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Sommaire 

Cette dissertation presente un ensemble d'algorithmes visant a en permettre un usage rapide, 

robuste et automatique des « Support Vector Machines » (SVM) non supervises dans un 

contexte d'analyse de donnees. Les SVM non supervises se declinent sous deux types 

algorithmes prometteurs, le « Support Vector Clustering » (SVC) et le « Support Vector 

Domain Description » (SVDD), offrant respectivement une solution h deux probldmes 

importants en analyse de donnees, soit la recherche de groupements homogenes (« clustering 

»), ainsi que la reconnaissance d'elements atypiques (« novelty/abnomaly detection ») a partir 

d'un ensemble de donnees. 

Cette recherche propose des solutions concretes a trois limitations fondamentales inherentes a 

ces deux algorithmes, notamment 1) l'absence d'algorithme d'optimisation efficace 

permettant d'executer la phase d'entrainement des SVDD et SVC sur des ensembles de 

donnees volumineux dans un delai acceptable, 2) le manque d'efficacite et de robustesse des 

algorithmes existants de partitionnement des donnees pour SVC, ainsi que 3) l'absence de 

strategies de selection automatique des hyperparametres pour SVDD et SVC controlant la 

complexity et la tolerance au bruit des modeles generes. 

La resolution individuelle des trois limitations mentionnees precedemment constitue les trois 

axes principaux de cette these doctorale, chacun faisant l'objet d'un article scientifique 

proposant des strategies et algorithmes permettant un usage rapide, robuste et exempt de 

parametres d'entree des SVDD et SVC sur des ensembles de donnees arbitrages. 
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Introduction 

Contexte 

Les « Support Vector Machines » (SVM) sont une classe d'algorithmes d'analyse de donnees 

deriv^es des fondements theoriques sur 1'apprentissage statistique formalises par Vapnik dans 

son ouvrage The Nature of Statistical Learning Theory [5]. Les SVM se declinent sous deux 

categories d'algorithmes d'apprentissage: les algorithmes dits supervises, adaptes aux 

contextes de classification (« Support Vector Classifier » - SVM) et de regression (« Support 

Vector Regression » - SVR), et ceux dits non supervises, objets de cette these doctorale, 

adaptes a la detection d'elements atypiques (« Support Vector Data Description » - S VDD) et 

h la recherche de groupements homogenes (« Support Vector Clustering »- SVC). 

Les SVM non supervises sont caracterises par un processus d'induction estimant une courbe 

de niveau de la fonction de densite sous-jacente a un ensemble de donnees, englobant de 

fa<?on compacte les observations les plus representatives. Ces contours sont estimes par la 

methode SVDD, en generant une hypersphere de rayon minimal renfermant une proportion 

contrdlee de points dans un referentiel de projection non lineaire. La projection est r£alis£e 

implicitement par l'usage de noyaux gaussiens et permet de gendrer, dans le referentiel des 

donnees, un ensemble de courbes de formes arbitraires dont la complexite est controlee par le 

parametre a definissant l'etendue du noyau gaussien, et dont la tolerance au bruit est 

contrdlee par le parametre p definissant la proportion de points exclus des contours. 

Le SVDD produit et exploite ces contours afin de differencier les instances normales des 

instances anormales d'une classe d'observations, et l'algorithme SVC utilise ces memes 

contours afin d'identifier des groupements homogenes d'observations (« clusters ») associes 

a des zones de densites eievees. 
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Les SVDD ont ete utilises avec succes dans des contextes tels que la detection de visages 

[10], la reconnaissance vocale [3], la detection d'ombres mouvantes en telesurveillance [11], 

le diagnostic de pathologies cardiaques rares [4] et l'identification de dysfonction dans les 

reseaux informatiques [5]. Les SVC ont ete employes en segmentation de clientele en 

marketing [7] et en gestion de relation a la clientele [16], la detection de regies semantiques 

[14], en groupement des courbes de charges electriques [2] et d'images retiniennes 

biometriques [12], et en segmentation d'images [6]. 

Les SVDD et les SVC b6neficient des qualites fondamentales suivantes : 

• La surface estimant le domaine jouit d'une grande flexibility lui permettant de s'adapter a 

des distributions complexes. La complexity de la surface est controlee via un seul 

param^tre a definissant l'etendue du noyau gaussien; 

• La surface beneficie d'une tolerance explicite au bruit controlee par un parametre de 

penalisation p permettant de definir la proportion de points exclus des contours. 

En contrepartie, les SVDD et SVC sont affliges des trois limitations fondamentales suivantes 

restreignant leur usage dans des contextes concrets d'analyse de donnees : 

• L'absence d'algorithme d'optimisation efficace permettant d'executer la phase 

d'entrainement des SVDD et SVC sur des ensembles de donnees volumineux dans un 

delai acceptable; 

• L'absence de strategies de selection automatique des hyperparametres (<r,p) pour 

SVDD et SVC controlant respectivement la complexity et la tolerance au bruit des 

modules gen£r6s; 

• Le manque d'efficacite et de robustesse des algorithmes existants de partitionnement des 

donnees pour SVC en presence de groupements aux formes complexes. 
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La resolution individuelle des trois limitations mentionnees ci-haut constitue les trois axes 

principaux de cette these doctorale, chacun faisant l'objet d'un article scientifique proposant 

des strategies et algorithmes permettant un usage rapide, robuste et exempt de param&res 

d'entree des SVDD et SVC sur des ensembles de donnees arbitraires. 

Objectifs 

Les trois limitations pr6c£demment enumerees sont individuellement resolues via l'atteinte 

des objectifs suivants : 

1. Creer un algorithme d'optimisation executant la phase d'entrainement des SVDD sur des 

donnees volumineuses dans un delai acceptable. L'algorithme developpe doit traiter des 

observations sequentiellement, afin d'etre compatible avec une strategic d'apprentissage 

actif. 

2. Developper un mecanisme d'apprentissage actif (« active-learning ») identifiant les 

candidats les plus informatifs dont 1'optimisation par 1'algorithme developpe en (1) 

minimise le nombre total d'etapes d'optimisation tout en produisant une solution de 

qualite comparable a celle d'un modele entraine sur la totalite des observations. 

3. Developper un algorithme pour SVC permettant un partitionnement robuste et efficace 

des donnees en groupes homogenes distincts, a partir d'ime solution d'un mod&le SVDD 

prealablement entraine par l'algorithme developpe en (1). L'algorithme propose doit 

produire une segmentation exacte en presence de groupements aux formes complexes 

ainsi qu'en presence de donnees bruitees. 

4. Mettre au point un mecanisme non supervise de selection automatique des 

hyperparametres pour SVDD, resultant en une representation robuste et compacte du 

domaine d'un ensemble de donnees bruite. La strategie proposee doit etre independante 

d'un ensemble de validation comportant des instances negatives/anormales de la classe 

cible. 
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Methodologie 

Nous avons developpe « Fast-SMO » (F-SMO), un algorithme d'optimisation permettant 

d'accomplir efficacement la phase d'entrainement d'un SVM non supervise (objectif 1) sur un 

flux d'observations selectionnees par notre strategic d'apprentissage actif (objectif 2). Cette 

strat^gie est basee sur une mesure hybride offrant un compromis entre un critere de diversity 

spatiale ainsi qu'un critere d'ambigui'te, et permet de concentrer la phase d'entrainement de 

I'algorithme F-SMO sur un sous-ensemble d'observations les plus pertinentes. 

Nous avons mis au point L-CRITICAL, un algorithme efficace de partitionnement de 

donnees (objectif 3) pour SVC, base sur un nouveau test ^interconnexion robuste permettant 

un partitionnement precis et rapide des donnees en presence de groupements aux formes 

complexes. Ce test ^interconnexion est base sur une analyse des chemins ^interconnexions 

entre les points critiques de la fonction d{x) definissant les contours. A cet efFet, un 

algorithme efficace de recherche des points critiques a ete mis au point, jumelant un 

processus d'optimisation de Quasi-Newton avec un mecanisme de fusion des trajectoires 

similaires. 

Nous avons cree une methode de selection automatique des hyperparametres pour SVDD 

(objectif 4) dans un contexte non supervise. La methode integre une mesure de 

surgeneralisation, permettant de rejeter les hyperparametres resultant en une representation 

trop complexe d'un ensemble de donnees (« overfitting »), et int&gre a la fois une mesure 

robuste en presence de bruit, permettant d'identifier des representations compactes offrant une 

estimation juste du domaine d'un ensemble de donnees quelconque. 

R6sultats 

Tel que discute dans l'article 1, les experimentations revelent que Palgorithme F-SMO 

permet d'executer la phase d'entrainement 7 fois plus rapidement que Palgorithme usuel 

«Sequential Minimal Optimization » (SMO) [9], tout en gen£rant une solution pratiquement 

identique a la solution exacte. L'integration du mecanisme d'apprentissage actif a 
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l'algorithme F-SMO permet de resoudre en moyenne la phase d'optimisation 13 fois plus 

rapidement que l'algorithme SMO, tout en produisant une solution compacte composee de 

seulement du quart du nombre de supports vectoriels de la solution exacte. L'algorithme F-

SMO couple & la strategic d'apprentissage actif rend consequemment possible l'apprentissage 

d'ensembles de donnees volumineux dans un delai raisonnable sans deteriorer la qualite de la 

solution SVDD resultante. 

Les experimentations decrites dans Particle 2, realisees sur des ensembles de donnees 

artificiels representant des structures complexes de groupements, m&ient a deux conclusions. 

En premier lieu, la methode proposee, L-CRITICAL, afFiche un temps d'execution largement 

plus comp&itif que les methodes competitives [8] [1]. En second lieu, L-CRITICAL gendre 

un partitionnement parfait sur l'ensemble des simulations realisees, alors que les algorithmes 

competitifs affichent une proportion moyenne d'erreurs de partitionnement importante sur 

des groupements de formes complexes. 

Les resultats presents dans l'article 3 demontrent que la methode proposee affiche une 

excellente tolerance au bruit, et permet de discerner efficacement les donnees normales des 

observations atypiques. L'algorithme SVDD implementant notre strategic de selection des 

parametres a ete comparee a l'algorithme « abnomaly detection » implements dans le logiciel 

SPSS Clementine 12.0. Les resultats demontrent la superiorite de la methode proposee sur la 

vaste majorite des ensembles de donnees et demontrent son efficacite pour un usage pratique 

et automatique en analyse de donnees reelles. 

Structure de la th&se 

Cette these doctorale est structuree sous forme de trois articles proposant des solutions a 

chacun des objectifs pr6c£demment enumeres. 
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Chapitre 1 

Optimisation rapide de SVDD avec mecanisme 

d'apprentissage actif 

Nous proposons F-SMO, un algorithme rapide permettant d'efFectuer la phase d'entrainement 

d'un module SVDD sur des ensembles de donnees volumineux et de dimensions elevees. 

L'algorithme F-SMO a la particularity de pouvoir traiter sequentiellement les observations, et 

est par consequent compatible avec les strategies d'apprentissage actif. Une nouvelle methode 

d'apprentissage actif est proposee, permettant d'accelerer la vitesse de convergence de 

l'algorithme d'optimisation tout en ne requerant qu'un nombre restreint d'observations. Cette 

strategic est la premiere strategic d'apprentissage actif proposee dans le contexte des SVM 

non supervises. Les resultats experimentaux confirment que la methode d'optimisation 

proposee surclasse significativement l'algorithme « Sequential Minimal Optimization » [9] 

en terme de temps d'entrainement, et que 1'integration du mecanisme d'apprentissage actif 

decuple la vitesse d'entrainement de F-SMO, rendant possible l'entrainement d'un module 

SVDD sur des ensembles de donn£es massifs au cout d'une erreur d'approximation 

fonctionnelle negligeable. 

La contribution de l'auteur (V. D'Orangeville) k cet article represente 90% de la charge de 

travail globale liee au developpement des algorithmes et de la redaction de Particle. 
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Fast Optimization of Support Vector Data 
Description with Active Learning 

V. D'Orangeville, A. Mayers, E. Monga and S. Wang 

Abstract — We propose F-SMO, a fast algorithm for solving the Support Vector Domain 
Description (SVDD) optimization problem that implements a new active learning strategy 
that accelerates its learning rate by focusing only on the most informative instances of the 
dataset. The proposed active learning strategy integrates spatial-diversity and distance-
based strategies reduce by more than 90% the training time and 70% the model complexity 
without affecting the solution accuracy. We investigate the computational efficiency of the 
F-SMO algorithm with active learning on synthetic and real-world datasets of various sizes 
and dimensions and show that it significantly outperforms the well-established Sequential 
Minimal Optimization (SMO) algorithm in terms of training time and solution complexity. 

1 Introduction 

SUPPORT Vector Machine (SVM) refers to a group of machine learning algorithms derived 

from concepts of statistical learning formalized by Vapnik in his book The Nature of Statisti­

cal Learning Theory [18]. The SVMs were introduced in 1995 by Cortes and Vapnik [7] as a 

binary classifier algorithm and then extended to the regression problem, providing exceptional 

generalization performance on many difficult learning tasks. While the literature reveals a high 

degree of interest in new efficient SVM optimization algorithms in the supervised context over 

the past decade, few work has been reported on unsupervised SVM counterpart. In fact, to our 

knowledge, there is only one adaptation of the SVM, known as Support Vector Domain Descrip­

tion (SVDD) [17] for unsupervised learning. Although the SVDD has been successfully applied 

to perform anomaly detection and cluster analysis, it is not effective on large-scale datasets. 

In this paper, we aim to propose an efficient and effective method, named F-SMO, for solving 

the nonlinear optimization problem associated with unsupervised SVM learning for SVDD for 

large-scale datasets. This objective will be reached in two stages. First, we develop a fast online 

algorithm for SVDD. Our approach is inspired by recent advancements proposed by Bordes in 

2005 [4] in the context of SVM classifiers. Bordes's online optimization algorithm for SVM 

classifiers was derived from the Sequential Minimal Optimization (SMO) [15]. It allows learning 
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sequentially from individual instances as opposed to the conventional SVM algorithm, which 

requires the prior availability of the entire training dataset. We propose an extension of the SMO 

to solve SVDD by redefining the KKT optimality conditions that allow defining the selection 

criterion for KKT violating pairs for joint optimization and Lagrangian updating rules. The new 

algorithm, named Fast-SMO or F-SMO for short, allows solving efficiently the SVDD optimiza­

tion problem from a stream of individual patterns. 

In the second stage, we develop an active learning strategy [6] that selects individual patterns 

for the F-SMO algorithm. In fact, most of the individual patterns analysed by the F-SMO process 

do not contain significant information about the borders of clusters. At the same time, they also 

cause a reduction in the efficiency of the algorithm, especially if we need to deal with very large 

datasets. The new active learning strategy is designed for selecting the most informative instanc­

es for optimization by F-SMO while reducing significantly the number of training patterns in­

volved for obtaining a good approximation of the SVDD exact solution. The proposed selection 

scheme is based on a combination of a spatial diversity and distance-based criteria. It allows F-

SMO to generate an approximation of the exact solution with a very small error, while dramati­

cally reducing the complexity of the solution and the computational time requirement by an order 

of magnitude compared to the LIBSVM implementation of SMO for SVDD. The proposed ac­

tive learning strategy is the first selection strategy of its kind in an unsupervised SVM learning 

context, and allows large scale datasets to be learned within reasonable training time. 

In the follows, Section 2 presents adaption of SMO to solving SVDD. Section 3 describes the 

new active learning strategy for SVDD. Section 4 presents experimental evaluations of the pro­

posed algorithms on real and synthetic datasets. Note that to allow a fair comparison between 

LIBSVM1 and F-SMO for SVDD optimization, we have chosen to disable all heuristics such as 

shrinking and kernel caching. All algorithms are implemented in C++ and are available upon re­

quest to the authors. 

2 SVDD sequential optimization 

The SVDD is designed to characterize the support of the unknown distribution function of an 

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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input dataset by computing a set of contours that rejects a controlled proportion p of patterns. 

These contours provide an estimate of a specific level set associated with the probability 1 - p of 

the distribution function and allow unseen patterns to be classified as normal or abnormal. This 

section details the SVDD optimization problem, the optimal candidate selection strategy for op­

timization and the F-SMO algorithm for solving efficiently the SVDD optimization problem. 

2.1 SVDD optimization problem 

Given a set X of training vectors xt e , / = 1,..., n and a nonlinear mapping <f> from X to some high-

dimensional nonlinear feature space <I>, we seek a hypersphere of center a and minimal radius R that 

encloses most data points and rejects a proportion p of the less representative patterns. This requires the 

solution of the following quadratic problem: 

fe-af <,R2+S„ (1) 
£ > 0 ,  1  =  1 , . . . , « .  

Slack variables are added to the constraints to allow soft boundaries, and $ denotes the coordinate 

^(x, ) of xi in the feature space. Points associated with £(. > 0 are excluded from the contours and pe­

nalized by a regularization constant C which controls a proportion p of points lying outside (and on the 

surface of) the hypersphere. 

The optimization problem (1) can be solved by introducing the Lagrangian L as a function of primal 

variables R2, <£• and a and dual variables a and ft referred as Lagrange multipliers enforcing the two 

constraints in (1). 

L{lP, i ,a , a ,p)  =  R 2 +c£&-'£ l a l (R'+{ l -y t -4)-£f iA 
(=1 /= 1 1=1 

<*,.,#> 0, i = \,...,n. 

Define p* as the optimal value of the object function (1), we can verify that 
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p* = min( max L(R 2 ,£,a,a,/?)) (4) 
R 2 , f ,a \a i  O.f i iO V  ' /  

Moreover, we can define the dual optimal value of the dual objective function 

D(a,p) = mmRl̂ L(R2 ,%,a,a,p) as 

p* = max D(a,B)= max (mm l(R 2  ,E,a ,a ,B]\  (4) 
aiO.fiiO v ' aiO,fiiO\K2 ^ ') 

Setting to zero the partial derivatives of formula (3) with respect to primal variables R2, and a at the 

optimal point leads to: 

dL p  .  A  ^-i  -
ai? "*5°" 

ff:C-a,-A = 0->C = <*,+/), (4) 

P)j  "  "  "  
-z*- • -2^ ad + 2a1L ai = 0 ̂  a = Z 
da t! M M 

We can deduce from the constraints C = a t  + P (  in (4) and a,,/?, > 0 in (3) that a,  <C . The Karush-

Kuhn-Tucker (KKT) complementary slackness conditions [REF] results in: 

Af,=o 

<r,(*'+£-fo-<»f)=o (5> 

It follows from constraints (S) that the image fa of a point x. with et > 0 and ai > 0 lies outside (or on 

the surface) the feature-space sphere, and that a point x( with f, = 0 and a, = 0 lies within the sphere. 

This indicates that the solution is sparse, only training vectors excluded from the decision surface with 

ai > 0 contributes to the SVDD solution. These vectors are referred to as support vectors. 

By substituting eq. (4) into the primal Lagrangian (3) allows eliminating references to primal variables 
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R2, a n d  a, turning the Lagrangian into the Wolfe dual form Ld where (•,•) is the inner product of 

two possibly infinite vectors. 

L d :  max Jza,  (# 4 ) ~ Z Z{Mj)} 
[ /=l i=1 7=1 J 

Z«, = (6) 
/=l 
0 <a( ^C, I = 1,...,#I. 

Details of the derivation of the Lagrangian into to Wolfe dual is provided below: 

£, = + ci 4, - £ «, (x2+4, -1|4 - flf ) •- £ M 
1=1 1=1 1=1 

-> R' + C £$ - «2 jo, - 2>, + )», + Z". k H 
(=1 1=1 /=1 " £ ' i=l 

2 «I ^ - 2 (fl, #,) + (a,«)) 
i=i 

-> 2 «, (4 A )~ 2^ a< (fl» $ ) + Z a- (a> a> 
i=l i=l (=1 

1 
n 

->Z aM*b)-(a*a) 
1=1 

Z 4 ) - Z Z aiay ) 
1=1 »=1 7=1 

(7) 

The dot product in eq. (7) is replaced by an appropriate Mercer [REF] kernel k(x t ,Xj ), re­

ferred to as kUj for notation simplicity, overcoming the explicit reference to $ of possible infinite dimen­

sion. The Gaussian kernel is used in this context, adjusting the complexity of the cluster contours with a 

single parameter a controlling the kernel bandwidth. 

*/.7=e (8) 
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The Wolfe dual is simplified by replacing the dot products (<!>,,by the kernel k( j: 

Ld ' max \ £ a,ku - Z Z aiajhj 
<*i [ (=1 /=1 j=\ 

^>,=1, (9) 
/=! 

0 <a t <C,  i  =  \ , . . . ,n .  

The SVDD solution can consequently be optimized by maximizing the dual equation (9). Note that the 

problem remains convex since the kernel matrix K with i,j th entry Ktj = kt J is positive definite. 

As described in eq. (4), the center a of the hypersphere is described as a linear combination of the 

feature space vectors fa. 

a = 0°) 
J 

The square distance r2 (jt,) from an image fa of xt to the sphere center a is defined as: 

r \x l )  = \<f> t -af  

=  ( f a , f a ) - 2Z «, )+Z Z a'ai (h'tj) (11) 

ia1 1=i y»i 
n n _n 

=K ~ 2Z aiK<+Z Z aiaiK) 
i=l /=! j=\ 

Based on eq. (11), the square radius R2 defined in (12) of the hypersphere can be calculated as the aver­

age of distances to center of r2(xu) and r2(xv) of two feature-space vectors <t>u and <f>v both located the 

closest of the hypersphere surface and respectively outside and inside the sphere. Theses vectors are iden­

tified during the optimization phase of SVDD described in Section 2.3. 
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R2 =i(/-2(xB) + r2(xv)) 

u  <-argminr2(xJ) s J .  a s >  0 (12) 
s 

v<—argmax r 2 ( x s )  s J .  a s < C  
where 

Eq. (11) and (12) allows defining the function d ( x t )  for evaluating the relative position from any image 

xt) to the surface of the hypersphere by comparing its distance r2(xt) to center a to the sphere radi­

us  R 2 .  

d(x t )  =  R 2 -r \x t )  

= h(r \x , )  + r \x , ) ) - r \x , )  

= + i ( K ,  + k . , . ) ~ k u  < 1 3 )  

i=l i=i i=i 

= 2O t -O s  where O j =J^a i k i j  and O s =±(O u +O v )  
(=i 

The function J(x,) classifies a point xt inside the contours if < 0, on its surface if ) = 0 

and outside otherwise. The decision surface is defined as the implicit surface : d(jc) = 0}. Note that 

t h e  G a u s s i a n  k e r n e l  p r o p e r t y  k t t =  \  a l l o w e d  s i m p l i f i c a t i o n s  t o  b e  m a d e  i n  e q .  ( 1 3 ) .  A l s o ,  v a l u e s  o f  O u  

and Ov are calculated in the optimization process described in Section 2.3. 

2.2 Optimal candidate selection 

We describe here the notions of KKT optimality and r -violating pair that will be used to select 

candidates for joint optimization during the F-SMO learning phase, as well as a stopping criteri­

on during its optimization process. 

For a trained SVDD solution, points jc(. associated with a Lagrange multiplier 0 < at < C lie 

on the surface of the sphere described by the iso-surface d(x,) = 0. Points such as aj = C are 

excluded from the contours (d(xt) > 0) and those associated with a, = 0 are enclosed by the 
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hypersphere («/(*, ) < 0) and do not contribute to the description of the contours. The maximiza­

tion of the Wolfe dual eq. (9) produces a sparse Lagrangian vector a, where a proportion 1 - p 

of data points lies inside the hypersphere and only a small fraction p of points with a, > 0 and 

d(x,)>0 contributes to the definition of the hypersphere surface. Based on the Karush-Kuhn-

Tucker optimality conditions [14], a SVDD solution eq. (9) is optimal if each of the following 

conditions are fulfilled for each point x of the training set X. 

a, = 0 a d(x, ) < 0 

0 <a,<C a rf(x(.) = 0 (14) 

a i =C a d (x,) > 0 

Conversely, we can state that a point xt violates the KKT conditions in either of the following 

two cases: 

a,> 0 a * / (X)<0 
; C (15) 

a ( <C a d (Xj )>0 

The KKT violation test of formula (15) allows defining a criterion to test for simultaneous vi­

olation of the KKT conditions by a pair of points (*, ,*, ) referred to as a r -violating pair. 

(a f>0A a j  < c )  A ( d { x i ) - d ( x J ) > T )  

i  (a , , > 0  a a j < C) a (ofa ) - 0{xj) < r j 
(16) 

A r -violating pair (x n xj)  is a pair of points with a t  > 0 and a }  < C which are respectively 

misclassified by the decision function d(x) as inside and outside of the hypersphere, within a 

tolerance factor of r. The absence of any such pair in the training set indicates the convergence 

of F-SMO and T -optimality of the solution within a tolerance factor r, 
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The F-SMO implements an efficient selection scheme inspired from Keerthi's improved se­

lection strategy [11] for SVM classifiers and optimizes successively r -violating pairs of formula 

(16) that locally maximize the gradient of the objective function (9) and induce a maximal step in 

the objective function's value at each iteration. 

The gradient of the objective function (9) is maximized by selecting a r -violating pair 

(x.-yXj) for joint optimization according to max|<9,. - Oj|, The optimal selection strategy for the 

r -violating pair in the SVDD context can be stated as follows: 

The selection of a r-violating pairs is achieved by maintaining a cache of Ofor all active 

support vectors and by keeping track of <9min, Omax, «min and during the optimization process 

in order to allow an immediate identification of the optimal x -violating pair according to formu­

la (17). 

2.3 Fast sequential optimization 

This section describes the algorithm F-SMO, inspired from the algorithm proposed by Bordes [4] 

for SVM classification. The F-SMO algorithm offers two important advantages over SMO. First, 

F-SMO allows the sequential processing of individual training examples, as opposed to the SMO 

algorithm, which treat patterns in pair and cannot treat them separately. This property is essential, 

as it makes it possible to implement our active learning strategy for selecting the most informa­

tive individual training patterns for optimization by the INSERT function of the F-SMO algo­

rithm described below. Moreover, F-SMO allows solving the SVDD optimization problem in a 

single sequential pass over all patterns of the training set, while the SMO requires multiple pass­

es over the dataset. The F-SMO method works by alternating the two following steps. 

j  <— argmaxO k  sJ.  a k > 0 
k with max (17) 

The first step, INSERT reads an unseen input pattern x^ and seeks an existing sup­
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port vector to form a r -violating pair {x^x^) according to the optimal selection strategy eq. 

(14). It then performs a joint optimization of the pair by updating both multipliers ) as 

stated in the F-SMO subroutines in Table l.The second step, UPDATE, aims at minimizing the 

imbalance produced by the recent inclusion of and update of in the solution, by per­

forming a single optimization step on a r -violating pair selected according to [14]. It then pro­

ceeds to a pass to remove all inactive support vectors (a, = 0) fulfilling the KKT optimality 

condition (0. + r > ). The purpose of this removal pass is to enforce sparseness in the solu­

tion during the optimization process by removing inactive SVs. These two steps are repeated in 

alternation until all points x(. of the training set X have been evaluated once by the function 

INSERT or until no more candidates are selected by the active learning strategy. A finalizing 

pass is then performed by iterating the function UPDATE over the set of active support vectors, 

until no more t -violating pair can be identified indicating the convergence of the SVDD solu­

tion. 

The sequence of INSERT and UPDATE in step 4 in Algorithm 1 can be considered as a fil­

tering pass over the training set that identifies and optimizes potential support vectors within a 

single pass through the training set, while step 6 ensures the stabilization of the solution over the 

selected set of support vectors. It is worth mentioning that the single pass over the training set 

could fail to select important support vectors during the learning phase on very small datasets. 

However, the likelihood of this is minimal as the F-SMO algorithm is designed for solving large-

scale datasets. Segments of code highlighted in blue in Algorithm 1 and Table 1 represent in­

struction sequences that benefit from multithreaded implementation. 
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Algorithm 1 - F-SMO. 

Input parameters 

• X c= Rd : input dataset of size N and dimension d 

• y: RBF bandwidth (reK+) 

• p: rejection rate (pe[0,lj) 

• r: KKT tolerance factor (r « 0.001) 

Initialization: 

C  =  — w i t h  p' = min (•*=*•, max (^, p)) 

« = {"o =•" = «»„-. =C,  a„ n  =---  =  a N _ {  =0} 

d = {O0,- -,On^} with 0, = £ aiKi 
)=\—n„ 

Selection: 

Select an unseen training example x t e .X 

go to (5) if no unseen pattern remains. 

Optimization: 

a. INSERT (xf) 

b. UPDATE ( ) 

Return to (3). 

Finish: 

Repeat UPDATE ( ) until r -convergence. 
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Table 1 - F-SMO subroutines. 

INSERT (jc^) 

1. Initialization 

Set am = 0 

and compute = £ «A,, 
1=1 ..B„ 

2. Check x -optimality of xn 

Exit if Onew+r>Onax 

3. Optimize Pair 

UPDATE( ) 

1. Check r -optimality of solution 

Exit if Omin+r>Omax 

2. Optimize Pair(ocmin,xmax) 

3. Inactive SV removal 

Remove any jc, such as ai = 0 and 

0, + T>OWK 

4. Update MinMax( ) 

5- R2 =(Omin+Omax)/2 

Optimize Pair(jcj, x,)  

1. Joint optimization 

mm- °s °' ,C-as,-a, 
k , + k , - 2 k , .  StS (,/ s,t 

a,<—A a  a s  <-a s + A a  

2. Update O (for all active SVs) 

a) O, <— 0, — A a (k i  s  — k u ) Vi g {l. 

Update MinMax ( ) 

i  <— min O t  s i .  a t <C 
*c[U„] * * 

j  <— max O k  s i .  a k > 0 
*e[l,n„] 

Omin = On = OJ, xmia = x„ Xmax = XJ 

b) Update Min Max( ) 
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3 Active learning for SVDD 

Active learning is the process of actively selecting the most informative patterns during the 

learning phase according to a sample selection criterion that accelerates the learning rate and 

minimizes the number of training examples required to achieve a good solution approximation. 

Active learning has been successfully implemented in the context of classification to enhance the 

learning rate of neural networks [1], support vector classifiers [8] [10] [12] [18] and statistical 

models [5][6][16]. 

Despite its strong theoretical foundations and encouraging results in a classification context, 

no active learning strategy adapted to unsupervised SVM has yet appeared in the literature, for 

accelerating the learning phases of SVDD. For this purpose, we propose a new active learning 

strategy intended to concentrate the learning phase of F-SMO on a small set of the most informa­

tive patterns, in order to improve its learning rate and reduce its solution complexity at the cost 

of a minimal loss of functional accuracy (compared to a full model trained on the whole training 

set). The proposed method is a hybrid sampling method which combines a spatial diversity and 

distance-based criteria to guide the selection of new candidates within small subsets of po­

tential learning candidates , to be optimized by the function INSERT (jc^) of F-SMO. This 

sequence of active learning selection and optimization is repeated until every training pattern has 

been evaluated once by the active learning selection procedure. 

3.1 Spatial diversity 

The spatial diversity criterion enforces the selection of candidates dissimilar to the current sup­

port vectors set Xn, in order to minimize redundancy among support vectors and focus on the 

most informative candidates. The diversity fitness score Sdiv(x/) of a potential candidate 

x, e XAL is assessed as the minimal dissimilarity from xt to any support vector x} e Xsv . 

(18) 
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According to the spatial diversity criterion, the best candidate x*^ e X A L  is the one which max­

imizes the minimal distance to any support vector of the expansion setZ^. 

xdh, = arg max Sdiv (x,) 

= arg max 
xle^4L 

mm(l-*,,)] 
(19) 

This strategy is analogous to the angle diversity strategy tested in SVM classification [18], 

where the authors considers the maximal angle between the induced hyperplane h(xt) of a can­

didate x, e XAL in feature space and each hyperplane /?(xy.) associated with each support vector 

Xj e . The function h{x,) defines a hyperplane passing through the image <j>t of xt in feature 

space and the center a of the hypersphere. The angle diversity fitness score Sang (x,) of a candi­

date xt is evaluated as the minimal angle between /*(*,) for and any /*(*,) for 

x,  e X„, ,  J sv 

^U)=min|cos(z(/I(x(),A(x,)))| 

where cos|z(/z(x,),/j(jry 
-I T J I 

'II po 

I.J = \k, \ = k., 

I -fiA, |,J| 'J 

(20) 

According to the angle diversity fitness score of eq. (20), a candidate is chosen according to: 

x*ang 
= arg min Smg (x,) 

x l s X M 

= arg min 
x ,*XAL 

mm 
(21) 

In the context of SVDD, the angle diversity strategy enforces a uniform coverage of the 
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hypersphere surface with support vectors images <f>j, and is equivalent at encouraging spatial di­

versity in the primal space among support vectors. 

xdlv = arg max 

= argmin 
*le X4L 

(22) 

3.2 Distance-based strategy 

In the SVM classification context, the distance-based strategy aims at selecting the misclassified 

candidates located the nearest of the separating plane, which corresponds at choosing ambiguous 

candidates in order to fine-tune the separating plane. This strategy translates in the SVDD con­

text into focusing on the most ambiguous training patterns located immediately outside the 

hypersphere, or equivalently, finding the closest candidate to the contours which is excluded 

from the contours. Recall that only data points located outside the cluster surface contribute to 

the definition of the contours described by the isosurface of the decision function d(x) of eq. 

where d'(x t )  is the relative position of the surface of hypersphere <j>t, normalized by the value 

O, in order to constrain its range between 0 and 1, and defined as follows: 

(13). 

The distance-based fitness score of a potential candidate xt is calculated as: 

S*s,{X ,)  = d '{X ,)  (23) 

d ' ( x , )  =  o; d ( x i )  =  l —o; Z  a jk j  
j=\..N 

(24) 
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The normalization of </(*,) is intended to control the magnitude of S^, (x,). A training example 

xdisi € %AL is then selected according to: 

xd«< = arg m,n 

*,*XAL 
'-iZ 

j=\..N 
aih> (25) 

A more naive approach would favor selecting an input pattern xV^ e X A L  located the farthest 

away from the contours as xVM = argmaxJ'(x,), resulting in a model more sensitive to outliers. 
xI*Xal  

3.3 Hybrid selection criteria 

We propose a hybrid active learning selection strategy which combines the spatial diversity score 

(18) and the distance-based score (23) seeking a candidate x, excluded from the contours which 

simultaneously has simultaneously a minimal (positive) distance d'(x t )>0 to the hypersphere 

surface and maximal distance to all existing support vectors. 

The existing hybrid selection strategies for SVM classification described in [10] and [18] 

combine these two selection criteria by defining the following convex combination: 

S a m m [ {x , )  =  w-S d l t (x , )  +  ( l -w)-  1 with we[0,1] 
•*<*« (26) 

^convex = argmax5_(x,) 
x leXAl 

One major drawback of this convex combination of fitness scores stems from the fact that the 

efficiency of a linear combination of fitness scores depends on the appropriate choice of the 

weighting parameter w which is data dependant and depends on the relative values of Sdiv (x,) 

to l/S^, (jc, ). To avoid the unintuitive choice of w, we defined a hybrid score S,^u (x,) (27) 

computed as the ratio of the two fitness scores, allowing simultaneous maximization of the di­

versity score Sdiv (x,) as numerator and minimization of distance score SdiJI (x,) as denominator. 
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(27) 

Combining the two selection criteria, the hybrid selection strategy selects training points 

x'ai e Xal according to the following criterion: 

The indicator function I (</•(*,)>o) returns a value of 1 if d' >0 and 0 otherwise, and enforc­

es the selection of a candidate xa( excluded from the sphere. A candidate xal is selected accord­

ing to eq. (28) from a small subset of potential candidates XAL (20 candidates in our implemen­

tation), then optimized by the F-SMO procedure INSERT (*!/)• The selection and optimization 

sequence is repeated until each training pattern has been evaluated once. 

Experiments have been performed on synthetic and real-world datasets in order to compare the 

computational efficiency of the F-SMO optimization method with and without active learning, to 

the standard LIBSVM SMO algorithm, for solving the SVDD training phase. All algorithms are 

evaluated on 11 well-known UCI benchmark datasets with dimensions ranging from 2 to 60, in 

order to compare their respective training times, numbers of support vectors of the solutions and 

functional approximation errors in comparison to a reference exact solution ®rtf. The refer­

ence model (referred to as REF) is generated by training a SVDD model with SMO using a high­

ly restrictive KKT tolerance factor of r = 10-7. 

argmax I (</-(*, )>o) (28) 

4 Experiments and results 
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The functional approximation error ^ is assessed by training a model with a looser factor of 

r = 10"4 on the same training set as &ref, and then evaluating the proportion of points misclassi-

fied by the "approximate" SVDD solution as: 

The procedure I(y) is the indicator function returning a value of 1 for any negative value of 

y and 0 otherwise. The function (29) evaluates the proportion of points that are (mis)classified 

by the approximate model (SMO or F-SMO) to the opposite side of the hypersphere as compared 

with the reference model. 

Two variants of the proposed active learning scheme were tested. F-AL1 refers to the F-SMO 

method with active learning trained with rejection rate p. F-AL2 is trained with an adjusted 

pAL > p to compensate for a phenomenon involving the expansion of the generated contours ob­

tained with active learning, in comparison to SVDD contours obtained without active learning. 

Values of pobs displayed in Table 2 measure the observed proportion of points excluded from the 

contours generated by the models F-AL1 and F-AL2, the expected values of pobs are p = 20%. 

All the experiments reported in Table 2 are performed on a 3.6 GHz Intel quad-core CPU, with 

each test repeated 20 times and the results averaged. Note that the symbols +1 and -1 identify 

positive and negative class instances of each dataset. 

(29) 
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Table 2 - Comparison of SMO, F-SMO. F-AL1 and F-AL2: training times, number of support vectors, functional approximation 
error in comparison to a reference solution and proportion of points rejected by the trained contours. Rejection rates are 

set to p - 20% (for RER SMO, F-SMO and F-AL1) and to pU2 for F-AL2. 

Draining time(s) Number of SVs 

Mm MU 
asm H42H 

MU Mu 
11.74* 22.10% Bamra(tl) ! 217C 

« | 

imacc (+1) ! un 
l - l  mm 9m7 

0.70K io.#o* 

MM 
0.44% S.1S* 

5.67* 9.82* 22.79* 

UJMK . 

1S.01K 19.2SK 

24.31* 24.34* 

imm imm 
13.01* 21.63* 

rlngnorm (-1) 2,41* 

u 
spile* (-1) 0013 0.013 

AM 
0.029 a 034 

0.139 

MB mm w4 
0J7* 6.88% 

wwmrain) 
r~i 

0.505 0.059 0.029 0.030 0.4#* J. 78* 1A2M 21.14* 

12M ftiiu aaa 



As shown in Table 2, F-ALl and F-AL2 significantly outperform both SMO and F-SMO in 

terms of average training times, at the cost of increased functional approximation error ^ over 

SMO and F-SMO. The models F-ALl and F-AL2 exhibit averaged observed rejection rates p^ 

of 15.39% and 21.42%, respectively, which suggests that a SVDD model trained with active 

learning requires an adjusted pAL1 in order to minimize the absolute difference between p^ and 

P-

The increased functional approximation error ^ of F-ALl is caused by the choice of the 

regularization factor C = l/(p-Af) with p = 20% kept constant for both F-SMO and F-ALl. 

Because the active learning selection strategy enforces the selection of candidates located near 

the outer part of the hypersphere, it alters the distribution of training patterns optimized by the 

INSERT (x) procedure and results in contours of slightly expanded shapes compared to the F-

SMO trained on the whole training set for the same value of p. 

Figures 3, 4 and 5 summarizes the relative running times, numbers of support vectors, and 

functional approximation errors ^ of the algorithms discussed in this paper. Based on the ex­

perimental results, F-SMO is far more competitive than SMO for optimizing a SVDD solution 

(not using an active learning strategy), and F-AL2 is superior to F-ALl in terms of functional 

accuracy. 

As illustrated in Table 2, the functional approximation error ^ can be minimized efficiently 

by setting an increased value of pAL2 > p to compensate for the contour expansion, also reducing 

for F-AL2 compared to F-ALl in all tests performed. 

Figures 1 and 2 illustrate two SVDD models trained with F-SMO and F-AL2 on a same train­

ing set of 5,000 points, F-SMO trained with p = 20% and F-AL2 trained with equal kernel 

bandwidth while increasing p to pAL2 = 27.5%. The two methods produce comparable contours 

shapes. The theoretical arguments guiding the optimal adjustment of pAL2 in F-AL2 in order to 
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minimize the functional approximation error ^ remain to be explored in further research. 

Figures 1 and 2 (from left to right) - (Figure 1) F-SMO trained with/7 = 20%. (Figure 2) 

F-AL2 trained with pAL2 = 27.5% and ^ = 4.95%. 

Table 3 - Comparison of F-SMO, F-AL1 and F-AL2 versus SMO: relative training times 
and number of support vectors compared to SMO. 

Training time (s) Number of SVs 

banana (+1) 8.73% 7.96% 
a ick »«WI 
9.27% 

7.11* 
6.76% 

3.79% 
9.65% 

•MMi 
6.83% 

21.66% 31.37% 18.00% 

mam 
image (+1) 17.45% 8.74% 26.70% 33.87% 

25.78* 
25.10% 

27.02% 
28.04% 

12.41% 
ringnorm (-1) 12.58% 5.98% 22.70% 

14.20% mmm 
13.09% 9.48% 28.05% splice (-1) 

twonorm(-l) 12.80% 5.81% 22.61% 27.12% 
u MM. MnHnl 
22.26% 27.31% 

14.10* 
waveform (-1) 11.69% 5.65% 5.98% 

Table 3 reports the relative training times of F-SMO, F-AL1 and F-AL2 in reference to SMO 

(with T = 10"), computed from values in Table 2. F-SMO's computing time represents 14.25% 

of the time required by SMO to optimize the solution, and F-AL1 and F-AL2 benefit from re­

duced average training times and numbers of support vectors in comparison to F-SMO. The re­

duced number of support vectors is responsible for the increase in functional approximation error 

^, while significantly reducing at the same time the complexity of the SVDD solution, which 

in turn allows new data points to be classified far more rapidly. 
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Figures 3,4 and 5 (from left to right) - Comparison of SMO, F-SMO, F-AL1 and F-AL2. 
(Figure 3) Relative training time compared to SMO with r = 10~4, (Figure 4) Relative 
number of SVs compared to the exact solution, (Figure 5) Functional approximation error 

The hybrid selection strategy was evaluated on synthetic 2D datasets of sizes ranging from 

10,000 to 90,000 training patterns, in order to assess the asymptotic behavior of the training 

times of the F-SMO algorithm implementing an active learning strategy (F- AL1 and F-AL2) rel­

ative to training set size. 

U 1L0 15.1 1M • F-SMO 0J 
0.7 Of at 03 0.4 1.1 

at OJ 05 as u 1.7 2.1 

Figure 6 - Comparison of training times (s) for F-SMO, F-AL1 and F-AL2, as a function of 
the training set size (horizontal axis). 
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Table 4 - Training times, number of support vectors and functional approximation errors 
^ of F-SMO (p = 10%), F-AL1 (p = 10%) and F-AL2 (pAL2 = 23%) for increasing train­

ing set size (N) with fixed kernel bandwidth <r = 0.05. 

10,000 

30,000 

•UUP 
50,000 

70,000 

Time (s) 

~F-ALI F-AI4 
006 

0.17 
0.31 

QJ90 
0.75 

IM 
1.35 

1.72 
2.14 

SVs 

F-SMO F-AU F-AJL2 
1,010 

£007 
3,008 

4,007 
5,007 

7,005 

64 
117 
169 
221 
272 

9,006 

373 

423 
475 

124 

239 
355 

470 
584 

700 

814 

929 
1,044 

8.41% 3.28% 

1*9% 
1.76% 

!&* 
1.31% 

8.76% 

8.80% 

PR 
8.77% 

8.83% 

1.13% 

1.07* 
1.11% 

As expected, the proposed hybrid selection schemes (F-AL1 and F-AL2) show dramatically 

improved training times compared with the F-SMO algorithm: indeed, the asymptotic relation­

ship of their training times to training set size is almost linear (R2 = 0.9821 for AL1 and 

R2 = 0.9632 for AL2). 

Note that F-SMO with active learning can be effectively used in an online context on a con­

tinuous flow of training points, by dynamically adapting the number of candidates \XAL\ evaluat­

ed in each active learning pass according to the availability of processing power and the speed of 

data acquisition. 

5 Conclusion 

We have proposed F-SMO, an efficient algorithm for SVDD that optimizes a stream of individu­

al patterns during its learning phase. The development of F-SMO requires defining the KKT op-

timality conditions, the selection criterion for KKT-violating pairs for joint optimization and the 

Lagrangian updating rules in the unsupervised SVM context. 

We have proposed a new active learning strategy that identifies the most informative instances 

for optimization by F-SMO, and reduces the overall number of training patterns required to ob­

tain a good approximation of the SVDD solution. The hybrid candidate fitness measure is based 
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on diversity and ambiguity criteria that allow F-SMO to generate an approximation of the exact 

solution with small approximation error, while dramatically reducing the complexity of the solu­

tion and the computational burden - by more than 10 times compared to SMO. The proposed 

active learning strategy is the first selection strategy adapted to SVDD learning, and makes it 

possible to optimize large-scale datasets within reasonable training time. 

We have compared the effectiveness of the proposed method F-SMO with active learning to 

the standard LIBSVM SMO implementation on several synthetic and real-world datasets. Exper­

iments suggest that F-SMO solves the same problem in less than 15% of the time spent by SMO 

and that F-SMO with active-learning in less than 8%, proving their vast superiority in terms of 

computational cost on all experiments performed. 
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Chapitre 2 

Partitionnement efficace des donn€es pour SVC 

Cet article propose L-CRITICAL, un algorithme de partitionnement des donnees en sous-

groupes homogenes disjoints pour la methode « Support Vector Clustering ». L'objectif de 

cet algorithme est d'identifier l'ensemble de groupements intrinseques a un ensemble de 

donnees arbitraire, et de produire un partitionnement robuste et precis des observations en 

fonction des sous-groupes d&ectes. L'algorithme repose sur une analyse topologique 

fonctionnelle de la solution d'un SVDD decrivant les contours des segments, et cherche a 

caract6riser les chemins d'interconnexion entre les points critiques situes a l'interieur des 

contours, permettant ainsi de distinguer les segments. Les resultats experimentaux confirment 

que l'algorithme propose ameliore significativement la precision du processus de 

partitionnement des donnees dans un contexte de SVC comparativement aux competitifs, tout 

en minimisant significativement le temps de calcul nScessaire sur tous les ensembles de 

donnees analyses. 

La contribution de l'auteur (V. D'Orangeville) h cet article represente 90% de la charge de 

travail globale liee au developpement des algorithmes et de la redaction de l'article. 
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Efficient Cluster Labeling for 
Support Vector Clustering 

V. D'Orangeville, A. Mayers, E. Monga and S. Wang 

Abstract — We propose a new efficient algorithm for solving the cluster labeling problem 
in Support Vector Clustering (SVC). The proposed algorithm analyzes the topology of the 
function describing the SVC cluster contours and explores interconnection paths between 
critical points separating distinct cluster contours. This process allows distinguishing 
disjoint clusters and associating each point to its respective one. The proposed algorithm 
implements a new fast method for detecting and classifying critical points while analyzing 
the interconnection patterns between them. Experiments indicate that the proposed 
algorithm significantly improves the accuracy of the SVC labeling process in the presence 
of clusters of complex shape, while reducing the processing time required by existing SVC 
labeling algorithms by orders of magnitude. 

1 Introduction 

^^LUSTER analysis is a learning procedure aimed at discovering intrinsic group structure in 

unlabeled patterns in order to organize them into homogeneous groups. Clustering analysis 

is a key area of data mining for which computationally efficient and accurate methods are needed 

to deal with very large-scale datasets in terms of data volume, data dimensionality and clusters 

complexity. 

Support Vector Clustering (SVC) is a clustering algorithm proposed in 2000 by Ben-Hur [1] 

that uses the solution of the Support Vector Domain Description (SVDD) [2] model to group data 

points into clusters. While the SVDD algorithm produces contours that estimate a level set of 

the unknown distribution function of a dataset, the SVC method interprets these contours as 

cluster cores and assigns each data point to its nearest core to generate the final clusters. 

The SVDD generates cluster boundaries by projecting a dataset into a nonlinear feature space 

via the use of Gaussian kernels, and by defining a sphere of minimal radius which encloses most 

data points. In the input space, the hypersphere surface defines a set of contours that can be 

regarded as an estimate of the dataset domain exploited by the SVC algorithm. While providing a 

34 



description of the cluster cores, the SVDD method lacks information that connects each 

individual point to its membership cluster, hereby necessitating algorithms such as the one 

proposed in this paper to solve the cluster labeling process. 

From a cluster analysis perspective, the SVC method has attractive properties. It allows 

controlling the number of clusters and their shape complexity by simply varying the Gaussian 

kernel bandwidth a. It also allows controlling the sensitivity to outliers with a single parameter 

p representing the rejection rate for cluster boundaries. Finally, it defines clusters based on the 

structural risk minimization principles that are more robust to outliers. 

Ben-Hur proposed a simple labeling algorithm [1] (referred to as BENHUR in this paper) 

based on an interconnection test that assumes that a pair of patterns belongs to the same cluster if 

both can be connected by a virtual segment located within a common contour. This test verifies 

the inclusion of test points along the connecting segments, and is repeated for every 

combinations of pairs of points. This exhaustive test allows creating an adjacency matrix that is 

used to partition data points into distinct clusters. As described in Section 5, experiments show 

that the method suffers from intractable processing time on moderately sized datasets. Moreover, 

the interconnection test is inaccurate when dealing with high rejection rates p as it results in 

data points being excluded from the contours and thus considered wrongly as singleton clusters 

as they cannot be interconnected internally. 

Lee partially addressed the high processing requirements of Ben-Hur's method by proposing 

an algorithm referred to here as LEE [3]. It simplifies the labeling process by first grouping 

together data points distributed aroung a same local minimum of the function describing the 

cluster contours. It then tests the interconnection between each pairs of local minima (similarly 

to BENHUR interconnection test) to deduce the inner partitioning of the dataset. Although less 

time consuming than BENHUR, Lee's method still suffers from high computational complexity 

due to the repetition of gradient descents starting from each point of the dataset. In addition, 

experiments presented in Section 5 show that Lee's method produces high labeling error rates 

when dealing with complex datasets displaying narrow or curved cluster contours. 
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We should mention that Lee has presented in [4] an evolution of his previous method [3] that 

extends his interconnection tests between saddle-points and minima instead of minima only. The 

method is shown to be accurate in presence of complex clusters. This method came to our 

attention while submitting this paper for review, and shares some similarities with the algorithm 

proposed in this paper. It is not evaluated in our experiments as few implementation details are 

discussed in Lee's paper. We do include a discussion comparing the two methods in Section 4.4. 

Jung proposed in [8] an extension to Lee's algorithm, grouping training points distributed 

around identical local minima, then by checking inteconnections between pairs of minima by 

performing linear interconnection tests. It enhances Lee's implementation by adding a process 

where similar descent trajectories are merged together during the minimization process toward 

local minima, in order to reduce the time complexity of the algorithm on large-scale datasets. As 

discussed in Section 5, Jung's algorithm exhibits similar labeling accuracy to Lee's method, while 

reducing significantly the labeling time. 

In this paper, we propose a new labeling method, named L-CRITICAL, that provides an 

exceptionally high labeling accuracy even in the presence of complex cluster shapes, while 

reducing the required processing time by orders of magnitude in comparison to BENHUR and 

LEE. Our approach is based on the analysis of the topology of the function describing the cluster 

contours, and analyzes interconnection paths between all critical points (minima and saddle 

points) to ensure a more accurate and flexible interconnection test than the one implemented in 

BENHUR, LEE and JUNG. In particular, this interconnection test is performed by exploring 

Quasi-Newton descent trajectories toward local minima and saddle-points. As reported in Section 

5, L-CRITICAL provides a state-of-the-art labeling accuracy in all our experiments, 

outperforming significantly BENHUR and LEE while dramatically reducing the labeling time. 

Although slower than JUNG on small datasets, the proposed method proved far more accurate 

and robust on all experiments and propose a pratical way of selecting the optimal merging 

parameter for accelerating the search for critical points without deteriorating accuracy. 

2 Support Vector Domain Description 

The SVDD is designed to characterize the support of the unknown distribution function of an 
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input target class by computing a set of contours that rejects a controlled proportion p of 

patterns. These contours provide an estimate of a specific level set associated with the probability 

1 -p of the distribution function and allow unseen patterns to be classified as normal or 

abnormal. 

Given a set X of training vectors xt eRrf,/ = l,...,«and a nonlinear mapping <f> from X to 

some high-dimensional nonlinear feature space <D, we seek a hypersphere of center a and min­

imal radius R that encloses most data points and rejects a proportion p of the less representa­

tive patterns. This requires the solution of the following quadratic problem: 

Slack variables <£ are added to the constraints to allow soft boundaries, and $ denotes the 

coordinate #(x,.) of x, in the feature space. Points associated with >0 are excluded from the 

contours and penalized by a regularization constant C which controls a proportion p of points 

lying outside (and on the surface of) the hypersphere. 

The optimization problem (1) can be solved by introducing the Lagrangian L as a function of 

primal variables R2, £„• and a and dual variables a and p referred as Lagrange multipliers 

enforcing the two constraints in (1). 

2.1 Optimization Problem 

mm 
R2,4,,° 

(1) 
£>0, i = l, 

L(R',4,a,a.fi) = ̂  + c£f,-+f, -|4 
i=l i'=l /=1 

>0, / = 1, 

Setting to zero the partial derivatives of formula (2) with respect to primal variables R2, £ and 
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a at the optimal point leads to: 

—f :C-a1.-#=0->C = a,+# (3) 

We can deduce from the constraints C = ai +/3j in (3) and > 0 in (2) that a, < C. The 

Karush-Kuhn-Tucker (KKT) complementary slackness conditions results in: 

It follows from constraints (4) that the image $ of a point xi with ei > 0 and a, > 0 lies outside 

(or on the surface) the feature-space sphere, and that a point x.t with ei - 0 and a, = 0 lies within 

the sphere. This indicates that the solution is sparse, only training vectors excluded from the de­

cision surface with a{ > 0 contributes to the SVDD solution. These vectors are referred to as 

support vectors. 

By substituting eq. (3) into the primal Lagrangian (2) allows eliminating references to primal 

variables R2,and a, turning the Lagrangian into the Wolfe dual form Ld where (•,•) is the 

inner product of two possibly infinite vectors. 

PA = o 

- |4-flf) = 0 
(4) 

max 

2>,=i. (5) 

0 < a t < C ,  /  =  
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The dot product ) in eq. (5) is replaced by an appropriate Mercer kernel ^(x,.,jcy ), referred 

to as kij for notation simplicity, overcoming the explicit reference to $ of possible infinite di­

mension. The Gaussian kernel is used in this context, adjusting the complexity of the cluster con­

tours with a single parameter a controlling the kernel bandwidth. 

Kj 'e"1  (6) 

The Wolfe dual is simplified by replacing the dot products by the kernel kf j: 

Ly. max-^aI*,,-ZZa<aA/r 
[ 1=1 1=1 j=l J 

= 1, (7) 
1=1 

0  < A , < C ,  

The SVDD solution can consequently be optimized by maximizing the dual equation (7). 

Note that the problem remains convex since the kernel matrix K with i,j th entry Ktj = kiJ is 

positive definite. 

2.2 Decision Function 

As described in eq. (3), the center a of the hypersphere is described as a linear combination 

of the feature space vectors $. 

a = (g) 
I 

The square Euclidian distance from an image $ of xt to the sphere center a is defined as: 
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= K  ~ 2 H a K + Y j H a i a i h j  (9) 

' J 

The decision surface is defined as the implicit surface |x:t/(x) = 0} of the function d ( x )  

described belowthat evaluates the relative position from the image <f>(x) to the surface of the 

hypersphere. The function d(x) classifies a point x inside the contours if d(x) < 0, on its 

surface if d(x) = 0 and outside otherwise. 

d(x l )  =  O s -O l  where O, 
j 

i  <— arg min O k  sJ .  a k < C  (10) 
Os =j(Oi + Oj) where 

j  <— arg max Ok sJ .  a k > 0 
k 

The SVC cluster labeling process consists of separating the contour level associated with 

d(x) = 0 into a set of disjoint connected contours, and assigning each point to its nearest cluster 

contour. 

3 Overview of cluster labeling algorithms 

In this section, we describe three algorithms designed by Ben-Hur and Lee for SVC cluster 

labeling. Their underlying principles, qualities and limitations will serve as the basis from which 

to define the desired characteristics of the new SVC labeling algorithm proposed in this paper. 

3.1 BENHUR 

Ben-Hur proposed a method (BENHUR) that considers two points (*,,*,) as belonging to the 

same cluster if both can be connected by a straight path r(<y) = (l-6>) xJ +a)-xl entirely 

located within a same connected cluster contour characterized by the isosurface |jc:</(jc) = 0|. 

The path T is discretized and represented by a set of test points uniformly distributed along its 
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way, and the interconnection test consists in verifying the inclusion of each point within the 

cluster contours. BENHUR performs an exhaustive evaluation of all interconnection paths 

between each pair of points of the dataset and then partitions all patterns into distinct groups 

based on the resulting adjacency matrix. 

This method has the advantage of being simple from an implementation perspective, and 

relatively accurate with sufficiently large and low-dimensional datasets which provide an 

adequate distribution over the inner cluster volume. Smaller or high-dimensional datasets may 

result in high labeling error rates due to an insufficient coverage of data points that cause some 

crucial linear connection tests to fail. Also, the exhaustive interconnection test between all pairs 

of points constrains this method from being used on laige datasets. In addition, Ben-Hur's 

algorithm is only suitable for models trained with a near zero rejection rate p. Choosing a 

higher p may result in many points being excluded from the contours and consequently being 

considered wrongly as outliers, as a consequence of the inability to connect them to any other 

points within the contours. 

3.2 LEE 

Lee's labeling algorithm (LEE) exploits a topological property of the SVDD solution illustrated 

in Figure 1 by which all points distributed around a common local minimum belong to a same 

cluster. First, the association of each point with its nearest converging local minimum allows 

grouping of the dataset into four groups. Then, each pair of local minima is tested using the 

linear interconnection test as depicted in Figure 2. Lee's labeling algorithm reduces the overall 

number of interconnection tests by proceeding to a gradient descent starting from each point of 

the dataset toward the nearest converging attractive minimum of d (x). The patterns are then 

grouped and represented by their corresponding stable equilibrium, and the linear 

interconnection is evaluated exhaustively between each pair of minima using the same 

interconnection test implemented in BENHUR. 
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• iMJ; 

Figure 1 - Association of each point with its Figure 2 - Linear interconnection tests 
nearest converging local minimum Mt. between each pair of local minima Mi. Green 

and red points are respectively included in and 
excluded from the cluster contours. 

Although LEE provides a significant reduction in the number of interconnection tests 

compared to BENHUR, by testing interconnections between pairs of minima rather than all pairs 

of data points, it relies on the linear interconnection test that proves inaccurate in the presence of 

curved cluster contours as observed in Figure 2. LEE considers local minima that cannot be 

connected by any straight internal path as belonging to different and results in individual clusters 

of points being detected as multiple distinct clusters, as shown in Figure 3. Moreover, Lee's 

exhaustive gradient descent from each point of the dataset is computationally intense and makes 

this algorithm inefficient on large datasets. 

Figure 3 - Incorrect cluster labeling produced by LEE, detecting 4 clusters instead of 2. 
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3.3 DYNAMIC 

Lee proposed a second labeling algorithm (DYNAMIC) in [4] which performs the 

interconnection test between saddle-points and minima instead of just minima (as implemented 

in LEE) to improve the accuracy of the labeling step. 

DYNAMIC starts similarly to LEE, by carrying out a series of gradient descents over d ( x ) ,  

starting from each point toward the nearest converging local minimum. The dataset is then 

partitioned into disjoint groups of points, each being represented by a distinct local minimum. 

The input space is then divided into grids to sample one data point per grid region. Each sample 

point is then used as starting point by a root detection algorithm to locate the nearest critical 

point (local minimum or saddle point) of the decision function d[x) . Eigenvalues and 

eigenvectors are then solved at the location of each critical point to allow classifying critical 

points as local minima or saddle points. 

For each saddle point detected, the algorithm generates test points in the vicinity of the saddle 

point along the eigenvectors associated with negative eigenvalues. A gradient descent starting 

from each candidate is then performed, to detect the local minima adjacent to each saddle point. 

This process produces an adjacency matrix that summarizes the interconnections between local 

minima and saddle points, which is used to group data points into disjoint clusters. 

3.4 JUNG 

Jung proposed in [8] an extension (referred to as JUNG) to Lee's algorithm, solving the 

labeling phase by grouping training points convening toward identical local minima, then by 

assessing interconnections between pairs of minima by performing linear internconnection tests. 

JUNG differs from Lee's implementation by a process of merging similair descent trajectories 

during the minimization process toward local minima, in order to reduce the time complexity of 

the algorithm on large-scale datasets. JUNG exhibits similar labeling accuracy to Lee's method, 

while reducing significantly the labeling time. Although significantly faster than LEE, JUNG's 

method relies on a merging radius as input parameter for defining at which viscinity descent 
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trajectories should be merged together. The drawback to this approach is it's lack of criteria for 

selecting the merging radius. Such a criteria will be proposed in the following section. 

4 Efficient SVC labeling 

We first present in the following subsection our approach for locating die nearest attractor and/or 

saddle point of the function d(x) for every point of the dataset. This algorithm plays a central 

role in the proposed labeling algorithm in Section 4.3, as the labeling algorithm exploits this 

information to partition data points into distinct clusters. 

4.1 Detection of critical points 

We present a new Quasi-Newton (QN) optimization scheme that we used in two distinct 

contexts, for detecting either all minima or all minima and saddle-points. The method acts by 

m i n i m i z i n g ,  r e s p e c t i v e l y ,  t h e  f u n c t i o n  d ( x )  o r  t h e  s q u a r e d  n o r m  N ( x )  o f  t h e  g r a d i e n t  o f  d ( x ) ,  

with each point x e X acting as a starting location (see Table 1). Minimizing d ( x )  is equivalent 

to minimizing the distance separating a point from the hypersphere center, and minimizing 

7 V ( j c )  i s  e q u i v a l e n t  t o  f i n d i n g  t h e  r o o t s  o f  t h e  g r a d i e n t  V d ( x ) .  

Table 1 - Functions Minimized when Searching for Minima or Critical Points. 

Search for Optimization problem 

All minima argminJ(jc) with d ( x )  =  0 s - 0 ( x )  
X 

All critical points argminN(jt) with iV(jc) = ||Vf/(jc)||2 

X 

Detecting efficiently all of the nearest local minima or critical points (minima and saddle 

points) for all points in the dataset is a challenging task, for two reasons. First, the efficiency and 

accuracy of this process depends on the appropriate choice of the QN maximal step length X and 

stopping criterion rj that ensure convergence into the nearest local minimum within the minimal 

number of steps without jumping over the minimum. Secondly, the QN optimzation processes initi-
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a ted from different points could generate redundant descent trajectories that can be merged together 

by using a quantization process which will be described shortly. 

Our contribution to this problem is two-fold. We first design a method for calculating the 

optimal Quasi-Newton step length X and stopping criterion 7 for each context stated in Table 1. 

We then design a method for discarding redundant descent paths that trades a negligible potential 

loss in accuracy for a massive gain in total processing time. 

4.1.1 Quasi-Newton step length and stopping criterion 

The value of the QN maximal step length X depends on the minimal distance dcrit between two 

critical points, which is equal to the minimal distance between a local minimum and a saddle 

point on the surface of d(x). As any pair of adjacent minima are necessarily separated by a 

saddle point, the minimal distance between two minima is dmia = 2dcrit. Setting respectively 

XmiD =jdmin and X^, = jdcrU ensures the maximal step length to be always smaller than the 

distance d^n or d^ between two adjacent stable equilibria of d(x) or N (x), and eliminates 

the possibility of jumping over a stable local equilibrium during a QN descent. The QN stopping 

criteria 77^ and Tjcrit are evaluated as the norm of the gradient of d{x) or jV(x) in the vicinity 

of a local minimum or saddle point. 

w2 = M xI 

d. 

Figure 4 - Configuration of critical points on a 2D trained SVDD solution. Green and red 
points represent minima and saddle points, respectively. 

Let's consider the two-dimensional SVDD model illustrated in Figure 4 trained on two points 
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of coordinates *,=-// and x2 = n . For a kernel bandwidth a with JC, and x2 located 

sufficiently close to each other, the SVDD solution exhibits a single connected contour with a 

local minimum at xm = 0, and JC, and x2 lying on each opposite side of xm on the cluster 

contour. Increasing the distance between xx and x2 will at some point induce the split of xm into 

two local minima JC" = -<p and JC" = <p separated by a saddle point x' = 0 as illustrated in Figure 

4. 

Let's refer as JC, = and JC2 = /imin the coordinates of the two points at which the cluster 

does not exhibit yet two local minima, and xl = Jc2 = Mm* the pair of points at 

maximum distance that still forms a single cluster. Figure 5 illustrates these two extreme points 

configuration, the gray curves displaying the values of d(x) for two SVDD models respectively 

trained on {*, =-/imin,x2 =^min} and {*, = ~ A™ > *2 = A™} • Due to the symmetric 

configuration of JC, and x2, and given the dual constraint ]jT .a, = 1, both Lagrangian multiplier 

values are set to a, = a2 = \. 

Figure 5 - First derivative J'(JC) (green curve), local minima (green circles) and saddle 

points (red circles) associated with the function d(JC) (black curve). 

The first configuration (coordinates ) shows a SVDD model exhibiting a single local 

minimum at x = 0, and the second configuration (coordinates ±Mrrm ) illustrates the extreme case 

where JC, and x2 are moved apart to the point where the curve exhibits a saddle point at the 

origin and two symmetrical local minima. The black curve represents an intermediate model 
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trained on a pair of coordinates x, = - f i e  and x2 = fiE with =(l-t»)/imin + u//max and v a 

small constant. The latter curve illustrates the contour configuration at which a local minimum 

splits into two local minima and a saddle point as // is increased, describing the minimal 

distance between pairs of adjacent local minima and a saddle point controlled by the parameter 

d a 0.01. The factor u allows controlling the tradeoff between the accuracy of the critical points 

set detected, and the computational cost associated to their detection. In our implementation, u 

is set a small value (l>«0.01) to ensure a conservative minimal distance between critical points 

that will lead to an accurate critical points detection while reducing the mislabeling rate, at the 

cost of an increased computational burden. 

Based on the kernel bandwidth or, the values of and can be analytically derived as 

Pom = ^ and = 0.6094/i/0.6094/2<t . The coordinates of the local minima (referred to as 

mini and mitt2 in Figure 5) are evaluated as x™ = + 0.1761>/u - //min) and x™ - —x" , 

and the coordinate of the saddle point as xs = 0. The minimal distances Amin and Acril between a 

pair of local minima and between a minimum and a saddle point are estimated as /tmin = 2x" and 

Acrit = x" based on the values of a and v. 

The value of is computed by solving the value of // for which the first derivative of d, 

equals to zero at the origin x, = 0, as illustrated in eq. eq. (11). 

(11) 

The value of is calculated by solving for which value of // the curvature (second 

derivative) of the function d, equals to zero at the origin xt = 0, as illustrated in (12). 
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= -p((l * 2 p ( x ,  +  au )' +(l+2^(x, - ̂  )!)e^-«-'') 
d2x, 

(12) 
5 */(x, =0) r--* = 0 => => //min=Vo-

D X. 

The minimal QN stopping criterion 7 is calculated as the norm of the gradient at a small 

distance e from a stable equilibrium. In the context of a search for minima, the value of 7 is 

computed as the norm 7^ = ||v*/(x™ -f)|| of the gradient of d ( x )  in the neighborhood of the 

minimum x" (with e = 10"3). The value of 7 is calculated as the norm rjcrit = ||ViV(^)||2 of the 

gradient of iV(jt), when searching for critical points. The estimation of rjmia is based on the 

coordinate x" - e rather than x" + e, as the norm of the first coordinate is more restrictive. 

Table 2 - Maximum Quasi-Newton step lengths and stopping criteria. 

Maximum step length Stopping criterion 

Search for 

critical points 
Xcrit = + 0.1 761a/u(0.6094/V0.6094/2<7 - Vff) 

Search for 

minima 
X  .  = 2 X  .  

nun crit 
1^, =||v</(l„„-<r)|! 

Table 2 summarizes the maximum step lengths X^B and X^ and the stopping criteria 7min 

and 7otV calculation for both optimization problems. 

Note that the minimal distances */min or d^, holds for any dimensions greater than 2, as the 

coordinates of x, = -fi and x2 = fx would simply be extended by adding zeros for all other 

coordinates. 
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4.1.2 Critical points detection 

This section describes our method for assigning data points to their nearest local minimum or 

critical point. 

The algorithm works by splitting the set of QN minimizations starting from each point into a 

sequence of quick QN iterations using loose stopping criterion TJ . Once the QN steps converge, a 

quantization step merges together descent trajectories within a small radius 8 as they will likely 

converge toward the same stable equilibrium. Each redundant group of points are discarded and 

represented by a single candidate that will follows QN steps, dramatically reducing the overall 

number of QN iterations. 

The stopping criterion rf is adjusted at each optimization iteration t, going from a loose 

value Tj"° to a restrictive value r],=end = 7min or to ensure a convergence on the stable 

equilibrium and to also allow eliminating the most redundant descent trajectories early in the 

process. The stopping criterion is computed as TJ' = , where TM = 3 is the total number 

of QN iterations and TJ - RJ^M or r j c r i t .  

The quantization radius value 8 is calculated from the minimal distances /lmin or Acrit between 

pairs of minima or critical points. As all points within a radius -j/t^ or converge toward 

the same attractive minimum of d(x) or N(jc) , our quantization steps uses 8^ =jAiain and 

8cru =i^cru as merging radii without adversely affecting the final set of stable equilibria 

detected. 

The algorithm for assigning all patterns to their nearest converging minima or critical point is 

described in Algorithm 1. 
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Algorithm 1 - Quasi-Newton with adaptative quantization. 

Input parameters: 

Search for 
minima 

Search for 
critical points 

Function to minimize f { x )  =  d ( x )  

QN max step length ^ = ^min ^ =Arif 

Quantization radius II ^0 
Convergence tolerance 1 =rjmin 1 =JJcn, 

'm«x: number of optimization iterations 

Qm: dataset (possibly previously quantized) 

ID :  paren t  ind ices  fo r  xeQ i n  

Main process: 

1. Initialization 
t = 0 
Q°^Q i n  

2. Initial quantization 
V(X„,jc; )<=£/, ||xu-xv|<^ 

/ {x v } , ID v =ID u  

3. Optimization / quantization 

For t = 1 to do 

QN convergence criterion 
if =10 

Partial QN minimization 
For each x e Q do 

jc <- Quasi-Newton Routine (x; / (x), A ,TJ 

Quantization 
V(x u ,x v )aQ,  |xs-x, |££ 

^Q'<-Q' / {x v } , ID v =ID u  

4. Return ((/-",/£>) 
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The quantization step in Algorithm 1 should be understood as follows. If a pair of points 

(JCU,JCv) exists in the set g'at iteration t, such that their relative Euclidian distance is smaller 

than the quantization radius 8, discard xv from Q and set the label IDV associated to xv as IDU. 

The  vec tor  ID then  re f lec t s  tha t  the  po in t  x y  has  been  d i scarded  and  i s  represen ted  by  x u .  

QUASI-NEWTON IMPLEMENTATION 

The implementation of the Quasi-Newton algorithm is inspired from the implementation pro­

posed in Numerical Recipes [8]. The latter is based on the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method [9]. Note that the details provided below is a partial excerpt from [8]. 

The BFGS formula for updating the approximation to the inverse Hessian matrix of function f (  

for intermediate solution xt, is described as: 

r H, - v/)l«a[g, -(v/m - V/)] 03) 

+[(?/„,-n)n, ivfM  -

where ® denotes the "outer" or "direct" product of two vectors, a matrix where the i j  component 

of u ® v is w(v(., and where u is a vector defined as 

u_ 

The C++ implementation used in the proposed algorithm is an adaptation of the C code provided 

in [8]. 
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4.2 Optimal interconnection test 

The proposed interconnection test analyzes interconnection paths between critical points of 

d(x) in relation to the cluster contours to split the set of contours into distinct contours and 

associate each pattern to its nearest contour. We now present concepts that introduce our new 

optimal interconnection test used by our labeling method. 

Consider all possible continuous paths T eP connecting two local minima xsand x, such as 

d{m\< 0 and d{m,)< 0. Let's define as T* = arg min I max d (yu) J the path connecting two 
RE/> V >«6R / 

local minima (x^x,) exhibiting the maximum probability of being included within the contours. 

Of all possible paths r e P f T* has the smallest maximal value of d (x) along its trajectory and 

if no other local minima lie along T* , the latter will pass through one saddle point 

su = arg max d(yu). If < 0 , it confirms that the entire path T* is located with a single 
y.e r" 

cluster contour and that the two minima xs and x, and all point converging toward these two 

minima belong to a same cluster. 
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Figure 6 - Interconnection paths between local 
minima (blue points) and saddle points (red 
points). 

:mj) 

Figure 7 - Convergence paths (arrows) toward 
local minima Mt (blue points), in the 

neighborhood of saddle points St (red points). 

Figure 6 illustrates this concept, the maximum probability path T* represented by gray curves 

connect adjacent pairs of local minima separated by a saddle point su at the highest 

value of d ( x )  along T* whose relative position to the cluster contour determines if the two 

minima are internally interconnected. This principle plays a key role in the design of the L-

CRITICAL labeling method presented in the next section. 

4.3 L-CRITICAL 

We describe in this section L-CRITICAL, a new SVC labeling methods designed to achieve a 

high cluster labeling accuracy within competitive training time. L-CRITICAL relies on no 

specific input parameter, beside a trained SVDD solution and a dataset to label. 

L-CRITICAL starts by assigning each point of the dataset to its nearest attractive critical point 

(minimum or saddle point) using the algorithm presented in Section 4.1.2. The second step 

consists in performing the optimal interconnection tests introduced previously in Section 4.2 

whose implementation is centered around the principle explained next and illustrated in Figure 7. 

Let's consider two sets of points Xmin and X uniformly distributed along the surface of 
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two spheres of radius r = jAcril, centered respectively on a local minimum xmin and a nearby 

saddle point xiaddk. Performing gradient descents over d (x) starting from each x G Ar
min will 

result in all points converging toward the same local minimum x,^, allowing the classification 

of the critical point as a local minimum. Adversely, performing the same process over each 

x e X.^ will result in all points converging toward one of the adjacent local minima (/wM,wv), 

allowing classifying xjaddle as a saddle point connecting each adjacent minimum (mu,mv) along 

the path with maximum probability of inclusion described in Section 4.2. If d{x3addle)< 0, then 

both minima can be connected internally by a path T such that </(x)<0 for jteT indicating 

that both minima belongs to the same cluster. 

;mi 

' S2 

;mi) 

Figure 8 - Generation of test points (orange Figure 9 - Connections (orange lines) of all 
points) distributed around each critical point. test points to their nearest attractive local 

minimum. 

This principle is implemented in our method as follows. A set of points are generated on the 

surface of spheres of radius r = ̂ Airit centered around each critical point x* detected such as 

d{xu )<0. The sets of test points are generated as the intersections between a) the virtual lines 

connecting each pair of critical points and b) each generated sphere as illustrated in Figure 8. 

Each generated test points are then fed to the QN method described in Section 4.1.2 to detect 

54 



their nearest attractive local minima (which is a subset of the critical points detected previously 

as illustrated in Figure 9). If a test point generated around a critical point converges toward the 

same critical point, it classifies the critical point as a local minimum. Adversely, if a test point 

converges toward a different critical point, it indicates that the original critical point is a saddle 

point linked to the attractive minimum. Repeating this process over all test points centered 

around all the critical points allows simultaneously classifying each critical point as a minimum 

or a saddle point. It also allows identifying saddle points on the paths with maximum probability 

of inclusion connecting pairs of adjacent minima. Evaluating the inclusion of each saddle point 

then allows deciding whether a pair of adjacent minima is connected within a same cluster 

contour and if they belong to the same cluster. By extension, this allows grouping data points 

conveiging toward these minima into their respective clusters.Note that in order to restrict the 

number of test points generated around each critical point, a quantization pass with radius rt 

(15) is applied on the set of test points with =16 representing the maximal number of test 

points distributed around the surface of the hypersphere. 

DERIVATION OF THE QUANTIZATION RADIUS rt 

Let's consider a circle of radius Xcril divided into arcs of equal lengths. As illustrated in fig­

ure 10, the angle between each arc is A = 2 njt^, b = c = Acrjl and rt- a. 

Figure 10 - Derivation of the quantization radius rt for = 8 points equally distributed. 

(15) 

m 
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We solve the value rt= a using the law of cosine for an arbitrary triangle state where R is the 

radius of the circumscribed circle of the triangle. 

sin A (16) 

a = 2R sin A —> rt = 2Aril sin 

Each of the critical point x' e X* is associated to a unique cluster label /, initialized such as 

I = / = 1..|A"*|} . When a test point generated around a critical point x* such as Jt*)<0 

converge toward a different critical point x* when minimizing d(x), jc* is classified as saddle 

point connecting internally the minima x'v to another minima, and the label value of xu is set to 

the label value of x* to reflect their membership to a same cluster. No test point is generated 

around a critical points x* such as c/(x*) > 0 as these critical points cannot be connected 

internally to any other critical point. The cluster label of each data point of the dataset is finally 

computed based on the cluster label of the critical point to which it is connected. 
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Algorithm 2 - L-CRITICAL. 

Input parameters: 

Dataset X 
SVDD solution with parameters a and p 

Main process: 

1 Estimate QN input parameters 

Calculate the minimal distances (A^n and A^,) between critical points and QN stopping 

criteria ( ̂ min and rj^) (Section 4.1.1). 

2. Discover all critical points (Section 4.1.2) 

Apply QN routine to minimize N [ x )  to discover all critical points and associate each data 

points to its converging critical point. QN routine is applied using quantization value 

= jA^, QN step length A™' and stopping criterion rf£. 

3. Generate candidates around each critical point 
Generate test points distributed around each critical points. Test points are distributed at a 

distance r = ̂ A^ from each critical point and then test points are merged together with a 

quantization radius rt to reduce the number of test points. 

4. Associate candiates to their nearest minima 
Link test points to minima by making test points converge toward local minima (Section 

4.1.2), with quantization parameter <5^ = A™', QN step length A™ and stopping criterion 

—niin nqn • 

5. Partition data points into clusters 
Partition data points into disjoint clusters based on the cluster membership of each critical 
points stored in vector L and deduce each data point cluster label. 

4.3.1 Complexity analysis of L-CRITICAL 

The main time consuming phase of L-CRITICAL lies in the the numerical integration of each 

critical point (phase 2 of Algorithm 2), starting from each point of the training set. As the mini­

mization process is performed on the reduced training set, where the n training points are 
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merged into nr candidates, the complexity of the search for critical points is 0(nrd) where d is 

the number of dimensions of the data space. Note that as the dataset is reduced using the merging 

radius Xcrit, the size nr of the reduced training set remains constant regardless of the training set 

size. Consequently, the time complexity of the proposed method is bounded on 0(nrd) and is 

sub-linear in regard to the size of input. 

4.4 Comparison between L-CRITICAL and DYNAMIC 

To simplify the comparison between L-CRITICAL and DYNAMIC, the main steps of the two 

algorithms are summarized in Table 3. 

Table 3 - Comparison between L-CRITICAL and DYNAMIC. 

STEP L-CRITICAL DYNAMIC 
1. Detection of 
critical points 

All critical points are detected 
using QN method (Section 4.1.2) 
with optimal parameters (Section 
4.1.1) 

All local minima are detected using 
gradient descent starting from each data 
point. 
Test points are sampled and used as 
starting points for a root detection 
algorithm to detect critical points. 

2. Classification 
of critical points 

Test points are created around each 
critical points and fed to QN (same 
method used in Step 1) to connect 
them to their attractive minima and 
classify them as minima or saddle-
point. 

Eigenvalues and eigenvectors are 
calculated at each critical point detected. 
Each critical point is classified as minima 
or saddle-point based on its eigenvalue 
sign. 

3. Analysis of 
interconnection 
paths between 
critical points 

The analysis of interconnection 
paths between critical points is 
solved implicitely in Steps 1 and 2. 

Test points are generated along 
eigenvectors of saddle points. 
Gradient descent starting from each test 
point is performed to detect adjacent 
minima and to connect saddle-points to 
minima. 

4. Cluster 
labeling 

The cluster labeling is solved 
implicitely in Steps 1 and 2 

Cluster partitioning based on the 
adjacency matrix generated. 

From a computational efficiency perspective, DYNAMIC exhibits the same high complexity 

of LEE as it performs exhaustively gradient descents starting from each point of the dataset to 

associate each point to its local minimum. L-CRITICAL solves this step in a more efficient way 
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using the algorithm described in Section 4.1.2. 

L-CRITICAL performs the detection, classification and interconnection analysis of critical 

points in two steps that rely on the same QN algorithm (Section 4.1.2), in contrast to 

DYNAMIC, which involves first searching for local minima and then performing a grid 

sampling on the input space to use sampled points as starting locations for a root detection 

algorithm to detect saddle points. As noted by the author in [4], an improper sampling could 

result in the failure to detect essential saddle points connecting adjacent local minima and in 

detecting a single connected cluster as multiple disjoint clusters. This limitation is circumvented 

in our approach. 

The critical point classification process in L-CRITICAL is also more efficient as it is 

performed in Steps 2 and 3, simultaneously detecting, classifying and evaluating interconnection 

paths between critical points. DYNAMIC detection and classification of critical points require 

using a root detection algorithm and solving eigenvectors and eigenvalues, processes which are 

time consuming with high-dimensional datasets. 

Finally, the interconnection analysis step in L-CRITICAL is more robust as it produces more 

candidates uniformly around each critical point, mitigating the event of candidates failing to 

converge toward an adjacent minimum potentially resulting in labeling errors. L-CRITICAL also 

generates candidates at a distance r = Wri, from each critical point which is adapted to the RBF 

kernel bandwidth, as opposed to DYNAMIC which uses a constant distance which may yield 

labeling errors for small kernel bandwidths. 

For all of the reasons previously discussed, it is reasonable to assume that L-CRITICAL is 

fundamentally more robust and efficient than DYNAMIC, although the two algorithms share 

conceptual similarities. Note that although we provided a comparison between DYNAMIC and 

L-CRITICAL, DYNAMIC was not tested in the experiments presented in the next section, as the 

author's paper provides only a general description of the algorithm, without supplying 

implementation details. 

59 



5 Experiments and results 

The new SVC labeling algorithms (L-CRITICAL) proposed in this paper is first tested against 

the two competitive methods (BENHUR and LEE) on synthetic datasets sampled from 15 

uniform density functions represented by the white regions of bitmap images illustrated in Figure 

10. For each sampling size, IS datasets are generated. Each of the three algorithms is executed 

on these datasets and their respective processing time and labeling accuracy are measured. 

Figure 11-15 density maps for generating synthetic datasets tested in the experiments. 

The density maps shown in Figure 11 are created in such a way to exhibit complex contours 

features on which existing SVC labeling algorithms typically fail to produce accurate 

partitioning. These density maps are used to generate datasets for testing labeling accuracy and 

robustness of the algorithms in presence of complex clusters features. These problematic 

contours features include curved contours, narrow contours, concavity (holes) within a cluster, 

concentric clusters (one within another) and distinct clusters located at proximity one from the 

others. Note that as most UCI benchmark clustering datasets exhibits clusters that are typically 

spherically or elliptically shaped. These datasets are consequently too simple to allow a proper 

evaluation of the labeling robustness of the labeling algorithms. 
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Figure 12 illustrates respective the processing time of each algorithm averaged over the IS 

datasets of same however increasing sample size. All datasets used in this experiment are 

accessible on the authors' website1. All experiments were performed on an Intel Q6600 CPU. 

ioooo 

1000 2000 3000 4000 I sooo 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000i 

• flenhur 23.49 7**7 157-30 *5.76 j 1 i 
sue 000 on IS$ 2.74 | 4.2* *41 10*5 13,74 ' i*i;t 20-71 24.10 26 a3 3040 34*3 ! 

• lotmcal 0136 0.11 0.16 022 j OJ7 033 039 0.44 049 0.54 0.60 0*5 0.71 0*77 0*0 : 

Figure 12 - Labeling time (vertical axis) log(time) of each algorithm averaged over all 15 
synthetic datasets, with sample sizes (horizontal axis) ranging from 1,000 to 15,000 data 
points. 

As illustrated in Figure 12, L-CRITICAL dramatically outperforms LEE and BENHUR in 

terms of processing times by several orders of magnitude. Note that BENHUR's labeling times 

are not reported for training sets above 4,000 data points as we restricted the maximal processing 

times of each experiment to 360 seconds. The high efficiency of L-CRITICAL results from the 

highly efficient critical points detection algorithm presented in Section 4.1.2, which discards 

redundant descent trajectories and reduces dramatically the processing time of the detection of 

critical points, as opposed to LEE which performs exhaustively gradient descents starting from 

every point of the dataset. BENHUR's processing time becomes prohibitive on large scale 

datasets as it performs its linear interconnection test exhaustively between all possible pairs of 

points, yielding a number of tests which becomes intractable with increasing numbers of data 

1 www.usherbrooke.ca/prospectus/vdorangeville 
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Figure 13 - Labeling error rates (vertical axis) of each algorithm averaged over all 15 
synthetic datasets, with sample sizes (horizontal axis) ranging from 1,000 to 15,000 data 
points. 

Figure 13 report the average proportions of labeling errors of each algorithm for all the tests 

performed. The L-CRITICAL method yields perfect labeling accuracy in every simulation, 

independently of dataset size. This high accuracy supports the excellent flexibility and robustness 

of its interconnection test, which deals efficiently with clusters of complex shapes. LEE exhibits 

a near constant labeling error rate on all datasets independently of the sample size due to its use 

of the linear interconnection test which fails to connect pair of local minima in presence of 

curved or narrow shaped clusters. 

Finally, BENHUR exhibits a labeling error rate that decreases with sample size, providing an 

almost perfect accuracy on datasets of 4,000 points. It supports our assumption that on small 

sized dataset, BENHUR is affected by improper covering of the clusters inner volumes, 

preventing some crucial internal connections between data points and resulting in high labeling 

error rates. 

A second set of experimentations is performed on a set of benchmark clustering datasets 
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referred to as "Fundamental Clustering Problem Suite (FCPS)"2. FCPS offers a variety of 

clustering problems with known a priori classifications, intentionnally create to represent diverse 

type of data configuration on which standard clustering methods (single-linkage, ward and k-

means) fails. The configurations exhibits clusters of different variances, different inter cluster 

distances, almost touching clusters, linearly not separable clusters and presence of outliers. This 

ensemble of datasets allows us to demonstrate the efficiency and accuracy of L-CRITICAL 

where conventional SVC labeling algorithms typically fail. 

Table 4 illustrates the results of our experiments on 8 datasets, and compares the accuracy 

measured by adjusted rand index [10], the labeling time and the number of clusters detected. 

JUNG algorithm is presented using different values of meiging radii in order to illustrates the 

dependency of its labeling time and accuracy to the merging radius. 

Table 4 - Comparison of labeling algorithms on 8 datasets (FCPS) in term of adjusted rand index 

(ADJRI), labeling time (T(s)) and number of clusters detected (CLUSTERS). Jung's algorithm 

is applied using varying merging radii (0.01,0.1 and 0.5). 

WM • IRH •HI n H m • H mm. B 
•torn aoo; 3 0.1 10% 2 too L58 2 0 loo 0.61 2 1 0 loo 5.53 2 0 
(dlriMNMk 1000 3 0.05 10% 2 loo 0.30 2 0 ass ass 3 1 0.99 5.99 6 4 

mail 212 3 0.05 10% 7 loo 0.03 7 0 loo 0.03 7 0 loo a45 7 0 
(Sam 400 2 0.05 1096 3 loo 0.14 3 0 loo 0.13 3 0 a53 L71 3 0 

itawt 770 2 0.05 10% 6 loo 0.13 6 0 0.86 0.39 7 1 LOO 4.21 14 8 

mm 400 3 0.025 30% 4 an L43 4 0 an 0.18 3 1 an L59 3 1 
800 2 0.025 40% 2 ass 0.60 2 0 0.02 0.64 3 1 aoo 6.11 78 76 

MftalMlft 1016 2 0.01 0.10% 2 064 8.94 7 5 ao9 2.14 18 16 aoo M.93 144 142 

Mr— mm • m BR • • m • Hi mm 800 3 0.1 10* 2 loo 2 0 LOO 0.21 2 0 as3 ao4 3 i 

Wmmk 1000 3 0.05 10% 2 oj5 3 1 0.69 ai4 4 2 a49 acB 5 3 
itati 212 3 0.05 10% 7 loo aoi 7 0 LS0 aoi 7 0 loo aoo 7 0 
iam 400 2 0.05 10% 3 loo 0.12 3 0 LOO ao4 3 0 a95 aoo 3 0 

mm 770 2 0.05 10% 6 a78 0.20 s 2 0.78 0.05 8 2 a&9 aoi 9 3 

Mm 400 3 0.025 30% 4 an 0.25 3 1 0.71 0.21 3 1 a64 0.02 11 7 
40% 2 aaz a54 3 1 0.01 ai6 3 1 aoo aoi 1 1 

MM** llOtfl 2 I 0.01 0.10% 2 aos 3.11 17 15 0.09 LOB 17 15 0.15 aos 7 5 

Figures 14, IS and 16 illustrate the average labeling accuracy, number of errors in number of 

clusters detected and labeling times for the 8 datasets (FCPS). 

2 Available at http://www.urii-marburg.de/fbl2/datienbioruk/data71anguage_sync"! 
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Figure 14 - Average labeling accuracy (adjusted rand index) for all 8 datasets (FCPS) 
presented in Table 4. 

• S r r 

Figure 15 - Average errors in number of clusters detected for all 8 datasets (FCPS) 
presented in Table 4. 

m—6M 

Figure 16 - Average labeling time for all 8 datasets (FCPS) presented in Table 4. 

The analysis of the results of these experiments highlights two important properties of the 
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labeling algorithms described in this article: 

• BENHUR is computationally very intensive on small scale datasets, due to its 

computation of interconnection test between each pair of data points, although providing 

low labeling error rates on most datasets. The labeling accuracy is highly affected by the 

proportion of points excluded from the clusters contours as each of them is considered as a 

separate cluster. 

• LEE provides an improvement in processing time over BENHUR although suffering from 

labeling error rates in presence of clusters with complex shapes. The exhaustive search for 

minima starting from each data points restricts its application to small sized dataset. 

• JUNG provides a significant improvement in term of processing time over LEE and 

exhibits the same accuracy than LEE. However, a drawback of JUNG remains in its 

absence of strategy for selecting the merging radius during the numerical integration step. 

As illustrated in our experiments, the choice of a too large radius impacts negatively its 

labeling accuracy, while a very small radius reduce its labeling time to the one of LEE. 

• L-CRITICAL exhibits very competitive labeling processing times while achieving perfect 

labeling accuracy in all experiments performed. Although slower than JUNG, L-

CRITICAL adapts automatically its meiging radius and is significantly more accurate than 

the other labeling methods tested. 

The clear winner for SVC labeling is the L-CRITICAL algorithm, which outperforms existing 

state-of-the-art SVC labeling algorithms BENHUR and LEE by several orders of magnitude in 

terms of processing time, while yielding improved labeling accuracy on all the tests performed. 

Although slower than JUNG, its significant higher accuracy makes it the most compelling SVC 

labeling algorithm. 

6 Conclusion 

We have presented L-CRITICAL, a new SVC cluster labeling algorithm which efficiently and 

65 



accurately solves the labeling phase of the Support Vector Clustering (SVC) method within 

competitive processing time. The proposed algorithm is based on a new efficient and accurate 

interconnection test between critical points of the function describing the SVC cluster contours, 

and allows distinguishing accurately distinct clusters in situations where most competitive 

labeling algorithms fail. Experiments indicate that the proposed algorithm provides a very 

satisfactory solution both in terms of labeling accuracy and processing time over BENHUR, LEE 

and JUNG in the presence of clusters of complex shape. 

From our point of view, L-CRITICAL is the first method that can be realistically implemented 

for large real-world datasets while guaranteeing a state-of-the-art processing time and accuracy. 

The development of L-CRITICAL is essential to exploit SVC's ability to distinguish clusters of 

the high shape complexity typically encountered in handwritten character recognition and image 

clustering. This method allows us to benefit from SVC's high adaptability to the inherent 

characteristics specific to the data analyzed in a real-world data-mining context. 
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Chapitre 3 

Selection des hyperparam&tres pour SVDD 

Cet article pr^sente une strategic robuste de selection des hyperparametres pour « Support 

Vector Data Description », permettant d'estimer le domaine de la fonction de distribution 

d'une classe cible a des fins de detection d'anomalies. La methode proposee precede k une 

analyse des effets d'une variation des hyperparametres (cr,p) sur la transformation des 

contours generis par un module SVDD, et identifie un ensemble d'hyperparametres resultant 

en une estimation precise et compacte du domaine de la classe cible. La methode intdgre par 

ailleurs un mdcanisme prevention du phenomene de surgeneralisation. Elle b^neficie d'un 

avantage crucial par rapport aux mdthodes existantes supervisees [17] [13] puisque son 

processus d'induction depend exclusivement d'observations de la classe cible sans requdrir 

un ensemble de donnees classifiees comme atypiques. La performance de generalisation des 

modeles SVDD entrain£s avec cette methode a ete evaluee sur des ensembles de donnees 

synth&iques et reels. Nous proc&lons a revaluation de la precision et de la robustesse de 

notre methode k produire des representations SVDD compactes permettant une 

discrimination efficace entre des observations normales et atypiques sur des ensembles de 

donnees artificiels, sujets k des proportions croissantes de bruit additif gaussien. Nous 

proposons ensuite des r£sultats experimentaux comparant la performance de generalisation de 

notre methode a l'algorithme « abnomaly detection » implements dans le logiciel SPSS 

Clementine 12.0, et demontrons la superiorite de notre approche. 

La contribution de l'auteur (V. D'Orangeville) k cet article represente 90% de la charge de 

travail globale liee au developpement des strategies et de la redaction de l'article. 
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Hyperparameters Selection for 
Support Vector Domain Description 

V. D'Orangeville, A. Mayers, E. Monga and S. Wang 

Abstract — This paper presents a new parameters selection strategy for the Support Vector Do­
main Description (SVDD) for automatic novelty/outlier detection. The method proceeds by de­
tecting characteristic transformations of SVDD contour induced by parameters variations, which 
we use to develop an accurate estimate of the distribution support of the target class by the con­
tours. The proposed method offers three major advantages over related strategies. Its entire in­
ductive process relies exclusively on target class observations, i.e. positive instances, and does 
not require negative instances. The method is efficient on datasets of varying dimensions and 
sizes, and implements a mechanism preventing overfitting. Experiments on various synthetic and 
real-world datasets suggest that the proposed method allows identifying parameters yielding 
SVDD models that distinguish accurately normal patterns from outliers with an accuracy close to 
the optimal achievable separation for any set of parameters, significantly outperforming the 
SPSS Clementine 12.0 proprietary abnormality detection algorithm. 

1 Introduction 
rJ",HE Support Vector Domain Description (SVDD) is an algorithm introduced by Tax and Duin 

in 1999 [1] and inspired from the Support Vector Machine (SVM) algorithm proposed by 

Vapnik in 1995 [2]. The goal of the SVDD is to estimate the unknown distribution support of an 

arbitrary target class, to allow classifying unseen patterns as normal or abnormal. 

The SVDD method acts by projecting a set of input patterns into a high-dimensional nonlinear 

feature space and by generating a hypersphere of minimal radius which encloses a controlled 

proportion of projected patterns. The hypersurface defines in input space a set of boundaries that 

provides an estimate of a level set of the target class data distribution function, enclosing the 

most representative input patterns and excluding the least representative ones. The projection in­

to feature space is achieved implicitly by the use of Gaussian kernels computed on the patterns 

coordinates of input space. The Gaussian kernel is parameterized by a bandwidth a that controls 

the complexity of the generated contours, and by a factor p that constrains the proportion of 

outliers rejected by the contours. 
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The SVDD has two important qualities: the simplicity of the interpretation of its parameters 

and its strong theoretical foundation. The complexity of its contours and sensitivity to outliers 

can be controlled respectively with only two parameters a and p. Furthermore, the SVDD is 

founded on structural risk minimization principles that yield models theoretically less sensitive to 

noise compared to models based on empirical risk minimization principles. The main limitation 

of SVDD is the lack of criterion for selecting model parameters that generate a compact repre­

sentation of the target data, prevent overfitting and distinguish accurately typical patterns from 

outliers. 

Various approaches [3] [4] have been proposed for optimizing parameters for SVDD, in a con­

text where both positive (normal) and negative (abnormal) instances of a target class are availa­

ble. These methods act by exploring combinations of hyperparameters and identifying parame­

ters which result in a SVDD model that minimizes the classification error rate on positive and 

negative instances of the target class. For instance, the method proposed by Zhuang [3] makes 

use of grid-search strategies over the hyperparameters space and selects a SVDD model to 

achieve an accurate detection of abnormal patterns. Tax [4] proposed a similar strategy focusing 

on the selection of the Gaussian kernel bandwidth a. It trains a series of SVDD models of in­

creasing complexity and calculates a measure of the discriminative power (convex combination 

of type-I and type-II detection errors) of each model on positive and negative instances of the 

class. It then selects the minimal complexity model (largest a) having a discrimination power 

index below a threshold value. This strategy suffers from important limitations as it provides no 

criterion for selecting the index threshold nor for optimizing the rejection rate p and has been 

validated only on a single dataset. 

The most serious limitation of Zhuang's and Tax's selection strategies is that they rely on the 

availability of negative instances of the target class. However, most novelty detection problems 

involve situations where negative instances of a target class are unavailable or associated to high 

acquisition costs (insurance claim fraud detection, defect identification in supply chains, rare dis­

ease diagnosis, etc.). In fact, if these negative instances were readily available, a classification 

approach using, for example, the Support Vector Machine, would be more appropriate. In practi-
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cal applications of novelty/outlier/abnomality detection, it is not reasonable to assume the avail­

ability of representative instances of novelty/outliers/abnomality. 

Tax [5] proposed a different selection strategy addressing the situation where only positive in­

stances of the target class are available. It acts by generating a cloud of data points covering uni­

formly the inner volume of a sphere enclosing all target class patterns. The set of SVDD parame­

ters are selected as the one minimizing the classification error rate between positive patterns and 

artificially generated outliers. A fundamental limitation of this strategy lies in the fact that the 

number of artificially generated outliers is proportional to the volume of the enclosing sphere, 

which in turn is quadratically related to the dimension of the input dataset. This has for conse­

quence of restricting the use of this method to only low-dimensional datasets, as the number of 

points required to provide a uniform coverage becomes intractable even for moderate dimen­

sions. 

In this paper, we present an alternative parameter selection strategy for the SVDD that ad­

dresses all the limitations exhibited by existing methods. Our method allows identifying SVDD 

parameters to produce contours that estimate accurately the distribution support of the target 

class. This is made possible by identifying some distinguishing features of parameter variations 

on the SVDD contours. Our method achieves state-of-the-art detection rates of abnormal pat­

terns on synthetic and real-world datasets. Its entire inductive process relies exclusively on posi­

tive patterns, does not make use of negative instances and is applicable to high-dimensional da­

tasets. Moreover, the method is designed specifically to achieve a high accuracy in presence of 

high proportion of outliers in the training set. The method also implements a novel overfitting 

index effectively preventing the selection of inadequate parameters. 

Section 2 introduces the formulation of the SVDD optimization problem. Section 3.1 discuss­

es the typical effects of variations of parameters a and p on the SVDD decision boundaries, 

some distinguishing features of the contours transformations serve as a basis for our parameters 

selection method. Section 3.2 describes typical symptoms of overfitting in an SVDD model and 

proposes a simple index to prevent overfitting in the parameters selection. Section 5 details our 

new strategy for selecting parameters that yields a precise domain representation of any input 
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target class of any size and dimension and an accurate identification of abnormal observations. It 

also describes our approach for minimizing the impact of outlier patterns in the training set on 

the detection accuracy of our method. Section 6 reports experimental results on synthetic and 

real-world datasets and evaluates the impact of the dataset size, dimension and noise on the ca­

pacity of our method to differentiate between normal and abnormal patterns. 

2 Support Vector Domain Description 

The SVDD is designed to characterize the support of the unknown distribution function of an 

input target class by computing a set of contours that rejects a controlled proportion p of pat­

terns. These contours provide an estimate of a specific level set associated with the probability 

1 - p of the distribution function and allow unseen patterns to be classified as normal or abnor­

mal. 

2.1 Optimization problem 

Given a set of N patterns xcl, where IcK^ and a nonlinear mapping <j> from X to some 

high-dimensional nonlinear feature space <1>, we seek a hypersphere of center a and minimal 

radius R that encloses most data points and reject a proportion p of the less representative pat­

terns: 

mm 
Ji 2 ,S / ,a  

s.t. 

in R2 +C^Tiei 

- a||2 <R2 + ei 
(1) 

£,.>0 

Slack variables si are added to the constraints to allow soft boundaries, and $ denotes the 

coordinate of x( in the feature space. Points associated withf. >0 are excluded from the 

contours and penalized by a regularization constant C which controls the proportion p of points 

lying outside the hypersphere. 
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c= 
p-N 

(2) 

The optimization problem can be converted into its primal Lagrangian form: 

Lp K-.) = *! + C2>,-Z«, («' +e, -||«>, - 4 )-£ fre, 
i i / (3) 

si. a,. >0, Pi > 0 

where a, > 0 and >0,. > 0 are Lagrange multipliers enforcing both constraints. The Karush-Kuhn-

Tucker (KKT) optimality conditions [6] are obtained by setting to zero the partial derivatives of 

(3) with respect to R and et, and are expressed as follows: 

a, -C + $ =0 

Pfii = o 

I>/=1 

«/(*2+*,-lk(x')HI2)=0 

It follows from this last equation that the image of a point xj with ei > 0 and a,. > 0 lies outside 

the feature-space sphere. By substituting (4) into the primal Lagrangian [3], we derive the Wolfe 

dual form: 

• J 

L
d = h 

i i 

Z«/=1 

I 
0  <a . .<C 

s J .  
(5) 

The dot product $ is replaced by an appropriate Mercer [7] kernel k ( x t , x j ) ,  referred to as 

kjj for notation simplicity, overcoming the explicit reference to of possible infinite dimen­

sion. The Gaussian kernel is used in this context; specificity of the cluster contours with a single 
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parameter a controlling the Gaussian kernel bandwidth. 

Ki= e <6> 

The Lagrangian dual (5) is simplified by replacing the dot products <j>t • by the Gaussian kernel 

lr * 
i%j • 

4 = £®Ai "XZaMy 
' ' j 

SJt. 
2>' = 1 (7) 

0 < a, < C 

2.2 Decision Function 

The center a of the hypersphere is described as a linear combination of the feature-space vectors 

*,-• 

(8) 
i 

The square Euclidian distance from an image 4>, of xt to the sphere center a is defined as: 

r2(*,Hk-all2 

= + X l l a . a A j  
i i j 

(9) 

The decision surface is defined as the implicit surface {jr:d(jr) = Oj of the function d ( x )  de­

scribed below, and evaluates the relative position from the image to the surface of the 

hypersphere. The function d{x) classifies a point x inside the contours if </(*) < 0, on its sur­

face if rf(x) = 0 and outside otherwise. 
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d ( x i )  =  O s - O i  where 0, = YjaiKj 

° s  =  2 ( ° i + ° j )  w h e r e  

i  4- arg min O k  s J .  a k < C  
k 

j  < —  arg max O k  s J .  a k >  0 
k 

(10) 

3 Effect of hyperparameters and prevention of 

overfttting 

3.1 Gaussian kernel bandwidth o and rejection rate p 

The Gaussian kernel bandwidth a e R+ controls the complexity of the decision surface generat­

ed by a trained SVDD model ©; low values of a produces high contours complexity and high 

values result in low complexity. 

Figures la, lb and lc (from left to right) - Decision surfaces resulting from the choice of 
different Gaussien kernel bandwidths and a fixed rejection rate p = 10% (Fig. la) 
a - 0.005, (Fig. lb) a = 0.1, (Fig. lc) a = 1.0. 

It is clear that the choice of an infinitesimal value of <x results in the contours fragmenting in­

to N individual disjoint contours, each one enclosing an individual pattern of the dataset. Con­

versely, choosing an arbitrary large bandwidth produces a single connected contour of round 

shape enclosing training patterns. Intuitively, an appropriate choice of a produces a compact 

representation as observed in Figure 1 (b) of the target class support which excludes any super­
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fluous space, while avoiding overfitting (Figure 1 (a)) and over simplistic representation (Figure 

1 (c)). Section 4 presents an overfitting index allowing the identification of parameters producing 

S VDD models exhibiting symptoms of overfitting. 

Now let us look at the rejection rate p e R+ which controls the level of tolerance of a SVDD 

model to outliers as it constrains the percentage of points rejected by the decision surface, and 

bounds the Lagrange multipliers a as 0 <, a < C with C = 1/ pN. Figure 2 (a), (b) and (c) illus­

trate the effect of the rejection ratep, respectively set to 0.2%, 25% and 50% for a constant ker­

nel bandwidth a = 0.1. 

Figures 2a, 2b and 2c (from left to right) - Decision surfaces resulting from the choice of 
different rejection rates and a fixed kernel bandwidth <7 = 0.1 (Fig. 2a) p = 0.2%, (Fig. 
2b) p = 25%, (Fig. 2c) p = 50%. 

To the extreme, the choice of the minimal rejection rate p = -£• would result in contours en­

closing N-2 training points and only two points lying on their surface acting as active support 

vectors. The decision surface then would provide an estimate of the distribution support defined 

by only two patterns and assumes the complete absence of noise in the training set. On the other 

hand, the choice of a maximal rejection rate p = M^L would result in the exclusion of N -\ data 

points, where the SVDD distribution support estimate would converge toward a Parzen window 

estimator, approximating the underlying density distribution of the training set as a weighted sum 

of N-I Gaussian kernel functions of bandwidth (reach centered on each individual point 

x < = X .  
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3.2 Prevention of overfitting 

Overfitting is a crucial concept in machine learning,. It characterizes a learning method tendency 

to adapt itself to random features of a dataset instead of its underlying structure and is a symptom 

of an excessive model complexity in respect to the inner specificity of the dataset. While 

overfitting typically occurs for smaller values of a in the SVDD context, the risk of overfitting 

is also augmented by the choice of a too low rejection rate p, increasing the sensibility of the 

model to noise. 

As supported by Figures 1 (a), (b) and (c), overfitting is observed by training a sequence of 

SVDD models on a same dataset while increasing the complexity (decreasing a ) for a constant 

p. At some value of a, the model yields a significant and sudden rise in the number of support 

vectors lying precisely on the contour surface. This effect is symptomatic of an overly complex 

representation, where the contours are forced to pass through too many data points of the dataset. 

Given that the number of support vectors is directly related to the model complexity, we de­

fine and make use of the following two concepts, /^(G) and pobs (©), respectively as the ex­

pected and observed proportions of support vectors of a trained model © as 

Pexp (©) = /> 

P o b , ( ® ) = i  Z  l ( a >  > 0 )  ( U )  

M—N 

The Sequential Minimal Optimization (SMO) algorithm [8] that is used for training the 

SVDD model initializes Lagrange multipliers such that the expected proportion pmp of support 

vectors equals p' = max (-£•,/?)), with the proportion of support vectors pobs remaining 

approximately constant ( p^ ~ p^ ) throughout the optimization process. 

A spontaneous increase in the number of S V lying exactly on the decision surface results in an 
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increase in the gap between p^ (©) and p^ (©), and provides a means of detecting symptoms 

of overfitting in a SVDD model. This indicator can be formalized by defining A(O) as the dif­

ference between the expected and observed proportions of support vectors /?CTp (©) and p^ (©). 

A high value of A(©) will then allow to detect symptoms of overfitting. 

A(®)=«*(®)-p=,(e) 

02) 
i«l N 

A(©) > Tofu => © overfits 

A (©) < TOFIT => © is admissible 

Equation (12) provides a simple and practical criterion which allows detecting and preventing 

the selection of parameters leading to overfitting in a SVDD model ©. In fact, a model © can 

be considered at higher risk of overfitting if A(©) > rofit for a typically small value of xofit = 1%. 

The SVDD models displayed in Figures 1 (a) to (c) exhibit values of A(©) of 27%, 0.5% and 

0.4%, for kernel bandwidth values of 0.005, 0.1 and 1.0. This suggests that only the model in (a) 

with a small bandwidth suffers from overfitting. 

Table 1 states the asymptotic relation between A(©) and a; an infinitesimally small value of 

a leads to a maximal value of A(©) interpreted as a higher risk of overfitting, a large value of 

a leads to a low risk of overfitting. 

Table 1 - Asymptotic limits of A(©) in relation to a. 

Value of Limit value of A 

<7 —> 0 limA(©) = l-/> 

a—>oo limA(©) = 1{r-p 
(T-+00 

This criterion is used to constrain the admissible hyperparameters search space and thereby 

minimize the computational cost of the parameter selection process presented in the next sec­
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tions. Figure 3 illustrates the typical relation between A(©) and <x for a fixed rejection rate p 

and is calculated on a synthetic dataset using a tolerance factor xofit = 1%. It illustrates the typical 

trend of A(0) over <x, showing an exponential decay in the overfitting domain 

Voting 6 and stabilizing to a small value in the admissible domain e (<*<*»>°°] 

25,0* 

20.0* 

15.0* 

10.0* 

Overfitting 
domain of o 

Admissible 
domain ofo 

1 r 

llth.. p p p r f * f p f p * 

i g S M S M S a a B S S S I M I H s i S M *  
d d d d o d o d d d d d o d d d o o o o o d d d  

a 

Figure 3 - Relation between A(®) and a. 

Figure 4 extends this demonstration to both parameters (cr,p) and displays the contour map 

associated with A(©) in relation to (cr,p), calculated on the same dataset used to generate Fig­

ure 3. It reaffirms that the risk of overfitting is higher for small values of a and p. The admis­

sible hyperparameters space is represented by the blue area of the contour map, while the 

overfitting parameter space is identified as the remaining portion of the map. 

As well as being simple from an implementation stand-point, the proposed overfitting criteri­

on makes it possible to reduce dramatically the hyperparameters search space and does not re­

quire any prior information about the datasets such as its size, dimension and inner complexity, 

and is independent from the kernel function used. 
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Figure 4 - Relation between A(©) function and (cr,p). 

Finally, we adopted a data driven approach to automatically determine the threshold TOFIT. As 

detailed in Section 4.3, the threshold rofit is calculated as the upper bound of a 97.5% confidence 

interval of the values of A (©) evaluated while performing a grid-search on the parameter space 

(defined in Section 4.3). Using the estimated average //A and standard deviation crA of A(©), 

we have 

= M K + z for Z = 1.96 (13) 

Eq. (13) provides a simple way to reject 2.5% of hyperparameters leading to the highest risk of 

overfitting. This approach in turn prevents rare cases where all combinations of hyperparameters 

are rejected due to an overly restrictive choice of rofit. 

The following section describes our strategy for selecting SVDD hyperparameters within the 

a d m i s s i b l e  s e a r c h  s p a c e  b o u n d e d  b y  A ( e )  <  x o f H .  

4 Characterization of SVDD contours 

We characterize the effects of parameter variations on SVDD contours that will set ground to our 
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strategy for identifying a SVDD contour configuration that provides accurate estimates of the 

distribution supports of any target classes for novelty detection. 

4.1 Classification of steady and transient states 

A model © trained on any dataset with an infinitesimal a will produce a set of distinct con­

tours each one enclosing a distinct data point. Increasing in small steps the kernel bandwidth <x 

to any arbitrary large value will result in a sequence of fusions of adjacent contours merging to­

gether, which in turn will combine to ultimately form a single connected contour grouping all of 

data points into a single cluster. 

This sequence of contours fusions reduces the overall number and complexity of resulting 

contours and is analogous to small water drops merging together until forming a single larger 

drop. This phenomenon can be interpreted as a series of transformations between steady states 

(single drops) separated by transient states (drops merging together). We call steady state any 

contour configurations which exhibits a local stability in their number and shape in regard to any 

small variation of both parameters (cr,p). We use the term transient state to characterize con­

tour configuration that exhibits local distortions (fusion) for a small variation of parameters. 

Transition between adjacent steady states occurs when two or more distinct contours merge to­

gether, resulting in a less compact grouping. 

Figures 5 (a) to (e) illustrate the typical transformation of a SVDD decision surface trained 

with increasing values of <xon a dataset composed of two distinct round-shaped clusters of 

points. Decreasing the complexity by increasing a from crs = 0.2 to a$i = 0.7 produces the fu­

sion of the two groupings S", into the new, simpler and less compact steady state S2, separated 

by three transient states that we refer to as attraction , junction J, and consolidation C, 

states. 
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S, - STEADY A, - ATTRAC- J, - JUNCTION C, - CONSOLI- S2 - STEADY 

cr. =0.2 TION cr, =0.3 DATION cr<. =0.7 
j, S2 

â  =0.25 crc =0.35 

Figures 5 (a to e) (from left to right) - Steady states 5,, S 2  and transient states A i ,  J,, C, 

resulting from increasing values of a. 

We observe an attraction state Ax when increasing the kernel bandwidth from <rs = 0.2 to 

<t4 = 0.25, producing a local attraction between the two adjacent contours of the two distinct 

contours seen at 5,, eventually leading to the contact of the two disconnected contours at 

cTjt = 0.3 identified as a junction state Jx. This state is then followed by a consolidation state 

where the newly connected contours consolidate into a new steady state S2 at aSi = 0.7, display­

ing a single elliptical contour of reduced complexity. 

We now define the function Q(0) that allows identifying each of distinguishing feature state. 

This function measures the average distance from points to the decision surface. 

0 (©)  =  £Z  d(x t )  =  O s ( e ) -O(0 )  

^ (14) 
with 0 (e )= - j t r ]T o i  

l 

As observed in Figures 5 (a) and (b), transiting from a steady state 5, to a junction state Jx 

produces a local inflation of the contours attracting to each other at \, resulting in the decrease 

of the values of d (x )  of all points near the contour. Conversely, a consolidation state C, follow-
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ing any contact of distinct contours at J t  , causes a local increase in d (x )  in the locality of the 

inflating contour until a new steady state S2 of reduced complexity is reached. In a new steady 

state, the values of d(x) stabilize temporarily until the system transits into another sequence of 

transient states. These transformations produce some variations in the monotonicity of the func­

tion Q(0), which can be measured to identify each specific state resulting from the choice of 

any parameters ( a r , p )  •  As summarized in Table 2, the classification of any state can be achieved 

based on the signs of the first and second derivatives of Q(©). 

Table 2 - Effects of stready and transient states on Q(@) and first and second derivatives. 

(5) STEADY : ( F )  FUSION (J)JUNCTION (C) CONSOLIDATION 

Q(©) max decreasing min increasing 

d / d a Q. { @)  0 <0 0 >0 

d 2 l d <r 2 a {@)  <0 n/a >0 n/a 

Figure 6 illustrate the typical behavior of the function Q(©) calculated on the dataset illus­

trated in Figures 5 (a) to (e). The function Q(©) shows three local maxima each identifying a 

distinct steady state, identifying in turn different SVDD representations of the same dataset with 

different levels of complexity and numbers of clusters. 

The steady states S 0 ,  S x ,  S 2  and junction states J0, J x  are respectively identified as local 

maxima and minima of Q(@); the fusion and consolidation states F0, F{ and C0, C, are cor­

respondingly identified as functionally decreasing and increasing sections of Q(©). The left-

hand red portion of function Q(©) identifies values cr < cr^ associated with a higher risk of 

overfitting according to A(©). The right-hand gray section identifies the over-generalizing do­

main a > , lower bounded by the value am associated to the least complex steady state. 

Any model trained with a > will produce a contour configuration similar to the one 

achieved at a > a^ with identical patterns groupings and numbers of clusters. The admissible 
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domain cre(crmin,<Tmilx] is represented as the middle blue section bounded between the 

overfitting and over-generalizing domains of a. 

Figure 6 - Characterization of each state of the function Q(e) in relation to a with identi­

fication of the overfitting, admissible and over-generalizing values of a. 

We restrict the set of admissible contours configurations to the subset of steady states identifi­

able within the admissible domain. We identify the best configuration as the one with highest 

complexity (lowest a), as it will provide the most compact representation of the data support 

excluding any superfluous space, and will distinguish accurately all natural grouping without 

suffering from overfitting. 

Until now, we centered our demonstration around the identification of the best value of a us­

ing a fixed rejection rate p to ease the definition of the key concepts of this method. The param­

eter selection method we propose is a generalization of these concepts to both parameters (<r,p) 

, transforming the 2D representation of Q(e) into the following 3D representation of the same 

function shown below by varying (<r,p) simultaneously. 

The set of parameters (<r ,p )  are finally selected as the one associated to the local maxima of 

O(0) located within the admissible domain of (cr,p) and with minimal value of a. 
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This method allows identifying adequate hyperparameters independently of the dataset size, 

dimension and inner structure, does not require any expert knowledge relative to the dataset, and 

prevents actively overfitting in the selected solution. The prevalence given to the steady state 

with minimal a derives from the fact that it will guarantee producing compact SVDD contours 

with minimal inner surface, which in turn ensures the minimal misclassification rate on negative 

instances of the target class in comparison to all other admissible steady states. 

4.2 Improving the robustness on noisy patterns 

The goal in this section is to improve the robustness of the measure Q(©) in presence of noise 

in the dataset, which have the effect of flattening the function Q(0) and make more difficult the 

detection of local maxima distinguishing steady states. 

Figure 7 - 3D representation of fi(0) in relation to hyperparameters (<r,p) 

The variations in monotonicity of £2(0) result primarily from local changes in values of 

d(or) for points x located in the zone where the contours shape change during transient states. 

We observed that a high proportion of noise in the training set has the effect of flattening the 
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ridges and valleys of the function Q(0) and may prevent in some cases from detecting some 

steady states. The sensitivity of Q(0) to noise results essentially from the fact that it computes 

the arithmetic mean of J (jc) over all the observations of the dataset and attributes equal weights 

to normal and noisy patterns which alter the monotonicity of Q(@). We developed a strategy to 

reduce the impact of these noisy patterns on (14), by weighting the contribution of each point 

according to their relative distance to the surface contour, reducing the weights of noisy patterns 

located far away from the natural grouping and their enclosing contours. 

As variations in the monotonicity of Q(0) are a direct consequence of local deviations of 

*/(x) in the neighborhood of the contours, we reduce the sensitivity of Q(©) to outliers by as­

signing a greater importance to variations of d(x) within a virtual margin centered around the 

contours and lesser weights to distant observations, transforming the function Q(©) into n(©). 

The intuition underlying the design of the weighted average relies on the hypothesis that points 

sufficiently distant from the SVDD contours contain a negligible amount of information that is 

relevant for assessing transition of states and thus should have an insignificant effect on the 

monotonicity of Il(©). 

/ x Xd{ x , )  
n(0)=^'  l , ;  \  (15) 

The contours are defined as the isosurface of d (x )  in primal space describing the surface of 

the enclosing hypersphere of radius Os centered on a described in feature space. We thus define 

the virtual margin as two hyperspheres each centered on a, with radii set to d+=b andrf_ = -b, 

enclosing any data point x 

The choice of b is critical, as it controls the margin thickness 2b that is responsible for the 

robustness of our method to noise, as it will be used to assign positive or null weights co{x) to 
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each point x . Our weighting scheme requires that o ) (x )  >  0 for points enclosed within the mar­

g in  ( |d ( j c ) |  <  b  )  and  w(x )  =  0  fo r  po in t s  e xc lude d  f rom t he  marg in  ( |d ( x ) |  >b ) .  

Before providing further details on the maigin thickness calculation, we will characterize do­

main characteristics of Os, O(x) and then </(*). We will then use this information to apply 

some transformations to the margin definition to make its thickness invariant to variations of pa­

rameters values (&,p) • In other words, we want the margin thickness to remain of constant size 

for changing hyperparameters values. 

Based on the domain characteristics of the Lagrange multipliers a and Gaussian kernel k, 

the functionO(jt,) = ^ctjk^x^xj} can be bounded according to (16). 

The domain of O(x)  is thus independent of the value of cr but is dependant of p .  The 

hypersphere radius Os detailed in (10) is the distance from a virtual point lying on the isosurface 

ofc?(jt) to the center a, allowing to define the domain of 03 as follows: 

j 

0 <a,<C = ̂  
(16) 

0 ̂  Os < — with 
P 

(17) 

Based on (16) and (17), the domain of d{ x )  is consequently bounded as: 

--<</(*)<- with d ( x )  =  0 , - 0 ( x )  
P P 

(18) 
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The decision function values </(x) varies within the interval • We now define d ' (x )  

as the transformation of d [ x )  scaled by a factor p , now domain invariant (J'(oc)e[-l,l]) in 

relation to the parameters values. We will use this new definition of relative distance to the 

hypersphere surface to define our parameter invariant margin. Note that the sign of d'(x) allows 

classifying a point as within, outside or on the decision surface similarly to^(x) . 

We define the thickness parameters b  using the new domain invariant function d ' [x )  as the 

average value of d'(x), for any point enclosed within the contour d'{x) = 0. We will ultimately 

use this definition to calculate the new invariant margin. 

We choose b as the average distance to contours */'(*) from points located within the contours 

d'(jc) < 0, as it defines a dynamic reference distance that adjusts to any particular problem. The 

negative sign forces b to be positive. 

Finally, we provide a formal definition of o> ( x )  based on the newly defined invariant margin, 

which assigns positive weights to points x located within the margin with weight value equal to 

one on the decision surface (t/'(jt) = 0) , and decreasing toward zero the closer it gets to the 

margin boundaries (|d'(jc)| = b). All points excluded from the margin are assigned zero weights. 

d ' (x )  =  p (O t  — <?(*)) with — 1^ </'(.*) <1 (19) 

b = - kH d \ x )  
X (20) 

with x e Xin, Njn= \Xin\ s.t. d'(x)<0 

co(x )  = max 0,1 
\ 

/ 

(21) 
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p = 30% Pnoise = 25% p = 55% = 50% p = 80% pntate = 75% 

Figures 8a, 8b and 8c (from left to right) - Magnitude of weights in relation to increasing 
proportion of noise Pnoise . Red points identify weights such that o(jc) = 0 and blue points 

ftj(x) > 0. All models are trained with or = 0.1. 

Figures 8 (a) to (c) illustrate this weighting strategy by displaying the magnitude of individual 

weights CD(X) assigned to each point x of a dataset. Blue data points are associated with posi­

tive weights <y(x) >0 and red data points with zero weights. We generated the synthetic dataset 

and then applied an additive Gaussian noise of normal distribution N(// = x,cr = 0.4) centered 

on each point to a varying proportion Pnoise of random observations. 

As displayed in Figure 8, the weighting function (21) successfully assigns zero weights to 

noisy patterns and positive weights to normal observations located within the two clusters, even 

for high proportion of noise. The weighting scheme dramatically mitigates the influence of outli­

ers in the dataset and allows the manifestation of local maxima in function n(0) that is crucial 

for detecting steady states. 

Note that on artificially generated datasets (not including artificial noise), the 3D representa­

tions of functions Q(0) and 11(0) (in respect to both parameters) exhibit the same local maxi­

ma at the same parameters coordinates. When increasing the level of artificial noise, some key 

89 



local maxima from function Q(@) disappear while remaining clearly detectable in function 

n(0), confirming its improved robustness to noise. 

4.3 Selection of parameters 

This section describes our actual strategy for selecting SVDD hyperparameters, based on the 

steady state concepts and function 11(0) presented earlier. 

The proposed algorithm starts with a normalization step of the input dataset, centering X on 

its median Hy(X) and scaling it in such a way that the high proportion zd «95% of points 

x e X  are bounded within a constant interval [-1,1]. This transformation (described in [22]) 

transforms X into X' and makes it invariant to translation and affine scaling, and most im­

portantly reduces the upper bound search space of parameter cr as a result of the constrained 

sca l i ng  o f  X ' .  

X'<-(X  C)  with 
c  = t iy2{X) 

* (22) 
d s. t .  PrQX-c|<<f] 

The second step evaluates the values of n(©) for different combinations of parameters with­

in the intervals a e [0.005,0.5] and p e [2.5%, 50%] and such as A(©) < vofil. Note that we choose 

as lower and upper bound of a values leading to extremely highly complex (cr = 0.005) and 

simple (cr = 0.5) contours that allows adapting to the inner complexity of most datasets encoun­

tered. 

The grid of parameters explored has n constant step over p, and na dynamic steps over a. 

Each combination of parameters (crjtpj) on the grid are calculated as 
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**1 — ^min +X7r^r(am" ~ Cr",in ^ 

Pj /^min j nf (/'max /'min) (23) 

T >/M 
With Api.=^(/?m„-pmJ <*«</ A<T,- = y  ̂ ^(cTmix-^) 

The use of dynamic increments on <r, increases the grid resolution for smaller values of a 

and produces increasing steps for larger values of a, thereby allowing exploring more variations 

of complex configurations and improving the ability to identify complex cluster configurations. 

The values of n (©) are stored in a matrix Mn of size na*np. Figure 7 is a 3D representation of 

a typical matrix M u .  

The third step identifies the maximal value of every row of Mn (i, ) and stores the results into 

a table Rn of size na. The table allows a simpler interpretation that Mn (/', ) as it allow display­

ing in 2D all local maxima allowing in turn to identify steady states of varying complexity. This 

process produces a curve analogous to a maximal energy path over n(0) passing through each 

of the local maxima. 

Also note that each combination of parameter is tested for overfitting using A(©) and all 

steady states associated to inadmissible parameters are discarded for the selection process (repre­

sented in red in Figure 9). All admissible sets of parameters associated with their respective 

steady states (identified with green dots in Figure 9) are then sorted in increasing order according 

to their individual a. The set of parameters with minimum a is then retained as the winning 

one producing the most compact representation of the input dataset. 
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Figure 9 - Visualisation of /?n as a simplified representation of Mn in relation to 

hyperparameters (er,p). Note that V and P stand for a and p. 

Analysis of the Figure 9 is very straightforward as it allows us to visualize the simultaneous 

effects of both hyperparameters (a,p) on function n(0) and to identify all admissible repre­

sentations of the target class, independently of the nature of the input target class. The admissible 

hyperparameters space is greatly reduced in the case presented above, to three combinations of 

parameters producing representations of different complexity. This yields to a completely auto­

matic selection strategy which is entirely data-driven and does not rely on any input parameters 

aside from the input dataset. 

5 Experiments and results 

We evaluate in this section the capacity of the proposed method to select parameters that produce 

SVDD models that distinguishes accurately normal patterns from abnormal ones. We also meas­

ure the impact of dataset sizes, dimensions, varying complexities and degrees of noise on the ac­

curacy of the proposed method. 

Section 5.1 looks at the impact of outliers in the dataset on the accuracy of our method. We 

developed a method to allow quantifying the impact of varying proportions of noise on the accu­

racy of models trained with our method to discriminate normal from abnormal patterns. This 
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method seeks to determining the critical proportion of noise at which our method fails to esti­

mate the support of the dataset, allowing in turn to quantify its robustness. Section 5.2 evaluates 

the accuracy of the proposed method on real-world datasets of varying sizes and dimensions. 

5.1 Experiments on noisy synthetic datasets 

To allow generating 2D datasets composed of two classes of patterns, normal and abnormal ob­

servations, we used bitmap images to describe the domains of these two mutually exclusive clas­

ses. This representation provides an exact description of the distribution support of the target 

class and allows creating and controlling the proportion of outliers to be excluded from the 

S VDD contours. This results in the creation of positive and negative instances of the target class, 

and allows evaluating with precision the ability generalization properties of our method at pro­

ducing compact contours enclosing the theoretical domain of the normal patterns while exclud­

ing accurately the abnormal ones. 

5.1.1 Generation of synthetic datasets 

This allows generating 2D datasets of arbitrary size and shape complexity based on the discrete 

uniform probability distribution functions described by the white and black pixels in a square 

monochrome bitmap image file. This probability distribution representation has the advantage of 

providing an intuitive and accurate representation of both normal and the outlier domains relative 

to each dataset analyzed. 

Each white and black pixel coordinate are converted into a data point and respectively added 

to and . The 2D coordinates of each points are extracted as the pixel coordinates in the 

bitmap matrix. All patterns in Xin and Xoul are then centered on the median (Xin) and each 

coordinate scaled in such a way that a proportion r d  « 95% of points x e X i n  are bounded within 

an interval [-1,1]. The scaling is thus distinct for each coordinate and is such as 5, for 

Pr[|^« (0-^ (l))| < s, J «td for the coordinate 1 and the same principle is applied for the 

second  coo r d ina t e .  Th i s  no rma l i za t i on  p roce s s  t r an s fo rms  X i n  a nd  X^ i n to  X^ a nd  X o u l .  
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Each of the two normal and abnormal sets X'in and are then partitioned into a training and a 

validation set <= X, andZ^", <= • 

e y v  .  -  v a  : V  '  
,«£•*' .... *'#& 

.v'v: 

* SvoOAg# 

Figures 10 (a to d) (from left to right) - (Fig. 10a) Bitmap file representing the distribu­
tions associated with the normal and abnormal distribution supports. (Fig. 10b) Datasets 
Xin and X^ extracted based on the bitmap file. (Fig. 10c and lOd) Resulting normal and 

abnormal samples X*ai" and X"0 
r train 
L out 

5.1.2 Measuring the impact of noise 

Using the process presented in Section 5.1.1, two datasets X'™m and X'*" of normal patterns and 

a dataset X^ of abnormal observations are sampled from Xin and X'^. The additive noise is 

then applied to a proportion of randomly sampled points x e X™", such as x' = x + xnoUe 

with Xnoise ~ N 

/ 
"0" <y . 

noise 0 \ 

V 0 
9 

0 CT • noise _ / 

and with controlling the amplitude of the perturba­

tions. 

The artificial perturbations illustrated in Figure 11 (a), serves to assess the impact of the pres­

ence of noise or outliers in the training set X^am on the ability of our method to select parame­
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ters (cr^yp^) that produce a SVDD model &auto that estimates accurately the support of X^, 

and distinguish accurately normal patterns X*" from outliers X^f. 

Figures 11 (a to c) (from left to right): (Fig. 1 la) Dataset X*am with a proportion of noise 

Pnoae =15% with ^noise = 0-4- (Fig. lib) SVDD contours resulting from parameters se­

lected by our method. (Fig. 11c) Validation of the SVDD contours on datasets X'"' and 
xTul and red data points). 

The type-I and type-II error rates Ein and on validation sets X'*" and X'^' of sizes Nl 

and N™ are calculated as 

xeX" (25) 
E«.=-fe Z !(<'(»)«>) 

We define E as the average of E.m and Ea 

E=
Ein+Eo* (26) 

We consider a set of parameters Pa*o) as adequate if it leads to a compact set of SVDD 

contours enclosing most data points x e X^' while excluding most abnormal values x e X™, 

equivalent to producing contours that converge toward the theoretical distribution support of X'in 
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. In that regard, we view as optimal the set of parameters minimizing simultaneously the average 

of Ein and . The quality of every set of parameters {p,
ayto,pmto ) generated by our selection 

method is measured by comparing its resulting E to the global minimum value of E at 

5.1.3 Experimental results 

The probability distributions of the 17 synthetic datasets analyzed in this section are represented 

by the bitmap files illustrated in Figure 12. Each datasets were designed to reproduce diverse 

shape of different level of complexity, distinct groupings of points of varying numbers, relative 

sizes and proximity, and complex features such as concavity (hole) and occlusions. 

Figure 15 - Bitmap representations of the distributions of the synthetic datasets 1 to 17. 

The results presented in this section compare values of E of SVDD models 0^ trained with 

i^auio'Pauto) selected according to our parameter selection method, to the minimal achievable 

values of E at Table 3 allows quantifying the sensibility of our method to noise, by 

selecting parameters on datasets X£"n subjected to varying level of noise ranging from 

0% to 30%, with fixed training set sizes N*j"" =1,000, amplitude of noise =0.4 and 

N'"' = N™ = 10,000. Note that every results presented in this section are calculated by perform-

{^opfPopt) for all possible hyperparameters. 
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ing a 40-fold cross-validation on experimental results. 
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Table 3 

Pmm 

Comparison of error rates E resulting from parameters (o-
Tt...PTtffi )and for varying proportions of noise 

l\J% 



Figures 13 (a) and (b) compare the average error rates E over all 17 datasets (represented in 

Table 3) with parameters (crand for increasing proportions of noise pmise. 
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Ui 
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4% • 
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Pneia 

20% 30% 5* 20% 25% os 0% 

Figures 13a and 13b - Average error rates E for all 17 synthetic datasets for (left) 

and ®opt (right). Dotted lines represent standard deviations. 

As illustrated in Figure 13 (b), the averaged minimal error achieved by &opt grows linearly ( 

R2 = 0.9798) with the proportion of noise added to the training sets X*am. In Figure 13 (a), the 

SVDD models &aul0 exhibits a moderate increase in errors increasing linearly (R2 = 0.9925) with 

the proportion of noise. Standard deviations in Figure 13 (a) remain small and constant for 

Pnoise - 20°/° > and increase significantly past this point, suggesting that our method's robustness 

tends to deteriorate for > 20%. 

Figure 13 (b) also reveals that for a clean training set X*"in where =0%, &opt still ex­

hibits an error rate of 2.0%, indicating that ®opl is unable to achieve an ideal classification rate 

for any combination of hyperparameters. This property is a consequence from the use of a single 

complexity parameter cr the whole dataset which acts as a trade-off over grouping of different 

complexity (as observed in [3]). 

Figures 14 (a) and (b) summarize the average values of parameters selected ac­
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cording to our strategy and compared to (0^,/?^). As observed in Figure 14 (a), for 

Pm,i» - 20%» our selection strategy produces slightly overly complex contours, resulting from 

underestimated values of a and overestimated rejection rates p. The overestimated a and un­

derestimated rejection rates p for > 20% reflects the critical proportion of noise where our 

selection method become less efficient at estimating accurately the support of the noisy training 

set. 

0.300 

0.200 

0.150 

0.050 

0.000 
0 OM 0.1 0.15 0.2 0.25 03 

• auto 0.105 0.125 0.150 0.174 0.220 0.281 0.355 

•opt 0.171 0.208 0.210 0.227 0.230 0.242 0.249 

ok 
ok 5k 10k 15% 20* 25* 30x 

• auto 0.059 0.126 0.182 0.224 0.243 0.246 0.216 

• oft 0.025 0.062 0.100 0.125 0.153 0.176 0.200 

Figures 14a and 14b - Average SVDD hyperparameters {°auto > Pauto) ('e^) 

(vv)(right)-

5.2 Real-world datasets 

This section presents results on real-world benchmark datasets of varying sizes and dimensions. 

We compare the accuracy of SVDD models ®auto and ©^trained with (cr^,/?^) and 

{(Jopf Popt)to the SPSS Clementine 12.01 proprietary anomaly detection algorithm, referred to as 

ANOM. The SPSS anomaly detection algorithm is based on the SPSS proprietary TwoStep Clus­

ter algorithm, which first performs a clustering process on the input dataset with the TwoStep 

method, then classifies all data points as normal or abnormal based on their respective cluster 

distance. Our choice of this algorithm for comparison results from the fact that, from our 

knowledge, it is the only other anomaly detection designed to perform anomaly detection without 

1 SPSS Clementine 12.0 is widely established software package, developed by SPSS Inc., which imple­
ments state-of-the-art algorithms. 
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relying on input parameters. 

Experiments were performed on 10 classification datasets, each dataset being composed of 

two classes of patterns referred as +1 and -1. We used positive instances of each datasets as 

normal observations to train each algorithm, and evaluate the accuracy of each algorithm at iden­

tifying positive and negative instances of the class. We repeated this process on each class of 

each datasets, yielding to the evaluation of 20 datasets of dimensions varying from 2D to 60D, 

and sizes ranging from 10 to 3,703 observations. 

Table 4 - Comparison of error rates E on 20 benchmark datasets. 

BUM |. i f • W- I 
SR orr AUTO P^SIB 

banana(+1) 2376 2 16.2% 22.2% 24.6% 

breast cancer (+1) 77 9 34.296 36.1% 51% 

diabetes (+1) 268 8 33.2% 33.5% 46.5% 

flare «oiar (+1) 94 9 42.7% 42.8% 43.1% 

farman(+l) 300 20 33.6% 37.1% 50.4% 

heart (*1) 120 13 34.4% 35.7% 45.1% 

1344 60 27.4% 30.4% 14.2% 

titanic (+1) 14 3 49.2% 50.2% 58.3% 

twonorm(+l) 3703 20 24.1% 24.1% 17.2% 

«Mfgnn(tl) 1647 21 28.4% 37% 16.4% 

banana (-1) 2924 2 13.S% 13.7% 20.4% 

breast canccr(-l) 186 9 33.7% 33.9% 46.7% 

dMMatfl) 500 8 29.4% 32.3% 43.6% 

flare solar (-1) so 9 37.8% 41.4% 57.1% 

«annan(-l) 700 20 33.6% 37.3% 45% 

taattfl) 150 13 33.3% 33.7% 32.8% 

1647 60 25.1% 27.2% 52.2% 

titanic (-1) 10 3 45% 45% 41.7% 

twimmtf-ll 3697 20 14.1% 22.5% 16.7% 

waveform (-1) 3353 21 25.4% 27% 34.6% 

WFH/Wf - S&7K 3&2X 374* 
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5.2.1 Experimental results 

For each experiment on the positive classes (+1) of patterns of a dataset, datasets Xm and Xoul 

are respectively set to the classes (+1) and (-1) of pattern. Conversely, experiments on negative 

instances (-1) set and X^ to negative (-1) and positive (+1) instances of the dataset. The siz­

es of X*ain and X*" are both set to half the size of Xin , and as the size of Xoul. Experi­

mental results are summarized in Table 4. 

Average error rates E stated in Table 4 show that the SVDD models trained with pa­

rameters selected with our selection method exhibit an average mislabelling errors rate of 33.2% 

compared to the SVDD models ©opt exhibiting a classification accuracy of 30.7%, followed by 

the SPSS anomaly detection algorithm with an error rate of 37.9%. 

From an anomaly detection perspective, SVDD models trained with the proposed parameter 

selection method significantly outperform the SPSS anomaly detection algorithm in terms of 

ability to distinguish accurately normal than abnormal patterns, on real-world datasets of varying 

sizes and dimensions. 

6 Conclusion 

In this paper, we have presented a robust and unsupervised hyperparameter selection method for 

SVDD which allows an accurate novelty detection on input datasets of arbitrary size, complexity 

and dimension. The proposed method yields a highly efficient generalization of the distribution 

support on even noisy datasets and does not require negative instances of the target class to select 

adequate hyperparameters. It relies on no input parameters, automatically adapts the SVDD 

complexity and rejection rate based solely on the input dataset characteristics, and yields high 

generalization performance on all synthetic and multidimensional real-world datasets evaluated. 

As revealed through our experimentation, the proposed method outperforms the SPSS anomaly 

detection algorithm on the majority of real-world datasets analyzed. The proposed strategy offers 

automatic anomaly detection with high accuracy without necessitating expert knowledge relative 

to a specific field. Furthermore, the proposed method implements an active overfitting preven-
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tion mechanism, minimizing the risk of overgeneralization commonly encountered in most ma­

chine learning algorithms trained on noisy, high-dimensional or small-sized datasets. Future re­

search will focus on dynamic adjustment of the specificity for different regions of the domain of 

the dataset, and computational optimization of the hyperparameter selection process. 
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Conclusion 

Contributions 

Cette these doctorale presente une serie de solutions algorithmiques et fonctionnelles visant k 

simplifier l'usage des methodes « Support Vector Data Description » et « Support Vector 

Clustering » dans un contexte d'exploration non supervisee de donnees. 

Cette recherche presente des solutions efficaces a trois limitations importantes inherentes a 

ces deux methodes, notamment 1) l'absence d'algorithmes d'optimisation efficaces et de 

strategic d'apprentissage actif, permettant de resoudre la phase d'entrainement d'un SVC ou 

SVDD sur des donnees volumineuses dans un d61ai acceptable, 2) le manque de robustesse 

des methodes existantes de partitionnement des donnees en sous-groupes distincts pour SVC, 

ainsi que 3) l'absence de strategic guidant la selection d'hyperparametres controlant la 

complexity et la tolerance au bruit du modele SVDD genere. 

Un algorithme d'optimisation, F-SMO, a et6 mis au point afin de resoudre efficacement la 

phase d'entrainement d'un SVDD. F-SMO se distingue par sa capacite a completer la phase 

d'entrainement au cours d'une lecture sequentielle des donnees, avec un temps 

d'entrainement reduit de 85% par rapport k l'algorithme usuel SMO. La strat6gie 

d'apprentissage actif proposee, F-SMO-AL, constitue la premiere application d'apprentissage 

actif appliquee au SVDD. Cette strategic integre un mecanisme de selection dynamique des 

candidats les plus informatifs lors du processus d'entrainement, et permet d'entrainer un 

module SVDD sur des donnees massives en un temps dvoluant quasi lin^airement en fonction 

du nombre de donnees. Le temps de calcul de F-SMO-AL offre une reduction du temps 

d'entrainement de 92.5% par rapport k SMO pour un nombre de supports vectoriels reduit de 
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75%. Notons que cette reduction significative du nombre de supports vectoriels permet une 

classification ulterieure largement plus rapide d'observations. 

Le second objectif a men£ au d^veloppement de L-CRITICAL, un algorithme robuste et 

efficace de segmentation des donnees en groupes homog&nes pour SVC. Cet algorithme est 

base sur un principe selon lequel l'ensemble de contours generes par un SVDD peut etre 

divis£ en contours distincts en analysant les interconnections entre chacun de leurs points 

critiques, permettant ensuite d'assigner chaque point a son contour disjoint le plus proche. Un 

algorithme efficace et precis de recherche de points critiques a ete mise au point, bas£ sur 

l'algorithme Quasi-Newton jumete a un processus de fusion des trajectoires de descente 

similaires. Les experimentations effectu6es sur des ensembles de donnees artificiels et reels 

complexes ont confirme la robustesse et I'excellente vitesse d'execution de L-CRITICAL, 

significativement plus precis et rapide que les algorithmes concurrents. 

Le troisieme objectif a ete atteint par la creation d'une strategic de selection des 

hyperparam&res pour SVDD. Un critdre a ete developpe, permettant la detection et le rejet de 

param&tres induisant le ph6nom£ne de surgeneralisation (« overfitting »), ainsi qu'une 

strategic permettant d'identifier les combinaisons de parametres resultant en une 

representation juste et compacte du domaine d'un ensemble de donnees en milieux bruites. La 

strategic developpee se distingue des methodes concurrentes par sa capacite h optimiser les 

parametres k partir uniquement d'instances positives de la classe, sans requerir k un ensemble 

d'instances negatives. Tel qu'illustr£ lors d'experimentations sur des donnees artificielles et 

reelles, la strategic proposee permet une excellente capacite de discrimination entre les 

Elements normaux et atypiques, comparables aux methodes supervisees de selection 

dTiyperparametres sans dependre d'un ensemble de validation compose d'instances negatives 

de la classe cible. 
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Critique du travail 

L'algorithme F-SMO-AL integrant le mecanisme d'apprentissage actif, bien que tres efficace 

dans les experimentations decrites dans l'article 1, est adapte aux ensembles de donnees de 

volume eieve, et peut faillir k s^lectionner certains supports vectoriels essentiels sur de petits 

ensembles de donnees. Chaque etape de selection consistant a choisir parmi une vingtaine 

d'observations le candidat le plus informatif, certains candidats cruciaux peuvent 

consgquemment etre manqu6s lors d'une 6tape de selection. Notons cependant que la strategic 

d'apprentissage actif est reservee au traitement des ensembles de donnees volumineux, les 

ensembles de formats restreints pouvant etre efficacement trails par l'algorithme F-SMO. 

Par ailleurs, bien que largement plus efficace que les algorithmes concurrents, l'algorithme de 

partitionnement des donnees L-CRITICAL propose pour SVC dans l'article 2, affiche un cout 

computational dependant du nombre de supports vectoriels de la solution SVDD analysee. 

Par consequent, la vitesse d'execution de L-CRITICAL demeure proportionnelle au nombre 

de supports vectoriels de la solution et peut par consequent s'alourdir en presence d'ensembles 

d'observations volumineux. 

Finalement, tel que discute dans l'article 3, la methode d'optimisation des hyperparametres 

pour SVDD produit des modeles offiant une excellente performance de generalisation en 

presence d'ensembles de donnees bruitees. Cependant, en presence de donnees hautement 

bruitees, la methode peut faillir a gen^raliser convenablement la structure intrinseque aux 

donnees. Par ailleurs, la methode propos6e permet de s£lectioner le param£tre d'un noyau 

gaussien limits au traitement de donnees continues (reelles). L'extension de cette methode a 

l'optimisation de param&tres de differents noyaux permettant le traitement de donnees de type 

mixte (continue, ordinales, nominales) demeure un sujet ouvert de recherche. 

Travaux future de recherche 

Les extensions potentielles a cette recherche sont multiples. En premier lieu, le processus 

d'optimisation des hyperparametres pr£sente dans l'article 3 pourrait etre applique 
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recursivement sur chaque groupement homog&ne distinct, d&ecte par l'algorithme de 

partitionnement L-CRITICAL presente dans l'article 2. Une telle strategic permettrait de 

raffiner la representation globale des donnees en presence de groupements de complexites 

variables, en attribuant k chaque groupe son propre ensemble optimal d'hyperparametres. 

La seconde extension concerne 1'utilisation des m&hodes proposees dans un contexte de 

classification automatique sur des donnees multi-classes. Un modele SVDD serait optimise 

s6par6ment sur chaque classe individuelle, la classification d'une observation inconnue 

consistant k ^valuer un point pour chaque modele, resultant en une appartenance simultanee k 

plusieurs classes (analogue aux algorithmes de logique floue). Une telle approche offrirait 

deux avantages par rapport aux classificateurs SVM multi-classe actuels. Elle permettrait un 

traitement s'adaptant automatiquement aux classes d'observations sous representees, chaque 

classe etant associee a un jeu specifique d'hyperparametres. De plus, le traitement 

independant des classes resulterait en un allegement considerable du temps de calcul global 

par rapport aux SVM multi-classes actuels sur un grand nombre de classes. 

Perspective 

L'exploration de donnees a 6t£ un domaine sujet a une croissance phenomenale au cours de la 

derni^re decennie. Ce dernier a permis de resoudre des problemes complexes tels que le 

depistage de maladies genetiques, l'analyse de profils comportementaux chez les 

consommateurs, la detection de fraudes bancaires, et offrent un avantage strategique 

considerable k toute entreprise possedant des bases de donnees, permettant d'optimiser 

1'efFicacite de lews operations, de mieux cibler leur clientele, et maximiser leur profit. 

Les algorithmes et strategies presentes dans cette etude offrent des solutions pratiques a 

plusieurs limitations fondamentales inherentes aux SVM non supervises, et permettent une 

utilisation simplifi£e et plus efficace des algorithmes SVDD et SVC sur des ensembles de 

donnees reels. Nous souhaitons que les avancees presentees dans cette these puissent faciliter 

et favoriser l'utilisation des SVM non supervises dans des contextes concrets d'analyse de 

donnees. 
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