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RÉSUMÉ 

L’intelligence embarquée dans les applications véhiculaires devient un grand intérêt depuis les 

deux dernières décennies. L’estimation de position a été l'une des parties les plus cruciales 

concernant les systèmes de transport intelligents (STI). La localisation précise et fiable en temps 

réel des véhicules est devenue particulièrement importante pour l'industrie automobile. Les 

améliorations technologiques significatives en matières de capteurs, de communication et de 

calcul embarqué au cours des dernières années ont ouvert de nouveaux champs d'applications, 

tels que les systèmes de sécurité active ou les ADAS, et a aussi apporté la possibilité d'échanger 

des informations entre les véhicules. Une localisation plus précise et fiable serait un bénéfice 

pour ces applications. Avec l'émergence récente des capacités de communication sans fil multi-

véhicules, les architectures coopératives sont devenues une alternative intéressante pour 

résoudre le problème de localisation. L'objectif principal de la localisation coopérative est 

d'exploiter différentes sources d'information provenant de différents véhicules dans une zone de 

courte portée, afin d'améliorer l'efficacité du système de positionnement, tout en gardant le coût 

à un niveau raisonnable. 

Dans cette thèse, nous nous efforçons de proposer des méthodes nouvelles et efficaces pour 

améliorer les performances de localisation du véhicule en utilisant des approches coopératives. 

Afin d'atteindre cet objectif, trois nouvelles méthodes de localisation coopérative du véhicule 

ont été proposées et la performance de ces méthodes a été analysée. 

Notre première méthode coopérative est une méthode de correspondance cartographique 

coopérative (CMM, Cooperative Map Matching) qui vise à estimer et à compenser la 

composante d'erreur commune du positionnement GPS en utilisant une approche coopérative et 

en exploitant les capacités de communication des véhicules. Ensuite, nous proposons le concept 

de station de base Dynamique DGPS (DDGPS) et l'utilisons pour générer des corrections de 

pseudo-distance GPS et les diffuser aux autres véhicules. Enfin, nous présentons une méthode 

coopérative pour améliorer le positionnement GPS en utilisant à la fois les positions GPS des 
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véhicules et les distances inter-véhiculaires mesurées. Ceci est une méthode de positionnement 

coopératif décentralisé basé sur une approche bayésienne. 

La description détaillée des équations et les résultats de simulation de chaque algorithme sont 

décrits dans les chapitres désignés. En plus de cela, la sensibilité des méthodes aux différents 

paramètres est également étudiée et discutée. Enfin, les résultats de simulations concernant la 

méthode CMM ont pu être validés à l’aide de données expérimentales enregistrées par des 

véhicules d'essai. La simulation et les résultats expérimentaux montrent que l'utilisation des 

approches coopératives peut augmenter de manière significative la performance des méthodes 

de positionnement tout en gardant le coût à un montant raisonnable. 

 

 

Mots clés: Localisation du véhicule coopérative, GPS, Systèmes de transport intelligents, 

VANET, CMM, DDGPS. 
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Abstract 

Embedded intelligence in vehicular applications is becoming of great interest since the last two 

decades. Position estimation has been one of the most crucial pieces of information for 

Intelligent Transportation Systems (ITS). Real time, accurate and reliable localization of 

vehicles has become particularly important for the automotive industry. The significant growth 

of sensing, communication and computing capabilities over the recent years has opened new 

fields of applications, such as ADAS (Advanced driver assistance systems) and active safety 

systems, and has brought the ability of exchanging information between vehicles. Most of these 

applications can benefit from more accurate and reliable localization. With the recent emergence 

of multi-vehicular wireless communication capabilities, cooperative architectures have become 

an attractive alternative to solving the localization problem. The main goal of cooperative 

localization is to exploit different sources of information coming from different vehicles within 

a short range area, in order to enhance positioning system efficiency, while keeping the cost to 

a reasonable level. 

In this Thesis, we aim to propose new and effective methods to improve vehicle localization 

performance by using cooperative approaches. In order to reach this goal, three new methods 

for cooperative vehicle localization have been proposed and the performance of these methods 

has been analyzed. 

Our first proposed cooperative method is a Cooperative Map Matching (CMM) method which 

aims to estimate and compensate the common error component of the GPS positioning by using 

cooperative approach and exploiting the communication capability of the vehicles. Then we 

propose the concept of Dynamic base station DGPS (DDGPS) and use it to generate GPS 

pseudorange corrections and broadcast them for other vehicles. Finally we introduce a 

cooperative method for improving the GPS positioning by incorporating the GPS measured 

position of the vehicles and inter-vehicle distances. This method is a decentralized cooperative 

positioning method based on Bayesian approach.  
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The detailed derivation of the equations and the simulation results of each algorithm are 

described in the designated chapters. In addition to it, the sensitivity of the methods to different 

parameters is also studied and discussed. Finally in order to validate the results of the 

simulations, experimental validation of the CMM method based on the experimental data 

captured by the test vehicles is performed and studied. The simulation and experimental results 

show that using cooperative approaches can significantly increase the performance of the 

positioning methods while keeping the cost to a reasonable amount. 

 

 

  Key words: Cooperative vehicle localization, GPS, Intelligent transportation systems, 

VANET, CMM, DDGPS.
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Chapter 1  Introduction  

1.1 Introduction to Intelligent Vehicles 

Today with the improvement of technologies, their application in human life increases day by 

day and a vast effort is made for solving problems in everyday life using these new technologies. 

Sensor technology is also growing and improving rapidly. These new achievements provide us 

with more accurate, smaller and cheaper sensors and make it possible to use lots of different 

sensors in an application with low cost. 

One of the most important applications which we profit from in our everyday life is automotive 

industry. Applying new technologies in automotive industry can bring a huge profit to this 

industry and improve the quality of transportation either in personal applications or other 

business purposes. 

Today, there are hundreds of different sensors which are used in vehicles. These sensors are 

used in different parts of vehicles. Sensors in automobile applications can be divided in five 

categories [90]: 

1. Engine control sensors 

2. Vehicle control sensors 

3. Safety systems sensors 

4. Navigation system sensors 

5. Surrounding comfort sensors 

On the other hand, as the number and variety of sensors which are used in vehicles increases, it 

is essential to find ways to better analyze and extract useful data from these sensors (Figure 1-1). 

Therefor using signal processing methods and data fusion algorithms is inevitable. 
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There are many different kinds of data fusion algorithms. Some of these methods have been 

used for many years and proved their efficiency like Kalman filters family and others are based 

on newly introduced methods. One of the most famous methods of these newly introduced 

methods is particle filters. We will discuss more details about different data fusion methods in 

the next chapter. 

Among the applications of sensors in automotive industry, safety in particular has been a major 

concern since it is directly related to passenger’s health. There are two kinds of safety systems: 

• Active safety systems, which tries to prevent accidents. 

• Passive safety systems, which tries to reduce damages. 

One of the well-known examples of passive systems is airbag, which becomes activated by a 

sudden deceleration of speed. Some highly reliable accelerometers are used in order to drive the 

system and detect collision. 

Active systems, on the other hand, are more complicated systems and much attention has been 

given to them in the recent years. Some of the topics in vehicle safety are anti-collision sensors, 

 

Figure 1-1. A typical Intelligent vehicle equipped with different sensors. 
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ice on the road sensors, road roughness sensors, assisted driving systems, lane change alarm 

system, vehicle localization on the road, obstacle recognition, etc. In the next chapter we will 

have a short review on some of these methods. 

1.1 Vehicle localization 

One of the most important information which is essential for many intelligent vehicle systems 

is vehicle localization. For example an anti-collision system which tries to avoid collision 

between vehicles needs to know at least relative position of vehicles. For another example in a 

lane change alarm system which is trying to warn driver whenever vehicle is going to change 

lanes, it is necessary for the system to know the absolute position of the vehicle with an 

acceptable accuracy and a precise map of the road. Hence it is very important to estimate the 

position of the vehicle as precise as possible. 

There are many kinds of sensors which can be used for positioning and localization purposes 

like radars, lidars, cameras, GPS receivers, range sensors, etc. Some of these sensors are more 

powerful and accurate. Some of them like GPS receivers can help us to find absolut position of 

vehicle while others may help us to find relative position like range sensors. 

There are two major concepts that should be taken into consideration when we are talking about 

positioning systems: 

• Accuracy 

• Reliability 

Accuracy means that the estimated position is to what extent near to the actual position of the 

vehicle. The needed accuracy in a particular system differs between applications. 

Reliability can be referred to as the availability of estimation. It means that in what portion of 

time the position estimation can be performed and the result is trustable. 
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In addition to these two characteristics, it is essential to keep in mind that if we are going to 

propose a vehicle positioning system in automotive industry, we should take the cost of the 

system into the account too. In other words, in order to introduce a new system with the 

possibility of being commercialized, the cost of the system should be considered. 

As we mentioned before, some sensors and systems could be very useful in accurate and reliable 

positioning like radars, lidars and DGPS receivers, but they have some drawbacks. One of the 

problems is that they are rather expensive. Also in the case of DGPS signals may not be available 

everywhere. So it is important to find new less expensive ways with the accuracy and reliability 

comparable to existing methods. Therefore one solution could be to find effective combination 

of cheap sensors along with using the sensors which are already available in many vehicles. 

Then applying more efficient data fusion methods in order to achieve a vehicle positioning 

system with desired accuracy, reliability and with lower cost. 

One of the methods that has attracted lots of attention in the recent years is cooperative 

localization (see Figure 1-2). With the inclusion of different kinds of sensors and 

communication devices in the vehicles a question is raised that how we can use different sources 

of information in a cluster of vehicles using the ability of communication between them in order 

to enhance positioning system efficiency. In other words, considering a network of connected 

vehicles equipped with range sensors, GPS receivers and other proprioceptive and exteroceptive 

sensors, the question is how to define a proper combination of sensors, find effective data fusion 

algorithms and use information coming from different sources and vehicles in order to better 

estimate the position of the vehicles in a cooperative framework. The most interesting point 

about cooperative localization is that we can increase the performance of the positioning system 

without adding high cost sensors and only by using a cooperative approach. Another advantage 

of cooperative localization is that if a vehicle has a high cost high accuracy sensor, other vehicles 

can benefit from this sensor too and improve their positioning. Also from a different point of 

view, assuming that we want to design a group of vehicle which can localize themselves with a 

given accuracy, then by using a cooperative localization method we don’t need to put all the 
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expensive accurate instruments on every vehicle and we can distribute them between the group 

members and they share their information with each other. 

Therefore in this project we are trying to find efficient combination of different sensors in 

vehicles along with using inter-vehicle communication abilities to enhance the positioning 

system accuracy and reliability. In other words, considering a network of connected vehicles 

equipped with range sensors, GPS receivers and other proprioceptive and exteroceptive sensors, 

our goal is to define a proper combination of sensors, find effective data fusion algorithms and 

use information coming from different sources and vehicles in order to better estimate the 

position of the vehicles and reduce the positioning uncertainty in a cooperative framework. 

To reach this purpose we need to use a proper data fusion method or a combination of different 

data fusion methods to fuse different sources of data together and reduce uncertainty by using 

the characteristics of each source of information. The basic idea behind this is that by using 

information which comes from different sources while each of them has their own uncertainty, 

we have redundancy in information and if we can fuse these data together we could be able to 

reduce uncertainty of positioning and achieve more accurate positioning estimation and more 

reliability, while we have kept the cost to a reasonable amount. 

 

 
Figure 1-2. A typical scenario of collaborative localization. 
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1.2 Research project objectives 

1.2.1 Principal objectives 

As discussed in previous section, accurate and reliable vehicle localization is a key component 

of numerous automotive and Intelligent Transportation System (ITS) applications, including 

active vehicle safety systems, real time estimation of traffic conditions, and high occupancy 

tolling. Various safety critical vehicle applications in particular, such as collision avoidance or 

mitigation, lane change management or emergency braking assistance systems, rely principally 

on the accurate knowledge of vehicles’ positioning within given vicinity. With the recent 

emergence of multi-vehicular wireless communication capabilities, cooperative architectures 

have become an attractive alternative to solving the localization problem [19, 83, 97]. 

The main goal of cooperative localization is to exploit different sources of information coming 

from different vehicles within a short range area, in order to enhance positioning system 

efficiency, while keeping the computing cost at a reasonable level. Vehicles share their location 

and environment information to others in order to increase their own global perception.  

In this Project, we aim to improve the vehicle positioning by using cooperative approaches. This 

means to improve vehicle position estimates by using the additional information measured from 

different sources and sensors of the target vehicle and information recieved from the other 

vehicles in a cluster of vehicles. These vehicles should be able to share their information by 

means of a vehicular ad-hoc telecommunication network (VANET). 

1.2.2 Intermediate objectives 

To reach the principal objective of this study, it is necessary to fulfill certain intermediate 

objectives: 

1. Study Single vehicle localization methods. This can be divided as follow: 
• To study and implementing different kinds of Kalman filters (EKF, UKF) with 

different models like CA, CV, CT. 
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• To study other localization methods such as particle based, Markov localization, 
probabilistic methods.  

• To study Methods for improving the vehicle localization such as Map matching. 
• To study available methods which can improve the positioning performance of GPS 

systems such as DDGPS. 
 

2. Study cooperative localization algorithms developed for Vehicular networks and in 
outdoor applications. Also research on the possible ways to relate acquired information 
of the different vehicles to each other, such as inter-vehicle distances. 
 

3. To propose new methods for cooperative localization by exploiting the communication 
capability of the vehicles for exchanging sensor information and environment perception. 

This can be made by either: 

• Designing proper filters to fuse information sources from different vehicles. 
• Finding effective ways to combine each vehicle perception of the environment with 

other vehicles perception of the environments (vehicles, obstacles, road constraints) 
and achieve a more accurate perception. 

Also there are some problems that we should overcome such as: 

• Considering the interdependency of the measurements which can lead to convergence 
to a non-accurate estimation. 

• The effect of time delay which can occur during communication. 
 

4. Uncertainty analysis of the proposed method, either by using mathematical analysis or by 
experimental or statistical analysis. 

1.3 Contribution, originality of this study 

Considering the importance and limitations of the cooperative positioning the contributions of 

this study are: 

• Development and implementation of a new cooperative map matching method which 

exploits the communication capability of the vehicles to share the road constraints 

related to each vehicle and provide for all the vehicles the possibility to perform a better 

positioning by having more accurate map matching. 
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• Development and implementation of the new concept of dynamic base station DGPS 

which is an extension to the DGPS. This method is a distributed cooperative method 

which can significantly improve the performance of the GPS based positioning methods. 

Unlike the DGPS, this method doesn’t need to have a static base stations and each 

vehicles acts as a receiver and a base station at the same time. 

• Development and implementation of a new decentralized Bayesian approach for 

cooperative localization based on fusion of GPS and VANET based inter-vehicle 

distance. This method uses the GPS measured position of the vehicles and by fusing this 

information with the relative distance of the vehicles using a Bayesian approach it can 

achieve a better position estimation. 

The originality of this study can be summarized in these major aspects: 

• Our cooperative map matching method unlike the other cooperative map matching 

methods [121], doesn’t need to have the relative distance between vehicles and more 

importantly it takes into account the effect of the non-common pseudorange error 

between different GPS receivers participating in the cooperative map matching process. 

In addition to this our method considers the possibility of observing different sets of 

satellite by different vehicles and propose a solution for it. 

• The effect of non-common pseudorange error is an important issue which has been 

considered in the cooperative map matching. Without considering this error, the true 

vehicles position may fall outside the expected area and leads to an over converged 

position estimation. 

• The Dynamic base station DGPS is an extension of the DGPS method by using mobile 

reference stations instead of fixed one. This method brings an interesting possibility for 

improving positioning performance in distributed systems.  

• The Bayesian approach developed in this study is an interesting way to improve the 

quality of the positioning. Unlike other Bayesian approaches [13, 52] which basically 

have been developed for indoor robotic applications, our method is developed for 

outdoor usage and automotive applications. This method should be seen as a pre-filtering 
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of GPS positioning measurement using inter-vehicle distances and other vehicles’ GPS 

measurements, prior the tracking algorithms such as the Extended Kalman Filter (EKF). 

Therefore this method has the advantage to be incorporated with any existing ego 

localization algorithm which uses GPS. 

1.4 Hypothesis 

The Hypothesis and assumptions made in developing each algorithm is detailed and described 

in the introduction of their respective chapters. However in order to have a general overview of 

the assumptions made in this thesis, here we briefly review these assumptions. 

1.4.1 Hypothesis for CMM and DDGPS algorithms 

These methods are described in Chapter 5 . The assumptions made in this chapter are as follow: 

1. First it is assumed that we have several vehicles with communicating capabilities by 

means of a communication device. For this purposes the IEEE 802.11p can be 

considered as a suitable standard. This standard is an inter-vehicular communication 

technology designed for both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 

(V2I) communications. 

2. Each vehicle is equipped with a GPS receiver and it can use this GPS receiver to measure 

its position and respective covariance matrix. Also the GPS receiver must have the 

capability to provide us with the raw GPS pseudorange measurements. 

3. Each vehicle is equipped with a digital map of the road with known accuracy. 

1.4.2 Hypothesis for the Bayesian Cooperative Vehicle Localization method 

This method is described in Chapter 6 . The assumptions made in this chapter is as follow: 

1. We assume that each vehicle is able to measure its position and respective covariance 

matrix using its embedded GPS receiver independently. 

 

 



10 

2. We consider also that each vehicle is able to estimate its distance to other vehicles, using 

a VANET based method and independent from their GPS signals. 

3. Finally, it is assumed that the vehicles share their information by means of a VANET. 

1.5 Thesis plan 

The thesis is structured in 8 chapters. 

The purpose of the present chapter is to introduce the motivations, objectives, originalities and 

contributions of this study. In this chapter the general overview of research project and the 

problem to be faced is described.  

In the second chapter we have a short review on several different sensors and systems which are 

being used in vehicles and specifically the ones which are used in positioning purposes. In the 

third chapter, we briefly study the most common data fusion methods in vehicle localization. In 

the fourth chapter, we have a review on existing methods of vehicle localization and specifically 

cooperative vehicle localization methods. 

The fifth chapter concentrates on the two proposed cooperative methods which can estimate and 

compensate the common position error component of the GPS positioning. In this chapter we 

first introduce the different sources of error on the GPS positioning and then separate them in 

two categories, common and non-common error components. Then we describe our proposed 

CMM (Cooperative Map Matching) method which aims to estimate and compensate the 

common error component of the GPS positioning by using cooperative approach and exploiting 

the communication capability of the vehicles. Then after that we propose the concept of DDGPS 

(Dynamic base station DGPS) and use it to generate GPS pseudorange corrections and broadcast 

them for other vehicles. 

In chapter sixth, we introduce a cooperative method for improving the GPS positioning by 

incorporating the GPS measured position of the vehicles and inter-vehicle distances. This 

method is a decentralized cooperative positioning method based on Bayesian approach. The 
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detailed derivation of the equations and the simulation results are described in this chapter. In 

addition to it, the sensitivity of the method to different parameters is also studied and discussed. 

Chapter seventh includes the experimental validation of the cooperative map matching method 

described in chapter fifth based on the experimental data captured by the test vehicles. 

The final chapter concludes the final overview of this research project. Finally, the perspectives 

of this research project that can be proposed to continue this study in future works are illustrated. 

 

 

 





 

Chapter 2  Sensors for Localization and Navigation 

In this chapter we have a quick review on different kinds of sensors used in localization and 

navigation. In order to help users obtain the position of vehicle and provide proper manoeuvre 

instructions, vehicle position must be determined precisely. Hence, accurate and reliable 

positioning is an essential part of any good localization and navigation system.  

Between the positioning technologies three are most commonly used: stand-alone, satellite 

based, and terrestrial radio based. Dead reckoning is a typical stand-alone technology. A 

common example for satellite-based technology is to equip a vehicle with a global positioning 

system (GPS) receiver. Dead reckoning and GPS technologies together, have been used widely 

in vehicle industry. It is necessary to remember that, no single sensor is adequate to estimate 

position and location information to the accuracy often required by a location and navigation 

system. A common solution and in most of the cases the only way of obtaining the required 

levels of reliability and accuracy is to fuse information from a number of different sensors. 

Therefore, a positioning module typically integrates multiple sensors, which compensate for one 

another to meet overall system requirements. Therefore, in order to have an efficient positioning 

module we should study a variety of sensors (Figure 2-1), fusion methods, and algorithms [146]. 

 

Figure 2-1. A generic positioning module. 

As seen in Figure 2-1, the positioning module is based on a variety of different positioning 

sensors. More details about some automotive sensor developments and automotive sensor 

technologies can be found in [58, 59, 90, 112]. A detailed discussion of sensor technologies, 

sensor principles, and sensor interface circuits can be found in [33, 113]. In-depth coverage of 

sensor integration and fusion can be found in [76]. 
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Positioning sensors can be separated in two categories: 

• Relative Positioning Sensors 
• Absolute Positioning Sensors 

In the following, we briefly discuss these two categories of sensors.  

2.1 Relative positioning sensors 

Relative sensors are sensors that can measure the variations of a quantity such as distance, 

position, or heading based on an initial condition or previous measurement. These sensors 

cannot determine absolute values, without knowing an initial reference. 

Some of the relative positioning sensors are: 

Transmission pickups, which are sensors used to measure the angular position of the 

transmission shaft. The most common technologies for transmission pickup sensors are 

variable reluctance, the Hall-effect, magneto resistance, and optically based technologies, 

which are used to convert the mechanical motion into electronic signals. The sensor’s 

output are pulse counts which are proportional to the movement of the vehicle. We can 

convert the output of the sensor into distance using the number of pulse counts and the 

relative conversion scale factor.  

Differential odometer, which is a technique used to estimate traveled distance and 

heading direction change by integrating the outputs from two odometers, one for a pair of 

front or rear wheels. An odometer is a relative sensor that measures distance traveled with 

respect to an initial position [146]. 

Gyroscopes, rate-sensing gyroscopes measure angular rate, and rate-integrating 

gyroscopes measure attitude. At the present time, most location and navigation systems 

use gyroscopes to measure the angular rate [146]. 

 

 



15 

A steering encoder measures the angle of the steering wheel. It measures the angle of the 

front wheels relative to the forward direction of the vehicle. Knowing the wheel speed, 

the steering angle can be used to calculate the heading rate of the vehicle.  

An accelerometer measures the acceleration of the vehicle to which it is attached. In other 

words, an accelerometer produces an output proportional to the specific force exerted on 

the instrument, projected onto the coordinate frame mechanized by the accelerometer 

[30]. Also a gyroscope can provide the information about an object’s orientation and 

rotation (rate-gyro), by measuring the angular velocity of the object relative to the inertial 

frame of reference. Therefore, by using the inertial sensors, i.e., accelerometers and 

gyroscopes, we can estimate the position and the velocity of a vehicle. 

2.2 Absolute positioning sensors 

Absolute positioning sensors are a kind of sensor that can provide information on the position 

of the vehicle with respect to the reference coordinate system. Therefore absolute position 

sensors are very important in solving location and navigation problems. The most commonly 

used absolute positioning sensors are the magnetic compass and GPS. 

A magnetic compass measures the Earth's magnetic field. A compass is able to measure the 

orientation of an object (such as a vehicle) to which it is attached. The orientation is measured 

with respect to magnetic north [146]. 

Due to the importance of the GNSS (Global Navigation Satellite Systems) in localization 

methods, we briefly study these systems in the next section. 

2.2.1 Global Navigation Satellite Systems 

Currently, there are two GNSSs available, the Russian GLONASS and the American GPS [134]. 

Also Galileo is under construction as the European satellite navigation system. These Systems 

have some similarities and also the GPS and Galileo are intended to be directly compatible while 

GLONASS needs a receiver with a different structure. The orbit plans of the systems’ satellite 
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constellations is different and this provides a good coverage across various regions [123, 134]. 

In this section we have a quick review on the GPS. 

The GPS is a satellite-based radio navigation system. It provides a practical and affordable 

means of determining position, velocity, and time around the globe. GPS was designed and paid 

for by the U.S. Department of Defense (DOD). Civilian access is guaranteed through an 

agreement between the DOD and the Department of Transportation (DOT) [146]. 

GPS includes three main parts: the space segment (satellites), the user segment (receivers) and 

the control segment (management and control). In location and navigation systems only the first 

two parts are concerned. More details and descriptions of each of these main parts, as well as 

various theoretical and practical aspects of GPS can be found in [51, 71, 99]. 

In order to determine the user position and the time offset between the receiver and GPS time, 

it is necessary for the user to be able to observe at least four satellites simultaneously [60]. 

The GPS constellation consists of 24 satellites arranged in six orbital planes with 4 satellites per 

orbital plane. This satellite constellation is designed to provide a 24-hour global user navigation 

and time determination capability [60]. The characteristics of GPS are summarized in Table 2-1 

[22, 146].  

Position measurement is based on the principle of time of arrival (TOA) ranging. In order to 

obtain the satellite-to-receiver distance, the time interval taken for a signal transmitted from a 

satellite to reach a receiver is multiplied by the speed of the signal. Multiple signals received by 

a receiver from multiple satellites at known locations are used to determine its location. Because 

of clock offset between satellite and receiver, propagation delays, and other errors, it is 

impossible to measure the actual range, so a pseudorange is measured. The clock offset is the 

constant difference in the clock of the satellite and receiver.  
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In addition to position of the receiver, as the receiver clock used to measure the signal 

propagation times is not synchronized to GPS time, the clock offset between receiver time and 

GPS time must be determined. Therefore, at least 4 satellites are needed to determine receiver 

position. By design, all of the satellite clocks are synchronized using very precise atomic clocks. 

As atomic clocks are expensive it is economically impractical for receivers to use atomic clocks, 

so instead, inexpensive crystal oscillators are used. These clocks are not precise and they have 

a time offset (clock bias) with GPS clocks. The receiver clock bias is the time offset of the 

receiver, and it is the same for each satellite. Thus both the receiver position and clock offset 

can be derived from the following equations:  

 

 

Table 2-1. GPS characteristics. 
Item Characteristics 
Satellites 24 satellites broadcast signals autonomously 
Orbits Six planes, at 55-degree inclination, each orbital plane 

includes four satellites at 20,231-km altitude, with a 
12-hr period 

Carrier 
frequencies 

L1: 1575.42 MHz 
L2: 1227.60 MHz 

Digital Signals C/A code (coarse acquisition code): 1.023 MHz 
P code (precise code): 10.23 MHz 
Navigation message: 50 bps 

Position accuracy SP: 100m horizontal (2dRMS) and 140m vertical 
(95%) 
PPS: 21m horizontal (2dRMS) and 29m vertical (95%) 

Velocity accuracy SPS: 0.5-2 m/s observed 
PPS: 0.2 m/s 

Time accuracy SPS: 340 ms (95%) 
PPS: 200 ms (95%) 
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 ( ) ( ) ( )2 2 2
1 1 1 1 .x x y y z z dt cρ = − + − + − +  

 ( ) ( ) ( )2 2 2
2 2 2 2 .x x y y z z dt cρ = − + − + − +  

 ( ) ( ) ( )2 2 2
3 3 3 3 .x x y y z z dt cρ = − + − + − +  

 ( ) ( ) ( )2 2 2
4 4 4 4 .x x y y z z dt cρ = − + − + − +  

 

 

2-1 

 

where (xi,yi,zi) are the known satellite positions, iρ   are measured pseudoranges and dt is the 

unknown receiver clock offset from GPS time. In the above equations, several error terms have 

been left out for simplicity. For instance, the range errors due to ionospheric delay and 

tropospheric delay can both be estimated using atmospheric models. However, receiver noise, 

multi path propagation error, satellite orbit errors, and SA effects remain [146].  

Errors in range estimates can be divided in two categories, depending on their spatial correlation, 

as common and non-common mode errors [31, 40]. Common mode errors are the errors which 

are highly correlated between GNSS receivers in a local area (50–200 km) and are due to 

ionospheric radio signal propagation delays, satellite clock error, ephemeris errors, and 

tropospheric radio signal propagation delays. The other error category is Non-common mode 

errors. These are the errors which depend on the precise location and technical construction of 

the GNSS receiver and are due to multipath radio signal propagation and receiver noise. 

Table 2-2 shows a typical standard deviation of these errors in the rang estimates of a single-

frequency GPS receiver, working in standard precision service mode [31]. 

2.2.1.1 Augmentation Systems 

Since common mode errors are highly correlated between GNSS receivers in a local area, it is 

possible to compensate these errors by having a stationary GNSS receiver at a known location 

 

 



19 

which can estimate the common mode errors and transmit the correction information to rover 

GNSS receivers. This technology is called differential GNSS (DGNSS). 

As the distance between the reference station and the rover unit increases, the correlation of the 

common mode error decreases and therefore the system performance will decreases [70]. In 

order to solve this problem a network of reference stations over the intended coverage area is 

used. These stations observe the errors and send them to the central processing station. Then at 

the central processing station a map of the ionospheric delay, together with ephemeris and 

satellite clock corrections, is calculated. The correction map is then transmitted to the receivers, 

which can use this map to calculate correction data for their specific location [30], [105]. 

Here we have to note that, even if the GNSS receivers’ positioning accuracy is enhanced by 

various augmentation systems, still there are some problems that restrict the usage of the GNSS 

receivers. The problems of poor satellite constellations, satellite signal blockages, and signal 

multipath propagation in urban environments still remain. For example in the areas such as 

Table 2-2. Standard deviation of errors in the range measurements in a single-
frequency GPS receiver [31]. 

Error Source 
Standard 
deviation 
(m) 

Common mode  
Ionospheric 7.0 
Clock and ephemeris 3.6 
Tropospheric 0.7 
 
Non-common mode  
Multi-path 0.1-3.0 
Receiver noise 0.1-0.7 
 
Total (UERE) 7.9-8.5 
 
CEP with a horizontal dilution of precision, 
HDOP=1.2 

6.6-7.1 
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tunnels a reliable GNSS receiver navigation solutions is not available. This problem can be 

reduced by using pseudolites which some ground-based stations are acting as additional 

satellites. However, this also has its own drawbacks such as it only solves the coverage problem 

locally, it requires an additional infrastructure, and the GNSS receiver must be designed to 

handle the additional pseudolite signals.

 

 



 

Chapter 3  Data Fusion Methods 

In this chapter we are going to have an overview on some of the most common data fusion 

methods. Some of these methods have been used for more than 30 years like nonlinear filtering 

[46]. Some other methods have been in the focus of interest in the recent years. First we will 

take a look at the nonlinear filters and in particular Kalman filters. 

3.1 Nonlinear filtering 

In nonlinear filtering the problem is to estimate sequentially the state of a dynamic system 

having a series of noisy measurements. In a dynamic system we can model the evolution of the 

system using difference equations and using the noisy measurements. These methods use state 

space approach. A state vector is a vector which has all the relevant information needed to 

describe the system. As an example in a tracking system a state vector could have information 

about position, velocity, acceleration and other kinematic characteristics of the target.  

In many problems, it is desired for the system to be able to calculate an estimation of the state 

whenever a measurement is received. A good solution for this is using recursive filters. A 

recursive filter doesn’t need to store all the received data, it processes data sequentially. These 

kinds of filters usually consist of two steps: prediction and update. 

Prediction step is the step in which we can predict the state vector by using a model which 

describes the evolution of the system. 

Update step is the step in which system uses new measurements to modify the prediction. 

Hence, two models are needed for a nonlinear filter, one model describing the evolution of the 

state and other one describes the relation between measurements and state vector. These two 

models should be available in a probabilistic form. A Bayesian approach, then, is a suitable 

choice for formulation of these models. Using this approach, in the prediction step, the filter 

tries to construct the posterior probability density function based on all the available information 

and the system model. It usually translates, deforms, and broadens the state pdf due to the 
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presence of unknown disturbance. In the update step, filter uses the new information from new 

measurements to modify the prediction pdf (typically tighten) using Bayes theorem. 

3.1.1 The problem and its conceptual solution 

Let xk be the target state vector where k is the time index. The target state changes according 

to the model of system: 

 ( )1 1 1,k k k kx f x v− − −=  3-1 

Where fk-1 is a function of previous state xk-1 and vk-1 is the process noise sequence. This noise 

stands for the model errors and disturbances in the target motion model. In order for the filter 

to be able to estimate xk from observations it needs to have the measurement equation which 

relates the measurements to the state vector: 

 ( ),k k k kz h x w=  3-2 

Where hk is a function of target state and wk is the measurement noise sequence. In these 

equations vk-1 and wk are mutually independent and white. We assume to know the probability 

density functions of vk-1 and wk and the initial state pdf p(x0). 

We need to find ( )|k kp x Z  where kZ  are all available measurements up to time k. suppose 

that we have the pdf of ( )1 1|k kp x Z− − . Form Chapman-Kolmogorov equation and using 

system model we will have: 

1 1 1 1 1( | ) ( | ) ( | )k k k k k k kp x Z p x x p x Z dx− − − − −= ∫  3-3 
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Where ( )1 1|k kp x Z− −  is defined by knowing the system model and statics of the process noise 

1kv − . 

In the time step of k, when we have the measurement zk, the update stage is calculated from 

the following equation: 

 ( ) ( ) ( ) ( )
( )

( ) ( )
( )

1 1 1
1

1 1

| , | | |
| | ,

| |
k k k k k k k k k

k k k k k
k k k k

p z x Z p x Z p z x p x Z
p x Z p x z Z

p z Z p z Z
− − −

−
− −

= = =  3-4 

Where  

 ( ) ( ) ( )1 1| | |k k k k k k kp z Z p z x p x Z dx− −= ∫  3-5 

In which ( )|k kp z x  is calculated using the measurement model and statics of the measurement 

noise wk. The update step modifies the prior density and gives the posterior density of the current 

state. 

Knowing the posterior density functions gives us the ability to calculate the optimal estimate 

with respect to a specific criterion. For example a minimal mean square error can be calculated 

as: 

 { } ( )| |ˆ |MMSE
k k k k k k k kx E x Z x p x Z dx= ∫  3-6 

And a MAP estimator calculates the maximum a posterior as: 

 ( )|ˆ |
k

MAP
k k x k kx argmax p x Z  3-7 

And in a similar way an estimate of the covariance can be calculated from this posterior density 

function. 
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In order to implement the conceptual solution we need to store the whole pdf (possibly non-

Gaussian) which is not possible in all cases and in general case it needs an infinite dimension 

vector [3]. 

3.2 Kalman Filter 

Kalman filter is a special case of recursive Bayesian filtering in which it assumes that the 

posterior probability density function is Gaussian so it can completely be described by its mean 

and variance and the system model and measurement equations are linear. Assuming that vk-1 

and wk are Gaussian densities with known parameters and fk-1 and hk are linear, we can say that 

if ( )1 1|k kp x Z− −  is Gaussian, ( )|k kp x Z  is Gaussian too. 

Therefore the prediction and update equation for state vector of dimension nx and measurement 

vector of size nz can be written as: 

 1 1 1k k k kx F x v− − −= +  3-8 

 k k k kz H x w= +  3-9 

Where 1kF −  is of dimension (nx×nx) and kH  is of dimension (nz×nx) and 1kv −  and kw  are zero 

mean white Gaussian noises with covariance Qk-1 and Rk and these noises are mutually 

independent. Noise covariance matrixes and Fk-1 and Hk can be time variant. 

The Kalman equations are as follow: 

 | 1 1 1| 1ˆ ˆk k k k kx F x− − − −=  3-10 

 | 1 1 1 1| 1 1
T

k k k k k k kP Q F P F− − − − − −= +  3-11 
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 ( )| | 1 | 1ˆ ˆ ˆk k k k k k k k kx x K z H x− −= + −  3-12 

 | 1
T

k k k k k kS H P H R−= +  3-13 

 | | 1
T

k k k k k k kP P K S K−= −  3-14 

And the Kalman Gain is defined as: 

 1
| 1

T
k k k k kK P H S −

−=  3-15 

Using these equations we can recursively estimate the optimal solution while the assumptions 

hold. These equations recursively estimate the mean and covariance of the posterior pdf, 

( )|k kp x Z  [3]. This estimation is the optimal solution of the problem if the following assumptions 

hold: 

 1kv −  and kw  have Gaussian densities with known parameters. 

 fk-1  and hk are linear functions. 

In this case we can say that no filter can perform better than Kalman filter for the linear Gaussian 

problem. 

3.3 Extended Kalman Filter 

In many real cases because of the nonlinearity and non-Gaussian nature of systems it is not 

possible to use Kalman filter. In these cases we must use suboptimal filters. Extended Kalman 

Filter (EKF) is an example of the suboptimal filter using analytical approximations. The main 

difference of this method is that it linearizes the measurement and state dynamic models. 
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Therefore the prediction and update equation for state vector of dimension nx and measurement 

vector of size nz can be written as: 

( )1 1 1k k k kx f x v− − −= + . 3-16 

 ( )k k k kz h x w= +  3-17 

As in the Kalman filters vk-1 and wk are zero mean white Gaussian noises with covariance 1kQ −  

and Rk and they are mutually independent. In this equation fk-1 and hk are nonlinear functions 

and EKF approximate these functions with the first term of Taylor series expansion. The mean 

and covariance of the posterior probability density function is estimated as: 

 ( )| 1 1 1| 1ˆ ˆk k k k kx f x− − − −=  3-18 

 | 1 1 1 1| 1 1
ˆ ˆ T

k k k k k k kP Q F P F− − − − − −= +  3-19 

 ( )( )| | 1 | 1ˆ ˆ ˆk k k k k k k k kx x K z h x− −= + −  3-20 

 | | 1
T

k k k k k k kP P K S K−= −  3-21 

Where 

 | 1
ˆ ˆ T

k k k k k kS H P H R−= +  3-22 

 1
| 1

ˆ T
k k k k kK P H S −

−=  3-23 
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ˆ
kH  and 1k̂F −  are the linearization of kh .  and 1kf −  around 1| 1ˆk kx − −  and | 1ˆk kx −  respectively. 

 ( )
1 1 1| 11 1 ˆ1

ˆ |
k k k k

TT
k x k k x xF f x

− − − −− − − = = ∇   3-24 

 ( )
| 1ˆ|ˆ

k k k k

TT
k x k k x xH h x

−= = ∇   3-25 

Where 

[ ] [ ]1k

T

x
k k xx x n

 ∂ ∂
∇ = … ∂ ∂ 
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And [ ]kx i  is the thi  component of kx . 

3.4 Particle Filters 

Particle filters (PFs) are categorized as suboptimal filters. They are also known as sequential 

Monte Carlo (SMC) estimation technics which are based on point mass representation of 

probability densities. These points are called particles. In this section we describe the basic 

concepts of the SMC estimations [3].  

3.4.1 Monte Carlo Integration 

Monte Carlo Integration is the basis of all the SMC methods. Consider that we want to calculate 

the following equation by a numerical approach: 
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( )I g x dx= ∫  3-27 

Where xnx R∈ . Monte Carlo (MC) methods (Davis & Rabinowitz, 1984) are based on 

factorizing ( )g x  as ( ) ( ). ( )g x f x xπ=  while ( )xπ  satisfying the probability density conditions 

( ) 0xπ ≥   and ( ) 1x dxπ =∫ . These methods assume that if we draw 1N >>  samples 

{ ; 1,..., }ix i N= distributed according to ( )xπ  then the MC estimate of integral: 

 

 

( ). ( )I f x x dxπ= ∫  3-28  

is the sample mean: 

1

1 ( )
N

i
N

i
I f x

N =

= ∑  3-29 

3.4.2 Importance Sampling 

It is Ideal to generate samples directly from ( )xπ and estimate I . However there are only special 

cases that using ( )xπ  is possible and in the general case this is not possible. In the general case 

sampling from a density ( )q x  which is similar to ( )xπ  and then using a corrected weighting of 

the sample set makes the MC estimation possible. This pdf ( )q x  is called the importance or 

proposal density function. ( )xπ  and ( )q x  are similar if they have the following condition:  

( ) 0 ( ) 0x q xπ > ⇒ >  for all xnx R∈  3-30 
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which means that ( )xπ  and ( )q x have the same support. This is a necessary condition for the 

importance sampling theory to hold. If it is valid, any integral of the form 3-28 can be expressed 

as:  

( )( ). ( ) ( ). ( )
( )
xI f x x dx f x q x dx

q x
ππ= =∫ ∫  3-31 

A Monte Carlo estimate of I is then calculated by: 

1

1 ( ) ( )
N

i i
N

i
I f x w x

N =

= ∑   3-32 

Where { ; 1,..., }ix i N=  are independent samples distributed according to ( )q x  with 1N >> and  

( )( )
( )

i
i

i

xw x
q x
π

=  3-33 

are the weight importance. When we don’t know the normalizing factor of the ( )xπ ,  

normalization of the importance weight is needed as follow: 

1

1

1

1 ( ) ( )
( ) ( )

1 ( )

N
i i

N
i ii

N N
j i

j

f x w x
NI f x w x

w x
N

=

=

=

= =
∑

∑
∑
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Where ( )iw x is the normalized importance weights: 
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1

( )( )
( )

i
i

N
j

j

w xw x
w x

=

=

∑




 
3-35 

We have to note that when apply this method in the Bayesian framework, ( )xπ  is the posterior 

density [3].  

 

3.4.3 Sequential Importance Sampling 

Sequential importance sampling (SIS) algorithm is a Monte Carlo method. Most of the other 

MC filters have the same basis as SIS. SIS is referred in [3] as “a technique for implementing a 

recursive Bayesian filter by Monte Carlo simulations”. The main idea of the MC filters is to 

estimate the posterior density function using a set of random samples with their associated 

weights.  

Let { ; 1,..., }k jX x j k= =  be the sequence of all target states from the beginning up to time k. 

( | )k kp X Z is the joint posterior density at time k. We define 1{ , }i i N
k k iX w =  as a random 

measurement which can characterize ( | )k kp X Z , where { , 1... }i
kX i N=  is a set of support 

points and { , 1... }i
kw i N=  are their respective weights while 1i

ki
w =∑ . Therefore, we can 

approximate the posterior density as follow: 

1
( | ) ( )

N
i i

k k k k k
i

p X Z w X Xδ
=

≈ −∑  3-36 

i
kw  is calculated using the importance sampling principles as follow: 
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( | )
( | )

i
i k k
k i

k k

p X Zw
q X Z

∝  3-37 

We can expand ( | )k kq X Z  at time k using the existing samples 1 1 1( | )i
k k kX q X Z− − −  with the 

new state 1~ ( | , )i
k k k kx q x X Z−  as: 

1 1 1( | ) ( | , ) ( | )k k k k k k kq X Z q x X Z q X Z− − −  3-38 

 Now we need to derive the weight update equation, we have: 

1 1

1

1 1 1 1 1

1

1
1 1

1

1 1 1

( | , ) ( | )( | )
( | )

( | , ) ( | , ) ( | )
( | )

( | ) ( | ) ( | )
( | )

( | ) ( | ) ( | )

k k k k k
k k

k k

k k k k k k k k

k k

k k k k
k k

k k

k k k k k k

p z X Z p X Zp X Z
p z Z

p z X Z p x X Z p X Z
p z Z

p z x p x x p X Z
p z Z

p z x p x x p X Z

− −

−

− − − − −

−

−
− −

−

− − −

=

=

=

∝

 3-39 

By substituting 3-38 and 3-39 in 3-36 we have: 
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1 1 1 1
1

1 1 1 1

( | ) ( | ) ( | ) ( | ) ( | )
( | , ) ( | ) ( | , )

i i i i i i i
i ik k k k k k k k k k
k ki i i i i

k k k k k k k k

p z x p x x p X Z p z x p x xw w
p x X Z q X Z q x X Z

− − − −
−

− − − −

∝ =  3-40 

Furthermore, in many cases we can assume that 1 1( | , ) ( | , )k k k k k kq x X Z q x x z− −= , which means 

that the importance density is only dependent on the previous state 1kx −  and last observation    

kz . Then the weight becomes 

1
1

1

( | ) ( | )
( | , )

i i i
i i k k k k
k k i i

k k k

p z x p x xw w
q x x z

−
−

−

∝  3-41 

Finally we can approximate the posterior density as: 

1
( | ) ( )

N
i i

k k k k k
i

p x Z w x xδ
=

≈ −∑  3-42 

It is possible to proof that if N →∞ the approximation 3-42 approaches to the true value of

( | )k kp x Z . To summarize, the SIS filtering is a recursive filtering that in each iteration when a 

measurement is received it propagates the support points X and updates their importance 

weights.  

The only remaining point is how to choose the importance density function which is one of the 

most critical steps in the design of particle filters. In [24] it has been proposed to that the optimal 

choice for importance density function can be derived by minimizing the variance of the 

importance weights. This optimal function is as follow: 
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1 1
1 1

1

( | , ) ( | )( | , ) ( | , )
( | )

i i
i i k k k k k

k k k opt k k k i
k k

p z x x p x xq x x z p x x z
p z x

− −
− −

−

= =  3-43 

And the weights are: 

1 1( | )i i i
k k k kw w p z x− −∝  3-44 

However there are only few specific cases that the using the optimal function is possible. One 

example is when kx  is a member of a finite set such as a jump-Markov linear system for tracking 

maneuvering targets [25]. The second example is the models for which 1( | , )i
k k kp x x z− is 

Gaussian. 

In most of the cases we must use suboptimal choices. The most popular method is the 

transitional prior where:  

1 1( | , ) ( | )i i
k k k k kq x x z p x x− −=  3-45 

Let the state dynamics of the system and measurement equation be expressed by the following 

equation: 

1 1 1( )k k k kx f x v− − −= +  3-46 

1( )k k k kz h x w −= +  3-47 

Where 1kv −  and 1kw −  is a zero mean white Gaussian sequence with the variance 1kQ −  and 1kR −  

respectively. Then transitional prior becomes: 
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1 1 1 1 1( | , ) ( | ) ( ; ( ), )i i
k k k k k k k k kq x x z p x x N x f x Q− − − − −= =  3-48 

Then the weight update equations are: 

1 ( | )i i i
k k k kw w p z x−∝  3-49 

 

3.4.4 Degeneracy Problem 

One of the problems with SIS is the degeneracy problem. As it has been shown in [24] the 

variance of importance weights will increase over time. This means that after a while, most of 

the particles will have negligible normalized weights. Degeneracy decreases the efficiency and 

accuracy of the SIS based filters because a large computational effort is done to updating 

particles whose contribution to the approximation of ( | )k kp x z is negligible. Effective sample 

size can be used as a measurement of the degeneracy: 

2

1

1

( )
eff N

i
k

i

N
w

=

=

∑



 
3-50 

where N  is the number of particles and i
kw   is the normalized weight. As effN



becomes smaller 

the probability of the degeneracy increases. 
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3.4.5 Resampling 

Resampling is a step which is added to SIS to solve the degeneracy problem. When  effN


 falls 

below a specific threshold, resampling will be required. Resampling removes the samples with 

low importance weights and adds samples with higher importance weights. It maps the random 

measure { , }i i
k kx w  to a new random measure *{ ,1 }i

kx N  where all the particles have a uniform 

weight. The new sample set *
1{ }i N

k ix = is generated by resampling N times from ( | )k kp x Z (with 

replacement) in the way that *( )i j j
k k kp x x w= =  where ( | )k kp x Z is: 

1
( | ) ( )

N
i i

k k k k k
i

p x Z w x xδ
=

≈ −∑  3-51 

By using this method, the probability of choosing new samples from the previous samples who 

had higher weights is more than choosing from previous samples with lower weights. Figure 3-1 

shows a graphical representation for different steps of the SIS with resampling (with N=7 

Samples).This example uses the transitional density as the importance function. 

First 7 particles randomly have been selected with a uniform weight which approximates the 

prediction density 1( | )k kp x Z −  . At the second step we use the received measurement to compute 

the importance weight for each samples using 3-49. This results to { , }i i
k kx w  which is an 

approximation of the ( | )k kp x Z . If resampling is needed important particles will be selected 
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according to their weights and form *{ ,1 }i
kx N . The final step is the prediction that results in 

1{ ,1 }i
kx N+  which approximates 1( | )k kp x Z+  and will be used for next iteration. 

3.4.6 Particle filter limitations 

Some of the most important limitations of particle filters are as following: 

• Computationally expensive: Particle filters are computationally expensive and they need 

lots of computational requirements therefore as a general rule, in practice particle filters 

should only use if Kalman filters can’t  provide satisfactory results or they are difficult 

to implement [3]. 

• Degeneracy problem: This mean that after a while, most of the particles will have 

negligible normalized weights. Degeneracy decreases the efficiency and accuracy of the 

particle filters because a large computational effort is done to updating particles whose 

contribution to the approximation of ( | )k kp x z is negligible [3]. 

 

Figure 3-1. Typical steps of SIS. 
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• Sample impoverishment: This problem is caused after resampling. In resampling the 

particles with higher weights are more likely to be selected and this causes the situation 

that after a while all the samples collapse in a single point. Therefore the samples 

diversity decreases and complete true density can’t be estimated. This problem is more 

important in the cases that the state dynamics noise is very small [3]. 

• Dimensions: They are not suitable for problems with high dimension spaces because 

they tend to grow exponentially with dimensions of space [133]. 

 

 





 

Chapter 4  State of the Art 

This chapter draws a picture over the different studies on the related topics of vehicle 

localization and cooperative vehicle localization. These topics will cover from the basic 

concepts to more complicated systems and cooperative localization technics. First a review on 

some of the interesting recent works on single vehicle localization methods is given, followed 

by a description of Map Matching methods. Finally a review on the subject of cooperative 

localization is given in the last section. During this chapter our goal is to mention the most 

interesting articles from the primary articles on this topic up to the latest ones. 

4.1 Single Vehicle localization 

Localization with high accuracy can bring many benefits to different navigation applications. 

However, because of multipath and satellites visibility achieving this accuracy is more 

challenging in urban areas. Therefore positioning technologies based on stand-alone GPS 

receivers are vulnerable and, thus, have to be supported by additional information sources. 

When we are talking about the performance of a navigation system, it is important to mention 

that accuracy is not the only thing that matters. There are four performance measurements that 

characterize the system [30, 49, 94]. 

1) Accuracy: the amount of conformity between the measured and estimated information 
(position, velocity, etc.) and the actual values. 

2) Integrity: a measure of the consistency of the estimated information. It depends on the 

probability of undetected failures in the given accuracy of the system.  

3) Availability: provides a measure of the coverage area in terms of percentage. 

4) Continuity of service: provides the probability of the system working continuously without 

any unintended interruption happening during a working period. 

Generally, most of the in-car navigation systems use map matching in order to find their position 

[55, 56, 91, 92]. Finding an estimation of the position using Map matching is based on 
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comparing the trajectory and position information from the GPS receivers with the roads in the 

digital map. 

However in urban environments, the presence of high buildings (also big trees) may partly block 

satellite signals and reduce the number of visible satellites, therefore reducing the accuracy of 

the position estimates or even worse, the number of detected satellites may become less than 

four and this makes the position estimation impossible [9, 38, 57, 78]. 

Another problem in urban areas is multipath propagation of the radio signal due to reflection in 

surrounding objects. This may lead to decreased position accuracy and thereby reducing the 

integrity of the navigation solution [78]. Therefore, to overcome these problems, advanced 

navigation systems use complementary navigation methods, relying upon information from 

sensors such as accelerometers, gyroscopes, and odometers. 

Adding more sensors to the GNSS receiver provides a navigation system with higher accuracy 

and better integrity and providing a more continuous navigation solution and also increases the 

update rate of the system along with the extra information about the acceleration, roll, and pitch, 

depending on which types of sensors are used. 

4.1.1 Positioning using Dead- Reckoning 

Velocity encoders, accelerometers, and gyroscopes all provide information on the position and 

attitude of the vehicle and their respective velocity. All the measurements of these sensors only 

contain information on the relative movement of the vehicle and therefore the translation of 

these sensor measurements into position and attitude estimates is of an integrative nature, 

requiring the knowledge of the initial state of the vehicle. As a consequence, measurement errors 

will accumulate with time and the traveled distance. Moreover, the provided measurements by 

the vehicle-mounted sensor are represented in the vehicle coordinate system. Therefore, in order 

to use the sensor measurements to estimate a position, velocity, and attitude, they must be 

transformed into a coordinate system where they are more easily interpreted.  
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Dead Reckoning is the process of transforming the measurements from the vehicle-mounted 

sensor into an estimate of the vehicles position and attitude. In the case that the sensors are only 

inertial sensors, it is also called inertial navigation.  

In [124] the major properties of the Dead Reckoning systems are described as follow: 

1) They are not dependent on any external source of information and therefore they cannot be 

disturbed or blocked. 

2) They have high update rates. 

3) Their error is cumulative as a function of time or traveled distance due to the integrative 

nature of the systems. 

On the other side, the GNSS and other radio-based navigation systems have bounded errors on 

the estimated position and velocity, but at a relatively low update rate, and also their 

measurements depend on information from an external source that may be blocked or disturbed. 

The complementary characteristics of the DR and GNSS systems make their integration 

favorable and can result in navigation systems with higher update rates, accuracy, integrity and 

continuity of service. 

In the remaining paragraphs of this section we will describe the basics of some interesting works 

that have been done in this topic. 

In [73], they use 3D maps of urban environment and propose a technique for high-accuracy 

localization of moving vehicles. This technique is based on integrating GPS, IMU, wheel 

odometer, and LIDAR data acquired by an instrumented vehicle, to generate maps of 

environments. Considering that urban environments are dynamic, they reduce the map to 

features which are with high probability static and by using this method they can separate 

dynamic aspects of the world (like vehicles) from static aspects of it (like the road surface). 

Having the map of the environment, they use LIDAR sensor measurements to find the position 

of the vehicle relative to this map. 
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They use a particle filter to localize the vehicle in real-time. This particle filter uses range data 

collected by LIDAR sensor and analyzes them to extract ground plane underneath the vehicle. 

After that they correlate this information with the map of the environment and find the position 

of the vehicle. Particles are projected trough time with respect to the velocity of the vehicle 

which is measured by using wheel odometer, an IMU and a GPS system. This system can find 

the position of the vehicle with relative accuracy of around 10 cm. 

They extended their work in [72] and proposed an extension to the previous approach which 

resulted in a substantial improvement over previous work in vehicle localization. This new 

method provides higher precision, the ability to learn and improve maps over time, and 

increased robustness to environment changes and dynamic obstacles. The major change in this 

approach is that they used a probabilistic grid instead of spatial grid of fixed infrared remittance 

values. By using this idea each cell can be expressed with a Gaussian distribution over 

remittance values. In addition to that, they used an offline SLAM1 to align multiple passes from 

same places and build an increasingly robust understanding of surrounding environment and 

then use it for more precise localization. 

In [5], a localization method for road vehicles using a push-broom 2D laser scanner and a prior 

3D map of the environment has been proposed. They placed their laser downward, to acquire a 

continual ground strike. They use this method to build a small 3D map of laser data and match 

that within the 3D map of environment using statistical methods. They show that their method 

has a better performance than a high caliber DGPS/IMU system over a 26 km of driven path in 

their test site and also has lower cost. 

In [11] author presents a low cost vehicle localization system, using measurements from one 

gyroscope, two wheel speed sensors and a GPS, to estimate the heading, velocity and position 

1 Simultaneous Localization And Mapping 
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of a vehicle. Instead of using popular filtering models like Kalman filters, they proposed a 

simple easy-to-tune nonlinear observer for vehicle localization systems which reduces some 

sensor measurement imperfections. This filter is based on the theory of “symmetry-preserving 

observers” in [10]. They also used nonholonomic constraints to improve vehicle localization.  

In [63] a position estimation algorithm based on an interacting multiple model (IMM) has been 

developed. This filter uses two different models to reduce errors caused by using only one model 

for vehicle movement. They used a kinematic vehicle model for low speed and low slip driving 

conditions based on the bicycle model and a dynamic vehicle model for more high speed and 

high slip situations and they used EKF for both models. They showed that their algorithm 

achieves better results in most of the cases. 

In [41] authors used IMM filters with different models of Constant Velocity (CV), Constant 

Turn (CT), Constant Acceleration (CA), Constant Stop (CS) and Constant Rear (CR) In order 

to better describe dynamic behavior of vehicles. The main idea of this work is to combine 

proprioceptive information using IMM. They showed that by using the Interactive Multi Model 

approach, the position of the vehicle can be estimated more accurately. 

[140] introduces a positioning method based on the GPS receiver and a stereo vision camera. 

They use stereo vision to estimate the vehicle motion by feature detection, matching, and 

triangulation from every image pair. Then use a RTK-GPS receiver to correct position and 

direction estimated from stereo vision. They showed that this method works better than stereo 

vision alone, and can correct GPS signal failures caused by multipath and other noises. 

In [111], the authors use an Extended Kalman filter to fuse data from a GPS receiver and a 

machine vision system to find a better estimation of the vehicle’s position. They apply MHT 

(Mutliple Hypothesis Tracking) to use multiple data association hypotheses to find the road on 

which the vehicle is driving and identify detected objects. They also use map matching in order 

to reduce the errors of GPS and dead- reckoning system. They showed that using EKF to fuse 

GPS and machine vision and map matching along with using MHT can reduce the multipath 

effect in urban areas and increase the probability of finding the correct hypothesis. 
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4.2 Map Matching 

As described before vehicle navigation system is the result of integration of various positioning 

sensors such as GPS, odometer and INS. However even with a robust sensor calibration and 

most complicated sensor fusion methods error in positioning accuracy is sometimes 

unavoidable. Map matching is a method which is widely used in vehicular satellite based 

navigation systems. Conventionally, it has been used to estimate the vehicle position on a digital 

road map, using GPS and motion sensors data as input to the map matching algorithm. However, 

the improvement of digital maps quality in recent years has brought the possibility for those to 

be seen as observations in the positon estimation problem. This means that the result of map 

matching can be compared to the navigation solution and used to calibrate the system’s sensors 

in order to provide a higher robustness, accuracy and availability [28, 29, 42, 75, 123, 128].  

The first generation of the digital maps were produced from paper maps and their accuracy were 

no better than 14 meters. In the current generation of the digital maps aerial photos and accurate 

DGPS is used in order produce more accurate digital maps (typically less than 1 meter). In 

addition to these, there is another type of digital maps which are used in intelligent vehicle 

applications. These maps may include additional information such as design speed of the curves, 

grade of slopes, road signs, speed limits and etc. which can help intelligent vehicles in 

performing their driving tasks. 

 

Figure 4-1. Map Matching.  
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4.2.1 Map Matching Methods 

Map matching usually involves three steps. In the first step the candidate the algorithm has to 

select a set of candidate arcs or segments from the map. In the second step, the algorithm 

evaluates the likelihood of each candidate based on the geometrical information, topological 

information and the correlation of the vehicles trajectory to the candidate shape in the map. The 

last step is to find the location of the vehicle on the road segment [108]. 

In [145]  different methods of map matching is introduced. Most of the existing map matching 

methods is based on these theories with some enhancements [39, 107, 109, 141]. 

Generally map matching approaches can be categorized in three groups: geometric, topological 

and advanced. 

In geometric map matching, the matching algorithm only uses the geometric information of the 

map by using the shape of the road segments. These methods doesn’t consider the connection 

between the segments. The geometric map matching can further categorize in to point-to-point 

[6, 7, 34], point-to-curve [7, 141] and curve-to-curve matching [141]. Some enhancements to 

the geometric map matching methods have been given in [12, 102, 126, 132]. 

In topological map matching in addition to geometric information, topological information is 

also used. The topological information determines the connectivity of the road segments. These 

methods also use additional information such as historical matching information, vehicle speed 

and candidate road connections.[39, 103, 107, 138, 142]. The topological map matching 

methods have better performance than geometric methods. 

The advanced map matching methods have been developed to provide better map matching 

performance in complex areas such as dense urban areas. In these areas the road network is 

complex and GPS data may suffer from lots of errors like multipath and signal outage. These 

errors cause difficulties in selecting the candidate road segments even for topological methods. 

Most of the advanced methods are used in correct road segment selection. Some of these 
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algorithms are based on Extended Kalman Filter (EKF) [48, 64, 66, 130, 136], Bayesian 

interference [106, 125], belief theory [29, 85, 143], fuzzy logic [65, 127, 129, 144, 145] and 

artificial neural networks [20, 127]. 

To conclude the map matching algorithms, we can say that the advanced methods have better 

performance than two other algorithms since they use more constraints. However they need 

more input data and more computation time in return. 

4.3 Cooperative Vehicle Localization 

With the recent emergence of multi-vehicular wireless communication capabilities, cooperative 

architectures have become an attractive alternative to solving the localization problem [18, 83, 

97]. Cooperative positioning (CP) was originally developed for use across wireless sensor 

networks. Nowadays, with the inclusion of Dedicated Short Range Communications (DSRC) 

infrastructure in vehicles, CP techniques can now be used for vehicle localization across 

vehicular networks. These techniques usually aim to fuse GPS information and sensors 

information of one vehicle with the information that come from other vehicles and also 

additional sensed information such as inter-vehicle distances to achieve a better positioning for 

vehicles within a neighbourhood. A vehicular ad hoc network (VANET) can be seen as a 

wireless, mobile ad hoc network and thus any localization scheme devised for ad hoc networks 

can be adopted and applied to VANETs [27].  

By considering cooperative localization in a more general case, [37] suggest that a typical 

cooperative localization algorithm should tackle the following tasks: 

• Find and identify nearby vehicles in a given range; 

• Distinguish cluster topology and decide vehicle membership; 

• Determine absolute position estimates (local data fusion) of each member in the cluster; 

• Measure inter-vehicular distances, heading (relative positions) of member vehicles (by 

DSRC, Radar, Lidar, etc.); 
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• Compute confidence interval on estimates: measures the accuracy/uncertainty of the 

local absolute/relative position estimates; 

• Decide which local estimates and uncertainty data is relevant for broadcasting to vehicle 

members; 

• Fuse all the received broadcasted data to local data fusion systems in order to perform 

global fusion and improve localization of individual vehicle members (developing a data 

fusion algorithm) 

As a result, we can conclude that cooperative localization system is the result of a tight coupling 

of the ranging technique, localization algorithm and communication protocol.  

Cooperative localization can be divided in two major categories: 

• Centralized techniques. 
• Distributed localization algorithms. 

Distributed localization algorithms are more common techniques in VANET localization (due 

to their ad hoc nature); however, a centralized, or hierarchical (i.e. combination of centralized 

and distributed) algorithm that supports vehicle to infrastructure communication has its own 

attractiveness for higher accuracy and greater availability [14]. 

[37] also describes that the decentralized data fusion architectures for automotive applications 

have several advantages such as: 

• To remove bottleneck and risk factors associated with centralized systems; 
• To decrease processing and communication burdens by distributing this among 

several vehicles in the cluster; 
• Each vehicle fuse data which comes from its own information source and from the 

information generated and broadcasted by surrounding vehicles; 
• No vehicle needs to form a global data fusion of the total information at once; 
• A Global solution can also be achieved if the decentralized fusion is in a broadcast 

mode and all vehicles can communicate their data with all others; 
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• This system is more scalable due to the decreasing of processing power and 
bandwidth; 

• Flexibility and robustness of the system when one node (vehicle) fails; 
• Modularity, since each vehicle does not require total knowledge about all the nodes 

in the network and the whole network topology. 

We can say that, a localization algorithm is a computational algorithm based on some given 

measurement sets and their associated uncertainty that addresses:  

• Problem formulation,  
• Robustness,  
• Estimation accuracy,  
• Coordination  
• Computational complexity.  

Another important concept that we should mention according to [8] is that, VANETs have 

frequent fragmentation, rapid topological development over time and short link life (e.g. even 

less than a second when vehicles are travelling in opposite directions).Therefore, any 

localization algorithm must take these factors into consideration since increasing the 

communication rate can overwhelm the network and exhaust its channel capacity. 

According to [27], a Cooperative Positioning algorithm for VANETs must have the following 

characteristics:  

• Real time and fast; 
• Adaptive with respect to the traffic conditions, the node density and topological 

development; 
• Robust to inter-node connection failure ;  
• Flexible enough to handle the communication constraints. 

The most popular network localization techniques are Monte Carlo localization [16], Convex 

Optimization [23], Iterative Multilateration [131], and Multidimensional Scaling (MDS) [15]. 
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Parker and Valaee [96, 98] proposed a distributed positioning algorithm for VANETs which 

uses inter-vehicle distance estimates to localize the vehicle among its neighbours. These inter-

vehicle distances are measured using a radio-based ranging technology. In [96] they presented 

an iterative algorithm based on LMSE. In other words, considering that inter-vehicle distance 

estimates contain noise, their algorithm reduces the residual of the Euclidean distance between 

the vehicle and their measured distances. This algorithm has two steps: initialization and 

refinement. In the initialization stage an initial estimate of all vehicle positions is made through 

exchanging GPS information. Then in the refinement stage, each vehicle uses all the other 

nodes’ information to refine its position estimate and make a more accurate estimate. In [98] 

they used an extended KF to incorporate kinematic information and road map constraint into 

the position estimation. They showed that the KF algorithm outperforms the non-linear least 

squares estimation technique. Another similar approach is introduced in [27] which has better 

performance than that of [98] with some changes in the Map matching algorithm. 

Another distributed approach for cooperative positioning based on a centralized extended 

Kalman filter is introduced in [118]. In this approach the state of the group of robots is viewed 

as a single system. The localization is obtained by fusion of the proprioceptive and exteroceptive 

measurements which are collected and exchanged by different robots of the group. 

The results show that the uncertainty of the estimated pose (position and orientation) is reduced 

for each individual member of the group. This reduction is gained by the exchange of the relative 

positioning information (relative position and orientation) among the group. A similar approach 

is presented by [77]. They implemented their method with a heterogeneous group of mobile 

robots in an outdoor environment. [79] extended the approach introduced by [118] by 

considering the observation of the relative bearing. These approaches are based on sensor 

information exchange. In these approaches each member of the group shares its observations 

with the other members of the group and the cooperative localization is obtained by updating 

the global state of the group with the collected observations. The large quantity of the 

transmitted information is one of the disadvantages of these methods. This quantity can be even 
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larger when the group members are heterogeneous. In this case, the vehicles have to send also 

the error model of the sensors in addition to the sensors measurements [62]. 

Another idea is to exchange the updated global state. Although this approach can reduce the 

quantity of transmitted information, it can cause the over-convergence problem. This means that 

by fusing the interdependent states it can quickly converge to an inaccurate value. [52] 

considered the problem of over-convergence in their work. They assume that every robot of the 

team can estimate the position probability distribution of every other robot, relative to itself and 

broadcast this information to the team as a whole. For example an over convergence may happen 

when the robot i observes the robot j, the robot j can update its position distribution using the 

observation of the robot i. After that the position distribution of the robot j depends on the 

position distribution of the robot i. Therefore, robot i cannot use the position distribution of the 

robot j to update its position distribution. This is because of the interdependency between 

position probability distribution of the two robots.  

In order to solve this problem, they proposed to maintain a dependency tree to update the history 

of distributions dependency. However this approach has some limitations since the dependency 

tree assumes that distributions are only dependent on the last distribution that was used to update 

them, and therefore they are independent on all other distributions which is not a good 

assumption and it is restrictive as circular updates can still occur.  

In [62] a method for cooperative localization of a heterogeneous group of vehicles is introduced. 

This method has three steps. In the first step each member of the group estimates its own position 

and also estimates the position of the other vehicles that it has seen before using an Extended 

Kalman Filter. This stage is called Group state estimation. In the next step which is the Group 

State Update, the estimated state is updated using its sensors measurements and measured 

relative position of the other vehicles. In the last step, which is called collective localization a 

group state fusion is performed by each vehicle. Each vehicle fuses its Group state by using the 

Group states that receives from other vehicles and shares its updated Group state with its 

neighbors. This fusion is also based on Extended Kalman Filter. They also proposed to use the 
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Mahalanobis distance between position estimations and observations to identify the detected 

vehicles. 

[32] applied the method introduced in [117] to the cooperative mapping and localization 

problem. This method builds an augmented covariance matrix composed of the covariance and 

cross-covariance matrices relating all the robots in the group and also the landmarks observed 

by each robot. He also extended the work of  [21, 89] that characterize the performance of the 

single vehicle CML (collaborative multi robot localization) algorithm, to the cooperative 

localization and proofed that by using his proposed method we have the following theorem: 

In the collaborative CML case, in the limit, as the number of observations increases, the 

lower bound on the covariance matrix of any vehicle or any single feature equals to the 

inverse of the sum of the initial collaborating vehicle covariance inverses at the time of 

the observation of the first feature or observation of a collaborating vehicle.  

Which states that multiple vehicles performing CML together can attain a lower absolute error 

than the single vehicle initial covariance which bounds the single vehicle CML case according 

to [117]. 

Although most of the previous mentioned methods are based on Kalman filters, some other 

approaches also exist for cooperative localization such as Markov localization [13], Bayesian 

approaches [52] and Maximum likelihood methods [53].  

[13] introduced a statistical algorithm for collaborative mobile robot localization. Their 

approach uses a sample-based version of Markov localization. Robots localize themselves in the 

environment and whenever they meet each other probabilistic methods are employed to 

synchronize each robot’s belief. This causes the robots to localize themselves faster, maintain 

higher accuracy, and high-cost sensors are distributed across multiple robot platforms. Despite 

this, they confess that the probabilistic method that they use has the possibility to lead to over 

convergence as their proposed formula is only true when the prior position distribution of the 

robots are independent of each other which means that the robots can exchange the information 
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only if it is the first time that they meet each other and they never have met the same third robot. 

In order to partially solve this problem they put the following rule that: each robot has a counter 

that, once a robot has been sighted, blocks the ability to see the same robot again until the 

detecting robot has traveled a pre-specified distance (2.5 m in their experiments). In their 

approach when a robot doesn’t see another robot it performs the Markov localization and 

whenever it sees another robots updates its belief using other robot belief to reduce the 

uncertainty. They implemented and tested their technic using two mobile robots equipped with 

cameras and laser range-finders for detecting other robots. The results, obtained with the real 

robots and in series of simulation runs, illustrate severe improvements in localization speed and 

accuracy. 
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Résumé français :  

Dans cet article, une nouvelle approche pour améliorer le positionnement des véhicules est 

présentée. Ce procédé est basé sur la coopération des véhicules, en communiquant les  

informations sur leur environnement proche et leur position. Cette méthode comprend deux 

étapes. Dans la première, nous introduisons la méthode de correspondance cartographique 

coopérative qui utilise les communications V2V dans un VANET afin d'échanger les 

informations GPS entre les véhicules. Grâce à une carte routière précise, les véhicules peuvent 

appliquer les contraintes de la route des autres véhicules dans leur propre processus 

correspondance cartographique dans le but d'acquérir une amélioration significative de leur 

positionnement. Après nous proposons le concept d'une station de base dynamique DGPS 

(DDGPS) qui est utilisée par les véhicules dans la deuxième étape pour générer et diffuser les 

corrections de pseudo-distance GPS qui peuvent être utilisés par les véhicules nouvellement 
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arrivés pour améliorer leur positionnement. Le DDGPS est une méthode collaborative 

décentralisée qui vise à améliorer le positionnement GPS par estimation et de compensation de 

l'erreur commune dans les mesures de pseudo-distance. Cela  peut être considéré comme une 

extension de DGPS où les stations de base ne sont pas nécessairement statiques avec une 

position exacte connue. Dans la méthode DDGPS, les corrections de pseudo distance sont 

estimées, sur la base de la croyance du récepteur sur son positionnement et de son incertitude, 

puis diffusés à d'autres récepteurs GPS. La performance de l'algorithme proposé a été vérifiée 

avec des simulations dans plusieurs scénarios réalistes.

 

 



 

Chapter 5  A Novel approach for Improved Vehicular 

Positioning using Cooperative Map Matching and 

Dynamic base station DGPS concept 

5.1 Abstract 

In this paper a novel approach for improving Vehicular positioning is presented. This method is 

based on the cooperation of the vehicles by communicating their measured information about 

their position and neighbor environment. This method consists of two steps. In the first step we 

introduce our cooperative map matching method. This map matching method uses the V2V 

communication in a VANET to exchange GPS information between vehicles. Having a precise 

road map, vehicles can apply the road constraints of other vehicles in their own map matching 

process and acquire a significant improvement in their positioning. After that we have proposed 

the concept of a dynamic base station DGPS (DDGPS) which is used by vehicles in the second 

step to generate and broadcast the GPS pseudorange corrections which can be used by newly 

arrived vehicles to improve their positioning. The DDGPS is a decentralized cooperative method 

which aims to improve the GPS positioning by estimating and compensating the common error 

in GPS pseudorange measurements. It can be seen as an extension of DGPS where the base 

stations are not necessarily static with an exact known position. In the DDGPS method, the 

pseudorange corrections are estimated, based on the receiver’s belief on its positioning and its 

uncertainty, and then broadcasted to other GPS receivers. The performance of the proposed 

algorithm has been verified with simulations in several realistic scenarios. 

5.2 Introduction 

Navigation systems constitute an essential component of intelligent vehicles and are being used 

in a great variety of active or informative ADAS applications.  GNSS based navigation systems 

allow to easily obtain information on the absolute position of the vehicle and their use are widely 

spread in ITS applications [68]. However, low cost GPS receiver-based navigation systems used 

in automotive applications suffer from low accuracy and frequent signal outages.   Typically, 

 
55 



56 

the GPS nominal accuracy is about 15m, which is usually not sufficient for active safety and 

ADAS applications such as lane level positioning. One of the most common ways to improve 

accuracy for ego-localization is to use other embedded sources of information and to combine 

them with GNSS data.  Those other sources can be dead reckoning sensors, such as INS and 

odometer, or video cameras [2, 135]. This approach typically use data fusion algorithms, like 

Kalman filters or particle filters [45] to combine the information of those different sensors in 

order to obtain a better position estimate than the one obtained by the GPS receiver alone or by 

each of the individual sensor. 

A classical approach  to enhance the GPS positioning accuracy is to use a differential method 

exploiting a fixed known position as a ground based reference, hence the name differential GPS 

(DGPS) [60]. In DGPS, the ground based reference station with an exactly known position, 

broadcasts its GPS receiver information, which allows to calculate and correct the errors of the 

measured pseudoranges obtained by other non-fixed GPS receivers in the vicinity. The method 

exploits the fact that GPS receivers, which are close to each other, are affected by the various 

sources of errors in a similar way. This assumption can be done because of the use of the same 

set of satellites in order to assess ego-localization. To apply this approach in the real world and 

with static road side stations it requires to deploy a large number of reference stations in order 

to be able to enhance the GPS position in a given region. This approach is therefore very 

expensive in terms of infrastructure. In addition DGPS to operate properly always requires a 

communication link between the reference stations and the mobile GPS receivers. These two 

constraints make the DGPS approach difficult to implement and also very expensive to use for 

general vehicle positioning in automotive applications. 

Map matching is a method which is widely used in vehicular satellite based navigation systems. 

Conventionally, it has been used to estimate the vehicle position on a digital road map, using 

GPS and motion sensors data as input to the map matching algorithm. However, the 

improvement of digital maps quality in recent years has brought the possibility for those to be 

seen as observations in the positon estimation problem. This means that the result of map 

matching can be compared to the navigation solution and used to calibrate the system’s sensors 
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in order to provide a higher robustness, accuracy and availability [123]. The basic assumption 

behind the map matching is that the vehicles are usually drive on the roads. If the GPS estimated 

position falls off the road, by using the past trajectory of the vehicle and the measured GPS 

position along with a precise road map, we can better estimate the true position of the vehicle 

[101, 122]. 

However, with the recent emergence of wireless communication capabilities and VANETS, 

cooperative positioning is becoming an attractive alternative for improving positioning 

performance [37, 47, 62, 115, 116]. The main goal of cooperative positioning is to exploit 

different sources of information coming from not only an ego-vehicle but different vehicles 

within a short range area, in order to enhance positioning system efficiency and have a better 

perception of the surrounding environment while keeping the computing and infrastructure costs 

at a reasonable level. 

In this paper we aim to propose a new cooperative map matching method (CMM), which is 

based on exchanging the GPS raw measurements between the vehicles and a precise road map. 

Unlike the other cooperative map matching method presented in [121], our method doesn’t need 

to have the relative distance between vehicles and more importantly it takes into account the 

effect of the non-common pseudorange error between different receivers participating in the 

cooperative map matching process. The effect of non-common pseudorange error is an 

important issue which has to be considered. Without considering this error, the true vehicles 

position may fall outside the expected area and leads to an over converged position estimation. 

In addition to this we introduce the new concept of Dynamic base station DGPS (DDGPS). This 

method is another cooperative method which can be used to further improve the result of CMM 

and introduces an interesting approach for cooperative positioning. This method is able to 

improve GPS vehicle position estimates by exploiting position information from other vehicles 

or mobile objects (pedestrian, bicycle etc.). The basic idea is to extend the DGPS method by 

using mobile reference stations instead of fixed one, thus generating pseudo-range corrections 

by nearby vehicles and broadcasting them to be used by nearby vehicles. This idea brings 

challenges as the mobile reference stations do not have a precisely known position, and 
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therefore, the pseudo-range corrections generated by them also suffer from significant 

uncertainties. By incorporating these two methods together significant improvements over GPS 

positioning is achieved. The performance of the proposed algorithm is tested based on Monte 

Carlo simulations and the data used in these simulations were provided by Pro-SiVIC software 

from Civitec and GPSoft Satellite Navigation toolbox for MATLAB. 

The paper is organized as follow. In the next section we briefly describe different error 

components of the GPS pseudorange measurements. Then, in section III we describe our 

proposed map matching method. In section IV, our Dynamic base station DGPS is presented 

followed by a description of our simulation setup, scenarios and results in section V. Finally, a 

conclusion and some perspectives on potential future works are presented in section VI. 

5.3 Pseudorange Measurement Errors 

The GPS positioning accuracy depends on the quality of the pseudorange measurement between 

satellites and the GPS receivers and the error level on these measurements.  The GPS 

pseudorange measurements errors can be divided in two parts, the common error and non-

common error. The common error component is the part being highly correlated between the 

receivers, which are close to each other. These errors consists of satellite clock error, ephemeris 

error, ionospheric delay and tropospheric delay. The non-common error component is the part 

which varies from receiver to receiver and consists mainly of receiver noise and multipath error 

[60]. The pseudorange can therefore be expressed as,  

( ) ( ) ( ) ( ) ( )i i i i i
j j jD c tρ δ ς η= + + +  5-1 

where ( )i
jρ  is the measured pseudo-range from jth satellite to ith receiver, ( )i

jD is the true distance 

between them, ( )itδ is the receiver clock offset from the GPS time, c  is the speed of 
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electromagnetic wave, while ( )i
jς and ( )iη  are common error and non-common error 

components respectively. 

The similarity of the common error components in pseudorange measurement from each 

satellite to vehicles, leads to the same bias in GPS position computed by each vehicle in a 

vicinity [60]. This characteristic of the pseudorange noise is used in this paper by our 

cooperative map matching method to improve the positioning performance by compensating the 

effect of pseudoranges common error component on the positioning and after that in our DDGPS 

method to generate pseudorange corrections in order to broadcast them to be used by other 

vehicles. 

 

5.4 Cooperative Map Matching 

5.4.1 Method description 

Vehicular Cooperative map matching (CMM) is a map matching method in which vehicles 

exchange their sensor information and position estimations in order to allow other vehicles to 

better match their position to a precise lane level road map. Unlike the conventional map 

matching methods, each vehicle with the CMM can use the information it receives from other 

vehicles to incorporate other vehicles road map constraints and combine it with its own 

 

Figure 5-1. A typical vehicles configuration 
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constraints in order to achieve a better map matching result. This method is based on the fact 

that the vehicles which are in a close vicinity generally can observe the same set of satellites 

and almost suffer from the same amount of pseudorange measurement errors. Therefore the 

resulting GPS positioning solutions will face the same error (bias). Therefore it is possible to 

apply the other vehicles road constraints to each selected vehicle. The CMM aims to estimate 

this bias by using the received GPS information from other vehicles and using a lane level road 

map. 

Figure 5-1 demonstrates a typical configuration of the vehicles with their true positions (green), 

their GPS computed positions (red) with their uncertainty ellipses (red). At the beginning, in 

order to simplify the description of the CMM method, we assume that all the vehicles observe 

the same set of satellites. We also assume that the amount of non-common error component is 

negligible. Later in this paper we will discuss the more general case in which different neighbor 

vehicles can observe different satellites and how to consider the effect of the non-common error 

on the pseudorange measurements. With these assumptions, all of the pseudorange 

measurements from each vehicle to a specific satellite has almost the same amount of error. 

Each vehicle measures its pseudoranges to the visible satellites and broadcast them to other 

vehicles. Now let’s say the white vehicle in Figure 5-1 wants to perform the CMM method. We 

refer to this vehicle as the target vehicle in the rest of this paper. Figure 5-3 demonstrates 

different steps of our map matching method. The target vehicle uses the measured pseudoranges 

to resolve its GPS position and compute its position covariance. Assuming that the vehicles can 

only drive on the road, InFigure 5-3.a the target vehicle applies its own road constraints (white 

lines) to its measured GPS position. The remained possible positions for the target vehicle after 

applying its own road constraints is shown by the white hatch. After that, the target vehicle uses 

the received pseudoranges from the blue vehicle and compute the GPS position and 

corresponding position covariance of the blue vehicle. Having these information, the target 

vehicle can apply the road constraints of the blue vehicle (blue lines) to its own positioning (see 

Figure 5-3.b). In a similar way the target vehicle uses the road constraints of the black vehicle 

and as a result the uncertainty of the target vehicle position reduces as it is shown in Figure 5-3.c, 

and so on. 
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We used a particle filter to implement our method as follow. First, the target vehicle initiates 

1000 particles according to its prior position estimation, which is in this case the GPS measured 

position. The next step is to update the weights of the particles with respect to the road 

constraints. With the given assumption of negligible non-common error, we can first set the 

weights of the particles falling out of the constraints to zero and then normalize the remaining 

particle weights in each iteration of the filter. We apply the road constraints of each 

communicating vehicle transformed for the target vehicle to the initiated particles. Figure 5-2 

summarizes the particle filter steps and Figure 5-4 illustrates an example of the particle filter 

implementation. Finally, the result of the particle filter is approximated by a Gaussian 

distribution to calculate the mean and the covariance matrix of the position estimation. This 

calculated mean and covariance matrix are referred as ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ[ , , ]i i i iX x y z= and ( )
ˆ

iX
P

respectively, where i is the index of the target vehicle. Having the measured GPS position of the 

vehicle ( ) ( ) ( ) ( )[ , , ]i i i iX x y z=

   , and its CMM position estimate ( )ˆ iX , the GPS bias vector then can 

be approximated as: 

Initiate M particles according to the GPS 
positioning pdf of the target vehicle, Px(k), 
k=1…M. 
For l = number of communicating vehicles 
      For itt = Number of iterations for particle 
filter 
          For k=1:M 
if Px(k) is outside of the road constraints of lth 
vehicle transformed for the target vehicle, 
then:  Wx(k) = 0; 
          End 
          Normalize Wx(k); 
          Resampling Px(k); 
      End 
End 

Figure 5-2. CMM algorithm implementation using a particle filter. 
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( )
( ) ( )ˆ ˆ ˆ~ ( , )i
i i

GPS X
B N X X P−  5-2 

It is important to mention that the map constraints of other vehicles are applicable to the target 

vehicle only if the position of all vehicles are resolved using the same set of satellites. In the 

general case in order to make sure that this condition holds, the target vehicle has to verify the 

received pseudoranges and compute the position of all the vehicles using the same set of 

satellites (same constellation). With this condition we can be sure that the bias of the GPS 

positioning for all of the vehicles in a close vicinity are the same and we can apply the CMM 

method as described above. 

5.4.2 Effect of non-common noise 

Another important issue that we have to consider is the effect of the non-common pseudorange 

error, ( )iη , on the GPS positioning and CMM. As mentioned before, without considering the 

non-common pseudorange errors in our CMM algorithm we may over converge to a non-true 

position. Therefore modeling this component of the noise in order to considering its effect and 

avoiding over convergence is vital. 

Since the non-common error components are uncorrelated from receiver to receiver and it can 

change very rapidly [60], we consider a zero mean Gaussian distribution to model this error, 

 

 Figure 5-3. Applying vehicles road constraint to the target vehicle (white). 
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( ) 2~ (0, )i N ηη σ  5-3 

where ησ is the standard deviation of the non-common pseudorange error. The non-common 

pseudorange errors lead to a position error which is independent from vehicle to vehicle and for 

each vehicle the effect of this error on the positioning covariance can be calculated as: 

( ) ( ) ( ) 1 2(( ) )i i T iP H Hη ησ
−=  5-4 

where ( )iH is  the 4n×  matrix 

1 1 1

2 2 2( )

1
1

1

x y z

x y zi

xn yn zn

a a a
a a a

H

a a a

 
 
 =
 
 
  

   

 

5-5 

and ( , , )j xj yj zja a a a= is the unit vector pointing from the GPS position of ith vehicle to the jth 

satellite [60]. 

 

Figure 5-4. Particle filter used for CMM 
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Since this error is independent from one vehicle to another vehicle, the target vehicle can’t apply 

the road constraint of the other vehicles directly as it does for its own constraints. In order to 

overcome this problem, instead of using the road constraint as a zero-one mask (Figure 5-5.a), 

we use a weighted road map where the on road points keep their previous weights, and the off 

road points are weighted with respect to their distance from the road edge (Figure 5-5.b). The 

new weight for the ith particle which is off the road is assigned with the following equation, 

2

222( ,0, )
w

w

d

i w w iw W d w e σσ
−

′ = = ×  
5-6 

where wd is the distance between the ith particle and the road edge, iw is the previous weight of 

the particle and the 2
wσ  depends on the non-common error variance as the norm of the diagonal 

elements of ( )iPη , 

2 ( )( )i
w diag Pησ =  5-7 

Figure 5-5.b demonstrates the difference between the zero-one road mask and the probabilistic 

road mask. 

 

Figure 5-5. Zero-one road mask (a) and the probabilistic road mask (b). 
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5.5 Dynamic base station DGPS 

In the previous section we described the CMM method. Now by using this method a cluster of 

vehicles which can communicate with each other can calculate the position bias for their cluster. 

Now the question is that how can we share the estimated bias to the vehicles which were not 

participating in the CMM. In order to do this we introduce the concept of Dynamic base station 

DGPS [114] and adapt this method to be used with the CMM method. 

As mentioned before, Dynamic base station DGPS method is an extension to the DGPS 

introduced in [114] and aims to improve the positioning performance by using mobile reference 

stations instead of fixed ones. This means that each communicating vehicle which has an 

estimation of its position can generate pseudorange corrections and exchange them with nearby 

vehicles.  

In DDGPS we aim to estimate and compensate the common component of the pseudorange error 

by incorporating the ego-localization information of vehicles (here the map matching 

positioning results) and their communication capability. Each vehicle generates a set of 

pseudorange corrections for its visible satellites based on the received pseudorange corrections 

from other vehicles and its own positioning belief.  

In addition to this, vehicles can broadcast the generated pseudorange corrections and other 

vehicles can use them to correct their pseudorange measurements and obtain a better 

positioning. The pseudorange corrections produced by DDGPS also have a reliability parameter 

which express the variance of the estimated GPS pseudorange corrections. Vehicles can use this 

parameter to properly combine different DDGPS corrections that they receive from different 

vehicles and thus estimate a better pseudorange correction data. 
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5.5.1 Calculation of Pseudorange correction 

By using CMM, the target vehicle acquires its estimated position ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ[ , , ]i i i iX x y z= and the 

position uncertainty given by the covariance matrix ( )
ˆ

iX
P , where i is the vehicle’s id. Given that 

the position of the jth satellite is [ , , ]j j jx y z , the computed geometric distance from the ith 

vehicle’s estimated position ( )ˆ iX  to the jth satellite is 

( ) ( ) 2 ( ) 2 ( ) 2ˆ ˆ ˆ ˆ( ) ( ) ( )i i i i
j j j jD x x y y z z= − + − + −  5-8 

Then the ith vehicle makes a pseudorange measurement ( )i
jρ  to the jth satellite. This pseudorange 

contains the distance to the satellite jth and the pseudorange measurement errors. 

( ) ( ) ( ) ( )i i i i
j j jD c tρ δ ε= + +  5-9 

Where 

( ) ( ) ( )i i i
j jε ς η= +  5-10 

In order to form the differential corrections, the ith vehicle makes a difference between the 

computed geometric distance and the measured pseudorange. 

( ) ( ) ( ) ( ) ( ) ( )ˆi i i i i i
j j j j jD D c tρ ρ δ δ ε∆ = − = − − −  5-11 

where  
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( ) ( ) ( )ˆi i i
j j jD D Dδ = −  5-12 

is the residual satellite to vehicle distance. This correction then is broadcasted to other vehicles. 

The receiver vehicles then add this correction to their measured pseudorange from the same 

satellite to compensate the pseudorange common error: 

( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )( )

r r i
j cor j j

r r r i i i
j j j jD c t D c t

ρ ρ ρ

δ ε δ δ ε

= + ∆ =

+ + − + +
 

5-13 

As we discussed earlier, a significant part of the pseudorange error components are common 

between different receivers, which are close to each other and can therefore be compensated 

using this method. The only parts that remain to be addressed are multipath, receiver noise and 

the residual satellite to vehicle distance. By simplifying (5-13), we have, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
,
r r i r ri ri i

j cor j j j j jD c t Dρ ρ ρ δ ε δ= + ∆ = + + −  5-14 

where ( )ri
jε is the residual pseudorange error and ( )ritδ  is the difference between the time offsets 

of the transmitter vehicle (i) and the receiver vehicle (r). The most important component in 

(5-14) which dominates the corrections error is ( )i
jDδ . This parameter tells us that, the better we 

can estimate the position of the transmitter vehicle, the less is ( )i
jDδ and the more accurate the 

correction data can be generated for broadcasting. On the other hand, there may be other vehicles 

who generate a pseudorange correction and can broadcast it for others. In order to provide an 

estimation of the produced pseudorange correction accuracy and to give the receiver vehicle the 

possibility to fuse the received correction from different sources, we define the variance of  
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( )i
jDδ based on the vehicle’s estimated position and its covariance matrix, ( )

ˆ
iX

P , having the 

satellites’ calculated position. 

( ) ( ) ( ) ( )

2( )
ˆ ˆ

ˆ
i i i

i T
j X X X

H P Hσ =  5-15 

Where 

( )

( ) ( ) ( )

ˆ ( ) ( ) ( )

ˆ ˆ ˆ
[ , , ]ˆ ˆ ˆi

i i i
j j j

X i i i
j j j

x x y y z z
H

D D D
− − −

=  
5-16 

is the cosine direction of the unit vector pointing from the estimated user position to the jth 

satellite. ( )i
jσ is used as a parameter to describe the confidence level of the generated 

pseudorange corrections. 

5.5.2 Broadcasting the corrections 

Each vehicle uses equation (5-11) to generate the pseudorange corrections for its visible 

satellites and uses equation (5-15) to calculate their respective variances.  

Before going further in to the details of the method, another important issue in distributed 

systems that we should take in to the consideration is the data dependency problem which may 

lead to over-convergence. Each vehicle may receive several sets of corrections from different 

vehicles. In order to have a better estimation of the corrections these received corrections must 

be combined and fused together. The over-convergence usually occurs when we fuse the 

information which are not independent from each other without considering their dependency. 

In order to avoid this problem, vehicles add an id list to each of their generated pseudorange 

corrections. This id list is used to identify the dependencies of the pseudorange correction to the 

different vehicles. At the beginning, this list is empty and each vehicle after generating the 
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pseudorange corrections adds its id to the id list of that pseudorange correction. Let’s call this 

set of corrections, their variances and their id lists generated by vehicle ith, ( )iC . This correction 

set will be broadcasted for other vehicles. Now assume that the rth vehicle receives the correction
( )iC . First it checks its visible satellites and verifies if the correction for those satellites are 

available in the received set of corrections and applies those when available. Therefore, it uses 

these corrected pseudoranges in its own positioning algorithm and estimates its position. Now 

consider the time when the rth vehicle wants to generate corrections for broadcasting. The 

sequence of operations is as follow: 

1. It uses (5-11) and (5-15) to generate the pseudorange corrections and their variances for its 

visible satellites.  

2. Then it forms the correction set ( )rC and adds its own id to the generated corrections id list.  

3. Also if these corrections were available in the received correction that used to generate new 

one the id list of those correction will be added to the new correction id list.  

4. The final step is to add the corrections available in ( )iC  which were not regenerated by the 

rth vehicle (because those satellites were not visible for the rth vehicle), to the ( )rC  without 

adding the id of the rth vehicle to their id list. 

Now if a given vehicle receives several independent pseudorange corrections for one satellite 

(j), which is the case when the id lists don’t have an overlap, it uses a weighted mean to fuse the 

received corrections. The id list for the new pseudorange correction is the union of the received 

corrections. 

2( ) ( )
( )1

( )( )
1

1,
N i i

j ii
j N ii

ji

ω ρ
ρ ω

σω
=

=

 ∆
∆ = =   

 

∑
∑
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the variance of the weighted mean being, 

 

 



70 

( )
( )

2

2( )
1

1
j N i

ji

σ
σ

−

=

=
∑

 
5-18 

and where N is the number of received pseudorange corrections for the jth satellite. However as 

we discussed earlier if the received pseudorange corrections are not independent, using the 

weighted mean causes over convergence. Therefore the vehicle selects first the pseudorange 

correction which has the smallest ( )i
jσ from the dependent corrections and then calculated the 

weighted mean using (5-17) and (5-18) for the independent pseudorange corrections. After this, 

steps 1 to 4 are performed to correct the pseudoranges and generate the new correction for the 

rth vehicle. 

5.6 Simulation Results 

In this section the simulation setup for assessing the performance of the proposed method is 

described and the results are presented. The vehicles trajectory and sensors data were generated 

with Pro-SiVIC software from Civitec and the GPS data were generated by the GPSoft Satellite 

Navigation toolbox for MATLAB. The results presented here are the average of Monte Carlo 

simulation for 100 runs of the algorithm. 

Figure 5-6 shows the road map. The simulation consists of three sets of vehicles driving on the 

road. Each set consists of 5 vehicles. Each vehicle has its own trajectory and speed profile 

 

Figure 5-6. Road map. 
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therefore the relative position and speed of the vehicles changes over time in order to simulate 

realistic situations. In the first scenario our goal was to assess the performance of the cooperative 

map matching method. The communication range for the vehicles is considered to be 100 m. 

The average position error of the vehicles after using CMM with respect to the number of 

vehicles available in the communication range and cooperating in CMM algorithm is illustrated 

in Figure 5-7. As we expected from the CMM, sharing the other vehicle’s map constraints and 

applying more map constraints to the vehicles can improve the positioning accuracy. Table 5-1 

also shows the position errors for the GPS measured position, single vehicle map matching and 

 

Figure 5-7. Average position error of the vehicles by using CMM with respect to the 
number of vehicles participating in CMM. 

 

Figure 5-8. GPS bias estimation error by using CMM with respect to the number of 
vehicles participating in CMM. 
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CMM with various number of cooperative vehicles. By comparing these results we can interpret 

that while the single vehicle map matching considerably improves the GPS positioning 

accuracy, using the CMM method can improve the performance of the single vehicle map 

matching and give a more accurate position estimation. 

Figure 5-8 shows the average bias estimation residual error with respect to the number of 

cooperative vehicles and Figure 5-9 Shows the average standard deviation of the CMM position 

estimation. We can interpret from these figures that similar to the position error, the bias 

estimation error also decreases by increasing the number of cooperative vehicles. In addition to 

this the amplitude of the position standard deviation reduces and the estimated position resolves 

with less uncertainty. This also leads to less ambiguity in the map matching especially when the 

vehicle position is close to a road intersection. 

In the second scenario we designed the simulation in a way that we can test the performance of 

the whole system which means using the CMM to estimate the common error component of the 

positioning and using DDGPS to share this estimation with other vehicles. In this scenario a 

target vehicle in each set of vehicles performs the CMM. We refer to these three vehicles as V(1) 

, V(2) , V(3). Then in the next step these three vehicles generate and broadcast their pseudorange 

corrections according to the DDGPS algorithm. In addition to these three sets of vehicles we 

have another vehicle, V(r), which haven’t participated in the CMM algorithm with any other 

vehicle and only receives the DDGPS corrections. 

The vehicle V(r) receives the broadcasted pseudorange corrections, applies these corrections to 

its measurements, and then estimates its corrected GPS position. Table 5-2 presents the average 

pseudorange measurement errors for the satellites which were visible for vehicle V(1) along with 

the average pseudorange corrections generated by the proposed algorithm and their average 

standard deviations for the case that V(1) performs the CMM with 4 other vehicles. However it 

is important to remember that the accuracy of these pseudorange corrections and their standard 

deviations depend largely on the accuracy and positioning uncertainty of the CMM estimated 

position of V(1).  
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Table 5-3 provides the pseudorange errors, which is the difference between the true satellite-

receiver distance and the measured pseudorange, for V(r) along with the residual errors after 

applying the corrections received from V(1) and the positioning error before and after applying 

the corrections. This table shows that by applying the pseudorange corrections, a large amount 

of the error on the measured pseudorange can be compensated and therefore, a more accurate 

positioning can be achieved. Table 5-4 compares the accuracy and uncertainty of the 

pseudorange corrections with respect to the number of sources which have generated the 

 

Figure 5-9. Standard deviation of the CMM estimated position with respect to the 
number of vehicles participating in CMM. 

 

 

Figure 5-10. Average pseudorange error and their standard deviation vs. the number of 
received corrections by V(r). 
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correction data. This table provides the corrections generated by every possible combination of 

the sources and the results of their data fusion. 

Figure 5-10 illustrates the average pseudorange error and their standard deviation with respect 

to the number of received corrections by V(r). This shows that receiving more sets of corrections 

from different sources and fusing them improves the overall pseudorange correction estimation 

accuracy. As we mentioned before the accuracy and uncertainty of the generated corrections 

depends on the positioning performance of the vehicle which produced the corrections. However 

by receiving more correction data from various sources and fusing them, on average we can 

exceed the performance of each individual correction. 
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Table 5-1. Comparison of the residual position error, residual bias error and the position 
std. between the GPS, single vehicle map matching and the CMM with various number of 

cooperative vehicles.  

 GPS 
Single 
Vehicl
e MM 

CMM – Number of Cooperative Vehicles 

2 3 4 5 6 7 8 9 10 

Residual 
Position 
Error 

15.48 10.47 9.17 8.18 7.16 6.44 5.73 4.88 4.19 3.55 2.93 

Residual 
Bias Error N/A 13.23 11.99 11.00 9.99 9.25 8.53 7.61 6.85 6.14 5.41 

Std. of the 
position 
error 

14.06 5.02 4.27 3.84 3.36 3.35 3.30 3.02 2.88 2.76 2.74 

 

 

Table 5-2. True pseudorange errors of V(1) , its generated corrections and their standard 
deviation for its visible satellites 

Sat 
id. 

PR 
error 

Correcti
on 

Residual 
PR error 

Correction 
Std 

id 
list 

4 12.95 16.38 -3.43 4.38 V1 
7 17.82 16.10 1.72 2.41 V1 
8 16.41 21.03 -4.62 5.08 V1 
10 15.15 16.00 -0.85 2.52 V1 
19 19.21 22.85 -3.64 4.52 V1 
22 9.92 12.42 -2.49 3.24 V1 

 

Table 5-3. True pseudorange errors of V(r), its residual pseudorange error and the position 
error before and after applying corrections 

Sat id. PR error PR error after 
Correction 

GPS 
Error 
Before 

GPS 
Error 
After 

4 12.95 -3.43 

15.48 6.31 

7 17.82 1.72 
8 16.41 -4.62 
10 15.15 -0.85 
19 19.21 -3.64 
22 9.92 -2.49 
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5.7 Conclusion & future work 

GPS receiver is an important component of automotive navigation systems as it provides an 

estimate of the absolute position of the vehicle. Commercial GPS is subject to several sources 

of noise and offers insufficient accuracy for most ADAS and ITS applications. The major 

sources of noise in the pseudorange detection process are highly correlated between the 

receivers which are close to each other.  

In this paper we have proposed a new cooperative map matching method which is based on 

applying the road constraint of the neighbor vehicles to the target vehicle in order to reduce the 

uncertainty of the positioning and improving its accuracy. Unlike other cooperative map 

matching method this method only relies on exchanging the GPS measurements of different 

vehicles and having a precise digital road map. In addition to this the effect of non-common 

pseudorange error which can lead to over converging to a wrong position in the cooperative map 

matching has been considered and circumvented in our approach. In addition to this we have 

used the concept of decentralized Dynamic base DGPS method (DDGPS) which takes 

advantage of the communication capability of the vehicles in order to generate and exchange 

the pseudorange corrections in a VANET. 

Table 5-4. Performance analysis of the generated pseudorange corrections with respect to 
the number of sources which have generated the correction data.  

Cluster PR 
Error 

 PR Error 
after 
Correction 

Correction 
Std. 

GPS 
Error 
Before 

GPS 
Error 
After 

1 15.24 3.75 2.61 15.48 7.18 
2 15.24 5.06 2.47 15.48 6.43 
3 15.24 3.66 2.53 15.48 6.40 
1,2 15.24 4.06 1.18 15.48 7.82 
2,3 15.24 3.90 1.16 15.48 5.18 
1,3 15.24 3.36 1.22 15.48 6.73 
1,2,3 15.24 3.72 0.92 15.48 7.37 

 

 

 



77 

Unlike the DGPS, our method does not require a network of static base stations with precisely 

known positions to generate pseudorange corrections. These corrections are generated by each 

vehicle from their map matching position estimate. Since the position of the vehicles are not 

known exactly, a parameter describing the confidence level of each pseudorange correction is 

introduced, which is calculated based on the uncertainty of the ego position estimate. The results 

indicates that by using the cooperative approach, the map matching task significantly improves 

and a better positioning can be performed. Also by taking benefit of DDGPS approach the 

vehicles can share their generated GPS corrections and by fusing these corrections together a 

better positioning with higher accuracy and less uncertainty can be achieved. 

For future work, we intend to study the interdependency of the pseudorange corrections 

generated by vehicles. We also consider that the fusion method for merging the received 

corrections can also be improved. In addition to this a method for considering the life time of 

the corrections must be used to help the vehicles detect the expired corrections and not to 

broadcast them to other vehicles. Also a vehicle selection procedure can be useful in the case of 

having a large number of communicating vehicles in order to have a good performance for the 

map matching algorithm while keeping the computation time at a reasonable level. 

5.8 Acknowledgment 

This work is part of CooPerCom, a 3-year international research project (Canada-France). The 

authors would like to thank the National Science and Engineering Research Council (NSERC) 

of Canada and the Agence nationale de la recherche (ANR) in France for supporting the project 

STP 397739-10. 

 

 

 





 

Chapter 6  Avant-Propos 

Auteurs et affiliation: 

• Mohsen Rohani: étudiant au doctorat, Université de Sherbrooke, Faculté de 

génie, Département de génie Électrique. 

• Denis Gingras: Professeur, Université de Sherbrooke, Faculté de génie, Département de 

génie électrique et informatique. Laboratory on Intelligent Vehicles. 

• Dominique Gruyer: Chargé de recherche, IFSTTAR, CoSys – LIVIC, Versailles, 

France. 

• Vincent Vigneron : Professeur, Université d’Evry,  Evry, France. 

Date de soumission: 08 Septembre 2014 

Revue: IEEE Intelligent Transportation Systems Magazine - Magazine ICCVE Special 

Issue 

Titre français: Une nouvelle approche décentralisée bayésienne pour la localisation 

coopérative des véhicules basée sur la fusion du GPS et de la distance inter-véhiculaire 

grâce aux VANETs. 

Résumé français :  
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et de calcul  au cours des dernières années a ouvert de nouveaux champs d'applications, tels que 

les systèmes de sécurité active et ADAS, et a apporté la possibilité d'échanger des informations 

entre les véhicules. Dans cet article, une nouvelle méthode pour améliorer le positionnement du 

véhicule est proposée. Il s’agit d’une méthode décentralisée basée sur le partage des données 

GPS et des mesures de distance inter-véhiculaires dans un groupe de véhicules. Une approche 

bayésienne est utilisée pour fusionner les données GPS et les distances inter-véhiculaires. Afin 
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d'étudier la performance de cette nouvelle approche sur la localisation du véhicule, un filtre de 

Kalman a été utilisé pour intégrer la dynamique du véhicule. L'effet de cette méthode sur la 

réduction de l'incertitude de la localisation, les questions sur-convergence et l'identification des 

véhicules sont également discutés dans le présent document.

 

 



 

Chapter 6  A New Decentralized Bayesian Approach for 

Cooperative Vehicle Localization based on fusion of GPS 

and VANET based Inter-vehicle Distance 

6.1 Abstract 

Embedded intelligence in vehicular applications is becoming of great interest since the last two 

decades. The significant growth of sensing, communication and computing capabilities over the 

recent years has opened new fields of applications, such as ADAS and active safety systems, 

and has brought the ability of exchanging information between vehicles. In this paper, a new 

method for improving vehicle positioning is proposed. This method is a decentralized method 

based on sharing GPS data and inter-vehicular distance measurements within a cluster of 

vehicles. A Bayesian approach is used to fuse the GPS data and inter-vehicular distances. In 

order to investigate the performance of this new approach on vehicle localization, a Kalman 

filter has been employed to incorporate the dynamics of the vehicle. The effect of this method 

on the reduction of the localization uncertainty, over-convergence issues and identification of 

the vehicles are also discussed in this paper. 

6.2 Introduction 

Accurate and reliable vehicle localization is a key component of numerous automotive and 

Intelligent Transportation System (ITS) applications, including active vehicle safety systems, 

real time estimation of traffic conditions, and high occupancy tolling. Various safety critical 

vehicle applications in particular, such as collision avoidance or mitigation, lane change 

management or emergency braking assistance systems, rely principally on the accurate and 

reliable knowledge of vehicles’ positioning within given vicinity.  

Distributed algorithms as proposed in [88] and [100] have underlined a recent and important 

interest for the collaborative localization. Since the number and type of sensors used in vehicular 

applications increases, it is essential to find ways to better analyze and extract useful data from 

these sensors and share them between vehicles when it is relevant.  
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Sensors which are used in localization can be divided in two categories: proprioceptive and 

exteroceptive sensors. Proprioceptive sensors are those which can provide information about 

the vehicle dynamic states like position, velocity and acceleration (GPS, accelerometer, 

gyroscope etc.). Exteroceptive sensors provide information about the states of the environment 

(video camera, lidar, etc.). GPS is one of the most common positioning devices being used in 

vehicle localization as it provides absolute position of the vehicles, whereas dead reckoning 

sensors such as odometers or INS (Inertial Navigation Systems) provide relative information 

only. GPS signals are however subject to different sources of noise, and degradation as well as 

being subject to temporary signal loss in cluttered environment. Many of the intelligent vehicles 

systems like safety systems can benefit from more accurate and reliable positioning [69]. Data 

fusion technique is one of the common ways to improve the position estimate by exploiting the 

information coming from multiple sensors [44, 45, 135]. 

In the recent years, vehicular ad hoc network (VANET) applications has become of great 

interest. With the recent emergence of multi-vehicular wireless communication capabilities, 

cooperative architectures have become an attractive alternative for solving the localization 

problem [18, 26, 35, 36, 84, 93, 104, 114, 115]. The main goal of cooperative localization is to 

exploit different sources of information coming from different vehicles within a short range 

area, in order to enhance positioning system efficiency while keeping the computing cost at a 

reasonable level. In other words, vehicles share their location and environment information to 

others in order to increase their own global perception. Some of the most prominent approaches 

for cooperating localization are based on Kalman filtering [4, 61, 119], Bayesian methods [52], 

Markovian modeling [13] and maximum likelihood methods [53] and Split covariance 

intersection filter [74, 139].  

In addition to the information exchanging, VANET has brought the capability for 

communicating vehicles to use their wireless communication devices to measure the distance 

between each other. There are basically two methods of measuring distance between 

communicating devices. The first method is the Time-of-Flight (TOF) which is based on the 

time that it takes for a signal to travel from one node to another node, where the nodes are 
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vehicles in a VANET. The second method is the Radio Signal Strength (RSS) which is based 

on the attenuation of the signal strength while traveling from the transmitter node to the receiver 

node [50]. Using the communication devices to measure distance between vehicles has several 

advantages and disadvantages over the other range measurement devices like radar and lidar. 

One of the advantages is that the vehicle identification problem and the data association between 

the received information and range measurements is easier to solve. Another advantage of these 

method is that its detection performance in the crowded areas is better since it can still be used 

while an object or another vehicle blocked the line of sight between two vehicles but it doesn’t 

block the line of sight between antennas. However the disadvantages of these methods over 

radar and lidar is that in their general form they cannot provide the relative bearing between the 

vehicles and they can only provide the distance. In addition to this, lidars usually can provide 

more accurate measurements. Although not all of the RF range measurement methods can 

provide the acceptable accuracy needed for our method, there are several more accurate RF 

based methods such as [120] and [54, 67] which can provide the needed accuracy to be used in 

our method. In [120] a low cost accurate radio ranging technic is proposed and field trials has 

been conducted in different environments to characterize the ranging error. 

In this article, we aim to improve the GPS vehicle position estimates by using available VANET 

based inter-vehicle distance measurements in a cluster of vehicles. The reason that we decided 

to use VANET based inter-vehicle distance measurements is that in addition to the mentioned 

advantages, using this method of distance measurements reduces the cost of the system as it 

doesn’t need a new range sensor to be used and vehicles can use their existing communication 

device to measure the distance. 

Our proposed cooperative vehicle localization method is a decentralized Bayesian approach 

which allows a vehicle to incorporate its GPS position estimate with other vehicles’ GPS data 

and inter-vehicle distance measurements. Unlike [13, 52], which basically have been developed 

for indoor robotic applications, our method is developed for outdoor usage and automotive 

applications. Also this method is taking the advantage of using GPS which is available in 

outdoor usages. Our method should be seen as a pre-filtering of GPS positioning measurement 
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using inter-vehicle distances and other vehicles’ GPS measurements, prior the tracking 

algorithms such as the Extended Kalman Filter (EKF). Therefore this method has the advantage 

to be incorporated with any existing ego localization algorithm which uses GPS (see Figure 6-1).  

Furthermore, the data dependency problem, which is a common issue in probabilistic 

approaches [13, 52, 53] and which leads to over convergence, has been circumvented in our 

approach. Another advantage of this method is the ability to use the true probability distribution 

model of distance measurement sensors instead of using their Gaussian approximation which is 

usually being done in Kalman based methods. In addition to the performance analysis of the 

method, the Sensitivity of the proposed method to the vehicle to vehicle distance measurement 

accuracy, communication latency and communication failure is also studied. The results 

presented in this article are based on Monte Carlo simulations and the data used in these 

simulations were provided by Pro-SiVIC software from Civitec and GPSoft Satellite Navigation 

toolbox for MATLAB. 

Range Sensor

Satellites’ 
Signals

Proposed 
Method

VANET

Data Signals 
Received from 
other Vehicles

GPS Receiver Cooperative 
Position 

Estimates

Data Signals 
sent to other 

Vehicles

Inside a Vehicle

Kalman 
Gain

Update 
Estimate

Update 
Covariance

Project 
to K+1

Kalman Filter

New 
Estimated 
Position & 
Covariance

 
Figure 6-1. Schematic of the system, the input data (blue), the proposed method (green), the 

Kalman filter (orange) and the new Position Estimation. 
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The focus of this article is to describe the derivation of the Bayesian cooperative vehicle 

localization method and demonstrate its performance by integrating this algorithm with a 

Kalman filter to incorporate the dynamic properties of the vehicle. 

6.3 Proposed Method 

The proposed method aims to improve GPS vehicle positioning using additional inter-vehicle 

distances and vehicle-to-vehicle (V2V) communication capabilities in a cluster of vehicles. We 

assume that each vehicle is able to estimate its position and respective covariance matrix using 

its embedded GPS receiver independently. We consider also that each vehicle is able to estimate 

its distance to other vehicles, using a VANET based method and independent from their GPS 

signals [80], we refer to these method as Range Sensor in the rest of this article. Finally, it is 

assumed that the vehicles share their information by means of a VANET. 

With their GPS receivers, the vehicles can calculate the pseudo ranges between them and the 

visible satellites. These pseudo ranges has a standard deviation which is referred as σUERE [60]. 

With the following notation: 

NV = Nth Vehicle 6-1 

( )
0

NX = True Position of NV          6-2 

( )ˆ NX = Estimated position of NV       6-3 

( )
0

ijD = True distance between iV  and jV        6-4 
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( )ˆ ijD = Estimated distance between iV  and jV     6-5 

where ( )
0

NX and ( )ˆ NX are two dimensional vectors providing the (unknown) true position and 

estimated position of NV respectively, the distance between two vehicles for the no-noise case is 

simply given by: 

( ) ( ) ( )

0 0 0

ij i jD X X= −  6-6 

where ( )
0

ijD is the distance between ( )
0

iX  and ( )
0

jX . As said before, we assume that ( )ˆ ijD is measured 

independently from ( )ˆ iX and ( )ˆ jX and that we have a zero mean additive noise on the GPS 

estimated positions: 

( ) ( )
( ) ( ) ( )

0~ ( , ) ( )N N
N N N

X X
X N X R f x=  6-7 

where ( )NX
R is the covariance matrix of the position and ( )NX

f is the probability density function 

of ( )NX . Also, we assume that the inter-vehicular distances have a zero mean additive noise: 

( ) ( )
( ) ( ) 2 ( )

0~ ( , ) ( )ij ij
i j ij i j

D D
D N D f dσ =  6-8 

where ( )
0

ijD is the true distance between iV and jV , ( )
2

ijD
σ is the distance variance corresponding to 

the accuracy of the sensors. Here it is important to mention that these assumptions (6-7,6-8) is 

only made to simplify the problem; our method is not restricted to them. This method can work 

with any other probability distribution model which can better describe the properties of the 
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range measurement method. Now it is desired to estimate ( )iX from the observations. Let us 

define: 

{ }( ) ( ) ( ),i j j i jY X D=  6-9 

where ( )ijY  is the observation of ( )jX and ( )ijD by iV . Therefore ( )ij
YX estimates the position ( )iX

from ( )ijY . 

( )
( ) ( )

( )

cos( )
sin( )

,
i j

ij j
Y i j

D
X X

D
θ
θ

 
= −  

 
i j≠          

6-10 

whereθ is the bearing of the inter-vehicle distance measurement. Since we assumed that our 

distance measurement device is only able to provide us with the inter-vehicle distance and not 

the bearings the value of θ is unknown. Therefore the solution space for ( )ij
YX is a circle around

( )jX with the radius of ( )ijD . 

6.3.1 The 2 vehicles case 

Let us first consider a simple 2-vehicle scenario. From a probabilistic point of view, we have: 

( )( )

(

( )

)

( ) )

(

( ) ( )
|( )

( )
( )

( )|

( | ). ( )
( | )

( )
ij

Y
ij

Y
ij

ii

i

Y

i i
XX

ij
YXij

Y ij
Y

X
X

i
X

f x x f x
f x x

f x
=  

6-11 

Eq. (6-11) is an application of the Bayes theorem, where the left member is the posterior 

probability to observe ( )ix  given ( )ij
Yx and ( )( )

( ) ( )
|

( | )iij
Y

ij
YX

i
X

f x x is the likelihood of the observations. 

Using our model (6-10) we find: 
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( )

( )( () )

( )
( ) ( ) ( ) ( ) ( )( ) ( , )

j

j

ij

i

Y

i jj
Y

x x j iij
Y

j
DX

ij j
X

F x f x d dd dx
+∞ −

−∞ −∞
= ∫ ∫  

6-12 

Differentiating with respect to ( )ij
Yx we obtain: 

( ) (( ))
( ) ( ) ( )( ) ( )( ) ( , )j ij ji

Y

j j j
X D

ij ij
Y YX

f x f x x x dx
+∞

−∞
= −∫  

6-13 

Since ( )jX and ( )ijD are independent, we have: 

( ) (( ))
( ) ( ) ( )( ) ( )( ) ( ) ( )ij

Y
j ij

j j j
X D

ij ij
Y YX

f x f x f x x dx
+∞

−∞
= −∫  

6-14 

Similarly we can obtain: 

( ) ( ) ( )( )
( ) ( ) (( ) ( )) ( ) ( ) ( )

|
( | ) ( | ). ( | )ij

Y
j iji

ij i j i j ij
Y YX

i j
X DX

f x x f x x f x x x dx
+∞

−∞
= −∫  

6-15 

( )jX is independent of ( )iX and the second term in the integral (6-15) is the probability that iV

and jV observe each other at the given distance ( ) ( )j ix x− ,  Which becomes like a doughnut 

whose center is ( )ix (see Figure 6-2). Therefore (6-15) becomes: 

( ) (( )( ) )
( ) ( ) ( ) ( ) ( ))

|
(( | ) ( ). ( )j iij j

Y
i

i j j i j
X

ij
YXX D

f x x f x f x x dx
+∞

−∞
= −∫  

6-16 

Also we have: 
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( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )
|

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ). ( | )

( ). ( ). ( )

i i

i

ij i
Y

j

Y

ij

j
i i i

X X

i

i

j j i j

j ij

i
X X D

Y YX X
f f x f x x dx

f x f x f x x dx d

x

x

+∞

−∞

+∞ +∞

−∞ −∞

= =

−

∫

∫ ∫
 6-17 

As we don’t know the true position of the vehicles neither the distance between them, we use 

instead, the PDFs of the estimates coming from the GPS receivers and range sensors: 

( )
( ) ( ) ( )ˆ ˆ( ) ( , )i

GPS i i i
GPS GPSX

f x N X R=  6-18 

where, ( )ˆ i
GPSX is the position estimate obtained from the GPS receiver of iV  and ( )ˆ i

GPSR is its 

estimated covariance. 

 

 Figure 6-2. Real positions (squares), estimated GPS positions (dots), their PDF and 
uncertainty ellipses (red) and inter-vehicle PDFs centered at ( )ix   (blue) for 6.5( )UERE mσ =   and 

4.5( )RS mσ = . 
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( )
( ) ( ) 2ˆ( ) ( , )ij

RS ij ij
RS RSD

f d N D σ=  6-19 

where, ( )ˆ ij
RSD is the distance estimate between iV   and jV  given by the range sensor (RS) and 2

RSσ

is the variance of distance measurements using range sensor. 

Our prior PDF for ( )iX is therefore the one of its GPS estimate: 

( ) ( )
( ) ( )( ) ( )i i
i GPS i

X X
f x f x=  6-20 

In a similar way for the inter-vehicular distances, we use the PDF of our range sensor 

measurement: 

( ) ( )
( ) ( )( ) ( )ij ij
ij RS ij

D D
f d f d=  6-21 

As an example, Figure 6-2 shows the real positions, estimated GPS positions for iV  and jV  

along with their PDF in red and the inter-vehicle distance PDF centered at ( )ix . The uncertainty 

ellipses have been drawn using a 3 sigma deviation from the center. Substituting (6-20) and 

(6-21) in (6-16) and (6-17) we have: 

( ((( ) )) )
( ( ) ( ) ( ) ( ) () )

|
( | ) ( ). ( )j iij

Y
ji

ij i GPS j R
Y

S j i j
X DX X

f x x f x f x x dx
+∞

−∞
= −∫  

6-22 

And, 
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( ) ( )

( ) ( ) (

( ) (

)

)
( ) ( ) ( )

|

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ). ( | )

( ). ( ). ( )

ij ii i

i j ij

j
Y Y

GPS i i i
X X

GPS i GPS j RS j i j i
X

ij ij
Y YX X

X D

f x f x f x x dx

f x f x f x x dx dx

+∞

−∞

+∞ +∞

−∞ −∞

= =

−

∫

∫ ∫
 

6-23 

Therefore by substituting (6-22) and (6-23) in (6-11) we obtain the following posterior PDF for 

iV : 

( )

( ) ( ) ( )

( )

( )
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The corresponding MAP estimator is given by: 

( )( )( ) ( )
( )( ) ( )

|
ˆ |i i ij

Y

i
YXX

ji i
x

X argmax f x x=  6-25 

where ( )ˆ iX is the new estimated position for iV . Figure 6-3 shows this posterior PDF for i =1 and 

j =2, obtained from (6-24). As one can foresee, such a Bayesian approach allows one vehicle to 

exploit the information contained in the other vehicles’ GPS position and in the range sensor 

measurements to improve its own position estimate and more importantly reduce its uncertainty.  

 

 



92 

6.3.2 The N vehicles case 

Now, let us consider the case of N+1 vehicles present in a cluster. We assume that each vehicle 

has its own GPS position estimate and that all the inter-vehicle distances can be measured. We 

also assume that all range sensors and GPS receivers are the same, within the vehicle cluster, 

leading to identical prior distributions. Again this is only to simplify the equations but in 

practice, for each GPS receivers and range sensors, we can use their own prior distribution. We 

then have: 
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Considering that ( 1) ( ),...,i iN
Y YX X are independent from each other, equation (6-26) becomes: 

 

Figure 6-3. Posterior probability of V1 and its uncertainty ellipse (green), new estimated 
position (star on green area), real position (squares), estimated GPS position (star on red area), 

their PDF and uncertainty ellipses (red) for 6.5( )UERE mσ =   and 3.5( )RS mσ = . 
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By substitution of (6-22) in (6-27) we have: 

( 1) ( )

( ) ( ) (

( )

)

( )
|

(

( 1) ( )
,...,

( ) ( ) ( )) ( )

1

| ,...,

( ). ( )

( )

( )

i iN

i j

Y Y
i

ij

i iN
X

GPS j RS j i j

i
X X

N
GPS i

j
j i

D

Y Y

X X

x x

f

f

x f dx

U

x

x

f x x
+

=
≠

∞

−∞

=

× −∫∏  6-28 

where U is a normalization factor that can be computed by substituting (6-22) into(6-27): 
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Finally, the MAP estimator for the position of vehicle iV given the N other vehicles, is given 

by: 

( ) ( ( 1) ( ))
( 1) ( )

,...
(

,
( ) )

|
ˆ | ,..( . ),i ii i N

Y Y

i i
x X

i
X Y

i N
X YX argmax f x x x=  6-30 

Since there is no analytical solution for equation (6-30), a particle filter has been applied in order 

to solve this equation. A sample set of 1000 particles has been selected for each  ( ) ( 1... ),j j NX =  
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according to its PDF ( )
( )( )j

GPS
X

jf x . The results shown here have been obtained with 5 filter’s 

iterations. 

Figure 6-4 shows the posterior probability (6-28) for 1V  in a cluster of 5 vehicles. The new 

position estimation for 1V  is calculated using (6-30) and is shown as a star in the central green 

area. As we can see from Figure 6-4 the new estimated position is much closer to the real 

position of 1V  and the uncertainty has been reduced as the green area illustrated in Figure 6-4 

is smaller in size than the red area. Since the most computationally complex part of this 

algorithm is solving (6-30) with a particle filter, therefore the order of this algorithm is 
2( )pO N N⋅ , where N is the number of vehicles in the cluster and pN is the number of particles. 

With proper choose of pN and N  each iteration of the algorithm can run in real-time and the 

result can be sent for further use in the tracking algorithms. 

One should note that depending on the method chosen for estimating the inter-vehicular 

distances, different methods for identifying neighbor vehicles and associating the measured 

distances with the received information from VANET can be applied. Although in the case of 

VANET based distance measurement methods there is no need to use any special method 

because vehicles can be identified and data can be associated using their communication 

device’s MAC address, However in the case of Radar and Lidar, different approaches can be 

utilized like the one used in [61] which is based on the Mahalanobis distance between position 

estimations. Details on association and identification methods is outside the scope of this article 

as we will focus only on the fusion method for cooperative localization. 

One important point that must be mentioned here with our Bayesian approach is the over-

convergence issue. This usually occurs when the fused information coming from different 

vehicles are not independent of each other. For each time step of our method, only the GPS and 

inter-vehicle distance measurements of the vehicles present in the cluster are used in the 

calculation of the posterior PDF. These measurements are independent from each other (in the 
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probabilistic sense) and supposedly non-Markovian, i.e.  non-related to the previous 

measurements and position probability distribution of the other vehicles. Therefore, our 

proposed method shall not lead to over-convergence. This method should be seen as a pre-filter, 

which reduces the measurement noise and provides more accurate measurements for further 

calculations. 

6.4 Algorithm Framework 

In order to incorporate these new denoised measurements into a motion model to estimate the 

trajectory of the target vehicle and estimate the position of the vehicles (a Kalman filter in this 

study), as the calculated PDF by (6-28) doesn’t necessarily have a Gaussian distribution, we 

first find the best Gaussian distribution approximation and use this estimation in the update stage 

of the Kalman filter.  The implemented motion model is as follow: 

1 1k k kA FA v− −= +  6-31 

where [ , , , , , ]T
k k k k k k kA x x x y y y=     is the state vector at time k and , ,k k kx x x   are respectively the 

position, velocity and acceleration of the vehicle at time k in the x direction and , ,k k ky y y  are 

 

Figure 6-4. Posterior PDF of V1 in a cluster of 5 vehicles (green), real position (squares), new 
estimated position for V1 (star on green area) for  6.5( )UERE mσ =   and 1.5( )RS mσ = . 
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respectively the position, velocity and acceleration of the vehicle at time k in the y direction. F 

is the state transition matrix based on the constant acceleration model and 1kv − is the innovation 

process noise which describes the uncertainty in the state model. We assume that 1kv − is a zero-

mean Gaussian variable with the covariance matrix: 

2 2 2 2 2 2
1 1 1{ } ( , , , , , )T

k k k x x x y y yQ E v v diag σ σ σ σ σ σ− − − =
   

  6-32 

where diag means a diagonal matrix.  

The observation model of the position is expressed as: 

k k kZ HA w= +  6-33 

where H is the observation matrix and kw  is a zero mean Gaussian random vector which 

describes the noise of the measurements and with a covariance matrix kR . Also kZ  is the 

measurement vector and in our scenario as our only measurement is the position of the vehicles, 

then kZ only consists of the measured position of the target vehicle at time k. If the position 

measurements are from the GPS receiver then ( )ˆ i
k GPSZ X= and if the measurements are from 

(6-30) then ( )ˆ
k

iZ X=  where i is the index of the target vehicle.  

Our algorithm is summarized as follow (see Figure 6-1): 

Step 1: Each vehicle measures its own position using its GPS receiver and transmit the position 

with its covariance matrix to all other vehicles in the cluster. It also measures its inter-vehicular 

distances with the other vehicles in the cluster. 
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Step 2: Each vehicle fuses its own GPS position with the measured inter-vehicular distances 

and also the received GPS information of the other vehicles, using (6-30) and obtains new 

position measurement. 

Step 3:  Each vehicle incorporates the result of Step 2 into its own motion model using a Kalman 

filter. 

Step 4: Step 1 to 3 are repeated through time. 

In the next section we will describe our simulation scenario and we will discuss the performance 

of this method from different aspects. 

6.5 Simulation Results 

In order to test the performance of the proposed method, we considered a cluster of 5 vehicles, 

each one equipped with a GPS receiver, communication device and a VANET based range 

measurement method to measure the distances between itself and other vehicles in the cluster. 

These vehicles are moving along a road and their relative positions are changing continuously. 

A typical vehicle formation is shown in Figure 6-5. We used the Pro-SiVIC software from 

Civitec to produce the vehicle data trajectories and the GPSoft Satellite Navigation toolbox for 

MATLAB to generate the GPS data for each vehicle. In order to generate inter-vehicular 

distances we used the real distance between vehicles and added a zero mean Gaussian noise. 

 

Figure 6-5. A typical formation of the vehicles 
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The simulation was done 100 times and the values presented here are the mean values over all 

the simulations.  

The data synchronization of the various sensors between vehicles can be done using the GPS 

time. Each vehicle prepares the required data that must be transferred to other vehicles and 

attaches its GPS time to them and then broadcasts them for other vehicles. The target vehicle 

receives these broadcasted data and extract the sensor data and their timestamp. Then it can 

compare this timestamp to its own GPS time and do the data synchronization. The IEEE 802.11p 

is a good example for the vehicle–to-vehicle communication standard. This standard is an inter-

vehicular communication technology designed for both vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) communications. In [17] the performance of IEEE 802.11p has been 

studied using field trials and a model for accurately simulating its performance has been 

proposed. 

In order to investigate the performance of the proposed method, we applied the same Kalman 

filter for the target vehicle once with the GPS position estimation of it ( )ˆ i
k GPSZ X= , and once with 

the estimated data from our proposed method  ( )ˆ
k

iZ X= ,as the measurements in the update stage 

of the Kalman filter proposed in section III. The target vehicle is shown in the Figure 6-5. 

Figure 6-6 shows the real trajectory and also the Kalman filter estimated trajectories for GPS 

data and the proposed method for a typical run of the simulation. The road used in this simulation 

is a simulation of a test road in Satory, France and the data are provided by the Pro-SiVIC 

 

Figure 6-6. Real trajectory (Green), Estimated Kalman trajectory using only GPS of the target 
vehicle (Red), Estimated Kalman trajectory using the proposed method (Blue) 
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software. In Figure 6-6 the vehicles trajectories are mapped to the real road image to provide 

better understanding of the vehicles’ trajectories. 

Figure 6-8 compares the position error of the Kalman with the proposed method and the position 

error of the Kalman with GPS estimates. As we can see in this figure, using the proposed method 

decreases the position error and gives more accurate position estimations. Table 6-1 compares 

the average position error of these methods. In addition to the position error we can further 

 

Figure 6-8. Position error of the Kalman with the proposed method (green) comparing to the 
Kalman with the GPS (red). 

 

 

Figure 6-7. a) The angle of variances, 1 2 2tan ( )yy

−

xxσ σ and the road trajectory angle. b) 

Comparison of variance amplitude, 2 2 22) ( )yy+xx(σ σ  from the GPS and with the proposed 
method. 
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investigate the performance of our method by comparing the variances of the positioning, 2
xxσ

and 2
yyσ . The average variances of the position estimates using our method and GPS before and 

after using Kalman filter has been compared in Table 6-1. This table shows that our method can 

significantly reduce the position uncertainty. In order to better investigate the dependency of the 

position variance reduction to the cluster configuration, a simpler trajectory (Figure 6-9) is used 

to produce data presented in in Figure 6-7. Figure 6-7.b shows the amplitude of the variances 

for the target vehicle, 2 2 22) ( )yy+xx(σ σ , in each time step and Figure 6-7.a shows the angle of 

these variances, 1 2 2tan ( )yy
−

xxσ σ . Figure 6-7.b shows a significant decrease of uncertainty by 

using our proposed method. As it is shown, the uncertainty, using the proposed method and by 

using the Kalman filter is always less than the uncertainty using only the GPS of the target 

vehicle and the same Kalman filter. Another interesting point that Figure 6-7.a shows is that the 

amount of variance reduction achieved, depends on the configuration of the cluster and is 

directional. Considering Figure 6-7.a at the beginning, the cluster is moving on the road and is 

spread in the X direction, the angle shows that the ratio of 2 2/ )yy xx(σ σ is increased using our 

method which means that the amount of variance reduction was more in the X direction. As the 

 

Figure 6-9. Real trajectory (Green), Estimated Kalman trajectory using only GPS of the target 
vehicle (Red), Estimated Kalman trajectory using the proposed method (Blue) used for 

position variance analysis. 
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cluster moves and changes its direction according to the road, the ratio decreases and from 

around 45(sec), the cluster is spread in the Y direction and angle shows that the amount of 

variance reduction is more in the Y direction in comparison with the variances before using our 

algorithm. In Figure 6-7.a the road trajectory angle is also given (green line) and by comparing 

it with the angle curve of the proposed method similarity in the variations is noticeable. 

In order to estimate the computation time of the algorithm for the real time implementation, a 

fast C++ code was implemented. As the calculation time of the exponential function is relatively 

high we used a lookup table to increase the speed of the algorithm. Our experiments shows that 

each iteration of the algorithm having 5 vehicles in the cluster with 1000 particles around each 

vehicle takes approximately 20ms. By increasing the number of algorithm iterations to 5 the 

 

Figure 6-10. Effect of RSσ on the position error for 5 vehicles using GPS positions (red) and 
proposed algorithm (blue) 

Table 6-1. Average Position Error and Variances of the target vehicle over time using 
different methods 

Method Variances ( 2m ) Error ( m

) 2
xxσ  2

yyσ  
GPS 37.73 22.73 6.75 

Proposed method 4.94 5.50 4.16 
Kalman with GPS 19.17 12.12 4.58 

Kalman with 
Proposed method 

2.95 3.23 3.30 
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computation time increases to 100ms. In order to speed up the algorithm it is possible to reduce 

the number of particles from 1000 to 500 which decreases the calculation time of each iteration 

for each vehicle in the cluster to 1ms which is an acceptable computation time for localization 

algorithms while it doesn’t make a noticeable difference in the positioning accuracy. However 

a better implementation and optimization of the C++ code can still improve the speed of the 

algorithm. 

6.5.1 Sensitivity Analysis 

Another way to assess the performance of the algorithm is to analyze the sensitivity of the 

algorithm to different parameters. In this section we aim to analyze the sensitivity of the 

described algorithm to the accuracy of the inter-vehicle distance measurement described by

, the number of the vehicles in the cluster N, communication latency and communication failure.  

The range sensor standard deviation, , depends on the device or method which has been used 

to measure the inter-vehicle distance and its quality. For example laser based sensors such as 

lidar are typically more accurate than radar or VANET based methods. On the other hand the 

quality of the sensors always has a straight relation to the price of the sensors and most of the 

times we need to do a tradeoff between the quality and cost. Therefore it is important to 

investigate the sensitivity of the method to the accuracy of the range sensor, . Figure 6-10 

shows the average position error of the target vehicle against variations in the range sensor’s 

std, . As we can see in this figure, although the proposed method reduces the position error 

of the vehicles and gives a better position estimation, the amount of this improvement depends 

on the accuracy of the range sensor. We can deduce from the figure that by having a more 

accurate range sensor (less variance), we can achieve a more accurate cooperative position 

estimate. Also we can expect, by incre6-asing , the position error increases and the estimated 

position will eventually approach the GPS initial estimations. 

Moreover, the effect of range sensor’s std, , on the estimated posterior position variance can 

be seen in Figure 6-12. As this figure shows the uncertainty of the posterior positioning is 

RSσ

RSσ

RSσ

RSσ

RSσ

RSσ
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increasing as  increases. Also we can deduce from (6-28) that by increasing , eventually 

the ( )ij
RS

D
f    becomes close to a uniform distribution and the posterior position PDF will become 

the same as the prior distribution. Therefore we can say that by increasing  the uncertainty 

of the Bayesian positioning increases and eventually it will approach the prior positioning 

uncertainty which is the GPS uncertainty. 

In In order to investigate the effect of the number of vehicles on the position error of our MAP 

estimate, we applied the proposed method to 1V   and calculated the position error, using 

RSσ RSσ

RSσ

 

Figure 6-12. Effect of RSσ on the positioning posterior standard deviation. 

 

Figure 6-11. Position Error for V1 with respect to number of vehicles in the cluster 

 

 



104 

different combinations of other vehicles. Fig. 12 shows the evolution of the position error with 

respect to the number of vehicles in the cluster. Clearly, as the number of vehicles in the cluster 

increases, the corresponding position error of the MAP estimate, decreases. The comparison of 

the variances before and after using the proposed method and their variations with respect to the 

number of vehicles in the cluster is shown in Table. II. This table describes that, the posterior 

position variances decrease as the number of vehicles increase which means, we can achieve 

more accuracy and less uncertainty by incorporating more vehicles in our fusion algorithm. 

The effect of communication latency on the positioning error is presented in Figure 6-13. This 

figure shows that by increasing the communication latency the positioning error increases. This 

is because the target vehicle receives the other vehicles’ information with a delay and during 

this time the vehicles have moved. Therefore the measured inter-vehicular distances belong to 

the new positions of them while their GPS positions belongs to slightly different position. The 

amount of this difference depends on the speed of the vehicles. In our simulations the average 

speed of the vehicles was 45km/h. 

Figure 6-14 shows the position error of the proposed method during a communication failure. 

The position error of the Kalman with the proposed method (green) and the position error of the 

Kalman with GPS estimates (red) is shown in the figure. The communication failure happens 

during 79s to 124s after beginning of the simulation. During this period the target vehicle can’t 

communicate with other vehicles therefore it only uses its own GPS measurements. It is obvious 

that after a while the estimated position by the proposed method will reach the Kalman with 

Table 6-2. Average variances of V1 with respect to the number of vehicles in the cluster 
before and after using proposed method(m2) 
Variance
s 

Number of Vehicles 
2 3 4 5 

𝝈𝝈𝒙𝒙𝒙𝒙𝟐𝟐  
Before 

39.83 39.83 39.83 39.83 

𝝈𝝈𝒙𝒙𝒙𝒙𝟐𝟐  After 12.25 6.79 4.95 4.55 
𝝈𝝈𝒚𝒚𝒚𝒚𝟐𝟐  
Before 

35.99 35.99 35.99 35.99 

𝝈𝝈𝒚𝒚𝒚𝒚𝟐𝟐  After 10.42 6.45 4.17 4.23 
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GPS estimation. Then after 124s, when the communication restarts the target vehicle can use 

the information of other vehicles and a better position estimation is achievable. The position 

estimations during the communication failure is shown with blue color in the figure. 

Finally it is important to mention that considering the error characteristics of the GPS 

measurements and the possibility of observing different sets of satellites by different vehicles, 

this method reduces more the non-common error component of the GPS positioning which is 

caused by the multipath and receiver noise. Therefore we can expect better performance from 

 

Figure 6-13. Position error of the proposed method with respect to the communication 
latency. 

 

 

Figure 6-14. Position error of the Kalman with the GPS (red) comparing to the Kalman 
with the proposed method (green) during communication failure (blue). 
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this algorithm in the cases that the GPS errors are different between vehicles with respect to the 

case that vehicles have similar GPS offsets. 

6.6 Conclusion & Future work 

In this article we proposed a Bayesian method for multi-vehicle cooperative localization in a 

cluster of vehicles using GPS data and inter-vehicle distance measurements. Each vehicle uses 

its own GPS receiver to estimate its position and shares this information with other vehicles in 

the cluster by using a VANET protocol. In addition we assumed that each vehicle is also 

equipped with a proper VANET based range measurement method which is capable to measure 

its distance to other vehicles. Figure 6-1 provides an overview of the system. We also proved 

that this method doesn’t have the over convergence problem of the similar methods. 

In order to investigate the efficiency of the proposed method, we used the new estimated 

positions produced by our algorithm as the measurements and applied a Kalman filter to them 

and compared the result with the result of the same Kalman filter using the GPS measured 

positions of the target vehicle as the measurements. The obtained result indicates that using this 

procedure, reduces the positioning uncertainty significantly and makes the positioning error 

decrease considerably. Consequently a vehicle is positioned with a greater accuracy. Using this 

method with more complicated tracking filters or using Map matching could greatly increase 

the performance of a tracking system. Also the results of the sensitivity analysis confirms that 

using more accurate range measurement methods and more vehicles in the fusion algorithm can 

better improve the localization performance. We consider as future work, to extend this method 

to vehicles with more proprioceptive sensors and to use this method in a collision avoidance 

system. 
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Chapter 7  Experimental Validation 

In this chapter we describe the experimental results of the cooperative map matching (CMM) 

algorithm using real sensory data acquired in the Satory road in France provided by LIVIC-

IFSTTAR (Figure 7-1). The chapter is organized as follow. In the first section we describe the 

structure of sensors’ data that we used in this experiment. The second section introduces the 

dynamic model and the Extended Kalman filter equations. The Synchronization process of the 

sensors’ data is discussed in the third section followed by the CMM data validation and 

algorithm in the fourth section. Finally in the last section the results of the CMM algorithm is 

discussed. 

7.1 Data Structure 

The dataset used in this experiment is acquired by a test vehicle in Satory road, France. This 

dataset consists of a GPS receiver, RTK solution, Odometer which is mounted on the front 

wheels, INS data with acceleration and gyroscope and a sensor to measure the angle of the 

vehicle’s front wheels. 

• GPS and RTK data: Each sample of the GPS and RTK data consists of the position 

measurement [x,y,z], UTC time stamp and HDOP acquired on 5Hz. 

• Odometer and wheel angle data: Each sample of these sensors consists of the value of 

these sensors and an UTC time stamp. 

 

Figure 7-1. Satory Road. 
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• INS data: each sample of INS data consists of the acceleration in three axis and the roll, 

yaw and pitch measured by the gyroscope. In addition to this, similar to the other sensors 

data, INS data also has an UTC time stamp for each sample. 

 

7.2 Extended Kalman Filter 

In this experiment we used an Extended Kalman Filter which is one of the most popular filters 

for vehicle localization [43, 81, 95]. We have used the result of CMM as measurements instead 

of GPS position in the EKF and compared the estimated position to the EKF with the GPS. The 

model used in this experiment is the three wheels kinematic model [1, 82, 86, 87]. In this model 

it is assumed that the vehicle has two back wheels and one director front wheel (Figure 7-2). 

The state vector is [ , , ]Tx y ψ  where [ , ]x y  represents the position of the vehicle and ψ is the 

heading angle. The origin of the mobile frame is at the center of the front wheel. The lonv  and 

latv  are the longitudinal and lateral velocities respectively. 

As the odometer is mounted on the front wheel we have: 

 

Figure 7-2. Three wheels kinematic model. 
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where l  is the distance between two axles and δ  is the angle of the front wheel with respect to 

the vehicle’s body. Having the angular velocity measured by the gyroscope, the prediction 

equations become: 

1 1

1 1

1

cos( 2)
sin( 2)

k k k k k

k k k k k

k k k

x x Tv T
y y Tv T

T

ψ ω
ψ ω

ψ ψ ω

− −

− −

−

= + ∆ + ∆
= + ∆ + ∆

= + ∆
 7-2 

where T∆ is the time step. 

Also the update equation is as follow, 

k GPS

k GPS

x X
y Y
=
=

 7-3 

7.3 Data Synchronization 

Since the data acquired from the sensors are not synchronized we use their time stamp to apply 

them in the Kalman filter. The algorithm checks the time stamps of the valid data and selects 

the data with the less time stamp. If the selected data was from odometer it uses the prediction 

equations (7-2) to predict the state vector and if the selected data was GPS it uses the update 

equation (7-3) to update the predicted position. 
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7.4 CMM 

In order to test the performance of the CMM method we have used the result of CMM as 

measurements instead of GPS position in the EKF and compared the estimated position to the 

EKF with the GPS. In this experiment we have 5 vehicles which can communicate and cooperate 

with the target vehicle. A typical formation of the vehicles is shown in . The algorithm procedure 

is as follow: 

 The target vehicle uses the odometer and director wheel angle data to predict the 

position. 

 Whenever the target vehicle receives a GPS position from other vehicles it record it 

in the memory. 

 When the target vehicle measures its GPS position it uses this measurement along 

with the previously received valid GPS position of other vehicles in the CMM 

algorithm to generate the CMM estimated position. 

 Then the target vehicle uses this CMM position in the update stage of the EKF to 

update its predicted position. 

 

 

Figure 7-3. A typical formation of the vehicles in Satory road.  
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7.5 Results 

The experimental results of the CMM algorithm confirms the simulation results presented in 

chapter 3. Table 7-1 shows the estimated vehicle position error of the EKF using GPS, single 

vehicle map matching and the cooperative map matching with various number of cooperative 

vehicles. We can interpret from this table that although using map matching with EKF can 

improve the position estimation accuracy, using CMM with more communicating vehicles can 

improve the positioning accuracy even more. Also Figure 7-4 compares the position error of the 

EKF with GPS and EKF with CMM with 5 communicating vehicles. It shows that using CMM 

approach can increase the accuracy of the position estimations. 

 

Table 7-1. Comparison of the position error (m) between the GPS, single vehicle map 
matching and the CMM with various number of cooperative vehicles.  

 GPS 
Single 
Vehicle 
MM 

CMM – Number of Cooperative 
Vehicles 

2 3 4 5 

Position 
Error 5.11 4.15 4.02 3.84 3.57 3.06 

 

Figure 7-4. Estimated position error with respect to the time. 
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7.6 Computation Time Requirements in Implementation 

One of the most important issues that we have to consider while developing localization 

algorithms for vehicular applications is the computation time of the algorithms. In many 

localization applications in robotics, the robots doesn’t move very fast or depending on their 

assigned task they can wait between each movement to receive the proper instruction from the 

algorithm. In these cases, the computation time is not very restrictive. However in the cases such 

as vehicle localization, where vehicles can move with high speeds the computation time 

becomes more important.  

The computation time limits of the localization algorithms depends on the application of the 

vehicle localization in terms of desired localization accuracy and algorithm execution 

frequency. For example assume that for a specific application such as lane level vehicle 

positioning an accuracy of 30cm is needed and the maximum speed of the vehicle is 70 km/h. 

Therefore the total delay of the system (including the data acquisition, communication and etc.) 

can’t exceed of 4ms. 

However it is important to mention that these kind of delays in the system can be compensated 

by projecting the position estimation in time (for example using a Kalman filter) by having a 

good estimation of the system delay. So these kind of delays may decrease the algorithm 

efficiency and increase the uncertainty (due to the projection in time) but it is not very restrictive. 

What is really restrictive and defines the highest limit of the computation time is the frequency 

of the algorithm execution. In other words, how many times in a specific period of time the 

algorithm must run. The algorithm computation time cannot take more than this time. 

For example if we assume a 5Hz sampling rate for GPS, the algorithm which treats these GPS 

data cannot exceed 200ms computation time. Otherwise the delays will accumulate in time and 

an infinite memory is needed in order to hold all the received and non-treated GPS data. 
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As described in 6.5 , we have implemented a fast C++ code to test the algorithm proposed 

in Chapter 6 . As the calculation time of the exponential function is relatively high we used a 

lookup table to increase the speed of the algorithm. Our experiments shows that each iteration 

of the algorithm having 5 vehicles in the cluster with 1000 particles around each vehicle takes 

approximately 20ms. By increasing the number of algorithm iterations to 5 the computation 

time increases to 100ms. In order to speed up the algorithm it is possible to reduce the number 

of particles from 1000 to 500 which decreases the calculation time of each iteration for each 

vehicle in the cluster to 1ms which is an acceptable computation time for localization algorithms 

while it doesn’t make a noticeable difference in the positioning accuracy. However a better 

implementation and optimization of the C++ code can still improve the speed of the algorithm. 

Our Cooperative map matching method described in Chapter 5 , and tested with real data in this 

Chapter is another algorithm which uses particle filter. This algorithm is less computational 

extensive in comparison to the method described in Chapter 4. Our experiments shows that each 

iteration of the algorithm for each vehicle using 1000 particles takes 2ms. However it is still 

possible to increase the speed of the code by better optimization of the code. 

 

 

 

 





 

Chapter 8  Conclusions and Future works 

The principal objective of this study was to propose cooperative approaches for vehicle 

localization using the communication capability of the vehicles. This objective was covering the 

understanding of the different sensors and devices which are used in vehicular localization along 

with a depth understanding of the most common data fusion methods. In order to reach this goal, 

we have proposed three different cooperative localization methods. In this chapter we have a 

conclusion on each proposed method and we suggest some perspectives for the future works. 

8.1 Conclusions 

GPS receiver is an important component of automotive navigation systems as it provides an 

estimate of the absolute position of the vehicle. Commercial GPS is subject to several sources 

of noises and offers insufficient accuracy for most ADAS and ITS applications. The major 

sources of error in the pseudo-range detection process are highly correlated between the 

receivers which are close to each other. 

In the fifth chapter, we have proposed a new cooperative map matching method which can 

estimate and compensate the effect of the common error component of the GPS pseudorange 

errors by exploiting the similarity in the GPS positioning bias of different vehicles.  This CMM 

method is based on applying the road constraint of the neighbor vehicles to the target vehicle in 

order to reduce the uncertainty of the positioning and improving its accuracy. Unlike other 

cooperative map matching method this method only relies on exchanging the GPS 

measurements of different vehicles and having a precise digital road map. In addition to this the 

effect of non-common pseudorange error which can lead to over converging to a wrong position 

in the cooperative map matching has been considered and circumvented in our approach. The 

results indicates that by using the cooperative approach, the map matching task significantly 

improves and a better positioning can be performed.  

In addition to this, a decentralized Dynamic base station DGPS method (DDGPS) has been 

proposed, which can generate GPS pseudorange corrections and takes advantage of the 

communication capability of the vehicles in order to exchange the pseudorange corrections in a 
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VANET. Unlike the DGPS, our method does not require a network of static base stations with 

precisely known positions to generate pseudorange corrections. These corrections are generated 

by each vehicle from their ego position estimate and the received corrections from other 

vehicles. Since the position of the vehicles are not known exactly, a parameter describing the 

confidence level of each pseudorange correction is introduced, which is calculated based on the 

uncertainty of the ego position estimate and the confidence level of the received corrections.  

In the sixth chapter, we proposed a Bayesian method for multi-vehicle cooperative localization 

in a cluster of vehicles using GPS data and inter-vehicle distance measurements. In this method 

each vehicle uses its own GPS receiver to estimate its position and shares this information with 

other vehicles in the cluster by using a VANET protocol. In addition we assumed that each 

vehicle is also equipped with a proper VANET based range measurement method which is 

capable to measure its distance to other vehicles.  

The obtained result indicates that using this procedure, reduces the positioning uncertainty 

significantly and makes the positioning error decrease considerably. Consequently a vehicle is 

positioned with a greater accuracy.  

In chapter 7, experimental validation for the Cooperative Map Matching method has been 

performed based on real data acquired from test vehicles. As we expected the experimental 

results confirms the efficiency of the CMM method and proves the simulation results presented 

in chapter 5. 
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8.2 Future works 

In this section we suggest some perspectives for the future work. The suggestions are classified 

as follow: 

• For the CMM method, investigating a vehicle selection procedure can be useful in the 

case of having a large number of communicating vehicles in order to have a good 

performance for the map matching algorithm while keeping the computation time at a 

reasonable level. Also we can study the effect of imperfect digital maps on the CMM 

method. 

• For the DDGPS method, we intend to study the interdependency of the pseudorange 

corrections generated by each vehicle. We also consider that the fusion method for 

merging the received corrections can also be improved. In addition to this a method for 

considering the life time of the corrections must be used to help the vehicles detect the 

expired corrections and not to broadcast them to other vehicles. 

• For the Bayesian approach, using this method with more complicated tracking filters or 

using map matching could greatly increase the performance of a tracking system. Also 

the results of the sensitivity analysis confirms that using more accurate range 

measurement methods and more vehicles in the fusion algorithm can better improve the 

localization performance. Therefore we consider as future work to combine this method 

with the CMM and DDGPS methods which potentially can improve the positioning 

performance.

 

 





 

Chapter 9  Conclusions et Les Travaux Futurs 

L'objectif principal de cette étude était de proposer des approches collaboratives pour la 

localisation véhiculaire en utilisant la capacité de communication entre les véhicules. Cet 

objectif portait sur la compréhension des différents capteurs et dispositifs qui sont utilisés dans 

la localisation des véhicules et une étude en profondeur des méthodes de fusion de données les 

plus courantes. Afin d'atteindre cet objectif, nous avons proposé trois méthodes de localisation 

coopérative. Ce chapitre présente une conclusion sur chacune des méthode développée propose 

quelques perspectives pour les futurs travaux. 

1.1 Conclusions 

Le récepteur GPS est un composant important dans les systèmes de navigation automobile, car 

il fournit une estimation absolue de la position  du véhicule. Un GPS commercial est soumis à 

plusieurs sources de bruits et offre une précision insuffisante pour la plupart des ADAS et autres 

applications des STI. Les principales sources d'erreur dans le processus de détection de pseudo-

distance sont fortement corrélées entre des récepteurs qui sont proches. 

Dans le cinquième chapitre, nous avons proposé une nouvelle méthode de correspondance 

cartographique coopérative (CMM, Cooperative Map Matching) qui peut estimer et compenser 

l'erreur de pseudo distance GPS qui est une erreur commune en exploitant la similitude du biais 

des GPS dans différents véhicules. Cette méthode de CMM est basée sur l'application de la 

contrainte de la route des véhicules proches du véhicule cible dans le but de réduire l'incertitude 

sur le positionnement et l'amélioration de la précision. Contrairement à d'autres méthodes 

correspondance cartographique coopérative cette approche ne repose que sur l'échange des 

mesures GPS de différents véhicules et ayant une carte routière numérique précise. De plus 

l'effet de l'erreur de pseudo distance non-commune, qui peut conduire à un phénomène de sur-

convergence et tendre vers une mauvaise position pour la correspondance sur la carte 

coopérative, a été considéré et contourné dans notre approche. Les résultats indiquent que 

l'utilisation de l'approche collaborative, améliore la correspondance cartographique tâche de 

manière significative et un meilleur positionnement peut être obtenu. 
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En plus de cela, un procédé DGPS dynamique décentralisée (DDGPS) a été proposé, afin de 

générer des corrections de pseudo distance GPS et utilise la capacité de communication des 

véhicules afin d'échanger les corrections de pseudo distance dans un VANET. Contrairement au 

DGPS, notre méthode ne nécessite pas un réseau de stations de base fixe avec des positions 

connues avec précision pour générer des corrections de pseudo-distance. Ces corrections sont 

générées par chaque véhicule grâce à l’estimation sa position et des corrections provenant  

d'autres véhicules. Étant donné que la position des véhicules ne sont pas connus exactement, un 

paramètre décrivant le niveau de chaque correction de pseudo de confiance est introduit est 

calculé sur la base de l'incertitude de l'estimation de la position et du niveau de confiance des 

corrections reçues. 

Dans le sixième chapitre, nous avons proposé une méthode bayésienne de localisation 

coopérative pour un groupe de véhicules utilisant des données GPS et des mesures de distance 

inter-véhiculaire. Dans cette méthode, chaque véhicule utilise son propre récepteur GPS pour 

évaluer sa position et partage cette information avec les autres véhicules du groupe en utilisant 

un protocole de VANET. En outre, nous avons supposé que chaque véhicule est également 

équipé d'une méthode de mesure de la distance sur la base des VANET appropriée qui est 

capable de mesurer la distance inter-véhiculaire. 

Le résultat obtenu montre que l'utilisation de cette procédure réduit l'incertitude de 

positionnement de manière significative et diminue l'erreur de position considérablement. Par 

conséquent, chaque véhicule est localisé avec une grande précision. 

Dans le chapitre 7, une validation expérimentale de la méthode de correspondance 

cartographique collaborative  a été effectuée sur la base des données réelles acquises à partir de 

véhicules d'essai. Comme on pouvait s’y attendre, les résultats expérimentaux confirment 

l'efficacité de la méthode CMM et prouvent les résultats de simulation obtenus dans le chapitre 

5. 
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1.2 Les travaux futurs 

Dans cette section, nous proposons quelques perspectives pour les travaux futurs. Les 

suggestions sont classées comme suit: 

• Pour la méthode CMM, une enquête sur la procédure de sélection d’un véhicule peut-être utile 

dans le cas où on a un grand nombre communication entre véhicule afin d'avoir une bonne 

performance de l’algorithme tout en gardant le temps de calcul à un niveau raisonnable. Aussi, 

nous pouvons étudier l'effet de cartes numériques imparfaites sur la méthode. 

• Pour la méthode DDGPS, nous avons l'intention d'étudier l'interdépendance des corrections de 

pseudo distance générées par chaque véhicule. Nous estimons également que la méthode de 

fusion peut également être améliorée. En plus de cela une méthode pour considérer la durée de 

vie des corrections doit être utilisée pour aider les véhicules afin de détecter les corrections 

périmées et de ne plus les diffuser à d'autres véhicules. 

• Pour l'approche bayésienne, en utilisant cette méthode avec des filtres de pistage plus 

complexes ou en utilisant une correspondance cartographique, les performances d'un système 

de pistage pourraient être grandement augmentées. Aussi les résultats de l'analyse de sensibilité 

confirment que l'utilisation de méthodes de mesure de la distance inter-véhiculaire plus précises 

et du nombre de véhicules dans l'algorithme de fusion pourrait améliorer la performance de la 

localisation. Par conséquent, nous considérons que le travail futur sera de combiner cette 

méthode avec les méthodes CMM et DDGPS ce qui pourrait potentiellement améliorer les 

performances du système de positionnement. 
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