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Sommaire

La presente these decrit des travaux de recherche effectues dans le domaine des systemes tu- 

toriels intelligents (STI). Plus particulierement, elle s’interesse aux tuteurs par tra?age de mo­

dele (MTT). Les MTTs ont montre leur efficacite pour le tutorat de la resolution de taches 

bien definies. Par contre, les interventions pedagogiques qu’ils produisent doivent etre inclu- 

ses, par l’auteur du tuteur, dans le modele de la tache enseignee.

La recherche effectuee repond a cette limite en proposant des methodes et algorithmes per- 

mettant la generation automatique d’interventions pedagogiques. Une methode a ete develop- 

pee afin de permettre a la plateforme Astus de generer des indices par rapport a la prochaine 

etape en examinant le contenu du modele de la tache enseignee. De plus, un algorithme a ete 

con5 u afin de diagnostiquer les erreurs des apprenants en fonction des actions hors trace 

qu’ils commettent. Ce diagnostic permet a Astus d’offrir une retroaction par rapport aux er­

reurs sans que l’auteur du tuteur ait a explicitement modeliser les erreurs.

Cinq experimentations ont ete effectuees lors de cours enseignes au departement 

d’informatique de l’Universite de Sherbrooke afin de valider de fa9 on empirique les interven­

tions generees par Astus. Le resultat de ces experimentations montre que 1) il est possible de 

generer des indices par rapport a la prochaine etape qui sont aussi efficaces et aussi apprecies 

que ceux con^us par un enseignant et que 2) la plateforme Astus est en mesure de diagnosti­

quer un grand nombre d’actions hors trace des apprenants afin de foumir une retroaction par 

rapport aux erreurs.

Mots-cles: Systemes tutoriels intelligents, tuteurs par tra9 age de modele, interventions peda­

gogiques, indices par rapport a la prochaine etape, retroactions negatives.
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Liste des abreviations

Astus Apprentissage par systeme tutoriel de TUniversite de Sherbrooke

CTAT Cognitive tutor authoring tool

MTT Tuteur par trafage de modele (model-tracing tutor)

SQL Structured query language

STI Systeme tutoriel intelligent

TDK Cognitive tutor development kit



Introduction

Contexte

Les systemes tutoriels intelligents (STI) sont des logiciels d’aide a l’apprentissage et a 

Penseignement. 11s se caracterisent par leur capacite a foumir une retroaction pedagogique 

adaptee au contexte de Pactivite d’apprentissage et aux caracteristiques de Papprenant. Plu- 

sieurs STI sont utilises de fa9 on reguliere et avec grand succes dans des ecoles (principale- 

ment aux Etats-Unis). Parmi les STI les plus connus, on retrouve : les Cognitives Tutors [6], 

une famille de tuteurs pour 1’enseignement des mathematiques au secondaire ; Andes [19], un 

tuteur d’introduction a la physique mecanique ; et SQL-tutor [12], un tuteur pour la creation 

de requetes en langage SQL.

La presente these s’interesse particulierement aux tuteurs par tra5 age de modele (MTT). Ce 

type de tuteur se distingue des autres par le fait qu’il possede un modele executable de la ta­

che enseignee. Ce modele lui permet de generer une ou des sequences d’actions representant 

une solution valide. Les MTTs utilisent ce modele afin de suivre Petudiant pas a pas lors de 

ses activites d’apprentissages. Les MTTs sont utilises pour Penseignement de la resolution de 

taches bien definies [13], c’est-a-dire des taches pour lesquels il existe toujours une solution 

correcte ainsi qu’un algorithme permettant Patteinte de cette solution. Les Cogntives Tutors 

[6] et Andes [19] sont des exemples de MTTs tres connus.

Puisque la creation d’un MTT demande un grand nombre d’heures de travail [15], plusieurs 

chercheurs ont elabore des plateformes informatiques et des outils auteurs. Parmi celles-ci, on 

retrouve la plateforme TDK [5] et l’outil CTAT [1, 2]. L’utilisation d’une plateforme infor- 

matique ou d’un outil auteur reduit significativement les couts relies au developpement d’un 

tuteur puisque ces outils foumissent des solutions logicielles reutilisables pour plusieurs
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composantes d’un STI. Par contre, ces plateformes sont habituellement limitees dans leurs 

interventions pedagogiques aupres de Papprenant:

1. Les interventions pedagogiques qu’elles foumissent demandent l’ajout de connaissan- 

ces pedagogiques au modele de la tache enseignee. En effet, seules les retroactions 

immediates (indiquer si une action est correcte ou non) peuvent etre foumies sans 

l’ajout de telles connaissances. En plus de la retroaction immediate, les MTTs offrent 

habituellement des indices par rapport a la prochaine etape et une retroaction negative 

(« negative feedback » [17]) par rapport aux erreurs. Ces deux types d’interventions 

demandent a l’auteur d’inclure des messages d’aide dans le modele de la tache. De 

plus, la retroaction negative demande de modeliser chacune des erreurs pouvant faire 

l’objet d’une retroaction ; une tache qui necessite une analyse approfondie des diffe- 

rentes erreurs possibles.

2. Les interventions qu’elles utilisent sont peu adaptees aux besoins de Papprenant. 

Puisque le contenu des interventions pedagogiques doit etre inclus dans le modele de 

la tache, il n’est pas possible de Padapter en fonction de la situation d’apprentissage 

dans laquelle se trouve Papprenant. Pourtant, plusieurs chercheurs posent Phypothese 

que Putilisation d’interventions adaptees aux besoins de Papprenant est beneflque. 

Stellan Ohlsson propose neuf mecanismes d’apprentissages qui peuvent etre sollicites 

par les interventions pedagogiques precises afin d’ameliorer Papprentissage [17, 18]. 

Dans le meme ordre d’idee, Min Chi a montre que les decisions du tuteur concemant 

le type d’intervention a utiliser lors d’une situation precise peuvent avoir un impact 

significatif sur Papprentissage [8, 9].

Objectifs

L’hypothese du groupe de recherche Astus est qu’un systeme de representation des connais­

sances dedie a Penseignement facilite la conception de STI offrant des interventions pedago­

giques riches. Dans cet ordre d’idee, le groupe Astus a developpe une plateforme informati- 

que pour la creation de MTTs dont l’objectif est de permettre aux tuteurs d’offrir des inter­



ventions pedagogiques riches tout en conservant des couts de conception comparables aux 

plateformes similaires.

La presente these s’appuie sur les travaux du groupe Astus afin d’exploiter 1’information dis- 

ponible dans le modele de la tache enseignee dans le but de produire des interventions peda­

gogiques. Plus precisement, il s’agit de determiner comment generer automatiquement des 

indices par rapport a la prochaine etape et des retroactions negatives au sein de la plateforme 

Astus sans que l’auteur du tuteur ait a foumir de messages d’aide et a modeliser les differen- 

tes erreurs possibles. De plus, l’atteinte de cet objectif aura comme effet de reduire les efforts 

necessaires pour foumir des retroactions negatives puisqu’il ne sera plus necessaire de faire 

une analyse approfondie des erreurs possibles.

La generation automatique du contenu pedagogique permettra d’offrir des interventions qui 

peuvent plus facilement etre adaptees a des situations d’apprentissages precises. Les messa­

ges d’aide pourront facilement etre presentes dans un format approprie a la situation, ce qui 

n’est pas le cas des messages inclus dans le modele de la tache puisque ceux-ci sont ecrits 

avant de connaitre la situation d’apprentissage. Dans le cas des retroactions negatives, une 

telle adaptation permettra de foumir un message ciblant la cause precise de l’erreur plutot 

qu’un message decrivant l’erreur.

D’un point de vue informatique, ces objectifs se traduisent par la conception d’un ensemble 

d’algorithmes permettant aux tuteurs de foumir des interventions pedagogiques sans que 

l’auteur du tuteur ait explicitement inclus de messages d’aides dans le modele de la tache. 

Ces algorithmes forment une methode pour :

• Generer des sequences d’indices specifiques a la tache afin d’expliquer, de fa9 on de 

plus en plus precise, la prochaine etape que Papprenant doit realiser.
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• Automatiquement identifier les mauvaises conceptions de Papprenant a partir de ses 

actions dites hors trace1 (« off-path step ») et generer une retroaction negative par rap­

port aux erreurs qui en decoulent.

Methodologie

La methode proposee afin d’atteindre l’objectif de la these se divise en trois phases principa-

les :

1. Evaluer la pertinence du systeme de representation des connaissances d’Astus pour 

l’objectif de la these. Au cours de cette phase, les efforts et les techniques requis pour 

creer un tuteur a l’aide de la plateforme Astus ont ete compares a ceux necessaires 

pour creer un tuteur identique a l’aide de la plateforme CTAT. Les interventions pe­

dagogiques foumies par les deux plateformes ont aussi ete comparees.

2. Reduire les couts de modelisation des indices expliquant la prochaine etape. Cette 

phase s’appuie sur les resultats de la precedente afin de concevoir une methode pour 

la generation d’indices par rapport a la prochaine etape de maniere independante de la 

tache enseignee.

3. A partir de Pexpertise acquise a la phase 2, etendre les interventions pedagogiques re- 

liees aux indices en ajoutant le diagnostic des actions dites hors trace. Ce diagnostic 

permet une intervention pedagogique precise par rapport aux incomprehensions de 

Papprenant et aux erreurs qui en decoulent.

Resultats

Le principal resultat des recherches effectuees lors de la presente these est une methode per-

mettant a une plateforme pour la creation de MTTs de generer automatiquement des indices.

Cette methode a ete appliquee a la plateforme Astus et demontre qu’il est possible de conce-

1 Une action est dite « hors trace » lorsqu’elle n ’est pas prevue par le modele executable de la tache.
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voir un algorithme qui utilise les caracteristiques de cette plateforme afin de generer des in­

terventions pedagogiques. Plus precisement, cette demonstration s’effectue par 

1’implementation de la generation de deux types d’interventions : les indices par rapport a la 

prochaine etape et la retroaction negative par rapport aux erreurs. Ce resultat peut etre divise 

en contributions informatiques et empiriques.

D’un point de vue informatique, 1’implementation de la generation d’indice par rapport a la 

prochaine etape a permis de 1) identifier les caracteristiques de la representation des connais- 

sances d’Astus qui permettent la generation d’indices et de 2) concevoir des gabarits 

d’indices tirant profit de ces caracteristiques afin de generer des indices qui ont un effet bene- 

fique sur Papprentissage. La conception de la methode pour la generation de retroactions ne­

gatives a permis de definir un modele du diagnostic des erreurs a partir des actions hors trace 

des apprenants. Ce modele inclut 1) une description de comment les concepts d’impasses et 

de reparations definies par Sierra [20], une theorie expliquant les erreurs procedurales des 

apprenants, peuvent etre appliquees a la representation des connaissances d ’Astus afin 

d’automatiquement modeliser les erreurs des apprenants, et 2) un algorithme decrivant com­

ment Astus fouille son modele de la tache en reponse a une action hors trace afin de diagnos- 

tiquer les erreurs des apprenants.

D’un point de vue empirique, des experiences realisees a l’aide d’etudiants inscrits au cours 

de programmation systeme a I’Universite de Sherbrooke ont montre que les indices par rap­

port a la prochaine etape generees par Astus peuvent etre aussi efficaces et aussi apprecies 

que ceux ecrits par un enseignant. Des experiences supplementaires qui ont ete realisees a 

l’aide d’etudiants du cours de structure de donnees ont montre qu’Astus est en mesure de 

diagnostiquer un grand nombre des actions hors trace des apprenants. De plus, les donnees 

obtenues semblent indiquer que les retroactions negatives foumies par Astus ont contribue a 

l’apprentissage des etudiants. Par contre, la faible puissance statistique des donnees obtenues 

lors de cette experience fait en sorte que des experimentations supplementaires seront neces- 

saires afin de valider ce resultat.
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Structure de la these

La presente these inclut quatre documents detaillant les trois phases de la methodologie pro- 

posees. Le chapitre I est un chapitre publie dans le livre Advances in Intelligent Tutoring Sys­

tems [16]. II correspond a la premiere phase de la methodologie proposee et decrit une etude 

comparative entre l’outil auteur CTAT et la plateforme Astus. Le chapitre 2 est un article qui 

a ete soumis pour publication a la revue International Journal o f Artificial Intelligence in 

Education. Cet article presente les methodes permettant aux tuteurs produits a I’aide d’Astus 

de generer des indices par rapport a la prochaine etape (phase 2) et de diagnostiquer les ac­

tions hors trace afin de generer une retroaction negative (phase 3). Le chapitre 3 est un article 

publie au congres ITS 2012. Cet article decrit la methode utilisee pour generer des indices par 

rapport a la prochaine etape. Son contenu est similaire a Particle presente au chapitre 2, mais 

il decrit plus en detail l’analyse statistique effectuee afin de valider l’efficacite des indices 

generes par Astus (phase 2). Finalement, le chapitre 4 est un article presente au congres 

UMAP 2012. II decrit le modele elabore afin d’appliquer Sierra [20] a Astus. Cette etape a 

permis la conception de l’algorithme du diagnostic des actions hors trace (phase 3).
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Chapitre 1 

Comparaison d’Astus et CTAT

Ce chapitre decrit une etude preliminaire qui a ete effectuee dans le but d’evaluer comment 

Astus se compare aux plateformes similaires. Dans cette etude, Astus a ete comparee aux Co­

gnitive Tutors crees a l’aide de l’outil CTAT. L’objectif etait de comparer le processus de 

modelisation d’une tache avec chacune de ces plateformes et d’evaluer leur capacite a foumir 

des interventions pedagogiques.

La comparaison a ete effectuee par la modelisation d’une tache de soustraction et des erreurs 

connues pour cette tache. L’etude a montre qu’il est possible de modeliser la soustraction 

ainsi que toutes ses erreurs connues a l’aide de CTAT et Astus. Ce resultat suggere que les 

deux plateformes ont une puissance de modelisation comparable. Par contre, la plateforme 

Astus a montre un avantage en ce qui conceme les interventions pedagogiques qu’elle peut 

foumir. Cet avantage provient principalement du systeme de representation des connaissan- 

ces utilise par Astus. Le resultat de la comparaison de CTAT et Astus a done permis de justi- 

fier le choix d’Astus afin d’implementer la generation d’intervention pedagogique plutot 

qu’une autre plateforme telle que CTAT.

L’auteur (Luc Paquette) a contribue au contenu de ce chapitre de livre en concevant la me­

thodologie utilisee afin d’effectuer la comparaison. II a modelise l’ensemble des tuteurs 

CTAT et Astus en incluant la modelisation des erreurs. C’est aussi lui qui a effectue 1’analyse 

des resultats. La plateforme Astus avait deja ete confue et implementee, principalement par 

Jean-Fran?ois Lebeau. L’auteur a contribue a 75 % de la charge de travail relie a la redaction 

du chapitre. II a redige toutes les sections sauf celie decrivant la plateforme Astus (section 3).
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Authoring Problem-Solving Tutors: a Comparison 

between ASTUS and CTAT

Luc Paquette, Jean-Fransois Lebeau and Andre Mayers

Universite de Sherbrooke, Quebec, Canada

{ luc.paquette ; andre.mayers@USherbrooke.ca}

Abstract. ASTUS is an Intelligent Tutoring System (ITS) framework for prob­

lem-solving domains. In this chapter we present a study we performed to evaluate 

the strengths and weaknesses of ASTUS compared to the well-known Cognitive 

Tutor Authoring Tools (CTAT) framework. To challenge their capacity to handle 

a comprehensive model of a well-defined task, we built a multi-column subtrac­

tion tutor (model and interface) with each framework. We incorporated into the 

model various pedagogically relevant procedural errors taken from the literature, 

to see how each framework deals with complex situations where remedial help 

may be needed. We successfully encoded the model with both frameworks and 

found situations in which we consider ASTUS to surpass CTAT. Examples of 

these include: ambiguous steps, errors with multiple (possibly correct) steps, 

com-posite errors, and off-path steps. Selected scenarios in the multi-column sub­

traction domain are presented to illustrate that ASTUS can show a more sophis­

ticated behavior in these situations. ASTUS achieves this by relying on an exam­

inable hierarchical knowledge representation system and a domain-independent 

MVC-based approach to build the tutors’ interface.
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1. Introduction

Intelligent Tutoring Systems (ITS) that support a leaming-by-doing pedagogical strategy are 

usually developed in line with one of three established approaches: model-tracing tutors [4], 

constraint-based tutors [17] and example-tracing tutors [3; 23]. All of these fit VanLehn’s 

tutoring framework [27], in which a model of a task domain is used to evaluate each of the 

learner’s steps (which are themselves driven by mental inferences) as correct or incorrect. 

Model-tracing tutors such as Cognitive Tutors [6] and Andes [28] have been proven to be 

successful in the classroom [14], but their success is mitigated by their cost [19], which is 

mainly due to the effort needed to develop a generative model of the task domain. Both con­

straint-based and example-tracing tutors are designed to reduce this cost. The former use an 

evaluative model involving constraints defined over a set of pedagogically relevant solutions, 

and the latter, a task-specific evaluative model built from a domain expert’s interactions with 

the learning environment. Example-tracing tutor frame-works can offer tools to generalize the 

resulting model [3; 15], but adding such levels of complexity is an obstacle to their democra­

tization, and still does not make them as flexible and comprehensive as model-tracing tutors. 

Constraint-based tutors may be particularly effective in handling ill-defined tasks in well- 

defined domains, such as design-based ones; however, they cannot follow learners as closely 

as model-tracing tutors, a capacity which is especially interesting for well-defined tasks. To 

reduce the effort needed to develop model-tracing tutors, one approach is to rely on a more 

(Cognitive Tutors) or less (Andes) domain-independent framework. In such a context, the 

knowledge representation system used to build the model is a key part of the framework, and 

its expressivity and reasoning capacity determine which domains can be modeled and how 

straightforward it is to model one.

Our work is based on the hypothesis that a more sophisticated knowledge representation sys­

tem not only widens the range of domains that can be modeled, but also facilitates the testing 

of varied domain-independent pedagogical strategies, including some that are more elaborate 

than the ones usually found in model-tracing tutors. In fact, our efforts can be seen as an at­

tempt to achieve an objective similar to that of Heffeman [12], who expanded Cognitive Tu­
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tors with a domain-specific (algebra) pedagogical model in order to provide tutorial dialogs 

closer to those used by experienced human tutors. Thus, our frame-work ASTUS is designed 

with two objectives: to reduce the prohibitive effort usually associated with the development 

of model-tracing tutors, and to provide the ITS community with a modular framework. In 

terms of Wenger’s classic ITS architecture [29], ASTUS’s domain-independent expert and 

interface modules interpret domain-specific models, and pedagogical and learner model 

modules can be customized to try out different pedagogical avenues. To achieve this, ASTUS 

uses a knowledge representation system that can be seen as a middle ground between the 

Cognitive Tutors production systems and the Andes solution graphs, in which the set of next 

possible steps is updated before each of the learner’s actual steps. This approach, which is 

online (like Cognitive Tutors) but also top-down (like Andes), was adopted under the hy­

pothesis that the advantages of both can be combined. Designed to model domains from a 

pedagogical perspective rather than to model the cognitive process used to solve them, 

ASTUS’s knowledge representation system represents procedural knowledge hierarchically, 

using knowledge components of different grain sizes. Of these components, the examinable 

ones represent the skills explicitly tutored and the black-box ones model the underlying re­

quired abilities. Finally, to ensure that the tutor has complete access to the learning environ­

ment interface, as required by Anderson et al. [6], these knowledge components act as a 

Model in terms of the Model-View-Controller (MVC) architectural design pattern on which 

the interface module is based.

In this chapter we present a study that evaluates the effectiveness of ASTUS by comparing it 

with Cognitive Tutor Authoring Tools (CTAT), a model-tracing tutor framework derived 

from the Cognitive Tutors [13]. In order to compare the two frameworks, we used each of 

them to author a tutor for the multi-column subtraction task domain. Each contains a genera­

tive model that can be used to trace a correct problem-solving path, but also many different 

incorrect ones. The objectives of this study are to evaluate whether both frameworks allow us 

to exhaustively model the multi-column subtraction domain; to identify the features that 

make each framework more or less suitable for the situations covered by a given set of sce­

narios; and to show which types of pedagogical behavior are made possible by each frame­
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work. The tutors were authored with the sole purpose of comparing the frameworks; we do 

not plan to experiment with them in a classroom.

In the next sections of this chapter, we describe the two ITS frameworks (CTAT in Section 2, 

ASTUS in Section 3). For each, we .begin by giving an overview of its design and then pre­

sent its knowledge representation system in detail, with examples from the multi-column sub­

traction domain. Section 4 presents the methodology of our study, detailing each step that 

was taken in order to achieve our objectives. For instance, we explain why we deemed the 

multi-column subtraction domain a good choice to evaluate the strengths and weaknesses of 

the two frameworks. In Section 5, we discuss the features of the resulting tutors and present 

scenarios which illustrate how each framework deals with different situations encountered in 

modeling the multi-column subtraction domain. In particular, we discuss the difference be­

tween the frameworks’ respective tracing algorithms, their difficulties in modeling specific 

situations and the types of pedagogical behavior they support. Finally (Section 6), we con­

clude that authoring a tutor in either framework is a similar task, but that with ASTUS, more 

attention must be paid in building the task domain model so that it can be fully exploited by 

the domain-independent pedagogical module. However, without any extra domain-specific 

effort, the resulting tutor offers elaborate pedagogical behaviors that are usually not sup­

ported in problem-solving tutors. The chapter ends with a brief presentation of future work 

towards a new version of the ASTUS framework.

2. The CTAT Framework

CTAT2 is a freely distributed domain-independent ITS framework that can be used to create 

tutors for various well-defined task domains (examples include stoichiometry and genetics). 

The main objective of CTAT is to reduce the amount of work required in authoring these tu­

tors [1]. The CTAT framework allows the creation of two different types of tutor: Cognitive 

Tutors and Example-Tracing Tutors) [2], Cognitive Tutors are based on the ACT-R theory of 

cognition [5, 7] and use a cognitive model of the skills being tutored. To create such a model,

2 http://ctat.pact.cs.cmu.edu
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expertise in AI programming is required, as the model may be implemented using the Cogni­

tive Tutor Development Kit (TDK) [4] or the Jess rule engine3 (only the latter is distributed 

along with CTAT). In our study, the CTAT tutor was created as a Cognitive Tutor imple­

mented via the Jess rule engine. In the following sections, when we speak of the CTAT 

framework, we are referring to Jess-based Cognitive Tutors authored using CTAT.

2.1 Knowledge representation

CTAT tutors, being derived from the TDK-based Cognitive Tutors, use Jess production rules 

to represent procedural knowledge and Jess facts to represent declarative knowledge. These 

facts, referred to as Working Memory Elements (WMEs), can be used to represent the task, 

model the learner’s perception of the interface and store temporary results in working mem­

ory. The content of a WME is defined by slots that can be filled with primitive data (boolean, 

integer, string, etc.) or references to other WMEs. For example, in our multi-column subtrac­

tion tutor, the WME for a column contains the following slots (the type of each slot is indi­

cated here for clarity’s sake; it is not specified in the actual model):

WME Column { 
name [string] 
nextColumn [Column] 
previousColumn [Column] 
minuend [Textfield] 
subtrahend [Textfield] 
difference [Textfield] 
hasBeenBorrowedFrom [boolean]

}

WME Textfield { 
name [string] 
value [string]

3 http://www.jessrules.com
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}

WME DecrementColGoal { 
column [Column]

}

Production rules provide a cognitively plausible path to explain a learner’s actions, whether 

they are steps in the interface or mental inferences. Thus, they can exhibit two kinds of be­

havior: recognizing a step (no more than one per rule) from an event sent by the interface, or 

updating the content of the working memory (adding, modifying or removing WMEs) to re­

flect a learner’s mental inferences.

(defrule AddDecrementColumnGoal
?problem<-(problem (subgoals $?first ?evaluateGoal $?rest) 
?evalGoal<-(evalColumnDecrementationGoal (column ?col)) 
?col<-(column (minuend ?minued &: (neq ?minuend 0))

= >

(bind TdecColGoal (assert (decrementColGoal (column 
? col))) )

(modify ?problem (subgoals (create$ $?first $?rest ?decCol- 
Goal))))

)

The above rule is fired when there is a goal of evaluating the decrementation of a column’s 

minuend for a column with a minuend different from zero. The WME it creates will allow 

other rules to match, in a chain, including the final one that will result in the action of decre­

menting the minuend. The following rule is triggered if there is a goal of subtracting the 

problem’s current column, and the step is recognized if the correct value is entered in the col­

umn’s difference slot, as specified by the predict-observable-action statement.

(defrule Subtract
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?problem<-(problem (currentColumn ?column) (subgoals 
$?first ?goal $?rest))

?goal<-(subtractColumnGoal (column ?column))
?column<-(column (difference ?diff) (minuend ?minuend) 

(subtrahend ?subtrahend))
= >

(bind ?difference (- ?minuend ?subtrahend)) 
(predict-observable-action ?diff WRITE-VALUE ?difference)

)

When a step is executed in the interface, CTAT tries to find a chain o f rules that leads to it. A 

loop is initiated in which the content of the currently available WMEs is compared with the 

rules’ firing conditions in order to find matches. As rules can alter the content of the working 

memory when they are fired, additional production rules can be fired and the matching proc­

ess is started over until the rule producing the learner’s step is found. If no such rule is found, 

the step is considered an error. In CTAT, pedagogically relevant errors are modeled using 

production rules marked as “buggy”. Buggy rules, like normal ones, can either match a step 

or modify the content of the working memory. In both cases, errors are detected after exactly 

one incorrect step, when the chain of production rules that leads to this step contains a buggy 

rule.

3. The ASTUS Framework

ASTUS, like CTAT, is designed to be a domain-independent ITS framework available to the 

ITS community4. As the main objective of ASTUS is to allow experimentation with varied 

pedagogical strategies in the context of problem-solving tutors, much work has been focused 

on its foundations, the domain-independent expert and interface modules. Although we have 

implemented a basic knowledge-tracing [9] algorithm that fits ASTUS’s hierarchical knowl­

edge representation and a prototypal pedagogical module as a customizable expert system,

4 An alpha version, limited to internal usage, has been completed and a beta version designed to be shared is under active 
development (http://astus.usherbrooke.ca).
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we first made sure to support a complete inner loop [27] that can show ASTUS’s potential. 

The next steps include developing these pedagogical and learner model modules to offer ba­

sic services and fully show the benefits of modeling a task domain with ASTUS, as well as 

developing authoring tools that will make modeling easier.

3.1 Knowledge representation

The knowledge representation system in ASTUS is derived from preliminary work on 

MLACE [16], a cognitive architecture inspired by ACT-R that proposes original twists useful 

in the ITS context [11; 20]. Using ASTUS’s knowledge representation system, a task do­

main’s declarative knowledge is divided into semantic (factual) and episodic (autobiographi­

cal) components, whereas procedural knowledge is modeled at three different grain sizes. 

First, complex procedures are dynamic plans generating a set of goals (intentions satisfied by 

procedures), according to an algorithm (e.g., sequence, condition, iteration). For example, in 

the subtraction tutor, the complex procedure SubtractWithBorrow is a partially ordered se­

quence:

SubtractWithBorrow(TopSmallerColumn c) {
subgoal[1] := BorrowFrom(query{nextColumn(c)})
subgoal[2] := Borrowlnto(c)
subgoal[3] := GetDifference(c)
order-constraints {(2,3)}

}

Second, primitive procedures represent mastered abilities that correspond to steps in the 

learning environment. Here is one of the two primitive procedures in the subtraction tutor 

(the other is ReplaceTerm):

EnterDifference(Column c, Number diff) { 
c.difference := diff

}
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Third, queries and rules represent basic or mastered mental skills, such as pattern-matching 

and elementary arithmetic. Along with complex procedures, they represent mental inferences. 

As queries and rules define how procedural knowledge components can access semantic 

ones, they are described in more detail in the discussion of this below.

A class of problem is associated with a goal (in the subtraction tutor, the SubtractlnColumns 

goal) that can be satisfied by different procedures, complex or primitive, some of which may 

be marked as incorrect to represent pedagogically relevant errors (for instance, in the subtrac­

tion tutor, the incorrect procedure AddlnsteadOfSubtract). As complex procedures specify 

sub-goals, the resulting graph has a goal as root and a set of primitive procedures as leaves.

Aside from goals, which define a semantic abstraction over procedures, semantic components 

include concepts, relations, functions and contexts, and their corresponding instances, ob­

jects, facts, mappings and environments. Concepts represent pedagogically relevant abstrac­

tions and are defined using both is-a relationships and essential features. Functions and rela­

tions, respectively, represent single- and multi-valued non-essential associations between ob­

jects. For example, the subtraction tutor includes these semantic knowledge components:

Concept Column { 
position [integer] 
minuends * [Minuend] 
subtrahends * [Subtrahend]
difference [integer] (the value is initially unknown)

} *a tuple where the first is the current one

Function nextColumn {
column [Column] (argument) 
next [Column] (image)

}

Concept Term {
units [integer] (0-9)
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t e n s  [ i n t e g e r ]  ( 0 - 1 )

}

Concept Minuend isA Term

Concept Subtrahend isA Term

Contexts reify the subdivisions of the learning environment, which generally correspond to 

windows in the interface. Examples of multi-context learning environments include “wiz­

ards” and pop-up dialog boxes (the subtraction tutor has only one context). Thus an environ­

ment contains all the instances (objects, facts, mappings) related to a distinct subtask of the 

task domain contained in a context. Domain-level (vs. task-level) objects that represent con­

stants (e.g., the integers 0-9 in the subtraction tutor) are part of a global context that is auto­

matically handled by the framework.

The episodic knowledge components are instances of the semantic and procedural knowledge 

components that represent the learner’s solution path. The current episode is a graph that con­

tains procedures in progress, done or undone, next possible primitive procedures and planned 

goals that have not yet been developed.

Goals and procedures are specified with parameters and queries. The values of the former 

comes from the parent component (either a goal or a procedure instance) and the values of the 

latter comes from the current environment, according to domain-independent requests such as 

“get the unique object representing a given concept” or “get the image of a given function”. 

For example, in the procedure SubtractWithBorrow (detailed above) a query fetches the im­

age of the function nextColumn for a column specified as a parameter. Queries can also in­

spect the current episode. For example, in the subtraction tutor, a procedure inspects it to see 

whether a BorrowFrom goal has been satisfied or not.

Rules are used to make relations and functions operational and to classify objects (adding 

extra is-a relationships). Implemented using Jess, rules help to abstract many of the domain-
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specific computations that are not relevant in the tutoring process. For example, in the sub­

traction tutor, the nextColumn function is made operational with this rule:

(defrule nextColumn
(Column ?column (position ?p))
(Column ?next (position ?next :& (= ?next (+ ?p 1))))

= >

(Instantiate Function "nextColumn" ("next", ?next) ("col­
umn", ?column))

)

and a column is classified as a TopSmallerColumn with this rule:

(defrule TopSmallerColumn 
(Column ?col)
(CurrentSubtrahend (column ?col) (subtrahend Tsubtrahend)) 
(CurrentMinuend (column ?col) (minuend ?minuend))
(test (< (getValue ?minuend) (getValue ?subtrahend)))

= >

(Classify ?col "TopSmallerColumn")
)

Before each of the learner’s steps, the episodic graph is developed following each applicable 

complex procedure’s plan, further specified by its arguments, to find the set of next possible 

primitive procedure. If a step committed by the learner, is included in this set, the graph is 

updated accordingly, in the other case, the step is added to the off-path steps stack. The graph 

is not updated while there is a least one step on the stack. Either the tutor or the learner can 

undo off-path steps, allowing resuming a problem-solving path that can be traced (i.e., not 

necessarily a correct one). Thus, the episodic components form an interpreted high-level log 

of the learner’s steps, which are stored in a low-level log to allow an exact replay. The latter 

is required because even if the arguments collected from the learner’s interaction in the leam-
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ing environment match the arguments of a next possible primitive procedure, they may not be 

exactly the same. For example, the match can be limited to check for a common concept.

4. Methodology

In this study, we use incorrect procedural knowledge of the multi-column subtraction domain 

to add knowledge components to the model and thus yield more data to enrich our compari­

son. It is uncertain whether being able to give a detailed diagnosis of errors is useful in tutor­

ing [25], but if it is not supported, it is not possible to conduct studies to evaluate the gains or 

lack thereof.

The methodology we followed comprises six steps. This section describes each step and its 

relevance to our comparison of the ASTUS and CTAT frameworks.

4.1 Choice of the task domain

We chose to model multi-column subtraction because it is representative of well-defined 

tasks in well-defined domains. Indeed, the arithmetic procedure of subtraction is well docu­

mented in the literature and is a clear and precise algorithm. Even though it is well-defined, 

the subtraction domain contains many inferences that must be deduced by the tutor from steps 

that may occur in a non-strict order. These characteristics give enough complexity to the 

solving algorithm to produce an interesting model that can be used to compare the features of 

the CTAT and ASTUS knowledge representation systems.

VanLehn [26] assembled a list of 121 procedural errors that can occur when a learner sub­

tracts numbers. Incorporating these errors in the tutors adds knowledge components to im­

plement in CTAT and ASTUS, thus introducing new and possibly complex situations for our 

models. These situations give us insights about the strengths and weaknesses of the two 

knowledge representation systems.

4.2 Framework-independent procedural model
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Once we had chosen multi-column subtraction as the task domain for our comparison, we 

created a procedural model independent of any tutoring framework. This model is based on a 

procedural model presented by Resnick [24] and was used as a reference when we imple­

mented the CTAT and ASTUS tutors. We chose this model as our reference because it can 

resolve any multi-column subtraction problem, and it is explicit regarding the inferences and 

steps that must be made and taken by the learner. To make this model more suitable for a tu­

toring context, we modified it slightly by adding a new way to subtract a column and includ­

ing more detail in the borrowing section of the algorithm. The borrowing part of the algo­

rithm was not deemed to be a natural extension of the semantic knowledge we assume the 

learner know (the base-ten numeral system’s basis).

More specifically, the first modification made to Resnick’s model is a new way to subtract 

the current column when it does not contain a number in its subtrahend (i.e., equivalent to a 

zero). In this case, instead of doing a subtraction, the algorithm simply copies the minuend in 

the difference section below the line. This modification was taken from a set of subtraction 

rules given by Brown and VanLehn [8] and is important in our model, since subtraction er­

rors sometimes depend on the presence or absence of a subtrahend.

The second modification is applied to the original model’s borrowing algorithm, to more 

closely capture the semantic knowledge of the domain in a procedure. When borrowing 

across zeros, our model does not change zeros to nines from right to left. Instead, it finds the 

first term which is not zero, decrements it and then iterates from left to right, changing zeros 

to nines. This procedure more closely represents the semantics of the base-ten numeral sys­

tem: when borrowing one unit of the next column (to the left) is subtracted to add ten units to 

the current column. In the case of borrowing across a zero, ten units are borrowed into and 

one is borrowed from the column, thus changing the zero to a nine.
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4.3 Error modeling

When solving problems using arithmetic procedures, systematic errors can be explained by 

the application of a faulty method [26]. Hence, for each of the 121 errors, we defined the 

modifications that are needed to our framework-independent model in order for it to be able 

to produce this error. Each error was modeled the same way: based on the error’s definition, 

we established the modifications that had to be made to the correct model in order to recreate 

it. Once a model had been generated for all of the errors, we had to apply modifications to the 

implementation of both tutors. Also, since all the errors were successfully incorporated in our 

framework-independent model, we can conclude that a failure to implement an error in the 

CTAT or ASTUS framework is due to limitations of the framework and not because the error 

cannot be modeled in our problem-solving procedure.

4.4 Subtraction interface

Like the procedural model, the graphical user interface of the tutors was designed independ­

ently of the tutoring framework. It was inspired by the interface of POSIT [21], a subtraction 

ITS that diagnoses learners’ errors while they are solving problems [22] and the traditional 

pen and paper approach. Our interface imposes as few limitations as possible on how learners 

interact with the learning environment, in order to allow them to express each of the 121 er­

rors.

The interface we designed (shown in figure 1) allows two types of steps: 1) entering the dif­

ference for a column; and 2) replacing terms (minuends or subtrahends) in order to borrow 

from or borrow into a column. The UI actions used to trigger these steps are similar: the 

learner clicks on a column’s difference input box or on the term he or she wishes to replace, 

and then enters a value using the numerical pad on the right. Once the “OK” button is pressed 

on the numerical pad, the problem display on the left is updated accordingly.
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MultiColumn Subtraction Lab

Cancel

Figure 1 - The graphical user interface for the subtraction tutor 

4.5 Implementation of the tutors

To implement the CTAT and ASTUS tutors, we began by covering only the knowledge re­

quired for a completely correct problem-solving path. As with the framework-independent 

procedural model, errors should be incorporated without modifying the model already im­

plemented in the tutors.

The model we took from Resnick [24] accurately describes one way of executing the subtrac­

tion procedure, but we had to loosen some of its restrictions to make it applicable in the ITS 

context, where the model is primarily used to trace the learner’s solving path. In particular, 

the steps that must be executed to subtract two numbers in column can be applied in many 

different orders while still obtaining correct results, so it is important to consider the multiple 

ways in which the learner can solve a problem. To be able to correctly trace the learner’s 

solving path, we loosened the borrowing process to remove the constraint on the order of the 

required steps. For instance, the steps of changing a zero to a nine, decrementing a column 

and adding ten to a column can be executed in any order. Also, once the current column has 

been incremented by ten, it can be subtracted even if the borrowing process is not yet fin­

ished. Even though we gave learners more freedom, we kept the restrictions on the currently

subtracted column so that they must complete all the steps relative to its subtraction before
22



moving to the next one. This restriction has no impact on error modeling and although it is 

possible to subtract any column as long as subsequent borrows do not affect it, the ordered 

column sequence from right to left is a key part of the tutored subtraction algorithm.

The model created for our CTAT tutor is organized so that its production rules implicitly rep­

licate a “while loop” in which each of the columns of the problem is subtracted individually, 

starting from the rightmost and ending with the leftmost. To trace the subtraction of individ­

ual columns, our model implements a sub-goal system. The use of such a system is common 

in examples of tutors given with the CTAT framework and it has the advantage of being 

flexible with regard to the order of the learner’s steps. Sub-goals are normal WMEs that are 

added to the working memory with the purpose of indicating the steps that are currently pos­

sible. In our CTAT model, sub-goals are added to the working memory in the order defined 

by the framework-independent procedural model. An executed step can thus be accepted if it 

matches one of the current sub-goals, even if it does not follow the usual ordered sequence of 

the algorithm. The sub-goal associated with this step is then removed from the working 

memory to prevent it from being executed again. Once all of the sub-goals for a column have 

been successfully achieved, the model finds the next column and restarts the process until 

there is no column left to be subtracted, in which case a sub-goal is added calling for the 

learner to click on the “Done” button to indicate that he or she considers the problem solved. 

The “Done” button can also be clicked on when all the columns left to be subtracted have a 

difference of zero, since these extra zeros are not significant.

ASTUS’s model consists of an ordered “for-each” iteration procedure on the columns of the 

problem. Thus, as in the CTAT model, each column is subtracted individually, from right to 

left. As each column is subtracted, the episodic graph is developed to obtain the set of primi­

tive procedures that can be executed; the restriction on the order of execution of these primi­

tive procedures is already contained in the complex procedures used to model the column’s 

subtraction. To allow the learner to solve the problem with reasonable freedom, we ensured 

that the complex procedures contained only those order constraints that are required (bor­

rowing into a column before subtracting it) or pedagogically relevant (subtracting only one
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column at a time). The problem is considered solved when the “for-each” iteration ends 

(when the last column of the iteration has been subtracted), or when the “Done” button is 

pressed (the idea was borrowed from CTAT, but the actual implementation is different be­

cause it is handled automatically by the framework), to let the learner finish the problem as 

soon as all the remaining columns have a difference of zero.

4.6 Incorporation of errors

Once we had completed the basic implementation of the two tutors, we started improving 

them by incorporating the errors we had modeled. Of the 121 documented errors [26], we 

implemented 46. The first 26 errors were modeled by systematically incorporating each error, 

in the same order we followed in our framework-independent model. After those errors were 

completed, we had enough experience to evaluate the challenges incorporation of specific 

errors would pose. Of the 95 remaining errors, we implemented 20 that were more challeng­

ing and required modeling behaviors that had not been previously encountered. The remain­

ing 75 errors were not incorporated in the tutors because they were similar to the ones previ­

ously implemented and thus did not pose new challenges.

Both frameworks allowed the successful incorporation of the 46 selected errors, but the effort 

required showed the strengths and weaknesses of the CTAT and ASTUS knowledge repre­

sentation systems. The “Results” section explains these strengths and weaknesses and the 

features from which they arise.

5 Results

As both frameworks allowed us to produce a comprehensive model of the subtraction do­

main, we need to show: how each framework’s features have influenced the modeling proc­

ess of the tutors and which type of pedagogical interactions are offered by each of the frame­

works.
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5.1 Modeling process

The results concerning the modeling process are presented in five sections. The first gives 

details on how ambiguous steps are managed by the two frameworks. Then we compare how 

specific error types are modeled and handled; in particular, we discuss errors containing mul­

tiple steps and errors containing correct steps. Next we present how each framework allows 

the reuse of knowledge components. Finally, we examine the coupling between the interface 

and the model and how this influences the implementation of the tutor.

5.1.1 Ambiguities

When tracing a learner’s solving path, situations may arise in which different procedures 

yield the same steps. These steps are qualified as being ambiguous because they can be inter­

preted in more than one way. Ambiguities may be present in an error-free problem-solving 

path, but in the subtraction tutors, they result from the inclusion of errors. When we added 

errors to our tutors, we found three kinds of situations that led to ambiguities. First, two unre­

lated errors can lead to the same step for specific problems. For instance, the add-instead-of- 

sub (adding the term of a column instead of subtracting) and smaller-from-larger (subtracting 

the smaller number from the larger regardless of which one is the minuend) errors both result 

in the learner entering 2 as the difference when they are applied to a “5 -  7” column. Second, 

errors can involve the same behavior but in different application conditions, thus resulting in 

ambiguities when many sets of conditions are satisfied at the same time. For an example of 

this situation, consider the errors diff-0 - N  = 0 (writing 0 as the difference when subtracting 

a number N from 0) and 0 -  N  = 0-after-borrow (the same behavior but occurring only when 

the column has already been borrowed from). Third, ambiguities occur when some or even all 

of the steps of an incorrect procedure can be considered correct. In this case, the tutor must be 

able to determine which procedure was executed when an unambiguous step is taken, or give 

priority to the correct procedure when it is not possible to decide whether the error was com­

mitted or not. An example of this situation is the borrow-skip-equal error (skipping columns 

where the minuend and subtrahend are equal during the borrowing process), in which correct
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steps are omitted rather than incorrect ones being performed. Details of this error are pre­

sented in the “Errors containing correct steps” subsection.

Using the model tracing algorithm of CTAT, ambiguities are resolved according to rule prior­

ity. When a step is executed, a search is performed to determine which rule path can explain 

it. Since the execution order of this search is based on the priority of each rule, the rules of 

the matching path with the highest priorities will be discovered first and will be fired, pre­

venting the discovery of any ambiguities that might have occurred. Additionally, buggy rules 

always have lower priorities than valid ones, so a step that can be evaluated as correct will be 

so evaluated even if an incorrect path exists.

ASTUS’s hierarchical procedural model allows a tracing algorithm in which an episodic 

graph containing all the applicable procedures is updated before each of the learner’s steps. 

This feature allows ASTUS to detect and handle ambiguous steps. The graph is used to select 

the appropriate explanation for previous steps where evidence resolving the ambiguities was 

found. Evidence includes the execution of a non ambiguous step or the signal sent by the 

“Done” button. In the former case, the framework uses the episodic graph to find the nearest 

common ancestor of the procedure actually executed and the ambiguous one. In the latter 

case, the graph is searched for a procedure that is completed and that can satisfy the root goal.

In summary, CTAT prevents ambiguous states by always firing the production rules with the 

highest priority. This method is easy to implement and handles most of the ambiguity in a 

way that has no negative effects on the tracing process. It is possible to introduce special 

treatment of ambiguities by adding extra production rules to the model. An example is given 

in the “Errors containing correct steps” subsection below. CTAT is thus capable of handling 

any ambiguity, but the draw-back is a more complex model containing superfluous knowl­

edge components. With ASTUS, all ambiguities are handled directly by the framework’s 

tracing algorithm, thanks to its top-down hierarchical procedural model and the resulting epi­

sodic graph. This approach requires more effort when developing the framework, but authors 

do not have to worry about ambiguities. Both ASTUS and CTAT must deal with permanent
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ambiguities that no evidence can resolve, either by using priorities or by relying on the 

learner model.

5.1.2 Errors with multiple steps

Some errors require multiple steps from the learner for complete diagnosis. This is the case 

for errors where the whole problem is solved incorrectly, such as add-no-carry-instead-of-sub 

(the learner executes an addition without carrying instead of a subtraction). As well as involv­

ing multiple steps, these errors can also produce ambiguities. For instance, in the add-no- 

carry-instead-of-sub error described previously, columns where the sum of the minuend and 

the subtrahend is the same as their difference can exist. An example o f this would be the 15 -  

15 problem where the sum and the difference of the unit column are both 0 and, because the 

carry is not performed, there is no way of knowing whether the learner intended to add or 

subtract the columns (i.e., the ambiguity is permanent).

45 44
- 25 - 22

60 62
(a) (b)

Figure 2 - Examples of the add-no-carry-instead-of-sub error, (a) The first column is ambigu­

ous. (b) The error should not be diagnosed

When it comes to reacting to the learner’s errors, CTAT implements a policy of immediate 

feedback in which there is no delay between the execution of the error and the tutor’s feed­

back. Thus, CTAT’s error detection only allows one step to be executed before feedback is 

given; this poses particular challenges when dealing with errors containing more than one 

step. For instance, when dealing with errors that are composed of multiple steps that can be 

executed in different orders, since there is no way of knowing which one the learner will exe­

cute first, all of them need to trigger the error diagnosis. Also, because the learner does not 

have the opportunity to complete all of the steps in the error, CTAT has less evidence that the 

error it diagnosed is really the one being made. Other challenges come from errors that re­
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quire an ordered sequence of steps. In those cases, since only one step can be executed before 

feedback is given, the tutor should diagnose the error when the first step of the sequence is 

executed. This is difficult when the first steps are ambiguous. Figure 2 illustrates such a situa­

tion in the case of the add-no-carry-instead-of-sub error. If the error diagnosis is made on the 

basis of the first column alone, the error is not detected in figure 2 (a) since the first step is 

ambiguous. On the other hand, if we allow the error to be diagnosed on any column, it will be 

detected in figure 2 (b) even if the first column was correctly subtracted5. To achieve accurate 

diagnosis in every situation, this ambiguity must be handled in the procedural knowledge, in 

a way that is specific to this error. Thus, when an addition is detected, the model needs to 

iterate on all the columns that were previously processed to see whether the entered results 

can be interpreted as either the subtraction or the addition of each column. If an ambiguity is 

found for each of the preceding columns, then the add-no-carry-instead-of-sub diagnosis can 

accurately be given.

Even if we overlook CTAT’s immediate feedback policy, it would still be challenging to 

handle errors with multiple steps because production rules are independent of each other. The 

lack of an explicit hierarchy in the procedural model has two important consequences: it is 1) 

difficult to identify that multiple steps are caused by the same occurrence of an error and 2) 

difficult to evaluate how many steps are caused by an occurrence of an error. These two char­

acteristics prevent the system from delaying feedback until the learner completes all of the 

steps in an error.

In ASTUS, an error with multiple steps can easily be modeled by creating an incorrect com­

plex procedure. The model’s hierarchy allows the creation of an episodic graph in which the 

primitive procedures caused by a specific occurrence of an error are easily identified. It is 

thus possible for the tutor to associate multiple steps with a specific error occurrence.

5 Since the learner correctly subtracted the first column we can assume that he/she can subtract (without borrowing) and that the 
second error is not due to the add-no-carry-instead-of-sub error.
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5.1.3 Errors containing correct steps

There are situations where an error is not described by the incorrect steps it causes but rather 

by the correct ones that are skipped when it is made. Being able to handle these errors is a 

specific case of ambiguity management, and thus the features of each framework that make it 

possible or challenging are the same ones de-scribed previously in the ambiguity subsection. 

An example of such a situation is the borrow-skip-equal error (skipping columns where the 

minuend and subtrahend are equal during the borrowing process). An example of its execu­

tion is shown in Figure 3, where all of the executed steps for the first column are correct and 

the error can only be diagnosed when the learner subtracts the second column and enters zero 

as its difference. Furthermore, in the situation shown in Figure 3 (a), there are four correct 

steps that must be performed before the next column can be used to diagnose the error. It is 

essential that the exact sequence of steps is executed before diagnosing the borrow-skip-equal 

error since, as shown in figures 3 (b) and 3 (c), the exclusion or addition of one could change 

the diagnosis. In 3 (b), five correct steps have been performed and one of them was changing 

a zero to a nine in a column where the minuend and the subtrahend are equal. Because of this 

step, we know that the error made is not borrow-skip-equal, but probably a slip where the 

learner forgot one of the columns. On the other hand, Figure 3 (c) shows a situation where 

only three of the four required steps have been executed. This shows why it is mandatory to 

check for the presence of the exact sequence of steps defined by the error; in this case, re­

moving one of them can completely change the diagnosis. The solving path shown in this 

figure could be associated with either the borrow-across-zero (not borrowing on zeros and 

skipping to the next column) or the always-borrow-left (always borrowing from the leftmost 

column) errors.
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Figure 3 - An example of the borrow-skip-equal-error. (a) The error can only be diagnosed 

when the difference is entered in the second column, (b) When an additional step is present, 

we cannot evaluate the error as borrow-skip-equal. (c) One of the step is missing and the er­

ror could either be borrow-across-zero or always-borrow-left

In CTAT, we need to be able to determine when entering the difference of the next column 

will cause the error to be diagnosed. Since all of the correct steps are already covered by ex­

isting production rules, we have to add rules in order to 1) mark all steps that would be per­

formed if the learner was executing the error and 2) iterate through the columns to check that 

each of these steps was executed. Handling errors containing correct steps is similar to han­

dling errors with multiple steps: the mechanism used to manage the ambiguities must be im­

plemented in the model. Implementing such a mechanism can be complex and tedious: for 

the borrow-skip-equal error, 11 production rules are required to give a correct diagnosis, 

while only 14 are required to trace an error-free subtraction solving path. Adding ambiguity 

management in the model for this error requires almost as much effort as implementing the 

complete model for the basic subtraction tutor. Thus, one advantage of a framework with a 

knowledge representation system similar to ASTUS’s is its built-in approach to manage am­

biguities, significantly reducing the effort needed to model complex errors.

Modeling this kind of error in ASTUS does not cause any difficulty: an incorrect complex 

procedure containing an ordered sequence of sub-goals is created, with a last one implicitly 

indicating that a part of the correct procedure was skipped. In the case of the borrow-skip- 

equal error, the last sub-goal is to subtract the next column. The main difference is that in 

ASTUS the error is part of the domain, whereas in CTAT it is recognized using additional 

rules but not explicitly modeled (e.g., the tutor cannot generate the results of this error to 

demonstrate it).
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5.1.4 Reuse of knowledge units

Both CTAT and ASTUS allow the reuse of knowledge components in different situations. In 

this section we give examples of how each of the frameworks reuses knowledge components 

in the subtraction domain. Both knowledge representation systems allow an author to reuse 

previously defined procedural and semantic knowledge components to model errors. Reusing 

existing components reduces the complexity of the resulting model and decreases the effort 

needed to implement it. An example of how the modeling process can be simplified is taken 

from the always-borrow error, in which the learner systematically borrows before subtracting 

a column even if it is not necessary. To implement this error, we simply reuse the borrowing 

procedure that has been previously modeled, by forcing its use on a column that would not 

require it.

In CTAT, procedural knowledge can be reused with the help of buggy production rules that 

do not produce a step. These rules can be used to alter the content of the working memory in 

order to create a rule path containing valid rules ultimately flagged as incorrect. In our model, 

we use previously defined sub-goals to reproduce existing behaviors in an erroneous context. 

For instance, with the always-borrow error, a buggy rule adds existing sub-goals relative to 

the borrowing process (i.e., decrementing the next column, adding ten to the current column) 

in a situation where they are not required. The equivalent can be achieved in ASTUS by de­

fining incorrect complex procedures that use existing goals. Hence, procedures that had been 

previously defined are used to describe erroneous behaviors. For example, the always-borrow 

error is modeled by an incorrect procedure using the goals of borrowing from and borrowing 

into a column.

Error composition happens when multiple erroneous behaviors are present at the same time in 

a solving path. In both CTAT and ASTUS, the reuse of correct procedural knowledge in 

modeling pedagogically relevant errors allows the recognition of composite errors because 

the correct procedures that are reused can themselves have erroneous alternatives. The 

“Pedagogical interactions” section in 5.2 shows an example of a learner displaying both the
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always-borrow (borrowing even if not required) and the borrow-from-bottom (borrowing 

from the subtrahend) behaviors.

In CTAT, production rules test conditions on existing WMEs and perform computations to 

modify or create new ones. In ASTUS, the complex procedures follow a fixed, domain- 

independent behavior so that domain-specific conditions and computations are not directly 

included in them, but added indirectly via queries and rules. For example, the mapping be­

tween a column and the number of zeros to its left can be used by both the borrow- 

decrementing-to-by-extras (when borrowing into, increment by 10 minus the number of zeros 

borrowed across) and decrement-by-one-plus-zeros (when borrowing from, decrement by 1 

plus the number of zeros borrowed across) errors. In CTAT, this behavior can be emulated 

with highly prioritized production rules that perform computations and store the result in 

WMEs. In many cases, including the errors cited above, high priority of the rules is necessary 

because the computations must be performed before the steps of the borrowing process have 

been executed, even though the buggy rule can be executed after them. For instance, in the 

decrement-by-one-plus-zeros error, decrementing the minuend of the column that is borrowed 

from can be executed after the zeros have been changed to nine. It is then crucial that the 

number of zeros to the left of the current column be counted before the terms are changed. 

Another example of the reuse of knowledge components in ASTUS is the classification of a 

column object as having “been borrowed from”. Some errors occur only for these columns 

and the procedures modeling them require the column to be an instance of the “column bor­

rowed from” concept. In CTAT, WMEs can contain slots with a boolean value to emulate 

classification. In our subtraction model, this is indeed the case. Such a slot must be manually 

updated in every production rule that could change its value, whereas in ASTUS, classifica­

tion is automatically re-tested when an object is modified.

5.1.5 The coupling between the model and the interface

In this section we detail how each framework manages its user interface, based on examples 

taken from our subtraction tutors. The two frameworks have opposite approaches in terms of 

how they link the user interface and the model. In CTAT, the interface and the model are al­
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most entirely separate: the interface has no access to the content of working memory and the 

only information concerning the interface that the model receives is through Selection Action 

Input (SA1) events. A SAI event is sent when a step is performed on the interface, and it con­

tains the element of the interface that triggered the event (selection), the action that has been 

performed on this element (action) and the value that was entered (input).

Since there is no direct link between the interface and the model, information concerning the 

problem’s current state that is useful for tracing must be stored in WMEs that are updated 

using the SAI events. For instance, in our subtraction tutor, the working memory contains 

WMEs representing each of the interface’s text fields, to store their value. We must ensure 

that the values contained in working memory are synchronized with the content shown on the 

interface by using the data contained in the SAI events.

Another effect of having a weak link between the interface and the model is that the inter­

face’s adaptability to the problem data is limited. Since the interface has no access to the con­

tent of working memory, it cannot use the problem data to generate its interface elements. 

Thus, it is difficult to dynamically add interface elements in order to match the problem state. 

In our subtraction tutor, this means that the interface has a fixed number of columns and a 

problem cannot contain more or less than that number, as this would require creating (or hid­

ing) the text field dynamically6. The severity of this limitation varies according to the particu­

lar design of a tutor’s interface: for example, it would have been possible to dynamically add 

columns if we used a “table component”7 instead of individual text fields for each term.

The ASTUS framework enforces a stronger link between the model of the task domain and 

the interface [10]. Unlike CTAT, ASTUS gives the interface elements access to the instances 

of the current environment. This is achieved by the use of views, scripts that describe the rep­

resentation of concepts in the interface. This MVC-based approach allows the interface to 

reflect the content of the current environment at all times. When the effects of a primitive

6 It is possible for a production rule to call static Java methods to produce side-effects on the tu-tor’s interface; a sample 
“Truth tables” tutor uses this technique.

7 This is the solution used in sample addition and subtraction tutors.
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procedure are applied to the environment, the views of the modified objects are notified so 

that they can update their UI representation accordingly. For example, in our subtraction tu­

tor, when borrowing from or decrementing a minuend, the primitive procedure adds a new 

minuend to a column object, which view is then notified so that it displays the new minuend 

and strikes the old one. This approach enables a tutor built with ASTUS to have a flexible 

interface that adapts itself dynamically. For this reason, the ASTUS subtraction tutor can 

have the right number of columns to fit any problem.

Each primitive procedure is associated with an interaction template that triggers the execu­

tion of a step when the required basic UI actions are matched [10]. These templates offer a 

solution to the difficulty which CTAT tutors circumvent by “tutorable” interface elements 

(for example, a panel containing multiple combo-boxes and a button). Instead, with our ap­

proach, steps can be triggered by multiple interactions on multiple interface elements. The 

most important benefit of this approach is its capacity to generate the interactions by using 

the template and the episodic graph to produce a step with complete visual feedback (i.e., 

mouse moves and clicks). It is then possible to use the demonstration of a step as pedagogical 

feedback. There is an obvious cost for supporting this form of feedback, but we found out 

that it also helped us come up with more comprehensive models, as data implicitly defined by 

the interface must be explicitly encoded to define the templates. In some specific cases, we 

may implement multiple interactions in a single component if decomposing the step is not 

pedagogically relevant. For example, the “numerical pad” of our subtraction tutors is a single 

component.

We believe an MVC approach to the model-interface coupling has many advantages over a 

weaker one. It allows us to adapt the interface to the content o f a particular problem, it pre­

vents synchronization issues between the interface and the environment and it allows sophis­

ticated pedagogical interactions such as demonstration. On the other hand, a weaker link such 

as the one offered by CTAT is easier to implement and, more importantly, makes it easier to 

develop tools that can be used to create the tutors’ interfaces. These authoring tools are im­
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portant, since they can greatly reduce the effort required to create a new tutor, but they are 

always more effective when dealing with rather simple or formatted interfaces.

5.2 Pedagogical interactions

In this section we show how each of the frameworks gives pedagogical feedback. We start by 

describing the different types of interactions that are supported by at least one framework. 

We then use four scenarios taken from the subtraction tutors to give examples of how CTAT 

and ASTUS behave when reacting to learners’ steps. Table 1 (presented at the end of this 

section) summarizes how the individual interaction types are supported by each framework.

5.2.1 Pedagogical interaction types

• Immediate feedback: minimal feedback to indicate whether a step is correct or incorrect. 

This includes flag feedback: changing the color of an input value to indicate whether it is 

correct or incorrect.

• Interface highlights: focusing the learner’s attention on a specific part of the interface, for 

example by painting a rectangle over it.

• Next-step hint: giving a hint towards one of the next correct steps.

• Error-specific feedback: giving feedback regarding an error that is contained in the model.

• Off-path error recognition: recognizing certain off-path steps and giving feed-back accord­

ingly.

• Demonstration: demonstrating, with full visual feedback, how to perform a step (i.e., the 

tutor takes control of the mouse and keyboard).
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5.2.2 Scenario 1

The current column does not require a 
borrow

Help□ Done

OK Cai

■■■■

Figure 4 - An example of CTAT's reaction to a composite error

The first scenario illustrated in Figure 4 shows a case of error composition: solving the prob­

lem 2675 -  1643, the learner changes the 4 (subtrahend of the second column from the right) 

to a 3. This action is caused by the composition of two errors: always-borrow (borrowing 

even if it is not required) and borrow-Jrom-bottom (borrowing from the subtrahend). For both 

frameworks, the recognition of composite errors is made possible by reusing procedural 

knowledge, but the feedback they produce is different.

In this situation, the CTAT tutor reacts (see Figure 4) by: 1) flagging the incorrect value en­

tered by writing it in red; 2) highlighting the replaced term by drawing a blue frame around it; 

and 3) giving a message related to the error. This message is produced from a template asso­

ciated with the first buggy rule encountered {always-borrow) while the second {borrow-from- 

bottom) is ignored.

In the same situation, the ASTUS tutor reacts by first undoing the learner’s step and updating 

the interface accordingly; and second, displaying a message that indicates which errors have 

been traced. As shown in Figure 5, in cases of error composition, ASTUS’s written feedback 

includes all of the errors found.
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g t MultiCojumn Subtraction Lab

<Tutor> Your last steps(s) have been undone. 
<Tutor> You have made 2 errors:
You must borrow from the minuends instead of 
from the subtrahends.
And
The current column does not require a borrow.

00:00:16 C Help * ] [ Undo | [ Done ]

Figure 5 - An example of ASTUS’s reaction to a composite error

5.2.3 Scenario 2

The second scenario shows how the tutors interact with the learner when a next-step hint is 

requested. We show how the learner’s solving path affects the chosen hints by illustrating 

how the tutors react to two hint requests. These requests lead to the same step but at two dif­

ferent points in the solving path of the 2005 -  1017 problem. The first hint request is exe­

cuted when no step have been yet performed by the learner (Figure 6) while the second one is 

made when the only remaining step is to decrement the minuend (2) from the leftmost col­

umn (Figure 7).
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A borrow must be made since the 
current column's minuend is lower than 
its subtrahend

Done L Mdp JILJ

Figure 6 - CTAT's feedback when a hint is requested at the beginning of the problem

U| Student Interface

Student

Messages

To borrow from this column you must 
decrement the minuend by 1

be(PDone << »

Figure 7 - CTAT's feedback when a hint is requested and only the decrementing remains

The method used by CTAT in providing hints is to 1) find the rule chain that produces the 

next step; 2) generate messages using the templates associated with each of the rules and dis­

play them in the same order the rules were fired in (the arrow buttons can be used to navigate 

the hint list); and 3) highlight the interface component on which the action must be executed. 

In this scenario, the two hint requests generate different production rule chains and thus the 

first hint message displayed differs depending on the solving path. For the first request, the 

hint given concerns the condition required to borrow (Figure 6) and, for the second, the hint



concerns decrementation of the minuend (Figure 7). In both cases, even if the messages dis­

played are different and refer to different parts of the problem, the highlight is applied to the 

minuend of the leftmost column. In the case illustrated by Figure 6, the highlight should fo­

cus the user’s attention on the current (rightmost) column but, since the highlight is deter­

mined by the SAI event contained in the production rules, the displayed highlight does not 

correspond to the hint message. Even though highlighting is only supported for rules contain­

ing SAI events, we see nothing in the knowledge representation system that would prevent its 

implementation in rules that modify the working memory.

gp MulttCokjmn Subtraction Lab

<Tutor> You must subtract with borrow sines ths 
column is a top smaller column.

00:00:15 [ Help -* | j unao ] [

Figure 8 - ASTUS's feedback when a hint is requested at the beginning of the problem

In ASTUS, the tutor uses the examinable knowledge components of the model to automati­

cally generate next-step hints8. In contrast with CTAT, no message templates are required, 

although such templates are also supported for situations where customized messages are 

helpful. Using the hierarchical procedural model, the episodic graph and the learner model, 

the tutor can evaluate which procedures the learner is most likely to be executing and choose 

the one on which help should be given. For example, in figure 8, the next step is to decrement 

the minuend of the leftmost column. Since the borrowing process has not been initiated yet,

8 Hint generation requires that knowledge components receive meaningful names in all supported languages; internationali­

zation issues may arise.
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the tutor evaluates that the learner needs help on the conditional procedure which determines 

whether borrowing is required. A hint is then generated using this procedure’s definition. In 

figure 9, the next step is also to decrement the minuend, but the tutor recognizes that the bor­

rowing process has been started and now gives feedback for the sequence procedure used 

when borrowing across a zero. With ASTUS, hints can be given on partially completed pro­

cedures (borrow across zero) while in CTAT, once a rule has been fired, it will never produce 

a hint again. ASTUS also behaves differently from CTAT in highlighting the interface. The 

use of views allows the tutor to highlight any object, even if its view is composed of multiple 

interface components, as is the case for columns. Additionally, ASTUS uses the procedure 

parameters to determine which components to highlight; high-lights are thus supported for 

every procedure, not only the primitive ones. All objects showing up as arguments that have a 

view in the current environment may be highlighted, but complex procedures may give spe­

cial purposes to specific parameters and may use this information to select which ones will be 

highlighted (e.g., a for-each procedure has a parameter that designates the set to iterate on).

05)  MuKiColumn Subtraction Lab
  .. . . ; T utor w indow

<Tutor> Way to go!
<Tutor> Way to go!
<Tutor> Way to go!
<Tutor> Way to go!
<Tutor> In ordar to borrow across zaro you naad 
to
1) borrow from
2) change zaro to nine 
You have already done 2).

00:00:30 I hbip- Undo Done

Figure 9 - ASTUS's feedback when a hint is requested and only the decrementing remains
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5.2.4 Scenario 3

As shown in the second scenario, both CTAT and ASTUS produce multiple messages when a 

hint is requested. These messages are linked to the different procedural components used to 

produce the next step from the chain of matched rules in CTAT or the episodic graph in 

ASTUS. The tutor can provide hints at multiple levels, from more abstract (such as subtract­

ing a column) to more specific (such as entering the difference).

Besides being able to vary the hint level between top-down and bottom-up, ASTUS can also 

offer help on any of the paths leading to a step. When the learner requests help and multiple 

different steps can be executed, ASTUS can ask for additional information to determine the 

best hint to provide. For this purpose, ASTUS uses links similar to the “Explain more” fea­

ture employed by Andes [28], Each link represents a goal the learner can choose to request 

help on. For example, in the “2005 -  1017” problem, if the learner asks for help twice before 

performing any step, the tutor asks which step he/she intends to do. In this situation, the tutor 

would propose the “Borrow From” and the “Borrow Into” goals (Fig. 10).

We did not find an equivalent mechanism in CTAT’s Jess-based cognitive tutors, although 

example-tracing tutors can give hints for different next steps depending on which interface 

component currently has the focus. A similar behavior could be implemented, as it would 

consist of searching for a production rule which results in an action that uses the interface 

component currently being focused on.
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T utor w indow19  MultiColumn Subtraction

<Tutor* You must subtract with borrow since the 
column is a top smaller column.
< Tutor* What do you need help for ?
Borrow From. Borrow Into

00:00:36 [ Halp '  | |  Undo |  | Dona |

Figure 10 - In ASTUS, the tutor asks the learner which goal he/she wishes to be helped with 

5.2.5 Scenario 4

Figure 11 - CTAT's feedback for a step executed in a column other than the current one

The last scenario we present illustrates feedback automatically generated when off-path steps 

are recognized by the tutor. In this example, the learner tries to solve the “2675 -  1640” prob­

lem by starting with the leftmost column and entering 1 as the difference.
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The feedback given by CTAT in this situation is shown in figure 11. Since there are no buggy 

rules that lead to the executed step, CTAT treats it as a non-specific error and only uses flag 

feedback to indicate that the step is incorrect.

With ASTUS’s features, it is possible to implement recognition of errors that go against the 

scripted behavior of a complex procedure when an off-path step is executed, and to generate 

error messages accordingly. Figure 12 illustrates ASTUS recognizing an error in the iteration 

on the problem’s columns. To make this diagnosis, ASTUS examines the currently available 

procedures to identify one describing an ordered iteration on a set of columns. It then checks 

the arguments of the primitive procedure executed by the learner to link one of them to a col­

umn on which the iteration is applied. If the identified column is not the one for which steps 

are currently available, the tutor generates feedback according to a domain-independent pre­

defined template.

gP MultiColumn Subtraction Lab

□

B i t

□  □
0

□

Tutor window

<Tutor> You must iterate in order on each of the 
columns.You acted on the column highlighted in 
red while the current column is the one 
highlighted in blue.

00:00:17 f Help -  j [ Undo ] I Done

Figure 12 - ASTUS's feedback for a step executed in a column other than the current one
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Type of feedback CTAT ASTUS

Immediate feedback Flag feedback

Red is used for errors, green 

for correct steps

Messages in the tutor win­

dow ("Way to go!" and "step 

has been undone")

Interface highlights Can highlight interface com­

ponent such as text fields

Can highlight any semantic 

knowledge viewable on the 

interface

Next-step hints Abstract to specific Abstract to specific 

Hints on multiple next-steps

Error-specific feedback Supported for modeled errors Supported for modeled and 

composite errors

Off-path step recognition Not supported Supported for planning errors 

such as forgetting an iteration 

in a "for-each procedure

Demonstration Not supported Supported

Table 1 - Summary of the supported feedback types

6. Conclusion

The goal of the study presented in this chapter was to compare the knowledge representation 

system of the ASTUS framework with a well known production rule-based system such as 

the CTAT framework. We especially wanted to see whether the two frameworks allow us to 

model the well-defined task domain of multi-column subtraction in its entirety, what kind of
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pedagogical interactions they can offer and which situations are more difficult to model in 

each of them. To achieve our objectives, we compared the modeling process of two subtrac­

tion tutors (one in each of the frameworks) into which we incorporated 46 pedagogically 

relevant errors.

Both CTAT and ASTUS were flexible enough to correctly model the subtraction task domain 

while still allowing freedom in the order of the learner’s steps and being able to model all the 

errors found in the literature [26]. Even though all errors can be diagnosed by both frame­

works, limitations were encountered in incorporating some of them into the models.

Regarding the pedagogical aspect of the tutors, both frameworks can provide immediate 

feedback, produce hint or error-specific message from templates associated to a procedural 

knowledge component and highlight elements in the interface. ASTUS has the advantages of 

being able to: recognize error composition, generate next-step hints or error-specific feedback 

on off-path steps, offer more sophisticated highlights, demonstrate how a step must be per­

formed on the interface and giving the learners more control over the kind of help they need.

As we incorporated errors into our tutors, we encountered many situations that posed chal­

lenges to the modeling process. One challenge that appeared frequently was the management 

of ambiguous steps. CTAT’s solution is simple to implement and ensures that ambiguities are 

prevented by always selecting the procedures with the highest priority. The author can still 

implement more complex management by adding production rules to the model. On the other 

hand, ASTUS handles complex ambiguity cases in its tracing algorithm. Another difficulty 

that the frameworks must be able to handle is the reuse of knowledge components. In our 

study, we encountered many situations where previously defined procedural or semantic 

knowledge components could be reused in order to keep the model as simple as possible. 

Both CTAT and ASTUS implement mechanisms that allow the author to easily reuse previ­

ously defined components. The nature of the problem can also bring difficulties in authoring 

a tutor In the case of subtraction task domain, the tutor must adapt the interface in function of 

the number of columns specified for each different problem. With CTAT, it is more difficult 

because of the lack of a direct link between the model and the interface.
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The two frameworks follow different approaches regarding the authoring process of a tutor. 

CTAT’s tracing algorithm and knowledge components are kept simple, as the primary focus 

has been on decreasing the effort needed to create tutors [1], in order to reduce the time 

needed by experienced modelers and make the modeling process accessible to non­

programmers (Example-Tracing tutors [13] goes further in this way). On the other hand, 

ASTUS is designed to be used by programmers able to manipulate more complex knowledge 

components. These components allow us to incorporate a number of domain-independent 

behaviors such as ambiguity management and the generation of next-step hints or error- 

specific feedback on off-path steps.

With this study, we have shown how ASTUS’s knowledge representation system allows us to 

model complex well-defined task, and that it can be compared to other existing frameworks 

such as CTAT. There is still much work that can be done to improve our framework. Our 

efforts have been largely focused on the knowledge representation and our next steps will be 

to develop other domain-independent modules such as the learner model, the outer loop’s 

task selection and sophisticated domain-independent pedagogical strategies. It would also be 

interesting for us to do a similar comparative study with a constraint-based framework such 

as ASPIRE [18]. This would allow us to evaluate whether our system has advantages over the 

constraint-based approach and which elements of this approach can be adapted to improve 

the system we are developing.
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Chapitre 2 

Generer des interventions pedagogiques

L’article presente dans ce chapitre est une vue d’ensemble de la recherche effectuee dans le 

but de permettre a Astus de generer des interventions pedagogiques. II met en evidence les 

differentes caracteristiques du systeme de representation des connaissances d’Astus qui per- 

mettent de rendre disponible l’information contenue dans le modele de la tache afin qu’elle 

puisse etre utilisee lors de la generation d’interventions. L’article illustre, a 1’aide 

d’exemples, 1’impact de chacune de ces caracteristiques sur la generation d’indices par rap­

port a la prochaine etape. II presente aussi la methode qui a ete developpee afin de permettre 

a Astus de diagnostiquer les erreurs des apprenants a partir de leurs actions hors trace et mon- 

tre comment Astus peut utiliser ce diagnostic afin de generer des retroactions negatives. Fina- 

lement, l’article presente le resultat de cinq experimentations qui ont ete confues dans le but 

de valider de fa?on empirique les interventions generees par Astus.

L’auteur (Luc Paquette) a contribue a 90 % de la charge de travail pour la redaction de 

Particle. C’est lui qui a con?u et implemente les methodes et algorithmes permettant la gene­

ration des interventions pedagogiques. II a aussi implemente les deux tuteurs qui ont ete utili­

ses lors des experimentations. II a con?u, execute et analyse les resultats pour les cinq expe­

rimentations. Le systeme de representation des connaissances utilise par Astus a ete con9 u et 

implemente par Jean-Fran5 ois Lebeau, mais l’auteur a participe a un grand nombre de discus­

sions a ce sujet avec Jean-Franeois.
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A Method for the Generation of Pedagogical Inter­

ventions by a MTT Authoring Framework

Luc Paquette, Jean-Fran?ois Lebeau, Gabriel Beaulieu, Andre Mayers,

Universite de Sherbrooke, Sherbrooke, Quebec, Canada,

luc.paquette@usherbrooke. ca

Abstract. Model-tracing tutor (MTT) authoring frameworks are great tools for 

producing MTTs with less effort, but the pedagogical interventions they produce 

are limited and usually require the inclusion of pedagogical knowledge, such as 

text message templates, in the model of the task. Enhanced ability to generate 

pedagogical interventions would be beneficial to MTT frameworks, as they 

would retain their advantage of reduced authoring effort while producing inter­

ventions closer to those of task-specific tutors. In this paper, we show how MTT 

frameworks can generate pedagogical interventions. This is achieved by defining 

features of a knowledge representation system that can be implemented in a 

framework to make the content of its task model explicit in the MTT it produces. 

We explain how the Astus framework implements these features and show how it 

allows the creation of MTTs that can generate pedagogical interventions such as 

next-step hints and negative feedback on error.

Keywords. Model-tracing, knowledge representation system, pedagogical inter­

vention, next-step hints, negative feedback
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INTRODUCTION

Model-tracing tutors (MTTs) have proven successful for the tutoring of well-defined tasks 

such as LISP programming [6], middle-school mathematics [13] and physics [32], Their main 

distinguishing feature is their capability to follow learners on a step-by-step basis by tracing 

their actions against an executable model of the tutored task. This allows MTTs to provide 

pedagogical interventions such as flag feedback and next-step hints.

Research on MTTs has slowed in recent years as researchers have focused their efforts on 

defining or improving other paradigms for the creation of intelligent tutoring systems that 

address some of the limitations of MTTs. Constraint-based tutors [17] have obtained good 

results when modeling ill-defined tasks [19] such as writing SQL queries [16, 18]. The exam­

ple-tracing approach [4] is an efficient way to produce tutors with similar behaviors to MTTs 

with less authoring effort [3], Machine learning has been used to model ill-defined tasks such 

as logic proofs [7].

We believe there is still room to improve MTTs by giving them the capability to provide 

more sophisticated pedagogical interventions. Neil Heffeman [10] proposed to including 

pedagogical knowledge in MTTs in order to improve their interventions. Unfortunately, this 

approach increases the effort required to author an MTT, a factor that already limits the use 

of current MTT authoring frameworks.

The aim of our research is to determine the types of pedagogical interventions that can be 

provided by MTTs without increasing the effort required to author them. To achieve this ob­

jective, we first studied how an MTT can generate interventions using the content of its mod­

el of the tutored task; then we developed a knowledge representation system that would fa­

cilitate the generation of interventions by MTTs; and finally we implemented the system in 

Astus, an MTT authoring framework [21].

There have been multiple attempts in the past to enable intelligent tutoring systems to gener­

ate pedagogical interventions, but this approach has not been widely adopted by modem au­
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thoring frameworks. Rickel [27] proposed a framework (TOTS) that would allow intelligent 

tutoring systems for well-defined tasks to generate interventions by using a knowledge repre­

sentation based on procedural networks [29]. Unfortunately, we found no examples of tutors 

and interventions generated by TOTS. Steve [28] uses a similar approach to generate expla­

nations in an intelligent tutoring system that helps students learn to perform physical tasks 

such as operating complex machinery. Likewise, REACT [11], a trainer for operators of 

deep-space communication stations, uses a similar knowledge representation system to im­

plement impasse-driven tutoring [12] that includes generated pedagogical interventions on 

errors. Finally, the GIL tutoring system [26] is able to generate interventions for LISP pro­

gramming tasks, using a production system specially extended for that purpose.

In this paper, we first present a brief summary of production systems, a knowledge represen­

tation system that is usually associated with MTT authoring frameworks. Then, we examine 

how knowledge representation systems can be adapted for the generation of pedagogical in­

terventions, and apply the resulting system to the generation of next-step hints in Astus. We 

go on to show how Astus can generate a second type of pedagogical intervention: negative 

feedback on errors. Finally, we present the results of experiments conducted to provide an 

initial evaluation of the interventions generated by Astus and reveal possible improvements.

PRODUCTION SYSTEMS

Production systems are classically used by MTT authoring frameworks to model the tutored 

task [1], for two main reasons. First, production rules can be considered as the base unit of 

procedural memory and can thus be used to model the procedural knowledge of an ideal 

learner. Classical MTTs make the hypothesis that such a model is efficient for tutoring [5]. 

Second, production rules are modular and expressive (in the practical sense). The author of a 

classical MTT can design a set of production rules, for which the execution produces a list of
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the steps^ required to perform a task, without being constrained by the structure of the pro­

duction rules themselves.

In production systems, the tutored task is modeled using two main structures: working 

memory elements (WMEs) and production rules. WMEs are declarative knowledge units de­

scribing the objects in working memory (WM) by specifying a set of attributes whose values 

are references to other WMEs or primitive data (numbers, strings, etc). Production rules are 

IF-THEN structures, where the IF part specifies conditions describing the WM state required 

to execute the rule and the THEN part specifies the rule's actions (modifications to WM or 

steps in the learning environment). Instances of the WME are used to describe the tutor's in­

terpretation of the learner's mental representation of the task. This allows the tutor to interpret 

the learner's action by matching production rules against the content of WM to find a chain of 

rules that explains the executed step.

The practical expressivity of WMEs and production rules make them a powerful tool for 

modeling the tutored task, but it can be difficult for MTTs that use them to generate pedagog­

ical interventions. Indeed, their expressivity makes it difficult for the tutor to analyze their 

content. This greatly limits how the tutor can use the content of the task model to produce 

pedagogical interventions. Although some interventions, such as flag feedback, can be 

achieved without requiring additional pedagogical knowledge, this is not always the case. For 

example, to provide next-step hints, classical MTTs require that specific hint templates be 

associated with each of the model's production rules. Figure 1 shows how a rule taken from 

CTAPs [3] fraction addition tutor uses the "construct-message” keyword to include next- 

step hints in the model of the task.

9 A step is an atomic action in the learning environment that modifies the state o f  the problem (VanLehn 2006). 

* ® http://ctat.pact.cs.cmu.edu
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(defrule same-denominators
?problem <- (problem (given-fractions ?fl ?f2) (subgoals))
?fl <- (fraction (denominator ?denoml))
?f2 <- (fraction (denominator ?denom2))
?denoml <- (textField (value ?d & : (neq ?d nil)))
?denom2 <- (textField (value ?d))

— >
(bind ?sub (assert (add-fractions-goal (fractions ?fl ?f2) ) ) )

Figure 1 - Example of a production rule taken from CTAT's fraction addition tutor

KNOWLEDGE REPRESENTATION SYSTEM

To facilitate the generation of interventions in MTT authoring frameworks, we designed a 

knowledge representation system that models the teacher's instructions rather than the proce­

dural knowledge of an ideal learner. This system was designed to extend the capabilities of 

classical MTTs by providing them with a model of the task that can be used to generate a 

wide range of pedagogical interventions.

In this section we present three features of a knowledge representation system designed to 

generate pedagogical interventions: a hierarchical procedural knowledge structure, explicit 

procedural knowledge units and semantically rich declarative knowledge units. For each fea­

ture, we describe the relevant aspects of production systems and explain how it is handled by 

Astus's knowledge representation system. Finally, using next-step hints as an example, we 

show how these features allow us to generate increasingly complete pedagogical interven­

tions. The examples presented in this section are taken from MTTs for the insertion of ele­

ments into an AVL tree [23] and subtraction [21].

Hierarchical procedural knowledge structure

The hierarchical structure of procedural knowledge is used to locate specific knowledge dur­

ing the global process of performing a task. When included in an MTT, this allows the MTT 

to intervene by providing the learner with information regarding his/her progress toward ac­

complishing the task.

55



When modeling a task for a classical MTT, the production rules are designed to be chained in 

a specific order that models the learner's cognitive processes. The result of the execution of 

these chains forms an implicit hierarchy that is determined by the content of the rules: the 

rules' application conditions are designed to match specific actions resulting from other rules. 

Since the chaining is not explicitly described in the rule syntax and the MTT cannot interpret 

the task-specific content of production rules, it is difficult for the MTT to infer the hierar­

chical structure of the model's procedural knowledge.

One way to make the hierarchical structure of the procedural knowledge explicit in produc­

tion systems is to introduce the concept of goals. In such a system, the application condition 

of every rule must specify a goal that will be achieved by its execution, and the rule's actions 

can add goals to WM. Goals have been used in production systems such as CTAT's Cognitive 

Tutors to control rule chaining (Figure 1), but they are not required by the rule syntax (goals 

are standard WMEs). By making goals mandatory and including them in the rule syntax, they 

become an explicit part of the MTT, allowing it to analyze the hierarchical structure of the 

rules to produce a procedural graph of the interactions between the rules and the goals (Fig­

ure 2).

R4,R1

R3)
Rffl

R2J

Figure 2 - Example of a procedural graph. Rules are marked as R1 to R8 and goals are

marked as G1 to G7

Astus

Rather than using production rules as its base procedural knowledge unit, Astus's knowledge 

representation system uses goals and procedures organized in a graph similar to a procedural 

network [29]. A goal represents an intention behind the performance of a task, whereas a pro­
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cedure represents a particular way to satisfy a goal. Because procedures are associated with a 

unique parent goal and because their syntax is designed to make explicit the sub-goals they 

instantiate, Astus can produce a procedural graph very similar to the one shown in Figure 2, 

but instead of rules (R1 to R8), Astus uses procedures (goals are depicted as rectangles and 

procedures as ovals).

Next-step hints

Using the information contained in its procedural graph, Astus can create hints identifying the 

sub-goals the learner must complete in order to achieve his/her current goal. To do this, we 

can define a hint template, such as "In order to [parent goal], you need to 
[sub-goals] ", utilizing the information provided by the procedural graph. This template 

can then be instantiated for any procedure, using natural-language names assigned by the au­

thor to the relevant knowledge units.

Figure 3 - The procedural graph of three procedures for which Astus can generate next-step

hints

For example, the template can be instantiated for any of the procedures illustrated in Figure 3. 

The first procedure (Plnsert) is taken from our tutor for the insertion of elements into an AVL 

tree. Three sub-goals are available for the execution of this procedure; thus the hint template 

would be instantiated as "In order to insert an element, you need to 
insert in a sub-tree, update and check for imbalances”. The second 

procedure (PlnsertSubTree) is executed to achieve one of the Plnsert sub-goals and allows us 

to generate a similar hint using the same template: "In order to insert in a sub­

tree, you need to insert to the left and insert to the right".
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Finally, the third procedure is taken from our subtraction tutor and produces the hint "In
order to subtract, you need to subtract a column".

The hints generated using only the information contained in the procedural graph are incom­

plete. Although they tell the learner which goals should be achieved, they offer no infor­

mation about how to organize them. Is it necessary to achieve all of the goals? Is achieving 

one of them enough? Is the order of the goals relevant? Should the goal be achieved more 

than once? To answer these questions, the procedural knowledge units need to provide addi­

tional information regarding the organization of their subgoals.

Explicit procedural knowledge units

In production systems, the rule execution order is implicit in the content of the model's pro­

duction rules. 11 In order for a rule to be fired, its application condition must match the con­

tent of WM. Either the condition matches the initial state of WM and the rule can be executed 

at the beginning of the task, or the execution of an available rule modifies the content of WM 

in a way that allows additional rules to match J  2 Thus, the rules are executed following a 

specific organization that is implicit in the content of their application conditions and actions.

To make the organization of the rules' execution explicit in the MTT, the knowledge repre­

sentation system needs to allow the MTT to interpret the rules' application conditions and the 

effects of their execution on WM. This would allow the MTT to infer the rule organization by 

associating the outcomes of a rule's action and the application conditions of other rules. This 

information could then be used to generate pedagogical instructions.

Astus

In Astus, each of the procedures contained in the task model has a specific type that explicitly 

describes the organization of its sub-goals. When creating a model, the author specifies the

1 * The author can also specify static priorities that are used when two or more rules can be executed simultaneously. 

'2  The WM effects o f  a  rule can also prevent rules that were previously available from firing.
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desired type for each procedure. This determines the template that will be used to define the 

procedure. The author is then required to fill in the template to describe the procedure's be­

havior and the organization of its sub-goals.

Procedures fall into two main categories: primitive and complex. Primitive procedures are 

perceptual motor skills and model steps. They are reified as interactions in the learning envi­

ronment. As these procedures correspond to steps, they do not specify sub-goals. Complex 

procedures are scripts specifying sets of sub-goals whose execution is organized according to 

specific templates. The sub-goals of a complex procedure can be organized according to dif­

ferent types of scripts: a sequence of sub-goals, the selection of a sub-goal or the repetition of 

a sub-goal.

Formalizing the procedural knowledge by the use of complex procedures that describe the 

organization of their sub-goals is analogous to the way procedural knowledge is treated in 

VanLehn's Sierra theory [30]. According to this theory, learners use three main control struc­

tures when performing tasks: AND, OR and FOR-EACH goals. Astus's complex procedures 

extend these basic structures to offer unordered, partially ordered and totally ordered se­

quences, for-each repetitions (over a sequence of objects), conditional selections and repeti­

tions (loops) and nondeterministic selections (over a set of objects).

Next-step hints

Whereas the hints generated using only the information contained in the procedural graph all 

employed the same template, it is now possible to provide hints that refer to the organization 

of a procedure's sub-goals. Since each procedure has a specific type whose structure is known 

to Astus, it can interpret the procedure's content to produce its pedagogical interventions. 

Hence, the next-step hints generated by Astus can be improved by using an appropriate tem­

plate, based on the type of procedure the hint refers to.

Using the additional information available from the procedure type, we can improve the hints 

generated for the procedures presented in Figure 3. For example, when provided with the ad­
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ditional knowledge that the procedure Plnsert is a totally ordered sequence, the hint can indi­

cate that all of the procedure’s sub-goals must be completed in the correct order:

In order to insert an element, you need to do the fol­
lowing in the correct order:
1) insert in a sub-tree

2) update

3) check for imbalances

Similarly, the hint for PInsertSubTree can be improved using the knowledge that the proce­

dure's behavior is a selection of a sub-goal:

In order to insert in a sub-tree, you need to either 
insert to the left or insert to the right.

Finally, PSubtract is the repetition of a single sub-goal:

In order to subtract, you need to repeatedly subtract a 
column.

Although these hints provide instructions regarding the sub-goals' organization, there is still 

room for improvement. For example, when providing a hint for a selection, the MTT should 

be able to explain when each sub-goal should be selected; when generating a hint regarding a 

repetition, the MTT should be able to indicate how many times the sub-goal should be re­

peated. In order to include this information in the hints it generates, the MTT must be able to 

interpret the content of the procedural knowledge units in more detail. This requires that the 

MTT be able to interpret how procedural knowledge units access and manipulate the content 

of WM.

Semantically rich declarative knowledge units

In order to provide instructions about how to execute specific procedural knowledge units, 

the MTT needs to be able to interpret their full content, not just their hierarchical structure
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and the organization of their execution. For production rules, this implies that the MTT needs 

to be able to analyze the application condition of a rule to determine which objects from WM 

are useful to the rule, and how the rule manipulates those objects.

To manipulate objects from WM, production systems offer one type of declarative 

knowledge unit: working memory elements (WMEs). WMEs are practically expressive, as a 

WME is composed of a set of untyped attributes, but their structure is not a rich source of 

information regarding their usage. Since the attributes are not typed, the MTT cannot analyze 

the links between the different types of WMEs. Thus, it is not possible to distinguish the role 

of a particular WME to determine whether it models the task itself, a mental calculation, a 

mental representation of the learning environment or a goal.

Astus

Three main features have been added to Astus's knowledge representation system in order to 

extend the classical representation of declarative knowledge in MTTs. First, declarative 

knowledge units can be of three types: concepts, relations and functions. Second, the manipu­

lation of declarative knowledge units is restricted to a small number of task-independent op­

erators whose semantics is known to the MTT. Third, task-dependent manipulations of de­

clarative knowledge units are achieved through a fixed interface that the MTT can interpret. 

Since the semantics of these features is known to the MTT, it has the capability to include 

them in the pedagogical interventions it generates.

The first type of declarative knowledge unit defined in Astus is a concept: a pedagogically 

relevant abstraction used to model the task’s objects. The concept is defined by a set of fea­

tures that are essential to the description of the object. Each feature has a type that is either an 

atomic value (numbers, symbols, Booleans) or a reference to another concept. For example, 

in our MTT for the insertion of elements into an AVL tree, the concept "Node" has only one 

feature: the node's content (a number).

Astus allows inheritance between concepts in order to further specify the type of an object. 

For example, the "Node" concept can be specialized as a "BinaryNode" which adds two new
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features to the object: a left and a right pointer to the node's sub-trees. Likewise, the 

"AVLNode" concept is a specialization of a "BinaryNode" containing a balance factor. Con­

cept inheritance can be either asserted directly or dynamically inferred from the values of the 

object's features. For example, a "BinaryNode" can be classified as a "Leaf' when both of its 

pointers are null.

In addition to concepts, Astus's knowledge representation system allows authors to define 

relations and functions to model links between objects. A function is defined by a list of ar­

guments and an image (these variables can refer to atomic values or concepts). For example, 

in our AVL MTT, the function "parentOf' has one argument, a node, and returns its parent 

node as an image. Similarly, relations are defined by lists of places. For example, the relation 

"childOf' identifies whether a specific node is a child of another one. This relation has two 

places, two nodes, and is instantiated if the value of the first place is a child of the value of 

the second one. As for concept inheritance, functions and relations can be either asserted or 

inferred.

In order for procedures to interact with the content o f WM, Astus provides task-independent 

operators and an interface for task-dependent manipulations. The task-independent operators 

are Boolean operators to express conditions and navigation operators to access the features of 

an object. For example, the navigation operator *" can be used to obtain the value of a fea­

ture called "content" from an instance of the concept “Node” ("node —*• content"). Boolean 

operators can be used to check whether an object is an instance of a specific concept (isA), 

whether two variables refer to the same object (same), whether two or more objects are linked 

by a given function or relation (exists), and also to check the order of two objects (greater, 

lesser). These operators can be combined using logical operators (and, or, not).

Task-dependent manipulations of WM are achieved through a query interface specified by 

Astus's knowledge representation system. This interface allows procedures to specify the in­

formation they want to retrieve from WM. In particular, it can specify the type of declarative 

knowledge to retrieve by using the name of the concept, relation or function. Additionally,
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the query interface specifies whether all instances of the desired knowledge units are to be 

retrieved or whether a unique instance is sought.

For example, the query interface allows a procedure to retrieve all instances of the concept 

"Leaf' by using the instruction "all (Leaf) Likewise, the query "unique (Leaf) " re­

trieves an instance of the concept "Leaf' and ensures that it is the only instance of this con­

cept in the WM. Queries can also be used to retrieve instances via relations and functions. For 

functions, the query will retrieve the image of a function's instance. For example, 

"unique (parentOf, [node] ) " will retrieve the parent (image of the function) for the 

argument node. A relation query will return the objects associated with the free place (the one 

that is not constrained by the query). For example, "all (childOf, [_,
parentNode]" will return all the children of a node, whereas "unique (childOf, 
[childNode, _] ) " will return the unique parent of a node. It is also possible to filter the 

results of a query according to a logical condition, using the keyword "where". For example, 

the query "all (Node, wheref not (same ($e -► leftPointer,
nullPointer) ) }) " will retrieve a set containing all of the instances of the concept

"Node" and will then filter the result to find the ones for which the feature "leftPointer" is not 

the same as the variable "nullPointer" J 3  The result of the query will thus be all of the nodes 

that have a child to the left.

Astus's query interface allows it to interpret how procedures access and manipulate the con­

tent of WM, even though it does not have the capability to interpret how the requested infor­

mation is produced. For example, Astus can access the content of a query to explain to the 

learner that he/she needs to retrieve all the nodes that are leaves (task-independent access), 

but it cannot explain why a specific node is a leaf, since this classification is achieved 

through task-specific processes.

The "w h e re"  clause is evaluated for each node retrieved by the query, with the variable "Se" taking the value o f  specific 

nodes.
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Next-step hints

Astus can improve the interventions it generates by providing information about how proce­

dures access WM and how they manipulate the retrieved objects. In particular, the hints gen­

erated can specify the objects that should be passed as arguments for each sub-goal of a pro­

cedure and detail the conditions defining the procedure's behavior.

With this information, we can provide additional instructions when generating next-step 

hints. Until now, we have only used the procedural graph and the procedure type. By using 

all the information contained in a procedure's script, Astus is able to generate more complete 

hints. First, we can look at the script for the Plnsert procedure and its parent goal GInsert:^

Goal 'Glnsert' eng-name 'insert an element1 { 
param 'tree' type 'Tree' eng-name 'tree1 
param 'element' type 'int' eng-name 'element to 

insert'
}

Fully ordered sequence 'Plnsert' achieves 'Glnsert' { 
goal ' GInsertSubTree' using 'tree -> root',

'element' 
goal 'GUpdate' with 'tree' 
goal ' GCheckBalance' using 'tree -«■ root'

}

This procedure makes very limited use of Astus's interface for the manipulation of the WM 

objects. The only manipulation is to access the root of the tree in which the insertion is taking 

place. For this procedure, Astus can improve the generated hint by indicating which objects 

should be used as arguments for the sub-goals:

* ̂  The goal's script shows an example o f how the textual names used by the MTT to generate its messages are encoded by 

the author as part o f  the goals, concepts, functions and relations, using the keyword "eng-name".
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In order to insert an element, you need to do the fol­
lowing in the correct order:
1) insert in a sub-tree using the root of the tree and 
the element to insert
2) update using the tree
3) check for imbalances using the root of the tree

For a conditional procedure such as PInsertSubTree, being able to interpret the access to WM 

allows Astus to detail the conditions used to decide which sub-goals should be executed. 

These conditions are defined in the procedure's script:

Conditional 'PInsertSubTree' achieves 'GInsertSubTree'
{

if lesser ('element' , 'node ->• content')
goal 'GInsertLeft' using 'node', 'element' 

if greater ('element' , 'node -► content')
goal 'GinsertRight' using 'node', 'element'

}

By analyzing the content of these conditions, the MTT can include them in its hints:

In order to insert in a sub-tree, you need to either 
insert to the left, if the element to insert is less 
than the content of the node, or insert to the right, 
if the element to insert is greater than the content 
of the node.

Finally, the hint generated for PSubtract can also be improved using the information con­

tained in the procedure's script:

Ordered For-Each 'PSubtract' achieves 'GSubtract' { 
iterator 'column' from 'task — columns'
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g o a l  ' G S u b t r a c t C o l u m n ' w i t h  ' c o l u m n '

}

In order to subtract, you need to subtract a column 
for each of the columns of the task.

The previous examples make use of all the information available in the procedure's scripts to 

generate next-step hints. In order to continue improving the interventions generated by Astus, 

it needs to have access to information regarding the execution context for specific instances 

of the procedures. We must thus define how Astus traces the learners' steps and ensure that 

the tracing process can be easily interpreted.

TRACING IN ASTUS

When an MTT created with Astus is used to perform a task, the procedural knowledge con­

tained in the procedural graph is instantiated to produce an episodic tree (Figure 4), a task 

tree dynamically generated according to the state of WM. To achieve this, starting from a 

task's main goal, the procedure associated with this goal is executed. Its queries and condi­

tions are evaluated to determine the behavior of its script and its sub-goals are instantiated. 

According to the script, the sub-goals can be instantiated as currently executing (E) or wait­

ing (W). The same process is applied recursively for each of the new executing goals.
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Figure 4 - Procedural graph from a floating-point number conversion MTT (left) and its in­

stantiation as an episodic tree (right). Units marked (E) are currently executing, (W) are wait­

ing and (C) are completed

For example, when executing a sequence procedure, depending on its order constraints, all its 

sub-goals might be instantiated in the executing state or some might be instantiated as waiting 

{PConvertToFloatingPoint in Figure 4). In the case of conditional procedures, the execution 

of the procedure will instantiate only one sub-goal, depending on the evaluation of the condi­

tions contained in the procedure's script (Figure 5a). As a final example, a for-each procedure 

will evaluate the sequence of objects on which its sub-goal should be repeated and will in­

stantiate one sub-goal for each of the objects from the sequence. Depending on whether or 

not the order is important for the iteration's execution, the episodic tree might contain only 

one executing goal, with the other marked as waiting (Figure 5b).

Cond ■j
OR

(A)

OR Unordered

<^For-«ach (E^>

G1 (W) G1 <W>

(B)
Ordered

Figure 5 - Instantiation in an episodic tree of a conditional procedure (A) and a for-each pro­

cedure (B)
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Astus uses the episodic tree to trace the learner’s steps. In this tree, the leaves are either prim­

itive procedures or goals waiting to be expanded in the future. When the learner performs a

step, it is compared to each of the tree's primitive procedures to find a match J  5 if n0 match is 

found, the step is marked as off-path and is considered erroneous. If a match is found, the 

step will either be attributed to a known error, if one of its parent procedures is marked as 

erroneous, or be considered a correct step. When the step is considered correct, the state of 

the primitive procedure associated with it is changed to completed (C) and the tree is updated 

accordingly.

Starting from the newly completed primitive procedure (one of the tree's leaves), its parent 

goal is also marked as completed. Then, the individual goals and procedures are updated, go­

ing upward through the tree towards the root. A goal is marked as completed if its child pro­

cedure is completed. Procedures are updated according to their scripts. A conditional proce­

dure is marked as completed once the selected sub-goal is completed. For sequences, sub­

goals marked as waiting are executed if their order constraints are satisfied and the procedure 

is completed when all of the sub-goals are completed. For-each procedures have a similar 

behavior to sequences. A loop procedure is marked as completed when its iteration condition 

is met, otherwise the script creates a new instance of the sub-goal. A task is considered com­

pleted once the tree’s root goal is completed,

Next-step hints

Using the content of the episodic tree allows Astus to contextualize the hints it generates ac­

cording to the current state of the task. This includes taking into account the results of condi­

tional expressions when selecting a sub-goal and adapting hints for procedures that are par­

tially completed.

* ̂  If more than one match is available for a step, this will cause an ambiguity that will be resolved in the following steps.
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Figure 6 - Episodic trees associated with the three generated hints

For a partially completed sequence procedure such as PInsert, the generated hint can be mod­

ified to focus on the next goal the learner should accomplish. If the first sub-goal 

{GInsertSubTree) has already been successfully achieved (Figure 6), the generated hint can 

notify the learner and explain what his/her next objective should be:

You are currently doing insert an element, you already 
did insert in a sub tree, your next objective should 
be to update using the tree.

For a conditional procedure (GInsertSubTree), only one of its sub-goals is instantiated in the 

episodic tree (Figure 6). Thus, it is not necessary for the generated hint to list all the possible 

conditions. The hint can focus the learner's attention on the currently executing goal:

In order to insert in a sub-tree, you need to insert 
to the right since the element to insert is greater 
than the content of the node.

Finally, for the procedure PSubtract, a for-each procedure, the MTT can offer additional in­

formation concerning the number of sub-goals left to complete:

In order to subtract, you need to subtract a column 
for each of the columns of the task. You have already 
completed this for the first 2 columns. You must re­
peat the process for the 2 remaining ones.1^

*6 Interface highlights can be used as a supplement to the help message to visually indicate the remaining columns.



The examples we provided to illustrate the generation of next-step hints are a small subset of 

the templates that can be used to generate hints. The instructions given for any of the proce­

dures can be adjusted to specific learning situations. One hint might provide information re­

garding the procedure's queries whereas another does not, or a hint may or may not specify 

the sub-goals’ arguments. Hints may be specific to the current state of the task or more ab­

stract. The choice of the template's content depends on the pedagogical strategy applied by 

the MTT.

The hints provided by Astus are currently generated using task-independent templates filled 

with task-dependent content extracted from the model of the task. This method limits the 

readability of the generated hints. One step towards improving them would be to use natural 

language generation techniques.

NEGATIVE FEEDBACK

The same features that allowed the generation of next-step hints can also be applied to addi­

tional types of interventions. The second type of intervention we implemented in Astus is 

negative feedback on error. Drawing inspiration from the Sierra theory [30], we designed a 

method by which Astus can diagnose errors from the learner’s off-path steps in order to pro­

vide negative feedback.

Sierra

Sierra is a theory to explain the origin of learners' procedural errors [30], It proposes plausible 

cognitive processes that could lead learners to execute incorrect steps. According to this theo­

ry, errors can be observed when learners face impasses -  situations in which their current 

knowledge of the task is insufficient to perform it -  and try to repair them. The combination 

of an impasse and a repair strategy determines the learner's erroneous behavior.
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Three types of repair strategy are proposed: no-op, back-up and barge-on. When the no-op 

strategy is applied, the learner ignores the goal he/she does not know how to accomplish. The 

back-up strategy is very similar to no-op, but, instead of simply ignoring his/her current goal, 

the learner returns to a previously unfinished goal and resumes from that point. Finally, when 

the barge-on strategy is applied, the learner modifies his/her procedural knowledge in order to 

resolve the impasse.

The Sierra theory has been validated by creating a computational model of learning that in­

cludes the impasse and repair processes. This model was applied to the subtraction task and 

has successfully modeled the acquisition of multiple errors observed in learners’ behavior. 

Despite this success, little effort has been made to incorporate elements of the Sierra theory 

into tutoring. Applying this theory in Astus would improve the resulting MTTs by allowing 

them to diagnose many of the learner’s errors without the need for erroneous knowledge 

units, thus reducing the effort required to provide negative feedback on error similar to that 

offered by REACT's impasse-driven tutoring [12].

Error diagnosis

Taking our inspiration from Sierra, we designed a method that allows Astus to diagnose 

many of the learner’s errors. We have shown in a previous paper [22] that Astus's knowledge 

representation system is compatible with the assumptions formulated in Sierra and that Astus 

can automatically disrupt procedural knowledge units to model erroneous behaviors analo­

gous to those resulting from Sierra's impasse and repair process. In this section, we show how 

our Sierra-inspired method is used to diagnose learners' errors.

©

©
©
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Figure 7 - Construction of an ordered list of all the procedures that might have been the 

source of the learner's impasse. The next correct step is pp3; p p l and both instances of pp2

have already been completed.

In Astus, the episodic tree contains all the steps that are predicted by the MTT's executable 

model of the task. When an off-path step is executed, Astus attempts to diagnose the learner's 

error by manipulating the content of the episodic tree to try to instantiate a step that matches 

the learner’s off-path step. To generate a diagnosis, the MTT starts by searching the tree to 

identify all the complex procedures that might be the source of the learner's impasse. The re­

sult is an ordered list of procedures, with the first ones being those closest to the steps con­

tained in the tree. Figure 7 illustrates the process o f constructing this list. A depth-first search, 

exploring the branch that explains the learner's last step and the currently executing branches, 

is carried out, starting from the tree's root (Goall). The branch that explains the last step (the 

second instance of pp2) is searched first, as its incorrect execution might explain errors in 

which the learner considers a procedure, such as Loop, as not completed even though in fact 

it is. Steps completed prior to that one are ignored. The complex procedures encountered dur­

ing the search are added to the ordered list after their sub-goals have been completely 

searched.

Seq1(iT

iG o a U  (W) |

Figure 8 - Result of the interpolation. The interpolated goals are marked with an (I).

For each procedure identified by this search, Astus interpolates the steps resulting from its 

incorrect execution by examining how it can be incorrectly executed. Figure 8 shows exam­

ples of interpolation applied to the episodic tree from Figure 7. First, the learner might use a 

barge-on repair to modify the condition of the Loop procedure, thus repeating its sub-goal
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(Goal6). Likewise, he/she might modify the conditional procedure's (Cond) conditions 

(barge-on) and achieve the wrong sub-goal (Goal8). Finally, he/she might use the back-up 

repair to avoid having to complete a current goal (Goal3) and instead try to achieve a sub­

goal (Goal4) that is still waiting for the completion of a previous one.

When interpolating procedures, the MTT can also apply a process similar to the barge-on 

repair strategy to modify how the procedures access WM. When querying WM to access an 

instance of a function or a relation, the interpolation process can replace the accessed relation 

or function by a similar one (one that is defined over the same concepts). In our subtraction 

MTT, this can cause the function differenceOf, which takes two integers as its arguments and 

has one integer as its image, to be replaced by the similar function sumOf. Likewise, the in­

terpolation can swap two arguments that are of the same type. For example, in our AVL 

MTT, the function heightDifference computes the difference in height for two sub-trees. 

When applying the argument swap interpolation, Astus will inverse the two sub-trees to pro­

duce behaviors such as 5 - 6 = -1 instead of 6 - 5 = 1 (with 5 and 6 being the value of the 

heights for the two sub-trees passed as arguments). Astus can also apply a barge-on repair 

when using the access operator (—») and access the wrong feature of a concept. This can only 

be applied if both the original feature and the incorrect one are references to objects of the 

same type. In our AVL MTT, this repair can have the effect of accessing a node's left pointer 

(node —► leftPointer) instead of its right pointer (node —> rightPointer).
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Figure 9 - Our MTT for the insertion of elements into an AVL tree. The learner has per­

formed an off-path step that was diagnosed by the MTT.

Astus uses the set of all interpolated steps to try to find a match for the learner's off-path step. 

If such a match is found, the branch of the episodic tree containing the interpolated step is 

used as a diagnosis of the learner's error. It is possible that multiple interpolated steps match 

the learner's off-path step. In our current implementation, such an ambiguity is resolved by 

using the simplest interpolation (the one with the least repairs) as the diagnosis, but it would 

be possible to use additional information, such as the learner model, to resolve the ambiguity. 

Once a diagnosis has been produced, the MTT can use it to react to the learner's step.

Feedback generation

When Astus diagnoses an off-path step, it can generate negative feedback. To achieve this 

behavior, we use Astus's capability to generate interventions by examining the content of the 

task model. In this section, we give examples of the negative feedback generation taken from 

our MTT for the insertion of elements in an AVL tree (Figure 9).
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Figure 9 illustrates a task where the value 18 needs to be inserted into an existing AVL tree. 

The learner has reached the node containing the value 15 and must decide on which side of 

this node to continue the insertion process. Figure 10 shows part of the episodic tree for this 

specific state of the task. The procedure PInsertSubTree is a conditional procedure that de­

termines whether the new value should be inserted to the left or to the right of the current 

node. As the value 18 is greater than 15, the goal GInsertRight is instantiated by 

PInsertSubTree and the learner has to insert to the right of the current node.
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Figure 10 - Part of the episodic tree for the insertion of 18 and the interpolated branch for the

off-path diagnosis.

The next step for the learner is to create a new node {ppCreateNode) to the right of the cur­

rent one. If he/she executes the similar step of creating a new node to the left, Astus will try 

to diagnose this off-path step by interpolating new branches in the episodic tree. Starting 

from the procedure PInsertSubTree (Figure 10), Astus will instantiate the goal GInsertLeft to 

interpolate the behavior of incorrectly executing PInsertSubTree. This interpolation will lead 

to an instance of the primitive procedure ppCreateNode that corresponds to the learner's step. 

Having found a match for the off-path step, Astus will use this interpolation as the diagnosis 

for the learner's error.

To produce feedback on errors, Astus associates a feedback template with every type of error 

that it can diagnose. In the above example, the source of the errors is a barge-on repair exe­

cuted on the conditional procedure PInsertSubTree. As the learner did not fully understand 

when to insert to the left or to the right, he/she incorrectly chose to insert 18 to the left of the
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current node (GInsertLeft). Using this diagnosis, Astus can provide feedback by instantiating 

the corresponding template:

You should [correct sub-goal name] instead of [used 
sub-goal name] since [condition for the correct goal].

Using the content taken from the PInsert Sub Tree's script (page 65), the negative feedback can 

be instantiated (Figure 9 shows how this feedback is communicated to the learner):

You should insert to the right rather than insert to 
the left since the element to insert is greater than 
the content for node.

A second example of an error can be observed in our AVL MTT when the learner calculates 

a node's balance factor. This is achieved by subtracting the height of the right sub-tree from 

the height of the left sub-tree (left height - right height). A common error occurs when the 

learner does not remember which height to subtract from the other and performs the opposite 

subtraction (right height - left height).

When interpolating the episodic tree to diagnose this error, Astus will encounter the proce­

dure PUpdateBalanceFactor. This procedure queries WM for an instance of the function 

heightDifference that takes two pointers to sub-trees and returns the difference of their 

heights. While interpolating, Astus will try to incorrectly execute this query to identify the 

erroneous behaviors it would cause. One way to incorrectly execute the query is to invert the 

function's two arguments. This will result in the error of subtracting right height - left height. 

Using this diagnosis, Astus can instantiate a feedback template:

While trying to [goal name], you have inverted the 
[pair of arguments] for the [function name]. You 
should have used [correct arguments].

The instantiation of this template will result in the following feedback:
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While trying to update the balance factor, you have 
inverted the first term and the second term for the 
height difference. You should have used the left

pointer as the first term and the right pointer as the 
second term.

Astus can adapt the templates used to generate its negative feedback according to the desired 

pedagogical strategy. An experiment by McKendree [14] evaluated the effectiveness of goal- 

oriented feedback on error and feedback explaining the reason for an error. According to this 

experiment, goal-oriented feedback is the most useful for the learner as it helps him/her cor­

rect his/her mistake and it also seems to have beneficial effects on subsequent encounters 

with the problematic knowledge. It can be combined with feedback explaining the reason for 

the error, a type of feedback that can improve later performance, but does not indicate how to 

correct the error. The feedback we provide uses a combination of pointing to the correct goal 

and explaining the cause of the error.

The format we chose is also advantageous in situations where Astus's diagnosis does not ac­

curately identify the source of the learner's error. In those situations, we expect learners will 

still benefit from the MTT's interventions, since Astus provides goal-oriented feedback that 

not only explains the error, but also indicates what should be done next.

EMPIRICAL RESULTS

We have shown how Astus can use its knowledge representation system to generate pedagog­

ical interventions and given examples of two types of such interventions: next-step hints and 

negative feedback on error. In this section, we present the results o f five experiments con­

ducted with students from the computer science department at the Universite de Sherbrooke. 

The purpose of the experiments was to obtain an initial assessment of the effectiveness of the 

generated interventions.
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Next-step hints

We evaluated the next-step hints generated by Astus in the context of a floating-point number 

conversion MTT that was used in a system programming course. This section presents a 

summary of three experiments that are described in more detail elsewhere [25, 24].

The objective of our first experiment [25] was to compare learning gains and student assess­

ment for next-step hints generated by Astus to those for hints authored by a teacher. In this 

experiment, 34 students were divided into two groups: 19 students received teacher-authored 

hints I? (TH) and 15 received framework-generated hints (FH). The statistical analyses of the 

results (illustrated in Figure 11 and summarized in Table 1) did not show a significant differ­

ence in learning gains between the two conditions.

Table 1 contains the results of four statistical tests. First, we used a two-sample t-test to com­

pare the pretest scores for the two conditions. Then, we used paired t-tests to evaluate the 

learning gains between the pretest and the posttest for both conditions. Finally, we used an 

ANCOVA to evaluate the difference in the posttest scores between the two conditions, using 

the pretest scores as a covariate. Figure 11 (left) shows the similar learning gains (slope) be­

tween pretest and posttest for the TH and FH conditions. Figure 11 (right) shows the stu­

dents’ subjective assessment of hints from four different types of procedures: loop, condi­

tional, sequence with more than one sub-goal (sequence N) and sequence with only one sub­

goal (sequence 1). A score of 0 indicates a strong preference for the generated hints and a 

score of 4 indicates a strong preference for those authored by a teacher.

*7 The teacher-authored hints were encoded as text templates similar to those used by Cognitive Tutors.
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Figure 11 - The results of our first next-step hint experiment. The character indicates sta­

tistical significance (** for p  < 0.01 and *** for p  < 0.001).

Table 1 - Summary of the statistical analysis for our first next-step hint experiment.

Stat P Effect size Power

Pretest scores /(32) = -1.258 0.218 d  = 0.43 22.67%

Learning gain (NH) /(14) = -3.485 0.004** d=  0.79 89.65%

Learning gain (WH) t(18) = -4.926 <0.001*** d -  0.86 97.49%

ANCOVA F(l, 31) = 0.234 0.632 il2p = 0.0075 7.56%

Our first experiment did not find any significant difference between framework-generated 

and teacher-authored hints, but does not validate that the students' learning gains can be at­

tributed to the hints they received. The observed gains could simply be caused by the activity 

of performing the task using an MTT. To determine whether next-step hints were helpful, we 

conducted a second experiment [24] comparing the learning gains of an MTT without next- 

step hints (flag feedback only) to those of an MTT that also provided framework-generated 

hints. A group of 32 students was divided into two sub-groups: 16 students used an MTT that 

provided no hints (NH) and 16 students used an MTT with framework-generated hints (WH). 

The results of this experiment are summarized in Table 2 and shown in Figure 12 (left).

Table 2 - Summary of the statistical analysis for our second next-step hint experiment.
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Stat P Effect size Power

Pretest scores /(23.629) = 0.576 0.570 d = 0.20 8.50%

Learning gain (NH) t(15) = 6.213 <0.001*** d=  1.35 99.89%

Learning gain (WH) /(15) = 5.550 <0.001*** d=  1.37 99.91%

ANCOVA F(l, 29) = 3.057 0.046* t l 2 p  = 0.091 39.40%

To further validate the results of our second experiment, we conducted a third one using the 

same two conditions with 33 learners: 16 for the NH condition and 17 for the WH one. The 

results of our third experiment are summarized in Table 3 and shown in Figure 12 (right).

Table 3 - Summary of the statistical analysis for our third next-step hint experiment.

Stat P Effect size Power

Pretest scores

00dif 0.753 c/= 0.11 61.00%

Learning gain (NH) t( 15) = 2.970 0.010** d=  0.52 49.46%

Learning gain (WH)

oIICo" <0.001*** d = 0.77 86.64%

ANCOVA F(\, 30) = 2.818 0.052 t]2p = 0.086 36.40%

Discussion

The results from our first experiment suggest that, for our floating-point conversion MTT, the 

nature of the next-step hints (framework-generated or teacher-authored) did not have a signif­

icant impact on learning gains. This is supported by the fact that both conditions had signifi­

cantly higher posttest scores, with similar effect sizes (d=  0.79 and d -  0.86). Additionally, 

the ANCOVA comparing the posttest scores of the two conditions, using the pretest scores as 

a covariate, did not show a significant difference and had a very low effect size (r|2p =
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0.0075). The similar slopes for the two conditions in the graphical visualization of the stu­

dents’ scores also suggest similar learning gains (left of Figure 11).

The second experiment was conducted to ensure that the use of next-step hints had a signifi­

cant effect on learning gains and that the learning gains observed in our first experiment were 

not merely a consequence of using an MTT to perform the task. Both conditions had signifi­

cant learning gains, with very similar effect size (d = 1.35 and d=  1.37). Although the mean 

gain between pretest and posttest was higher for the WH condition (M = 5.63) than for the 

NH condition (M= 3.93), the similar effect size might be due to the higher standard deviation 

for WH's pretest scores (SD = 3.30) than for NH's pretest scores (SD = 2.34). The effect size 

for WH would have been higher if its standard deviation had been closer to that of the NH 

condition. The result of the ANCOVA was significant, with an effect size of r|2p = 0.091, 

which seems to indicate that the framework-generated hints provided to the students did im­

prove learning gains. Finally, the steeper slope for the WH condition in Figure 12 (left) also 

suggests that the next-step hints were beneficial.

Learning gains
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Figure 12 - The results of our second (left) and third (right) next-step hint experiments

The results of our second experiment suggest that the framework-generated hints had a posi­

tive impact on learning gains, but its statistical power was low. We therefore conducted a 

third experiment to try to reproduce similar results. Both the NH and the WH conditions 

showed significant learning gains, although the higher effect size for WH (d -  0.77) seems to 

indicate that the hints had a positive impact on the students' learning gains. The ANCOVA 

was not statistically significant, but its effect size (rj2p = 0.086) was very similar to that ob­
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tained in our second experiment (r|2p = 0.091) and the results of the test were close to a statis­

tically significant difference (p = 0.052). These two facts suggest that a more powerful test 

could have found a significant difference. Finally, the steeper slope for the WH condition in 

Figure 12 (right) suggests greater learning gains when receiving next-step hints.

Overall, the results of our experiments suggest that our framework-generated hints have a 

positive impact on learning gains that is similar to that of teacher-authored hints. Additional 

experiments could improve our empirical validation by reproducing similar results for differ­

ent tasks. Such results would suggest that the efficiency of our generated hints can be gener­

alized to multiple types of task of different complexity. It would also be very helpful to use 

learners with no background in computer science. In our experiments, the learners were com­

puter science students with a facility for understanding computer-generated hints. Experi­

ments conducted with learners of more varied backgrounds would be interesting, as they 

would allow us to better evaluate the impact of hint readability on learning gains.

Negative feedback

We conducted two experiments in a data structure course, using an MTT for inserting ele­

ments into an AVL tree (Figure 9). The objectives of the first experiment were to evaluate 

whether the diagnoses produced by our MTT were accurate and whether the negative feed­

back produced by the MTT helped the learner. The second one was designed to analyze logs 

of the students’ interactions with the MTT.

In the first experiment, our MTT was used by 45 students randomly divided into two groups. 

The first 23 students used an MTT that provided both negative feedback on error and flag 

feedback (WF condition), whereas the remaining 22 students received only flag feedback (NF 

condition). The students were first asked to complete a pretest (20 minutes), then to use the 

MTT (30 minutes) and finally to complete a posttest (20 minutes). Two versions of the test 

(graded on a total of 40) were used. Half the students received the first version as pretest and 

the second as posttest, whereas the order was reversed for the other half.
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At the end of the experiment, students from the WF condition were asked to answer a series 

of questions regarding their perception of the quality of the negative feedback they received. 

Out of 23 students, 22 said they had received feedback while using the MTT. Of those 22, 2 

answered that they received very few feedback interventions (1-3), 11 received few (4-9), 8 

often received feedback (9-15) and 1 very often (16+). Students were also asked to indicate 

whether they agreed or disagreed with 6 statements regarding the feedback (Table 4).

Table 4 - Students’ responses to the feedback assessment questionnaire.

Strongly

disagree
Disagree Agree

Strongly

agree

1. Their content corresponded to my
0 2 13 7

error

2. They helped me perform the task 0 3 8 11

3. They helped me learn how to perform
1 f. 12

the task

4. They were easy to understand 1 8 8 5

5. They hindered my understanding of
15 4 0

the task

A two-sample t-test showed no statistically significant differences (/(43) = -1.503) between 

the students' pretest scores for the WF (M= 20.02; S D - 6 . 32) and NF (M= 23.41; 

SD = 8.67) conditions. The low statistical power (31.06%) and the medium effect size 

(d = 0.45) for this test seem to indicate that a significant difference could have been found 

with a more powerful test.

Paired t-tests were used to assess the learning gains between pretest and posttest. Both the 

WF (t(22) = -7.400, p  < 0.001) and NF {t{2\) = -4.252,p  < 0.001) conditions showed signifi-
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cant gains. The condition-WF pretest (M = 20.02; SD = 6.32) and posttest (A/= 27.61; 

SD = 7.44) scores indicate a large effect size (<7= 1.09) and the condition-NF pretest 

(M -  23.41; SD = 8.67) and posttest (M= 28.27; SD = 9.22) scores indicate a medium effect 

size (d=  0.54). The results are illustrated in Figure 13.

Learning gains
S 40 
»
tji 30

•NF

PosttestP retest

Figure 13 - The results of pretest and posttest results for our negative feedback experiment.

A one-tailed analysis of covariance (ANCOVA), with the pretest scores as the covariate, did 

not show a significant difference between the posttest scores (F(l, 43) = 2.187,/? = 0.074) for 

conditions WF (M a j  = 29.066) and NF (M aj  = 26.749). The power of this test is low (44.25%), 

with a medium effect size (r\2p = 0.049). Table 5 presents a summary of the analysis of the 

learning gains.

84



Table 5 - Summary of the statistical analysis for our negative feedback experiment.

Stat P Effect size Power

Pretest scores /(43) = -1.503 0.140 d  = 0.45 31.06%

Learning gain (NH) t(22) = -7.400 <0.001*** d=  1.09 99.88%

Learning gain (WH) /(21) = -4.252 < 0.001*** d = 0.54 67.98%

ANCOVA F (l, 43) = 2.187 0.074 r|2p = 0.049 44.25%

We conducted a second experiment designed to retrieve logs of the students' interactions with 

the MTT and compile statistics relevant to our diagnosis of errors and the negative feedback 

provided by the MTT. We divided a class of 34 students into two groups: 18 students used an 

MTT providing negative feedback on error (WF) and 16 used an MTT that provided only flag 

feedback (NF). Although the students did complete a pretest and a posttest, we did not use 

this data, as the pretest scores were too strong (more than 25% of the students had perfect or 

almost perfect scores) and did not leave any room for improvement. This might be due to the 

fact that the students had to implement an AVL tree for an assignment due the week after the 

experiment.

We analyzed logs from 30 students: 18 from the WF condition and 12 from the NF condition 

(the logs from 4 students were lost due to issues uploading their data to our servers). In total, 

the students performed 192 tasks (113 for WF and 79 for NF) and executed 1120 off-path

steps (576 for WF and 544 for NF) on 585 different instances of errors. ^  Our MTT was able 

to diagnose as errors, and provide negative feedback for, 381 out o f the 576 off-path steps 

executed by students from the WF condition (66.15%).

* * We consider consecutive off-path steps as being caused by the same error instance.
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A two-sample t-test (r(28) =-1,719,/? = 0.097) showed a marginal difference in the number 

of off-path steps per student for the WF (M=  32.00; SD = 17,38) and the NF 

(M = 45.33; SD = 25.21) conditions. The statistical power of this test was low (34.21%), and 

effect size was medium {d -  0.62).

We examined the number of correct steps executed by a student after an off-path step. For the 

WF condition, the students corrected their errors on the next attempt 65.62% of the times 

they received negative feedback on their error and 38.97% of the times they did not receive 

negative feedback. Overall, the chances of correcting an error, whether or not the MTT pro­

vided negative feedback, was 56.60%. For the NF condition, the students received no nega­

tive feedback and corrected their error on the next attempt 47.61% of the time.

Discussion

The two experiments we conducted had for objectives to assess the quality of the negative 

feedback generated by Astus and its effect on learning. In our first experiment, we asked the 

students to evaluate the quality of the negative feedback they received (Table 4). Almost all 

of the students who received feedback (20 out of 22) agreed that the feedback they received 

accurately identified their errors, but this result is attenuated by the fact that students' subjec­

tive report of the accuracy of feedback can be unreliable. Additional experiments will be re­

quired to formally evaluate the accuracy of Astus's diagnoses.

In addition, the students' evaluation of the negative feedback they received suggested many 

improvements that could be made to increase the efficiency of our feedback. Although most 

students (19 out of 22) answered that the feedback helped them perform the tasks, about a 

third (7 out of 22) also answered that the feedback did not help them leam (Table 4). This 

might be due to the fact that they had difficulty understanding the feedback (9 out of 22). 

With this in mind, it would be necessary for us to improve the readability of the feedback 

generated by our framework. We also intend to use this opportunity to revise the pedagogical 

content of the feedback to maximize its efficiency.
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The pretest and posttest scores of our first experiment were used to evaluate whether the 

learners' performance was improved by negative feedback on error. Although the ANCOVA 

did not show a statistically significant difference between the two conditions, the t-tests eval­

uating the learning gains yielded a much higher effect size (d  = 1.09) for the WF condition 

than for the NF condition (d  = 0.54) (Table 5). This is illustrated by the steeper slope for 

condition WF on the graphical representation of the learners’ scores (Figure 13).

The higher learning gains for the WF condition might be explained by its lower average score 

on the pretest, but the effect size for the ANCOVA, which controls for pretest scores, is me­

dium. This suggests that, although the ANCOVA did not reveal a statistically significant dif­

ference, the difference between the two conditions is meaningful. The observed effect size 

{r\p = 0.049) is about half that obtained for similar experiments measuring the learning gains 

of next-step hints {r\p = 0.091 and r\p = 0.086). This is consistent with what we expected, as 

next-step hints are on-demand help, whereas negative feedback is targeted at specific learning 

situations and is only available on errors for which a diagnosis is possible. Hence, our nega­

tive feedback can only help learners when there is a plausible explanation for their errors, and 

is mainly targeted at learners who have a minimal understanding of how to perform the task. 

It will not help learners who have greater difficulty, as many of their errors will be the result 

of trial and error.

Although the ANCOVA's effect size is consistent with the expected value, a power analysis 

indicated that 122 students would have been required for the test to have a statistical power of 

80%. This is much higher than the number of students per course in the computer science 

department at Universite de Sherbrooke, and it considerably reduced our chances of finding a 

statistically significant difference.

We examined logs from the students' usage of our MTT in our second experiment. Our MTT 

was able to diagnose about two-thirds (66.15%) of the students' off-path steps. Thus, our tutor 

was able to provide negative feedback for many of the learners' off-path steps, but this num­

ber might include diagnosis on minor slips or errors related to using the learning environ­

ment. In those situations, the feedback will not be helpful to the learner.
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We examined how often students were able to correct an off-path step on their next attempt. 

For the WF condition, we observed a higher percentage of correct steps following an off-path 

step for which the MTT provided negative feedback (65.62%) than for one with flag feed­

back alone (38.97%). This difference could be due to the fact that slips, errors related to the 

learning environment and errors that are easy to correct are more often diagnosed by Astus. 

To verify whether this is the case, we compared the total number of correct attempts follow­

ing an off-path step for both the WF and NF conditions. If the negative feedback did not con­

tribute to learners being able to correct their errors, the percentage of correct steps following 

an off-path step should be similar for both conditions. We observed a higher percentage of 

correct steps for the WF condition (56.60%) than for the NF condition (47.61%). This sug­

gests that negative feedback did help learners correct their error more quickly.

Overall, the use of negative feedback seems to have had a positive impact on the students' use 

of our MTT. The number of off-path steps per student was significantly reduced in the WF 

condition and the students in the WF condition seem to have been able to correct their errors 

more quickly.

CONCLUSION

In this paper, we have shown how an MTT authoring framework can be designed to produce 

MTTs capable of using the content of the task model to generate pedagogical interventions. 

To achieve this objective, we proposed, as an extension to classical MTTs, three features of a 

knowledge representation system that facilitates the generation of interventions by modeling 

the teacher’s instructions.

We introduced the individual features (hierarchical procedural knowledge structures, explicit 

procedural knowledge units, semantically rich declarative knowledge units) by comparing 

them to production systems and describing how they are implemented in Astus's knowledge 

representation system. We showed how each feature provides information that can be used to 

generate interventions such as next-step hints and how the combination of these features al­

lows the generation of increasingly complete hints. Likewise, we explained how the infor-
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mation obtained by Astus's tracing of the learners' steps can be used to further specify the 

instructions provided by the hints.

We showed that the features which allow Astus to generate next-step hints can also be used to 

generate other types of interventions. By manipulating the episodic tree used to trace the 

learner's steps, Astus can provide negative feedback on many of his/her errors. To do so, 

Astus can interpolate incorrect executions of the task's procedural knowledge to determine 

whether they provide a plausible explanation of the learner's off-path step.

We presented the results of five experiments conducted in order to obtain an initial assess­

ment of the effectiveness of the interventions generated by Astus. Results from these experi­

ments suggest that the next-step hints generated by Astus can be as effective and as well rated 

as those written by a teacher. Although the results of our two experiments concerning nega­

tive feedback did not show strong statistical results, they gave us great insights on how to 

improve the generation of negative feedback.

One of the main advantages of generated interventions is the capability to customize them. 

The interventions generated by Astus can be customized for different groups of learners, spe­

cific learners within a group or specific learning situations. For example, our hints can be 

generated in different languages (English and French), made culturally aware [8] and consid­

er the learner's emotional state [33]. The available content for the interventions would remain 

the same, but their presentation would vary according to these parameters. Although it would 

be possible for a teacher to author multiple versions of every intervention to take these pa­

rameters into account, having the framework generate them would require much less effort.

In addition to customizing the interventions we generate, we are interested in studying how 

Astus's knowledge representation system can be used to generate additional types of interven­

tions such as worked examples [15], self-explanation prompts [2, 9] and analogies with other 

instances of the task [20]. The generation of such interventions by Astus would aid in investi­

gating their effectiveness for the tutoring of various tasks and their interaction when com­

bined in sophisticated pedagogical strategies.
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Chapitre 3 

Generer les indices par rapport a la prochaine etape

L’article presente dans ce chapitre decrit la methode utilisee par Astus afin de generer des 

indices par rapport a la prochaine etape. Son contenu est similaire aux parties relatives aux 

indices par rapport a la prochaine etape du chapitre 2, mais il est presente dans une perspecti­

ve differente avec des exemples difTerents. L’article presente dans ce chapitre decrit plus en 

detail Panalyse statistique des experimentations qui ont ete faites dans le but de valider de 

fa?on empirique les indices produits par Astus.

Comme pour l’article presente au chapitre 2, la contribution de l’auteur (Luc Paquette) inclut 

la methode pour la generation des indices par rapport a la prochaine etape et les experimenta­

tions utilisees pour valider l’efficacite des indices. L’auteur a contribue a 80 % de la charge 

de travail pour la redaction de cet article.
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Abstract. ASTUS is an authoring framework designed to create model-tracing 

tutors with similar efforts to those needed to create Cognitive Tutors. Its knowl­

edge representation system was designed to model the teacher’s point of view of 

the task and to be manipulated by task independent processes such as the auto­

matic generation of sophisticated pedagogical feedback. The first type of feed­

back we automated is instructions provided as next step hints. Whereas next step 

hints are classically authored by teachers and integrated in the model of the task, 

our framework automatically generates them from task independent templates. In 

this paper, we explain, using examples taken from a floating-point number con­

version tutor, how our knowledge representation approach facilitates the genera­

tion of next-step hints. We then present experiments, conducted to validate our 

approach, showing that generated hints can be as efficient and appreciated as 

teacher authored ones.

Keywords: Hint generation, knowledge representation, model-tracing tutors
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1. Introduction

The “intelligence” of intelligent tutoring systems (ITS) results from their ability to offer rele­

vant pedagogical feedback tailored to the learner’s needs. In order to achieve this objective, 

most systems offer different services [1] such as:

• An expert module that analyzes the task’s model to assess the learner’s progression to­

wards a solution.

• A learner model that assesses the learner’s mastery of the task’s knowledge.

• A pedagogical module that provides relevant feedback.

Ideally, in order to reduce the development costs, those modules would be independent from 

the task. In this context, the creation of a tutor would only require modeling the knowledge 

relevant to the task and implementing the learning environment’s graphical user interface 

(GUI). Unfortunately, it is difficult for a tutor to provide sophisticated feedback using only 

the task’s model. For this reason, the pedagogical module usually relies on domain specific 

content integrated to the model. We designed the ASTUS framework and its knowledge rep­

resentation approach as a step towards solving this problem for model-tracing tutors (MTTs) 

[2],

Our objective is to offer a framework [3] that can take advantage of the content of the task’s 

model in order to generate different types of sophisticated pedagogical feedback [4]. This 

approach is inspired by Ohlsson’s learning mechanisms theory [5]. According to this theory, 

learning can be achieved using nine different mechanisms. Each of these mechanisms can be 

more or less effective according to the learning context and can be activated by different 

types of learning activities and feedback. Tutors, such as those created using ASTUS, would 

greatly benefit from being able to generate feedback targeting a maximum number of those 

mechanisms.
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In order to apply Ohlsson’s [5] theory to our framework, we first focused our efforts on a 

mechanism classically used by MTTs: instructions provided as next-step hints. Whereas most 

MTT provide next-step hints [6, 7], they are usually authored by a teacher and integrated to 

the knowledge units contained in the task’s model. Barnes and Stamper [8] worked on asso­

ciating teacher authored hints to automatically generated task models, but few efforts have 

been made to automate the generation of the hints themselves. The automation of this feed­

back would contribute to the reduction of the efforts required to author MTTs.

The work presented in this paper describe how, using the ASTUS framework’s knowledge 

representation system, we are able to automatically generate next-step hints. We describe, 

and illustrate using examples, the processes of generating hints and we present the results of 

experiments conducted in order to validate our approach.

2. ASTUS

ASTUS is an authoring framework for the creation of MTTs similar to the Cognitive Tutors

[9]. One of its main differences is the use of a novel knowledge representation system instead 

of the more traditional production rule based ones. This system was designed to facilitate the 

manipulation of the task model by task independent processes such as the automatic genera­

tion of pedagogical feedback.

Rather than modeling the cognitive processes used by learners to execute a task, ASTUS’s 

knowledge representation models the teachers’ point of view of the task. The format used to 

model the task is designed to make the content of each knowledge unit explicit. This property 

allows the manipulation of the model by the framework and is crucial for the generation of 

feedback such as next-step hints.

In this section, we present a summary of the main structures of ASTUS’s knowledge repre­

sentation system [2]. Semantic knowledge is modeled using concepts: task specific abstrac­

tions that are pedagogical ly relevant. Each concept defines a set of essential features that can 

refer to other concepts or primitive values (integer, decimal number, symbol, boolean).
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Procedural knowledge is modeled using goals and procedures that together form a procedural 

graph. Figure 1 (left) shows part of the procedural graph in the case of our floating-point tu­

tor. Goals are shown as rectangles and procedures as ovals.

Goals can be achieved by the execution of a procedure (primitive or complex). Primitive pro­

cedures model skills that are considered already mastered by the learners. They are reified as 

atomic interactions in the learning environment’s GUI. Complex procedures specify sets of 

sub-goals the learner has to achieve. Those sub-goals are arranged according to dynamic 

plans specific to the procedure’s type (a sequence, a selection or iteration). Both procedures 

and goals can specify variables (parameters) used to refine their behavior.

During the tutor’s execution, goals and procedures are instantiated in order to produce an epi­

sodic tree (right of figure 1). This tree contains all of the completed (C) or currently execut­

ing (E) goals and procedures as well as goals that will be expended in the future (W). The 

episodic tree is used to match the learner’s steps and indicate whether they are valid or not. 

This is achieved by using the complex procedures’ scripts to expand the tree up to each of the 

possible next-steps.

3nwFI«H(C)

3janFil<l ( C ) ^
_T~̂'" ilT

Figure 1 - Examples of part of the procedural graph (left) and its instantiation as an episodic 

tree (right) for our floating-point number conversion tutor

3. Hint Generation

Since the task’s model is defined using structures that the framework can manipulate, it is 

possible to automatically generate pedagogical feedback such as next-step hints. To achieve
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this, the framework mainly benefits from the information contained in the procedural graph 

and the episodic tree.

We distinguish two main features for hints: their structure (independent from the task) and 

their content (specific to the task). We defined the structures of our hints as text templates to 

be filled using task specific content extracted from the knowledge units defined in the task’s 

model.

We illustrate the process of next-step hint generation using a conditional procedure from our 

floating-point conversion tutor. More precisely, this example is taken from the sub-task of 

converting a decimal number to a binary format. The following procedure is used while con­

verting the integer part of a decimal number:

Conditional procedure 'PCDividelnt' achieves 'GDividelnt' { 
if 'current_line' instanceOf 'FirstLine'

goal 'GDividelnitiallnt' with 'int', ’current_line' 
if not ('current_line' instanceOf 'FirstLine' ) 

goal 'GDividePrevQuotient' with 'current_line'
}

The definition of this procedure contains information that can be used by the framework in 

order to generate next-step hints. The header contains the procedure’s identifier (PCDi­

videlnt) and the identifier of the goal it achieves (GDividelnt). The body of the procedure 

specifies two sub-goals that are available to the procedure (GDividelnitiallnt and GDivide­

PrevQuotient) and the parameters that will be used to instantiate them. The body also speci­

fies two conditions (one for each sub-goals). In addition, the procedure’s type (conditional) 

specifies how it will be executed: the conditions will be evaluated and the sub-goal associated 

with the first condition evaluated as true will be instantiated.

Once we have determined the content available for the generation of hints, we can choose the 

structure of the desired hint. For instance, the definition of a conditional procedure could be 

used to generate a “pointing-hinf’:
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You n e e d  t o  [ p a r e n t  g o a l  name]

This message can be instantiated using the information contained in the parent goal to be­

come:

You need to divide the integer.

The text used in the message comes from the name associated to the GDividelnt goal:

Goal 'GDividelnt' eng-name 'divide the integer' { 
parameter 'int' type 'Integer' eng-name 'integer' 
parameter 'current_line' type 'IntLine' eng-name 'current 
line'

}

In fact, all of the domain specific text used to generate hint messages comes from the name 

associated to the knowledge units. This approach requires less effort than asking a teacher to 

write each hint, especially if multiple hints are associated to the same knowledge unit or the 

hints have to be translated in multiple languages.

The first “pointing-hinf ’ message is abstract and does not provide much help regarding how 

to execute the procedure. In fact, this template could be used for any type of procedure. Pro­

ducing more helpful messages requires more specific content. We can examine how a condi­

tional procedure is executed (select the appropriate sub-goal) and combine this information 

with the knowledge of the available sub-goals to produce the following hint:

In order to [parent goal name], you must either [sub-goal 
name] or [sub-goal name].

Which would be instantiated as:

In order to divide the integer, you must either divide the 
initial integer or divide the previous quotient.
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While this hint is more explicit regarding how to execute the procedure than the “pointing- 

hint”, it could still be made more specific. In order to solve this problem, the tutor can refer to 

the conditions associated to each of the sub-goals.

The conditions are explicitly defined using a combination of logical expressions (and, or, not, 

exists, islnstance, equals). This information can be used to generate hints by starting from a 

condition’s root expression and generating hints for each of its sub expressions. During this 

process, the “not” expression can be used as a modifier for a “positive” attribute that impacts 

the templates used to generate each expression’s hint. Table 1 presents the different templates 

we used for each expression types.

Table 1 - Templates associated to the conditions’ expressions. The bracketed text indicates a 

sub template and the parenthesis indicates whether a sub expression is positive (T) or not (F)

Positive not and or exists islnstance equals

True [expr( F)]

[expr/(T)] 

and

[expr,(T)]

or

a[con­

cept]
[var] is a 

[concept]

[varl]

equals

[expr2( T)] [expr2{ T)] exists [var2]

False [expr{ T)]

[expri{ F)] 

or

[expr 2^ )]

[expr /(F)] 

and 

[expr2( F)]

no [con­

cept] 

exists

[var] is not 

a [concept]

[varl] does 

not equal 

[var2]

Using those templates, the previous hint can be modified to provide additional instruction 

regarding when to apply each of the procedure’s sub-goals. The condition expressions de­

scribed in the “PCDividelnt” procedure (defined previously) can be used to generate mes­

sages that are integrated to the hint:

In order to divide the integer, you must either divide the 
initial integer, if current line is a first line, or divide

the previous quotient, if current line is not a first line.
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This hint takes advantage of all of the information contained in the procedure’s definition, but 

can still be modified by using the information contained in the episodic tree regarding the 

current state of the problem being solved. This can be used to reduce the size of the hint and 

to focus the learner’s attention on the correct sub-goal:

In order to [parent goal name], you must [active sub-goal 
name] since [active condition].

Which would be instantiated as:

In order to divide the integer, you must divide the initial 
integer since current line is a first line.

This last template is the one currently used by our framework, but this decision is specific to 

how we decided to provide next-step hints. Any combination of one or more templates (those 

given as examples or new templates using the available information) can be used to provide 

next-step hints.

The examples given in this section show how the information contained in the definition of 

knowledge units can be used to generate next-step hints. Those hints can be customized ac­

cording to the desired pedagogical strategy: they can provide different amounts of instruction 

and they can be contextualized using the current state of the learning environment. The cur­

rent implementation uses text templates in order to generate the hints, but could be improved 

by using natural language techniques. For instance, in our previous examples, the condition 

expression “current line is a first line” could be rewritten as “the current line is the first line”. 

Such small modifications would greatly improve the readability of the generated hints.

In this paper, we only described how next-step hints can be generated for conditional proce­

dures. A similar process has been applied to every type of procedural knowledge units. 

Among them are inferences, expressions that model mental skills applied to fill in the pa­

rameters of goals and procedures. They can be used to further contextualize next-step hints
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by specifying how a parameter is deduced from known ones, recalled from memory or per­

ceived in the learning environment’s GUI.

4. Experiments

In order to validate our hint generation approach, we conducted multiple experiments during 

a computer science course at the University of Sherbrooke. We used a floating-point number 

conversion tutor designed using ASTUS. The objective of our first experiment was to evalu­

ate the learning gains and the students’ appreciation of next-step hints generated by our 

framework. This first experiment is detailed in [10], but we present here a summary of its 

methodology and the analysis of its results. In this first study, 34 students were separated in 

two groups: 19 students received teacher authored hints (TH) and 15 received framework 

generated hints (FH). Statistical analyses of the results did not show a significant difference 

in learning gain when comparing pretest and posttest scores (left of figure 2) for both condi­

tions and showed that framework generated hints can be as appreciated as equivalent teacher 

authored hints (right of figure 2) for different types of complex procedures: while iteration, 

conditional, sequence with N sub-goals and sequence with 1 sub-goal.

Learning gains

i
1 TT

Protest P o sttw t

Hint type p reference

Teacher
h in ts

Framework
hints

w hile conditional sequence N sequence X

v
01
o.

* *

* * *

Figure 2 - Graphs illustrating the results of our first experiment. The character indicates 

the statistical significance (** forp  < 0.01 and *** for/? < 0.001)
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Table 2 - Summary of the statistical analysis for our second experiment

Stat P Effect size Power

Pretest scores f(23.629) = 0.576 0.570 J= 0 .2 0 8.50%

Learning gain (NH) /(15) = 6.213 < 0.001*** d=  1.35 99.89%

Learning gain (WH) t(15) = 5.550 < 0.001*** d=  1.37 99.91%

ANCOVA F(l, 29) = 3.057 0.046* r|2P = 0.091 39.40%

While our first experiment did not find any significant difference between framework gener­

ated and teacher authored hints in the context of our floating-point tutor, it does not validate 

that the learning gains can be attributed to the received hints. Indeed, the observed gains 

could simply be caused by the activity of solving problems using a tutor. In order to deter­

mine if next-step hints were helpful while solving problems with our tutor, we conducted a 

second experiment comparing the learning gains of a tutor without next-step hints (only flag 

feedback) to those of a tutor also providing framework generated next-step hints. A group of 

32 students was separated, at random, in two sub-groups: 16 students used a tutor that did not 

provide next-step hints (NH) and 16 students used one that provided framework generated 

hints (WH). The students were first asked to complete a pretest (20 minutes), then use the 

tutor (40 minutes) and finally complete a posttest (20 minutes). There were two versions of 

the test (graded on a total of 20). Half the students received the first version as pretest and the 

second as posttest while the order was reversed for the other half. Table 2 summarizes the 

results of our analysis.

A two-sample t-test showed no statistically significant differences between the participants’ 

pretest scores for the NH (Af= 8.13; SD = 2.34) and the WH (M=  8.82; SI> = 4.16) condi­

tions. Although no significant differences were found, the standard deviation of the WH con­

dition is much higher than the one for the NH condition.
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The learning gains between the pretests and posttests were validated using paired t-tests. Both 

conditions showed significant gains. The NH condition’s pretest (M = 8.13; SD = 2.34) and 

posttest (M= 12.09; SD = 3.30) scores indicate a large effect size, and so do the WH condi­

tion’s pretest (M= 8.81; SD = 4.16) and posttest (M= 14.44; SD = 4.06) scores. The effect 

sizes are very similar even though the mean learning gain is higher for the WH (5.63) condi­

tion when compared to the NH (3.96) condition. This lack of difference results from the dif­

ference in standard deviations between the two conditions. The effect size for the WH condi­

tion would have been higher if its standard deviations were closer to those of the NH condi­

tion.

A one-tailed analysis of covariance (ANCOVA), with the pretest scores as the covariate, 

showed a significant differences between the posttest scores for the NH (Maj= 12.31) and 

WH (Maj=  14.22) conditions. This suggests that the use of next-step hints during problem 

solving allows learners to achieve higher learning gains. In order to further validate this re­

sult, we conducted a third experiment using the same methodology as the second one. In this 

experiment there were 16 learners for the NH condition and 17 for the WH condition. Its re­

sults are summarized in table 3.

Table 3 - Summary of the statistical analysis for our third experiment

Stat P Effect size Power

Pretest scores /(31) = 0.318 0.753 rf=0.11 61.00%

Learning gain (NH) t(15) = 2.970 0.010** d = 0.52 49.46%

Learning gain (WH) t(16) = 4.401 < 0.001*** d=  0.77 86.64%

ANCOVA F(l, 30) = 2.818 0.052 r|2p = 0.086 36.40%
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A two-sample t-test showed no statistically significant differences between the learners’ pre­

test scores for the NH (M= 10.97; SD = 4.28) and the WH {M= 11.50; SD = 5.24) condi­

tions.

The learning gains between the pretests and posttests were validated using paired t-tests. Both 

conditions showed significant gains. The NH condition’s pretest (M =  10.97; SD = 4.2$) and 

posttest (M= 13.19; SD = 4.25) scores indicate a medium effect size, and the WH condition’s 

pretest (M= 11.50; SD= 5.24) and posttest (M= 15.26; SD = 4.43) scores indicate a large 

effect size. The higher effect size for the WH condition suggests it yielded higher learning 

gains than the NH condition.

A one-tailed analysis of covariance (ANCOVA), with the pretest scores as the covariate, 

showed no significant differences between the posttest scores for the NH (Maj = 13.83) and 

WH (Maj = 15.26) conditions. The results of the test were very close to a statistically signifi­

cant difference (p -  0.052). This, combined with the differences in effect size for the paired t- 

tests and the higher adjusted mean score for the WH, suggests that the WH condition yielded 

higher learning gains.

While neither our second nor our third experiments yielded strong statistical results, the re­

sults of both suggest that the WH condition leads to higher learning gains. Figure 3 shows the 

results of those two experiments in graphic form. In both, the steeper slopes for the WH con­

ditions illustrate how the students in the WH conditions improved their posttest results by a 

greater amount than those in the NH condition. Those graphs can be compared to the equiva­

lent graph for our first experiment (left of figure 2) for which the two slopes (FH and TH) are 

very similar, which is consistent with the absence of a significant difference.
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Figure 3 - Graphs illustrating the results of our second (left) and third (right) experiments

5. Discussion

The results of our most recent experiments show how framework generated next-step hints 

yielded higher learning gains compared to the use of a tutor offering only flag feedback. This 

shows that the floating-point number conversion task is complex enough for the use of next- 

step hints to improve learning gains, but it does not evaluate the efficiency of framework 

generated hints. A previous experiment [10] showed that framework generated hints can be as 

efficient and as appreciated as teacher authored ones in the context of our floating-point tutor.

Additional experiments could be used to improve our empirical validation by reproducing 

similar results for different tasks. Such results would suggest that the efficiency of framework 

generated hints can be generalized to multiple types of task of different complexity. These 

experiments would also benefit from bigger groups of learner to increase the statistical power 

of their result. Additionally, they would benefit from learners with no background in com­

puter science. In our experiments, the learners were all computer science students that are 

well suited to understanding computer generated messages. Reproducing similar results with 

learners from more varied backgrounds would support our hypothesis that efficient hints can 

be automatically generated by a framework regardless of the task taught.

We described how our framework has access to the information required to generate efficient

next-step hints. It would be interesting to research how the hints’ efficiency can be improved

by modifying how they present this information. The use of natural language techniques

might impact the hints’ efficiency by improving their readability, thus fostering better com-
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munication between the learner and the tutor. Their efficiency might also be improved by the 

use of learning theories optimizing the content and the format of the hints provided to the 

learners.

The use of generated next-step hints is useful in order to reduce the authoring efforts required 

to create a tutor by only having to associate readable names to knowledge units instead of 

complete message templates. They could also be used to customize the hints to groups of 

learners, specific learners within that group or even specific learning situation. For example, 

hints could be generated in different languages, they could be made culturally aware [11] and 

they could consider the learner’s current emotional state [12]. The content of the hints would 

remain the same but their presentation would vary according to those parameters. Although it 

would be possible for a teacher to author multiple versions of every hint to account for those 

parameters, having the framework generate the hints would require much less efforts.

In addition to reducing the efforts of authoring hints, being able to generate them can be es­

sential for situations where it is not possible to enumerate all the possible hints. An example 

of such a situation is negative feedback on errors. In order to provide such feedback, model- 

tracing frameworks usually require the tutor’s author to model erroneous procedural knowl­

edge. This process requires a lot of efforts due to the very high number of different errors. In 

order to reduce the required efforts, we are currently working on a model, based on Sierra’s 

theory of procedural error [13], to allow our framework to diagnose as many of those errors 

as possible without modeling additional erroneous knowledge [14]. Since the errors are 

automatically diagnosed by the framework while a learner solves a problem, they are not ex­

plicitly defined in the task and it is not possible to enumerate all the required hints. It is thus 

essential for the framework to be able to generate efficient hints in order to provide feedback 

regarding the diagnosed errors.

The example of providing negative feedback on errors illustrates how being able to generate 

next-step hints is a first step toward achieving our objective o f developing a framework able 

to provide feedback for many of Ohlsson’s learning mechanisms. We started by automating 

the generation of next-step hints feedback for instruction, but our work will also be extended
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to support other mechanisms such as negative feedback on error, a type of feedback usually 

provided by constraint-based tutor [15].

6. Conclusion

In this paper, we explained how the ASTUS framework generates next-step hints using do­

main independent knowledge structures. We presented experiments showing that these hints 

can be as effective and as appreciated as teacher-authored hints in the context of our floating­

point number conversion tutor.

Future work will focus on expanding the number of different types of feedback the frame­

work can generate in order to take advantage of as many of Ohlsson’s learning mechanisms

[5] as possible. Our hypothesis is that the same characteristics that allow the generation of 

next-step hints will be helpful when generating other types of feedback. Our next objective is 

to diagnose and offer negative feedback regarding the learners’ errors without requiring the 

modeling of knowledge marked as erroneous.
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Chapitre 4 

Modeliser automatiquement les erreurs des appre- 

nants

L’article presente dans ce chapitre decrit comment Astus est en mesure de modeliser automa­

tiquement un grand nombre d’erreurs des apprenants. Pour y arriver, la theorie Sierra [20], 

une theorie decrivant l’origine des erreurs procedurales des apprenants, a ete appliquee au 

systeme de representation des connaissances d’Astus. Selon cette theorie, les erreurs procedu­

rales surviennent lorsque les apprenants rencontrent des impasses ; des situations pour les- 

quelles ils ne savent pas comment resoudre la tache correctement. Dans une telle situation, ils 

utilisent un mecanisme de reparation qui leur permet de continuer a resoudre la tache. La 

combinaison d’une impasse et d’une reparation determine l’erreur effectuee par un apprenant. 

Cette theorie a ete appliquee a Astus en determinant les differentes fa5 ons dont le modele de 

la tache peut etre perturbe afin de modeliser les connaissances incorrectes qui decoulent des 

impasses des apprenants. L’algorithme du diagnostic des erreurs, presente dans le chapitre 2, 

a ete elabore a partir du modele de perturbation des connaissances d’Astus decrit dans 

Particle presente dans ce chapitre.

La contribution de l’auteur (Luc Paquette) represente 80 % de la charge de travail de redac­

tion de l’article. Comme il a ete dit precedemment, le systeme de representation des connais­

sances utilise par Astus a ete con?u par Jean-Fran^ois Lebeau. L’application de la theorie 

Sierra a Astus par un modele de perturbations des connaissances est une contribution de 

1’auteur.
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Abstract. Modeling learners is a fundamental part of intelligent tutoring systems.

It allows tutors to provide personalized feedback and to assess the learners’ mas­

tery over a task domain. One aspect often overlooked is the modeling of errone­

ous behaviors that can be used to provide error specific feedback. This is espe­

cially true for model-tracing tutors that usually require erroneous procedural 

knowledge associated to each of the possible error. This process can be automat­

ed thanks to a task independent model describing the learners’ erroneous behav­

iors. The model proposed in this paper is inspired by the Sierra theory of proce­

dural error and is developed for ASTUS, an authoring framework for model- 

tracing tutors.

Keywords: Erroneous behaviors, learner modeling, model-tracing tutors

1. Introduction

Intelligent tutoring systems (ITS) model different aspects of the learner’s interaction with the 

tutor: how they solve problems [1]; how they manipulate the learning environment’s user
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interface [2]; and how they acquire new knowledge [3]. Those models can be exploited by the 

tutor to provide personalized feedback.

One aspect of tutoring less frequently modeled is the erroneous behaviors exhibited by the 

learners. Modeling such behaviors can be benefic for ITSs as it allows them to provide nega­

tive feedback on errors, one of Ohlsson’s nine learning mechanisms [4], Constraint based 

tutors [5] can diagnose errors and provide feedback for them. Baffes and Mooney [6] de­

signed a system to automatically compile bug libraries for classification tasks. Although both 

those systems can diagnose errors, they are less efficient than model-tracing tutors (MTTs) 

for modeling the sequence of steps committed by learners while they solve problems [7]. On 

the contrary, MTTs do not efficiently diagnose the learners’ errors and would thus greatly 

benefit from a model of erroneous behaviors.

The modeling of erroneous behaviors is often neglected in MTTs as it usually requires adding 

erroneous procedural knowledge to the task’s model, a process that requires much effort. In 

order to solve part of this problem, we took inspiration from computational theories explain­

ing the source of procedural errors. More specifically, we were inspired by Sierra [8], a the­

ory explaining the development of the learners’ procedural misconceptions in procedural 

tasks such as subtraction. This theory provides cognitively plausible explanations for the 

learners’ erroneous behaviors that could be used by MTTs to provide error specific feedback.

Whereas Sierra was designed to simulate the learner’s behavior while solving a problem, 

MTTs are designed to teach how to solve problems. This fundamental difference influences 

the definition of their task’s models. Sierra constructs multiple possible models of the learn­

ers’ knowledge of the task at different moments during their learning process. MTTs, on the 

other hand, start with a complete model of the task. This model is designed by an expert to 

ensure that the tutor can provide efficient pedagogical feedback. Because of this difference, it 

is not possible to directly apply the Sierra theory in the context of MTTs.

Thus, we defined a model describing how an MTT’s procedural knowledge can automatically 

be disrupted in order to produce erroneous behaviors analogous to those generated by Sierra.
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We developed this model for ASTUS [9], an authoring framework for MTTs. ASTUS’s 

knowledge representation system was designed so that it can be manipulated by task inde­

pendent processes such as the automatic disruption of a task’s knowledge model.

In this paper we present our model of the learners’ erroneous behaviors. First, we show how 

ASTUS’s knowledge representation system respects Sierra’s assumptions. Then, we explain 

how its procedural knowledge can be disrupted using processes inspired by Sierra. Finally, 

we describe how the repair strategies defined by Sierra can be adapted to ASTUS’s knowl­

edge representation system.

2. Knowledge Representation

The first step towards elaborating our model was to make sure that the knowledge representa­

tion system used by ASTUS is compatible with the Sierra theory [8]. This theory enumerates 

assumptions regarding its knowledge representation approach. Even though ASTUS’s ap­

proach is significantly different from Sierra’s, we can show that it is compatible with Sierra’s 

assumptions. In this section, we specify the relevant assumptions for our model and explain 

how ASTUS implements them.

Sierra is a theory for procedural errors and thus does not define a specific representation for 

semantic knowledge, but it asserts that the procedural knowledge contains patterns used to 

access semantic knowledge. The pattern assumption indicates that those patterns are defined 

using a formalism that can be interpreted by the system (Sierra uses predicate calculus). In 

ASTUS, the patterns are queries that can be used by the procedural knowledge in order to 

access elements from the knowledge base such as concepts (pedagogically relevant abstrac­

tion) and relations (n-ary predicates defined over concepts). Their structure can be manipu­

lated by the system to disrupt a task’s procedural knowledge and generate erroneous behav­

iors.

Sierra’s recurrence assumption specifies that, during the execution of a task, a goal stack is 

minimally required to describe its control regime. In ASTUS, the control regime is described 

using a goal tree, a structure containing more information than a stack. In addition to the cur­
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rent goals and the procedures that can be applied to achieve them, this episodic tree (figure 

14) also contains all the previously satisfied goals and goals already planned.

Sierra also specifies the "goal types” assumption which asserts that the execution of each 

goal is determined by its type (AND, OR and FOR-EACH). Those three types were chosen to 

accurately model the learner’s cognitive processes. ASTUS’s knowledge representation sys­

tem also offers multiple execution types, but it differs from Sierra in two main aspects. First, 

ASTUS separates the goals and the procedures applied to achieve them. Thus, the execution 

behavior is associated to procedures rather than to goals. Second, ASTUS’s execution types 

were designed to model the teacher’s instructions. ASTUS offers different types of proce­

dures such as sequences, equivalent to Sierra’s AND goals; selections, equivalent to OR 

goals; iterations, analogous to FOR-EACH goals; and primitives that represent atomic actions 

in the learning environment’s user interface. Since a procedure’s type is explicitly defined, it 

can be used when disrupting a procedure to generate its possible incorrect executions.

PC8orrowfrt>m

GSubtractColurm GSubtractCotumn

< ^ T ^ C S u b f r a K ^ t h B o ^ —

| G Borrow! nto | | GFIndDiff |

Figure 14 - Part of an episodic tree for a subtraction tutor, rectangles are goals and ovals are 

procedures. Only the currently active goals are expended

3. Modeling Erroneous Knowledge

Sierra [8] simulates learning and generates knowledge models that learners could have ac­

quired after a set of lessons. Those models produce the correct solution for problems covered 

by the lessons used to generate it, but might produce erroneous behaviors when applied to

problems from subsequent lessons. The errors might be the result of overly specific patterns
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or of attempting to solve problems that requires procedures introduced only in subsequent 

lessons. Sierra also simulates incomplete learning by generating models resulting from the 

removal of sub-goals in AND goals.

ASTUS’s knowledge representation system can be used to model erroneous behaviors by 

disrupting the expert’s model of the task to produce incomplete and incorrect models. This 

objective is achieved by applying principles analogous to Sierra’s but adapted to a knowledge 

representation system designed for MTTs. We first defined, for each type of procedural units, 

the knowledge required for their correct execution. Then, we enumerated all the disruptions 

that can be applied to each unit and we described the resulting erroneous behaviors.

This process can be illustrated using conditional procedures which are selection-based proce­

dures where each goal is paired with a logical condition. To successfully execute a condi­

tional procedure, one must know each of these goals and also know the conditions specifying 

when to use each one of them. During the execution of the procedure, the conditions are 

evaluated and the goal associated to the first condition that evaluates to true is activated.

Conditional procedures can be disrupted in two ways to represent erroneous behaviors: 1) 

each sub-goal can be removed from the procedure and 2) each condition can be disrupted. 

When removing a sub-goal, its associated condition will also be removed thus preventing it 

from being selected. There are two different ways to disrupt a condition. First, the disrupted 

condition can be too specific. In this case, the conditional procedure might not have any ac­

tive condition for some of the problems. Second, the disrupted condition can be too generic. 

In this case, the conditional procedure might have more than one active condition at the same 

time. In both cases, if the number of active conditions is not exactly one, the execution of the 

procedure will need to be repaired by choosing one goal to achieve.

We illustrate the process of disrupting a procedure with an example from a subtraction tutor. 

The task of subtraction was chosen since it was used to develop Sierra, but the same process 

can be applied to any task modeled with ASTUS. The procedure taken as an example is the 

one that determines how to proceed in order to find the difference of a specific column. Three
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sub-goals are available: find the difference of the column’s terms, borrow from the next col­

umn before finding the difference or copy the minuend as the difference.

Conditional 'PCSubtractColumn' achieves 'GSubtractColumn' { 
if 'c' instanceOf 'TopGreaterColumn' 

goal 'GFindDiff' with 'c' 
if 'c' instanceOf 'TopSmallerColumn' 

goal 'GSubtractWithBorrow' with 'c' 
if 'c' instanceOf 'NoSubtrahendColumn' 

goal 'GCopyMinuend' with 'c'
}

Any of the sub-goals from this procedure can be removed to produce erroneous behaviors. 

For example, the ‘GSubtractWithBorrow’ goal can be removed to produce:

Conditional 'PCSubtractColumn' achieves 'GSubtractColumn' { 
if 'c' instanceOf 'TopGreaterColumn' 

goal 'GFindDiff' with 'c' 
if 'c' instanceOf 'NoSubtrahendColumn' 

goal 'GCopyMinued' with 'c'
}

When using this version of the procedure, any subtraction problem that requires borrowing 

will be executed incorrectly. Indeed, there are no conditions that will be evaluated to true 

when the subtrahend of a column is greater than its minuend. This can lead to errors such as 

doesn’t-borrow (described in [8]).

In addition to removing goals, the procedure could be disrupted by modifying its conditions. 

For instance, the condition for the ‘GFindDiff goal could be made too specific by adding the 

restriction that the column must also be the units’ column:

(c isA TopSmallerColumn) and (c isA UnitsColumn)
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This disturbed condition can lead to the copy-top-except-units error [8] by causing erroneous 

behaviors when subtracting any column, except the units, if the subtrahend is not blank.

We applied a similar process for each type of procedures available in ASTUS’s knowledge 

representation system. The result is a specification of how each one can be disrupted in order 

to model the learners’ erroneous behaviors.

The execution of a disrupted task’s model can lead to two kinds of erroneous behaviors. A 

model can be executed apparently without any issue but resulting in an incorrect step se­

quence or its execution might lead to impasses (situations for which the knowledge model 

can’t be executed furthermore) that will need to be repaired.

4. Repairs

The occurrence of impasses blocks the execution of the knowledge model. In order to resume 

problem solving when faced with an impasse, learners will try to repair it by applying known 

procedural knowledge. The Sierra theory [8] includes three repair strategies that learners 

might use:

• No-op: the goal causing the impasse is not executed. This is achieved by popping the first 

goal from the goals stack.

• Back-up: very similar to no-op, but pops the goals stack more than once.

• Barge-on: alter the results of patterns in order to obtain a result that enables the execution 

of the knowledge model.

Each of these repair strategy can be adapted to ATSUS’s knowledge representation system. 

The no-op and the back-up strategies can be simulated by going back to a previous goal in the 

episodic tree (figure 14). The barge-on strategy requires the modification to the results of 

queries and to the evaluation of conditions in order to produce results compatible with the 

execution of the knowledge model.
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Examples taken from our subtraction tutor can be used to illustrate how each of the three re­

pair strategies can be applied in ASTUS. If a learner does not know how to borrow from a 

column containing a zero as its top digit and the current problem is 203-107, the resulting 

erroneous behaviors will vary depending on the applied repair strategy. Figure 14 shows part 

of the episodic tree for this problem’s initial state.

If the no-op strategy is used, the learner will omit borrowing from the tens column (GBor- 

rowAcrossZero), but will still add ten to the units column (GBorrowInto) and find the col­

umn’s difference correctly (GFindDiff). The result of the subtraction will be 203 - 107 -  106. 

This erroneous behavior is an instance of the borrow-no-decrement error described in [8].

If the applied repair strategy is back-up, the learner can go back to any of the previous goal 

contained in the episodic tree. He might back-up as far as the initial goal (GSubtract) of sub­

tracting the whole problem and skip the units’ column. This behavior would produce the an­

swer 203-107 = 10_, an example of the blank-instead-of-borrow-from-zero [8] error. He 

might also back-up to the earlier goal deciding whether he should borrow or not (GSub- 

tractColumn), and try to solve the problem without borrowing for the units’ column. This will 

cause a second impasse since the difference for 3-7 is a negative number.

To repair this second impasse, the learner could use the barge-on repair strategy. This strat­

egy can be used to modify the result of the queries used to find the difference 3-7 by inverting 

its argument. The new query would then find the difference 7-3, thus subtracting the top 

number from the bottom one. The use of this repair would produce 203-107 = 104 as its an­

swer and correspond to the smaller-from-larger-imtead-of-borrow-from-zero error [8],

5. Conclusion

In this paper, we showed how an MTT authoring framework can model the learners’ errone­

ous behaviors using task independent processes. This is achieved by specifying how 

ASTUS’s procedural knowledge can be disrupted and how impasses can be repaired to pro­

duce behaviors analogous to those generated by Sierra.
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The model presented in this paper will have multiple applications in ASTUS. For example, it 

could be used to help assess the learners’ knowledge mastery or to facilitate the development 

of a simulated learner.

Our next objective will be to validate our model by using it to diagnose the erroneous behav­

iors of a leaner while solving a problem. It will allow us to evaluate the pedagogical rele­

vance of our approach by providing negative feedback on errors, one of Ohlsson’s nine learn­

ing mechanisms [4].
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Conclusion

Contributions

La principale contribution de la presente these est la creation d’une methode permettant aux 

MTTs crees avec Astus de generer automatiquement des indices par rapport a la prochaine 

etape et des retroactions negatives. Cette generation a Pavantage de permettre au tuteur de 

foumir des interventions pedagogiques sans que son auteur ait a inclure de message d’aide 

dans le modele de la tache enseignee.

Les contributions informatiques de la these incluent des methodes et algorithmes relies aux 

interventions pedagogiques produites par Astus. L’article presente au chapitre 2 decrit un 

ensemble de caracteristiques du systeme de representation des connaissances utilise par Astus 

qui facilite la generation d’interventions. De meme, ce chapitre decrit un modele permettant 

d’exploiter le contenu du modele de la tache enseignee afin de generer des sequences 

d’indices expliquant a l’apprenant la prochaine etape qu’il doit effectuer afin de resoudre la 

tache.

Le chapitre 4 discute d’un modele qui a ete con9 u afin de faire un parailele entre les caracte­

ristiques du systeme de representation des connaissances procedurales definies par Sierra [20] 

et celles de la representation utilisee par Astus. Ce modele decrit aussi comment les connais­

sances procedurales d’Astus peuvent etre perturbees afin de modeliser les erreurs des appre- 

nants. Ce processus est analogue au processus d’impasses et de reparations decrit par Sierra 

[20]. Ce modele a permis Pelaboration d’un algorithme permettant a Astus de diagnostiquer 

les erreurs des apprenants a partir de leurs actions hors trace (chapitre 2). Une methode a ete 

con9 ue afin d’utiliser ce diagnostic pour generer une retroaction negative par rapport aux er­

reurs des apprenants.
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Les contributions empiriques de la presente these decoulent des cinq experimentations qui ont 

ete realisees a l’aide de la plateforme Astus. Les trois premieres experiences s’interessaient a 

la generation d’indices par rapport a la prochaine etape et ont permis de montrer que 1) 

Putilisation des indices generes par Astus permet d’obtenir des gains d’apprentissage plus 

importants que Putilisation d’un tuteur sans indices et que 2) il est possible de generer des 

indices qui sont aussi efficaces et aussi apprecies que ceux ecrits par un enseignant.

Les deux demieres experimentations s’interessaient a la generation de retroactions negatives. 

Malgre le fait que ces experimentations n’ont pas montre que les retroactions negatives ont 

un impact positif statistiquement significatif, elles ont neanmoins montre que 1) les tuteurs 

developpes a Paide d’Astus sont en mesure de diagnostiquer un grand nombre d’erreurs, 2) 

les etudiants qui ont re?u des retroactions negatives ont commis moins d’erreurs que ceux qui 

n’en ont pas re9 u et 3) les etudiants qui ont re<?u des retroactions negatives avaient, en 

moyenne, un plus grand gain d’apprentissage (cette difference n’est pas statistiquement signi­

ficative).

Critique du travail

Malgre que les indices generes par les methodes developpees lors de la presente these ont ete 

benefiques pour les etudiants, peu d’efforts ont ete faits dans le but de determiner de maniere 

formelle le contenu optimal que devraient avoir les interventions generees. De meme, peu 

d’efforts ont ete faits dans le but d’utiliser des techniques avancees de generation d’indices. 

Les indices sont generes a partir de simples gabarits qui sont remplis a partir du contenu du 

modele de la tache. Ceci fait en sorte que certains messages peuvent etre difficiles a lire et a 

comprendre.

L’algorithme de diagnostic des actions hors trace permet de detecter un grand nombre 

d’erreurs. Par contre, la version actuelle de ce diagnostic gere de maniere tres naive les cas ou 

une action hors trace peut etre interpretee de plusieurs fa9 ons differentes. Dans ce cas, 

l’algorithme choisi le diagnostic relie a la procedure qui est la plus proche d’une feuille dans 

Parbre episodique. Des methodes probabilistes auraient pu etre utilisees afin d’estimer la
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probability de chacun des diagnostics en fonction d’une evaluation des connaissances de 

l’apprenant.

Les cinq etudes empiriques ont ete realisees par rapport a seulement deux taches differentes. 

II n’est pas certain que les resultats obtenus puissent etre generalises a l’ensemble des taches 

pouvant etre modelise a l’aide d’Astus. II est possible que les interventions generees par As­

tus soient seulement efficaces lorsqu’elles sont utilisees dans un contexte specifique. 

D’ailleurs, les taches modelisees sont toutes deux reliees a 1’ informatique. Les tuteurs ont 

done ete utilises par des etudiants en informatique qui sont tres competents pour interpreter 

des messages generes par un ordinateur. Cela reduit l’impact de la lisibilite des messages ge­

neres par Astus sur les gains d’apprentissage. De plus, les experimentations effectuees lors de 

la presente these avaient une faible puissance statistique puisque les cours donnes au Depar- 

tement d’informatique a Sherbrooke contiennent peu d’etudiants.

Travaux futurs de recherche

Les travaux futurs peuvent etre separes en trois categories : l’amelioration des interventions 

generees, l’amelioration de la validation empirique et la generation de types d’intervention 

supplementaires. Les indices par rapport a la prochaine etape pourraient etre ameliores en 

developpant un modele permettant d’adapter les indices generes aux caracteristiques de 

l’apprenant et aux situations d’apprentissages. La lisibilite des indices pourrait etre grande- 

ment amelioree par l’utilisation de techniques de generation de langage naturel.

Les retroactions negatives pourraient etre ameliorees par une meilleure gestion des cas oil 

plusieurs diagnostics sont disponibles pour une meme action hors trace. Pour y arriver, Astus 

devra estimer la maltrise de la tache par I’apprenant afin d’evaluer quelle unite de connais- 

sance a la plus grande probability d’etre la source de son erreur. II serait aussi possible de 

modifier 1’algorithme de diagnostic des erreurs afin d’etre capable de diagnostiquer un plus 

grand nombre des actions hors trace. Cet objectif peut etre atteint en permettant les diagnos­

tics partiels. Actuellement, Astus diagnostique une etape comme etant une erreur seulement si 

celle-ci correspond de maniere exacte (meme procedure primitive et memes valeurs
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d’arguments) a une etape interpolee par Astus. Cette restriction pourrait etre allegee en per­

mettant le diagnostic lorsque l’etape commise est tres proche de celle interpolee. Par exem- 

ple, si elles correspondent a la meme procedure primitive, qu’elles different par seulement un 

argument et que l’argument qui differe correspond a une valeur primitive, alors Astus pour­

rait considerer que l’apprenant a tente de realiser cette procedure primitive, mais qu’il a fait 

une seconde erreur lors du choix de la valeur. Dans ce cas, Astus pourrait foumir une retroac­

tion negative appropriee. Un tel diagnostic serait utilise seulement lorsqu’aucune autre per­

turbation de l’arbre episodique ne peut expliquer l’erreur de l’apprenant.

Les resultats empiriques obtenus pourraient etre valides davantage en etant reproduits a l’aide 

de tuteurs enseignant une plus grande variete de taches. Entre autres, ces experimentations 

supplementaires permettraient d’evaluer si les interventions generees par Astus sont aussi 

efficaces lorsqu’elles sont foumies a des etudiants qui n’ont pas de connaissance en informa­

tique.

II serait interessant pour le groupe Astus d’etudier comment les methodes de generation 

d’interventions developpees lors de la presente these peuvent etre appliquees a d’autres types 

d’interventions pedagogiques. Par exemple, il serait possible d’evaluer si Astus est en mesure 

de generer des exercices de type « etude d’exemple » [11], des demandes d’auto-explication 

[10, 3] et des explications par analogies a d’autres instances de la tache [17].

Perspective

Malgre que la recherche sur les MTTs a considerablement diminue au profit d’autres types de 

STI [4, 7, 14] dans les demieres annees, les Cognitives Tutors demeurent les tuteurs les plus 

utilises en classe. Ameliorer l’efficacite des MTT a done un grand potentiel pour 

{’amelioration de l’apprentissage des etudiants qui utilisent ces tuteurs de fa?on reguliere. 

C’est pourquoi le groupe Astus s’est donne 1’objectif de faire evoluer les MTT.

Les methodes et algorithmes presentes dans la presente these sont un premier pas vers la 

creation de tuteurs capables d’intervenir de fa<?on personnalisee et adaptee aux situations
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d’apprentissages auxquelles font face les apprenants. Plus les tuteurs seront en mesure de ge­

nerer des interventions de type, de format et de contenu differents, plus ils seront en mesure 

de mettre en oeuvre des strategies pedagogiques sophistiquees maximisant l’apprentissage.
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