaphragm to ensure that the slab spanned in one-way action. 

Some specimens had an adjacent slab on the other side of the edge beam to increase the horizontal 

translational restraint stiffness that existed for the loaded slab. Figure 2–11 shows typical geometry 

of the tested specimens. They concluded that the compressive membrane action enhanced the deck 

strength above that determined using a normal flexural and punching shear strength theory. The 

results indicated that a significant amount of compressive membrane action can be expected to 
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develop transversely in the slabs of actual beam-and-slab bridge-decks. The stiffness and strength 

of the slabs can then be expected to be significantly higher than that predicted using methods that 

do not incorporate the enhancing effects of compressive membrane action. Hon et al. (2005) 

described two requirements for developing a compressive membrane action in a reinforced 

concrete slab. First, some form of horizontal translational restraint must exist for the slab. In the 

case of a beam-and-slab bridge-deck, this consists of the longitudinal beams, the adjacent slabs, 

and the surrounding slab area. The other condition is related to the strain compatibility along the 

length of the slab, in that the net tensile strain along a longitudinal fiber must be non-zero if there 

is no horizontal restraint. The presence of a rigid horizontal restraint (at the depth of a longitudinal 

fiber that would have had non-zero net tensile strain) forces the strain back to zero, which induces 

membrane forces in the slab. If the restraint is less than rigid, the net longitudinal strain will not be 

zero and a lesser amount of membrane action will develop in the slab. The compressive membrane 

action develops transversely in the slab because cracks develop at mid-span and at the slab ends. 

This causes an extension in the longitudinal fibers of the slab, which is restricted by the horizontal 

restraint. In this case, the concrete in the surrounding beams and adjacent slabs provide the 

horizontal restraint. Therefore, the two conditions necessary for compressive membrane action to 

develop are satisfied. Approximate methods to account for compressive membrane action have 

been developed by previous researchers. These methods require knowledge of the restraint stiffness 

that exists for the slab, and this is not known with much certainty. Hence, compressive membrane 

action is usually not taken into account when determining the strength of reinforced concrete slabs. 

The reinforcement has a dual purpose: it provides for both local flexural resistance and global 

confinement required to develop arching effects (Holowka et al. 1980; Fang 1985). 
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Figure 2–11: Typical specimen in experimental program (Hon et al. 2005) 

El-Gamal et al. (2005; 2007) investigated the effect of the bottom transverse GFRP and CFRP 

reinforcement ratio and type on the behavior of edge-restrained concrete bridge-deck slabs 

reinforced with FRP bars. The investigation was conducted on full-scale bridge-deck slabs of 

3000 mm long × 2500 mm wide × 200 mm thick. The deck slabs were constructed and tested under 

monotonic concentrated load. One deck slab was reinforced with steel bars, one deck slab was 

constructed using plain concrete without any reinforcement and the others were reinforced with 

GFRP and CFRP bars. The deck slabs were supported on two steel girders spaced at 2000 mm 

(center-to-center) and restrained at the longitudinal ends by bolting the concrete slabs to the 

supporting steel girders through holes in the slabs. Also, they proposed a new model to predict the 

punching shear capacity of two-way concrete slabs reinforced with FRP or steel reinforcement. 

This model takes into consideration a new parameter to give better agreement with the experimental 

results. Based on the experimental and theoretical results, the following conclusions were drawn: 

1. The restrained deck slabs were failed due to punching shear of carrying capacities more than 

three times the factored design load as specified by the CHBDC. The plain concrete deck slab, 
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however, behaved differently and failed at a lower load level, which was less than 25% of the 

failure loads of the other tested slabs. 

2. Neither the top reinforcement assembly nor the bottom longitudinal reinforcement has a major 

effect on the measured deflections or strains. 

3. The maximum measured deflection at the service load level was below the allowable code 

limits (L/800). In addition, the increase of the FRP reinforcement ratio has an insignificant 

effect on the deflection behavior. 

4. The recorded cracking load was higher than the service load. For the pre-cracked slabs, 

however, the maximum measured crack widths at the service load level were less than 0.4 mm, 

which is below the allowable code limits. 

5. The ratios of the strains at service load to strains at failure were less than 5 and 10% for bars 

and concrete, respectively. 

6. The proposed model, given by Eqn. (2-1), showed good agreement with the available test 

results.  
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Where  is a new parameter which is a function of the flexural stiffness of the tensile reinforcement 

(ρf Ef), bo is the perimeter of the applied load, and d is the effective depth of the slab.  

Jacobson and Bank (2005) performed a series of punching shear tests on deck slab specimens 

reinforced with double layer glass/vinylester FRP pultruded grids having varying dimensions, 

support conditions, and end restraint conditions using a patch load that simulated the tire contact 

area of an HS-20 design truck double wheel. Punching shear was the mode of failure identified in 

all of the tested slabs. The punching shear capacity of the slab specimens was shown to be enhanced 

by introducing edge restraint to the specimens. In each case, the punching shear failure plane acted 

through the non-mechanically connected overlap splice between adjacent reinforcement cages. 

This confirmed the notion that the simple overlap splice would be the most structurally vulnerable 

aspects of the FRP reinforcement system, due to a lack of physical reinforcement continuity. 
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However, the punching shear failure occurred at loads many times greater than the HS-20 service 

load. 

Benmokrane et al. (2006) presented the design method, construction details, and test results for the 

GFRP-reinforced concrete deck of the Morristown Bridge on Route 100 which is located in 

Vermont, United States. The bridge is a single span steel girder with integral abutments spanning 

43.90 m. The concrete deck is a 230 mm depth and continuous over girders spaced at 2.36 m. The 

entire concrete deck slab was reinforced with GFRP bars in two identical layers at the top and the 

bottom. The bridge was tested for service performance using standard truck loads. The construction 

procedure and field test results under actual service conditions revealed that GFRP rebar provides 

very good and promising performance. In addition, the FRP bars withstood normal on site handling 

and placement with no problems and their light weight made them easy to carry and easier to place. 

Also, the maximum tensile strains in the GFRP bars were 8 μs and 31 μs, at the top and bottom, 

respectively. These values represent less than 0.19% of the ultimate strain of the GFRP and suggest 

that the AASHTO flexural design method overestimates the calculated design moments (service 

and ultimate). The small measured strains either in GFRP bars or in concrete compared to the 

expected values according to the flexural design moments suggest that the behavior of the deck 

slab under concentrated wheel loads is arching action and the failure mode is punching shear. 

El Ragaby (2007) concluded that the primary structural action of deck slabs resists concentrated 

loads is a complex internal membrane stress state referred to the internal arching (the arching action 

theory). This action activated after top and bottom cracks over the supports and at mid-span, 

respectively, penetrated through the deck slab depth. The arching action is sustained by in-plane 

membrane forces that developed as a result of lateral confinement. This lateral confinement is 

provided by the surrounding concrete slab, supporting elements, internal reinforcement and rigid 

appurtenances. All of these components act compositely with the slab to create internal membrane 

compressive forces. The failure of the internal compressive dome (arch) usually occurs as a result 

of overstraining around the perimeter of the wheel footprint (punching shear failure). 

Seliem et al. (2008) described the behavior of concrete bridge-decks reinforced with newly 

developed high-performance steel that is characterized by its high strength and enhanced corrosion-

resistance in comparison with conventional ASTM A61S (2006) Grade 60 steel. The study included 

testing of three full-scale bridge-decks with a span-depth ratio of 12.5. It was concluded that the 
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ultimate load-carrying capacity of the three bridge-decks was approximately 10 times the service 

load prescribed by the AASHTO specifications. In addition, punching shear was the primary mode 

of failure for the three bridge-decks. Due to continuity used in the test models, flexural-shear failure 

was observed as a secondary mode of failure. Finally, the cracking load of the tested bridge-decks 

was more than twice the service load prescribed by the AASHTO specifications. Hence, under 

service load level, the three bridge-decks behaved as uncracked sections. 

Ahmed and Benmokrane (2010) investigated the use of two GFRP products in the design of GFRP 

bridge-deck slabs using two concrete strengths. Through this investigation, it was concluded that 

increasing the modulus of elasticity of GFRP bars reduces the required reinforcement amount and 

therefore reduces the cost. 

Bouguerra et al. (2011) experimentally investigated the behavior of FRP-reinforced concrete 

bridge-deck slabs under concentrated loads. Eight full-scale restrained deck slabs measuring 

3000 mm long × 2500 mm wide and different thickness (150, 175 and 200 mm) were constructed 

using normal and high strength concrete. The slabs were reinforced with GFRP, CFRP, and steel 

bars with different reinforcement ratios in the bottom transverse direction. The slabs were tested 

using the same setup of El-Gamal et al (2005). All deck slabs failed in punching shear. It was 

confirmed that the bottom transverse reinforcement ratio was the main parameter affecting crack 

widths. In addition, the punching capacity of the tested deck slabs ranged from 1.74 to 3.52 times 

the factored load specified by CAN/CSA S6 (2006). The punching capacities of the tested slabs 

were significantly affected by the slab thickness and the concrete compressive strength. Finally, 

the ACI 440.1R (2006) punching strength equation greatly underestimated the capacity of the tested 

slabs with an average experimental-to-predicted punching capacity ratio of 3.17. 

Zheng et al. (2012a&b) studied the structural behaviors of GFRP reinforced concrete slabs with 

lateral restraint stiffness. A series of experimental tests were carried out to investigate the 

influences of some structural variables on the response of one-third scaled concrete bridge-deck 

models, including supporting beam sizes, reinforcement percentages and reinforcing materials. The 

laterally restrained slabs, such as those in bridge-deck slabs, exhibit arching action or compressive 

membrane action (CMA) which has a beneficial influence on the service behavior such as the 

deflection, cracks widths, and ultimate capacity. Without consideration of CMA, the current design 

standard cannot predict ultimate strengths and deflections of the laterally restrained concrete slabs 
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accurately. Because of the existing of CMA, the reinforcement percentages could not influence 

ultimate strengths in GFRP reinforced concrete bridge-deck slabs significantly. However, the 

increasing of lateral restraint stiffness and concrete compressive strength could enhance the loading 

capacities obviously. GFRP reinforcement in laterally restrained slabs can produce both 

economical and durable concrete designs.  

Zheng et al. (2013) presented a numerical study of the structural behavior of concrete bridge-deck 

slabs under static and dynamic traffic loads and an investigation of compressive membrane action 

(CMA) inside slabs. The deck slabs were reinforced with GFRP bars. Non-linear finite element 

analysis (NLFEA) models were established. Experimental data from one-span bridge structures by 

the author and other researchers are used to validate and calibrate the proposed FEM models. In 

the simulation of behavior of GFPR reinforced concrete bridge-deck slabs under traffic loads, a 

field test using calibrated truckloads of Cooshire-Eaton Bridge in Canada was used to validate the 

accuracy of proposed numerical models in dynamic analysis. NLFEA results indicate that the 

compressive membrane action has a sufficient effect on ultimate behavior and serviceability of 

GFRP reinforced concrete bridge-deck slabs with low reinforcement percentages. However, 

current design standards of FRP reinforced concrete structures, such as ACI 440-1R (2006), 

underestimate the behavior of the bridge-deck slabs under the ultimate and serviced load level. In 

addition, the punching failure was the common failure mode and the punching effect became 

stronger with the increasing compressive membrane action. During the entire moving truck loading 

procedure in NLFEA, the maximum stress of concrete slabs was less than 5% of ultimate strengths 

of concrete material and the maximum tensile stress of GFRP bars was less than 1% of ultimate 

stress. The largest deflection of deck slabs was smaller than the limit value (span/800). 

Ahmed et al. (2014a) presented the construction details and the live-load field testing of the hybrid-

reinforced Sainte Catherine overpass located on Highway 410 (Sherbrooke, Quebec). These 

hybrid-reinforced slab-on-girder bridges are simply supported over a single span of 43.4 m. The 

concrete deck slabs of 200 mm thick are continuous over four spans of 2.65 m each, with an average 

overhang of about 1.0 m on both sides. The deck slabs were reinforced with GFRP reinforcing bars 

in the top mat and with galvanized steel bars in the bottom mat. The bridge was tested for service 

performance with three calibrated truck loads prior to placement of the asphalt layer to check for 

flexural cracks. It was concluded that the field tests yielded very small strains in the GFRP 
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reinforcing bars, which clarified the arch-action effect in the restrained hybrid-RC bridge-decks 

and the maximum tensile strain in the top transverse GFRP bars was less than 1% of the ultimate 

tensile strain of the GFRP bars. Nevertheless, it is lower than the strains expected by the flexural 

design method. This result suggests that the CHBDC flexural design method overestimates the 

calculated design moments. The very small measured strains in the GFRP reinforcing bars indicate 

the presence of arching action between the girders in the restrained hybrid-reinforced-concrete 

bridge-decks. In the unlikely occurrence of field failure, the mode would be punching shear. 

Moreover, when hybrid-reinforced-concrete bridge-decks meet the CHBDC requirements 

concerning the empirical design method, they could be designed accordingly, which could save 

significant amounts of transverse reinforcement. Finally, the tests confirmed that the behavior of 

hybrid-reinforced-concrete bridge-decks is similar to that totally reinforced with FRP or steel bars. 

This hybrid concept may be a viable solution for concrete bridge-decks with extended service life. 

Zheng et al. (2014) experimentally and theoretically studied the punching strength and failure mode 

of concrete deck slabs reinforced with GFRP bars, including arching action contribution to 

punching failure. The experimental study included static tests on a series of one-third scale deck 

specimens. The structural behavior, including punching capacity, failure mode, strain and 

deflection were discussed and used to investigate the influence of arching action. The test results 

revealed that increasing the lateral restraint stiffness resulted in higher punching strengths and 

lower GFRP reinforcement strain. This is due to the enhancement of aching action. In addition, the 

failure mode of deck slabs was varied from flexural punching failure to shear punching failure by 

the higher contribution of arching action. The flexural behavior was dominant in the test specimens 

with low reinforcement percentage and small external restraint stiffness. 

Ahmed and Benmokrane (2014) investigated the effect of using GFRP reinforcing bars of different 

grades on the required reinforcement amount for concrete bridge-deck slabs and cantilever 

overhangs designed according to the CHBDC (CAN/CSA S6S1 2010) using the empirical and the 

flexural design methods for the interior deck slabs and the flexural design method for the cantilever 

overhangs. The author concluded that in the empirical method, increasing the slab thickness 

increased the required reinforcement in all directions, while increasing the elastic modulus of FRP 

bars decreased the bottom transverse reinforcement. The design of deck slabs using the flexural 

method was governed in most cases by the crack width limit. Thus, increasing the elastic modulus 
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of the GFRP reinforcement decreased the required GFRP reinforcement amount. In addition, it was 

recommended to use small diameter bars at closer spacing, rather than big diameter bars at larger 

spacing, assuming the properties of the bars are the same, to control the crack width. 

Mara et al. (2014) examined the cost efficiency and sustainability of FRP solutions in relation to 

other conventional bridge concepts. An existing composite (steel–concrete) bridge with a concrete 

deck that had deteriorated was selected for this purpose. Two scenarios are studied and analyzed; 

the total replacement of the entire bridge superstructure and the replacement of the concrete deck 

with a new deck made of GFRP. The analyses prove that FRP decks contribute to potential cost 

savings over the life cycle of bridges and a reduced environmental impact. 

2.4.3 Design Approaches of Concrete Bridge-Deck Slabs in Accordance to CHBDC 

The Canadian Highway Bridge Design Code (CHBDC) (CAN/CSA S6 2014) specifies two 

different design theories for the design of concrete bridge-deck slabs reinforced with steel and FRP 

reinforcing bars (Section 8 and Section 16). The following is a description of those design methods: 

2.4.3.1 The Empirical Design Method 

The empirical design method applies to concrete deck slabs of nearly uniform thickness and 

supported on girders, stringers, or floor beams. When proportioned in accordance with the 

empirical design method of Clause 8.18.4, these deck slabs need not be analyzed, except for 

negative transverse moments due to loads on the deck slab overhang and the barrier walls, and for 

longitudinal moments in continuous-span bridges. The following general conditions should be 

satisfied in the concrete deck slab, as specified in Clause 8.18.4.1 in the CAN/CSA S6 (2014): 

a. The deck slab is composite with the supporting beams, which are parallel to each other, and 

the lines of supports for the beams are also parallel to each other. 

b. The ratio of the spacing of the supporting beams (Se) to the thickness of the slab is less or equal 

to 18.0. The spacing of the supporting beams used in calculating this ratio is taken parallel to 

the direction of the transverse reinforcement. 

c. The spacing of the supporting beams does not exceed 4.0 m and the slab extends sufficiently 

beyond the external beams to provide full development length for the bottom transverse 

reinforcement. 
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d. When the supporting beams or their lines of supports are not parallel to themselves, 

engineering judgment shall be used to determine whether the empirical design method for the 

design of the deck slab is to be adopted. 

In case of full-depth cast-in-place deck slab, and for empirical design method application, the deck 

slabs should be satisfied the previous condition specified by Clause 8.18.4.1 in addition to the 

following conditions specified by Clause 8.18.4.2: 

a. As shown in Figure 2–12, the deck slab contains two orthogonal assemblies of reinforcement, 

near the top and bottom of the slab, respectively, with ρ in each direction in each assembly 

being at least 0.003, except as specified in Item (c).  

b. When the slab is supported on parallel beams, the reinforcement bars closest to the top and 

bottom of the slab are laid perpendicular to the axes of the supporting beams or are laid on a 

skew parallel to the lines of beam supports. 

c. The reinforcement ratio, ρ, may be reduced to 0.002 where deck slabs with the reduced 

reinforcement can be satisfactorily constructed and the reduction of ρ below 0.003 is approved. 

d. Where the transverse reinforcing bars are placed on a skew, the reinforcement ratio for these 

bars is not less than ρ/cos2θ, where θ is the skew angle. 

e. Where the unsupported length of the edge-stiffening beam, Se, exceeds 5.0 m, the 

reinforcement ratio, ρ, in the exterior regions of the deck slab is increased to 0.006, as shown 

in Figure 2–13. 

f. The spacing of the reinforcement in each direction and in each assembly does not exceed 

300 mm. 

 

Figure 2–12: Reinforcement details of cast-in-place deck slab (Clause 8.18.4.2) 
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Figure 2–13: Reinforcement details of cast-in-place deck slab (Clause 8.18.4.2) 

In addition, for the empirical design method to apply, a full-depth cast-in-place deck slab should 

satisfy the conditions specified by Clause 8.18.4.2 (for steel reinforcement) and Clause 16.8.8.1 

(for FRP reinforcement) in addition to those of Clause 8.18.4.1. Clause 16.8.8.1 “Design by 

empirical method” mandates the following: 

a. The deck slab shall contain two orthogonal assemblies of FRP bars, with the clear distance 

between the top and bottom transverse bars being at least 55 mm and the slab thickness not 

less than 175 mm. 

b. For the transverse FRP bars in the bottom assembly, the minimum area of cross-section in 

mm2/mm shall be 500ds/EFRP. 

c. The longitudinal bars in the bottom assembly and the transverse and longitudinal bars in the 

top assembly shall be of GFRP with a minimum of 0.0035. 

2.4.3.2 Flexural Design Method 

In the flexural design method, concrete deck slabs shall be analyzed for positive and negative 

bending moments resulting from loads applied on the slabs. The analysis shall consider the bending 

moments induced in the longitudinal direction that agree with the assumptions used in the analysis 

of the transverse bending moments. The cantilever portions of concrete deck slabs shall be analyzed 

for transverse negative bending moments resulting from loads on the cantilever portions of the 

slabs or horizontal loads on barriers and railings. The cantilever portions of concrete deck slabs 

may be analyzed using Clause 5.7.1.6 while the deck slabs are analyzed using Clause 5.7.1.7. The 

design of sections, however, should be conducted according to Section 8 when steel bars are used 

and Section 16 when FRP reinforcing bars are used. 
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The longitudinal reinforcement provided by Clause 8.18.7 of the CAN/CSA S6 (2014), both top 

and bottom when the main reinforcement is perpendicular to traffic shall be 120/(S)0.5, up to a 

maximum of 67% of the transverse reinforcement. In addition, as mandated by Clause 16.8.8.2 the 

spacing of the reinforcement in each direction shall not exceed 300 mm and the diameter of the 

reinforcement shall not be less than 15 mm. 

When the concrete deck slabs are designed according to the flexural design method for CL-625 

truck, the design bending moments are determined based on a maximum wheel load of 87.5 kN. 

The design service load for the deck slabs is taken as 1.4 × 0.9 × 87.5 = 110.25 kN, where 1.4 is 

the impact coefficient and 0.9 is the live-load combination factor, while the design factored load is 

taken as 1.4 × 1.7 × 87.5 = 208.25 kN, where 1.7 is the live-load combination factor. 

2.5 Concrete Beams Reinforced with FRP Bars 

The flexural response of FRP reinforced concrete were reported by Benmokrane et al. (1996) and 

other investigators. They concluded that at low load level, the crack pattern and spacing in FRP-

RC beams were similar to that reinforced with steel bars. As load increases, however, there are 

more and wider cracks with greater penetration depth in FRP-RC elements than in traditional steel-

RC elements, for comparable reinforcement ratios. This behavior is expected, since FRP has a 

much lower modulus of elasticity compared with traditional steel reinforcement. The moment-

curvature diagrams of lightly reinforced FRP beams are clearly bi-linear, with the bend point at the 

crack initiation moment level. Experimental strain distributions clearly demonstrated the perfect 

bond between FRP reinforcing bars and the surrounding concrete. In addition, GFRP reinforced 

concrete beams were analyzed by Vijay and GangaRao (2001), different modes of failure were 

compared. The compression controlled failure mode presented not only higher flexural strength, 

but also a more ductile failure than the tension controlled failure mode. This result was consistent 

with ACI 440.1R (2001) suggested design criteria. 

Alsayed et al. (2000) concluded that the flexural capacity of the beams reinforced by GFRP beams 

can be accurately predicted using the ultimate design theory (when failure occurs due to crushing 

of concrete in the compression side) which is also applicable to design of concrete beams reinforced 

by steel bars (over reinforced sections). In addition to the assumptions used in steel reinforced 

beam design, the tensile behavior of the FRP reinforcement is linearly elastic until failure. There 
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is no yield point until failure of the FRP and hence it doesn’t provide early warning of failure of 

the member. Therefore, if concrete member is under reinforced with FRP, the FRP reinforcement 

would rupture before crushing of concrete occurs and the failure of the member would be sudden 

and catastrophic. Bank (2006) stated that the crushing of the concrete can be regarded to be less 

brittle than the rupture of the FRP reinforcement bar. Therefore, concrete crushing failure is not 

catastrophic compared to the FRP rupture failure. In addition, Nanni (1993) stated that the concrete 

crushing failure mode is marginally more desirable for flexural members reinforced with FRP 

reinforcing bars. However, ACI 440.1R (2006) accepted both failure modes (FRP rupture and 

concrete crushing) for the design of flexural members reinforced with FRP bars if strength and 

serviceability criteria are satisfied. However, for both under reinforced and over reinforced cases, 

there is an early warning of failure due to extensive cracking and large deflections due to the 

significant elongation of FRP reinforcement before rupture. 

Adhikari (2009) studied the applicability of using BFRP bars as internal reinforcement in concrete 

beams. The reinforcement bar diameters were 3.0, 5.0 and 7.0 mm with the volume fraction of 44%, 

52% and 41%, respectively. A total of fifteen different beams of 8'' width × 7'' height × 84'' total 

length (203.2 × 177.8 × 2133.6 mm) were constructed and reinforced with BFRP and steel bars. 

The beams were tested to failure in four-point bending over a clear span of 60'' (1524 mm). It was 

observed that the ACI 440.1R (2006) can predict the moment strength of BFRP reinforced beams 

with reasonable accuracy. It was also found that the strain-compatibility method can provide a 

slightly better approximation of the moment strength than the ACI method depending on the 

reinforcement ratio of the different beams. From the load-deflection analysis, it was observed that 

the Branson’s equation for the effective moment of inertia of the cracked section predicted larger 

stiffness for the BFRP reinforced sections. Therefore, leading to underestimation of the deflection 

values. Similarly, it was observed that the ACI 440.1R (2006) under predicted the stiffness of the 

BFRP reinforced beams, thus leading to the overestimation of the deflection values. It was also 

observed that the degree of overestimation of the deflection values was reduced with increasing 

reinforcement ratios. Hence, it can be concluded that reinforcement ratio should be also 

incorporated into the computation of the stiffness of the BFRP reinforced beams. 

Ovitigala (2012) investigated the bond strength of BFRP bars based on the flexure-bond test 

method. The test was carried out on twenty hinged concrete beams, as shown in Figure 2–14,  
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using five different BFRP bar diameters (6, 10, 13, 16 and 25 mm) with different bonded lengths 

(5db, 10db, and 15db). It is worth mentioning that many researchers stated that this test procedure 

simulate the real flexural behavior, since the reinforcement bar is forced to pull out by applying the 

forces as same as flexural beams. The author concluded that the bond characteristics of BFRP bars 

are better than the GFRP bars and almost the same as steel reinforcement. Twenty times the bar 

diameter (20db) can be considered as the development length for BFRP reinforced flexure 

specimens, since all the BFRP bars failed by rupture without slippage. As well as the average bond 

stress increased when the bonded length decreased for the same diameter of BFRP bar specimens, 

and increased when the diameter of the BFRP bar decreased for the same development length. 

 

Figure 2–14: Flexural bond strength specimens (Dimension in inches) 

Ovitigala (2012) investigated the flexure behavior of eight BFRP-RC beams of 8'' width × 12'' 

height × 144'' total length (203.2 × 304.8 × 3657.6 mm). The beams were cast using normal-weight 

concrete. All beams were designed for over reinforced condition and tested in flexure over clear 

span of 120'' (3048.0 mm), as recommended by the ACI 440.1R (2006) for deflection control (span-

to-depth ration of 10). The beams failed by crushing of the concrete at the mid span on compression 

face, as expected for over reinforced condition. The following conclusions were drawn from the 

experimental study: 

a. The ultimate flexural capacities of BFRP-RC beams predicted by ACI 440.1R (2006) were 

conservative due to the use of lower values in strength reduction factors. ACI 440.1R (2006) 

predicted nominal moment capacities were around 0.82 to 0.93 of the experimental moment 

capacity depending on the reinforcement area. 
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b. When the area BFRP reinforcement increased seven times (from 3 bars of 10 mm diameter to 

3 bars of 25 mm diameter), the deflection was reduced by 63% and moment capacity was 

increased by 90%. 

c. Serviceability criteria (deflection limits) can be achieved by increasing the area of BFRP 

reinforcement. However, the ultimate failure would be brittle in nature without prior warning 

due to lower deflection when the area of BFRP reinforcement increased. Therefore, 

establishing the maximum FRP reinforcement area would be much more important. The 

maximum FRP reinforcement area limit was proposed by limiting the strain in the BFRP bars 

to be greater than or equal to 5000 με. 

d. Bischoff (2007) rational model and the ACI 440.1R (2006) model were found to be the most 

reliable models for predicting effective moment of inertia. Bischoff’s (2007) model predicts 

the deflection at 40% and 60% of the ultimate load more accurately than ACI 440.1R (2006) 

model. However, both models provided better results at ultimate because Ie in ACI 440.1R 

(2006) was taken as Icr and Bischoff’s (2007) model also consider Ie at ultimate as Icr. 

El-Nemr et al. (2013) investigated the flexural behavior and serviceability performance of twelve 

full-scale GFRP-RC beams and two steel-RC beams fabricated with normal- and high- strength 

concrete (NSCs and HSCs). The beam specimens measured 4250 mm long × 200 mm wide × 

400 mm deep. The beams were tested to failure in four-point bending over a clear span of 3750 mm. 

Three GFRP products with moduli of elasticity ranging from 48.7 to 69.0 GPa with sand-coated 

and helically grooved surface textures were employed. The following conclusions have been 

drawn: 

a. All the GFRP-RC beams showed typical bi-linear behavior until failure. Both NSC and HSC 

evidenced reduced stiffness after cracking. The NSC and HSC beams showed similar behavior 

until failure. 

b. FRP-RC beams showed very sharp increases in reinforcement strains at cracking due to poor 

energy absorption at cracking. 

c. Increasing the reinforcement ratio and concrete strength resulted in a larger number of cracks 

and smaller crack widths. Beams reinforced with sand-coated GFRP bars produced larger 

numbers of cracks and smaller crack widths than those reinforced with helically-grooved 
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GFRP bars. In addition, the crack width is proportional to the bar diameter for both of the NSC 

and HSC beams reinforced with GFRP bars. 

d. ACI 440.1R (2006) and ACI 440-H yielded un-conservative deflection values at the 0.3Mn and 

0.67Mn (Where Mn is the nominal moment). At 0.3Mn the experimental-to-predicted deflection 

(δexp/δpred) of ACI 440.1R (2006) and ACI 440-H were 1.17±0.38 and 1.13±0.22, respectively. 

e. Both CAN/CSA S806 (2012) and ISIS (2007) yielded conservative deflection predictions. At 

0.3Mn, the experimental-to-predicted deflection of CAN/CSA S806 (2012) and ISIS (2007) 

were 0.76±0.12 and 0.80±0.11, respectively. 

f. The bond coefficient (kb) value of 1.4 provided by ACI 440.1R (2015) is very conservative for 

both of sand-coated and helically-grooved GFRP bars in NSC and HSC. While a kb of 0.8 

provided by CAN/CSA S6 (2014) yielded very un-conservative predictions, on average, for 

sand-coated and helically-grooved GFRP bars in NSC and HSC. 

Rizkalla (2013) studied the flexural behavior of concrete members reinforced with BFRP 

reinforcing bars. A total of six one-way concrete slabs of 3658 mm length × 610 mm wide × 

152 mm deep reinforced with varying BFRP reinforcement ratios and tested in four-point bending 

configuration to failure. Load, deflection and strain data were recorded during testing and 

compared to the predicted values recommended by the design guidelines of ACI 440.1R (2006).  

Test results indicated that the measured loads at failure compared well with nominal flexural 

capacities predicted using ACI 440.1R (2006) equations and detailed layered-sectional analyses. 

The measured short-term deflections at service load level were higher than the values predicted by 

ACI 440.1R (2006). Mid-span deflections at service load level were also predicted using a 

numerical method of integrating curvature along the span length and compared well with the 

measure values. Test results indicate that the ACI 440.1R (2006) equations can be used safely to 

predict the nominal moment capacity of concrete flexural members reinforced with BFRP bars.  

However, it was found that the ACI 440.1R (2006) method underestimated the deflection at service 

load level by 20% to 60%. 

Urbański et al. (2013); Lapko and Urbański (2015) investigated the flexure performance of simply 

supported concrete beams measured 80 mm wide × 120 mm width × 1200 mm length and 

reinforced with BFRP bars. A comparative analysis of experimental and theoretical results was 
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presented.  The tested beams have been made of concrete class C30/37 and reinforced with BFRP 

bars of 8 mm diameter and 39.05 GPa tensile modulus of elasticity.  The authors concluded that: 

a. The BFRP-RC beams revealed a linear relationship between loading forces and concrete and 

reinforcing bar strains as well as deflections. The failure of BFRP-RC beams did not occur 

suddenly due to transformation of the beam into a tie system because of flexural basalt 

reinforcement remained unbroken. The carrying capacity of tested BFRP-RC beams was much 

greater than the of steel-RC beams. 

b. Deflections and crack width of BFRP-RC beams were significantly higher (average of 3 to 4 

times and 3 times, respectively) than the reference beam, due to the much lower modulus of 

BFRP bars compared to steel bars. Therefore, both of the deflection and crack widths can be a 

major factor in the designing the BFRP-RC beams. 

c. For beams with flexural reinforcement ratio greater than the balanced reinforcement ratio, 

values of deflections calculated from the modified Branson equation (ACI 440.1R 2006) are 

lower compared to the experimental values in the initial phase of the load (after three cycles of 

loading–unloading). For the load ranged from 20 to 30% of critical load, the differences were 

estimated in the range of 26–87%. 

d. The values of deflections obtained on the basis CAN/CSA S806 (2002) are characterized by a 

better convergence with the experimental values in the initial level of load (the differences 

between theoretical and experimental deflections were between 9% and 47%). 

e. The basalt rebars having full resistance against corrosion may be good alternative for the 

reinforcement of concrete structures, like RC bridge girders subjected to environmental attack. 

Tomlinson et al. (2015) evaluated the flexural and shear performances of concrete beams reinforced 

with BFRP bars and stirrups.  Nine concrete beams of 150 mm wide × 300 mm height × 3100 mm 

total length were tested in four-point bending over clear span of 2900 mm and shear span of 

1100 mm to examine the effect of BFRP flexural reinforcement ratios and stirrups on the structural 

performance. The beams were reinforced by either BFRP or steel stirrups, and some had no shear 

reinforcement. The following conclusions were reached: 

a. The ultimate and service loads increased with increasing of flexural reinforcement ratio for all 

shear reinforcement types, while the service load levels were not affected by stirrup type. On 
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the other hand, load-deflection responses within the service load range were not noticeably 

affected by shear reinforcement type. 

b. Beams without stirrups and those with BFRP stirrups failed in shear, with the former reaching 

55–58% of ultimate flexural capacity and the latter failing by stirrup rupture at 90–96% of 

flexural capacity. Beams with steel stirrups failed in flexure. The ultimate shear capacities 

increased as the BFRP flexural reinforcement ratio increased. 

c. The beams with BFRP flexural reinforcement and BFRP or steel stirrups had significantly 

higher strengths (2.6–2.9 times) than control steel-reinforced counterparts having the same 

reinforcement ratio ρ. The strength increase in tension-controlled BFRP beams was similar to 

the ratio of the BFRP to steel ultimate strengths. In compression-controlled sections, the ratio 

was lower as the FRP did not reach its ultimate strength. The steel-reinforced beams 

consistently had a flexural tension failure. 

2.6 Deformability and Minimum Reinforcement 

Deformability (ductility) is important to ensure large deformations and providing warning of 

impending failure and is obviously important in seismic where the ability to absorb energy is of 

prime importance. Deformability can be defined as the capacity of the structure element to absorb 

energy without suffering failure, and is generally related to the amount of inelastic deformation 

that takes place before a complete failure. In other words, it could be represented as the ability to 

sustain inelastic deformations without loss of its load-carrying capacity prior to failure. In steel 

reinforced structures, the deformability is defined as the ratio of post yield deformation to yield 

deformation which it usually comes from steel. Due to the linear stress-strain relationship of FRP 

bars, the traditional definition of deformability cannot be applied to structures reinforced with FRP 

reinforcement (Kassem et al. 2011). Several methods, such as the energy-based method and the 

deformation-based method have been proposed to calculate the deformability factor for FRP 

reinforced structures, but the later used by the CHBDC (CAN/CSA S6 2014) is most common 

(Jaegar et al. 1995; Thériault and Benmokrane 1998; Kassem et al. 2011). The CHBDC (CAN/CSA 

S6 2014) (Clause 16.8.2.1) stated that the deformability performance factor, J, shall be at least 4.0 

for rectangular sections and 6.0 for T-sections (Clause 16.8.2.1). The deformability performance 

factor calculated as follows: 
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u u

c c

ψ M
j
ψ M

            (2-2) 

where M is the bending moment and ψ is the curvature. The subscripts u and s refer to ultimate 

limit state and service limit state, which is assumed, corresponds to a concrete strain equal to 

0.001, respectively. The strain of 0.001 is considered the beginning of inelastic deformation of 

concrete (Thériault and Benmokrane 1998).  

Wang and Belarbi (2005) argued that there are two approaches to increase the deformability of 

beams reinforced with FRP bars. The first approach is by using hybrid FRP bars, which were found 

in previous studies that their deformability index are close to that of beams reinforced with steel, 

but this approach is limited in application due to its complicity and high cost of manufacturing. 

The other approach is to improve the property of concrete with use of over reinforcement so that 

failure is in concrete crush rather than by bar rupture. 

According to Section 16 in the CHBDC (CAN/CSA S6 2014), the design of flexural members 

reinforced with FRP bars should consider the following: 

a. The factored resistance, Mr, shall be at least 50% greater than the cracking moment, Mcr. This 

requirement may be waived if the factored resistance, Mr, is at least 50% greater than the 

factored moment, Mf. If the ultimate limit state (ULS) design of the section is governed by FRP 

rupture (under reinforced section), Mr shall be greater than 1.5 Mf (Clause 16.8.2.2). 

b. When the maximum tensile strain in FRP reinforcement under full service loads exceeds 

1500 μɛ, the crack width has to not exceed 0.5 mm for members subjected to aggressive 

environments and 0.7 mm for other members (Clause 16.8.2.3). The crack width calculated as 

follows: 

 
2

2FRP 2
cr b c

FRP 1

f h sW 2 k d
2E h

          (2-3) 

The value of kb shall be determined experimentally, but in the absence of test data may be taken 

as 0.8 for sand-coated and 1.0 for ribbed FRP bars. In calculating dc, the clear cover shall not be 

taken greater than 50 mm. 
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c. The maximum stress in FRP bars under loads at service limit state (SLS) shall not be more 

than FSLS fFRPu, where FSLS is 0.35 for AFRP bars, 0.25 for GFRP bars, and 0.65 for CFRP bars. 

(Clause 16.8.3). 

2.7 Summary 

Many studies of FRP composites have focused on the carbon, aramid and glass FRP composites. 

Recently, BFRP bars have emerged as a promising alternative to conventional glass fiber-

reinforced polymer (GFRP) materials. However, North American codes do not recognize the BFRP 

bars as reinforcing materials for concrete structures. Only a limited number of studies have been 

conducted to date on BFRP bars do not provide confidence to potential users of the material. As a 

result, there is lack of knowledge on the performance of the bars in concrete. Therefore, 

investigations are needed to characterize and understand the durability and structural performance 

of different products of BFRP bars in concrete members. 

This research aims at evaluating the feasibility of manufacturing a new generation of BFRP bars 

with different mechanical properties and surface configuration, as well as evaluating the use of 

these bars as internal reinforcement for structural concrete elements, with an emphasis on concrete 

beams and concrete bridge-deck slabs. The experimental studies presented herein will contribute 

to advancing the state-of-the-art and extend the current data which will lead to introducing such 

new fibers to the current FRP codes and guidelines. 
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CHAPTER 3  

EXPERIMENTAL PROGRAM 

3.1 Introduction 

This chapter describes in detail the experimental program conducted at the structural laboratory of 

University of Sherbrooke to develop a better understanding of basalt fiber-reinforced polymer 

(BFRP) bars. The experimental program consists of three parts, designed to evaluate the short-and 

long-term characteristics and structural performance of newly developed BFRP bars. Part I 

concerned with physical and mechanical properties as well as the durability performance of BFRP 

bars and tendons under harsh environmental conditions (alkaline solution at high temperature). Part 

II concerned with the structural performance evaluation of restrained bridge-deck slabs reinforced 

with steel and BFRP bars with different reinforcement ratios under truck wheel load. Part III 

concerned with the flexural behavior and serviceability performance evaluation of concrete beams 

reinforced with different types and ratios of BFRP bars. Table 3–1 summarizes the methodology 

to achieve the aforementioned objectives. The specific test procedure, specimen details and 

materials used to carry out this research are presented in this chapter. 
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Table 3–1: Summary of the objectives and methodology 

Part Objectives Methodology 

I Evaluate the short and long-term 

characteristics of newly 

developed BFRP bars and 

tendons. 

Testing of three different products  of newly 

developed BFRP bars and tendons to evaluate the 

physical and mechanical properties (Phase I and 

Phase II, respectively) as well as to assess the 

durability and long-term performance of BFRP bars 

and tendons under the effect of harsh environmental 

conditions using accelerated aging technique 

(alkaline solution at high temperature) (Phase III). 

II Investigate the performance of 

concrete bridge-deck slabs 

reinforced with BFRP bars at 

service and factored load levels 

under wheel loads. 

Testing of seven full-scale concrete deck slabs 

measuring 3000 mm long × 2500 mm wide × 

200 mm thick and reinforced with steel and BFRP 

bars of different reinforcement ratios and bar 

diameters. The slabs were tested under concentrated 

load simulating the footprint of a sustained truck 

wheel load (87.5 kN-CL-625 truck), as specified by 

CHBDC (CAN/CSA S6S1 2010). 

III Investigate the flexural behavior 

and serviceability performance 

of concrete beams reinforced 

with BFRP bars under static 

loads. 

Testing of fourteen concrete beams measuring 

200 mm wide × 300 mm height × 3100 mm long 

reinforced with steel and BFRP bars of different 

reinforcement ratios, surface configurations and bar 

diameters under four-point load. 

3.2 Part I: Short and Long-Term Characterization of BFRP Bars 

The first part of the current study involved three different products of newly developed BFRP bars 

and tendons: types A, B, and C. This part was divided into three phases. Phase I focused on physical 

characterization of the BFRP bars. The physical properties determined in this phase served as 

references for physical properties after conditioning. Phase II focused on mechanical 

characterization of the BFRP bars. The tensile strength, tensile modulus of elasticity, ultimate 
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tensile strain, transverse–shear strength, flexural strength, flexural modulus of elasticity, 

interlaminar-shear strength, and bond strength were determined according to the appropriate test 

methods. The test results also served as references for calculating the residual strengths after 

conditioning. Phase III assessed the durability and long-term performance of the conditioned BFRP 

bars. The durability was assessed by immersing the BFRP specimens in an alkaline solution at high 

temperature (60 °C) for different lengths of time (3000 hours for Type A and 2160 hours for Types 

B and C) designed to simulate a concrete environment so as to validate the performance of the 

BFRP bars as internal reinforcement for concrete elements. Changes in the physical and mechanical 

characteristics were assessed by comparing the characteristics of the conditioned BFRP bars to the 

reference ones from Phases I and II. 

Furthermore, a pilot investigation was also conducted to evaluate the effects of chemicals on the 

basalt fibers used in manufacturing the BFRP bars tested herein. The tests were conducted 

according to Owens Corning (2011) guide for glass fibers. 

3.2.1 Material Properties and Tested Specimens 

Three types of BFRP bars were used in this part. Type A has a 7 mm diameter with a woven surface 

(manufactured for prestresing purpose), while Types B and C have a 8 mm diameter with a 

deformed surface with helical ribs. The BFRP bars were made of continuous basalt fibers 

impregnated in vinylester resin according to the pultrusion process. They were provided by the 

manufacturer with an expected tensile modulus close to 50 and 60 GPa, simulating grade II and III 

GFRP bars [CAN/CSA S807 (2010)]. Table 3–2 describes the BFRP bars used in this part of the 

study, and Figure 3–1 shows their surface configurations. The basalt fibers used herein were 

known ASA.TEC (produced by Asamer Basaltic Fibers GmbH, Austria). The fibers were produced 

from volcanic material with organic surface coating and had a diameter of 10-19 μm. 

Table 3–2: Details of tested BFRP bars 

Type db (mm) Af 
a (mm²) Surface Configuration 

A 7.0 38.46 Woven Surface 

B and C 8.0 50.24 Ribbed Surface 

a Nominal cross section area. 
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Type A    Types B and C 

Figure 3–1: Tested BFRP bars 

3.2.2 Test Procedures  

3.2.2.1 Phase I: Physical Characterization 

The physical properties of the reference (unconditioned) BFRP bars were conducted in accordance 

with ACI 440.6M (2008) and CAN/CSA S807 (2010) and the relevant ASTM standards. The 

relative density was determined according to ASTM D792 (2008), fiber content according to 

ASTM D3171 (2011), transverse coefficient of thermal expansion according to ASTM E831 

(2012), water absorption according to ASTM D570 (2010), cure ratio according to ASTM D5028 

(2009), and glass-transition temperature (Tg) according to ASTM D3418 (2012). In addition, 

microstructural analysis was performed for all three types of BFRP specimens using scanning 

electron microscopy (SEM) for both unconditioned (reference) and conditioned specimens to 

assess changes and/or degradation. Since BFRP bars are not included in any FRP standard yet, the 

physical properties of the investigated BFRP bars and tendons were compared to the specified 

limits for FRP bars. 

The moisture uptake at saturation was determined for the BFRP bars. The test was carried out in 

accordance with ASTM D570 (2010). Five 100 mm long specimens of each type of BFRP were 

cut, dried, and weighed. They were then immersed in water at 50 °C for 3 weeks. The samples were 

periodically removed from the water, surface dried, and weighed. The water content as a percentage 

of weight was calculated by Eq. (3-1).  

 
100




d

ds

P

PP
W           (3-1) 

Where Ps and Pd are the bar weights in the saturated and dried states, respectively. The percentage 

of moisture uptake was calculated. The gain in mass was corrected to account for specimen mass 

loss due to a possible dissolution phenomenon. This correction was achieved by completely drying 
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the immersed specimens in an oven at 100 °C for 24 h and comparing their masses to their initial 

masses. 

Differential scanning calorimetry (DSC) is used to obtain information about the thermal behavior 

and characteristics of polymer materials and composites, such as the glass-transition temperature 

(Tg) and curing process. In this study, 30 to 50 mg specimens from both the unconditioned and 

conditioned specimens were sealed in aluminum pans and heated in a TA Instruments DSC Q10 

calorimeter to 200 °C at a rate of 20 oC/min. The glass-transition temperature (Tg) was determined 

in accordance with ASTM D3418 (2012). 

3.2.2.2 Phase II: Mechanical Characterization 

The mechanical characterization included testing of representative BFRP specimens to determine 

their tensile strength in accordance with ASTM D7205 (2011), transverse-shear testing a in 

accordance with ASTM D7617 (2011), flexural properties in accordance with ASTM D4476 

(2009), interlaminate shear strength (short-beam shear test) in accordance with ASTM D4475 

(2008), and bond strength using the pullout test in accordance with ACI 440.3R (2012), B.3 Test 

Method and CAN/CSA S806 (2012), Annex G. The mechanical properties reported herein were 

calculated using the nominal cross-sectional areas. 

Tensile Properties of the Reference BFRP Bars 

The tensile properties of the investigated BFRP bars were determined by testing five representative 

specimens for each type in accordance with ASTM D7205 (2011). The specimens were cut to the 

desired lengths and prepared by installing the steel tube (anchors) with expansive cement grout 

commercially known as Bustar Expansive grout. The specimens were instrumented with a 200 mm 

LVDT to capture specimen elongation during testing. The tests were conducted with a Baldwin 

testing machine in which the applied load and specimen elongation were electronically recorded 

during the test. Figure 3–2 shows the test setup. The tensile strength and tensile modulus of the 

BFRP bars were determined with Eqns. (3-2) and (3-3), respectively, 

A

F
f u

u             (3-2) 
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where fu is the tensile strength (MPa), Fu is the tensile capacity (N), and A is the nominal cross-

sectional area of the BFRP bar (mm2). 

 A
FF

E
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 


           (3-3) 

where E is the tensile modulus of elasticity (MPa); A is the nominal cross-sectional area (mm2); F1 

and 1 are the load and corresponding strain, respectively, at approximately 50% of the ultimate 

tensile capacity; and F2 and 2 are the load and corresponding strain, respectively, at approximately 

25% of the ultimate tensile capacity.  

It should be mentioned that the design of FRP-reinforced members is based on guaranteed tensile 

strength (the mean tensile strength minus three times the standard deviation in according to ACI 

440.1R (2006)). While the design tensile modulus of elasticity for FRP reinforcement, E, shall be 

the same as the mean tensile modulus. 

 

Figure 3–2: Typical test setup for tensile tests 

Transverse-Shear Strength of the Reference BFRP Bars 

Transverse-shear tests were conducted according to ASTM D7617 (2011). The setup consisted of 

a 230 × 100 × 110 mm steel base equipped with lower blades spaced at 50 mm face to face, 

allowing for the double transverse-shear failure of the specimen caused by an upper blade, as shown 

in Figure 3–3. 
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For each type of BFRP bar, five unconditioned specimens of 200 mm length were tested under 

laboratory conditions with an MTS 810 testing machine equipped with a 500 kN load cell. A 

displacement-controlled rate of 1.3 mm/min was used during the test, which yielded between 30 

and 60 MPa/min until specimen failure. The loading was performed without subjecting the test 

specimens to any shock. The transverse-shear strength was calculated with Eq. (3-4): 

A

Ps
u

2
            (3-4) 

where τu is the transverse-shear strength (MPa), Ps is the failure load (N), and A is the nominal 

cross-sectional area of the BFRP bar (mm²). 

 

Figure 3–3: Typical test setup for transverse-shear tests  

Interlaminar-Shear Strength of the Reference BFRP Bars (Short-Beam Shear Test) 

The short-beam shear test was conducted on five specimens of each type of BFRP bar according 

to ASTM D4475 (2008) in order to calculate the interlaminar-shear strength, which is governed by 

the fiber–matrix interface. The tests were carried out with a 500-kN MTS 810 testing machine. The 

distance between the shear planes was set to 6 times the nominal diameter of the FRP bars. 

Figure 3–4 shows the test setup. A displacement-controlled rate of 1.3 mm/min was used during 

the test. The applied load was recorded with a computer-monitored data-acquisition system. The 

interlaminar-shear strength, Su, of the FRP bars was calculated with Eq. (3-5). 

2
849.0

d

P
Su            (3-5) 
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where Su is the interlaminar-shear strength (MPa), P is the shear failure load (N), and d is the bar 

diameter (mm). 

 

Figure 3–4: Typical test setup for short-beam test 

Flexural Properties of the Reference BFRP Bars (Three-Point Flexural Test) 

The flexure test was conducted on five specimens of each type of BFRP bars of 180 mm long 

according to ASTM D4476 (2009), as shown in Figure 3–5. The specimens were tested under 

laboratory conditions on an MTS 810 testing machine equipped with a 500 kN load cell. The 

specimens were tested over a simply supported span equal to 20 times the bar diameter. The 

specimens were loaded at the mid-span with a circular nose and ends rested on two circular supports 

that allowed the specimens to bend. A displacement-controlled rate of 3.0 mm/min was used during 

the test. The rate of loading occurred without subjecting the test specimen to any shock. The applied 

load and deflection were recorded during the test on a computer- monitored data-acquisition 

system. 

The flexural strength of tested FRP specimens was calculated with Eq. (3-6). Flexural modulus of 

elasticity is the ratio, within elastic limit, of stress to corresponding strain. It was calculated with 

Eq. (3-7): 
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where fu is the flexural strength in the outer fibers at mid-span (N/mm2), P is the failure load (N), 

L is the clear span (mm), I is the moment of inertia (mm4), C is the distance from the centroid to 

the extremities (mm), E is the flexural modulus of elasticity in bending (N/mm2), and Y is the mid-

span deflection at load P (mm). 

The maximum outer-fiber strain (εu) was calculated from Eq. (3-8).  

E

fu
u             (3-8) 

 

Figure 3–5: Typical test setup of flexure test 

Bond Strength of the Reference BFRP Bars (Pullout Test) 

The bond strength of the BFRP bars was assessed with the pullout test. The pullout tests were 

carried out in normal-strength concrete with a designated strength of 35 MPa after 28 days 

according to the ACI 440.3R (2012), B.3 Test Method and CAN/CSA S806 (2012), Annex G. The 

bonded length was kept constant at 5db, where db is the nominal diameter of FRP bars. The pullout 

blocks measured 200 × 200 × 200 mm. Figure 3–6 shows the geometry of the pullout specimens 

and test setup.  
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 (a)             (b) 

Figure 3–6: Pullout test: (a) Specimen geometry; (b) Test setup 

3.2.2.3 Phase III: Durability Study and Long-Term Performance Assessment 

This phase was conducted to assess the durability and long-term performance of the BFRP bars 

conditioned in an alkaline solution simulating concrete pore solution. Accelerated aging tests were 

conducted in accordance with ASTM D7705 (2012). The conditioning of the BFRP bars included 

a combined exposure to an alkaline environment and elevated temperature. Immersion in an 

aqueous media (alkaline solution) at high temperature accelerates degradation. The alkaline 

solution was prepared to have a composition representative of the pore water inside Portland-

cement concrete, specifically, 118.5 g of Ca(OH)2, 0.9 g of NaOH, and 4.2 g of KOH per liter of 

deionized water. The solution had a pH of 12.6-13.0, which is representative of a mature concrete 

pore solution. The three types of BFRP bars were immersed in this solution at 60 °C. The BFRP 

specimens were conditioned for different lengths of time (1000 and 3000 h for BFRP Type A; 720 

and 2160 h for BFRP Types B and C). The conditioning time started once the solution had reached 

the prescribed temperature. 

The BFRP specimens were placed in hermetically sealed stainless-steel containers to prevent 

excessive evaporation and reaction of atmospheric CO2 with calcium hydroxide. The containers 

were placed in an environmental chamber adjusted to the prescribed temperature (60 °C) under 

isothermal conditions. The FRP bars were weighed and their diameters measured throughout the 
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conditioning period to monitor water absorption and eventually characterize the mass and diameter 

changes. Specimens of each type of BFRP bar were removed from the solution and tested to 

determine their physical and mechanical properties after the exposure periods at 60 °C. Similar to 

as in Phase I, the effects of conditioning on the glass-transition temperatures (Tg) and chemical 

composition were also assessed with differential scanning calorimetry (DSC) and Fourier 

transform infrared spectroscopy (FTIR), respectively. The microstructure of all types of the BFRP 

bars was investigated with scanning electron microscopy (SEM) for both conditioned and 

unconditioned cases to assess changes and/or degradation. In addition, the mechanical properties 

of the conditioned specimens were assessed with tests similar to those in Phase II. The results for 

the conditioned specimens were compared to those of the reference ones. The change in the 

properties was selected as an indicator on the degradation of the BFRP materials. 

3.2.2.4 Chemical Resistance Evaluation of Bare Basalt Fibers  

Chemical resistance tests were conducted on the basalt fibers utilized in manufacturing the tested 

BFRP bars, in parallel to the main study conducted herein to investigate the physical and 

mechanical characteristics of new BFRP bars. These tests were conducted to clarify the effect of 

the different chemicals on the bare basalt fibers. The tests were conducted following Owens 

Corning (2011) guide for evaluating the chemical resistance of glass fibers. Basalt fibers were 

heated to 540 °C overnight to remove any sizing and provide a proper clean surface for chemical-

resistance investigation. Samples were then cut and carefully weighed before immersion in 

different corrosive aqueous solutions at 96 °C for 1 (24 h) and 7 days (168 h). The solutions were 

deionized water, an acidic solution (10% HCl), a saline solution (10% NaCl), and an alkaline 

solution (3.2 g NaOH per liter). After conditioning, the samples were thoroughly washed, dried, 

and weighed again. Furthermore, the conditioned fibers were then analyzed using SEM to detect 

any changes in microstructure. 

3.3 Part II: Performance Evaluation of Concrete Bridge-Deck Slabs 

Reinforced with BFRP Bars under Concentrated Loads 

The second part of the current study presents an experimental study aimed at investigating the 

structural performance of restrained bridge-deck slabs reinforced with BFRP bars and subjected to 

concentrated load at the center of the slab on an area equivalent to a wheel load (87.5 kN-CL-625 
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truck), as specified by the CHBDC (CAN/CSA S6 2014). This section provides full description of 

the experimental work related to this part. 

3.3.1 Material Properties 

Reinforcing bars: BFRP bars of 12 and 16 mm diameters were used in this study. The BFRP bars 

were fabricated using a pultrusion process in a vinylester resin with fiber content of 79.2% and 

80.0% for 12 and 16 mm bars, respectively. The basalt fibers used herein were known ASA.TEC 

(produced by Asamer Basaltic Fibers GmbH, Austria). The bars had a deformed surface with 

helical ribs to increase the bond between the bar surface and surrounding concrete. The tensile 

properties of the BFRP bars were determined by testing five representative specimens of each 

diameter according to ASTM D7205 (2011). The tensile modulus of elasticity was 69.3 and 

64.8 GPa for BFRP bars of 12 and 16 mm diameter, respectively. On the other hand, 15M steel 

bars were used for the reference slab. Table 3–3 provides the properties of the reinforcing bars. 

Table 3–3: Tensile properties, bond strength and surface configurations of the reinforcing bars 

RFT 

Type 

db  

(mm) 

Af  
a 

(mm²) 

Ef  

(GPa) 

ffu 

(MPa) 

𝛆fu 

(%) 

fb 

(MPa) 

Surface 

configuration 

BFRP 
12 113.1 69.3±0.5 1760±39 2.54±0.10 17.7±1.3 

Ribbed Surface 
16 201.1 64.8±3.3 1724±64 2.67±0.17 16.8±1.4 

Steel b 15M 200.0 200.0 fy 
c=450 𝛆y

 c=0.20 -- Ribbed Surface 

a Nominal cross-sectional area. 

b Tensile properties of steel bars were provided by the manufacturer. 

c fy and 𝛆y are yield strength and strain of steel bars, respectively. 

Notes: properties calculated based on the nominal cross-sectional area. 

Concrete: The slabs were constructed using ready-mix normal-weight concrete with 28-days target 

compressive strength of 40 MPa. The mix proportion for a cubic meter of concrete was 350 kg of 

cement, 813 kg of natural sand, and 1032 kg of aggregate of size ranges between 5-20 mm (20 mm 

maximum nominal size), 155 liter water (water/cement ratio of 44%) and air entrainment ratio of 

5-8%. The designed slump of the concrete was 80±30 mm. Once the concrete was poured, the 

concrete was compacted using electrical vibrator and leveled manually. After two hours, curing 

process started by covering the concrete surface with wet burlap and polythene sheet for ten days. 
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The concrete compressive strength for each batch was determined by testing three 150 × 300 mm 

cylinders in accordance with ASTM C39 (2015). In addition, the tensile strength was determined 

from split-cylinder testing on three 150 × 300 mm cylinders in accordance with ASTM C496 

(2011). Table 3–4 shows the concrete compressive and the tensile strengths on the day of slab 

testing. 

Table 3–4: Mechanical properties of concrete 

Casting No. Slab No. f'
c (MPa) ft (MPa) 

1 S1-S and S2-B 48.81±1.43 4.70±0.17 

2 S3-B and S4-B 42.20±1.58 4.24±0.06 

3 S5-B, S6-B and S7-B 47.90±1.14 4.44±0.09 

3.3.2 Test Specimens 

This part of the experimental program included testing of seven full-scale concrete deck slabs 

measuring of 3000 mm long × 2500 mm wide × 200 mm thick and span of 2000 mm (center to 

center), as shown in Figure 3–7. The test specimens were designed to simulate the deck slabs of a 

actual bridge (Wotton Bridge, Quebec, Canada) (El-Salakawy et al. 2003a) and were in agreement 

with the past tests conducted at the University of Sherbrooke with GFRP and CFRP bars (El-Gamal 

et al. 2005). Six slabs were provided with two holes 27 mm in diameter spaced 160 mm apart with 

a 250 mm pitch in the longitudinal direction at the restrained edges. One slab had no holes on the 

edges to be simply supported during the test. The concrete cover —constant for all the slabs— was 

equal to 30 and 25 mm at the top and bottom, respectively, as specified in Clause 16.4.4 of 

CAN/CSA S6 (2014). The slab thickness was selected to keep the supporting beams spacing to 

slab thickness ratio less than 18, as specified in Clause 8.18.4.1 of CAN/CSA S6 (2014), and to 

represent the most commonly used size of concrete bridge-deck slabs in Canada. Slabs length, 

however, was selected to avoid one-way shear before punching failure and to include the slab area 

affected by the wheel load. This area was assumed to be based on the outer diameter of the wedge 

formed during punching failure (El-Gamal et al. 2005). The test parameters investigated herein 

were: (i) reinforcement type [steel and BFRP bars]; (ii) BFRP bar size [12 mm and 16 mm]; (iii) 

reinforcement ratio in each direction [0.4% up to 1.2%]; and (v) edge restraining [restrained and 
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unrestrained (free)]. For comparisons, two slabs reinforced with GFRP and CFRP (El-Gamal et al. 

2005) with the same dimensions and loading procedure were presented. 

Table 3–5 summaries the reinforcement details. The first slab (S1-S) was reinforced, top and 

bottom, with 15M steel bars each 150 mm in the main direction (transverse direction) and 

reinforced, top and bottom, with 15M steel bars each 225 mm, in the secondary direction 

(longitudinal direction). The slab had a reinforcement ratio of 0.80% in the bottom transverse 

direction. The slab’s reinforcement was designed to simulate the deck slabs of Wotton Bridge, 

Quebec, Canada (El-Salakawy et al. 2003a). The second slab (S2-B) was reinforced with 16 mm 

BFRP bars arranged exactly as S1-S (same reinforcement ratio of BFRP and steel). The amount of 

reinforcement in this slab (S2-B, 16 mm @150 mm) satisfies the CHBDC’s empirical and flexural 

design methods (CAN/CSA S6 2014), assuming that the material safety factor and the stress level 

in the BFRP bars at service load level are the same as GFRP bars as provided in Appendix A. The 

third slab (S3-B) was designed to have the same reinforcement ratio and approximately the same 

axial-reinforcement stiffness of slab S2-B by replacing the 16 mm BFRP bars with 12 mm BFRP 

bars. The fourth slab (S4-B) had the same bottom reinforcement as S2-B but without top 

reinforcement. The fifth slab (S5-B) was designed to have approximately the same axial 

reinforcement stiffness as slabs G-S2 and C-S2 (El-Gamal et al. 2005). The last two slabs (S6-B 

and S7-B) were reinforced with the same BFRP bars: 16 mm spaced 300 mm in the orthogonal 

direction, top and bottom (minimum reinforcement in accordance with CAN/CSA S6 (2014). All 

the slabs were edge-restrained except S7-B which was simply supported (free). Figure 3–7 to 

Figure 3–14 show the geometry and the reinforcement details of the tested deck slabs. 

 



Chapter 3: Experimental Program 

71 

Table 3–5: Reinforcement details of the tested bridge-deck slabs 

Slab IDa 

Bottom Reinforcement Top Reinforcement 

Transverse direction Longitudinal direction Transverse direction Longitudinal direction 

RFTc 
ρ 

(%) 

ρ×E 

(MPa) 
RFTc 

ρ 

(%) 

ρ×E 

(MPa) 
RFTc 

ρ 

(%) 

ρ×E 

(MPa) 
RFTc 

ρ 

(%) 

ρ×E 

(MPa) 

S1-S 15M@150 0.80 1606 15M@225 0.59 1184 15M@150 0.83 1655 15M@225 0.61 1225 

S2-B 16 @150 0.80 520 16 @225  0.59 383 16 @150 0.83 536 16 @225  0.61 396 

S3-B 12 @85 0.79 523 12 @125 0.58 383 12 @85 0.81 539 12 @125 0.60 395 

S4-B 16 @150 0.80 520 16 @225  0.59 383 -- -- -- -- -- -- 

S5-B 16 @100 1.20 780 16 @170 0.78 507 16 @105 1.18 766 16 @120 1.15 743 

S6-B 16 @300 0.40 260 16 @300 0.44 288 16 @300 0.41 268 16 @300 0.46 297 

S7-Bb 16 @300 0.40 260 16 @300 0.44 288 16 @300 0.41 268 16 @300 0.46 297 

a Slab number (S1 to S7) followed by reinforcement type (S: steel; B: basalt FRP). 

b Simply supported slab. 

c Bar diameter and spacing in mm (diameter in mm @ spacing in mm). 

 

mailto:No.15@150
mailto:No.15@225
mailto:No.15@150
mailto:No.15@225
mailto:No.15@225
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(a) Plan 

 
(b) Section (A-A) 

Figure 3–7: Geometry of the tested deck slabs (Dimensions in mm) 
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(a) Bottom reinforcement   (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–8: Reinforcement details of slab S1-S 
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(a) Bottom reinforcement    (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–9: Reinforcement details of slab S2-B 
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(a) Bottom reinforcement    (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–10: Reinforcement details of slab S3-B 
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(a) Bottom reinforcement    (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–11: Reinforcement details of slab S4-B 
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(a) Bottom reinforcement    (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–12: Reinforcement details of slab S5-B 
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(a) Bottom reinforcement    (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–13: Reinforcement details of slab S6-B 
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(a) Bottom reinforcement    (b) Top reinforcement 

 
(c) Cross-section 

Figure 3–14: Reinforcement details of slab S7-B 
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3.3.3 Preparation of the Specimens 

3.3.3.1 The Formwork 

Two wooden formworks were fabricated and used for casting the slabs. Each formwork was 

provided with two rows of holes (spaced at 250 and 160 mm in the longitudinal and transverse 

directions, respectively) at each longitudinal side of the formwork’s base. Two plates of wood, 

provided with holes at the same positions as those in the base of the formwork, were fixed at the 

top of the formwork. Plastic tubes were inserted through the holes in the top plates and in the base 

of the formwork. A few hours following casting the concrete, the plastic tubes were removed. Four 

steel angles were tied diagonally at the top of the formwork to support the sides. Before placing 

the cages, the formwork was painted with oil to protect the formwork and to facilitate the de-

molding of the specimens from the formwork after concrete hardening. Figure 3–15 and Figure 3–

16 shows a schematic drawing and a photo for the formwork, respectively. 

3.3.3.2 Preparing of the Reinforcement and Concrete Casting 

Steel and BFRP bars were cut to the required lengths and arranged together to form both the top 

and bottom reinforcement layers. Plastic tie-wraps were used to tie the reinforcing bars together to 

keep the spacing and orientation of the bars as required. Plastic and steel chairs were used to ensure 

the concrete cover of the bottom and top reinforcement, respectively. The strain gauges were 

installed on the surface of the reinforcing bars after assembling the cages. Then the two 

reinforcement layers were placed in their position inside the formwork. Figure 3–17 shows 

assembled cages made of BFRP bars, while Figure 3–18 shows the cages inside the formwork 

ready for concrete casting. 

A normal-weight ready mixed concrete with 28-days target compressive strength of 40 MPa was 

used. Once the concrete was poured, the concrete was compacted using electrical vibrator and 

leveled manually. After two hours, curing process started by covering the concrete surface with 

wet burlap and polythene sheet for ten days. After that, the slabs were removed from the forms and 

kept in the ambient temperature until testing. Nine standard cylinder specimens (150 × 300 mm) 

from each batch were prepared during concrete casting. The standard cylinders were subjected to 

the same environmental conditions as their correspondent slabs. The concrete compressive strength 

and tensile strength for each batch was determined by testing three standard cylinders at the same 
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day of slab testing. Figure 3–19 to Figure 3–22 show the casting, surfacing, curing and de-molding 

of the concrete deck slabs, respectively. While Figure 3–23 shows the deck slab after construction. 

 

Figure 3–15: Schematic drawing for the formwork  
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Figure 3–16: The wooden formwork 

 

Figure 3–17: Assembled cages 

 

Figure 3–18: Cages inside the formwork (before concrete casting) 



Chapter 3: Experimental Program 

83 

 

Figure 3–19: Deck slabs during concrete casting 

 

Figure 3–20: Deck slabs after concrete casting and surfacing 

  

Figure 3–21: Curing of the concrete deck slabs 



Chapter 3: Experimental Program 

84 

  

   

Figure 3–22:  De-molding of the concrete deck slabs 

 

Figure 3–23: Concrete deck slabs after de-molding 
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3.3.4 Instrumentations 

Figure 3–24 to Figure 3–28 show the internal and external instrumentation that used for slab 

testing. Deflections were monitored using seven Linear Variable Differential Transducers 

(LVDTs), with a precision of 0.001 mm, installed at the top surface of the deck slabs (D1 to D7), 

as shown in Figure 3–24. This figure also shows that two LVDTs (D8 and D9) were installed at 

both sides of the slabs to monitor any movement of the slab edges during the testing. Moreover, 

six electrical strain gauges of 6 mm length were used to measure strains at different positions on 

the steel cross frame at the top and bottom, as shown in Figure 3–24 (Section A-A). The concrete 

compressive strains at different locations on the top surface of the slabs were measured using four 

electrical strain gauges of 60 mm length. Figure 3–25 shows the location of the concrete strain 

gauges on the top surface of deck slab. Several electrical strain gauges of 6 mm length were also 

installed on the reinforcing bars to record the strains. Figure 3–26 and Figure 3–27 show the 

typical position of strain gauges on the top and bottom reinforcing bars, respectively. The initial 

crack widths were measured using 50X handheld microscope. High- precision LVDTs (0.001 mm) 

were installed at the position of the first three cracks to record the crack-width propagation with 

load increasing, as depicted in Figure 3–28. An automatic data acquisition system connected to a 

computer was used to monitor loading, deflections and strains in concrete and reinforcing bars. 
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Figure 3–24: Typical locations of the LVDTs on the deck slabs and strain gauges on the cross 

frames 
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Figure 3–25: Typical location of strain gauges on the top surface of concrete deck slabs 



Chapter 3: Experimental Program 

88 

 

Figure 3–26: Typical location of strain gauges on the top reinforcing bars 
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 Figure 3–27: Typical location of strain gauges on the bottom reinforcing bars 
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Figure 3–28: LVDTs to record the crack widths 

3.3.5 Test Setup and Procedures 

Each slab was loaded up to failure over a center-to-center span of 2000 mm under monotonic single 

concentrated load, using a hydraulic jack controlled by a manually operated pump monitored with 

a pressure dial gauge. The load was applied to the slab center with a contact area of 600 × 250 mm, 

using a 70 mm thick steel plate to simulate the footprint of a sustained truck wheel load (87.5 kN-

CL-625 truck) as specified in CAN/CSA S6 (2014). To create uniform stresses over the loading 

area, a 10 mm thick neoprene sheet was used between the loading plate and the concrete surface. 

The slabs were supported on two steel girders simulating the setup of El-Gamal et al. (2005) to 

resist the maximum applied load without exceeding the permissible stresses and deflections. To 

insure full contact between the bottom surface of concrete slab and top surface of steel girders, 

neoprene pads of 3 mm thickness and 100 mm wide were inserted on the steel girders underneath 

the concrete slab. The two steel girders were braced together with three steel cross frames spaced 

at 1500 mm. The steel girders were supported by two steel cross beams spaced 3000 mm in 

longitudinal direction. The loads were transferred to the laboratory strong floor through four steel 

legs at the edge of the cross beams. Figure 3–29 shows the test setup under the loading frame. To 

facilitate monitoring of the crack propagation and crack widths; the slab surface was painted with 

white color before the testing and verified that no initial crack signs on the slab surface. 
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Six of seven slabs were tested after being restrained along the longitudinal edges while the last slab 

was simply supported. The restrained slabs were tied to the top flange of steel girder in the 

longitudinal direction with 22 mm diameter threaded anchors, which were fitted into pre-prepared 

holes through the slab thickness, as shown in Figure 3–29 and Figure 3–30. These steel anchors 

were used to partially restrain the slab edges. The steel anchors represent the shear connectors 

between the girder and deck slab in an actual slab-on-girder bridges. All anchors were hand 

tightened with a torque wrench to a torque moment of 160 N.m in order to make a constant partially 

edges restrain for all slabs and make it uniform along the slab edges. The torque moment was 

calculated to generate horizontal shear friction between the steel girder and bottom surface of the 

slab higher than the horizontal component of the arching stress and to prevent lateral movement 

between the slab and girder. The bridge-deck slabs were tested similarly to past tests at the 

University of Sherbrooke by El-Gamal et al. (2005). Steel channels were used along the top face 

of the concrete slab to prevent stress concentration around the holes along the slab edges. In 

addition, 10 mm thick and 100 mm wide neoprene strips were placed between the concrete slab 

and the steel channel to ensure full contact until the end of the test. A hydraulic jack with a capacity 

of 1000 kN and a ±250 mm stroke was used to apply the monotonic load up to failure at a load 

control rate of 5 kN/min. The hydraulic jack was controlled manually with a hand pump monitored 

with a pressure dial gauge connected to the data-acquisition system and monitored by a computer. 

Figure 3–29 and Figure 3–30 provide overview of the test setup. During the test, the slabs were 

observed until the first three cracks appeared in the transverse direction; the corresponding load 

was recorded. The test was paused when each of the first three cracks appeared. The initial crack 

widths were measured manually by a 50X handheld electronic microscope and LVDTs were 

installed at crack locations to record crack widths with load increasing. The cracking load was also 

verified in terms of the change in stiffness of the load-deflection and load-strain relationships. The 

load was continuously increased until slab failure. The formation of the cracks on the sides and 

bottom surface of the deck slabs and corresponding loads were marked and recorded during the 

test. 
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(a) Loading system 

 

(b) Deck slab ready for testing 

Figure 3–29: Overview of the test setup 
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Figure 3–30: Schematic drawing for test setup 

3.4 Part III: Performance Evaluation of Concrete Beams 

Reinforced with BFRP Bars under Flexure Load 

The third part of the current study presents an experimental study investigated the effect of the 

surface configurations (sand-coated and ribbed bars) and mechanical properties (tensile strength 

and modulus of elasticity) of BFRP bar as well as the reinforcement ratio on the serviceability of 

concrete beams reinforced with BFRP bars in terms of crack width, deflection and ultimate 

capacity. Moreover, this part determines the bond-dependent coefficient (kb) of the newly 

developed BFRP bars. A total of fourteen concrete beams were constructed and tested up to failure. 

Six beams were reinforced with sand-coated BFRP bars (Described in details in Chapter 6), as 

well as six beams were reinforced with ribbed BFRP bars and two reference beams were reinforced 

with steel bars (Described in details in Chapter 7). The main difference between chapters 6 and 7 

are the mechanical properties and surface configuration of basalt FRP bars. The effect of 

reinforcement ratio and surface type on the ultimate capacity summarized in appendix B. The beam 
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specimens were designed in accordance with CAN/CSA S806 (2012), Annex S “Test Method for 

Determining the Bond-Dependent Coefficient of Fiber-Reinforced Polymer (FRP) Bars. This 

section provides full description of the experimental work related to this part. 

3.4.1 Material Properties 

Reinforcing bars: Two different products of BFRP bars with different mechanical properties and 

surface configurations were used as tension reinforcements in the tested beams. The BFRP bars 

were manufactured from continuous basalt fibers impregnated in vinyl-ester resins using the 

pultrusion process. The basalt fibers had a diameter of 10 to 22 microns and were given a surface 

treatment consisting of a silane coupling agent. The tensile properties of the BFRP bars were 

determined by testing five representative specimens of each diameter according to ASTM D7205 

(2011). The BFRP bars used in Chapter 6 were 10, 12 and 16 mm diameter and had a sand-coated 

surface over helical wire wrapping, as shown in Figure 3–31, to enhance the bond between the 

bars and the surrounding concrete. The fiber contents of the sand-coated BFRP bars were 87.2%, 

90.6%, and 89.9% (by weight) for the 10, 12, and 16 mm diameters, respectively. These bars were 

known as MagmaTech (produced by MagmaTech Ltd, UK). On the other hand, the BFRP bars 

used in Chapter 7 were 8, 12, and 16 mm diameter and had a ribbed surface with helical rips, as 

shown in Figure 3–31, to enhance the bond between the bars and the surrounding concrete. The 

fiber contents of the ribbed BFRP bars were 77.4%, 79.2%, and 80.0% for the 8, 12, and 16 mm 

diameters, respectively. These bars were known ASA.TEC (produced by Asamer Basaltic Fibers 

GmbH, Austria). In addition, 10M and 15M steel bars of ribbed surface were used for the reference 

beams. In addition, 10M steel bars were used as transverse and top reinforcement in the test 

specimens. Table 3–6 summarizes the tensile properties of the BFRP and steel bars and the bond 

strength between the BFRP bars and concrete. It should be mentioned that, the mechanical 

properties of BFRP bars were determined using nominal cross-section areas of 50, 79, 113, and 

201 mm2 for the 8, 10, 12, and 16 mm diameters, respectively.  

Concrete: The beams were made with ready-mixed, normal-strength concrete with a 28-day target 

compressive strength of 40 MPa. A cubic meter of concrete contained 350 kg of cement, 813 kg of 

natural sand, 1032 kg of aggregate (20 mm maximum nominal size), 155 L of water (water–cement 

ratio, w/c, of 44%) and an air-entrained ratio of 5% to 8%. The concrete mix had slump of 

80±30 mm. The fourteen beams were cast from four concrete batches. The curing process started 
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two hours after the concrete was cast by covering the concrete surface with wet burlap and 

polythene sheeting for 10 days. The concrete compressive strength of each batch was determined 

by testing three 150 × 300 mm cylinders on the day of beam testing in accordance with ASTM C39 

(2015). The tensile strength was also determined from split-cylinder testing on 150 × 300 mm 

cylinders in accordance with ASTM C496 (2011). Table 3–7 shows the compressive and tensile 

strengths of the different concrete batches. 

Table 3–6: Tensile properties, bond strength and surface configurations of the reinforcing bars 

Chapter 

No. 

RFT 

Type 

db 

(mm) 

Af 
a 

(mm²) 

Ef 

(GPa) 

ffu 

(MPa) 

𝛆fu 

(%) 

fb 

(MPa) 

Surface 

configuration 

Six BFRP 

10 79 44.4±0.3 1189±74 2.68±0.16 18.0±0.2  

Sand coated 12 113 45.3±0.1 1162±26 2.56±0.05 13.8±1.9 

16 201 48.7±0.4 1173±49 2.41±0.10 13.5±1.6 

Seven 

BFRP 

8 50 64.6±1.4 1655±95 2.56±0.17 25.4±2.3 

Ribbed 12 113 69.3±0.5 1760±39 2.54±0.10 17.7±1.3 

16 201 64.8±3.3 1724±64 2.67±0.17 16.8±1.4 

Steelb 
10M 100 

200.0 fy
 c = 450 𝛆y

 c = 0.2 --- Ribbed 
15M 200 

a Nominal cross-sectional area. 

b Tensile properties of steel bars were provided by the manufacturer. 

c fy and 𝛆y are yield strength and strain of steel bars, respectively. 

Notes: properties calculated based on the nominal cross-sectional area. 

    

BFRP bars used in Chapter 6      BFRP bars used in Chapter 7      Steel bars used in Chapter 7 

Figure 3–31: Basalt-FRP and steel bars  
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Table 3–7: Mechanical properties of concrete 

Chapter No. Beam ID f'
c (MPa) ft (MPa) 

Six 

B-2#10mm, B-4#10mm, 

B-2#12mm, B-4#12mm,  

B-2#16mm, B-4#16mm 

42.5±0.40 2.8±0.05 

Seven 

B-3#8mm, B-5#8mm 52.7±1.28 4.7±0.40 

B-2#12mm, B-3#12mm 

B-2#10M, B-2#15M 
44.7±2.00 4.3±0.28 

B-2#16mm, B-3#16mm 50.8±1.65 4.2±0.26 

3.4.2 Test Specimens 

This investigation included fourteen rectangular concrete beams of 200 mm wide × 300 mm deep 

× 3100 mm total length, made with normal-strength concrete. Six beams were reinforced with 

sand-coated BFRP bars, six beams were reinforced with ribbed BFRP bars, and two reference 

beams were reinforced with steel bars. The tested specimens were designed in accordance with 

CAN/CSA S806 (2012), Annex S “Test Method for Determining the Bond-Dependent Coefficient 

of Fibre-Reinforced Polymer (FRP) Bars”. The beams were tested under four-point bending over 

a clear span of 2700 mm. The beams had a clear shear span of 1100 mm (corresponding to a shear-

span-to-depth ratio of about 4.3), while the distance between the two loading points was 500 mm 

(constant moment zone). The beams were reinforced with two 10M rebar as top reinforcement, 

while the bottom reinforcement were BFRP and steel bars in different configurations, as shown in 

Table 3–8. 10M steel stirrups spaced at 100 mm were used as shear reinforcement in both shear 

spans to avoid shear failure. To minimize the confining effect of the shear reinforcement on the 

flexure behavior, no stirrups were used in the constant moment zone. The clear concrete cover was 

38 mm, which was set in accordance with Annex S of CAN/CSA S806 (2012). The BFRP-RC 

beams were designed to fail by concrete crushing in the constant moment zone. This was achieved 

by using a reinforcement ratio (ρf) greater than the balanced reinforcement ratio (ρfb), as shown in 

Table 3–8, where the balanced reinforced reinforcement ratio (ρfb) was calculated considering the 

actual concrete strength. The ratio between the actual and balanced reinforcement ratios for the 

BFRP-RC beams ranged from 1.35 to 6.87 according to ACI 440.1R (2015) and from 1.09 to 5.52 

according to CAN/CSA S806 (2012). In contrast, the steel-RC beams were designed to fail due to 
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steel yielding (under-reinforcement), which is common for steel-RC members. Figure 3–32 shows 

the dimensions and reinforcement details of the tested beams. The test parameters investigated 

herein were: (i) reinforcement type [steel and BFRP bars]; (ii) reinforcement ratio [0.29% up to 

1.54%]; (iii) bar size [8, 10, 12 and 16 mm]; and (vi) surface configuration of reinforcing bars 

[sand-coated and ribbed reinforcing bars]. 

Table 3–8: Summary of the reinforcement details of tested beams 

Chapter Beam ID a 
fc

' b 

(MPa) 
ρf  

ρf /ρfb
c 

Ef ×Af 

(kN) 

Reinforcement 

configuration 
ACI 440 

(2015) 

CAN/CSA S806 

(2012) 

Six 

B-2#10 

42.5 

±0.40 

0.0030 1.35 1.09 6677 One layer 

B-4#10 0.0060 2.89 2.34 13954 Two layers 

B-2#12 0.0044 1.83 1.48 10251 One layer 

B-4#12 0.0086 3.95 3.20 20501 Two layers 

B-2#16 0.0078 3.13 2.54 19591 One layer 

B-4#16 0.0154 6.81 5.52 39183 Two layers 

Seven 

B-3#8 52.7 

±1.28 

0.0030 1.54 1.18 9745 One layer 

B-5#8 0.0052 2.72 2.08 16242 Two layers 

B-2#12 44.7 

±2.00 

0.0044 2.67 2.14 15682 One layer 

B-3#12 0.0066 4.00 3.21 23552 One layer 

B-2#16 50.8 

±1.65 

0.0078 4.58 3.55 26068 One layer 

B-3#16 0.0119 6.87 5.14 39102 One layer 

B-2#10M 44.7 

±2.00 

0.0039 0.103 0.096 40000 One layer 

B-2#15M 0.0079 0.207 0.194 80000 One layer 

a The first letter “B” indicates concrete beam; the second number “2, 3, 4, or 5” indicates the number of reinforcing 

bars; the last number (#8, #10, #12, #16, 10M, or 15M) indicates the bar size (in mm). 

b f'
c: concrete compressive strength. 

c ρfb: balanced reinforcement was calculated based on the actual concrete compressive strength. 
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(a) Elevation 

 

(b) Cross-sections 

Figure 3–32: Dimensions and reinforcement details of tested beams 

3.4.3 Preparation of the Specimens 

3.4.3.1 The Formwork 

A wooden formwork was fabricated and used for casting the beams. The formwork consists of six 

cells of 200 mm wide × 300 mm deep × 3100 mm total length (internal dimensions) for casting six 

beams at the same time. Before placing the cages, the formwork was painted with oil to protect the 

formwork and to facilitate the de-molding of the specimens from the formwork after concrete 

hardening, as shown in Figure 3–33. 

 

Figure 3–33: Painting of the wooden formwork with oil 
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3.4.3.2 Preparing of the Reinforcement and Concrete Casting 

Steel and BFRP bars were cut to the required lengths. Then the strain gauges were installed on the 

surface of the reinforcing bars before cage assemblage. Steel stirrups were arranged and tied to the 

top and bottom reinforcement using plastic tie-wraps to keep the spacing as required           

(Figure 3–34). Then the reinforcing cages were placed inside the formwork, as shown in    

Figure 3–35. Plastic chairs were used to ensure the bottom concrete cover. 

A normal-weight ready mixed concrete with 28-days target compressive strength of 40 MPa was 

used. Once the concrete was poured, the concrete was compacted using electrical vibrator and 

leveled manually. After two hours, curing process started by covering the concrete surface with 

wet burlap and polythene sheet for ten days. After that, the beams were removed from the forms 

and kept in the ambient temperature until testing. Nine standard cylinder specimens 

(150 × 300 mm) from each batch were prepared during the concrete casting. The standard cylinders 

were subjected to the same environmental conditions as their correspondent beams. The concrete 

compressive strength and tensile strength for each batch was determined by testing three standard 

cylinders at the same day of beam testing. Figure 3–36 to Figure 3–39 show the casting, surfacing, 

curing and de-molding of the concrete beams, respectively. While Figure 3–40 shows the concrete 

beams after construction. 

 

Figure 3–34: Assembled cages 
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Figure 3–35: Cages of the beams inside the formwork (Before concrete casting) 

 

Figure 3–36: Beams during concrete casting 

 

Figure 3–37: Leveling of concrete surface  
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Figure 3–38: Curing of the concrete beams 

 

Figure 3–39: De-molding of concrete beams 

 

Figure 3–40: Concrete beams after de-molding 
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3.4.4 Instrumentations 

Figure 3–41 provides the instrumentation details. The deflection along the beam’s span was 

monitored using four linear variable differential transducers (LVDTs) accurate to 0.001 mm, 

labeled D1 to D4 (D2 and D3 at mid-span, and D1 and D4 at quarter-span). Crack propagation was 

also monitored during testing until failure, and the crack widths of the first three flexural cracks 

were monitored with three horizontal LVDTs (D5 to D7). The strains of the longitudinal BFRP 

reinforcing bars were captured with four electrical-resistance strain gauges 6 mm in length (S1 to 

S4). The compressive concrete strains at the mid-span section were measured with two electrical-

resistance strain gauges 60 mm in length (C1 and C2). To facilitate crack monitoring, the beams 

were painted white prior to testing. In addition, an automatic data-acquisition system connected to 

a computer was used to monitor loading, deflections, and strains in the concrete and reinforcement. 

The formation of beam cracks and the corresponding loads were marked and recorded during 

testing until failure. 

3.4.5 Test Setup and Procedures 

The simply supported beams were tested under monotonic load in four-point bending until failure. 

Figure 3–42 shows the dimensions and locations of the applied loads, while Figure 3–43 provides 

a photo of the test setup for beam specimens. The load was applied at a stroke-controlled rate of 

1.2 mm/min. During testing, the beams were observed visually until the first crack appeared and 

the corresponding load was recorded. The test was paused when each of the first three cracks 

appeared. The initial crack width of the first three cracks was measured manually with a 50X 

handheld electronic microscope; LVDTs were installed at crack locations to measure crack width 

electronically with increasing load. The load continuously increased until beam failure. 

The cracking load was also verified based on the change in stiffness of the load–deflection and 

load–strain relationships. The concrete and reinforcement strain gauges and deflection and 

cracking LVDTs were connected to an automatic data-acquisition system connected to a computer 

to record their readings. 
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Figure 3–41: Schematic drawing of instrumentations 

 

Figure 3–42: Schematic drawing for test setup 
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Figure 3–43: Overview of the test setup  
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CHAPTER 4  

PHYSICAL AND MECHANICAL 

CHARACTERISTICS OF NEW BASALT-FRP BARS 

FOR REINFORCING CONCRETE STRUCTURES 

Abstract 

This paper introduces an experimental study that investigated the physical, mechanical, and 

durability characteristics of basalt fiber-reinforced polymer (BFRP) bars. Durability and long-term 

performance were assessed by conditioning the BFRP bars in an alkaline solution simulating the 

concrete environment (up to 3000 h at 60 °C) to determine their suitability as internal 

reinforcement for concrete elements. Thereafter, the properties were assessed and compared with 

the unconditioned (reference) values. In this study, three types of BFRP bars were investigated. 

The test results revealed that the BFRP bars had good mechanical behavior and could be placed in 

the same category as grade II and grade III GFRP bars (according to tensile modulus of elasticity). 

Their tensile strength, however, was higher than that provided by CAN/CSA S807 (2010) for CFRP 

bars. On the other hand, the BFRP bars showed poor alkali resistance and exhibited a remarkable 

reduction in mechanical properties due to the resin–fiber interface issues, which needs to be 

remedied to achieve the desired durability characteristics. 

Keywords: Fiber Reinforced Polymer (FRP); basalt fiber; FRP bar, physical; mechanical; 

characterization; durability; alkaline; accelerated aging; microstructural; SEM; FTIR; concrete, 

material specification. 
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4.1 Introduction 

Premature degradation of concrete structures due to the corrosion of embedded steel reinforcement 

bars is a well-known and well-documented problem, particularly where deicing salts are routinely 

used, such as on concrete deck slabs and in parking garages (Tighiouart et al. 1999). The use of 

fiber-reinforced polymer (FRP) composite materials, for concrete structures located in severe 

adverse environments, has achieved worldwide acceptance because of their non-corrodible nature, 

higher tensile strength, and lower weight relative to conventional steel reinforcing bars. FRPs are 

available with a wide range of mechanical properties (tensile strength, bond strength, and modulus 

of elasticity) and are made with high-tensile-strength fibers such as carbon, glass, and aramid 

embedded in polymer matrices such as vinylester and epoxy. Moreover, FRPs can be produced as 

bars, ropes, tendons, and grids in a wide variety of shapes and surface configurations as well as 

with varied characteristics. 

In a continuous effort to develop FRP technology and innovate, new types of fibers—such as basalt 

fibers—are being introduced to manufacture basalt-fiber-reinforced polymers (BFRPs). BFRP is 

the most recently FRP composite, appearing within the last decade. BFRP has good potential to 

provide benefits that are comparable or superior to other FRP types and provide significantly better 

cost-effectiveness compared to carbon FRP (CFRP). Basalt fibers show high tensile strength and 

modulus, good chemical resistance, extended operating-temperature range, and good 

environmental friendliness. Therefore, basalt fibers are ideally suited for applications involving 

high temperature, chemical resistance, durability, mechanical strength, and low water absorption 

(InfoMine Research Group 2007). In comparison to E-glass FRP, BFRP has higher strength and 

modulus, similar cost, and greater chemical stability. Moreover, it exhibits over five times the 

strength and around one-third the density of commonly used low-carbon steel bars (Zhishen et al. 

2012). Few studies, however, have investigated the performance of BFRP bars, which underscores 

the importance of assessing their physical, mechanical properties, and durability characteristics in 

order to understand their behavior and generate higher confidence in these newly developed 

materials. 
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4.2 Literature Review 

Basalt fiber is an inorganic fiber made from quarried basalt rock by melting the rocks at 1400 °C. 

The molten rocks are then extruded through small nozzles to produce continuous filaments of basalt 

fibers. The fibers typically have diameters ranging from 9 to 13 µm (Ross 2015). Basalt fibers have 

many excellent characteristics: energy-saving; environmentally friendly; natural green fiber; high 

tensile strength and modulus; a wide range of working temperatures (-269 to 700 °C); good acid, 

salt, and alkali resistance; anti-ultraviolet; low moisture absorption; good insulation; anti-radiation; 

and sound wave-transparent properties (Patnaik et al. 2004; Sim et al. 2005; Palmieri et al. 2009; 

Lopresto et al. 2011; Zhishen et al. 2012). The chemical composition of basalt fibers closely 

resembles that of the commonly used E- and S-glass fibers, except that basalt contains a high ratio 

of iron, which yields its brown color, as shown in Table 4–1 (Parnas et al. 2007). Figure 4–1 shows 

some basalt fibers. The mechanical properties of basalt fibers from different sources are also 

different (Sim et al. 2005), probably due to different chemical components and processing 

conditions, such as drawing temperature. The tensile strength of basalt fibers tends to increase with 

increasing drawing temperatures. This is due to increasing proportions of crystal basalt nuclei at 

lower temperatures, as proved by scanning electron microscopy (SEM) (Subramanian et al. 1977). 

Table 4–1: Chemical composition comparison between basalt and glass FRP 

Chemical Composition (%) Basalt FRP E-Glass FRP S-Glass FRP 

Silicon dioxide, SiO2 48.8–51.0 52–56 64–66 

Aluminum oxide, Al2O3 14.0–15.6 12–16 24–26 

Iron oxide, FeO+Fe2O3 7.3–13.3 0.05–0.40 0–0.3 

Calcium oxide, CaO 10.0 16–25 0–0.3 

Magnesium oxide, MgO 6.2–16.0 0–5 9–11 

Sodium oxide & potassium oxide, Na2O+K2O 1.9–2.2 0–2 0–0.3 

Titanium oxide, TiO2 0.9–1.6 0–0.8 -- 

MnO 0.10–0.16 -- -- 

Fluorides -- 0–1 -- 

Boron oxide -- 5–10 -- 

 

http://en.wikipedia.org/wiki/Extrusion
http://en.wikipedia.org/wiki/Micrometre
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Figure 4–1: Basalt fibers 

Wu et al. (2014) assessed the residual tensile properties of unstressed and stressed BFRP bars 

exposed to four types of simulated harsh environments: alkaline solution, salt solution, acid 

solution, and deionized water at 25, 40, and 55 °C. Microstructural analysis by scanning electronic 

microscopy (SEM) was also performed to reveal the inherent degradation mechanism of BFRP 

bars in an alkaline environment. The residual tensile strength of unstressed BFRP bars exposed to 

an alkaline solution was used to predict long-term performance based on the Arrhenius theory. The 

results showed that the effect on the durability of BFRP bars exposed to acid, salt, and deionized 

water was less than that for bars exposed to alkaline solution. The effects of sustained stress on the 

degradation of BFRP bars were not obvious when the stress level was less than 20% of ultimate 

strength, but the degradation processes accelerated when the stress exceeded this level. Considering 

a mean annual temperature of 5.7 °C (which represents an area with a northern latitude of 50°), the 

predicted exposure time to produce a 50% reduction in strength was estimated at approximately 

16.1 years for the 6 mm BFRP bar. 

Sim et al. (2005) investigated the durability and elevated-temperature performance of basalt, glass, 

and carbon fibers. They reported that when the fibers were immersed in an alkali solution, the 

basalt and glass fibers lost volume and strength (50% at 7 days and more than 80% at 28 days) with 

a reaction product on the surface, but the carbon fiber did not show significant strength reduction 

(about 13%). Nevertheless, the basalt fiber maintained its volumetric integrity and 90% of its 

strength after exposure to high-temperature at over 600 °C for 2 hours. Mingchao et al. (2008) 

studied the chemical durability and mechanical properties of basalt fiber and its epoxy resin 

composites. The experimental results showed that, after the BFRP was exposed to alkali solutions 

(including saturated Na2CO3 solution, 10% NaOH, and 10% NH3.H2O) for 3 months, the modulus 

remained unaffected, although the strength decreased by 40%. Li et al. (2012) studied the durability 

Chopped Yarn 
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and fatigue performance of basalt-fiber / epoxy-FRP bars exposed to hygrothermal and alkaline 

environments. The bare basalt fibers (no resin protection) immersed in these environments 

exhibited a severe degradation of tensile properties due to significant fiber corrosion, as revealed 

by SEM. In contrast, the BFRP bars evidenced higher durability when subjected to the same 

conditions. 

This paper presents an experimental investigation aimed at assessing the physical and mechanical 

characteristics of newly developed BFRP bars. It also aimed at assessing their long-term durability 

through conditioning in an alkaline solution simulating a moist concrete environment at high 

temperature. Since BFRPs have not been included in design standards and specifications yet, the 

results of this experimental study will contribute to integrating BFRP into FRP standards and 

guides. 

4.3 Experimental Program 

This experimental work was carried out on newly developed BFRP bars to investigate their short- 

and long-term characteristics. This research work is a part of an extensive research project being 

conducted at the University of Sherbrooke through NSERC Research Chair activities to develop 

and introduce new FRP reinforcement for concrete infrastructure especially that subjected to harsh 

environmental conditions, such as marine structures, parking garages, and bridge-deck slabs. The 

findings of this research project will contribute to integrating BFRP into FRP standards and guides, 

such as ACI 440.1R (2015), ACI 440.6M (2008), CAN/CSA S807 (2010), CAN/CSA S6S1 (2010), 

and CAN/CSA S806 (2012). 

The experimental program involved three types of BFRP bars: A, B, and C. Type A has a 7 mm 

diameter and is manufactured for prestressing purposes. Its physical and mechanical properties as 

well as durability in a concrete environment were investigated. Further study to investigate 

prestressing-related characteristics such as relaxation under sustained loads and creep–rupture will 

be conducted in another research project. Types B and C bars are 8 mm in diameter with similar 

surface configurations. They were provided by the manufacturer with an expected tensile modulus 

close to 50 and 60 GPa, simulating grade II and III GFRP bars in accordance with CAN/CSA S807 

(2010). The research program was divided into three phases. Phase I focused on physical 

characterization of the BFRP bars. The physical properties determined in this phase served as 
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references for physical properties after conditioning. Phase II focused on mechanical 

characterization of the BFRP bars. The tensile strength, tensile modulus of elasticity, ultimate 

tensile strain, transverse-shear strength, flexural strength, flexural modulus of elasticity, 

interlaminar-shear strength, and bond strength were determined according to the appropriate test 

methods. The test results also served as references for calculating the residual strengths after 

conditioning. Phase III assessed the durability and long-term performance of the conditioned BFRP 

bars. The durability was assessed by immersing the BFRP specimens in an alkaline solution at high 

temperature (60 °C) for different lengths of time (3000 hours for Type A and 2160 hours for Types 

B and C) designed to simulate a concrete environment so as to validate the performance of the 

BFRP bars as internal reinforcement for concrete elements. Changes in the physical and mechanical 

characteristics were assessed by comparing the characteristics of the conditioned BFRP bars to the 

reference ones from Phases I and II. 

4.4 Materials and Test Procedures 

Three types of BFRP bars were used in this study. Type A has a 7 mm diameter (nominal cross-

sectional area of 38.46 mm2) with a woven surface, while Types B and C have a 8 mm diameter 

(nominal cross-sectional area of 50.24 mm2) with a deformed surface. The BFRP bars were made 

of continuous basalt fibers impregnated in vinylester resin according to the pultrusion process. 

Figure 4–2 shows the BFRP bars. The basalt fibers used herein were known ASA.TEC (produced 

by Asamer Basaltic Fibers GmbH, Austria). The fibers were produced from volcanic material with 

organic surface coating and had a diameter of 10 to 19 μm. 

  

 Type A BFRP Types B and C BFRP 

Figure 4–2: Tested BFRP bars 
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The tests in Phase I (physical characterization) were conducted in accordance with ACI 440.6M 

(2008) and CAN/CSA S807 (2010) and the relevant ASTM standards. The relative density was 

determined according to ASTM D792 (2008), fiber content according to ASTM D3171 (2011), 

transverse coefficient of thermal expansion according to ASTM E831 (2012), water absorption 

according to ASTM D570 (2010), cure ratio according to ASTM D5028 (2009), and glass-

transition temperature (Tg) according to ASTM D3418 (2012). In addition, microstructural analysis 

was performed for all three types of BFRP specimens using scanning electron microscopy (SEM) 

for both the unconditioned (reference) and conditioned specimens to assess changes and/or 

degradation. The effects of conditioning on the glass-transition temperatures (Tg) and on BFRP-

bar chemical composition were also determined with differential scanning calorimetry (DSC) and 

Fourier transform infrared spectroscopy (FTIR), respectively. 

The Phase II mechanical-characterization tests were tensile strength (ASTM D7205, 2011), 

transverse-shear testing (ASTM D7617, 2011), flexural testing (ASTM D4476, 2009), short-beam 

shear testing (ASTM D4475, 2008), and bond strength using the pullout test (ACI 440.3R, 2012, 

B.3 Test Method). The mechanical properties reported herein were calculated using the nominal 

cross-sectional areas. 

Furthermore, a pilot investigation was also conducted to evaluate the effects of chemicals on the 

basalt fibers used in manufacturing the BFRP bars tested herein. The tests were conducted 

according to Owens Corning (2011) guide for glass fibers and the results are reported. 

4.5 Chemical Resistance Evaluation of Bare Basalt Fibers  

Chemical resistance tests were conducted on the basalt fibers utilized in manufacturing the tested 

BFRP bars, in parallel to the main study conducted herein to investigate the physical and 

mechanical characteristics of new BFRP bars. These tests were conducted to clarify the effect of 

the different chemicals on the bare basalt fibers. The tests were conducted following Owens 

Corning (2011) guide for evaluating the chemical resistance of glass fibers. Basalt fibers were 

heated to 540 °C overnight to remove any sizing and provide a proper clean surface for chemical-

resistance investigation. Samples were then cut and carefully weighed before immersion in 

different corrosive aqueous solutions at 96 °C for 1 (24 h) and 7 days (168 h). The solutions were 

deionized water, an acidic solution (10% HCl), a saline solution (10% NaCl), and an alkaline 
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solution (3.2 g NaOH per liter). After conditioning, the samples were thoroughly washed, dried, 

and weighed again. Table 4–2 presents the mass losses after 1 and 7 days of conditioning in 

deionized water, acidic solution, saline solution, and alkaline solution. The mass losses were less 

than 1.0% (wt) after immersion in water and saline solution, whereas the alkaline solution caused 

a mass loss of about 3% (wt) and the acidic solution caused a mass loss of 7.0% (wt). It should be 

mentioned that the color of the acidic solution turned green after conditioning, which may indicate 

some leaching of iron oxide.  

Table 4–2: Mass loss (wt %) of basalt fibers after conditioning in water, acidic, saline, and 

alkaline solutions at 96 °C 

Conditioning 

period (days) 

Mass loss by weight (%) 

Water Acidic Saline Alkaline 

1 0.3 5.9 -0.6 0.7 

7 0.6 7.0 0.2 2.6 

Furthermore, the conditioned fibers were then analyzed using SEM to detect any changes in 

microstructure. Figure 4–3 presents typical micrographs obtained on unconditioned (reference) 

and conditioned samples (acidic, saline, and alkaline solutions). The basalt fiber conditioned in the 

different solutions showed tiny signs of corrosion. 

 (a)  (b) 

 (c)  (d) 

Figure 4–3: SEM micrographs of basalt fibers: (a) before condition (reference); (b) conditioned 

in acidic solution; (c) conditioned in saline solution; and (d) conditioned in alkaline solution 
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4.6 Testing, Results, and Discussion 

4.6.1 Phase I: Physical Characterization 

The physical properties of the reference (unconditioned) BFRP bars were determined according to 

ACI 440.6M (2008) and CAN/CSA S807 (2010) test methods. Since BFRP bars are not included 

in any FRP standard yet, the physical properties of the investigated BFRP bars and tendons were 

compared to the specified limits for FRP bars. Table 4–3 presents the results of those physical 

characterization tests and compares them to the limits specified in ACI 440.6M (2008) and 

CAN/CSA S807 (2010) for FRP bars. Table 4–3 shows that the fiber content of the BFRP bars 

was 85.1%, 77.4%, and 81.1% for BFRP Types A, B, and C, respectively, thereby satisfying the 

ACI 440.6M (2008) limits (55% by volume) and CAN/CSA S807 (2010) limits (70% by weight). 

The cure ratio of Type A BFRP was 97.5%, while the curing ratio of Types B and C was 100%. 

The BFRP specimens had a transverse coefficient of thermal expansion (CTE) ranging from 

18.4×10-6 to 26.8×10-6 oC, which is less than 40×10-6 oC as stated by CAN/CSA S807 (2010). Type 

B’s higher transverse CTE as compared to Types A and C may be due to the lower fiber content 

(higher resin content). 

Differential scanning calorimetry (DSC) is used to obtain information about the thermal behavior 

and characteristics of polymer materials and composites, such as the glass-transition temperature 

(Tg) and curing process. In this study, 30-50 mg specimens from both the unconditioned and 

conditioned specimens were sealed in aluminum pans and heated in a TA Instruments DSC Q10 

calorimeter to 200 °C at a rate of 20 oC/min. The glass-transition temperature (Tg) was determined 

in accordance with ASTM D3418 (2012). Two scans were performed for each BFRP type. 

Figure 4–4 presents the DSC scans for the Tg, while Table 4–3 presents the Tg values. Since the 

cure ratio of BFRP type A was 97.5%, this indicates the presence of uncured resin. Consequently, 

BFRP type A showed a Tg of 105 °C in the first run and 123 °C in the second run because of the 

post-polymerization of uncured resin. BFRP types B and C evidenced a Tg of 118 and 127 oC, 

respectively, with no post-polymerization, since the Tg in the second run was almost the same as 

in the first. It should be mentioned that the higher Tg of the specimens after the second scan is an 

indicative of a reversible chemical reaction and consequently not caused by any chemical 

degradation of the resin (such as hydrolysis). 
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The moisture uptake at saturation was determined. The test was carried out in accordance with 

ASTM D570 (2010). Five 100 mm long specimens for each type of BFRP were cut, dried, and 

weighed. They were then immersed in water at 50 °C for 3 weeks. The samples were periodically 

removed from the water, surface dried, and weighed. The water content as a percentage of weight 

was calculated with Eq. (4-1).  

          (4-1) 

where Ps and Pd are the bar weights in the saturated and dried states, respectively. The percentage 

of moisture uptake was calculated. The gain in mass was corrected to account for specimen mass 

loss due to a possible dissolution phenomenon. This correction was achieved by completely drying 

the immersed specimens in an oven at 100 °C for 24 h and comparing their masses to their initial 

masses. The moisture uptake was 0.15%, 0.56%, and 0.62% for types A, B, and C, respectively. 

This difference is due to delamination and/or debonding of the fiber–resin interface or due to the 

presence of continuous voids, which will be discussed later in this paper. 

It should be mentioned that the BFRP bars met the requirements of D1 FRP bars (FRP bars with 

high durability) in accordance with CAN/CSA S807 (2010) with respect to cure ratio, Tg, and 

moisture uptake. Regardless of the differences between the results for the three BFRP products 

tested, they still meet the physical-property requirements of ACI 440.6M (2008) and CAN/CSA 

S807 (2010). 
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Table 4–3: Results for physical properties of BFRP bars and the specified limits for FRPs 

Property 
Type 

(A) 

Type 

(B) 

Type 

(C) 

Specified Limits for FRP Bars 

ACI 440.6M 

(2008) 

CAN/CSA S807 

(2010) 

Relative density (ρ) 2.167 1.998 2.046 -- -- 

Fiber content by weight (%) 85.1 77.4 81.1 55% (by vol.) 70% (by weight) 

Transverse CTE (× 10-6 °C-1) 18.7 26.8 18.4 NA 40 

Cure ratio (%) 97.5 100 100 NA ≥ 93 (D2)a; 95 (D1)a 

Tg ( °C) – Run 1 

Run 2 

105 

123 

118 

119 

127 

129 

100 

 

≥ 80 (D2)a; 100 (D1)a 

 

Moisture uptake (%) 0.15 0.56 0.62 1.0 1.0 (D2)a; 0.75 (D1)a 

a Classification based on durability: FRPs with high durability shall be classified as D1; FRPs with moderate durability 

shall be classified as D2; FRPs made with vinylester and epoxy shall be classified as D1 or D2; FRPs made with 

polyester matrix shall be classified as D2. 

 

 

Figure 4–4: DSC graphs for glass-transition temperature (Tg) 
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4.6.2 Phase II: Mechanical Characterization 

The mechanical characterization included testing of representative BFRP specimens to determine 

their tensile properties in accordance with ASTM D7205 (2011), transverse-shear strength in 

accordance with ASTM D7617 (2011), flexural properties in accordance with ASTM D4476 

(2009), interlaminate shear strength in accordance with ASTM D4475 (2008), and bond strength 

in accordance with ACI 440.3R (2012), B.3 Test Method, and CAN/CSA S806 (2012), Annex G. 

Figure 4–5 to Figure 4–9 show the mechanical characterization tests and the tested specimens at 

failure, while Table 4–4 lists the results. The following sections provide brief descriptions and 

interpretation of those results. 

4.6.2.1 Tensile Properties of the Reference BFRP Bars 

The tensile properties of FRP bars are among the most important parameters affecting the design 

of FRP-reinforced concrete sections, since tensile strength governs section capacity and the tensile 

modulus of elasticity governs the serviceability limit state. The tensile properties of the investigated 

BFRP bars were determined by testing five representative specimens for each type in accordance 

with ASTM D7205 (2011). The specimens were cut to the desired lengths and prepared by 

installing the steel tube (anchors) with expansive cement grout commercially known as Bustar 

Expanding Grout. The specimens were instrumented with a 200 mm LVDT to capture specimen 

elongation during testing. The tests were conducted with a Baldwin testing machine in which the 

applied load and specimen elongation were electronically recorded during the test. Figure 4–5 (a) 

shows the test setup. The tensile strength and tensile modulus of the BFRP bars were determined 

with Eqns. (4-2) and (4-3), respectively, 

           (4-2) 

where fu is the tensile strength (MPa), Fu is the tensile capacity (N), and A is the bar’s cross-

sectional area (mm2). 

         (4-3) 

where E is the tensile modulus of elasticity (MPa); A is the cross-sectional area (mm2); F1 and 1 

are the load and corresponding strain, respectively, at approximately 50% of the ultimate tensile 

u uf F A

    1 2 1 2/E F F A   
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capacity; and F2 and 2 are the load and corresponding strain, respectively, at approximately 25% 

of the ultimate tensile capacity. The tensile properties of the tested specimens are listed in   

Table 4–4 and the failure is shown in Figure 4–5 (b). 

Like all FRP products, the tested specimens showed a linear elastic stress–strain relationship up to 

failure. The tested bars showed very high tensile strength exceeding 1500 MPa, which meets the 

requirements of GFRP (750 MPa for 8 mm diameter) and CFRP (1350 MPa for 8 mm diameter) 

bars according to CAN/CSA S807 (2010). On the other hand, Types A and B showed tensile moduli 

of elasticity of 69.0 and 64.6 GPa, respectively, which correspond to grade III (GIII) for GFRP 

bars according to CAN/CSA S807 (2010) classification. Type C, however, had tensile modulus of 

elasticity of 59.5 GPa, which corresponds to grade II (GII) for GFRP bars according to CAN/CSA 

S807 (2010) classification. Furthermore, the tested specimens showed a strain at failure ranging 

from 2.43% to 2.64%, both higher than the 1.2% provided by CAN/CSA S807 (2010) for GFRP 

bars. 

It should be mentioned that the design of FRP-reinforced members is based on guaranteed tensile 

strength (the mean tensile strength minus three times the standard deviation in according to ACI 

440.1R (2006)). 

Table 4–4: Mechanical properties of tested BFRP bars (reference/unconditioned) 

BFRP 

Type 

Tensile Properties 
Transverse-

Shear Strength  

Interlaminar-

Shear Strength 
Flexural Properties 

Bond 

Strength 

fu 

(MPa) 

E 

(GPa) 

εu  

(%) 

τu 

(MPa) 

Su 

(MPa) 

fu  

(MP

a) 

E 

(GPa) 

εu 

(%) 

fb 

(MPa) 

A 
1680 

±133 

69.0 

±0.7 
2.43 

344 

±18 

63 

±2.7 

1790 

±91 

90.4 

±3.8 
1.98 

7.0 

±0.9 

B 
1655 

±95 

64.6 

±1.4 
2.56 

315 

±38 

72 

±2.9 

2061 

±216 

84.6 

±8.6 
2.47 

25.4 

± 2.3 

C 
1567 

±115 

59.5 

±3.3 
2.64 

293 

±28 

60 

±2.4 

1587 

±111 

74.0 

±4.2 
2.15 

27.2 

± 2.4 
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(a) Typical test setup 

 

 

(b) Failure mode (rupture) 

Figure 4–5: Typical tensile-strength test and failure mode 

4.6.2.2 Transverse-Shear Strength of the Reference BFRP Bars 

Transverse-shear tests were conducted according to ASTM D7617 (2011). The setup consisted of 

a 230 × 100 × 110 mm steel base equipped with lower blades spaced at 50 mm face to face, allowing 

for the double transverse-shear failure of the specimen caused by an upper blade, as shown in 

Figure 4–6 (a). 

For each type of BFRP bar, five unconditioned specimens of 200 mm length were tested under 

laboratory conditions with an MTS 810 testing machine equipped with a 500 kN load cell. A 

displacement-controlled rate of 1.3 mm/min was used during the test, which yielded between 30 

and 60 MPa/min until specimen failure. The loading was performed without subjecting the test 

specimens to any shock. Figure 4–6 (b) shows the specimens at failure. The transverse-shear 

strength was calculated with Eq. (4-4): 

           (4-4) 

where τu is the transverse-shear strength (MPa), Ps is the failure load (N), and A is the cross-

sectional area of the FRP bar (mm²). 

 2u sP A 

Type A 

Types B and C 
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As shown in Table 4–4, the transverse-shear strength of the BFRP specimens ranged from 293 to 

344 MPa, with an average of 317 MPa. These values meet the requirements of CAN/CSA S807 

(2010), which specifies a minimum transverse-shear strength of 160 MPa for FRP bars. These 

results were expected, since the transverse-shear strength resulted mainly from the resin with a 

small contribution from the fiber–resin interface (Montaigu et al. 2013). 

 

(a) Test setup 

 

 

(b) Specimens at failure 

Figure 4–6: Typical transverse-shear strength and specimens at failure 

4.6.2.3 Interlaminar-Shear Strength of the Reference BFRP Bars (Short-Beam Shear Test) 

In pultruded FRP bars in which the fibers are arranged unidirectionally and bonded with the 

polymer matrix, the horizontal stresses would be more conducive to inducing interface degradation 

than transverse-shear stresses (Park et al. 2008). The short-beam shear test was conducted on five 

specimens of each type of FRP bar according to ASTM D4475 (2008) in order to calculate the 

interlaminar-shear strength, which is governed by the fiber–matrix interface. The tests were carried 

out with a 500-kN MTS 810 testing machine. The distance between the shear planes was set to 6 

times the nominal diameter of the FRP bars. Figure 4–7 shows the test setup and typical mode of 

failure of the tested specimens. A displacement-controlled rate of 1.3 mm/min was used during the 

test. The applied load was recorded with a computer-monitored data-acquisition system. 

The interlaminar-shear strength, Su, of the FRP bars was calculated with Eq. (4-5). 

             (4-5) 0.849 ²uS P d

Type A 

Types B and C 
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where Su is the interlaminar-shear strength (MPa), P is the shear failure load (N), and d is the bar 

diameter (mm). 

Table 4–4 shows the interlaminar-shear strength of BFRP bars. BFRP Type B exhibited the highest 

interlaminar-shear strength (72 MPa), followed by Type A (63 MPa) and Type C (60 MPa). It is 

worth mentioning that the high values of the interlaminar-shear strength indicate a sound interface 

between the resins and reinforcing fibers. The difference between the highest (Type B) and the 

lowest (Type C) interlaminar-shear strength was 20%. This difference may have been affected by 

fiber–resin interface issue, which will be clarified in the SEM analysis. 

 

(a) Test setup for the short-beam shear test 

 

(b) Specimens at failure 

Figure 4–7: Interlaminar-shear-strength test (short-beam test) and specimens at failure 

 

Type A Types B and C 
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4.6.2.4 Flexural Properties of the Reference BFRP Bars (Three-Point Flexural Test) 

Flexural testing is especially useful for quality control and specification purposes. Flexural 

properties may vary with specimen diameter, temperature, weather conditions, and differences in 

rates of straining. The flexural properties obtained according to ASTM D4476 (2009) cannot be 

used for design purposes, but are appropriate for the comparative testing of composite materials. 

The test was conducted on specimens of 180 mm long over a simply supported span equal to 20 

times the bar diameter, as shown in Figure 4–8 (a). Five unconditioned specimens were tested 

under laboratory conditions on an MTS 810 testing machine equipped with a 500 kN load cell as 

references for each type. The specimens were loaded at the mid-span with a circular nose; the 

specimen ends rested on two circular supports that allowed the specimens to bend. A displacement-

controlled rate of 3.0 mm/min was used during the test. The rate of loading occurred without 

subjecting the test specimen to any shock. The applied load and deflection were recorded during 

the test on a computer- monitored data-acquisition system. 

The flexural strength of tested FRP specimens was calculated with Eq. (4-6). Flexural modulus of 

elasticity is the ratio, within elastic limit, of stress to corresponding strain. It was calculated with 

Eq. (4-7): 

          (4-6)

           (4-7) 

where fu is the flexural strength in the outer fibers at mid-span (N/mm2), P is the failure load (N), 

L is the clear span (mm), I is the moment of inertia (mm4), C is the distance from the centroid to 

the extremities (mm), E is the flexural modulus of elasticity in bending (N/mm2), and Y is the mid-

span deflection at load P (mm). 

The maximum outer-fiber strain (εu) was calculated from Eq. (4-8). 

           (4-8) 

Table 4–4 provides test results of three-point loading test for the BFRP specimens in terms of 

flexural strength, flexural modulus of elasticity, and ultimate strain. The elastic behavior of all the 

specimens was retained until flexural failure, which occurred due to compression at the top fibers, 

 4uf P LC I

 3 48E P L I Y

u uf E 
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as shown in Figure 4–8 (b). The moduli of elasticity from the flexural test were 24% to 31% higher 

than those from the tensile test. Since the ASTM D4476 (2009) test method is designated for FRP 

bars with a diameter of at least 0.5 in. (12.7 mm), this may have impacted the flexural testing 

results. 

 

 
 

 

 

(a) Test setup (b) Specimens at failure (compression failure) 

Figure 4–8: Typical flexural-strength test and specimens at failure 

4.6.2.5 Bond Strength of the Reference BFRP Bars (Pullout Test) 

The bond strength of the BFRP bars was assessed with the pullout test. The pullout tests were 

carried out in normal-strength concrete with a designated strength of 35 MPa after 28 days 

according to the ACI 440.3R (2012), B.3 Test Method, and CAN/CSA S806 (2012), Annex G. The 

bonded length was kept constant at 5db, where db is the nominal diameter of FRP bars. The pullout 

blocks measured 200 × 200 × 200 mm. Figure 4–9 shows the geometry of the pullout specimens, 

test setup, and modes of failure, while Figure 4–10 shows the typical bond stress-free slip 

relationship of the tested BFRP bars. Table 4–4 presents the bond strength of the tested BFRP bars. 

The BFRP Type A (manufactured for prestressing purposes) showed an average bond strength of 

7.0 MPa. According to CEB-FIP (1978), the bond strength of prestressing steel bars of a diameter 

smaller than 32 mm in normal-weight concrete with compressive strength of 35 MPa is about 4 

MPa for deformed bars and 2.0 MPa for smooth bars. Thus, the bond strength obtained herein is in 

agreement with what has been reported for steel tendons. On the other hand, the pullout tests of the 

Types B and C (with similar surface configurations) showed an average bond strength of 24.5 and 

27.2 MPa, respectively, which is higher than 8.0 MPa as specified by CAN/CSA S807 (2010). 

Type A 

Types B and C 
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Thus, it could be concluded that Types B and C meet the mechanical-property requirements of 

CAN/CSA S807 (2010). 

   

(a) (b) (c) 

Figure 4–9: Pullout test: (a) Specimen geometry; (b) Test setup; (c) Typical pullout bond failure 

 

Figure 4–10: Bond stress-free slip relationships of the tested BFRP bars 

4.6.3 Phase III: Durability Study and Long-Term Performance Assessment 

4.6.3.1 Conditioning of the BFRP Specimens 

This phase was conducted to assess the durability and long-term performance of the BFRP bars 

conditioned in an alkaline solution simulating concrete pore solution. Accelerated aging tests were 

conducted in accordance with ASTM D7705 (2012). The conditioning of the FRP bars included a 

combined exposure to an alkaline environment and elevated temperature. Immersion in an aqueous 
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media (alkaline solution) at high temperature accelerates degradation. The alkaline solution was 

prepared to have a composition representative of the pore water inside Portland-cement concrete, 

specifically, 118.5 g of Ca(OH)2, 0.9 g of NaOH, and 4.2 g of KOH per liter of deionized water. 

The solution had a pH of 12.6-13.0, which is representative of a mature concrete pore solution. The 

three types of BFRP bars were immersed in this solution at 60 °C. The BFRP specimens were 

conditioned for different lengths of time (1000 and 3000 h for BFRP Type A; 720 and 2160 h for 

BFRP Types B and C). The conditioning time started once the solution had reached the prescribed 

temperature. Robert et al. (2009) reported that the increase in degradation reaction rate was almost 

linear between room temperature and 50 °C, whereas, at higher temperatures (over 60 °C), the 

increase in the degradation reaction rate was exponential. Therefore, to avoid any thermal 

degradation, the maximum conditioning temperature used in this study was 60 °C, as specified in 

ASTM D7705 (2012). 

The BFRP specimens were placed in hermetically sealed stainless-steel containers to prevent 

excessive evaporation and reaction of atmospheric CO2 with calcium hydroxide. The containers 

were placed in an environmental chamber adjusted to the prescribed temperature (60 °C) under 

isothermal conditions. The BFRP bars were weighed and their diameters measured throughout the 

conditioning period to monitor water absorption and eventually characterize the mass and diameter 

changes. Observation revealed no changes in diameter during the conditioning periods. Specimens 

of each type of BFRP bar were removed from the solution and tested to determine their physical 

and mechanical properties after the exposure periods at 60 °C. Similar to as in Phase I, the effects 

of conditioning on the glass-transition temperatures (Tg) and chemical composition were also 

assessed with differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy 

(FTIR), respectively. The microstructure of all types of the BFRP bars was investigated with 

scanning electron microscopy (SEM) for both conditioned and unconditioned cases to assess 

changes and/or degradation. In addition, the mechanical properties of the conditioned specimens 

were assessed with tests similar to those in Phase II for tensile strength (ASTM D7205, 2011), 

transverse shear (ASTM D7617, 2011), flexural strength (ASTM D4476, 2009), and short-beam 

shear (ASTM D4475, 2008). The results for the conditioned specimens were compared to those of 

the reference ones. The change in the properties was selected as an indicator on the degradation of 

the BFRP materials. 
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4.6.3.2 Tensile Properties of the Conditioned BFRP Bars 

Table 4–5 presents the ultimate tensile strength, tensile modulus of elasticity, and ultimate tensile 

strain of the conditioned specimens along with the retention ratios. The results indicate that the 

BFRP Type A bars were highly affected by accelerated aging with an ultimate tensile strength 

retention of 60.9% after 3000 h in an alkaline solution at 60 oC. Types B and C were less affected 

by accelerated aging with ultimate tensile strength retentions of 77.0% and 76.5%, respectively, 

after 2160 h. Thus, BFRP Types B and C satisfied the 70% retention in accordance to CAN/CSA 

S807 (2010) for D2 bars, but these bars did not qualify for the 80% specified for D1 bars. On the 

other hand, as expected, the changes in the tensile moduli of elasticity were not significant for the 

tested BFRP specimens (less than 7.0%). Figure 4–11 (a) and (b) show the effect of the alkaline 

solution at high temperature (60 °C) on the tensile strength and modulus of elasticity of the BFRP 

specimens, respectively. 

Table 4–5: Tensile properties and retention of the conditioned BFRP bars 

BFRP 

Type 

Cond. 

Period (h) 
fu (MPa) 

Retention 

(%) 
E (GPa) Retention (%) εu (%) 

A 1000 1012±47.3 60.2 70.8±1.2 102.6 1.43±0.05 

3000 1023±177.0 60.9 69.1±0.4 100.0 1.48±0.26 

B 720 1429±52.6 86.3 60.1±0.7 93.0 2.38±0.06 

2160 1275±4.0 77.0 61.5±0.9 95.2 2.07±0.03 

C 720 1409±91.7 89.9 59.7±1.6 100.0 2.36±0.13 

2160 1198±31.7 76.5 56.6±0.9 95.1 2.12±0.02 
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(a) Tensile strength 

 

(b) Tensile modulus 

  
(c) Transverse-shear strength (d) Interlaminar-shear strength 

 

 
(e) Flexural strength 

Figure 4–11: Effect of conditioning on the mechanical properties of the tested BFRP bars 
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4.6.3.3 Transverse-Shear Strength of the Conditioned BFRP Bars 

Table 4–6 shows the ultimate transverse-shear strength and the retention strength of the BFRP bars 

after conditioning. The Type A bars were affected by accelerated aging and had a transverse-shear 

strength retention of 81.7% after 3000 h. The Type B and C bars were slightly affected by 

accelerated aging and evidenced strength retentions of 89.6% and 87.0%, respectively, after 

conditioning for 2160 hours. Figure 4–11 (c) shows the effect of the alkaline solution at high 

temperature (60 °C) on the transverse-shear strength of BFRP specimens. 

4.6.3.4 Interlaminar-Shear Strength of the Conditioned BFRP Bars 

Table 4–6 shows the interlaminar-shear strength of the conditioned BFRP bars and their retention-

strength ratios. Figure 4–11 (d) shows the effect of the alkaline solution at high temperature 

(60 °C) on interlaminar-shear strength. Clearly, Type B has the highest interlaminar-shear strength 

and the lowest rate of degradation due to conditioning, followed by Types A and C. This 

observation coincides with the results for the reference specimens where Type B had an 

interlaminar-shear strength of 72 MPa compared to 63 MPa and 60 MPa for Types A and C, 

respectively. This indicates that the Type B bars had a better fiber–matrix interface, which 

minimized the degradation due to conditioning. The fiber–matrix interface was investigated, as 

described later, with SEM. 

Table 4–6: Transverse- and interlaminar-shear strength and retention of the conditioned BFRP 

bars 

BFRP 

Type 

Cond. 

Period (h) 
τu (MPa) Retention (%) Su (MPa) Retention (%) 

A 1000 327.5±7.6 95.4 55.3±2.8 87.7 

3000 280.4±7.3 81.7 43.25±1.3 68.5 

B 720 312.9±36.6 99.2 68.98±3.0 95.3 

2160 282.7±30.0 89.6 65.00±5.1 89.8 

C 720 265.6±11.3 90.6 56.20±2.7 93.8 

2160 254.9±15.9 87.0 35.82±7.0 59.8 
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4.6.3.5 Flexural Properties of the Conditioned BFRP Bars 

Table 4–7 shows the flexural properties of conditioned BFRP bars as well as their retention 

strengths and modulus ratios after conditioning. Figure 4–11 (e) shows the effect of the alkaline 

solution on flexural strength. Type B bars have the lowest degradation rate, followed by Type A 

bars and Type C bars, the latter being significantly affected by the conditioning. This observation 

confirms good bonding between the basalt fibers and resin (fiber–matrix interface) in Type B, 

followed by Types A and C, which minimized degradation due to conditioning. 

Table 4–7: Flexural properties and retention of the conditioned BFRP Bars 

BFRP 

Type 

Cond. 

Period (h) 
fu (MPa) Retention (%) E (GPa) Retention (%) 

A 1000 1763.3±60.9 98.5 93.0±2.4 102.8 

3000 1715.2±100.7 95.6 90.8±1.0 100.0 

B 720 2047.0±197.1 99.3 72.7±2.7 85.9 

2160 1985.2±77.9 96.3 66.7±4.4 78.8 

C 720 1507.4±156.9 95.0 63.7±1.3 86.1 

2160 1295.5±153.5 81.6 63.0±1.7 85.1 

4.6.3.6 Glass-Transition Temperature of the Conditioned BFRP Bars 

Differential scanning calorimetry (DSC) was also conducted on the specimens conditioned in the 

alkaline solution at 60 °C for 3000 h; the glass-transition temperature was determined in 

accordance with ASTM D3418 (2012). Two scans were performed for each BFRP type.    

Figure 4–4 presents the DSC scans for the Tg. The first scan was useful to determine the difference 

in Tg between the reference and conditioned specimens. A decrease in Tg for the conditioned 

specimens is indicative of a plasticizing effect or chemical degradation. A higher specimen Tg after 

the second scan is indicative of a reversible chemical reaction and consequently not caused by any 

chemical degradation of the resin (such as hydrolysis). The conditioned BFRP specimens showed 

first-run Tg values of 101, 108, and 113 oC for Types A, B, and C, respectively. The Tg values from 

the second run were 117, 121, and 134 oC for Types A, B, and C, respectively. The increased Tg in 

the second run can be explained by a reversible chemical reaction. 
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4.6.3.7 Moisture Uptake at Saturation of the Conditioned BFRP Bars 

The moisture uptake at saturation was also determined for the specimens conditioned in the alkaline 

solution at 60 °C for 3000 h. The moisture-uptake ratios at saturation for the reference specimens 

were 0.15%, 0.56%, and 0.62% for Types A, B, and C, respectively. The moisture-uptake ratios at 

saturation for the conditioned specimens were 0.16%, 0.49%, and 0.59% for Types A, B, and C, 

respectively. Clearly, the conditioned and reference specimens had similar moisture uptakes. 

4.6.3.8 Microstructural Analysis of the Reference and Conditioned BFRP Bars 

Scanning-electron-microscopy (SEM) observations were performed to investigate microstructural 

changes in the BFRP bars before and after conditioning. The analysis was carried out on a JEOL 

JSM-840A microscope. The specimens were cut in one-inch lengths and placed in cylindrical 

molds, where epoxy resin was cast. After 24 h of curing at room temperature, the samples were 

removed and cut with a low-speed saw equipped with a diamond blade. Then, the specimens were 

polished and coated with a thin layer of gold/palladium in a vapor-deposit process. Thereafter, 

microstructural observations were performed with a JEOL JSM-840A microscope. 

Figure 4–12 presents micrographs of the reference and conditioned BFRP specimens. SEM of the 

reference specimens revealed some delamination or gaps between fibers and the resin (fiber–matrix 

interface). The micrographs show that the worst fiber–matrix interface was observed in Type C, 

where complete separation between fibers and resin was evident. On the other hand, the 

micrographs of the Type A reference specimens revealed no significant issues with the fiber–matrix 

interface. These results can account for the highest moisture uptake measured at saturation for the 

Type C bars. 

The initial status of the fiber–matrix interface (reference specimens) usually gave indications of 

the rate of degradation and the changes in mechanical properties related specifically to the fiber–

matrix interface, such as interlaminar-shear strength. The presence of fiber–matrix delamination or 

voids accelerates degradation, since it allows the alkaline solution to penetrate between the fibers 

and resin, resulting in a higher diffusion of hydroxyl ions in the polymer matrix.  Figure 4–12 

clearly shows the conditioning-related degradation of the fiber–matrix interface in the tested BFRP 

bars. Since the Type C reference specimens showed such significant delamination of the fiber–

matrix interface, the degradation was noticeable in the properties related to the fiber–matrix 
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interface. The reduction in the interlaminar-shear strength of the conditioned Type C specimens 

was 40.2% (59.8% retention). 

 
Reference 

 
3000 h of conditioning 

Type A 

 
Reference 

 
3000 h of conditioning 

Type B 

 
Reference 

 
3000 h of conditioning 

Type C 

Figure 4–12: Micrograph of the unconditioned and conditioned BFRP bars 
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4.6.3.9 Chemical Changes in the BFRP Bars after Conditioning 

Fourier transform infrared spectroscopy (FTIR) was used to identify any chemical 

change/degradation after conditioning. FTIR spectra were recorded with an ABB-Bomen (MB 

series) spectrometer equipped with an attenuated total reflectance device. Thirty-two scans were 

routinely acquired with an optical retardation of 0.25 cm to yield a resolution of 4 cm−1. The 

reference and 3000 h conditioned specimens were investigated.  

Figure 4–13 shows the FTIR analysis of the reference and conditioned BFRP bars. The Type A 

reference and conditioned specimens evidenced very similar spectra. The hydroxyl peak did not 

show any significant changes, which means that the amount of hydroxyl groups present in the 

resins had not increased. This observation confirms that the resins did not degrade chemically when 

the BFRP bars were immersed in the alkaline solution at 60 °C for 3000 h. In the case of Types B 

and C, a very small increase in the peak related to hydroxyl groups (-OH) around 3400 cm-1 was 

observed. This could be due to a slight chemical degradation of the resin matrix through a 

hydrolysis reaction or more probably the presence of alkalis or water from the conditioning 

solution. 

 

Figure 4–13: FTIR spectra of the BFRP specimens 

4.7 Summary and Conclusions 

This paper presented the result of an investigation conducted to characterize newly developed 

basalt-fiber-reinforced polymer (BFRP) bars. The experiments included physical and mechanical 

testing of reference and alkali-conditioned specimens. The testing was conducted according to ACI 
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440.6M (2008) and CAN/CSA S807 (2010) as well as relevant ASTM standard test methods. Based 

on the test results presented herein, the following conclusions can be drawn: 

1. These results confirmed that the basalt-FRP (BFRP) bars meet the requirements of ACI 

440.6M (2008) and CAN/CSA S807 (2010) with respect to physical and mechanical properties. 

The bond strength of the Type A BFRP bars (manufactured for prestressing purposes) obtained 

herein was in agreement with CEP-FIP (1978) values for steel tendons. The long-term testing, 

however, showed significant degradation and reduction in the mechanical properties of the 

alkali-conditioned specimens. 

2. The results confirmed that the basalt fibers and resins used in this study were not affected by 

the conditioning. The strength degradation observed in the BFRP bars was attributed to the 

fiber–matrix interface (sizing), which evidenced poor bonding between the resin and basalt 

fibers, as confirmed by scanning electronic microscopy (SEM). Addressing this aspect is 

essential for producing durable BFRP bars that perform well in concrete environments. 

3. The results obtained herein contribute to developing and enhancing the properties of BFRP 

bars. Further investigations on different BFRP products should be conducted to generate more 

confidence and encourage wider acceptance of this new material, which may lead to 

introducing the BFRP materials into the FRP design codes and standards. 
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CHAPTER 5  

EXPERIMENTAL TESTING OF CONCRETE 

BRIDGE-DECK SLABS REINFORCED WITH 

BASALT-FRP BARS UNDER CONCENTRATED 

LOADS 

Abstract 

Advances in FRP technology have led to the introduction of new basalt-fiber-reinforced-polymer 

(BFRP) bars. This paper presents a research project investigating the behavior of edge-restrained 

concrete bridge-deck slabs reinforced with BFRP bars. The tests included six full-scale edge-

restrained concrete deck slabs simulating a slab-on-girder bridge-deck commonly used in North 

America and one full-scale unrestrained concrete deck slab. The deck slabs measured 3000 mm 

long × 2500 mm wide × 200 mm thick. The test parameters investigated were (1) reinforcement 

type (BFRP and steel); (2) BFRP bar size (12 mm and 16 mm); (3) reinforcement ratio in each 

direction (0.4% to 1.2%); and (4) edge-restraining (restrained or unrestrained [free]). The slabs 

were tested up to failure over a center-to-center span of 2000 mm under single concentrated load 

acting on the center of each slab over a contact area of 600 × 250 mm to simulate the footprint of 

a sustained truck wheel load (87.5 kN CL-625 truck) as specified in Canadian Standards. The 

observed mode of failure for the edge-restrained deck slabs was punching-shear with carrying 

capacities exceeding the design factored load specified by CHBDC. 

Keywords: Fiber-reinforced polymers (FRP), basalt-FRP bars, concrete, bridge, deck slab, design, 

restrained, punching, strain, serviceability, code. 
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5.1 Introduction 

Concrete deck slabs deteriorate faster than any other bridge element because of direct exposure to 

harsh environmental conditions such as freeze–thaw cycles, wet–dry cycles, deicing chemicals, 

and traffic loads, all of which result in the corrosion of steel reinforcement. The magnitude of deck 

cracking and delamination due to corrosion constitutes a major problem when measured in terms 

of rehabilitation costs and traffic disruption. 

Because of their noncorrosive nature, fiber-reinforced-polymer (FRP) reinforcing bars help 

improve the durability of bridge-decks and reduce—if not eliminate—maintenance and repair 

costs. As FRP technology has evolved, it has been implemented in many bridge design codes as 

primary reinforcement. AASHTO (2009) allows the use of glass-FRP (GFRP) bars, while the 

CHBDC (CAN/CSA S6 2014) allows the use of glass-, carbon-, and aramid-FRP (GFRP, CFRP, 

AFRP) bars. The CAN/CSA S6 (2014) provides two different methods for designing bridge-deck 

slabs: (1) the empirical design method and (2) the flexural design method. They set the minimum 

diameter for the GFRP reinforcing bars at 16 mm and the maximum spacing at 300 mm (minimum 

reinforcement of 16 mm @ 300 mm). It should be mentioned that this minimum reinforcement (16 

mm @ 300 mm) is based on many investigations and field applications using GFRP bars with a 

modulus of elasticity around 40 GPa. Some of the currently available GFRP bars and newly 

developed basalt-FRP (BFRP) bars have moduli of elasticity higher than 60 or 65 GPa. 

Developments may yield BFRP bars with moduli of elasticity as high as 70 or 75 GPa. This might 

impact the minimum reinforcement requirements in FRP design codes for bridge-deck slabs if the 

parameter of 16 mm GFRP bars @ 300 mm is replaced based on axial-reinforcement stiffness 

(Ef Af). Since the current FRP design standards (ACI 440.1R 2015; AASHTO 2009; CAN/CSA S6 

2014; CAN/CSA S806 2012) do not yet include any recommendations for BFRP bars, further 

investigation is needed to develop and provide material resistance factors and stress levels at the 

service limit state to optimize designs. 

Several research projects have investigated GFRP reinforcement in concrete bridge-deck slabs 

under static and fatigue loading (El-Gamal et al. 2005; El-Ragaby et al. 2007; Bouguerra et al. 

2011) and bridge barriers under static and impact loading (El-Salakawy et al. 2003b; Ahmed and 

Benmokrane 2011; Ahmed et al. 2013a&b). Moreover, several field applications have been carried 
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out in Quebec: the Joffre Bridge in Sherbrooke, the Wotton Bridge in Wotton, the Magog Bridge 

on Highway 55 North, the Cookshire–Eaton Bridge on Route 108, the Val-Alain Bridge on 

Highway 20 East, and the new bridges on the extension of Highway 410 (El-Salakawy et al. 2003a; 

El-Salakawy et al. 2005; Benmokrane et al. 2007; Ahmed et al. 2014a) and in the United States, 

such as the Morristown Bridge in Vermont (Benmokrane et al. 2006) and the bridges on Pierce 

Street in Lima (Ohio 1999), Salem Avenue in Dayton (Ohio 1999), Rollins Road in Rollinsford 

(New Hampshire 2000), Sierrita de la Cruz Creek in Potter County (Texas 2000), 53rd Avenue in 

Bettendorf (Iowa 2001), Bridge Street in Southfield (Michigan 2001), Highway 151 in Waupun 

(Wisconsin 2005), and Route Y in Boone County (Missouri 2007) (Eamon et al. 2012). Most of 

these projects focused on using GFRP bars for their relatively lower cost compared to other FRPs 

(carbon and aramid). Most of these bridges were constructed with GFRP with moduli of elasticity 

from 40 to 45 GPa. Some of these bridges have been in service for more than 10 years without any 

signs of deterioration or unexpected problems.  

Basalt fibers have high tensile strength and modulus, good chemical resistance, extended operating-

temperature range, and good environmental friendliness. Therefore, basalt fibers are ideally suited 

for applications involving high temperature, chemical resistance, durability, mechanical strength, 

and low water absorption (IinfoMine 2007). In comparison to E-glass FRP, BFRP has higher 

strength and modulus, similar cost, and greater chemical stability. Moreover, it exhibits over five 

times the strength and around one-third the density of commonly used low-carbon steel bars (Wu 

et al. 2012). Few studies, however, have investigated the performance of BFRP reinforcing bars in 

structural testing and field applications. Since the chemical composition of the basalt fibers is 

similar to that of glass fibers—except for the iron oxide that gives basalt fibers their brown/golden 

color—it is expected that the development of new BFRP bars will lead to many applications and 

may result in optimized and cost-effective designs because of BFRP’s high mechanical and 

durability characteristics. 

5.2 Literature Review 

5.2.1 Lab Tests of Bridge-Deck Slabs Reinforced with FRP Bars 

The behavior of steel-RC deck slabs system has been extensively investigated (Hewitt and 

Batchelor 1975; Perdikaris and Beim 1988; Kuang and Morely 1993; Mufti and Newhook 1998) 
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and several code provisions have been implemented. On the other hand, a few studies have 

investigated the behavior of restrained concrete deck slabs reinforced with glass- and carbon-FRP 

bars (Hassan and Rizkalla 2004; El-Gamal et al. 2005; El-Ragaby et al. 2007; Bouguerra et al. 

2011; Zheng et al. 2012a&b). These studies concluded that the primary structural action of slabs 

that resist concentrated wheel loads is not flexion, as traditionally believed, but a complex internal 

membrane stress state referred to as an internal arch-action mechanism (Mufti and Newhook 1998). 

The arch-action creates an internal compressive dome and the resultant failure mode becomes 

punching-shear. Figure 5–1 clarifies the arching action in restrained bridge-deck slabs. It was 

concluded that the reinforcement content in deck slabs can be reduced significantly and satisfy both 

serviceability and strength requirements. These studies, along with demonstration projects, 

contributed to incorporating FRP as the main reinforcement in bridges (AASHTO 2009; CAN/CSA 

S6 2014). 

 

Figure 5–1: Arching action mechanism in slab-on-girder concrete deck slabs 

Khanna et al. (2000) experimentally investigated the influence of each layer of reinforcement and 

reinforcement type (steel and GFRP) on the behavior of RC deck slabs. The test model was a 

12.0 m long × 175 mm thick slab cast compositely on two steel beams spaced at 2.0 m. The slab 

model was conceptually divided into four segments (each 3.0 m long). All the segments had the 

same axial-reinforcement stiffness in the bottom transverse direction and different reinforcement 

configurations in the other directions. Each segment was tested under concentrated load, simulating 

the dual-tire footprint (250 × 500 mm) of a typical commercial vehicle. All the segments failed in 

a punching-shear mode at similar load values. The tested slabs confirmed that (i) only the bottom 

transverse reinforcement influences the load-carrying capacity and deflection behavior of a 
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reinforced concrete deck slab and (ii) the stiffness, not the strength, of the bottom transverse 

reinforcement is of paramount importance, (iii) the results validated and supported the 

competitiveness of the proposed FRP design compared to the conventional steel design. El-Gamal 

et al. (2005) investigated the behavior of restrained concrete bridge-deck slabs reinforced with 

GFRP, CFRP, and steel bars at different reinforcement ratios. Six full-scale deck slabs 3000 mm 

long × 2500 mm wide × 200 mm thick were constructed and tested to failure. The deck slabs were 

supported on two steel beams spaced 2000 mm center-to-center and were subjected to a monotonic 

single concentrated load over a contact area of 600 × 250 mm to simulate the footprint of sustained 

truck wheel load (87.5 kN CL-625 truck) acting on the center of each slab. It was observed that (i) 

the mode of failure for all deck slabs was punching-shear with carrying capacities more than three 

times the design factored load specified by the CHBDC (CAN/CSA S6 2014) and (ii) the maximum 

measured crack widths and deflections at service load were below the allowable code limits. Zheng 

et al. (2012a&b) studied the structural behaviors of GFRP reinforced concrete slabs with lateral 

restraining, such as bridge-deck slabs. The restrained slabs exhibited arching action or compressive 

membrane action (CMA), which positively impacts service behavior such as deflection, cracks 

width, and ultimate capacity. It is worth mentioning that the common mode of failure of the tested 

edge-restrained deck slabs is punching-shear failure similar to that of the two-way slabs such as 

those reported by Matthys and Taerwe (2000), El-Ghandour et al. (2003), Ospina et al. (2003), 

Zaghloul (2007), Lee et al. (2009), Nguyen-Minh and Rovnak (2013), Dulude et al. (2013), and 

Hassan et al. (2013a&b). 

5.2.2 Basalt-FRP Bars for Concrete Structures and Bridge-Decks 

Continuous efforts in development and innovation in the fiber-reinforced-polymer (FRP) 

technology are being deployed for using new types of fibers, such as basalt fibers, in addition to 

the commonly used glass and carbon fibers. Basalt-fiber-reinforced polymer (BFRP) is expected 

to provide benefits that are comparable or superior to other types of FRP, while being significantly 

cost effective (Parnas et al. 2007; Wei et al. 2010; Lopresto et al. 2011; Wang et al. 2012). An 

extensive experimental investigation is being conducted at the University of Sherbrooke (Quebec, 

Canada) to develop and investigate the short- and long-term performance of newly developed 

BFRP bars. The investigation includes five different types of BFRP bars and one type of BFRP 

tendon. The preliminary results of this investigation (Vincent et al. 2013; Elgabbas et al. 2013; 
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Elgabbas et al. 2014; Benmokrane et al. 2015) confirmed the feasibility of producing new BFRP 

bars for structural concrete elements with physical and mechanical properties that meet ACI 

440.6M (2008) and CAN/CSA S807 (2010) requirements. The current FRP design codes and 

guides (ACI 440.1R 2015; AASHTO 2009; CAN/CSA S6 2014; CAN/CSA S806 2012), however, 

do not include any recommendations for the BFRP bars yet due to the lack of available studies and 

results. 

The main objective of this paper is to experimentally investigate full-scale concrete bridge-deck 

slabs internally reinforced with BFRP bars under concentrated loads simulating truck wheel loads. 

This paper also highlights the overall performance of BFRP compared to the well-established 

results for steel, GFRP, and CFRP reinforcement in such structural elements. 

5.3 Experimental Program 

5.3.1 Material Properties 

Reinforcing bars: BFRP bars of 12 and 16 mm diameter, as shown in Figure 5–2, were used in 

this study. The BFRP bars were fabricated using a pultrusion process in a vinylester resin with fiber 

contents of 79.2% and 80.0% for 12 and 16 mm bars, respectively. The bars had a deformed surface 

with helical ribs to increase the bond between the bar surface and the surrounding concrete. The 

tensile properties of the BFRP bars were determined by testing five representative specimens of 

each diameter according to ASTM D7205 (2011). The mean tensile strength and the modulus of 

elasticity of the tested BFRP bars were 1760 and 1724 MPa, and 69.3 and 64.8 GPa for the 12 and 

16 mm diameter bars, respectively. The reference slab was reinforced with 15M steel bars. 

Table 5–1 summarizes the tensile properties of the FRP and steel bars. 

 

Figure 5–2: 12 and 16 mm diameter Basalt-FRP reinforcing bars 
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Table 5–1: Mechanical properties of BFRP and steel bars 

Reinforcement db (mm) Af (mm²) Ef (GPa) ffu (MPa) ffu 
c (MPa) 𝛆fu (%) 𝛆fu 

c (%) 

BFRP Bars 
12.0 113.1 69.3±0.5 1760±38.8 1643 2.54±0.10 2.24 

16.0 201.1 64.8±3.3 1724±63.6 1633 2.67±0.17 2.16 

Steel Barsa 15M 200.0 200.0 fy
 b = 450 --- 𝛆y

 b = 0.20 --- 

a The tensile properties of the steel bars were provided by the manufacturer. 

b fy and 𝛆y are yield strength and strain of the steel bars, respectively. 

c
 The guaranteed tensile strength and the guaranteed strain of BFRP bars (Mean value - 3× standard deviation) 

according to ACI 440.1R (2015). 

Concrete: The slabs were constructed using ready-mix, normal-weight concrete with a target 28-

day compressive strength of 40 MPa. The mix proportions for a cubic meter of concrete was 

350 kg/m3 of cement, 813 kg/m3 of natural sand, 1032 kg/m3 of aggregate in size ranging from 5 

to 20 mm (20 mm maximum nominal size), a water-to-cement ratio (w/c) of 44%, and an air-

entrainment ratio of 5% to 8%. Once poured, the concrete was compacted with an electrical vibrator 

and leveled manually. The curing process was initiated after two hours by covering the concrete 

surface with wet burlap and polythene sheet for 10 days. The concrete compressive strength for 

each batch was determined by testing three 150 × 300 mm cylinders. The tensile strength was 

determined from split-cylinder testing on three 150 × 300 mm cylinders. Table 5–2 shows the 

concrete compressive and tensile strengths on the day of testing. 

5.3.2 Test Specimens 

The test specimens were designed to simulate commonly used slab-on-girder bridges. The 

geometry of the specimens depicts the deck slabs of the Wotton Bridge (Quebec, Canada) (El-

Salakawy et al. 2003a) and was in agreement with past tests conducted at the University of 

Sherbrooke with GFRP and CFRP bars (Gamal et al. 2005). The experimental testing included 

seven full-scale concrete deck slabs measuring 3000 mm long × 2500 mm wide × 200 mm thick, 

as shown in Figure 5–3. The slab thickness was selected to keep the ratio of supporting-beam 

spacing to slab thickness to less than 18 and to represent the most commonly used dimensions for 

concrete bridge-deck slabs in Canada. Slab length, however, was selected to avoid one-way shear 

before punching failure and to include the slab area affected by the wheel load. This area was 

assumed to be based on the outer diameter of the wedge formed during punching failure (Newhook 
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1997; El-Gamal et al. 2005). Six slabs were provided with two holes of 27 mm in diameter and 

spaced 160 mm on centers with a 250 mm pitch in the longitudinal direction at the restrained edges. 

This edge restraining was needed to induce the arching action or compressive-membrane action 

(CMA), shown in Figure 5–1, as the case in actual bridges. On the other hand, one slab had no 

holes along the edges to be simply supported during the test. The concrete cover—constant for all 

the slabs—was equal to 30 mm and 25 mm at the top and bottom (CAN/CSA S6 2014). The test 

parameters investigated herein were: (i) reinforcement type (steel and BFRP); (ii) bar size (12 mm 

and 16 mm); (iii) reinforcement ratio in each direction (0.4% up to 1.2%); and (iv) edge restraining 

(restrained and unrestrained [free]). For comparison, two slabs reinforced with GFRP and CFRP 

(El-Gamal et al. 2005) with the same dimensions and loading procedure were presented. 

Table 5–2 summarizes the concrete and reinforcement details. The first slab (S1-S) was reinforced, 

top and bottom, with 15M steel bars spaced at 150 mm in the main direction (transverse direction) 

and reinforced, top and bottom, with 15M steel bars spaced at 225 mm in the secondary direction 

(longitudinal direction). The slab had a reinforcement ratio of 0.80% in the bottom transverse 

direction. The slab’s reinforcement was designed to simulate the deck slabs in the Wotton Bridge, 

Quebec, Canada (El-Salakawy et al. 2003a). The second slab (S2-B) was reinforced with 16 mm 

BFRP bars arranged exactly as in S1-S (same reinforcement ratio of BFRP and steel). The amount 

of reinforcement in this slab (S2-B, 16 mm @150 mm) satisfies the CHBDC’s empirical and 

flexural design methods (CAN/CSA S6 2014), assuming that the material safety factor and the 

stress level in the BFRP bars at service load level are the same as GFRP bars as provided in 

Appendix A. The third slab (S3-B) was designed to have the same reinforcement ratio and 

approximately the same axial-reinforcement stiffness as S2-B by replacing the 16 mm BFRP bars 

with 12 mm BFRP bars. The fourth slab (S4-B) had the same bottom reinforcement as S2-B but 

without top reinforcement. The fifth slab (S5-B) was designed to have approximately the same 

axial-reinforcement stiffness as slabs G-S2 and C-S2 (El-Gamal et al. 2005). The last two slabs 

(S6-B and S7-B) were reinforced with the same BFRP bars: 16 mm spaced 300 mm in the 

orthogonal direction, top and bottom (minimum reinforcement as per the CHBDC (CAN/CSA S6 

2014)). It should be mentioned that, if the minimum reinforcement (assume 16 mm @ 300 mm 

with a modulus of 40 GPa) in the CHBDC (CAN/CSA S6 2014) is replaced based on axial-

reinforcement stiffness (Ef Af) with 12 mm BFRP bars as used herein, the equivalent spacing 

becomes 300 mm (12 mm @ 300 mm with BFRP bars with a modulus of 70 GPa). All the slabs 
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were edge restrained except S7-B which was simply supported (free). Figure 5–3 shows the 

geometry and the reinforcement details, while Figure 5–4 shows the slab construction. 

5.3.3 Instrumentation 

Figure 5–5 illustrates the typical instrumentation on the slabs. Deflections were monitored using 

seven linear variable differential transducers (LVDTs), with a precision of 0.001 mm, installed on 

the top surface of the deck slabs (D1 to D7), as shown in Figure 5–5 (a). This figure also shows 

that two LVDTs (D8 and D9) were installed on both sides of the slabs to monitor any movement 

of the slab edges during testing. The concrete compressive strains at different locations on the top 

surface of the slabs were measured with four electrical strain gauges. Figure 5–5 (b) shows the 

location of the gauges. Several electrical strain gauges were also installed on the reinforcing bars 

to record the strains. Figure 5–5 (b) also shows the position of strain gauges on the top and bottom 

reinforcing bars. The initial crack widths were measured using a 50X handheld microscope. High-

precision LVDTs (0.001 mm) were installed at the position of the first three cracks to record crack-

width propagation with increasing load, as depicted in Figure 5–5 (c). Moreover, six electrical 

strain gauges were used to measure strains at different positions on the steel cross frame at the top 

and bottom, as shown in Figure 5–5 (d). An automatic data-acquisition system connected to a 

computer was used to monitor loading, deflections, and strains in concrete and reinforcing bars. 
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(a) Geometry 

 

(b) Reinforcement Details 

Figure 5–3: Geometry and reinforcement details of the tested concrete deck slabs 
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(a) Formwork (b) Cages 

  

(c) Assembly (d) Casting 

  

(e) Surfacing (f) De-molding 

Figure 5–4: Construction of the deck slabs 



Chapter 5: Concrete Bridge-Deck Slabs Reinforced with BFRP Bars 

 

144 

Table 5–2: Concrete and reinforcement details of the bridge-deck slabs 

IDa 
f'

c
 c 

(MPa) 

ft
 d 

(MPa) 

Bottom Reinforcement Top Reinforcement 

Transverse direction Longitudinal direction Transverse direction Longitudinal direction 

Reinforcemente 
ρ 

(%) 

ρ×E  

(MPa) 
Reinforcemente 

ρ 

(%) 

ρ×E  

 (MPa) 
Reinforcemente 

ρ 

(%) 

ρ×E 

(MPa) 
Reinforcemente 

ρ 

(%) 

ρ×E 

(MPa) 

S1-S 48.81 

±1.43 

4.70 

±0.17 

15M@150 mm 0.80 1606 15M@225 mm 0.59 1184 15M@150 mm 0.83 1655 15M@225 mm 0.61 1225 

S2-B 16 mm@150 mm 0.80 520 16 mm@225 mm 0.59 383 16 mm@150 mm 0.83 536 16 mm@225 mm 0.61 396 

S3-B 42.20 

±1.58 

4.24 

±0.06 

12 mm@85 mm 0.79 523 12 mm@125 mm 0.58 383 12 mm@85 mm 0.81 539 12 mm@125 mm 0.60 395 

S4-B 16 mm@150 mm 0.80 520 16 mm@225 mm 0.59 383 -- -- -- -- -- -- 

S5-B 
47.90 

±1.14 

4.44 

±0.09 

16 mm@100 mm 1.20 780 16 mm@170 mm 0.78 507 16 mm@105 mm 1.18 766 16 mm@120 mm 1.15 743 

S6-B 16 mm@300 mm 0.40 260 16 mm@300 mm 0.44 288 16 mm@300 mm 0.41 268 16 mm@300 mm 0.46 297 

S7-Bb 16 mm@300 mm 0.40 260 16 mm@300 mm 0.44 288 16 mm @300 mm 0.41 268 16 mm@300 mm 0.46 297 

a Slab number (S1 to S7) followed by reinforcement type (S: steel; B: basalt FRP). 

b Simply supported slab. 

c f'
c: Concrete compressive strength. 

d ft Concrete tensile strength. 

e Bar diameter and spacing in mm (diameter in mm @ spacing in mm). 

mailto:No.15@150
mailto:No.15@225
mailto:No.15@150
mailto:No.15@225
mailto:No.15@225
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a) LVDTs and strain gauges on the top 

concrete surface 

c) Strain gauges on the top (T) and bottom 

(B) reinforcing bars 

  

b) 50X handheld microscope and LVDTs for 

measuring the crack widths 

d) Strain gauges on the cross frames 

Figure 5–5: Typical instrumentation of test slabs 

5.3.4 Test Setup and Procedure 

The slabs were loaded up to failure over a center-to-center span of 2000 mm under monotonic 

single concentrated load, using a hydraulic jack controlled by a manually operated pump monitored 

with a pressure dial gauge. The load was applied to the slab center with a contact area of 

600 × 250  mm, using a 70 mm thick steel plate to simulate the footprint of a sustained truck wheel 

load (87.5 kN-CL-625 truck) as specified by the CHBDC (CAN/CSA S6 2014). To create uniform 

stresses over the loading area, a 10 mm thick neoprene sheet was placed between the loading plate 

and concrete surface. The slabs were supported on two steel girders simulating the setup used by 
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El-Gamal et al. (2005) to resist the maximum applied load without exceeding the permissible 

stresses and deflections. To ensure full contact between the bottom surface of concrete slab and top 

surface of the steel girders, neoprene pads of 3 mm thick and 100 mm wide were inserted between 

them. The two steel girders were braced together with three steel cross frames (bracing) spaced at 

1500 mm. The steel girders were supported by two steel cross beams spaced 3000 mm in the 

longitudinal direction. The loads were transferred to the laboratory strong floor through four steel 

legs at the edge of the cross beams. Figure 5–6 (a) shows the test setup under the loading frame. 

Six of the seven slabs were tested after being restrained on the longitudinal edges and the last slab 

was simply supported. The restrained slabs were tied to the top flange of the steel girder in the 

longitudinal direction with 22 mm diameter threaded anchors, which were fitted into holes through 

the slab thickness, as shown in Figure 5–6 (b). The steel anchors represent the shear connectors 

between the girder and deck slab in the actual bridge. All anchors were hand tightened with a torque 

wrench to a torque moment of 160 N.m in order to make a constant partially edges restrain for all 

slabs and make it uniform along the slab edges. The torque moment was calculated to generate 

horizontal shear friction between the steel girder and bottom surface of the slab higher than the 

horizontal component of the arching stress and to prevent lateral movement between the slab and 

girder. The bridge-deck slabs were tested similarly to past tests at the University of Sherbrooke by 

El-Gamal et al. (2005). Steel channels were used on the top face of the concrete slab to prevent 

stress concentration around the holes on the slab edges. In addition, 10 mm thick and 100 mm wide 

neoprene strips were placed between the concrete slab and the steel channel to ensure full contact 

until the end of the test. A hydraulic jack with a capacity of 1000 kN and a ±250 mm stroke was 

used to apply the monotonic load up to failure at a load control rate of 5 kN/min. The hydraulic 

jack was controlled manually with a hand pump monitored with a pressure dial gauge connected 

to the data-acquisition system and monitored with a computer. Figure 5–6 provides an overview 

of the test setup. During the test, the slabs were observed until the first three cracks appeared in the 

transverse direction; the corresponding loads were recorded. The test was paused when each of the 

first three cracks appeared. The initial crack widths were measured manually with a 50X handheld 

electronic microscope and LVDTs were installed at the crack locations. The cracking load was also 

verified in terms of the change in the stiffness of load–deflection and load–strain relationships. The 

load was continuously increased until slab failure. The formation of cracks on the sides and bottom 

surface of the deck slabs and corresponding loads were marked and recorded during the test. 
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(a) Loading system           (b) Deck slab ready for testing 

Figure 5–6: Overview of the test setup 

5.4 Test Results and Discussion 

The test results are presented in terms of the cracking load, cracking pattern, deflections, strains in 

reinforcing bars and concrete, ultimate capacity, and mode of failure. Table 5–3 summarizes the 

test results. In this section, the design service load (Pser) and design factored load (Pf) were 

calculated according to the CHBDC (CAN/CSA S6 2014). The design service load of the deck 

slabs was taken as 1.4 × 0.9 × 87.5 = 110.25 kN, where 87.5 is the maximum wheel load of the 

design truck (87.5 kN CL-625 truck), 1.4 is the impact coefficient, and 0.9 is the live-load 

combination factor. The design factored load was taken as 1.4 × 1.7 × 87.5 = 208.25 kN, where 1.7 

is the live-load combination factor. Axial-reinforcement stiffness (ρ×E) was also used when 

comparing different reinforcing materials. 

5.4.1 Cracking Load and Pattern  

Some transverse cracks were observed in S2-B, S3-B, S4-B, and S6-B as the anchor bolts were 

tightened. These cracks appeared in the slab bottom surface between bolts, then propagated to the 

middle of the slab. These cracks were mainly due to slab deformation in the longitudinal direction 

during anchor tightening. They had no significant effect on slab behavior. Therefore, the cracking 

load was considered to be the applied load corresponding to the appearance of the first longitudinal 

crack. 
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The overall crack patterns at failure for all the slabs were almost similar, despite the different 

reinforcement types and ratios. Figure 5–7 shows the typical crack pattern of selected slabs at 

failure. The first longitudinal cracks on the bottom surface (tension side) appeared directly under 

the loaded area and were oriented in the longitudinal direction parallel to the supporting beams. 

The subsequent cracks propagated in the radial direction away from the loaded area. The cracks on 

the top surface, except for S7-B (simply supported), however, appeared beside the steel channel 

and propagated in arcs far from the slab center with a distance equal to half the supporting span. 

The cracking load ranged between 73.1 to 134.8 kN with average value of 110.7 kN, as listed in 

Table 5–3. It can be noted that the average cracking load was approximately the same as the design 

service load level (110.25 kN) specified in the CHBDC (CAN/CSA S6 2014). The low cracking 

load for S6-B may be related to preexisting cracks that may have occurred during slab handling 

and transportation. Excluding S6-B yielded an average cracking load of 117.03 kN. 

Figure 5–8 provides the crack widths for all the slabs versus the applied load. Table 5–3 gives the 

values of the measured crack widths on the bottom surface at the service and factored load levels, 

as specified in the CHBDC (CAN/CSA S6 2014), as well as at load just before the failure. The 

crack width in S6-B was measured up to 220 kN, at which point, the LVDT malfunctioned. At the 

service load level, the maximum measured crack widths were 0.10 mm, 0.10 mm and 0.35 mm for 

S2-B, S5-B, and S6-B, respectively. These are less than the allowable limits specified by ACI 

440.1R (2015) and the CHBDC (CAN/CSA S6 2014) of 0.5 mm for exterior exposure. The other 

slabs, however, were not cracked at the service load (cracking load was higher than the service 

load). 
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(a) S1-S 

    

(b) S2-B 

   

  (c) S6-B 

    

(d) S7-B 

Figure 5–7: Cracks pattern at failure 
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Table 5–3 and Figure 5–8 show that S1-S (15M steel bars @ 150 mm) exhibited the smallest crack 

width and the lowest number of cracks as a result of having the highest axial-reinforcement 

stiffness (ρ×E). S3-B (12 mm BFRP bars @ 85 mm) and S5-B (16 mm BFRP bars @ 100 mm) 

showed very close load-to-crack-width relationships to that of S1-S, regardless of the significant 

difference in the reinforcement’s axial stiffness (1606 MPa for S1-S, 523 MPa for S3-B, and 

780 MPa for S5-B). This confirms the effect of decreasing the reinforcement spacing on reducing 

crack widths, even when reinforcing bars of low modulus of elasticity are used. Moreover, S2-B 

and S3-B, which had the same axial-reinforcement stiffness, exhibited different load-to-crack-

width relationships. Using 12 mm diameter BFRP bars every 85 mm enhanced the cracking 

performance more than did 16 mm diameter bars spaced at 150 mm. Furthermore, S2-B and          

S4-B—which had the same bottom reinforcement ratio and diameter, but S4-B didn’t have top 

reinforcement—showed the same load-to-crack-width relationship, which indicates that top 

reinforcement had no effect on cracking characteristics. 

In S6-B, which had the minimum reinforcement according the CHBDC (CAN/CSA S6 2014), the 

crack width at the factored load level was 0.52 mm, which is wider than those in S1-S and S2-B to 

S5-B. This was attributed to the larger spacing between bars and the lower cracking load observed 

in this slab. The effect of edge restraining on crack width can be easily identified by comparing 

S6-B (with edge restraining) and S7-B (without edge restraining), which have the same 

reinforcement. At the design factored load, S7-B evidenced a crack width of 0.93 mm, which 

exceeds that in S6-B with edge restraining by 79%. The slope of the load-to-crack-width 

relationships can also clarify the contribution of edge restraining in enhancing the cracking 

performance of the deck slabs, as evidenced in Figure 5–8. 

The comparison of S5-B, G-S2, and C-S2 also indicates that the surface and bundle configurations 

of the bar arrangements impacted on crack width. S5-B showed smaller crack widths than G-S2 

and C-S2 with similar or higher axial-reinforcement stiffness. 
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Figure 5–8: Load-average crack width curves 

5.4.2 Ultimate Capacity and Failure Mode 

Figure 5–7 shows the crack patterns on the bottom and top surfaces of the tested slabs after failure. 

All the slabs showed a brittle punching-shear failure mode around the loaded area where the steel 

loading plate penetrated through the top surface of the slab, creating an elliptical shape passing 

through the corners of the loaded area. The bottom surface had a roughly circular shape with a 

diameter equal to the spacing between the two steel girders. No signs of concrete crushing or bar 

rupture were evidenced, which confirms punching-shear as the failure mode. The ultimate 

punching-shear strengths were 739.6, 548.3, 664.6, 565.9, 716.4, and 575.8 kN for the restrained 

slabs S1-S, S2-B, S3-B, S4-B, S5-B and S6-B, respectively. As expected, the unrestrained slab   

S7-B showed a lower punching-shear capacity of 436.4 kN. The values of punching-shear strength 

for the restrained slabs ranged from 2.63 to 3.55 times the factored design load of 208.25 kN 

recommended by the CHBDC (CAN/CSA S6 2014). This was attributed to the fact that the 

section’s design was based on flexural failure, while the actual failure mode was shear. Moreover, 

the high level of conservativeness is due to the general behavior of the restrained bridge-deck slabs 

and mode of failure. These findings are in agreement with the results reported by Hewitt and 

Btchelor (1975), Perdikaris and Beim (1988), El-Gamal et al. (2005), El-Gamal et al. (2007), and 

Bouguerra et al. (2011) for GFRP- and CFRP-reinforced concrete bridge-deck slabs. The failure 

mode was punching-shear under the concentrated wheel loads rather than flexural failure as 



Chapter 5: Concrete Bridge-Deck Slabs Reinforced with BFRP Bars 

152 

assumed in conventional designs. Furthermore, Hewitt and Batchelor (1975) reported that when a 

deck slab is restrained, there is no need for reinforcement to resist the wheel load due to the 

compression membrane action, which is similar to the arching action in reinforced-concrete beams. 

A minimum amount of reinforcement was proposed for serviceability reasons. This concept was 

adopted by the CHBDC (CAN/CSA S6 2014) through its empirical method. This method does not, 

however, account for any design parameters other than slab effective depth and the modulus of 

elasticity of the reinforcing bars. Ahmed and Benmokrane (2012) concluded that the empirical 

method usually overestimates the bottom transverse reinforcement required. 

Table 5–3 provides the punching-shear capacities for all the tested slabs. S1-S (reinforced with 

15M steel bars @ 150 mm) showed the highest punching-shear capacity (739.6 kN) due to the 

highest axial-reinforcement stiffness (1606 MPa). S5-B (reinforced with 16 mm diameter BFRP 

bars @ 100 mm) showed a punching-shear capacity of 716.4 kN, which is about 97% of that of the 

steel-reinforced counterpart, regardless of the lower axial-reinforcement stiffness (780 MPa). The 

results also confirm that the punching-shear capacity is proportional to the axial-reinforcement 

stiffness: the higher the axial-reinforcement stiffness, the higher the punching-shear capacity. This 

is because increasing the reinforcement ratio (or axial-reinforcement stiffness) controls crack 

width, enhances aggregate interlock, and increases the concrete compression zone (uncracked 

concrete). Since the axial-reinforcement stiffness of S5-B was almost the same as that of G-S2 

(GFRP bars), the punching-shear capacity was almost the same (716.4 kN for S5-B and 712 for   

G-S2). S5-B also evidenced a punching-shear capacity close to that of C-S2 (CFRP bars), where 

the axial-reinforcement stiffness was close. On the other hand, S2-B and S4-B (without top 

reinforcement but with the same bottom reinforcement) showed approximately the same ultimate 

capacity, which implies that the top reinforcement did not impact the punching-shear capacity of 

the deck slabs. This confirms the findings of Khanna et al. (2000) and El-Gamal et al. (2005). 

The effect of membrane action can be determined by comparing the restrained slab (S6-B) with the 

unrestrained slab (S7-B) that had the same concrete strength and reinforcement. The edge 

restraining increased the ultimate capacity by 31.9 % because of the compressive membrane forces. 

It also contributed to reducing deflection and crack width. 
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5.4.3 Reinforcement and Concrete Strains 

Figure 5–9 shows the applied load versus the maximum measured strains in the bottom transverse 

reinforcement as well as in the top surface of concrete in the vicinity of the loading area.       

Table 5–3 provides the strain values at the service design load and factored design load. S1-S 

(reinforced with steel bars) exhibited a yield plateau after 2620 με up to failure. This means the 

slab failed due to punching-shear initiated by the steel yielding. The strains in the deck slabs 

reinforced with BFRP bars, however, varied linearly with increasing load after concrete cracking 

up to failure. On the other hand, the reinforcement strain distribution along the cross section in the 

middle section of the slab in the transverse direction using the strain gauges shown in           

Figure 5–5(c) is presented in Figure 5–10. In Figure 5–10, the strains were typically high in the 

middle of the slab underneath the applied load. The strains decreased proportionally towards the 

slab supports. The strains reached zero or very small compressive values due to the edge restraining 

at the supports. This typical distribution confirms that no debonding of the reinforcement occurred. 

Generally, Figure 5–9 confirms that increasing the reinforcement ratio reduced both tensile and 

compression strains in the bottom reinforcement and concrete top surface, respectively. The effect 

of the reinforcement ratio can be seen in S2-B, S5-B, and S6-B, which had reinforcement ratios of 

0.8%, 1.2%, and 0.4%, respectively. At a load of 576 kN, the strains in the bottom reinforcement 

were 5650, 5039, and 7932 με for S2-B, S5-B, and S6-B, respectively. Increasing the bottom 

transverse-reinforcement ratio by two and three times significantly reduced the measured strains 

by 28.8% and 36.5%, respectively. 

Table 5–3 shows that the measured strains at service load ranged from 92 με to 575 με (tension) 

and -68 με to -425 με (compression) in the bottom transverse reinforcement and top concrete 

surface, respectively. The maximum ratios of the strains at service load to strains at failure were 

approximately 7.2% and 23.3% for the reinforcing bars and concrete, respectively. At the factored 

design load, the strains ranged from 706 με to 4042 με and -240 με to -994 με, respectively. The 

maximum ratios of the strains at the factored load to strains at failure were approximately 37.4% 

and 69.2% for the reinforcing bars and concrete, respectively. This provides a significant warning 

before failure and a safety factor ranging from 3.6 to 8.3 for the restrained slabs and 2.7 for the 

unrestrained slab (S7-B). At failure, the tensile strains in the BFRP reinforcement in the restrained 

deck slabs were less than the guaranteed strains (27.3% to 36.7% of guaranteed strain); the concrete 
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compressive strains were less than 3500 με (CAN/CSA S806 2012) (29.5% to 52.9% of the 

maximum concrete strain). This confirms that neither the rupture of the BFRP reinforcement nor 

concrete crushing occurred before punching-shear failure. 

The maximum measured strains in the BFRP reinforcement in S6-B and S7-B at 436.4 kN (failure 

load of S7-B) were 5904 με and 10816 με, respectively. This represents 27.3% and 50.1% of the 

guaranteed strain of the BFRP bars. This result confirms the significant effect of edge restraining 

on reducing the strain in BFRP bars by 45.4% compared to the unrestrained slab. S2-B and S4-B 

(no top reinforcement but the same reinforcement ratio) showed approximately the same tensile 

strain up to failure. This confirms that the top reinforcement had no significant effect on the 

measured strains. 

On the other hand, a comparison of S2-B and S3-B (same reinforcement ratio with 12 mm and 

16 mm diameter bars) reveals nearly identical load–strain relationships up to about 400 kN. Before 

failure, the smaller reinforcing bars with closer spacing (S2-B) helped control the strains in the 

reinforcing bars and the crack width. In addition, S5-B (BFRP), G-S2 (GFRP), and C-S2 (CFRP), 

which had similar axial-reinforcement stiffness, displayed the same load–strain relationships up to 

failure. 

 

Figure 5–9: Load-strains on the top surface of the concrete and bottom reinforcement 
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Figure 5–10: Distribution of the reinforcement strains at the middle section of the slabs 

5.4.4 Deflection Behavior 

Figure 5–11 provides the applied load versus the maximum deflection at position D2 for all the 

slabs. Neither the vertical load nor the deflection values include the effects of slab self-weight. The 

slabs behaved similarly up to failure and the load–deflection curves were almost bilinear. The pre-

cracking behavior of all the slabs was similar, regardless of reinforcement type, diameter, or ratio. 

This was due to the negligible effect of the reinforcement on the gross moment of inertia in the 

slabs. Unlike the pre-cracking stage, the axial-reinforcement stiffness significant influenced slab 

post-cracking responses until failure. At the same load level, S1-S (reinforced with steel) exhibited 

a lower deflection and higher rigidity than S2-B, S3-B, and S4-B (BFRP bottom reinforcement in 

the transverse direction with the same reinforcement ratio as S1-S). This can be attributed to higher 

axial-reinforcement stiffness, which reduced crack width. 

At the service load level, the maximum measured deflections for S2-B, S5-B, and S6-B 

(reinforcement ratios of 0.8%, 1.20% and 0.40%, respectively) were 1.25, 0.87, and 1.86 mm, 

respectively. At failure, however, the maximum measured deflections for the same slabs were 

19.83, 16.96, and 24.86 mm, respectively, as given in Table 5–3. Increasing reinforcement ratio 

two and three times reduced the deflection by 32.8% and 53.2% at service load, respectively, and 

by 20.2% and 31.8% at failure, respectively. 
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In addition, S5-B (BFRP) had deflection values less than G-S2 (GFRP) with similar axial-

reinforcement stiffness. This may be attributed to the closer bar spacing in S5-B and the bundled 

bar configuration of G-S2. Furthermore, S6-B and S7-B showed a remarkable difference in their 

behavior, with S7-B exhibiting higher deflection and lower rigidity compared to the other slab due 

to the absence of end restraining. 

 

Figure 5–11: Load-maximum deflection curves 
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Table 5–3: Summary of the test results and comparison with theoretical prediction of the punching-shear capacities  

ID 
f'

c 

(MPa) 

Pcr 

(kN) 

Pmax 

(kN) 

Deflection (mm) FRP Strain (με) Concrete Strain (με) Crack Width (mm) Pmax. exp./P max. pred. 

Pserv PFact Pmax Pserv PFact Pmax Pserv PFact Pmax Pserv PFact Pmax 
CSA 

(2012) 

ACI 

(2015) 

S1-S 
48.81 

112.0 739.6 0.69 2.19 14.68 149 627 2645 -96 -340 -1285 -- 0.09 1.16 -- -- 

S2-B 105.3 548.3 1.25 4.14 19.83 424 1595 7563 -149 -555 -1104 b 0.10 0.42 1.82 0.92 1.53 

S3-B 
42.20 

134.8 664.6 0.94 3.34 20.36 340 1640 6109 -233 -647 -1851 -- 0.19 0.94 1.13 1.86 

S4-B 120.5 565.9 1.08 3.41 21.37 396 1497 7017 -171 -485 -1486 -- 0.29 1.26 1.00 1.64 

S5-B 

47.90 

108.6 716.4 0.87 2.53 16.96 92 706 5888 -68 -240 -1032 0.10 0.19 1.16 1.06 1.67 

S6-B 73.1 575.8 1.86 5.58 24.86 575 2186 7932 -425 -788 -1826 0.35 0.52 N.A c 1.22 2.23 

S7-B 121.0 436.4 1.93 11.56 35.49 381 4042 10815 -149 -994 -1437 -- 0.93 5.81 0.93 1.69 

G-S2 a 
44.30 

132 712 1.20 3.02 21.58 329 1317 5403 -189 -470 -1914 0.30 0.46 1.47 -- -- 

C-S2 a 145 799 1.14 3.62 24.59 177 91041 6814 -165 -574 -2000 0.25 0.36 1.36 -- -- 

Pcr and Pmax are cracking and failure loads, Service (Pserv) and factored (PFact) design loads = 110.25 and 208.25 kN, respectively, [CL-625 Truck] (CAN/CSA S6 

2014). 

a Slabs G-S2 and C-S2 were tested by El-Gamal et al. (2005). 

b Strain gauges malfunctioned after that load. 

c Strain at 514.5 kN (LDVT malfunctioned before failure).
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5.5 Comparison of Measured and Predicted Punching Capacities 

The punching-shear capacities of the BFRP-reinforced slabs were predicted using the available 

punching-shear equations in CAN/CSA S806 (2012) and ACI 440.1R (2015) and compared against 

the experimental results. 

According to CAN/CSA S806 (2012), the punching-shear strength is the smallest of Eqns. (5-1) to 

(5-3). 

 
1

' 3
2

1 0.028c c f f c o

c

V E f b d 


   
    

  
       (5-1) 

 
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' 30.19 0.147s
c c f f c o

o

d
V E f b d

b


 

  
   

  
       (5-2) 

 
1

' 30.056c c f f c oV E f b d         (5-3) 

where fc
' is the specified concrete compressive strength; bo is the perimeter of the critical section at 

a distance of d/2 from the concentrated load; and d is the distance from the extreme compression 

fiber to the centroid of the tension reinforcement; λ is a factor to account for concrete density; αs is 

a factor that adjusts Vc for support location; and βc is the ratio of the long side to short side of the 

concentrated load or reaction area. 

ACI 440.1R (2015) provided Eq. (5-4) to calculate the punching-shear capacity of concrete slabs 

reinforced with FRP bars or grids. This equation considers the effect of reinforcement stiffness to 

account for the punching-shear capacity of concrete slabs as follows: 

'4

5
c c oV f b c        (5-4) 

 
2

2 f f f f f fk n n n            (5-5) 

where c is the neutral axis depth (mm) of the cracked transformed section; c = k d; and nf is the 

modular ratio. 
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Table 5–3 provides the ratios between the experimentally measured and predicted punching-shear 

capacities. The punching-shear predictions with the ACI 440.1R (2015) equation yielded very 

conservative predictions with an average experimental-to-predicted ratio of 1.77±0.25. A similar 

high level of conservativeness was reported for GFRP reinforced-concrete deck slabs (Bouguerra 

et al. 2011) and two-way slabs (Dulude et al. 2013). Conversely, CAN/CSA S806 (2012) equations 

yielded reasonable yet conservative predictions with an average experimental-to-predicted ratio of 

1.04±0.12. Dulude et al. (2013) and Hassan et al. (2013a&b) determined that CAN/CSA S806 

(2012) accurately predicted the punching-shear capacity of FRP-RC slabs. Thus, it can be 

concluded that, similar to slabs reinforced with carbon-, glass-, and aramid-FRP reinforcement, the 

punching-shear capacity of concrete slabs with BFRP reinforcement can be predicted with current 

FRP design provisions. 

5.6 Summary and Conclusion 

This paper presents a research project aimed at investigating the performance of full-scale edge-

restrained concrete bridge-deck slabs reinforced with basalt-fiber-reinforced-polymer (BFRP) bars. 

The tests included six full-scale, edge-restrained concrete deck slabs simulating an actual slab-on-

girder bridge-deck commonly used in North America and one full-scale unrestrained concrete deck 

slab. The deck slabs measured 3000 mm long × 2500 mm wide × 200 mm thick. The slabs were 

tested up to failure over a center-to-center span of 2000 mm under a single concentrated load acting 

on the center of each slab over a contact area of 600 × 250 mm to simulate the footprint of sustained 

truck wheel load (87.5 kN CL-625 truck, CAN/CSA S6 2014). Based on the test results presented 

and discussed herein, the following conclusions have been drawn: 

1. Similar to past findings for steel-, GFRP-, and CFRP-reinforced concrete bridge-deck slabs, 

the BFRP-reinforced concrete bridge-deck slabs evidenced punching-shear failure at 

corresponding loads higher than the factored designed loads provided by the CHBDC 

(CAN/CSA S6 2014). 

2. The bottom transverse-reinforcement ratio was the main parameter affecting the general 

behavior (strains, crack width, deflection). Increasing the bottom-transverse reinforcement 

ratio significantly enhanced the performance and reduced strains, deflection, and crack width 

at the same load level. 
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3. Regardless of the role of the top reinforcement in actual bridges in controlling the shrinkage 

cracking, the top reinforcement had no significant effect on the structural behavior and 

punching-shear strength of the deck slabs. 

4. Deck slabs with the same reinforcement ratio and axial-reinforcement stiffness (Ef Af), reducing 

BFRP bar size and spacing improved the cracking performance and the induced strains by 

improving the bond between the concrete and reinforcing bars. The use of smaller diameters 

of FRP reinforcement is recommended, assuming that the code’s requirements concerning the 

minimum diameters and maximum bar spacing are satisfied.  

5. Bridge-deck slabs with the same axial-reinforcement stiffness nearly exhibit the same behavior 

and punching-shear capacity. 

6. The design of deck slabs using the flexural method was governed in most cases by the crack-

width limit. Thus, using FRP bars with a high modulus of elasticity, such as BFRP bars, will 

significantly reduce the required amount of reinforcement. 

7. The test results showed that an edge-restraining system increased the ultimate capacity by 31.9% 

and reduced the crack widths, deflection, and FRP strains compared to the unrestrained slab. 

This provides evidence of the development of compressive membrane action (CMA) in the 

laterally restrained concrete deck slabs. 

8. At failure, the tensile strains in the BFRP reinforcement in the restrained deck slabs ranged 

from 27.3% to 36.7% of the guaranteed strains of the BFRP bars. 

9. The current punching-shear provisions in CAN/CSA S806 (2012) provided reasonable yet 

conservative predictions for the punching-shear capacity of BFRP-RC deck slabs. On the other 

hand, the current guide of ACI 440.1R (2015) underestimated the punching-shear strength of 

the tested slabs. These findings are in agreement with past work conducted on glass- and 

carbon-FRP bars. 

10. Considering the results and interpretations presented herein, basalt-FRP (BFRP) reinforcing 

bars can be used in bridge-deck slabs. Such slabs can be conservatively designed according to 
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the flexural design method, assuming a material safety factor and stress level at service limit 

state similar to those of glass-FRP (GFRP) bars until new information is obtained. 

  



Chapter 5: Concrete Bridge-Deck Slabs Reinforced with BFRP Bars 

162 

 

  



 

163 

CHAPTER 6  

EXPEIMENTAL TESTING OF BASALT-FIBER-

REINFORCED POLYMER BARS IN CONCRETE 

BEAMS 

Abstract 

The advances in fiber-reinforced-polymer (FRP) technology have spurred interest in introducing 

new fibers, such as basalt, in addition to the commonly used glass, carbon, and aramid. Recently, 

new basalt-FRP (BFRP) bars have been developed, but research is needed to characterize and 

understand how BFRP bars would behave in concrete members. This paper presents an 

experimental study aimed at determining the bond-dependent coefficient (kb) and investigating the 

structural performance of newly developed BFRPs in concrete beams. A total of six concrete 

beams reinforced with BFRP bars were built and tested up to failure. The test beams measured 

200 mm wide, 300 mm high, and 3100 mm long. Ten, 12, and 16 mm BFRP bars with sand-coated 

surfaces over helical wrapping were used. The beam specimens were designed in accordance with 

Annex S of CAN/CSA S806 (2012) and tested under four-point bending over a clear span of 

2700 mm until failure. The beam test results are introduced and discussed in terms of cracking 

behavior, deflection, and failure modes. The test results yielded an average bond-dependent 

coefficient (kb) of 0.76, which is in agreement with the CAN/CSA S6 (2014) recommendation of 

0.8 for sand-coated bars. Moreover, comparing the results to code provisions showed that 

CAN/CSA S806 (2012) may yield reasonable yet conservative deflection predictions at service 

load for the beams reinforced with BFRP bars. 

Keywords: Beams, basalt-fiber-reinforced polymer (BFRP), sand-coated, deflection, flexure, 

crack width, bond-dependent coefficient, and serviceability.  
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6.1 Introduction 

The service life of reinforced-concrete (RC) structures may be shortened due to the corrosion of 

steel reinforcement and related types of deterioration. Although routine maintenance is needed to 

counter durability-related deterioration, the cost of repairing, rehabilitating, or strengthening of 

steel RC structures can be high (Nkurunziza et al. 2005; Banibayat and Patnaik 2015). New 

materials, such as fiber-reinforced polymer (FRP), which is noncorrodible by nature, can be used, 

especially in harsh environmental conditions, to eliminate corrosion problems. 

The use of glass-, carbon-, and aramid-FRP (GFRP, CFRP, and AFRP) reinforcement has been 

extensively investigated and used as reinforcement in concrete structures. The current design codes 

and guidelines such as ACI 440.1R (2015), CAN/CSA S6 (2014), and CAN/CSA S806 (2012) 

allow the use of GFRP, CFRP, and AFRP as the main reinforcement in concrete structures and 

provide design recommendations for using these bars. Advances in FRP technology, however, 

have resulted in increasing demand to introduce new types of fibers such as basalt fibers. Wu et 

al. (2012) reported that basalt-FRP (BFRP) bars are the most recent FRP composite materials 

developed to enhance the safety and reliability of structural systems compared to GFRP, CFRP, 

and AFRP composites. Nevertheless, fundamental studies on and relevant applications of BFRP 

are still limited because the technology is relatively recent compared to other FRP composites. 

Besides, the current FRP material specifications and design codes do not include BFRP as an FRP 

alternative. 

6.2 Background 

Basalt is a natural inorganic material that is found in volcanic rocks originating from frozen lava, 

with a melting temperature between 1500°C and 1700°C (Militký and Kovačič 1996; Militký et 

al. 2002). The molten rocks are then extruded through small nozzles to produce continuous 

filaments of basalt fiber with diameters ranging from 13 to 20 µm (Pantanik, 2009). BFRP fibers 

lie between glass and carbon for both stiffness and strength (Brik 2003; Sim et al. 2005). The good 

properties of basalt fiber (Patnaik et al. 2004), combined with cost-effective manufacturing, have 

led to the development of BFRP bars as internal reinforcement for concrete structures (Brik 2003; 

Sim et al. 2005; Patnaik et al. 2009; Banibayat and Patnaik 2015). 

http://en.wikipedia.org/wiki/Extrusion
http://en.wikipedia.org/wiki/Micrometre
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BFRP bars have attracted attention due to their cost effectiveness (Sim et al. 2005; Wu et al. 2012), 

high temperature resistance (Brik 2003; Sim et al. 2005), freeze–thaw performance (Wu et al. 

2010; Shi et al. 2011a&b), and ease of manufacture (Sim et al. 2005). They have also been shown 

to perform better in acidic environments than GFRP (Wei et al. 2010). Like GFRP, however, BFRP 

has a low elastic modulus relative to steel and undergoes degradation from alkali solutions (Sim 

et al. 2005). Moreover, basalt fibers can be used for very low temperatures (i.e. about -200°C) up 

to comparatively high temperatures (i.e., in the range of 600°C to 800°C) (Sim et al. 2005; 

Scheffler et al. 2009; Deák and Czigány 2009; Cao et al. 2009; Wu et al. 2012) and has better 

fatigue performance (Wu et al. 2010). In addition, BFRP composites showed potential use in a 

number of areas such as national defense, aerospace, civil construction, transport infrastructure, 

energy infrastructure, petrochemical, fire protection, automobile, shipbuilding, water 

conservation, and hydropower (Wu et al. 2012).  

The flexural performance of concrete beams (80 × 120 × 1200 mm) reinforced with BFRP bars 

8 mm in diameter with a tensile modulus of elasticity of 39.05 GPa was investigated (Urbański et 

al. 2013; Lapko and Urbański 2015). The results showed that the BFRP-RC beams did not fail 

suddenly since the beams transformed into a tie system because flexural reinforcement did not 

rupture. The deflection and crack width of the BFRP-RC beams were significantly higher than that 

of a steel-reinforced beam, due to the lower modulus of BFRP bars compared to that of steel bars. 

The deflection predictions using CAN/CSA S806 (2002) showed good convergence with the 

experimental values in the initial level of load. 

Tomlinson (2015) assessed the flexural and shear performances of concrete beams 

(150 × 300 × 3100 mm) reinforced with BFRP bars and stirrups. The test results showed that the 

standard provisions performed well in predicting the capacity of beams failing in flexure. For 

beams failing in shear, standards were both conservative and nonconservative. 

6.3 Research Project 

With the main objective of integrating BFRP reinforcement into current FRP design codes and 

standards, an extensive research project is being conducted at the University of Sherbrooke, 

Quebec, through the activities of the NSERC Research Chair in FRP Reinforcement for Concrete 
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Infrastructure. The project includes (i) Part I: short- and long-term characterization of newly 

developed BFRP bars; (ii) Part II: structural testing of full-scale concrete bridge-deck slabs 

reinforced with BFRP bars, and (iii) Part III: performance evaluation and bond characteristics of 

BFRP bars in concrete beams. 

Part I included the complete physical and mechanical characterization of different products of 

BFRP bars. It also included long-term durability characterization using accelerated aging 

techniques in different chemical solutions at high temperatures for certain periods of time in 

accordance with ACI 440.6M (2008) and CAN/CSA S807 (2010). The findings of this part 

(Vincent et al. 2013; Elgabbas et al. 2014; Benmokrane at al. 2015; Elgabbas et al. 2015a) 

concluded that it was feasible to produce BFRP bars that would meet the requirements of current 

FRP standards. These findings also contributed to introduce new generations of BFRP with 

enhanced characteristics used for structural testing in the other parts of the study. Parts II and III 

are in progress and the preliminary results of testing the full-scale bridge-deck slabs reinforced 

with BFRP (Elgabbas et al. 2015b) revealed that the structural performance meeting the 

requirements of the Canadian Highway Bridge Design Code (CHBDC) (CAN/CSA S6 2014). 

This paper presents the results of the first set of experimental testing (Part III) of BFRP bars in 

beams. The main objectives of the work presented herein were to investigate the bars’ flexural 

behavior at service and ultimate limit states to evaluate the bond-dependent coefficient (kb) of the 

sand-coated BFRP bars, as the crack-width predictions include kb to account for the bond between 

the FRP bars and the surrounding concrete. 

6.4 Experimental Program 

6.4.1 Material Properties 

Reinforcing bars: Basalt-fiber-reinforced polymer (BFRP) bars (Magmatech Inc.) 10, 12, and 

16 mm in diameter were used as tension reinforcement in the tested beams. The bars had a sand-

coated surface over helical wire wrapping, as shown in Figure 6–1, to enhance the bond between 

the bars and the surrounding concrete. The fiber content of the BFRP bars was 87.2%, 90.6%, and 

89.9% (by weight) for the 10, 12, and 16 mm diameters, respectively. The physical characterization 

of the tested BFRP bars can be found elsewhere (Vincent et al. 2013). On the other hand, 10M 
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steel bars were used as transverse and top reinforcement in the test specimens. Table 6–1 provides 

the mechanical properties of the BFRP and steel bars. It should be mentioned that, the mechanical 

properties of BFRP bars were determined using nominal cross-section areas of 79, 113, and 

201 mm2 for the 10, 12, and 16 mm diameters, respectively. 

 

Figure 6–1: BFRP bars of different diameters 

Table 6–1: Tensile properties and bond strength of BFRP and steel bars 

Type db (mm) Af (mm²) Ef (GPa) ffu (MPa) 𝛆fu (%) 𝛕max (MPa) 

BFRP a 

10  79 44.4 ± 1 1189 ± 74 2.7 ± 0.2 18.0 ± 0.2 

12  113 45.3 ± 1 1162 ± 26 2.6 ± 0.1 13.8 ± 1.9 

16  201 48.7 ± 1 1173 ± 49 2.4 ± 0.1 13.5 ± 1.6 

Steel b 10M 100 200 450 0.2 --- 

a Mechanical properties determined based on nominal cross-sectional areas (Af) shown in this table. 

b Tensile properties of the steel bars were provided by the manufacturer. 

Concrete: The beam specimens were made with ready-mixed, normal-strength concrete with a 

target compressive strength of 40 MPa. A cubic meter of the concrete contained 350 kg of cement, 

813 kg of sand, and 1032 kg of aggregate with a water/cement ratio (w/c) of 44% and an entrained-

air ratio of 5% to 8%. The maximum aggregate size was 20 mm. The six beams were cast using 

the same concrete batch. The concrete strength was determined by testing three 150×300 mm 

16 mm 

10 mm 

12 mm 
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cylinders on the day of beam testing. The average compressive strength was 42.5±0.4 MPa. The 

average tensile strength from split-cylinder testing on 150×300 mm cylinders was 2.83±0.05 MPa. 

6.4.2 Test Specimens 

This investigation included six rectangular concrete beams reinforced with BFRP bars designed in 

accordance with the geometry requirements in Annex S of CAN/CSA S806 (2012). The beams 

measured 200 mm wide, 300 mm high, and 3100 mm long. The beams were fabricated using 

normal-strength concrete and were tested under four-point bending over a clear span of 2700 mm. 

The beams had a clear shear span of 1100 mm (corresponding to a shear-span-to-depth ratio of 

about 4.3), while the distance between the two loading points was 500 mm (constant moment 

zone). The beams were reinforced with two 10M rebar as top reinforcement, while the bottom 

reinforcement was BFRP bars in different configurations (2 or 4 BFRP bars), as shown in   

Table 6–2. 10M steel stirrups spaced at 100 mm were used as shear reinforcement in both shear 

spans to avoid shear failure. To minimize the confining effect of the shear reinforcement on the 

flexural behavior, no stirrups were used in the constant moment zone. The clear concrete cover 

was 38 mm, which was set in accordance with Annex S of CAN/CSA S806 (2012). Figure 6–2 

shows the dimensions and reinforcement details of the tested beams. The test specimens were 

designed to fail by concrete crushing in the constant moment zone. This was accomplished by 

using a reinforcement ratio (ρf) greater than the balanced reinforcement ratio (ρfb), as shown in 

Table 6–2, where the balanced reinforced reinforcement ratio (ρfb) is calculated from Eq. (6-1): 

'

1 1  c cu
fb

fu cu fu

f

f


  

 



         (6-1) 

1 0.85             (6-2a) 

 '

1 0.85 0.05 27.6 / 6.9cf            (6-2b) 

'

1 0.85 0.0015  0.67cf             (6-3a) 

'

1 0.97 0.0025  0.67cf             (6-3b) 

The ratio between the actual and balanced reinforcement ratios ranged from 1.35 to 6.81 according 

to ACI 440.1R (2015) and from 1.09 to 5.52 according to CAN/CSA S806 (2012). The differences 

between actual and balanced reinforcement ratios in ACI 440.1R (2015) and CAN/CSA S806 
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(2012) for the same beams were due to the differences in the stress-block parameters (α1 and β1 as 

shown in Eq. (6-2) for ACI 440.1R (2015) and Eq. (6-3) for CAN/CSA S806 (2012)) and the 

ultimate compressive strain of the concrete (0.003 for ACI 440.1R (2015) and 0.0035 for 

CAN/CSA S806 (2012)). 

Table 6–2: Reinforcement details of beam specimens 

Beam IDa ρf 

ACI 440.1R 

(2015) 

CAN/CSA S806 

(2012) 
(Ef  × Af) 

(kN) 

Reinforcement 

Configuration 
ρfb

b ρf /ρfb ρfb
b ρf /ρfb 

B-2#10mm 0.0030 0.0023 1.35 0.0028 1.09 6677 2-10 mm - 1 layer 

B-4#10mm 0.0060 0.0023 2.89 0.0028 2.34 13954 4-10 mm - 2 layers 

B-2#12mm 0.0044 0.0024 1.83 0.0030 1.48 10251 2-12 mm - 1 layer 

B-4#12mm 0.0086 0.0024 3.95 0.0030 3.20 20501 4-12 mm - 2 layers 

B-2#16mm 0.0078 0.0025 3.13 0.0031 2.54 19591 2-16 mm - 1 layer 

B-4#16mm 0.0154 0.0025 6.81 0.0031 5.52 39183 4-16 mm - 2 layers 

a The first letter “B” indicates concrete beam; the second number “2 or 4” indicates the number of BFRP bars; the 

last number (#10, #12 or #16) indicates the BFRP bar size (in mm). 

b ρfb was calculated based on the concrete compressive strength of 42.5 MPa. 

6.4.3 Instrumentation of Beam Specimens 

Table 6–3 provides instrumentation details. The deflection along the beam’s span was monitored 

using four linear variable differential transducers (LVDTs) with 0.001 mm accuracy, labeled D1 

to D4 (D2 and D3 at mid-span and D1 and D4 at quarter-span). Crack propagation was also 

monitored during testing until failure, and the crack widths of the first three flexural cracks were 

monitored with three LVDTs (D5 to D7). The strains of the longitudinal BFRP reinforcing bars 

were captured with four electrical-resistance strain gauges 6 mm in length (S1 to S4). The 

compressive concrete strains at the mid-span section were measured with two electrical-resistance 

strain gauges 60 mm in length (C1 and C2). To facilitate monitoring the cracks, the beams were 

painted white before the test, revealing pre-existing cracks on the beams. 
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In addition, an automatic-data acquisition system connected to a computer was used to monitor 

loading, deflections, and strains in the concrete and reinforcement. The formation of beam cracks 

and the corresponding loads were marked and recorded during testing until failure. 

 

Figure 6–2: Dimensions and reinforcement details of tested beams: a) elevation; b) cross section 

6.4.4 Test Setup and Procedure 

The simply supported beams were tested under monotonic load in four-point bending until failure. 

Figure 6–3 shows the dimensions and locations of the applied loads, while Figure 6–4 provides a 

photo of the test setup for beam specimens. The load was applied at a stroke-controlled rate of 

1.2 mm/min. During testing, the beams were observed visually until the first crack appeared and 

the corresponding load was recorded. The test was paused when each of the first three cracks 

appeared. The initial crack width of the first three cracks was measured manually with a 50X 

handheld electronic microscope; LVDTs were installed at crack locations to measure crack width 

electronically with increasing load. The load continuously increased until beam failure. 

The cracking load was also verified based on the change in stiffness of the load–deflection and 

load–strain relationships. The concrete and reinforcement strain gauges and deflection and 
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cracking LVDTs were connected to an automatic-data acquisition system connected to a computer 

to record their readings. 

 

Figure 6–3: Schematic drawing of instrumentation 

 

Figure 6–4: Overview of the test setup 

P 

P/2 P/2 
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6.5 Test Results and Discussion 

6.5.1 First Cracking Moment 

All beams behaved similarly until first cracking. Their cracking loads and pre-cracked stiffness 

were essentially the same regardless of reinforcement ratio.  

Table 6–3 provides the cracking moments of all tested beams. The reported cracking moment, 

excluding the self-weight of the beams, ranged from 7.24 to 9.87 kN.m with an average of 8.84 

kN.m. This value is approximately 13.5% of the average ultimate moment capacity. The cracking 

moments, Mcr, were predicted using Eq. (6-4): 

r g

cr

t

f I
M

y


            (6-4) 

where the modulus of rupture of concrete, fr, is calculated from Eq. (6-5a) in accordance with ACI 

440.1R (2015) and Eq. (6-5b) in accordance with CAN/CSA S806 (2012) for normal-density 

concrete. 

'0.62r cf f            (6-5a) 

'0.60r cf f            (6-5b) 

Table 6–3 compares the experimental and predicted values of the cracking moments, Mcr. It should 

be noted that the controlling variable for predicting the cracking moment is the modulus of rupture 

of concrete, fr, which varies according to the design codes and guidelines. As shown in          

Table 6–3, the cracking moment of the BFRP-RC beams was generally 27% and 24% lower, 

respectively, than those predicted with ACI 440.1R (2015) and CAN/CSA S806 (2012). 

CAN/CSA S806 (2012) yielded slightly better predictions of cracking moments than ACI 440.1R 

(2015) because of the former’s smaller modulus of rupture. Similar observations were reported for 

the cracking moments of GFRP-RC beams (El-Nemr et al. 2013) where the predicted cracking 

moments were higher than the measured cracking moments for normal- and high-strength 

concrete. It is worth mentioning that FRP-RC members may crack over time as additional stresses 

developed from shrinkage, temperature effect (Bischoff 2001) and the freezing and melting of 
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water inside the concrete, causing hair cracks and therefore reducing the cracking load. The cracks 

resulting from shrinkage, however, did not significantly affect crack-width prediction (Bischoff 

2001). 

Table 6–3: Cracking, ultimate moments and mode of failure; experimental and theoretical 

Beam 

Experimental (kN.m) ACI 440.1R (2015) CAN/CSA S806 (2012) 

Mcr Mn MOFa 
𝑀𝑐𝑟,𝐸𝑥𝑝.

𝑀𝑐𝑟,𝑃𝑟𝑒.
 
𝑀𝑛,𝐸𝑥𝑝.

𝑀𝑛,𝑃𝑟𝑒.
 MOFb 

𝑀𝑐𝑟,𝐸𝑥𝑝.

𝑀𝑐𝑟,𝑃𝑟𝑒.
 
𝑀𝑛,𝐸𝑥𝑝.

𝑀𝑛,𝑃𝑟𝑒.
 MOFa 

B-2#10mm 9.03 52.84 B.F. 0.75 1.36 C.C. 0.77 1.22 C.C. 

B-4#10mm 7.24 58.30 C.C. 0.60 1.27 C.C. 0.62 1.11 C.C. 

B-2#12mm 9.87 53.72 C.C. 0.81 1.17 C.C. 0.84 1.05 C.C. 

B-4#12mm 9.00 76.89 C.C. 0.74 1.45 C.C. 0.77 1.27 C.C. 

B-2#16mm 8.09 69.74 C.C. 0.67 1.17 C.C. 0.69 1.05 C.C. 

B-4#16mm 9.81 82.06 C.C. 0.81 1.24 C.C. 0.84 1.09 C.C. 

Average 0.73 1.28 --- 0.76 1.13 --- 

Standard deviation 0.08 0.11 --- 0.09 0.09 --- 

a B.F. denotes balanced failure and C.C. denotes crushing of concrete. 

6.5.2 Bond-Dependent Coefficient (kb) Prediction 

Extensive analysis of the bond-dependent coefficient (kb) was conducted by an ACI committee on 

a variety of concrete sections and FRP bars considering the fiber type, resin formulations, and 

surface treatments. Through this study, the average kb values ranged from 0.60 to 1.72, with an 

average of 1.10 reported ACI 440.1R (2015). Data for rough sand-coated FRP-bar surface 

treatments trended toward the lower end of this range. In the absence of experimental test data for 

kb, ACI 440.1R (2015) suggests a conservative value of 1.4 should be used. On the other hand, 

ISIS (2007) recommends a kb of 1.2 in the absence of significant test data, while CAN/CSA S6 

(2014) recommends a kb of 0.8 for sand-coated bars and 1.0 for deformed FRP bars. 

The test results were used to assess the bond-dependent coefficient values (kb). The kb was 

calculated in accordance with Annex S of CAN/CSA S806 (2012) from Eq. (6-6). The calculations 

were based on the first three cracks in each beam. The kb was calculated from each beam at 30% 
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of the nominal capacity, 0.3Mn, (assumed service load) of the tested specimens. This value was 

reported as the service load level by many researchers (Mota at al. 2006; Bischoff 2009; and El-

Nemr et al. 2013). For the calculations, however, the upper crack-width limit of 0.7 mm proposed 

in Annex S of CAN/CSA S806 (2012) was not considered. This was expected to provide more 

conservative kb values.  The individual and average kb measured from each beam is presented in 

Table 6–4. The average kb value was 0.76 for BFRP bars having a sand-coated over helical wire 

wrapping surface. This value is in agreement with the 0.8 for sand-coated FRP bars provided in 

the Canadian Highway Bridge Design Code (CAN/CSA S6 2014). It is worth mentioning that, if 

the upper limit of 0.7 mm for the crack width was considered in the calculations, the average kb 

values would be 0.70. 

 
22

1

2 ² / 2
f

cr b c

f

f h
w k d s

E h
          (6-6) 

Table 6–4: Experimentally determined bond-dependent coefficient (kb) for sand-coated BFRP 

bars 

Beam Crack #1 Crack #2 Crack #3 Average 

B-2#10mm 0.82 0.79 0.71 0.77 

B-4#10mm 0.59 1.02 0.68 0.76 

B-2#12mm 1.14 0.46 0.75 0.78 

B-4#12mm 0.65 0.73 0.77 0.72 

B-2#16mm 0.67 0.66 0.91 0.75 

B-4#16mm 0.57 0.66 1.17 0.80 

Average 0.76 

Standard deviation 0.03 

6.5.3 Crack Propagation and Crack Width 

The crack propagation in the tested beams followed the traditional flexural-cracking patterns in 

simply supported beams, as shown in Figure 6–5. The first cracks always appeared in the constant-

moment region of the beams, starting from the beam bottom surface and extending vertically 

toward the compression zone. As the load increased, the cracks extended further away from the 

constant-moment region towards the supports. Cracks outside the constant-moment region were 
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affected by a combination of flexural and shear stresses, so the cracks tended to gain a horizontal 

component. At high loads approaching to beam nominal capacity, some longitudinal cracks at the 

level of the reinforcement appeared between two cracks, but did not affect the failure mode. These 

cracks are mainly due to the high deformation of the bars and the incompatibility of the 

deformations between two cracks, which led to slippage between the reinforcement bars and 

surrounding concrete (i.e., bond failure). This phenomenon has been reported in past research on 

concrete beams reinforced with FRP bars (Tomlinson and Fam 2015; El-Mogy et al. 2010). 

Moreover, no shear cracks were observed in any of the beams as the overall section capacity was 

less than the expected load that would cause shear cracks to form. Moreover, a horizontal crack 

appeared at the nominal-moment level between the two loading points at the beam top surface due 

to the high strain level in the concrete, which leads to concrete crushing, as shown in Figure 6–5.  

The crack patterns in Figure 6–5 confirm that beams with higher reinforcement ratios exhibited 

improved patterns characterized by better distribution and smaller crack widths, which could be 

captured by comparing the crack patterns of the tested beams to that of beam B-2#10mm (lowest 

reinforcement ratio, B-2#10mm BFRP bars). As expected, increasing the reinforcement ratio while 

keeping the mechanical properties unchanged helped enhance the cracking performance 

(distribution and widths), since it increased beam axial stiffness. 

Unlike steel reinforcement, which can easily corrode when exposed to environmental and harsh 

conditions, FRP reinforcement does not corrode. Consequently, the crack width for FRP-

reinforced concrete (FRP-RC) sections is provided for esthetic considerations rather than corrosion 

prevention. In addition, the allowable crack widths in FRP-RC are normally larger than those of 

steel-reinforced sections. CAN/CSA S806 (2012) and CAN/CSA S6 (2014) specify a service-

limiting flexural-crack width of 0.5 mm for exterior exposure (or aggressive environmental 

conditions) and 0.7 mm for interior exposure. In addition, ACI 440.1R (2015) recommends using 

CAN/CSA S806 (2012) limits in most cases. On the other hand, since there is a direct relationship 

between the strain in the reinforcing bars and crack width, ISIS-M3 (2007) specified 2000 µε as a 

strain limit in FRP reinforcing bars to control crack width. 

Table 6–5 provides the initial and maximum crack widths at 0.30Mn and at 0.67Mn for the first 

three cracks in each beam. The initial crack width decreased as the reinforcement ratio increased. 
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It should be mentioned that, in beam B-2#10mm and B-2#12mm, the LVDTs stopped recording 

the data due to a technical problem, which prevented crack widths at 0.67Mn from being recorded. 

 

 

 

 

 

 

Figure 6–5: Crack patterns and failure modes of the tested beams 

 

 

 

 

 

 

 

 

B-2#10mm 

B-4#10mm 

B-2#12mm 

B-4#12mm 

B-2#16mm 

B-4#16mm 



Chapter 6: Concrete Beams Reinforced with Sand-Coated BFRP Bars 

 

177 

Table 6–5: Experimentally and predicted crack widths 

Beam 
wexp. (mm) 

wexp. /wpred. 

kb=1.4 

ACI 440.1R (2006) 

kb=0.8 

CAN/CSA S6 (2014) 

winitial w0.30Mn w0.67Mn 0.30Mn 0.67Mn 0.30Mn 0.67Mn 

B-2#10mm 0.22 1.44 N/A 0.60 N/A 1.04 N/A 

B-4#10mm 0.12 1.20 2.70 0.73 0.76 1.28 1.33 

B-2#12mm 0.22 1.36 N/A 0.82 N/A 1.42 N/A 

B-4#12mm 0.10 0.78 1.86 0.52 0.55 0.92 0.96 

B-2#16mm 0.17 0.81 2.02 0.66 0.75 1.16 1.31 

B-4#16mm 0.05 0.69 1.27 0.69 0.56 1.21 0.98 

Average 0.67 0.65 1.17 1.15 

Standard deviation 0.10 0.12 0.18 0.20 

6.5.4 Flexural Capacity and Mode of Failure 

The concrete beams were designed to fail by concrete crushing when the concrete reached its 

maximum compressive strain of εcu ≈ 0.0030 and 0.0035 according to ACI 440.1R (2015) and 

CAN/CSA S806 (2012), respectively, before the tensile stress in the FRP bars (ff) reached the 

ultimate capacity (ffu). Consequently, the actual reinforcement ratio (ρf) was greater than the 

balanced reinforcement ratio (over-reinforcement section). This is the most commonly used design 

concepts for concrete section reinforced with FRP bars. The balanced reinforcement ratios (ρfb) 

were calculated with Eq. (6-1). The terms (α1) and (β1) were calculated from Eq. (6-2) for ACI 

440.1R (2015) and from Eq. (6-3) for CAN/CSA S806 (2012). 

Table 6–3 presents the flexural capacity (Mn) and mode of failure of the tested beams. The tested 

beams failed by concrete crushing, except beam B-2#10mm, in which the actual reinforcement 

ratio was close to the balanced ratio as calculated according to CAN/CSA S806 (2012). The 

measured compressive strain in the concrete at failure was 3316 με, while the BFRP bars ruptured 

at 26205 με, which is almost equal to the ultimate strain of the BFRP bars (27000 με). These strain 

measurements imply a balanced failure in which the concrete and BFRP failed simultaneously 

(compressive failure in the concrete and rupture of the BFRP bars). 



Chapter 6: Concrete Beams Reinforced with Sand-Coated BFRP Bars 

 

178 

Moreover, Table 6–3 shows that the higher reinforcement ratio led to an increase in the ultimate 

capacity. Beam B-2#10mm (ρf = 0.3%) failed at 52.84 kN.m by balanced failure, while B-4#10mm 

(ρf = 0.6%) failed at 58.3 kN.m (10.3% higher than B-2#10mm) due to concrete crushing. Doubling 

the reinforcement ratio in B-4#12mm, compared to B-2#12mm, increased the capacity from 53.72 

to 76.89 kN.m (increased by 43.13 %) where both beams failed due to concrete crushing. Similarly, 

B-2#16mm and B-4#16mm failed at 69.74 and 82.06 kN.m, respectively, (increased by 17.67%). 

It should be mentioned that the effective depth of the beams with 4 BFRP bars in tension was less 

than those with 2 BFRP bars as the 4 BFRP bars were placed in two layers. These reinforcement 

configurations have an effect on specimen flexural capacity. 

Considering the beams with one reinforcing layer of BFRP bars (B-2#10mm, B-2#12mm, and      

B-2#16mm), the ultimate capacities were 52.84, 53.72, and 69.74 kN.m for B-2#10mm (ρf = 

0.3%), B-2#12mm (ρf = 0.43%), and B-2#16mm (ρf = 0.77%), respectively. Compared to                 

B-2#10mm, the increases in the flexural capacities were 1.67% and 31.98% for B-2#12mm and 

B-2#16mm, respectively. Similar behavior was observed for the beams with two layers of BFRP 

bars (B-4#10mm, B-4#12mm, and B-4#16mm). The ultimate capacities were 58.30, 76.89, and 

82.06 kN.m for B-4#10mm (ρf = 0.6%), B-4#12mm (ρf = 0.86%), and B-4#16mm (ρf = 1.54%), 

respectively. Compared to B-4#10mm, the increases in the flexural capacities were 31.89% and 

40.75% for B-4#12mm and B-4#16mm, respectively. El-Nemr et al. (2013) reported similar 

behavior for GFRP bars when increasing ρf by 3 to 4 times resulted in an average increase of 83.5% 

in the load-carrying capacity. 

Furthermore, B-4#12mm and B-2#16mm with close axial reinforcement stiffness (Ef Af)         

(20501 kN and 19591 kN, respectively) exhibited similar flexural capacities (76.89 kN and 

69.74 kN). The difference between the flexural strengths of both beams was 10%, which implies 

that beams with similar Ef Af should exhibit similar behavior and flexural capacity (assuming the 

surface configuration of the bars have not been changed). This has been reported by many authors 

for other performances such as shear (El-Sayed et al. 2006; Ahmed et al. 2010a&b); such, however, 

is beyond the scope of this manuscript. 

The ultimate capacity of the test specimens was predicted using the strain compatibility approach 

in ACI 440.1R (2015) and CAN/CSA S806 (2012) and compared to the measured values. 
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Table 6–3 shows the experimental-to-predicted ultimate capacity of the tested beams. Generally, 

both the ACI 440.1R (2015) and CAN/CSA S806 (2012) prediction equations underestimated the 

flexure capacity of BFRP-RC beams. The average experimental-to-predicted ultimate capacities 

were 1.28±0.11 and 1.13±0.09 for ACI 440.1R (2015) and CAN/CSA S806 (2012), respectively. 

The difference between the experimental ultimate capacities and the predicted capacities of ACI 

440.1R (2015) and CAN/CSA S806 (2012) was related to the negligence of the compression 

strength contribution of the top steel bars (Maranan et al. 2015). Moreover, the difference between 

ACI 440.1R (2015) and CAN/CSA S806 (2012) was related to the β1 factor and the assumed strain 

at ultimate which is 0.003 for ACI 440.1R (2015) and 0.0035 for CAN/CSA S806 (2012). 

6.5.5 FRP Reinforcement and Concrete Strain 

Table 6–6 presents the average mid-span tensile strains in the BFRP bars at positions (S3) and 

(S4), and the average compressive strains in concrete at positions (C1) and (C2) versus the applied 

moment until failure. The relationships were typical bilinear curves with a sharp increase in the 

reinforcement strains, especially in the beams with low reinforcement ratios, which reflects the 

sudden change in the stiffness at cracking. This is in agreement with the results reported for 

different types of FRP bars in concrete beams (Kassem et al. 2011; El-Nemr et al. 2013).  

Figure 6–6 shows the similar pre-cracking responses of all the tested beams, as well as the 

significant post-cracking increases in the BFRP tensile strains until failure due to the reduced post-

cracking stiffness of the beams. Moreover, the plotted data shows that, after beam cracking, the 

reinforcement tensile strains varied linearly with the increased load up to failure. 
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Figure 6–6: Moment reinforcement and concrete-strain relationships 

Table 6–6 shows the strains of BFRP bars and concrete at 30% of the nominal capacity (0.3Mn) 

and nominal capacity (Mn). The tested beams failed by concrete crushing, except beam B-2#10mm, 

in which the actual reinforcement ratio was close to the balanced ratio calculated according to 

CAN/CSA S806 (2012). It is worth mentioning that over-reinforced section design is the most 

common and recommended design for FRP-RC sections (CAN/CSA S806 2012, and ACI 440.1R 

2015). In some instances, however, under-reinforced sections may be used, assuming that the 

design requirements are met such as recommended by CAN/CSA S6 (2014). Figure 6–6 shows 

that the higher the reinforcement ratio, the lower the reinforcement strains at the same load level. 

For beams B-4#12mm and B-2#16mm with Ef Af = 20501 kN and 19591 kN, respectively, the 

moment–reinforcement-strain relationships were almost the same, which supports that beams with 

similar Ef Af for the same FRP reinforcing bars exhibited similar strains at the same load level. 

The measured strains were used in determining the c/d at 0.30Mn and Mn (see Table 6–6). The c/d 

did not change much between 0.30Mn and Mn, which indicates that the sections were totally 

cracked and the location of the neutral axis was not changed significantly between 0.30Mn and Mn. 

In addition, the neutral-axis depth increased as the reinforcement ratio increased, since the 

equilibrium of forces required a larger compression block. The c/d were also determined 

theoretically based on strain compatibility in a cracked section (see Table 6–6), which shows good 

agreement between the theoretical and experimental results.
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Table 6–6: BFRP and concrete strains neutral axis-to-depth ratio and curvature of test specimens 

Beam 
FRP Strain (µε) Conc. Strain (µε) (c/d)exper.  (c/d)pred.  Curvature, Ψ x 10-2, m-1 Deform. 

factor (J) εc=1000 µε 0.30Mn Mn 0.30Mn Mn εc=1000 µε 0.30Mn Mn Mn
 εc=1000 µε 0.30Mn Mn 

B-2#10mm 7976 10082 26205 -1252 -3316 0.11 0.11 0.11 0.12 3.49 4.41 11.17 12.87 

B-4#10mm 4987 6063 22720 -1315 -4608 0.17 0.18 0.17 0.17 2.50 3.08 11.40 17.42 

B-2#12mm 6686 7001 21434 -1071 -2922 0.13 0.13 0.12 0.12 3.00 3.15 9.51 11.22 

B-4#12mm 4344 6219 20370 -1476 -3846 0.19 0.19 0.16 0.17 2.25 3.34 10.20 22.83 

B-2#16mm 5737 5124 16762 -895 -3115 0.15 0.15 0.15 0.13 2.65 2.37 7.83 8.53 

B-4#16mm 3934 2913 12207 -891 -3251 0.20 0.21 0.21 0.18 2.11 1.63 6.61 9.43 
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6.5.6 Ductility and Deformability 

Ductility can be defined as the capacity of a structure to absorb energy without suffering failure 

(Naaman and Jeong 1995; Jaeger et al. 1995; Vijay and GangaRao 1996), and is generally related 

to the amount of inelastic deformation that takes place before complete failure. In other words, it 

could be represented as the ability to sustain inelastic deformations without loss of load-carrying 

capacity prior to failure. For steel-RC members, ductility is defined as the ratio of deflection or 

curvature or rotation values at ultimate to those at yielding of steel. This way of estimating 

ductility, however, cannot be applied to the concrete structures reinforced with FRP bars because 

of the linear elastic behavior of FRP until failure, whether compressive or tensile. The ductility of 

an FRP-reinforced beam depends on uniform elongation of FRP bars at different locations as 

compared with localized steel bar yielding; confinement effect; uniform crack location and spacing 

in the case of FRP-reinforced concrete beams; the bond between bar and concrete; the plastic-

hinge formation in concrete; and frictional-force development along diagonal and wedge cracks 

(Vijay and GangaRao 2001). 

Jaeger et al. (1997) and Newhook et al. (2002) proposed an alternative concept based on 

deformability rather than ductility for FRP-RC members to ensure that FRP-RC exhibited 

significant deformation before failure (at ultimate). The Canadian Highway Bridge Design Code 

(CAN/CSA S6 2014) adopted this concept and provided Eq. (6-7) to determine the deformability 

factor J. 

u u

c c

ψ M
j
ψ M

             (6-7) 

where M is the bending moment and Ψ is the curvature. The subscripts u and c refer to ultimate 

state and a concrete strain equal to 0.001, respectively. The moment and curvature at a concrete 

strain of 0.001 may depict the moment and curvature at service limit state. CAN/CSA S6 (2014) 

state that the deformability factor, J, should be at least 4.0 for rectangular sections and 6.0 for T-

sections. Table 6–6 presents the deformability factor J of the tested beams, which ranged from 

8.53 to 22.83 to meet CAN/CSA S6 (2014) requirements. 

Vijay and GangaRao (2001) used experimental results in determining that c/d ranging from 0.15 

to 0.30 appeared to be a reasonable design choice for concrete beams and slabs reinforced with 
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FRP bars in order to achieve a deformability factor of 6 or higher. The tested beams showed a c/d 

at failure ranging from 0.11 to 0.21 with corresponding deformability factors higher than 6. This 

may be in acceptable agreement with the findings of Vijay and GangaRao (2001) but more 

investigation is needed to define a specific range for BFRP-RC members. 

6.5.7 Deflection Responses 

Figure 6–7 shows the applied load versus the average mid-span deflection responses at positions 

D2 and D3 (see Figure 6–3) for all tested beams, while Table 6–7 provides the average measured 

deflections at different load levels. As expected, the beams’ responses are nearly similar before 

cracking due to the non-significant effect of the reinforcement ratio on the beams’ gross moment 

of inertia. The identical slopes of the load–deflection curves indicate the similar stiffness of the 

beams at this stage. 

 

Figure 6–7: Load–mid-span deflection relationships 

Unlike in the pre-cracking stage, the BFRP-RC beams exhibited reduced post-cracking stiffness 

until failure. When the applied moment exceeded the cracking moment, the cracking occurred in 

the constant-moment zone, causing a reduction in stiffness and drop in slope. The reinforcement 

ratio (ρf) appears to have significantly influenced the post-cracking stiffness of the beams until 

failure and, therefore, the load–deflection behavior. As expected, the higher the reinforcement 
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ratio, the higher the post-cracking stiffness and, consequently, the lower the deflection values. 

Beam B-2#10mm with the lowest reinforcement ratio and an axial stiffness (Ef Af) of 0.3% and 

6677 kN, respectively, exhibited the lowest post-cracking stiffness until failure at a nominal 

capacity of 52.84 kN.m. The average mid-span deflection of B-2#10mm at failure was 69.33 mm, 

while B-4#16mm, with the highest reinforcement ratio and axial stiffness (Ef Af) of 1.54% and 

39183 kN, respectively, exhibited the highest post-cracking stiffness and showed an average mid-

span deflection value of 23.00 mm at 52.84 kN.m (capacity of B-2#10mm), which represents 33% 

that of B-2#10mm. The average mid-span deflection of B-4#16mm at failure (82.06 kN.m) was 

42.10 mm. It is worth mentioning that the beams with low reinforcement ratios (as B-2#10mm) 

exhibited sharp increases in deflection at cracking, which is in agreement with the sharp increase 

in reinforcement strains at cracking (see Figure 6–6). This behavior was enhanced by increasing 

the reinforcement ratio. Similar behavior was reported for GFRP bars (El-Nemr et al. 2011). 

Furthermore, B-4#12mm and B-2#16mm with Ef Af = 20501 kN and 19591 kN, respectively, 

demonstrated very close moment–deflection relationships (see Figure 6–7), which implies similar 

post-cracking stiffness. Thus, beams with similar Ef Af may show the same moment–deflection 

relationship. 

6.6 Comparison between the Experimental and Predicted Results  

6.6.1 Crack Width 

The average kb value calculated based on the beam test results was used in predicting the crack 

width of each beam. The crack width was calculated using Eq. (6-6). Table 6–5 provides a 

comparison between the average measured crack widths of the first three flexural cracks and the 

predicted crack widths at 0.3Mn and 0.67Mn using CAN/CSA S6 (2014) (Eq. 6-6). Since the crack 

width equation of ACI 440.1R (2006) is the same as that of CAN/CSA S806 (2012), it was also 

used in predicting the crack width of the tested beams. The recommended kb values for sand-coated 

FRP bars were 0.8 and 1.4 for CAN/CSA S6 (2014) and ACI 440.1R (2015), respectively. 

The reported values in Table 6–5 confirm that using kb = 0.8 as provided by CAN/CSA S6 (2014) 

underestimated the crack widths by 16%, on average, at 0.3Mn and 0.67Mn. On the other hand, the 

kb = 1.4 in ACI 440.1R (2006) overestimated the crack widths by 34%, on average, at 0.3Mn and 
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0.67Mn. Figure 6–8 shows the experimental and predicted moment–crack-width relationships for 

all tested beams. It is worth mentioning that the average measured kb was 0.76, which justifies the 

reasonable agreement between the crack-width prediction in CAN/CSA S6 (2014) and the 

measured values.  

  

  

  

Figure 6–8: Experimental and predicted moment–crack-width relationships of all tested beams: 

(a) B-2#10mm; (b) B-4#10mm; (c) B-2#12mm; (d) B-4#12mm; (e) B-2#16mm; (f) B-4#16mm 

(a) (b) 

(c) (d) 

(e) 

(a) 
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6.6.2 Mid-Span Deflection 

The deflection behavior of reinforced-concrete elements subject to flexure moment can be divided 

into two separate stages: before and after cracking. The first stage, in which the section is not 

cracked, according to ACI 440.1R (2006&2015) and the CAN/CSA S806 (2012), the behavior of 

the concrete element is controlled by the section’s gross moment of inertia (Ig). The second stage 

starts when the applied moment (Ma) exceeds the cracking moment (Mcr) and crack propagation 

occurs; which reduces stiffness. 

The ACI 440.1R (2006) equation is based on the effective moment of inertia (Ie), which is 

determined through modification of the Branson (1968) equation. The modification, shown in Eq. 

(6-8a), introduced (βd) to account for FRP instead of steel, where (βd) is proportional to the ratio 

between the actual and balanced reinforcement ratio of the section (Eq. 6-8b). While ACI 440.1R 

(2015) recommended another formula to calculate Ie, which was based on Bischoff et al. (2009) 

(Eq. 6-9a). This formula includes an additional factor γ to account for the variation in stiffness 

along the length of the member as shown in Eq. (6-9b) which was introduced by Bischoff and 

Gross (2011). The deflection prediction entails calculating a uniform moment of inertia throughout 

the beam length and uses deflection equations derived from linear elastic analysis, as shown in Eq. 

(6-10), for a simply supported member subjected to two-point loading. 

3 3
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CAN/CSA S806 (2012) recommends curvature integration along the span to determine the 

deflection of a concrete member at any point, assuming the section is fully cracked with no 

contribution of tension stiffness in the beam’s cracked regions. Therefore, the moment–curvature 

relation of FRP concrete members can be assumed to be bilinear, where the curvature (Ψ) is given 

by (Ma/(EcIg)) for the uncracked parts of the beam, followed by an increase in curvature at a 

constant moment value (transition from uncracked to cracked stage) and (Ma/(EcIcr)) for the 

cracked part when the applied moment (Ma) is higher than the cracking moment (Mcr). CAN/CSA 

S806 (2012) provides deflection equations for simple loading cases, such as Eq. (6-11), for a 

simply supported member subjected to two-point loading where the cracked moment of inertia (Icr) 

is calculated from Eq. (6-12). 

333
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Table 6–7 provides the experimental mid-span deflections measured at 30% and 67% of the 

nominal capacity (0.3Mn and 0.67Mn), respectively. It also provides the experimental-to-predicted 

deflection ratios (δexp/δpred) for all tested beams at 0.3Mn and 0.67Mn based on ACI 440.1R (2006), 

ACI 440.1R (2015) and CAN/CSA S806 (2012) provisions. Figure 6–9 shows the correlation 

between the experimental and predicted responses. Besides, Table 6–7 confirms that ACI 440.1R 

(2006) underestimated the deflection of the beams at 0.30Mn (expected service load) where the 

average δexp/δpred was 2.10±0.37. Similarly, at 0.67Mn, it underestimated the deflection values with 

an average δexp/δpred of 1.08±0.04. While ACI 440.1R (2015) showed better predictions than ACI 

440.1R (2006) at both 0.3Mn and 0.67Mn, with an average δexp/δpred of 1.35±0.15 and 1.03±0.05, 

respectively. On the other hand, CAN/CSA S806 (2012) overestimated the deflection predictions 

at 0.30Mn and 0.67Mn, where the average δexp/δpred was 0.80±0.09 and 0.92±0.08, respectively. 

Thus, CAN/CSA S806 (2012) may provide reasonable yet conservative deflections for the beams 

reinforced with BFRP bars. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6–9: Comparison between the experimental and predicted deflection: (a) B-2#10mm and 

B-4#10mm; (b) B-2#12mm and B-4#12mm; (c) B-2#16mm and B-4#16mm 
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Table 6–7:  Comparison between the experimental and predicted deflections of tested beams 

Beam 
δexp (mm) 

δexp/δpred 

ACI 440.1R (2006) ACI 440.1R (2015) CAN/CSA S806 (2012) 

Mcr 0.30Mn 0.67Mn Mn 0.30Mn 0.67Mn 0.30Mn 0.67Mn 0.30Mn 0.67Mn 

B-2#10mm 1.45 16.00 48.71 69.33 2.52 1.03 1.43 0.95 0.75 0.80 

B-4#10mm 0.64 10.74 36.08 68.34 2.37 1.11 1.30 1.00 0.69 0.88 

B-2#12mm 0.75 11.65 39.56 67.50 2.38 1.14 1.62 1.06 0.75 0.91 

B-4#12mm 1.12 14.29 37.24 57.81 1.88 1.05 1.23 1.02 0.87 0.95 

B-2#16mm 0.75 11.14 31.20 51.48 1.79 1.08 1.29 1.06 0.85 0.97 

B-4#16mm 1.20 9.70 25.28 42.10 1.64 1.10 1.23 1.09 0.92 1.02 

Average 2.10 1.08 1.35 1.03 0.80 0.92 

Standard deviation 0.37 0.04 0.15 0.05 0.09 0.08 

Coefficient of variation (%) 17.74 3.68 11.23 4.99 11.03 8.21 

According to ACI 440.1R (2015) and CAN/CSA S806 (2012), the deflection at service load should not exceed Span/180 = 15.0 mm (Flat roofs not supporting and 

not attached to non-structural elements likely to be damaged by large deflections). 

 



Chapter 6: Concrete Beams Reinforced with Sand-Coated BFRP Bars 

190 

6.7 Summary and Conclusion 

This experimental study aimed at determining the bond-dependent coefficient (kb) and 

investigating the structural performance of newly developed sand-coated BFRPs bars in normal-

strength concrete beams. A total of six concrete beams reinforced with BFRP bars were 

constructed and tested up to failure. The tested beams measured 200 mm wide, 300 mm high, and 

3100 mm long. BFRP bars sizes of 10, 12, and 16 mm with sand-coated surfaces over helical 

wrapping were used. The beam specimens were tested under four-point bending over a clear span 

of 2700 mm until failure. The experimental results were compared against the predictions using 

FRP design codes and guidelines. Based on the test results and discussion presented herein, the 

following conclusions are drawn: 

1. The tested BFRP-RC beams showed cracking moments lower than the predicted values using 

ACI 440.1R (2015) and CAN/CSA S806 (2012) equations. ACI 440.1R (2015) and CAN/CSA 

S806 (2012) overestimated the cracking moment of the tested beam by 27% and 24%, 

respectively. Similar findings were reported for beams reinforced with GFRP bars (El-Nemr 

et al. 2011&2013). 

2. The average bond-dependent coefficient (kb), determined from the three first cracks in each 

beam, was 0.76±0.03 for the BFRP bars with sand-coated surface over helical wire wrapping. 

This is in agreement with the recommendation of the CHBDC (CAN/CSA S6 2014), where 

kb = 0.8 for the sand-coated FRP bars. 

3. The BFRP-RC beams showed typical bilinear behavior for strain and deflection until failure. 

The pre-cracking response and cracking loads of all the beams were nearly unaffected by the 

reinforcement ratio, since they are governed by the gross concrete section. After cracking, 

however, the increase in stiffness or reduction in reinforcement strains was proportional to the 

reinforcement ratio. The higher the reinforcement ratio, the higher the stiffness and the lower 

the strain at the same load level. 

4. The BFRP-RC beams with low reinforcement ratios showed sharp increases in strains and 

deflection at cracking. The sudden increase in strains resulted in wider and deeper cracks, 

which is reflected on the stiffness and the location of the neutral axis of the cracked section. 

Increasing the reinforcement ratio, however, increased the amount of absorbed energy at the 
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first crack, which enhanced the behavior, as it controls the immediate increase in strain and 

initial crack width. 

5. The axial stiffness of the flexural reinforcement (Ef Af) significantly affected the general 

behavior of the BFRP-RC beams. The higher the axial stiffness, the better the performance 

(lower deflection, lower strain, and lower crack width at the same load level). Beams with the 

same reinforcement axial stiffness are expected to show similar behavior. More investigation, 

however, is needed to quantify the effect of bar surface configuration, if changed. 

6. ACI 440.1R (2006) underestimated the deflection of the beams at 0.30Mn, where the average 

δexp/δpred was 2.10±0.37. Similarly, at 0.67Mn, it underestimated the deflection values with an 

average δexp/δpred of 1.08±0.04, while ACI 440.1R (2015) showed better predictions than ACI 

440.1R (2006) at both 0.3Mn and 0.67Mn, with an average δexp/δpred of 1.35±0.15 and 

1.03±0.05, respectively. On the other hand, CAN/CSA S806 (2012) overestimated the 

deflection predictions at 0.30Mn and 0.67Mn, where the average δexp/δpred was 0.80±0.09 and 

0.92±0.08, respectively. Thus, CAN/CSA S806 (2012) may provide reasonable yet 

conservative deflection values for beams reinforced with BFRP bars. 

6.8 Nomenclature 

The following symbols are used in this paper: 

a =  shear span (mm) 

a =  shear span (mm) 

Af  =  nominal area of FRP tension reinforcement (mm2) 

b  =  beam effective width (mm) 

c  =  neutral-axis depth (mm) 

d  =  distance from the extreme compression fiber to the centroid of tension force (mm) 

db  =  bar diameter (mm) 

dc  =  distance from extreme tension fiber to the center of the longitudinal bar (mm) 

Ef =  modulus of elasticity of longitudinal reinforcement (MPa) 

f'c  =  compressive strength of concrete (MPa) 

ff  =  stress in FRP reinforcement under specified loads (MPa) 

ffu  =  ultimate strength of FRP longitudinal reinforcement (MPa) 
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fr  =  modulus of rupture (kN/m2) 

h1  =  distance from neutral axis to center of tensile reinforcement (mm) 

h2  =  distance from neutral axis to extreme tension fiber (mm) 

Icr  =  transformed moment of inertia of cracked reinforced-concrete section (mm4) 

Ie  =  effective moment of inertia (mm4) 

Ig  =  gross moment of inertia of uncracked section (mm4) 

J  =  deformability factor 

k = ratio of depth of neutral axis to reinforcement depth 

kb  =  bond-dependent coefficient  

L =  length of clear span (mm) 

Lg  =  length of the uncracked section (mm)  

Ma =  applied moment (kN.m) 

Mcr  =  cracking moment (kN.m) 

Mn =  nominal moment of the reinforced-concrete section (kN.m) 

nf = ratio of modulus of elasticity of FRP bars to modulus of elasticity of concrete 

P =  applied load (kN) 

s  =  spacing between the longitudinal reinforcement bars (mm) 

wcr =  maximum crack width (mm) 

yt  =  distance from centroid axis of cross section to the extreme fiber in tension (mm) 

γ  =  parameter to account for the variation of stiffness along the length of the member 

δ =  mid-span deflection (mm) 

εcu =  ultimate concrete strain 

εfu =  ultimate FRP strain 

ρf  =  actual longitudinal reinforcement ratio 

ρfb  =  balanced longitudinal reinforcement ratio 

τ =  bond strength 

ψ  =  curvature 
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CHAPTER 7  

FLEXURE BEHAVIOR OF CONCRETE BEAMS 

REINFORCED WITH RIBBED BASALT-FRP BARS 

UNDER STATIC LOADS 

Abstract 

Recently, basalt-fiber-reinforced-polymer (BFRP) reinforcement emerged as a new FRP type, in 

addition to the commonly used glass, carbon, and aramid. Research is needed, however, to 

understand how BFRP bars behave in concrete members. This paper presents an experimental study 

aimed at investigating the flexural behavior and serviceability performance of concrete beams 

reinforced with ribbed BFRP bars. A total of eight concrete beams measuring 3100 mm in length, 

200 mm in width and 300 mm in depth were constructed and tested up to failure. Six beams were 

reinforced with 8, 12, and 16 mm BFRP bars with ribbed surfaces and two reference beams were 

reinforced with 10M and 15M steel bars. The beam specimens were designed in accordance with 

Annex S of CAN/CSA S806 (2012) and tested under four-point bending over a clear span of 

2700 mm until failure. The beam test results are presented and discussed in terms of cracking 

behavior, deflection, and failure modes. The test results yielded an average bond-dependent 

coefficient (kb) of 0.83, which is lower than the CAN/CSA S6 (2014) recommendation of 1.0 for 

ribbed FRP bars. Moreover, comparing the test results to the design provisions showed that ACI 

440.1R (2006) and ACI 440.1R (2015) underestimated the deflections at service load for the beams 

reinforced with ribbed BFRP bars, while CAN/CSA S806 (2012) yielded reasonable and 

conservative deflections. 

Keywords: Basalt, fiber-reinforced polymer (FRP), ribbed surface, beams, service load, deflection, 

crack width, bond-dependent coefficient, and flexure.  
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7.1 Introduction 

Recently, extensive efforts in development of fiber-reinforced-polymer (FRP) technology have 

focused on using new types of fibers, such as basalt fibers, in addition to the commonly used glass, 

carbon and aramid fibers. Basalt-fiber-reinforced polymer (BFRP) is expected to provide benefits 

that are comparable or superior to other FRP types, while being significantly more cost-effective 

(Wei et al. 2010; Lopresto et al. 2011; Serbescu et al. 2015; Zhang et al. 2015). BFRP has proven 

to have advantageous characteristics compared to other fiber-reinforced polymers, such as carbon, 

glass, and aramid (CFRP, GFRP, and AFRP). For instance, BFRP has higher strength and modulus, 

and more chemical stability than E-glass FRP. It also has a wider range of working temperatures 

and much lower cost than CFRP (Wu et al. 2012). The current FRP design codes (ACI 440.1R 

2015; CAN/CSA S6 2014; CAN/CSA S806 2012) and material specifications (ACI 440.6M 2008; 

CAN/CSA S807 2010), however, do not provide any recommendations for structural elements 

reinforced with BFRP bars. 

Preliminary studies concluded the feasibility of producing BFRP reinforcing bars with enhanced 

physical and mechanical properties (Benmokrane et al. 2015; Elgabbas et al. 2015a). In addition, a 

few studies were conducted to investigate the behavior of BFRP bars in reinforced-concrete (RC) 

beams. Ovitigala (2012) tested eight over-reinforced concrete beams (203 × 305 × 3658 mm) 

reinforced with BFRP reinforcement in flexure up to failure. The beams failed by concrete crushing 

and it was concluded that the serviceability criteria (deflection) can be achieved by increasing the 

BFRP reinforcement. The ultimate failure, however, would be brittle in nature without prior 

warning due to lower deflection when the area of BFRP reinforcement increased.  

Urbański et al. (2013) and Lapko and Urbański, (2015) investigated the flexural performance of 

concrete beams (80 × 120 × 1200 mm) reinforced with 8 mm BFRP bars. The results showed that 

the failure of BFRP-RC beams did not occur suddenly due to the beam transforming into a tie 

system, since the flexural reinforcement did not rupture. The deflection and crack width of the 

BFRP-RC beams were significantly higher than that of the steel-reinforced beam, due to the BFRP 

bars having a lower modulus than the steel bars. The deflection predictions according to CAN/CSA 

S806 (2002) showed good convergence with the experimental values in the initial loading stage.  
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Rizkalla (2013) tested six one-way concrete slabs (152 × 610 × 3658 mm) reinforced with BFRP 

bars under four-point bending. The test results indicate that the measured failure loads compared 

well with the nominal flexural capacities predicted using the ACI 440.1R (2006) equation and 

detailed layered-sectional analyses. The measured short-term deflections at service load level were 

higher than the values predicted by ACI 440.1R (2006). The test results indicate that ACI 440.1R 

(2006) equations can be safely used to predict the nominal moment capacity of concrete flexural 

members reinforced with BFRP bars. ACI 440.1R (2006), however, underestimated the deflection 

at service load level by 20% to 60%. 

Tomlinson (2015) assessed the flexural and shear performances of concrete beams 

(150 × 300 × 3100 mm) reinforced with BFRP bars and stirrups. The test results showed that ACI 

440.1R (2006) and CAN/CSA S806 (2012) provisions predicted well the capacity of beams failing 

in flexure. Zhang et al. (2015) investigated the deflection behavior of six concrete beams 

(180 × 230 × 1800 mm) reinforced with BFRP bars. The results showed that the flexural capacities 

equations in ACI 440.1R (2006) code were suitable for BFRP-reinforced beams, while the effective 

moment rigidity predicted using ACI 440.1R (2006) was higher than the experimental one. 

Elgabbas et al. (2015c) investigated the bond-dependent coefficient (kb) and the structural 

performance of sand-coated BFRP in concrete beams. They concluded that the average kb was 

0.76±0.03 for the sand-coated BFRP bars. This is in agreement with the CAN/CSA S6 (2014) 

recommendation of kb = 0.8 for sand-coated FRP bars. 

Considering the limited research work conducted on BFRP bars in concrete structures and the 

continuous effort to develop new BFRP bars, there is a need for more structural testing to 

understand their structural behavior at ultimate and service limit states. With the main objective of 

integrating BFRP reinforcement into current FRP design codes and standards, an extensive 

research project is being conducted at the University of Sherbrooke, Quebec, through the activities 

of the NSERC Research Chair in FRP Reinforcement for Concrete Infrastructure. The project has 

three parts. Part I included the complete physical and mechanical characterization of different 

BFRP bars. It also included long-term durability characterization using accelerated aging 

techniques in different chemical solutions at high temperatures for certain periods of time in 

accordance with ACI 440.6M (2008) and CAN/CSA S807 (2010). The findings of this part 

(Vincent et al. 2013; Benmokrane at al. 2015; Elgabbas et al. 2015a) concluded that it was feasible 
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to produce BFRP bars that would meet the requirements of current FRP standards. Part II 

investigated the structural behavior of full-scale concrete bridge-deck slabs reinforced with BFRP 

bars under truck wheel loads (Elgabbas et al. 2015b). The preliminary results of the slab testing 

revealed structural performance meeting the requirements of the Canadian Highway Bridge Design 

Code (CHBDC) (CAN/CSA S6 2014). Finally, Part III focuses on the performance assessment and 

bond characteristics of BFRP bars in concrete beams. The preliminary testing of sand-coated BFRP 

bars in concrete beams indicated a bond-dependent coefficient (kb) in agreement with CAN/CSA 

S6 (2014) (Elgabbas et al. 2015c). 

This paper presents an experimental study aimed at investigating the flexural behavior and 

serviceability performance of BFRP bars in concrete beams. The study also aimed at assessing the 

performance of BFRP-reinforced beams with respect to the reference beams reinforced with steel 

bars. In addition, the test results were compared to current design provisions and recommendations. 

7.2 Experimental Program 

7.2.1 Material Properties 

Reinforcing bars: Basalt-fiber-reinforced-polymer (BFRP) bars 8, 12, and 16 mm in diameter were 

used as tension reinforcement in the tested beams. The BFRP bars were manufactured from 

continuous basalt fibers impregnated in vinyl-ester resins using the pultrusion process. The basalt 

fibers had a diameter of 10 to 22 microns and were given a surface treatment consisting of a silane 

coupling agent. BFRP bars had a fiber content of 77.4%, 79.2%, and 80.0% for the 8, 12, and 

16 mm diameters, respectively. The BFRP bars were fabricated with open-die pultrusion to allow 

for placement of helical fibers on the bar surface, as shown in Figure 7–1, to increase the bond 

between the bars and surrounding concrete. The tensile properties of the BFRP bars were 

determined by testing five representative specimens of each diameter according to ASTM D7205 

(2011), while the bond strength was determined in accordance with ASTM D7913 (2014). It should 

be mentioned that the mechanical properties were calculated using nominal cross-sectional areas 

of 50, 113, and 201 mm2 for the 8, 12 and 16 mm diameters, respectively. The immersed 

(measured) cross-sectional areas (ASTM D7205), however, were 69, 156, and 275 mm2 for the 8, 

12 and 16 mm diameters, respectively. On the other hand, the reference beams were reinforced in 
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tension with 10M and 15M steel bars (Figure 7–1). Table 7–1 summarizes the tensile properties 

of the BFRP and steel bars and the bond strength of the BFRP bars. 

 

Figure 7–1: Basalt FRP versus steel bars  

Table 7–1: Tensile properties and bond strength the reinforcing bars 

RFT 

Type 

db 

(mm) 

Af
  a 

(mm²) 

Aim 
d
 

(mm²) 

Ef 

(GPa) 

ffu 

(MPa) 

𝛆fu 

(%) 

𝛕max 

(MPa) 

Surface 

Configuration 

Basalt 8 50 69 64.6±1.4 1655±95 2.56±0.17 25.4±2.3 Ribbed 

12 113 156 69.3±0.5 1760±39 2.54±0.10 17.7±1.3 

16 201 275 64.8±3.3 1724±64 2.67±0.17 16.8±1.4 

Steel b 10M 100 --- 200.0 fy
 c = 450 𝛆y

 c = 0.2 --- Ribbed 

15M 200 

a Nominal cross-sectional area. 

b Tensile properties of steel bars were provided by the manufacturer. 

c fy and 𝛆y are the yield strength and strain of the steel bars, respectively. 

d Immersed cross-sectional area (measured). 

Note: properties calculated based on the nominal cross-sectional area. 

Concrete: The beams were made with ready-mixed, normal-strength concrete with a 28-day target 

compressive strength of 40 MPa. A cubic meter of concrete contained 350 kg of cement, 813 kg of 

natural sand, 1032 kg of aggregate (20 mm maximum nominal size), 155 L of water (water–cement 

16 mm 

 

12 mm 

 

8 mm 

 

15M 

 

10M 
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ratio, w/c, of 44%) and an air-entrained ratio of 5% to 8%. The concrete mix had slump of 

80±30 mm. The eight beams were cast from three concrete batches. The curing process started two 

hours after the concrete was cast by covering the concrete surface with wet burlap and polythene 

sheeting for 10 days. The concrete compressive strength of each batch was determined by testing 

three 150 × 300 mm cylinders on the day of beam testing. The tensile strength was also determined 

from split-cylinder testing on 150 × 300 mm cylinders. Table 7–2 shows the compressive and 

tensile strengths of the different concrete batches. 

7.2.2 Test Specimens 

This study included six concrete beams reinforced with ribbed BFRP bars and two concrete beams 

reinforced with steel bars designed according to the geometry recommendations in Annex S of 

CAN/CSA S806 (2012). The beams measured 3100 mm long × 200 mm wide × 300 mm deep. As 

shown in Table 7–2, the beams had two 10M steel bars as top reinforcement, while the bottom 

reinforcement was either BFRP or steel bars. Shear reinforcement consisting of 10M steel stirrups 

spaced at 100 mm were used in both shear spans to avoid shear failure. To minimize the confining 

effect of the shear reinforcement on the flexural behavior, no stirrups were used in the constant 

moment zone. The clear concrete cover was 38 mm, which was set in accordance with Annex S of 

CAN/CSA S806 (2012). Figure 7–2 shows the dimensions and reinforcement details of the tested 

beams. The BFRP-RC beams were designed to fail by concrete crushing in the constant moment 

zone. This was achieved by using a reinforcement ratio (ρf) greater than the balanced reinforcement 

ratio (ρfb), as shown in Table 7–2, where the balanced reinforced reinforcement ratio (ρfb) was 

calculated considering the actual concrete strength. The ratio between the actual and balanced 

reinforcement ratios for the BFRP-RC beams ranged from 1.543 to 6.865 according to ACI 440.1R 

(2015) and from 1.183 to 5.138 according to CAN/CSA S806 (2012). The differences between 

actual and balanced reinforcement ratios in ACI 440.1R (2015) and CAN/CSA S806 (2012) for the 

same beams were due to the differences in the stress-block parameters and the compressive strain 

of the concrete at ultimate. In contrast, the steel-RC beams were designed to fail due to steel 

yielding (under-reinforcement), which is common for steel-RC members. 
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Table 7–2: Concrete properties and reinforcement details 

Beam IDa 
fc

 b 

(MPa) 

ft
 c 

(MPa) 
ρf 

ρf /ρfb
d 

(Ef  × Af) 

(kN) 
ACI 440.1R 

(2015) 

CAN/CSA S806 

(2012) 

B-3#8mm 52.7 4.7 0.0030 1.543 1.183 9745 

B-5#8mm 0.0052 2.719 2.084 16242 

B-2#12mm 44.7 4.3 0.0044 2.669 2.138 15682 

B-3#12mm 0.0066 4.003 3.207 23552 

B-2#16mm 50.8 4.2 0.0078 4.577 3.545 26068 

B-3#16mm 0.0119 6.865 5.138 39102 

B-2#10M 44.7 4.3 0.0039 0.103 0.096 40000 

B-2#15M 0.0079 0.207 0.194 80000 

a The first letter “B” indicates concrete beam; the second number “2, 3 or 5” indicates the number of reinforcing bars; 

the last number (#8, #12, #16, 10M or 15M) indicates the bar size (in mm). 

b f'
c: concrete compressive strength. 

c ft: concrete tensile strength. 

d ρfb: balanced reinforcement was calculated based on the actual concrete compressive strength. 

7.2.3 Instrumentation 

Figure 7–2 provides the instrumentation details. The deflection along the beam’s span was 

monitored using four linear variable differential transducers (LVDTs) accurate to 0.001 mm, 

labeled D1 to D4 (D2 and D3 at mid-span, and D1 and D4 at quarter-span). Crack propagation was 

also monitored during testing until failure, and the crack widths of the first three flexural cracks 

were monitored with three horizontal LVDTs (D5 to D7). The strains of the longitudinal BFRP 

reinforcing bars were captured with four electrical-resistance strain gauges 6 mm in length (S1 to 

S4). The compressive concrete strains at the mid-span section were measured with two electrical-

resistance strain gauges 60 mm in length (C1 and C2). To facilitate crack monitoring, the beams 

were painted white prior to testing. In addition, an automatic data-acquisition system connected to 

a computer was used to monitor loading, deflections, and strains in the concrete and reinforcement. 

The formation of beam cracks and the corresponding loads were marked and recorded during 

testing until failure. 
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Figure 7–2: Schematic drawing for concrete dimensions, reinforcement details, typical location 

of instrumentation and test setup: (a) Elevation; (b) Cross- sections 

7.2.4 Test Setup and Procedure 

The simply supported beams were monotonically loaded under four-point bending until failure. 

Figure 7–2 shows the dimensions and locations of the applied loads, while Figure 7–3 provides a 

photo of the test setup. The load was applied at a stroke-controlled rate of 1.2 mm/min. During 

testing, the beams were observed visually until the first crack appeared, and the corresponding load 

was recorded. The test was paused when each of the first three cracks appeared. The initial crack 

width of the first three cracks was measured manually with a 50X handheld electronic microscope; 

Note: Dimensions are in mm 
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LVDTs were installed at crack locations to measure crack width electronically with increasing 

load. The load continuously increased until beam failure. 

The cracking load was also verified based on the change in stiffness of the load–deflection and 

load–strain relationships. The concrete and reinforcement strain gauges and deflection and cracking 

LVDTs were connected to an automatic data-acquisition system connected to a computer to record 

their readings. 

 

Figure 7–3: Overview of the test setup 
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7.3 Test Results and Discussion 

7.3.1 Cracking Load and Pattern 

The crack propagation in all the tested beams followed the flexural cracking patterns traditionally 

observed in simply supported beams, as shown in Figure 7–4. Crack formation was initiated in the 

constant flexural moment zone between the two concentrated loads. The cracks were vertical, 

perpendicular to the direction of the maximum principle tensile stress induced by pure bending. As 

the load increased, additional flexural cracks appeared and the crack spacing decreased. The beams 

with higher reinforcement ratios, however, evidenced more tensile cracks of smaller width 

extending away from the constant moment region towards the supports. The cracking moment of 

all the tested beams ranged from 6.94 to 8.51 kN.m with an average value of 7.69±0.56 kN.m 

(beam self-weight excluded). The cracking moments were also calculated with Eq. (7-1).    

Table 7–3 provides the cracking moments (Mcr) of all the tested beams as well as a comparison 

between the experimental and predicted values of the cracking moments. It is worth mentioning 

that the reinforcement type and the modulus of elasticity had no significant effect on the cracking 

moment and that the controlling variable for predicting cracking moment was the modulus of 

rupture of concrete (fr), which varies from one code to the next. 

r g

cr

t

f I
M

y


             (7-1)

 

where the modulus of rupture of concrete (fr) is calculated from Eq. (7-2a) according to ACI 440.1R 

(2015) and Eq. (2b) according to CAN/CSA S806 (2012) for normal-density concrete. 

 
'0.62r cf f

 

         (7-2a)

 

'0.60r cf f
          (7-2b)

 

As shown in Table 7–3, the average cracking moments of the BFRP- and steel-RC concrete beams 

were generally lower than those predicted with ACI 440.1R (2015) and CAN/CSA S806 (2012) 

(by 40% and 38%, respectively). CAN/CSA S806 (2012) yielded slightly better predictions of 

cracking moments than ACI 440.1R (2015) because of the former’s smaller modulus of rupture. 
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Bischoff (2001) stated that additional stresses developed from shrinkage, temperature effect, and 

the freezing and melting of water inside the concrete may cause hair cracks and therefore reduce 

the cracking load. Shrinkage cracks had no significant effect on predicting the crack widths. 

 

 

 

 

 

 

 

Figure 7–4: Crack pattern and failure modes of tested beams 

 

B-2#15M 

B-3#8mm 

B-2#12mm 

B-3#12mm 

B-3#16mm 

B-2#16mm 

B-2#10M 

B-5#8mm 
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Table 7–3: Cracking and ultimate moments and mode of failure 

Beam ID 

Experimental (kN.m) ACI 440.1R (2015) CAN/CSA S806 (2012) 

Mcr Mn MOF a 
𝑀𝑐𝑟,𝐸𝑥𝑝.

𝑀𝑐𝑟,𝑃𝑟𝑒.
 

𝑀𝑛,𝐸𝑥𝑝.

𝑀𝑛,𝑃𝑟𝑒.
 

𝑀𝑐𝑟,𝐸𝑥𝑝.

𝑀𝑐𝑟,𝑃𝑟𝑒.
 

𝑀𝑛,𝐸𝑥𝑝.

𝑀𝑛,𝑃𝑟𝑒.
 

B-3#8mm 8.51 51.59 CC 0.63 1.05 0.65 0.93 

B-5#8mm 7.03 64.19 CC 0.52 1.14 0.54 1.01 

B-2#12mm 6.94 53.14 CC 0.56 0.94 0.58 0.85 

B-3#12mm 7.86 65.76 CC 0.63 0.98 0.65 0.89 

B-2#16mm 7.62 69.83 CC 0.57 0.97 0.59 0.86 

B-3#16mm 7.67 89.77 CC 0.58 1.06 0.60 0.95 

B-2#10M 8.38 23.57 b SY+CC 0.68 --- 0.70 --- 

B-2#15M 7.55 40.19 b SY+CC 0.60 --- 0.62 --- 

Average  0.60 1.02c 0.62 0.91c 

Standard deviation 0.05 0.08c 0.05 0.06c 

a CC: crushing of concrete; R: rupture of FRP bars; SY+CC: yielding of steel followed by concrete crushing.  

b Yielding moment. 

c Beams reinforced with steel bars were excluded from the statistical analysis at Mn. 

7.3.2 Bond-Dependent Coefficient (kb) Prediction 

Extensive analysis of the bond-dependent coefficient (kb) was conducted by an ACI committee on 

a variety of concrete sections and FRP bars considering the fiber type, resin formulations, and 

surface treatments with the average kb values ranging from 0.60 to 1.72, with an average of 1.10 

(ACI 440.1R 2015). In the absence of experimental test data for kb, ACI 440.1R (2015) suggests a 

conservative value of 1.4 should be used. On the other hand, in the absence of significant test data, 

CAN/CSA S6 (2014) recommends a kb of 1.0 for ribbed FRP bars. 

The test results were used to assess the bond-dependent coefficient values (kb). The kb was 

calculated in accordance with Annex S of CAN/CSA S806 (2012) with Eq. (7-3). The calculations 

were based on the first three cracks in each beam. The kb was calculated for each beam at 30% of 

the nominal capacity, 0.3Mn, (assumed service load) of the tested specimens. This value was 

reported as the service-load level by many researchers (Mota at al. 2006; Bischoff 2009; El-Nemr 
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et al. 2013). The kb values were also determined at 0.67Mn, where no more cracks were appeared 

after this load level and only widening of the existing cracks could be observed, and at a crack 

width of 0.70 mm (upper crack-width limit provided by CAN/CSA S806 2012). Table 7–4 presents 

the average kb measured for each beam. The results did show differences between kb determined at 

the different load levels. The average kb value was 0.83 for BFRP bars with ribbed surfaces. This 

value is lower than the 1.0 for ribbed FRP bars provided in the CHBDC (CAN/CSA S6 2014). 

 
22

1

2 ² / 2
f

cr b c

f

f h
w k d s

E h
          (7-3) 

Table 7–4: Bond-dependent coefficient, kb 

Beam ID kb 
a 

0.3 Mn 0.67 Mn 0.7 mm 

B-3#8mm 0.77 0.89 0.80 

B-5#8mm 0.83 0.71 0.82 

B-2#12mm 0.67 0.73 0.71 

B-3#12mm 1.04 1.09 1.03 

B-2#16mm 0.73 0.59 0.69 

B-3#16mm 0.96 0.92 0.91 

Average 0.83 0.83 0.83 

Standard deviation 0.14 0.18 0.13 

a Each of the reported value represents the average of 3 values (3 cracks).  

7.3.3 Ultimate Capacity and Failure Mode 

All the BFRP-RC beams were designed to fail by concrete crushing when the concrete reached its 

maximum compressive strain (εcu) of 0.30% or 0.35% according to ACI 440.1R (2015) and 

CAN/CSA S806 (2012), respectively, before the tensile stress in BFRP bars (ff) achieved ultimate 

capacity (ffu) (over-reinforced section). This is the common design concept for concrete sections 

reinforced with FRP bars. In contrast, the steel-RC beams were designed to fail due to steel yielding 

(under-reinforced section). The balanced reinforcement ratios were calculated with Eq. (7-4). The 



Chapter 7: Concrete Beams Reinforced with Ribbed BFRP Bars 

206 

terms (α1) and (β1) were calculated with Eq. (7-5) for ACI 440.1R (2015) and Eq. (7-6) for 

CAN/CSA S806 (2012). 

'

1 1  c cu
fb

fu cu fu

f

f


  

 
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
         (7-4)

 

1 0.85 
           (7-5a) 

 '

1 0.85 0.05 27.6 / 6.9cf   
         (7-5b) 

'

1 0.85 0.0015  0.67cf   
         (7-6a) 

'

1 0.97 0.0025  0.67cf   
         (7-6b) 

Table 7–3 presents the flexural capacity (Mn) for all the tested beams. The BFRP-RC beams failed 

by concrete crushing. They evidenced several cracks distributed around the mid-span, as a result 

of the beam transforming into a tie system, since the flexural BFRP bars did not rupture. On the 

other hand, the beams reinforced with steel bars (B-2#10M and B-2#15M) failed due to yielding 

of the steel bars, followed by concrete crushing at the top. This occurred because they were 

designed under-reinforced, which is commonly the case with steel-RC members. It is worth 

mentioning that none of the tested beams showed any slippage of the tension reinforcement. 

Moreover, Table 7–3 indicates that increasing the actual reinforcement ratio-to-balanced ratio 

(ρf/ρfb) lead to an increase in the ultimate load-carrying capacity. For B-3#8mm and B-5#8mm, 

increasing the reinforcement ratio from 0.29% to 0.52% increased the ultimate capacity from 

51.59 kN.m to 64.19 kN.m, respectively (24.4% increase). Similarly, increasing the reinforcement 

ratio from 0.44% to 0.66% in B-2#12mm and B-3#12mm and from 0.79% to 1.19% in B-2#16mm 

and B-3#16mm increased the ultimate capacity by 21.8% and 28.5%, respectively. Thus, increasing 

the reinforcement ratio by about 50% increased the ultimate capacity by about 28.5%. Kassem et 

al. (2011) reported that a maximum increase in ultimate capacity of 4% and 16% was observed as 

a result of increasing the GFRP reinforcement ratio by 50% and 100%, respectively. Moreover, El-

Nemr et al. (2013) concluded that increasing ρf by 3 to 4 times resulted in an average increase of 

83.5% in the load-carrying capacity of GFRP-RC beams. The higher tensile properties for BFRP 

bars compared with GFRP bars resulted in an increase in the reinforcement axial stiffness (Ef Af), 
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and accordingly, a significant reduction in reinforcing-bar and concrete strains at the same load 

level, which delayed the concrete crushing until higher loads were achieved. 

The comparison of close axial stiffness (Ef Af) of B-5#8mm and B-2#12mm revealed that the 

former’s capacity was 21% higher than the latter’s, despite the lower effective depth. This is 

attributed to B-5#8mm’s higher concrete strength (52.7 MPa) compared to B-2#12mm (44.7 MPa). 

The BFRP bar diameter and arrangement may have contributed to the ultimate capacity; further 

investigation is required to quantify this effect. 

The ultimate capacity of the test specimens was predicted using the strain compatibility approach 

in ACI 440.1R (2015) and CAN/CSA S806 (2012) (Eqns. (7-7) and (7-8)) and compared to the 

measured values. Table 7–3 shows the experimental-to-predicted ultimate capacity of the tested 

beams. The ACI 440.1R (2015) approach yielded an average experimental-to-predicted ultimate 

capacity of 1.02±0.08, while the CAN/CSA S806 (2012) approach gave a conservative 

experimental-to-predicted ultimate capacity with an average of 0.91±0.06. The difference between 

ACI 440.1R (2015) and CAN/CSA S806 (2012) was related to the β1 factor and the assumed strain 

at ultimate, which is 0.003 for ACI 440.1R (2015) and 0.0035 for CAN/CSA S806 (2012).  

 
2

'

10.85
  0.5

4

f cu c
f f cu f cu fu

f

E f
f E E f

 
 



 
 

   
 
 
   

     (7-7)

 

2

'

1

1
2

f f

n f f

c

f
M f bd

f






 
  

 
         (7-8)

 

On the other hand, B-2#10M and B2-2#15M failed at 23.57 kN.m and 40.19 kN.m, respectively, 

which is lower than the capacities of B-3#8mm and B-2#16mm with similar reinforcement ratios. 

The ultimate capacity of the BFRP-RC beams was 1.74–2.19 times greater than that of the steel-

RC beams with similar reinforcement ratios. This was attributed to the higher tensile strength and 

strain capacity of the BFRP bars compared to the yield stress and strain of the steel bars. 

7.3.4 Reinforcement and Concrete Strains 

Figure 7–5 shows the average mid-span tensile strains in the reinforcing bars at positions (S2) and 

(S3), as well as the average compressive strains in the concrete at positions (C1) and (C2) versus 
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the applied moment until failure. The BFRP- and steel-RC beams showed similar pre-cracking 

responses and significant strain increases after cracking until failure due to the reduced post-

cracking stiffness. The tested BFRP-RC beams exhibited typical bilinear moment–average strain 

relationships (concrete and reinforcement), while the steel-RC beams showed similar responses 

followed by a yield plateau. Once the steel-RC beams reached the yielding load (corresponding 

strain of about 2500 μs; see Figure 7–5) the yield plateau initiated and the concrete strains 

increased rapidly, which led to concrete crushing after steel yielding. Figure 7–5 also shows that, 

at the same load level, increasing the reinforcement ratio (ρf) decreased both the tensile strains in 

the reinforcing bars and the compressive strains in the concrete. In addition, BFRP-RC beams with 

close axial stiffness (Ef Af) yielded approximately the same moment–strain relationship, as 

evidenced in B-5#8mm and B-2#12mm, and B-3#12mm and B-2#16mm.  

Moreover, Figure 7–5 shows that B-3#8mm, which had the lowest reinforcement ratio of 0.29%, 

experienced very high and sharp tensile strain increases when the first crack appeared. The sharp 

increase at the first crack was more than 4000 μs. In contrast, B-2#16mm and B-3#16mm, which 

had the highest reinforcement ratios of 0.79% and 1.19%, respectively, showed much smaller jump 

in strain in the BFRP bars and concrete after cracking. This phenomenon is due to the low amount 

of absorbed energy by the BFRP bars compared to the steel bars, which caused a sudden reduction 

in stiffness after cracking. This was improved by increasing the reinforcement ratio. These results 

are in agreement with those reported for different types of FRP bars in concrete beams (Kassem et 

al. 2011; El-Nemr et al. 2013; Elgabbas et al. 2015c). An after-cracking comparison of B-2#10M 

and B-3#16mm, which had similar Ef  Af values, showed approximately the same rate of strain 

increases, but without the sudden strain increase in the steel-RC beam after the first crack, due to 

the high energy absorption of the steel bars. 

Despite the difference in concrete strengths for B-5#8mm and B-2#12mm, they exhibited the same 

moment–strain relationship until about 50% of B-2#12mm’s failure moment. This was due to 

providing approximately the same axial stiffness (Ef  Af) for both beams. After that, B-5#8mm 

showed lower strains than B-2#12mm until failure. Using more BFRP bars of smaller diameter 

may be better than using fewer BFRP bars of larger diameter, as this enhanced the cracking and 

bond performance. This can be confirmed again with Figure 7–5, since B-5#8mm showed the same 

moment–strain relationship as B-2#12mm until failure, regardless of the low Ef  Af compared to 
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that of B-2#12mm (9745 compared to 15682 kN, respectively). It is worth mentioning that the bond 

strength of the 8 mm BFRP bars was 25.4 MPa, compared to 17.7 MPa and 16.8 MPa for the 

12 mm and 16 mm BFRP bars, respectively. In addition, providing approximately the same Ef  Af 

for B-3#16mm and S-2#10M yielded the same moment–strain relationship up to yielding of the 

steel bars. 

Table 7–5 shows the tensile and compressive strains of the reinforcement bars and concrete, 

respectively, at service load, which represents approximately 30% of the nominal capacity (0.3Mn), 

since this value has been reported as the service-load level by many researchers (Mota et al. 2006, 

Bischoff et al. 2009, and El-Nemr et al. 2013). ISIS (2007) recommended a value of 2000 µε as a 

limit for the strain in FRP bars under service load. As shown in Table 7–5, the strains in the BFRP 

bars at 0.30Mn were high and ranged from 3907 to 6036 µε. El-Nemr et al. (2013) reported high 

strain values up to 5349 µε and Kassem et al. (2011) also reported strain values as high as 4119 µε 

in GFRP bars at 0.3Mn. This is also high and could not be considered as strains at service load. 

Therefore, in this study, the key results were presented at a load level corresponding to 2000 µε in 

the BFRP bars, at 0.3Mn, and 0.67Mn, since some strain gauges on the FRP bars malfunctioned 

after this load. It is worth mentioning that the crack patterns often stabilized at 0.67Mn until failure.  

 

Figure 7–5: Moment-reinforcement and concrete-strain relationships 
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7.3.5 Crack Width 

Figure 7–6 shows the moment-versus-average crack width for the tested beams. Increasing the 

reinforcement ratio reduced the crack widths, as shown in Figure 7–4. The steel-RC beams showed 

the smallest crack widths as they had very high reinforcement axial stiffness (Ef  Af) compared to 

the BFRP-RC beams. Moreover, at the yield load of steel-RC beams, the average cracks widths in 

BFRP-RC beams were about 2.4 times higher than steel-RC beams for the same reinforcement 

ratio (B-3#8mm against S-2#10M  and B-2#16mm against S-2#15M ). These results were expected 

due to the higher modulus of elasticity of steel bars compared to BFRP bars. 

Figure 7–6 shows that B-5#8mm had the same moment–crack-width relationship as B-2#12mm, 

since they had the same reinforcement axial stiffness (Ef Af). Similarly, B-3#12mm and B-2#16mm 

had very close Ef Af values. Thus, it may be concluded that reinforced-concrete beams with the 

same Ef  Af may exhibit the same moment–crack-width relationships until failure. 

 

Figure 7–6: Applied moment–average crack width of all tested beams 
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Table 7–5: Strains, neutral axis-to-depth ratio, and curvature of BFRP-RC beams 

Beam ID 

Reinforcement Strain (µε) Concrete Strain (µε) (c/d)exper.  (c/d)pred.  Curvature, Ψ ( ×1/d) Deform. 

factor (J) 

at 0.67 Mn 

εc=1000 

µε 

0.30

Mn 

0.67 

Mn 

εf= 2000 

µε 

0.30 

Mn 

0.67 

Mn 

εf= 2000 

µε 

0.30 

Mn 

0.67 

Mn 

Theo. at 

Mn
 

εf= 2000 

µε 

0.30 

Mn 

0.67 

Mn 

B-3#8mm 7223 5274 14376 732 764 2405 0.27 0.13 0.14 0.13 0.0027 0.0060 0.0168 6.21 

B-5#8mm 6248 6036 14620 567 947 2181 0.22 0.14 0.13 0.17 0.0026 0.0070 0.0168 5.37 

B-2#12mm 6070 4999 12383 711 759 1795 0.26 0.13 0.13 0.17 0.0027 0.0058 0.0142 5.50 

B-3#12mm 5661 4414 9506 665 756 1723 0.25 0.15 0.15 0.21 0.0027 0.0052 0.0112 4.85 

B-2#16mm 5634 5019 10355 583 895 1970 0.23 0.15 0.16 0.21 0.0026 0.0059 0.0123 4.65 

B-3#16mm 3373 3907 8768 527 1130 2324 0.21 0.22 0.21 0.25 0.0025 0.0050 0.0111 4.91 
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7.3.6 Natural Axis-to-Depth Ratio (c/d) and Curvature 

The measured strains were used to calculate the natural axis-to-depth ratio (c/d); the values are 

reported in Table 7–5. There were no significant changes in the c/d ratios at 0.30Mn or 0.67Mn. 

The neutral axis depth increased as the reinforcement ratio increased, since the equilibrium of 

forces requires a larger compression block for a greater force. The theoretical neutral-axis depth-

to-concrete depth (c/d) was calculated based on the strain-compatibility theory using a cracked-

section analysis. Moreover, Table 7–5 provides the calculated curvature as a function of 1/d at 

0.30Mn, 0.67Mn as well as at a load level corresponding to 2000 μs in the BFRP bars. The calculated 

values at 0.67Mn ranged from 0.0111/d to 0.0168/d for compression-controlled failure, which is 

higher than the range of 0.008/d to 0.015/d given by El-Nemr et al. (2013), the range of 0.0089/d 

to 0.012/d given by Gulbrandsen (2005), and the range of 0.009/d to 0.014/d given by Kassem et 

al. (2011) for GFRP bars. 

7.3.7 Deflection Responses 

Figure 7–7 shows the applied moment versus the average mid-span deflection responses at 

positions D2 and D3 for the tested beams. The figure provides typical bilinear moment–deflection 

relationships for the tested BFRP-RC beams and trilinear with a yielding plateau for the tested 

steel-RC beams. The beams showed nearly similar pre-cracking stiffness and cracking loads due 

to the negligible effect of the reinforcement ratio and modulus on the gross moment of inertia of 

the beams. Unlike in the pre-cracking stage, all the BFRP-RC beams exhibited lower post-cracking 

stiffness until failure. This is due to the wider crack openings in the BFRP-RC beams compared to 

the steel beams, which is attributed to the low modulus of elasticity of the BFRP bars. Clearly, the 

reinforcement ratio significantly influenced the beams’ post-cracking responses until failure. As 

expected, larger deformations were observed for lower reinforcement ratios.  

Table 7–6 summarizes the measured deflections at 30% and 67% of the nominal capacity (0.3Mn 

and 0.67Mn), respectively, as well as at 40 kN.m (the highest moment beams’ achieved before 

failure). As expected, at the same moment (40 kN.m), lower deformations were noted with 

increasing reinforcement ratio. Increasing the reinforcement ratio by 50% (B-3#12 mm compared 

to B-2#12 mm and B-3#16mm compared to B-2#16mm) reduced the deflection by 30.82% and 

25.40%, respectively. 
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Despite their differences in concrete strengths, B-5#8mm and B-2#12mm exhibited the same  

moment–deflection relationship until the failure moment of B-2#12mm. This was due to providing 

approximately the same axial stiffness (Ef  Af) in both beams. Thus, it can be generally stated that 

the deflection of BFRP-RC beams is proportional to Ef  Af and that using similar reinforcement 

ratios of BFRP and steel will result in more deflection in BFRP-RC beams due to the lower modulus 

of elasticity. Assuming that the beam deflection limit at service load is span/240 (L/240), as 

provided by CAN/CSA S806 (2012)—which yields 11.25 mm—all the beams except B-3#8mm 

and B-5#8mm exhibited deflections of less than 11.25 mm at service load (0.30Mn). 

 

Figure 7–7: Applied moment–mid-span deflection relationships 
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Table 7–6: Experimental-to-predicted deflection (δexp/δpred) of the BFRP-RC beams 

Beam ID 
δexp (mm) 

δexp/δpred 

ACI 440.1R (2006) ACI 440.1R (2015) CAN/CSA S806 (2012) 

40 kN.m 0.30Mn 0.67Mn Mn 0.30Mn 0.67Mn 0.30Mn 0.67Mn 0.30Mn 0.67Mn 

B-3#8mm 48.07 14.29 41.69 64.47 4.08 1.36 3.64 1.21 1.10 0.99 

B-5#8mm 35.50 12.82 38.88 76.76 3.05 1.30 1.73 1.19 0.90 1.03 

B-2#12mm 35.24 10.35 31.08 50.72 3.47 1.38 2.29 1.26 1.01 1.07 

B-3#12mm 24.38 9.62 27.78 64.27 2.48 1.28 1.55 1.22 0.96 1.10 

B-2#16mm 21.26 9.08 26.19 52.94 2.62 1.26 1.50 1.18 0.92 1.06 

B-3#16mm 15.86 9.91 25.63 50.06 1.75 1.22 1.38 1.22 1.04 1.14 

Average 2.91 1.30 2.02 1.21 0.99 1.07 

Standard deviation 0.81 0.06 0.86 0.03 0.08 0.05 

Coefficient of variation (%) 27.95 4.70 42.53 2.36 7.71 5.10 

According to ACI 440.1R (2015) and CAN/CSA S806 (2012), the deflection at service load should not exceed Span/180 = 15.0 mm (Flat roofs not supporting and 

not attached to non-structural elements likely to be damaged by large deflections). 
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7.4 Comparison between the Experimental and Predicted Results  

7.4.1 Crack Width 

The average kb value, calculated based on the beam test results, was used in predicting the crack 

width of each beam. The crack width was calculated with Eq. (7-3). Since the crack-width equation 

in ACI 440.1R (2006) is the same as in CAN/CSA S806 (2012), it was used in predicting the crack 

width of the tested beams. The recommended kb values for ribbed FRP bars were 1.0 and 1.4 for 

CAN/CSA S6 (2014) and ACI 440.1R (2015), respectively. 

Table 7–4 provides the calculated bond-dependent coefficient values (kb) of each beam at 30% and 

67% of the nominal capacity as well as at the permissible crack width of 0.70 mm in accordance 

with CAN/CSA S806 (2012). The kb was calculated based on the measured crack widths and the 

corresponding strains in FRP bars using Eq. (7-3) (CAN/CSA S806 2012). The results showed that 

the kb values ranged from 0.59 to 1.09 with an average value of 0.83 for the ribbed BFRP tested 

herein. The comparison confirms that the kb=1.4 in ACI 440.1R (2015) is very conservative and 

overestimates the crack widths in the tested beams. On the other hand, the kb=1.0 provided by 

CAN/CSA S6 (2014) yields a better prediction but still overestimates the crack widths. 

7.4.2 Mid-Span Deflection 

The deflection behavior of RC elements subject to flexural moment can be divided into two 

separate stages: before and after cracking. The first stage, in which the section is not cracked, the 

behavior of the concrete element is controlled by the section’s gross moment of inertia (Ig). The 

second stage starts when the applied moment (Ma) exceeds the cracking moment (Mcr) and crack 

propagation occurs, which reduces stiffness. 

The ACI 440.1R (2006) equation is based on the effective moment of inertia (Ie), which is 

determined by modifying the Branson (1968) equation. The modification, shown in Eq. (7-9a), 

introduced (βd) to account for FRP instead of steel, where (βd) is proportional to the ratio between 

the actual and balanced reinforcement ratio of the section (Eq. (7-9b)). ACI 440.1R (2015), 

however, recommended another formula to calculate Ie, which was based on Bischoff et al. (2009) 

(Eq. (7-10a)). This formula includes an additional factor γ to account for the variation in stiffness 

along the length of the member, as shown in Eq. (7-10b), which was introduced by Bischoff and 
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Gross (2011). The deflection prediction entails calculating a uniform moment of inertia throughout 

the beam length and uses deflection equations derived from linear elastic analysis, as shown in Eq. 

(7-11), for a simply supported member subjected to two-point loading. 
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CAN/CSA S806 (2012) recommends curvature integration along the span to determine the 

deflection of a concrete member at any point, assuming the section is fully cracked with no 

contribution of tension stiffness in the beam’s cracked regions. Therefore, the moment–curvature 

relation of FRP concrete members can be assumed to be bilinear, where the curvature (Ψ) is given 

by (Ma/(EcIg)) for the uncracked parts of the beam, followed by an increase in curvature at a 

constant moment value (transition from uncracked to cracked stage) and (Ma/(EcIcr)) for the cracked 

part when the applied moment (Ma) is higher than the cracking moment (Mcr). CAN/CSA S806 

(2012) provides deflection equations for simple loading cases, such as Eq. (7-12), for a simply 

supported member subjected to two-point loading where the cracked moment of inertia (Icr) is 

calculated from Eq. (7-13). 
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Table 7–6 provides the experimental mid-span deflections measured at 30% and 67% of the 

nominal capacity (0.3Mn and 0.67Mn), respectively. It also provides the experimental-to-predicted 

deflection ratios (δexp/δpred) for all tested beams at 0.3Mn and 0.67Mn based on ACI 440.1R (2006), 

ACI 440.1R (2015) and CAN/CSA S806 (2012) provisions. Figure 7–8 shows the correlation 

between the experimental and predicted responses. Moreover, Table 7–6 confirms that ACI 440.1R 

(2006) underestimated the deflection of the beams at 0.30Mn (expected service load), where the 

average δexp/δpred was 2.91±0.81. Similarly, at 0.67Mn, it underestimated the deflection values with 

an average δexp/δpred of 1.30±0.06. ACI 440.1R (2015) showed better predictions than ACI 440.1R 

(2006) at both 0.3Mn and 0.67Mn, with an average δexp/δpred of 2.02±0.86 and 1.21±0.03, 

respectively. On the other hand, CAN/CSA S806 (2012) has a reasonable prediction at 0.30Mn and 

overestimated the deflection prediction at 0.67Mn, where the average δexp/δpred were 0.99±0.08 and 

1.07±0.05, respectively. Thus, CAN/CSA S806 (2012) may provide reasonable yet conservative 

deflections for beams reinforced with BFRP bars. It is worth mentioning that the large coefficient 

of variation for the results at the service-load level is related to the low reinforcement ratio in some 

beams, which have cracking loads close to the service-load level.  
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(a) 

 

(b) 

 

 

Figure 7–8: Comparison between the experimental and predicted deflection: (a) B-3#8mm, B-

2#12mm and B-2#16mm; (b) B-5#8mm, B-3#12mm and B-3#16mm 
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6.5 Summary and Conclusion 

This paper presented an experimental study aimed at investigating the flexural behavior of concrete 

beams reinforced with ribbed basalt-fiber-reinforced-polymer bars (BFRP). A total of eight 

concrete beams measuring 3100 mm long × 200 mm wide × 300 mm deep were constructed and 

tested up to failure. Six beams were reinforced with 8, 12, and 16 mm BFRP bars with ribbed 

surfaces and two reference beams were reinforced with 10M and 15M steel bars. The beams were 

tested under four-point bending over a clear span of 2700 mm until failure, and the experimental 

results were compared to design provisions. Based on the test results and the discussions presented 

herein, the following conclusions can be drawn: 

1. The tested BFRP-RC beams failed due to concrete crushing as they were designed as over-

reinforced sections. The beams showed distributed flexural cracks with no signs of slippage of 

the tensile reinforcement. The load-carrying capacity was higher than that of the steel-RC 

beams with the same reinforcement ratios due to the higher tensile strength and strain capacity 

of the BFRP bars compared to the steel bars. 

2. The BFRP-RC beams showed typical bilinear behavior for strain and deflection until failure. 

The pre-cracking response and cracking loads of all the beams were nearly unaffected by the 

reinforcement ratio, since they are governed by the gross concrete section. After the beams 

crack, the increase in stiffness or reduction in reinforcement strains was proportional to the 

reinforcement ratio. 

3. The average bond-dependent coefficient (kb), determined from the three first flexural cracks in 

each beam, was 0.83±0.14 for the BFRP bars with ribbed surfaces, which is lower than the 

recommendation in the Canadian Highway Bridge Design Code (CAN/CSA S6 2014) (kb = 1.0) 

for ribbed FRP bars. 

4. The axial stiffness of the flexural reinforcement (Ef Af) significantly affected the general 

behavior of the BFRP-RC beams. Beams with the same Ef Af are expected to show similar 

deflection and capacity, regardless the effect of the concrete strength and the variation in the 

effective depth. On the other hand, the use of smaller diameters of BFRP bars may result in 

better cracking behavior due to the higher bond strength of the bars, as evidenced by B-3#8mm 
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and B-2#12. Despite its low Ef Af, B-3#8mm showed the same moment–crack width 

relationship as B2#12mm. More investigation is needed, however, to quantify the effect of bar 

diameter and bar spacing. 

5. ACI 440.1R (2006) and ACI 440.1R (2015) underestimated the deflection of the beams at 

0.30Mn, where the average δexp/δpred ratios were 2.91±0.81 and 2.02±0.86, respectively. 

Similarly, at 0.67Mn, the average δexp/δpred ratios were 1.30±0.06 and 1.21±0.03 using ACI 

440.1R (2006) and ACI 440.1R (2015), respectively. On the other hand, CAN/CSA S806 

(2012) provided reasonable yet conservative deflection values with average δexp/δpred ratios of 

0.99±0.08 and 1.07±0.05 at 0.30Mn and 0.67Mn, respectively. 

6.6 Nomenclature 

The following symbols are used in this paper: 

a =  shear span (mm) 

Af  =  nominal area of FRP tension reinforcement (mm2) 

b =  beam effective width (mm)  

c =  neutral-axis depth (mm)  

d =  distance from the extreme compression fiber to the centroid of tension force (mm) 

db =  bar diameter (mm)  

dc =  distance from extreme tension fiber to the center of the longitudinal bar (mm) 

Ef =  modulus of elasticity of longitudinal reinforcement (MPa)  

f'c =  compressive strength of concrete (MPa) 

ff  =  stress in FRP reinforcement under specified loads (MPa) 

ffu =  ultimate strength of FRP longitudinal reinforcement (MPa) 

fr =  modulus of rupture (kN/m2)  

h1 =  distance from neutral axis to center of tensile reinforcement (mm)  

h2 =  distance from neutral axis to extreme tension fiber (mm)  

Icr =  transformed moment of inertia of cracked reinforced-concrete section (mm4)  

Ie =  effective moment of inertia (mm4)  

Ig =  gross moment of inertia of uncracked section (mm4)  

J =  deformability factor  
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k = ratio of depth of neutral axis to reinforcement depth 

kb =  bond-dependent coefficient  

L =  length of clear span (mm) 

Lg =  length of the uncracked section (mm) 

Ma =  applied moment (kN.m) 

Mcr =  cracking moment (kN.m)  

Mn =  nominal moment of the reinforced-concrete section (kN.m) 

nf = ratio of modulus of elasticity of FRP bars to modulus of elasticity of concrete 

P =  applied load (kN) 

s =  spacing between the longitudinal reinforcement bars (mm) 

wcr =  maximum crack width (mm) 

yt =  distance from centroid axis of cross section to the extreme fiber in tension (mm)  

γ = parameter to account for the variation of stiffness along the length of the member 

δ =  mid-span deflection (mm) 

εcu =  ultimate concrete strain 

εfu =  ultimate FRP strain 

ρf =  actual longitudinal-reinforcement ratio  
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CHAPTER 8  

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 

8.1 Summary 

This experimental study aimed at developing a better understanding of basalt fiber-reinforced 

polymer (BFRP) reinforcing bars and their structural performance in concrete members. The 

experimental program consisted of three parts, designed to evaluate the short-and long-term 

characteristics and the structural performance of newly developed BFRP bars in concrete members. 

This section summarizes the different parts of the study as follows: 

Part I: Characterization of BFRP Bars 

This part aimed at investigating the physical, mechanical, and durability characteristics of three 

types of BFRP bars and tendons. Durability and long-term performance were assessed in 

accordance to CAN/CSA S807 (2010), ACI 440.6M (2008) and ASTM standards using accelerated 

aging techniques in different chemical solutions at high temperature for certain periods of time to 

determine their suitability as internal reinforcement for concrete elements. 

Part II: Concrete Bridge-Deck Slabs Reinforced with BFRP Bars  

This part aimed at investigating the performance of edge-restrained concrete bridge-deck slabs 

reinforced with BFRP bars. The tests included six full-scale, edge-restrained concrete deck slabs 

simulating an actual slab-on-girder bridge-deck commonly used in North America, and one full-

scale unrestrained concrete deck slab. The deck slabs measured 3000 mm long × 2500 mm wide × 

200 mm thick. The slabs were tested up to failure under a single concentrated load acting on the 

center of each slab to simulate the footprint of the sustained truck wheel load (87.5 kN for CL-625 

truck, CAN/CSA S6.1S1, 2010). The punching shear capacities were predicted using the available 

equations and provisions and compared with the experimental results. 
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Part III: Concrete Beams Reinforced with BFRP Bars 

This part aimed at investigating the flexural behavior and serviceability performance of concrete 

beams reinforced with sand-coated and ribbed BFRP bars. In addition, it investigated the bond-

dependent coefficient (kb) of the BFRP bars and compared the calculated values with the 

recommendations of the current FRP design codes and guidelines. The tests included twelve 

rectangular concrete beams of 3100 mm long × 200 mm wide × 300 mm deep reinforced with 

BFRP bars and two beams reinforced with steel bars. The beam specimens were designed in 

accordance with Annex S of CSA S806 (2012) and tested under four-point bending over a clear 

span of 2700 mm until failure. The beam test results are introduced and discussed in terms of 

cracking behavior, deflection, flexure capacity, and failure modes, and the experimental results 

were compared to design provisions.  

8.2 Conclusion 

Based on the experimental testing and the analysis of the results, the following conclusions were 

drawn: 

Part I: Characterization of BFRP Bars 

1. The test results confirmed that the BFRP bars meet the requirements of ACI 440.6M (2008) 

and CAN/CSA S807 (2010) with respect to physical and mechanical properties and could be 

placed in the same category as grades II and III GFRP bars (according to tensile modulus of 

elasticity). Their tensile strength, however, was higher than that provided by CAN/CSA S807 

(2010) for CFRP bars.   

2. The long-term testing showed significant degradation and reduction in the mechanical 

properties of the alkali-conditioned specimens. However, the basalt fibers and resins used in 

this study were not affected by the conditioning. The strength degradation observed in the 

BFRP bars was attributed to the fiber–matrix interface (sizing), which evidenced poor bonding 

between the resin and basalt fibers. 
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Part II: Concrete Bridge-Deck Slabs Reinforced with BFRP Bars  

3. Similar to past findings for steel-, GFRP-, and CFRP-reinforced concrete bridge-deck slabs, 

the BFRP-reinforced concrete bridge-deck slabs evidenced punching-shear failure at 

corresponding loads higher than the factored designed loads provided by the CHBDC 

(CAN/CSA S6 2014). 

4. The bottom transverse-reinforcement ratio was the main parameter affecting the general 

behavior (strains, crack width, deflection). Increasing the bottom-transverse reinforcement 

ratio significantly enhanced the performance and reduced strain, deflection, and crack width at 

the same load level. 

5. Deck slabs with the same reinforcement ratio and axial-reinforcement stiffness nearly exhibit 

the same behavior and punching-shear capacity. Reducing BFRP bar size and spacing 

improved the cracking performance and the induced strains by improving the bond between 

the concrete and reinforcing bars. 

6. The design of deck slabs using the flexural method was governed in most cases by the crack-

width limit. Thus, using FRP bars with a high modulus of elasticity, such as BFRP bars, will 

significantly reduce the required amount of reinforcement. 

7. The test results showed that an edge-restraining system increased the ultimate capacity by 31.9% 

and reduced the crack widths, deflection, and FRP strains compared to the unrestrained slab. 

This provides evidence of the development of compressive membrane action (CMA) in the 

laterally restrained concrete deck slabs. 

8. The current punching-shear provisions in CAN/CSA S806 (2012) provided reasonable yet 

conservative predictions for the punching-shear capacity of BFRP-RC deck slabs. On the other 

hand, the current guide of ACI 440.1R (2015) underestimated the punching-shear strength of 

the tested slabs. These findings are in agreement with past work conducted on glass- and 

carbon-FRP bars. 
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Part III: Concrete Beams Reinforced with BFRP Bars 

9. The tested BFRP-RC beams failed due concrete crushing as they were designed as over-

reinforced sections. The beams showed distributed flexural cracks with no signs of slippage of 

the tensile reinforcement. The load-carrying capacity was higher than that of the steel-RC 

beams with the same reinforcement ratios due to the higher tensile strength and strain capacity 

of the BFRP bars compared to the steel bars. 

10. Beams reinforced with sand-coated and ribbed BFRP bars exhibited similar behavior. 

However, the former showed a higher number of cracks and lower crack width due to better 

bond distribution between the bar and concrete. 

11. The average bond-dependent coefficients (kb), determined from the three first cracks in each 

beam, were 0.76±0.03 and 0.83±0.14 for the sand-coated and ribbed BFRP bars, respectively. 

12. The BFRP-RC beams showed typical bilinear behavior for strain and deflection until failure. 

The pre-cracking response and cracking loads of all the beams were nearly unaffected by the 

reinforcement ratio, since they are governed by the gross concrete section. After the beams 

crack, the increase in stiffness or reduction in reinforcement strains was proportional to the 

reinforcement ratio. 

13. The BFRP-RC beams with low reinforcement ratios showed sharp increases in strains and 

deflection at cracking. The sudden increase in strains resulted in wider and deeper cracks, 

which is reflected on the stiffness and the location of the neutral axis of the cracked section. 

Increasing the reinforcement ratio, however, increased the amount of absorbed energy at the 

first crack, which enhanced the behavior, as it controls the immediate increase in strain and 

initial crack width. 

14. The axial stiffness of the flexural reinforcement (Ef Af) significantly affected the general 

behavior of the BFRP-RC beams. The higher axial stiffness, the better performance (lower 

deflection, lower strain, and lower crack width at the same load level). Beams with the same 

axial stiffness are expected to show similar behavior. On the other hand, the use of smaller 

diameters of BFRP bars may result in better cracking behavior due to the higher bond strength 

of the bars. 
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15. ACI 440.1R (2006) underestimated the deflection of the beams at service load level (0.30Mn), 

where the average δexp/δpred were 2.10±0.37 and 2.91±0.81 for sand-coated and ribbed BFRP 

bars, respectively, while ACI 440.1R (2015) showed better predictions than ACI 440.1R 

(2006) with an average δexp/δpred of 1.35±0.15 and 2.02±0.86 for sand-coated and ribbed BFRP 

bars, respectively. On the other hand, CAN/CSA S806 (2012) overestimated the deflection 

predictions at 0.30Mn, where the average δexp/δpred were 0.80±0.09 and 0.99±0.08 for sand-

coated and ribbed BFRP bars, respectively. Thus, CAN/CSA S806 (2012) may provide 

reasonable yet conservative deflection values for beams reinforced with BFRP bars. 

8.3 Conclusion en Francais 

Suite aux essais expérimentaux et à l’analyse des résultats, les conclusions suivantes ont été tirées: 

Partie I: Caractérisation des barres de PRFB 

1. Les résultats confirment que les barres de PRFB remplissent les conditions des normes ACI 

440.6M (2008) et CAN/CSA S807 (2010) en respectant les propriétés physiques et mécaniques 

et pourrait être placées dans les mêmes catégories que les barres de PRFV de grade II et III (en 

fonction du module élastique en traction). Cependant, leurs résistances à la traction étaient plus 

élevées que ce qui est mentionné dans la norme CAN/CSA S807 (2010) pour des barres de 

PRFC. 

2. Les essais à long terme sous conditionnement alcalin ont montré une dégradation significative 

et une réduction des propriétés mécaniques des spécimens. Cependant, les fibres de basalte et 

les résines utilisées dans cette étude n’ont pas été affectées par ce conditionnement. La 

dégradation de la résistance observée dans les barres de PRFB était attribuée à l’interface fibre-

matrice (dimension), ce qui pointait à de faibles liaisons entre la résine et les fibres. 

Partie II: Dalle de pont en béton armé de barres de PRFB 

3. Comme pour les dernières conclusions sur les dalles de pont en béton armé de barres d’acier, 

PRFV et PRFC; les dalles de pont en béton armé de barres de PRFB manifestent une rupture 

en poinçonnement correspondant à une charge plus élevé que la charge de dimensionnement 

pondérée prescrite par le CHBDC (CAN/CSA S6 2014). 
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4. Le ratio de renforcement transversal du bas était le paramètre principal qui affectait le 

comportement général (contraintes, largeur de fissure, déflexion). Augmenter le ratio de 

renforcement transversal du bas améliore significativement les performances et réduit les 

contraintes, la largeur de fissuration et la déflexion pour une même charge. 

5. Les dalles ayant le même ratio de renforcement et rigidité de renforcement axial démontrent 

presque le même comportement et capacité en poinçonnement. Réduire le diamètre et 

l’espacement des barres de PRFB augmente les performances de fissuration et les contraintes 

induites en améliorant la liaison en le béton et les barres de renforcement. 

6. La conception des dalles utilisant l’analyse en flexion était gouvernée, dans la majorité des cas, 

par la limite de largeur de fissuration. Par conséquent, l’utilisation de PRF avec un module 

d’élasticité élevé, comme pour le PRFB, réduirait significativement la quantité de 

renforcement requis. 

7. Les résultats des essais ont montré qu’un système de retenue des bords augmente la capacité 

ultime de 31.9% et réduit la largeur de fissuration, la déflexion et les contraintes dans les PRF 

comparativement à une dalle non retenue. Cela fournit une preuve qu’il y a un développement 

d’une action de la membrane en compression dans une dalle retenue latéralement. 

8. La disposition actuelle sur le poinçonnement dans la norme CAN/CSA S806 (2012) fourni des 

prédictions raisonnables, mais conservatrices vis-à-vis de la capacité en poinçonnement des 

dalles de béton renforcé de PRFB. D’un autre côté, le guide actuel du ACI 440.1R (2015) sous-

estime la résistance au poinçonnement des dalles testé. Ces conclusions sont en accord avec 

les travaux passés conduits avec des barres PRFV et PRFC. 

Partie III: Poutres en béton armé de barres de PRFB 

9. Les poutres en béton armé de PRFB testées ont failli en compression du béton puisqu’elles ont 

été conçues comme une section surarmée. Les poutres montrent des fissurations en flexion 

distribuées avec aucun signe de glissement du renforcement en traction. La capacité de charge 

était plus grande que celle pour des poutres armées d’acier en considérant les mêmes ratios de 

renforcement. Cela était dû la une plus grande résistance à la traction et capacité de contrainte 

des barres de PRFB comparativement à des barres d’acier. 
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10. Les poutres renforcées avec des barres en PRFB enrobées de sable ou nervurées présentent un 

comportement similaire. La première présente un nombre plus élevé de fissures avec une 

ouverture moins important due à une meilleure distribution de la liaison entre la barre et le 

béton. 

11. Le coefficient moyen dépendant de la liaison (kb), déterminée avec les trois premières 

fissurations de chaque poutre, était de 0.76±0.03 et 0.83±0.14 pour les surfaces sablées et 

crénelées respectivement des barres de PRFB. 

12. Les poutres en béton armées de PRFB démontrent un comportement bilinéaire typique pour 

les contraintes et les déflexions jusqu’à la rupture. Les réponses préfissuration et les charges 

de fissuration de toutes les poutres étaient presque infectées par le ratio de renforcement 

puisque c’est la section brute de béton qui gouvernait. Après la fissuration des poutres, 

l’augmentation en rigidité ou la réduction des contraintes dans le renforcement était 

directement proportionnelle au ratio de renforcement. 

13. Les poutres en béton armé de PRFB avec un ratio de renforcement faible montraient une forte 

augmentation dans les contraintes et la déflexion au moment de la fissuration. Cette 

augmentation soudaine dans les contraintes a entraîné des fissurations plus larges et plus 

profondes; ce qui s’est reflété dans la rigidité et l’emplacement de l’axe neutre de la section 

fissurée. Cependant en augmentant le ratio de renforcement, cela a augmenté l’énergie 

absorbée lors de la première fissuration. Cela a eu pour effet de rehausser le comportement 

puisqu’il contrôle immédiatement l’augmentation de la contrainte et la largeur initiale de 

fissuration. 

14. La rigidité axiale et le renforcement en flexion (Ef Af) ont significativement affecté le 

comportement général des poutres en béton armé de PRFB. Plus la rigidité axiale est élevée, 

meilleur sont les performances (faible déflexion, faible contrainte, faible largeur de fissuration 

pour une même charge). Les poutres avec une rigidité axiale similaire sont attendues de montré 

des comportements similaires. D’un autre côté, l’utilisation de diamètre plus petit pour des 

barres de PRFB peut conduire à un meilleur comportement en fissuration en raison d’une plus 

grande résistance à la liaison des barres. 
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15. L'ACI 440.1R (2006) sous-estime la flèche des poutres pour la charge en service (0.30Mn), où 

la moyenne de δexp/δpred est de 2.10±0.37 et 2.91±0.81 pour les surfaces sablées et crénelées 

respectivement. Par contre, L'ACI 440.1R (2015) montre des meilleures prédictions que l'ACI 

440.1R (2006) avec une moyenne de 1.35±0.15 et 2.02±0.86 pour les surfaces sablées et 

crénelées respectivement. D'autre part, la norme CAN/CSA S806 (2012) surestime la 

prédiction de la flèche pour le même niveau de chargement, où la moyenne de δexp/δpred  est de 

0.80±0.09 et 0.99±0.081 pour les surfaces sablées et crénelées respectivement. Ainsi, la norme 

CAN/CSA S806 (2012) donne des résultats conservateurs pour les poutres renforcées avec des 

barres de PRFB. 

 8.4 Recommendations for Future Work 

Based on the findings and conclusions of the current study, further investigations on different 

BFRP products should be conducted to generate more confidence and encourage wider acceptance 

of this new material, which may lead to introducing the BFRP materials into the FRP design codes 

and standards. Some of the recommendations for future research are to: 

1. Investigate the durability of the BFRP bars subjected to water, salts and acids for a long time, 

as well as the fire resistance. 

2. Investigate the serviceability and structural performance of BFRP-RC beams and bridge-deck 

slabs using different types of concrete, such as high-strength, high-performance and self-

consolidated concrete. 

3. Investigate the serviceability and structural performance of BFRP-RC beams and bridge-deck 

slabs under fatigue load. 

4. Investigate the performance of prestressed concrete elements reinforced with BFRP tendons. 

5. Investigate the shear behavior of BFRP-RC beams. 

6. For the flexure test, the authors recommend not to use top reinforcement at the maximum 

moment region of the beam, to reduce the effect of compression reinforcement on the beam 

behavior.  
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APPENDIX A: Design of Slab S2-B 

This Appendix presents a typical design of slab S2-B according to the CHBDC CAN/CSA S6 

(2014). The corresponding clause numbers (CAN/CSA S 2014) are provided, where applicable. 

Figure A-1 shows the cross-section of the slab. The ultimate capacity of the used BFRP bars (ffu) 

=1724 ± 63.6 MPa and the tensile modulus of elasticity (Ef) = 64.8 GPa.  

Deck slab thickness, h = 200 mm        (5-6) 

Effective span of deck slab, Se = 2000 mm       (5-7) 

Bottom concrete cover, C.C. = 25 mm       (5-8) 

3 3
6 41000 200

=   = = 666.67 ×1  0  mm
12 12

g

bh
I


       (5-9) 

 

Figure A-1: Cross section of slab S2-B 

The Empirical Design Method (Clause 16.8.8.1) 

The bottom-transverse FRP reinforcing bars are determined according to the empirical design 

method as follows: 

  . 

500  500 159
=   =   × 1000 = 

64800

s
f min

f

d
A

E


1227 mm2/m = 16 mm @ 164 mm   (5-10) 

where ds = h – C.C. – bar diameter = 200 – 25 – 16 = 159 mm    (5-11) 

For the bottom transverse reinforcement, use 16 mm BFRP @ 150 mm. 
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The Flexural Design Method  

The deck slab was designed using the flexural design method, considering the service and ultimate 

limit states. The design moments were based on a maximum wheel load of 87.5 kN (CL-625 truck), 

in addition to self-weight of the slab and pavement. The experimental results do not include the 

effects of slab self-weight, as mentioned before. 

Concrete 

'  40cf  MPa           (5-12) 

  
1.5' =  3000 +6900 2300  c c cE f   26.72 MPa (Clause 8.4.1.7)     (5-13) 

ϕc = 0.75 (Table 8-1)          (5-14) 

Reinforcement 

Assume the bottom transverse direction is made of BFRP bars of 16 mm @ 150 mm. 

Af = 1340.67 mm2/m          (5-15) 

d = h – C.C. – bar diameter/2 = 200 – 25 – 16/2 = 167 mm     (5-16) 

1340.67
 =   × 100 =   × 100 = 0.803%

1000 1000 167

f

f

A

d


 
     (5-17) 

Specific tensile strength, f*
u (Mean – 3×SD) = 1724 - 3 × 63.6 = 1533 MPa  (5-18) 

Bond-dependent coefficient, kb = 1.0 (Clause 16.8.2.3, deformed bars)   (5-19) 

ϕf= 0.55 (Assumed as GFRP bars, Table 16.2)      (5-20) 

Stress at service load level, fSLS = 0.25 f*
u (Assumed as GFRP bars, Clause 16.8.3)  (5-21) 

Cracking Moment 

' = 0.4   = 0.4  40 =r cf f 2.53 MPa (Clause 8.4.1.8)      (5-22) 

6
6

2    2   2.53   666.67  10
 =   =    10 = 16.865 kN.m/m

200

r g

cr

f I
M

h

  
     (5-23) 

Load and Transverse Moment due to Uniform Load 

Slab self-weight = 0.2×23.5 = 4.70 kN/m2       (5-24) 

Pavement self-weight = 0.065×24.0 = 1.56 kN/m2      (5-25) 

Service dead load, Wd-SLS = 4.70+1.56 = 6.26 kN/m2      (5-26) 

Factored dead load, Wd-ULS = 1.2×4.7+1.5×1.56 = 7.98 kN/m2    (5-27) 
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Service moment due to dead load, Md-SLS = 0.071 Wd-SLS Se
2      (5-28a) 

= 0.071×6.26×2.02 = 1.778 kN.m/m        (5-28b) 

Factored moment due to dead load, Md-ULS = 0.071 Wdu Se
2      (5-29a) 

= 0.071×7.98×2.02 = 2.267 kN.m/m         (5-29b) 

Load and Transverse Moment due to Wheel Load 

The total transverse moment, 
 0.6

 =  22.75 kN.m/m
10

y

eS P
M


 (Clause 5.7.1.7.1) (5-30) 

Service moment due to wheel load, My-SLS = 1.4×22.75×0.9 = 28.665 kN.m/m  (5-31) 

Factored moment due to wheel load, My-ULS =1.4×22.75×1.7 = 54.145 kN.m/m  (5-32) 

where 1.4 is the impact factor, while 0.9 and 1.7 are the service and ultimate load combination 

factors, respectively (Table 3.1). 

Transverse Design Moment (Total Loads) 

Total service moment, MSLS = 1.778 + 28.665 = 30.443 kN.m/m    (5-33) 

Total factored moment, MULS = 2.267 + 54.145 = 56.412 kN.m/m    (5-34) 

Check for Crack Width and Stress Limit under Service Load 

64.8
 =   =   = 2.425

26.72

f

f

c

E
n

E
         (5-35) 

 
2

 = 2   –  =0.1788f f f f f fk n n n          (5-36) 

 
* =  144.59 MPa < 0.25  = 0.25×1533 = 383 MPa 

  1 / 3

SLS
s u

f

M
f f

A d k



 OK   (5-37) 

h2 = h – kd = 200 – 0.1788 × 167 = 170.14 mm      (5-38) 

h1 = d – kd = 167 – 0.1788 × 167 = 137.14 mm      (5-39) 

dc = h – d = 200 – 167 = 33 mm        (5-40) 

 
222

1

 = 2     / 2  s
cr b c

f

f h
w k d S

E h
  (Clause 16.8.2.3)      (5-41a) 

        
22144.59 170.14

=2× 1.0 33 150 / 2  
64800 137.14

    0.453 mm <0.50 mm (OK)  (5-41b) 
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Check for Stress under Ultimate Load 

1

'0.85 0.0015  0.79 0.67cf      (Clause 8.8.3)      (5-42) 

'

1 0.97 0.0025  0.87 0.67cf      (Clause 8.8.3)      (5-43) 

'

1 f f f c cA f f ab             (5-44a) 

   0.55 1340.6 64800 0.79 0.75 40 0.87 1000f c             (5-44b) 

2317.2  fc 
           (5-45) 

167
 

0.0035 0.0035   0.0035   ff

c d

 

    
               

      (5-46) 

Solving (5-45) and (5-46) 

0.0142f             (5-47) 

32.97 mmc            (5-48) 

1  28.86a c  mm          (5-49) 

*  921.97 MPa 1533 MPaf f uff E f     (Over-reinforced)    (5-50) 

 '

1  / 2r c cM f ab d a            (5-51a) 

      103.78 kN.m 1.5 1.5 16.865 = 25.30 kN.m crM    (OK) (Clause 16.8.2.2)  (5-51b) 

       1.5 1.5 56.412 84.62 kN.m uM    (OK) (Clause 16.8.2.2)    (5-51c) 

Use 16 mm BFRP @ 150 mm. 
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APPENDIX B: Nominal Capacity-Reinforcement 

Ratio Relationship of Tested Beams 

Figure B-1 shows the effect of the reinforcement ratio, ρ, on the on the nominal flexure capacity 

of beams reinforced with BFRP bar. The horizontal axis in Figure B-1 represents the normalized 

reinforcement ratio with respect to the ultimate tensile strength of BFRP bars, ρ/ffu, while the 

vertical axis represents the experimental nominal capacity, Mn. As shown in the figure, the rate of 

increasing nominal capacity is decreasing as the reinforcement ratio increasing affected by the 

compression failure mode. 

 

Figure B-1: Normalized relationship between the ultimate capacity and reinforcement ratio 
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