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RESUME

La grande variete de perturbations posturales utilisees dans les etudes experimentales rend les 
comparaisons entre les etudes et les generalisations sur les capacites a retablir 1’equilibre 
difficile. En efFet, seulement trois Etudes ont tente de comparer experimentalement les 
resultats de differentes perturbations posturales et semblent demontrer que les relachements 
d’inclinaison, tirages k la taille et translations de surface sont suffisamment similaires qu’elles 
peuvent etre comparees. De plus, les experiences sur le retablissement de l’equilibre prennent 
du temps, sont couteuses et potentiellement dangereuses, et peuvent etre tres exigeantes et 
fatigantes pour les personnes agees freles. II serait done utile d’utiliser un modele plutot 
qu’une experience pour predire theoriquement si une perturbation posturale donnee entrainera 
une chute inevitable ou si un retablissement de 1’equilibre sera possible pour un participant 
donne. Ceci semblait possible considerant que des modeles de pendules inverses ont ete 
utilises avec succes pour modeliser des inclinaisons, tirages, translations et trebuchements.
Pour poursuivre les travaux sur la m^thode adimensionnelle de ligne de perturbation limite, 
nous avons determine Tangle maximum d’inclinaison initiale vers l’avant et la vitesse 
maximum de translation de surface vers l’arriere desquels 12 jeunes adultes pouvaient etre 
soudainement relaches ou tires, respectivement, et tout de meme retablir leur equilibre en 
utilisant un seul pas. Aux angles d’inclinaison ou vitesses de translations maximum, les deux 
perturbations posturales n’avaient pas d’effet significatif sur Tinitiation de la reponse, mais 
affectaient la plupart des variables d’execution et de geometrie de la reponse. Neanmoins, les 
positions et vitesses angulaires a la fin du temps de reaction pour ces essais k la limite du 
retablissement de T equilibre formaient une ligne de perturbation limite qui etait tres similaire 
a celle obtenue precedemment. De plus, la ligne de perturbation limite etait tres efficace pour 
separer les chutes (97%) des retablissements (96%), quelle que soit la perturbation posturale.
Nous avons ensuite utilise un modele en deux dimensions de pendule inverse a barre mince 
monte sur une palette glissante bougeant horizontalement pour simuler la position et la vitesse 
angulaire de jeunes adultes durant le temps de reaction pour les inclinaisons et translations de 
l’etude experimentale ci-dessus. La majorite des erreurs moyennes quadratiques et erreurs au 
temps de reaction entre les positions et vitesses angulaires experimentales et theoriques etaient 
respectivement de moins de 2% et 4%. Plus important encore, les positions et vitesses 
angulaires theoriques a la fin du temps de reaction pour les essais aux angles d’inclinaison et 
vitesses de translation maximum formaient une ligne de perturbation limite sdparant les chutes 
des retablissements qui etait tres similaire a celle obtenue dans l’etude experimentale.

La methode adimensionnelle de ligne de perturbation limite a done maintenant ete etablie 
experimentalement pour les relachements d’inclinaison, relachements d’inclinaison avec 
tirages a la taille, tirages a la taille en marchant et translations de surface, foumissant ainsi des 
preuves additionnelles que le choix de la perturbation posturale n’affecte pas la limite du 
retablissement de T equilibre. Ceci devrait done aider les chercheurs a faire des conclusions 
plus rapides et plus generates sur les capacites a retablir l’equilibre.

Mots clefs: Chutes, Equilibre, Modelisation, Translation de surface, Relachement 
d’inclinaison, Perturbation posturales.
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ABSTRACT

On the one hand, the great variety of postural perturbations used in experimental studies make 
comparisons between studies and generalizations about balance recovery abilities difficult. In 
fact, only three studies have attempted to experimentally compare results from different 
postural perturbations and appear to shown that lean releases, waist pulls and surface 
translations are similar enough that they can be compared. On the other hand, balance 
recovery experiments are time consuming, expensive, can be dangerous and can be very 
demanding and fatiguing for frail older adults. It would thus be useful to use a model instead 
of an experiment to theoretically predict if a given postural perturbation will lead to an 
unavoidable fall or if balance recovery is possible for a given participant. This appeared to be 
possible given that inverted pendulum models have been successfully used to model lean 
releases, waist pulls, surface translations and trips.

To pursue the work by Moglo and Smeesters (2005; 2006) on the dimensionless perturbation 
threshold line method, we determined the maximum forward initial lean angle and the 
maximum backward surface translation velocity from which 12 younger adults could be 
suddenly released or pulled, respectively, and still recover balance using a single step. Results 
showed that at the maximum lean angles or maximum translation velocities, the two postural 
perturbations did not have a significant effect on response initiation, but did affect most 
response execution and response geometry variables. Nevertheless, the angular positions and 
velocities at the end of reaction time for these trials at the threshold of balance recovery 
formed a perturbation threshold line that was very similar to the one obtained by Moglo and 
Smeesters (2005). Furthermore, the perturbation threshold line was very efficient in separating 
falls (97%) from recoveries (96%), regardless of the postural perturbation.

We then used a two-dimensional thin rod inverted pendulum model mounted on a horizontally 
moving skid to simulate the angular position and velocity of younger adults from onset of 
perturbation to onset o f response for lean releases and surface translations from the above 
experimental study. Results showed that the majority of root mean square errors and errors at 
reaction time between the experimental and theoretical angular positions and velocities were 
less than 2% and 4%, respectively. More importantly, the theoretical angular positions and 
velocities at the end of reaction time for maximum lean angle and maximum translation 
velocity trials formed a perturbation threshold line separating falls from recoveries that was 
very similar to the one obtained in the experimental study.

Therefore, the dimensionless perturbation threshold line method has now been experimentally 
established for lean releases, lean releases with waist pulls, waist pulls while walking and 
surface translations, thus providing further evidence that the choice of postural perturbation 
does not affect the threshold of balance recovery. It should therefore help researchers make 
faster and broader conclusions about balance recovery abilities.

Keywords: Falls, Balance, Modeling, Surface translation, Lean release, Postural 
perturbations.



REMERCIEMENTS

Je tiens a faire un remerciement special a ma directrice de recherche, la professeure Cecile 
Smeesters egalement protectrice et guide de l’etudiant a la derive dans 1’uni vers des systemes 
d’equations non-lineaires du 2e ordre, pour sa disponibilite, aussi bien de jour comme de nuit, 
sa patience, sa capacity de communication et son encadrement exceptionnel dans mes 
recherches. Cet encadrement m’a non seulement permis de pouvoir creer des liens entre toutes 
les disciplines apprises durant le baccalaureat, mais aussi d’acquerir ime base solide de 
competences et de connaissances pour ma future carriere professionnelle. Fervent defenseur de 
la langue de Moliere, je savais que l’apprentissage de la redaction d’un rapport de synthese 
serait une epreuve... j ’etais encore loin de la verite! Enfin, merci pour ses conseils 
professionnels et personnels judicieux.

Je remercie les membres du Centre de Recherche sur le Vieillissement, particulierement 
Mathieu Hamel, super-hero diplome et defenseur des scripts Matlab en peril. Je remercie 
egalement les membres du Injury Prevention and Mobility Laboratory du professeur Stephen 
N. Robinovitch pour l’acceuil chaleureux et particulirement Colin Russel, Omar Aziz et 
Thiago Sarraf pour le soutien technique et culturel.
Ces mots ne peuvent exprimer les sentiments derriere le remerciement particulier dedie a mes 
parents pour leur foi inebranlable en mes capacites meme lors de mes doutes et les sacrifices 
qu’ils ont fait pour me permettre d’arriver ou je suis presentement. A mes grand-meres Lucette 
Thiaux et Madeleine Marteau, mes mentors, pour garder la tete dans les etoiles et les pieds sur 
Terre.



viii Acknowledgments

ACKNOWLEDGMENTS

I would like to extend a special thanks to my master’s thesis director, professor Cdcile 
Smeesters also protector and guide to the student adrift in the universe of non-linear 2nd order 
equation systems, for her availability, by day and by night, her patience, her ability to 
communicate and her exceptional supervision of my research. This supervision not only 
allowed me to create links between all the disciplines learned during my bachelor’s degree, 
but also to acquire a solid base of abilities and knowledge for my future professional career. 
Fervent defender of the language of Moliere, I knew that learning to write a summary report 
would be a challenge... I was very far from the truth! Finally, thank you for her judicious 
professional and personal advice.
I thank the members of the Research Centre on Aging, particularly Mathieu Hamel, certified 
super-hero and defender of Matlab scripts in peril. I also thank the members o f the Injury 
Prevention and Mobility Laboratory of professor Stephen N. Robinovitch for their warm 
welcome and particularly Colin Russel, Omar Aziz and Thiago Sarraf for their technical and 
cultural support.

These words cannot express the feelings behind the specific thanks dedicated to my parents for 
their unwavering faith in my abilities even during my doubts and the sacrifices they made to 
allow me to get to where I am now. To my grandmothers Lucette Thiaux and Madeleine 
Marteau, my mentors, for keeping my head in the clouds and my feet on the ground.



TABLE OF CONTENTS

Resume............................................................................................................................................. v
Abstract............................................................................................................................................ vi

Remerciements...............................................................................................................................vii

Acknowledgments..............................................................   viii

Table of contents.............................................................................................................................ix
List of figures................................................................................................................................xiii

List of tables.................................................................................................................................xvii

CHAPTER 1 INTRODUCTION............................................................................................ 1

1.1 The importance of studying falls........................................................................................1

1.2 The knowledge base on fall experiments..........................................................................2
1.2.1 Which postural perturbations have been experimentally studied?.................. 4

Lean release experiments................................................................................... 4
Pull experiments..................................................................................................4

Surface translation experiments.........................................................................4

Slip experiments.................................................................................................. 5
Trip experiments................................................................................................. 5

1.2.2 Can we compare experiments with different postural perturbations?............. 6
1.3 The knowledge base on fall models.................................................................................. 9

1.3.1 Which postural perturbations have been modelled?.......................................10
Lean release models.......................................................................................... 10

Pull models.........................................................................................................11
Surface translation models................................................................................11
Slip models.........................................................................................................12

Trip models........................................................................................................12

1.3.2 Could we use a single model for all postural perturbations?.......................... 13
1.4 Research project objectives............................................................................................. 13

1.4.1 Which experimental postural perturbations were available?.......................... 14

1.4.2 Specific aims and hypotheses.............................................................................14

1.5 References........................................................................................................................ 15



X Table of contents

CHAPTER 2 EXPERIMENTAL PUBLICATION..............................................................23

2.1 Preface............................................................................................................................... 23

2.2 Abstract............................................................................................................................. 26
2.3 Introduction....................................................................................................................... 27
2.4 Methods............................................................................................................................. 29

2.4.1 Participants.........................................................................................................29

2.4.2 Experimental procedure.................................................................................... 29
Lean releases..................................................................................................... 31
Surface translations........................................................................................... 31

2.4.3 Measuring instruments and variables............................................................... 32
2.4.4 Data analysis...................................................................................................... 35

2.5 Results................................................................................................................................36
2.5.1 Postural perturbation effects for fallers only (N=8)........................................ 36
2.5.2 Postural perturbation effects for fallers and non-fallers (N=12).....................36

2.5.3 Perturbation threshold line................................................................................ 37

2.6 Discussion......................................................................................................................... 37
2.7 Acknowledgements...........................................................................................................41

2.8 References......................................................................................................................... 41

CHAPTER 3 THEORETICAL PUBLICATION................................................................. 47
3.1 Preface................................................................................................................................47
3.2 Abstract..............................................................................................................................50
3.3 Introduction....................................................................................................................... 51
3.4 Methods..............................................................................................................................54

3.4.1 Experimental methods.......................................................................................54

Participants.........................................................................................................54
Experimental procedure....................................................................................54
Measuring instruments and variables...............................................................56

3.4.2 Theoretical methods...........................................................................................57

Inverted pendulum on a skid model................................................................. 57
Theoretical procedure....................................................................................... 58

3.4.3 Data analysis...................................................................................................... 60
3.5 Results................................................................................................................................61

3.5.1 Pre-maximum trials for fallers and non-fallers (N= 12).................................. 61



Table of contents xi

3.5.2 Maximum trials for fallers only (N=8).............................................................61

3.5.3 Perturbation threshold line................................................................................62
3.6 Discussion.......................................................................................................................64
3.7 Acknowledgements.........................................................................................................66
3.8 References....................................................................................................................... 66

CHAPTER 4 DISCUSSION.................................................................................................. 69

4.1 Experimental discussion................................................................................................. 69

4.1.1 Participant recruitment and instructions...........................................................69

4.1.2 Synchronisation delays for surface translations.............................................. 69
Hypotheses as to the source of the delays....................................................... 70
Identifying onset of perturbation (OP)............................................................ 72

Identifying onset of response (OR)..................................................................74

Identifying toe off (TO )....................................................................................74

Identifying heel strike (HS).............................................................................. 76
Synchronising the data......................................................................................78

4.1.3 Synchronization impact tests............................................................................. 80
4.1.4 Initial lean angle calculation............................................................................. 82

4.1.5 Impact of the postural perturbation amplitude on when the surface
translation ends and when heel strike occurs..................................................82

4.1.6 Rubber sheet strain and stance foot displacement on rubber sheet................ 84

4.2 Theoretical discussion.....................................................................................................86
4.2.1 Heights of participants...................................................................................... 86

4.2.2 Masses of participants....................................................................................... 86

4.3 References....................................................................................................................... 87
CHAPTER 5 CONCLUSION.................................................................................................89

5.1 Summary of findings.......................................................................................................89

5.2 Recommendations for future studies..............................................................................90
5.3 References....................................................................................................................... 91

APPENDIX A Inverted pendulum on a skid model equations............................................. 93

A.1 Hypotheses...................................................................................................................... 93
A.2 Inputs................................................................................................................................93

A.3 Outputs............................................................................................................................ 94

A.4 Initial conditions..............................................................................................................94



xii Table of contents

A.5 Lagrangian........................................................................................................................94

A.6 Equations of motion.........................................................................................................95
A.7 Linearization.....................................................................................................................96



LIST OF FIGURES

Figure 1.1: Progression of the structure by age and gender o f the Canadian population 
(Statistique Canada, 2005)................................................................................................... 2

Figure 1.2: Perturbation threshold line for lean releases (circles), lean releases with pulls 
(triangles) and pulls while walking (squares) at the threshold of balance recovery 
(adapted with permission from Moglo and Smeesters, 2005)........................................... 8

Figure 1.3: The perturbation threshold line (thick and thin full lines: mean ± standard 
deviation), obtained from the successful maximum lean angle (empty black circles), 
maximum lean angle with pull (empty black triangles) and maximum pull while 
walking (empty black squares) trials, separates falls from recoveries (reproduced with 
permission from Moglo and Smeesters, 2005)...................................................................9

Figure 2.1: Perturbation threshold line for lean releases (circles), lean releases with waist pulls 
(triangles) and waist pulls while walking (squares) at the threshold of balance recovery 
separates falls from recoveries (adapted with permission from Moglo and Smeesters, 
2005)....................................................................................................................................30

Figure 2.2 : Experimental setup for the lean releases (a) and surface translations (b) at the 
threshold of balance recovery, i.e., at the maximum initial lean angle (dmax) and the 
maximum surface translation velocity ( F ^ ) ,  respectively.............................................32

Figure 2.3: Time histories for lean releases (top three graphs) and surface translations (bottom 
three graphs) for a typical participant at the threshold of balance recovery, i.e., at the 
maximum initial lean angle (dmax) and the maximum surface translation velocity (Vmax), 
respectively......................................................................................................................... 34

Figure 2.4 : The perturbation threshold line, i.e., the linear regression between the angular 
positions and velocities at the end of reaction time for lean release (filled circles) and 
surface translation (filled squares) trials at the threshold of balance recovery, for the 8 
fallers (thick and thin full lines: mean ± standard deviation, 1^=0.928)......................... 38

Figure 2.5: The perturbation threshold line from Figure 2.4, obtained from the successful 
maximum initial lean angle (filled black circles) and maximum surface translation 
velocity (filled black squares) trials of the 8 fallers, separates falls from recoveries 
(thick and thin full lines: mean ± standard deviation)......................................................39

Figure 3.1: Perturbation threshold line for lean releases (circles), lean releases with waist pulls 
(triangles) and waist pulls while walking (squares) at die threshold of balance recovery 
separates falls from recoveries (adapted with permission from Moglo and Smeesters, 
2005)....................................................................................................................................53

Figure 3.2: Time histories for lean releases (top two graphs) and surface translations (bottom 
four graphs) for a typical participant at the threshold of balance recovery, i.e., at the 
maximum initial lean angle and the maximum surface translation velocity, 
respectively......................................................................................................................... 55



xiv List of figures

Figure 3.3: Inverted pendulum on a skid model to simulate lean releases and surface 
translations.......................................................................................................................... 57

Figure 3.4: Angular position as a function of angular velocity from onset o f perturbation at t=0 
to onset of response at reaction time (top graph), for 2 typical trials at the maximum 
initial lean angle (gray) and maximum surface translation velocity (black).................. 59

Figure 3.5: Linear regression (r2=0.622) between the participant mass (m) and the optimal 
coefficient of friction between the rubber sheet and the mat (//) for the maximum 
surface translation velocity trials using the inverted pendulum on a skid model 60

Figure 3.6: The experimental perturbation threshold line (thick and thin full black lines and 
filled black symbols: mean ± standard deviation, 1^=0.928, (Thiaux et a l, 2014, 
submitted)), i.e., the linear regression between the angular positions and velocities at 
the end of reaction time for lean release (circles) and surface translation (squares) trials 
at the threshold of balance recovery, for the 8 fallers (filled symbols).......................... 63

Figure 4.1: Synchronisation delay between the onset of perturbation obtained using the force 
plate (O P fp -3S d , top graph) and marker ( O P marker, bottom graph) data for surface 
translations.......................................................................................................................... 70

Figure 4.2: The slope interpolation method to identify the onset of perturbation using force 
plate data (O P fp-ctifs)- The sum of the vertical ground reaction forces shown here is 
the same as the one shown in the top graph of Figure 4.1 from approximately 200 to 
650ms.................................................................................................................................. 73

Figure 4.3: The slope interpolation method to identify the onset of perturbation using marker 
data (OPMarker)- The surface translation velocity shown here is the same as the one 
shown in the bottom graph of Figure 4.1 from approximately 0 to 525ms....................74

Figure 4 .4 :  The identification of the toe off inflection point on force plate data ( T O f p ) .  The 
sum of the vertical ground reaction forces shown here is the same as the one shown in 
the top graph of Figure 4 .1  from approximately 550 to 1000ms (O P f p -3s d  to HSMarker)- 

.............................................................................................................................................75
Figure 4.5: The identification of the toe off minimum on marker data (TOMarker). The anterior- 

posterior (y) and inferior-superior (z) metatarsal displacements and accelerations 
shown here are for the same participant as the one shown in Figure 4.1....................... 76

Figure 4.6: The identification of the heel strike impact point on force plate data (H S fp) . The 
sum of the vertical ground reaction forces shown here is the same as the one shown in 
the top graph of Figure 4.1.................................................................................................77

Figure 4.7: The identification of the heel strike maximum on marker data (HSMarker). The 
anterior-posterior (y) and inferior-superior (z) malleolus displacements and 
accelerations shown here are for the same participant as the one shown in Figure 4.1.78

Figure 4.8: The three markers on the rubber mallet used for the synchronisation impact tests. 
 81

Figure 4.9: Force plate and marker data during two impacts on the large and small force plates 
with the linear motor at 2.5m/s.......................................................................................... 81



List of figures xv

Figure 4.10: Surface translation displacement, velocity and acceleration time histories for all 
the trials before the threshold of balance recovery for participant 4, from 1 to 2 m/s 
surface translation velocity. The maximum surface translation velocity of participant 4 
was 2.25m/s. Heel strike times (HS) are also shown....................................................... 83

Figure 4.11: Heel strike time, the sum of reaction time, weight transfer time and step time, 
occurred after the end of surface translation for all but three participants (red squares) 
at the maximum surface translation velocity.................................................................... 84

Figure 4.12: Rubber sheet strain over time. OP: onset of perturbation, OR: onset of response, 
TO: toe off, HS: Heel strike............................................................................................... 85

Figure 4.13: Linear regression between masses recorded by the force plates and real masses 
self-reported by the participants........................................................................................ 87

Figure A.l : Inverted pendulum on a skid model.......................................................................... 93





LIST OF TABLES

Table 2.1: Effect of the two postural perturbations on the kinematic variables at the maximum 
lean angles or maximum translation velocities (mean ± standard deviation)................ 45

Table 3.1: Errors (mean±SD) between the experimental and theoretical results for angular 
position (30) and velocity (Sco) ..........................................................................................68

Table 4.1: Reduction in the quantity of data acquired from experimental setup 1 to 3, for the 
preliminary data collections, to experimental setup 4 for the final data collections 71

Table 4.2: Synchronisation delays (AT0p) between the onset of perturbation using force plate 
( O P Fp-3s d )  and marker ( O P Marker) data............................................................................... 79

Table 4.3: Remaining synchronisation delays at toe off (A T to)  and heel strike (A T hs)  between 
toe off and heel strike using force plate (T O fp and H S fp)  and marker (TOMarker and 
HSMarker) data after synchronisation at the onset of perturbation.....................................80



CHAPTER 1 INTRODUCTION

1.1 The importance of studying falls

In 2009, the most common cause of injuries declared by Canadians is a fall (Statistique 

Canada, 2010). Indeed, about 1.7 million people, representing 41% of the population 

sustaining an injury, declare having been hurt due to a fall.

More than 65% of the most serious injuries limiting the activities of the Canadian community 

dwelling elderly over 65yrs old are caused by falls, and 50% of these injuries are fractures 

(Statistique Canada, 1999). In addition to locomotion difficulties, which can lead to avoidance 

of daily activities and an increase in the risk of nursing home admission (Tinetti, 1994), 

personal psychological distress caused by a dependence on health services can occur. Both of 

these thus increase the morbidity rate of the population over 65yrs old.

In 2004, elderly people over 65yrs old represented 46% of direct costs due to falls or 2 billion 

dollars (Smartrisk, 2009). Moreover, elderly people over 65yrs old represented 84% of the 

deaths, 59% of the hospitalizations and 53% of permanent disabilities caused by falls.

The Canadian population is getting older and this tendency is verified by the inversion of the 

demographics since 2006 (Statistique Canada, 2005). There is indeed an inversion in the ages 

pyramid, showing clearly an ageing of the population over the last 50yrs (Figure 1.1). The 

demographic projections show that in 2015, elderly people over 65yrs old may overtake the 

proportion of children aged between 0 and 14yrs old. Furthermore, the number of workers per 

elderly people over 65yrs old has been decreasing for the past 25 years. In 1975, there were 8 

adults between 15 and 64yrs old for each elderly person. This ratio is reduced to 5 to 1 in 2006 

and may decrease to 2.2 to 1 in 2056. The number of elderly financed by workers is thus going 

to increase.

It has therefore become important to minimise expenses due to falls by attempting to prevent 

them. Furthermore, fall prevention has a doubly favorable impact since it will not only reduce 

the associated costs on society but also limit the physical and psychological impact on the 

elderly.
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Figure 1.1: Progression of the structure by age and gender of the Canadian population
(Statistique Canada, 2005).

1.2 The knowledge base on fall experiments

Numerous publications have helped to improve fall prevention by analyzing living 

environments (Stevens et al, 2001), designing protective devices such as hip protectors 
(Combes and Price, 2014; Li et al., 2013) or compliant floors (Laing and Robinovitch, 2009; 

Wright and Laing, 2011), or creating educational information (Wyman et al., 2007; 

Yoshimura et a l, 2013) or exercise training (Bieryla and Madigan, 2011; Mansfield et al., 
2010; Robertson and Gillespie, 2013) programs.

Nevertheless, falls occur without warning and it is ethically and logistically very difficult to 

record these real life events with accurate instruments to quantify and characterize falls. For 

example, some investigators have used video capture in long term care facilities to identify the 

circumstances of falls but the probability of actually capturing these unpredictable events in 

the field of view of the cameras is small and, even when the recording of a fall is usable, data 

analysis is limited, not precise, very tedious and complex (Robinovitch et al., 2013; Yang et 

al, 2013). Although laboratory experiments are not totally representative of real life falls, they 

allow investigators to have a better control over the field of view of the cameras, a greater 

number of both kinematic and kinetic measurements available, and a better accuracy of all 

measurements taken. Fall experiments in the laboratory are thus essential.
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Since falls mainly occur during activities requiring large center of mass displacements (Tinetti 

et a l, 1988), this literature review will not focus on small postural perturbations, where only 

feet in place balance recovery strategies are needed. Instead, we will occasionally mention 

medium postural perturbations, where a step is necessary for balance recovery (Hsiao and 

Robinovitch, 1998; Maki et a l, 1996; Nashner, 1980; Wolfson et a l, 1986), and primarily 

focus on large postural perturbations, where balance recovery and avoiding a fall is not always 

possible. These large postural perturbations are thus at the threshold of balance recovery.

During experiments, variables that characterize balance recovery from medium or large 

postural perturbations are usually divided in three distinct phases (Telonio and Smeesters, 

2008), each with its particular importance for balance recovery depending on participant age 

and gender (Hsiao-Wecksler, 2008):

• Response initiation: These variables measure how long after the onset of a perturbation a 

participant initiates a response in order to recover balance. Typical variables include 

ground reaction force reaction times and electromyographic muscular latency times. While 

certain studies have shown some influence of response initiation variables on balance 

recovery ability (Maki and Mcllroy, 2006; Smeesters et a l,  2001a), others have shown 

constant response initiation variables (Do et a l, 1982; King et a l, 2005).

• Response execution: These variables measure how fast a participant executes a response to 

recover balance. Typical variables include weight transfer time, step time and step velocity 

(mean or maximum). Most studies have shown constant weight transfer times (Do et a l, 

1982; King et a l, 2005) and a strong influence of step times and step velocities on balance 

recovery ability (Maki and Mcllroy, 2006; Shumway-Cook and Woollacott, 2001; Telonio 

and Smeesters, 2008).

• Response geometry: These variables measure the geometry of the response to recover 

balance. Typical variables include step length, step height and step width. Alternatively, 

the stepping angle between the two legs (ac), the body lean angle (pc) and the angular ratio 

(AR=ac/pc) at stepping foot contact have also been used (Hsiao and Robinovitch, 1999). 

Most studies have shown an increase in step length with the amplitude of the perturbation 

(Do et a l, 1982; Luchies et a l, 1994; Maki et a l, 1996; Telonio and Smeesters, 2009; 

Thelen et a l , 1997).
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1.2.1 Which postural perturbations have been experimentally studied?

Five different postural perturbations have been experimentally investigated using large 

postural perturbations at the threshold of balance recovery: lean releases, pulls, surface 

translations, slips and trips.

Lean release experiments

Lean releases are initiated by suddenly releasing participants from a static initial lean angle 

(Carbonneau and Smeesters, 2014; Cyr and Smeesters, 2007; 2009b; 2009c; Grabiner et al., 

2005; Hsiao-Wecksler and Robinovitch, 2007; Hsiao-Wecksler, 2008; Madigan and Lloyd, 

2005a; 2005b; Madigan, 2006; Moglo and Smeesters, 2005; 2006; Owings et a l, 2000; 

Telonio and Smeesters, 2007; Telonio et al., 2008; Telonio and Smeesters, 2008; 2009; Thelen 

et al., 1997; 2000; Wojcik et a l, 1999; 2001). The initial lean angle is obtained by leaning 

participants forward, sideways or backwards from standing using a cable attached to a pelvic 

belt. The amplitude of the initial lean angle is controlled by adjusting the length of the lean 

cable. When the lean is released, the angular velocity (and to a lesser extent the angular 

position) of the participant increases, due solely to gravitational forces.

Pull experiments

Pulls can be suddenly initiated from a static standing or leaning position or while walking 

(Moglo and Smeesters, 2005; 2006). The pull force is applied with a cable attached to a pelvic 

belt using dropped weights or bungee cords under tension. For static initial positions the pull 

force can be applied forward, sideways or backwards, but while walking it has only be done 

for forward pulls at 50% swing. The amplitude of the pull force is controlled by increasing the 

number of weights or bungee cords. When the pull is applied, both the angular position and 

velocity of the participant increase.

Surface translation experiments

Surface translations are initiated by suddenly translating the surface the participant is statically 

standing or walking on (Feldman and Robinovitch, 2007; Hsiao and Robinovitch, 1998; 

Owings et al., 2000; 2001; Pai, 1999; Pavol et a l, 2002b; 2004a; 2004b). It has never been 

attempted from a statically leaning initial position. The translation can be generated by springs 

under tension, a motor or a treadmill, and done forward, sideways or backwards. The
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amplitude of the translation may be controlled by the acceleration, velocity and/or 

displacement of the surface. When the translation is applied, both the angular position and 

velocity of the participant increase.

Slip experiments

Slips are initiated while walking and occur at double support, when the force applied by the 

front foot on the floor’s surface suddenly exceeds the force provided by friction (Brady et al., 

2000; Cham and Redfem, 2001; Troy and Grabiner, 2006). The coefficient of friction of a 

section of the floor is altered by applying some contaminant (mineral oil, glycerol or K-Y 

jelly) or by using artificial ice. Slips usually result in backward and sometime sideways falls 

(Smeesters et a l, 2001b). Amplitude control is very difficult but could be done by controlling 

the coefficient of friction. When the slip is triggered, both the angular position and velocity of 

the participant increase.

Trip experiments

Trips are also initiated while walking but occur at single support, when the trajectory of the 

swing foot is suddenly stopped (Owings et al., 2000; Pavol et al., 1999a; 1999b; 2001; 2002a; 

Pijnappels et al., 2001; 2004; 2005a; 2005b; 2005c; Smeesters et al., 2001a). Swing can be 

interrupted by restraining a cable attached to one of the feet or using a suddenly appearing 

obstacle. Trips usually result in forward falls (Smeesters et al., 2001b). Amplitude control is 

also difficult but can be done by controlling the length of time swing is interrupted (Smeesters 

et al., 2001a). When the trip is triggered, both the angular position and velocity of the 

participant increase.

For safety reasons, all postural perturbations are conducted either on top of firm gymnasium 

mats or using a safety harness attached to an overhead rail by a cable. Although the 

participants usually know they are going to be perturbed, the postural perturbations are 

randomly triggered to maintain some effect of surprise. The amplitude of the postural 

perturbations is usually slowly incremented after each successful trial, until participants fail to 

recover balance twice at a given amplitude. Balance recovery is successful if participants use 

no more than the instructed number of step (a single step, two steps or no limit), do not touch 

the floor or the surface of the gymnasium mats with their hands, and/or do not support their 

body weight in the safety harness (less than 20 or 30% of body weight (Cyr and Smeesters,
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2009a; Yang and Pai, 2011)). The threshold of balance recovery for each postural perturbation 

is thus the last successful trial at the maximum amplitude for that postural perturbation 

(maximum initial lean angle, pull force or surface translation velocity).

1.2.2 Can we compare experiments with different postural 

perturbations?

The great variety of postural perturbations used in the studies presented in the previous section 

make comparisons between studies difficult. In fact, although the same response initiation, 

execution and geometry variables are often measured, to our knowledge only three studies 

have attempted to compare results from different postural perturbations (Mansfield and Maki, 

2009; Moglo and Smeesters, 2005; 2006). Being able to compare results across postural 

perturbations would help researchers make faster and broader conclusions about balance 

recovery abilities and thus make these results more readily available to clinicians for fall 

prevention and rehabilitation.

Mansfield and Maki (2009) compared medium pulls and surface translations while standing 

and walking in place in multiple directions and in both younger and older adults. They 

hypothesized that contradictions in age effects between studies using different postural 

perturbations could be due to:

• differences in the mechanical and sensory stimuli provoked by each perturbation;

• differences in the amplitude, timing (onset time and duration) and direction of each 

perturbation;

• differences in the capacity of the participant to predict perturbation amplitude, timing 

(onset time and duration) and direction;

• differences in the instructions given to the participant.

To avoid confounding factors, they thus varied both postural perturbations (type, amplitude, 

timing and duration) in an unpredictable manner and gave the same instructions to participants 

at each trial. Their results showed that, although age effects were usually less pronounced for 

pulls compared to surface translations, age effects were always in the same direction for both 

postural perturbations. However, their pulls were less destabilising (less center of mass motion 

prior to response initiation) than their surface translations and thus less effective in revealing
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age effects. Mansfield and Maki (2009) thus concluded that differences in the mechanical and 

sensory stimuli of each perturbation were less important than differences in perturbation 

amplitude and timing. They also emphasize the fact that, unfortunately, few studies provide 

sufficient details on their perturbation amplitude and timing, and that amplitudes can be 

difficult to compare (pull force versus surface translation acceleration).

Moglo and Smeesters (2005; 2006) compared large forward lean releases, lean releases with 

pulls and pulls while walking in both younger and older adults. Moreover, their studies were 

done at the threshold of balance recovery, which helped to resolve the difficulty in comparing 

postural perturbation amplitudes. Indeed, since the threshold of balance recovery is the 

maximum postural perturbation amplitude that participants can suddenly sustain and still 

successfully recover balance, the threshold of balance recovery in these studies was:

• the maximum initial lean angle that participants could be suddenly released from and still 

recover balance using a single step for lean releases with or without pulls;

• the maximum pull force that participants could suddenly sustain and still recover balance 

using a single step for pulls while walking.

Three important results came out of the first study (Moglo and Smeesters, 2005):

1. The three postural perturbations were definitely not the same. Not only were their initial 

angular positions and velocities different, but they also gave different results (Figure 1.2, 

thick dashed lines and filled symbols). Indeed, increasing pull force decreased the 

maximum lean angles and increasing walking velocity decreased the maximum pull forces.

2. Nevertheless, response initiation, execution and geometry variables for the threshold of 

balance recovery trials were nearly identical. Indeed, overall reaction time was 

significantly different between the five postural perturbations (1 lean release, 2 lean 

releases with pull and 2 pulls while walking), but none of the pairwise comparisons were 

significant. Moreover, weight transfer time, step time, step length and step velocity were 

not significantly different between the five postural perturbations.

3. In fact, their results were similar enough that they could be compared. Indeed, the angular 

positions and velocities at the end of reaction time for trials at the threshold of balance 

recovery formed a perturbation threshold line (Figure 1.2, thin solid and dashed lines and 

empty symbols). Moreover, this perturbation threshold line separated falls from recoveries,
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regardless of the postural perturbation. Indeed, 98% of the angular positions and velocities 

at the end of reaction time of the failed balance recovery trials were above the perturbation 

threshold line (Figure 1.3, white area), while 97% of the angular positions and velocities at 

the end of reaction time of the successful balance recovery trials were below the 

perturbation threshold line (Figure 1.3, gray area).

y =-0.250 x + 40.9 (N=10) 
pseudoR2 = 0.946

F=42!6N
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O 25
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Figure 1.2: Perturbation threshold line for lean releases (circles), lean releases with pulls 
(triangles) and pulls while walking (squares) at the threshold of balance recovery (adapted 

with permission from Moglo and Smeesters, 2005).
The thick dashed lines ending in filled symbols were the average angular positions and 

velocities from onset of perturbation to onset of response. The thin solid and dashed lines were 
the perturbation threshold line (mean ± standard deviation) formed by the angular positions 

and velocities at the end of reaction time (empty symbols).

Finally, the second study (Moglo and Smeesters, 2006) showed that the perturbation threshold 

line declined with age, shifting down and to the left. Moglo and Smeesters (2005; 2006) have 

thus developed a dimensionless method to compare results from different postural 

perturbations and experimentally demonstrated that the choice of postural perturbation does 

not affect the threshold of balance recovery. That being said, their perturbation threshold line
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had a large gap in data points, between 80-120deg/s and 10-20deg, which could not be filled 

without increasing pull forces beyond safe levels (Figure 1.2 and Figure 1.3).

•  Pre-Max trials 
O Max trials 
O Post-Max trials

0 20 40 60 80 100 120 140 160 180 200
Angular velocity (deg/s)

Figure 1.3: The perturbation threshold line (thick and thin full lines: mean ± standard 
deviation), obtained from the successful maximum lean angle (empty black circles), maximum 

lean angle with pull (empty black triangles) and maximum pull while walking (empty black 
squares) trials, separates falls from recoveries (reproduced with permission from Moglo and

Smeesters, 2005).
The filled gray symbols were the angular position and velocity points at the end of reaction 

time for trials before the threshold of balance recovery where balance recovery was successful. 
The empty gray symbols were the angular position and velocity points at the end of reaction 

time for trials after the threshold of balance recovery where participants failed to recover
balance.

1.3 The knowledge base on fall models

Unfortunately, balance recovery experiments are time consuming, expensive and can be 

dangerous. Participant recruitment is always a challenging, time consuming and sometimes 

expensive process, especially when recruiting frail older adults which can trigger additional 

concerns with ethics committees (Nelson et a l, 2002; Ory et a l, 2002; Verheggen et a l, 

1998). Purchasing, maintaining and renewing laboratory equipment as well as running
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experiments is often expensive. More importantly, balance recovery experiments can be very 

demanding and fatiguing for older participants, which often lengthens experimental time. 

Finally, despite strict screening processes and even if appropriate safety measures are taken, 

balance recovery experiments can be dangerous for both younger and older participants, 

especially if large postural perturbations are used and avoiding a fall is not always possible. 

Therefore, it would be useful to be able to use a model instead of an experiment to 

theoretically predict if a given postural perturbation will lead to an unavoidable fall or if 

balance recovery is possible for a given individual participant. Indeed, theoretical models are 

usually faster and much less expensive than experiments. They are also not dangerous and 

never complain or get tired no matter how many times you run them.

This literature review will again primarily focus on models simulating large postural 

perturbations at the threshold of balance recovery, not models simulating small or medium 

postural perturbations (Hof et a l, 2005; Pai and Patton, 1997; Pai et al., 2000; Park et al., 

2004; van der Kooij et al., 2005) where only feet in place or stepping is necessary for balance 

recovery and falls never occur.

1.3.1 Which postural perturbations have been modelled?

All five postural perturbations covered in section 1.2.1 (lean releases, pulls, surface 

translations, slips and trips) have been modeled using large postural perturbations at the 

threshold of balance recovery. However, we must first mention the models developed by van 

den Kroonenberg et al. (1995) which to our knowledge were the first published models of falls 

from standing height. Their simple one-, two- and three-segment two-dimensional models 

were used to estimate impact forces in self-initiated sideways falls.

Lean release models

Six different studies have modeled lean releases. Hsiao and Robinovitch (1999) used a two- 

dimensional inverted pendulum model with a torsional spring as its pivoting stance ankle point 

and a linear spring as its step leg to simulate balance recovery by stepping from forward lean 

release to fall arrest. It predicted that, despite a desire to minimize recovery effort, successful 

balance recovery is governed by an interaction between step length, step time and leg strength. 

Thelen and Burd (2000) used a two-dimensional seven-segment model with thirty Hill-type
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musculo-tendon actuators driven by eighteen independent electromyography signals to 

simulate balance recovery by stepping from forward lean release to heel strike. It suggested 

that differences in stepping performance could come about from age-related changes in muscle 

strength and speed. Lo and Ashton-Miller (2008a) used a three-dimensional eleven-segment 

model with proportional-derivative feedback actuators to demonstrate how various pre-impact 

movement strategies (flexion of the lower extremities, ground contact with the side o f the 

lower leg, axial rotation and using the arm to break the fall) can reduce impact forces in 

sideways falls from initial leans. Lo and Ashton-Miller (2008b) also used a two-dimensional 

seven-segment model with proportional-derivative feedback actuators to demonstrate how 

various joint control strategies (eccentric hip flexion prior to impact, arm retraction post 

impact) can reduce impact forces on the wrists in forward falls from initial leans. Smeesters 

(2009) showed promising preliminary results in the effectiveness of a two-dimensional 

inverted pendulum model, simply falling under gravity or with an additional pull force 

modelled as a step, in simulating the angular position and velocity of participants from onset 

of perturbation to onset of response for forward leans or leans with pulls, respectively. Finally, 

Aftab et al. (2012) used a two-dimensional inverted pendulum plus foot model with a closed 

loop linear model predictive controller to successfully predict step lengths for a complete 

multiple step balance recovery response from forward initial leans.

Pull models

To our knowledge, only one study modeled pulls at the threshold of balance recovery. 

Smeesters (2009) showed promising preliminary results in the effectiveness of a two 

dimensional inverted pendulum model, with a pull force modelled as a step, in simulating the 

angular position and velocity of participants from onset of perturbation to onset of response 

for forward pulls while walking.

Surface translation models

To our knowledge, only one study modeled surface translations for medium to large postural 

perturbations. Wu et a l, (2007) used two two-dimensional inverted pendulum plus foot 

models representing the stance and step legs and the work-energy principle to estimate the 

minimal step length needed for forward balance recovery with a single step. Although their 

results were consistent with medium surface translation results, they may not apply for surface
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translations at the threshold of balance recovery where the available stepping time is limited, 

since the work-energy principle approach cannot account for step time.

Slip models

To our knowledge, only one study modeled falls from slips. Smeesters et al. (2007) used the 

three-dimensional seventeen-segment and sixteen-joint articulated total body model to 

simulate passive falls following 30cm forward slips on a patch of floor with reduced friction 

coefficient (p=0.03) so as to determine fall direction and impact locations for slow, normal 

and fast gait speeds.

Trip models

Five different studies have modeled forward trips, van den Bogert et al. (2002) used a two- 

dimensional inverted pendulum model to predict angular position of participants from onset of 

perturbation to response time (the time at which the tripped foot is lowered to the ground so as 

to allow stepping with the other foot). It predicted that faster response time was more 

important than slower walking velocity for successful recovery. Fomer Cordero et al. (2004) 

used a two-dimensional three-segment model, an inverted pendulum trunk connected at the 

hip to two leg segments of variable length, during the double support phase of balance 

recovery following a trip from heel strike to fall arrest. It described the hip torques necessary 

to control the trunk as a function of hip trajectory, ground reaction forces and their application 

points. Smeesters et al. (2007) used the three-dimensional seventeen-segment and sixteen-joint 

articulated total body model to simulate passive falls following trips due to contact with an 

obstacle so as to determine fall direction and impact locations for slow, normal and fast gait 

speeds. Roos et al. (2010) used a two-dimensional inverted pendulum model with a torsional 

spring as its pivoting stance ankle point and a linear spring as its step leg to simulate balance 

recovery by stepping from trip onset to fall arrest. It demonstrated that, when perturbed later in 

swing, a larger step and higher limb forces were required for successful recovery. Shiratori et 

al. (2009) used a three-dimensional seventeen-segment and sixteen-joint model and finite state 

machines to control a human simulation of balance recovery from a trip due to contact with an 

obstacle in an interactive environment.
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1.3.2 Could we use a single model for all postural perturbations?

The literature review in the previous section has revealed that various forms of two- 

dimensional inverted pendulum models have been successfully used for medium to large 

postural perturbations in three of the six lean release models, in the single pull model, in the 

single surface translation model and in three of the five trip models. Is it possible that a single 

inverted pendulum model could be used to model all five postural perturbations? 

Unfortunately, the specific aims and output variables examined with the inverted pendulum 

models of each of the previous studies were not capable of answering this question. However, 

the dimensionless perturbation threshold line method to experimentally compare results from 

different postural perturbations from Moglo and Smeesters (2005; 2006) and the preliminary 

results from Smeesters (2009) on the effectiveness of the same two dimensional inverted 

pendulum model in simulating leans, leans with pulls and pulls while walking as well as the 

perturbation threshold line hint that it may indeed be possible. In fact, as the stability boundary 

method by Pai et al. (2000) obtained using an inverted pendulum model established a 

threshold in center of mass position versus velocity phase space between feet in place and 

stepping balance recovery strategies, the perturbation threshold line method by Moglo and 

Smeesters (2005; 2006) obtained using experiments established a threshold in participant 

angular position versus velocity phase space between recoveries and falls. A single inverted 

pendulum model would thus greatly reduce the need for time consuming, expensive and 

dangerous experiments, especially if it can predict if a given postural perturbation will lead to 

an unavoidable fall or if balance recovery is possible. For example, it could simulate future 

experiments to determine the best range and levels of postural perturbation amplitudes to 

insure a good distribution of results and determine the specifications of the necessary 

equipment. It could also simulate experiments in frail older adults that are unable to participate 

in experiments.

1.4 Research project objectives

In an effort to pursue the work by Moglo and Smeesters (2005; 2006) and Smeesters (2009) on 

the dimensionless perturbation threshold line method, the overall long term objective of our 

laboratory is to determine if balance recovery is possible or if a fall is unavoidable, for any
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perturbation applied on an individual by both experimental and theoretical means. To do so, 

we first had to determine what experimental postural perturbations were currently available to 

us amongst the five postural perturbations reviewed in section 1.2.1: lean releases, pulls, 

surface translations, slips and trips.

1.4.1 Which experimental postural perturbations were available?

In the Biomechanics of Movement Laboratory of Professor Cecile Smeesters at the Research 

Center on Aging at the Universite de Sherbrooke in Sherbrooke QC, the equipment for lean 

releases was available. The equipment previously used by Moglo and Smeesters (2005; 2006) 

for pulls was no longer available as pursuing this particular postural perturbation was not 

possible without increasing pull forces beyond safe levels (section 1.2.2). Finally, the 

equipment for surface translations, slips or trips had never been available in this laboratory.

In the Injury Prevention and Mobility Laboratory of Professor Stephen N. Robinovitch from 

the Department of Biomedical Physiology and Kinesiology at Simon Fraser University in 

Burnaby BC, the equipment for lean releases and surface translations was available. 

Furthermore, the equipment for pulls, slips and trips had never been available in this 

laboratory. More importantly, Professor Robinovitch had agreed to collaborate with us 

following some successful preliminary trials on the surface translation equipment during the 

2008-2009 sabbatical of Professor Smeesters in his laboratory. The experimental part of this 

master’s thesis thus took place in his laboratory at Simon Fraser University.

The overall objective o f  this master’s thesis was thus to determine i f  balance recovery is 

possible or i f  a fa ll is unavoidable, for lean releases and surface translations at the threshold 

o f balance recovery by both experimental and theoretical means. In particular, we hoped that 

the addition of the surface translations might fill in the gap in data points between 80-120deg/s 

and 10-20deg in the perturbation threshold line previously obtained by Moglo and Smeesters 

(2005) using lean releases, lean releases with pulls and pulls while walking (section 1.2.2).

1.4.2 Specific aims and hypotheses

This master’s thesis will thus contain an experimental publication (Chapter 2) and a theoretical 

publication (Chapter 3). The specific aims and hypotheses of each publication were as follows:
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• Experimental specific aim: To determine the maximum forward initial lean angle and the 

maximum backward surface translation velocity from which younger adults could be 

suddenly released or pulled, respectively, and still recover balance using a single step (Cyr 

and Smeesters, 2007; 2009c).

• Experimental hypothesis 1: The angular positions and velocities at the end of reaction time 

for lean release and surface translation trials at the threshold of balance recovery would 

form a perturbation threshold line similar to the one obtained by Moglo and Smeesters 

(2005) using lean releases, lean releases with pulls and pulls while walking.

• Experimental hypothesis 2: Response initiation, execution and geometry variables for the 

maximum lean angle and maximum translation velocity trials would not be significantly 

different between the two postural perturbations.

• Theoretical specific aim: To determine if a two-dimensional thin rod inverted pendulum 

model mounted on a horizontally moving skid could simulate the angular position and 

velocity of participants from onset of perturbation to onset of response for both lean 

releases and surface translations.

•  Theoretical hypothesis: The inverted pendulum on a skid model would accurately simulate 

the angular position and velocity of participants from onset of perturbation to onset of 

response for both the lean releases and surface translations.

A general discussion of these two publications (Chapter 4) will follow as well as a conclusion

on this master’s thesis (Chapter 5).
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(2005; 2006) sur la methode adimensionnelle de ligne de perturbation limite, nous avons 

determine Tangle maximum d’inclinaison initiale vers l’avant et la vitesse maximum de 

translation de surface vers Parriere desquels 12 jeunes adultes pouvaient etre soudainement 

relaches ou tires, respectivement, et tout de meme retablir leur equilibre en utilisant un seul 

pas. Les resultats ont demontre des angles maximum d’inclinaison de 27.3±4.8deg et des 

vitesses maximum de translation de 2.42±0.36m/s (N=12). Aux angles d’inclinaison ou 

vitesses de translation maximum, les deux perturbations posturales n’avaient pas d’effet 

significatif sur 1’initiation de la reponse, mais affectaient la plupart des variables 

d’execution et de geometrie de la reponse. Neanmoins, les positions et vitesses angulaires a 

la fin du temps de reaction pour ces essais a la limite du retablissement de T equilibre 

formaient une ligne de perturbation limite qui etait tres similaire a celle obtenue par Moglo 

et Smeesters (2005). De plus, la ligne de perturbation limite etait tres efficace pour separer 

les chutes (97%) des retablissements (96%), quelle que soit la perturbation posturale. La 

methode adimensionnelle de ligne de perturbation limite a maintenant ete etablie 

experimentalement pour les relachements d’inclinaison, relachements d’inclinaison avec 

tirages a la taille, tirages a la taille en marchant et translations de surface, foumissant ainsi 

des preuves additionnelles que le choix de la perturbation posturale n’affecte pas la limite 

du retablissement de Tequilibre. Cela devrait done aider les chercheurs a faire des 

conclusions plus rapides et plus generates sur les capacites a retablir Tequilibre.

Note: Following the corrections requested by the members of the jury, the content of this article 

differs from the one submitted.
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2.2 Abstract

The great variety of postural perturbations used in experimental studies make comparisons 

between studies and generalizations about balance recovery abilities difficult. In fact, only three 

studies have attempted to compare results from different postural perturbations. To pursue the 

work by Moglo and Smeesters (2005; 2006) on the dimensionless perturbation threshold line 

method, we determined the maximum forward initial lean angle and the maximum backward 

surface translation velocity from which 12 younger adults could be suddenly released or pulled, 

respectively, and still recover balance using a single step. Results showed maximum lean angles 

of 27.3±4.8deg and maximum translation velocities of 2.42±0.36m/s (N=12). At the maximum 

lean angles or maximum translation velocities, the two postural perturbations did not have a 

significant effect on response initiation, but did affect most response execution and response 

geometry variables. Nevertheless, the angular positions and velocities at the end of reaction time 

for these trials at the threshold of balance recovery formed a perturbation threshold line that was 

very similar to the one obtained by Moglo and Smeesters (2005). Furthermore, the perturbation 

threshold line was very efficient in separating falls (97%) from recoveries (96%), regardless of 

the postural perturbation. The dimensionless perturbation threshold line method has now been 

experimentally established for lean releases, lean releases with waist pulls, waist pulls while 

walking and surface translations, thus providing further evidence that the choice of postural 

perturbation does not affect the threshold of balance recovery. It should therefore help 

researchers make faster and broader conclusions about balance recovery abilities.

Abstract Word Count: 250 / 250 words
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2.3 Introduction

Falls occur without warning and it is ethically and logistically very difficult to record these real 

life events with accurate instruments to quantify and characterize falls. For example, some 

investigators have used video capture in long term care facilities to identify the circumstances of 

falls but actually capturing falls is rare and even when the recording is usable data analysis is 

limited, not precise, very tedious and complex (Robinovitch et a l, 2013; Yang et al., 2013). 

Although experiments are not totally representative of real life falls, the laboratory offers better 

control of the field of view of cameras, a greater number of measurements available and better 

accuracy of these measurements. Therefore, fall experiments in the laboratory are essential.

Five different postural perturbations have been experimentally investigated using large postural 

perturbations at the threshold of balance recovery, where balance recovery and avoiding a fall is 

not always possible: lean releases, waist pulls, surface translations, slips and trips. Lean releases 

were initiated by suddenly releasing participants from a forward, sideways or backwards initial 

lean angle (Carbonneau and Smeesters, 2014; Cyr and Smeesters, 2007; 2009a; 2009b; Grabiner 

et a l,  2005; Hsiao-Wecksler and Robinovitch, 2007; Hsiao-Wecksler, 2008; Madigan and Lloyd, 

2005a; 2005b; Madigan, 2006; Moglo and Smeesters, 2005; 2006; Owings et al., 2000; Telonio 

and Smeesters, 2007; Telonio et al., 2008; Telonio and Smeesters, 2008; 2009; Thelen et al., 

1997; 2000; Wojcik et a l, 1999; 2001). Forward waist pulls were suddenly initiated using 

dropped weights and bungee cords from standing or leaning positions or at 50% swing while 

walking (Moglo and Smeesters, 2005; 2006). Surface translations were initiated by suddenly 

translating forward, sideways or backwards the surface the participant was standing or walking 

on using springs, a motor or a treadmill (Feldman and Robinovitch, 2007; Hsiao and 

Robinovitch, 1998; Owings et al., 2000; 2001; Pai, 1999; Pavol et al., 2002b; 2004a; 2004b). 

Slips were initiated while walking using contaminants or artificial ice and occurred at double 

support, when the force applied by the front foot on the floor’s surface suddenly exceeded the 

force provided by friction (Brady et a l, 2000; Cham and Redfem, 2001; Troy and Grabiner, 

2006). Trips were also initiated while walking but occurred at single support, when the trajectory 

of the swing foot was suddenly stopped using a cable attached to the foot or an obstacle (Owings 

et a l, 2000; Pavol et al., 1999a; 1999b; 2001; 2002a; Pijnappels et al., 2001; 2004; 2005a; 

2005b; 2005c; Smeesters et a l,  2001).
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However, the great variety of postural perturbations used make comparisons between studies and 

generalizations about balance recovery abilities difficult. In fact, although the same response 

initiation, execution and geometry variables are often measured, to our knowledge only three 

studies have attempted to compare results from different postural perturbations (Mansfield and 

Maki, 2009; Moglo and Smeesters, 2005; 2006).

Mansfield and Maki (2009) compared medium waist pulls and surface translations while 

standing and walking in place in multiple directions and in both younger and older adults. Their 

results showed that, although age effects were usually less pronounced for waist pulls compared 

to surface translations, age effects were always in the same direction for both postural 

perturbations. However, their waist pulls were less destabilising than their surface translations. 

Mansfield and Maki (2009) thus concluded that differences in the mechanical and sensory 

stimuli of each perturbation were less important than differences in perturbation amplitude and 

timing. Unfortunately, amplitudes can be difficult to compare (waist pull force versus surface 

translation acceleration).

Moglo and Smeesters (2005; 2006) compared large forward lean releases, lean releases with 

waist pulls and waist pulls while walking in both younger and older adults. Moreover, their 

studies were done at the threshold of balance recovery, which helped resolve the difficulty in 

comparing postural perturbation amplitudes. Indeed, the threshold of balance recovery in these 

studies were the maximum initial lean angle and the maximum waist pull force that participants 

could be suddenly released from or could suddenly sustain and still recover balance using a 

single step for lean releases with or without waist pulls and waist pulls while walking, 

respectively. Their results showed that, the three postural perturbations were definitely not the 

same and gave different results: increasing waist pull force decreased the maximum lean angles 

and increasing walking velocity decreased the maximum waist pull forces (Figure 2.1 top, thick 

dashed lines and filled symbols). Nevertheless, response initiation (reaction time), execution 

(weight transfer time, step time and step velocity) and geometry variables (step length) for the 

threshold trials were nearly identical for all postural perturbations. Furthermore, from onset of 

perturbation to onset of response, their results were similar enough that they could be compared. 

Indeed, the angular positions and velocities at the end of reaction time of the threshold trials 

formed a perturbation threshold line (Figure 2.1, thin solid and dashed lines and empty black 

symbols) separating falls (Figure 2.1 bottom, white area and empty gray symbols) from
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recoveries (Figure 2.1 bottom, gray area and filled gray symbols), regardless o f the postural 

perturbation. Moglo and Smeesters (2005; 2006) have thus developed a dimensionless method to 

compare results from different postural perturbations and experimentally demonstrated that the 

choice of postural perturbation does not affect the threshold of balance recovery.

In an effort to pursue the work by Moglo and Smeesters (2005; 2006) on the perturbation 

threshold line method, the purpose of this study was to compare the kinematics of lean releases 

and surface translations at the threshold of balance recovery in younger adults. To do so we 

determine the maximum forward initial lean angle and the maximum backward surface 

translation velocity from which younger adults could be suddenly released or pulled, 

respectively, and still recover balance using a single step (Cyr and Smeesters, 2007; 2009b).

2.4 Methods

2.4.1 Participants

Balance recoveries from both lean releases and surface translations were performed by 12 

healthy younger adults, six women (mean±SD=25.0±3.0yrs, range=22-30yrs; 1.53±0.09m; 

54.7±13.4kg) and six men (27.5±3.5yrs, 23-32yrs; 1.68±0.08m; 77.3±12.6kg). Ethics approval 

was obtained from both institutions, Universite de Sherbrooke and Simon Fraser University. 

Participants with musculoskeletal problems were excluded.

2.4.2 Experimental procedure

Both postural perturbations were conducted on top of a firm gymnasium mat (8ft x 4ft x 1ft). All 

participants wore fitted shorts, a sleeveless t-shirt, sneakers and a helmet. A safety harness 

attached to an overhead rail by a cable, whose length was adjusted to prevent participants from 

touching the gymnasium mat with their hands, was also used. A lOmin rest period was used 

between the two postural perturbations to reduce fatigue and the order was randomised for each 

participant by gender to balance out any learning effect.
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Figure 2.1: Perturbation threshold line for lean releases (circles), lean releases with waist pulls 
(triangles) and waist pulls while walking (squares) at the threshold of balance recovery separates 

falls from recoveries (adapted with permission from Moglo and Smeesters, 2005).
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Top graph: The thick dashed lines ending in filled symbols were the average angular positions 
and velocities from onset of perturbation to onset of response. The thin solid and dashed lines 

were the perturbation threshold line (mean ± standard deviation) formed by the angular positions 
and velocities at the end of reaction time for the threshold trials (empty symbols). Bottom graph: 

The empty black symbols were the angular position and velocity points at the end of reaction 
time for the successful maximum lean angle, maximum lean angle with waist pull and maximum 

waist pull while walking trials which formed the perturbation threshold line (thin solid and 
dashed lines: mean ± standard deviation). The filled gray symbols were the angular position and 

velocity points at the end of reaction time for trials before the threshold of balance recovery 
where balance recovery was successful. The empty gray symbols were the angular position and 
velocity points at the end of reaction time for trials after the threshold of balance recovery where

participants failed to recover balance.

Lean releases

For lean releases (Figure 2.2a, (Cyr and Smeesters, 2009b)), we determined the maximum 

forward initial lean angle from which each participant could be suddenly released and still 

recover balance using a single step. Participants were initially leaned forward from standing 

using a cable attached to a pelvic belt. After a random delay, the lean cable was suddenly 

released resulting in a forward loss of balance from which participants had to recover using a 

single step. The amplitude of this perturbation, the initial lean angle, was controlled by adjusting 

the length of the lean cable. It started at lOdeg, was increased in 5deg and ultimately 2.5deg 

increments after each successful trial, until participants failed to recover balance twice at a given 

initial lean angle. The threshold of balance recovery for lean releases was thus the last successful 

trial at the maximum initial lean angle.

Surface translations

For surface translations (Figure 2.2b, (Feldman and Robinovitch, 2007)), we determined the 

maximum backward surface translation velocity from which each participant could be suddenly 

pulled and still recover balance using a single step. Participants initially stood on a rubber sheet. 

After a random delay, the rubber sheet was suddenly pulled backward by a linear motor (T4D, 

Trilogy System Corporation, Webster TX) resulting in a forward loss of balance from which 

participants had to recover using a single step. The amplitude of this perturbation, the surface 

translation velocity, was controlled by adjusting the velocity of the linear motor while keeping its 

displacement and acceleration constant at 700mm and 25m/s2, respectively. It started at lm/s and 

was increased in 0.25m/s increments after each successful trial, until participants failed to 

recover balance twice at a given surface translation velocity. The threshold of balance recovery
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for the surface translations was thus the last successful trial at the maximum surface translation 
velocity.

4 Cable

Rubber sheet

Linear motor

Figure 2.2 : Experimental setup for the lean releases (a) and surface translations (b) at the 
threshold of balance recovery, i.e., at the maximum initial lean angle (0max) and the maximum

surface translation velocity (Vmax), respectively.
Typical sagittal plane diagrams of the marker positions are shown at onset of perturbation (blue), 

toe off (green) and heel strike (red). Illustrated markers are the midpoints of the medial and 
lateral metatarsals and malleoli of the step and stance feet, the femoral epicondyles of the step 
and stance leg, the midpoints of the greater trochanters, acromions and temples. Note that the 
initial lean angle 0o£0 for lean releases and 0o=O for surface translations, but that both postural 

perturbations had the initial lean velocity co0=0 and resulted in forward losses of balance. Finally, 
the stepping angle («c) and modified lean angle (fic) at stepping foot contact are also shown.

For both postural perturbations, balance recovery was successful if participants used no more 
than one step (as instructed), did not touch the surface of the gymnasium mat with their hands, 

and did not support their body weight in the safety harness (cable remained slack).

2.4.3 Measuring instruments and variables

Kinematic data, consisting of the three-dimensional positions of 16 passive markers on the 

participant (Figure 2.2) and 2 passive markers on the linear motor and rubber sheet, were 

recorded by 8 optoelectronic sensors (Motion Analysis Inc., Santa Rosa CA) at 100Hz. Kinetic 

data, consisting of ground reaction forces and lean cable load (Figure 2.3), were recorded by 2 

force plates (FP 3060-15 and FP 6090-15, Bertec corporation, Colombus OH) and a single
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degree of freedom load cell (MLP-500, Transducer Techniques, Temecula CA), respectively, at 

1000Hz. Both data were synchronised and processed using Matlab (Mathworks, Natick MA). 

Marker positions, ground reaction forces and lean cable loads were filtered using zero-phase- 

shift 4th order Butterworth filters at cutoff frequencies determined by residual analysis of 13 Hz, 

60Hz and 75Hz, respectively (Winter, 2005). Finally, velocities and accelerations were obtained 

from positions by first and second order centered finite differences on two and three points, 

respectively.

For both postural perturbations, the main variables were the angular position (0) and velocity 

(<y). The angular position was measured as the sagittal plane angle between the vertical and the 

line connecting the midpoints of the medial and lateral malleoli of the stance foot and the two 

greater trochanters (Cyr and Smeesters, 2009b). At the onset of perturbation (OP) the angular 

position was the initial lean angle (0O, Figure 2.2) and, more importantly, the maximum initial 

lean angle (Omax) for lean releases at the threshold of balance recovery. For surface translations, 

the anterior-posterior velocity of the marker on the linear motor (V) was also measured 

(Figure 2.3) and, more importantly, the maximum surface translation velocity (Vmax) at the 

threshold of balance recovery.

Response initiation was measured by reaction time (RT), the time difference between onset of 

response (OR) and onset of perturbation (Figure 2.3, (Cyr and Smeesters, 2009b)). Onset of 

perturbation occurred when the lean cable load started decreasing or the surface translation 

velocity started increasing. Onset of response occurred when the vertical ground reaction force 

started increasing (at inflection point), ignoring the artefact at the onset of surface translation.

Response execution was measured by three variables (Cyr and Smeesters, 2009b). Weight 

transfer time (WTT) was the time difference between toe off (TO) and onset o f response. Step 

time (ST) was the time difference between heel strike (HS) and toe off. Step velocity (SV) was 

step length (SL) divided by step time. Toe off occurred when the anterior-posterior acceleration 

of the midpoint of the medial and lateral metatarsals o f the stepping foot reached a local 

maximum (lean releases) or minimum (surface translations). Heel strike occurred when the 

vertical ground reaction force started increasing again.
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Figure 2.3: Time histories for lean releases (top three graphs) and surface translations (bottom 
three graphs) for a typical participant at the threshold of balance recovery, i.e., at the maximum 

initial lean angle (Oma*) and the maximum surface translation velocity (Vmax), respectively.
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Each triplet of graphs show: vertical ground reaction force (top), the force on the lean cable or 
the surface translation velocity (middle), and the anterior-posterior metatarsal acceleration of the 

stepping foot (bottom). Also shown are reaction time (RT) from onset of perturbation (OP) to 
onset of response (OR), weight transfer time (WTT) from OR to toe off (TO), and step time (ST) 

from TO to heel strike (HS). For surface translations, note that the initial increase in ground 
reaction force at the onset of perturbation is an artefact caused by the rubber sheet pushing down 
on the gymnasium mat as it is suddenly pulled backward. Note also that the experimental surface 

translation velocity, as measured by the marker on the linear motor, was a very good match to 
the theoretical surface translation velocity programmed into the linear motor. Finally, TO 
occurred when the anterior-posterior metatarsal acceleration reached a local extremum, 

maximum for lean releases and minimum for surface translations, the reversal due to the fact that 
the two perturbations faced opposite directions in the experimental setup.

Finally, response geometry was measured by four variables. Step length was the anterior- 

posterior displacement of the midpoint o f the medial and lateral malleolus of the stepping foot 

from liftoff to touchdown (Cyr and Smeesters, 2009b). The stepping angle (ac), modified lean 

angle (fic) and the angular ratio (AR-~ajpc) at stepping foot contact were also calculated 

(Figure 2.2, (Hsiao and Robinovitch, 2001)). The sagittal plane angle formed by the midpoints of 

the medial and lateral metatarsals of the stance foot, the two greater trochanters and the medial 

and lateral malleoli of the stepping foot at heel strike defined the stepping angle. The sagittal 

plane angle between the vertical and the line connecting the midpoints of the medial and lateral 

metatarsals of the stance foot and the two greater trochanters at heel strike defined the modified 

lean angle.

2.4.4 Data analysis

Data were analysed using SPSS (SPSS Inc., Chicago IL) and p<0.05 were significant. Since t- 

tests confirmed that gender did not affect maximum lean angles for lean releases (p=0.770) and 

maximum translation velocities for surface translations (p=0.252), gender effects were not 

considered. Simple paired t-tests were thus used to determine the effect o f the two postural 

perturbations on each of the kinematic variables at the maximum lean angles or translation 

velocities. Finally, a linear regression was also used to establish the relationship between the 

angular positions and velocities at the end of reaction time for trials at the threshold of balance 

recovery.
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2.5 Results

For surface translations, 4 participants (1 women and 3 men) never failed to recover balance 

even at the greatest surface translation velocity (F=2.75m/s) achievable with the linear motor. 

However, maximum lean angles for lean releases were not significantly different between 

surface translation fallers and non-fallers (p=0.903). The effect of the two postural perturbations 

was thus evaluated twice (Table 2.1), first with only the fallers (N=8) and then with both the 

fallers and non-fallers (N=12), setting the maximum translation velocity Vmax=2.15vaJs for the 4 

non-fallers.

2.5.1 Postural perturbation effects for fallers only (N=8)

Considering only fallers, the threshold of balance recovery were maximum lean angles 

# m a x = 27 . 4± 5 . 7d e g  for lean releases and maximum translation velocities Fmar=2.25±0.33m/s for 

surface translations. At the maximum lean angles or translation velocities, the two postural 

perturbations did not have a significant effect on response initiation, but did affect most response 

execution and response geometry variables. Specifically, reaction times were not affected by the 

two postural perturbations (p=0.179). While weight transfer times were not affected by the two 

postural perturbations (p=0.084), step times were 45ms shorter (p=0.004) and step velocities 

were 0.46m/s slower (p=0.038) for surface translations. Finally, while modified lean angles 

(p=0.818) were not affected by the two postural perturbations, step lengths were 269mm shorter 

(pO.OOl), step angles were 23.5deg smaller (p<0.001) and angular ratios were 0.56 smaller 

(p<0.001) for surface translations.

2.5.2 Postural perturbation effects for fallers and non-fallers (N=12)

Considering both fallers and non-fallers, the threshold of balance recovery were maximum lean 

angles 0mat=27.3±4.8deg for lean releases and maximum translation velocities 

Fmox=2.42±0.36m/s for surface translations. Results for the effect of the two postural 

perturbations on each of the kinematic variables at the maximum lean angles or translation 

velocities were very similar to those obtained with only fallers. The only notable exception was 

weight transfer times which were 27ms longer for surface translations (p=0.010).
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2.5.3 Perturbation threshold line

Considering only fallers, the linear regression between the angular positions and velocities at the 

end of reaction time for trials at the threshold of balance recovery (Figure 2.4) was very similar 

to the one obtained by Moglo and Smeesters (2005). Moreover, the angular position and velocity 

points at the end of reaction time for the maximum lean angle and the greatest translation 

velocity trials of 3 of the 4 non-fallers (75%) were within one standard deviation. Finally, as the 

initial lean angle or surface translation velocity increased, the angular position and velocity 

points at the end of reaction time got closer to the perturbation threshold line (Figure 2.5). 

Nevertheless, 96% of the angular position and velocity points at the end of reaction time for 

trials before the threshold of balance recovery were below the mean plus one standard deviation. 

Furthermore, 97% of the angular position and velocity points at the end of reaction time for trials 

after the threshold of balance recovery were above the mean minus one standard deviation.

2.6 Discussion

While the maximum forward initial lean angles o f 0max=27.3±4.8deg for younger adults was 

comparable to those obtained by other studies (Cyr and Smeesters, 2009b; Hsiao-Wecksler and 

Robinovitch, 2007; Madigan and Lloyd, 2005a; Wojcik et al., 1999), this is the first 

determination of the maximum backward surface translation velocities of Vmax=2.42±0.36m/s 

for younger adults (Table 2.1).

As Moglo and Smeesters (2005; 2006) had shown previously, despite differences in results for 

the various postural perturbations at the threshold of balance recovery, the results were similar 

enough that they could be compared from onset of perturbation to onset of response. Indeed, 

while both this study and the ones by Moglo and Smeesters (2005; 2006) had nearly identical 

response initiation variables regardless of the postural perturbation, Moglo and Smeesters (2005; 

2006) had nearly identical response execution and geometry variables for maximum lean angle 

and maximum pull force trials but this study had significantly different response execution and 

response geometry variables for maximum lean angle and maximum translation velocity trials. 

Nevertheless, the angular positions and velocities at the end of reaction time for these trials at the 

threshold of balance recovery formed perturbation threshold lines that were very similar between 

the two studies. In fact, the slight differences between the two perturbation threshold lines were
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easily explained: while the efficiency of the lean release equipment was better in Moglo and 

Smeesters (2005), the efficiency of the surface translation (compared to waist pull) equipment 

was better for this study, which is why it was easier for subject to perform better. Finally, in both 

studies, the perturbation threshold line was very efficient in separating falls (97-98%) from 

recoveries (96-97%), regardless o f the postural perturbation (Figure 2.1 and Figure 2.5).

Moglo = -0.25QX + 40.9 (N=10) 

= -0.199x +36.2 (N=8)4 5
'Thiaux

9 trial falters (N=8)max '

Vm  trial fallers (N=8)max '  '

0 „ „  trial non-fallers (N=4)max '
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4 0
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®■o

0 4 0 6 0 1 0 0  1 2 0  1 4 0  1 6 020 8 0 1 8 0

Angular velocity (deg/s)

Figure 2.4 : The perturbation threshold line, i.e., the linear regression between the angular 
positions and velocities at the end of reaction time for lean release (filled circles) and surface 

translation (filled squares) trials at the threshold of balance recovery, for the 8 fallers (thick and 
thin hill lines: mean ± standard deviation, 1^=0.928).

This perturbation threshold line was very similar to the one obtained by Moglo and Smeesters 
(2005) using lean releases, lean releases with waist pulls and waist pulls while walking with 10 

younger adults (thick and thin dashed lines: r2=0.827). Moreover, the angular position and 
velocity points at the end of reaction time for the maximum initial lean angle (empty circles) and 

the greatest surface translation velocity (empty squares) trials of 3 of the 4 non-fallers (75%) 
were within one standard deviation of this study’s perturbation threshold line.
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Figure 2.5: The perturbation threshold line from Figure 2.4, obtained from the successful 
maximum initial lean angle (filled black circles) and maximum surface translation velocity 

(filled black squares) trials of the 8 fallers, separates falls from recoveries (thick and thin foil
lines: mean ± standard deviation).

Indeed, as the initial lean angle (0O) or surface translation velocity (V) increased, the angular 
position and velocity points at the end of reaction time got closer to the perturbation threshold 

line. Nevertheless, 96% of the angular position and velocity points at the end of reaction time for 
lean release (filled gray circles) and surface translation (filled gray squares) trials before the 

threshold of balance recovery, where balance recovery was successful, were below the mean plus 
one standard deviation. Furthermore, 97% of the angular position and velocity points at the end 

of reaction time for lean release (empty gray circles) and surface translation (empty gray squares) 
trials after the threshold of balance recovery, where participants failed to recover balance, were 
above the mean minus one standard deviation. Note that, although the 4 non-fallers never failed 

to recover balance for surface translations, they did reach a threshold of balance recovery for 
lean releases. The angular position and velocity points at the end of reaction time for these 4 

successful maximum initial lean angle trials were thus also symbolized using filled black circles.

It is important to note that the longer weight transfer times, shorter step times, slower step 

velocities and shorter step lengths for maximum translation velocity trials compared to maximum 

lean angle trials could have been affected by our experimental setup. For safety reasons, both 

lean releases and surface translations were conducted on top of a firm gymnasium mat (8ft or
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2.4m long). For lean releases, participants started ~0.3m from one end of the mat and had nearly 

2.1m of mat to recover balance by stepping (Figure 2.2a). However, for surface translations, 

participants started in the middle of the mat, were translated backward 0.7m and then had 1.9m 

of mat to recover balance by stepping (Figure 2.2b). Some participants later reported being afraid 

of stepping off the mat during surface translations, given that the initial impression was of only 

1.2m of mat available for stepping. Even though 1.2m was sufficient for even the longest step 

length, participants may have taken smaller step lengths in shorter step times, which lead to 

slower step velocities and perhaps smaller maximum translation velocities. This is fairly 

consistent with Telonio and Smeesters (2009), which showed using lean releases that as the 

amplitude of the perturbation decreased, weight transfer times were longer, step times were 

longer, step velocities were slower and step lengths were smaller. These results should thus be 

validated in future experiments.

Results suggest that the 4 participants who never failed to recover balance even at the greatest 

surface translation velocity were very close to their maximum translation velocities. A single 

additional surface translation velocity increment would have probably done the trick. Indeed, 

maximum lean angles for lean releases were not significantly different between surface 

translation fallers and non-fallers. Moreover, results of the effect of the two postural 

perturbations on response initiation, execution and geometry variables considering both fallers 

and non-fallers (N=12) were very similar to those obtained with only fallers (N=8, Table 2.1). 

Finally, the angular position and velocity points at the end of reaction time of 3 of the 4 non- 

fallers were within one standard deviation of the perturbation threshold line for both the 

maximum lean angle and the greatest translation velocity trials (Figure 2.4).

The dimensionless perturbation threshold line method to compare results from different postural 

perturbations has now been experimentally established for lean releases, lean releases with waist 

pulls, waist pulls while walking and surface translations, thus providing further evidence that the 

choice of postural perturbation does not affect the threshold of balance recovery. Therefore, as 

concluded by Mansfield and Maki (2009), when postural perturbation predictability and 

instruction given to the participant are similar, it does indeed appear that differences in the 

mechanical and sensory stimuli of each perturbation are much less important than differences in 

perturbation amplitude and timing. Finally, as the stability boundary method by Pai et al. (2000) 

established a threshold in center of mass position versus velocity phase space between feet in
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place and stepping balance recovery strategies, the perturbation threshold line method by Moglo 

and Smeesters (2005; 2006) established a threshold in participant angular position versus 

velocity phase space between balance recoveries and unavoidable falls, regardless of the postural 

perturbation. Being able to compare results across postural perturbations should therefore help 

researchers make faster and broader conclusions about balance recovery abilities and thus make 

these results more readily available to clinicians for fall prevention and rehabilitation. Indeed, 

results from any of the five postural perturbations should be applicable to the other four.
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Table 2.1: Effect of the two postural perturbations on the kinematic variables 
at the maximum lean angles or maximum translation velocities (mean ± standard deviation)

Postural
perturbation

Gender Maximum 
Lean angle or 
Translation 

velocity

Reaction
time
(ms)

Weight
transfer

time
(ms)

Step time 
(ms)

Step
velocity

(m/s)

Step
length
(mm)

Step
angle
(deg)

Modified
lean

angle
(deg)

Angular
ratio

RT WTT ST SV SL O ' Or AR=HIe/Pt
Lean release YW 26.7±3.7deg 92±5 143±18 216±44 4.23±0.14 915±193 74.5±15.2 41.6±4.9 1.78±0.19

YM 28.6±9.1deg 98±8 135±26 195±19 5.01±0.55 973±96 77.3±2.6 38.8±3.0 2.00±0.11
>> Total 27.4±5.7deg 95±7 140±20 208±37 4.52±0.51 936±158 75.5±11.6 40.6±4.3 1.86±0.19

«8 Surface YW 2.20±0.41m/s 98±6 156±31 164±21 4.11±0.27 676±97 52.2±7.9 40.0±4.3 1.31±0.15

I s translation YM 2.33±0.14m/s 100±3 177±18 162±20 3.99±0.60 654±171 51.7±13.3 40.7±4.8 1.28±0.32
mmmm Total 2.25±0.33m/s 99±5 164±28 164±19 4.07±0.38 668±118 52.0±9.3 40.2±4.2 1.30±0.21
W P P erturbation 0.179 0.084 0.004 0.038 <0.001 <0.001 0.818 <0.001

Perturbation Mean 45 0.46 269 23.5 0.56
difference 95% Cl 20/69 0.03/0.88 167/370 14.9/32.2 0.36/0.77

/“ S Lean release YW 26.8±3.4deg 95±7 137±22 223±43 4.25±0.13 947±191 75.8±14.0 42.1±4.5 1.79±0.17c YM 27.7±6.2deg 100±6 124±26 197±22 5.02±0.47 982±87 74.1±6.1 37.7±3.5 1.97±0.10

3 . Total 27.3±4.8deg 97±7 131±24 210±35 4.64±0.52 965±143 75.0±10.3 39.9±4.5 1.88±0.16

§ Surface YW 2.29±0.43m/s 101±8 152±30 168±21 4.15±0.26 699±103 54.6±9.1 39.9±3.9 1.37±0.20
T a translation YM 2.54±0.25m/s 103±8 162±24 164±16 4.27±0.50 702±123 52.5±8.7 40.0±3.1 1.32±0.21
Z  « Total 2.42±0.36m/s 102±8 157±27 166±18 4.21±0.39 700±108 53.5±8.6 40.0±3.3 1.34±0.20e4* . P Perturbation 0.090 0.010 <0.001 0.013 <0.001 <0.001 0.948 <0.001

3 Perturbation Mean -27 44 0.42 264 21.4 0.54
w difference 95% Cl -45/-8 26/62 0.11/0.74 199/329 15.7/27.2 0.39/0.68

YM: Younger Men, YW: Younger Women. Significant p-values (p<0.05) are bolded.
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pour predire theoriquement si une perturbation posturale donnee entrainera une chute 

inevitable ou si un retablissement de Tequilibre sera possible pour un participant donnd. 

Ceci semblait possible considerant que a) des modeles de pendules inverses ont ete 

utilises avec succes pour modeliser des relachements d’inclinaison, tirages a la taille, 

translations de surface et trebuchements, et b) une serie de quatre etudes experimentales 

ont demontre que les relachements d’inclinaison, tirages a la taille et translations de 

surface sont suffisamment similaires qu’elles peuvent etre comparees. Nous avons done 

utilise un modele en deux dimensions de pendule inverse a barre mince monte sur une 

palette glissante bougeant horizontalement pour simuler la position et la vitesse 

angulaire de jeunes adultes de l’initiation de la perturbation a Pinitiation de la reponse 

pour les relachements d’inclinaison et translations de surface d’une etude experimentale 

recente. Les rdsultats ont demontre que la majorite des erreurs moyennes quadratiques et 

erreurs au temps de reaction entre les positions et vitesses angulaires experimentales et 

theoriques etaient respectivement de moins de 2% et 4%. Seule l’erreur moyenne 

quadratique de vitesse angulaire pour les translations de surface etait plus grande mais 

tout de meme moins de 9%. Plus important encore, les positions et vitesses angulaires 

theoriques a la fin du temps de reaction pour les essais aux angles d’inclinaison et 

vitesses de translation maximum formaient une ligne de perturbation limite separant les 

chutes des retablissements qui etait tres similaire a celles obtenues precedemment dans 

deux etudes experimentales.

Note: Following the corrections requested by the members of the jury, the content o f this 

article differs from the one submitted.
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3.2 Abstract

Balance recovery experiments are time consuming, expensive, can be dangerous and can be 

very demanding and fatiguing for frail older adults. It would thus be useful to use a model 

instead of an experiment to theoretically predict if a given postural perturbation will lead to an 

unavoidable fall or if balance recovery is possible for a given participant. This appeared to be 

possible given that: a) inverted pendulum models have been successfully used to model lean 

releases, waist pulls, surface translations and trips, and b) a series o f four experimental studies 

have shown that lean releases, waist pulls and surface translations are similar enough that they 

can be compared. We thus used a two-dimensional thin rod inverted pendulum model mounted 

on a horizontally moving skid to simulate the angular position and velocity of younger adults 

from onset of perturbation to onset of response for lean releases and surface translations from 

a recent experimental study. Results showed that the majority of root mean square errors and 

errors at reaction time between the experimental and theoretical angular positions and 

velocities were less than 2% and 4%, respectively. Only the angular velocity root mean square 

error for surface translations was greater but still less than 9%. More importantly, the 

theoretical angular positions and velocities at the end of reaction time for maximum lean angle 

and maximum translation velocity trials formed a perturbation threshold line separating falls 

from recoveries that was very similar to the ones obtained previously in two experimental 

studies.

Abstract Word Count: 248 / 250 words
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3.3 Introduction

Balance recovery experiments are time consuming, expensive and can be dangerous, 

especially if large postural perturbations at the threshold of balance recovery, were avoiding a 

fall is not always possible, are used. More importantly, balance recovery experiments can be 

very demanding and fatiguing for frail older adults. It would thus be useful to be able to use a 

model instead of an experiment to theoretically predict if a given postural perturbation will 

lead to an unavoidable fall or if balance recovery is possible for a given individual participant. 

Indeed, theoretical models are usually faster and much less expensive than experiments. They 

are also not dangerous and never complain or get tired no matter how many times you run 

them.

Five different postural perturbations have been modelled using medium to large postural 

perturbations: lean releases, waist pulls, surface translations, slips and trips. However, we 

must first mention the one-, two- and three-segment two-dimensional models developed by 

van den Kroonenberg et al (1995) to simulate self-initiated falls, which to our knowledge 

were the first published models of falls from standing height. Six different studies have 

simulated lean releases using either two-dimensional inverted pendulum models (Aftab et a l, 

2012; Hsiao and Robinovitch, 1999; Smeesters, 2009) or two- (Lo and Ashton-Miller, 2008a) 

and three-dimensional (Lo and Ashton-Miller, 2008b; Thelen and Burd, 2000) multi-segment 

models. While some simply fell under gravity (Smeesters, 2009), others used springs (Hsiao 

and Robinovitch, 1999), actuators (Lo and Ashton-Miller, 2008a; 2008b; Thelen and Burd, 

2000) or controllers (Aftab et al., 2012) to more accurately simulate balance recovery by 

stepping. To our knowledge, only one study simulated waist pulls using a two-dimensional 

inverted pendulum model simply falling under gravity (Smeesters, 2009). Only one study 

simulated surface translations using two two-dimensional inverted pendulum models and the 

work-energy principle to more accurately simulate single step balance recovery (Wu et a l, 

2007). Only one study simulated slips using a three-dimensional multi-segment model simply 

falling under gravity (Smeesters et a l,  2007). Finally, five different studies have simulated 

forward trips using either two-dimensional inverted pendulum models (Fomer Cordero et a l, 

2004; Roos et a l, 2010; van den Bogert et a l, 2002) or three-dimensional multi-segment 

models (Shiratori et a l , 2009; Smeesters et a l , 2007). While some simply fell under gravity
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(Smeesters et a l, 2007; van den Bogert et a l, 2002), others used springs (Roos et a l, 2010), 

actuators (Fomer Cordero et a l, 2004) or controllers (Shiratori et a l ,  2009) to more accurately 

simulate balance recovery by stepping.

Various forms of two-dimensional inverted pendulum models have thus been successfully 

used to model all but one postural perturbation: lean releases, waist pulls, surface translations 

and trips. Could a single inverted pendulum model be used to model all five postural 

perturbations? For this to be possible, postural perturbations would have to be similar enough 

to be comparable.

To our knowledge only four experimental studies have attempted to compare results from 

different postural perturbations. Mansfield and Maki (2009) compared medium waist pulls and 

surface translations while standing and walking in place in multiple directions and in both 

younger and older adults. They concluded that differences in the mechanical and sensory 

stimuli of each perturbation were less important than differences in perturbation amplitude and 

timing. However, amplitudes can be difficult to compare (waist pull force versus surface 

translation acceleration). Moglo and Smeesters (2005 ; 2006) compared large forward lean 

releases, lean releases with waist pulls and waist pulls while walking in both younger and 

older adults at the threshold of balance recovery, which helped resolve the difficulty in 

comparing postural perturbation amplitudes. Indeed, the threshold of balance recovery in these 

studies were the maximum initial lean angle and the maximum waist pull force that 

participants could be suddenly released from or could suddenly sustain and still recover 

balance using a single step for lean releases with or without waist pulls and waist pulls while 

walking, respectively. Their results showed that, the three postural perturbations gave different 

results (Figure 3.1, thick dashed lines and filled symbols). However, from onset of 

perturbation to onset of response, their results were similar enough that they could be 

compared. Indeed, the angular positions and velocities at the end of reaction time of the 

threshold trials formed a perturbation threshold line (Figure 3.1, thin solid and dashed lines 

and empty black symbols) separating falls (Figure 3.1, white area) from recoveries 

(Figure 3.1, gray area), regardless o f the postural perturbation. Finally, the perturbation 

threshold line obtained by Thiaux et al (2014, submitted) for lean releases and surface 

translations was very similar to the one obtained by Moglo and Smeesters (2005).
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Figure 3.1: Perturbation threshold line for lean releases (circles), lean releases with waist 
pulls (triangles) and waist pulls while walking (squares) at the threshold of balance recovery 
separates falls from recoveries (adapted with permission from Moglo and Smeesters, 2005).

Increasing waist pull force decreased the maximum lean angles and increasing walking 
velocity decreased the maximum waist pull forces (thick dashed lines ending in filled 

symbols). The angular positions and velocities (empty symbols) at the end of reaction time for 
the successful threshold trials at the maximum lean angle, maximum lean angle with waist pull 
and maximum waist pull while walking formed the perturbation threshold line (thin solid and 

dashed lines: mean ± standard deviation). Trials before the threshold of balance recovery 
where balance recovery was successful were in the gray area below the perturbation threshold 

line, while trials after the threshold of balance recovery where participants failed to recover 
balance were in the white area above the perturbation threshold line.

The purpose of this study was thus to determine if a two-dimensional thin rod inverted 

pendulum model mounted on a horizontally moving skid could simulate the angular position 

and velocity of participants from onset of perturbation to onset o f response for both the lean 

releases and surface translations from Thiaux et al. (2014, submitted).
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3.4.1 Experimental methods

Participants

Experimental data was obtained from a previous study which determined: 1) the maximum 

forward initial lean angle from which 12 healthy younger men and women 

(mean±SD=26.2±3.4yrs, range=22-32yrs; 1.60±0.11m; 66.0±17.1kg) could be suddenly 

released and still recover balance using a single step, and 2) the maximum backward surface 

translation velocity from which each participant could be suddenly pulled and still recover 

balance using a single step (Thiaux et al., 2014, submitted).

Experimental procedure

Balance recoveries from both lean releases and surface translations were conducted on top of a 

firm gymnasium mat and using a safety harness attached to an overhead rail (Thiaux et al., 

2014, submitted). For lean releases, the initial lean angle started at lOdeg, was increased in 

5deg and ultimately 2.5deg increments after each successful trial, until participants failed to 

recover balance twice at a given initial lean angle. For surface translations, the surface 

translation velocity of a rubber sheet pulled by a linear motor (T4D, Trilogy System 

Corporation, Webster TX) started at lm/s and was increased in 0.25m/s increments after each 

successful trial, until participants failed to recover balance twice at a given surface translation 

velocity (with constant displacement=700mm and acceleration=25m/s2, Figure 3.2). The 

threshold of balance recovery was thus the last successful trial at the maximum initial lean 

angle or maximum surface translation velocity, respectively. Balance recovery was successful 

if participants used no more than one step, did not touch the mat with their hands, and did not 

support their body weight in the safety harness.
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Figure 3.2: Time histories for lean releases (top two graphs) and surface translations (bottom 
four graphs) for a typical participant at the threshold of balance recovery, i.e., at the maximum 

initial lean angle and the maximum surface translation velocity, respectively.
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For lean releases, vertical ground reaction force (top) and the force on the lean cable (bottom) 
are shown. For surface translations (from top to bottom), vertical ground reaction force and the 
surface translation acceleration, velocity and position are shown. Also shown are reaction time 
(RT) from onset of perturbation (OP) to onset of response (OR), weight transfer time (WTT) 

from OR to toe off (TO), and step time (ST) from TO to heel strike (HS), as detailed in Thiaux 
et al. (2014, submitted). For surface translations, note that the initial increase in ground 

reaction force at the onset of perturbation is an artefact caused by the rubber sheet pushing 
down on the gymnasium mat as it is suddenly pulled backward. Note also that the 

experimental surface translation, as measured by the marker on the linear motor, was a very 
good match to the theoretical surface translation programmed into the linear motor. In 

particular, the experimental width at half maximum of the positive acceleration step was a 
very good match to the theoretical width of the positive acceleration step programmed into the

linear motor ( 5 te r r o r = 5 ± 6 m s ) .

Measuring instruments and variables

Kinematic and kinetic data were recorded at 100 and 1000Hz, respectively, using 8 

optoelectronic sensors with 18 passive markers (Motion Analysis Inc., Santa Rosa CA), 2 

force plates (FP 3060-15 and FP 6090-15, Bertec corporation, Colombus OH) and a single 

degree of freedom load cell (MLP-500, Transducer Techniques, Temecula CA). Both data 

were synchronised, filtered and processed using Matlab (Mathworks, Natick MA), as detailed 

in Thiaux et al. (2014, submitted).

For both postural perturbations, the main variables were the angular position (9) and velocity 

(to, (Thiaux et a l, 2014, submitted)). The angular position was measured as the sagittal plane 

angle between the vertical and the line connecting the midpoints of the medial and lateral 

malleoli of the stance foot and the two greater trochanters. For surface translations, the 

anterior-posterior position (x), velocity (x) and acceleration (x) of the marker on the linear 

motor were also measured (Figure 3.2).

These variables were measured during the reaction time (RT, (Thiaux et a l, 2014, submitted)), 

the time difference between onset of response (OR) and onset of perturbation (OP, Figure 3.2). 

Onset of perturbation occurred when the lean cable load started decreasing or the surface 

translation velocity started increasing. Onset of response occurred when the vertical ground 

reaction force started increasing (at inflection point), ignoring the artefact at the onset of 

surface translation.
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3.4.2 Theoretical methods

Inverted pendulum on a skid model

The lean release and surface translation postural perturbations were simulated in Matlab using 

a thin rod inverted pendulum mounted on a horizontally moving skid model in the sagittal 

plane (Figure 3.3, Appendix A - Inverted pendulum on a skid model equations). The inputs 

were the masses of the participant (m) and skid (M ), height o f the participant (h), gravity 

(g=9.81m/s2), waist pull force (Fx), rubber sheet pull force (F2), coefficient of friction between 

the rubber sheet and the mat (//) and ankle torque (f). The outputs were the angular and 

translational positions (6 and x), velocities (a> and x) and accelerations (a and x) from onset of 

perturbation at t=0 to onset of response at reaction time.

m g

M g

Figure 3.3: Inverted pendulum on a skid model to simulate lean releases and surface
translations.

Inputs: participant mass (m), skid mass (M), participant height (h), gravity (g), waist pull force 
(Fx), rubber sheet pull force (F2), coefficient of friction between the rubber sheet and mat (p) 
and ankle torque (r). Outputs: angular and translational positions (8 and x), velocities (co and 

x)  and accelerations (a and x), from onset of perturbation at t=0 to onset of response at
reaction time (RT).
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Theoretical procedure

The mass (m) and height (h) of the model were adjusted according to each participant 

simulated. For lean releases, the inputs were A/=oo, Ft = 0, F2=0, p=0 and 7=0,* and the initial 

conditions were the initial lean angle (60) and angular velocity (&>o~0) for the trial simulated, 

xo=0 and xo=0. For surface translations, the inputs were:

•  M=30kg: The sum of the masses of the rubber sheet, the moving carriage assembly of the 

linear motor and all the attachment hardware.

• F\=0

• F2-(M+m)x, where x  was modelled as a step2 (Figure 3.2): Its amplitude was equal to the 

maximum positive acceleration for the trial simulated (x=25.9±1.7m/s2), but never 

exceeded the theoretical amplitude programmed into the linear motor of 25.0m/s2. Its 

width was equal to the width at half maximum of the positive acceleration step for the trial 

simulated (8t=44-120ms).

• p=0.0078551m+0.16405: The optimal p was determined for the 12 trials at the maximum 

surface translation velocity using the inverted pendulum on a skid model by minimizing 

the error between the experimental and theoretical angular position (80) and velocity (8to) 

at reaction time (Figure 3.4). A linear regression was then established between m and the 

optimal p (Figure 3.5). As the experimental setup was no longer available, this was the 

best available estimate of p.

• f=0

and the initial conditions were 0O=0, coo=0, xo=0 and xo=0.

1 This is validated by the feet that AfRMs^OiOmm and <5xR7H)±Omm, for lean releases.
2 This is validated by the fact that Sxm s= 13±4mm/700mm=2± 1 % and {5xRr=6±9mm/700mm= 1 ± 1 %, for surface 
translations.
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Figure 3.4: Angular position as a function of angular velocity from onset of perturbation at 
r=0 to onset of response at reaction time (top graph), for 2 typical trials at the maximum initial 

lean angle (gray) and maximum surface translation velocity (black).
Both the experimental data (full lines) and the theoretical data using the inverted pendulum on 
a skid model (dashed lines) are shown. The errors between the experimental (filled squares) 

and theoretical (empty squares) angular position (89rt) and velocity (Scort) at reaction time are 
also shown (inset top graph). Finally, the normalized errors (dotted lines) between the 
experimental and theoretical angular position (86lyintercept, bottom graph) and velocity 

(Scolxintercept, middle graph) from onset of perturbation at t=0 to onset of response at reaction 
time are shown for these typical lean release (gray lines) and surface translation (black lines) 
trials at the threshold of balance recovery. The x  andy intercepts are from the experimental

perturbation threshold line (Figure 3.6).
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Figure 3.5: Linear regression (r2=0.622) between the participant mass (m) and the optimal 
coefficient of friction between the rubber sheet and the mat (ju) for the maximum surface 

translation velocity trials using the inverted pendulum on a skid model.

3.4.3 Data analysis

Data were analysed using SPSS (SPSS Inc., Chicago IL) and p<0.05 were significant. First, 

the error between the experimental and theoretical angular positions (66) and velocities (Sco) 

was calculated from onset of perturbation at t=0 ( i- l)  to onset of response at reaction time 

(/-jV/tf), for trials both before and at the maximum lean angles or maximum translation 

velocities (Figure 3.4).

S 8 i  =  &i exp — $1 theo

8(t>i =  (i)ie x p  -  (Oi. theo
for i =  1 to Nrt

Single sample t-tests then determined if both the root mean square error from onset of 

perturbation to onset of response (SOrms and Scqrms) and the error at reaction time (66r t  and 

Sco r t )  were significantly different from zero.
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Paired t-tests also determined the effect of the two postural perturbations on both the RMS 

error and the error at reaction time. Finally, for both the experimental and theoretical data, 

linear regressions were used to establish the relationships between the angular positions and 

velocities at the end of reaction time for trials at the threshold of balance recovery.

3.5 Results

For surface translations, 4 participants never failed to recover balance even at the greatest 

surface translation velocity (2.75m/s) achievable with the linear motor (Thiaux et a l,  2014, 

submitted). Therefore, significant differences from zero, postural perturbation effects and 

linear regressions for trials at the maximum lean angles or maximum translation velocities 

were evaluated with only the fallers (N=8).

3.5.1 Pre-maximum trials for fallers and non-fallers (N=12)

Considering both fallers and non-fallers for trials before the maximum lean angles or 

maximum translation velocities (Table 3.1), all RMS errors and errors at reaction time were 

significantly different from zero (p<0.001), except for S c o r t  for surface translations (p=0.630). 

Nevertheless, angular position and velocity errors were all smaller than 0.6deg (2%) and 

7deg/s (4%), respectively, except for &o/?Ms^T6deg/s (9%) for surface translations. RMS errors 

for both angular positions (-95%CI/mean/+95%CI: 0.1/0.2/0.3deg, p<0.001) and velocities 

(7/9/1 ldeg/s, p<0.001) were smaller for lean releases. However, errors at reaction time for 

both angular positions (1.0/1.2/1.4deg, p<0.001) and velocities (0/4/8deg/s, p=0.035) were 

greater for lean releases.

3.5.2 Maximum trials for fallers only (N=8)

Considering only fallers for trials at the maximum lean angles or maximum translation 

velocities (Table 3.1), all RMS errors and 86rt for lean releases were significantly different



62 CHAPTER 3 Theoretical publication

from zero (p<0.026), but S 6 r T for surface translations (p=0.162) and S c o r t  for lean releases 

(p=0.257) and surface translations (p=0.079) were not. Nevertheless, angular position and 

velocity errors were all smaller than 0.7deg (2%) and 8deg/s (4%), respectively, except for 

^ytfMs^lSdeg/s (8%) for surface translations. While there was a trend for S c o r m s  to be smaller 

for lean releases (0/7/14deg/s, p=0.057), S 0 RT  were greater for lean releases (0.3/1.l/1.8deg, 

p=0.011). However S O rm s  (p=0.873) and S c o r t  (p=0.630) were not significant for postural 

perturbation effects.

3.5.3 Perturbation threshold line

Considering only fallers, the experimental linear regression between the angular positions and 

velocities at the end of reaction time for trials at the threshold of balance recovery (Thiaux et 

al., 2014, submitted) was very similar to the theoretical one obtained using the inverted 

pendulum on a skid model (Figure 3.6). Moreover, both linear regressions were similar to the 

one obtained by Moglo and Smeesters (2005). Finally, the experimental angular position and 

velocity points at the end of reaction time for the maximum lean angle and the greatest 

translation velocity trials of 3 of the 4 non-fallers (75%) were within one standard deviation of 

the experimental linear regression (Thiaux et al., 2014, submitted). Furthermore, the 

theoretical angular position and velocity points at the end of reaction time for the maximum 

lean angle trials of 4 of the 4 non-fallers (100%) and for the greatest translation velocity trials 

of 3 of the 4 non-fallers (75%) were within one standard deviation of the theoretical linear 

regression.
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Figure 3.6: The experimental perturbation threshold line (thick and thin full black lines and 
filled black symbols: mean ± standard deviation, r2=0.928, (Thiaux et al., 2014, submitted)), 
i.e., the linear regression between the angular positions and velocities at the end of reaction 

time for lean release (circles) and surface translation (squares) trials at the threshold of balance
recovery, for the 8 fallers (filled symbols).

This perturbation threshold line was very similar to the theoretical one obtained using the 
inverted pendulum on a skid model for the 8 fallers (thick and thin full gray lines and filled 

gray symbols: r2=0.854), and to the one obtained by Moglo and Smeesters (2005) using lean 
releases, lean releases with waist pulls and waist pulls while walking with 10 younger adults 
(thick and thin dashed black lines: r2=0.827). Finally, the experimental angular position and 
velocity points at the end of reaction time for the maximum initial lean angle (empty black 

circles) and the greatest surface translation velocity (empty black squares) trials of 3 of the 4 
(75%) non-fallers (empty symbols) were within one standard deviation of the experimental 

perturbation threshold line (Thiaux et a l, 2014, submitted). Furthermore, the theoretical 
angular position and velocity points at the end of reaction time for the maximum initial lean 
angle trials (empty gray circles) of 4 of the 4 (100%) non-fallers and for the greatest surface 

translation velocity trials (empty gray squares) of 3 of the 4 (75%) non-fallers were within one 
standard deviation of the theoretical perturbation threshold line.



64

3.6 Discussion

CHAPTER 3 Theoretical publication

The two-dimensional thin rod inverted pendulum model mounted on a horizontally moving 

skid did accurately simulate the angular position and velocity of participants from onset of 

perturbation to onset of response for both lean releases and surface translations. Indeed, results 

showed that the majority of root mean square errors and errors at reaction time between the 

experimental and theoretical angular positions and velocities were less than 2% and 4%, 

respectively (Table 3.1). Only the angular velocity root mean square error for surface 

translations was greater but still less than 9%. More importantly, the theoretical angular 

positions and velocities at the end of reaction time for maximum lean angle and maximum 

translation velocity trials formed a perturbation threshold line separating falls from recoveries 

(Figure 3.6) that was very similar to the ones obtained previously in experiments by Thiaux et 

al. (2014, submitted) and Moglo and Smeesters (2005).

These modeling results also provide additional evidence that the 4 participants who never 

failed to recover balance even at the greatest surface translation velocity were very close to 

their maximum translation velocities. Indeed, the experimental results (Thiaux et al., 2014, 

submitted) showed that: a) the maximum lean angles for lean releases were not significantly 

different between surface translation fallers and non-fallers; b) the effect of the two postural 

perturbations on response initiation, execution and geometry variables considering both fallers 

and non-fallers (N=12) were very similar to those obtained with only fallers (N=8); and c) the 

angular position and velocity points at the end of reaction time of 3 of the 4 non-fallers were 

within one standard deviation of the experimental perturbation threshold line for both the 

maximum lean angle and the greatest translation velocity trials (Figure 3.6). Moreover, the 

theoretical results showed that the angular position and velocity points at the end of reaction 

time of 4 of the 4 non-fallers for the maximum lean angle trials and of 3 of the 4 non-fallers 

for the greatest translation velocity trials were within one standard deviation of the theoretical 

perturbation threshold line.

We had hoped that the addition of surface translations might fill in the gap in data points 

between 80-120deg/s and 10-20deg in the perturbation threshold line (Figure 3.1) previously 

obtained by Moglo and Smeesters (2005). This gap could not be filled without increasing 

waist pull forces beyond safe levels for both lean releases with waist pulls and waist pulls
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while walking, and unfortunately was not filled by the addition of surface translations. 

However, simulations with the inverted pendulum on a skid model suggest that it should be 

possible to fill the gap by using lean releases with surface translations or surface translations 

while walking.

The greatest limitation of the inverted pendulum on a skid model was the larger 9% angular 

velocity root mean square error for surface translations (Table 3.1 and Figure 3.4 bottom and 

middle graphs). The source of this error is two-fold: 1) the numerical error in first order 

centered finite differences on two points used to obtain angular velocities from angular 

positions acquired experimentally at 100Hz; and 2) the fact that rubber sheet pull force (F2) 

was modelled as a step rather than using the actual experimental impulse (Figure 3.2). Despite 

this limitation, errors at reaction time between the experimental and theoretical angular 

positions and velocities for surface translations were less than 2% and 3%, respectively.

The greatest strength of the inverted pendulum on a skid model was that it accurately 

simulated both lean releases and surface translations, as done previously by Afitab et al. 

(2012), Hsiao and Robinovitch (1999) and Smeesters (2009) for lean releases and Wu et al. 

(2007) for surface translations. It is even ready to simulate waist pulls, given the presence of 

the waist pull force (Fx), as done previously by Smeesters (2009). It should even be possible to 

use it for trips and slips by setting F2 equal to the resulting impulsive ground contact force 

(van den Bogert et al., 2002), as done previously by Fomer Cordero et al. (2004), Roos et al. 

(2010), van den Bogert et al. (2002) for trips.

The simple inverted pendulum on a skid model could thus potentially be used to theoretically 

predict if any postural perturbation applied on an individual participant will lead to an 

unavoidable fall or if balance recovery is possible, reducing the need for time consuming, 

expensive and dangerous experiments. For example, we have used it to simulate future 

experiments to determine the best range and levels of lean releases with surface translations 

and surface translations while walking amplitudes to insure a good distribution of results as 

well as determine the specifications o f the necessary equipment. Indeed, as the stability 

boundary method by Pai et al. (2000) established a threshold in center of mass position versus 

velocity phase space between feet in place and stepping balance recovery strategies, the 

perturbation threshold line method by Moglo and Smeesters (2005; 2006) established a
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threshold in participant angular position versus velocity phase space between balance 

recoveries and unavoidable falls, regardless of the postural perturbation. Being able to 

compare results across postural perturbations and simulate them using the inverted pendulum 

on a skid model should therefore help researchers make faster and broader conclusions about 

balance recovery abilities and thus make these results more readily available to clinicians for 

fall prevention and rehabilitation. Indeed, results from any of the five postural perturbations 

should be applicable to the other four. Furthermore, it may help design equipment that detects 

(maximum angular position and velocity combinations) or even prevents falls (maximum bus 

acceleration limit). Finally, it could one day help to identify individuals at risk for falls.
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Table 3.1: Errors (mean±SD) between the experimental and theoretical results for angular position (SO) and velocity (Sco)

________ RMS error from OP to OR_____________   Error at RT___________________
Lean Surface Lean Surface

Release Translation P p«rturb.t.o» Release Translation p p«,turb.«ion

Mean±SD p ^  Mean±SD p u m __________________ Mean*SD p ^  Mean±SD p ^

Pr
e-

m
ax

N=12 
fallers & 

non-fallers

6 9  (deg)
6 6 /y i„ ,eKep, 

S c o  (deg/s)
S o /X ift fe rcen i

0.3±0.2
1±1%
7±4

4±2%

***

***

0.6±0.2
2±1%
16±5

9±3%

* * *

***

<0.001

<0.001

0.6±0.4
2±1%

5±4
3±2%

***

***

-0.6±0.7
-2±2%

1±13
0±7%

<0.001

0.035

6 0  (deg) 0.5±0.4 * 0.5±0.3 *♦ 0.873 0.7±0.7 * -0.4±0.7 0.011
M
01 N=8 SQ Iyintercept 1±1% 1±1% 2±2% -1±2%

2 fallers only Sco (deg/s) 8±7 * 15±3 * * * 0.057 4±8 5±8 0.630
S(D/Xiniercei>t 4±4% 8±2% 2±5% 3±4%

OP: Onset o f  Perturbation, OR: Onset o f Response, RT: Reaction Time.
The x and y intercepts are from the experimental perturbation threshold line (Figure 3.6). 

Significantly different form zero: * p<0.05, **p<0.01, ***p<0.001. Significant perturbation effects are bolded.



CHAPTER 4 DISCUSSION

This chapter presents various experimental and theoretical discussion items that could not be 

included in the previous two experimental and theoretical chapters due to words count 

limitations for the publications but that were still relevant in the context of this master’s thesis.

4.1 Experimental discussion

4.1.1 Participant recruitment and instructions

Twenty healthy adults participated in this study (8 preliminary and 12 final participants) and 

all participants were students or employees at Simon Fraser University. They were recruited 

through electronic advertisements and word o f mouth. All participants provided informed 

written consent and the experimental protocol was approved by the research and ethics 

committees of both Simon Fraser University and Universite de Sherbrooke.

Participants were instructed to recover their balance with a single step. The following text was 

read before each perturbation: “You have to recover your balance with a single step. You can 

move your toes or your heel after recovering your balance to stabilize yourself, but you must 

not move your toes and your heel. Otherwise, it will be considered a second step. I f  the cable 

on the overhead trolley becomes taught, it will also be a failure. ”

4.1.2 Synchronisation delays for surface translations

During the preliminary (summer term 2011) and final (winter term 2012) data collections at 

Simon Fraser University, synchronisation problems were experienced: the force plate data was 

delayed compared to the marker data for surface translations, sometimes by nearly 200ms 

(Figure 4.1). Due to a lack of time during the data collection terms at Simon Fraser University, 

the analyses were done at the Universite de Sherbrooke the following terms. The 

synchronisation problems were first detected in the preliminary data collections during the fall 

term of 2011. After modifying the experimental protocol and upon visual inspection of the 

final data collections dining the winter term of 2012, it appeared to have been solved.

69



70 CHAPTER 4 DISCUSSION

Unfortunately, upon more careful analysis during the summer term of 2012, some delays were 

still present in the final data collections. This section thus explains how it was identified and 
resolved during post processing.
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Figure 4.1: Synchronisation delay between the onset of perturbation obtained using the force 
plate ( O P f p - 3 s d ,  top graph) and marker (OPmarker, bottom graph) data for surface translations.

Hypotheses as to the source o f  the delays

Four main hypotheses as to the source of the delays were investigated:

1. The first hypothesis was a misuse of the Evart5.0 software, the data acquisition software 

used at Simon Fraser University. However, as the final data collections were done under 

supervision by one of the technicians from the Injury Prevention and Mobility Laboratory, 
this hypothesis was discarded.
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2. The second hypothesis was a lack of power from the computer due to the large quantity of 

data acquired (Table 4.1). To reduce this potential source of synchronisation delays, the 

quantity of data acquired and the acquisition frequencies were reduced to a minimum for 

the final data collections. Although this helped to reduce the synchronisation delays, it did 

not completely resolve the issue.

Table 4.1: Reduction in the quantity o f data acquired from experimental setup 1 to 3, 
for the preliminary data collections, to experimental setup 4 for the final data collections.

Setup Equipment Data Frequency
(Hz)

Location

1 EMG 2 x signals 1000 Left and right gastrocnemius
Large 

force plate
Fx, Fy, Fz,

M y j  h4z
1000 Beneath participant’s feet

Small 
force plate

f x ,  f y ,  f z ,

mx, mv, mz
1000 Beneath participant’s feet

Markers 26 x X , Y, Z 250 Temple (L&R), Acromion (L&R), Elbow (L&R), Wrist 
(L&R), Greater Trochanter (L&R), Thigh (L&R), 
Femoral epycondyles (L&R), Shinbone (L&R), 
Malleolus (Medial&Lateral, L&R), Metatarsal 
(Medial&Lateral, L&R), Linear motor, Rubber sheet

2 EMG 2 x signals 2000 Left and right gastrocnemius
Large 

force plate
Fx, Fy, Fz, 

Mx, Mv, Mz
2000 Beneath participant’s feet

Small 
force plate

f  f  fA x >  1z >

mx, mv, mz
2000 Beneath participant’s feet

Markers 26 x X , Y, Z 125 Temple (L&R), Acromion (L&R), Elbow (L&R), Wrist 
(L&R), Greater Trochanter (L&R), Thigh (L&R), 
Femoral epycondyles (L&R), Shinbone (L&R), 
Malleolus (Medial&Lateral, L&R), Metatarsal 
(Medial&Lateral, L&R), Linear motor, Rubber sheet

3 EMG 2 x signals 1000 Left and right gastrocnemius
ID load cell F i d l c 1000 Lean release pelvic belt

Large 
force plate

Fz 1000 Beneath participant’s feet

Small 
force plate

f z 1000 Beneath participant’s feet

Markers 22 x X, Y, Z 100 Temple (L&R), Acromion (L&R), Elbow (L&R), Wrist 
(L&R), Greater Trochanter (L&R), Femoral epycondyles 
(L&R), Malleolus (Medial&Lateral, L&R), Metatarsal 
(Medial&Lateral, L&R), Linear motor, Rubber sheet

4 ID load cell F i d l c 1000 Lean release pelvic belt
Large 

force plate
Fz 1000 Beneath participant’s feet

Small 
force plate

f z 1000 Beneath participant’s feet

Markers 18 x X, Y, Z 100 Temple (L&R), Acromion (L&R), Greater Trochanter 
(L&R), Femoral epycondyles (L&R), Malleolus 
(Medial&Lateral, L&R), Metatarsal (Medial&Lateral , 
L&R), Linear motor, Rubber sheet

EMG = electromyography, L&R = Left and Right
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3. The third hypothesis was that a Matlab coding error was made during data analysis. 

However, as the Matlab codes were checked line by line by Professor Smeesters during the 

summer term of 2012 and no errors were found, this hypothesis was discarded.

4. The fourth and last hypothesis was a hardware problem with the experimental setup for 

surface translations. For reasons that will be explained at the very end of this section and 

in the following section (4.1.3 - Synchronization impact tests), this appears to be the most 

likely source of the synchronisation problems.

Therefore, the 2 remaining hypotheses are a lack of power from the computer and a hardware 

problem. Unfortunately, it was impossible to investigate this further from the Universite de 

Sherbrooke without regular access to the experimental setup. However, it should be looked 

into by the personnel at the Injury Prevention and Mobility Laboratory to avoid 

synchronisation problems with future studies. For the current study, even though it was clearly 

not optimal, the data was manually synchronised in post processing. To do so, four critical 

time points were identified using both force plate and marker data (Figure 4.1): onset of 

perturbation (OP), onset of response (OR), toe off (TO) and heel strike (HS).

Identifying onset o f  perturbation (OP)

Two different methods were used to identify the onset o f perturbation using force plate data, 

the three standard deviation method ( O P f p o s d )  and the slope interpolation method ( O P f p - c t i f s ) -  

In the experimental setup, the rubber sheet on which the participant stood was slightly higher 

than the moving carriage assembly on the linear motor due to the thickness of the gymnasium 

mat (Figure 2.2). There was thus an initial increase in the sum of the vertical ground reaction 

forces at the onset of perturbation (Figure 4.1, top graph) caused by the rubber sheet pushing 

down on the gymnasium mat as it was suddenly pulled backward. This artifact was identified 

by the O P f p - 3 s d  method (Figure 4.1, top graph) as the first time point when the sum of the 

vertical ground reaction forces exceeds three standard deviations of its mean value from zero 

to the onset of perturbation using marker data (O P M a rk e r ) .  By the O P f p - c t i f s  method 

(Figure 4.2), this artifact was identified as the time point at the intersection of two lines traced 

on the sum of the vertical ground reaction forces from 200ms prior to OPMarker to 25ms after 

the peak of the artefact (100% of the amplitude):
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• the horizontal line through the mean value of the sum of the vertical ground reaction forces 

during the stable phase (0% of the amplitude) between to and //, representing 50% of the 
time interval;

• the line interpolating the vertical ground reaction forces from 15% to 35% of the total 

amplitude within the time interval.

600
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6  500

50%

35%O  450 
Li.

15%
400

Stable phase

350
0.050 0.1 0.15 0.2 0.25 0.350.3 0.4 0.45

Time (s)

Figure 4.2: The slope interpolation method to identify the onset of perturbation using force 
plate data ( O P f p - c t i f s ) -  The sum of the vertical ground reaction forces shown here is the same 

as the one shown in the top graph of Figure 4.1 from approximately 200 to 650ms.

The two methods gave results within ±5ms of each other. However, the O P f p - 3 s d  method was 
used for the rest of the manual synchronisation, since it was slightly more reliable than the 

O P f p - c t i f s  method.

The slope interpolation method was also used to identify the onset of perturbation using 

marker data (OPMarker)- Specifically, it was identified as the time point at the intersection of 

two lines traced on the surface translation velocity (as measured by the marker on the linear 

motor) from zero to the peak surface translation velocity (Figure 4.3): the horizontal line 

through the mean value of the surface translation velocity during the stable phase and the line 

interpolating the surface translation velocity from 15% to 35% of the total amplitude.



74 CHAPTER 4 DISCUSSION

OP,

100%

2.5

if)
E

50%8Q)>
35%

i
a

15%).5

Stable phase

o 0.1 0.2 0.3 0.4 0.5

Time (s)

Figure 4.3: The slope interpolation method to identify the onset of perturbation using marker 
data (OPMarker)- The surface translation velocity shown here is the same as the one shown in 

the bottom graph of Figure 4.1 from approximately 0 to 525ms.

Identifying onset o f response (OR)

Onset of response (OR) could only be identified using force plate data and could thus not be 

used for the manual synchronisation. It occurred when the sum of the vertical ground reaction 

forces started increasing (at the minimum or at the inflection point, whichever came later) 
after the onset surface translation but before toe off (Figure 4.1).

Identifying toe off (TO)

Toe off is usually very easily identified using .force plate data (T O fp) as the time point when 
the vertical ground reaction force under the stepping foot becomes zero. However, because of 

the translation of the rubber sheet, the participant moved from above the small force plate to 

above the large force plate during the perturbation. More importantly, the presence of the 

gymnasium mat between the feet and the force plates unfortunately diffused the loads under
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the stepping and stance foot to both force plates whether the participant was directly above 

them or not. TO fp could thus only be identified as an inflection time point in the sum of the 

vertical ground reaction forces (Figure 4.4). As its identification could be affected by user 

experience, toe off using marker data (TOMarker) was used as a guide.

TO location
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Figure 4.4: The identification of the toe off inflection point on force plate data (TOFp). The 
sum of the vertical ground reaction forces shown here is the same as the one shown in the top 

graph of Figure 4.1 from approximately 550 to 1000ms (O P Fp-3sd to HSMarker)-

Toe off using marker data (TOMarker) was identified as the time point when the anterior- 

posterior (y) acceleration of the midpoint of the medial and lateral metatarsals of the stepping 

foot reached a local minimum (Figure 4.5). This method of identifying toe off using marker 

data has been previously used by Cyr and Smeesters (2009) with an accuracy of -3±6ms.
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Figure 4.5: The identification of the toe off minimum on marker data (TOMarker). The anterior- 
posterior (y) and inferior-superior (z) metatarsal displacements and accelerations shown here 

are for the same participant as the one shown in Figure 4.1.

Identifying heel strike (HS)

Despite the problem of load diffusion due to the presence of the gymnasium mat, heel strike 

was very easily identified using force plate data (H S fp ) as the time point when the sum of the 

vertical ground reaction forces under the stepping foot started increasing again (Figure 4.6).
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Figure 4.6: The identification of the heel strike impact point on force plate data (H S fp ). The 
sum of the vertical ground reaction forces shown here is the same as the one shown in the top

graph of Figure 4.1.

Heel strike using marker data (HSMarker) was identified as the time point when the anterior- 

posterior (y) acceleration of the midpoint of the medial and lateral malleoli of the stepping 

foot reached a local maximum (Figure 4.7). This method of identifying heel strike using 

marker data has been previously used by Cyr and Smeesters (2009) with an accuracy of - 
10±10ms, using the inferior-superior (z) acceleration of the malleoli. Because of the vertical 

dissipation of the impact due to the presence of the gymnasium mat, it was found that the 

anterior-posterior (y) acceleration was more appropriate in this study.
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Figure 4.7: The identification of the heel strike maximum on marker data (HSMarker)- The 
anterior-posterior (y) and inferior-superior (z) malleolus displacements and accelerations 

shown here are for the same participant as the one shown in Figure 4.1.

Synchronising the data

The synchronisation delay at onset of perturbation:

A T 0 p =  OPpp-3SD — OPMarker

was on average 47.5±37.9ms and ranged from 12-183ms over the 5 trials analysed for each 
participant (Table 4.2). Interestingly, the mean synchronisation delay increased as the number 

of trials increased from 38.5±25.4ms to 58.4±47.4ms. In other words, the synchronisation 
delays became progressively worse as the experimental session went on.
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Table 4.2: Synchronisation delays (A T op ) between the onset of perturbation 
using force plate (O Pfp-3sd )  and marker (OPMaiker) data.

Participant Trial 1 Trial 2 Trial 3 Trial 4 T r ia ls
(m ax)

R anee M ean
delay

Standard
deviationmin max

Man 1 26 18 25 33 55 18 55 31.4 14.2
Man 2 103 145 151 173 183 103 183 151.0 31.0
Man 3 46 49 51 47 48 46 51 48.2 1.9
Man 4 18 19 12 13 20 12 20 16.4 3.6
Man 5 21 17 19 21 21 17 21 19.8 1.8
Man 6 46 42 45 45 52 42 52 46.0 3.7
Woman 1 20 16 18 51 43 16 51 29.6 16.2
Woman 2 N/A 18 27 39 45 18 45 32.3 12.1
Woman 3 46 46 120 118 118 46 120 89.6 39.8
Woman 4 N/A 27 21 34 33 21 34 28.8 6.0
Woman 5 37 49 47 56 64 37 64 50.6 10.1
Woman 6 22 32 33 27 19 19 33 26.6 6.1
Min 18 16 12 13 19 12 16.4
Max 103 145 151 173 183 183 151.0
Mean 38.5 39.8 47.4 54.8 58.4 47.5 8.8
SD 25.4 35.6 43.5 45.7 47.4 37.9

To synchronise the data, we set the onset of perturbation using force plate data ( O P f p - 3 s d )  

equal to the onset of perturbation using marker data (OPMarker), so that:

&T0p =  0PFP.3SD — 0PMarker = 0

We then verified the accuracy of the synchronisation process by measuring the remaining 

synchronisation delays at toe off and heel strike:

A Tto — T0fp  — T0Marker

*THS =  HSfp — HSMarker

On average the remaining synchronisation delays at toe off and heel strike were -8.6±6.1ms 

and -18.0±9.2ms, respectively, for the maximum surface translation velocity trials (Table 4.3). 

Given the marker acquisition frequency of 100Hz, toe off and heel strike using marker data 

(TOMarker and HSMarker) was thus 1 to 2 frames behind toe off and heel strike using force plate 

data (T O fp and H S fp). Given the vertical dissipations due to the presence of the gymnasium 

mat, the remaining delays are not surprising. The manual synchronisation thus appears to have 

been accurate.
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T able 4.3: Remaining synchronisation delays at toe off (ATto) and heel strike (AThs) between 
toe off and heel strike using force plate (TOfp and HSfp) and marker (TOMarker and HSMarker) 

data after synchronisation at the onset of perturbation.
Participant OP TO HS Mean

ATto-hsOPMarker OPFP-3SD AT0p TOM«rker TOfp ATto HSMarker HSfp AThs
man 1 193 193 0 451 446 -5 641 640 -1 -3.0
man 2 380 380 0 651 633 -18 821 819 -2 -10.0
man 3 441 441 0 701 695 -6 901 885 -16 -11.0
man 4 620 620 0 911 900 -11 1081 1052 -29 -20.0
man 5 580 580 0 861 851 -10 1051 1031 -20 -15.0
man 6 400 400 0 631 630 -1 811 794 -17 -9.0
woman 1 226 226 0 442 425 -17 601 573 -28 -22.5
woman 2 392 392 0 661 659 -2 841 823 -18 -10.0
woman 3 657 657 0 882 872 -10 1081 1060 -21 -15.5
woman 4 671 671 0 961 955 -6 1170 1146 -24 -15.0
woman 5 267 267 0 511 495 -16 711 698 -13 -14.5
woman 6 480 480 0 750 749 -1 941 914 -27 -14.0
mean 0.0 1 00 -18.0 -13.3
SD 0.0 6.1 9.2 5.2

For the remainder of this study, the four critical time points were measured using what we 

believed was the most accurate and least subjective method:

• Onset of perturbation using the marker on the linear motor (OPMarker);

• Onset of response using the vertical ground reaction forces (OR);

• Toe off using the metatarsal markers (TOMarker);

• Heel strike using the vertical ground reaction forces (HSfp).

4.1.3 Synchronization impact tests

In a last effort to try and identify the source of the synchronisation delays, a series of impact 

tests were performed. To do so, the second experimental setup listed in Table 4.1 was used 

including two electromyography signals at 2000Hz, all six signals from both the large and 

small force plates at 2000Hz, and twenty-six markers at 125Hz. In particular, three markers 

were placed on a rubber mallet (Figure 4.8) which was used to create impacts in an alternating 

fashion on the large and small force plates. These 10-16s impact tests were done both with the 

linear motor completely off and with the linear motor on using three surface translation 

velocities between 0.5 and 2.5m/s, with 3 repetitions at each surface translation velocity.
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Figure 4.8: The three markers on the rubber mallet used for the synchronisation impact tests.

Despite the large quantity of data acquired, the synchronisation delays between the impacts 

using the force plate and marker data was always between 2 to 4ms, whether the linear motor 
was on or not at any velocity (Figure 4.9). Why then were we experiencing synchronisation 

delays during the surface translations?
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Figure 4.9: Force plate and marker data during two impacts on the large and small force
plates with the linear motor at 2.5m/s.
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The only significant difference between this impact test setup and the experimental setup was 

the absence or presence of the gymnasium mat and rubber sheet over the force plates, 

respectively. Could the rubber sheet translating over the mattress generate some static charge 

that could affect data collection? Could this static charge accumulate over time and be the 

source of the synchronisation delays by perhaps increasing or decreasing the amplitude of the 

synchronisation pulse beyond the required triggering threshold? This seems like a reasonable 

hypothesis given that no synchronisation delays were experienced during the lean releases 

when the rubber sheet remained in the same position and the large number of small static 

shocks sustained during the surface translations by the experimenters.

4.1.4 Initial lean angle calculation

The angular position (6) was usually measured as the sagittal plane angle between the vertical 

and the line connecting the midpoints of the medial and lateral malleoli of the stance foot and 

the two greater trochanters. However, at the onset of perturbation, the angular position or 

initial lean angle (0o) was measured as the sagittal plane angle between the vertical and the 

line connecting the midpoints of the 4 malleoli (medial and lateral o f the stance and step feet) 

and the two greater trochanters. As the difference between the two ways of measuring the 

angular position was negligible prior to lean release, it was not explicitly mentioned in the 

experimental publication (Chapter 2).

4.1.5 Impact of the postural perturbation amplitude on when the 

surface translation ends and when heel strike occurs

As the surface translation velocity increased in 0.25m/s increments, the width of the ±25m/s2 

acceleration and deceleration impulses increased but the time between them (or the duration of 

the 700mm translation) decreases (Figure 4.10). For several of the trials before the threshold 

of balance recovery, heel strike thus occurred before the end of the surface translation.
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Figure 4.10: Surface translation displacement, velocity and acceleration time histories for all 
the trials before the threshold of balance recovery for participant 4, from 1 to 2 m/s surface 

translation velocity. The maximum surface translation velocity of participant 4 was 2.25m/s.
Heel strike times (HS) are also shown.

However, at the maximum surface translation velocity, heel strike occurred after the end of the 

surface translation for all but three participants (Figure 4.11). However, the time between heel 

strike and the end of surface translation for these three participants was always less than 50ms 

and thus well into the deceleration impulse. Moreover, while the acceleration impulse was 

very noticeable to all participants, few noticed the deceleration impulse.
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Figure 4.11: Heel strike time, the sum of reaction time, weight transfer time and step time, 
occurred after the end of surface translation for all but three participants (red squares) at the

maximum surface translation velocity.

4.1.6 Rubber sheet strain and stance foot displacement on rubber sheet

During surface translation, the rubber sheet experienced a 5-10% strain (35-70mm stretch / 

700mm surface translation). This was measured by the change in the relative anterior-posterior 

distance between the markers on the linear motor and rubber sheet from onset of perturbation 

to heel strike (Figure 4.12). Most of the initial stretching happened between onset of 

perturbation and onset of response while the surface was accelerating (point 1). A local 

maximum occurred between onset of response and toe off during weight transfer time, while 

the surface translation velocity remained constant (point 2). Finally, the rubber sheet returned 

to its initial state between toe off and heel strike while the surface was decelerating (point 3). 

Negative strain even occurred at the very end of the step sometimes as the stance foot plantar 

flexed and pushed the rubber sheet backward. Interestingly, rubber sheet strain decreased as 

maximum surface translation velocity increased.
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Figure 4.12: Rubber sheet strain over time. OP: onset of perturbation,
OR: onset of response, TO: toe off, HS: Heel strike.

Even though the stance foot technically acted like a pivot, it does slightly move relative to the 

rubber sheet by approximately 5% (35mm displacement / 700mm surface translation) as it 

plantar flexed. This was measured by the change in the relative anterior-posterior distance 

between the stance foot metatarsal markers and the markers on the linear motor and rubber 
sheet from onset of perturbation to heel strike (Figure 4.12). However, it did ultimately return 

to its initial position at heel strike, so it did not appear that the stance foot was slipping as 

surface translation occurred. This thus gives some credibility to the fixed pivot point in the 

inverted pendulum on a skid model.
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4.2 Theoretical discussion

4.2.1 Heights of participants

The height of the inverted pendulum on a skid model was adjusted to each participant 

simulated. As the height of each participant (h) was not measured, it was estimated from 

anthropometric tables as the distance between the midpoints of the 4 malleoli (medial and 
lateral of the stance and step feet) and the two greater trochanters (Ad) divided by 0.491 

(Winter, 2005):

h = Ad/0.491

As reported in the theoretical publication (Chapter 3), this estimation of the heights of 

participants did not appear to affect the accuracy of our inverted pendulum on a skid model.

4.2.2 Masses of participants

The mass of the inverted pendulum on a skid model was also adjusted to each participant 
simulated. Unfortunately, the presence of the gymnasium mat between the feet and the force 
plates diffused the loads under the feet, not only to the two force plates but also to part of the 

floor surface. Therefore, despite the fact that a statically standing trial was obtained for each 
participant a direct measurement of the masses of participants (m) was not achieved. In fact, 

the masses of participants recorded by the force plates in these trials were greatly 

underestimated (Figure 4.13). Fortunately, it was possible to contact eight of the twelve 
participants post-experiment and obtain their self-reported masses. The remaining 4 

participant masses were thus calculated from the linear regression between the masses 

recorded by the force plates and the masses self-reported by the participants. As reported in 

the theoretical publication (Chapter 3), this estimation of the masses of participants did not 

appear to affect the accuracy of our inverted pendulum on a skid model.
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Figure 4.13: Linear regression between masses recorded by the force plates 
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CHAPTER 5 CONCLUSION

5.1 Summary of findings

The overall objective of this master’s thesis, to determine if balance recovery is possible or if a

fall is unavoidable for lean releases and surface translations at the threshold of balance

recovery, has thus been achieved. On the experimental side:

• A maximum forward initial lean angle of 0max=27.3±4.8deg and a maximum backward 

surface translation velocity of Fmax=2.42±0.36m/s from which younger adults could be 

suddenly released or pulled, respectively, and still recover balance using a single step were 

determined. In particular this is the first determination of the maximum surface translation 

velocity in younger adults.

• The angular positions and velocities at the end of reaction time for lean release and surface 

translation trials at the threshold of balance recovery formed a perturbation threshold line 

similar to the one obtained by Moglo and Smeesters (2005) using lean releases, lean 

releases with pulls and pulls while walking. Unfortunately, the addition of surface 

translations did not fill in the gap in data points between 80-120deg/s and 10-20deg in the 

perturbation threshold line.

• Although response initiation variables for the maximum lean angle and maximum 

translation velocity trials were not significantly different between the two postural 

perturbations, response execution and geometry variables were significantly different. 

However, the latter results could have been affected by our experimental setup and should 

be validated in future experiments.

Furthermore, on the theoretical side:

• A two-dimensional thin rod inverted pendulum model mounted on a horizontally moving 

skid did accurately simulate the angular position and velocity of participants from onset of 

perturbation to onset of response for both lean releases and surface translations. In 

particular, the errors at the end of reaction time were less than 5%.

89
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• Our modeling efforts indicate that it should be possible to fill the gap in the perturbation 

threshold line mentioned above by using combined lean release and surface translation 

perturbations or surface translations while walking.

We have thus made some serious advances in pursuing the work by Moglo and Smeesters 

(2005; 2006) and Smeesters (2009) on the dimensionless perturbation threshold line method, 

which separates falls from recoveries regardless o f the postural perturbation. Being able to 

compare results across postural perturbations and simulate them using the inverted pendulum 

on a skid model should therefore help researchers make faster and broader conclusions about 

balance recovery abilities and thus make these results more readily available to clinicians for 

fall prevention and rehabilitation.

5.2 Recommendations for future studies

With the experience gained from this master’s thesis, the following recommendations in no 

particular order have been assembled to facilitate future experimental and theoretical studies:

• To insure accurate modeling, heights and masses of participants should be measured.

• Also to insure accurate modeling, rubber sheet pull forces should be measured using a load 

cell between the rubber sheet and the moving carriage assembly of the linear motor.

• To avoid manual post processing synchronisation, resolve any synchronisation problems.

• To improve ground reaction floor measurements, remove the gymnasium mat and use only 

the safety harness to insure participant safety.

• To reduce the force required of the linear motor, attempts should be made to reduce the 

coefficient of friction between the rubber sheet and the floor or gymnasium mat.

• Purchase a more powerful linear motor so as to achieve surface translation velocities of 

3m/s or higher with a 700mm displacement and 25m/s2 acceleration. To be able to do so 

even with the heaviest participants, the inverted pendulum on a skid model predicts pull 

forces of 2000-3000N.

• To fill the gap in the perturbation threshold line mentioned above, combine lean release 

and surface translation perturbations or surface translations while walking.

• Consider exploring backward, sideways and forward maximum surface translation 

velocities, which would result in forward, sideways and backward losses of balance.
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• Increase sample size and add age groups, to strengthen statistical analyses and look into 

age and gender effects.

• To reduce learning effects and predictability, consider the possibility of randomising the 

order of postural perturbation amplitudes instead of gradually increasing them. This may 

however be difficult to do without increasing participant fatigue especially if two or three 

repetitions are required.

•  To reduce learning effects and predictability, consider the possibility of randomising the 

type and direction of postural perturbations as done by Mansfield and Maki (2009) with 

pulls and surface translations while standing and walking in place in multiple directions. 

However, this may not only be difficult to do without increasing participant fatigue, 

especially if two or three repetitions are required, but may also be technically difficult to 

do, thus incurring additional experimental costs.
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APPENDIX A INVERTED PENDULUM ON A 

SKID MODEL EQUATIONS

m g

Mg

Figure A.1: Inverted pendulum on a skid model

A.l Hypotheses

• The participant is modelled as a thin rigid rod rotating at the ankles (70 =  m h 2/ 12).
• There is no relative displacement between the ankle of the stance foot and the rubber sheet.
• Motion is limited to the sagittal plane.

A.2 Inputs

• m: participant mass (kg)
• M: skid mass (kg)
• h: participant height (m)
• g: gravity (9.81 m/s2)
•  Fj*(t): waist pull force (N)
• F2(t): rubber sheet pull force (N)
• fj: coefficient of friction between the rubber sheet and mat
• f ( t )  : ankle torque (Nm)
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A.3 Outputs

• 0(t)  =  90 — Pit): angular positions (deg)
• o>(t) or 9 it): angular velocities (deg/s)
• a(t) or 0(t): angular accelerations (deg/s2)
• x(t): translational positions (m)
• x ( t)  or v(t):  translational velocities (m/s)
• x ( t ) or ait):  translational accelerations (m/s2)
... from onset of perturbation at t=0 to onset of response at reaction time (RT).

A.4 Initial conditions

Atr=0...

• 90 = 90 — po
• (*>o = -$o  =  2vwalkf h
• x o = 0
• x o = vo = 0

A.5 Lagrangian

B.l

For the inverted pendulum on a skid model...

rubber sheet participant

1 2 1 2 1+ -'rubber sheet "b -y tWVparticipant ~b „
1 h

- r n g - s i n p

+ m h 2p 2 ~ m g j  sin 0

B.2

B.3

where...

v rubbersheet B.4

and...

vparticipant

2

B.5
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/  ft \  ̂  /ft \  ̂
participant = { X - Sin^ )  + ( 2  P C0S P)  8,6

h2 _  h2 ,.
Tp a rtic ip a n t = *2 -  hx/2 Sin/? +  — /?2(sin /?)2 +  —  /?2(C0S/?)2 B.7

P artic ipan t = X2 -  hxp  S in /?+  —  /?2 B.8

Substituting B.4 and B.8 into B.3...

I l l  1 h2 1 /i
L =  —M x2 + - m x 2 - - m h x p s x n p  + - m - —0 2 + — m h 20 2 -  m g - s i n  (2 B.9

2 2 2 2 4  2 4  2

L — - ( M  + m )x 2 — -m h x f i  sin/? + - m h 2/?2 — -  m g h sin /?

A.6 Equations of motion

d ( d L \  dL
d i \ d ^ ) ~ d q i  = Fi 8 11

Using B. 10, the equation of motion along the x axis is...

d t +  m )x 2 — ^ m hx$  s in /? +  g m h 2$ 2 — ^ m g h s in /? ^

— ^ ( - ( M  + m )x2 — ^m/ix/? sin/? +  i m / i2/?2 — ^m g h s in /3 ^  8 1 2  

=  F1 +F2 + g{M +  m)flf

^ ^ (A f  +  m)x -  z^mh0 sin/?^ =  Ft +  F2 +  /t(M +  m )g  B.13

1 1
(M +  m )x  — -m h f t  s in /? — - m h $ 2 cos/? =  Ft +  F2 +  /t(M +  m )# B.14

Substituting (3 = 90 — 6 into B.14...

(M +  m )x  + - m h 8  cos 0 — —mhO2 sin 6 =  F, +  F2 +  g(M + m )g
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Using B. 10, the equation of motion around the angle p  is...

d f d  / i  i  1 1  \  i
+ m )x 2 - - m h x p s i n p + - m h 20 2 - j m g h s m p j j

5 / 1  1 1 1 \
— —  (M + m )x2 -  - mhxfi sin/? + - m h 2f}2 - - m g h  sin P j  B.16

h
= r - F i - s i n / ?

_d
dt

/ I  1 . \  1 1 1
^ - -m h x s in /?  + —m h 2(JJ +  - m h x p  cos /? + - m g h c o s p  =  r - - F 1hsin/? B.17

1 1 1 .. 1 1 
——mhx  sin/? — —m hxp  cos/? + —m h 2p  + —mhx(i cos/? + —m g h zo sP

1 3 2 2 B lg
=  t — — Fjhsin/?

1 1 .. 1 1 
— - m h x  s inp  + - m h 2P + —m g h z o sp  =  t  — — Fxhsin{i B.19

M  J  M fa

Substituting /? =  90 — 0 into B.19...

— — m hx  cos 0 ——m h20 +  —m gh  sin 0 = t  — — Ft h cost?

A.7 Linearization

The resolution of this system of two second order non-linear differential equations (B.15 and
B.20) requires linearization into a system of four first order non-linear differential equations 
where...

y i = Q
y 2 = o
y 3 = x  
y4 = x

B.21 y 3 = x

and therefore.
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Isolating x  in equation B.20.

1 - 1  1 
2 m h29 — j m g h  sin 0 +  t  — ^F 1hcos9

x  =  -

— 2 m/i cos 9

2 h6 2 t  Fj
X =   ----- 7; + g  tan 6 ------   -  +  —3 c o s0  m h  cos 9 m

Isolating 6 in equation B.20...

1 1  1 
^ m h x c o s e — 2 m g ^ s n̂ ^ + x ~ 2 ^ 1 l̂C0S^g = -------------------------- 7------------------------------

— ̂ m h 2

.. _  3x  cos 6 3g  sin 9 3 t 3Fx cos 9
^ 2h + 2h m h 2 +  2mh

Substituting B.24 into B.15...

2h0 2t FA  1 1
(M +  m) ( —  -----   +  g  tan 0 ----------     H--) +  - m h 9  cos 9 - - m h . 9 2 sin 9

V 3 cos 0 "  mh  cos 9 m j  2 2
= F1 +F2 + +  m )g

. . / I  2h \  /  2 t Fi\
0 ( -  mh  cos 9 — (M + m ) - ----- -}  +  (Af + m) I g  tan 9 ------------- - H )

\2 3 cos 9)  V m h cos 0 m )
1

— - m h 9 2 sin 0 =  Fa +  F2 +  + m )g

9 =  (M +  m) ^  tan 0
2r

mh  cos 9 m
Fi\  1J + - m h 0 2 sin 0 +  Fx +  F2 +  g{M

+  m )9 ) .  (im A  cos 9 -  (M +  m ) ^ )

Substituting B.26 into B.15...

(M + m )x  +  — m h  cos 9 ^
1 , / 3x  cos 9 3g  sin 9 3 r 3F. cos 0>

“  + - ~ r :  r r  +2/i 2h m h 2 2mh
— - m h 9 2 sin 9 =  Ft + F2 + +  m )g

B.23

B.24

B.25

B.26

B.27

B.28

B.29

B.30
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x  ^(M + m) — ^m (cos 0)2^ +  j m  cos 0 ^
3g  sin 6 3 t  3Fx cos 0>

m h 2m
1

— —mh0  sin 0 =  Ft +  F2 +  +  m )g

( 1 (3g  sin 0 3x 3Ft cos 0 \  1 . ,
x  =  \ - - m c o s 0  ^—  --------—  + — — — J + - m h 0 2 sin 0 + Fx + Fz +/z(M

m )g^ * ^(Af + m) — ^m (cos 0 )2^+

B.31

B.32


