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ABSTRACT 

Recently, fiber-reinforced polymer (FRP) composite materials have been used in the field of 

civil engineering constructions especially in corrosive environments. They can be used as 

internal reinforcement for beams, slabs, and pavements, or as external reinforcement for 

rehabilitation and strengthening different structures. One of their innovative applications is 

the concrete-filled FRP tubes (CFFTs) which are becoming an alternative for different 

structural members such as piles, columns, bridge girders, and bridge piers due to their high 

performance and durability. In such integrated systems, the FRP tubes act as stay-in-place 

forms, protective jackets for the embedded concrete and steel, and as external reinforcement 

in the primary and secondary direction of the structural member.  

Extensive research was developed on CFFTs as columns, but comparatively limited research 

was carried out on CFFTs as beams especially those with rectangular sections. The circular 

sections exhibit magnificent confinement efficiency in case of columns. However, the 

rectangular sections have higher moment of inertia and flexural stiffness to resist the applied 

loads and deformations in case of beams. Moreover, the construction and architectural 

requirements prefer the rectangular section of beams, rather than the circular beams, due to 

its stability during installation and its workability during connecting to other structural 

members like slabs and columns. Also, CFFTs that are completely filled with concrete are 

not optimal for applications governed by pure bending, because the excess weight of the 

cracked concrete below the neutral axis may increase the transportation and installation cost.  

This dissertation presents experimental and theoretical investigations on the flexural 

behaviour of rectangular CFFT beams with steel rebar. These hybrid FRP-concrete-steel 

tubular rectangular beams contain outer rectangular filament-wound glass-FRP (GFRP) tubes 

to increase the sectional moment of inertia, to provide flexural and shear reinforcement, and 

to protect the inner structural elements (concrete and steel) against corrosion. The outer tubes 

were fully-or-partially filled with concrete and were reinforced with steel rebar at the tension 

side only. Inner hollow circular or square filament-wound GFRP tubes, shifted toward the 

tension zone, were provided inside the CFFT beam to eliminate the excess weight of the 
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cracked concrete at the tension side, to confine actively the concrete at the compression side 

and to act as reinforcement at the tension side. The surfaces of tubes adjacent to concrete 

were roughened by sand coating to fulfill the full composite action of such hybrid section. 

Several test variables were chosen to investigate the effect of the outer and inner tubes 

thickness, fibers laminates, and shape on the flexural behaviour of such hybrid CFFT beams. 

To fulfil the objectives of the study, twenty-four full-scale beam specimens, 3200 mm long 

and 305×406 mm
2
 cross section, were tested under a four-point bending load. These 

specimens include eight fully-CFFT beams with wide range of tube thickness of 3.4 mm to 

14.2 mm, fourteen partially-CFFT beams with different outer and inner tubes configurations, 

and two conventional steel-reinforced concrete (RC) beams as control specimens.  

The results indicate outstanding performance of the rectangular fully and partially-CFFT 

beams in terms of strength-to-weight ratio and ductility compared to the RC beams. The 

fully-CFFT beams with small tube thickness failed in tension by axial rupture of fibers at the 

tension side. While, the fully-CFFT beams with big tube thickness failed in compression by 

outward buckling of the outer tube compression flange with warning signs. The results 

indicate also that the flexural strength of the fully-CFFT beams was ascending nonlinearly 

with increasing the tubes thickness until a certain optimum limit. This limit was evaluated to 

define under-and-over-reinforced CFFT sections, and consequently to define the tension and 

compression failure of fully-CFFT beams, respectively. The inner hollow tubes act positively 

in reinforcing the partially-CFFT beams and confining the concrete core at the compression 

side. The strength-to-weight ratio of the partially-CFFT beams attained higher values than 

that of the corresponding fully-CFFT beams. Generally, the partially-CFFT beams failed 

gradually in compression due to outward buckling of the outer tube compression flange with 

signs of confining the concrete core at the compression side. The inner circular voids 

pronounced better performance than the square inner voids, however they have the same 

cross sectional area and fiber laminates.  

Theoretical section analysis based on strain compatibility/equilibrium has been developed to 

predict the moment-curvature response of the fully-CFFT section addressing the confinement 

and tension stiffening of concrete. The analytical results match well the experimental results 

in terms of moment, deflection, strains, and neutral axis responses. In addition, analytical 
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investigation was conducted to examine the validity of the North American design codes 

provisions for predicting the deflection response of fully and partially-CFFT beams. Based 

on these investigations, a new power and assumptions were proposed to Branson’s equation 

to predict well the effective moment of inertia of the CFFT section. These assumptions 

consider the effect of the GFRP tube strength, thickness and configuration, in addition to the 

steel reinforcement ratio. The proposed equations predict well the deflection in the pre-

yielding and post-yielding stages of the hybrid FRP-concrete-steel CFFT rectangular beams. 

Keywords: Fiber-Reinforced Polymer, Filament Winding, Concrete-Filled FRP Tube, 

Beams, Flexural behaviour, Deflection. 
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RÉSUMÉ 

Les matériaux composites en polymère renforcé de fibres (PRF) ont récemment été utilisés 

dans le domaine des constructions de génie civil, en particulier dans les environnements 

corrosifs. Elles peuvent être utilisées comme une armature interne pour des poutres, dalles et 

les trottoirs, ou comme une armature externe pour la réhabilitation et le renforcement de 

différentes structures. L'une de leurs applications novatrices est les tubes de polymères 

renforcés de fibres remplis de béton (TPFRB
1
) qui sont en train de devenir une alternative 

pour divers éléments structuraux tels que les pieux, les colonnes, les poutres et les piliers de 

ponts en raison de leur haute performance et durabilité. Dans de tels systèmes intégrés, les 

tubes PRF agissent comme un coffrage permanent, une chemise protectrice pour le béton et 

l'acier encastrés, et comme une armature externe dans les directions longitudinale et 

transversale de l'élément structural.  

La recherche a été concentrée sur les TPRFB comme des colonnes, mais très peu de 

recherche a été effectué les TPRFB comme des poutres particulièrement celles à section 

rectangulaire. La section circulaire présente une efficacité de confinement efficace en cas de 

colonnes. Toutefois, la section rectangulaire a un moment d'inertie plus élevé et une rigidité 

flexionnelle plus efficace pour résister les charges appliquées et les déformations dans le cas 

des poutres. Par ailleurs, les travaux de construction et les exigences architecturales préfèrent 

la section rectangulaire des poutres, plutôt que les poutres circulaires, en raison de sa stabilité 

pendant l'installation et sa maniabilité lors de la connexion à d'autres membres structuraux 

comme les dalles et les colonnes. En outre, les poutres TPRFB qui sont complètement 

remplis de béton ne sont pas optimales pour les applications contrôlées par la flexion pure, 

puisque le béton fissuré en dessous de l'axe neutre ne contribue pas à la résistance et 

augmente le poids propre et les coûts de transport et d'installation.  

Cette thèse présente des études théoriques et expérimentales sur le comportement en flexion 

de poutres rectangulaires (TPRFB) en béton armé. Ces poutres rectangulaires tubulaires 

hybrides en PRF-béton-acier sont composées de tubes rectangulaires externes fabriquées par 

                                                 
1
 TPRFB est l’acronyme du terme en anglais CFFT : Concrete-Filled FRP-Tubes 
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enroulement filamentaire. Ces tubes fournissent un renforcement de flexion et de 

cisaillement; et protègent le béton armé contre la corrosion. Les poutres peuvent être soient 

entièrement ou partiellement remplies de béton. Des tubes intérieurs ( de section circulaires 

ou carrés) en polymères renforcés de fibres de verre (PRFV) sont positionnés dans la zone 

tendue de la poutre afin de réduire le poids et d’éliminer le béton fissuré en traction. Pour 

augmenter l'action composite de la section hybride, les surfaces des tubes adjacents au béton 

ont été rendues rugueuses par enrobage de sable. Plusieurs variables ont été choisis pour 

étudier l'effet de l’épaisseur des tubes extérieurs et intérieurs, les laminés de fibres, et la 

forme sur le comportement en flexion de ces poutres hybrides (TPRFB). Pour atteindre les 

objectifs de l’étude, vingt-quatre échantillons de poutre pleine grandeur, ayant une longueur 

de 3200 mm et une section transversale de 305×406 mm
2
, ont été testés sous une flexion à 

quatre points. Ces échantillons comprennent huit poutres de TPRFB entièrement remplis 

avec une large gamme d'épaisseur du tube externe de 3.4 mm à 14.2 mm, quatorze poutres de 

TPRFB partiellement remplis avec différentes configurations de tubes extérieurs et intérieurs, 

et deux poutres en béton armé conventionnel, comme échantillons de référence.  

Les résultats indiquent une performance exceptionnelle des poutres rectangulaires de TPRFB 

entièrement et partiellement remplies en termes du rapport de la résistance sur la masse et de 

la ductilité par rapport aux poutres en béton armé conventionnel. Les poutres de TPRFB 

entièrement remplies avec un tube de petite épaisseur ont rompu de façon moins ductile en 

tension par rupture axiale des fibres. Les poutres de TPRFB entièrement remplies et ayant 

une grande épaisseur ont rompu de façon ductile en compression par flambage local vers 

l’extérieur des parois en compression du tube externe. Les résultats indiquent également que 

la résistance à la flexion des poutres de TPRFB entièrement remplies augmente d’une façon 

non linéaire avec l'augmentation de l'épaisseur des tubes jusqu'à une certaine limite optimale. 

Cette limite a été évaluée pour définir les sections TPRFB sous-armées et surarmées et, par 

conséquent, pour définir la rupture en tension et en compression des poutres de TPRFB 

entièrement remplies, respectivement. Les tubes creux intérieurs agissent positivement dans 

le renforcement des poutres de TPRFB partiellement remplies et en confinant le noyau de 

béton du côté en compression. En général, les poutres de TPRFB partiellement remplies ont 

rompu en compression par flambage local vers l'extérieur des parois en compression du tube 
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externe. Les vides circulaires intérieurs ont montré une meilleure performance que les vides 

carrés intérieurs, bien qu’ils aient la même superficie de la section transversale et le même 

taux de PRF.  

Une analyse théorique basée sur la compatibilité des déformations d’une section en flexion a 

été développée pour prédire la réponse moment-courbure de la poutre TPRFB en tenant 

compte des pourcentages de confinement externe et interne. Les résultats analytiques et les 

résultats expérimentaux s’accordent en termes de moment, flèche, déformations, et positions 

de l'axe neutre. En outre, une étude analytique a été menée afin d'examiner la validité des 

codes de conception nord-américains pour prédire la réponse en flexion des poutres TPRFB. 

En se basant sur les résultats de ces études, de nouvelles équations ont été proposées pour 

mieux prédire le moment effectif d'inertie de la section et une nouvelle procédure de 

conception pour prédire les capacités ultimes. Ces équations considèrent l'effet de la 

résistance des tubes en PRFV externe et interne que le taux d’armature en acier. En outre, ils 

prédisent bien la flèche dans les phases avant et après la limite élastique des poutres 

rectangulaires hybrides à haute performance. 

Mots-clés : Polymère renforcé de fibres (PRF), enroulement filamentaire, Tubes de PRF 

remplis de béton, poutres, comportement en flexion, flèche. 
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CHAPTER 1                                  

INTRODUCTION 

 

1.1 GENERAL 

Engineers and scientists are searching for innovative solutions that provide longer life and 

require less maintenance than conventional materials and systems. One of such innovations is 

concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs). The CFFTs are becoming an 

attractive and alternative system for many special types of structural applications especially 

those attacked by corrosive environments such as piles, bridge piers, bridge girders, 

monopoles, and overhead sign structures. The outer FRP tubes provide corrosion resistant 

elements, lateral and longitudinal reinforcement, lightweight permanent formworks, in 

addition to confining the inner concrete core. On the other side, the concrete core supports 

the tube against local buckling in addition to its role in resisting compressive loads.  

Extensive research was developed on CFFTs as columns [Mirmiran et al. 1998, 2001; Fam 

and Rizkalla 2001; Lam and Teng 2003, 2004; Hong and Kim 2004; Zhu at al. 2006; Teng et 

al. 2007; Ozbakkaloglu and Oehlers 2008a, 2008b; Mohamed and Masmoudi 2008a, 2008b, 

2010a; Mohamed et al. 2010; Park et al. 2011; Abouzied et al. 2012b; Abouzied and 

Masmoudi 2012, 2013; Ozbakkaloglu 2013a, 2013b; Vincent and Ozbakkaloglu 2013; Idris 

and Ozbakkaloglu 2013; and others], but comparatively limited research was carried out on 

CFFTs as beams [Mirmiran et al. 2000; Doval et al. 2001; Fam and Rizkalla 2002; Cole and 

Fam 2006; Fam et al. 2005; Yu et al. 2006; Mohamed and Masmoudi 2010b, Zakaib and 

Fam 2012; Belzer et al. 2013] and most of them concentrated on the circular section more 

than the rectangular section. However, the rectangular section has higher moment of inertia 

than the circular section in beams. Hence, it has higher flexural stiffness to resist the applied 

loads and deformations. Moreover, the construction and architectural requirements prefer the 

rectangular section of beams, rather than the circular beams, due to its stability during 
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installation and its workability during connecting to other structural members like slabs and 

columns. To date, only two studies on the flexural behaviour of rectangular CFFT beams 

have been reported, Fam et al. 2005 and Belzer et al. 2013, and their tested specimens 

number are relatively low (three beams for Fam et al. 2015 and four beams for Belzer et al. 

2013) and none of them reinforced the rectangular CFFTs with steel rebar. These dissertation 

studies a large number of CFFT rectangular beams with steel rebar (twenty-two CFFT 

beams). Therefore, this research extends the literature of rectangular CFFTs and represents 

another step toward the CFFT technique to be fully implemented in the field of civil 

engineering structures and to introduce simple design inspired by the North American design 

codes provisions. 

Unlike steel or FRP-RC beams, the steel-reinforced CFFT beams can exhibit superior 

additional flexural capacities in the post-yielding stage. This is attributed to the confining 

action of the FRP tube on the concrete core to withstand high strains, the FRP tube 

reinforcement contribution in the axial direction, and the reinforcement action of the steel 

bars in their strain hardening status. In most tested circular CFFT beams that failed in 

compression, the compression failure was predominantly governed by the compression 

failure of the tube flange under longitudinal compressive stresses where the tensile hoop 

strains (i.e., confinement effect) was insignificant [AASHTO 2012]. Note that, these 

observations are based on flexural tests of circular CFFTs without steel reinforcement and 

more investigations are required to verify that observations on rectangular CFFTs with steel 

rebar. 

Analytical models have been developed to predict the flexural capacity and load-deflection 

response for the circular CFFTs [Cole and Fam 2006; Fam and Son 2008; Mohamed and 

Masmoudi 2010b]. These models are based on strain compatibility, internal forces 

equilibrium, and material constitutive relationships. The forces within the CFFT cross section 

were calculated by integrating the stress over the area of each individual material. Despite the 

limited number of tested specimens, these models predict well the flexural behaviour of their 

circular CFFT beams. Their theoretical analysis depends mainly on a computer-based 

analysis and requires some sophisticated calculation procedures. These proposed models 
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require also verification and adjustment to be valid for the rectangular CFFT beams, and 

need to be simplified to be applicable for engineers.  

The CFFTs that are completely filled with concrete are not optimal for applications governed 

by pure bending, because the concrete below the neutral axis is cracked and it contributes 

slightly to bending resistance and mainly prevents the tube from buckling. As such, the 

excess weight of the cracked concrete may increase the transportation and installation cost. A 

number of FRP-concrete hybrid systems have been developed over the years, including both 

open and closed FRP forms, to reduce the excess weight of the cracked concrete below the 

neutral axis [Deskovic and Triantafillou 1995; Canning et al.1999; Fam and Rizkalla 2002; 

Chakrapan 2005; Khennane 2010; Idris and Ozbakkaloglu 2014]. While, limited trials were 

carried out on filament-wound FRP tubes especially those with rectangular section [Fam et 

al. 2005].  

Fam and Rizkalla (2002) investigated the effect of inner holes by testing circular CFFT 

beams with outer identical GFRP tubes 168 mm diameter. One beam was totally filled with 

concrete, one beam had a central hole, and another two beams had similar holes, but they are 

maintained by concentric and eccentric inner GFRP hollow tubes 89 mm diameter. The 

results indicated that the strength of the CFFT beam with a central hole was 9% less than that 

of the fully-CFFT beam. Moreover, providing an inner concentric GFRP hollow tube 

improved the strength by 7% more than that of the fully beam due to the additional 

reinforcement. Also, shifting the inner GFRP hollow tube toward the tension side was more 

effective, where the strength increased by 39% higher than the fully-CFFT beam. Fam et al. 

(2005) designed a rectangular section, 266×374 mm
2
, of filament-wound GFRP tube with an 

inner rectangular air void. The strength of the voided section reached 78% of that completely 

filled with concrete. The hollow beam did not reach the target strength, because it failed by 

inward buckling and fracture of the unsupported concrete flange at the compression side. 

Idris and Ozbakkaloglu (2014) investigated the flexural behaviour of FRP-high strength 

concrete (HSC)-steel composite beams by testing double-skin tubular beams (DSTBs) with 

outer GFRP tubes and a central inner hollow steel section (HSS). The main parameters of the 

study included the cross-sectional shapes of the inner HSS and the external GFRP tube, 

concrete strength, presence or absence of concrete filling inside the steel tube, and effects of 
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using mechanical connectors to enhance the bond between the steel tube and surrounding 

concrete. The results indicated that DSTBs exhibit excellent load-deflection behaviour with 

high inelastic deformations and minimal strength degradations (minor increase of flexural 

strength after yielding). However, relatively large slippage can occur at the concrete-steel 

tube interface unless the bond is enhanced by mechanical connectors. Regardless the high 

flexural strength and stiffness of the DSTBs based on the inner steel tube, the weight and the 

bond remain critical issues in this design and need further investigations.  

In this dissertation, the author tries to get benefit of each advantage of each design in the 

literature and to merge them together to develop a new design of lightweight partially-CFFT 

beams. This design contains: (1) Outer rectangular GFRP tubes to increase the sectional 

moment of inertia, to provide flexural and shear reinforcement, and to protect the inner 

structural elements (concrete and steel) against corrosion, (2) Inner holes shifted toward the 

tension zone to increase the compression zone area, (3) The holes were provided by inner 

hollow GFRP tubes to support and confine the concrete at the compression side and to act as 

reinforcement, (4) Steel rebar is provided at the tension side to increase the stiffness of the 

section, and (5) The surfaces of tubes adjacent to the concrete were roughened by sand 

coating to achieve a full composite action. 

1.2 RESEARCH OBJECTIVES 

The study aims to generate much needed data and to fill research gaps of the rectangular 

CFFT beams and to represent another step toward the CFFT technique to be fully 

implemented in the field of civil engineering structures and to introduce simple design 

inspired by the North American design codes. The study investigates the flexural capacities 

of rectangular steel-reinforced CFFT beams fully and partially filled with concrete and their 

corresponding service deflection through testing wide range of GFRP tubes with different 

thicknesses and configurations. In addition, this study introduces a new design of lightweight 

partially-CFFT beams. This design contains an outer rectangular filament-wound GFRP tube 

with an inner hole provided by inner hollow circular or square filament-wound GFRP tubes 

shifted toward the tension zone of the cross section. The outer GFRP tube itself provides a 

stay-in-place form, shear and flexural reinforcement, and protects the embedded concrete and 
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steel reinforcement. The inner tubes were designed to act as flexural reinforcement, to 

support the concrete core at the compression zone, in addition to reduce the weight of the 

beam. The space between the tubes is filled with concrete that acts as a compression member 

and eliminates the buckling of the tubes walls. The CFFT beams are reinforced by 

longitudinal steel bars at the tension side only to enhance their serviceability by increasing 

their flexural stiffness. The study is seeking also for that using outer and inner GFRP tubes in 

addition to steel rebar would make the FRP-concrete-steel composite beam fails gradually 

with enough warning signs. The combination of FRP and conventional structural materials, 

steel and concrete, aims to optimize the structural section performance based on their 

individual distinctive properties. 

The objectives of this study have been summarized as follow: 

1) Experimentally investigate the effect of fiber laminate structure, thickness, and 

configuration of the outer and inner filament-wound GFRP tubes on the flexural 

performance of fully and partially-CFFT beams.  

2) Compare the rectangular CFFT beams with conventional RC beams in terms of 

strength to weight ratio and ductility. 

3) Analytically design the reinforced CFFT rectangular beams to predict their flexural 

capacities (crack, yield, and ultimate moments). 

4) Examine the North American codes provisions to evaluate the effective moment of 

inertia required to calculate the deflection and to propose necessary modifications and 

assumptions. 

1.3 METHODOLOGY 

This study relies on a comprehensive experimental program involving twenty-four full-scale 

beam specimens, 3200 mm long and 305×406 mm
2
 cross section, which have been tested 

under a four-point bending setup. These specimens include eight fully-CFFT beams with 

wide range of tube thickness of 3.4 mm to 14.2 mm, fourteen partially-CFFT beams with 

different outer and inner GFRP tubes configurations, and two conventional steel-reinforced 

concrete (RC) beams as control specimens. 
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The research program was conducted in a combined experimental and analytical study to 

achieve the research objectives through the following aspects: 

1) Fabrication of the GFRP tubes by filament-winding process in the Civil Engineering 

Department at the University of Sherbrooke and carrying out all necessary tests to 

evaluate the physical and mechanical properties of the fabricated filament-wound 

GFRP tubes. 

2) Fabrication of twenty-four full-scale beam specimens and testing them over a simply 

supported span under a four-point bending setup. 

3) Experimental study was conducted to investigate the flexural performance of the fully 

and partially-CFFT beams according to the test variables. 

4) Analytical study was conducted to predict the flexural capacities and behaviour based 

on linear strain compatibility and failure patterns. 

5) Analytical study was conducted to examine and modify Branson’s equation to predict 

well the effective moment of inertia and deflection of the reinforced CFFT beams at 

the pre-yielding stage and the post-yielding stage. 

1.4 THESIS OUTLINES 

Chapter 1 defines the problem and presents the research significance, objectives of the 

research project, and the methodology that was adopted. 

Chapter 2 provides a literature review concerning the previous work on the flexural 

behaviour of CFFT beams reporting the main factors influencing the flexural performance, 

and the available models for lightweight beams. It reports also a background of different 

techniques to manufacture FRP composite tubes. 

Chapter 3 describes the experimental work program in details. It presents the test matrix, 

used material, fabrication of the GFRP tubes, casting process, test procedure, test setup, and 

measuring devices.  

Chapter 4 presents the experimental results of eight fully-CFFT beams with wide range of 

tube thickness, and two controls RC beams. The results indicate outstanding performance of 
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the fully-CFFT beams in terms of strength and ductility. The fully-CFFT beams attain 

flexural strength and ductility 444% and 1432% higher than that of the RC beams, 

respectively. The results indicate that increasing the tube thickness changes the pattern of 

failure form tension to compression. Moreover, a strain compatibility/equilibrium model was 

developed to predict the moment-curvature response of the section. The model addresses the 

issues of confinement and tension stiffening of concrete. The curvature along the span of the 

flexural member was integrated to predict the deflection. The analytical results match well 

the experimental results in terms of moment, deflection, strains, and neutral axis responses. 

Then, a parametric study was carried out to enrich the experimental data. The contents of this 

chapter have been submitted to the Journal of Engineering Structures. The paper is titled 

“Flexural behaviour of rectangular FRP-tubes filled with reinforced concrete: experimental 

and theoretical studies”. 

Chapter 5 presents experimental investigations on the proposed new design of lightweight 

partially-CFFT beams addressing the effect of the inner tube thickness, laminates and shape 

on the flexural performance of partially-CFFT beams. The results indicate superior 

performance of the proposed design compared to the RC beams. The strength-to-weight ratio 

of the partially-CFFT beams attained higher values than that of the corresponding fully-

CFFT beams. Moreover, the general failure pattern of the partially-CFFT beams was gradual 

in compression unlike the sudden tension failure of the fully-CFFT beams. The contents of 

this chapter have been published in two journals. First, a paper titled “Structural Performance 

of New Fully and Partially Concrete-Filled Rectangular FRP-Tube Beams” has been 

published in Elsevier Construction and Building Materials Journal. Second, a paper titled 

“New High-Performance Rectangular FRP-Tube Beams Partially Filled with Concrete” has 

been accepted in ACI–special publication. 

Chapter 6 predicts the deflection of such new design of rectangular CFFT hybrid beams 

inspired with Branson’s equation. A new power and assumptions were developed into 

Branson’s equation to predict well the effective moment of inertia of the section. These 

assumptions consider the effect of the GFRP tube strength, thickness, configuration, and steel 

reinforcement. In addition, they predict well the deflection in the pre-yielding and post-

yielding stages of the hybrid FRP-concrete-steel CFFT rectangular beams. The contents of 
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this chapter have been submitted to the Journal of Structural Engineering ASCE. The paper 

title is “Effective moment of inertia of rectangular FRP-tube beams fully or partially filled 

with reinforced concrete”. 

The last Chapter of the thesis is Chapter 7, which presents general conclusions obtained from 

the experimental and theoretical results throughout the thesis. In addition, this chapter 

suggests recommendations for future work. 
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CHAPTER 2                                        

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

In recent years, the application of concrete-filled fiber-reinforced polymer (FRP) tubes 

(CFFTs) has been used for different structural applications. The most highly developed 

application to date is the use of CFFTs as pier column and as fender piles in marine 

structures. The FRP tube provides lightweight structural component, permanent formwork, 

non-corrosive characteristics, and saving of construction time and effort. Moreover, it 

provides axial and lateral reinforcement and confinement for the concrete core. On the other 

side, the concrete core provides support for the tube against buckling in addition to its role to 

resist the compressive loads. Extensive research was carried out on CFFTs as columns 

[Mirmiran et al. 1998, 2001; Fam and Rizkalla 2001; Lam and Teng 2003, 2004; Hong and 

Kim 2004; Zhu at al. 2006; Teng et al. 2007; Ozbakkaloglu and Oehlers 2008a, 2008b; 

Mohamed and Masmoudi 2008a, 2008b, 2010a; Mohamed et al. 2010; Park et al. 2011; 

Abouzied et al. 2012b; Abouzied and Masmoudi 2012, 2013; Ozbakkaloglu 2013a, 2013b; 

Vincent and Ozbakkaloglu 2013; Idris and Ozbakkaloglu 2013; and others], but 

comparatively limited research was carried out on CFFTs as beams [Mirmiran et al. 2000; 

Doval et al. 2001; Fam and Rizkalla 2002; Cole and Fam 2006; Mohamed and Masmoudi 

2010b, Fam et al. 2005; Yu et al. 2006; Zakaib and Fam 2012; Belzer et al. 2013]. These 

studies concentrated extensively on the circular section more than the rectangular ones. 

However, the rectangular section should behave more effective than the circular one in 

bending. Since concrete has low tensile strength compared to its high compressive strength, it 

is completely cracked below the neutral axis in the section under flexure. Then, the role of 

cracked part is limited to support the tube walls against buckling. Since this heavy weight 

increases the cost of building construction and transportation, many researchers tried to 

design beam sections with inner voids to reduce the undesired excessive weight of the beams. 
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The high performance of FRP composites especially the filament-wound tubes encourages 

researchers to use them with conventional materials like steel and concrete to produce 

lightweight composite sections for beams. This chapter introduces description of the FRP 

composites materials and manufacturing processes, and a literature review of previous work 

on CFFTs as beams. Finally, it presents previous trials to make lightweight beams using the 

FRP composites. 

2.2 FRP COMPOSITE MATERIALS 

Fiber-reinforced polymer (FRP) composites consist mainly of fibers and resin matrix. Fibers, 

which are the main load-carrying component, are bonded together with a resin matrix. The 

matrix not only coats the fibers and protects them from mechanical abrasion, but also 

transfers stresses between the fibers. Moreover, it transfers inter-laminar and in-plane shear 

in the composite, and provides lateral support to fibers against buckling when subjected to 

compressive loads. Additives and fillers may be added for curing or enhancing mechanical 

and/or physical properties. The use of FRP composite material was pioneered by the 

aerospace industry in the 1940s, primarily because of its many desirable properties, such as 

high performance, high strength-to-weight and high stiffness-to-weight ratios, high-energy 

absorption, and outstanding corrosion and fatigue damage resistance. Now, its use is 

increasing for civil engineering infrastructure such as buildings and bridges. Table 2.1 

indicates the physical and mechanical properties of the most used fibers and resins compared 

to conventional steel and concrete materials.  

2.2.1 Fibers 

There are three important categories of fibers: glass, carbon and aramid fibers. Presently, 

glass fibers are used widely across all industries, although carbon fiber and aramid fiber 

composites are mostly found in aerospace, automotive and sporting goods equipments 

[Chakrapan 2005]. 
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2.2.1.1 Glass Fibers  

Glass fiber or fiberglass is a material made from extremely fine fibers of glass, and it is the 

largest reinforcement measured in sales. Glass fiber was invented in 1938 by Russell Games 

Slayter of Owens-Corning as a material to be used as insulation. Ever since then, glass fiber 

has become widely used as insulation and composite reinforcement material. Based on the 

composition and the application, glass fibers can be classified in several types. The most 

commonly used glass fiber type for composite applications is E-glass (electrical glass) and S-

glass (structural or high-strength glass). E-glass has good mechanical properties and high 

electrical insulation. S-glass is also used in composite materials where high tensile strength is 

desired, however, this material comes at a much higher cost. Glass fibers are excellent 

thermal and electrical insulators and are the most inexpensive of the high-performance fibers. 

Hence, their extensive use is in buildings and the electric power industry as insulation 

materials. 

2.2.1.2 Carbon Fibers  

Carbon fibers are used in structural engineering applications today in FRP strengthening 

sheets, strips, and fabrics, and in FRP pre-stressing tendons. Carbon fiber is a solid semi 

crystalline organic material consisting of atomic level of planar two-dimensional arrays of 

carbon atoms. Due to their two dimensional atomic structure, carbon fibers are considered to 

be orthotropic, having different properties in the longitudinal direction of the atomic array 

than in the transverse direction. The longitudinal axis of the fiber is parallel to the graphitic 

planes and gives the fiber its high longitudinal modulus and strength. Carbon fibers are very 

durable and perform very well in hot and moist environments and when subjected to fatigue 

loads. They do not absorb moisture. They have a negative or very low coefficient of thermal 

expansion in their longitudinal direction, giving them excellent dimensional stability. They 

are, however, thermally and electrically conductive. Compared with glass fibers, carbon 

fibers have lower density but higher tensile strength and elastic modulus. These properties 

make carbon fiber an ideal reinforcement for composite materials used in aircraft 

components, high-performance vehicles, sporting equipment, wind generator blades, and 

other high performance applications.  



Chapter 2: Literature Review 

  12 

 

2.2.1.3 Aramid Fibers  

Aramid fibers were used to produce the first generation of FRP pre-stressing tendons in the 

1980s in Europe and Japan. However, few manufacturers still produce aramid FRP 

reinforcing bars or tendons. Aramid fibers consist of aromatic polyamide molecular chains. 

They were first developed, and patented, by DuPont in 1965 under the trade name Kevlar. A 

combination of their relatively high price, difficulty in processing, high moisture absorption, 

low melting temperatures, and relatively poor compressive properties have made them less 

attractive for FRP parts for structural engineering applications. Their advantages include 

extremely high tenacity and toughness, and consequently they are used in many industrial 

products either in bare fabric form or as reinforcements for FRP composites where energy 

absorption is required. Moreover, they are the lightest of the high performance fibers. 

2.2.2 Polymer Resins 

There are two types of polymeric matrices widely used for FRP composites; namely, 

thermoplastic and thermosetting. Thermoplastic polymers are made from molecules in a 

linear structural form. These are held in place by weak secondary bonds, which can be 

destroyed by heat or pressure. After cooling, these matrices gain a solid shape. Although it 

can degrade their mechanical properties, thermoplastic polymers can be reshaped by heating 

as many times as necessary. Thermosetting polymers are used more often than thermoplastic. 

They are low molecular-weight liquids with very low viscosity, and their molecules are 

joined together by chemical cross-links. Hence, they form a rigid three-dimensional structure 

that once set, cannot be reshaped by applying heat or pressure. Thermosetting polymers are 

processed in a liquid state to obtain good wet-out of fibers. These materials have good 

thermal stability, chemical resistance, and undergo low creep and stress relaxation. However, 

these polymers have relatively low strain to failure, resulting in low impact strength. Two 

major disadvantages are their short shelf life and long manufacturing time. Some commonly 

used thermosetting polymers are polyesters, vinyl esters and epoxies [Chakrapan 2005]. 
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2.2.2.1 Polyester Resin  

Polyester resin is widely used to make pultruded FRP profiles for use in structural 

engineering. It is also used to make some FRP rebar. When greater corrosion resistance is 

desired in FRP parts, higher-priced vinyl ester resins are generally recommended, although 

the corrosion resistance of some polyester resins may be as good as that of vinyl ester resins. 

Polyester resins can also be used for FRP strengthening for structures. However, epoxy resins 

are preferred at this time for FRP strengthening applications because of their adhesive 

properties, low shrinkage, and environmental durability. 

2.2.2.2 Epoxy Resin  

Epoxy resins are used in many FRP products for structural engineering applications. Most 

carbon fiber-reinforced pre-cured FRP strips for structural strengthening are made with 

epoxy resins. In addition, epoxy resin adhesives are used to bond pre-cured FRP strips to 

concrete (and other materials) in the FRP strengthening process. Epoxy resins are also used 

extensively in FRP strengthening applications, because, the epoxy resin is applied to dry 

fiber sheets or fabrics in the field, and then it is cured in situ acting as both the matrix for the 

FRP composite and as the adhesive to attach the FRP composite to the substrate. Epoxy 

resins have also been used to manufacture FRP tendons for pre-stressing concrete and FRP 

stay cables for bridges. They are not used extensively to produce larger FRP profiles, due to 

their higher costs and the difficulty entailed in processing large pultruded FRP parts. 

2.2.2.3 Vinyl Ester Resin  

In the last twenty years, vinyl ester resins have become attractive polymer resins for FRP 

products for structural engineering due to their good properties especially their corrosion 

resistance and their ease of processing. Today, vinyl ester resins are used widely to make the 

majority of FRP rebar sold in the world and FRP pultruded profiles. Most manufacturers of 

pultruded profiles make profiles of identical shape in both polyester and vinyl ester resin 

series. Vinyl ester resins have also been used to make FRP strengthening strips and FRP rods 

for near-surface-mounting applications. They are generally replacing polyester resins in FRP 
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products in structural engineering due to their superior environmental durability in alkaline 

environments. 

2.2.3 Fillers  

Fillers are used in polymers for a variety of reasons, namely to reduce cost, improve 

processing, control density, thermal conductivity, thermal expansion, electrical properties, 

magnetic properties, flame retard, and to improve mechanical properties. Each filler type has 

different properties depending on its particle size, shape and surface chemistry. In general, 

the fillers can change the performance of polymer composites by changing the color, 

viscosity, barrier properties, curing rate, electrical and thermal properties, surface finish, 

shrinkage, etc. 

2.3 FRP COMPOSITE MANUFACTURING PROCESSES 

The earliest method of making composites was by manual layup, where each layer of the 

composites is put manually one above the other to produce the final layout. This consumes 

much time and needs a lot of skilled labor. This method was made easier using prepregs, 

which are fibers pre-impregnated with resin. Major advantages of the manual set up are that 

it has high versatility, but the accuracy is dependent on the skill of the worker and can yield 

goods with high volume fractions. Its major disadvantages are that it is slow, yields low 

production rates and there are health and safety issues, such as physical contact with the resin 

and its fumes [Taheri 1996]. Due to the development in manufacturing technology, there are 

many ways of making composites. Even though each technique is different, but they all have 

the following goals [http://mdacomposites.org]: 

1) Arrange fibers in the desired orientation and stacking sequence. This ensures the 

appropriate fiber orientation, and specifies the amount of fiber in each layer of the 

composite, so it governs the strength and stiffness of the composite. 

2) Ensure adequate wetting of fibers. Adequate wetting of the fibers is important to allow 

the right amount of resin in between the fibers to have an appropriate fiber-resin ratio. 

This is also crucial to the strength and stiffness of the composite. 
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3) Curing of resin. Curing enables the bonding of each layer of the composite to each other, 

thus unifying the product. 

4) Minimization of the amount of voids. One of the most important factors in composite 

manufacturing is the removal of voids or air gaps between two successive layers of 

fibers. The voids reduce the stress bearing capacity of the fibers. 

2.3.1 Pultrusion Process 

Pultrusion is an automated continuous composite manufacturing process. The major 

application of the pultrusion process is in the fabrication of composite parts that have a 

prismatic cross section profile. Pultrusion process is suited ideally for mass scale production. 

In this process, fibers are pulled through a resin bath to coat the reinforcement with the resin. 

Then excess resin is removed, as fibers are passed through heated die. Die completes the 

curing of the resin and controls the shape of the section. The major advantages of the 

pultrusion process are its capability to produce in high volume and being a very highly 

automated process. Its major disadvantages are the expensive die costs and its inability to 

produce products non-prismatic geometries [Hazra 2011]. Figure 2.1 shows a schematic of 

pultrusion process.  

2.3.2 Resin Transfer Molding (RTM) Process 

In this process, layers of fibers or prepregs are placed between male and female molds, and 

then they are pressurized and injected with resin. The resin is injected to fill all voids within 

the mold and thus penetrates and wets all surfaces of the reinforcing materials. A wide 

variety of reinforcement materials can be used. This process offers low waste and reduces 

machining cost of the finished product. The process can be automated. The major limitations 

of this process are manufacturing of complex shapes requires many trials, errors to ensure 

proper wetting, and the mold designing is complex [Hazra 2011]. Figure 2.2 shows the 

schematic of RTM process. 
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2.3.3 Vacuum Assisted Resin Transfer Molding (VARTM) Process 

Conceptually, this process is similar to RTM, but it is different on many accounts. First, 

VARTM is a single side process under a sealed enclosure and instead of the positive pressure 

used in RTM, vacuum is applied to the mold and sucked into the fabric-fiber. In this process, 

wetting of the fiber is dependent on the permeability of the preformed laminate and 

architecture of the fiber. Viscosity of the resin has to be low. This process is very safe from 

health hazard point of view as the entire system is under vacuum and can yield very high 

quality products. Typical applications of VARTM include production of train seats, marine, 

complex aircraft and automotive parts [Hazra 2011]. Figure 2.3 shows a schematic of 

VARTM process. 

2.3.4 Compression Molding Process 

Compression molding process, as shown in Figure 2.4, is used in manufacturing sheet 

molding compound composites and bulk molding compound. This process consists of three 

stages, namely charging, compressing and ejecting. The material to be molded is preheated 

and placed in a mold in the charging stage. Then pressure and additional heat is applied in the 

compression stage. Finally, the finished product is removed from the mold after sufficient 

curing time. Major applications of the compression moldings are automotive components 

such as fenders, bumpers, and leaf springs. The major disadvantages of this process are that it 

cannot produce long fiber composite parts and mold costs cannot be justified for low 

production volumes. Also, resins with high shrinkage rates can cause waviness, ripples, sink 

marks and rough surfaces on the product [Hazra 2011].  

2.3.5 Filament Winding Process 

Filament winding is a type of composite manufacturing process, where controlled amount of 

resin and oriented fibers are wound around a rotating mandrel and cured to produce the 

required composite part. It was initially used to produce pressure vessels, water and chemical 

tanks. The development stage of filament winding goes back to dry wire winding of rocket 

motor cases, which requires reinforcement. Today, the applications include aircraft fuselages, 
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wing sections, helicopter rotor shafts, high-pressure pipelines, sports goods and structural 

applications of all types [Balya 2004]. The major advantages of the winding process are that 

filament winding machines are computer numerically controlled machines, highly automated 

and may be setup and operated in a matter of minutes, and capable of producing accurate 

repetitive fiber orientation. Moreover, it uses continuous lengths of fibers. Hence, sections 

with very high strength-to-weight and stiffness-to-weight ratios can be manufactured 

[Mallick 2007]. However, the process has some limitations such as difficulty in placing 

fibers parallel to the axis of the mandrel, high mandrel cost, and special treatment on the 

external mandrel surface needed to ensure evenness. One primary tool used in the filament 

winding process is a precision ground mandrel that the fiber and resin are wound upon it. The 

mandrel is supported horizontally between a head and tail stoke. The tail stoke is free, but 

head stoke is driven by required angle and speed, using a computer program. As the mandrel 

rotates, a carriage travels along the mandrel and delivers fiber with a given position and 

tension. Carriage motion is also controlled by the computer in connection with head stoke 

rotation.  

Fibers pass through a resin bath after tensioning system and gets wet before winding 

operation. When a pre-impregnated fiber or prepreg is used, wetting is not performed. 

Tensioning system is an important part of filament winding. This importance gets critical 

when winding at high angles. Since tension changes the friction force between fiber and the 

mandrel, it should be kept at a certain value during winding operation. Fiber tension also 

affects the volumetric ratio of composite at a given point. Excessive resin, due to a low 

tension, can result in decreased mechanical properties. Therefore, tensioning systems should 

be capable of rewinding a certain value of fiber. This condition occurs when fiber band 

reverses at the end of tube, while winding at low angles. Wetting can be done by two 

commonly used bathing type; drum bath and dip bath. Drum bath provide less fiber damage 

than dip bath. This is especially important when using carbon fibers. On the other hand, dip 

bath provides a better wetting action and mainly used with aramid or glass fibers. If fibers are 

not wetted in a desired way, air bubbles can be trapped between them and can cause voids in 

the composite part. Therefore, drum baths can be heated for a better wetting action. Lowering 

resin viscosity, reducing fiber speed, and increasing fiber path on the drum are other methods 
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used for better wetting action. If heated resin is to be used, dip baths are preferred since drum 

surface cools as it leaves the resin bath.  

The rotating mandrel can be a part of the produced composite part (a pressure vessel) or can 

be removed from the composite part. If it will be removed, a press should be used for 

removing. All mandrels, which will be removed, should have low thermal expansions in 

order to reduce residual stresses after curing action. In addition, surface finish is an important 

point, since an interface between the composite part and the mandrel is generally not 

permitted. If a concave part is needed on the filament-wound part, a female mold can be 

used. In addition, excessive wet fiber can be used in order to fill the concave parts. Metal or 

composite parts can be mounted on mandrel in order to guide winding action such as pin-

rings or end-domes, which must be removable or collapsible. Sharp edges should be avoided 

in order not to cut fibers. Winding angle is the angle between the fibers and a line on the 

mandrel surface, which is parallel to mandrel axis. A maximum value, which is close to 90
o
, 

can be approximated. Very low winding angle values need some arrangements at the ends of 

the mandrel, such as pin-rings [Balya 2004].  

Filament winding process is considered the second largest process for manufacturing 

composites as illustrated by the statistics in Figure 2.7. In addition, the process has 

acceptable moderate cost for composite manufacturing, especially FRP tubes, comparing 

with other methods as shown in Figure 2.8.  

2.4 CONCRETE-FILLED FRP TUBES UNDER FLEXURE 

2.4.1 General Review 

Concrete-filled FRP tubes (CFFTs) have been used in the field as bridge piers, marine piles, 

and girders as shown in Figure 2.9. They also have a great potential in other applications 

such as poles, and overhead highway signs. CFFTs demonstrate excellent durability in 

corrosive environments such as the tidal zones of marine piles. The CFFT system combines 

hollow FRP tubes and concrete in a very effective way such that both materials are 

effectively utilized. The FRP tube acts as a permanent formwork for concrete, a barrier 

against corrosive environments, and as hoop and axial reinforcement. On other hand, the 
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concrete core provides support for the tube, preventing it from buckling locally, and 

contributes to the internal compressive resistance force [Qasrawi 2007]. While circular 

CFFTs have been extensively studied in bending and under axial loads, very limited studies 

have been conducted on rectangular, open or closed, FRP-concrete hybrid systems [Fam et 

al. 2005]. Generally, the circular CFFT beams experienced better performance than the 

conventional reinforced concrete (RC) beams in terms of flexural strength and ductility. 

Unlike steel or FRP-RC beams, the steel-reinforced CFFT beams can exhibit superior 

additional flexural capacities in the post-yielding stage. This was attributed mainly to the 

FRP tube contributed in the flexural reinforcement and it forced the concrete core to 

withstand higher strains. The next sections display the previous work on CFFTs under 

flexure with respect to some important parameters, which help the current research program, 

as the effect of concrete core, fiber laminate structure, FRP tube thickness, using 

reinforcement steel or FRP bars, and inner voids.  

2.4.2 Effect of Inner Concrete Core 

Fam and Rizkalla (2002) tested hollow circular GFRP tube of 100 mm diameter, B1, and 

compared it to another one that completely filled with concrete, B2, under flexure. Figure 

2.10 shows the moment-curvature behaviour of the hollow and concrete-filled GFRP 

filament-wound tubes, B1 and B2, respectively. Figure 2.10 indicates that the strength and 

stiffness are significantly increased by filling the tube with concrete. The strength gain was 

212%. The presence of concrete has contributed to the stiffness and moment resistance of the 

section in the compression zone of the beam. The concrete also provided internal support to 

the tube and prevented its local buckling at the compression side. Figure 2.10 also shows the 

failure mode of B1, which failed due to local buckling and crushing of the hollow tube, while 

B2 had flexural tension failure due to rupture of the fibers in the tension side.  

2.4.3 Effect of Concrete Strength 

Based on many research on CFFT columns, the ultimate strength of the confined concrete is 

mainly dependent on the stiffness of the GFRP tubes, and the confinement effectiveness is 

reduced as the concrete strength increases [Mandal et al. 2005], but this matter may be 
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different in case of CFFT beams and needs more investigations. Mohamed and Masmoudi 

(2010b) tested circular CFFTs under pure pending. Through many test variables, they tested 

six CFFT beams with two batches of concrete, 30 and 45 MPa, to study the effect of concrete 

strength on the flexural strength of CFFT beams. Figure 2.11(a, b) shows the load–deflection 

responses of six beams that contained identical internal reinforcement ratio of steel or FRP 

bars. The two figures indicated that the initial and post-cracking flexural stiffness of the three 

reinforced CFFT beams constructed from concrete of normal strength of 30 MPa, were 

similar to that of the three reinforced CFFT beams constructed from concrete of medium 

strength of 45 MPa. Figure 2.11(a) indicates that the beam reinforced with steel bars (A45S) 

does not have gain in the strength as compared with beam A30S. Also, Figure 2.11(b) 

indicates that the increase in the flexural strength for beams reinforced with GFRP bars is not 

significant with increasing the concrete strength from 30 MPa (A30G and B30G) to 45 MPa 

(A45G and B30G), Specimen A45G and B30G having only 4.8% and 14% higher strength 

than that of A30G and B30G, respectively. On the other hand, the increase in the energy 

absorption (area under load-deflection curve) is not significant as compared with the increase 

in the concrete compressive strength 50% (from 30 to 45 MPa) for the tested CFFT beams. 

The increase in the energy absorption is limited to 3%, for the beams reinforced with steel 

bars, with increasing the concrete compressive strength from 30 to 45 MPa. The 

corresponding value for the beams reinforced with FRP bars is 11%. It can be concluded that 

the flexural behaviour of the six reinforced CFFT beams tested in that study were not 

significantly affected with increasing the concrete compressive strength from 30 to 45 MPa. 

This is attributed to two factors: (1) the six CFFT beams failed in flexure due to the tensile 

rupture of the FRP tubes and FRP or steel bars at the tension side of the beams, (2) the FRP 

tubes confined the concrete core of the beams, as evident from the final failure mode, the 

concrete core inside the FRP tube at the compression side did not experience crushes or 

spalls as compared with failure mode of the spiral-steel beams. 

2.4.4 Effect of Tube Thickness  

Tests by Mirmiran et al. (2000) involved circular beams with shear span to depth (a/Do) ratio 

of about 2, with two different reinforcement ratios (ρ), 7.2% and 43.2%, characterized as 

under and over reinforced beams, respectively. The under reinforced beams consisted of 
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symmetric ±55
o
 glass fiber plies, while the over reinforced beams comprised of symmetric 

glass fiber plies with 0
o
 and ±45

o
 orientations, where all angles are measured with respect to 

the longitudinal axis of the tube. As expected, the over reinforced beams failed in 

compression, while the under reinforced beams failed by tensile rupture of the tube at tension 

side.  

Fam and Rizkalla (2002) tested twenty circular CFFT beams with a/Do ratios ranging 

between 2.67 to 7.4, reinforcement ratios from 3.8% to 12.3%, and a wide range of fibers 

stacking sequence. All tested beams failed in flexure, except one with 0
o
 fibers failed by 

splitting due to horizontal shear. In addition, they found that the higher the thickness of the 

FRP tube, the lower the gain in flexural strength and stiffness resulting from the concrete fill. 

The load-deflection behaviour of CFFTs was almost linear, and the stiffness depended 

largely on the tube properties after cracking. It was also noted that CFFTs with thicker tubes 

or a higher percentage of fibers in the axial direction tended to fail in compression, and that 

the absence of fibers in the hoop direction could also lead to compression failure, because the 

hoop fibers tend to support the longitudinal fibers and prevent them from buckling at the 

micro scale, as indicated earlier. 

Mohamed and Masmoudi (2010b) tested two circular CFFTs beams, with the same diameter 

of 213 mm and laminate structure of 90
o
 and ±60

o
, filled with the same batch of concrete 

with unconfined compressive strength of 45 MPa, but differ in the tube thickness. One GFRP 

tube of Type B had thickness of 6.40 mm, which is equal to 2.2 times the thickness of the 

other tube of Type A with thickness of 2.90 mm. The reinforcement ratio of the tube Type B 

is 120% more than that of Type A. Figure 2.12 presents the load-deflection curves showing 

the effect of the FRP tube thickness. Figure 2.12 indicates that the beam constructed from the 

tube Type B (B45G) experienced 33.3% higher strength than that of beam constructed from 

the tube Type A (A45G). At all load levels, the beam of tube Type B experienced lower 

deflection than that of the beam of tube Type A.  Despite the increase in strength and 

stiffness due to increasing the thickness, the authors concluded that the increase in the 

flexural strength (20 to 30%) is not significant as compared to the increase in the FRP tube 

reinforcement ratio (120%). This is attributed to the fact that the increase in the flexural 

strength is mainly resulted from the contribution of the excess thickness of the FRP tubes in 
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the tension side only. This unexpected conclusion could be attributed to that their tubes 

laminate structure had high angles, 90
o
 and ±60

o
, which are not effective for flexural 

reinforcement which needs more fibers in the longitudinal direction than in hoop direction. 

While for axial loading the high angles is preferred for confinement process. Hence, the 

thickness of the tubes cannot increase the performance of the FRP tubes alone. There should 

be a relation between the thickness and laminate structure and type of loading (axial or 

bending). 

2.4.5 Effect of Tube Laminate Structure (Fibers Orientation) 

Winding angle is the angle between the fibers and the line on the mandrel surface, which is 

parallel to mandrel axis. This angle is controlled during fabrication of the FRP tubes in 

filament winding process. There are two common types of laminate orientation, 

circumferential and helical windings. Circumferential, or hoop, winding is a special form of 

helical winding and is used to deposit fibers close to 90
o
 to the longitudinal axis and is 

generally applied to the cylindrical or straight portion of the mandrel and generate a single 

layer of fibers. Helical winding is used to lay the fibers at angles from 5
o
 to 80

o
 to the 

longitudinal axis. These fibers are wound on the mandrel surface in alternating positive and 

negative orientations and result in a double layer of wound material [Frank 1995]. Very low 

winding angles need some arrangements at the ends of the mandrel, such as pin-rings, to hold 

the fibers in their designed orientation and to prevent their sliding during fabrication. 

Generally, the fibers in the circumferential direction are utilized to provide confinement on 

the concrete, while the fibers in the axial direction provide flexural and axial strength and 

stiffness. The laminate structure of FRP tubes could be optimized by controlling the sequence 

of the hoop and helical winding and consequently the proportions of fibers contribution in the 

hoop and axial directions, respectively, to suit the application. For flexural members, larger 

stiffness would be required in the axial direction. While for axial members, larger stiffness is 

required in the hoop direction as well as a minimum Poisson’s ratio in order to produce the 

maximum confinement of concrete [Fam and Rizkalla 2003]. Kaynak (2005) conducted a 

split-disk test for specimens produced with five different winding angle to investigate the 

processing parameters of continues filament-wound GFRP tubes. The results indicated that 

both hoop tensile strength and hoop tensile modulus of elasticity depend strongly on the fiber 
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direction of specimens. Specimens having 90° and ±65° had much higher values compared to 

those having ±45°, ±25° and 0°. 

Fam and Rizkalla (2002) compared the load-deflection behaviour of two concrete-filled 

GFRP tubes beams which are similar in size and wall thickness, but different in laminate 

structure. Beam B3 had only one third of the fibers content wound at an angle of 15
o
 with the 

longitudinal axis and the other two thirds are placed on the hoop direction at 82
o
. Beam B4 

had all the fibers content wound at 30
o
 with the longitudinal axis. The two different laminate 

structures resulted in an effective elastic modulus for beam B3 of about 80% of that of beam 

B4, as shown in Figure 2.13. The relative stiffness after cracking is almost proportional to the 

relative effective elastic modulus of the tubes in the axial direction. Although the two beams 

achieved similar flexural strength, the failure modes were quite different. B4 behaved in a 

nonlinear way and developed a gradual compression failure due to matrix cracking and fiber 

buckling in the compression zone. This is attributed to the absence of fibers in the hoop 

direction to confine the other layers. The beam B3 failed in tension and behave in semi linear 

way. It should be noted that B3 has only 33% of the fibers oriented in the axial direction, 

which is relatively low for flexural members and causes early axial cutting of fibers under 

flexure at the tension side. 

2.4.6 Effect of Steel and FRP Rebar 

Cole and Fam (2006) fabricated and tested seven circular CFFT beam specimens, B1 to B7, 

to determine the effect of longitudinal internal rebar, including steel, GFRP and CFRP. 

Identical GFRP tubes were used in this study with tube thickness of 8 mm and inner diameter 

of 203 mm, and had mostly fibers in the hoop direction to simulate spiral reinforcement. 

Specimens B1 and B2 were RC control specimens with conventional steel circular ties and 

spirals, respectively. B3 was CFFT reinforced with the same amount of longitudinal steel 

bars as B1 and B2. B4 to B7 had the same outer GFRP tube as B3 but differ in the type and 

ratio of reinforcement. Figure 2.14(a) shows the gain in strength and ductility due to 

confining the circular RC beams with GFRP tube. It indicated the superior performance of 

the GFRP tubes compared to steel spirals, because they confine a larger area of concrete and 

contribute as longitudinal reinforcement. The effect of reinforcement ratio is shown in Figure 
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2.14(b) by comparing specimens B3 and B4 of 3.2 and 1.6% steel reinforcement ratios, 

respectively, and specimens B5 and B6 of 3.2 and 1.1% GFRP rebar reinforcement ratios, 

respectively. Specimen B4 exhibited the same general behaviour as B3 but was 28% lower in 

strength and 44% lower in stiffness, due to the lower reinforcement ratio. The steel-

reinforced CFFT specimens maintained a large residual load after initial failure that was 

caused by rupture of the tube in tension, and then followed by crushing of the tube in 

compression, and finally the tube fractures in the hoop direction on the compression side, 

indicating significant confinement. Specimen B5 showed 53% higher strength and 33% 

higher stiffness than B6. Both Specimens B5 and B6 exhibited the same longitudinal tension 

failure of the tube, immediately followed by rupture of the bottom layer of GFRP rebar. 

Figure 2.14(b) also shows that the load capacities of Specimens B3 and B5 were similar due 

to the similar tensile strengths of steel and GFRP rebar which have the same bar cross 

section, where B5 had only 5% higher strength. The stiffness of B3 after cracking was twice 

that of B5, due to the difference in Young’s moduli of steel and GFRP rebar. The most 

important difference, however, is in ductility. B3 exhibited great ductility, with sequential 

failure and residual strength at very large deflection (220 mm). B5, however, exhibited a 

rather linear behaviour, until the load dropped completely when the GFRP rebar failed at 74 

mm deflection, just after the tensile failure of the GFRP tube, at a deflection of 70 mm. Also 

shown in the same figure, the behaviour of B6 and B7 with GFRP and CFRP rebar of the 

same cross-sectional area, respectively. Specimen B7 had 32% higher stiffness and 43% 

higher strength than B6. This is attributed to the substantial difference in tensile strength and 

modulus of GFRP and CFRP rebar. The failure mode for both specimens was longitudinal 

tensile failure of the tube followed by rupture of the bottom layer of FRP rebar, almost 

simultaneously. It is also worth noting that Specimen B7 achieved similar strength to 

Specimens B3 and B5 of larger size steel and GFRP rebar, respectively, due to the superior 

properties of CFRP. From these comparisons, it appears that in reinforced CFFTs FRP rebar 

does not show significant structural advantage over steel rebar. Additionally, steel rebar is 

enclosed inside the tube and protected from corrosion induced by external environmental 

conditions. In fact, the comparable failure strains of GFRP tube and FRP rebar is rather a 

disadvantage as it results in a sudden and complete failure of the system. Conversely, the 

ductile steel rebar has allowed the GFRP tube to fail in a sequential manner over an extended 
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range of deflections, and thereby offers significant ductility and adequate warning signs of 

failure. The authors also concluded that using longitudinal steel reinforcement is superior to 

FRP reinforcement because the FRP bars fail at a strain very similar to that of the tube, thus 

not allowing the system to exhibit any extra ductility. 

Mohamed and Masmoudi (2010b) found the same results of Cole and Fam (2006) when 

testing circular CFFT beams reinforced with steel and GFRP bars of the same cross-sectional 

area. The load–deflection curves for their specimens are shown in Figure 2.15. Specimen 

A30S that has steel rebar was compared to A30G that has GFRP bars noting that the two 

specimens were cast using the same type of the FRP tube and concrete batch. The FRP-

reinforced CFFT beam (A30G) behaved in linear way until failure in tension in a brittle 

manner, unlike the steel-reinforced CFFT beam (A30S) which failed in a ductile manner. The 

behaviour of A30G showed no yielding compared to A30S. The figures also indicated that 

A30S experienced lower deflection, higher stiffness and 64% higher strength than A30G. 

This increase in the flexural strength is attributed to the difference in the Young modulus 

between the steel and the GFRP bars, and this increase approximately equals the cube root of 

axial stiffness ratio between the glass and the steel bars 3
ssff E/E  . On the other hand, the 

post-cracking flexural stiffness for the beam reinforced with steel bars was higher than that of 

the beam reinforced with GFRP bars. The average ratio between the post-cracking flexural 

stiffness of the steel-and-GFRP-reinforced CFFT beams was approximately 3.9, which was 

approximately the same as the ratio of the modulus of elasticity of steel to that of GFRP bars 

as it was 4.1. Moreover, the ductility of A30S was 5.6 times the ductility of A30G.  

2.4.7 Effect of Bond 

Bond development is one of the basic aspects of structural behaviour, since the transmission 

of load from reinforcement to concrete relies on it. Therefore, the quality of bond has a 

prominent influence on crack formation, hence affects the spacing between cracks and crack 

width, and consequently affects the tension stiffening which is related to deflection 

calculations. The FRP tube in the case of concentrically loaded column provides hoop 

confinement, and therefore, the mechanical bond between FRP and concrete is not important. 

For flexural loads, the FRP tube plays an important role. It confines the concrete in the 
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compression zone and acts as the flexural and shear reinforcement at the same time. This 

requires the development of the full composite action between FRP tube and concrete. 

Therefore, a mechanical bond is necessary [Samaan 1997]. AASHTO LRFD guide 

specifications for design of concrete-filled FRP tubes for flexural and axial members (2012) 

explicitly mentioned that CFFTs under flexure should be detailed, fabricated, and constructed 

such that full composite action is achieved between the tube and concrete. To enhance 

mechanical bond between the FRP tube and concrete and achieve the full composite action 

there are some common methods like sand coating, resin ribs, shear connector, and internal 

crossing bars. When flexural tests on CFFTs without internal reinforcement are carried out, 

excessive slip may occur between the concrete core and FRP tube. This slip may adversely 

affect the composite action of the system unless special measures are taken, such as 

roughening the inner surface of the tube [Fam and Rizkalla 2002]. Iftekhar (2004) tested 

CFFTs as deep beam and short beam under flexure and fatigue. He concluded that slippage is 

probably the most important factor that dominates the fatigue behaviour and fatigue life of 

CFFT beams. Fatigue life is directly related to the amount of slippage that occurs between 

the concrete core and the FRP tube. Slippage reduces the composite action in fatigue loading 

at a much greater rate when compared with static and quasistatic response. If internal rebar is 

used and no bond enhancing is done, slip measured at both ends may be very small and can 

be neglected [Cole and Fam 2006]. 

Belzer et al. (2013) tested twelve beam specimens of four different configurations to examine 

the bond effect on the flexural behaviour of rectangular CFFT tubes. Each beam was 3.5 m 

long with cross section dimensions of 152 mm wide by 203 mm deep with flange and web 

thicknesses of 9.5 mm and 6.4 mm, respectively. Three beams of each configuration type 

were tested to establish repeatability of the results. The concrete-to-GFRP tube adhesive used 

in this research was a wet cure epoxy that co-cures with wet concrete. The four 

configurations, shown in Figure 2.16(a), include: empty GFRP tube (A), concrete-filled 

GFRP tube (B), concrete-filled GFRP tube with epoxy bonding of the flanges (C), and 

concrete-filled GFRP tube with epoxy bonding of all interior surfaces (D). The test 

specimens were fabricated by using paint rollers to apply the epoxy adhesive to the 

appropriate interior surfaces of the partially coated beams (C) and fully coated beams (D). 
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Relative displacement (slip) between the pultruded GFRP tube and concrete core was 

monitored at the end of each specimen and shown in Figure 2.16(b). It is observed that the 

unbonded specimens (B) showed the initiation of slip at low loads with the displacement 

continuing to grow linearly throughout the test. This slip is initiated when the mechanical 

bond (friction) between the concrete and tube is overcome. The partially bonded specimens 

(C) showed the initiation of slip at higher loads with C-2 showing no slip and C-3 showing 

slip associated with failure. Finally, the fully bonded tubes (D) showed no slip with the 

exception of D-3 that showed slip at failure. As expected due to the composite action, the 

fully bonded configuration (D) shows the highest strength and stiffness, followed by the 

partially bonded tube (C), and then the unbonded tube (B), and finally the empty tube (A), as 

shown in Figure 2.16(c). Moreover, the fully bonded configuration (D) achieves nearly 80% 

of the full capacity of the tube from the ultimate longitudinal tensile strain measurements 

from the coupon testing, while the unbonded tube (B) achieved only 58% of the tube flexural 

capacity. 

2.4.8 Effect of Inner Hole 

Fam and Rizkalla (2002) investigated the effect of inner hole in concrete-filled GFRP tubes 

as a trial to reduce the own dead weight of such beams. All the beams had identical outer 

GFRP tubes, beam 5 had a central hole, designed to provide a concrete wall thickness 

equivalent to the depth of the compression zone of the completely filled beam 4. Beams 6 

and 7 had similar holes, but they are maintained by inner GFRP tubes, both concentric and 

eccentric. The load-deflection behaviour of beams 4, 5, 6, and 7 is compared in Figure 2.17. 

The figure also compares the strength and strength-to-self weight ratio of the beams in the 

form of a bar graph. The strength of beam 5 is only 9% less than that of beam 4, while its 

strength to weight ratio is 35% higher. Therefore, the designer could achieve comparable 

flexural strength of the totally filled tube by providing a central hole to reduce the dead 

weight, provided that the concrete wall thickness is equal to or larger than the depth of the 

compression zone of a similar tube totally filled with concrete. Providing an inner GFRP 

tube, as in beam 6, improves the strength and stiffness as compared to beam 5, due to the 

additional reinforcement. Also, shifting the inner tube toward the tension side, as in beam 7, 

is more effective; however, this non axisymmetric configuration is only convenient if the 
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direction of the applied load is constant, as for the case of bridge girders. The load-deflection 

behaviour is almost linear, with typical reduction in the stiffness after cracking. 

Fam et al. (2005) studied beams of rectangular filament-wound GFRP tubes, totally and 

partially filled with concrete under flexure. The beam section was optimized by providing a 

central hole to reduce the self-weight of the beam. In this case, the concrete was cast with a 

void offset towards the tension side of the tube such that the concrete is optimally used for 

compression, shear and stability of the FRP tube. The GFRP tubes were fabricated using a 

combined filament winding and hand lay-up technique and were composed of E-glass fibers 

and epoxy resin with a fiber volume fraction of 60%. The stacking sequence for the flanges is 

shown in Figure 2.18(a). The [45
o
] and [90

o
] layers were composed through the filament 

winding process and were mainly provided for shear resistance and possible confinement of 

concrete. The longitudinal [0
o
] layers were only provided in the upper and lower flanges of 

the section using hand lay-up of bidirectional glass fibers sheets to provide longitudinal 

flexural reinforcement. The inner surface of the tubes was roughened by coarse sand coated 

to prevent slippage. The load-deflection behaviour of the two different configurations of test 

beams B1 and B2 is shown in Figure 2.18(b). The results showed that both beams had 

identical flexural stiffness. Although the flexural strength of B2 is 22% lower than that of B1, 

the dead weight of B2 is 56% lighter than B1, resulting in an overall strength to weight ratio 

for B2, 77% higher than B1. B1 failed in tension where the GFRP bottom flange ruptured. 

While B2 failed in compression and suffered outward buckling of the tube flange in addition 

to inward buckling of the relatively thin concrete flange inside the tube as shown in Figure 

2.18(c). 

2.5 LIGHTWEIGHT HYBRID FRP-CONCRETE 

COMPOSITE SECTIONS 

In terms of initial costs, FRP composites are, however, still too expensive to compete with 

other conventional materials (steel and concrete) used in civil engineering applications. To 

make the best use of materials, combinations of FRP and conventional materials have to be 

investigated. CFFTs that are completely filled with concrete are not optimal for applications 
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that are governed by pure bending, such as bridge girders, light poles, and highway over-

head sign structures. This is because in such applications the concrete section is cracked 

below neutral axis, and the concrete core contributes slightly to bending resistance and 

mainly prevents the tube from buckling and holding reinforcement bars (if exist) in their 

position. Therefore, there have been studies on a composite system that has concrete in the 

compressive portion and voided FRP parts below the neutral axis of the beam. The 

advantages of the combination between these materials to form hybrid FRP-concrete 

composite system are identified as: 

1) Lightweight, high strength and corrosion resistant. 

2) Potential reduction of transport costs for finished members. 

3) Cost of manufacture can be comparable to the conventional material for a large number 

of elements. 

4) Cost can be paid off after several years in service. 

Figure 2.19(a) shows the hybrid composite section of Deskovic (1995). He designed a simple 

beam with a GFRP box section with a layer of concrete on top and a layer of CFRP on the 

bottom. Experimental tests were performed on large-scale specimens and the results showed 

good agreement with those from the finite element models. A preliminary design procedure 

was proposed for the hybrid section based on stiffness, strength and ductility requirements. 

Canning et al. (1999) designed a beam section as shown in Figure 2.19(b). The beam 

consisted of a concrete section in the compressive region, a GFRP composite sandwich foam 

core web section and a GFRP flange interleaved with high-strength unidirectional carbon 

fiber tape. The beam was designed such that the neutral axis was situated at the soffit of the 

concrete to prevent tensile forces developing in the concrete. In an attempt to achieve 

composite action between the concrete and GFRP composite, indents were placed in the 

vertical faces of the shuttering. During the loading test, certain areas of the shuttering 

separated from the concrete prematurely; however, the indents did provide continued partial 

composite action to failure. The failure of the beam occurred by flexural crushing of the 

concrete followed by failure of the webs in shear. Chakrapan (2005) worked on a project to 

overcome economic issue, which is one of the major barriers of the use of FRP in civil 

engineering. He designed a hybrid composite section shown in Figure 2.19(c). According to 
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the full-scale tests results, the assumption of plane sections remain plane in the region of 

predominantly bending was shown to be valid. This implied that the principles of flexural 

design for conventional beams could be used for this duplex section. 

Elmahdy et al. (2008) proposed a section composed of a pultruded GFRP hollow box 

reinforced with externally bonded steel-reinforced polymer (SRP) or CFRP sheets on the 

bottom flange to carry the tensile stresses. A 54 mm thin layer of ultra-high performance 

concrete (UHPC) was cast on top of the section to carry the compressive stresses. Composite 

action between the GFRP section and the UHPC slab was ensured through shear stud 

connectors and moisture-insensitive epoxy adhesive applied on the top flange of the GFRP 

section before casting the UHPC slab. The configuration of the section and the tests setup is 

shown in Figure 2.20. The test results concluded that the flexural capacity of GFRP box 

sections was increased significantly to about 3.7 times that of the GFRP box alone. The 

presence of UHPC on the top side of the beam supports the top GFRP flange and helps avoid 

the buckling of this flange under high compression stresses. Also, the high deflection of the 

GFRP box section is greatly reduced by the addition of the high stiffness materials (UHPC, 

SRP, and CFRP). The strain distribution across the depth of the proposed hybrid beam 

remained linear until failure. Hence, the proposed simplified analysis technique can be used 

with confidence to predict the beam behaviour. 

Indeed, these previous designs (Deskovic, Canning, Chakrapan, and Elmahdy) use “in-

house” technology to build the GFRP box, which has the potential of increasing the initial 

cost of the beam. Additionally, the concrete is not fully confined as to take advantage of its 

increased ductility and strength under confining stresses [Khennane 2008]. Khennane (2010) 

proposed a new hybrid FRP-concrete beam design shown in Figure 2.21. The new proposed 

beam design will consist of a GFRP pultruded profile, a high performance concrete (HPC) 

block, CFRP strip laminate and an outer GFRP laminate wrap with fibers orientated at ±45°. 

The addition of the outer laminate serves three purposes. Its principal role is to confine the 

concrete as to achieve a ductile behaviour. Confining the whole section will also ensure a 

composite behaviour between the concrete and the pultruded profile, thus eliminating the risk 

of deboning failure. Finally, its third role is to improve the shear strength of the pultruded 

profile. The use of HPC instead of normal concrete will result in an overall increase in the 
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stiffness of the beam, in addition to a reduction in its depth. According to Khennane (2010), 

these features of this hybrid beam design will allow for longer spans of bridges, increasing 

girder-to-girder spacing, and shallower sections. 

Idris and Ozbakkaloglu (2014) investigated the flexural behaviour of FRP-high strength 

concrete (HSC)-steel composite beams by testing double-skin tubular beams (DSTBs) with 

outer FRP tubes and a central inner hollow steel section (HSS) as shown in Figure 2.22. The 

main parameters of study included the cross-sectional shapes of the inner HSS and the 

external FRP tube, concrete strength, presence or absence of concrete filling inside the steel 

tube, and effects of using mechanical connectors to enhance the bond between the steel tube 

and surrounding concrete. The results indicated that DSTBs exhibit excellent load-deflection 

behaviours with high inelastic deformations and minimal strength degradations (slightly 

increase of flexural strength after yielding). However, relatively large slippage can occur at 

the concrete-steel tube interface unless the bond is enhanced by mechanical connectors. 

Regardless the high flexural strength and stiffness of the DSTBs based on the inner steel 

tube, the weight and the bond remain critical issues in this design and need further 

investigations. 
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Table  2.1 – Typical properties of structural materials (ISIS Canada Design Manual No.4 

2008) 

Material 

Mass 

Density 

(kg/m
3
) 

Tensile 

Strength 

(MPa) 

Modulus of 

Elasticity 

(GPa) 

Elongation 

at Failure 

(%) 

Maximum Long-Term 

Temperature Use 

(
o
C) 

E-Glass Fibers 2590 3450 72 4.8 200 

S-Glass Fibers 2540 4300 87 5.0 200 

Pan-Type Carbon 

Fibers 
1790 3650 230 1.4 400 

Pitch-Based 

Carbon Fibers 
2040 2400 380 0.5 1000 

Aramid Fibers 1480 3620 130 2.8 200 

Polyester Matrix 1220 50 - 65 3.0 2 - 3 120 

Vinyl ester Matrix 1170 70 - 80 3.5 4 - 6 140 

Epoxy Matrix 
1100 - 

1450 
50 - 90 3.0 2 - 8 120 - 200 

Steel Rebar 8000 500 200 20 300 

Portland Cement 

Concrete 20-60 

MPa 

2450 2 - 5 20-40 < 0.05 
100 - 200 

(70 During The Cure) 

Portland Cement 

Concrete with 

Polymer 60 MPa 

2140 5 25-30 < 0.05 100 
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Figure  2.1 – Schematic of pultrusion process [http://mdacomposites.org] 

 

 

 

 

Figure  2.2 – Schematic of RTM process [http://mdacomposites.org] 

 

http://mdacomposites.org/
http://mdacomposites.org/
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Figure  2.3 – Schematic of VARTM process [http://mdacomposites.org] 

 

 

 

 

 

 

Figure  2.4 – Schematic of compression molding process [http://mdacomposites.org] 

 

http://mdacomposites.org/
http://mdacomposites.org/
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Figure  2.5 – Schematic of filament winding machine [http://mdacomposites.org] 

 

 

 

  

(a) Drum bath (b) Dip bath 

Figure  2.6 – Resin bath types in filament winding process [http://mdacomposites.org] 

 

http://mdacomposites.org/
http://mdacomposites.org/
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Figure  2.7 – Distribution of composite manufacturing process wise [Beckwith 2006] 

 

 

 

 

 

Figure  2.8 – Composite manufacturing cost by different processes [Taheri 1996] 
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(a) CFFT columns in bridges (b) CFFTs in Marine structures 

 

(c) CFFT arches 

Figure ‎2.9 – Field applications of CFFTs [http://google.com] 
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Figure  2.10 – Moment-curvature response and failure modes of B1 and B2 [Fam and 

Rizkalla 2002] 

 

 

 

Figure ‎2.11 – Effect of concrete strength on load-deflection curves [Mohamed and 

Masmoudi 2010] 
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Figure  2.12 – Effect of FRP tube thickness on load–deflection curves [Mohamed and 

Masmoudi 2010] 

 

 

 

Figure  2.13 – Load-deflection response and failure modes of B3 and B4 [Fam and Rizkalla 

2002] 
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(a) Effect of confining RC beams 

 

 

(b) Effect of rebar type and ratio 

 

Figure  2.14 – Load-deflection curves for specimens B1 to B7 [Cole and Fam 2006] 
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Figure  2.15 – Effect of rebar type on load–deflection curves [Mohamed and Masmoudi 2010] 

 

 

 

(a)  Beams configurations  

  

(b) Load-slip response (c) Load-deflection response 

Figure  2.16 – Beam test results of Belzer et al. (2013) 
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Figure  2.17 – Load-deflection behaviour for different beam configurations [Fam and Rizkalla 

2002] 
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(a) GFRP tube details 

 

(b) Load-deflection response 

 

   

(c)  Failure modes of tested beams  

 

Figure  2.18 – Beam test results of Fam et al. (2005) 

 

B1 B2 
B2 
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(a) Deskovic 1995 (b) Canning 1999 (c) Chakrapan 2005 

Figure ‎2.19 – Previous approaches of hybrid composite sections 

 

 

 

 

 

Figure  2.20 – Proposed cross-section by Elmahdy et al. (2008) 
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Figure  2.21 – Proposed cross-section by Khennane (2010) 

 

 

 

 

Figure  2.22 – Cross-section examples of DSTB [Idris and Ozbakkaloglu 2014] 
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CHAPTER 3                                  

EXPERIMENTAL PROGRAM 

 

3.1 INTRODUCTION 

This dissertation aims to generate much needed data and to fill research gaps of rectangular 

concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) and to design lightweight 

durable hybrid composite beams by providing inner voids into the tubes to form partially-

CFFTs. The experimental program investigated the flexural behaviour of twenty-four full-

scale beam specimens including fully-CFFT beams, partially-CFFT beams, and conventional 

steel-reinforced concrete (RC) beams. Several sizes and configurations of FRP tubes, 

composed of typical E-glass fibers and vinyl ester resin, were fabricated by filament winding 

process in the Civil Engineering department at Sherbrooke University. The fabricated GFRP 

tubes were tested by standard tests to verify their quality control and to measure their 

physical and mechanical properties. Rectangular GFRP tubes were used as outer jackets. 

While, circular and square hollow tubes were used as inner tubes in the partially-CFFT 

beams. All the beams were cast with normal-weight concrete and reinforced with steel rebar. 

The beams were tested over a simply supported span under a four-point bending load. The 

details of the used materials, beam specimens, fabrication process, test setup, and 

instrumentations are presented in this chapter. 

3.2 FABRICATION OF GFRP TUBES 

In the filament winding process, the placement of the fibers is controlled and can be oriented 

in either the hoop direction and/or inclined to the axial direction as needed to develop the 

necessary strength properties in the hoop or axial directions. Hence, the filament-wound FRP 

tubes can provide flexural reinforcement and shear reinforcement in the axial and transverse 

direction of the CFFT beams, respectively. This was one of the reasons for choosing to 
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fabricate the FRP tubes in the current study by filament-winding process. Different sizes and 

configurations of GFRP tubes were fabricated for this study at the laboratory of Composites 

for Infrastructures at Civil Engineering department at Sherbrooke University using the 

filament winding process as shown in Figure 3.1. The FRP tubes were composed of E-glass 

fibers and vinyl ester resin. The fibers type is a single end roving of Fiber E-glass. Based on 

the manufacturer data, the fibers have a nominal texture of 1100 gm/km, a maximum tensile 

strength of 2400 MPa, and modulus of elasticity of 80 GPa. Vinyl ester resin was used. 

Based on the manufacturer data, the resin has a density of 1170 kg/m
3
, a maximum tensile 

strength of 70 MPa, and a modulus of elasticity of 3.5 GPa. Table 1 lists the configurations 

and details of the fabricated filament-wound GFRP tubes. All the outer tubes have identical 

rectangular cross sections with internal dimensions of 305×406 mm
2
 and round corners of 25 

mm radius to avoid any damage due to stress concentration at the corners. While circular 

tubes with an internal diameter of 218 mm and square tubes with internal cross section of 

203×203 mm
2
 and round corners of 12.5 mm radius were used as inner hollow tubes in the 

partially-CFFT beams. 

The filament-winding process starts with a large number of fibers rovings pulled from a 

series of creels into a liquid resin bath. Just before entering the resin bath, the rovings are 

gathered into a band by passing through a stainless steel comb as shown in Figure 3.2(a). 

After the rovings are immersed into the resin, they are pulled through a wiping device that 

removes the excess resin and controls the resin coating thickness around each roving as 

shown in Figure 3.2(b). Once the rovings have been impregnated and wiped, they are 

gathered together in a flat band using a comp followed by a ring called payout located on the 

carriage of the winding machine as shown in Figure 3.2(c).  

The traversing speed of the carriage and the winding speed of the mandrel are controlled by 

computer to create the desired winding angle patterns. Two winding patterns were used, as 

shown in Figure 3.3(a, b): (1) a circumferential pattern at 90
o
 to provide shear reinforcement 

and to prevent buckling of the longitudinal fibers, and (2) helical patterns at 30
o
, 45

o
, and 65

o
 

to provide axial stiffness and strength for the CFFT beam, in addition to their contribution as 

shear reinforcement. The helical patterns were used to designate the fabricated tubes. For 
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example; OR430 refers to an Outer Rectangular tube has 4 layers of a helical pattern at 30
o
. 

While IS465 refers to an Inner Square tube has 4 layers of a helical pattern at 65
o
.  

After completion of the filament winding process, the composite structure is subjected to heat 

to be cured as shown in Figure 3.4. The optimum curing period and temperature were 

determined after series of tests to achieve sufficient degrees of polymerization [Abouzied et 

al. 2011, 2012a, 2012b]. The last step was pulling the mandrel out of the cured composite 

tube as shown in Figure 3.5. While supporting the composite tube, the mandrel is attached to 

an extractor carriage and slowly removed from the center of the tube. After pulling out the 

mandrel and cleaning the surface of the composite tubes, standard tests were carried out to 

evaluate the physical and mechanical properties of the final products shown in Figure 3.6. 

Then, the tubes were cut to the required length of the beam prototypes. The inner surface of 

the outer tubes and the outer surface of the inner tubes (surfaces in contact with concrete) 

were sand coated by a layer of vinyl ester resin and coarse sand particles to produce a rough 

texture in order to enhance the bond between the concrete core and the tubes to achieve a full 

composite action (see Figure 3.7). 

3.3 TESTS ON GFRP TUBES 

After curing, standard tests were carried out to evaluate the quality and the physical and 

mechanical properties of the fabricated filament-wound GFRP tubes. The most important 

physical properties measured were the percentage of fiber in the composite, and the glass 

transition temperature of the composite for quality issues. While to measure the mechanical 

performance of the tubes, tension and compression tests were carried out on identical 

coupons to obtain the tensile and compressive strength in the axial and transverse (hoop) 

directions. More details about each test and its specimens are illustrated in the following 

sections.  

3.3.1 Fiber Content  

Pyrolysis is chemical decomposition of material components by the action of heat. According 

to ASTM D3171 (2009), small samples of tube walls are burned in the pyrolysis oven, shown 
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in Figure 3.8(a), to a high temperature (550°C) which makes the resin to evaporate and leave 

the fiber alone (see Figure 3.8(c)). The fiber content (Wf) is the ratio of the final mass of the 

sample after pyrolysis (Mf) and its initial mass before pyrolysis (Mi) as given in Eq. (3.1). 

Then, the content of resin matrix (Wm) can be estimated from Eq. (3.2). Note that the balance 

used had an accuracy of 0.001 gm. Three samples at least of each manufactured tube were 

tested and the average fiber content values are listed in Table 3.1. 

  100
i

f

f
M

M
%W  (3.1) 

    100
ifim

/MMM%W  (3.2) 

3.3.2 Glass Transition Temperature  

The glass transition temperature (Tg) is the temperature at which the material begins to 

soften. This test is carried out by Differential-Scanning-Calorimeter (DSC Q10) shown in 

Figure 3.9(a), which is equipped with a digital acquisition and data processing. According to 

ASTM D3418 (2008), the test was carried out on five small cubic samples 2 to 3 mm long 

for each tube. The temperature of the device increases by several hundred degrees and during 

that time, the system can evaluate a large number of factors for the sample as its temperature, 

thermal stability, and its melting and crystallization temperatures. For each sample, a typical 

graph is obtained, as shown in Figure 3.9(b), which indicates the glass transition temperature 

(Tg) by the crest of the curve. The obtained results agreed with the manufacturer data where 

Tg for resin was about 120 
o
C. To verify if the fabricated tubes had been fully cured or not 

yet, the degree of polymerization is calculated by applying in Eq. (3.3) and (3.4). Where, 

∆Hpp is the heating at the end of polymerization, X is the value in J/g determined by the DSC 

device and equals the area under the bubble, and ∆Hr is the heating temperature of resin 

predetermined by the manufacturer and equals to 237.2 
o
C. Based on these calculations in 

early step of tubes fabrication, the temperature and period of curing was justified at 60 
o
C for 

24 hours to obtain good quality of tube products with a degree of polymerization equivalent 

to 95% or more. 
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3.3.3 Mechanical Performance of GFRP Tubes 

The mechanical performance of the fabricated filament-wound GFRP tubes is verified by 

measuring the tensile and compressive strength in the axial and transverse (hoop) direction of 

the tubes. The tests are performed using MTS press machine shown in Figure 3.10(a). One of 

the machine jaws is fixed and connected to a data acquisition system to measure loads, 

displacements and strains. The other is movable and connected to the drive system of travel. 

An extensometer is placed on the specimen in order to measure the corresponding strains. 

For the rectangular and square GFRP tubes, coupon specimens were cut according to ASTM 

D638 (2010) type I or III, based on the specimen thickness, forming coupons with dog bone 

shape as shown in Figure 3.10(b). This shape is performed to ensure the rupture position to 

be at the mid-length of each coupon and far from the machine jaws. For the circular GFRP 

tubes, ring specimens were cut according to ASTM D2290 (2014) with a width of 25.4 mm 

and 4 mm half circle grooves 180
o
 apart as shown in Figure 3.10(c) to ensure that the 

maximum stresses (rupture position) to be near the strain gages position. For each specimen, 

the average width and thickness of the critical central part were measured to get the effective 

sectional area to calculate the effective stress.  

For the rectangular and square tubes, at least five identical coupon specimens in the axial 

direction of the tube were tested under tension following ASTM D3039/D3039M (2014), and 

another five coupons were tested under compression following ASTM D695 (2010). The 

same numbers and tests were carried out in the transverse direction also. For compression 

tests, an anti-buckling guide was used to prevent buckling of the coupons as shown in Figure 

3.10(e). The same previous tests were carried out to measure the tensile and compressive 

strength in the axial direction only of the circular tubes. While the split disk test was carried 

out on five identical rings to measure the mechanical properties in the hoop direction of the 
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circular tubes according to ASTM D2290 (2014) as shown in Figure 3.10(f). Figure 3.10(d, 

e, f) shows typical failure patterns of the coupons tests.  

The results of the tensile and compressive strength in each direction are listed in Table 3.1. 

The stress-strain relationships for each tube in both directions (axial and hoop) are indicated 

in Appendix A. Typical axial stress-strain curves for outer rectangular tubes are shown in 

Figure 3.11. This figure compares between two outer tubes, OR1230 and OR1645, which 

contain two different stacking sequences. The results indicate two major points:  

1) Reducing the winding angle from 45
o
 to 30

o
 increased significantly the axial strength 

and stiffness of the filament-wound GFRP tubes,  

2) The filament-wound GFRP tubes behaved in a nonlinear way, especially with high 

winding angles 45
o
. 

3.4 TEST VARIABLES 

The objectives of this research were achieved by testing twenty-four full-scale beams, 

including rectangular fully and partially-CFFT beams with steel rebar and conventional RC 

beams. Several test variables were considered as follows: 

1) Effect of fiber laminate orientation and thickness of the outer tube on the flexural 

behaviour of fully-CFFT beams. 

2) Effect of the outer tube thickness on the flexural behaviour of partially-CFFT beams. 

3) Effect of fiber laminate structure and thickness of the inner hollow tube on the flexural 

behaviour of partially-CFFT beams. 

4) Effect of the inner hollow tube shape on the flexural behaviour of partially-CFFT 

beams. 

5) Effect of steel rebar on the flexural strength and failure mode of fully and partially-

CFFT beams. 

6) Comparing strength-to-weight ratios of fully and partially-CFFT beams with 

conventional RC beams. 
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7) Analytical study to develop design equations to investigate the experimental results in 

terms of flexural capacities and deformations.  

The conclusions of these studied parameters will be collected and analyzed to form a new 

durable lightweight hybrid composite beam with acceptable strength that can be used in 

structures, bridges, and ready structural elements industry. 

3.5 BEAM SPECIMENS  

Twenty-four full-scale beams, 3200 mm long, were fabricated for this study, including eight 

fully-CFFT beams, fourteen partially-CFFT beams, and two control RC beams, as shown in 

Table 3.2. Note that some beams had an identical beam to verify the results of this non-

homogenous hybrid composite section and to check the quality control of the fabricated 

beams especially the tubes were manufactured by the author in the laboratory. The beam 

specimens were identified by the GFRP tube(s) components used to form each beam. A 

fully-CFFT beam that contains only one outer tube is identified as OR230, for example. While 

a partially-CFFT beam that contains outer and inner tubes is identified as OR230-IC430, for 

example.  

All the tested beams were reinforced at the tension side with deformed steel bars 4-15M as 

flexural reinforcement with a concrete cover of 38 mm. A standard tension test ASTM A615 

(2009) was carried out on three specimens of steel bar 15M (see Figure 3.12). The average 

yield tensile strength (fy) and the average ultimate tensile strength (fsu) were 467 and 610 

MPa, respectively, while the average ultimate plastic strain at rupture was 0.164. The average 

modulus of elasticity Es was around 200 GPa and the plastic hardening modulus was about 2 

GPa (≈0.01Es). 

Figures 3.13 and 3.14 indicate the cross section configuration, steel cages, and tubes 

assembly for the beam specimens. Conventional RC beams were tested as control beams to 

investigate the confinement effect of the rectangular CFFT beams and to compare their 

strength-to-weight ratio to that of rectangular fully and partially-CFFT beams. Accordingly, 

the RC beams were reinforced with the same flexural reinforcement 4-15M at the tension 
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side and 2-10M as top steel reinforcement, and steel stirrups 10M@150mm as shear 

reinforcement. For the partially-CFFT beams, the inner hollow GFRP tubes were 2900 mm 

long, but their hollow part was 2400 mm long centered with their length to keep solid parts at 

the supports region to prevent any shear failure or web buckling during the test at this region. 

This was done by moving the end block 250 mm inward the hollow tubes. The steel bars and 

the inner hollow tubes were held together by strong plastic straps, in addition all the 

assembly was held in its designed position by spacers and screws to hold it to the outer tubes. 

A cut (window) at the bottom end of the inner tube was formed to prevent air bubbles 

formation inside the bottom solid part of the inner tube during the casting, since the CFFT 

beams would be cast on inclined formwork. Finally, perpendicular hooks at 90
o
 and 200 mm 

long were formed in the steel bars to provide adequate development length and to eliminate 

any slippage between the concrete core and the outer tube. Figure 3.15 indicates also the 

reinforcement and section details of each beam type. 

3.6 FORMWORKS AND CASTING 

The RC beams were cast horizontally in a wooden box formwork, while the tubes were fixed 

on inclined frames and the concrete was poured into them from top end gates as shown in 

Figure 3.16. Supporting the tubes against movement and blocking their ends were enough to 

start the casting process, because the tubes worked as a stay-in-place formwork. All the 

beams were cast with a ready-mixed normal weight concrete. The mix proportions for cubic 

meter of concrete includes 380 kg of cement, 152 litre of water, 1070 kg of limestone 

aggregate with a maximum size of 14 mm, 718 kg of sand. One litre of superplasticizer of 

polycarboxylate-based high range water reducing admixture, with a specific gravity of 1.7 

and solid content of 32%, was added to the mixture before casting the tubes to enhance the 

concrete workability. The RC beams had been cured in a conventional way by spraying water 

for 7 days. The CFFT beams were covered tightly with plastic sheets and the moisture that 

surrounded the beams (under the cover) had been kept at high level for 7 days, as shown in 

Figure 3.17.  

After 28 days of casting, concrete cylinder tests were performed according to ASTM C39 

(2012) for every batch. At least five concrete cylinders were tested under compression 
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machine, shown in Figure 3.18(a), to get the compressive strength of the concrete cylinders. 

While three cylinders where tested under MTS machine, shown in Figure 3.18(b), with 

attached vertical strain extensometers to draw the actual stress-strain curve of the concrete 

cylinders as shown in Figure 3.18(c). The average unconfined compressive strength for the 

cylindrical concrete specimens at 28 days old (f’c) is listed in Table 3.2. Based on the stress-

strain curves of the concrete cylinders, the experimental modulus of elasticity Eco is 

compatible with Eq. 3.5 proposed by the Canadian codes CSA-S806 (2012) and CSA-S6 

(2014).  

'

cco
fE 4500  (3.5) 

3.7 TEST SETUP AND INSTRUMENTATIONS  

The beams were tested using a four-point bending setup over a simply supported span of 

2920 mm long and the distance between the applied concentrated loads was 720 mm centered 

with the beam length as shown in Figures 3.19, 3.20 and 3.21. These lengths give a span-to-

depth ratio of 7.3 and shear span-to-depth ratio of 2.75. As such, it is believed that the beams 

tested in this study are governed by flexure [Cole 2005].  

The beams were loaded under displacement control using MTS machine with a capacity of 

10000 kN. The beams were loaded in scheme of loading, unloading, and reloading cycles 

until the failure, as shown in Figure 3.22. Note that, the rate was constant for all loading and 

unloading cycles and equals 1 mm/min. The cycles depended on a pre-calculated deflection 

value at yielding of the embedded steel reinforcement that equals 15 mm. Hence, the 

maximum displacement limits of the loading cycles were at 0.5Δy, Δy, 2Δy, and finally at 4Δy. 

Afterthought, the last loading cycle continues until failure. The unloading cycles started from 

the end of each loading cycles and finished at the closer of a minimum displacement limit or 

zero load value of the machine to avoid releasing the load from the beam and to save time of 

testing. The unloading and reloading scheme was intended for the assessment of stiffness at 

various load levels and to evaluate the ductility of such CFFT beam system. 
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Three displacement potentiometers (DPs) were used to monitor the deflection profile along 

the beam length, as shown in Figure 3.23(a). In addition, two DPs were located at the ends of 

the beam to record any relative displacement (slippage) between the concrete core and the 

tube, if occurred, as shown in Figure 3.23(b).  

Linear variable differential transducers (LVDTs) were attached at the beams top and bottom 

faces of the tubes, as shown in Figure 3.24, to monitor the extreme axial compressive and 

tensile strains. Before casting, electrical strain gages, 10 mm long, were bonded on the steel 

reinforcing bars at the most critical section at the mid-span as shown in Figure 3.25(a). In 

addition, axial and transverse strains gages, 10 mm long, were bonded directly on the inner 

tubes surfaces at their top and bottom faces and at the mid-height of their web as shown in 

Figure 3.25(b). Before test, axial and transverse strains gages, 10 mm long, were bonded 

directly on the outer tubes surfaces at their top and bottom faces, corners, and at different 

levels along the beam depth (at H/3) as shown in Figure 3.26(a). The objective of the strain 

gages measurements is to draw the strain profile and to record the confining action around 

the section. Finally, strain rosettes were located at the center of the shear span and the mid-

height to investigate the shear response of the beam as shown in Figure 3.26(b). The load, 

deflection, and strains were recorded automatically during the tests using a data acquisition 

system that record the readings every 0.5 second. 
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Table  3.1 – Configurations and mechanical properties of fabricated filament-wound GFRP tubes 

Tube 
Cross Section 

(mm) 

Stacking 

sequence 

%Fibers 

(By 

weight) 

tf 

(mm) 

Mechanical 

properties 

Axial direction Hoop direction 

Elo 

(GPa) 

Flo 

(MPa) 

εlo 

(mm/m) 

Etr 

(GPa) 

Ftr 

(MPa) 

εtr 

(mm/m) 

OR230 

 

[90
o
, ±30

o
, 

90
o
] 

62 3.4 
Ten. Test 14.3±2.2 158.2±19.9 15.7±4.6 16.0±1.3 256.9±25.7 21.8±2.1 

Comp. test 14.0±2.9 -92.2±9.0 -7.0±0.7 17.8±1.7 -174.9±8.9 -10.4±1.4 

OR430 

[90
o
, ±30

o
, 

90
o
, 

 ±30
o
, 90

o
]
 

61 5.7 

Ten. Test 14.5±1.2 173.3±9.0 15.3±1.9 14.4±0.5 249.0±24.9 23.9±3.2 

Comp. test 15.5±1.2 -165.2±6.5 -12.5±1.1 14.5±0.7 -292.5±17.9 -23.9±3.5 

OR830 

[90
o
, ±30

o
2, 

90
o
, 

 ±30
o

2, 90
o
]

 
59 8.7 

Ten. Test 16.2±1.1 197.2±15.7 18.9±1.8 13.7±0.9 168.0±5.8 19.2±1.2 

Comp. test 17.7±1.2 -188.5±9.2 -11.8±0.5 13.8±1.0 -210.8±12.7 -17.8±0.9 

OR1230 
[90

o
, ±30

o
6, 

90
o
]
 59 9.9 

Ten. Test 18.6±0.6 241.9±12.8 15.3±0.9 13.4±0.9 125.2±8.8 16.6±2.1 

Comp. test 20.1±1.7 -175.9±12.4 -9.5±1.2 12.2±0.5 -217.1±15.7 -24.0±2.7 

OR1645 

[90
o
, ±45

o
4, 

90
o
, 

 ±45
o

4, 90
o
] 

58 14.2 

Ten. Test 10.5±1.7 100.0±14.0 22.7±6.0 13.0±0.9 163.9±2.5 24.5±2.1 

Comp. test 11.1±1.4 -110.0±6.3 -20.7±0.9 12.2±1.0 -170.6±7.3 -21.4±2.3 

IC230 

 

[90
o
, ±30

o
, 

90
o
] 

74 2.1 
Ten. Test 17.5±2.0 228±16.5 17.6±2.3 25.1±1.2 312±16.7 12.3±0.7 

Comp. test 20.3±0.7 -121±6.6 -7.2±0.5 --- --- --- 

IC430 
[90

o
, ±30

o
2, 

90
o
] 

75 3.1 
Ten. Test 16.9±2.2 217.1±14.6 17.3±2.1 23.3±1.9 298.1±14 13.1±1.0 

Comp. test 20.4±0.8 -130.6±4.3 -8.0±0.5 --- --- --- 

IS230 

 

[90
o
, ±30

o
, 

90
o
] 

63 2.9 
Ten. Test 16.9±1.1 142±11 13.0±1.5 16.6±0.8 157.2±9.3 10.4±1.0 

Comp. test 13.4±1.3 -118±7.6 -12.0±1.8 20±3.2 -163.4±22 -9.3±2.8 

IS430 
[90

o
, ±30

o
2, 

90
o
] 

62 4.7 
Ten. Test 16.5±3.5 147.9±7.9 14.2±3.2 15.2±1.5 119.9±8.9 9.3±1 

Comp. test 12.5±1.1 -118.1±5.3 -13.1±1.7 14.4±0.7 -203±10.4 -15.1±1.3 

IS465 
[90

o
, ±65

o
2, 

90
o
] 

60 4.2 
Ten. Test 4.7±1.8 24.6±4.1 10.1±3.2 22.6±1.2 336.5±12.0 13.7±1.2 

Comp. test 5.2±1.7 -63.5±6.3 -18.2±3.8 20.9±1.9 -271.1±10.1 -12.3±1.3 
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Table  3.2 – Details of beam specimens 

Group Beam ID 
Section 

Configuration 
(mm) 

Steel 
reinforcement 

Outer 
tube 

Inner 
tube 

Concrete 
strength 
(MPa) 

RC 
beam 

RC #1 

 

Top 2-10M 
Bot. 4-15M 

Ties  
10M/150 mm 

--- --- 

41.7 

RC #2 41.7 

Fully 
CFFT 

beams 

OR230 #1 

 

Bot. 
4-15M 

OR230 --- 49.7 

OR230 #2 OR230 --- 49.7 

OR430 #1 OR430 --- 48.7 

OR430 #2 OR430 --- 48.7 

OR830 #1 OR830 --- 41.7 

OR830 #2 OR830 --- 41.7 

OR1230 OR1230 --- 48.7 

OR1645 OR1645 --- 48.7 

CFFT 

beams 

with 

circular 

voids 

OR230-IC430  

 

OR230 IC430 49.7 

OR430-IC430  OR430 IC430 49.7 

OR430-IC230 #1 OR430 IC230 49.7 

OR430-IC230 #2 OR430 IC230 49.7 

OR830-IC430 #1 OR830 IC430 41.7 

OR830-IC430 #2 OR830 IC430 41.7 

CFFT 

beams 

with 

square 

voids 

OR430-IS230 #1 

 

OR430 IS230 48.7 

OR430-IS230 #2 OR430 IS230 48.7 

OR430-IS430 #1 OR430 IS430 48.7 

OR430-IS430 #2 OR430 IS430 48.7 

OR430-IS465 #1 OR430 IS465 48.7 

OR430-IS465 #2 OR430 IS465 48.7 

OR830-IS430 #1 OR830 IS430 49.7 

OR830-IS430 #2 OR830 IS430 49.7 
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Figure  3.1 – Filament winding process (Civil Engineering department, Sherbrooke 

University) 

 

 

 

b) fiber impregnation into 

resin dip path 

 

a) Fibers roving on creels c) Gathering fibers by payout 

Figure  3.2 – Fibers installment in filament winding process 
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(a) Circumferential pattern (b) Helical pattern 

Figure  3.3 – Fiber laminates structure patterns 

 

 

 

Figure  3.4 – Curing of FRP tubes by applying heat 
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Figure  3.5 – Removing the mandrel 

 

 

Figure  3.6 – Final Products of GFRP tubes 
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(a) Sand coating the outer surface 

of inner tubes 

 
(b) Sand coating the inner surface 

of outer tubes 

Figure  3.7 – Sand coating for GFRP tubes 

 

 

Figure  3.8 – Fiber content test (ASTM D3171-09) 
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(a) DSC Q10 device 

 

(b) Typical DSC curves 

Figure  3.9 – DSC test (ASTM D3418-08) 
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(b) Dog-bone shape of coupons 

      

(a) MTS press 810 

 

(c) Rings for split-disc test 

 

 
 

 

 
 

 

 
 

 

(d) Tension test (e) Compression test (f) Split disk test 

Figure  3.10 – Coupons tests and instrumentations 
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Figure  3.11 – Coupons tests results of OR1230 and OR1645 in axial direction 

 

 

 

Figure  3.12 – Stress-strain response of steel bar 15M 
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Figure  3.13 – Cross section configurations of the tested beams 

 

 

Figure  3.14 – Reinforcement cages and tubes assembly 
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Figure  3.15 – Details of beam specimens (dimensions are in mm) 
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(a) Wooden formwork for RC beams (b) Inclined frames for CFFT beams 

Figure  3.16 – Casting process 

 

 

 

Figure  3.17 – Seven days moisture curing for CFFT beams 

 

 

25
o
 



Chapter 3: Experimental Program 

  69 

 

 

 

  

(a) Compression machine (b) Compression test by MTS machine 

 

(c) Typical axial stress-strain response of concrete cylinder for every batch 

Figure  3.18 – Concrete cylinders tests (ASTM C39-12) 
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Figure  3.19 – Typical schematic of test setup and instrumentations (dimensions are in mm) 

 

 

 

Figure  3.20 – View of beam test setup 
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(a) Hinged support (b) Roller support 

Figure  3.21 – Supports 

 

 

 

Figure  3.22 – Scheme of loading and unloading cycles (rate = 1 mm/min) 
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(a) Bottom DPs 

 to measure deflection 

(b) End DPs  

to measure slippage 

Figure  3.23 – DPs positions to measure deflection and slippage 

 

 

 

  

(a) Top LVDT (b) Bottom LVDT 

Figure  3.24 – LVDTs to measure top and bottom axial strains 
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(a) Strain gages on steel bars (b) Strain gages on inner tubes 

Figure  3.25 – Strain gages on steel bars and inner tubes 

 

 

  

(a) Axial and hoop strain on outer tube (b) Strain rosette at middle of shear span 

Figure  3.26 – Strain gages on outer tubes 
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4.1 ABSTRACT 

This chapter investigates experimentally and analytically the flexural behaviour of 

rectangular fully concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) beams with 

steel rebar. Eight full-scale CFFT beams, 3200 mm long and 305×406 mm
2
 cross section, 

were tested under a four-point bending load and were compared to two control steel-

reinforced concrete (RC) beams. The main objectives are to study the effect of several 

parameters as the outer tubes thickness and fiber laminates on the flexural behaviour of such 

hybrid FRP-concrete-steel beams. The experimental results indicate an outstanding 

performance of the CFFT beams in terms of strength and ductility compared to the RC beams 

since their flexural strength and ductility attained values 444% and 1432% higher than that of 

the RC beams, respectively. A strain compatibility/equilibrium model was developed to 

predict the moment-curvature response of the CFFT section addressing the issue of 

confinement and tension stiffening of concrete. The analytical results match well the 

experimental results in terms of moments, curvature, strains, and neutral axis location. Based 

on the model, the deflection can be predicted by integrating the curvatures along the span of 

the flexural member. 

Keywords: Beams, Fiber-Reinforced Polymer, Filament-Wound, Concrete-Filled FRP 

Tubes, Flexural behaviour, Deflection. 
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4.2 INTRODUCTION 

Fiber-reinforced polymer (FRP) composite materials have recently been used in the field of 

civil engineering constructions especially in corrosive environments. One of the innovative 

applications is the concrete-filled FRP tubes (CFFTs) which are becoming an alternative for 

different structural applications due to their high performance and durability. Extensive 

research was developed on CFFTs as columns [Mirmiran et al. 1998, 2001; Fam and Rizkalla 

2001; Lam and Teng 2003, 2004; Hong and Kim 2004; Zhu at al. 2006; Teng et al. 2007; 

Ozbakkaloglu and Oehlers 2008a, 2008b; Mohamed and Masmoudi 2008a, 2008b, 2010a; 

Mohamed et al. 2010; Park et al. 2011; Abouzied et al. 2012b; Abouzied and Masmoudi 

2012, 2013; Ozbakkaloglu 2013a, 2013b; Vincent and Ozbakkaloglu 2013; Idris and 

Ozbakkaloglu 2013; and others], but comparatively limited research was carried out on 

CFFTs as beams [Mirmiran et al. 2000; Doval et al. 2001; Fam and Rizkalla 2002; Cole and 

Fam 2006; Mohamed and Masmoudi 2010b, Fam et al. 2005; Yu et al. 2006; Zakaib and 

Fam 2012; Belzer et al. 2013] and most of them concentrated on the circular section more 

than the rectangular one. However, the rectangular section has higher moment of inertia than 

the circular section. Hence, it has higher flexural stiffness to resist the applied loads and 

deformations. Moreover, the construction and architectural requirements prefer the 

rectangular section of beams, rather than the circular beams, due to its stability during 

installation and its workability during connecting to other structural members like slabs and 

columns. To date, only two studies on the flexural behaviour of rectangular CFFT beams 

have been reported, Fam et al. (2005) and Belzer et al. (2013). However, none of them 

reinforced the rectangular CFFTs with steel rebar or analytically studied the deflection 

response of the composite section. 

Most of the tested circular CFFT beams failed in compression [AASHTO 2012]. This 

compression failure was predominantly governed by the compression failure of the tube 

flange under longitudinal compressive stresses where the tensile hoop strains (i.e., 

confinement effect) were insignificant [AASHTO 2012]. This notice is based on flexural 

tests of circular CFFTs without steel reinforcement. More investigations are required to 

verify that notice on rectangular CFFTs with steel rebar. Unlike steel-or-FRP-RC beams, the 
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steel-reinforced CFFT beams can exhibit superior additional flexural capacities in the post-

yielding stage [Abouzied and Masmoudi 2014, 2015a, 2015b, 2015c]. This is attributed to 

the confining action of the FRP tube on the concrete core to withstand higher strains, and the 

FRP tube reinforcement contribution in the axial direction, in addition to the reinforcement 

action of the steel bars in their plastic hardening status.  New design equations are required to 

get benefit of the outstanding flexural capacity at the post-yielding stage, and simultaneously, 

equations to predict the expected deflection with reasonable accuracy.  

Analytical models have been developed to predict the flexural capacity and load-deflection 

response for circular CFFTs [Cole and Fam 2006; Fam and Son 2008; Mohamed and 

Masmoudi 2010b]. These models are based on strain compatibility, internal forces 

equilibrium, and material constitutive relationships. The forces within the CFFT cross section 

were calculated by integrating the stress over the area of each individual material. Despite the 

limited number of tested specimens, these models predict well the flexural behavior of their 

circular CFFT beams. Their theoretical analysis depends mainly on a computer-based 

analysis and requires some sophisticated calculation procedures. Also, these proposed models 

require verification and adjustment to be valid for the rectangular CFFT beams, and need to 

be simplified to be applicable for engineers.  

The main objective of this chapter is to investigate the experimental results of beam tests 

carried out on fully CFFT-beams in the current experimental program indicated in the 

previous Chapter 3. This objective is accomplished by expressing the experimental results of 

eight fully-CFFT beams that compared to two control RC beams. Further analysis and 

discussion were carried out to investigate the effect of each test variable as outer tubes 

thickness and laminates, and steel reinforcement. Also, this chapter attempts to establish a 

theoretical basis for the development of design procedure inspired by the North American 

design codes provisions.   

4.3 EXPERIMENTAL PROGRAM 

In this chapter, ten full-scale rectangular beams, including eight fully-CFFT beams and two 

conventional RC beams, were tested under a four-point bending load and compared together. 
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Table 4.1 presents the details of the beam specimens studied in this chapter. The detailed 

description of the experimental program was illustrated in Chapter 3.  

4.4 TEST RESULTS AND DISCUSSIONS 

The objective of this study is to evaluate the flexural behaviour of rectangular fully-CFFT 

beams with steel rebar. This objective was accomplished as the shear failure was avoided and 

all the tested beams failed at the pure flexure zone and the full composite action between the 

hybrid section structural components was accomplished to avoid any undesired slippage 

failure. Figure 4.1 plots the correlation between the applied moment and the slip at the two 

ends of the tested CFFT beams. Almost no slip readings between the concrete core and the 

tubes were recorded until the ultimate load, even after the ultimate failure the maximum slip 

measured did not exceed 0.2 mm, which can be neglected. Therefore, a full composite action 

was achieved. This is attributed to the roughened surface of the tubes by sand coating and the 

presence of the deformed steel bars with hooks that hold the concrete core in its place.  

The applied moment was calculated by multiplying the concentrated load (P/2) with the 

shear span (a), while the deflection was measured at the mid-span. Although the concrete 

core was hidden behind the tubes surface and it was difficult to see the first crack, the 

cracking moment (Mcr) was evaluated from the readings of the steel strain and the curvature 

response change as shown in Figure 4.2. The experimental yielding moment (My) was 

evaluated from the yielding plateau of the moment-strain response of the embedded steel at 

the tension side as shown in Figure 4.2. Table 4.1 summarizes the beam test results as the 

flexural moments at the first crack, yield and ultimate moments, the ultimate mid-span 

deflection (at the peak), the failure mode, and the ductility. The ductility was evaluated by 

the energy absorption determined as the area under the moment-deflection curve until the 

peak load.  

Generally, the two identical beams in each group behaved almost typically and their average 

results are used in the comparisons. The following sections provide detailed comparisons and 

discussions for the test results including the effect of the test parameters. 
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4.4.1 Shear Strength of Rectangular Fully-CFFT Beams 

The fabricated filament-wound FRP tubes were designed to have adequate fibers in their 

transverse direction. Therefore, the tube itself acts as continuous shear reinforcement around 

the cross section perimeter of the CFFT beam. Accordingly, it was not applicable to add steel 

ties inside the CFFT section.  

Although none of the CFFT beams failed in shear, the contribution of the FRP tube in 

resisting shear, Vf, can be approximately evaluated from the measured nominal shear force, 

Vn, at the ultimate flexural failure reduced by the concrete contribution in shear, Vc, which is 

calculated according to ACI-318 (2014), as indicated in Eq. 4.1 and Eq. 4.2.  

cnf V=VV   (4.1) 

db'fλ=V wcc 0.17  (4.2) 

In the current study, bwd is approximated as the area of the concrete core, Ac, and the factor λ 

equals the unit for the normal weight concrete.  

Assuming a diagonal shear crack at 45
o
 as shown in Figure 4.3, the shear resisting force in 

the FRP tube webs produces vertical tensile stresses in the FRP webs, Ff, which can be 

calculated as:  

efff

o

f

f
dt

V.
=F

45cos50
 (4.3) 

Where, deff is the effective straight depth of the rectangular GFRP tube web excluding the 

rounded corners.  

Table 4.2 lists the shear forces calculations in the fully-CFFT beams. The calculated stresses 

in the outer FRP tube, Ff, were compared to the allowable tensile strength in the transverse 

direction of the rectangular GFRP tubes, Ftr, evaluated experimentally from the coupons tests 

(See Chapter 3, Table 3.1). The results indicate that the developed tensile stresses in the FRP 
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tubes due to the shear forces are relatively very low compared to the tensile strength of the 

FRP tubes in the transverse direction, since the ratio Ff / Ftr did not exceed 31%. These 

results indicate the effective shear reinforcement action of the filament-wound FRP tube. 

4.4.2 Flexural Behaviour of the Control RC Beams 

Figure 4.6 presents the typical failure pattern of the RC beams, which failed in tension under 

flexure. The first crack happened at an average moment 30.5 kN.m. Then, multiple vertical 

flexural cracks were formed especially at the pure moment zone and no complete diagonal 

cracks at the shear zone were noticed until yielding of the bottom steel reinforcement that 

happened at an average moment 114.5 kN.m. After yielding, the stiffness of the beam was 

almost dissipated resulting in a yielding plateau with almost no increase in the flexural 

strength. This plateau continued due to the plastic hardening of the steel. At the meantime, 

the compressive strain at the top extreme of concrete was increasing until crushing at 

maximum compressive strain 0.0035 corresponding to a mid-span deflection of 29 mm. 

4.4.3 Failure Patterns of Fully-CFFT Beams  

All the tested CFFT beams failed under flexure without any signs of shear failure, web 

buckling, or slippage between the concrete core and the tubes. The corners of the rectangular 

filament-wound FRP tubes indicated stability until the end of the tests without any 

separation. This gives an advantage point for the filament-wound FRP tubes in rectangular 

CFFT beams versus the pultruded FRP rectangular tubes that fail commonly due to corner 

separation as shown in Figure 4.4. The good failure performance of the filament-wound FRP 

tubes is attributed to existence of transverse fibers that eliminates buckling of the axial fibers 

and connects strongly the tube flanges with the tube webs preventing their separation at the 

corners. Accordingly, the flexural reinforcement action of the filament-wound tubes in their 

axial direction can be fully utilized until high levels of loading until the axial rupture of the 

fibers due to flexure. In contrast, the pultruded FRP tubes fail early at the corners eliminating 

the full utilization of the tube elements, flanges and webs, which are still active without any 

rupture as shown in Figure 4.4. 
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Based on this study, the filament-wound FRP tubes are recommended in rectangular CFFT 

beams more than the pultruded FRP tubes because: 

1) The filament-wound FRP tubes control the strength of the tubes in both the axial and 

transverse direction by controlling the amount of flexural and shear reinforcement, in 

addition to its confining action. 

2) The filament-wound FRP tubes improve the stability of the CFFT beams against any 

undesired secondary failure like shear failure and corners separation, which occurs 

commonly in the pultruded FRP tubes. 

In the studied rectangular CFFT beams, insignificant micro surface cracks were formed in the 

matrix, as shown in Figure 4.5. However, these cracks were hard to be observed unless 

applying direct light on the tubes surface. These cracks were vertical with different heights 

according to their position along the beam length. In other words, their height is directly 

related to the moment profile along the beam span. They were formed when the matrix 

tensile stresses exceeds the maximum allowable stress of the resin matrix, which was 70 MPa 

according to the manufacturer data. 

Figures 4.7 to 4.11 present the failure patterns and the moment-deflection response of the 

rectangular fully-CFFT beams OR230, OR430, OR830, OR1230, and OR1645.  

The CFFT beams OR230, which have the least tube thickness of 3.4 mm, failed in tension 

under flexure with axial rupture of fibers at the tension side, as shown in Figure 4.7(c), with a 

sudden loss of the flexural strength.  

The CFFT beams OR430, which have a tube thickness of 5.7 mm, experienced also a tension 

failure under flexure. However, there was inflate at the compression flange before failure 

load and minor signs of outward buckling as shown in Figure 4.8(b). 

The failure of the CFFT beams OR830, which have a tube thickness of 8.7 mm, started with 

inflate followed by outward buckling of the compression tube flange with a limited drop in 

the flexural strength. Accordingly, the flexural stiffness decreased. Nevertheless, OR830 

continued to resist the loads depending mainly on the tube bottom flange at the tension side 
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and the confined concrete at the compression side. Shortly thereafter, an axial rupture of 

fibers at the tension side happened with a sudden loss of the flexural strength, as shown in 

Figure 4.9(c). 

The CFFT beam OR1230, which has a tube thickness of 9.9 mm, failed in compression under 

flexure beginning with inflate followed by outward buckling of the compression tube flange 

with a limited drop of strength, but the beam could not resist any additional loads afterwards. 

Although the tension flange was still active, the strength was decreasing gradually. 

Meanwhile, a transverse rupture of fibers was increasing at the compression side. This may 

be attributed to the low percentage of the transverse fibers in the GFRP tube OR1230 (two 

layers of 90
o
 circumferential pattern). Finally, at high level of deformation and curvature, its 

tensile flange failed with axial rupture of fibers at the tension side with a significant drop of 

strength, as shown in Figure 4.10(c). 

The CFFT beam OR1645, which has the maximum tube thickness of 14.2 mm, failed in 

compression beginning with inflate and outward buckling of the compression tube flange 

with a limited loss of the flexural strength. The CFFT beam OR1645 continued to resist the 

loads, but shortly thereafter, it failed in tension by axial rupture of fibers at the tension side, 

as shown in Figure 4.11(c). The failure pattern of OR1645 could be considered similar to that 

of OR830.  

Generally, rectangular CFFT beams with steel rebar fail gradually in a sequential manner 

(yielding of steel, buckling of compressed tube flange, and finally rupture of the fibers). It 

can be noticed that even after the ultimate failure, the reinforced CFFT beams keep a residual 

strength due to the existence of the steel that has a high plastic strain (see the horizontal 

yielding plateau after the ultimate in Figures 4.7, 4.8, and 4.9), unlike the FRP-concrete 

composite beams that commonly lose their flexural strength entirely after the failure of their 

FRP reinforcement elements.  

Based on the noticed pattern of failure of the tested fully-CFFT beams, the CFFT beams 

OR230 and OR430 could be considered as under-reinforced beam section, while OR1230 could 

be considered as over-reinforced beam section, while OR830 and OR1645 could be considered 
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as balanced sections. Accordingly, the failure pattern of the fully-CFFT beams changes from 

tension to compression failure with increasing the FRP tube thickness. Note that, the 

laminates structure is also an important parameter beside the tube thickness. 

4.4.4 Effect of Cycling Load 

The beams were loaded under quasi-static loading in scheme of loading, unloading, and 

reloading cycles until failure, as shown in Figure 3.22 in Chapter 3. Note that the loading rate 

was constant for all loading and unloading cycles and equals 1 mm/min. The cycles 

depended on pre-expected deflection values at yielding of the embedded steel reinforcement, 

Δy. The beams were unloaded at 0.5Δy, Δy, 2Δy, and finally at 4Δy. The last loading cycle 

continues until failure. Despite the lower flexural stiffness and strength of the conventional 

RC beam compared to the CFFT beams, it behaved like the CFFT beams under the quasi-

static loading. Before yielding of steel reinforcement (the first and second cycle), there was 

insignificant effect of unloading-reloading cycles at the fully-CFFT beams. Since, both steel 

and GFRP tube were still elastic. Note that, the unloading-reloading stiffness was almost the 

same and there were no gaps in the deflection response at the first and second cycles end. 

After yielding of the embedded steel and becoming plastic, the stiffness of the unloading-

reloading cycles was decreasing gradually within the third and fourth cycle for each CFFT 

beams. At the third cycle, which occurred mostly before the ultimate failure, there was 

insignificant gap in the deflection response (< 1 mm). At the fourth cycles this gap increases 

to 3 to 4 mm, if the cycle occurs before the ultimate peak failure as shown in Figures 4.7, 4.8 

and 4.11. This gap increases significantly if the cycle occurs after the ultimate peak failure as 

shown in Figure 4.10.  

4.4.5 Flexural Performance of Fully-CFFT Beams  

The objectives of the following sections are to highlight the performance of the rectangular 

fully-CFFT beams compared to the conventional RC beams. Further comparisons and 

discussion are illustrated to study the effect of steel reinforcement, FRP tube thickness, and 

fibers laminates structure in the fully-CFFT beams. To facilitate the analysis, the reloading 

cycles are eliminated from the curves and the outer envelopes are used in the comparisons. 
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Figure 4.12 indicates the effect of confining the conventional RC beams with filament-

wound GFRP tubes, where it plots the moment-deflection responses of the fully-CFFT beams 

OR230, OR430, OR830, OR1230, and OR1645 compared to that of the RC beams which have 

the same cross section and tension steel reinforcement. The results of the tested rectangular 

fully-CFFT beams indicated the significant gain in strength, stiffness, and ductility compared 

to the RC beam. The results indicate that the yield moment My of the CFFT beams was 

significantly greater than that of the RC beam, and increases with increasing the FRP tube 

thickness. The ultimate flexural capacities (Mu) of the CFFT beams are very impressive. For 

example, the average Mu of the CFFT beams OR230, which have a tube thickness of 3.4 mm, 

attained 197% the flexural strength of the RC beams. While, Mu of the CFFT beam OR1645, 

which has a tube thickness of 14.2 mm, attained 544% the flexural strength of the RC beams.  

The results indicate also that the ductility of the CFFT beams is significantly greater than that 

of the RC beam. For example, the ductility of the fully-CFFT beam OR1645 attains about 15 

times that of the RC beam.  

The overall behaviour of the fully-CFFT beams is considered as nonlinear as shown in Figure 

4.12. Before cracking, the beams start with a great flexural stiffness due to the massive gross 

sectional inertia. After the first crack and until yielding of the embedded reinforcement steel 

(pre-yielding stage), there was a difference in the flexural stiffness among the CFFT beams, 

due to the different thickness and stiffness of the GFRP tubes. After yielding of the steel bars 

(post-yielding stage), the flexural stiffness decreased, as expected, because of the low 

modulus of elasticity of the GFRP tubes material. Nevertheless, the flexural strength of the 

CFFT beams was increasing gradually until failure depending on the axial tensile strength of 

the GFRP tube at the tension side in addition to the hardened steel, and the compressive 

strength of both the confined concrete and the axial compressive strength of the GFRP tube 

flange at the compression side. 

4.4.5.1 Effect of Steel Reinforcement in Fully-CFFTs 

The results indicate that the hybrid steel-concrete-FRP composite system of the fully-CFFT 

beams made the behaviour of the rectangular CFFT beams to contain three stages, pre-

cracking stage, post-cracking (pre-yielding) stage, and post-yielding stage. Even after the 



Chapter 4: Flexural Behaviour of Fully-CFFT Rectangular Beams 

  86 

 

ultimate failure, the results show that the CFFT beams can keep a residual strength because 

of the existence of the steel that has a high plastic strain.  

Fam et al. (2005) studied rectangular filament-wound GFRP tubes with fiber stacking 

sequence of [90
o
, ±45

o
2, 90

o
, ±45

o
2, 90

o
] filled with concrete and their flanges were 

strengthened by additional four axial glass fiber sheets by hand layup technique. The tensile 

strength of their tubes web and flange was 152 and 315 MPa, respectively. They tested two 

CFFT beams completely filled with concrete, B1 and B3, but the beams had different cross 

section area. B1 had a cross section area of 266×374 mm
2
, while B3 had a cross section area 

of 164×271 mm
2
. B1 is chosen to be compared with the tested CFFT beams in the current 

study due to its cross section dimension and FRP reinforcement ratio are close to the current 

study. This aims to study the effect of steel reinforcement on the flexural behaviour of 

rectangular CFFT beams. The comparison is carried out by comparing the moment-curvature 

(M-ψ) responses of the CFFT beams, as shown in Figure 4.13, since the compared beams 

have different size and spans. The moment was normalized with respect to the width B and 

the depth H of the cross section, while the curvature, which is calculated from the axial 

strains along the beam depth, was normalized with respect to the depth H.  

Despite the steel reinforcement ratio (ρs) is comparatively small in this study, Figure 4.13 

shows that providing the CFFT section with steel rebar increased significantly the initial 

flexural stiffness of the CFFT beams compared to Fam et al. (2005). In addition, there is 

ascending strength at the post-yielding of the reinforced CFFT beams. That means for the 

same flexural strength the hybrid section will have smaller deflection compared to the section 

that contains FRP tube only. This behaviour is obviously seen when comparing the CFFT 

beam OR830 to B1, since the two beams have almost the same FRP ratio (ρf).  

The results of the CFFT beam OR830 compared to B1 of Fam et al. (2005) indicate also that 

the failure of the fully-CFFT beams occurs once the curvature (or the axial strains) attains a 

maximum allowable value. For example, if only the steel rebar increases in OR830, it can be 

proposed that (see Figure 4.14): 

1) The initial flexural stiffness will increase at the pre-yielding stage. 
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2) The yield moment will increase. 

3) The flexural stiffness will remain the same at the post-yielding stage.  

4) The ultimate flexural strength will increase. 

5) The ultimate failure will occur at the same curvature value as in the current study.  

4.4.5.2 Effect of Outer Tube Laminate Structure  

The effect of outer tube laminate structure is investigated by comparing the flexural results of 

the CFFT beams OR1230 and OR1645 as shown in Figure 4.12. OR1645 has fibers orientation 

angle of 45
o
, while OR1230 has fibers orientation angle of 30

o
. Moreover, OR1645 has more 

fibers layers and higher tube thickness compared to OR1230. See Table 3.1 in Chapter 3 for 

more details about the fibers laminate structure.  

The results indicate that the primary flexural stiffness of OR1645 is slightly smaller than that 

of OR1230, but after yielding, the flexural stiffness of OR1645 is significantly affected by its 

fiber laminates structure and become significantly lower than that of OR1230. However, 

OR1645 attained higher flexural strength than OR1230. The results indicate also a clear 

nonlinear behaviour of OR1645 at the post-yielding stage compared to that of OR1230. To 

interpret those results, the coupons test results of these two CFFT beams should be discussed 

as shown in Figure 4.15. As seen in Figure 4.15, increasing the fibers orientation angle from 

30
o
 to 45

o
 reduced the axial strength and the modulus of elasticity of the FRP tube material. 

The lower modulus of elasticity of OR1645 interprets the lower flexural stiffness of the CFFT 

beam OR1645 especially at the post-yielding stage compared to that of OR1230. In addition, 

the nonlinear behaviour of OR1645 coupons causes its flexural behaviour to be obviously 

nonlinear more than that of OR1230. Of course, the effect of the FRP tube material becomes 

more significant at the post yielding stage, because at this stage, the contribution of the FRP 

tube is more significant compared to the other structural elements in the section (crushed 

concrete and hardened steel).  

At the post yielding stage, the FRP tube strength and stiffness governs the flexural capacity 

and behaviour the CFFT beams. In other words, the compressive strength besides the 

buckling resistance of the tube compression flange can govern the ultimate strength, or the 
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tensile strength of the tube tension flange can govern the ultimate strength, whichever is 

reached first. The axial internal force of the FRP tube can be calculated by multiplying the 

ultimate axial stress of the coupons (Flo) with the cross section area of the tube flange (b×tf). 

It was found that the calculated axial force of OR1645 is lower than that of OR1230. So, what 

is the reason that OR1645 attained higher flexural strength? The author thinks that the high 

thickness and the excessive fibers in the transverse direction of OR1645 resisted the buckling 

of the compression flange and permitted it to withstand higher compressive strains and 

consequently higher flexural strength than OR1230. However, the tube OR1230, which has 

higher axial strength and tube thickness of 9.9 mm, failed early once the buckling occurred at 

the compression flange of the tube. Note that, OR1230 has two layers only of transverse fibers 

at 90
o
 circumferential pattern causing early buckling of the axial fibers at the compression 

flange. Accordingly, it can be concluded that buckling of the compression flange governs the 

ultimate capacity of the over-reinforced CFFT beams. 

4.4.5.3 Effect of Outer Tube Thickness 

To study the effect of increasing the outer tube thickness, the comparison will concentrate on 

the results of the fully-CFFT beams OR230, OR430, OR830, and OR1230 excluding OR1645 to 

eliminate the buckling resistance. The results indicate the significant gain in strength, 

stiffness, and ductility of the rectangular fully-CFFT beams compared to the conventional 

RC beams (see Table 4.1). For example, confining the RC beam with a tube of 3.4 mm 

thickness, as in OR230, enhanced the ultimate flexural strength and ductility by 97% and 

297% higher than that of the RC beam, respectively. The CFFT beams OR430, which have a 

tube of 5.7 mm thickness, attained ultimate flexural strength and ductility 204% and 694% 

higher than that of the RC beam, respectively. The CFFT beams OR830, which have a tube of 

8.7 mm thickness, attained ultimate flexural strength and ductility 327% and 1052% higher 

than that of the RC beam, respectively. While, the CFFT beam OR1230, which has the 

maximum tube thickness of 9.9 mm, attained an ultimate flexural strength and ductility 344% 

and 465% higher than the RC beam, respectively. As seen in OR1230, the gain decelerated in 

strength and decreased in ductility. It can be concluded that the ductility increases with 

increasing the tube thickness until reaching a limit between under-and-over-reinforced 

sections. After this limit, the flexural strength and the ductility decrease due to the 
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compression failure of the fully-CFFT beam. It is evident that the compression failure of the 

compression tube flange governs the enhancement in strength and ductility in the fully-CFFT 

beams. This behaviour is illustrated in Figure 4.16, which plots the correlations between the 

flexural moments at different stages (first crack, yield, ultimate) compared to the normalized 

strength of the FRP tubes represented by their reinforcement ratio ρf (=Af /Ac) multiplied by 

their modular ratio nf (=Ef /Eco). Note that, Ef is taken as the average modulus of elasticity 

from the compression and tension coupons tests in the axial direction of the GFRP tubes.  

The results of Mcr, shown in Table 4.1, indicate minor difference among the fully-CFFT 

beams and the average Mcr of them is 45.8 kN.m. While, My of the fully-CFFT beams is 

significantly greater than that of the RC beam, and increases with increasing the FRP tube 

thickness. Figure 4.16(a) indicates a linear increase of My with increasing the tube thickness. 

It is rational due to the excess contribution of the elastic GFRP tube material as flexural 

reinforcement in the cracked section.  

Figure 4.16(b) indicates a non-linear increase of Mu until a certain limit that separates the 

under-and-over-reinforced sections. This limit is also clearly shown in Figure 4.16(c), which 

mainly represents the post yielding stage by comparing Mu/My to the tube strength where at 

this stage the reinforcement action of the GFRP tube is effective and significant. This limit is 

close to the results of OR830 confirming its balanced failure behaviour. Note that, the 

buckling of the tube compression flange affects the flexural capacity and eliminate the 

confinement efficiency. This non-linear response indicates that increasing the thickness of 

the tube does not mean increasing the ultimate capacity of the CFFT beam, but there is an 

optimum FRP reinforcement ratio and fibers distribution to achieve the maximum capacity. 

This optimum ratio is near to the results of OR830 where ρf = 10% and
1

1

fibers Transverse

fibers Axial
 . 

Figure 4.16 shows also the results position of the fully-CFFT beam OR1645 that has a GFRP 

tube thickness of 14.2 mm. However, this thickness is non-practical because of the high cost 

of the GFRP tubes. The results of OR1645 at the first crack-to-yield stage (pre-yielding 

stage), shown in Figure 4.16(a), indicate compatibility with the other beams results. It is 

rational, because the flexural strength at this stage depends on the tensile strength of steel 



Chapter 4: Flexural Behaviour of Fully-CFFT Rectangular Beams 

  90 

 

rebar and the GFRP tube and there have not been buckling or confinement yet. On the other 

hand, Figures 4.16(b, c) indicate the non-compatibility of OR1645 results with the other 

CFFT beams. It is attributed to the high gain in the flexural strength of OR1645 due to the 

resistance of the early buckling of the compression flange (
3.1

1

fibers Transverse

fibers Axial
 ). 

Based on the results of the current study and shown in Figure 4.16, the flexural moments at 

different stages (first crack, yield, and ultimate) could be estimated by regression analysis if 

one of them is known, for example Mcr, as following:. 

  8523230 .n.=MM ffcry    (4.4) 

    133430473543
2

 ffffcru n.n.=MM   (4.5) 

    18073100931001
2

.n.n.=MM ffffyu    (4.6) 

4.4.6 Cracking Moment of Rectangular Fully-CFFT Beams 

One of the advantages of the CFFT system is that the outer FRP tube acts as a jacket that 

protects the inner structural elements, such as concrete and steel, against corrosion even if the 

inner concrete core is cracked. Therefore, there is no worry about the concrete cracks for the 

durability and appearance requirements. However, it is important for effective design of 

FRP-concrete composite structure to study the cracking behaviour for serviceability 

requirements related to deflection and crack width control. Therefore, the cracking moment 

(Mcr) is evaluated for the current study of rectangular fully-CFFT beams. Although the 

concrete core was hidden behind the tubes surface and it was difficult to see the first crack, 

the cracking moment (Mcr) was evaluated from the readings of the steel strain, bottom strains 

of the FRP tube, or the curvature response change as shown in Figure 4.2. The results of Mcr 

indicate minor difference among the fully-CFFT beams with changing their tube thickness, 

and the average Mcr of them is 45.8 kN.m, which is greater than that of the RC beam by 51%. 

This increase could be attributed to many factors: 

1) The FRP tubes contributed positively in the gross section inertia Ig, however, this 

contribution is comparatively limited due to the low FRP modular ratio,  
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2) The full composite action (the bond) due to the roughened tubes surfaces delayed the 

generation of the cracks,  

3) The concrete expansion during curing was restrained by the tube inducing chemical 

pre-stressing on the concrete [Fam and Rizkalla 2002], and  

4) Confining the concrete with FRP tubes restrained it against crack propagation.  

Table 4.3 presents analysis of the experimental results at the first crack of the rectangular 

fully-CFFT beams. This analysis seeks to estimate accurately the cracking capacity of such 

type of beams, and consequently the yield and ultimate capacity can be estimated 

approximately by Eq. (4.5) and Eq. (4.6), respectively. The experimental Mcr and the moment 

of inertia of the gross transformed section, Ig, were used to develop an expression for the 

modulus of rupture of concrete (fcr) using the following equations: 

ffsscg In)I-(n=II  1   (4.7) 

gtcrcr IYM=f  (4.8) 

Where Ic, Is, and If are the local moment of inertia of the concrete, steel, and FRP tube, 

respectively. Yt is the distance of the extreme tension fiber of concrete from the centroid. ns is 

the steel modular ratio (ns = Es/Eco), while nf is the FRP modular ratio (nf = Ef/Eco). Es is the 

elasticity modulus of steel that equals 200 GPa. Eco is the elasticity modulus of concrete 

calculated as '4500 cco fE  . Ef is the elasticity modulus of the FRP tube, which is 

approximated as the average of the axial elasticity modulus in tension and compression.  

The North American codes as ACI building code ACI-318 (2014), Canadian code CSA-S806 

(2012), and CSA-S6 (2014) use Eq. (4.9) to predict the modulus of rupture of concrete. They 

also recommend calculating Ig for concrete section only neglecting reinforcement. The 

coefficient k equals 0.62 in ACI-318, while it equals 0.6 and 0.4 in the Canadian codes CSA-

S806 and CSA-S6, respectively.  

'

ccr fkλf  …..( λ = 1.0 for normal-weight concrete) (4.9) 
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Based on the North American codes formula, the coefficient k can be estimated for each 

beam based on the experimental fcr and f’c as shown in Eq. (4.10). Note that, the analysis 

considers the gross moment of inertia considering the total section elements (concrete + steel 

+ tube) transformed to concrete, Ig(Total), and the gross moment of inertia for concrete only 

neglecting reinforcement, Ig(Conc.). 

'

ccr ffk /  (4.10) 

The results in Table 4.3 indicate that an average value of k =0.8 can be proposed in case of 

calculating Ig(Conc.) for concrete section only neglecting reinforcement. This value is about 

30% higher than the values proposed by the codes ACI-318 and CSA-S806, and 100% higher 

than the value proposed by the code CSA-S6. This indicates high cracking strength of the 

CFFT beams. Note that, the average proposed value for k is 0.69 in case of considering all 

reinforcement and tubes in calculating Ig(Total).  

Table 4.4 presents comparisons between the experimental results of Mcr and the predicted 

values of Mcr based on the American code ACI-318. The predicted results of Mcr indicate that 

the ACI assumption to neglect the reinforcement in calculating Ig underestimates the 

experimental results and is very conservative compared to considering reinforcement in 

calculating Ig. Accordingly, it is recommended to consider the reinforcement in calculating 

Ig. Rationally, this conclusion is also investigated for the other two Canadian codes since 

their coefficient k is lower than that of the ACI building code.  

To date only two studies investigated the cracking strength of CFFTs, Fam and Rizkalla 

(2002) and Mohamed and Masmoudi (2010b), however they tested circular CFFT beams. 

Fam and Rizkalla (2002) evaluated k = 1.0 based mainly on the experimental results of large-

scale circular CFFT beams without reinforcement. While Mohamed and Masmoudi (2010b) 

evaluated k = 0.94 based on experimental investigation on the flexural behaviour of circular 

CFFT beams with a diameter of 213 mm and were reinforced with steel or FRP bars with 

high reinforcement ratios. Note that, both previous literatures calculated the coefficient k 

based on the gross moment of inertia of the transformed section including reinforcement and 

FRP tube. By applying the k values of their tests, the predicted results overestimate the 



Chapter 4: Flexural Behaviour of Fully-CFFT Rectangular Beams 

  93 

 

current experimental results as shown in Table 4.4. Based on the results in the current study, 

a value for k = 0.69 was assumed in case of calculating the gross moment of inertia for the 

total section elements (concrete + steel + FRP tube) transformed to concrete. As seen, there is 

a difference in the coefficient k value compared to the literatures. Accordingly, it can be 

concluded that the value of the coefficient k depends on different parameters as:  

1) The cross section size. Where, the small size has higher cracking strength due to the 

effective confinement of the tube and the higher reinforcement ratio (Atube/Aconcrete). 

2) The section shape. Where, the rectangular section has a higher gross inertia, compared 

to the circular section, and consequently a lower cracking strength for the same Mcr.  

3) The reinforcement ratio including the compression reinforcement and the FRP tube.  

4) The fiber laminates that governs the FRP tube axial stiffness. 

5) The roughness of the tube surfaces adjacent to the concrete. In other meaning, the bond 

between the concrete and the tube.  

4.5 ANALYTICAL MODELLING OF RECTANGULAR CFFT 

BEAMS UNDER FLEXURE 

Unlike steel-or-FRP-RC beams, the steel-reinforced concrete-filled FRP tube (CFFT) beams 

can exhibit superior additional flexural capacities in the post-yielding stage. This is attributed 

to the confining action of the FRP tube on the concrete core to withstand high strains, and the 

FRP tube reinforcement contribution in the axial direction, in addition to the reinforcement 

action of the steel bars in their plastic hardening status. The expected failure types of CFFT 

beams are: (1) tension failure by axial rupture of fibers at the tension side due to exceeding 

the allowable axial tensile strains at the tension side of the FRP tube, (2) compression failure 

by transverse rupture of fibers at the compression side due to confining the concrete, or (3) 

compression failure due to buckling of FRP tube flange under the axial compressive strains. 

Analytical models have been developed to predict the flexural capacity and load-deflection 

response for the circular CFFTs [Fam 2000; Cole and Fam 2006; Fam and Son 2008; 

Mohamed and Masmoudi 2011]. These models are based on strain compatibility, internal 

forces equilibrium, and material constitutive relationships. The forces within the CFFT cross 
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section were calculated by integrating the stress over the area of each individual material. 

Despite the limited number of their tested specimens, these models predict well the flexural 

behaviour of their circular CFFT beams. Their theoretical analysis depends mainly on a 

computer-based analysis and requires some sophisticated calculation procedures. Also, these 

proposed models require verification and adjustment to be valid for the rectangular CFFT 

beams, and need to be simplified to be applicable for engineers. 

Based on many research on circular CFFT beams that failed in compression, the compression 

failure was predominantly governed by the compression failure of the tube flange under 

longitudinal compressive stresses where the tensile hoop strains (i.e., confinement effect) was 

insignificant [AASHTO 2012]. Accordingly, AASHTO (2012) proposed the unconfined 

stress-strain relationship of concrete proposed by Popovics (1973) with an extended strain 

softening beyond the usual ultimate compressive strain to be used in calculating the ultimate 

moment capacity of circular CFFTs based on equilibrium and strain compatibility. However, 

the experimental results in this dissertation indicate that some rectangular CFFT beams that 

failed in compression pronounced confinement issues at the compression side. Accordingly, 

AASHTO assumption about neglecting confinement in CFFTs needs to be verified in case of 

rectangular CFFT beams. 

In the following sections, analytical study has been developed to predict theoretically the 

moment-curvature response of the fully-CFFT beams. Then, the curvatures along the span of 

the beams are integrated to predict the deflection. The analytical model accounts for the 

material non-linearity and tension stiffening of concrete in the tension side. In addition, the 

model addresses the confinement of concrete in the compression side. Comparison between 

the experimental results and the theoretical results have been carried out in terms of moment-

curvature response, moment-deflection response, strain profile along the beam depth, and the 

neutral axis position.  

4.5.1 Description of the Analytical Model 

An analytical model based on strain compatibility/equilibrium was developed to predict 

theoretically the flexural behaviour of rectangular CFFT beams as shown in Figure 4.17. The 
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cross section is assumed as a complete rectangular section neglecting the round corners. The 

overall section width is B =b+2tf and the overall section height is H =h+2tf where b and h are 

the inner section width and height, respectively. The effective width of the tube flange is b. 

while the effective height of the tube web is h. The model is based on the assumption that 

plain sections remain plain after deformation, which means linear strain distribution along 

the depth of the CFFT section subjected to bending. This model assumes also full bond 

between the concrete core, steel bars, and the GFRP tubes (no slip). The bottom strain, εbot, is 

related to the axial tensile strain of the GFRP tube. While the top strain, εtop, is related to the 

axial compressive strains of the GFRP tube. The stresses in the GFRP tube are based on the 

stress–strain curves obtained from the coupon tests. The model assumes a linear behaviour of 

the FRP tube in both tension and compression. Two models for concrete in compression are 

examined in this study, unconfined and partially confined models. In addition, the tensile 

strength and tension stiffening of concrete in tension are considered. A cracked section 

analysis is performed using a layer-by-layer approach for the non-linear materials (concrete) 

in order to sum the forces along the cross-section depth using numerical integration. The 

depth of the compression zone, c, is the distance between the neutral axis and the inner edge 

of the tube top flange. By assuming c and the strains at any level (steel level or tube top and 

bottom faces), the internal tension and compression forces along the cross section can be 

determined. This iterative process is continued until equilibrium of the tension and 

compression forces is achieved. Then, the nominal theoretical moment (Mth) can be 

determined by calculating the total moments of the internal forces around the neutral axis. 

More details about the materials models and calculations are illustrated in the following 

sections.  

4.5.2 Constitutive Relationships of Materials 

4.5.2.1 Steel Model 

The steel was modeled by a bilinear model in two parts: (1) a linear elastic part up to the 

yield strain (εs = fy /Es = 0.0023), (2) a yield plateau up to the ultimate plastic strain with a 

zero plastic hardening elasticity modulus, as shown in Figure 4.18. Based on tensile tests on 

steel bars in Chapter 3, the yield strength of steel, fy, equals 467 MPa, the modulus of 
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elasticity equals 200 GPa, and the maximum hardening strain is 0.16. The internal tension 

force in steel, Ts, is calculated as:  

sss AET ..s   (4.11) 

Where sE .s ≤
yf  and it acts at a distance from the neutral axis, YTs, equals: 

cdYTs   (4.12) 

4.5.2.2 FRP Tube Model 

The parts of the rectangular FRP tube above and below the neutral axis were considered 

effective in resisting the compression and tension forces, respectively. The stress-strain 

response of the GFRP tubes obtained from coupon tests reflected a nonlinear stress–strain 

response as shown in Appendix A. Nonlinearity could result from the multilayer laminate, 

the fiber orientation, stacking sequence, that lead to a progressive laminate failure, and resin, 

which is a nonlinear material. For easy analysis, a linear stress distribution for the FRP 

material was assumed with maximum limits for strength and strains as shown in Figure 4.19. 

The upper limits for the strength and strains equal Flo and εlo, which were obtained from 

coupons test results given in Table 3.1 in Chapter 3. Note that, these limits are different in 

tension and compression. Accordingly, the secant modulus was used to model the FRP tube 

as follow: 

)(
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tenlo

tenlo

ten

F
E


  (4.13) 

)(

)(

complo

complo

comp

F
E


  (4.14) 

Where, Eten is the secant modulus of the FRP tube in tension and Ecomp is the secant modulus 

of the FRP tube in compression. 
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Due to assumption of linear stress distribution and the regular geometry of the tube flanges 

and webs, the internal forced can be integrated directly without dividing it to layers as 

follow. 

The internal compression force in the tube flange, CTube flange, is calculated as: 

)
2

(
topcc

compfeTube flang

ε
EbtC


  (4.15) 

Where, lo(comp)

topcc

comp F
ε

E 


)
2
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

. This force act at a distance from the neutral axis equals: 

2

f

eTube flang

t
cYC   (4.16) 

The internal compression force in the tube two webs, CTube webs, is calculated as: 

cccompfTube webs εEctC   (4.17) 

Where, sion)lo(comprescccomp FεE  . This force act at a distance from the neutral axis equals: 

3

2c
YCTube webs   (4.18) 

The internal tension force in the tube flange, TTube flange, is calculated as: 

)
2

( ctbot

tenfeTube flang

ε
EbtT


  (4.19) 

Where, )()
2

( tenlo
ctbot

ten F
ε

E 
 

. This force act at a distance from the neutral axis equals: 
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2

f

eTube flang

t
chYT   (4.20) 

The internal tension force in the tube two webs, TTube webs, is calculated as: 

cttenfTube webs EtchT  )(  (4.21) 

Where, )(tenloctten FE  . This force act at a distance from the neutral axis equals: 

)(
3

2
chYTTube webs   (4.22) 

4.5.2.3 Concrete Model 

Two models for concrete in compression are examined in this study as shown in Figure 4.20. 

The first concrete model is an unconfined concrete model with extended strain softening 

using Popovics’s model (1973) as suggested by AASHTO (2012). This model was suggested 

due to its accurate representation of the material nonlinearity. Popovics’s model to get the 

compressive stress fc at corresponding strain εc is indicated as follow: 

r
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ccc
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'
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




  (4.23) 

Where, f’c is the unconfined compressive strength of concrete cylinders, r is a factor given as: 

secEE

E
r

co

co


  (4.24) 

Where Esec is the secant modules of concrete determined as: 

'

'

sec

c

cfE


  (4.25) 
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Eco is the tangent modules of concrete ( '

cco fE 4500 ). The maximum compressive 

strain ε’c is taken as 0.002 based on the compressed cylinder test results as mentioned in 

Chapter 3. 

The second concrete model is a partially confined concrete model, which is based on a 

function similar to the Popovics’s model up to f’c followed by plastic behaviour with constant 

compressive strength f’c as shown in Figure 4.20. This model was chosen to present 

intermediate level of confinement that is adequate for beams, instead of full confinement 

models that are adequate for columns.  

The experimental results of the CFFT beams indicated enhancement in the tensile strength of 

concrete, which is attributed to many factors as the roughness of the FRP tube that eliminated 

the cracks propagation and the pre-stressing action of the tubes on the concrete during curing 

process. Accordingly, it is suggested to consider the tensile strength and tension stiffening for 

concrete in the model.  The tensile strength of concrete, fcr, is determined as: 

'

ccr ff 62.0 (MPa) (4.26) 

The corresponding tensile strain, εcr, is determined as: 

co

cr
cr

E

f
  (4.27) 

For εc ≥ εcr, the model proposed by Collins and Mitchell (1997) has been adopted as follows: 

)(5001
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crc

cr
c

f
f






  (4.28) 

α2 is a factor accounting for the nature of loading and was taken as 0.7 for repeated loading. 

α1 is a factor accounting for the bond characteristics. The bond factor ranges in value from 

zero to 1.0, where zero indicates unbonded reinforcement and the tension stiffening is 

completely ignored, while 1.0 indicates the maximum level of tension stiffening due to a 
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perfectly bonded reinforcement [Collins and Mitchell 1997]. Accordingly, α1 was taken as 

1.0 because of the full composite action achieved in the tested CFFT beams. 

Due to non-linearity of the concrete material in compression and in tension, the concrete 

parts above and below the neutral axis are divided into n number of strips, which have the 

same thickness hi. Where hi = c / n for the strips in the compression zone and hi = (h - c) / n 

for the strips in the tension zone. Note that, increasing the numbers of strips, n, increase the 

accuracy of the model. The centroid of each strip, i, is located at its mid-thickness. Then, the 

distance from each compression strip to the neutral axis, YCi, and the distance from each 

tension strip to the neutral axis, YTi, are calculated as: 

)5.0(  i
n

c
YC i

..... for strips in the compression zone (4.29) 

)5.0( 


 i
n

ch
YTi

..... for strips in the tension zone (4.30) 

The strain at mid-thickness of each strip is calculated as: 

 
c

YCi
ccci   .....for strips in the compression zone (4.31) 

 
ch

YTi
ctti


  .....for strips in the tension zone (4.32) 

These strain values are retrieved in Eq. 4.23 and 4.28 to obtain the corresponding 

compressive stress or tensile stress in concrete, respectively. The internal compression or 

tension force, Cci or Tci, inside each strip is calculated as: 

icii bhfC  .....(fci from Eq.4.23) (4.33) 

icii bhfT  .....(fci from Eq.4.28) (4.34) 

The total compression and tension forces of the concrete are calculated as: 
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 (4.35) 
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 (4.36) 

4.5.3 Procedure of Analysis 

The internal tension and compression forces along the cross section and their distances from 

the neutral axis are arranged in Table 4.5. The procedure of analysis can be summarized in 

the following steps:  

1) Specify the tube dimensions, thickness, material properties, location and area of 

rebar, and number of concrete strips, n. 

2) Assume a value for the compressive strain at the top face of FRP tube, εtop. 

3) Assume a value for the compression zone depth c. 

4) Calculate the strains at steel rebar (εs), top face of concrete (εcc), bottom face of 

concrete (εct), and the bottom face of the FRP tube (εbot). Note that, the yield of rebar 

occurs if εs exceeds the allowable yield strain of the steel. Tension failure of the 

CFFT beam occurs if εbot exceeds the allowable tensile strains of the FRP coupons in 

the axial direction. Compression failure of the CFFT beam occurs if εtop exceeds the 

allowable compressive strains of FRP coupons in the axial direction. 

5) For each concrete strip in compression or tension, compute the strains at its mid-

thickness (εci or εti) and the corresponding compressive or tensile stresses.  

6) Calculate the total compressive and tensile forces in concrete, rebar, and FRP tube. 

7) Check for equilibrium by satisfying the condition that the absolute value of the 

difference between the total compression force and the total tension force is less than 

the allowable tolerance accepted for the difference ( TC  ). 

8) If the equilibrium is not satisfied, go to step 3 and assume another value for c. The 

process is repeated until the equilibrium is satisfied. 

9) Once the equilibrium is satisfied, the internal moments are calculated for all the 

internal forces around the neutral axis as ).(=theo ii YFM  , and the corresponding 

curvature is calculated as
f

top

tc 


 = . 
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10) Go to step 2 to enter a new strain value for εtop and repeat the process till the complete 

moment-curvature response is constructed. 

Once the moment-curvature response of the section (M-ψ) is obtained, the moment-deflection 

response of the member (M-Δ) can be estimated. The deflection is calculated by integrating 

the curvatures along the span using the moment-area method. For a four-point bending, it is 

given by the following equation: 

)43(
24

22 aL
ψ

ψdxdxΔ    (4.37) 

Where L is the span between the supports and a is the shear span. 

The previous steps were easily developed in a spreadsheet as shown in Appendix B. 

4.5.4 Verification of the Model 

This section presents the predicted flexural behaviour in terms of moment-curvature, 

moment-deflection, and moment-strain behaviour as well as the neutral axis depth for the 

fully-CFFT beams OR230, OR430, OR830, and OR1230.  

The effect of using the unconfined or confined concrete models can be investigated from 

Figure 4.21. It plots the predicted versus the experimental neutral axis depth of the CFFT 

considering the unconfined and confined concrete material models as well as tension 

stiffening being considered or ignored. 

Despite considering or ignoring the tension stiffening of concrete, the partially confined 

model of concrete indicates good prediction for the flexural behavior of the tested CFFT 

beams. While, the unconfined concrete model can be used only in the FRP tubes that have 

small tube thickness. For example, the CFFT beam OR230, which has a tube of 3.4 mm 

thickness, the response of the unconfined and confined concrete model was identical until the 

ultimate predicted moment in spite of considering or ignoring the tension stiffening. In the 

CFFT beam OR430 that has a tube of 5.7 mm thickness, the predicted response using the 

unconfined concrete model matches that uses the partially confined model until 
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approximately 90% of the ultimate moment. In the CFFT beams OR830 and OR1230, the 

response that uses the unconfined concrete model was not able at all to predict well their 

flexural response and deviates from the experimental results at about 60% of the ultimate 

moments. These theoretical results confirm the experimental results indicated in Figure 4.22 

that indicates excessive transverse strains at the top face of the CFFT beams OR830 and 

OR1230 proving the confinement presence unlike the CFFT beams OR230 and OR430. 

Until yield (pre-yielding stage), both unconfined and confined concrete model give the same 

results since the confinement has not been activated yet (εtop ˂ ε’c). This is confirmed by the 

calculated and the experimental compressive strains at the top face of the tubes since they do 

not exceed 0.0012. In addition, the experimental transverse strains do not exceed Poisson’s 

ratio effect as shown in Figure 4.22. Table 4.6 lists the theoretical and experimental yield 

moments of the CFFT beams and the tension stiffening of the concrete is considered or 

ignored. The predicted yield moments are in good agreement with the experimental results. 

However, the tension stiffening of concrete indicates a minor effect on the theoretical yield 

moments. The results indicate that the tension stiffening contribution is directly proportional 

to the FRP tube thickness. This contribution can be considered in thick tubes, and should be 

ignored in thin tubes. It is attributed to the thick tubes confine well the inner concrete core 

and prevent it from excessive cracks unlike the thin tubes. In general, ignoring the tension 

stiffening of concrete in the pre-yielding stage underestimates the experimental results and 

achieves safe design. Figure 4.23 indicates the good agreement of the theoretical versus 

experimental yield moments. 

At post-yielding stage, the effects of confinement and the tension stiffening become 

significant. Therefore, Tables 4.7 and 4.8 list the predicted versus experimental ultimate 

moments of the CFFT beams and the confinement and tension stiffening of the concrete 

issues are considered. As seen in the tables, using the unconfined concrete model is 

conservative especially in the thick tubes. While, using the partially confined concrete model 

agrees with the experimental results. Figure 4.23 indicates the good agreement of the 

theoretical versus experimental yield moments especially when using the partially confined 

concrete model. Accordingly, the analytical results justify the use of the partially confined 

concrete model in modelling the fully-CFFT rectangular beams. Figures 4.24 to 4.39 show 
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the experimental versus the analytical moment-strain, variation of the neutral axis depth, 

moment-curvature, and moment-deflection of the CFFT beams. Note that these figures plot 

the predicted results that use the partially confined concrete model only and the tension 

stiffening being considered or ignored. Generally, good agreement is observed. However, in 

the thin FRP tubes, OR230 and OR430, ignoring the tension stiffening shows better agreement 

with the experimental profiles of strains, curvature, and deflection than considering it. 

4.6 PARAMETRIC STUDY  

A parametric study has been performed using the proposed analytical model to study 

extensively the effect of steel reinforcement ratio, tube stiffness, tube thickness, and concrete 

strength. Figures 4.40 to 4.44 show the predicted moment-strain, variation of the neutral axis 

depth, moment-curvature, and moment-deflection for virtual CFFT beams to study the 

considered parametric variables. Note that, these figures plot the predicted results that use the 

partially confined concrete model only and the tension stiffening being ignored for safe 

design. 

4.6.1 Effect of Steel Reinforcement Ratio 

The effect of steel reinforcement was studied in thin GFRP tube of 4 mm thickness (Figure 

4.40), and in another thick GFRP tube of 14 mm thickness (Figure 4.41). The axial stiffness 

of both GFRP tubes was 14 GPa, and the concrete compressive strength was 49 MPa. The 

steel reinforcement ratio (As / bh) was changing from zero to 0.02. Note that, the ratio 0.02 

was chosen to be more than the balanced reinforcement ratio in conventional RC beams. 

Figure 4.40 shows that increasing the steel reinforcement ratio increases the initial flexural 

stiffness at the pre-yielding stage, the yield moments, and the ultimate moments. The location 

of the neutral axis changes significantly with changing the steel reinforcement ratio (the 

higher reinforcement ratio, the closer neutral axis to the center of the section). As expected, 

after yielding of steel, the flexural stiffness decreased due to the low axial stiffness of the 

GFRP tubes. For the same FRP tube, the flexural stiffness at the post-yielding stage is similar 

for different steel reinforcement ratios. This is attributed to the FRP tube is the only 
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reinforcement member that provide flexural rigidity at the post-yielding stage. The same 

results were observed for the thick GFRP tube when increasing the wall thickness from 4 mm 

to 14 mm as shown in Figure 4.41. These conclusions were proposed later in Figure 4.14 

when comparing the experimental results of the reinforced CFFT beams with that of Fam et 

al. (2005). See section 4.4.5.1.  

4.6.2 Effect of Tube Stiffness or Laminate Structure 

The stiffness of the filament-wound GFRP tubes is governed mainly by the fiber laminates 

structure. This means, for the same tube thickness and layers, increasing the percentage of 

the fibers in the axial direction increases the axial stiffness of the filament-wound GFRP 

tube. Four percentages of axial stiffness of GFRP tubes were studied in Figure 4.42. The 

thickness of the GFRP tube is 10 mm. the steel reinforcement ratio is 0.006 (4-15M at the 

tension side). The concrete compressive strength is 49 MPa.  

The results indicate that the flexural stiffness at the pre-yielding stage was increasing slightly 

with increasing the GFRP tube unlike in case of increasing steel reinforcement. However, at 

the post-yielding stage, the stiffer the GFRP tube increases significantly the flexural stiffness 

of the CFFT beam since it is the main reinforcement element at the post-yielding stage. 

Generally, increasing the axial stiffness increases the overall strength and stiffness of the 

CFFT beam, however, the failure mode could be changed. Low axial stiffness of the tubes 

means low axial fibers compared to the transverse fibers. Therefore, the excessive transverse 

fibers can resist the early buckling of the axial fibers and the compression flange. This 

confirms the results of the CFTT beam OR1645. The neutral axis location was changing 

slightly with changing the GFRP tube axial stiffness. 

4.6.3 Effect of Tube Thickness 

Three thicknesses of GFRP tubes were studied as shown in Figure 4.43. The steel 

reinforcement ratio is 0.006 (4-15M at the tension side). The concrete compressive strength 

is 49 MPa. The axial stiffness of both GFRP tubes was 14 GPa. 
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The results indicate similar conclusions as in case of studying the axial stiffness effect of the 

GFRP tube. Generally, increasing the tube thickness increases the overall strength and 

stiffness of the CFFT beam. The results indicate that the flexural stiffness at the pre-yielding 

stage was increasing with increasing the GFRP tube. At the post-yielding stage, the stiffer the 

GFRP tube increases significantly the flexural stiffness of the CFFT beam. The thin tube fails 

in tension since its axial strain at the bottom increases rapidly. The neutral axis location was 

moving downward with increasing the GFRP tube thickness. 

4.6.4 Effect of Concrete Strength 

The effect of concrete strength was studied by varying the concrete compressive strength for 

the same reinforcement ratio, tube thickness, and laminate structure as shown in Figure 4.44. 

The steel reinforcement ratio is 0.006 (4-15M at the tension side). The axial stiffness of both 

GFRP tubes was 14 GPa. The thickness of the tube is 4 mm to highlight the concrete 

contribution that increases in thin tubes. The partially confined model of concrete was used 

and the tension stiffening was ignored. Three concrete batches with compressive strength of 

30, 49, and 70 MPa were studied. The results show that the concrete has insignificant effect 

on the flexural behaviour at the pre-yielding stage. However at the post-yielding stage, there 

is a minor increase in the flexural strength and stiffness with increasing the concrete strength.  

4.7 CONCLUSIONS 

Eight full-scale rectangular concrete-filled FRP tubes (CFFTs) with steel rebar and two 

conventional steel-reinforced concrete (RC) beams were tested under a four-point bending. 

The experimental results were investigated to evaluate the flexural performance of this 

hybrid FRP-concrete-steel CFFT beams. In addition, theoretical investigations were 

developed to predict the flexural capacities through different stages of loading.  

The main concluded points of this study are as follows: 

1) The rectangular CFFT beams experience significantly higher ductility, higher stiffness, 

and superior strength than the RC beams. 
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2) The failure pattern of the fully-CFFT beams changes from tension to compression failure 

with increasing the FRP tube thickness. 

3) Rectangular CFFT beams with steel rebar fail gradually in a sequential manner (yielding 

of steel, buckling of compressed tube flange, and finally rupture of the fibers). Even after 

the peak load, the CFFT beams can keep a residual strength because of the existence of 

the steel that withstands high strains and elongation. 

4) The flexural strength of fully-CFFT beams increases with increasing the FRP tube 

thickness until certain limit that separates the under-reinforced and over-reinforced 

CFFT section. After this limit, buckling of the compression flange of the FRP tube 

governs the ultimate capacity of over-reinforced CFFT beams. Based on this study, 

equations are proposed to estimate approximately the flexural moments at different 

stages (first crack, yield, and ultimate).  

5) The compression failure in CFFT beams is governed by the buckling of the compression 

flange of the tubes, which can be resisted by increasing the transverse fibers percentage 

in the filament-wound FRP tubes. 

6) The reinforced CFFT rectangular beams experience high cracking strength and the 

concrete modulus of rupture (fcr) suggested by ACI-318 could be increased by 30% if the 

gross moment of inertia Ig is calculated neglecting reinforcement.  

7) The analytical model proposed in this study is capable of predicting well the moment-

curvature, moment strains, neutral axis depth, and moment-deflection responses of fully-

CFFT rectangular beams. The confinement and tension stiffening issues of concrete are 

considered in the model. 

8) Using partially confined model for concrete with plastic strain up to the ultimate 

compressive strain of the FRP tube indicated better agreement with the experimental 

results than using the unconfined concrete model proposed by AASHTO guidelines 

(2012).  

9) Concrete tension stiffening contribution is directly proportional to the FRP tube 

thickness. This contribution can be considered in thick tubes, and should be ignored in 

thin tubes. However, ignoring the tension stiffening of concrete underestimates the 

experimental results and achieves safe design. 
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10) Using steel reinforcement in the CFFT beams is very significant. It increases the overall 

flexural stiffness and strength and decreases the deflection of such type of FRP-concrete 

composite beams. 
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Table  4.1 – Beam specimens and summary of test results 

Group Beam ID 
Section 

Configuration 
(mm) 

Steel 
reinforcement 

Outer 
tube 

Inner 
tube 

Concrete 
strength 
(MPa) 

Moment (kN.m) Ultimate 
Deflection 

(mm) 

Ductility 
(kN.m

2
) 

Failure 
mode 

Mcr My Mu 

RC 
beams 

RC #1 

 

Top 2-10M 
Bot. 4-15M 

Ties 
10M/150 mm 

--- --- 

41.7 30 113 132 29 3.1 Tension 

RC #2 41.7 31 116 130 29 3.1 Tension 

Fully 
CFFT 

beams 

OR230 #1 

 

Bot. 
4-15M 

OR230 --- 49.7 43 152 249 52 10.2 Tension 

OR230 #2 OR230 --- 49.7 43 150 267 69 14.3 Tension 

OR430 #1 OR430 --- 48.7 46 161 404 89 27.0 Tension 

OR430 #2 OR430 --- 48.7 44 168 392 77 22.2 Tension 

OR830 #1 OR830 --- 41.7 48 204 559 82 33.0 Balanced 

OR830 #2 OR830 --- 41.7 45 210 560 92 38.4 Balanced 

OR1230 OR1230 --- 48.7 50 245 581 45 17.5 Comp. 

OR1645 OR1645 --- 48.7 50 235 712 97 47.5 Balanced 
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Table  4.2 – Shear forces in fully-CFFT beams 

Fully-

CFFT 

Beam 

tf 

(mm) 

f'c 

(MPa) 

Vn (kN) 

(=Mu /a) 

Vc (kN) 

( cA
'
cf0.17= ) 

Vf  (kN) 

(=Vn-Vc) 

Ff 

(MPa) 

Exp. Ftr 

(MPa) 

100
tr

f

F

F
 

(%) 

OR230 #1 3.4 49.7 226.4 148.4 78.0 22.8 243 9.4 

OR230 #2 3.4 49.7 242.7 148.4 94.3 27.6 243 11.4 

OR430 #1 5.7 48.7 367.3 146.9 220.4 38.5 214 18.0 

OR430 #2 5.7 48.7 356.4 146.9 209.5 36.6 214 17.1 

OR830 #1 8.7 41.7 508.2 135.9 372.2 42.6 164 26.0 

OR830 #2 8.7 41.7 509.1 135.9 373.2 42.7 164 26.0 

OR1230 9.9 48.7 528.2 146.9 381.3 38.3 125 30.7 

OR1645 14.2 48.7 647.3 146.9 500.4 35.1 169 20.8 
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Table  4.3 – Details of calculating cracking strength of fully-CFFT beams  

Beam 
tf 

(mm) 

f'c 

(MPa) 

Exp. Mcr 

(kN.m) 

Neglecting reinforcement Considering reinforcement 

Yt 

(mm) 

Ig 

(mm
4
) 

fcr 

(MPa) 
k 

Yt 

(mm) 

Ig 

(mm
4
) 

fcr 

(MPa) 
k 

OR230 #1 3.4 49.7 43.4 203 1.7×10
9
 5.18 0.73 198 1.86×10

9
 4.61 0.65 

OR230 #2 3.4 49.7 42.5 203 1.7×10
9
 5.07 0.72 198 1.86×10

9
 4.52 0.64 

OR430 #1 5.7 48.7 45.7 203 1.7×10
9
 5.45 0.78 198 1.91×10

9
 4.74 0.68 

OR430 #2 5.7 48.7 44.5 203 1.7×10
9
 5.31 0.76 198 1.91×10

9
 4.61 0.66 

OR830 #1 8.7 41.7 48.5 203 1.7×10
9
 5.79 0.90 198 1.98×10

9
 4.85 0.75 

OR830 #2 8.7 41.7 45.1 203 1.7×10
9
 5.38 0.83 198 1.98×10

9
 4.51 0.70 

OR1230 9.9 48.7 49.8 203 1.7×10
9
 5.94 0.85 198 2.03×10

9
 4.85 0.69 

OR1645 14.2 48.7 49.6 203 1.7×10
9
 5.92 0.85 198 1.94×10

9
 5.07 0.73 

 Average k = 0.80 Average k = 0.69 
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Table  4.4 – Experiment versus predicted cracking moment for rectangular CFFT beams 

CFFT 

beam 

Exp. 

Mcr 

(kN.m) 

Mcr (Predicted) (kN.m) Mcr (Exp.) / Mcr (Predicted) 

ACI 318 

Fam 

& 

Rizkalla 

Mohamed 

& 

Masmoudi 

Proposed 

coefficient 

(new k) 

ACI 318 

Fam 

& 

Rizkalla 

Mohamed 

& 

Masmoudi 

Proposed 

coefficient 

(new k) 

k=0.62 k=1 k=0.94 k=0.69 k=0.8 k=0.62 k=1 k=0.94 k=0.69 k=0.8 

Ig(Total) Ig(Conc.) Ig(Total) Ig(Total) Ig(Total) Ig(Conc.) Ig(Total) Ig(Conc.) Ig(Total) Ig(Total) Ig(Total) Ig(Conc.) 

OR230 #1 43.4 41.1 36.6 66.3 62.3 45.8 47.3 1.06 1.19 0.65 0.70 0.95 0.92 

OR230 #2 42.5 41.1 36.6 66.3 62.3 45.8 47.3 1.03 1.16 0.64 0.68 0.93 0.90 

OR430 #1 45.7 41.7 36.3 67.3 63.2 46.4 46.8 1.10 1.26 0.68 0.72 0.98 0.98 

OR430 #2 44.5 41.7 36.3 67.3 63.2 46.4 46.8 1.07 1.23 0.66 0.70 0.96 0.95 

OR830 #1 48.5 40.1 33.7 64.6 60.7 44.6 43.6 1.21 1.44 0.75 0.80 1.09 1.11 

OR830 #2 45.1 40.1 33.7 64.6 60.7 44.6 43.6 1.13 1.34 0.70 0.74 1.01 1.04 

OR1230 49.8 44.5 36.3 71.7 67.4 49.5 46.8 1.12 1.37 0.69 0.74 1.01 1.06 

OR1645 49.6 42.3 36.3 68.3 64.2 47.1 46.8 1.17 1.37 0.73 0.77 1.05 1.06 

 

Average 1.11 1.29 0.69 0.73 1.00 1.00 

SD 0.06 0.10 0.04 0.04 0.05 0.08 
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Table  4.5 – Internal forces and their positions in rectangular CFFT section 

Internal Force ID 
Expression of 

the force 

Distance from 

the neutral axis 

Tension force in 

steel sss AET ..s   cdYTs   

Tension force in 

tube flange 
)

2
( ctbot

tenfeTube flang

ε
EbtT


  

2

f

eTube flang

t
chYT   

Tension force in 

tube webs cttenfTube webs Ec)t(hT   c)(hYTTube webs 
3

2
 

Tension force in 

concrete strips 

icii bhfT   







ni

i

ic TT
1

 
)5.0( 


 i

n

ch
YTi  

Compression force 

in tube flange )
2

(
topcc

compfeTube flang

ε
EbtC


  

2

f

eTube flang

t
cYC   

Compression force 

in tube two webs cccompfTube webs εEctC   
3

2c
YCTube webs   

Compression force 

in concrete strips 

icii bhfC   







ni

i

ic CC
1

 
)5.0(  i

n

c
YC i  
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Table  4.6 – Theoretical versus experimental yield moments of rectangular CFFT beams 

CFFT 

Beam 

My (exp.) 

(kN.m) 

Unconfined or partially confined concrete model 

Considering tension stiffening Ignoring tension stiffening 

My (th.) 

(kN.m) (th.)

(exp.)

y

y

M

M
 My (th.) 

(kN.m) (th.)

(exp.)

y

y

M

M
 

OR230 #1 152 171 0.89 149 1.02 

OR230 #2 150 171 0.88 149 1.01 

OR430 #1 161 189 0.85 161 1.00 

OR430 #2 168 189 0.89 161 1.04 

OR830 #1 204 206 0.99 188 1.08 

OR830 #2 210 206 1.02 188 1.12 

OR1230 245 239 1.03 215 1.14 

 
Average 0.94 

 
1.06 

SD 0.07 0.06 
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Table  4.7 – Theoretical versus experimental ultimate moments of rectangular CFFT beams 

using unconfined concrete model 

CFFT 

Beam 

Mu (exp.) 

(kN.m) 

Unconfined confined concrete model 

Considering tension stiffening Ignoring tension stiffening 

Mu (th.) 

(kN.m) (th.)

(exp.)

u

u

M

M
 

Mu (th.) 

(kN.m) (th.)

(exp.)

u

u

M

M
 

OR230 #1 249 260 0.96 240 1.04 

OR230 #2 267 260 1.03 240 1.11 

OR430 #1 404 319 1.27 318 1.27 

OR430 #2 392 319 1.23 318 1.23 

OR830 #1 559 440 1.27 427 1.31 

OR830 #2 560 440 1.27 427 1.31 

OR1230 581 489 1.19 496 1.17 

 
Average 1.17 

 
1.21 

SD 0.13 0.10 

 

Table  4.8 – Theoretical versus experimental ultimate moments of rectangular CFFT beams 

using partially confined concrete model 

CFFT 

Beam 

Mu (exp.) 

(kN.m) 

Partially confined concrete model 

Considering tension stiffening Ignoring tension stiffening 

Mu (th.) 

(kN.m) (th.)

(exp.)

u

u

M

M
 

Mu (th.) 

(kN.m) (th.)

(exp.)

u

u

M

M
 

OR230 #1 249 265 0.94 239 1.04 

OR230 #2 267 265 1.01 239 1.12 

OR430 #1 404 359 1.13 336 1.20 

OR430 #2 392 359 1.09 336 1.17 

OR830 #1 559 498 1.12 488 1.15 

OR830 #2 560 498 1.12 488 1.15 

OR1230 581 615 0.94 589 0.99 

  Average 1.05 
 

1.12 

  SD 0.08 0.08 
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Figure ‎4.1 – Moment-slip response of fully-CFFT beams 

 

 

  
(a) Steel strains of OR830 #1 (b) Curvature of OR830 #1 

 

Figure  4.2 – Typical steel strains and curvature of fully-CFFT beams  

 

 
Figure ‎4.3 – Shear forces in fully-CFFT beams 
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Figure  4.4 – Corner failure in pultruded FRP tubes (Belzer et al. 2013) 

 

 

  

(a) Surface cracks of matrix (b) Near view of surface cracks 

Figure  4.5 – Matrix surface cracks 
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(a) Typical tension failure due to steel yielding 

  
(b) Final failure (c) Typical shear cracks near supports 

 
Figure  4.6 – Failure pattern and moment-deflection response of RC beams 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  4.7 – Failure pattern and moment-deflection response of fully-CFFT beams OR230 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  4.8 – Failure pattern and moment-deflection response of fully-CFFT beams OR430 
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(a) Elevation view 

  
(b) Top view (c) Elevation view 

 
Figure  4.9 – Failure pattern and moment-deflection response of fully-CFFT beams OR830 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  4.10 – Failure pattern and moment-deflection response of fully-CFFT beam OR1230 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  4.11 – Failure pattern and moment-deflection response of fully-CFFT beam OR1645 
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Figure  4.12 – Moment-deflection response of fully-CFFT beams 
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Figure  4.13 – Normalized moment-curvature response of fully-CFFT beams 

 

 

Figure  4.14 – Proposed effect of steel reinforcement in fully-CFFT beams 
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Figure  4.15 – Coupons tests results of OR1230 and OR1645 in axial direction 
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Figure ‎4.16 – Correlations between Mcr, My, and Mu of fully-CFFT beams 
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Figure  4.17 – Proposed analytical model 

 

 

 

 

Figure  4.18 – Proposed model for steel 
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Figure  4.19 – Proposed model for FRP tube 

 

 

 

 

 

Figure  4.20 – Proposed model for concrete 
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Figure  4.21 – Effect of concrete confinement model 
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Figure  4.22 – Axial and transverse strains at the top face of the FRP tube in CFFT beams 

 

 

Figure  4.23 – Theoretical versus experimental moments of CFFT beams 
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Figure  4.24 – Predicted versus experimental moment-strain response of CFFT beam OR230 

(Model with partially confined concrete) 

 

 

Figure  4.25 – Predicted versus experimental neutral axis depth of CFFT beam OR230 

(Model with partially confined concrete) 
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Figure  4.26 – Predicted versus experimental moment-curvature response of CFFT beam 

OR230 (Model with partially confined concrete) 

 

 

Figure  4.27 – Predicted versus experimental moment-deflection response of CFFT beam 

OR230 (Model with partially confined concrete) 
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Figure  4.28 – Predicted versus experimental moment-strain response of CFFT beam OR430 

(Model with partially confined concrete) 

 

 

Figure  4.29 – Predicted versus experimental neutral axis depth of CFFT beam OR430 

(Model with partially confined concrete) 
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Figure  4.30 – Predicted versus experimental moment-curvature response of CFFT beam 

OR430 (Model with partially confined concrete) 

 

 

Figure  4.31 – Predicted versus experimental moment-deflection response of CFFT beam 

OR430 (Model with partially confined concrete) 
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Figure  4.32 – Predicted versus experimental moment-strain response of CFFT beam OR830 

(Model with partially confined concrete) 

 

 

Figure  4.33 – Predicted versus experimental neutral axis depth of CFFT beam OR830 

(Model with partially confined concrete) 
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Figure  4.34 – Predicted versus experimental moment-curvature response of CFFT beam 

OR830 (Model with partially confined concrete) 

 

 

Figure  4.35 – Predicted versus experimental moment-deflection response of CFFT beam 

OR830 (Model with partially confined concrete) 
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Figure  4.36 – Predicted versus experimental moment-strain response of CFFT beam OR1230 

(Model with partially confined concrete) 

 

 

Figure  4.37 – Predicted versus experimental neutral axis depth of CFFT beam OR1230 

(Model with partially confined concrete) 
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Figure  4.38 – Predicted versus experimental moment-curvature response of CFFT beam 

OR1230 (Model with partially confined concrete) 

 

 

Figure  4.39 – Predicted versus experimental moment-deflection response of CFFT beam 

OR1230 (Model with partially confined concrete) 
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Figure  4.40 – Effect of steel reinforcement on the flexural behaviour of CFFT beams with 

thin FRP tubes 
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Figure  4.41 – Effect of steel reinforcement on the flexural behaviour of CFFT beams with 

thick FRP tubes 
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Figure  4.42 – Effect of fiber laminates structure on the flexural behaviour of CFFT beams 
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Figure  4.43 – Effect of FRP tube thickness on the flexural behaviour of CFFT beams 
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Figure  4.44 – Effect of concrete strength on the flexural behaviour of CFFT beams 
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5.1 ABSTRACT 

This chapter investigates experimentally the flexural behaviour of fiber-reinforced polymer 

(FRP) double skin tubular beams partially filled with concrete and reinforced with steel 

rebar. This new design of hybrid FRP-concrete-steel composite beam contains outer 

rectangular filament-wound FRP tubes with inner hollow circular or square FRP tubes shifted 

toward the tension zone in addition to steel rebar at the tension side only. These inner tubes 

were provided inside the beam to eliminate the excess weight of the cracked concrete at the 

tension side and to enhance the confining action of corresponding rectangular fully-CFFT 

beams. Twenty-two full-scale beams, including fourteen partially-CFFT beams, six control 

fully-CFFT beams, and two control conventional steel-reinforced concrete (RC) beams, were 

tested under a four-point bending. Several parameters as the outer and inner tubes thickness, 

fiber laminates, and void shape were investigated to study their effects on the flexural 

strength and behaviour of such lightweight hybrid beams. The results indicate outstanding 

performance of the rectangular fully and partially-CFFT beams in terms of strength and 

ductility compared to the RC beams. The strength-to-weight ratio of the partially-CFFT 

beams attained higher values than that of corresponding fully-CFFT beams. The inner tubes 

act positively in reinforcing the partially-CFFT beams and confining the concrete core at the 

compression side and changed the failure to be gradual with warning signs unlike the fully-

CFFT beams. The inner circular void pronounced better performance than the square inner 

void.  

Keywords: Beams, Fiber-Reinforced Polymer, Filament-Wound, Concrete-Filled FRP 

Tubes, Flexural behaviour, Confinement.‎ 
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5.2 INTRODUCTION 

Concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) are becoming an attractive 

alternative system for many special types of structural applications especially those attacked 

by corrosive environments such as piles, bridge piers, bridge girders, monopoles, and 

overhead sign structures. The outer FRP tube provides corrosion resistant element, lateral and 

longitudinal reinforcement, lightweight permanent formwork, in addition to confining the 

inner concrete core. On the other side, the concrete core provides support for the tube against 

local buckling in addition to its role to resist compressive loads. 

CFFTs that are completely filled with concrete are not optimal for applications governed by 

pure bending, because the concrete below the neutral axis is cracked and it contributes 

slightly to bending resistance and mainly prevents the tube from buckling. As such, the 

excess weight of the cracked concrete may increase transportation and installation cost. A 

number of FRP-concrete hybrid systems have been developed over the years, including both 

open and closed FRP forms, to reduce the excess weight of the cracked concrete below the 

neutral axis [Deskovic and Triantafillou 1995; Canning et al.1999; Fam and Rizkalla 2002; 

Chakrapan 2005; Khennane 2010; Idris and Ozbakkaloglu 2014]. While, limited trials were 

carried out on filament-wound FRP tubes especially those with rectangular section [Fam et 

al. 2005].  

Fam and Rizkalla (2002) investigated the effect of inner holes by testing circular CFFT 

beams with outer identical GFRP tubes 168 mm diameter. One beam was totally filled with 

concrete, one beam had a central hole, and another two beams had similar holes, but they are 

maintained by concentric and eccentric inner GFRP hollow tubes 89 mm diameter. The 

results indicated that the strength of the CFFT beam with a central hole was 9% less than that 

of the fully-CFFT beam. Moreover, providing an inner concentric GFRP hollow tube 

improved the strength by 7% more than that of the fully beam due to additional 

reinforcement. Shifting the inner GFRP hollow tube toward the tension side was more 

effective, where the strength increased by 39% higher than the fully CFFT beam.  
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Fam et al. (2005) designed a rectangular section, 266×374 mm
2
, of filament-wound GFRP 

tube with an inner rectangular air void. The strength of the voided section reached 78% of 

that completely filled with concrete. The hollow beam did not reach the target strength, 

because it failed by inward buckling and fracture of the unsupported concrete flange at the 

compression side.  

Idris and Ozbakkaloglu (2014) investigated the flexural behaviour of FRP-high strength 

concrete (HSC)-steel composite beams by testing double-skin tubular beams (DSTBs) with 

outer GFRP tubes and a central inner hollow steel section (HSS). The main parameters of the 

study included the cross-sectional shapes of the inner HSS and the external GFRP tube, 

concrete strength, presence or absence of concrete filling inside the steel tube, and effects of 

using mechanical connectors to enhance the bond between the steel tube and surrounding 

concrete. The results indicated that DSTBs exhibit excellent load-deflection behaviours with 

high inelastic deformations and minimal strength degradations (slightly increase of flexural 

strength after yielding). However, relatively large slippage can occur at the concrete-steel 

tube interface unless the bond is enhanced by mechanical connectors. Regardless the high 

flexural strength and stiffness of the DSTBs based on the inner steel tube, the weight and the 

bond remain critical issues in this design and need further investigations. 

In this study, the author tries to get benefit of each advantage of each design in the previous 

literature and to merge them together to develop a new design of partially-CFFT beams. This 

design contains:  

1) Outer rectangular FRP tubes to increase the sectional moment of inertia, to provide 

flexural and shear reinforcement, and to protect the inner structural elements (concrete 

and steel) against corrosion.  

2) Inner holes shifted toward the tension zone to increase the compression zone area.  

3) The holes were provided by inner hollow FRP tubes to support and confine the concrete 

at the compression side and act as reinforcement.  

4) Steel rebar was provided at the tension side to increase the stiffness and strength of the 

section.  
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5) The surfaces of tubes adjacent to concrete were roughened by sand coating to achieve a 

full composite action. 

The main objective of this chapter is to investigate the experimental results of beam tests 

carried out on partially-CFFT beams in the current experimental program indicated in 

Chapter 3. This objective is accomplished by expressing the experimental results in terms of 

moment-deflection response, patterns of failure, strain behaviour, and strength-to-weight 

ratio. Further analysis and discussion is carried out to investigate the effect of each test 

variable as outer tubes thickness and laminates, inner tube thickness, inner hollow tubes 

shapes, inner tubes laminates, and steel reinforcement.   

5.3 EXPERIMENTAL PROGRAM 

In this chapter, twenty-two full-scale rectangular beams, including fourteen partially-CFFT 

beams, six fully-CFFT beams, and two conventional RC beams, were tested under a four-

point bending setup. Table 5.1 presents the details of the beam specimens studied in this 

chapter. The detailed description of the experimental program was illustrated in Chapter 3. 

5.4 TEST RESULTS AND DISCUSSIONS 

The objective of this study is to evaluate the flexural behaviour of new design of rectangular 

partially-CFFT beams with steel rebar. This objective was accomplished as the shear failure 

and slippage failure were avoided and all the tested beams failed by flexure. Figure 5.1 plots 

the correlation between the applied moment and the slip at the two ends of the tested 

partially-CFFT beams. Note that, the results of the fully-CFFT beam were discussed in 

details in Chapter 4. Almost no slip readings between the concrete core and the tubes were 

recorded until the ultimate load, even after the ultimate failure the maximum slip measured 

did not exceed 0.2 mm, which can be neglected. Therefore, a full composite action was 

achieved. This is attributed to the roughened surface of the tubes by sand coating and the 

presence of the deformed steel bars with hooks that hold the concrete core in its place.  
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The applied moment was calculated by multiplying the concentrated load (P/2) with the 

shear span (a), while the deflection was measured at the mid-span. Although the concrete 

core was hidden behind the tubes surface, the cracking moment (Mcr) was evaluated from the 

readings of the steel strains, axial strains of the tube bottom face, or the curvature response 

change as shown in Figure 5.2. The experimental yielding moment (My) was evaluated from 

the yielding plateau of the moment-strain response of the embedded steel at the tension side 

as shown in Figure 5.2(a). Table 5.1 summarizes the beam test results as the flexural 

moments at the first crack, yield moment, ultimate moment (at the peak), the ultimate mid-

span deflection (at the peak), the failure mode, and the ductility. The ductility was evaluated 

by the energy absorption determined as the area under the moment-deflection curve until the 

peak load. Generally, the two identical beams in each group behaved almost typically and 

their average results are used in the comparisons. The following sections provide detailed 

comparisons and discussions for the test results including the effect of the test parameters. 

5.4.1 Shear Strength of Rectangular Partially-CFFT Beams 

This dissertation concentrates mainly on the flexural behaviour of rectangular CFFT beams, 

so the beams and tests setup was designed to avoid any shear failure at the supports. The 

fabricated filament-wound GFRP tubes were designed to have adequate fibers in their 

transverse direction. Therefore, the tube itself acts as continuous shear reinforcement around 

the cross section perimeter of the CFFT beam. Nevertheless, it is important to investigate the 

shear strength carefully in case of partially-CFFT beams because of presence of inner voids.  

Although none of the fully or partially-CFFT beams failed in shear, the contribution of the 

FRP tube in resisting shear, Vf, can be approximately evaluated from the measured nominal 

shear force, Vn, at the ultimate flexural failure reduced by the concrete contribution in shear, 

Vc, which is calculated according to ACI-318 (2014), as follows:  

cnf V=VV   (5.1) 

db'fλ=V wcc 0.17 ……. λ =1 (5.2) 
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In the current study, bwd is approximated as the area of the concrete core, Ac, excluding the 

inner void area and the factor λ equals the unit for the normal weight concrete.  

Assuming a diagonal shear crack at 45
o
, as shown in Figure 5.3, the shear resisting force in 

the FRP tube webs produces vertical tensile stresses in the GFRP tube webs, Ff, which can be 

calculated as:  

efff

o

f

f
dt

V.
=F

45cos50
 (5.3) 

Where, deff is the effective straight depth of the rectangular GFRP tube webs excluding the 

rounded corners. Table 5.2 lists the shear forces calculations in the tested fully and partially-

CFFT beams. The calculated stresses in the outer GFRP tube, Ff, were compared to the 

allowable tensile strength in the transverse direction of the rectangular GFRP tubes, Ftr, 

evaluated experimentally from the coupons tests (see Table 3.1 in Chapter 3). The results 

indicate that the developed tensile stresses in the GFRP tubes due to the shear forces are 

relatively very low compared to the tensile strength of the GFRP tubes in the transverse 

direction, since the ratio Ff / Ftr did not exceed 23% and 26% in case of partially-CFFT 

beams and fully-CFFT beams, respectively. These results indicate effective shear 

reinforcement action of the filament-wound GFRP tube. 

5.4.2 Flexural Behaviour of RC Beams and Fully-CFFT Beams 

See Chapter 4. 

5.4.3 Failure Pattern of Partially-CFFT Beams  

All the tested partially-CFFT beams failed by flexure without any signs of shear failure, web 

buckling, or slippage between the concrete core and the tubes. Figures 5.8 to 5.15 present the 

failure patterns of the partially-CFFT beams OR230-IC430, OR430-IC430, OR430-IC230, OR830-

IC430, OR430-IS230, OR430-IS430, OR430-IS465, and OR830-IS430.  
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All the partially-CFFT beams, with circular or square voids, failed in typical way by flexure 

in compression. Generally, the failure pattern of the partially-CFFT beams was not sudden 

like the fully-CFFT beams (see Figures 5.4 to 5.7), but there was gradual degradation of 

strength after the peak. The ultimate compression failure occurred after yielding of the steel. 

It started with inflated flanges like waves at the compression side followed by outward 

buckling as shown in Figure 5.12(a). Then, a rupture of the GFRP tube in the transverse 

direction of the tube occurred, as shown in the top views in Figures 5.8 to 5.11 that present 

the failure pattern of the partially-CFFT beams with circular void. This transverse rupture of 

fibers indicates confining action on the concrete at the compression zone. This is attributed to 

the active confining action of the inner GFRP tubes and the passive confining action of the 

outer GFRP tubes on the concrete at the compression zone. In case of partially-CFFT beams 

with inner square voids, the transverse fibers rupture was not clear as the axial outward 

buckling as shown in the top views in Figures 5.12 to 5.15. This confirms the lower flexural 

performance and strength of the partially-CFFT beams with inner square void compared to 

that with circular voids as listed in Table 5.1. Further analysis about the effect of the inner 

void shape will be discussed in the following sections.  

Some beams were continued to be loaded to high levels of deformations. It was noticed that 

the bottom tensile flange remained active and could withstand high axial strains as shown in 

Figures 5.9, 5.10, 5.11, and 5.15 that present the failure patterns of the partially-CFFT beams 

OR430-IC430, OR430-IC230, OR830-IC430, and OR830-IS430, respectively. While the other 

beams OR230-IC430, OR430-IS230, OR430-IS430, and OR430-IS465 failed at the end by axial 

rupture of fibers at the tension side as shown in Figures 5.8, 5.12, 5.13, and 5.14, 

respectively. Note that, this final secondary failure happened at very high levels of 

deformations and curvature. This observation is attributed to the partially-CFFTs with thicker 

outer tube and inner circular voids behave better and stronger than that with thin outer tube 

and inner square voids. 

The fourth cycles in Figures 5.12 to 5.15 pronounced an elastic behaviour at low levels of the 

unloading cycles. Note that, these beams failed in compression and had inner square voids. 

This elastic behaviour is attributed to the GFRP tubes tension flanges of these beams were 

still active and had not been failed yet. By continuing loading to high levels of deformations 
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and curvature, some bottom GFRP tubes flanges failed in tension and accordingly the 

residual deflection became large as shown in Figure 5.12 to 5.14. The beams OR830-IS430, 

which their tensile flanges attained high levels of strains without failure,  pronounced again 

an elastic return after releasing the load at the end of the test, as shown in Figure 5.15. 

5.4.4 Flexural Performance of Rectangular Partially-CFFT Beams 

The following sections investigate experimentally the performance of a new design of 

partially-CFFT beams. Fourteen partially-CFFT beams with different configuration were 

compared to six control fully-CFFT beams and another two control RC beams. Table 5.1 lists 

the details of the test matrix and the beams details.  

The patterns of failure indicate that the partially-CFFT beams failed in compression with 

gradual loss of strength unlike the fully-CFFT beams that failed in tension by axial rupture of 

fibers. In addition, the results indicate non-linear moment-deflection responses of the 

Partially-CFFT beams with an ascending flexural strength after yielding of the embedded 

steel. This non-linear behaviour is attributed to the effective confinement of the concrete at 

the compression side that is considered as a nonlinear material.  

Further comparisons and discussion are illustrated in the following sections to study the 

effect of the outer tube thickness, inner tube thickness, inner tube laminates, and inner tube 

shape. To facilitate the analysis the reloading cycles are eliminated from the curves and the 

outer envelopes are used in the comparisons.  

5.4.4.1 Effect of the Outer Tube Thickness in Partially-CFFT Beams 

Figure 5.16 plots the moment-deflection responses of the Partially-CFFT beams with circular 

voids OR230-IC430, OR430-IC430, and OR830-IC430 compared to that of the control RC beams. 

These Partially-CFFT beams were chosen to study the effect of the outer tube thickness since 

they have three different outer tube thickness and they have the same inner hollow GFRP 

tube and steel reinforcement. 
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The results indicate significant gain in strength, stiffness, and ductility of the rectangular 

partially-CFFT beams compared to the conventional RC beams (see also Table 5.1). For 

example, the partially-CFFT beam OR230-IC430 that has an outer tube of 3.4 mm thickness 

attained an ultimate flexural strength and ductility 115% and 284% higher than that of the 

RC beams, respectively. This enhancement increases with increasing the tube thickness. For 

example, the partially-CFFT beam OR430-IC430 that has an outer tube of 5.7 mm thickness 

attained an ultimate flexural strength and ductility 190% and 380% higher than that of the 

RC beams, respectively. Moreover, the partially-CFFT beams OR830-IC430 that have an outer 

tube of 8.7 mm thickness attained an ultimate flexural strength and ductility 211% and 332% 

higher than that of the RC beam, respectively. As seen in OR830-IC430, the gain in strength 

decelerated and the ductility decreased.  

The flexural behaviour is illustrated in Figure 5.17, which plots the correlations between the 

flexural moments at different stages (first crack, yield, ultimate) compared to the normalized 

strength of the outer FRP tubes represented by their reinforcement ratio ρf (=Af /Ac) 

multiplied by their modular ratio nf (=Ef /Eco). Note that, Ef is the taken as the average 

modulus of elasticity from the compression and tension coupons tests in the axial direction of 

the outer GFRP tubes. 

The results of Mcr, shown in Table 5.1, indicate minor difference among the partially-CFFT 

beams OR230-IC430, OR430-IC430, and OR830-IC430 with changing their tube outer thickness, 

and the average Mcr of them is 35.8 kN.m. The results in Table 5.1 indicate also that My of 

the partially-CFFT beams OR230-IC430, OR430-IC430, and OR830-IC430 was significantly 

greater than that of the RC beam, and increases with increasing the FRP tube thickness. 

Figure 5.17(a) indicates a linear increase of My with increasing the outer tube thickness. It is 

attributed to the excess contribution of the elastic GFRP tube material as flexural 

reinforcement in the cracked section.  

Figure 5.17(b) indicates a non-linear increase in the ultimate moment Mu until a certain limit. 

This limit is also clearly shown in Figure 5.17(c), which mainly represents the post-yielding 

stage by comparing Mu/My to the tube strength where at this stage the reinforcement action of 

the GFRP tube is effective and significant. This limit is lower than that in case of fully-CFFT 
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beams (See section 4.4.5.3 in Chapter 4). This is attributed to the early outward buckling of 

the tube compression flange due to the excessive compression forces developed to balance 

the section. In other words, the inner tubes increased the internal tensile forces of the section, 

and accordingly the compression forces increased to balance the section forces. Since the 

inner tubes restrain the concrete area at the compression side, then the compression forces 

can be propagated from increasing the compressive contribution of the tube flange and/or 

increasing the concrete strength due to confinement. The non-linear increase in Figure 

5.17(b, c) indicates that increasing the thickness of the tube does not mean increasing the 

ultimate capacity of the CFFT beam, but there is an optimum FRP reinforcement ratio to 

achieve the maximum capacity. 

Based on the results of the current study and shown in Figure 5.17, the flexural moments at 

different stages (first crack, yield, and ultimate) of partially-CFFT beam with circular voids 

could be estimated approximately by regression analysis if one of them is known, for 

example Mcr, as following: 

  7037044 .nρ.=MM ffcry    (5.4) 

    56183609646820
2

.n.n.=MM ffffcru    (5.5) 

    3606291991171
2

.n.n.=MM ffffyu    (5.6) 

5.4.4.2 Effect of the Inner Tube Thickness in Partially-CFFT Beams 

Figure 5.18(a) plots the moment-deflection response of the partially-CFFT beams OR430-

IC430 and OR430-IC230, which have inner circular tubes with thickness of 3.1 and 2.1 mm, 

respectively. Figure 5.18(b) plots the moment-deflection response of partially-CFFT beams 

OR430-IS430 and OR430-IS230, which have inner square tubes with thickness of 4.7 and 2.9 

mm, respectively. The results indicate that the effect of the inner tubes thickness on the 

ultimate flexural capacity is insignificant. The partially-CFFT beams with circular voids 

OR430-IC430 and OR430-IC230 attained average ultimate flexural capacity of 380 and 379.5 

kN.m, respectively. While the partially-CFFT beams with square voids OR430-IS430 and 

OR430-IS230 attained average ultimate flexural capacity of 289.5 and 291 kN.m, respectively. 
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These results indicate the minor effect of the inner tube thickness on the flexural capacity of 

the partially-CFFT beams. This minor effect could be attributed to minor difference between 

the reinforcement action of the inner FRP tubes in the partially-CFFT beams, because of the 

irregular distribution of the strains along the inner tube depth and the low modulus of 

elasticity of the FRP tube. Figure 5.19 shows typical neutral axes locations based on strains 

distribution along the partially-CFFT beam depth. Almost the total cross section of the inner 

tubes exists below the neutral axis. The top face of the inner tube is not efficient at all in 

reinforcing the section due to the almost zero strain values. While the bottom face of the 

inner tubes has low strains compared to the steel bars and the bottom face of the outer 

rectangular FRP tube.  

Figures 5.18(a, b) show that the primary flexural stiffness of the partially-CFFT beams was 

the same despite the different thickness of the inner tube thickness. The partially-CFFT beam 

OR430-IC430, which has a thick inner circular tube of 3.1 mm thickness, pronounced an 

increase in the flexural stiffness at the post-yielding stage. The partially-CFFT beams OR430-

IS430, which have thick inner square tubes of 4.7 mm thickness, pronounced also an increase 

in the flexural stiffness at the post-yielding stage, however, it was limited. This increase 

means an increase in the moment of inertia of the cracked section, Icr, This increase can be 

attributed to the enhanced properties of the confined concrete between the outer and inner 

tubes (low cracks, low crushing, and increase of its efficient confined area). 

5.4.4.3 Effect of the Inner Tube Laminate Structure in Partially-CFFT Beams 

The effect of the inner tube laminate structure is investigated by comparing the flexural 

results of the partially-CFFT beams OR430-IS430 and OR430-IS465 shown in Figure 5.20. The 

beams have inner square GFRP tubes with a similar number of fiber layers but with different 

fiber stacking sequence. The partially-CFFT beams OR430-IS430 have inner GFRP tubes with 

helical fiber orientation of 30
o
 to the longitudinal axis and thickness of 4.7 mm, while the 

partially-CFFT beams OR430-IS465 have inner GFRP tubes with helical fiber orientation of 

65
o
 to the longitudinal axis and thickness of 4.2 mm. The difference in the tube thickness is 

attributed to the fibers overlap and strokes during the filament-winding process, since the low 

winding angles (30
o
) need more strokes to cover the surface area of the mandrels. 
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The results indicate that the partially-CFFT beams OR430-IS430, which have inner GFRP 

tubes with more fibers in the axial direction, attained average ultimate flexural capacity of 

289.5 kN.m. While the partially-CFFT beams OR430-IS465, which have inner GFRP tubes 

with less fibers in the axial direction, attained average ultimate flexural capacity of 273 kN.m 

that is 6% lower than that of OR430-IS430 beams. This difference indicates the reinforcement 

contribution of the inner FRP tube despite its minor value. The results indicate also similar 

primary flexural stiffness of OR430-IS430 and OR430-IS465, but after yielding, the flexural 

stiffness of OR430-IS430 becomes higher than that of OR430-IS465.  

5.4.4.4 Effect of the Inner Tube Shape in Partially-CFFT Beams 

The size of the circular and square voids used in this study was chosen to have almost the 

same void area (3.7×10
4
 mm

2
 for the circular void and 4.0×10

4
 mm

2
 for the square void). 

Comparisons were carried out to investigate the effect of the void shape on the performance 

of the partially-CFFT beams by comparing OR430-IC230 versus OR430-IS230, OR430-IC430 

versus OR430-IS430, and OR830-IC430 versus OR830-IS430, as shown in Figure 5.21.  

The average Mcr of OR430-IC230 beams is 35.5 kN.m, which is 15% lower than that of OR430-

IS230 beams that equals 42 kN.m. Moreover, Mcr of OR430-IC430 beam is 34 kN.m, which is 

15% lower than the average My of OR430-IS430 beams that equals 40 kN.m. While, the 

average Mcr of OR830-IC430 beams is 38.4 kN.m (normalized due to the different compressive 

strength of concrete), which is 11% lower than that of OR830-IS430 beams that equals 43 

kN.m. The results indicate that the partially-CFFT beams with square voids have high Mcr 

compared to the partially-CFFT beams with circular voids. This difference is attributed to the 

cross sectional area of the inner square tubes walls is higher than that of the circular tubes. 

Therefore, the contribution of the square tube in calculating the gross moment of inertia Ig is 

higher than the circular tube since they have almost the same tensile axial modulus of 

elasticity. Note that, the cracks propagation is not critical in this type of FRP-protected 

beams, but the cracking strength is important in calculation of deflection and cracks width. 

The average My of OR430-IC230 beams is 182 kN.m, which is 3% higher than that of OR430-

IS230 beams that equals 177 kN.m. Moreover, My of OR430-IC430 beam is 180 kN.m, which is 
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3% higher than the average My of OR430-IS430 beams that equals 175 kN.m. While, the 

average My of OR830-IC430 beams is 251 kN.m (normalized due to the different compressive 

strength of concrete), which is 12% higher than that of OR830-IS430 beams that equals 224 

kN.m. The results indicate that the partially-CFFT beams with circular voids have high My 

compared to the partially-CFFT beams with square voids. Note that, the cross sectional area 

of the inner circular tubes wall is less than that of the inner square tube. Then, the 

enhancement in My can be attributed to the steel bars are not surrounded well with much 

concrete in the partially-CFFT beams with square voids unlike in the partially-CFFT beams 

with circular voids, leading to less compatibility with the other structural elements in the 

section. In other words, the shear flow along the cross section is smoother and more 

homogeneous around the circular void than the square void.  

At ultimate failure, the average Mu of OR430-IC230 beams is 379.5 kN.m, which is 30% 

higher than that of OR430-IS230 beams that equals 291 kN.m. Moreover, Mu of OR430-IC430 

beam is 380 kN.m, which is 31% higher than the average Mu of OR430-IS430 beams that 

equals 289.5 kN.m. While, the average Mu of OR830-IC430 beams is 486 kN.m (normalized 

due to the different compressive strength of concrete), which is 7% higher than that of 

OR830-IS430 beams that equals 455.5 kN.m. The results indicate better performance of the 

partially-CFFT beams with circular voids more than the partially-CFFT beams with square 

voids. As seen, the performance increases in the ultimate stage than the yielding stage than 

the cracking stage. It is attributed to the better compatibility of the circular void shape inside 

the section, and the confinement action that appear commonly at high levels of load.  

5.4.5 Comparison between Fully and Partially-CFFT Beams 

Figure 5.22 plots the moment-deflection responses of the partially-CFFT beams OR230-IC430, 

OR430-IC430, and OR830-IC430 compared to that of the corresponding control fully-CFFT 

beams. Generally, the results indicate that the fully and partially-CFFT beams have the same 

primary flexural stiffness since their moments of inertia of their cracked section are almost 

the same. It is attributed to the contribution of the inner tubes is comparatively low in the 

overall moment of inertia of the cracked section, since their wall sectional area is small in 

addition their reinforcement contribution is governed by their modular ratio which is 
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comparatively small. The overall behaviour of the partially-CFFT beams is nonlinear with 

multilinear stages compared to that of the fully-CFFT beams, which is considered as bi-

linear. After the ultimate capacity, the flexural strength of the partially-CFFT beams was 

decreasing gradually unlike the fully-CFFT beams that fail suddenly. 

The results in Figure 5.22(a) indicate that the partially-CFFT beam OR230-IC430 with an 

outer tube thickness of 3.4 mm attained ultimate flexural strength 9% higher than that of the 

fully-CFFT beam OR230. Also, the flexural stiffness of OR230-IC430 after yielding was higher 

than that of OR230. Note that, OR230 failed in tension, while OR230-IC430 failed in 

compression. This means, the internal compression forces of the partially-CFFT section 

increased. This increase can be attributed to:  

1) The concrete in compression resisted higher compressive forces (confined) within a 

restrained area (between the outer and inner tubes),  

2) The compression flange of the tube resisted much compression forces,  

3) The inner tube act as reinforcement and increased the internal tensile forces of the 

partially-CFFT section. Then it increased the internal compression forces to balance 

the section. 

Figure 5.22(b) indicates that the flexural stiffness after yielding of OR430-IC430 with an outer 

tube thickness of 5.7 mm was higher than that of OR430. However, the partially-CFFT beam 

OR430-IC430 attained flexural strength 4% lower than that of the fully-CFFT beams OR430. 

Figure 5.22(c) indicates that the flexural stiffness after yielding of OR830-IC430 with an outer 

tube thickness of 8.7 mm was similar to that of OR830. However, the partially-CFFT beams 

OR830-IC430 attained flexural strength 27% lower than that of the fully-CFFT beams OR830. 

The same conclusions are obtained in case of partially-CFFT beams with inner square voids 

as shown in Figure 5.23. Note that, the applied moments in Figure 5.23(b) needed to be 

normalized due to the different concrete compressive strength as shown in Figure 5.23(c).  

Based on the results, increasing the outer tube thickness in partially-CFFT beams does not 

mean increasing their flexural strength higher than their corresponding fully-CFFT beams. 
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This is attributed to the flexural performance of the partially-CFFT beams is governed by the 

compression failure and the strength of the elements in compression as concrete and the tube 

flange.  

5.4.6 Strain Behaviour in CFFT Beams 

The correlations between the moment and the longitudinal and transverse strains of the outer 

and inner GFRP tubes are plotted in Figures 5.25 to 5.34. The strains were measured at 

different locations as indicated by the alphabets on the cross section on each chart.  

Figure 5.24 confirms the tension failure of the fully-CFFT beam (OR230) since the 

longitudinal strains at point D (on the outer GFRP tube) reached 0.024 that exceed 

significantly the ultimate longitudinal tensile strain of the coupon tests that equals 0.0157 as 

listed in Table 3.1 in Chapter 3. The longitudinal compressive strain at point A was 0.01 

exceeding the ultimate coupon compressive strain that equals 0.07. It can noticed that the 

coupon test results are smaller than the actual test results. This could be a result of: (1) the 

hybrid action of the materials in the CFFT section, (2) the good bond between the GFRP tube 

and the inner concrete core, and (3) additional flexural strains due to high curvatures as 

illustrated on Figure 5.24. Although the transverse strains on the outer GFRP tube were far 

from the coupon test results, there was a stretch in the transverse strain values especially at 

points A and E indicating confinement action. The same observations can be noticed in 

Figure 5.26 and 5.32 for the fully-CFFT beams OR430 and OR830, respectively. Note that, the 

compressive longitudinal strain at point A in OR830 reached the maximum coupon 

compressive strain confirming the first compression failure (buckling) at the top face. At the 

same time, the tensile longitudinal strain at point D in OR830 was high enough to cause the 

axial rupture of fibers at the tension side. 

The longitudinal strain at point A at the top face of the partially-CFFT beams indicated a 

rapid increase of the compressive strains especially in partially-CFFT beams with thick 

GFRP tubes as shown in Figures 5.28, 5.33, and 5.34. There were signs of buckling at the top 

face indicated by reverse in the longitudinal strain at point A as shown in Figures 5.25, 5.27, 

5.33, and 5.34 where the rate of strain development decreased until failure. 
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The transverse strains at points A and E in the partially-CFFT beams behaved in the same 

manner as in the fully-CFFT beams, however, point B gained more transverse tensile strains 

in the partially-CFFT beams than in the fully-CFFT beams. See Figures 5.25, 5.27, 5.28, 

5.33, and 5.34. Note that, at these figures, the longitudinal strains at point B moved toward 

the compression at high loads. The gained transverse strains and the reversed longitudinal 

strains at point B indicate confining by a deeper confined area of the concrete at the 

compression zone, simultaneously a deeper neutral axis. 

The longitudinal strains at point G (on the inner GFRP tube) in the partially-CFFT beams 

show reinforcement action of the inner GFRP tubes especially after yielding of the steel. 

Because of these high longitudinal tensile strains, compressive transverse strains were 

propagated due to Poisson’s ratio effect as shown in Figures 5.25, 5.27,5.28, 5.30, 5.33, and 

5.34. Generally, the negative transverse strains at points G and H indicate that the inner tube 

is compressed by surrounding concrete and GFRP tube. The previous notes proofs that the 

inner GFRP tubes work as flexural reinforcement regardless their effective contribution. 

The low values of the longitudinal strains (almost zero) at point F on the inner GFRP tubes 

indicate that the inner tube lay under the neutral axis of the composite section. According to 

the active confining action of the inner tube on the concrete in the compression zone, an 

increase in the tensile transverse strain was noticed in some partially-CFFT beams as shown 

in Figures 5.29, 5.30, and 5.31. At the same time in these figures, the longitudinal strains at 

point F were reversed toward compression. The reason could be attributed to: (1) the neutral 

axis was trended downward, or (2) the active confinement action of the inner tube on the 

concrete in the compression zone increased the tensile transverse strain at point F, and so it 

increased the compressive strain in the perpendicular direction due to Poisson’s ratio effect. 

The designer should consider the variable strain values along the depth when calculating the 

reinforcement action of the inner tube. 

5.4.7 Strength to Weight Ratio 

To study the strength to weight ratio, the weight of the RC beam is considered as a reference 

and is taken as unit. Note that, the fully-CFFT beams have almost the same weight like the 



Chapter 5: Flexural Behaviour of Partially-CFFT Rectangular Beams 

  162 

 

RC beams. After excluding the void from the weight of the CFFT beams, the partially-CFFT 

beams with circular voids weigh 70% of the fully-CFFT beams weight, while the partially-

CFFT beams with square voids weigh 67% of the fully-CFFT beams weight. Then, the actual 

flexural moments of every beam at first crack, steel yield, and ultimate failure are divided by 

its own weight fraction according to the RC beam weight as shown in Eq. 5.7. Accordingly, 

virtual flexural strength-to-weight ratios can be evaluated as shown in Figures 5.35 and 5.36.  

ζ

M
=M actual

virtual   (5.7) 

 = 1 for RC and Fully-CFFT beams 

 = 0.7 for Partially-CFFT beams with circular void 

 = 0.67 for Partially-CFFT beams with square void 

 

Generally, Figures 5.35 and 5.36 indicate the superior strength-to-weight ratio of the CFFT 

beams (Fully or partially filled with concrete) compared to the conventional RC beams. For 

example, the fully-CFFT beam OR830 attained ultimate strength-to-weight ratio 427% that of 

the RC beams. While, the partially-CFFT beam OR830-IC430 attained ultimate strength-to-

weight ratio 447% that of the RC beams. 

The effect of the weight increases obviously at the ultimate stage than yield stage than first 

crack stage. The virtual cracking moments for the partially-CFFT beams become closer to 

that of the fully-CFFT beams, which means that the void area is a main factor in reducing Mcr 

of the Partially-CFFT beams compared to the fully-CFFT beams.  

The results indicate that the ultimate strength-to-weight ratio of the partially-CFFT beams 

become greater than that of the corresponding fully-CFFT beam. For example, the partially-

CFFT beam OR230-IC430 attained ultimate strength-to-weight ratio 157% that of the fully-

CFFT beam OR230. Despite the partially-CFFT beam OR830-IC430 attained ultimate strength 

73% that of the fully-CFFT beam OR830, but its virtual ultimate strength-to-weight ratio is 

5% higher than that of the fully CFFT beam OR830.  
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Based on results, the partially CFFT beams could replace the heavy RC beams and fully-

CFFT beams. Accordingly, they could reduce the cost of transportation and installation in 

addition to reducing the dead weight of structures. 

5.4.8 Cracking Moment (Mcr) of Rectangular Partially-CFFT Beams 

One of the advantages of the CFFT system is that the outer FRP tube acts as a jacket that 

protects the inner structural elements, such as concrete and steel, against corrosion even if the 

inner concrete core is cracked. Therefore, there is no worry about the concrete cracks for the 

durability and appearance requirements. However, it is important for effective design of 

FRP-concrete composite structures to study the cracking behaviour for serviceability 

requirements related to deflection and crack width control. Therefore, the cracking moment 

(Mcr) is evaluated for the current study of rectangular fully and partially-CFFT beams. This 

section is related to section 4.4.6 in Chapter 4 and studies the experimental Mcr of the 

partially-CFFT beams and their gross moment of inertia of the concrete-transformed section 

to develop an expression for the modulus of rupture of concrete (fcr) as shown in Table 5.3.  

Based on the results in the current study, new values for k are proposed to determine well the 

cracking moment Mcr of partially-CFFT beams. Table 5.3 lists an average k = 0.66 for 

partially-CFFT beams with circular voids, while an average k = 0.77 for partially-CFFT 

beams with square voids. These values are assumed in case of calculating the gross moment 

of inertia for the total section elements (concrete + steel + FRP tubes) transformed to 

concrete and eliminating the void area. Note that, section 4.4.6 in Chapter 4 proposed k = 

0.69 for fully-CFFT beams in case of considering reinforcement (see Table 4.3 in Chapter 4). 

The results indicate enhancement in the cracking strength of the rectangular CFFT beams 

fully or partially filled with concrete. It is attributed to many factors as mentioned in Chapter 

4 (see section 4.4.6). These factors are:  

5) The FRP tubes contributed positively in the gross section inertia Ig, however, this 

contribution is comparatively limited due to the low FRP modular ratio,  

6) The full composite action or the bond due to the roughened tubes surfaces delayed the 

generation of the cracks,  
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7) The concrete expansion during curing was restrained by the tube inducing chemical 

pre-stressing on the concrete (Fam and Rizkalla 2002), and  

8) Confining the concrete with FRP tubes restrained it against crack propagation.  

The partially-CFFT beams with square voids experienced the highest cracking strength 

compared to the other types of the studied CFFT beams (fully-CFFT beams or partially-

CFFT beams with circular voids). It can be attributed to the roughened surface area of the 

inner square tubes was wider than that of the inner circular tubes, and the concrete around the 

inner square tubes is tightly positioned between the roughened surfaces of the inner square 

tubes and the roughened surfaces of the outer tubes. Therefore, the roughened surfaces in the 

partially-CFFT beams with square voids hampered effectively the propagation of the cracks.  

5.5 CONCLUSIONS 

Twenty-two full-scale rectangular beams, including fourteen partially-CFFT beams, six 

control fully-CFFT beams, and two control conventional RC beams, were tested under a 

four-point bending. The partially-CFFT beams had voids provided by inner circular or square 

GFRP tubes shifted toward the tension zone of the section. All the beams had the same 

section dimensions and the same flexural steel reinforcement at the tension side. The results 

indicate superior performance of the rectangular CFFT beams, in terms of strength and 

ductility, compared to the conventional RC beams.  

The main concluded points of these beam tests are: 

1) The flexural strength of a rectangular fully-CFFT beam with a GFRP tube thickness of 

3.4 mm is 97% higher than that of a conventional RC beam and fails in tension. If an 

inner circular hollow GFRP tube with 3.1 mm thickness is provided at the tension zone, 

the flexural strength becomes 115% higher than that of a conventional RC beam. 

Moreover, the ultimate failure changes from sudden tension failure to gradual 

compression failure. 

2) The flexural strength of the partially-CFFT beams increases with increasing the outer 

GFRP tube thickness until certain limit. After this limit, buckling of the compression 
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flange of the FRP tube governs the ultimate capacity of partially-CFFT beams. 

Equations are proposed to estimate the flexural moments at different stages (first crack, 

yield, and ultimate) based on regression analysis. 

3) The inner hollow GFRP tubes in the rectangular CFFT beams pronounced active 

confinement action on the concrete in the compression zone. The circular shape of the 

inner void indicated better performance than the square void shape. Further 

experimental investigations are required to optimize the inner GFRP tube contribution 

as flexural reinforcement and confining the concrete at the compression zone. 

4) The strength-to-weight ratio of the partially-CFFT beams is significantly higher than 

that of the RC beams and higher than that of the corresponding fully-CFFT beams. 

Therefore, the partially CFFT beams could replace the heavy RC beams and fully-

CFFT beams, consequently could reduce the construction cost and the dead weight of 

structures. 

5) The partially-CFFT beams experienced high cracking strength. Based on the results of 

the current study, new values for k are proposed to determine well the concrete modulus 

of rupture (fcr) of ACI-318. k = 0.66 for partially-CFFT beams with circular voids, 

while the k = 0.77 for partially-CFFT beams with square voids. These values are 

assumed in case of calculating the gross moment of inertia for the total section elements 

(concrete + steel + FRP tubes) transformed to concrete and eliminating the void area.   
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Table ‎5.1 – Beam specimens and summary of test results 

Group Beam ID 

Section 

Configuration 

(mm) 

Steel 

reinforcement 

Outer 

tube 

Inner 

tube 

Concrete 

strength 

(MPa) 

Moment (kN.m) Ultimate 

Deflection 

(mm) 

Ductility 

(kN.m
2
) 

Failure 

mode Mcr My Mu 

RC 

beam 

RC #1 

 

Top 2-10M 

Bot. 4-15M 

Ties 

10M/150 mm 

--- --- 

41.7 30 113 132 29 3.1 Tension 

RC #2 41.7 31 116 130 29 3.1 Tension 

Fully 

CFFT 

beams 

OR230 #1 

 

Bot. 

4-15M 

OR230 --- 49.7 43 152 249 52 10.2 Tension 

OR230 #2 OR230 --- 49.7 43 150 267 69 14.3 Tension 

OR430 #1 OR430 --- 48.7 46 161 404 89 27.0 Tension 

OR430 #2 OR430 --- 48.7 44 168 392 77 22.2 Tension 

OR830 #1 OR830 --- 41.7 48 204 559 82 33.0 Balanced 

OR830 #2 OR830 --- 41.7 45 210 560 92 38.4 Balanced 

Partially 

CFFT 

beams 

with 

circular 

voids 

OR230-IC430 

 

OR230 IC430 49.7 38 170 282 56 11.9 Comp. 

OR430-IC430 OR430 IC430 49.7 34 180 380 56 14.9 Comp. 

OR430-IC230 #1 OR430 IC230 49.7 36 188 384 63 16.8 Comp. 

OR430-IC230 #2 OR430 IC230 49.7 35 182 375 62 16.4 Comp. 

OR830-IC430 #1 OR830 IC430 41.7 37 216 429 53 15.7 Comp. 

OR830-IC430 #2 OR830 IC430 41.7 34 215 387 42 11.1 Comp. 

Partially 

CFFT 

beams 

with 

square 

voids 

OR430-IS230 #1 

 

OR430 IS230 48.7 40 175 298 47 10.3 Comp. 

OR430-IS230 #2 OR430 IS230 48.7 44 179 284 44 9.0 Comp. 

OR430-IS430 #1 OR430 IS430 48.7 40 175 290 42 8.6 Comp. 

OR430-IS430 #2 OR430 IS430 48.7 40 175 289 43 9.1 Comp. 

OR430-IS465 #1 OR430 IS465 48.7 40 175 265 40 7.4 Comp. 

OR430-IS465 #2 OR430 IS465 48.7 42 177 281 41 8.1 Comp. 

OR830-IS430 #1 OR830 IS430 49.7 43 224 441 45 13.4 Comp. 

OR830-IS430 #2 OR830 IS430 49.7 43 224 470 48 15.5 Comp. 
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Table  5.2 – Shear forces in fully and partially-CFFT beams 

CFFT Beam 
tf 

(mm) 

f'c 

(MPa) 

Vn (kN) 

(=Mu /a) 

Vc (kN) 

( cA
'
cf0.17= ) 

Vf  (kN) 

(=Vn-Vc) 

Ff 

(MPa) 

Exp. 

Ftr 

(MPa) 

100
tr

f

F

F

(%) 

OR230 #1 3.4 49.7 226.4 148.4 78.0 22.8 243 9.4 

OR230 #2 3.4 49.7 242.7 148.4 94.3 27.6 243 11.4 

OR430 #1 5.7 48.7 367.3 146.9 220.4 38.5 214 18.0 

OR430 #2 5.7 48.7 356.4 146.9 209.5 36.6 214 17.1 

OR830 #1 8.7 41.7 508.2 135.9 372.2 42.6 164 26.0 

OR830 #2 8.7 41.7 509.1 135.9 373.2 42.7 164 26.0 

OR230-IC430 3.4 49.7 256.4 103.7 152.7 44.7 243 18.4 

OR430-IC430 5.7 49.7 345.5 103.7 241.8 42.2 214 19.7 

OR430-IC230 #1 5.7 49.7 349.1 103.7 245.4 42.9 214 20.0 

OR430-IC230 #2 5.7 49.7 340.9 103.7 237.2 41.4 214 19.4 

OR830-IC430 #1 8.7 41.7 390.0 95.0 295.0 33.8 164 20.6 

OR830-IC430 #2 8.7 41.7 351.8 95.0 256.9 29.4 164 17.9 

OR430-IS230 #1 5.7 48.7 270.9 98.0 172.9 30.2 214 14.1 

OR430-IS230 #2 5.7 48.7 258.2 98.0 160.2 28.0 214 13.1 

OR430-IS430 #1 5.7 48.7 263.6 98.0 165.6 28.9 214 13.5 

OR430-IS430 #2 5.7 48.7 262.7 98.0 164.7 28.8 214 13.4 

OR430-IS465 #1 5.7 48.7 240.9 98.0 142.9 25.0 214 11.7 

OR430-IS465 #2 5.7 48.7 255.5 98.0 157.4 27.5 214 12.8 

OR830-IS430 #1 8.7 49.7 400.9 99.0 301.9 34.5 164 21.1 

OR830-IS430 #2 8.7 49.7 427.3 99.0 328.3 37.6 164 22.9 
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Table  5.3 – Details of calculating cracking strength of partially-CFFT beams  

Group Beam 
f'c 

(MPa) 

Exp. Mcr 

(kN.m) 

Considering reinforcement 

Average 
Yt 

(mm) 

Ig 

(mm
4
) 

fcr 

(MPa) 
k 

Partially 

-CFFT 

beams 

with 

circular 

voids 

OR230-IC430 49.7 38 215.6 1.64×10
9
 4.99 0.71 

k = 0.66 

SD = 0.02 

OR430-IC430 49.7 34 215.4 1.69×10
9
 4.34 0.62 

OR430-IC230 #1 49.7 36 215.2 1.69×10
9
 4.58 0.65 

OR430-IC230 #2 49.7 35 215.2 1.69×10
9
 4.45 0.63 

OR830-IC430 #1 41.7 37 215.1 1.76×10
9
 4.53 0.70 

OR830-IC430 #2 41.7 34 215.1 1.76×10
9
 4.16 0.64 

Partially 

-CFFT 

beams 

with 

square 

voids 

OR430-IS230 #1 48.7 40 215.9 1.66×10
9
 5.20 0.75 

k = 0.77 

SD = 0.04 

OR430-IS230 #2 48.7 44 215.9 1.66×10
9
 5.72 0.82 

OR430-IS430 #1 48.7 40 216.7 1.64×10
9
 5.29 0.76 

OR430-IS430 #2 48.7 40 216.7 1.64×10
9
 5.29 0.76 

OR430-IS465 #1 48.7 40 216.8 1.65×10
9
 5.26 0.75 

OR430-IS465 #2 48.7 42 216.8 1.65×10
9
 5.53 0.79 

OR830-IS430 #1 49.7 43 216.3 1.71×10
9
 5.44 0.77 

OR830-IS430 #2 49.7 43 216.6 1.71×10
9
 5.44 0.77 
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(a) End slip of partially-CFFT beams with circular void 

 
(b) End slip of partially-CFFT beams with circular voids 

 
(c) End slip of partially-CFFT beams with square voids 

 

Figure ‎5.1 – Moment-slip response in partially-CFFT beams 
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(a) Steel strains of OR830-IC430 #2 (b) Curvature of OR830-IC430 #2 

Figure  5.2 – Typical steel strains and curvature of partially-CFFT beams  

  

 

 

Figure  5.3 – Shear forces in partially-CFFT beams 
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(a) Typical tension failure due to steel yielding 

  
(b) Final failure (c) Typical shear cracks near supports 

 
Figure  5.4 – Failure pattern and moment-deflection response of RC beams 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  5.5 – Failure pattern and moment-deflection response of fully-CFFT beams OR230 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  5.6 – Failure pattern and moment-deflection response of fully-CFFT beams OR430 
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(a) Elevation view 

  
(b) Top view (c) Elevation view 

 
Figure  5.7 – Failure pattern and moment-deflection response of fully-CFFT beams OR830 
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(a) Elevation view 

  
(d) Top view (e) Bottom view 

  
Figure  5.8 – Failure pattern and moment-deflection response of partially-CFFT beam OR230-

IC430 

0

50

100

150

200

250

300

0 20 40 60 80 100 120

A
p

p
li

ed
 M

o
m

en
t 

(k
N

.m
) 

Mid-Span Deflection (mm) 

OR230-IC430 



Chapter 5: Flexural Behaviour of Partially-CFFT Rectangular Beams 

  176 

 

 
(a) Elevation view 

  
(b) Top view (c) Bottom view 

  
Figure  5.9 – Failure pattern and moment-deflection response of partially-CFFT beam OR430-

IC430 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

  
Figure  5.10 – Failure pattern and moment-deflection response of partially-CFFT beams 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

  
Figure  5.11 – Failure pattern and moment-deflection response of partially-CFFT beams 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

  
Figure  5.12 – Failure pattern and moment-deflection response of partially-CFFT beams 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

  
Figure  5.13 – Failure pattern and moment-deflection response of partially-CFFT beams 

OR430-IS430 

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

A
p

p
li

ed
 M

o
m

en
t 

(k
N

.m
) 

Mid-Span Deflection (mm) 

At end 

of test 

Rupture 

of fibers 

OR430-IS430 #1 

OR430-IS430 #2 



Chapter 5: Flexural Behaviour of Partially-CFFT Rectangular Beams 

  181 

 

  
(a) Elevation view 

  
(b) Top view (c) Bottom view 

  
Figure  5.14 – Failure pattern and moment-deflection response of partially-CFFT beams 
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(a) Elevation view 

  
(b) Top view (c) Bottom view 

 
Figure  5.15 – Failure pattern and moment-deflection response of partially-CFFT beams 
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Figure  5.16 – Moment-deflection response of partially-CFFT beams with circular voids 
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Figure ‎5.17 – Correlations between Mcr, My, and Mu of partially-CFFT beams with circular 

voids 
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a) Moment-deflection response of OR430-IC430 and OR430-IC230 

  
b) Moment-deflection response of OR430-IS430 and OR430-IS230 

Figure  5.18 – Effect of the inner tube thickness in partially-CFFT beams  
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Figure  5.19 – Typical neutral axis location in partially-CFFT beams 

 

 

Figure  5.20 – Effect of the inner tube laminates in partially-CFFT beams 
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a) Moment-deflection response of OR430-IC230 and OR430-IS230 

 
b) Moment-deflection response of OR430-IC430 and OR430-IS430 

 
c) Normalized moment-deflection response of OR830-IC430 and OR830-IS430 

Figure  5.21 – Effect of the inner tube shape in partially-CFFT beams 
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a) Moment-deflection response of OR230 and OR230-IC430 

 
b) Moment-deflection response of OR430 and OR430-IC430 

 
c) Moment-deflection response of OR830 and OR830-IC430 

Figure  5.22 –Partially-CFFT beams with circular voids versus fully-CFFT beams  

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

A
p

p
li

ed
 m

o
m

en
t 

(k
N

.m
) 

Mid-span deflection (mm) 

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100

A
p
p
li

ed
 m

o
m

en
t 

(k
N

.m
) 

Mid-span deflection (mm) 

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

A
p

p
li

ed
 m

o
m

en
t 

(k
N

.m
) 

Mid-span deflection (mm) 

OR230 #1 

OR230 #2 

OR230–IC430 +9% 

OR430 #1 

OR430 #2 

OR430–IC430 

-4% 

OR830–IC430 #1 

OR830–IC430 #2 

OR830 #2 

OR830 #1 

-27% 



Chapter 5: Flexural Behaviour of Partially-CFFT Rectangular Beams 

  189 

 

 
a) Moment-deflection response of OR430 and OR430-IS430 

 
b) Moment-deflection response of OR830 and OR830-IS430 

 
c) Normalized Moment-deflection response of OR830 and OR830-IS430 

Figure  5.23 – Partially-CFFT beams with square voids versus fully-CFFT beams 
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Figure ‎5.24 – Strains in the FRP tube of OR230 

 

  

  

Figure ‎5.25 – Strains in the FRP tubes of OR230-IC430 
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Figure ‎5.26 – Strains in the FRP tube of OR430 

 

 

 

Figure ‎5.27 – Strains in the FRP tubes of OR430-IC230 
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Figure ‎5.28 – Strains in the FRP tubes of OR430-IC430 
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Figure ‎5.29 – Strains in the FRP tubes of OR430-IS230 
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Figure ‎5.30 – Strains in the FRP tubes of OR430-IS430 
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Figure ‎5.31 – Strains in the FRP tubes of OR430-IS465 

 

 

 

 

 

0

50

100

150

200

250

300

-0.01 -0.005 0 0.005 0.01 0.015

M
o

m
en

t 
(k

N
.m

) 

Longitudinal strain 

Lo A

Lo B

Lo C

Lo D

0

50

100

150

200

250

300

-0.001 0 0.001 0.002 0.003
M

o
m

en
t 

(k
N

.m
) 

Transverse strain 

Tr A

Tr E

Tr B

0

50

100

150

200

250

300

-0.005 0 0.005 0.01

M
o

m
en

t 
(k

N
.m

) 

Longitudinal strain 

Lo F

Lo G

0

50

100

150

200

250

300

-0.003 -0.002 -0.001 0 0.001

M
o

m
en

t 
(k

N
.m

) 

 Transverse strain 

Tr F

Tr H

Tr G



Chapter 5: Flexural Behaviour of Partially-CFFT Rectangular Beams 

  196 

 

 

Figure ‎5.32 – Strains in the FRP tube of OR830 

 

 

 

Figure ‎5.33 – Strains in the FRP tubes of OR830-IC430 
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Figure ‎5.34 – Strains in the FRP tubes of OR830-IS430 
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Figure  5.35 – Flexural strength-to-weight ratios of RC beams, fully-CFFT beams, and 

partially-CFFT beams with circular voids  
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*: The  values are normalized due different concrete compressive strength 

Figure  5.36 – Flexural strength-to-weight ratios of RC beams, fully-CFFT beams, and 

partially-CFFT beams with square voids  
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6.1 ABSTRACT 

Full-scale concrete-filled fibre-reinforced polymer (FRP) tube (CFFT) rectangular beams 

have been tested under a four-point bending setup. These rectangular CFFT beams were 3200 

mm long and 305×406 mm
2
 cross section. They were reinforced with similar flexural steel 

reinforcement at the tension side. Some CFFT beams were completely filled with concrete. 

While, other CFFT beams were partially filled with concrete by providing inner hollow 

GFRP tubes inside the section at the tension zone. The experimental results indicated 

outstanding performance of the CFFT beams in terms of strength and deformability 

compared to conventional reinforced concrete (RC) beams. The CFFT beams exhibited 

additional flexural capacity after yielding of the steel reinforcement. Simultaneously, the 

deflection was increasing rapidly due to the low elastic modulus of the FRP tubes. This 

makes the RC models for predicting deflection inapplicable in case of CFFT beams. The 

experimental results were used to verify the applicability of Branson’s equation to predict the 

effective moment of inertia and consequently the deflection of rectangular CFFT beams. 

Based on the analysis of the test results, Branson’s equation needs to be modified, and new 

equations are developed to predict accurately the deflection of the rectangular CFFT beams 

reinforced with steel bars at the pre-yielding stage as well as the post-yielding stage. 

Keywords: Beams, Fiber-reinforced polymer, Flexural behaviour, Deflection, Theoretical 

prediction, Branson’s equation.  
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6.2 INTRODUCTION 

In the last two decades, considerable research has been conducted to validate the application 

of fibre-reinforced polymer (FRP) composites in the construction industry. One of the 

innovative applications is the concrete-filled FRP tubes (CFFTs). In this dissertation, the 

author tested rectangular CFTT beams with steel rebar at the tension side. The CFFT beams 

experienced better performance than the conventional RC beams in terms of flexural strength 

and ductility. The CFFT beams exhibited superior additional flexural strength after yielding 

of the embedded steel reinforcement, which is attributed to the confining action of the FRP 

tube on the concrete core and the tube itself acts as flexural reinforcement in the axial 

direction. However, the flexural stiffness was small at the post-yielding stage due to the low 

elastic modulus of the FRP tube. Accordingly, the deflection at the post-yielding stage was 

increasing rapidly. Based on the results in this study, the deflection may control the design 

and accordingly equations are needed to predict the deflection with reasonable accuracy. 

6.3 REVIEW OF DEFLECTION EQUATIONS 

Immediate or short-term deflection can be calculated by using an average effective moment 

of inertia Ie in conjunction with elastic deflection formulas or by integration of curvature 

along the length of the beam [Bischoff 2005]. This effective moment of inertia Ie has two 

limits. First, the gross moment of inertia of a non-cracked section transformed to concrete Ig, 

which is considered the upper limit for Ie. Second, the moment of inertia of a fully cracked 

transformed section Icr, which is the lower limit for Ie. 

At the pre-cracking stage where the applied moment Ma is less than the cracking moment Mcr 

(Ma ≤ Mcr), no cracks can be initiated. Accordingly Ie can be considered equivalent to Ig (Ie = 

Ig). After cracking (Ma ≥ Mcr), Ie is gradually degraded to a value slightly above Icr. Branson 

(1965) introduced the concept of using an effective moment of inertia as follows: 
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Where Mcr is the cracking moment and Ma is the applied service moment at the critical 

section. The equation represents a gradual transition from the non-cracked response to the 

fully cracked response by increasing the load. Note that, Branson calibrated his empirical 

expression for Ie with results from flexural members having steel reinforcement ratio greater 

than 0.01.  

It was found that, Branson’s expression overestimates the member stiffness when the ratio Ig 

/ Icr of the section exceeds 3 [Bischoff 2005]. Hence, deflection is underestimated for steel 

reinforcement ratios less than 0.01 and for most flexural members reinforced with FRP bars, 

as these members have a ratio Ig / Icr much greater than 3 [Bischoff 2007]. In fact, many 

investigators proposed different modifications to Branson’s equation for better correlation 

with the experimental results for both RC beams having low steel reinforcement ratios and 

FRP-RC beams [Benmokrane et al. 1996; Masmoudi et al. 1998; Toutanji and Deng 2003; 

Bischoff 2005, 2007; Bischoff and Gross 2011; Al-Sunna et al. 2012]. Nevertheless, 

Branson’s expression is still the common used equation to determine Ie as suggested by 

North American codes like ACI-318-14, CSA A23.3-14, and CSA S6-14. 

Bischoff (2005) developed a new expression for Ie based on fundamental concepts of tension 

stiffening. His expression is considered a rational replacement for the empirical Branson’s 

equation and is given as follows:  

2
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cr
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cr
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(6.2) 

Where γ is an integration factor developed by Bischoff and Gross (2011) based on integration 

of curvature and depends on the loading case and accounts for the change in the stiffness 

along the beam span. For simply supported beams under a four-point bending load, γ is 

calculated as: 
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Bischoff and Gross (2011) concluded also that the member stiffness is significantly affected 

by the cracking moment and degrades rapidly after the first crack. They concluded that a 

reduced cracking moment equals to 80% of that computed by the ACI-318 (2014) code 

provides a reasonable estimate of deflection for FRP-RC beams using their expression. This 

decrease accounts for the tensile stresses developed in the concrete from restraint to 

shrinkage by the embedded reinforcement, and a larger decrease may be necessary when 

additional tensile stress from restraint by the supports or adjoining parts of the structure is 

significant. Based on this conclusion, the computed Mcr should be decreased in the current 

study, because the rectangular CFFT beams have steel reinforcement and roughened FRP 

tubes, in addition, the concrete is tightly positioned between the outer and inner FRP tubes in 

the partially-CFFT beams. 

The American code ACI 440.1R (2015) proposed to compute the effective moment of inertia 

by Bischoff’s expression. The Canadian code CSA-S806 (2012) proposed also using 

Bischoff’s expression in calculating the effective moment of inertia for FRP-reinforced 

beams but γ = 0.5. Nevertheless, Bischoff’s expression, like most other models, does not 

address the post-yielding behaviour of strengthened RC beams or CFFT beams with steel 

rebar as in this study. Few models for predicting the post-yielding deflections of FRP-

strengthened concrete beams were developed [Elmihilmy and Tedesco 2000; Charkas et al. 

2002; Said 2010], but almost no research was carried out to predict the deflection of CFFT 

beams whether reinforced with steel or not. Mohamed and Masmoudi (2011) introduced a 

first attempt to predict the deflection of steel-reinforced CFFT circular beams by modifying 

Branson’s equation at the pre-yielding stage and developing a simple linear equation to 

predict the deflection at the post-yielding stage. However, their experimental program had 

limited tests data and did not consider any variation in the FRP tube thickness and 

reinforcement. In addition, their equations were exclusive for their circular CFFT beams and 

need to verify its applicability in case of rectangular reinforced CFFT beams. 

6.4 DEFLECTION CALCULATIONS 

In a four-point bending load system, the flexural component of the deflection (Δ) at the 

center of a simply supported beam can be calculated as follows: 
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 22 43
48

aL
IE

P.a
Δ=

eco

  (6.4) 

Where L is the span, P is the total concentrated load which is divided into two loads, P/2, 

each applied at a distance a from the support, Eco is the elastic modulus of the concrete, and 

Ie is the effective moment of inertia of the beam cross section.  

The experimental total applied loads Pexp and the corresponding measured mid-span 

deflections Δexp were retrieved in Eq. (6.4) to evaluate the experimental moment of inertia 

Ie(exp) as follows: 
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The applied moment
2

exp.aP
=M a , then Eq. (6.5) can be written as: 
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The gross moment of inertia of a non-cracked section transformed to concrete (Ig) is 

calculated as: 

ffsscg In)I-(n=II  1   (6.7) 

Where Ic is the moment of inertia of the concrete section excluding the voids in case of the 

partially-CFFT beams.  Is and If are the local moment of inertia of the steel and FRP tube(s), 

respectively. ns is the steel modular ratio (ns = Es/Eco). nf is the FRP modular ratio (nf = Ef 

/Eco). Es is the elasticity modulus of steel that equals 200 GPa. Eco is the elasticity modulus of 

concrete calculated as '4500 cco fE  based on the cylinders test. Ef is the elasticity modulus 

of the FRP tube, which is approximated as the average of the axial elasticity modulus in 

tension and in compression. 
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In this study, the suggested cracking moment
*

crM in deflection calculations is calculated as: 

tgcrcrcr Y.Iη.fη.M=M *
 (6.8) 

'62.0 ccr ff   (6.9) 

η is a proposed reduction factor inspired from Bischoff and Gross (2011) conclusion that the 

member stiffness is significantly affected by the cracking moment and degrades rapidly after 

the first crack. This reduction factor, η, accounts for the tensile stresses developed in the 

concrete from restraint to shrinkage by the embedded reinforcement, the roughened FRP 

tubes, and the tight position of concrete inside the composite CFFT section. Based on this 

study, η is proposed as 0.8 and 0.7 for the fully-CFFT beams and the partially-CFFT beams, 

respectively. Yt is the distance of the extreme tension fiber of concrete from the centroid, 

which is calculated as: 

ffssc

fffssscc

t
An)A-(nA

YAnY)A-(nYA
=Y





1

1
 

 

(6.10) 

Where, Yc is the distance between the center of gravity (Cg) of the concrete section and a 

datum (the extreme tension fiber of concrete). Ys and Yf are the distance between the Cg of the 

steel bars and the FRP tube(s) and the datum, respectively. 

Many researchers concluded that the reinforcement ratio should be considered in Branson’s 

equation for Ie [Yost et al. 2003; Rafi and Nadjai 2009; Al-Sunna et al. 2012; ACI 440.1R 

2015]. The current test program does not contain experimental data for variable steel 

reinforcement ratio. Therefore, the experimental data was enriched by adding some 

unreinforced CFFT beam specimens from previous work for Fam et al. (2005) and Belzer et 

al. (2013) in addition to results from the parametric study carried out on fully-CFFT beams 

(see Chapter 4) to investigate the steel reinforcement. The results of the parametric study 

were used to enrich the experimental data as shown in Figure 6.3 and 6.4. 
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Figures 6.1 and 6.2 plot correlations between Ie / Ig and Ma evaluated from the experimental 

results of the fully-CFFT beams and some partially-CFFT beams, respectively. Figure 6.3 

plots correlations between Ie / Ig and Ma evaluated from the parametric study on two different 

FRP tubes with variable steel reinforcement ratios. Note that, Ie is evaluated from Eq. (6.6), 

and Ig is evaluated from Eq. (6.7). As seen, the effective moment of inertia has three stages in 

reinforced CFFT beams: (1) Pre-cracking stage, (2) Pre-yielding stage, and (3) Post-yielding 

stage.  

Figures 6.5 to 6.10 plot the experimental Ie / Ig and Ma /Mcr of the fully-CFFT beams 

compared to those evaluated from Branson and Bischoff equations. Note that, Figure 6.5 

plots the results of the RC beams considering it as a CFFT beam with zero tube thickness. It 

can be seen that Branson and Bischoff equations do not consider well the change in the tube 

thickness at the pre-yielding stage and do not consider the post-yielding stage at all.  

Figures 6.11 to 6.15 plot the experimental Ie / Ig and Ma /Mcr of the partially-CFFT beams 

compared to those evaluated from Branson and Bischoff equations. Branson and Bischoff 

equations do not consider well the change in the tube thickness at the pre-yielding stage and 

do not consider the post-yielding stage at all. In addition, the experimental Ie of the partially-

CFFT beams goes down the theoretical Icr. This indicates that the composite action between 

the concrete and the steel reinforcement may not be as perfect as assumed due to the inner 

hollow FRP. Accordingly, the equation of Ie should provide a transition between Ig and a 

certain fraction of Icr. Such an equation was proposed by Benmokrane et al. (1996) as given 

in Eq. (6.11). Where, they provided a coefficient α, which reflects the reduced composite 

action between the concrete and the FRP bars in their FRP-RC beams. α and β are specific 

coefficients for their particular tests and equal 0.84 and 7, respectively. 
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6.4.1 Procedure of Analysis and Assumptions 

6.4.1.1 At the Pre-Cracking Stage (Ma ≤ Mcr) 

The effective moment of inertia is considered equivalent to the gross moment of inertia of the 

non-cracked section transformed to concrete (Ie = Ig). 

6.4.1.2 At the Pre-Yielding Stage (Mcr ≤ Ma ≤ My) 

From every fully-CFFT beam, experimental or parametric, an individual power m is 

evaluated as follows: 
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Then the values of the power m for all the CFFT beams were analyzed by regression analysis 

considering variable reinforcement ratios of the FRP tubes and the steel reinforcement and 

the concrete strength as shown in Figure 6.4. Based on the regression analysis factors, the 

effect of the concrete compressive strength f’c is negligible and can be eliminated. However, 

the concrete elasticity modulus is considered in calculating the modular ratio of the FRP tube 

and steel rebar. A new power m is developed as shown in Eq. (6.16).  

  165.1
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ssff nρnρ
m=


 (6.16) 
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Where ρf is the FRP tube reinforcement ratio (ρf = Atube / bh), ρs is the steel reinforcement 

ratio (ρs = As / bh), b is the inner width of the section, and h is the inner height of the section.  

A new factor α is also proposed to consider the low composite action due to the inner void in 

the partially-CFFT beams as discussed before. This factor, α, was found equivalent to the 

ratio between the gross moments of inertia of the CFFT section with a void to a 

corresponding fully section as shown in Eq. (6.17) 

 section)g(full

void)  with(sectiong

I

I
=α  (6.17) 

Based on the current study, α = 1 in case of fully-CFFT beams (no voids), α = 0.89 in case of 

partially-CFFT beams with circular voids, and α = 0.86 in case of partially-CFFT beams with 

square voids.  

Then, the effective moment of inertia at the pre-yielding stage of any reinforced or 

unreinforced fully or partially-CFFT beam can be calculated as: 
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Where η is a proposed reduction factor equals 0.8 for the fully-CFFT beams and equals 0.7 

for the partially-CFFT beams with circular or square voids as discussed before.  

6.4.1.3 At the Post-Yielding Stage (My ≤ Ma ≤ Mu) 

Figures 6.5 to 6.15 show that at the post-yielding stage, the experimental Ie degraded and 

became lower than Icr. Note that, Icr was calculated upon a full value of steel elasticity 

modulus Es at the pre-yielding stage. While at the post-yielding stage, it is rational to neglect 

Es and to re-calculate a new I’cr for the cracked transformed section neglecting the yielded 

steel. I’cr will be the new lower limit for Ie in Branson’s equation, while the upper limit will 

be taken as the last computed effective moment of inertia from the pre-yielding stage I’e, 

which is calculated from Eq. (6.18). Also at the post-yielding stage, My should replace Mcr 

since it becomes the beginning moment at this stage. Then, the effective moment of inertia at 
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the post-yielding stage of any reinforced CFFT beam, fully or partially-CFFT beams, can be 

calculate as:  
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Where, the power m, calculated from Eq. (6.16), could be used again in the post-yielding 

stage.  

The predicted results give a reasonable estimation for the effective moment of inertia in the 

pre-yielding stage as well as the post-yielding stage as shown in Figures 6.5 to 6.15 

6.5 CONCLUSIONS 

Theoretical investigations were carried out to verify the applicability of Branson’s equation 

to predict the effective moment of inertia of rectangular fully and partially-CFFT beams. 

Based on the results of these investigations, the following findings can be drawn: 

1) The steel-reinforced CFFT beams exhibit superior additional flexural strength after 

yielding of the embedded steel reinforcement. However, the flexural stiffness decreases 

due to the low elastic modulus of the FRP tube. New model for calculating the effective 

moment of inertia Ie was developed to address the post-yielding behaviour of this type 

of hybrid composite beams. 

2) At the pre-yielding stage, a new coefficient η was proposed as a reduction factor for the 

cracking moment. This coefficient, η, accounts for the tensile stresses developed in the 

concrete from restraint to shrinkage by the embedded reinforcement, the roughened 

FRP tube(s), and the tight position of concrete inside the composite section. Based on 

this study, η is 0.8 and 0.7 for the fully-CFFT beams and the partially-CFFT beams. 

3) At the pre-yielding stage, a new coefficient α was proposed as a reduction factor for the 

moment of inertia of the cracked transformed section Icr in the partially-CFFT beams. 

This coefficient, α, accounts for the imperfect composite action due to the inner void. 

Based on this study, α is the ratio between the gross moment of inertia for a 

corresponding fully section to the gross moment of inertia for the voided section. 
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4) A new power m for Branson’s equation was developed. This power addresses the 

reinforcement ratios of the FRP tube and steel, in addition it addresses the concrete 

strength in terms of its elasticity modulus. This power can be used in the pre-yielding 

stage and the post-yielding stage.  

5) New assumptions for Branson’s equation were suggested to address the post yielding 

stage. A new lower limit for Ie should be calculated as the moment of inertia of cracked 

transformed section neglecting the yielded steel I’cr. While the upper limit should be 

taken as the last computed effective moment of inertia at the pre-yielding stage I’e. 

Also, My should replace Mcr since it becomes the beginning moment at the post-

yielding stage. 

6) The predicted results give a reasonable estimation of the effective moment of inertia in 

the pre-yielding stage as well as the post-yielding stage. 
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Figure  6.1 – Variation of the effective moment of inertia in fully-CFFT beams 

 

 

Figure  6.2 – Variation of the effective moment of inertia in partially-CFFT beams 
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(a) Variation of the effective moment of inertia in a fully-CFFT beam has tf  = 4 mm 

thickness, Ef  = 14 GPa, and concrete strength 49 MPa 

 

 

(b) Variation of the effective moment of inertia in a fully-CFFT beam has tf  = 14 mm 

thickness, Ef  = 14 GPa, and concrete strength 49 MPa 

 

Figure  6.3 – Variation of the effective moment of inertia due to different steel reinforcement 

ratios in fully-CFFT beams (from parametric study) 
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Figure  6.4 – Correlations between m and ρf nf + ρs ρs   

 

 

Figure  6.5 – Correlations between 
g

e

I

I
 and 

cr

a

M

M
 in the RC beams 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5

I e
 /

 I
g
 

Ma / Mcr 

Exp. 
Branson’s Eq. 

Bischoff’s Eq. 

Proposed Eq. 

My / Mcr 

Icr / Ig pre-yield 

Crack 

Yield 

Eq. (6.18) 

η = 0.8 

α = 1.0 

m = 4.5 



Chapter 6: Defection Prediction of Rectangular CFFT Beams 

  216 

 

 

Figure  6.6 – Correlations between 
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I
 and 
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 in the fully-CFFT beams OR230 

 

 

Figure  6.7 – Correlations between 
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I

I
 and 
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M
 in the fully-CFFT beams OR430 
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Figure  6.8 – Correlations between 
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 and 
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Figure  6.9 – Correlations between 
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I
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 and 
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 in the fully-CFFT beams OR1230 
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Figure  6.10 – Correlations between 
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 and 
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 in the fully-CFFT beams OR1645 

 

 

Figure  6.11 – Correlations between 
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I

I
 and 
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M
 in the partially-CFFT beam OR230-IC430 
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CHAPTER 7                                     

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 CONCLUSIONS 

This dissertation presents experimental and theoretical investigations on the flexural 

behaviour of rectangular concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) beams 

with steel rebar. The beams contain outer rectangular filament-wound glass-FRP (GFRP) 

tubes fully-or-partially filled with concrete and were reinforced with steel rebar at the tension 

side only. Inner hollow circular or square filament-wound GFRP tubes, shifted toward the 

tension zone, were provided inside the CFFT beam to eliminate the excess weight of the 

cracked concrete at the tension side. The tube surfaces adjacent to the concrete were 

roughened by sand coating to achieve a full composite action. Several test variables were 

chosen to investigate the effect of the outer and inner tubes thickness, fibers laminates, and 

shape on the flexural behaviour of such hybrid CFFT beams. To fulfil the objectives of the 

study, twenty-four full-scale beam specimens, 3200 mm long and 305×406 mm
2
 cross 

section, were tested under a four-point bending. These specimens include eight fully-CFFT 

beams with wide range of tube thickness of 3.4 mm to 14.2 mm, fourteen partially-CFFT 

beams with different outer and inner tubes configurations, and two conventional steel-

reinforced concrete (RC) beams as control specimens. Analytical study has been developed 

to predict theoretically the moment-curvature response of rectangular CFFT beams. Then, the 

curvatures along the span of the beams are integrated to predict the deflection. The analytical 

model accounts for the confinement and tension stiffening of concrete. Comparison between 

the experimental results and the theoretical results have been carried out in terms of moment-

curvature response, moment-deflection response, strain profile along the beam depth, and the 

neutral axis position. Moreover, parametric study was carried out to investigate the effect of 

additional test variables as steel reinforcement ratio and concrete strength. Based on 

experimental and theoretical results, the applicability of Branson’s equation to predict the 
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effective moment of inertia and deflection for that type of hybrid CFFT system has been 

verified. Based on these studies, the following concluding remarks can be drawn: 

In case of fully-CFFT beams: 

1) The rectangular CFFT beams experience significantly higher ductility, higher stiffness, 

and superior strength than the RC beams. For example, the flexural strength and 

ductility of a rectangular fully-CFFT beam with a GFRP tube thickness of 14.2 mm are 

444% and 1432% higher than that of a conventional RC beam. 

2) The failure pattern of the fully-CFFT beams changes from tension to compression 

failure with increasing the FRP tube thickness. 

3) Rectangular CFFT beams with steel rebar fail gradually in a sequential manner 

(yielding of steel, buckling of compressed tube flange, and finally rupture of the fibers). 

Even after the peak load, the CFFT beams can keep a residual strength because of the 

existence of the steel that withstands high strains and elongation. 

4) The flexural strength of fully-CFFT beams increases with increasing the FRP tube 

thickness until certain limit at ρf = 10%. After this limit, buckling of the compression 

flange of the FRP tube governs the ultimate capacity of over-reinforced CFFT beams. 

Based on this study, equations are proposed to estimate approximately the flexural 

moments at different stages (first crack, yield, and ultimate).  

5) The compression failure in CFFT beams is governed by the buckling of the 

compression flange of the tubes, which can be resisted by increasing the transverse 

fibers percentage in the filament-wound FRP tubes. 

In case of partially-CFFT beams: 

6) The flexural strength of a rectangular fully-CFFT beam with a GFRP tube thickness of 

3.4 mm is 97% higher than that of a conventional RC beam and fails in tension. If an 

inner circular hollow GFRP tube with 3.1 mm thickness is provided at the tension zone, 

the flexural strength becomes 115% higher than that of a conventional RC beam. 

Moreover, the ultimate failure changes from sudden tension failure to gradual 

compression failure. 
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7) The flexural strength of the partially-CFFT beams increases with increasing the outer 

GFRP tube thickness until certain limit. After this limit, buckling of the compression 

flange of the FRP tube governs the ultimate capacity of partially-CFFT beams. 

Equations are proposed to estimate the flexural moments at different stages (first crack, 

yield, and ultimate) based on regression analysis. 

8) The inner hollow GFRP tubes in the rectangular CFFT beams pronounced active 

confinement action on the concrete in the compression zone. The circular shape of the 

inner void indicated better performance than the square void shape. Further 

experimental investigations are required to optimize the inner GFRP tube contribution 

as flexural reinforcement and confining the concrete at the compression zone. 

9) The strength-to-weight ratio of the partially-CFFT beams is significantly higher than 

that of the RC beams and higher than that of the corresponding fully-CFFT beams. 

Therefore, the partially CFFT beams could replace the heavy RC beams and fully-

CFFT beams, consequently could reduce the construction cost and the dead weight of 

structures. 

Analytical studies: 

10) The reinforced CFFT rectangular beams experience high cracking strength and new 

coefficient k values were proposed to determine well the concrete modulus of rupture (

'

ccr fkf  ). k = 0.69 for fully-CFFT beams, k = 0.66 for partially-CFFT beams with 

circular voids, and k = 0.77 for partially-CFFT beams with square voids. These values 

are assumed in case of calculating the gross moment of inertia for the total section 

elements (concrete + steel + FRP tubes) transformed to concrete and eliminating the 

void area.  

11) The analytical model proposed in this study is capable of predicting well the moment-

curvature, moment strains, neutral axis depth, and moment-deflection responses of 

fully-CFFT rectangular beams. The confinement and tension stiffening issues of 

concrete are considered in the model. 

12) Using partially confined model for concrete with plastic strain up to the ultimate 

compressive strain of the FRP tube indicated better agreement with the experimental 
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results than using the unconfined concrete model proposed by AASHTO guidelines 

(2012).  

13) Concrete tension stiffening can be considered in thick tubes, and should be ignored in 

thin tubes. However, ignoring the tension stiffening of concrete underestimates the 

experimental results and achieves safe design. 

14) Using steel reinforcement in the CFFT beams is very significant. It increases the overall 

flexural stiffness and strength and decreases the deflection of such type of FRP-

concrete composite beams. 

Deflection prediction:  

15) The steel-reinforced CFFT beams exhibit superior additional flexural strength after 

yielding of the embedded steel reinforcement. However, the flexural stiffness decreased 

due to the low elastic modulus of the FRP tube. New model for calculating the effective 

moment of inertia Ie, inspired by Branson’s equation, was developed to address the 

post-yielding behaviour of this type of hybrid composite beams. 

a) At the pre-yielding stage, a new coefficient η was proposed as a reduction factor for 

the cracking moment. This coefficient, η, accounts for the tensile stresses developed 

in the concrete from restraint to shrinkage by the embedded reinforcement, the 

roughened FRP tube(s), and the tight position of concrete inside the composite 

section. Based on this study, η is 0.8 and 0.7 for the fully-CFFT beams and the 

partially-CFFT beams, respectively. 

b) At the pre-yielding stage, a new coefficient α was proposed as a reduction factor for 

the moment of inertia of the cracked transformed section Icr in the partially-CFFT 

beams. This coefficient, α, accounts for the imperfect composite action due to the 

inner void. Based on this study, α is the ratio between the gross moments of inertia 

for the voided section to a corresponding fully section. 

c) A new power m for Branson’s equation was developed. This power addresses the 

reinforcement ratios of the FRP tube and steel, in addition it addresses the concrete 

strength through its elasticity modulus. This power can be used in the pre-yielding 

stage and the post-yielding stage.  
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d) New assumptions for Branson’s equation were suggested to address the post 

yielding stage. A new lower limit for Ie should be calculated for the moment of 

inertia of cracked transformed section neglecting the yielded steel I’cr. While the 

upper limit should be taken as the last computed effective moment of inertia at the 

pre-yielding stage I’e. Also, My should replace Mcr since it becomes the beginning 

moment at the post-yielding stage. 

e) The predicted results give a reasonable estimation of the effective moment of inertia 

in the pre-yielding stage as well as the post-yielding stage. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

Based on the findings and conclusions of the current study, it is important to continue the 

research studies in this promising field, knowing that there is still a lot of work to do. Some 

of the recommendations for future points of research are:  

1) Additional experimental work is required to optimize the void ratio and position inside 

the section of the CFFT beams. 

2) It is recommended to investigate experimentally methods to eliminate the buckling of 

the tube at the compression side. For example, increasing the transverse fibers 

percentage, increasing the compression flange thickness, or using resin webs. 

3) It is recommended to study the effect of reinforcement type (steel bars, GFRP bars, 

CFRP bars, and CFRP strips).  

4) The CFFT beams experienced high shear strength. It is recommended to investigate in 

details the shear and torsion strength of the CFFT beams. 

5) Experimental and theoretical investigations are required to investigate the performance 

of the CFFT beam system under different types of loads such as eccentric compression 

and seismic loads. 

6) Experimental and theoretical investigations are required to study how to connect the 

CFFT beam to other structural members as slabs and columns. 

These proposed studies will allow better assessment of the demand on such innovative type 

of hybrid CFFT beams as well as establishing design guidelines for CFFT beams. These 
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steps will open widely the utilization of the CFFT beams in the construction fields such as 

bridge girders, marine structures, and in the industry field as ready structural member plants. 

7.3 CONCLUSIONS EN FRANÇAIS 

Cette thèse présente des investigations théoriques et expérimentales sur le comportement en 

flexion des poutres rectangulaire des tubes de polymères renforcés de fibres remplis de béton 

(TPRFB)
2
 avec des barres d'armature en acier. Ces poutres rectangulaires tubulaires hybrides 

en PRF-béton-acier contiennent des tubes rectangulaires externes de filament en verre 

bobinés PRF (PRFV). Les tubes extérieurs ont été entièrement ou partiellement remplis de 

béton et ont été renforcés avec des barres d'armature en acier au côté en tension seulement. 

Des tubes intérieurs creux (circulaires ou carrés) de PRFV avec des filaments 

enroulés, déplacés vers la zone en tension, ont été installés à l'intérieur de la poutre en 

TPRFB pour éliminer l'excès de poids du béton fissuré au côté en tension. Pour s'acquitter de 

l'intégralité de l'action composite de cette section hybride, les surfaces des tubes adjacents au 

béton ont été rendues rugueuses par enrobage de sable. Plusieurs variables ont été choises 

pour étudier l'effet de l’épaisseur des tubes extérieurs et intérieurs, les laminés de fibres, et la 

forme sur le comportement en flexion de ces poutres hybrides de TPRFB. Pour atteindre les 

objectifs de l’étude, vingt-quatre échantillons de poutre pleine grandeur, ayant une longueur 

de 3200 mm et une section transversale de 305×406 mm
2
, ont été testés sous une flexion à 

quatre points. Ces échantillons comprennent sept poutres de TPRFB entièrement remplis 

avec une large gamme d'épaisseur de tube de 3.4 mm à 14.2 mm, quatorze poutres de TPRFB 

partiellement remplis avec de différentes configurations de tubes extérieurs et intérieurs, et 

deux poutres en béton conventionnellement armé en acier comme échantillons de 

référence. Une étude analytique a été développée pour prédire théoriquement la réponse 

moment-courbure de la section rectangulaire des poutres en TPRFB. Alors, les courbures le 

long de la portée des poutres sont intégrées pour prévoir la flèche. Le modèle analytique 

représente la non-linéarité matérielle et la raideur de tension de béton. En outre, le modèle 

s’occupe du confinement du béton. La comparaison entre les résultats expérimentaux et les 

résultats théoriques a été effectuée en termes de la réponse moment-courbure, la réponse 

                                                 
2
 TPRFB est l’acronyme du terme en anglais CFFT : Concrete-Filled FRP-Tubes. 
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moment-flèche, profils de déformations le long de profondeur des poutres, et la position de 

l'axe neutre. En outre, l'étude paramétrique a été effectuée pour examiner l'effet de nouvelles 

variables comme le ratio de l’armature d'acier et la résistance de béton. En se basant sur ces 

résultats, une étude analytique a été menée afin d'examiner la validité de l'équation de 

Branson pour prédire le moment d’inertie et la flèche de ce système hybrides en TPRFB. Sur 

la base de ces études, les conclusions suivantes peuvent être énoncées: 

Poutres de TPRFB entièrement remplis: 

1) Les poutres de TPRFB rectangulaires presentent une ductilité significativement plus 

élevée, une rigidité plus élevée et une résistance plus élevée que les poutres en béton 

armé. Par exemple, la résistance à la flexion et la ductilité de la poutre rectangulaire 

entièrement en TPRFB avec une épaisseur de tube PRFV de 14.2 mm sont 444% et 

1432% plus élevées que celles d'une poutre en béton armé conventionnel. 

2) Le modèle de rupture des poutres rectangulaires entièrement en TPRFB se transforme 

de la rupture à la tension à la rupture à la compression avec l'augmentation de 

l'épaisseur de tube PRFV. 

3) Les poutres rectangulaires en TPRFB avec des barres d'armature en acier s’effondrent 

progressivement dans une façon séquentielle (déformation plastique de l’acier, 

flambage de l’aile de tube en compression et finalement la rupture des fibres). Même 

après la rupture ultime, les poutres en TPRFB peuvent garder une résistance résiduelle 

à cause de l'existence de l'acier qui résiste les déformations élevées et l'allongement. 

4) La résistance en flexion des poutres rectangulaires entièrement en TPRFB augmente 

avec l'augmentation de l'épaisseur de tube PRFV jusqu'à la certaine limite ρf = 10%. 

Après cette limite, le flambage de l’aile en compression de tube PRFV contrôle la 

capacité ultime de poutres TPRFB sur-renforcées. Basé sur cette étude, on propose des 

équations pour évaluer les moments aux différentes phases (d'abord la fissuration, les 

déformations plastiques et l’ultime). 

5) La rupture en compression dans des poutres rectangulaires de TPRFB est contrôlée par 

le flambage de l’aile du tube en compression, qui peut être résisté en augmentant le 

pourcentage de fibres transversales dans les filaments bobinés des tubes PRF. 
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Poutres de TPRFB partiellement remplis: 

6) La résistance en flexion des poutres rectangulaires entièrement en TPRFB avec une 

épaisseur de tube PRFV de 3.4 mm est 97% plus élevée que celle d'une poutre 

conventionnelle en béton armé et elles se sont agressivement effondrées en tension. Si 

on fournit un tube circulaire et évidé en PRFV à l’intérieur de la zone en tension, la 

résistance devient 115% plus élevée que celle d'une poutre conventionnelle en béton 

armé. De plus, le comportement de la rupture ultime a été changé d’une soudaine 

rupture en tension (à cause de la rupture axiale de fibres au côté de tension) pour une 

rupture graduelle en compression (flambage de l’aile du tube en compression). 

7) La résistance en flexion des poutres rectangulaires partiellement en TPRFB augmente 

avec l'augmentation de l'épaisseur de tube PRFV extérieure jusqu'à une certaine limite. 

Après cette limite, le flambage de l’aile en compression du tube en PRF contrôle la 

capacité ultime  des poutres  partiellement en TPRFB. On propose des équations pour 

évaluer les moments aux différentes phases (d'abord la fissuration, les déformations 

plastiques et l’ultime) basé sur l'analyse de régression. 

8) La cavité intérieure des tubes PRFV dans les poutres rectangulaires en TPRFB a 

engendre une action de confinement active sur le béton dans la zone de compression. 

La forme circulaire des vides internes a indiqué une meilleure performance que le vide 

carré. 

9) Les ratios résistance-poids des poutres rectangulaires partiellement en TPRFB sont 

significativement plus hauts que ceux des poutres en béton armé et plus haut que ceux 

de poutres correspondantes entièrement en TPRFB. Donc, des poutres partiellement en 

TFRB pourraient remplacer les lourdes poutres en béton armé et les poutres 

entièrement en TPRFB, et par conséquent, elles pourraient réduire le coût de transport 

et d'installation ainsi que la charge permanente des structures. 

Étude analytique: 

10) Les poutres en TPRFB partielles et entières éprouvent une résistance à la fissuration 

élevée et le module de rupture du béton (fcr) peut être augmenté. Basé sur les résultats 

de l'étude actuelle, on propose de nouvelles valeurs pour k pour bien déterminer le 
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module de rupture du béton (fcr) d’ACI 318. k = 0.69 pour de poutres entièrement en 

TPRFB, k = 0.66 pour de poutres partiellement en TPRFB avec des vides circulaires, k 

= 0.77 pour de poutres partiellement en TPRFB avec des vides carrés. Ces valeurs sont 

présumées en cas du calcul du moment d'inertie brut pour la section totale des éléments 

(le béton + acier + des tubes PRFV) transformés en béton et l'élimination de la zone des 

vides. 

11) Le modèle analytique proposé dans cette étude est capable de prévoir bien la réponse 

moment-courbure, la réponse moment-déformations, la position de l’axe neutre et la 

réponse moment-flèche des poutres rectangulaires entièrement en TPRFB.  

12) L'utilisation du modèle partiellement confiné pour le béton ayant des déformations 

plastiques jusqu'à la déformation ultime en compression des tubes PRF conforme 

mieux aux résultats expérimentaux que l'utilisation du modèle du béton non-confiné 

proposé par AASHTO (2012). 

13) La contribution du raidissement en tension du béton peut considérer cette contribution 

dans des tubes épais et on peut l’ignorer dans des tubes minces. Cependant, ignorant le 

raidissement en tension du béton sous-estime les résultats expérimentaux et réalise une 

conception sécuritaire. 

14) L'utilisation du renforcement d'acier dans Les poutres en TPRFB est très significative. 

Il augmente la rigidité et la force et diminue la flèche. 

La flèche: 

15) les poutres en TPRFB avec des barres d'armature en acier manifestent une résistance 

additionnelle en flexion après que l’armature dépasse la limite élastique. Cependant, la 

résistance en flexion a été diminuée en raison du module élastique bas du tube PRF. Le 

nouveau modèle pour calculer le moment d'inertie effectif Ie, inspiré par l'équation de 

Branson, a été développé pour adresser le comportement après la limite élastique de ce 

type des poutres composées hybrides. 

a) Avant la limite élastique, un nouveau coefficient (η) a été proposé comme un 

facteur de réduction pour le moment de fissuration. Ce coefficient (η) représente la 

tension développée dans le béton de la contrainte au rétrécissement par le 

renforcement incorporé, le tube(s) PRF devenu rude et la position serrée de béton à 
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l'intérieur de la section composée. Basé sur cette étude, η est 0.8 et 0.7 pour les 

poutres entièrement et partiellement en TPRFB, respectivement.  

b) Avant la limite élastique, on a proposé un nouveau coefficient (α) comme un facteur 

de réduction pour le moment d'inertie de la section (Icr) dans de poutres 

partiellement en TPRFB. Ce coefficient (α) représente l'imperfection de l’action 

composite à cause des vides internes. Basé sur cette étude, α est le ratio entre le 

moment d'inertie brut (Ig) pour une section entière équivalente au moment d'inertie 

brut pour la section évidée. 

c) Un nouvel exposant m pour l'équation de Branson a été développé. Cet exposant 

s’occupe des ratios d’armature du tube PRF et de l'acier, de plus il s’occupe de la de 

la résistance du béton en utilisant le module d’élasticité. Cet exposant (m) peut être 

également utilisé dans les phases de déformation élastique et plastique. 

d) De nouvelles suppositions pour l'équation de Branson ont été suggérées pour 

s’occuper de la phase après la limite élastique. Une nouvelle limite inférieure, Ie 

devrait être calculée pour le moment d'inertie de section transformée fissurée en 

négligeant l'acier dépassé la limite élastique (I'cr). Tandis que la limite supérieure 

devrait être prise comme le dernier moment d'inertie effectif calculé à la phase 

avant la limite élastique (I'e). En outre, My devrait remplacer Mcr puisque cela 

devient le moment commençant à la phase après la limite élastique. 

e) Les résultats prévus donnent une évaluation raisonnable du moment d'inertie 

effectif dans l'étape avant la limite élastique autant qu’après la limite élastique. 

7.4 RECOMMANDATIONS POUR DES TRAVAUX FUTURS 

Basé sur les découvertes et les conclusions de l'étude actuelle, il est important de continuer 

les études de recherche dans ce domaine prometteur, connaissant il y a toujours beaucoup de 

travail à faire. Certaines des recommandations pour de recherche sont :  

1) On recommande aux travaux expérimentaux supplémentaires d'optimiser le ratio des 

vides et la position à l'intérieur de la section des poutres TPRFB. 

2) On recommande d'examiner expérimentalement des méthodes pour éliminer le 

flambage des tubes en compression. Par exemple, en augmentant le pourcentage de 
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fibres transversales, en augmentant l'épaisseur de l’aile en compression, ou en utilisant 

des réseaux résineux 

3) Il est recommandé d'étudier l'effet du type d’armature (des barres d'acier, des bars de 

PRFV, des bars de CPRF et des bandes de CPRF). 

4) Le système de poutre TPRFB a éprouvé une résistance au cisaillement élevée. On 

recommande d'examiner en détail la résistance au cisaillement, la résistance à la torsion 

et le comportement de système de poutre TPRFB. 

5) Des investigations expérimentales et théoriques sont exigées pour examiner la 

performance du système de poutre TPRFB sous les différents types de charges comme 

la compression excentrique et les charges sismiques. 

6) Des investigations expérimentales et théoriques sont exigées pour étudier comment 

connecter la poutre TPRFB à d'autres membres structurels comme les dalles et les 

poteaux. 

Ces études proposées permettront une meilleure évaluation de la demande sur un tel type 

novateur de poutres TPRFB hybrides aussi bien que l'établissement des directives de 

conception exigées pour des poutres TPRFB. Ces pas ouvriront largement l'utilisation des 

poutres TPRFB dans les champs de construction comme les poutrelles de pont, les travaux 

maritimes et dans le domaine d'industrie comme des usines de membres structurels prêts. 

 

 





References 

 

  233 

 

REFERENCES 

Abouzied, A., Ammar, M., and Masmoudi, R. (2011). “Nanoparticles effect on the physical 

and mechanical properties of FRP filament-winded composites”, Proceedings of 26
th

 ASC 

Annual Technical Conference (the Second Joint US-Canada Conference on Composites), 

Montreal, Canada, September 2011, pp 1131-1140. 

Abouzied, A., Ammar, M., and Masmoudi, R. (2012b). “Nanoparticles effect on FRP 

filament-winded composites performance”, Proceedings of CICE 6
th

 International 

Conference on FRP Composites in Civil Engineering (CICE), Rome, Italy, June 2012. 

Abouzied, A., and Masmoudi, R. (2012). “Square columns confined by GFRP tube or steel 

ties”. Proceedings of 11
th

 International Symposium on fiber reinforced Polymer for 

reinforced Concrete structures FRPRCS-11, Portugal, December 2012. 

Abouzied, A., and Masmoudi, R. (2013). “Performance of square concrete-filled FRP tubes 

versus steel reinforced concrete columns”. Proceedings of 2
nd

 conference on Smart 

Monitoring, Assessment and Rehabilitation of Civil Structures SMAR2013, Istanbul, 

Turkey, September 2013. 

Abouzied, A., and Masmoudi, R. (2014). “Flexural behaviour of new partially concrete-filled 

filament-wound rectangular FRP tube beams”. Proceedings of 4
th

 International Structural 

Specialty Conference CSCE2014, Halifax, NS, May 2014, CST-171:1-10.  

Abouzied, A., and Masmoudi, R. (2015).  “New high-performance rectangular FRP-tube 

beams partially filled with concrete”. ACI–Special Publication, SP-15. 

Abouzied, A., and Masmoudi, R. (2015). “New design of rectangular partially concrete-filled 

filament-wound FRP tube beam”. Proceedings of 3
rd

 conference on Smart Monitoring, 

Assessment and Rehabilitation of Civil Structures SMAR 2015, Antalya, Turkey, 

September 2015.  



References 

 

  234 

 

Abouzied, A., and Masmoudi, R. (2015). “Structural performance of new fully and partially 

concrete-filled rectangular FRP-tube beams”. Elsevier–Construction and Building 

Materials Journal, 101: 652–660. 

Abouzied, A., Masmoudi, R., Gagne, R., and Tagnit-Hamou, A. (2012a). “Effect of 

nanoparticles added to vinyl ester resin on the compressive behaviour of square concrete-

filled GFRP tubes”, Proceedings of 6
th

 International Conference on Advanced Composite 

Materials in Bridges and Structures ACMPS-VI, Kingston, Canada, May 2012, pp 496-

503. 

Al-Sunna, R., Pilakoutas, K., Hajirasouliha, I., and Guadagnini, M. (2012). “Deflection 

behaviour of FRP reinforced concrete beams and slabs: An experimental investigation”. 

Elsevier Journal of Composites: Part B, 43: 2125-2134. 

American Association of State Highway and Transportation Officials (AASHTO). (2012). 

“Guide specifications for design of concrete-filled FRP tubes for flexural and axial 

members”. 1
st
 edition, Washington, DC. 

American Composites Manufacturers Association. (2004). “Composites basics: composites 

manufacturing”. http://www.mdacomposites.org (online). 

American Concrete Institute Committee. (2015). “Guide for the design and construction of 

concrete reinforced with FRP bars”. ACI 440.1R-15, Farmington Hills, MI, USA. 

American Concrete Institute. (2014). “Building code requirements for structural concrete”. 

ACI 318-14, Detroit, USA.  

American Society for Testing of Materials. (2008). “Standard test method for transition 

temperatures and enthalpies of fusion and crystallization of polymers by differential 

scanning calorimeter”. ASTM D 3418-08, West Conshohocken, PA, USA. 

American Society for Testing of Materials. (2009). “Standard specification for deformed and 

plain carbon steel bars for concrete reinforcement”. ASTM A615/A615M-09, West 

Conshohocken, PA, USA. 



References 

 

  235 

 

American Society for Testing of Materials. (2009). “Standard test methods for constituent 

content of composite materials”. ASTM D 3171-09, West Conshohocken, PA, USA. 

American Society for Testing of Materials. (2010). “Standard test method for compressive 

properties of rigid plastics”. ASTM D695-10, West Conshohocken, PA, USA. 

American Society for Testing of Materials. (2010). “Standard test method for tensile 

properties of plastics”. ASTM D 638-10, West Conshohocken, PA, USA. 

American Society for Testing of Materials. (2012). “Standard test method for compressive 

strength of cylindrical concrete specimens”. ASTM C39-12, West Conshohocken, PA, 

USA. 

American Society for Testing of Materials. (2014). “Standard test method for tensile 

properties of polymer matrix composite materials”. ASTM D3039/D3039M, West 

Conshohocken, PA, USA. 

American Society for Testing of Materials. (2014). “Standard test method for apparent hoop 

tensile strength of plastic or reinforced plastic pipe by split disk method”. ASTM D2290-

14, West Conshohocken, PA, USA. 

Balya, B. (2004). “Design and analysis of filament wound composite tubes”. M.Sc. thesis, 

Middle East technical University, Ankara, Turkey, p.14-20. 

Beckwith, S. (2006). “Composites innovations and advanced technology synonymous with 

pacific rim in 06”. Arlington, Composite Manufacturing. 

Belzer, B., Robinson, M., and Fick, D. (2013). “Composite action of concrete-filled 

rectangular GFRP tubes”. ASCE Composites for Construction Journal, 17(5): 722-731. 

Benmokrane, B., Chaallal, O., and Masmoudi, R. (1996). “Flexural response of concrete 

beams reinforced with FRP reinforcing bars”. ACI Structural Journal, 93(1): 46-55. 



References 

 

  236 

 

Bischoff, P. H. (2005). “Re-evaluation of deflection prediction for concrete beams reinforced 

with steel and fiber reinforced polymer bars”. Structural Engineering Journal, 131(5): 

752-767. 

Bischoff, P. H. (2007). “Deflection calculation of FRP reinforced concrete beams based on 

modification to the existing Branson equation”. ASCE Composites for Construction 

Journal, 11(1): 4-14. 

Bischoff, P. H., and Gross, P. (2011). “Equivalent moment of inertia based on integration of 

curvature”. ASCE Composites for Construction Journal, 15(3): 263-273. 

Branson, D. E. (1965). “Instantaneous and time-dependent deflections of simple and 

continuous reinforced concrete beams”. HPR Report No.7: Part 1, Alabama Highway 

Department, Bureau of Public Roads, Montgomery, AL, USA, p. 78.  

Canadian Standard Association. (2014). “Design of concrete structures”. CSA Standard 

CAN/CSA-A23.3-14, Rexdale, ON, Canada. 

Canadian Standard Association. (2014). “Canadian Highway Bridge design code”. CSA 

Standard CAN/CSA-S6-14, Toronto, ON, Canada. 

Canadian Standard Association. (2012). “Design and construction of building components 

with fiber reinforced polymers”. CSA Standard CAN/CSA-S806, Toronto, ON, Canada. 

Canning, L., Hollaway, L., and Thorne, A. (1999). “Manufacture, testing and numerical 

analysis of an innovative polymer compo-site/concrete structural unit”. Proceedings of the 

Institution of Civil Engineers-Structures and Buildings, 134(3): 231-241. 

Chakrapan, T. (2005). “Use of fiber-reinforced polymer composite in bridge structures”. 

M.Sc. thesis, Department of Civil and Environmental Engineering, Massachusetts Institute 

of Technology, Cambridge, MA, USA.  

http://www.icevirtuallibrary.com/content/serial/stbu;jsessionid=ac2bdfojrr2h2.z-telford-01
http://www.icevirtuallibrary.com/content/serial/stbu;jsessionid=ac2bdfojrr2h2.z-telford-01
http://www.icevirtuallibrary.com/content/issue/istbu/134/3;jsessionid=ac2bdfojrr2h2.z-telford-01


References 

 

  237 

 

Charkas, H., Rasheed, H., and Melhem, G. (2002). “Simplified load-deflection calculations 

of FRP strengthened RC beams based on a rigorous approach”. Proceedings of 15
th

 

Engineering Mechanics Conference (ASCE), New York, USA, June 2002. 

Cole, B. (2005). “Flexural and shear performance of reinforced concrete-filled fibre 

reinforced polymer tubes”. MSc thesis, Queen’s University, Kingston, ON, Canada. 

Cole, B., and Fam, A. (2006). “Flexural load testing of concrete-filled FRP tubes with 

longitudinal steel and FRP rebar”. ASCE Composites for Construction Journal, 10: 161-

171. 

Collins, M. P., and Mitchell, D. (1997). “Prestressed concrete structures”, Response 

Publications, Canada. 

Davol, A., Burgueno, R., and Seible F. (2001). “Flexural behavior of circular concrete filled 

FRP shells”. ASCE Structural Engineering Journal, 127(7): 810-817. 

Deskovic, N., and Trinatafillou, T. (1995). “Innovative design of FRP combined with 

concrete: short term behaviour”. ASCE Structural Engineering Journal, 121(7): 1069-

1078. 

Elmahdy, A., El-Hacha, R., and Shrive, N. (2008). “Flexural behaviour of hybrid composite 

girders in bridge construction”. Fourth International Conference on FRP Composites in 

Civil Engineering (CICE2008), Zurich, Switzerland, July 2008. 

Elmihilmy, M., and Tedesco, W. (2000). “Deflection of reinforced concrete beams 

strengthened with fiber-reinforced polymer (FRP) plates”. ACI Structural Journal, 97(5): 

679-688. 

Fam, A. (2000). “Concrete-filled fibre-reinforced polymer tubes for axial and flexural 

structural members”. Ph.D thesis, Department of Civil and Geological Engineering, The 

University of Manitoba, Winnipeg, Manitoba, Canada, p. 183-191. 



References 

 

  238 

 

Fam, A., and Rizkalla, S. (2001). “Behaviour of axially loaded concrete-filled circular fiber 

reinforced polymer tubes”. ACI Structural Journal, 98: 280-290. 

Fam, A., and Rizkalla, S. (2002). “Flexural Behaviour of Concrete-Filled Fiber-Reinforced 

Polymer Circular Tubes”. ASCE Composites for Construction Journal, 6(2): 123-132. 

Fam, A., and Rizkalla, S. (2003). “Large scale testing and analysis of hybrid concrete 

/composite tubes for circular beam-column applications”. Elsevier Journal of 

Construction and Building Materials, 17: 507-516. 

Fam, A., and Son, J. K. (2008). “Finite element modeling of hollow and concrete-filled fiber 

composite tubes in flexure: Optimization of partial filling and a design method for poles”. 

Engineering Structures Journal, 30: 2667-2676. 

Fam, A., Schnerch, D., Rizkalla, S. (2005). “Rectangular filament-wound glass fiber-

reinforced polymer tubes filled with concrete under flexural and axial loading: 

experimental investigation”. ASCE Composites for Construction Journal. 9(1): 25-33. 

Frank, C. S. (1995). “A filament-wound structure technology overview”, Materials 

Chemistry and Physics Journal, 42: 96-100. 

Hazra, T. (2011). “A low cost 2-axis plc controlled filament winding machine with simplified 

fiber winding angle and tension control system”. M.Sc. Thesis, Department of Civil 

Engineering, Dalhousie University, Halifax, NS, Canada, p. 6-12. 

Hong, W. K., and Kim, H. C. (2004). “Behavior of concrete columns confined by carbon 

composite tubes”. Canadian Journal of Civil Engineering, 31(2): 178-188. 

Idris, Y., and Ozbakkaloglu, T. (2013). “Seismic behavior of high-strength concrete-filled 

FRP tube columns”. ASCE Composites for Construction Journal, 17(6): 04013013. 

Idris, Y., and Ozbakkaloglu, T. (2014). “Flexural behaviour of FRP-HSC-steel composite 

beams”. Elsevier Journal of Thin-Walled Structures, 80: 207-216. 



References 

 

  239 

 

Iftekhar, A. (2004). “Shear response and bending fatigue behaviour of concrete-filled fiber-

reinforced polymer tubes”. Ph.D. thesis, Civil and Environmental Engineering 

Department, North Carolina State University, Raleigh, NC, USA, p. 6-8. 

ISIS Canada. (2008). “FRP rehabilitation of reinforced concrete structures”. Design Manual 

No.4, Winnipeg, Manitoba, Canada. 

Kaynak, C., Erdiller, E. S., Parans, L., and Senel, F. (2005). “Use of split-disk tests for the 

process parameters of filament wound epoxy composite tubes”. Polymer Testing Journal, 

24: 648-655. 

Khennane, A. (2008). “A new design concept for a hybrid FRP-high strength concrete beam 

for infrastructure applications”. Fourth International Conference on FRP Composites in 

Civil Engineering (CICE2008), Zurich, Switzerland, July 2008. 

Khennane, A. (2010). “Manufacture and testing of a hybrid beam using a pultruded profile 

and high strength concrete”. Australian Journal of Structural Engineering, 10(2): 145-

156. 

Lam, L., and Teng J. G. (2003). “Design-oriented stress-strain model for FRP-confined 

concrete”. Elsevier Journal of Construction and Building Materials, 17: 471-489. 

Lam, L., and Teng, J. G. (2004). “Ultimate condition of FRP-confined concrete”. ASCE 

Composites for Construction Journal, 8(6): 539-548. 

Li, J., and Hadi, M. (2003). “Behaviour of externally confined high strength concrete 

columns under eccentric loading”. ASCE Composites for Construction Journal, 62(2): 

145-153. 

Mallick, P. K. (2007). “Fiber-reinforced composites: materials, manufacturing, and design”. 

Third edition, Taylor & Francis Group, FL, USA, sec. 5.5. 



References 

 

  240 

 

Mandal, S., Hoskin, A., and Fam, A. (2005). “Influence of concrete strength on confinement 

effectiveness of fiber-reinforced polymer circular jackets”. ACI Structural Journal, 

102(3): 383-392. 

Masmoudi, R., Abouzied, A., and Mohamed, H. (2015). “New hybrid concrete filled FRP 

stay-in-place forms as high-performance structural members”. 13
th

 Arab Structural 

Engineering Conference ASEC, University of Blida, Algeria, December 2015. 

Masmoudi, R., Theriault, M., and Benmokrane, B. (1998). “Flexural behaviour of concrete 

beams reinforced with deformed fiber reinforced plastic reinforcing rods”. ACI Structural 

Journal, 95(6): 665-676. 

Mirmiran, A., Samaan, M., Cabrera, S., and Shahawy, M. (1998). “Design, Manufacture and 

Testing of a New Hybrid Column”, Elsevier Journal of Construction and Building 

Materials, 12(1): 39-49. 

Mirmiran, A., Shahawy, M., and Beitleman, T. (2001). “Slenderness limit for hybrid FRP 

concrete columns”. ASCE Composites for Construction Journal, 5(1): 26-34. 

Mirmiran, A., Shahawy, M., El Khoury, C., and Naguib, W. (2000). “Large beam-column 

tests on FRP-filled composite tubes”. ACI Structural Journal, 97(2): 268-276. 

Mohamed, H., Abdel-Baky, H., and Masmoudi, R. (2010). “Nonlinear stability analysis of 

concrete-filled fiber-reinforced polymer-tube columns: experimental and theoretical 

investigation”. ACI Structural Journal, 107: 699-708. 

Mohamed, H., and Masmoudi, R. (2008a). “Compressive behaviour of filament winded 

GFRP tube-encased concrete columns”. Proceedings of Fourth International Conference 

on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, July 2008. 

Mohamed, H., and Masmoudi, R. (2008b). “Compressive behaviour of reinforced concrete 

filled FRP tubes”. ACI Special Publications, SP-257, 6: 91-108. 



References 

 

  241 

 

Mohamed, H., and Masmoudi, R. (2010a). “Axial load capacity of reinforced concrete- filled 

FRP tubes columns: experimental versus theoretical predictions”. ASCE Composites for 

Construction Journal, 14(2): 1-13. 

Mohamed, H., and Masmoudi, R. (2010b). “Flexural strength and behaviour of steel and 

FRP-reinforced concrete-filled FRP tube beams”. Elsevier Journal of Engineering 

Structures, 32: 3789-3800. 

Mohamed, H., and Masmoudi, R. (2011). “Deflection prediction of steel and FRP-reinforced 

concrete-filled FRP tube beams”. ASCE Composites for Construction Journal, 15(3): 462-

472. 

Ozbakkaloglu, T. (2013a). “Compressive behavior of concrete-filled FRP tube columns: 

assessment of critical column parameters”. Engineering Structures Journal, 51: 188-99. 

Ozbakkaloglu, T. (2013b). “Concrete-filled FRP tubes: manufacture and testing of new forms 

designed for improved performance”. ASCE Composites for Construction Journal, 17(2): 

80-91.  

Ozbakkaloglu, T., and Oehlers, D. J. (2008a). “Concrete-filled square and rectangular FRP 

tubes under axial compression”. ASCE Composites for Construction Journal, 12(4): 69-

77. 

Ozbakkaloglu, T., and Oehlers, D. J. (2008b). “Manufacture and testing of a novel FRP tube 

confinement”. Engineering Structures Journal, 30(9): 48-59. 

Park, J. H., Jo, B. W., Yoon, S. J., and Park, S. K. (2011). “Experimental investigation on the 

structural behavior of concrete filled FRP tubes with/without steel rebar”. KSCE Civil 

Engineering Journal, 15(2): 37-45. 

Popovics, S. (1973). “A numerical approach to the complete stress-strain curve of concrete”. 

Cement and Concrete Research Journal, 3(5): 583-599. 



References 

 

  242 

 

Qasrawi, Y. (2007). “Flexural behaviour of spun-cast concrete-filled fiber-reinforced 

polymer tubes for pole applications”. M.Sc. thesis, Department of Civil Engineering, 

Queen’s University, Kingston, Ontario, Canada. 

Rafi, M. M., and Nadjai, A. (2009). “Evaluation of ACI 440 deflection model for fiber-

reinforced polymer reinforced concrete beams and suggested modification”. ACI 

Structural Journal, 106(6): 762-771. 

Said, H. (2010). “Deflection prediction for FRP-strengthened concrete beams”. ASCE 

Composites for Construction Journal, 14(2): 244-248. 

Samaan, M. (1997). “An analytical and experimental investigation of concrete-filled fiber-

reinforced plastics (FRP) tubes”. Ph.D thesis, Department of Civil and Environmental 

Engineering, University of Central Florida, Orlando, FL, USA, p. 107-108. 

Taheri, F. (1996). “Lecture notes on civil fiber-reinforced plastics”. Dalhousie University, 

Halifax, NS, Canada. 

Teng, J. G., Yu, T., Wong, Y. L., and Dong, S. L. (2007). “Hybrid FRP concrete-steel tubular 

columns: concept and behavior”. Elsevier Journal of Construction and Building 

Materials, 21(4): 846-854. 

Toutanji, H. A., and Deng, Y. (2003). “Deflection and crack-width prediction of concrete 

beams reinforced with glass FRP rods”. Elsevier Journal of Construction and Building 

Materials, 17: 69-74. 

Vincent, T., and Ozbakkaloglu, T. (2013). “Influence of fiber orientation and specimen end 

condition on axial compressive behavior of FRP-confined concrete”. Elsevier Journal of 

Construction and Building Materials, 47(8): 14-26. 

Yost, J. R., Gross, S. P., and Dinehart, D. W. (2003). “Effective moment of inertia for glass 

fiber-reinforced polymer bars”. ACI Structural Journal, 97(5): 712-719. 



References 

 

  243 

 

Yu, T., Wong, Y. L., Dong, S. L., and Lam, E. (2006). “Flexural behavior of hybrid FRP-

concrete steel double skin tubular members”. ASCE Composites for Construction Journal, 

10(5): 443-452. 

Zakaib, S., and Fam, A. (2012). “Flexural performance and moment connection of concrete-

filled GFRP tube-encased steel I-sections”. ASCE Composites for Construction Journal, 

16(5): 604-613. 

Zhu, Z., Ahmad, I., Mirmiran, A. (2006). “Seismic performance of concrete-filled FRP tube 

columns for bridge substructure”. Bridge Engineering Journal, 11(3): 359–370. 





Appendix A 

 

  245 

 

APPENDIX A 

Coupon Test Results of the Filament-Wound GFRP Tubes 

 

 

Figure A.1 – Coupons tests results of OR230 

 

 

Figure A.2 – Coupons tests results of OR430 
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Figure A.3 – Coupons tests results of OR830 

 

 

 

Figure A.4 – Coupons tests results of OR1230 
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Figure A.5 – Coupons tests results of OR1645 

 

 

 

Figure A.6 – Coupons tests results of IC230 
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Figure A.7 – Coupons tests results of IC430 

 

 

 

Figure A.8 – Coupons tests results of IS230 
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Figure A.9 – Coupons tests results of IS430 

 

 

 

Figure A.10 – Coupons tests results of IS465 
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APPENDIX B 

 

Figure B.1 – A spreadsheet for analytical study 

 

 

 


