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ABSTRACT 
 

The present study stems from our recent demonstration that a progressive increase 

in nasal intermittent positive-pressure ventilation (nIPPV) leads to active glottal 

closure in non-sedated, newborn lambs. The aim of the study was to determine 

whether the mechanisms involved in this glottal narrowing during nIPPV originate 

from upper airway receptors and/or from bronchopulmonary receptors. Two groups of 

newborn lambs were chronically instrumented for polysomnographic recording: the 

first group of 5 lambs underwent a two-step bilateral thoracic vagotomy using video-

assisted thoracoscopic surgery (bilateral vagotomy group) while the second group 

comprised of 6 lambs underwent chronic laryngo-tracheal separation (isolated upper 

airway group). A few days later, polysomnographic recordings were performed to 

assess glottal muscle EMG during step-increases in nIPPV (volume control mode). 

Results show that active glottal narrowing does not develop when nIPPV is applied 

on the upper airways only, and that this narrowing is prevented by bilateral vagotomy 

when nIPPV is applied on intact airways. In conclusion, active glottal narrowing in 

response to increasing nIPPV originates from bronchopulmonary receptors.  
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INTRODUCTION 

Nasal intermittent positive pressure ventilation (nIPPV) is increasingly used to treat 

acute and chronic respiratory insufficiency, including in the neonatal period, in an 

effort to decrease the complications related to endotracheal tube ventilation (8). 

However, a major difference in the application of IPPV via the nasal vs. endotracheal 

route is generally overlooked, namely the presence of the larynx, a closing valve, 

which can prevent nIPPV from reaching the lungs. A few studies have shown that 

increasing nIPPV in either the volume control or pressure support mode induces 

active glottal closure in both adult humans and newborn lambs (4, 9). Our studies 

also showed that this active glottal narrowing in lambs was related to both a decrease 

in glottal dilator EMG activity (cricothyroid, CT) and an increase in glottal constrictor 

EMG activity (thyroarytenoid muscle, TA) (9). However, the mechanisms by which 

this active glottal narrowing is induced during nIPPV are totally unknown. Results 

from our previous study strongly suggest that afferent messages from either central 

or peripheral chemoreceptors are not involved. Theoretically, the reflex mechanism 

responsible for glottal narrowing could originate from upper airways receptors, which 

include pressure, temperature (flow) and drive receptors (12) or from 

bronchopulmonary receptors, which include the slow adapting (stretch) receptors, the 

rapidly adapting pulmonary (or irritant) receptors and the bronchopulmonary C-fiber 

endings (17). Finally, the parietal rib cage mechanoreceptors, including the 

neuromuscular spindles, Golgi tendon organs and articulation receptors may also 

bear some responsibility. The aim of the present study conducted in lambs was thus 

to determine if the mechanisms involved in active glottal narrowing during increasing 

nIPPV originate from upper airway receptors and/or bronchopulmonary receptors. 



MATERIALS AND METHODS 

Experiments were conducted in 14 mixed-bred lambs aged from 2 to 6 days and 

weighing 4.1 kg (SD 0.8; range 2.9 from 5.4) on the day of the experiment. All lambs 

were born at term by spontaneous vaginal delivery at the sheepfold of our usual 

provider. The protocol of the study was approved by the ethics committee for animal 

care and experimentation of the Université de Sherbrooke. 

 

Surgical preparation 

Lambs were separated in 2 groups prior to surgery, including 8 lambs instrumented 

for bilateral vagotomy and 6 lambs with isolated upper airways. Surgical implantation 

of electrodes for subsequent polysomnographic recording was identical in all lambs 

(see Common instrumentation below).  However, the remaining surgery differed, 

depending on the experimental group. 

Common instrumentation. Aseptic surgery was performed at 1-2 days of life under 

general anesthesia (2 % isoflurane + 30 % N20 + 68 % O2). Endotracheal intubation 

was preceded by an intramuscular injection of atropine sulphate (0.1 mg/kg), 

ketamine (10 mg/kg) and antibiotics (5 mg/kg gentamicin and 7,500 IU/kg 

Duplocillin). One dose of ketoprofen (3 mg/kg IM) was given immediately before 

surgery for analgesia and repeated if needed on the next day. An intravenous 

injection of Ringers lactate (10 mL/Kg) was administered prior to surgery and a 

mixture of 5% dextrose in NaCl 0.9% was systematically infused perioperatively (80 

mL/Kg/ day). Chronic instrumentation was performed as previously described (9,16). 

Briefly, bipolar gold-plated stainless steel electrodes were inserted into the two 

thyroarytenoid muscles (TA, a glottal adductor) and bipolar enameled chrome wires 

were sewn into the two cricothyroid muscles (CT, a glottal dilator) for recording 



electromyographic activity (EMG). Two right-angled, platinum needle-electrodes were 

inserted into the parietal cortex through the skull, for electrocorticogram (EEG) 

recording. One platinum needle-electrode was also inserted under the scalp as a 

ground. Leads from all electrodes were subcutaneously tunneled to exit on the back 

of the lamb and housed in a pocket on a vest. Finally, a catheter was placed into the 

brachial artery for measuring pH, PO2, PCO2, HCO3- and hemoglobin saturation 

throughout surgery and on ensuing days thereafter. Heart rate, rectal temperature, 

pulse oximetry, end tidal CO2 and blood pH were continuously monitored throughout 

surgery. Post-operative care included daily intramuscular injection of 5 mg/kg 

gentamicin and 0.05 ml/kg duplocilline until the end of the experimentation; in 

addition, the arterial catheter was flushed twice a day with a heparinized solution. 

Surgical instrumentation for bilateral vagotomy. All 8 lambs underwent a 2 step, 

intrathoracic bilateral vagotomy, which first involved Video-Assisted Thoracoscopic 

Surgery (VATS) (KARL STORZ GmbH & Co. KG, Tuttlingen, Germany). After 

generating a right pneumothorax by CO2 insufflation, the endoscope and surgical 

instruments were introduced into the pleural space through 2 small (5-10 mm) 

parietal incisions. The bare portion of an enameled chrome wire (0.12 mm diameter, 

Leico Industries Inc., New York, NY, USA) was positioned around the vagus nerve, 

just caudally to the origin of the recurrent laryngeal nerve. The remaining enameled 

wire was glued in polyethylene tubing, with the two ends exiting through the skin. 

Once completed on the right side, the same procedure was repeated on the left. 

Finally, 2 to 5 days after surgery, a bilateral vagotomy was performed as previously 

described for sectioning the superior laryngeal nerve (3). The two bare ends of 

chrome wire protruding from the right thorax with the polyethylene tubing were 

attached to an electrocauter (Electrosectilis, Model 770, Britcher Corp., CA, USA). 



Traction was then applied to the wire during electrocautery, thus sectioning the vagus 

nerve. The procedure was completed in less than 5 sec and resulted in minimal 

discomfort for the lamb (startle at most). The procedure was then repeated on the left 

side. Bilateral vagotomy was confirmed by multiple means, including i) by pulling off 

the unbroken wires from the thorax just after electrocautery,  ii) by immediately 

observing a decrease in respiratory rate, and iii) by systematic verification at 

necropsy. This unique model allowed studying the same lambs before and after 

bilateral vagotomy, each lamb acting as its own control.  

Surgery for the isolated upper airway group. All lambs in this group underwent 

chronic separation of their upper airways from lower airways. The separation was 

performed directly under the larynx, just above the first tracheal ring. The caudal end 

of the larynx was attached to a 2 cm-long Dacron aortic prosthesis, whose caudal 

end was attached to a neck stoma. In addition, a tracheostomy was performed 

between the fifth and sixth rings of the trachea to which a 2 cm-long endotracheal 

tube was sutured and glued externally around the tracheostomy, in such a way that 

there was no permanent endotracheal tube. Finally, the rostral end of the trachea 

was sutured. This unique model allowed to perform nasal mask ventilation to the 

isolated upper airways while the lamb was spontaneously breathing through the 

tracheostomy, or to perform mechanical ventilation directly through the tracheostomy, 

without any upper airway ventilation. To our knowledge, this chronic, non-sedated 

animal model with isolated upper airways, which has taken several months to design 

with the help of an experienced ENT surgeon (DD), is unique. 

 

Experimental equipment 



Ventilatory equipment. Intermittent positive pressure ventilation was performed 

using a Siemens Servo 300 ventilator and Servo Screen (Siemens Corporation, New 

York, NY) with heated (32ºC) and humidified air. Nasal ventilation was performed 

through a custom-designed nasal mask, as previously described (9). Briefly, the 

mask was built from a plaster shell, which had a double nasal canula, a naso-gastric 

tube and a plastic catheter for mask pressure recording and was filled with dental 

paste to best fit the muzzle of each lamb. A small, non-diffusing gas bag (200 ml) 

was attached to the external end of the Dacron tube, as a surrogate for the lamb’s 

lungs. 

Recording equipment. Just prior to polysomnographic recordings, 2 needle 

electrodes were inserted subcutaneously on each side of one eye for 

electrooculogram (EOG) recording and a pulse oximeter (SpO2) probe was attached 

at the base of the tail. In addition, elastic bands for respiratory inductance 

plethysmography (Respitrace, NIMS, Miami Beach, FL) were installed on the thorax 

and the abdomen to monitor respiratory movements and assess lung volume 

variations qualitatively. Mask pressure was monitored by using calibrated pressure 

transducers (MP 45-30-871, Validyne, Northridge, CA). All recordings were carried 

out in non-sedated lambs, using our custom-designed radiotelemetry system. The 

transmitter used for this study was composed of differential channels (EEG, EOG, 

ECG and 4 EMGs) as previously described (6, 7). All transmitted signals were fed 

from the receiver to the acquisition system. The raw EMG signals were sampled at 

500 Hz, rectified, integrated and averaged (moving time average = 100 ms). The 

telemetry transmitter was connected to the electrode leads and housed in the pocket 

of a vest worn by the lamb. Polysomnographic signals were recorded on a PC, using 



Acknowledge software (version 3.7.3, BioPac Systems, Inc., Santa Barbara, CA, 

USA). 

 

Design of the study  

On arrival in our in-house animal quarters, only lambs of the bilateral vagotomy group 

were housed with their mother. Lambs from the isolated upper airway group were 

housed in a Plexiglas chamber (1.2 m3, in agreement with recommendations by the 

Canadian Council for Animal Care for sheep housing) through which water-saturated 

air was continuously flowed (10L/min) using an Allegiance AirlifeTM Nebulizer (no. 

5207) and a home humidifier. Tracheal secretions were systematically suctioned at 

least three times a day, according to American Thoracic Society recommendations 

(15). Lambs from this group were also fed ad libitum three times a day with ewe’s 

milk at 8:00 am, 12:00 pm and 4:00 pm. The study was performed without sedation at 

least 48 h after surgery. The study was designed to allow simultaneous recording of 

EEG, EOG, and EMG activity, variations of mask pressure, respiratory movements 

and SpO2 while using incremental levels of ventilation during wakefulness and quiet 

sleep. The lambs were comfortably positioned in a sling with loose restraints. Two 

experimenters were present throughout all of the recordings to note lamb behavior, 

set ventilator parameters and prevent disconnection from the ventilator. 

Bilateral vagotomy group. A first polysomnographic recording was performed 

during nasal ventilation with the vagi intact (= instrumented but not cut). On the 

following day, the same experiment was repeated during polysomnographic 

recording after performing the bilateral vagotomy (see above). The protocol design 

for nasal ventilation has been previously described (9). Following an initial recording 

with no CPAP (continuous positive airway pressure), i.e., with the nasal mask on but 



without any mechanical ventilatory support, “baseline” tidal volume (Vt) and 

respiratory rate (RR) were obtained with a CPAP of 4 cmH2O applied via the nasal 

mask. Three levels of ventilation were tested in the volume control mode (VC), while 

maintaining a positive end-expiratory pressure (PEEP) at 4 cmH2O. For the first level 

of volume control ventilation (VC#1), tidal volume and respiratory rate were set at the 

same values as when the lamb was breathing spontaneously with CPAP 4 cmH2O. 

Thereafter, tidal volume was increased in a stepwise manner to 10 mL/ Kg (VC#2), 

15 mL/ Kg (VC#3) and 20 mL/Kg (VC#4). Every effort was made to record 

approximately 100 respiratory cycles during both wakefulness and quiet sleep, at 

each level of ventilation. At any given time during the experiment, ventilation was 

halted if the lamb displayed discomfort or agitation and/or there was an obvious 

abdominal distension or presence of liquid reflux via the nasogastric tube. While both 

the VC mode and pressure support IPPV were tested in our previous study (9), only 

the VC mode was tested in the present study, since pressure support was not 

feasible on isolated upper airways (no inspiratory trigger from the lamb to the 

ventilator). 

Isolated upper airways group. Two polysomnographic recordings were performed 

on the same day in random order, during nasal mask and tracheostomy ventilation. 

Each level of IPPV (VC mode) was sequentially tested as described above for the 

bivagotomy group. After completion of the first round of ventilation via the nasal or 

tracheostomy route, the lambs were allowed to rest for 30 min before the same 

protocol was repeated on the other portion of the airways. 

 

Data analysis 



States of alertness. Standard electrophysiological and behavioral criteria were used 

to define W, QS and AS from EEG, EOG and continuous observation (13). Arousal 

from QS was characterized by sudden disappearance of high-amplitude, low-

frequency waves on the EEG trace whereas arousal from AS was recognized by 

direct observation of the lamb and disappearance of intense EOG activity. 

Respiratory parameters. Twenty consecutive breaths, which had to be preceded 

and followed by 20 seconds of stable respiratory pattern, were selected for analysis 

in each lamb at every ventilatory level in W and QS. Inspiratory duration was defined 

for analysis of glottal muscle EMG as the insufflation time by the mechanical 

ventilator, except when IPPV was applied on the isolated upper airways (see below). 

Amplitude of the inspiratory TA and CT EMGs were analyzed and averaged, together 

with the inspiratory mask pressure to recognize mechanical insufflation, using 

Acknowledge (version 3.7.0 Biopac Systems) and Microsoft Excel software. The 

maximal amplitude of the phasic inspiratory CT EMG measured in W and in the no 

CPAP condition was averaged and used as a reference value (100%) for subsequent 

measurements of CT EMG in the various ventilatory modes and states of alertness in 

each lamb. Since, typically, no phasic TA EMG was recorded during inspiration, the 

maximal amplitude of the phasic TA EMG was averaged from 4 swallowing activities 

in the no CPAP condition and used as the reference value (100%) for subsequent 

measurements of TA EMG. Of note, for lambs in which IPPV was applied on the 

isolated upper airways, regular phasic inspiratory CT EMG and expiratory TA EMG 

were still present with spontaneous breathing via the open tracheostomy, which 

occurred irrespective of the timing of mechanical insufflations. Hence, a different 

analysis was necessary for the 20 breaths selected as above during stable 

respiration via the tracheostomy. Firstly, the number of mechanical insufflations with 



inspiratory CT or TA EMG was counted.  Thereafter, the cycles with phasic CT or TA 

EMG obviously occurring with spontaneous inspiration or expiration respectively were 

then discarded. When in doubt, the cycles were not discarded. Finally, the number of 

mechanical insufflations with phasic inspiratory CT or TA EMG was expressed as a 

percentage of the total number of mechanical insufflations in each condition. 

Statistical analysis. Amplitude of TA and CT EMG were first averaged in each lamb 

for each ventilation step, each experimental condition and W or QS, then in all lambs 

as a whole. Results were finally expressed as a mean with standard deviation (SD). 

Statistical analyses were conducted using generalized estimating equations 

(GENMOD procedure of SAS software, version 8) for repeated measures and 

Poisson distribution. The working correlation matrix was of the exchangeable type. A 

difference was deemed statistically significant if p value was lower than 0.05. 



RESULTS 

Since results for inspiratory TA and CT EMGs were not significantly different between 

W and QS in both the current study (W vs. QS: inspiratory TA EMG, p = 0.83; 

inspiratory CT EMG, p = 0.51) and our previous study (9), results obtained in both 

states of alertness are reported together. 

 

Lambs with bilateral vagotomy 

From a total of 8 lambs, which initially underwent surgery, the study was completed in 

5 lambs, due to technical problems with chronic electrodes or the vagotomy, which 

was not complete on one side. Total duration of polysomnographic recordings was 

392 min. 

With intact vagi, and while breathing with the nasal mask on but without CPAP, 

regular phasic inspiratory CT EMG was consistently observed in all 5 lambs. By 

contrast, phasic TA EMG was observed during expiration only for most respirations in 

2 lambs, but more irregularly in the remaining 3 lambs. Moreover, no phasic 

inspiratory TA EMG was observed in any of the lambs (Figure 1). Overall, CT and TA 

EMG were not modified after bilateral vagotomy, while on CPAP 0 (Table 1). While 

inspiratory TA EMG was still absent when changing from no CPAP to CPAP 4 

breathing before bilateral vagotomy, a significant decrease in inspiratory CT EMG 

followed the application of nasal CPAP 4 (p = 0.003). However, inspiratory CT EMG 

was still consistently present with CPAP 4. Moreover, expiratory TA EMG was only 

present in one lamb. Similar changes were observed when switching from nasal 

CPAP 0 to CPAP 4 after bilateral vagotomy, i.e. no inspiratory TA EMG, and a 

significant decrease in inspiratory CT EMG (p = 0.009) (Table 1). 



The progressive increase in nasal ventilation before bilateral vagotomy was 

paralleled by an increase in inspiratory TA EMG, in phase with mechanical 

insufflations (p = 0.05, VC#2 vs. CPAP 4) (Figure 2). Conversely, inspiratory CT 

EMG progressively decreased with increasing nasal ventilation (p < 0.0001, VC#2 vs. 

CPAP 4) (Figure 2).  

Following bilateral vagotomy, the increase in inspiratory TA EMG previously 

observed with increasing nasal ventilation was inhibited (Figure 3A). However, the 

decrease in inspiratory CT EMG was still present (p = 0.003, VC#2 vs. CPAP 4) 

(Figure 4A). Figure 1 illustrates the effects of bilateral vagotomy on TA and CT EMG 

in one lamb. 

 

Lambs with isolated upper airways  

Total duration of polysomnographic recordings was 586 min in 6 lambs. Baseline 

recording was performed with lambs breathing through their tracheostomy, with a 

nasal mask in place but no CPAP. As expected, regular phasic inspiratory CT EMG 

as well as regular phasic expiratory TA EMG were observed in 5 lambs. However, no 

inspiratory TA EMG or expiratory CT EMG was observed (Figure 5). 

Mechanical ventilation applied on the lower airways (via tracheostomy). While 

the addition of CPAP 4 via the tracheostomy induced no changes in inspiratory TA (p 

= 0.96), a statistically significant decrease in inspiratory CT EMG was observed (p = 

0.0001). Both the expiratory TA EMG and the inspiratory CT EMG were still present 

in the same 5 lambs.  

The step-increase in IPPV via the tracheostomy induced a significant increase in 

inspiratory TA EMG (VC#2 vs. CPAP 4, p = 0.002). Simultaneously, inspiratory CT 

EMG significantly decreased (VC#2 vs. no CPAP, p = 0.005).  



Mechanical ventilation applied on the isolated upper airways (via the nasal 

mask). Application of nIPPV on the isolated upper airways did not induce any 

increase in inspiratory TA EMG activity, as compared to no CPAP (1.2 % vs. 0.4% of 

breathing cycles, p = 0.5) (Figure 3B). In addition, inspiratory TA EMG was 

significantly lower when IPPV was applied onto the isolated upper airways 

comparatively to that applied on the lower airways via the tracheostomy (1.2 % vs. 

55% of breathing cycles, p < 0.0001) (Figure 3B). In addition, no decrease in 

inspiratory CT EMG activity was noted when IPPV was applied on the isolated upper 

airways, as compared to no CPAP (100 % vs. 91% of breathing cycles, p = 0.3) 

(Figure 4B). Finally, the percentage of breathing cycles with inspiratory CT EMG was 

significantly higher when IPPV was applied onto the isolated upper airways as 

opposed to application on the lower airways via the tracheostomy (100 % vs. 18%, p 

= 0.01) (Figure 4B). Figure 5 illustrates the differences in TA and CT EMG in one 

lamb when IPPV is applied on the lower airways vs. on the upper airways. 



DISCUSSION 

The present study provides new insight on the mechanisms involved in active 

laryngeal closure during non-invasive intermittent positive pressure ventilation. 

Indeed, the results herein strongly suggest that the increase in glottal constrictor 

muscle EMG which, in lambs, develops during wakefulness and quiet sleep when 

increasing nIPPV in volume control mode, originates mainly from bronchopulmonary 

receptors, with no role for upper airway receptors. In addition, results show that the 

simultaneous decrease in glottal dilator muscle EMG does not originate from upper 

airway or bonchopulmonary receptors. Such unique results obtained in newly 

developed ovine models further illustrate the influence of lower airway receptors on 

upper airway function. 

 

Increase in thyroarytenoid muscle inspiratory EMG activity 

The involvement of bronchopulmonary receptors in the increase in inspiratory TA 

EMG during nIPPV is shown by 1) the absence of any increase in inspiratory TA 

EMG when nIPPV is applied on isolated upper airways, in contrast with 2) the 

increase in inspiratory TA EMG when IPPV is applied via a tracheostomy and 3) the 

prevention of this increase by bilateral vagotomy, which prevents vagal afferent 

messages from bronchopulmonary origin from reaching the brainstem respiratory 

centers. In addition, the absence of any increase in inspiratory TA EMG activity when 

nIPPV is applied on the isolated upper airways strongly argues against the 

involvement of any type of upper airway receptor. 

Our study was not aimed however at determining which type of bronchopulmonary 

receptor(s) is involved in the increase in inspiratory TA EMG with nIPPV. Both the 

slowly and rapidly adapting receptors are stimulated by an increase in tidal volume 



(14). Stimulation of the rapidly adapting receptors is further suggested by the 

observation of frequent swallows at the highest volumes (VC #3) tested in the 

present study (14). Further partitioning the responsibility of slowly vs. rapidly adapting 

bronchopulmonary receptors may prove to be a difficult task,  although attempts 

could be made with SO2 inhalation (via a tracheostomy), after verification that SO2 is 

also capable of inhibiting slowly adapting receptors in lambs, as reported in rabbits 

(10). Finally, we propose the likely non-involvement of C fiber endings since we 

previously showed that stimulation of pulmonary C fiber endings in lambs rather 

leads to an increase in expiratory TA EMG (2). This hypothesis could be easily tested 

using our neonatal ovine model with blocked C fibers (2).  

  

Decrease in cricothyroid muscle inspiratory EMG activity 

Similarly to TA EMG, no significant variation in inspiratory CT EMG was observed 

when nIPPV was administered directly on the upper airways, suggesting that the 

decrease in CT inspiratory EMG observed when increasing nIPPV onto intact airways 

does not originate from upper airway receptors. In contrast to the observed increase 

in inspiratory TA EMG however, bilateral vagotomy did not prevent the decrease in 

inspiratory EMG, suggesting that bronchopulmonary receptors are not involved in the 

inhibition of CT EMG with nIPPV. Results from our previous study showed that, 

overall, mean values of arterial blood gases were not modified during the observed 

decrease in inspiratory CT EMG with increasing nIPPV, suggesting that peripheral 

and central chemoreceptors are not the major actors responsible for this decrease in 

inspiratory CT EMG (9). Finally, while receptors of the chest wall, such as the 

neuromuscular spindles or Golgi tendon organs of the intercostal muscles, could be 

involved in the decrease in CT EMG, this remains purely speculative. 



 

Validation of two new neonatal ovine models 

A recent review on bronchopulmonary receptors/reflexes has highlighted the 

importance of gaining further knowledge on the modifications of upper airway 

function induced by mechanisms originating from the intrathoracic airways and the 

lungs (1). This is likely to be especially relevant in the neonatal period, where vagal 

afferent messages originating from bronchopulmonary receptors seem preponderant, 

as compared to later in life (5). Two unique animal models were 

specifically)developed for tackling these issues and validated in the present study. A 

2-step bilateral vagotomy, enabling to use each lamb as its own control, was 

developed with a pediatric surgeon (AO) with extensive expertise in video-assisted 

thoracic surgery in children. Among the several advantages offered by this model 

over previous bivagotomized lamb models (11,18), the use of video-assisted surgery 

is especially attractive, for it is far less invasive and painful than a standard 

thoracotomy. Hence, the overall experiment is performed under both more 

physiological and ethical conditions. In the second model, a chronically isolated 

upper airway lamb preparation was developed with the help of an ENT surgeon (DD) 

with extensive experience in upper airway reconstruction. With careful postoperative 

care, lambs in this group appear to display normal activity along with the absence of 

any breathing problems.  

Overall, the development of these two unique animal models not only represents an 

important aspect of the present study, but also paves the way for further studies on 

the interrelationships between upper and lower airways receptors. 

 



In conclusion, using two unique and specifically designed lamb models of bilateral 

vagotomy or chronically isolated upper airways, we have shown that active glottal 

closure, occurring when nasal IPPV is increased, originates from bronchopulmonary 

receptors. Beyond the overall clinical relevance of this knowledge in the care of 

newborn infants treated with nIPPV, the demonstration of further interrelationships 

between the lower and upper airways is of significant physiological importance. 
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Table 1: Mean values of TA (laryngeal constrictor) and CT (laryngeal dilator) EMG activity and respiratory parameters during no CPAP, 
CPAP 4 cmH2O, nasal volume-controlled ventilation in the bilateral vagotomy group and lower airway ventilation in the isolated upper 
airway group.  
 
 

 

 

BILATERAL VAGOTOMY GROUP ISOLATED UPPER 
AIRWAY GROUP 

BEFORE 
BILATERAL VAGOTOMY 

AFTER 
BILATERAL VAGOTOMY LA 

TA 
(%) 

CT  
(%) 

Vt 
(ml) 

RR 
(min-1) 

TA 
(%) 

CT 
 (%) 

Vt 
(ml) 

RR 
(min-1) 

TA 
(%) 

CT 
 (%) 

Vt 
(ml) 

RR 
(min-1) 

No 
CPAP 7 (2) e 108 (23) 

b,c,d,e  62 9 (3) c 104 (32) 

b,d,e  51 6 (1) d,e 100 (13) 
b,d,e  53 

CPAP 
4 6 (1) e 66 (36) c,d 49 51 9 (5) 62 (20) d,e 47 48 5 (1) d,e 63 (23) d,e 33 57 

VC #1 8 (4) d,e 49 (22) d 49 51 7 (1) d 60 (43) d,e 47 48 6 (1) d,e 85 (77) d,e 33 57 

VC #2 13 (12) 

e 26 (7) 93 51 8 (3) 31 (22) 92 48 9 (4) 32 (22) 70 57 

VC #3 16 (13) 42 (23) 114 51 7 (4) 33 (24) 114 48 11 (4) 29 (21) 88 57 

TA, CT EMG: thyroarytenoid, cricothyroid inspiratory electrical activity, expressed as a percentage of baseline EMG; Vt: tidal volume; RR: 
respiratory rate; CPAP: continuous positive airway pressure; VC: volume control, intermittent positive pressure ventilation. LA : lower 
airways. 
All superscript letters are p < 0.05: a vs. no CPAP; b vs. CPAP 4; c vs. VC#1; d vs. VC#2; e vs. VC#3 



 

FIGURE LEGENDS 

 

Figure 1: Electrical activity (EMG) of thyroarytenoid (a laryngeal constrictor) and 

cricothyroid (a laryngeal dilator) muscles in one lamb during baseline breathing (no 

CPAP, left) and nasal intermittent positive pressure ventilation (nIPPV), before (middle) 

and after (right) bilateral vagotomy. 

Recordings were obtained during quiet sleep. Note: 1) the increase in thyroarytenoid 

muscle (TA) EMG during inspiration (I) from no CPAP to nIPPV before bilateral 

vagotomy; 2) the absence of an increase in TA EMG after bilateral vagotomy; 3) the 

disappearance of inspiratory cricothyroid muscle EMG in nIPPV, which is not affected by 

bilateral vagotomy; 4) the decrease in respiratory rate after bilateral vagotomy on the 

SUM signal. Abbreviations: TA: thyroarytenoid muscle EMG; ∫TA: moving time 

averaged TA; CT: cricothyroid muscle EMG; ∫CT: moving time averaged CT; SUM: sum 

signal of the respiratory inductance plethysmograph, illustrating the variations of lung 

volumes with respiration (inspiration upwards); EEG: electroencephalogram; EOG: 

electrooculogram. 

 

Figure 2: Variations in inspiratory TA and CT EMG with increasing intermittent positive 

pressure ventilation applied through a nasal mask and before vagotomy (n = 5 lambs). 

No CPAP: baseline breathing; CPAP 4: continuous positive airway pressure, 4 cmH2O; 

VC #1, 2 and 3: progressively increasing intermittent positive pressure ventilation in the 

volume control mode. Voltage amplitude of inspiratory TA EMG is expressed as a 



percentage of the mean amplitude observed with swallows during baseline recording. 

Voltage amplitude of inspiratory CT EMG is expressed as a percentage of the mean 

amplitude observed in inspiration during baseline spontaneous breathing. * : p < 0.05. 

 

Figure 3: The increase in inspiratory thyroarytenoid muscle (TA) EMG observed with 

intermittent positive pressure ventilation (IPPV) originates from bronchopulmonary 

receptors, and not from the upper airways. 

A: effects of vagotomy: the significant increase in mean inspiratory TA EMG observed 

when ventilating intact lambs via a nasal mask (left) (p = 0.0008 vs. baseline breathing) 

is inhibited by bilateral vagotomy (right) (p = 0.4). Voltage amplitude of inspiratory TA 

EMG is expressed as a percentage of the mean amplitude observed with swallows 

during baseline recording. B: lambs with isolated upper airways: the significant 

increase in the number of breathing cycles with inspiratory TA EMG observed from no 

CPAP condition when IPPV is applied solely on the lower airways via a tracheostomy (p 

< 0.0001 vs. baseline breathing) (middle box, LA-VC) is absent when ventilating the 

isolated upper airways (right, UA-VC) (p = 0.5). * : p < 0.05. Abbreviations: no CPAP: 

baseline breathing; LA-VC: ventilation in volume control mode on the lower airways; UA-

VC: ventilation in volume control mode on the upper airways.  

 

Figure 4: Decrease in inspiratory cricothyroid muscle (CT) EMG from baseline breathing 

to intermittent positive pressure ventilation (IPPV). 

A, upper graphs: the observation that the inhibition of inspiratory CT EMG in IPPV is 

not prevented by vagotomy suggests that this inhibition does not originate from the 

bronchopulmonary receptors. B, lower graphs: similarly, the observation that the 



number of breathing cycles with inspiratory CT EMG is still significantly decreased when 

IPPV is applied on the isolated upper airways only suggest that it does not originate 

from the upper airways. * p < 0.05. Abbreviations: no CPAP: baseline breathing; LA-

VC: IPPV, volume control mode, via a tracheostomy on the lower airways; UA-VC: 

ventilation, volume control mode, via a nasal mask on the upper airways. 

 

Figure 5: Recordings obtained in one lamb with chronic laryngo-tracheal separation. 

In control conditions (left panel, no CPAP), both expiratory thyroarytenoid muscle (TA) 

EMG and inspiratory cricothyroid muscle (CT) EMG are present. During intermittent 

positive pressure ventilation (IPPV) applied on the lower airways via a tracheostomy 

(middle panel, LA), inspiratory TA EMG is observed simultaneously to mechanical 

insufflations, while CT EMG has disappeared. Oppositely, during IPPV applied on the 

isolated upper airways via a nasal mask (right panel, UA), while the lamb is 

spontaneously breathing through a tracheostomy, no changes are observed for TA and 

CT EMG from baseline. See figure 1 for abbreviations. Airway pressure is measured at 

the nasal mask for both no CPAP and UA conditions and at the tracheostomy site for LA 

condition.
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