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A bstract

ABSTRACT

The deterioration of Canadian infrastructure due to corrosion of steel reinforcement is 

one of the major challenges facing the construction industry. Recent advances in polymer 

technology have led to the development of new generations of fiber-reinforced-polymer (FRP) 

reinforcing bars. These corrosion resistant bars have shown promise way to further protect 

bridges and public infrastructure from the devastating effects of corrosion. The recently 

published [CAN/CSA-S807, 2010] “Specification fo r  fibre-reinforced Polymers" along with 

the FRP bars being produced of the highest quality strongly supported the FRP reinforcement 

as a realistic and cost-effective alternative to traditional steel reinforcement for concrete 

structures under severe environmental conditions.

The design of concrete members reinforced with FRP bars is typically governed by 

serviceability state rather than ultimate state. Thus, there is a need to investigate the flexural 

performance and the deflection and crack width behaviour, the two terms of serviceability 

criteria. In addition, recent developments in the FRP industry led to introducing FRP bars with 

different surface configurations and mechanical properties as well. These developments are 

expected to affect their bond performance and, consequently, the crack width in FRP- 

reinforced concrete members. The design codes and guidelines, however, provide a unique 

value for the bond-dependent coefficient (kb) considering the surface configurations and 

neglecting FRP bar type, bar diameter, and concrete type and strength.

This research program aims at investigating the flexural behaviour and serviceability 

performance of concrete members reinforced with different types and ratios of carbon and 

glass FRP bars and fabricated using normal-and high-strength concretes. In addition, it 

evaluates the bond-dependent coefficient (kb) of glass and carbon FRP bars in normal- and



A bstract

high-strength concrete beams. The experimental program included fabricating and testing of 

thirty three full-scale simply-supported beams measuring 4250-mm long x 200-mm wide x 

400-mm deep. Twenty seven concrete beams were reinforced with glass FRP bars, four 

concrete beams were reinforced with carbon FRP bars, and two beams were reinforced with 

steel bars. All beams were tested in four-point bending over a clear span of 3750 mm. The test 

parameters were: reinforcement type and ratio, FRP bar diameter and surface configurations, 

number of FRP layers, and concrete strength. The test results of these beams were presented 

and discussed in terms of flexural capacity and mode of failure, concrete and reinforcement 

strains, deflection, and crack widths through three journal papers presented in this thesis.

Among the three papers presented in this thesis, two investigated the flexural behaviour 

and serviceability performance of carbon and glass FRP-reinforced concrete beams fabricated 

with normal- and high-strength concretes. These two papers investigated GFRP bars of 

different grades, diameters, and surface configurations. While the third one evaluated the 

current design recommendations for bond-dependent coefficient (fa) values and checked the 

dependency of the kb values on FRP bar type (glass and carbon), diameter, and concrete type 

and strength. The cracking moments and flexural capacity were compared against the 

provisions of the North American codes and guidelines [ACI 440.1R-06, 2006; ISIS Manual 

No.3, 2007; CAN/CSA-S6.1S1, 2010; CAN/CSA-S806, 2012], In addition, the experimental 

results were employed in assessing the accuracy of the current deflection and crack-width 

prediction equations and the fa values in the FRP design codes and guidelines in North 

America [ACI 440.1R-06, 2006; ISIS Manual No.3, 2007; CAN/CSA-S6.1S1, 2010; 

CAN/CSA-S806, 2012]. The results introduced the effect of different parameters on the 

flexural behaviour and serviceability performance of the FRP- reinforced concrete members.
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Furthermore, the findings did not support the unique kb value for FRP bars of different types 

(carbon and glass) with similar surface configurations and was found to be dependent on bar 

diameter.
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RÉSUMÉ

La détérioration des infrastructures au Canada due à la corrosion des armatures est l'un 

des défis majeurs de l'industrie de la construction. Les progrès récents dans la technologie des 

polymères ont conduit au développement d ’une nouvelle génération de barres d'armature à 

base de fibres renforcées de polymères (PRF), (en particulier les fibres de verre). Ces barres, 

résistant à la corrosion, ont montré un grand potentiel d ’utilisation pour mieux protéger les 

infrastructures en béton armé contre les effets dévastateurs de la corrosion. Avec la publication 

du nouveau code S807-10 "Spécifications pour les polymères renforcés de fibres" et la 

production de barres en PRF de très haute qualité, celles-ci représentent une alternative réaliste 

et rentable par rapport à l’armature en acier pour les structures en béton soumises à de sévères 

conditions environnementales.

La conception des éléments en béton armé de barres en PRF est généralement 

gouvernée par l'état de service plutôt que l'état ultime. Par conséquent, il est nécessaire 

d'analyser les performances en flexion et le comportement en service en termes de déflexion et 

de largeur de fissures des éléments en PRF sous charges de service et de vérifier que ces 

éléments rencontrent les limites des codes.

Aussi, de récents développements dans l'industrie des PRF ont conduit à l'introduction 

des barres en PRF avec des configurations de surface et des propriétés mécaniques différentes. 

Ces développements sont susceptibles d'affecter leur performance d ’adhérence et, par 

conséquent, la largeur des fissures dans les éléments en PRF. Cependant, les codes de 

conception et les guidelines de calcul fournissent une valeur unique pour le coefficient

iv
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d'adhérence (kb) en tenant compte des configurations de surface et en négligeant le type de 

barre en PRF, le diamètre de la barre, et le type de béton et de sa résistance.

En outre, le code canadien S807-10 "Spécifications pour les polymères renforcés de 

fibres" fournit une étape en classant les barres en PRF par rapport à leur module d ’élasticité 

(E/rp). Ces classifications ont été divisées en trois classes : Classe I (E/rp <50 GPa), Classe II 

(50 GPa < Efrp < 60 GPa) et Classe III (Ejrp > 60 GPa)

Ce programme de recherche vise à étudier expérimentalement le comportement en 

flexion des éléments en béton en service armé avec différents paramètres sous charges 

statiques. Le programme expérimental est basé sous plusieurs paramètres, dont les différents 

ratios de renforcement, différents types de barres (différentes classes comme classifiées par le 

CAN/CSA S807-10), le diamètre et la surface de la barre, la configuration ainsi que la 

résistance du béton.

De plus, les recommandations actuelles de design pour les valeurs de kb et la 

vérification de la dépendance des valeurs de kb sur le type de barres (verre ou carbone), le 

diamètre des barres et le type de béton et sa résistance ont été étudiées

Le programme expérimental comprenait la fabrication et les essais sur 33 poutres à 

grande échelle, simplement appuyées et mesurant 4250 mm de long, 200 mm de large et 400 

mm de hauteur. Vingt et sept poutres en béton ont été renforcées avec des barres en PRF à 

base de verre, quatre poutres en béton ont été renforcées avec des barres de PRF à base de 

carbone, et deux poutres ont été renforcées avec des barres en acier. Toutes les poutres ont été 

testées en flexion quatre points sur une portée libre de 3750 mm.

v
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Les paramètres d'essai étaient: le type de renforcement, le pourcentage d ’armature, le 

diamètre des barres, configurations de surface et la résistance du béton. Les résultats de ces 

essais ont été présentés et discutés en termes de résistance du béton, de déflection, de la 

largeur des fissures, de déformations dans le béton et l’armature, de résistance en flexion et de 

mode de rupture.

Dans les trois articles présentés dans cette thèse, le comportement en flexion et la 

performance des poutres renforcées de barres en PRFV et fabriquées avec un béton normal et 

un béton à haute performance ont été investigués, ainsi que les différentes classes de barres en 

PRFV et leurs configurations de surface. Les conclusions des investigations expérimentales et 

analytiques contribuent à l’évaluation des équations de prédiction de la déflection et des 

largeurs de fissures dans les codes de béton armé de PRF, pour prédire l ’état de service des 

éléments en béton renforcés de PRF (déflection et largeur de fissures)

En outre, à la lumière des résultats expérimentaux de cette étude, les équations de 

service (déflection et largeur des fissures) incorporées dans les codes et guidelines de design 

[ACI 440.1R-06, 2006; ISIS Manual No.3, 2007; CAN/CSA-S6.1S1, 2010; CAN/CSA-S806, 

2012] ont été optimisées. En outre, les largeurs de fissures mesurées et les déformations ont 

été utilisées pour évaluer les valeurs courantes de kb fournies par les codes et les guidelines de 

calcul des PRF. En outre, les conclusions ne prennent pas en charge la valeur unique de kb 

pour les barres en PRF de types différents (carbone et verre) avec des configurations de 

surface similaires et s'est avéré être dépendant du diamètre de la barre.

VI
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Nom enclature

NOMENCLATURE

A = effective tension area of concrete surrounding the flexural tension reinforcement and

<y
bearing the same centroid as that reinforcement, divided by the number of bars (mm ); 

a = shear span (mm);

Af = area of FRP tension reinforcement (mm2);

b = effective width of beam (mm);

c = neutral axis depth (mm);

c/d = neutral axis-to- depth ratio;

d = distance from the extreme compression fiber to the centroid of tension force (mm);

db = bar diameter (mm);

dc = distance from extreme tension fiber to the centre of the longitudinal bar or wire located

closest thereto according to the code or guideline (mm);

Ec = modulus of elasticity of concrete (MPa);

Ef = modulus of elasticity of longitudinal FRP reinforcement (MPa);

Es = modulus of elasticity of longitudinal steel reinforcement (MPa);

f c = compressive strength of the concrete (MPa);

f f  = stress in FRP reinforcement under specified loads (MPa);

fjrpu = characteristic tensile strength (average -  3 standard deviation (SD))

ffu = ultimate strength of FRP longitudinal reinforcement (MPa);

xiv
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f c  = guaranteed tensile strength (average -  3 standard deviation (SD));

f r = modulus of rupture (MPa);

f r = modulus of rupture (MPa);

f s = stress in reinforcement at serviceability limit state and shall be calculated on the basis

of a cracked section;

/, = tensile strength from cylinder-splitting test (MPa);

f y = yield strength of steel longitudinal reinforcement (MPa);

hi = distance from neutral axis to center of tensile reinforcement (mm);

/z2 = distance from neutral axis to extreme tension fiber (mm);

I Cr = transformed moment of inertia of cracked reinforced concrete section (mm4);

le -  effective moment of inertia (mm4);

If. = gross moment of inertia of un-cracked section (mm4);

J  = Deformability factor.

kb = bond-dependent coefficient;

L  = length of clear span (mm);

Lg = length of the un-cracked section (mm);

Ma = applied moment (kN.m);

Mcr = cracking moment (kN.m);

Mcr = cracking moment (kN.m);

xv



N om enclature

M„ = nominal moment of the reinforced-concrete section (kN.m);

Ms = Service moment at a corresponding concrete strain of 1,000 microstrains or 2,000

microstrains in the FRP reinforcement as defined by Newhook etal., [2002] (kN.m);

Mu = Ultimate moment (kN.m);

My = moment corresponding to the yield stress of the steel bars (kN.m);

P = applied load (kN);

s = spacing between the longitudinal reinforcement bars (mm);

SD = standard deviation;

w = maximum crack width (mm);

y, = distance from centroid axis of cross-section to the extreme fiber in tension (mm);

z = maximum stresses at crack width initiated adopted by CAN/CSA-S806, [2012]

(N/mm);

<5 = mid-span deflection (mm);

ecu = ultimate strain of concrete;

Pf = longitudinal reinforcement ratio;

Pjb -  balanced longitudinal reinforcement ratio.

ip = curvature;

*PS = curvature at a corresponding concrete strain of 1,000 microstrains or 2,000 microstrains

in the FRP reinforcement as defined by Newhook et al., [2002];
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Nom enclature

!Fa = curvature at ultimate state.
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CHAPTER 1 

INTRODUCTION

1.1 Background and Problem Definition

Considerable damage of reinforced concrete structures occurs due to the corrosion of 

steel reinforcement and related deteriorations. This problem is a major challenge for the 

construction industry, especially, when the reinforced concrete structures are subjected to 

harsh environmental conditions. These conditions normally accelerate the need of costly 

repairs and may lead to catastrophic failures. Due to its non-corrosive nature, the fiber- 

reinforced polymer (FRP) reinforcement is being used as an alternative to steel bars to 

overcome the common corrosion problems and deteriorations. The recent advancement in the 

FRP technology led to introducing FRP bars with enhanced mechanical properties and surface 

configurations, which is expected to increase the use of FRP. In addition, the recently 

published standards for the FRP specifications [CAN/CSA-S807, 2010] provided a step 

forward for increasing the use of FRP materials and for introducing them to new applications.

The FRP bars have different mechanical and bond properties compared with those of 

steel bars. The FRP bars are characterized by very high tensile strength, relatively low 

modulus of elasticity, and linear stress-strain behaviour until failure. The lower modulus of 

FRP bars yields large strains being developed in the bars at low load levels creating large 

crack widths and deflections. As a result, the design of concrete members reinforced with FRP 

materials is governed by the serviceability limit state (SLS) rather than the ultimate limit state 

(ULS) [Mathys and Taerwe, 2000; Nanni, 2003]. Due to lack of standards, a wide variety of 

FRP products with different properties and surface configurations are commercially available.
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The FRP bars could vary significantly because their properties are relying on type of 

fiber, type of resin, and manufacturing process in addition to the surface and/or coating 

characteristics [Ceroni et al., 2006; Baena et al., 2009]. Consequently, the design models and 

guidelines are required to cope with all the available FRP products. Furthermore, most of the 

FRP design codes and guidelines are based on adopting the design equations for steel 

reinforced members with some modifications to account for the different mechanical and/or 

bond properties. Thus, the design equation may yield good results with one type of FRP bars 

and discrepancy with any other type.

Serviceability (deflection and crack width) is also one of the most important issues in 

designing the FRP reinforced concrete members due to the lower modulus of elasticity of FRP 

than that of steel. For deflection, coefficients were proposed to modify Branson’s equation 

used in steel design codes [ACI 318, 2008], while other suggestions were introduced to use the 

modified equivalent moment of inertia derived from the integration of curvatures along the 

beam. These different approaches were adopted in various FRP design codes and guideline for 

predicting the deflection of FRP reinforced concrete beams [ACI 440.1R-06, 2006; ISIS 

Manual No.3, 2007; CAN/CSA-S806, 2012], On the other hand, cracking behaviour of FRP 

reinforced concrete elements, design equations and prediction models are generally based on 

similar formula to that of steel reinforced concrete such as Gerlgy-lutz and Frosch formula 

with coefficient that depends on the different characteristics of the bars and their interaction 

with concrete, however, the design formula for crack width is still under discussion even for 

steel reinforced concrete [Beeby, 2004; Beeby et a i ,  2005; fib., 2010]. In addition, the crack 

width calculations include the effect of bond between the FRP bars and the surrounding 

concrete; which is normally included in the FRP design codes and guidelines through what-so- 

called bond-dependent coefficient (kb), while the interpretation o f this coefficient remains
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ambiguous [McCallum et Newhook, 2012], The FRP design codes and guidelines provide 

unique values for the bond-depended coefficient (kb) depending on the surface characteristics 

of the bar only and neglecting FRP bar type, diameter, and surrounding concrete type and 

strength.

Based on the results from the literature and considering the different available FRP 

products, there is a need for further investigation concerning the flexural response and 

serviceability performance of FRP reinforced concrete members using normal- and high- 

strength concretes.

1.2 Research Objectives

This study aims at investigating the flexural behaviour and serviceability behaviour of 

FRP reinforced concrete beams reinforced with different types o f FRP bars and fabricated 

using normal- and high-strength concretes. The study focused on three types of glass FRP bars 

and one type of CFRP bars as they are being used extensively in Canada. Few studies were 

conducted on high-strength concrete beams; however, many extensive studies were conducted 

by normal-strength concrete. Thus, this study included both normal- and high-strength 

concretes. The specific objectives of this study are:

- To investigate the flexural of concrete beams reinforced with different types and ratios 

of glass and carbon FRP bars using normal- and high-strength concretes;

- To investigate the serviceability (cracking and deflections) performance of normal- and 

high-strength concrete beams reinforced with FRP bars;
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- To evaluate the current design approaches of the FRP reinforced concrete beams at 

service and ultimate load levels (SLS and ULS) and to evaluate the applicability of the 

design provisions on both concrete types (normal and high-strength);

- To evaluate the bond dependent coefficient ( k b )  recommended by current design codes 

and guidelines and check the dependency of kb values on FRP bar type (glass and 

carbon), FRP diameter, and concrete strength.

1.3 Methodology

To achieve the aforementioned objectives, an extensive experimental program was 

conducted. The program included full-scale simply supported concrete beams reinforced with 

different types and ratio of FRP bars. The beams measured 4250-mm long x 200-mm wide x 

400-mm deep. The test parameters were the type of FRP reinforcing bars, reinforcement ratio, 

bar diameter. The beams specimens were fabricated with normal- and high concrete strengths 

(NSC and HSC). The experimental program aspects (materials, specimens, testing, and 

analysis are summarized in this section:

a- Materials:

Reinforcement:

(i) GFRP-1: Sand Coated glass FRP bars of diameters 13, 15, 20, 22, and 25 mm 

having fiber content ratio (by weight) of 80.8%, 81.4%, 82.7%, 82.5% and 82.3%, 

with two different grades of modulus of elasticity (46.4 to 53.2 GPa);
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(ii) GFRP-2: Sand Coated glass FRP bars of diameters 13, 15, 20, and 25 mm having 

fiber content ratio (by weight) of 81.7%, 81.4%, 81.6%, and 82.4%, with two 

different grades of modulus of elasticity (52.5 to 69.3 GPa);

(iii) GFRP-3: Helically-grooved glass FRP bars of 15, and 25 mm diameter having 

fiber content ratio of 86.7% and 88.6%, with standard modulus of elasticity close 

to 60 GPa;

(iv) CFRP-1: Sand Coated carbon FRP bars of diameter 10, and 13 mm having fibre 

content ratio of 78.8% and 75.9%, with standard modulus elasticity around 140 

GPa;

(v) Conventional 10M and 15M steel of diameter 15.9 mm as well as smooth steel 

bars of 10 mm diameter for steel stirrups, with standard modulus of elasticity of 

200 GPa.

Concrete:

Ready-mixed normal- and high-strength concretes (NSC and HSC) with 28-day target 

compressive strengths of 30 and 65 MPa, respectively, were used. The composition of the 

concrete mix of both concrete types was as follows:

(i) Normal Concrete Strength: A cubic meter of the NSC contained 350 kg of cement, 

813 kg of sand, and 1032 kg of aggregate with a water/cement ratio (w/c) of 0.44 

and air entrained ratio of 5-6%. The maximum aggregate size was 20 mm.

(ii) High Concrete Strength: A cubic meter of HSC contained 490 kg of cement, 813 

kg of sand, and 1032 kg of aggregate with a water/cement ratio (w/c) of 0.32 and 

0% of air entrained. The maximum aggregate size was 14 mm.
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b- Instrumentation and testing:

(i) 500 KN hydraulic actuator used for applying the load with stroke-controlled rate 

of 0.6 mm/min. The Beams were tested in four-point bending over a clear span of 

3750-mm.

(ii) Electrical strain gauges of 10 and 60 mm length and 120 ohm resistance 

manufactured by Kyowa limited for measuring strains along the reinforcing bars.

(iii) Six high precision linear variable displacement transducers (LVDTs) for 

measuring deflection along the beam at different load levels as well as the crack 

width evolution during the test after determining their initial widths using a hand­

held microscope of 50X magnifying power.

(iv) A data acquisition system comprising 60 channels controlling the loading, strain 

gauges, and LVDTs for cracking and deflection.

c- Analysis:

(i) Analyzing the flexural behaviour and serviceability performance of the beams and 

discussing the test results in the light of the codes and guidelines recommendations 

and requirements. Strains, crack widths, and deflections were compared and 

conclusions were drawn. The bond dependent coefficient kb for cark width 

prediction was also assessed and evaluated. The codes’ equations were compared 

against the experimental results and conclusions were drawn.
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1.4 Structure of the Thesis

The thesis comprises seven chapters; three of them (chapters 3 to 5) presents papers 

accepted/submitted to Journals. The following is a brief description of each chapter’s content:

Chapter 1: This chapter defines the problem and presents the main objectives of this study. 

The methodology followed to achieve the objectives of this research program is also 

highlighted and the structure of the thesis is presented.

Chapter 2: This chapter provides a literature review on the serviceability of FRP reinforced 

concrete members. This chapter also presents the main factors influencing the deflection and 

crack width of FRP reinforced concrete beams. The currently available equations for flexural 

capacity, deflection and cracking in the design codes and guidelines in North America are also 

summarized.

Chapter 3: This chapter includes a paper submitted to the ACI Structural Journal. The paper 

investigated the flexural behaviour and serviceability performance of GFRP reinforced 

concrete beams in terms of deflection, crack width, strains in concrete and reinforcement, 

flexural capacity, and mode of failure. The results were verified against the current deflection 

and crack-width prediction equations in the North American FRP design guidelines and 

Canadian codes.

Chapter 4: This chapter includes a paper submitted to the ASCE Journal of Construction 

Composites. The paper aimed at investigating the current design recommendations for the 

bond-depended coefficient (kb) values and verifying the dependency of the kb values on FRP 

bar type, diameter, and concrete type and strength. The findings did not support the unique kb
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value for FRP bars of different types with similar surface configurations. Moreover, kb was 

found to be dependent on bar diameter.

Chapter 5: This chapter includes a paper submitted to the Canadian Journal of Civil 

Engineering. This paper evaluates the flexural behaviour and serviceability performance of 

concrete beams reinforced with GFRP bars of different grades and surface configurations. The 

results were presented in terms of serviceability and flexural performance and verified against 

the current serviceability prediction equations of North American FRP design guidelines and 

Canadian codes. The Deformability of FRP reinforced concrete beams are also evaluated and 

discussed in the lights of the codes’ requirements.

Chapter 6: This chapter includes the overall conclusions of this study based on the findings. In 

addition, recommendations for further research work are also presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

Concrete material is strong in compression and weak in tension. Thus, the behaviour 

presents a brittle behaviour in tension. Reinforcing concrete with steel has been traditional 

solution to the brittle act of concrete under tension. Because of its mechanical properties, steel 

provides well flexure behaviour when used as reinforcement in concrete members.

Although its adequate bond transfer as reinforcement, the steel corrodes rapidly under 

aggressive conditions such as severe weather where deicing salts are used. Thus, with the 

development of composite materials, Fiber reinforced polymer (FRP) emerged an alternative 

substitute were used instead of steel, especially when durability under aggressive conditions is 

required.

These materials have different mechanical properties from steel, in addition, to their 

surface textures which affect the bond transfer mechanism between the bar and the 

surrounding concrete. This chapter includes a review of the basic aspects that affect the 

flexural behaviour of FRP reinforced concrete members.

The chapter is describing the main mechanical properties of concrete and FRP bars as 

internal reinforcement of reinforced concrete in according to CAN/CSA-S807 [2010] 

classification. In addition, the chapter gives a brief summary about the FRP manufacturer and 

its new development. Also, a brief summary on service limit states adopted by different codes 

and guidelines is presented.
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Then after, an overview of the flexural capacity o f reinforced concrete beams in terms 

of current equations available in codes and guidelines were validated. Moreover, the design 

prediction equations for deflection and crack width recently adopted by codes and guidelines 

were presented and described with their limitations.

2.2 Material properties

2.2.1 Concrete:

Several test books provides many information and models on concrete properties 

[Neville, 1970] but most were limited to quasi-static and one-dimensional states of stress- 

strain. More review of this information is given by Aoyama et Noguchi, [1979]. Furthermore, 

extensive reviews have also been given by Newman [1966], Brooks et Newman [1968] and 

Shah [1980] on high concrete strength.

Concrete forms a large number of micro cracks, especially at interfaces between 

coarser aggregates and mortar even before any load has been applied [Chen et Saleeb, 1982]. 

Thus, the propagation of these micro cracks during loading contributes to nonlinear behaviour 

of concrete at a low stress level and causes the volume expansion near failure. These micro 

cracks may be caused by segregation, shrinkage or thermal expansion in mortar developed 

during loading through the differences in stiffness between aggregates and mortar. The 

mechanical behaviour of concrete is strong in compression and weak in tension due to the 

aggregate mortar interface that has lower tensile strength.

The constitutive relationship of concrete under uniaxial is commonly derived from 

experimental tests on cylinders with a height to diameter ratio of 2. From this test, a typical
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stress-strain relationship can be deduced for concrete when subjected to uni-axial compression 

as shown in Figure 2.1.

The stress-strain curve has nearly linear-elastic behaviour up to about 30% of its 

maximum compressive strength f c. For stresses above this point, the curve shows a gradual 

increase in curvature up to about 0.75 f c to 0.90 f c according to the concrete strength (normal - 

or- high concrete strength), then after it bends sharply and approaches the peak point at f c. 

Beyond this peak, the stress-strain curve is descending till crushing failure occurs at the 

ultimate strain e„. This stress-strain curve (Figure 2.2) has been studied extensively and several 

models were proposed to describe such curve depending on several factors [Hognestad, 1951 ; 

Hognestad et al., 1955; Todeschini et al., 1964],

Tangent modulus -,

i/iÜÏa> Secant modulus at stress B

Initial tangent modulus

O Strain

Figure 2.1 The concrete compressive stress-strain curve [MacGregor 1997]

1 1



Chapter 2: L iterature R eview

Linear

0.C038

O
10
Vi£

S tra in ,  < Strain. «
(r>) Todoschlni. (From |3-4i J

(a) Modified Hognestad (b) Todeschini.

Figure 2.2 Analytical approximation to the concrete compressive stress-strain curve

[MacGregor 1997]

Most codes and guidelines [ACI 318, 2008; CAN/CSA-A23.3, 1994; ACI 318, 1999] 

adopted the model proposed by Collins and Mitchell (1993). The expression relates the stress 

fc and strain at that stress, ec. Many other models were provided by Model Code 90 [CEB-FIP. 

1990], Euro Code 2[CEN. 2004], [fib. 2007], All of them were limited to concrete with 

characteristic strengths of up to 65 MPa, except that adopted by Euro code 2 [CEN. 2004] 

which is limited to concrete strength was up to 90 MPa.

On the other hand, the concrete behaves linearly under tensile stress until it reaches its 

ultimate tensile strength [MacGregor 1997]. For values of strain larger than that corresponding 

to the ultimate tensile strength, the stress decreases with an increase of the measured strain.

Since cracking is a discrete phenomenon and cannot locate cracking position, the strain 

along tensile reinforced element is not constant [Barris 2010]. In cracked concrete element, the

12



Chapter 2: Literature Review

concrete zone between two consecutive cracks contributes to load-carrying capacity through 

the bond stress transfer between the concrete and reinforcement. This phenomenon produces 

an increment of the stiffness of the element and is extensively known as tension stiffening that 

will be discussed later in this chapter.

2.2.2 Fibre reinforced polymer (FRP):

Composite materials can be defined on those materials resulting from the contribution 

of two or more components or constituents. FRPs have been used for decades in the 

aeronautical, aerospace, automotive and other fields [ISIS Manual No.3, 2007], The first 

applications of glass fiber FRP in structural engineering application were not successful due to 

its poor performance within thermosetting resins cured at high moulding pressure [Parkyn, 

1970]. Since their early application, many FRP materials are still developed including 

different types of fibers and their improvements. Glass, carbon and aramid are major fiber type 

used manufacturing of reinforcing bars and could be used in reinforcing structural element 

although the aramid are still in debate [Wallenberger et a i ,  2001; Walsh, 2001; Chang, 2001], 

These fibres were formed from roving, tow, mat, woven fabrics.

Thus, bars made of FRP are considered as innovative material in structural 

engineering. Their physical and mechanical properties are widely ranged. FRPs are fabricated 

by choosing the type and quantity of fiber sand matrix resulting in different characteristics of 

products depending on the manufacturing process and ratio between fiber and matrix. In 

addition, FRP bars can have different surface configuration with varying performances in their 

bond behaviour with concrete, which in turn affect many behavioural aspects such as crack 

width and deflection.
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2.2.3 FRP constituents

FRP products are composite materials consisting of continuous fibres impregnated 

with polymeric resins. As clear, continuous fibres with high strength and high stiffness are 

embedded and boned together by low modulus polymeric matrix. The reinforcing fibres 

represents the backbone of material in which determines strength and stiffness in the 

directions of fibres, thus, the matrix act as physical and environmental protection [ISIS 

Manual No.3, 2007].

Carbon fibres are similar to steel in stiffness, durable and expensive in cost. From field 

application [El-Gamal et al., 2005], the carbon has proven quite resistant to most 

environmental conditions and can with stand high sustained and fatigue loading conditions. In 

contrast, glass fibre has lower strength and significantly lower stiffness. One of recent 

concerns is to check the durability of glass fibres. Unprotected glass fibre degrades against 

most environments, especially hot/wet or highly alkaline environments [Barris et al., 2009], In 

addition, it is subjected to creep rupture phenomenon which results in the eventual failure of 

the materials under sustained loads of fraction from the instantaneous ultimate load. The 

polymeric matrix (i.e. resin) act as coat for fiber to avoid damage and ensure the alignment of 

fibre resulting is distributing the load uniformly among many o f the individual fibres in 

composite.

Two types of resins were used in FRP composites: thermosetting and thermoplastic 

resins. In construction and structural application, the most utilized resins are the thermosetting, 

such as epoxy and vinyl ester. The resins are flowable material with low viscosity that should 

be cured to a final solid form. Most of these resins are sensitive to heat and ultra-violet
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exposure. As mentioned earlier, one of the factors that affect mechanical properties of FRP 

materials is manufacturing processes. Three common processes are available, such as 

Pultrusion, braiding, and filament winding [ISIS Manual No.3, 2007], However, Pultrusion is 

the common technique for manufacturing continuous lengths of FRP bars of constant or nearly 

constant profile. This technique is schematically represented in Figure 2.3 and Figure 2.4 [fib., 

2007]. Continuous fibres of reinforcing material are drawn from curls through a resin tank 

where they are saturated with resin and then through a number of wiper rings into the mouth 

of heated die. Thereafter, the surface of the bars is usually braided or sand-coated.

Figure 2.3 Schematic of a Pultrusion process [fib., 2007]

Surface  
' veil

Series o f  
preform ers

Fiber rov in gs , 
and m ats (sh ow n )  
pulled  from  creels Resin tank

(not sh ow n ) Resin bath
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Figure 2.4 Pultrusion process: fibers/fabrics passing through guidelines and into the resin bath 

(left and middle part); resin tank at the bottom of the resin bath (middle portion); addition of 

surface veils (right part) [fib., 2007].

2.2.4 Mechanical properties of FRP bars

The mechanical properties of the FRP products are specified by fibre quality, 

orientation, shape, and volumetric ratio, adhesion to the matrix and on the manufacturing 

process. For example, to provide functioning reinforcing bars the fibre volume fractions 

should be more than 55%. ACI 440.6M-08 [2008] stated that fibre content should be measured 

according to ASTM Standards [ASTM D7205, 2011] in which represents the procedure of 

measuring fibre content in FRP bars or FRP girds. Both them conquered fibre content should 

at least not be less than 55%. FRP materials, in general, are anisotropic and brittle in nature. 

Therefore, they are characterised by high tensile strength with no yielding and only in one 

direction of reinforcing bars.

FRPs bar have linear stress-strain behaviour under tension up to failure, however, they 

have lower modulus of elasticity and no ductility like the steel bars. 

Figure 2.5 shows stress-strain curves for different types of FRP bars in the lieu of that of steel 

bars. Table 2-1 provides some typical ranges of mechanical properties for each FRP type. This 

anisotropic behaviour of FRP bars affects the shear strength and dowel action as well as their 

bond performance [Nanni, 2003]. The use of FRP bars as reinforcing bars offers several 

advantages in comparison to steel reinforcement.
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Figure 2.5 Stress-Strain curves of FRP and Steel materials [Pilakoutas et al., 2002]

FRP bars are corrosion resistant, electromagnetic permeability, high cuttability and 

lighter in weight.

Table 2-1 Typical tensile properties of FRP and steel reinforcing bars [fib., 2007]

Property
Material

Steel GFRP CFRP AFRP

Longitudinal 

modulus (GPa)
200 35 to 60 100 to 580 40 to 125

Longitudinal

tensile strength 483 to 690 450 to 1600 600 to 3500 1000'to 2500

(MPa)

Ultimate tensile 

strain (%)
6.0 to 12.0 1.2 to 3.7 0.5 to 1.7 1.9 to 4.4

All these advantages have led the FRP to emerge as an alternative substitute of steel 

reinforcing in several projects such as marine reinforced concrete structures, MRI rooms in 

hospitals and mobile telecommunications industry, finally as a temporary diaphragm walls
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which can be partially destroyed by tunnel boring machines. In addition, they facilitate 

transportation and speeds construction [ACI 440.1R-06, 2006; fib., 2007; Pilakoutas et al., 

2007].

The unique mechanical properties of FRP represented in lower elastic modulus have 

significant influence on the structural behaviour of FRP reinforced concrete element. This 

yielded to large strains being mobilized in bars at low load levels which in turns lead to larger 

crack width and deflections. As a result, serviceability requirements often govern the design of 

FRP reinforced concrete members [Mathys and Taerwe 2000; Nanni, 2003]. Finally, the wide 

range of commercially available products can differ substantially in terms of mechanical 

properties and surface characteristics imposes difficulty to develop or implement simple 

design rules that can model adequately the mechanical performance of composite bars in 

concrete. Despite several design guidelines, codes and recommendations have been recently 

been published for FRP reinforced concrete members [ACI 440.1R-06, 2006; ISIS Manual 

No.3, 2007; CAN/CSA-S6.1S 1, 2010; JSCE., 1997; IStructE., 1999], the lack of well 

standards for design and manufacturing is still perceived as a barrier to the extensive use of 

FRPs in construction.

However, many attempts were proposed to classify the FRP bars product into 

categories such as surface textures, so that each category has their own rules and models. 

Recently, the CAN/CSA-S807 [2010] classified the FRP bars by considering their elastic 

modulus. This classification was refereed by Grade I, II, and III. Grade I being the lowest 

value of elastic modulus and Grade III being the highest value of elastic modulus. Table 2-2 

shows the ranges for each grade, in addition, typical ranges of tested samples included in this 

research program. Yet, the table did not specify certain rules and laws for each grade.
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Table 2-2 Grades of FRP bars corresponding to their minimum modulus of elasticity, (GPa)
with typical tested samples

Grade I Grade II Grade III

Property Assigned by 

CSA S807

Typical

tested

samples

Assigned by 

CSA S807

Typical

tested

samples

Assigned by 

CSA S807

Typical

tested

samples

AFRP 50 < E fr; - 70 < E frp * < 90 - 90 < Efrp* -

CFRP 80 < E frp -
1 10 < E f rp* <  

140
- 140 < Efrp* -

GFRP 40 < Efrp*

46.4+1.5 to 

48.7+0.6
50 < Efrp*  < 60

52.5±1.7

to

53.2±2.1

60 < Efrp*

60.3+2.9

to

69.3+3.2

Efrp is the actual elastic modulus o f  FRP bars resulted from testing.

2.3 Maintaining service state

Serviceability limit states (SLS) are limits for reinforced concrete members to ensure 

their structural integrity under service conditions. As mentioned in the previous section, FRP 

reinforced concrete members are governed by service limit state rather than ultimate limit state 

due to their lower elastic modulus and different bond behaviour.

The service limit state is defined generally through many aspects as concurred by 

researchers, codes and guidelines [ACI 440.1R-06, 2006; ISIS Manual No.3, 2007; 

CAN/CSA-S806, 2012; JSCE., 1997; IStructE., 1999; CNR-DT 203., 2006], These aspects are 

limiting the strains in FRP by fraction from their ultimate strains each according to FRP type,
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30 % of ultimate load, deflection and crack width limits. Also, the situation can be extended to 

other materials such as concrete.

Stresses in concrete usually limited the developed compressive stress to prevent the 

longitudinal cracks and micro-cracks from occurrence. No codes or guidelines, prescribed 

explicitly a specific limits on concrete compression stresses, however, from the design of 

flexural capacity. It can be understood that the linear range in which equal to a value o f 0 .45/’, 

is the appropriate limit for concrete stresses under service condition. On other hand, stresses in 

FRP reinforcing bars are limited explicitly in two terms reduction for environmental 

deterioration and limits under sustained loads.

Table 2-3 shows the limits assigned by different existing codes and guidelines.it is clear 

that both factors, environmental conditions and sustained loads, leads to serve reductions from 

the ultimate strength of bar which means slight portion of the FRP strength were used (values 

are between 0.2 to 0.55 times the ultimate strength).

Other limits were specified such as 30 % of the ultimate load. This limit was deduced from 

that of steel. The steel reinforced concrete members are governed by strength or ultimate limit 

state. Thus, giving Ma = <p/(aioad) Mn = 0.67M„ when the strength reduction factor tp = 0.9 and 

the load factor [a/„a</ = 1.33 fo r  dead-to-live load ratio o f  2:1] which correspond to roughly 

30% of nominal moment capacity Mn for FRP reinforced concrete sections to ensure that 

serviceability requirements (crack width and deflection) are satisfied.
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Table 2-3 Reduction factor used in the existing guidelines

Factor
FRP

Type

ACI

440.1R-06

CE

CAN/CSA

S806-12

(pFRP

JSCE

1997

l/yfm

IStructE

i/ym

CNR-DT-

203

4a

Reduction for GFRP 0.70-0.80 0.50 0.77 0.70-0.80
“material

environmental AFRP 0.80-0.90 0.60 0.87 0.80-0.90
factor”

deterioration CFRP 0.90-1.0 0.75 0.87 0.90-1.0

0.8 x Stress m

GFRP 0.20 0.25 “creep limits not 0.30

Stress limit for AFRP 0.30 0.35 failure specified 0.50

sustained load strength”
CFRP 0.55 0.65 0.90

< 0.7

However, [Bischoff 2005] suggested to lower service load levels to about 0.30Mn or less to 

ensure strains in FRP reinforcement are within the acceptable limit especially where service 

load related to strength requirement (Ma = 0.49Mn when tp = 0.65 fo r  p > 1.4pb). Other limits 

such as crack width and deflection limits were used to control serviceability of FRP reinforced 

member. These limits were discussed in the following sections.

Control o f  cracking:

In general, cracking usually controlled to prevent leakage of fluid in structures that support 

water or any other liquids and to prevent corrosion of reinforcement which in turn weakened 

the durability of structure. In steel reinforced concrete members, the primary reason for crack
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width limitations is the corrosion of reinforcement. As FRP reinforcing bars are corrosion 

resistant, thus, the crack width limit was relaxed by all codes and guidelines. For the steel 

reinforced concrete member, most codes and guidelines limited the maximum crack width to 

about 0.3 mm, however, others relaxed the limit to 0.4 mm in case of no aggressive exposure 

by means no risk of corrosion or attack. In the ACI 318 [2008], the crack width limit was 

replaced by bar spacing closet to tension force of the beam. CAN/CSA-A23.3 [2004] 

distinguishes between exterior and interior exposures, by values of 0.3 and 0.4 mm as limit for 

maximum crack width, respectively.

The limitation for FRP reinforced member was relaxed to 0.5 mm for exterior exposure 

and 0.7 mm for interior exposure [ACI 440.1R-06, 2006; ISIS Manual No.3, 2007]. Other 

codes and guidelines used the limit of 0.5 mm only in both cases [JSCE, 1997]. Furthermore, 

ISIS Manual No.3 [2007] suggested controlling the crack width by limiting the maximum 

strain in FRP to 2000 microstrains. This was obtained through comparing with steel crack 

width limit. In steel reinforced concrete member, the stress limit in steel reinforcement at 

service is at 60% of f y. When f y = 400 MPa, the allowable strain in steel bars in service es is 

equal to 1200 microstrains. At the same time, the crack width was limited by 0.4 and 0.3 mm 

for interior and exterior exposure in comparison to 0.7 and 0.5 mm for FRP reinforced 

elements.

Thus, the allowed crack width in FRP reinforced members is about 1.5 to 1.7 times that of 

steel reinforced. For that reason, it was assumed the strain limit should be around 2000 

microstrains for FRP reinforced concrete member which represents 5/3 ratio from 1200 

microstrains for steel reinforced concrete member. This ratio was deduced from crack width
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limit difference. Likewise, CAN/CSA-S806 [2012] defines the quantity z not to exceed 45 

kN/mm for interior exposure and 38 kN/m for exterior exposure.

Control o f  deflection:

Codes and guidelines proposed different deflection limitations for relative parts of 

elements to the supports. All limitations were provided so that the deformation of a member or 

structure shall not affects its proper functioning or appearance. Thus to control deflection the 

codes and guidelines suggested minimum thickness calculated empirically (Table 2-4).

Some of these codes and guidelines set an equation to calculate the thickness required 

[ACI 440.1R-06, 2006; CEB-FIP., 1990],

Table 2-4 shows the minimum thickness required through typical codes and guidelines to
control the deflection

Structural system

Eurocode 2 [CEN. 2004] 

p = 0.5% p = 1.5%

ACI 318-08, 

CAN/CSA 

A23.3 94

ACI 440.1R-06

Simply Beam U h = 16 U h = 10
L/d = 20 L/d = 14

supported One-way slab L/h = 20 U h = 13

One end Beam IJh = 18.5 U h = 12
U d  = 26 L/d = 18

continuous One-way slab U h = 24 L/h = 17

Both ends Beam Uh = 21 U h = 16
U d  = 30 L/d = 20

continuous One-way slab U h = 28 L/h = 22

Beam U h = 8 L/h = 4
Cantilever L/d = 8 L/d = 6

One-way slab L/h = 10 U h = 5.5
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Table 2-5 shows the deflection limits adopted from steel reinforced members codes and

guidelines [ACI 318, 2008]

Type of member Deflection to be considered
Deflection

limitation

Flat roofs not supporting or attached to non- 

structural elements likely to be damaged by Immediate deflection due to live load L 1/180'‘

large deflections.

Floors not supporting or attached to non- 

structural elements likely to be damaged by Immediate deflection due to live load L 1/360*

large deflections.

Roof or floor construction supporting or 

attached to non-structural elements likely to

That part of the total deflection occurring 

after attachment of non-structural elements 1/480*

be damaged by large deflections.

Roof or floor construction supporting or 

attached to non-structural elements not

(sum of long-term deflection due to all 

sustained loads and the immediate 

deflection due to any additional live load)+ 1/240*

likely to be damaged by large deflections.

Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations o f  deflection, 

including added deflections due to ponded water, and considering long-term effects o f all sustained loads, camber, 

construction tolerances, and reliability o f  provisions for drainage.

f Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount o f  

deflection calculated to occur before attachment o f  non-structural elements. This amount shall be determined on basis o f  

accepted engineering data relating to time-deflection characteristics o f members similar to those being considered.

* Limit may be exceeded if  adequate measures are taken to prevent damage to supported or attached elements.

8 Limit shall not be greater than tolerance provided for non-structural elem ents. Limit may be exceeded i f  camber is 

provided so that total deflection minus camber does not exceed limit
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These values used to design the thickness of the members whether it is a beam or one way 

slab to control the deflection from exceeding the limits assigned by codes and guidelines used 

of steel reinforced concrete members. In most codes and guidelines, the deflection was limited 

according the type of structure attached to the member in question.

In fib. [2007], the deflections were calculated to limit the mid-span total deflection to 

L/250. However, ACI 440.1R-06 [2006] adopted the limits developed in ACI 318 [2008] for 

steel reinforced as well as the CAN/CSA-S806 [2012] counterparts the one used in 

CAN/CSA-A23.3 [2004] which are seen in the following Table 2-5

2.4 Serviceability performance of FRP Reinforced concrete beam

The deflection and cracking of FRP-reinforced concrete members have been 

extensively investigated and incorporated in many design codes and guidelines. However, due 

to the variety of the FRP products which are characterized by different mechanical properties 

and surface configuration there is no reliable model to predict the serviceability o f the FRP- 

reinforced concrete member considering all the affecting parameters. Furthermore, the 

validation of these models was not enough to yield a rational model due to the lack of well- 

established standards, a wide variety of FRP bars are currently marketed, ranging from the 

simple smooth and helically-deformed bars to bars treated with external features such as sand- 

coating. These FRP products have a wide range of mechanical properties as well as different 

surface configurations. Besides, most of the design codes and guidelines use equations for the 

steel-reinforced members with some modifications to account for the differences in the 

mechanical properties between FRP and steel bars.
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Extensive research has been conducted on the serviceability of FRP-reinforced 

concrete members especially the simply supported beams under one or two point loading 

conditions. The detailed literature review on this issue can be found in the ACI state-of-the-art 

[ACI 440.R-07, 2007]. This extensive research work lead to developing some models and 

equations to predict the deflection and the crack width in FRP- reinforced concrete members. 

However, as mentioned earlier, due to the lack of experimental work concerning the rapid 

development of FRP products there is an urgent need for refined/new models. In this chapter, 

the overall behaviour of FRP- reinforced concrete members concerning the deflection and 

cracking and the main parameters affecting them will be summarized. Besides, the design 

code provisions for the deflection and cracking will be listed and the relevant evaluation, 

based on the previous research work from the literature, of these provisions will be presented.

2.5 Cracking and the Affecting Parameters

The mechanism of the progressive cracking starts with the formation of primary cracks 

when the strain in the tension zone of the concrete section is equal to the ultimate concrete 

tensile strain, the first crack appears. At this point, the concrete is subjected to excessive 

lengthening of the reinforcement and the bond between the reinforcement and concrete 

transfers the tensile force from the reinforcement bar to the surrounding concrete in between 

the primary cracks [Goto, 1971]. Therefore, more cracks would appear (i.e. secondary cracks) 

as shown in Figure 2.6.
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Figure 2.6: Primary and secondary cracking in concrete: (a) section of highest concrete 

tension; (b) next section of highest concrete tension

At a certain distance between the crack (i.e. S), deformation compatibility between the 

reinforcement and concrete is restored. Theoretically, it is through this distance where the 

ultimate concrete tensile strength again reached, thus, a new crack formed. A third crack 

between the first two cracks can occur only if the bond between the reinforcement and 

concrete transmit enough tensile stresses (i.e. reaching the ultimate concrete tensile strength) 

until the tensile resistance between two cracks achieved. At this stage, the number of cracks 

and the distance in between does not change. This stage called stabilized cracking.

Masmoudi et al. [1996] showed that the effect of the reinforcement ratio on crack 

spacing was negligible, but depended on the type of reinforcement used. Greater bond quality 

leads inevitably to smaller crack spacing and thus smaller crack width. In fact, they stated that 

the obtained results demonstrate a good bond performance of FRP reinforcing bars relative to 

the steel rods used in the same environment. However, they found that the residual crack 

width decreases as the reinforcement ratio increases and the residual crack width is not 

influenced much by the concrete strength.
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Theriault et Benmokrane [1998] deduced that the effect of the concrete strength and 

the reinforcement ratio on the crack spacing is negligible, and the crack spacing slightly 

decreases as the load increases. The higher the concrete strength, the wider is the crack for the 

same applied moment. However, opposite observations were made by GangaRao et Faza 

[1991], suggesting that the beam’s geometry also plays a significant role in the crack 

formation. Moreover, Theriault et Benmokrane [1998] explained that those wider cracks are 

due to the release of greater stress at crack initiation, followed by a sudden crack formation. 

However, a greater reinforcement ratio decreases this effect. Thus, the higher the 

reinforcement ratio, the bigger the stress at cracking that will be transferred which in tums 

decreases the crack initiation.

El-Salakawy et al. [2002] through their experimental investigation found that, at 

service load levels, increasing the CFRP reinforcement ratio by 50% and 100% decreased the 

maximum crack width by approximately 37% and 55%, respectively. They concluded that for 

beams reinforced with approximately the same reinforcement ratio of CFRP bars and that of 

steel, the crack width at service load level of beam increased by 44% compared to the control.

Ospina et Bakis [2007] developed a procedure to control flexural cracks in structural 

concrete beams. They have stated that the flexural cracks are dependent on the value of bond 

quality between FRP bars and concrete. Wider cracks could be explained by the release of a 

greater stress at crack initiation, which leads to a sudden high crack formation. However, a 

greater reinforcement ratio tempers that effect [GangaRao et Faza, 1991]. The reinforcement 

ratio shows a strong influence on the crack width: A smaller crack width is obtained by means 

of a higher reinforcement ratio. In fact, a higher reinforcement ratio can resist a bigger stress at 

cracking tempering the crack initiation.
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In conclusion, the crack widths along with crack spacing were influenced by many 

factors. Bond quality, reinforcement type and ratio, and concrete strength are the most 

considered parameters in investigating the crack widths of the FRP- reinforced concrete 

elements.

2.6 Deflection and the Affecting Parameters

Concrete beams reinforced with FRP exhibit larger deflection than that reinforced with 

the same amount of steel due to its low modulus of elasticity. The serviceability of FRP 

reinforced concrete structures has been investigated both theoretically and experimentally 

through many studies [Theriault et Benmokrane, 1998; GangaRao et Faza, 1992]. Moreover, 

most of the studies have investigated the behaviour of simply supported concrete beams 

reinforced with different types of FRP reinforcing bars [Theriault et Benmokrane, 1998; Grace 

et al., 1998; Alsayed, 1998; Pecce et a l, 2000; Toutanji et Saafï, 2000; Yost et Gross, 2002; 

Rasheed et al., 2004].

Few studies attempted to provide design equations for predicting the deflection of FRP 

reinforced concrete beams [Yost et Gross, 2002; Aiello et Ombres, 2000; Abdalla, 2002], In 

such studies, the deformability of the whole element defined by the relations arises from a 

linear analysis, where a concept of the transformed cross-section moment of inertia was 

introduced as in Figure 2.7. This concept was stated by the moment-curvature diagram. The 

moment-curvature diagram can be approximated by two linear regions: one before the 

concrete cracks, and the second one after the concrete cracks [Razaqpur et al., 2000]. 

Therefore, there is no need for calculating curvature at different sections along the length of 

the beam as for steel reinforced concrete. There are only three pairs of moments with
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corresponding curvature that define the entire moment-curvature diagram: at cracking, 

immediately after cracking, and at ultimate.

M

K

Figure 2.7 Moment-curvature relation of FRP- reinforced concrete [CAN/CSA-S806, 2012]

Accordingly, the influence of service load level on member deflection requires more 

evaluation [Bischoff, 2005], Moreover, the suitability of using an averaged effective moment 

of inertia that is constant along the length of beam compared with integration of curvature 

along the beam span to compute deflection still needs to be resolved.

The following section summarizes the main factors affecting the deflection of FRP- 

reinforced concrete members.

2.6.1 Tension stiffening

In practical design, the contribution of concrete in the tensile zone is neglected as the 

concrete cannot resist tensile stresses. With more investigations, researchers have deduced the 

term “tension stiffening”. Tension stiffening can be defined as the ability of concrete to carry
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tension between cracks. At a crack, all the tensile force is transferred from the reinforcement 

through bond to the surrounding concrete. Hence, between cracks, the concrete stiffens the 

reinforcement causing reduction in reinforcement strain that is less than strain at cracks or of 

the bars. Therefore, the reinforcement appears to have a higher effective stiffness [Bischoff et 

Paixao 2004],

The proper evaluation of tension stiffening will lead to accurate predictions of 

deflection and crack width for concrete element reinforced with FRP bars. Accordingly, 

researchers investigated the tension stiffening term taking into account the flexural element 

properties, concrete strength and reinforcement ratio. Hence, several investigators realized the 

importance of tension stiffening effects on concrete member.

Bischoff et Paixao [2004] conducted experimental tests using concrete prism to study 

tension stiffening and cracking. They concluded that concrete prisms reinforced with GFRP 

exhibit greater tension stiffening than those reinforced with steel at any level of axial strain. 

On the other hand, Al-Sunna [2006] has investigated the influence of the reinforcement ratio 

on tension stiffening by testing FRP reinforced concrete beams. These beams were under­

reinforced close to balance and over-reinforced with crack inducer to ensure initiation of 

cracks at mid-span. They concluded that the concrete reinforced with GFRP provide much 

lower tension stiffening than that provided by steel, which gradually reduces with the increase 

of stresses in the GFRP bar. This is due to the high strain level developed in the GFRP bar.

Bischoff [2007] stated that the tension stiffening increases for a higher cracking 

moment and lower value of the cracked moment of inertia (this occurs with low reinforcement 

ratios). FRP reinforced concrete beams should, in general, exhibit a greater amount of tension 

stiffening than conventional steel reinforced concrete beams yet still have lower member 

stiffness and exhibit greater deflection because of the lower value o f moment of inertia.
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Thus, using the same equation of the steel reinforced concrete elements for predicting 

the deflection of the FRP reinforced concrete element is underestimated as the tension 

stiffening is not accurately predicted (i.e. overestimated). Hence, a reduction factor was 

proposed to reduce the tension stiffening for FRP reinforced concrete element to a more 

reasonable level. Consequently, the tension stiffening parameter has a great impact on 

determining the effective moment of inertia. Without considering the tension stiffening in the 

concrete, member reinforced with FRP bars, the deflection and crack width will be 

underestimated.

2.6.2 Bond action

Bentz [2005] noted that the evaluation of tension stiffening requires a certain 

parameter which is a function of the bond between the reinforcement and concrete. In general, 

the maximum bond strength of the FRP bar is lower than the bond strength values compared to 

steel bars.

For steel bars, the bearing component is the main source of the bond while the FRP 

bar’s surface does not offer the steel bar’s characteristics (i.e. high shear strength, high 

rigidity, and geometry deformation) that provide enough interlocking through the rib. 

However, for FRP bars, it is the adhesion, mechanical bearing and the friction that control the 

bond strength [Tighiouart et al., 1998].

Tepfers et al. [1998] through an experimental investigation on pullout specimens 

concluded that smaller bar diameters developed higher bond strength than larger bar 

diameters. However, the larger the diameter of the bar, the higher the quantity of bleeding 

water trapped beneath the bar, creating a greater void that reduces the contact surface between 

the bar and the concrete and hence the bond.
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On the other hand, Rafi et al. [2007] stated, based on beam testing, that CFRP bars 

showed a good bond with the concrete. Also, they did not find any signs of premature bond 

failure. They recorded that the maximum tensile stresses on the CFRP bars have reached 80 to 

90% of their ultimate strength. They indicated that the CFRP bars developed bond strengths 

more than 85% of that of the steel bars.

2.6.3 Concrete strength

It is well known that concrete is a brittle material and raising its strength makes 

concrete even more brittle [fib., 2007], In fact, the brittleness of concrete is considered one of 

the main concerns when high strength concrete (HSC) is used in conventional steel reinforced 

concrete structures.

Theriault et Benmokrane [1998] tested 12 concrete beams reinforced with FRP bars. 

The main parameters investigated in this study were the reinforcement ratio and the concrete 

strength. Through this investigation they concluded that the stiffness of the beam did not 

change much (> 10%) with the concrete strength, which means a slight reduction in deflection 

will occur. In addition, they found that as the concrete strength and the reinforcement ratio 

increase, the ultimate moment resistance increases, but this increase is limited by the concrete 

compressive failure strain.

Rashid et al. [2005] have investigated the deflection and crack width behaviour of 

AFRP (aramid FRP) reinforced high strength concrete beams. They concluded that the load- 

deflection response of these beams significantly differs from that of steel-reinforced beams in 

terms of cracking behaviour, post-cracking stiffness, magnitudes of deflections and crack 

widths, and mode of failure. They deduced that at any particular load level, the maximum 

surface crack width and maximum deflections are several times larger than those of steel
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reinforced beams. Moreover, the ductility of the over-reinforced AFRP beams made with HSC 

increases as the reinforcement ratio increases. Furthermore, according to cracking moment 

equations, they noticed that the higher concrete strength leads to a higher cracking moment 

which probably influences the deflection equation.

2.6.4 Reinforcement ratio

The reinforcement amount controls the bar spacing and the number of layers of 

reinforcing bars. Theriault et Benmokrane, [1998] conducted an experimental study to 

investigate the deflection of FRP- reinforced concrete beams. The concrete strength and the 

reinforcement ratio parameters were considered. Through this investigation, it was concluded 

that higher reinforced concrete beams showed greater stiffness than less reinforced beams. 

Moreover, the stiffness of the beam is inversely proportional to the deflection behaviour of the 

FRP reinforced concrete beam, the reduction in deflection will occur when the reinforcement 

ratio increases.

El-Salakawy et al. [2002] investigated the deflection o f FRP- reinforced concrete 

beams reinforced with different types and ratios of CFRP bars. They observed that increasing 

the reinforcement ratio decreases the deflection at service load due to higher stiffness and 

lower FRP bar stresses. Moreover, at the service load level, the measured deflection reduced 

by approximately 31% and 43% due to the increase of reinforcement ratio by 50% and 100%, 

respectively. In addition, very similar behaviour of beams reinforced with both sand-coated 

and ribbed deformed carbon FRP bars was obtained.

Ashour et Family [2006] carried out tests on rectangular and T-beams reinforced with 

CFRP bars, and concluded that the type and amount of the reinforcement had a considerable
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effect on the beam stiffness and the deflection after the first crack initiation. This was later 

confirmed by Barris et al. [2009] through his study on GFRP- reinforced concrete beams.

2.7 Design and codes provision for flexural and serviceability of 

FRP- reinforced concrete

The flexural capacity can be calculated through well-known methods: strain 

compatibility or strength state method. The design philosophy is based on the reinforcement 

type in which the member was reinforced with. FRP- reinforced concrete members, the strain 

compatibility method should be adopted for design. The design philosophy of such a method 

relies on the following assumptions:-

Plane section remain plain under bending forces 

Reinforcement stress-strain relationship is known 

Tensile concrete strength is negligible

Ultimate concrete stain is well known according to each code and guidelines assignment; 

for ACI 440.1R-06 [2006], the ultimate concrete strain is 3000 microstrains; while, for 

CAN/CSA-S806 [2012], the ultimate strain is 3500 microstrains.

By this hypothesis, it is possible to evaluate the flexural capacity of beam. Different 

modes of failure are available for concrete section reinforced with FRP bars:-

Balanced failure: simultaneous rupture of FRP and crushing o f concrete 

- Compression failure: concrete crushing while FRP remains in the elastic range with a 

strain level smaller than the ultimate strain. On the other hand, concrete reaches its
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ultimate strain level which assumed to be equal 3000 or 3500 microstrains according to 

ACI 440.1R-06 [2006] and CAN/CSA-S806 [2012], respectively.

- Tension failure: rupture o f FRP in which FRP reaches its ultimate strain level before 

concrete crushing.

The behaviour simply can be described by defining the mode of failure. The mode of 

failure as mentioned earlier can be defined by two main factors flexural stresses and reinforced 

with only tensile reinforcement depending on which material achieves its ultimate capacity 

first. When the concrete strain reaches its ultimate strain (3000 or 3500 microstrains), the 

section fails in a quasi-brittle manner by compression of the concrete block which known as 

concrete crushing failure. On the contrary, when the reinforcement reaches its ultimate 

strength before concrete strain achieves its ultimate, the section fails by the rupture of 

reinforcement. This failure differs in behaviour between steel and FRP reinforced concrete 

members.

As the steel reinforcement reaches yielding strength, the member is considered to fail by 

yielding of steel. Thus, the steel propagate its ductile behaviour which relies on their bi-linear 

stress-strain relationship in approximately (Figure 2.8). However, as the FRP is brittle in 

nature and the stress-strain relationship is linear. Then, the member fail in ductile manner for 

steel reinforced member as the steel yields and in brittle manner for FRP reinforced concrete 

member as the FRP bar reaches its ultimate strain which means rupture of FRP bars.
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Figure 2.8 Stress-Strain curves for reinforcement [MacGregor 1997]

Such a failure considered being catastrophic and unfavorable when using FRP bars as 

reinforcement in reinforced concrete member. Thus, it is desirable for elements reinforced 

with steel reinforcement to fail in tension-controlled failure in which ductility behaviour 

would be captured. While for elements reinforced with FRP bars should fail in concrete 

crushing were the brittle catastrophic failures of the FRP reinforced concrete elements would 

be avoided. It should be noticed that philosophy of failure is based on safety margins and 

warning time that can be provided by reinforced concrete members before its complete 

deterioration or destruction. Many approaches are available to calculate the failure mode and 

the ultimate capacity of FRP reinforced concrete elements.

Here in, the literature presents two unique approaches in which they were adopted later 

in the analysis. These approaches ACI 440.1R-06 [2006] and CAN/CSA-S806 [2012] are 

similar in procedure but differ in their stress block factor evaluation. In general some design 

codes, ACI 440.1R-06 [2006] and JSCE [1997] provides higher safety margins than steel 

reinforced concrete design to compensate the lack of ductility. Thus, many details with safety
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consideration and modified ductility concept that reflect FRP reinforced concrete 

deformability were developed [ Pilakoutas et al., 2002; Newhook et al., 2002].

A
bd  2-1

A reinforcement ratio defined in Eq. [2.1] shall be compared to the balanced 

reinforcement ratio to control the failure mode. If the reinforcement ratio exceeds the balanced 

reinforcement then the member shall fail in concrete crushing. While if the reinforcement ratio 

was lower than the balanced reinforcement then the member shall fail in steel yielding in case 

of steel reinforced concrete member or rupture of FRP in case of FRP reinforced concrete 

member. The balanced reinforcement ratio relies its deflection on the mechanical properties of 

FRP and concrete and its equation is derived by considering internal forces equilibrium. ACI 

440.1R-06 [2006] proposes to calculate as follows Eq. [2.2]:

P/b= a l fii ^ - ~ 2.2
J  f u  f £ cu J  f u

2.7.1 Moment resistance of FRP Reinforced concrete elements:

The flexural capacities of a cross section is determined by assuming the constitutive 

relationship of concrete in compression is known, the stress-strain curve of the FRP is linear 

up to failure and the is perfect bond between concrete and the FRP reinforcement. The 

ultimate moment resistance of an FRP reinforced concrete section that fails by concrete 

crushing can be calculated assuming different equivalent stress-strain distributions of concrete 

under compression until failure. The equivalent rectangular stress block is defined by ACI 

440.1R-06 [2006] as shown in the illustration diagram (Figure 2.9).
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Figure 2.9 Stress-Strain curves for reinforcement

Thus, the ACI 440.1R-06 [2006] proposes the moment of resistance to be calculated on 

the basis of the equivalent stress block of concrete in compression and based on the 

equilibrium of forces and strain compatibility, the following (Eq. [2.5]) formulation is 

obtained:

Mn= p f f f P t f t  1-0.59-
fc

bd2 2.3

The stress block defined as mentioned earlier differently in CAN/CSA-S806 [2012], 

while ACI 440.1R-06 [2006] as a, fi as seen in Eq. [2.4]. The CAN/CSA-S806 [2012] defines 

a, P  as following (Eq. [2.5]):-

a x = 0.85 ; $  = 0.85 -  0 .0 5 (/c -2 7 .6 ) /6 .9 2.4

or, = 0 .8 5 -0 .0 0 1 5 ( /f )>  0.67 ; $  = 0 .9 7 - 0.0025(/c ) > 0.67 2.5
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With regards to the avaiable experimental results on FRP reinforced concrete elements, 

[Theriault et Benmokrane,. 1998; Benmokrane, Chaallal et Masmoudi, 1996a; Masmoudi et 

al., 1998] reporeted that the ultimate moemnt was 15% underestimated by ACI formula when 

the section failed by concrete compression, but it was 5% overestimated in the case that the 

section failed by FRP tension. This difference was attributed to the variability of the 

compressive strength of concrete and tensile strength of the FRP reinforcing bars. Rafi et al. 

[2008] found out that ACI formualtions underestimated the moemnt capacity of their four 

tested FRP beams to about 33%, probably because the actual srain in concrete exceeded the 

maximum concrete strain of 0.3% as result of the confiment provided especially by the 

stirrups.

2.7.2 Shear capacity of FRP reinforced concrete beams:

The shear resistance of reinforced concrete elements is generally determined by the 

contribution of the un-cracked compression zone, aggregate interlock, dowel action and when 

provided, shear reinforcement. Due to the lower modulus of elasticity of the FRPs, wider 

cracks and higher deflections occurs leading to less contribution of the un-cracked 

compression zone in shear and less shear-load carrying by aggregate interlock and dowel 

action [Pilakoutas etal., 2002].

Shear failure of the reinforced concrete element is usually proceeded by the formation of 

cracks inclined to the main axis of the element. Similar to the steel reinforced concrete 

elements, shear failure can occur in two ways: most commonly diagonal tension failure and 

shear-compression failure. As the shear is not the thesis concern, the reinforced concrete 

elements discussed here in; are reinforced with steel stirrups just to avoid shear failure before
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the flexural. However, these stirrups will not prevent the shear deformation which may 

slightly affect the deflection of the beam member. In addition, the thesis concern is about 

serviceability state of the FRP reinforced concrete member. Thus, the shear deformation will 

not influence the serviceability state. Furthermore, the mid-span of the member was reinforced 

with 3 stirrups at 300 mm distance ensuring lower confinement possible that could 

encountered by stirrups.

2.8 Deflection and Cracking Provisions

2.8.1 The Canadian Building Code (CSA/CAN S806)

CAN/CSA-S806 [2012] has recommended the integration of curvature along the span 

to determine deflections. The virtual work method was used to calculate deflection of concrete 

members under any load level with the integral being for all members of the structure. See Eq. 

[2.6],

< 5 = |  my/dx 2.6

Accordingly, the CAN/CSA-S806 [2012] provided a deflection equation derived by 

assuming that the moment of inertia between the load points was the cracked moment of 

inertia, and the moment of inertia elsewhere was the effective moment of inertia as seen in Eq. 

[2.7]. Figure 2.10 represents four-bending diagram according to the suggested deflection 

equation.
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Figure 2.10 The four-point bending loading diagram

According to the CAN/CSA-S806 [2012], a tri-linear moment-curvature relation, as 

shown in Figure 2.7, is assumed with the flexural stiffness being E cIg for the first segment, 

zero for the second, and E crICr for the third. Alternatively, simple deflection equations, clearly 

derived from the assumed moment-curvature relation, are provided.

For cracking, the CAN/CSA-S806 [2012] adopted the z-equation for the FRP bars introducing 

the bond property of the FRP bars as a modification:

The CAN/CSA-S806 [2012] noted that if the maximum strain of FRP bars in the 

tension zone under full service loads exceeds 0.0015, cross-sections of maximum positive and 

negative moment shall directly proportional with the quantity, z, that must not exceed 45,000 

N/mm for interior exposure and 38,000 N/mm for exterior exposure. In fact, the stresses in the 

reinforcement at the specified load, ff, is calculated as the internal moment divided by the

2.8
7
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product of the reinforcement area and the internal moment arm. For practicality, f j  could be 

60% of the design ultimate reinforcement stress in the closest layer to the extreme tension 

fiber. The value of kb shall be determined experimentally, but in the absence of data, kb will be 

equal to 1.2 for deformed rods. Finally, the CAN/CSA-S806 [2012] recommended that the 

effective clear cover, dc, should not be greater than 50 mm.

2.8.2 The Canadian Highway Bridge Design Code (CSA/CAN S6S1-10)

The Canadian Highway Bridge Design Code [CAN/CSA-S6.1S1, 2010] introduces a 

simplified method to calculate the deflections and rotations using the effective moment of 

inertia, Ie, as follows:

While in cracking, CHBDC 2006 [CAN/CSA-S6.1S1, 2010] recommended the 

modifications proposed by Frosch, [1999] as follows:

The value of kb shall be determined experimentally, but in the absence of data, values

In North American codes, deflection calculations of flexural members are mainly 

based on equations derived from linear elastic analysis, using the effective moment of inertia,

2.9

2.10

of 0.8 for sand-coated and 1.0 for deformed FRP bars is used. In addition, the calculation of

clear cover, dc, shall not be greater than 50 mm.

2.8.3 ACI Guidelines (ACI 440.1R-06)
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Ie. The ACI 440.1R-04 [2004] has also proposed revisions to the design equation in ACI 

440.1R-03 [2003]. Consequently, the moment of inertia equation retained the same form of 

ACI 440.1R-03 [2003]. However, the form of the reduction factor fi has changed the variable 

key in the equation from the modulus of elasticity to the relative reinforcement ratio as shown 

in Eq. [2.11].

Finally, the ACI 440.1R-06, [2006] provided the following equation for the crack width

In the ACI 440-H [2010] , Bischoff [2005] and Bischoff et Scanlon [2007a] proposed 

an alternative expression for the effective moment of inertia Ie that works equally well for both 

steel and FRP-reinforced concrete members without the need for empirical correction factors. 

They concluded that this approach provides reasonable estimates of deflection for GFRP, 

CFRP, AFRP and steel reinforced concrete beams and one-way slabs. The expression is 

presented by Eq. [2.10],

a a

w here,p  = —( ------) <1.0
2.11

5  Pbat

estimation:

2.12

1 < /

2.13

where,rj =  [1 - ( ^ - ) ]
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2.8.4 ISIS Manual No.3 (ISIS M03 2007)

When the service load level is less than the cracking moment, Mcr, the immediate 

deflection can be accurately evaluated using the transformed moment of inertia, /, which 

known as gross moment of inertia, Ig If the service moment exceeds the cracking moment, 

CAN/CSA-A23.3 [2004] recommends the use of the effective moment of inertia, Ie, to 

calculate the deflection of cracked steel reinforced concrete members. The procedure entails 

the calculation of a moment of inertia, which is assumed uniform throughout the beam. This 

value is used in deflection equations based on linear elastic analysis.

The effective moment of inertia Ie, is based on empirical considerations [ISIS Manual 

No.3, 2007], It has yielded satisfactory results in applications when the maximum bending 

moment at service is greater than 2Mcr, where Mcr is the value of the moment just sufficient to 

cause flexural cracking [Ghali et Azamejad, 1999].

As all codes and guidelines, investigators initially applied the code-based effective 

moment of inertia concept, Branson’s equation developed for steel, to FRP-reinforced 

concrete members. The deflection predictions based on this concept were not in good 

agreement with experimental data.

Consequently, attempts were made to modify the Ie expression in order to make it 

applicable to FRP-reinforced concrete members. The modified expressions were again based 

on the assumption that a uniform moment of inertia can be substituted for the actual variable 

moment of inertia of the beam along its length. Mota et al. [2006] examined a number of the 

suggested formulations for Ie and found that Eq. [2.14] provided the most consistently 

conservative results over the entire range of test specimens. In lieu of experimental results or
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specific expertise of the designer in this field, it is recommended that this equation be used in 

design.

,  ___________ U L l.
1- /  . x z

2.14
f

fM  }
2 ̂

1 -0 .5 * * cr
M\ a J )

To calculate the crack width, Gergely-Lutz equation [Gergely et Lutz, 1968], widely 

used for steel reinforced concrete member, was modified to predict the crack width for FRP 

reinforced concrete member. These modifications have been developed for a certain type of 

FRP reinforcement and therefore, their use is limited. Even though, the code based equation, 

originally developed by [Gergely et Lutz, 1968], reported un-conservative results in the lieu of 

all available experimental data for steel-reinforced concrete members.

Nevertheless, the Gergely-Lutz equation includes the most important parameters: the 

effective area of concrete in tension, the number of bars, the reinforcement cover, the strain 

gradient from the level of the reinforcement to the tensile face, and the stress in the flexural 

reinforcement [ISIS Manual No.3, 2007], For FRP-reinforced members, it is necessary to 

consider the bond properties of the bar when calculating crack width. The following equation 

can be used when the bond properties of the bar are known:

* = 2 . 2 l  2.15
E fr r

The ISIS Manual No.3, [2007] recommended kb bond dependent coefficient to account 

for the bond properties of the FRP bar as its surface textures varied along the available 

commercial products. Accordingly, the kb bond dependent coefficient is equal to unity, in case 

of similar bond behaviour to steel bar. On the other hand, for FRP bars with higher bond
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behaviour than steel, the kb value is greater than 1.0, however, for lower bond behaviour, the kb 

value will be smaller than 1.0. ISIS Manual No.3 [2007] recommended a kb value of 1.2 in the 

absence of significant test data.
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French T itre: Comportement en flexion et capacité en service de poutres en béton 

normal ou à haute performance arm ées de barres de PRFV

C ontribution in thesis: This paper contributes to the state-of-the-art on the flexural behaviour 

and serviceability performance of GFRP-reinforced concrete (GFRP- reinforced concrete) 

beams. In this paper the applicability of the current cracking moment equations were verified 

on the normal- and high-strength concretes. The paper also introduced a comparative study 

between the normal- and high-strength GFRP- reinforced concrete beams considering flexural 

strength, mode of failure, concrete and reinforcement strains, deflection, and crack patterns 

and widths. The accuracy of the crack-width and deflection provisions were assessed through 

the comparison with the experimental results and design recommendations were introduced.

French A bstract:

Cet article porte sur l’étude du comportement en flexion et de la capacité en service de 

poutres en béton armé de barres de polymères renforcés de fibres de verre (PRFV) fabriquées 

avec du béton normal ou du béton à haute performance (BHP). Les poutres testées ont 4250 

mm de longueur, 200 mm de largeur et 400 mm de profondeur (167,0x7,9x15,6 po). Trois 

différents types de renforts en PRFV, caractérisés par des modules d’Young allant de 48,7 à 

69,0 GPa (7063 à 10 008 ksi), ont été utilisés. Ces produits sont caractérisés par des finis de 

surface sablée ou à enroulement hélicoïdal. Un total de 12 poutres pleine grandeur en béton 

armé de barres en PRFV ont été testées jusqu’à leur rupture sous chargement en flexion 4 

points avec une distance entre appuis de chargement de 3750 mm (147.6 po). Les résultats 

obtenus ont été comparés à ceux obtenus sur 2 poutres de référence armées de barres d’acier. 

Les paramètres d ’essais utilisés dans le cadre de cette étude sont:l) le type et le ratio de renfort 

en PRFV, 2) le type de fini de surface des barres de PRFV, 3) la résistance du béton, et 4) le
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diamètre des barres d’armature. Les résultats expérimentaux obtenus sont la déflection, la 

largeur des fissures, les déformations du béton et des barres d’armature, les performances en 

flexion et le mode de rupture. Les résultats expérimentaux ont aussi été utilisés pour évaluer 

empiriquement la précision des équations de prédiction de la déflection et de la largeur des 

fissures actuellement utilisées dans les codes de conception traitant de l’utilisation du béton 

armé de PRF.

Mots-clés: Poutre; déflection, largeur des fissures, polymère renforcé de fibres (PRF); barre 

d’armature; flexion; capacité en service; béton normal; béton à haute résistance.

ABSTRACT

This paper investigated the flexural behaviour and serviceability performance of 

GFRP-reinforced concrete (GFRP- reinforced concrete) beams fabricated with normal- and 

high-strength concretes. The beam specimens measured 4,250-mm long x 200-mm wide x 

400-mm deep [167.0x7.9x15.6 in.]. Three GFRP products with moduli of elasticity ranging 

from 48.7 GPa to 69.0 GPa [7,063 to 10,008 ksi] with sand-coated and helically-grooved 

surface textures were employed. A total of 12 full-scale beams reinforced with GFRP bars and 

2 reinforced with steel bars, serving as control specimens, were tested to failure in four-point 

bending over a clear span of 3,750 mm [147.6 in.]. The test parameters were: (i) type and ratio 

of the GFRP reinforcement, (ii) surface configuration of the GFRP bars, (iii) concrete strength, 

and (iv) bar diameter. The test results were reported in terms of deflection, crack width, strains 

in concrete and reinforcement, flexural capacity, and mode of failure. The test results were 

also employed to assess the accuracy of the current deflection and crack-width prediction 

equations in the FRP-reinforced concrete codes.
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Keywords: beam; deflection; crack width; fiber-reinforce polymer (FRP); rebars; flexure; 

serviceability; normal-strength concrete; high-strength concrete.

INTRODUCTION

Fiber-reinforced polymer (FRP) has been commercially available as reinforcement for 

concrete over the last 15 years [fib., 2007], Due to the lack of well-established standards, a 

wide variety of FRP bars are currently marketed, ranging from the simple smooth and 

helically-deformed bars to bars treated with external features such as sand-coating. Nowadays, 

over 10 million meters of FRP reinforcement are used in construction every year [fib., 2007]. 

These FRP products have a wide range of mechanical properties as well as different surface 

configurations. Besides, most of the design codes and guidelines use equations for the steel- 

reinforced members with some modifications to account for the differences in the mechanical 

properties between FRP and steel bars. Furthermore, serviceability checks such as crack 

widths and deflections, involve assessing the tension stiffening effect which directly arises 

from bond behaviour [Pecce et al., 2001], Thus, employing an equation to predict the 

performance may yield reasonable predictions with one type of FRP bars but discrepancies 

with another.

At the ultimate limit state, most of the design codes and guidelines [ACI 440.1R-06, 

2006; CAN/CSA-S806, 2002] recommend the over-reinforced section design, where concrete 

crushing is the dominant mode of failure. This is preferred as it is less catastrophic and yields 

higher deformability before failure. Some codes, however, permit the under-reinforced section 

design [CAN/CSA-S6, 2006]. The Distinction between both modes of failure is achieved
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through the balanced reinforcement ratio ipjb) which is influenced by the mechanical 

properties of the FRP bars and concrete strength.

Due to the lower modulus of elasticity of the FRP bars compared to that of steel, for 

the same reinforcement ratio (pf), FRP- reinforced concrete members will exhibit larger 

deflections and crack widths. Thus, the design of FRP- reinforced concrete members is usually 

governed by serviceability. For deflection, a number of studies [Masmoudi et al., 1996; 

Benmokrane, Chaallal et Masmoudi, 1996b; Yost et a i,  2003] proposed modifying Branson’s 

original equation [Branson, 1968] for the effective moment of inertia and introduced 

modification factors for FRP reinforced concrete (FRP- reinforced concrete) members. Other 

studies [Razaqpur et a l ,  2000; Bischoff et Scanlon, 2007a; Mota et al., 2006a] proposed an 

equivalent moment of inertia derived from curvatures. For cracking, modifications were 

proposed to the original Gergely and Lutz [Gergely et Lutz, 1968] equation or strain limits 

were introduced to control the crack width [ISIS Manual No.3, 2007], Furthermore, Feeser et 

Brown [2005] concluded that sections reinforced with multiple layers of GFRP reinforcement 

might be more attractive and should be explored. They, also, proposed that multiple layers of 

reinforcement would enable a GFRP- reinforced concrete section to accommodate larger pj for 

compression-controlled failure. Besides, using higher concrete strengths to make more 

efficient use of the GFRP tensile strength is more applicable to designs with multiple layers of 

reinforcement.

This paper presents the flexural behaviour and serviceability of 12 full-scale, simply 

supported beams reinforced with three commercially available GFRP bars and 2 full-scale 

beams reinforced with steel bars fabricated using normal- and high-strength concretes (NSC 

and HSC). Moreover, the test results were employed to assess the accuracy of the current
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design equations in North American FRP codes and guidelines [ACI 440.1R-06, 2006; ISIS 

Manual No.3, 2007; CAN/CSA-S806, 2002] considering the ultimate and serviceability limit 

states.

RESEARCH SIGNIFICANCE

Due to lack of standards, a wide variety of FRP products are commercially available. 

Thus, the need to investigate serviceability-related issues and validate the accuracy of design 

codes and guidelines are paramount. This paper investigates the flexural behaviour and 

serviceability performance of normal- and high-strength concrete beams reinforced with 

different types, diameters, ratios, and configurations of GFRP bars. Moreover, the accuracy of 

the current deflection and cracking equations in North American FRP codes and guidelines is 

verified.

EXPERIMENTAL PROGRAM 

Materials

Reinforcing bars—Three types of GFRP bars were used. The GFRP products are referred to as 

GFRP-1 (No. 13; No. 15), GFRP-2 (No. 13; No. 15), and GFRP-3 (No. 15; No. 25). Figure 3.1 

shows the GFRP bars. Both GFRP-1 and GFRP-2 have sand-coated surface and are classified 

according to their modulus of elasticity as Grade I and III [CAN/CSA-S807, 2010], 

respectively. GFRP-3 has a helically-grooved surface and is classified. according to its 

modulus of elasticity as Grade III [CAN/CSA-S807, 2010]. Grade 400 10M steel bars were 

used for the reference beams. The tensile properties of the GFRP bars were determined by 

testing five representative specimens according to Annex C in [CAN/CSA-S806, 2002], 

Table 3-1 provides the properties of the FRP and steel bars.
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Concrete— Ready-mixed normal- and high-strength concretes (NSC and HSC) with 28-day 

target compressive strengths of 30 and 65 MPa [4.4 and 9.4 ksi], respectively, were used. A 

cubic meter of the NSC contained 350 kg [770 lbs] of cement, 813 kg [1789 lbs] of sand, and 

1032 kg [2270 lbs] of aggregate with a water/cement ratio (wlc) of 0.44 and air entrained ratio 

of 5-6%. On the other hand, a cubic meter of HSC contained 490 kg [1078 lbs] of cement, 813 

kg [1789 lbs] of sand, and 1032 kg [2270 lbs] of aggregate with a water/cement ratio (w/c) of 

0.32 and 0% of air entrained. The maximum aggregate size for the NSC was 20 mm [0.8 in.], 

compared to 14 mm [0.6 in.] for the HSC. The concrete strengths for each batch were 

determined by testing three 150x300 mm cylinders on the day of testing. The compressive 

strengths ranged from 29.0 to 33.5 MPa [4.2 to 4.9 ksi] and from 59.1 to 73.4 MPa [8.6 to 10.6 

ksi] for the NSC and HSC, respectively. It should be mentioned that the first batch o f the HSC 

did not achieve the 65 MPa [9.4 ksi] and its concrete strength was 59.1 MPa [8.6 ksi]. The 

tensile strength determined from split-cylinder testing ranged from 2.5 to 3.6 MPa [0.4 to 0.5 

ksi] and from 3.7 to 4.6 MPa [0.5 to 0.7 ksi] for the NSC and HSC, respectively. Table 3-2 

lists the concrete strengths for each beam.

Figure 3.1 GFRP reinforcing bars
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Table 3-1 Properties of the Reinforcing Bars
Nominal Guaranteed

Bar type
Designated  
diameter o f

cross-
sectional

Surface
configuration

Tensile
strength,

Modulus o f  
elasticity, Ultimate

n A ̂  rt , /  flf \
strength and 

strain2 E /ftu
FRP bar1 area1

(mm2)
fju , (MPa) Ef , (GPa)

strain y /c )
f c

MPa
Eg

( % )

GFRP-1 13 129 Sand-coated 817±9 48.7±0.6 1.7 790 1.6 59.6
(G l) 15 (16)3 199 Sand-coated 762±10 50,0+1.0 1.5 732 1.4 65.6

GFRP-2 13 129 Sand-coated 1639±61 67.0±1.0 2.5 1456 2.2 40.9
(G2) 15 (16)3 199 Sand-coated 1362+33 69.3±3.2 2.0 1263 1.8 50.9

GFRP-3
15 (16)3 199

Helically-
grooved 1245+45 59.5+1.1 2.1 1110 1.9 47.8

(G3) 25 510 Helically-
grooved
Ribbed-

deformed

906+29 60.3+2.9 1.5 819 1.3 66.6

Steel
10M 100 fy=  450 200 0.2 N/A N /A N /A

(ST) 15M 199
Ribbed-

deformed

oII 200 0.2 N/A N /A N /A

Notes -  1 mm = 0.0394 in., 1 kN = 0.225 kips, 1 MPa = 0.145 ksi
1 FRP bars designated according to [CAN/CSA-S807, 2010] and [ACI 440.6M -08, 2008]
2 Guaranteed tensile strength and elongation according to [ACI 440.1R -06, 2006] = average -  3 x  standard 

deviation
3 FRP bars o f 199 mm2 cross-sectional area designated as No. 15 according to [C AN /C SA-S807, 2010] and as 

No. 16 according to [ACI 440.6M -08, 2008],

Table 3-2 Details of the Test Specimens

Series Beam 1 f c ' 2
(MPa)

f i2
(MPa)

Pf
(%)

P]b
(% ) P/Pjb

A fE f
(kN)

Reinforcement
configuration

N2#13G2 33.5 3.6 0.38 0.15 2.45 17286 2 N o. 1 3 - 1  row

I
N3#13G1 33.5 3.6 0.56 0.43 1.31 18347 3 No. 1 3 -1  row
H2#13G2 59.1 4.6 0.38 0.22 1.67 17286 2 No. 13 - 1 row
H3#13G1 59.1 4.5 0.56 0.63 0.9 18347 3 No. 13 - 1 row
N5#15G2 29.0 2.5 1.52 0.2 7.58 68954 5 N o. 1 5 - 2  rows

I I
N6#15G1 33.5 3.6 1.82 0.5 3.67 59700 6 No. 1 5 - 2  rows
H5#15G2 73.4 3.7 1.52 0.4 3.75 68954 5 No. 1 5 - 2  rows
H6#15G1 73.4 3.7 1.82 0.9 2.02 59700 6 No. 1 5 - 2  rows
N5#15G3 33.8 3.1 1.52 0.23 6.47 59203 5 No. 1 5 - 2  rows

I I I
N2#25G3 33.8 3.1 1.51 0.42 3.57 61506 2 No. 25 - 1 row
H5#15G3 73.4 3.7 1.52 0.42 3.58 59203 5 No. 1 5 - 2  rows
H2#25G3 73.4 3.7 1.51 0.76 1.98 61506 2 No. 25 - 1 row

\J N3#10ST 33.5 3.6 0 .44 2.92 0.15 60000 3 10M  - 1 row
V H3#10ST 59.1 4.6 0.44 4.79 0.09 60000 3 10M  - 1 row

Note -  1 m m =0.0394 in., 1 kN=0.225 kips
1 Concrete type (N: Normal-strength, H: High-strength) follow ed by the number and diameter o f  the reinforcing 

bars, ending by the reinforcement type (G1 : GFRP-1, G2: GFRP-2, G3: GFRP-3, ST: Steel).
2 Average o f  three cylinders (150x300 mm) on the day o f testing.
3 Calculated according to [ACI 440.1R-06, 2006].
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Test specimens

A total of 14 full-scale simply supported beams were constructed and tested. The 

beams measured 4,250 mm long, 200 wide, and 400 mm deep [167.0x7.9x15.6 in.]. The test 

parameters were the type of GFRP bars, reinforcement ratio (pj), concrete strength ( f c), and 

bar diameter (db). The beams were categorized into four series as shown in Table 3-2. Two of 

the four beams in each series were fabricated using NSC, while the other two were fabricated 

using HSC. Beams in Series I were reinforced with sand-coated No. 13 GFRP bars, while 

those in Series II were reinforced with sand-coated No. 15 GFRP bars. Beams in Series III 

were reinforced with helically-grooved No. 15 and No. 25 GFRP bars. The control beams in 

Series IV were reinforced with deformed 10M steel bars. It should be mentioned that the 

beams in Series II and III had approximately the same axial-reinforcement stiffness (Af Ef) to 

assess the effect of surface configuration and bar diameter. All of the NSC and HSC beams 

were designed as over-reinforced with a p/pjb ratio greater than 1.0, so that the failure occurs 

due to concrete compression. The H3#13G1 beam, however, had a p/pjb of 0.9 (under­

reinforced) when the actual material properties were considered. The entire beams were 

reinforced in compression with two 10M steel bars. The beams were provided with closely 

spaced steel stirrups (10 mm @ 100 mm [0.4 in @ 3.9 in.]) in the shear spans to avoid 

specimen shear failure and to minimize the effect of the shear induced deformation on the 

mid-span deflection. On the other hand, the constant moment zone included only two stirrups 

spaced at 300 mm [11.8 in.] to maintain the locations of the longitudinal bars and minimize 

stirrup confinement action, which may affect cracking behaviour. Figure 3.2 shows the 

geometry and reinforcement details of the beams, while Table 3-2 lists the complete 

specifications for each beam.
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Figure 3.2 Dimensions, reinforcement details, and instrumentation 
Note -  1 m m =0.0394 in.

Instrumentation and testing

The reinforcing bars as well as the compression-concrete zone of the beams were 

instrumented with electrical resistance strain gauges to capture the strains at the desired 

locations. Besides, five linear variable displacement transducers (LVDTs) were installed on 

each beam to measure deflection at different locations during testing. In addition, one LVDT 

was installed at the position of the first flexural crack after measuring its initial width with a 

hand-held microscope with 50X magnifying power. Figure 3.2 also shows the instrumentation 

of the beams.

All beam specimens were tested under four-point bending over a clear span of 3,750 

mm [147.6 in.] (Figure 3.2). The load was monotonically applied using a 500-kN hydraulic 

actuator with a stroke-controlled rate of 0.6 mm/min [0.02 in./min]. During the test, crack 

formation on one side of each beam was marked and the corresponding loads were recorded.
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The actuator, strain gauges, and LVDTs were connected to a data-acquisition unit to 

continuously record their readings.

TEST RESULTS AND DISCUSSION 

First cracking moment

During the test, the beams were observed visually until the first crack appeared 

and the corresponding load was recorded. The cracking load was also verified from the load- 

deflection and load-strain relationships. Table 3-3 provides the cracking moments of the tested 

beams. The cracking moment of the NSC beams, excluding the self-weight of the beams, 

ranged from 12.20 to 14.15 kN.m [9.0 to 10.4 kips.ft] with an average of 13.27 kN.m [9.8 

kips.ft]. Since the cracking moment is directly related to concrete tensile strength, which, in 

turn, is a function of compressive strength, increasing the concrete compressive strength is 

expected to yield higher cracking moments. The cracking moment of the HSC beams ranged 

from 17.49 to 23.87 kN.m [12.9 to 17.6 kips.ft], excluding the self-weight of the beams, with 

an average of 21.61 kN.m [15.9 kips.ft]. The ratio of the average cracking moment of the HSC 

beams to that of the NSC beams was 1.63. This ratio is close to the ratio between the square 

root of the average compressive strength of the HSC beams (66.2 MPa [9.6 ksi]) and that of 

the NSC beams (32.5 MPa [4.7 ksi]), which was 1.43. The cracking moments were predicted 

using Eq. [3.1]:

M cr= f r l y , i g 3.1

w h e re : f r = 0.62AyJf’ fo r  [ACI440.1R-06,2006] 3.2

for [ISIS Manual No.3, 2007; CAN/CSA-S806, 2002; CAN/CSA-S6, 2006] 3.3
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Table 3-3 Experimental and Predicted Cracking and Ultimate Moments

Beam
Experimental moments M J  M ,,4 ACI 440.1 R -06 CA N /C SA  S806-02

M n Failure 
mode 2

0.3 M „ 0.67A/„ Mcr' Failure 
m od e2

M crx M n Failure 
mode 2kN.m kN.m Exp/Pred Exp/Pred Exp/Pred Exp/Pred

N2#13G2 13.75 82.78 C.C. 1.8 4.0 0.87 0.94 C.C. 0 .90 0.87 C.C.
N3#13G1 13.46 81.34 C.C. 1.8 4.0 0.85 0.89 C.C. 0.88 0.82 C.C.
H2#13G2 17.49 101.59 C.C. 1.7 3.9 0.79 0.91 C.C. 0.82 0.82 C.C.
H3#13G1 19.94 82.58 FRP-R 1.2 2.8 0.90 0.77 FRP-R 0.94 0.77 FRP-R
N5#15G2 12.20 129.32 C.C. 3.2 7.1 0.84 0.98 C.C. 0.88 0.93 C.C.
N6#15G1 11.98 118.34 C.C. 3.0 6.6 0.76 0.89 C.C. 0.79 0.84 C.C.
H5#15G2 23.38 178.54 C.C. 2.3 5.1 0.93 0.85 C.C. 0.97 0 .80 C.C.
H6#15G1 24.06 181.73 C.C. 2.3 5.1 0.96 0.93 C.C. 1.00 0.88 C.C.
N5#15G3 12.61 110.58 C.C. 2.6 5.9 0.79 0.82 C.C. 0.82 0.77 C.C.
N 2#25G3 13.20 115.93 C.C. 2.6 5.9 0.83 0.81 C.C. 0 .86 0 .76 C.C.
H 5#15G3 23.78 188.37 C.C. 2.4 5.3 0.95 0.95 C.C. 0.99 0 .90 C.C.
H2#25G3 21.04 189.06 C.C. 2.7 6.0 0.84 0.90 C.C. 0.87 0.85 C.C.
N 3#10ST 3 14.15 45.88 S-Y 1.0 2.2 1.09 0.99 S-Y 0.89 1.01 S-Y
H 3#10ST3 21.24 48.57 S-Y 0.7 1.5 1.03 1.13 S-Y 0.94 0.89 S-Y

Average 0.89 0.91 — 0.90 0.85 —
Standard deviation 0.10 0.09 — 0.06 0.07 —

Coefficient o f  variation % 11% 10% — 7% 8% —
Notes -  1 kN .m =23730 lb.ft
1 Beam self-weight subtracted from the predicted values
2 FRP-R: rupture o f FRP bar; C.C.: Concrete crushing.
3 Values calculated at 1200 pe, 0 .67 M y, and M y, respectively.
4 Ma is defined as the applied moment at certain load level (0 .30 M„ and 0.67 M„).

Eq. [3.2] and [3.3] were employed for both NSC and HSC. Table 3-3 provides a 

comparison between the experimental and predicted values for the cracking moments. As can 

be seen, the cracking moment of the GFRP- reinforced concrete beams was generally lower 

than those predicted with CAN/CSA-S806 [2002] and ACI 440.1R-06 [2006]. ACI 440.1R-06 

[2006] overestimated the cracking moment for the GFRP- reinforced concrete beams by 18 

and 10% for NSC and HSC, respectively. CAN/CSA-S806 [2002] overestimated the cracking 

moment for the GFRP- reinforced concrete beams by 14 and 7% for NSC and HSC, 

respectively. CAN/CSA-S806 [2002] yielded slightly better predictions of cracking moments 

than ACI 440.1R-06 [2006] because of the former’s smaller modulus of rupture. Thus, Eq.
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[3.3] seems applicable for predicting the modulus of rupture of NSC and HSC in the range of 

tested concrete strengths.

Flexural capacity and mode of failure

The GFRP- reinforced concrete beams were designed to fail by concrete 

crushing when the concrete reaches its maximum compressive strain, EcU = 0.003, (over­

reinforced). This is the common design concept for FRP- reinforced concrete sections 

according to CAN/CSA-S806 [2002] and ACI 440.1R-06 [2006]. The pp, is calculated from 

Eq. [3.3]. The terms or; and /?; are calculated from Eq. [3.5] for ACI 440.1R-06 [2006] and Eq. 

[3.6] for CAN/CSA-S806 [2002] and ISIS Manual No.3 [2007],

/>«=«■ A  E EJ e~ f  3.4
j  fu f ecu J  fu

where: Oj =0.85 ; $  = 0.85 -  0.05( f  'c — 27.6)/6 .9  3.5

O', = 0 .8 5 -0 .0 0 1 5 ( /c) > 0.67 ; $  = 0 .9 7 - 0.0025(/r ) > 0.67 3.6

The GFRP- reinforced concrete beams failed by concrete crushing, except for

specimen H3#13G1. The actual properties of the materials yielded under-reinforced section,

and the failure mode was rupture of the GFRP bars. On the other hand, the steel-RC beams

failed due to yielding of the steel bars because they were designed as under-reinforced, which

is the common case of steel-RC members. At failure, the concrete strain of all the tested beams

was very low compared to the 0.003 or 0.0035 values provided by the design codes and

guidelines. This relates to the absence of lateral ties (stirrups) in the critical flexural zone of

the beams. This, in turn, led to premature buckling of compression bars before yielding and

the consequent disintegration of the confined concrete. The premature buckling was due to a

large unsupported length of compression bars (300 mm [11.8 in.]).
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In the case of the NSC beams, increasing p / from 0.36 to 1.47% (N2#13G2; 

N5#15G2) increased the load-carrying capacity from 82.78 to 118.34 kN.m [61.0 to 87.3 

kips.ft] (143%). Increasing p /from  0.55 to 1.78% (N3#13G1; N6#15G1), however, increased 

the capacity from 81.34 to 181.73 kN.m [60.0 to 134 kips.ft] (224%). Increasing p /b y  3 to 4 

times resulted in an average increase of 83.5% in the load-carrying capacity. Kassem et al., 

[2011] reported concrete crushing in FRP- reinforced concrete beams, whereas the increased pj 

did not significantly increase the flexural capacity. The increases were 4 and 16% when p / was 

increased by 50 and 100%, respectively. The difference between those small increase ratios in 

the flexural capacity and that obtained herein may be related to the smaller p j increase (2 

times) and confinement with closely spaced stirrups in the critical flexural zone (10M steel 

stirrups every 80 mm [3.15 in.]).

Similarly, for the HSC beams, increasing p / from 0.36 to 1.47% (H2#13G2; 

H5#15G2) and from 0.55 to 1.78% (H3#13G1; H6#15G1) increased the ultimate load- 

carrying capacity by 28 and 116%, respectively. The very high increase in case of H3#13G1 

and H6#15G1 is due to the difference in their modes of failure. Similar behaviour was 

observed for the steel-reinforced beams.

Yost et Gross [2002] reported that using higher concrete strength resulted in 

more efficient use of the FRP. For some of the tested beams, increasing the concrete strength 

increased the ultimate load-carrying capacity. The increased ratio was not consistent because 

of the lower-than-expected concrete strains at failure. Furthermore, this did not make it 

possible to quantify the effect o f bar diameter and surface texture on the ultimate load-carrying 

capacity of the GFRP- reinforced concrete beams.
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The load-carrying capacity of the test specimens was calculated and compared to 

the measured values. Table 3-3 shows the prediction of the ultimate load-carrying capacity of 

the tested beams as well as the mode of failure. The prediction shows that ACI 440.1R-06 

[2006] and CAN/CSA-S806 [2002] were un-conservative for the NSC and HSC beams. Due 

to the lower-than-expected concrete strains at failure in the beams; the experimental-to- 

predicted load-carrying capacity was less than 1.0. The difference between ACI 440.1R-06 

[2006] and CAN/CSA-S806 [2002] predictions, however, were related to the Pi factor and the 

assumed strain at the ultimate which is 0.003 for ACI 440.1R-06 [2006] and 0.0035 for 

CAN/CSA-S806 [2002],

Table 3-4 Strains, Neutral Axis-to-Depth Ratio, and Curvature of Test Specimens

Beam

Strain in concrete (ps)
Strain in reinf. 

(pe)
c/d Curvature, if/

at
2000
pg2

0.30 M „ 0.30A7,, M „
at

2000
p e2

0.30A/„ M n Theo.3
at

2000
pg2

0.30M„ M „

N 2#13G2 -173 -690 -2541 5349 16359 0.05 0.11 0.13 0.12 0.003 0 .006 0.019
N3#13G1 -203 -314 -1561 4378 13726 0.09 0.07 0.10 0.13 0.002 0.005 0.015
H2#13G2 -201 -391 -2344 3981 17316 0.25 0.08 0.10 0.11 0.001 0.005 0.023
H3#13G1 -200 -165 -1675 2174 10563 0.07 0.07 0.14 0.11 0.003 0.002 0.012
N5#15G2 -729 -745 -2959 2053 7550 0.28 0.28 0.29 0.24 0.003 0.003 0.010
N6#15G1 -488 -562 -1976 2367 7693 0.19 0.19 0.20 0.22 0.003 0.003 0.010
H5#15G2 -461 -642 -2230 2616 10111 0.19 0.18 0.19 0.20 0.002 0.003 0.012
H6#15G1 -302 -400 -1891 2915 10251 0.13 0.12 0.16 0.19 0.002 0.003 0.012
N5#15G3 -521 -412 -1839 1571 6430 0.21 0.21 0.22 0.22 0.003 0.002 0.008
N2#25G3 -575 -459 -1627 1666 6429 0.22 0.22 0.20 0.22 0.003 0.002 0.008
H5#15G3 -317 -455 -2313 2440 11035 0.19 0.14 0.16 0.19 0.002 0.003 0.014
H2#25G3 -313 -494 -1726 3077 9578 0.14 0.14 0.15 0.19 0 .002 0.004 0.011
N3#10ST' -221 -304 -611 1655 3490 0.16 0.16 0.15 0.23 0.001 0.002 0.004
H3#10ST' -219 -283 -452 2225 4281 0.13 0.11 0.10 0.20 0.002 0.003 0.005

1 Values calculated at 1200 pg, 0.67 M y, and M}, respectively.
2 Values calculated at 2000 pg.
3 Values calculated at ultimate.

Table 3-4 reveals a slight increase in the c/d  ratio at Mn compared to that at 

0.30M„, where M„ is nominal moment capacity. Moreover, the neutral axis depth increased 

with pf since the equilibrium of forces requires a larger compression block for the greater 

force. Increasing the concrete strengths for the beams with the same longitudinal
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reinforcement type and amount yielded smaller c/d ratio because the higher concrete strengths 

resulted in a smaller compression block for the same force. The theoretical positions for the 

neutral axis were calculated assuming a cracked-section analysis. Table 3-4 showed good 

agreement between the theoretical predictions and experimental results.

Strain in reinforcement and concrete

Figure 3.3 shows the mid-span strains in the compression-concrete zone and the 

tensile reinforcing bars versus the applied moment. Table 3-4 shows the strains in the 

reinforcement and concrete at 0.3M„ and at failure. All the GFRP- reinforced concrete beams 

failed in compression by concrete crushing except H3#4G1, because the actual material 

properties yielded an under-reinforced section in this beam. This mode of failure could be seen 

from the lower-than-ultimate strains in the GFRP bars and relatively high compressive strains 

in the concrete. As mentioned earlier, the concrete’s compression failure was trigged by the 

buckling of the compression steel reinforcement.

Generally, the GFRP- reinforced concrete beams showed typical bi-linear 

moment-strain relationship. The difference between the NSC and HSC could be seen in the 

cracking moment, since the HSC beams exhibited higher cracking moments. Figure 3.3 shows 

that increasing pf  decreased the strain in the GFRP bars at the same load level for either 

concrete type. For beams with the same reinforcement type and amount, increasing the 

concrete strength from NSC to HSC slightly reduced the strains in the GFRP bars after 

cracking at the same load level. In addition, GFRP- reinforced concrete beams with close EfAf  

are expected to yield the same moment-strain relationship. The GFRP- reinforced concrete 

beams in Series III had the EfAf  as the steel-reinforced ones. After cracking, however, they
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showed lower strains in the GFRP bars than in the steel bars. This may be related to the good 

bond behaviour of the GFRP bars, which yielded more cracks, leading to smaller stains at the 

same load level.
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BU ~ iVV,
H5S15G2 \ \  V

N5#1SG2t\H6#15Gl

fNS«15G^\'J
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Figure 3.3 Moment-to-maximum concrete and reinforcement strain relationship

Figure 3.3 also shows that Series I beams with low ps (0.38 and 0.56%) 

experienced very high strain increases at cracking. The sharp increase at the cracking was 

more than 3,000 pe in the NSC and HSC beams. While three of these beams were designed as 

over-reinforced sections that did not prevent the large increase due to poor energy absorption 

at cracking. Maintaining minimum practical reinforcement (i.e. 1%) may be of interest to 

ensure that the section behaves reasonably after cracking.
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Table 3-4 provides the calculated curvature at failure as a function of 1 Id. The 

calculated values ranged from 0.008/d to 0.015/d for compression-controlled failure 

(excluding N2#13G2), which agrees with the range of 0.0089/d to 0.012/d [Gulbrandsen, 

2005] and the range of 0.009/d to 0.014/d [Kassem et al., 2011], On the other hand, the 

tension-controlled failure of the H3#13G1 beam yielded a very high curvature of 0.023/d. 

Based on the moment-curvature diagrams of 50 GFRP- reinforced concrete beams [Vijay et 

GangaRao, 1996], the maximum unified curvature at a service load that satisfies both 

deflection and crack-width serviceability limits should be limited to 0.005/d. A curvature limit 

exceeding 0.005/d generally failed to satisfy either the deflection or the crack width criteria for 

beams with span-to-depth ratios of 8 to 13 [Vijay et GangaRao, 1996], The service load level 

for the FRP- reinforced concrete members, however, has no fixed definition in the design 

codes and guidelines. ISIS Manual 03-07 recommended a value of 2,000 pe as a limit for the 

strain in the FRP bars under service load. Other researchers assume that the service load of the 

FRP- reinforced concrete members is about 30% of their nominal flexural capacity, 0.3Mn 

[Bischoff et al., 2009]. The former often satisfies the serviceability requirements, but, in some 

cases, the 0.30M„ yields very high strain levels. These cannot be considered as service strain, 

such as in case of N2#13G2 and N3#13G1, which were 5,349 and 4,378 microstrains, 

respectively. Kassem et al. [2011] also reported strain values as high as 4,119 microstrains in 

the GFRP bars and 3,850 microstrains in the CFRP bars at 0.3M„, which is also high and could 

not be considered as strains at service. Furthermore, at a curvature limit of 0.005/d, strains in 

FRP bars were typically as high as 4,500 microstrains [Vijay et GangaRao, 1996], Thus, in 

this study, the key results were presented at 2,000 microstrains in the GFRP bars, at 0.3M„, 

and at 0.67M„.
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Deflection Behaviour

Figure 3.4 provides typical bi-linear load-deflection relationships for the tested 

GFRP- reinforced concrete beams. Each curve represents the average deflection obtained from 

2 LVDTs mounted at beam mid-span. The load-deflection relationships (Figure 3.4) revealed 

that pf had a direct impact on the stiffness of the beam specimens, hence, on the load- 

deflection behaviour.
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Figure 3.4 Load-to-mid-span deflection relationships: (a) Series I, II, IV; (b) Series II, III, IV
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The Series I GFRP- reinforced concrete beams (with the lowest pj) showed the 

highest deflection compared to Series II and III. Due to the difference in the modulus of 

elasticity of the GFRP bars employed herein, EfAf  was used as reference. Series I beams had 

EfAf  around 18 MN [4,047 kips], while Series II and III beams had Ef Af  of about 60 MN 

[13,488 kips]. Thus, Series I beams exhibited the largest deflection compared to Series II and 

III at the same load level. Figure 3.4 indicates that using HSC while maintaining the same EfAf  

contributed to enhancing the deflection of the GFRP- reinforced concrete beams, in addition to 

enhancing the load-carrying capacity of Series II and III beams. Series I beams with low pf  and 

the same EfAf, however, did not show significant differences in load-deflection relationships.

Comparing beams N2#25G3, N5#15G3, N5#15G2, and N6#15G1 (which had 

the same Ef Aj) showed the same load-deflection relationships. This was confirmed by 

comparing H5#15G2 and H6#15G1. The NSC and HSC beams with the same EfAf  yielded the 

same load-deflection relationships. Furthermore, comparing the load-deflection relationships 

of N2#25G3 and N5#15G3 reveals that increasing the GFRP bar diameter from 15 to 25 mm 

[0.6 to 1.0 in.] while maintaining the same Ef Af  did not affect the load-deflection relationships. 

In addition, comparing N5#15G3, N5#15G2 and N6#15G1 showed that the load-deflection 

relationships were not affected by GFRP-bar properties or surface configuration when the 

same EfAf  was achieved. This was confirmed by comparing the load-deflection relationships 

of Series II and III GFRP- reinforced concrete beams against Series IV steel-RC beams, which 

were almost the same. Providing the same EfAf  with GFRP and steel bars yielded the same 

load-deflection relationships up to yielding of the steel bars. Table 3-5 summarizes the 

deflection o f the tested beams at 0.3A/„ and 0.67A/„.

67



Chapter 3: Flexural Behavior & Serviceability o f  Normal & Hieh Streneth Concrete Beams Reinforced with GFRP Bars

The deflection values from Table 3-5 were plotted against the EfAf  as well as the 

p/pjb, as shown in Figure 3.5. This figure shows that the deflection values at 0.3Mn and 0.67Mn 

followed the same trend. The higher the Ef Af  and the p/pp,, the lower the deflection values. 

Assuming that beam deflection limit at service load is span/240 (ZV240), as provided for by 

[CAN/CSA-A23.3, 1994]— which yields 15.63 mm [0.6 in.]— all the beams except H2#13G2 

exhibited deflections smaller than 15.63 mm [0.6 in.] at 0.30A/„.

Table 3-5 Experimental-to-Predicted Deflection Ratios
Measured ^exj/^pred ^ext/^pred s,?xf/ Opred <5,3.xp Vpred

Beam deflection (mm) ACI 4404 ACI 440-H CSA S8063 ISIS14
0.30M„ 0.67 M „ 0.30M,, 0.67 M„ 0.30A/,, 0.67A/,, 0.30A /„ 0.67A/,, 0.30A/„ 0.67M„

N2#13G 2 15.07 48.35 1.65 1.17 1.22 1.16 0 .70 0 .96 0.75 0.99
N3#13G1 15.38 41.31 1.17 0.97 1.29 1.03 0 .76 0.85 0.82 0.87
H2#13G2 19.92 54.45 2.14 1.10 1.67 1.10 0.75 0.85 0.82 0.87
H3#13G1 10.75 39.56 0.84 0.83 1.06 0 .89 0 .54 0.79 0.60 0.81
N5#15G2 10.98 28.95 1.29 1.28 1.28 1.30 1.03 1.18 1.06 1.19
N6#15G1 9.43 27.34 0.95 1.05 0.97 1.07 0 .76 0.97 0.79 0.97
H5#15G2 13.15 35.18 1.09 1.05 1.07 1.07 0.81 0.96 0.84 0.96
H6#15G1 13.10 37.19 0.94 1.03 1.03 1.06 0.75 0.94 0.81 0.95
N5#15G3 7.92 23.69 0.87 0.92 0.82 0 .94 0.63 0.83 0.66 0.84
N2#25G3 13.15 36.82 1.10 1.03 1.03 1.05 0 .76 0.93 0.79 0.94
H5#15G3 9.53 25.13 0.96 1.00 1.01 1.02 0 .79 0.92 0.82 0.92
H2#25G3 14.19 33.96 1.01 0.97 1.12 1.01 0 .84 0.89 0.88 0.90

A verage 1.17 1.03 1.13 1.06 0 .76 0.92 0.80 0.93
Standard deviation 0.38 0.12 0.22 0 .10 0 .12 0.10 0.11 0 .10

C oefficient o f  variation (% ) 32% 11% 19% 10% 15% 11% 14% 10%
O verall average 1.10 1.09 0.84 0.87

O verall standard deviation 0.28 0.17 0.14 0.12
C O V  (% ) 26% 15% 16% 14%

Note -  1 m m =0.0394 in.
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Crack propagation and crack width

All beam specimens were initially un-cracked before testing, except N6#15G1, 

which had a hair crack in the pure bending zone (this crack was not considered in the 

analysis). Flexural cracks appeared when the concrete’s tensile strength and, consequently, the 

crack moment were reached in the pure bending zone. Table 3-6 gives the initial crack width 

of the first crack in each beam. Figure 3.6 shows the crack pattern of the tested GFRP- 

reinforced concrete beams of Series II and III at two loading levels: 0.3Mn and 0.67Af„. The 

former corresponds to beam service load as reported by other researches [Bischoff et al., 

2009]; the latter presents the threshold at which cracks almost stabilized.

2.4

2.0
c

1.6
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o
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Table 3-6 Experimental-to-Predicted Crack Width (wexr/wprej) and Predicted kb Value

Beam Measured crack width, wex„  (mm)
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A C I4404 ISIS14 A C I4404 ISIS14

Initial 2000  ne 0.30A/„0.67M„ 2000 me 0.30Af„ 0.67A/„ 2000 u s  0.30Af„ 0.67M„ 2000 u s  0.30M„ 2000 y e  0.30M „

N2#13G2 0.20 0.77 1.03 2.38 1.62 0.95 1.01 1.71 0.94 0.99 1.48 1.14 1.35 1.04
N3#13G1 0.10 0.40 0.78 1.82 1.11 1.03 1.08 1.02 0.88 0.90 1.5 1.41 1.17 1.10
H2#13G1 0.10 0.54 0.83 1.44 1.13 0.63 0 .49 1.20 0.60 0.46 1.6 1.02 1.45 0.93
H 3#l 3G2 0.20 0.61 0.55 0.72 1.77 0.66 0.38 1.57 0.58 0.34 1.93 2.09 1.46 1.58
N5#15G2 0.09 0.30 0.31 0.70 0.81 0.55 0.55 0.68 0.44 0.44 1.14 1.13 0.83 0.83
N6#15G1 0.05 0 .14 0.15 0.44 0.36 0.18 0.25 0.31 0.15 0.20 0.51 0 .46 0.38 0.35
H5#15G2 0.08 0 .20 0.26 0.57 0.53 0.29 0.28 0.46 0.23 0.23 0.90 0.75 0.66 0.55
H6#15G1 0.16 0.33 0.45 1.06 0.88 0.39 0.41 0.76 0.32 0.33 1.21 1.16 0.90 0.87
N5#15G3 0.12 0.53 0.40 0.69 1.40 0.59 0 .46 1.20 0.48 0.37 2.02 1.91 1.48 1.40
N2#25G3 0.13 0.53 0.45 0.93 1.09 0.86 0 .80 1.05 0.78 0.72 1.49 1.55 1.24 1.28
H5#15G3 0.09 0.38 0.62 1.19 1.02 0.65 0.55 0.87 0.52 0.44 2.35 1.95 1.72 1.43
H2#25G3 0.11 0.31 0.54 1.34 0.65 0.73 0 .80 0.63 0.65 0.73 0.91 1.03 0.75 0.85

A verage 1.03 0.63 0.59 1.03 0.63 0.59 0.96 0.55 0.51 1.42
Standard deviation 0.42 0.25 0.27 0.42 0.25 0.27 0.42 0.25 0.26 0.52

C oefficient o f variation (% ) 41% 41% 47% 41% 41% 46% 44% 45% 51% 37%
Note -  1 m m =0.0394 in.

Looking at Figure 3.6 reveals that increasing p j in the normal- and high-strength 

GFRP- reinforced concrete beams increased the number o f cracks and, consequently, reduced 

the average crack spacing. Moreover, the crack depth also decreased when pj increased. 

Comparing Series I and II beams, which had the same reinforcing bars (sand-coated GFRP 

bars: G1 and G2) it could be noticed that increasing pj or E f A f  resulted in a higher number of 

cracks and also yielded smaller initial crack widths except in case of H6#15G1, which seems 

to be affected by the pre-existing hair crack.
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N 6 # 1 5 G 1 I d
H6#15G1 H6#15G

4  ....   4

i'Â  ïll

N5#15G2
KÀ\ 1 f i  { iK i f \ t llÈiJJ-L

HS,,5a2 Lu
Series Iï beams at Ma =  0.3 Mn Series II beams at Ma =  0.67 M a

..... T ▼
N5#15G3 , . J  4  . j . / t

!  J  n  t  I n  I  i t A i

Hf ,5G3 d i / l l . J r f l . h l U  \ . T ^U (,éJik i  ,

! N2#2SG3 i iA\> ii l ; I i\i\ N2S25Cr  J / i â  ili a  \ \ u \ \
\ H2#25G3 ,H2#25G3

Series HI beams at Ma =  0.3 M a
J '< à a/ J \  t .  L Jw iU  1C

Série» n i  beams at M a -  0.67 Mn

Figure 3.6 Crack patterns of beam specimens of Series II and III at 0.3Mn and 0.61 Mn

Comparing Series II and III beams, which have almost the same Ef Af, although 

different types of GFRP bars (sand-coated: Gl ; G2 and helically grooved: G3) revealed that 

fewer cracks in beams reinforced with helically-grooved GFRP bars. This tends to confirm 

that the sand-coated GFRP bars have better bond characteristics than the helically-grooved 

ones. Figure 3.6 also pointed out the effect of concrete strength on cracking behaviour. Given 

the same load level, the higher concrete strength resulted in more cracks with closer spacing 

and smaller crack width than beams with lower concrete strength. Moreover, HSC produced 

higher cracking moments which enhance the comparable behaviour. Similar behaviour was 

also reported [Bouguerra et al., 2011] in FRP- reinforced concrete slabs where using HSC 

resulted in closer cracks with smaller widths.

71



Chanter 3: Flexural Behavior & Serviceability o f  Normal & Hieh Streneth Concrete Beams Reinforced with GFRP Bars

Most design codes specify a flexural crack-width limit for steel-reinforced 

concrete structures to protect the reinforcing bars from corrosion and to maintain the 

structure’s aesthetical appearance. Unlike steel reinforcement, FRP is corrosion resistant. 

Therefore, the serviceability limits for crack widths in FRP- reinforced concrete elements may 

be directly related to aesthetic considerations. The FRP design codes and guidelines permit a 

larger crack width for FRP- reinforced concrete elements compared to their counterparts 

reinforced with steel. CAN/CSA-S806 [2002] and CAN/CSA-S6 [2006] specify a service- 

limiting flexural-crack width of 0.5 mm [0.02 in.] for exterior exposure (or aggressive 

environmental conditions) and 0.7 mm [0.03 in] for interior exposure. In addition, ACI 

440.1R-06 [2006] recommends using CAN/CSA-S806 [2002] limits for most cases. On the 

other hand, since there is a direct relationship between the strain in the reinforcing bars and the 

crack width, ISIS Manual No.3 [2007] specifies 2,000 microstrains as a strain limit in FRP- 

reinforcing bars to control crack width.

Figure 3.7 gives the moment-crack width relationships for the tested beams. 

Table 3-6 lists the crack widths at 2,000 microstrains in the FRP, at 0.3M„, and at 0.67M„. 

Series I beams evidenced very high crack widths at service-load levels. Beyond that, the 

cracks were very wide with a maximum of 2.38 mm [0.09 in.]. High-strength concrete yielded 

smaller initial crack widths and enhanced the crack widths at both service- and ultimate-load 

levels (Figure 3.7 a; b). At 2,000 ps one beam (N2#13G2) showed a crack width larger than 

0.7 mm [0.03 in.] (0.77 mm [0.031 in.]), while, at 0.3A/„, the three beams exceeded this limit: 

1.03, 0.78 and 0.83 mm [0.04, 0.03, and 0.033 in.] for N2#13G2, N3#13G1, and H2#13G1, 

respectively. As mentioned earlier, the strains in those 3 beams at 0.3A/„ were very high and 

not expected to satisfy the crack-width criterion at this load level. Thus, even with over­
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reinforced section practical design values for p/pp, might be needed. The ACI 440.1R-06, 

[2006] ratio o fp/pp,=l.4  might be adequate for some cases.

Crack width, in 
0.00 0.02 0.04 0.06 0.08 0.10 0.12

(b) Series II and III

Figure 3.7 Moment-to-maximum crack-width relationships: (a) Series I and II; (b) Series II
and III

Increasing the E fA f from about 18 MN [4,047 kips] (Series I) to about 60 MN 

[13,489 kips] (Series II) with the same sand-coated GFRP bars greatly enhanced the crack 

widths at all load levels. The average crack width in Series II beams was 0.42 and 0.36 that of 

Series I at 2,000 pe and 0.3M„, respectively. The beams satisfied the severe-exposure crack- 

width criterion (0.5 mm [0.02 in.]) at both load levels. On the other hand, comparing Series II 

and III beams reveals that the helically-grooved GFRP bars yielded larger cracks than the 

sand-coated ones, even when the same EfAf was provided. The average crack width of Series

j '  N2#13<32 
4381 OSjT

0JO 0.5 1.0 1.5 2.0 2.5 3.0
Crack width, ram
(a) Series I and II

Crack width, in 
0.00 0.02 0.04 0.06 0.08 0.10 0.12

! HS#15Q3r > H2#25G3 

l) ^ 1 3C j l> y j  H2*13j32

200 148

OjO 0JS 1.0 1.5 2.0 2.5 3.0
Crack wkfiti, nun
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III beams was 1.80 and 1.72 times that of Series II beams at 2,000 microstrains and 0.3M„, 

respectively. Once again, this tends to confirm that the sand-coated GFRP bars have better 

bond characteristics than the helically-grooved ones.

The effect of bar diameter on crack width can be seen in Figure 3.7b for NSC 

and HSC. Using 2 No. 25 GFRP bars instead of 5 No. 15 GFRP bars increased the crack 

width, especially at higher load levels. This effect was greater in the NSC (N5#15G3, 

N2#25G3) beams than in the HSC (H5#15G3, H2#25G3) ones.

DEFLECTION  AND CRA CK ING  PROVISIONS 

Deflection provisions 

CAN/CSA S806-02

CAN/CSA-S806, [2002] employs curvature integration along the span to determine the 

deflection of a concrete member at any point, assuming the section is fully cracked with no 

tension stiffness contribution in the cracked regions of the beam. Thus, the curvature in the 

cracked zone is given by M/EcIg for the un-cracked parts of the beam and M/EcIcr when the 

applied moment is higher than the cracking moment. CAN/CSA-S806, [2002] based on the 

closed form solution, provided deflection equations for simple loading cases such as Eq. [3.7] 

for a simply supported member subjected to two-point loading:

^ = P L 3/2 4 E f / fr[ 3 ( a /L ) - 4 ( a /L ) 3- 8 ( l - / cr/ / J ( L , / L ) 3]  3.7

ACI 440.1R-06

ACI 440.1R-06 [2006] specifies the effective moment of inertia formulation (Ie) to be 

employed in calculating the deflection of cracked FRP- reinforced concrete beams and one­

way slabs. The procedure entails calculating a uniform moment of inertia throughout the beam
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length and uses deflection equations derived from linear elastic analysis. The effective 

moment of inertia (Ie) provided by Branson [1968] was modified with a factor (fij) to account 

for FRP materials instead of steel. The effective moment of inertia expression used by ACI 

440.1R-06 [2006] is given as following where the Ma is the applied moment:

ACI 440-H, [2010]

ACI 440-H [2010] proposed an alternative expression for the effective moment of 

inertia (le) that works for both FRP- and steel-RC members without the need for empirical 

correction factors [Bischoff et Scanlon, 2007b]. The expression included the new factor (y), 

which accounts for stiffness variation along the member. ACI 440-H [2010] expression is 

presented as follows:

Ig +[1 ~ (M cr/M a )3] /cr < / ,  

where = 0.2 (p f j p fb) < 1.0 3.9

3.8

3.10

where 7  = l - ( / „ / / g); y = 1 .72 -0 .72 (M <T/A /J 3.11

ISIS Manual No. 3-07

ISIS Manual No.3 [2007] presented Eq. [3.12], which was based on the Mota et

a i,  [2006a] proposal for le.

3.12

Crack width provisions
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Current crack-width prediction equations are modified forms of the original 

Gergely-Lutz equation [Gergely et Lutz, 1968] for steel-RC members. The equation was 

modified to account for the FRP’s differences in bond and mechanical properties compared to 

those of steel. The currently available equations are:

W = 2 —  — kb yjdc2 + (s /2)2 [ACI 440.1R-06, 2006; CAN/CSA-S6, 2006; CAN/CSA-S6,
Ef h\ 3.13

2002]

W = 2.2kb —  — (dcA)Vi [ISIS Manual N o.3 ,2007] 3 14
Ef  h,

The bond coefficient (kb), which accounts for the bond between FRP bars and 

the surrounding concrete, is the key parameter in predicting cracks with using Eq. [3.13] and 

[3.14], A conservative value of 1.4 should be used when the experimentally determined values 

are not available [ACI 440.1R-06, 2006], ISIS Manual No.3 [2007] recommends a kb of 1.2 in 

the absence of significant test data. CAN/CSA-S6 [2002] recommends a kb of 0.8 for sand- 

coated bars and 1.0 for deformed bars.

COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED RESULTS

Deflection

The predicted deflections of the tested beams were compared with the experimental 

deflection values at 0.3 times the beam’s load-carrying capacity (0.3M„) and at 0.67M„. 

Table 3-5 provides the experimental-to-predicted deflection ratios ( S exp/ d pred ) .  The predications 

showed that the employed deflection provisions are viable for both concrete types (NSC and 

HSC). Based on the predicted deflections, ACI 440.1R-06 [2006] and ACI 440-H [2010] 

yielded un-conservative deflections at 0.3M n and 0.67M n . At 0.3M„ the ô exp/ ô Pred according to 

ACI 440.1R-06 [2006] and ACI 440-H [2010] was 1.17+0.38 and 1.13+0.22, respectively.
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Considering the overall average (average of all predictions at 0.3Mn and 0.67M„), ACI 

440.1R-06 [2006] and ACI 440-H [2010] yielded similar Sex/ S prej, although ACI 440-H 

[2010] showed lower COV (15%) in comparison to that of ACI 440.1R-06, [2006] (26%). On 

the other hand, both CAN/CSA-S806 [2002] and ISIS Manual No.3 [2007] provided 

conservative deflection predictions. At 0.3M„ the Sexp/6prej  ratios according to CAN/CSA-S806

[2002] and ISIS Manual No.3 [2007] were 0.76+0.12 and 0.80+0.11, respectively. In addition, 

considering the overall average, both CAN/CSA-S806 [2002] and ISIS Manual No.3 [2007] 

showed conservative deflection predictions of 0.84±0.14 and 0.87+0.12 with corresponding 

COVs of 16 and 14%, respectively. Furthermore, ISIS Manual No.3 [2007] and ACI 440-H 

[2010] showed the lowest COVs amongst the equations used, namely 14 and 15%, 

respectively.

Crack width

Table 3-6 compares the measured crack widths to the predicted values. The 

comparison was conducted at three different load levels: at 2,000 pe in the reinforcing bars, 

0.30Mn and 0.67M„. The predictions were conducted using a kb value of 1.4 for ACI 440.1R- 

06 [2006] and 1.2 for ISIS Manual No.3 [2007]. The predictions were very conservative for all 

the tested beams at 0.30M„ and at 0.67M„. The average weX!/w prej  at 0.30M„ calculated 

according to ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007] were 0.63 and 0.55, 

respectively. Moreover, there were no significance differences between the wexp/wprecj at 

0.30A/„ and at 0.67Mn. The degree of conservativeness was higher for the GFRP- reinforced 

concrete beams with multi-layer reinforcement.
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The bond factor (kb) was calculated using the experimental results as shown in 

Table 3-6. The calculated values indicate that the 1.4 is very conservative value, on average, 

for the sand-coated GFRP bars when the ACI 440.1R-06 [2006] equation was used. 

Furthermore, the 1.2 value for ISIS Manual No.3 [2007] predictions looks very conservative. 

Different kb values were employed in predicting the crack widths as presented in Table 3-7 

using [ACI 440.1R-06, 2006; ISIS Manual No.3, 2007; CAN/CSA-S6, 2006], There was no 

clear trend for the difference between the NSC and HSC beams. The 1.4 value proposed by the 

ACI 440.1R-06, [2006] is very conservative for the sand-coated and helically-grooved GFRP 

bars in NSC and HSC. A kb value of 1.2 seems to serve well for ACI 440.1R-06 [2006] and 

CAN/CSA-S6 [2006] equation for the helically-grooved GFRP bars in NSC and HSC as 

shown in Error! Reference source not found, and Table 3-7. The average wex[/w prej  ratio for 

the four beams reinforced with the helically-grooved GFRP bars using kb= 1 2  was 0.83+0.13. 

The kb value of 0.8 provided by CAN/CSA-S6 [2006] yielded un-conservative crack width 

predictions with an average wexp/wpred ratio of 1.10+0.44 for all the tested beams (sand-coated 

and helically-grooved GFRP bars). This kb value of 0.8, however, yielded conservative 

predictions for the sand-coated multi-layer GFRP- reinforced concrete beams (Series II) using 

NSC and HSC with an average wexp/wpre<i ratio of 0.62+0.27.

Table 3-7 Experimental-to-Predicted Crack Width (wexi/w prej) Using Different kb Values
W exc/ w  p r e d __________________________________

Beam ACI 4404; CSA S65 ISIS14
kh=  1.4 kh= l.2  kb=  1.0 kb=0.8 kb=  1.2 kb=  1.0 £,,=0.8

N 2#13G2 0.95 1.11 1.33 1.66 1.71 2.05 2.57
N3#13G1 1.03 1.20 1.44 1.80 1.02 1.22 1.53
H2#13G1 0.63 0.74 0.88 1.10 1.20 1.44 1.80

78



Chapter 3: Flexural Behavior & Serviceability o f  Normal & Hieh Streneth Concrete Reams Reinforced with GFRP Bars

H3#13G2 0.66 0.77 0.92 1.16 1.57 1.88 2.36
N5#15G2 0.55 0.64 0.77 0 .96 0.68 0.82 1.02
N6#15G1 0.18 0.21 0.25 0.32 0.31 0.37 0.47
H5#15G2 0.29 0.34 0.41 0.51 0.46 0.55 0.69
H6#15G1 0.39 0.46 0.55 0.68 0.76 0.91 1.14
N5#15G 3 0.59 0.69 0.83 1.03 1.20 1.44 1.80
N2#25G 3 0.86 1.00 1.20 1.51 1.05 1.26 1.58
H5#15G3 0.65 0.76 0.91 1.14 0.87 1.04 1.31
H2#25G3 0.73 0.85 1.02 1.28 0.63 0 .76 0.95
A verage 0.63 0.73 0 .88 1.10 0 .96 1.15 1.43

SD 0.25 0.30 0.36 0.44 0.42 0.51 0.63
C O V (% ) 41% 41% 41% 41% 44% 44% 44%

0.00
Crack width, in. 
0.05 0.10 0.15

200

jjjl50
«
=100
E0
* 50 

0

------N6#15G1 :
-----N3#13G1 i

-— -A C t44a.JcbT1 .a ........
....... ISI$- kb=1j0 ..••

/  ! '

/J t ::
1 N3#13G1

i  Nfc#15G1

0.00
Crack w idth, in. 
0.05 0.10 0.15

Crack width, in. 
0.05 0.10

1.0 2.0 3.0
Crack width, mm

-r-H 5 # 1 5 G 2  
/  ; >T2#13&2

H3#13G1H6S15G1
r? £iso f - ^ « * 4 4 0 H cb?14 

f  v**MSlS- k b s l.0

'̂ *̂ .*'ii-iH6#15Gi 
i'H3#i‘3G i 

—  - i  ACI 440 i  k b s l .0 
I ISIS - kb“ 1.0

H2#13G2
HJ5#15G2

1.0 2.0 3.0
Crack w idth, mm

1JÙ 2.0 3.0
Crack width, mm

Crack w idth, in. 
0.05 0.10 0.15

1N5»15G? 
<N2#13G2 .riAClA40Hkt»=O.. 
lISIS- k b il.O  n

0.00
Crack width, in. 
0.05 0.10 0.15

140

120
c £150

100 s z
80 * Sioo

O) ©
m

ei

E

* o M
oi I 50

20

0 0 J

N3#15G3
N2#25G3

 Z F  i... I....
— -N5#15G3^H2*25G?.......
- - iA C I4 4 0 -k b = 1 .2  
— jlSIS-kbfrl.O

1.0 2.0 3.0
Crack width, mm

Crack width, in. 
0.05 0.10

140

12°* 
100c 
80 * 
60 £ 
40 i 
20 = 
0

£150

E
I  50

H5#15G3 i  /  
H 2#2503 y  y

J r i f  _ ; H5#15G:
'J jT \ ........— ;H2»25G^

Æ ?  ----- : ACI 440-
Y  — ilSIS-kb:

.............
kb=1.2
:1.0

120c
100S

1.0 2.0 3.0
Crack width, mm

1JH 2.0 3.0
Crack width, mm

4.0

Figure 3.8 Predicted moment-to-crack-width relationships using different kb values

For ISIS Manual No.3 [2007] predictions using a kb of 1.2 were not consistently 

conservative for all the tested beams. The kb value o f 1.2 yielded reasonable yet conservative 

predictions for the helically-deformed GFRP bars in NSC and HSC with an average wexp/wpred 

ratio of 0.94±0.25. However, it yielded very conservative prediction for the sand-coated multi-

79



Chapter 3: Flexural Behavior & Serviceability o f  Normal & High Streneth Concrete Beams Reinforced with GFRP Bars

layer GFRP- reinforced concrete beams (Series II) using NSC and HSC (wex/ w pretl = 

0.55+0.21).

Employing a kb of 1.0 yielded un-conservative prediction, on average, with wexp/wpred 

ratio of 1.15+0.51. This value, however, yielded good and conservative predictions for the 

sand-coated multi-layer GFRP- reinforced concrete beams (Series II) using NSC and HSC 

(Table 3-7) with an average wexp/wpred ratio of 0.66+0.25.

CONCLUSIONS

The study reported in this paper investigated the flexural behaviour and 

serviceability performance of GFRP- reinforced concrete beams with NSC and HSC. Within 

the scope of this investigation and considering the materials used, the following conclusions 

can be drawn:

1- All the GFRP- reinforced concrete beams showed typical bi-linear behaviour until failure. 

Both NSC and HSC evidenced reduced stiffness after cracking. The NSC and HSC beams 

showed similar behaviour until failure. The post-cracking flexural stiffness of the HSC 

was higher than that of the NSC when the same axial-reinforcement stiffness {EfAf) was 

provided.

2- Using HSC increased the cracking moment of the GFRP- reinforced concrete beams 

compared to the NSC beams. The CAN/CSA-S806 [2002] modulus of rupture equation 

(Eq. [3.3]) seems applicable for both NSC and HSC in the range of the tested concrete 

strengths.

3- Regardless of differences in load-carrying capacity, the high-strength G FRP-reinforced 

beams showed slightly lower strains compared to the HSC beams at the same load level.
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Beams with the same axial-reinforcement stiffness are expected to exhibit similar load- 

reinforcement-strain relationships in normal- and high-strength concrete.

4- The NSC and HSC beams with low reinforcement ratios, pf , (0.56% or less) showed very 

sharp increases in reinforcement strains at cracking of over 3,000 microstrains. While the 

beams were designed as over-reinforced sections, this did not prevent the large strain 

increase due to poor energy absorption at cracking. A minimum practical reinforcement 

amount may have to be maintained.

5- Except Series I beams with low reinforcement ratios, pf, the curvature at 0.30A/„ was 

0.004Id. The GFRP beams satisfied deflection and crack-width serviceability limits 

(L/240 for deflection and 0.7 mm [0.03 in.] for crack width). This partially confirms Vijay 

et GangaRao [1996] findings. A minimum reinforcement ratio, however, has to be 

maintained to generalize this phenomenon.

6- Using HSC while maintaining the axial reinforcement stiffness (E /A j) constant helped 

enhance deflection of the GFRP- reinforced concrete beams, crack width, and ultimate 

load-carrying capacity. The results did not support any effect of bar diameter or surface 

configuration of the GFRP bars on the deflection of the NSC and HSC beams.

7- Increasing the reinforcement ratio and concrete strength resulted in a larger number of 

cracks and smaller crack widths. Beams reinforced with sand-coated GFRP bars produced 

larger numbers of cracks and smaller crack widths than those reinforced with helically- 

grooved GFRP bars. This tends to confirm the better flexural bond characteristics of the 

sand-coated bars.

8- Bar diameter had an effect on crack width as evidenced by the NSC and HSC beams 

reinforced with GFRP bars. Employing the same axial-reinforcement stiffness (Ef Aj) with 

two different diameters of helically-grooved GFRP bars (No. 15 and No. 25) yielded
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higher crack widths with the No. 25 than with the No. 15. The effect was higher in NSC 

than in HSC.

9- ACI 440.1R-06 [2006] and ACI 440-H [2010] yielded un-conservative deflection values 

at the 0.3M n and 0.67M n . At 0 . 3 M n the experimental-to-predicted deflection ( ô exp/ ô p red) of 

ACI 440.1R-06 [2006] and ACI 440-H [2010] were 1.17+0.38 and 1.13+0.22, 

respectively.

10- Both CAN/CSA-S80 [2002] and ISIS Manual No.3 [2007] yielded conservative 

deflection predictions. At 0.3M„, the experimental-to-predicted deflection of CAN/CSA- 

S806 [2002] and ISIS Manual No.3 [2007] were 0.76+0.12 and 0.80+0.11, respectively.

11- The bond coefficient (kb) value of 1.4 is very conservative for both of sand-coated and 

helically-grooved GFRP bars in NSC and HSC. Reasonable crack-width predictions were 

obtained from ACI 440.1R-06 [2006] and CAN/CSA-S6 [2006] using a kb factor of 1.2 

for the helically-grooved GFRP bars and 1.0 for the sand-coated bars in NSC and HSC. A 

kb of 0.8 provided by CAN/CSA-S6 [2006] yielded very un-conservative predictions, on 

average, for sand-coated and helically-grooved GFRP bars in NSC and HSC. This value 

(kb=0.8), however, yielded good yet conservative crack-width prediction for multi-layer 

sand-coated GFRP bars in NSC and HSC.
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French Titre: Evaluation du Coefficient d ’adhérence de Barres d'Armature En 

Polymères Renforcés de Fibres de Verre (PRFV) et de Carbone (PRFC)

Contribution in thesis: This paper aimed at investigating the unique values for the bond- 

dependent coefficient (kb) provided by the design codes according to surface characteristics of 

the FRP bars and neglecting bar type and diameter as well as concrete type and strength. The 

paper presented experimental study to calculate the kb values of different types of FRP bars with 

different surface configurations and diameters in normal- and high-strength concretes. Moreover, 

it compared the current kb values provided by FRP design codes and guidelines with those 

calculated from the measured crack widths and strains in the beam specimens. The findings of 

this study did not support the unique kb value for FRP bars of different types (carbon and glass) 

with similar surface configurations. Moreover, kb was found to be dependent on bar diameter.

French Abstract:

La conception des éléments en béton armé de barres d’armature en polymères renforcés 

de fibres (PRF) est typiquement gouvernée par l'état de service plutôt que l'état ultime. Par 

conséquent, il existe un besoin relatif à la vérification de la largeur des fissures dans les 

membrures en béton armé de PRF soumis à des charges de service et à la confirmation que les 

limites des codes de conception soient respectées. Des développements récents dans l'industrie 

des PRF ont mené à la mise en marché de barres d ’armature en PRF ayant différentes 

configurations de fini de surface et différentes propriétés mécaniques. Ces paramètres peuvent 

affecter les propriétés d ’adhérence entre les barres de PRF et le béton et, par conséquent, la 

largeur des fissures dans les membrures de béton armé de PRF. Toutefois, les codes et les
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guidelines de conception ne fournissent qu’une valeur unique pour le coefficient d’adhérence (kb) 

considérant les différents finis de surface, mais négligeant le type et le diamètre des barres ainsi 

que le type et la résistance du béton. Cette étude vise à étudier les recommandations de 

conception actuelles quant aux valeurs de kb et à vérifier la dépendance des valeurs de kb en 

fonction du type (verre (PRFV) ou carbone (PRFC)) et du diamètre des barres de PRF utilisées, 

et du type et de la résistance du béton. L'étude inclut 20 poutres de 4250 mm de longueur, 200 

mm de largeur et 400 mm de profondeur. Les poutres ont été armées soit avec des barres de 

PRFV à fini de surface sablé ou à enroulement hélicoïdal, soit avec des barres de PRFC à fini de 

surface sablé. De plus, les poutres ont été fabriquées avec du béton normal ou du béton à haute 

performance. Les largeurs de fissures et les déformations mesurées ont été utilisées pour vérifier 

les valeurs de kb actuellement suggérés par les codes et guidelines de conception traitant des 

PRF. Les conclusions de cette étude ne supportent pas l ’établissement d ’un coefficient 

d’adhérence (kb) unique pour tous les types de barres de PRF (PRFV ou PRFC) avec des finis de 

surface semblables. De plus, les résultats ont démontré que le kb est dépendant du diamètre des 

barres de PRF.

Mots-clés: Béton; polymères renforcés de fibres (PRF); poutre; déformation; largeur de fissures; 

coefficient d ’adhérence; capacité en service.

ABSTRACT

The design of concrete members reinforced with fiber-reinforced-polymer (FRP) bars is 

typically governed by serviceability state rather than ultimate state. Consequently, there is a need 

to check the crack width in the FRP- reinforced concrete members at service load and verify that
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they meet the code limits. Recent developments in the FRP industry led to introducing FRP bars 

with different surface configurations and mechanical properties, which are expected to affect 

their bond performance and, consequently, the crack width in FRP- reinforced concrete 

members. The design codes and guidelines, however, provide a unique value for the bond- 

dependent coefficient (kb) considering the surface configurations and neglecting FRP bar type, 

bar diameter, and concrete type and strength. Thus, this study aimed at investigating the current 

design recommendations for kb values and checking the dependency o f the kb values on FRP bar 

type (glass and carbon), diameter, and concrete type and strength. The investigation included 20 

beams measuring 4,250 mm long x 200 mm wide x 400 mm deep. The beams were reinforced 

with sand-coated GFRP bars, helically-grooved GFRP bars, and sand-coated CFRP bars and 

were fabricated with normal- and high-strength concretes. The measured crack widths and strains 

were used to assess the current kb values provided by the FRP design codes and guidelines. The 

findings did not support the unique kb value for FRP bars of different types (carbon and glass) 

with similar surface configurations. Moreover, kb was found to be dependent on bar diameter.

CE D atabase Subject Heading: Concrete; fiber-reinforced polymer (FRP); beam; strain; crack 

width; bond-dependent coefficient; serviceability.

INTRODUCTION

While steel bars have been traditionally used as main reinforcement in concrete 

structures, durability issues and corrosion-related problems and costs have driven the urgency for 

introducing alternative reinforcement. Fiber-reinforced-polymer (FRP) bars are corrosive 

resistant by nature and have been used for decades in concrete structures and bridges. Due to the 

lower modulus of elasticity of FRP bars (20%-35% that of steel for GFRP and 60%-70% of
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steel for CFRP), the design of FRP-reinforced concrete (FRP- reinforced concrete) members is 

governed by serviceability state (deflection and crack width) rather than ultimate state.

Crack-width calculations, however, include the effect of bond between FRP bars and 

surrounding concrete. This is normally included in FRP design codes and guidelines through the 

so-called bond-dependent coefficient (kb), while the interpretation of this coefficient remains 

ambiguous [McCallum et Newhook, 2012].

The wide variety of FRP bars currently marketed and the recent development of the FRP 

industry led to the introduction of different FRP bars with different surface configurations and 

mechanical properties (such as sand coated, helically grooved, deformed, indented). These 

differences influence bar bond performance, which relies mostly on friction and mechanical 

interlock [Tighiouart et al., 1998], Baena et al. [2009] reported that, in addition to bar 

mechanical properties, bond behaviour between H IP  bars and concrete depends on many factors, 

including concrete compressive strength, bar diameter, and surface treatment. An increase in 

bond strength and changes in failure mode and failure surface were observed with changing 

concrete compressive strengths. Analysis of the influence of surface treatment on bond 

behaviour confirms the existence of different bond mechanisms for different surface treatments. 

In addition, there was a tendency for FRP bars of larger diameter to show lower bond strength, 

especially in higher strength concrete. Thus, the variations in surface configuration, bar diameter, 

and concrete strength are expected to affect the bond performance o f FRP bars and, 

consequently, the bond-dependent coefficient (kb). FRP design codes and guidelines, however, 

provide unique values for the bond-dependent coefficient (kb), depending on surface 

characteristics of the bar and neglecting FRP bar type, diameter, and type and strength of 

surrounding concrete.
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While many studies have been conducted on the bond behaviour of FRP bars in different 

concrete types, there have been no consistent interpretations of the bond-dependent coefficient 

{kb), which is required for design purposes. The determination of kb was introduced in ACI 

440.1R-03, [2003] through modifying the Gergely et Lutz [1968] equation to account for FRP 

instead of steel bars. Some typical kb values for deformed GFRP bars cited in ACI 440.1R-03

[2003] are between 0.71 and 1.83. In addition, ACI 440.1R-03 [2003] suggested that designers 

assume a value of 1.2 for deformed GFRP bars unless more specific information is available for 

a particular bar. Later, ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) adopted 

a modified version of the crack-width equation proposed by Frosch [1999] in place of the 

modified Gergely-Lutz equation and introduced it in ACI 440.1R-06 [2006], Based on assembled 

experimental data, Subcommittee 440-H (Reinforced Concrete), reported that the kb in Frosch’s 

equation was 19% greater than the kb resulting from the equation attributed to Gergely-Lutz 

[Bakis et al., 2006], The kb values based on Frosch’s equation ranged from 0.60 to 1.72 with an 

average of 1.10+0.31 [Bakis et a i, 2006]. The Canadian Highway Bridge Design Code 

(CHBDC) 2010 edition [CAN/CSA-S6.1S 1, 2010] adopted the ACI 440.1R-06 [2006] crack- 

width equation, while the kb values were not updated to account for the 19% increase in kb values 

with Frosch's equation.

This paper presents an investigation to evaluate the bond-dependent coefficient {kb) of 

different types of FRP bars with different surface configurations and diameters in normal- and 

high-strength concretes. Moreover, it compares the current kb values provided by FRP design 

codes and guidelines with that calculated from the experimental test results (crack widths and 

strains) of the beam specimens.
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RESEARCH SIGNIFICANCE

A wide variety of FRP bars are currently marketed, ranging from simple smooth and 

helically deformed bars to bars with exterior treatment such as sand-coating. The design codes, 

however, provide unique values for the bond-dependent coefficient (kb) according to surface 

characteristics of the FRP bars and neglecting bar type and diameter as well as concrete type and 

strength. This paper presents an investigation to evaluate the bond-dependent coefficient (kb) of 

different types of FRP bars with different surface configurations and diameters in normal- and 

high-strength concretes. Moreover, it compares the current kb values provided by FRP design 

codes and guidelines with that calculated from the measured crack widths and strains in the beam 

specimens tested.

CRACKING PROVISIONS

For cracking, modifications were proposed to the original Gergely et Lutz [1968] 

equation to estimate the crack width of the FRP- reinforced concrete members. The FRP design 

codes and guidelines provide crack-width limits according to the degree of exposure. For 

example, CAN/CSA-S6.1S1 [2010] provides 0.5 mm for severe exposure and 0.7 mm for normal 

exposure. On the other hand, CAN/CSA-S806 [2012] controls crack width with a crack-control 

parameter, while ISIS Manual No.3-07 set a strain limit of 2,000 microstrains at service to 

control crack width. Calculation of crack width involves a common term that was included in the 

predicting equation—the bond-dependent coefficient (kb)— to account for the degree of bond 

between FRP bars and the surrounding concrete. Different values for kb were introduced by the 

available FRP design codes and guidelines concerning the different FRP reinforcing bars. The
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following are the currently available equations in North American codes and guidelines for 

predicting the crack width in FRP- reinforced concrete members:

CAN/CSA S806-12

CAN/CSA-S806 [2012] recommends checking the crack width when the maximum strain 

in FRP tension reinforcement under full service loads exceeds 0.0015 according to Eq. [4.1]

When the crack-control parameter, z, should not exceed 45,000 N/mm for interior 

exposure and 38,000 N/mm for exterior exposure. CAN/CSA-S806, [2012] states that the kb 

value shall be determined, experimentally. In the absence of test data, however, it may be taken 

as 1.2 for deformed rods. It should be mentioned that, in determining kh, the effective clear 

cover, dc, should not exceed 50 mm.

ACI 440.1R-06

ACI 440.1R-06 [2006] adopts the maximum reinforcement spacing provisions to control 

cracking, which was proposed by Frosch [1999]. This formula is independent of reinforcement 

type (steel or FRP), except that it should be modified by a bond-quality coefficient kb [ACI 

440.1R-06, 2006], Therefore, the maximum probable crack width for FRP-reinforced members 

may be calculated from Eq. [4.2],

z
/

4.1

4.2
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For FRP bars having bond behaviour similar to uncoated steel bars, the bond coefficient

greater than 1.0, and for FRP bars having bond behaviour superior to steel, kb is less than 1.0. An 

analysis of crack-width data by members of ACI Committee 440 on a variety of concrete cross 

sections and FRP bars, fiber types, resin formulations, and surface treatments, yielded average kb 

values ranging from 0.60 to 1.72, with a mean of 1.10. Moreover, data for rough sand-coated

work conducted in this area, ACI 440.1R-06 [2006] recommends further research before a 

committee consensus can be reached on kb for such reinforcement.

CAN/CSA S6.1S1-10

CAN/CSA-S6.1S1 [2010] employs the same equation as ACI 440.1R-06 [2006], as 

shown in Eq. [4.3]. Similar to CAN/CSA-S806 [2012], the crack width has to be verified when 

the maximum tensile strain in FRP reinforcement under full service exceeds 0.0015.

The value of kb should be determined experimentally, but, in the absence of test data, it 

may be taken as 0.8 for sand-coated and 1.0 for deformed FRP bars. In calculating dc, the clear 

cover shall not be taken greater than 50 mm.

ISIS M-03 (2007)

ISIS Manual No.3 [2007] predicts the crack width using Eq. [4.3]:

kb is assumed to be equal to 1.0. For FRP bars having bond behaviour inferior to steel, kh is

FRP-bar surface treatments tended toward the lower end of this range. Regardless of the research

4.3

4.4
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In the absence of significant test data, kf,= 1.2 is recommended.

EXPERIMENTAL PROGRAM 

Materials

As the bond-dependent coefficient (kb) is affected by the surface configuration and 

bond performance, three types of GFRP and one type of CFRP were used. The GFRP bars were 

referred to as GFRP-1 for sand-coated, normal-modulus bars (Grade I-[CAN/CSA-S807, 2010]), 

GFRP-2 for sand-coated, high-modulus bars (Grade III- (CAN/CSA-S807, 2010]), and GFRP-3 

for helically grooved, high-modulus bars (Grade III- [CAN/CSA-S807, 2010]). Furthermore, the 

CFRP bars were referred to as CFRP-1 for sand-coated Grade III [CAN/CSA-S807, 2010] bars. 

The tensile properties of the reinforcing bars were determined by testing five representative 

specimens according to [ASTM D7205, 2011]. Figure 4.1 shows the used GFRP bars and 

Table 4-1 provides the properties of the FRP bars.

Commonly used normal- and high-strength concretes were used to fabricate the 

beam specimens with a targeted compressive strength of 35 and 65 MPa, respectively. The 

compressive and splitting concrete strengths were determined by testing three 150 x 300 mm 

cylinders on the day of testing. The measured compressive and splitting concrete strengths of the 

normal-strength concrete ranged from 33.5 to 48.1 MPa and from 3.1 to 4.0 MPa, respectively. 

While the measured compressive and splitting concrete strengths of the high-strength concrete 

ranged from 59.1 to 81.5 MPa and from 4.5 to 5.5 MPa, respectively. It should be mentioned that 

the first batch of the high-strength concrete did not achieve the desired strength (59.1 compared 

to 65 MPa) but it was used for calculating kb and also denoted as high-strength concrete. The 

concrete compressive and tensile strengths for each beam are presented in Table 4-2.
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Table 4-1 Properties of the reinforcing bars

Bar
type

Designated 
diameter 
of FRP 

bar3

Nominal
cross-

sectional Surface
configuration

Tensile
strength,

(MPa)

Modulus of 
elasticity, Ef , 

(GPa)
Ultimate

strain

Guaranteed 
strength 

and strain5 E/ffu
area3

(mm2)
(Average+SD) (Average±SD) (%) /c

MPa
£c

(%)
GFRP- 13 129 Sand-coated 817+9 48.7+0.6 1.7 790 1.6 59.6
1 (G l) 15 199 Sand-coated 751+23 48.2+1.6 1.6 683 1.6 64.1

20 284 Sand-coated 728+24 47.6+1.7 1.5 656 1.5 65.4
22 387 Sand-coated 693+23 46.4±1.5 1.5 625 1.5 67.0
25 510 Sand-coated 666+74 53.2±2.1 1.3 444 1.0 79.9

GFRP- 13 129 Sand-coated 1639+61 67.0+1.0 2.5 1456 2.2 40.9
2 (G2) 20 284 Sand-coated 1082+37 52.5±1.7 2.1 971 2.0 48.5

25 510 Sand-coated 1132+23 66.3+0.9 1.7 1063 1.7 58.6
GFRP-
3 (G3) 15 199 Helically

grooved 1245+45 59.5+1.1 2.1 1110 1.9 47.8

25 510 Helically
grooved

Sand-coated

906+29 60.3+2.9 1.5 819 1.3 66.6

CFRP- 10 71 1938+210 147.0+3.0 1.32 1308 1.6 75.9
1 (C l) 13 129 Sand-coated 1470±121 141.0+2.4 1.04 1107 1.6 95.9

“According to [CAN/CSA-S807, 2010],
b According to [ACI 440.1R -06, 2006] =  average - 3 x  standard deviation (SD).

Figure 4.1 Surface configurations of the FRP reinforcing bars
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Table 4-2 Details of the test specimens

Series Beam3 f 1  ̂
(MPa)

f i b
(MPa)

Pf
(%)

Pjb
(%) P/Pjb AfEf

(kN)
I N3#13G1 33.5 3.60 0.56 0.43 1.31 18347

N2#13G2 33.5 3.60 0.38 0.15 2.45 17286
II N2#15G1 38.9 3.81 0.56 0.65 0.87 19144

N2#15G3 33.8 3.11 0.56 0.21 2.69 23681
m N3#20G1 42.1 3.18 1.21 0.73 1.67 40555

N2#22G1 38.9 3.81 1.08 0.61 1.76 35264
N3#20G2 48.1 3.96 1.21 0.34 3.59 44730

IV N2#25G1 48.1 3.96 1.46 0.83 1.75 54264
N2#25G2 48.1 3.96 1.46 0.38 3.85 67626
N2#25G3 33.8 3.11 1.51 0.42 3.57 61506

V N3#10C1 44.7 3.24 0.30 0.26 1.13 31311
N3#13C1 44.7 3.24 0.54 0.42 1.30 54567

VI H2#13G2 59.1 4.51 0.38 0.22 1.67 17286
H3#13G1 59.1 4.51 0.56 0.63 0.90 18347

VII H3#20G2 81.5 5.45 1.21 0.54 2.22 44730
VIII H2#25G1 81.5 5.45 1.46 1.35 1.08 54264

H2#25G2 81.5 5.45 1.46 0.61 2.38 67626
H2#25G3 76.5 4.62 1.51 0.76 1.98 61506

IX H3#10C1 76.5 4.62 0.30 0.42 0.72 31311
H3#13C1 76.5 4.62 0.54 0.66 0.82 54567

a Concrete type (N: normal strength; H: high strength), number o f  bars followed by bar diameter, ending with the
reinforcement type (G l: GFRP-1, G2: GFRP-2, G3: GFRP-3, C l: CFRP-1). 

b Average o f three cylinders (150x300 mm) on the day o f  testing. 
c Calculated according to [CAN/CSA-S806, 2012].

Test specimens

The test parameters of this experimental program were material type (carbon and glass 

FRP), surface configuration (sand-coated and helically grooved), bar diameter (No. 13 to No. 

25), and concrete strength (normal- and high-strength). These parameters were investigated 

through 20 FRP-reinforced concrete (FRP- reinforced concrete) beams. The FRP- reinforced 

concrete beams were categorized in nine groups according to the reinforcing bar type and 

diameter. Groups I to V included No. 13 to No. 25 GFRP bars and No. 10 CFRP bars in normal- 

strength concrete, while Groups VI to EX included the same FRP bars in high-strength concrete. 

Table 4-2 shows the details of each group. The beams were reinforced with one layer of FRP
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reinforcement comprising two or three bars. The normal-strength FRP- reinforced concrete 

beams were designed to maintain over-reinforced sections (p/pjb > 1.0), except N2#15G1, which 

was designed as under-reinforced, but the actual material properties yielded an under-reinforced 

section (p/pjb < 1.0). The high-strength FRP- reinforced concrete beams comprised three under­

reinforced beams (p/pjh < 1 0) when the same cross-sectional areas of FRP reinforcements were 

used, namely H3#13G1, H3#10C1, and H3#13C1. The significant increase in concrete strength 

changed those beams from over-reinforced to under-reinforced sections. The entire beams were 

reinforced in compression with 2 10M steel bars; shear failure was avoided by providing closely 

spaced steel stirrups (100 mm spacing in the shear span). In addition, two stirrups spaced at 300 

mm were placed in the constant moment zone to ensure the positions of longitudinal bars and 

minimize the confinement provided by the stirrups, which, in turn, influence crack-width results. 

Figure 4.2 shows the geometry and reinforcement details of the specimens.

1375 P/2

t
1000

p  .j  Steel Stirrups 0  10 @ 100 mm 
!jj. 3375

.300. .300. .300.r ï r
3750
4250

—?5Q_

— Concrete strain gauge 
x  Reinforcement strain gauge 

|  LVDT

2-10M  steel

Steel 010  mm 
@100 mm

25

i - '  : : s
. 200 .

Configuration o f  2 or 3 bars

Figure 4.2 Dimensions, reinforcement details, and instrumentation
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Instrumentation and testing

The reinforcing bars and compression-concrete zone of the beams were instrumented 

with electrical resistance strain gauges to capture the strains at the desired locations. Moreover, 

five linear variable-displacement transducers (LVDTs) were installed on each beam to measure 

deflection at different locations during testing. In addition, one LVDT was installed at the 

position of the first flexural crack after measuring its initial width with a handheld microscope 

with 50X magnifying power. Figure 4.2 also shows beam instrumentation.

All beam specimens were tested under four-point bending over a clear span of 3,750 mm 

(Figure 4.2). The load was monotonically applied using a 500 kN hydraulic actuator with a 

stroke-controlled rate of 0.6 mm/min. During the test, crack formation on one side of each beam 

was marked and the corresponding loads were recorded. The actuator, strain gauges, and LVDTs 

were connected to a data-acquisition unit to continuously record their readings.

DEFINITION OF SERVICE LOAD

Most design codes specify a flexural-crack-width limit for steel-reinforced concrete 

structures to protect the reinforcing bars and stirrups from corrosion and to maintain the 

structure's esthetic shape. Unlike steel reinforcement, FRP is non-corrodible by nature. 

Therefore, the serviceability limits for the crack width in FRP- reinforced concrete members may 

be directly related to esthetic considerations. Consequently, larger crack widths are permitted in 

FRP- reinforced concrete elements compared to their counterparts reinforced with steel. The FRP 

design provisions specify limiting widths for flexural cracks corresponding to the degree of 

exposure to the environmental conditions. CAN/CSA-S6.1S1 [2010]; CAN/CSA-S6 [2002] and 

ACI 440.1R-06 [2006] provide crack width limits of 0.5 mm for exterior exposure and 0.7 mm
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for interior exposure. The Japan Society of Civil Engineers [JSCE, 1997] is setting a maximum 

allowable crack width of 0.5 mm. On the other hand, since there is a direct relationship between 

strain or stress in reinforcing bars and crack widths, a unified strain limit of 2,000 microstrains 

for the strain in the GFRP bars was recommended by ISIS Manual No.3 [2007] to keep the crack 

width less than or equal 0.5 mm under service load. CAN/CSA-S6.1S1 [2010], however, limits 

the stress in FRP reinforcing bars to 0.25f/rpu and 0.60fjrpu for GFRP and CFRP bars, respectively, 

where ffrpu is the characteristic tensile strength (referred to as guaranteed tensile strength, / g ,  by 

ACI 440.1R-06 [2006] of the FRP reinforcing bars (average -  3xstandard deviation).

The definition of the term “service load” in laboratory testing is not as direct as provided 

by loading codes. According to loading codes, the service load is calculated considering the real 

dead, live, static, and dynamic loads. In a laboratory testing, however, most of the structural 

elements (especially beams and one-way slabs) are tested under one- or two-point loading 

schemes. The self-weight of the structural elements is very small compared to the resisting 

loads/moments and, most probably, there is one load component, which is live load. Many trials 

were performed to assume a reasonable value for the service load in laboratory testing as a 

function of the flexural load-carrying capacity of FRP- reinforced concrete elements. Many 

researchers [Mota et a l, 2006a; Kassem et al., 2011; Bischoff et al., 2009; El-Nemr et al., 2011] 

have assumed that 30% of the nominal flexural capacity (0.3M„) of beams and one-way slabs is a 

reasonable value for the service load of an FRP- reinforced concrete structural member. The 

strain in the GFRP reinforcing bars, however, was very high at this load level and, in some 

specimens, it exceeded 3,500 microstrains. Others recommended load corresponding to the 2,000 

microstrains specified by ISIS Manual No.3 [2007], CAN/CSA-S6.1S1 [2010] limits for the 

stress in FRP reinforcement under service loads may be also employed where the service loads
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are calculated at corresponding stresses of 0.25ffrpU and 0 .6 0 /^  for GFRP and CFRP bars, 

respectively. Thus, in lieu of a fixed definition for the service-load level, all the aforementioned 

limits were considered and the bond-dependent coefficient (kb) was calculated for all those 

possible service loads. For the calculations, however, an upper crack-width limit of 0.7 mm was 

maintained, as proposed in Annex S  “Test Method fo r  Determining the Bond-Dependent 

Coefficient o f FRP Rods” in CAN/CSA-S806 [2012]. In addition, the bond-dependent coefficient 

was also evaluated at 0.25ffrpu and Q.\25ffrpu, since the authors expected that the service load 

would fall between those stress limits.

TEST RESULTS AND DISCUSSION

This paper aimed at evaluating the bond-dependent coefficient (kb) of different FRP bars 

and diameters in normal- and high-strength concretes. As the calculation of the kb requires the 

stresses in the FRP reinforcing bars and the measured crack widths, both of those measurements 

are presented and briefly discussed in this section. Figure 4.3 shows typical crack patterns of 

some beams at failure. Figure 4.4 a and b shows the moment-to-reinforcement strain 

relationships, while Figure 4.5 provides the moment-to-crack-width relationships of the tested 

beams. Table 4-3, however, summarizes the strains and crack widths at the different loading 

stages (corresponding to 2,000 microstrains, 0.3Mn, 0.67M„, 0.5 mm crack width, and 0.7 mm 

crack width, where M„ is the nominal capacity of the beam specimens).
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(a) N2#13G2 (b)N 3#13Gl

(c) N2#15G2 (d) N2#15G3

(e) H3#20G2 (f) H2#25G3

Figure 4.3 Typical crack pattern of the constant moment zone at failure
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Strain in FRP reinforcement

Figure 4.4 shows the strains in the FRP reinforcing bars of the tested beams. 

According to Figure 4.4, the strains were significantly affected by the axial stiffness of the 

reinforcing bars ( E f  A f ) .  The relationships almost fall into two sets. The first set includes the 

beams in Groups I, II, and VI, which have E f  A f  ranging from 17,286 to 23,681 kN. The second 

set, however, consists of the beams in Groups III, IV, VII, VIII, and IX, which have E f  A /  ranging 

from 35,264 to 67,626 kN. Group V, however, has one beam in each of the two sets.

From Figure 4.4 (a) for normal-strength concrete, it can also be observed that 

N3#20G2 and N3#13C1 showed almost the same moment-to-strain relationship, regardless of 

the different E f  A f  (44,730 and 54,567 kN, respectively). Beam N3#20G1 (E f  A f =  40,555 kN) 

showed a very close relationship to N3#20G2 and N3#13C1. On the other hand, from the strains 

in the high-strength concrete (Figure 4.4 (b)), H3#13C1 (Ef Af = 54,567 kN) showed strain values 

slightly higher than those of H3#20G2 ( E f A f =  44,730 kN) and H2#25G1 (E f  A f -  54,264 kN). 

This may be related to the smaller p/pjb ratio for the H3#13C1 compared to those of H2#15G1, 

and H3#20G2. The p/pjb ratios for the three beams were 0.82 (under-reinforced), 1.08, and 2.22 

for H3#13C1, H2#15G1, and H3#20G2, respectively. The fact that bars G l, G2, and C l have the 

same surface configuration (sand-coated bars) implies that both FRP-bar bond and bar 

mechanical properties play significant roles in controlling the induced strains. It further implies 

that the value of the bond-dependent coefficient (kb) may not necessarily be the same for 

different FRP bars with the same surface configuration.

In addition, the normal-strength beams with lower reinforcement ratios showed a 

sharp increase in strain (from 2,000 to 3,000 microstrains) as soon as the first crack appeared.
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Even though all those beams were over-reinforced, except N2#15G1, and many of them had 

p/pjb greater than 1.4, as recommended by ACI 440.1R-06 [2006], this did not prevent them 

from exhibiting a sharp increase in induced strains after cracking.

Table 4-3 Strains and crack widths of the test specimens

Beam Mn
(kN.m)

Strain in reinforcement (pe) at Crack width (mm) at
w=
0.5
mm

w=
0.7
mm

0.30Mn 0.67 Mn 0.25f G 0.125/g 2000
pe 0.30M„ 0.67A/„ 0.25f G 0.125/c

N3#13G1 81.34 3388 4099 4378 9299 4000 2000 0.4 0.78 1.82 0.67 0.4
N2#13G2 82.78 76 95 5349 11589 5500 2750 0.77 1.03 2.38 1.05 0.84
N2#15G1 64.04 4161 5297 4189 9332 4000 2000 0.96 0.5 1.22 0.96 1.37
N2#15G3 91.31 3009 3802 3448 8122 4750 2375 0.31 0.63 1.68 0.95 0.37
N3#20G1 107.39 3070 4031 3107 3908 3750 1875 0.32 0.51 1.17 0.65 0.3
N2#22G1 132.26 4207 6331 4262 3908 3750 1875 0.47 0.51 1.05 0.45 0.23
N3#20G2 171.43 2768 3983 3755 9132 5000 2500 0.38 0.66 1.35 1.04 0.55
N2#25G1 161.65 2711 3796 2991 6888 2500 1250 0.36 0.55 1.28 0.46 0.31
N2#25G2 167.24 3022 4422 2127 4660 4250 2125 0.33 0.36 0.73 0.68 0.36
N2#25G3 115.93 1929 2958 1666 4016 3250 1625 0.53 0.45 0.93 0.77 0.43
N3#10C1 117.22 4363 9472 6596 offscale 4000a 2000 b 0.32 0.62 1.03 0.46a 0.32 b
N3#13C1 149.92 3777 5434 3052 6458 4000a 2000 b 0.33 0.45 0.96 0.57a 0.33 b •
H2#13G2 101.59 252 2759 3984 10204 5500 2750 0.61 0.83 1.44 0.99 0.70
H3#13G1 82.58 571 5756 1000 10408 4000 2000 0.61 0.55 0.72 0.63 0.61
H3#20G2 184.15 3464 5260 3550 7671 5000 2500 0.22 0.51 0.91 0.68 0.35
H2#25G1 173.67 3520 5111 3202 6877 2500 1250 0.23 0.46 0.91 0.30 0.21
H2#25G2 207.20 3806 5688 2601 5904 4250 2125 0.31 0.37 0.73 0.55 0.31
H2#25G3 189.17 2929 3438 3121 6662 3250 1625 0.31 0.54 0.54 0.58 0.28

H3#10C1 146.28 2530 4452 3726 6798 4000
a 2000 b 0.43 0.56 0.61 0.57a 0.43 b

H3#13C1 201.44 3905 6392 3482 7171 4000
a 2000 b 0.18 0.46 0.76 0.36a 0.18 b

a Calculated at 0.6Qfa  
b Calculated at 0 .30/o-

On the other hand, most of the high-strength beams showed a significant increase 

in strains at cracking, while the under-reinforced ones (H3#13G1, H2#G2, H3#10C1) showed a 

sharp increase of more than 3,000 microstrains, similar to the normal-strength beams. This sharp
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increase in induced strains might have an impact on the calculations of ky because it will yield 

very high stress in the FRP bars after cracking.
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Figure 4.4 Moment-to-reinforcement strain relationships (a) Normal-strength-concrete beams;

(b) High-strength-concrete beams
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Consequently, testing concrete beams reinforced with 2 GFRP bars of very small 

diameters (9,5 or 12.7 mm), according to Annex S  of CAN/CSA-S806 [2012] may yield 

significantly different kb values compared to the case when more bars are used (i.e. 4 bars). In 

addition, using 2 bars of large diameter, such as 25 mm, will yield very high reinforcement ratios 

and consequently prevent the sharp increase in strains after cracking. Thus, there might be a need 

to maintain a minimum reinforcement ratio when kb is evaluated according to Annex S of 

CAN/CSA-S806 [2012]. This issue, however, requires more investigation.

Cracking and crack width

All beams were initially un-cracked. When the cracking moment was reached in the pure 

bending zone, some cracks began to appear. The initial width of the first crack was measured 

using a handheld microscope with 50X magnifying power. Thereafter, one LVDT was installed 

to continuously record the variation in the crack width as the applied load varied. Figure 4.3 

shows the typical crack pattern for compression failure of normal- and high-strength concrete 

beams at failure. This figure indicates that the number of cracks appearing in the constant 

moment zone was affected by the type and diameter of the FRP reinforcing bar as well as 

concrete strength, which implicitly includes the effect of the bond characteristics of the FRP bars 

in concrete. Thus, different kb values based on bar type, surface configuration, and diameter are 

recommended.

Figure 4.5 presents the moment-to-crack-width relationships of the tested beams. It 

shows that, regardless the differences in the load-reinforcement strain relationship, N3#20G1, 

N2#22G1, N2#25G3, N2#25G1, and N3#20G2 had almost the same load-to-crack-width 

relationships. Moreover, N2#25G2 displayed a crack width smaller than N2#25G3 at the same
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load level. Similar results can be observed in the high-strength concrete beams H2#25G1, 

H2#25G2, H2#25G3, and H3#13C1. Thus, it could be concluded that surface configuration and 

modulus of elasticity had a direct impact on the load-to-crack-width relationships. Those 

parameters should be joined to axial reinforcement stiffness as parameters governing crack width 

and performance of the FRP-reinforced concrete beams. This confirms that a unique bond- 

dependent coefficient (kb) value considering only the surface configuration of the FRP bars 

(regardless of modulus) is not representative of actual behaviour.

The strain-to-crack-width relationships presented in Figure 4.6 show that the 

relationships are not linear in all cases. The appearance of other cracks during the tests may 

affect those being measured, and the relationships may become bilinear or even nonlinear. 

Moreover, they might be transition zone until the stabilization of the crack pattern in the flexural 

zone. Thus, the reinforcement stress level (determined from measured strains) at which the bond- 

dependent coefficient (kb) is calculated can significantly change the determined value.

Consequently, it is very important to fix the point at which kb should be determined. In 

this paper, the kb values were determined at all the possible limits, including strains, crack 

widths, and ratios of the nominal capacities in order to recommend the most appropriate one.
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Furthermore, concerning the relationship between p/pjb and the crack widths measured at 2,000 
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No. 3 [2007] to maintain the crack width below 0.5 mm. Moreover, two beams showed crack 

widths greater than 0.7 mm. This justifies the requirements of CAN/CSA-S6.1S1 [2010] and 

CAN/CSA-S806 [2012] to check the crack widths when the strains exceed 1,500 microstrains.

On the other hand, many beams showed crack widths larger than 0.7 mm at 0.3Mn, 

especially beams with low reinforcement ratios. Thus, if the 0.7 mm limit provided by Annex S 

of CAN/CSA-S806 [2012] as an upper limit for calculating kb is maintained, the actual strains in 

the FRP bars in most of the tested beams will be over 2,000 microstrains.

Crack-Width Prediction

ACI 440.1R-06 [2006] recommends using a kb value of 1.4 when predicting the crack 

widths for FRP-reinforced concrete members, excluding smooth bars and grids. This value is 

justified to yield conservative predictions in the absence of experimental data. ISIS Manual No.3 

[2007], however, recommends a kb value of 1.2 in the absence of significant test data. 

CAN/CSA-S6.1S1 [2010] recommends a kb value of 0.8 for sand-coated FRP bars and 1.0 for 

deformed FRP bars. Those values were used in Eq. [4.2] to [4.4], and the measured-to-predicted 

crack width ratios (wexp/wpred) are listed in Table 4-4 for normal-strength concrete beams and in 

Table 4-5 for high-strength concrete beams. The crack widths were predicted at the possible 

service-load levels (2,000 microstrains, 0.30M„, 0 .25/ g ) as well as at a higher load level (0.67A/„) 

in addition to 0 .125/ g .

In the normal-strength concrete beams (Table 4-4) at 2,000 microstrains, ACI 440.1R-06

[2006], ISIS Manual No.3 [2007], and CAN/CSA-S6.1S1 [2010] yielded non-conservative 

predictions, on average, with w ex/ w pred of 0.98±0.26, 0.92±0.29, and 1.26+0.22, respectively. At 

a low reinforcement stress level of 0 .125/ g , ACI 440.1R-06 [2006], ISIS Manual No.3 [2007],
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and CAN/CSA-S6.1S1 [2010] evidenced very conservative predictions, on average, with 

WeX/ w pre(i of 0.41+0.27, 0.39±0.29, and 0.69+0.47, respectively. In addition, at 0.25/g, the 

wexp/wPred were very conservative, on average, when predicted with ACI 440.1R-06 [2006] and 

ISIS Manual No.3 [2007], while CAN/CSA-S6.1S1 [2010] produced non-conservative 

predictions at this load level.

In high-strength concrete beams (Table 4-5) at 2,000 microstrains, ACI 440.1R-06 [2006] 

and ISIS Manual No.3 [2007] yielded conservative predictions, on average, with w ex/ w pred  of 

0.91+0.47 and 0.84+0.44, respectively, while CAN/CSA-S6.1S 1, [2010] returned non­

conservative predictions, on average, with a w ex/ w pred  of 1.55+0.85. At a low reinforcement 

stress level of 0 .125/ g , ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007] yielded even better 

conservative predictions compared to the case of normal-strength concrete with w eXp / w pred of 

0.93+0.42 and 0.86+0.37, respectively. Similar to the normal-strength concrete beams at 0.25fa, 

the weXp/wpred were very conservative, on average, when predicted using ACI 440.1R-06 [2006] 

and ISIS Manual No.3 [2007], while CAN/CSA-S6.1S1 [2010] returned non-conservative 

predictions at this load level.

Concerning the predictions at 0.30M„ (the recommended value as a service load by many 

researchers), ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007] showed reasonably 

conservative predictions for the normal-strength concrete beams with average w eXp / w pred  of 

0.91+0.17 and 0.77+0.13. With the high-strength concrete beams, the average weXf/w p„d were 

0.69+0.13 and 0.61+0.11 for ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007], respectively. 

CAN/CSA-S6.1S 1 [2010], however, showed non-conservative predictions with average 

weXp/Wpred of 1.23+0.20 and 1.14+0.26 for normal- and high-strength concretes, respectively. The
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small kj, values with CAN/CSA-S6.1S1 [2010] compared to those in ACI 440.1R-06 [2006] and 

ISIS Manual No.3 [2007] contributed to under estimating the crack widths.

The predicted moment-to-crack-width relationships of the tested beams using the kb 

values provided by ACI 440.1R-06 [2006], ISIS Manual No.3 [2007], and CAN/CSA-S6.1S1 

[2010] are shown in Figure 4.8 for the normal-strength concrete beams and in Figure 4.9 for the 

high-strength concrete beams. The relationships were not consistent for the same type of surface 

configuration, regardless of bar diameter and material type the in normal- and high-strength 

concrete beams.

In the case of the normal-strength concrete beams shown in Figure 4.8 with the helically 

grooved GFRP bars (G3: No. 15 and No. 25), employing a kb of 1.2 in the ISIS Manual No.3

[2007] equation yielded very good agreement with the experimental results. The ACI 440.1R-06 

[2006] equation, however, underestimated the crack width of the No. 15 GFRP bars, yet yielded 

good agreement for the No. 25 GFRP bars.
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Table 4-4 Experimental-to-predicted crack width (wex/w prej) for normal-strength-concrete beams

Beam -
ACI 440.1R-06 ISIS Manual No.3-07 CAN/CSA S6-10

2000|ir 0.30M„ 0.67 M„ 0.25/c 0.125/c 2000(je 0.30M,, 0.67M n 0.25/c 0.125/c 2000̂ 1 e 0.30M„ 0.67Af„ 0.25/c 0.125/c
N3#13G1 1.11 1.03 1.08 0.63 0.41 1.02 0.88 0.90 0.58 0.38 1.26 1.14 1.87 1.10 0.73
N2#13G2 1.62 0.95 1.01 0.79 1.11 1.71 0.94 0.99 0.91 1.18 1.72 0.96 1.11 1.50 1.91
N2#15G3 0.66 0.71 0.84 0.81 0.25 0.69 0.69 0.81 0.83 0.25 0.96 0.88 1.01 1.13 0.34
N3#20G1 0.87 0.94 0.96 0.63 0.27 0.75 0.73 0.76 0.55 0.23 1.19 1.24 1.74 1.12 0.48
N2#22G1 0.98 0.70 0.65 0.23 0.12 0.96 0.63 0.58 0.22 0.12 1.56 1.21 2.95 0.40 0.21
N3#20G2 1.08 1.22 1.11 1.18 0.67 0.93 0.95 0.87 1.04 0.58 1.14 1.40 1.07 2.08 1.17
N2#25G1 0.76 0.87 0.90 0.36 0.33 0.72 0.66 0.70 0.34 0.31 1.15 1.24 2.64 0.62 0.56
N2#25G2 0.70 0.65 0.58 0.45 0.25 0.66 0.56 0.50 0.44 0.24 1.25 1.30 1.33 0.80 0.44
N2#25G3 1.09 0.86 0.80 0.75 0.47 1.05 0.78 0.72 0.73 0.46 1.40 1.19 1.10 1.05 0.66
N3#10C1 0.96 1.02 0.76 0 .3 2 a 0 .3 1 b 0.84 0.85 0.63 0 .2 8 a 0 .2 7 b 1.13 1.62 2.69 0 .5 5 “ 0 .5 4 b
N3#13C1 0.94 1.01 0.95 0 .4 8 a 0 .3 2 b 0.82 0.81 0.76 0 .4 2 a 0 .2 8 b 1.16 1.33 2.28 0 .8 4 a 0 .5 7 b
Average 0.98 0.91 0.88 0.60 0.41 0.92 0.77 0.75 0.58 0.39 1.26 1.23 1.80 1.02 0.69

SD 0.26 0.17 0.17 0.27 0.27 0.29 0.13 0.14 0.27 0.29 0.22 0.20 0.74 0.47 0.47
COV (%) 27 19 19 46 66 32 17 19 47 74 17 16 41 46 68

a Calculate at 0.60/c
b Calculate at 0.30fo.

Table 4-5 Experimental-to-predicted crack width (wexp/wpre(t) for high-strength-concrete beams

Beam
ACI 4 4 0 .1R-06 ISIS Manual No.3-07 CAN/CSA S6-10

2000(iE 0.30 M „ 0.67A/, 0.25/c 0.125/c 2000|iE 0.30M„ 0.67A/,, 0.25/c 0.125/c 2000(je 0.30M,, 0.67M,,: 0.25/c 0.125/c
H2#13G2 1.29 0.62 0.49 0.76 1.11 1.36 0.60 0.46 0.83 1.11 2.26 0.99 0.76 1.37 1.94
H3#13G1 1.77 0.66 0.38 0.92 1.77 1.57 0.58 0.33 0.82 1.57 3.10 1.15 0.66 1.62 3.10
H3#20G2 0.62 0.73 0.57 0.76 0.77 0.53 0.60 0.47 0.65 0.68 1.08 1.21 0.96 1.32 1.35
H2#25G1 0.48 0.55 0.49 0.50 0.69 0.46 0.50 0.45 0.48 0.68 0.85 0.92 0.82 0.88 1.20
H2#25G2 0.63 0.49 0.43 0.51 0.62 0.60 0.45 0.40 0.49 0.59 1.11 0.83 1.52 0.91 1.09
H2#25G3 0.65 0.73 0.33 0.74 0.71 0.61 0.65 0.29 0.72 0.68 0.89 1.01 0.46 1.03 0.99
H3#10C1 1.26 0.85 0.41 0 .8 5 a 1.26b 1.11 0.76 0.36 0 .7 5 a 1.11b 2.21 1.51 0.73 1.49a 2.21b
H3#13C1 0.53 0.86 0.65 0 .5 2 a 0 .5 3 b 0.46 0.75 0.57 0 .4 6 a 0 .4 6 b 0.92 1.50 1.14 0 .9 2 a 0 .9 2 b
Average 0.91 0.69 0.47 0.70 0.93 0.84 0.61 0.42 0.65 0.86 1.55 1.14 0.88 1.19 1.60

SD 0.47 0.13 0.10 0.16 0.42 0.44 0.11 0.09 0.15 0.37 0.85 0.26 0.33 0.29 0.76
COV (%) 52 19 22 23 45 53 18 21 24 43 55 22 37 25 48

a Calculated at 0.60/,; 
b Calculated at 0.30/a
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In the case of the sand-coated CFRP bars (C l: No. 10 and No. 13), ACI 440.1R-06

[2006] and ISIS Manual No.3 [2007] showed reasonably similar predictions using kb values of 

1.4 and 1.2, respectively. On the other hand, in the case of the sand-coated GFRP bars (G1 and 

G2), the predictions were reasonable with some diameters and evidenced discrepancies for the 

others. Moreover, the relationships showed that using the same kb value for the types G1 and G2 

sand-coated GFRP bars and type C l sand-coated CFRP bars did no yield the same agreement 

between predictions and test results. Furthermore, using a kb of 0.8 for the sand-coated FRP bars 

(carbon and glass) according to CAN/CSA-S6.1S1 [2010] underestimated the predicted crack 

widths in most of the beams tested, except for type G1 No. 22 GFRP bars and type G2 No. 25 

GFRP bars. For the high-strength concrete beams shown in Figure 4.9, ACI 440.1R-06 [2006] 

and ISIS Manual No.3 [2007] showed reasonably similar predictions using kb values of 1.4 and 

1.2, respectively, with helically deformed No. 25 GFRP bars.

On the other hand, CAN/CSA-S6.1S1 [2010] yielded good predictions for the G1 and G2 

No. 25 sand-coated GFRP bars. Thus, it could be concluded that FRP bar type, bar diameter, and 

concrete strength influence kb values and, consequently, the predicted crack widths.
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Figure 4.8 Predicted moment-to-crack-width relationships according to ACI 440.1R-06 [2006], 

ISIS Manual No.3 [2007], and CAN/CSA-S6.1S1 [2010] for normal-strength concrete beams
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Figure 4.9 Predicted moment-to-crack-width relationships according to ACI 440.1R-06 [2006], 

ISIS Manual No.3 [2007], and CAN/CSA-S6.1S1 [2010] for high-strength concrete beams

EVALUATION OF THE BOND-DEPENDENT COEFFICIENT (kb)

As presented in the previous section, predicting the crack widths of FRP- reinforced 

concrete beams using the kb values currently recommended in FRP codes and guidelines yielded 

discrepancies in most cases. In addition, using the same value for different bars with the same 

surface configuration in the normal- and high-strength concretes was not appropriate. Thus, in
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this section, the kb values were predicted from the experimental results of the tested beams. 

Table 4-6 shows the kb values at different limits calculated according to ACI 440.1R-06 [2006], 

ISIS Manual No.3 [2007], and CAN/CSA-S6.1S1 [2010] provisions and recommendations. The 

kb values determined at crack width (w) = 0.7 mm, 0.30M„, and 0.25/c were somewhat close. 

This supports using any of those limits as the recommended levels at which the kb values should 

be determined. Nevertheless, the 0.30M„ supported by many researchers may still be of interest. 

Moreover, at 0.30M„, the crack width was less than 0.7 mm in all the beams except 3#13G1 and 

2#13G2, which implicitly satisfies the requirements of CAN/CSA-S806 [2012], Annex S, of 

keeping 0.7 mm as the maximum crack width that could be used in determining kb values. In 

addition, determining kb values at very low load levels or just after cracking may not be 

representative because, at this load level, the beam experiences a transition stage until flexural 

cracks in the flexural moment zone stabilized.

The average kb value of each beam was determined from the calculated kb values at a 

crack width of 0.7 mm, 0.30M„, and 0.25/c (see Table 4-7). These values confirm that the bond- 

dependent coefficient should not be provided as a unique value that takes into consideration 

surface configuration but not material type. The coefficient also contributes to concrete strength. 

While the values tend to confirm that kb is a diameter-dependent parameter, the results did not 

show a trend or support a consistent relationship to variations in bar diameter.
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Table 4-6 Predicted bond-dependent coefficient (kb) values at different limits

Beam

ACI 440.1R-06; CCAN/CSA S6-10 ISIS Manual No.3-07
w=
0.5
mm

w=
0.7
mm

2000 0.30M. pe 0.67 Mn 0.25/c 0.125/c
w=
0.5
mm

w=
0.7
mm

2000
pe 0.30M„ 0.67M„ 0.25/c 0.125/c

N3#13G1 1.2 1.4 1.5 1.4 1.6 1.3 1.5 0.9 1.1 1.2 1.1 1.2 1.0 1.2
N2#13G2 - - 1.5 1.1 1.2 1.1 1.2 - - 1.3 1.0 1.1 1.0 1.1
N2#15G1 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7
N2#15G3 1.0 1.1 0.9 1.1 1.4 1.2 0.9 0.9 1.0 0.8 1.0 1.2 1.1 0.8
N3#20G1 1.3 1.4 1.2 1.3 1.4 1.3 1.2 0.9 1.0 0.9 0.9 1.0 1.0 0.9
N2#22G1 0.7 0.7 0.8 0.7 0.6 0.7 0.7 0.6 0.5 0.6 0.6 0.5 0.6 0.6
N3#20G2 1.4 1.3 1.4 1.4 1.3 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
N2#25G1 0.7 0.7 0.8 0.7 0.7 0.7 0.9 0.5 0.5 0.6 0.5 0.6 0.5 0.7
N2#25G2 1.0 0.8 1.1 1.2 0.8 1.2 0.8 0.8 0.7 0.9 1.0 0.6 1.0 0.7
N2#25G3 1.5 1.4 1.5 1.5 1.3 1.4 1.6 1.3 1.1 1.2 1.3 1.1 1.1 1.3
N3#10C1 0.9 0.7 1.2 0.8 - 0.9 1.2 0.7 0.5 0.9 0.6 0.3 0.7 0.9
N3#13C1 1.1 1.1 1.3 1.2 1.1 0.8 1.0 0.9 0.9 0.9 0.9 0.8 0.6 0.7
H2#13G2 - 1.0 1.1 1.0 0.7 0.9 1.0 3.5 0.9 1.0 0.9 0.7 0.8 0.9
H3#13G1 - 1.9 1.9 2.1 0.9 2.0 1.9 2.3 1.5 1.5 1.6 0.7 1.5 1.5
H3#20G2 1.1 1.0 0.8 1.1 0.9 1.0 1.1 0.8 0.7 0.6 0.8 0.7 0.8 0.8
H2#25G1 0.8 0.8 0.6 0.8 0.8 0.8 0.9 0.7 0.6 0.6 0.7 0.6 0.6 0.7
H2#25G2 0.5 0.5 0.6 0.6 0.5 0.6 0.6 0.4 0.4 0.5 0.5 0.4 0.4 0.5
H2#25G3 1.0 1.2 0.9 1.0 1.2 1.0 1.0 0.8 1.0 0.7 0.9 1.0 0.9 0.8
H3#10C1 1.8 1.1 1.8 1.3 1.2 1.2a 1 . 8 b 1.3 0.8 1.4 0.9 0.9 0 .9a 1.4b
H3#13C1 0.8 0.8 0.5 0.7 0.7 0 .8a 0.5 b 0.6 0.6 0.4 0.6 0.5 0 .6 a 0.4 b

a Calculated at 0 .60/(j
b Calculated a t0 .3 0 /c .

For the type G1 sand-coated GFRP bars, the kb values with ACI 440.1R-06, [2006] were 

1.4, 0.8, 1.3, 0.7, and 0.7 for N3#13G1, N2#15G1, N3#20G1, N2#22G1, and N2#25G1, 

respectively, with an average of 1.0, whereas the average of kb values for the same beams 

determined with ISIS Manual No.3 [2007] was 0.8. For the type C l sand-coated CFRP bars, the 

kb values according to ACI 440.1R-06 [2006] were 0.8 and 1.0 for N3#10C1, N3#13C1, 

respectively. ISIS Manual No.3, [2007] yielded kb values of 0.6 and 0.8 for the same beams. 

Thus, it could be concluded that kb also depends on the equation used for the prediction. For type 

G2 sand-coated bars, the kb values with ACI 440.1R-06 [2006] were 1.1, 1.3, and 1.1 for
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2#13G2, 3#20G2, and 2#25G2, respectively, whereas the kb values for the same beams 

determined with ISIS Manual No.3 [2007] were 1.0, 1.0, and 0.9. The kb values of the type G3 

GFRP bars was the closest to recommendations of ACI 440.1R-06 [2006] and ISIS Manual No.3

[2007], while the kb values for the type C l sand-coated CFRP bars was close to 1.0.

Table 4-7 Average predicted kb values in comparison with design provisions
kb Average 

ACI 
440.1R-06; 
CAN/CSA 

S6-10

kb Average 
ISIS 

Manual 
No.3-07

Design recommendations

ACI 440.1R-06 ISJ,S ^ 7Ual CAN/CSA S6-10 No.3-07

N3#13G1 1.4 1.1 Conservative In the absence of Sand-Coated
N2#13G2 1.1 1.0 value of kb = 1.4 significant test FRP: kb = 0.8
N2#15G1 0.8 0.7 (excluding data kb =1.2 Deformed

N2#15G3 1.1 1.0 smooth bars and FRP: Jtfe= 1.0

N3#20G1 1.3 1.0 grids)

N2#22G1 0.7 0.6
N3#20G2 1.3 1.0
N2#25G1 0.7 0.5
N2#25G2 1.1 0.9
N2#25G3 1.4 1.2
N3#10C1 0.8 0.6
N3#13C1 1.0 0.8
H2#13G2 1.0 0.9
H3#13G1 2.0 1.5
H3#20G2 1.0 0.8
H2#25G1 0.8 0.6
H2#25G2 0.6 0.4
H2#25G3 1.1 0.9
H3#10C1 1.2 0.9
H3#13C1 0.8 0.6

The results reported in Table 4-7 also confirm the effect of concrete strength on the 

calculated kb values. Among the sand-coated GFRP bars, type G1 returned higher kb values in 

high-strength concrete, while type G2 evidenced smaller kb values in high-strength concrete. The
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helically deformed type G2 GFRP bars produced smaller kb values in high-strength concrete. 

Type C l sand-coated CFRP bars, however, showed higher kb values in high-strength concrete.

CONCLUSIONS

This study aimed at investigating the current design recommendations for kb values 

and checking the dependency of kb values on FRP bar type (glass and carbon), bar diameter, and 

concrete strength. The investigation included 20 beams measuring 4,250 mm long x 200 mm 

wide x 400 mm deep fabricated with normal- and high-strength concretes and reinforced with 

sand-coated GFRP bars, helically-grooved GFRP bars, and sand-coated CFRP bars. The 

measured crack widths and strains were used to assess the current kb values. Based on the results 

and discussions presented herein, the following conclusions were drawn:

1- The bond-dependent coefficient (kb) is dependent not only on bar surface configuration, but 

also on bar diameter and material type. Providing one value for kb based solely on surface 

configuration was not supported by the test results. The results indicated that concrete 

strength (normal- and high-strength) had an impact, yet no trend or clear relationship was 

evidenced.

2- The calculations of kb values determined at crack width (w) = 0.7 mm, 0.30M„, and 0.25/c 

were somewhat close. This supports using any of those limits as the recommended level at 

which the kb values should be determined. The 0.30M„ value may be recommended as it has 

been used by many researchers as a service-load level. Moreover, at 0.30A/„, the crack width 

was less than 0.7 mm in all the beams tested, except 3#13G1 and 2#13G2, which implicitly
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satisfies the requirements of CAN/CSA-S806 [2012], Annex S, o f keeping 0.7 mm as the 

maximum crack width that could be used in determining kb values.

3- ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007] showed reasonably conservative 

crack-width predictions (at 0.30M„) with average wex/ w pre(t of 0.91 ±0.17 and 0.69+0.23 for 

normal-strength concrete and 0.69+0.13 and 0.61±0.11 for high-strength concrete. 

CAN/CSA-S6.1S1, [2010], however, showed non-conservative predictions with average 

Wexp/Wpreii of 1.23+0.20 and 1.14+0.26 for normal- and high-strength concretes, respectively. 

The small kb values of CAN/CSA-S6.1S1 [2010] compared to those of ACI 440.1R-06 

[2006] and ISIS Manual No.3 [2007] contributed to underestimating crack widths.

4- With the helically-grooved GFRP bars (G3: No. 15 and No. 25), employing a kb of 1.2 in the 

ISIS Manual No.3, [2007] equation yielded very good agreement with the experimental 

results. The ACI 440.1R-06, [2006] equation, however, underestimated the crack width of 

No. 15 GFRP bars, while yielding good agreement for No. 25 GFRP bars.

5- With the sand-coated CFRP bars (C l: No. 10 and No. 13), ACI 440.1R-06, [2006] and ISIS 

Manual No.3 [2007] showed reasonably close predictions using kb values of 1.4 and 1.2, 

respectively. On the other hand, the predictions were reasonable with some diameters and 

showed discrepancies for the others with the sand-coated GFRP bars type (G1 and G2). 

Furthermore, using a kb of 0.8 for the sand-coated FRP bars (carbon and glass) with the 

CAN/CSA-S6.1S1 [2010] equation underestimated the predicted crack widths in most of the 

tested beams fabricated using normal- and high-strength concretes.

6- Maintaining minimum practical reinforcement may be o f interest to ensure that the section 

behaves reasonably after cracking and the sudden increase in the strains is minimized. This
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may have an impact on the current test method in CAN/CSA-S806 [2012], Annex S, to 

determine the kb values when only two bars are recommended.

7- The bond-dependent coefficient (kb) introduced by FRP design codes and guidelines should 

be revised to include the effect of bar diameter, FRP material type, and concrete strength, in 

addition to the surface configuration.
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Chapter 5: Flexural Behavior o f  Concrete Beams Reinforced with Différent Grades o f  GFRP Bars

Contribution in thesis: The paper extends the study presented in Paper 1 where a variety of 

GFRP bars were used. The test specimens were designed to include the three grades of GFRP 

bars according to the CSA S807-10 in normal-strength concrete. The paper evaluated the effect 

of the mechanical properties and surface configurations of the GFRP bars of different grades on 

the cracking and flexural behaviour. The crack width and deflection equations were also assessed 

through the experimental results. Design recommendations were also introduced.

French Abstract:

La publication récente du guide de certification CSA S807-10 "Spécification fo r  fîbre- 

renforcé Polymères" est un pas en avant pour la standardisation de la fabrication des barres 

d’armature en polymères renforcés de fibres (PRF) utilisées dans les infrastructures. Ce guide 

classe les barres de polymères renforcés de fibres de verre (PRFV) dans trois catégories selon 

leur module d'élasticité (Ejrp) : catégorie I (E/rp < 50 GPa), catégorie II (50 GPa < E/rp < 60 GPA) 

et catégorie III (E/rp = 60 GPa). Quant à la configuration de fini de surface des barres de PRF, 

elle varie en fonction du manufacturier et la surface peut être lisse, sablée, déformée, cannelée ou 

nervurée. Par conséquent, une variété de barres d ’armature de PRFV de différentes catégories de 

module élastique et de fini de surface est disponible sur le marché. Cette étude porte sur 

l’évaluation du comportement en flexion et de la capacité en service de poutres en béton armé de 

barres de PRFV de différents modules élastiques et de différents finis de surface. L'étude inclut 

la fabrication et la mise à l’essai de 18 poutres pleine grandeur de 4250 mm de longueur, 200 

mm de largeur et 400 mm de profondeur, renforcées avec des barres de PRFV caractérisées par 

différents modules élastiques (catégories I, II et III), différents diamètres (No. 13 à No. 25) et 

différents finis de surface (sablées et à cannelures hélicoïdales). Les résultats expérimentaux 

présentés dans cette étude sont la déflection, la largeur de fissures, les déformations dans le béton
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et dans les barres de PRF, les performances en flexion et le mode de rupture. Les résultats ont 

aussi été utilisés pour évaluer empiriquement l'exactitude des équations de prédiction de la 

déflection et de la largeur de fissures proposées par les codes et guidelines de conception Nord- 

américains, en vigueur, traitant des composites de PRF en infrastructure.,

Mots-clés: Béton; polymères renforcés de fibres (PRF); poutre; déformation; largeur de fissures; 

coefficient d ’adhérence; capacité en service.

ABSTRACT

The recently published CAN/CSA-S807 [2010] “Specification fo r  fibre-reinforced 

Polymers” provided a step forward towards standardizing the fibre-reinforced polymer (FRP) 

bars. It classifies the glass FRP (GFRP) bars according to their modulus of elasticity (Efi into 

three grades, namely: Grade I (Ef  <50 GPa), Grade II (50 GPa <Ef < 60 GPa), and Grade III (Ef  

> 60 GPa). The surface configuration of the FRP bars; however, varies and each manufacturer 

has his established configuration such as smooth, sand-coated, deformed, grooved, and ribbed. 

Consequently, a variety of GFRP reinforcing bars with different grades and surface configuration 

are commercially available. This study presents an investigation to evaluate the flexural 

behaviour and serviceability performance of concrete beams reinforced with two extensively 

used GFRP bars in Canada of different grades and surface configurations. The study included 

fabricating and testing 17 full-scale beams measuring 4,250 mm long x 200 mm wide x 400 mm 

deep reinforced with GFRP bars of different grades (I, II, III), diameters (No. 13 to No. 25), and 

surface configurations (sand-coated and helically-grooved). The test results were presented and 

discussed in terms of deflection, crack width, strains in concrete and FRP reinforcement, flexural
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capacity, and mode of failure. The results were also used to assess the accuracy of the current 

deflection and crack width prediction equations of North American FRP codes and guidelines.

Keywords: Concrete; fiber-reinforced polymer (FRP); beam; strain; crack width; deflection; 

serviceability.

INTRODUCTION

Fiber reinforced polymer (FRP) reinforcing bars have been used as an alternative 

reinforcement for conventional steel for the last two decades. Recently, new advancement in 

FRP technology led to the development different GFRP bars with enhanced physical and 

mechanical properties. These bars have a variety of surface configurations such as smooth, 

deformed, sand-coated, and grooved. The recently published CAN/CSA-S807 [2010] 

“Specification fo r  fibre-reinforced Polymers” provided a step forward towards standardizing the 

fibre-reinforced polymer (FRP) bars. Which, in turn, is expected to increase the fields where the 

FRP bars are being used as primary reinforcement for concrete structures. In addition, producing 

GFRP bars with high modulus of elasticity is expected to optimize the reinforcement amount and 

consequently, yield a cost-effective design.

In general, FRP reinforced section should be over-reinforced to ensure crushing failure in 

contradicting to under-reinforced section designed for steel reinforced members. Although, this 

mode of failure yields less catastrophic and higher deformability before failure, some codes 

allow using the under-reinforced section when employing the FRP reinforcing bars. As seen
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from Eq. [5.1, 5.2 and 5.3] the determination of the failure mode is generally related to the 

mechanical properties of FRP bars and concrete strength. This design concept is common 

between CAN/CSA-S806 [2012] and ACI 440.1R-06 [2006] when designing FRP reinforced 

concrete section. The difference between CAN/CSA-S806 [2012] and ACI 440.1R-06 [2006] 

appears in their assigning for the block factor for a / and /?/ as shown in Eq. [5.1, 5.2 and 5.3]

a, = 0 .85 -0 .0015 (/(.)> 0 .67;/?, =0.97 -0.0025(/'tj  >0.67 [IS IS  M anual N o.3, 2007;

C A N /C S A -S 806 , 2012]

Due to lower modulus of GFRP bars compared to that of steel bars, the design of GFRP 

bars normally governed by serviceability (deflection and cracking) rather than ultimate state. 

Thus, increasing the tensile properties is expected to enhance the serviceability of GFRP- 

reinforced concrete members. However, the surface configurations may also play a role in the 

cracking performance and consequently the crack widths. Thus, there is a need for investigating 

the performance of GFRP bars with different elastic modulus and surface configuration. 

Furthermore, the deformability of FRP reinforced concrete members should be also evaluated.

In this paper, the flexural behaviour of concrete beam reinforced with different grades of 

GFRP bars (classified according to CAN/CSA-S807 [2010]) that are being used extensively in 

Canada [Pultrall, 2012; Schôck, 2012], A total of 17 full-scale concrete beams reinforced with 

GFRP bars were tested to failure in four-point bending over a clear span 3,750 mm. The test 

results were reported in terms of deflection, crack width, strains in concrete and reinforcement,

5.1

[A CI 4 4 0 .1R-06, 2006] 5.2
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flexural capacity and mode of failure, and deformability. The test results were compared against 

the experimentally measured ones.

EXPERIM ENTAL PROGRAM

Seventeen full-scale beams reinforced with different types and ratios GFRP bars were 

fabricated and tested in four bending. The investigated GFRP bars were selected as they are 

being extensively used in Canada [Pultrall, 2012; Schôck, 2012]. The beams were designed to 

fail in compression (over-reinforced section). The following sections describe the details of the 

experimental programs.

M aterials

The beams were reinforced with three different commercially-available types of GFRP 

bars referred to as GFRP-1, GFRP-2, and GFRP-3. The used GFRP products [Pultrall, 2012; 

Schôck, 2012] were selected as they are extensively used in Canada in many applications. 

Different diameters from each bar type were used. The tensile properties of the GFRP bars were 

determined through testing representative specimens in accordance with ASTM D7205, [2011]. 

Table 5-1 summarizes the properties of these GFRP bars.

According to the CAN/CSA-S807 [2010], the three types of GFRP bars that were utilized 

herein were classified as Grade F, Grade FF for GFRP-1 and Grade III for GFRP-2 and GFRP-3. 

Figure 5.1 shows the GFRP reinforcing bars. The beam specimens were cast using normal- 

strength ready-mixed concrete with an average 28-days compressive strength of 35 MPa. 

Table 5-2 lists the concrete compressive strengths based on average value of tests of three 

150x300 mm cylinders on the day of testing. Also, concrete tensile strength was obtained from 

spilt-cylinder testing and the results are shown in Table 5-2.
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Table 5-1 Properties of the GFRP bars

Bar type

Designated 
diameter 
of FRP 

bar*

Nominal
cross-

sectional Surface
configuration

Tensile Modulus of 
s tren g th ,^ , elasticity, Ef, 

(MPa) (GPa) 
(Average+SD) (Average+SD)

Ultimate
strain

Characteristic 
strength and 

strain* E/fju
area

(mm2)
(%) fc

MPa
eg

(%)
GFRP-1 13 129 Sand-coated 817±9 48.7+0.6 1.7 790 1.6 59.6

(G l) 15 199 Sand-coated 751+23 48.1+1.6 1.6 683 1.6 64.1
20 284 Sand-coated 728±24 47.6+1.7 1.5 656 1.5 65.4
22 387 Sand-coated 693+23 46.4±1.5 1.5 625 1.5 67.0
25 510 Sand-coated 666±74 53.2+2.1 1.3 444 1.0 79.9

GFRP-2 13 129 Sand-coated 1639+61 67.0+1.0 2.5 1456 2.2 40.9
(G2) 15 199 Sand-coated 1362+33 69.3+3.2 2.0 1263 1.8 50.9

20 284 Sand-coated 1082+37 52.5+1.7 2.1 971 2.0 48.5
25 510 Sand-coated 1132+23 66.3+0.9 1.7 1063 1.7 58.6

GFRP-3
(G3) 15 199 Helically-

grooved 1245+45 59.5+1.1 2.1 1110 1.9 47.8

25 510 Helically-
grooved 906±29 60.3+2.9 1.5 819 1.3 66.6

* Designated according to the [C AN /C SA-S807, 2010]

I' y T '>"î • ï l- , j  T'-

Figure 5.1 GFRP reinforcing bars
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Table 5-2 Details of the test specimens
Series Beam a fc

(MPa)
ft

(MPa)
Pf

(%)
Pjb
(%) P/Pjb

AfEf
(kN)

Reinforcement
configuration

I 3#13G1 33.50 3.60 0.56 0.43 1.31 18347 3 No. 1 3 -1  row
5#13G1 38.95 3.81 0.91 0.59 1.54 29864 5 No. 13 - 1 row
2#13G2 33.50 3.60 0.38 0.15 2.45 17286 2 No. 1 3 -1  row

II 3#15G1 38.95 3.81 0.84 0.65 1.30 28716 3 No. 1 5 -1  row
4#15G1 38.95 3.81 1.12 0.65 1.73 38288 4 No. 15 -1  row
2#15G2 29.00 2.50 0.56 0.20 2.79 27581 2 No. 1 5 - 1  row
2#15G3 33.83 3.11 0.56 0.21 2.69 23681 2 No. 15 - 1 row

III 6#15G1 33.50 3.60 1.82 0.50 3.67 59700 6 No. 1 5 - 2  rows
5#15G2 29.00 2.50 1.52 0.20 7.58 68954 5 No. 1 5 - 2  rows
5#15G3 33.80 3.10 1.52 0.23 6.47 59203 5 No. 1 5 - 2  rows

VI 2#20G1 38.95 3.81 0.81 0.69 1.61 27037 2 No. 2 0 - 1  row
3#20G1 42.10 3.18 1.21 0.73 1.67 40555 3 No. 2 0 - 1  row
2#22G1 38.95 3.81 1.08 0.61 1.76 35264 2 No. 22 - 1 row
3#20G2 48.13 3.96 1.21 0.34 3.59 44730 3 No. 2 0 - 1  row

V 2#25G1 48.13 3.96 1.46 0.83 1.75 54264 2 No. 2 5 - 1  row
2#25G2 48.13 3.96 1.46 0.38 3.85 67626 2 No. 25 - 1 row
2#25G3 33.80 3.10 1.51 0.42 3.57 61506 2 No. 2 5 - 1  row

a Beam designation: the number o f  GFRP bars followed by the diameter o f  GFRP bars and the last symbol denotes

the GFRP bar type (G l: GFRP-1 ; G2: GFRP-2; G3: GFRP-3) 

b Calculated according to [ACI 440.1R-06, 2006]

Specimens

Seventeen full-scale concrete beams measuring 4,250 mm longx200 mm widex400 mm 

deep were constructed and tested the investigate the performance of the concrete beams 

reinforced with different grades and ratios of glass FRP bars in single- and two-layer 

configurations. The beams were divided according to FRP bar diameter into five Series. All 

beams were reinforced in compression with 2M10 steel bars. M10 mm stirrups at 100 mm 

spacing were used to avoid shear failure. In addition, the constant moment zone included only 

two stirrups spaced at 300 mm to maintain the locations of the longitudinal bars and minimize 

stirrup confinement action, which may affect cracking behaviour. Table 5-2 Details of the test
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specimens shows the details of test specimens. Figure 5.2 shows the geometry and reinforcement 

details of the beams.

P /2 P /2
1375 -J- - 1-5 0 0 - • £

Steel Stirrups 0  10 (a) 1 (X) mm 
1375 “  _

.300. 300 .300.

I T i l

— Concrete strain gauge 
X Reinforcement strain gauge 

|  LVDT

3750
4250

2-10M steel

-J5Q.

2-10M  steel

!

Steel 010 mm 
@100 mm

25
ooTj-

1

Steel 010  mm 
@ 100 mm

25
•  o * .2 0

-  200_ _ 200 _

Configuration o f 2 or 3 bars Configuration of 5 or 6 bars

Figure 5.2 Dimensions, reinforcement details, and instrumentation

Instrumentation and Test setup

The reinforcing bars as well as the compressive area of the concrete beams were 

instrumented with electrical resistance strain gauges to measure the strains in the reinforcing bars 

as well as the concrete at desired locations. Five linear variable displacement transducers 

(LVDTs) were installed on each beam to measure the deflections at different locations. In 

addition, one high-accuracy LVDT was installed at the position of the first flexural crack after 

measuring its initial width with a hand-held microscope with 50X magnifying power.

The beams were tested under four-point bending over a clear span of 3,750 mm. The load 

was monotonically applied with a displacement control rate of 0.6 mm/min. During the test,
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crack formation on one side of the beam specimen was marked and the corresponding loads were 

recorded.

Figure 5.3 shows the test setup during a beam testing.

Figure 5.3 Test setup during a beam testing

Test Results and Discussion 

Cracking Moment

The beams were observed during the test until the first crack appeared and the 

corresponding load was recorded. The cracking load was also verified from the load-deflection 

and load-strain relationships. Table 3 provides the cracking moments of the tested beams 

excluding beams’ self-weight. The cracking moment ranged from 10.09 to 16.32 kN.m. The 

cracking moment was directly related to concrete tensile strength, which, in tum, is a function of 

compressive strength. The higher the concrete strength, the higher the cracking moment. The 

cracking moments were predicted using Eq. [5.4, 5.5, 5.6 and 5.7] and experimental-to-predicted 

ratios were listed in Table 5-3.

M cr = f r / y , I g 5.4
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f r = a .6 V .J f;  for [ACI 440.1R-06, 2006] 5.5

/ ,  =  for [ISIS Manual No.3, 2007]and [CAN/CSA-S806, 2012] 5.6

f r = 0 . 4 y [ f ^  for [CAN/CSA-S6.1 SI, 2010] (normal-density concrete) 5.7

Table 5-3 Experimental and predicted cracking and ultimate moments
Experimental moments ACI 440 (2006) CSA S6 (2010) CSA S806 (2012)

Beam Mn Failure M„ M„ Failure M„ Failure M,r Mn Failure
kN.m kN.m mode 1 Exp/Pred Exp/Pred mode 1 Exp/Pred Exp/Pred m ode2 Exp/Pred Exp/Pred mode 1

3#13G1 13.46 81.34 C.C. 0.85 0.89 C.C. 1.49 0.82 C.C. 0.88 0.82 C.C.

5#13G1 15.26 130.63 C.C. 0.88 1.1 C.C. 1.52 1.01 C.C. 0.76 1.01 C.C.

2#13G2 13.75 82.78 C.C. 0.87 0.94 C.C. 1.52 0.87 C.C. 0.9 0.87 C.C.

3#15G1 12.21 101.31 C.C. 0.73 0.89 C.C. 1.26 0.82 C.C. 0.75 0.82 C.C.

4#15G1 15.61 138.19 C.C. 0.88 1.06 C.C. 1.56 0.98 C.C. 0.94 0.98 C.C.

2#15G2 11.22 95.93 C.C. 0.77 0.96 C.C. 1.37 0.9 C.C. 0.81 0.9 C.C.

2#15G3 10.92 91.31 C.C. 0.69 0.9 C.C. 1.2 0.84 C.C. 0.71 0.84 C.C.

6#15G1 11.98 118.34 C.C. 0.76 0.89 C.C. 1.32 0.84 C.C. 0.79 0.84 C.C.

5#15G2 12.2 129.32 C.C. 0.84 0.98 C.C. 1.49 0.93 C.C. 0.88 0.93 C.C.

5#15G3 12.61 110.58 C.C. 0.79 0.82 C.C. 1.38 0.77 C.C. 0.82 0.77 C.C.

2#20G1 15.36 107.39 C.C. 0.89 0.96 C.C. 1.53 0.88 FRP-R 0.92 0.88 FRP-R

3#20G1 16.32 140.35 C.C. 0.9 1.04 C.C. 1.55 0.95 C.C. 0.93 0.95 C.C.

2#22G1 12.88 132.26 C.C. 1 1.08 C.C. 1.33 1 C.C. 0.8 1 C.C.

3#20G2 12.29 171.43 C.C. 0.63 1.15 C.C. 1.07 1.04 C.C. 0.65 1,04 C.C.

2#25G1 11.32 161.65 C.C. 0.58 1.02 C.C. 0.98 0.92 C.C. 0.6 0.92 C.C.

2#25G2 16.77 167.24 C.C. 0.85 0.97 C.C. 1.46 0.88 C.C. 0.89 0.88 C.C.

2#25G3 13.2 115.93 C.C. 0.83 0.81 C.C. 1.45 0.76 C.C. 0.86 0.76 C.C.

Average 0.8 0.95 — 1.36 0.88 — 0.8 0.88 —
Standard deviation 0.12 0.12 — 0.18 0.1 — 0.12 0.1 —

Coefficient of variation % 14% 13% — 13% 11% — 15% 11% —

Note -  Measured and predicted moments exclude beam s’ self-weight. 
1 FRP-R: Rupture o f FRP bar; C.C.: Concrete crushing.

Table 5-3 indicated that the experimentally measured cracking moment of the GFRP 

reinforced concrete beams was generally lower than those predicted using ACI 440.1R-06 [2006] 

and CAN/CSA-S806 [2012], The predictions of ACI 440.1R-06 [2006] and CAN/CSA-S806 

[2012]; however, were close and the average experimental-to-predicted M cr ratios for both
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equations was 0.80±0.12. On the other hand, CAN/CSA-S6.1S1 [2010] underestimated cracking 

moment and yielded conservative predictions with an average experimental-to-predicted M cr 

ratio of 1.36+0.18.

Flexural capacity and mode of failure

The beams were designed with a p/pjb ratio greater than 1.0 (over-reinforced), so that the 

failure was expected to occurs due to concrete crushing. Consequently, all beams failed in 

compression (concrete crushing). Figure 5.4 shows the typical compression failure of some of 

the tested beams. At failure, the concrete strain of all the tested beams was lower than the known 

limits provided by ACI 440.1R-06 [2006] and CAN/CSA-S806 [2012] (3,000 and 3,500 

microstrains, respectively) and supported by many studies [Masmoudi et a i ,  1998; Kassem et 

a i,  2011; Vijay et GangaRao, 1996] where the concrete crushing occurs at about 3,000 

microstrains. This is related to the absence o f stirrups in the critical flexural zone of the beams 

which led to premature buckling of compression beams before yielding and the consequent 

disintegration of the confined concrete. The premature buckling was due to a large unsupported 

length of compression bars (300 mm). The lower-than-expected concrete strains did not enable 

evaluating the effect of the bar diameter and surface on the ultimate capacity. But, generally, the 

higher the EjA/, the higher the flexural capacity of the tested beams. In addition, the concrete 

strength had a contribution to the ultimate capacity as evidenced from beams 2#25G2 and 

5#15G2 with the same EjAj. Beam 2#25G2 showed an ultimate capacity of 167.24 kN.m 

compared to 129.32 kN.m of 5#15G2 where the concrete strengths for both beams were 48.13 

MPa and 29.00 MPa, respectively.
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2#15G3

2#25G2 2#25G3

Figure 5.4 Typical compression failure of beams reinforced with GFRP bars Type G2 and G3.

Concerning the load-carrying capacity, the predictions of ACI 440.1R-06 [2006] and 

CAN/CSA-S6.1S1 [2010], and CAN/CSA-S806 [2012] were close and in good agreement with 

the experimental results as shown in Table 5-3. The difference between ACI 440.1R-06 [2006]; 

CAN/CSA-S6.1S1 [2010] and CAN/CSA-S806 [2012] predictions, however, were related to the 

Pi factor and the assumed strain at the ultimate which is 0.003 for ACI 440.1R-06 [2006] and 

0.0035 for CAN/CSA-S6.1S1 [2010] and CAN/CSA-S806 [2012],

The c/d ratios reported in Table 5-4 reveals a slight increase in the c/d ratio at M„ 

compared to that at 0.3M„ where Mn is nominal moment capacity. Moreover, the neutral axis
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depth increased with p j since the equilibrium of forces requires a larger compression block for 

the greater force.

Table 5-4 Strains, neutral axis-to-depth ratio, and curvature of test specimens

Beam

Strain in concrete (pr) Strain in FRP
(P£)

c/d Curvature, y/

at
2000

pe
0.30M„ 0.30M„ M„

at
2000

pe
0.30M„ Mn Theo.

at
2000

pe
0.30M n M n

3#13G1 -203 -314 -1561 4378 13726 0.09 0.07 0.10 0.13 0.002 0.005 0.015
5#13G1 -421 -714 -1933 3994 15095 0.17 0.15 0.15 0.15 0.002 0.005 0.011
2#13G2 -173 -690 -2541 5349 16359 0.05 0.11 0.13 0.12 0.003 0.006 0.019
3#15G1 -388 -651 -2341 4434 13345 0.16 0.13 0.15 0.15 0.002 0.005 0.008
4#15G1 -409 -510 -1816 2405 13489 0.14 0.14 0.13 0.17 0.002 0.003 0.014
2#15G2 -586 -346 -1454 4189 14136 0.08 0.08 0.09 0.16 0.008 0.005 0.016
2#15G3 -294 -516 -2129 3448 10277 0.13 0.13 0.17 0.14 0.002 0.004 0.012
6#15G1 -488 -562 -1976 2367 7693 0.19 0.19 0.20 0.22 0.003 0.003 0.010
5#15G2 -729 -745 -2959 2053 7550 0.28 0.28 0.29 0.24 0.003 0.003 0.010
5#15G3 -521 -412 -1839 1571 6430 0.21 0.21 0.22 0.22 0.003 0.002 0.008
2#20G1 -282 -433 -2090 3860 13372 0.11 0.09 0.13 0.15 0.002 0.004 0.015
3#20G1 -439 -657 -3087 3107 6794 0.18 0.18 0.20 0.18 0.002 0.004 0.015
2#22G1 -550 -605 -2646 4262 13651 0.12 0.12 0.16 0.17 0.004 0.005 0.016
3#20G2 -380 -657 -2648 3755 11823 0.16 0.15 0.18 0.18 0.002 0.004 0.014
2#25G1 -371 -542 -2529 2991 10028 0.18 0.15 0.20 0.19 0.002 0.004 0.013
2#25G2 -473 -508 -2045 2127 7573 0.16 0.16 0.18 0.21 0.002 0.003 0.009
2#25G3 -575 -459 -1627 1666 6429 0.22 0.22 0.2 0.22 0.003 0.002 0.008

Strain in reinforcement and concrete

Figure 5.5 shows the mid-span strains in the compression-concrete zone and the tensile 

reinforcing bars versus the applied moment for the tested beams. Table 5-4 shows the strains in 

the reinforcement and concrete at 0.3Mn (where M„ is the nominal capacity of the beam 

specimens) and failure. All the GFRP reinforced concrete beams of reinforcement ratio greater 

than the balanced ratio (pf  >pjb) failed in compression by concrete crushing. The concrete’s 

compression failure in some beams was triggered by the buckling of the compression steel
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reinforcement. This was noticed through the small values for the concrete compressive strain at 

failure. Thus, the concrete strain values at ultimate (failure) may be affected by the buckling 

behaviour of compression steel reinforcement.
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Figure 5.5 Moment-to-maximum concrete and reinforcement strain relationship: (a) and (b) for 

GFRP-1 (Grade I and II); (c) for GFRP-2 and (d) for GFRP-3 (Grade III).

For the strains in the GFRP reinforcing bars, generally, the GFRP reinforced concrete 

beams showed typical bi-linear moment-strain relationship. Figure 5.5 shows that increasing the 

reinforcement ratio pj decreased the strain in the GFRP bars at the same load level. Figure 5.5
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also shows that beams with low pf {in Series I and II) experienced very high reinforcement strain 

increases at cracking. The sharp increase at the cracking was more than 3,000 pe. Although 

beams 2#13G2 and 3#13G1 were designed as over-reinforced sections, large increase in crack 

width was observed due to poor energy absorption at cracking. Maintaining minimum practical 

reinforcement may be of interest to ensure that the section behaves reasonably after cracking. 

ACI 440.1R-06 [2006] specifies a minimum pf/pjb ratio of 1.4; however, this limit did not 

prevent beam 2#13G2 from exhibiting such sharp increase in strains at cracking.

Figure 5.5 also indicated that beams 2#25G3 and 5#15G3 shows the same moment-strain 

relationship. Beams provided with the same Ej A/  bars with the same bar surface configuration 

are expected to have the same moment-strain relationships. Similarly were 2#25G2 and 5#15G2 

but the lower concrete strength of 5#15G2 (29.0 MPa) than that of 2#25G2 (48.13 MPa) resulted 

in higher stains for 5#15G2.

The curvature of the tested beams was calculated as a function of 1/d and listed also in 

Table 5-4. Vijay et GangaRao [2001] concluded that at a curvature limit of 0.005/d, the strains in 

FRP of are typically as high as 4,500 microstrains. The test results revealed that at a curvature of 

0.005/d the strains in the GFRP bars were 4,378 pe, 3,994 pe, 4,434 pe, 4,189 pe, and 4,262 pe 

for 3#13G1, 5#13G1, 3#15G1, 2#15G2, 2#22G1, respectively. This confirms Vijay et GangaRao 

[2001] findings for different GFRP bars with different surface configurations.

Deflection behaviour

Figure 5.6 provides typical applied moment to mid-span deflection relationships for the 

tested GFRP reinforced concrete beams. Each curve represents the average deflection obtained 

from two LVDTs mounted at beam mid-span. The load-deflection relationships revealed that p/
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had direct impact on the stiffness of the beam specimens, hence, on the load-deflection 

behaviour. The GFRP reinforced concrete beams showed highest deflection corresponding to 

low pf. Table 5-5 summarizes the deflection of the tested beams at 0.3M„ and 0.67A/„. Assuming 

that beam deflection limit at service load is span/240 {LI240) as provided for by CAN/CSA-S806 

[2012] which yields 15.63 mm all beams except 3#15G1, 2#15G2, 2#20G1 and 2#22G1 

exhibited deflection smaller than 15.63 at 0.3M n.
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Figure 5.6 Deflection vs. applied moment for beams reinforced with different GFRP Grades: (a)

and (b) for GFRP-1, while (c) for GFRP-2 and (d) for GFRP-3
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Table 5-5 Experimental-to-predicted deflection ratios

àprfd_________________ à e x i/d p re d __________________&exp/&pred__________________&exp/&pred_____Measured .
Beam deflection (mm) CSA S806 (2012) [2010] ISIS M-03 (2007) ACI 440 (2006)

0.30M„ 0.67 Mn 0.30M„ 0.67 M„ 0.30M„ 0.67 M„ 0.30M„ 0.67M„ 0.30Mn 0.67 Mn
3#13G1 15.38 41 0.76 0.85 1.29 1.03 0.82 0.87 1.17 0.97
5#13G1 15.45 39 0.85 0.93 1.26 1.10 0.90 0.95 1.12 1.05
2#13G2 15.07 48 0.70 0.96 1.22 1.16 0.75 0.99 1.65 1.17
3#15G1 18.00 48 1.03 1.18 1.52 1.38 1.09 1.19 1.37 1.31
4#15G1 15.45 39 0.97 1.07 1.36 1.22 1.02 1.08 1.20 1.17
2#15G2 16.00 41 0.99 1.09 1.42 1.25 1.05 1.11 1.53 1.22
2#15G3 14.00 37 0.75 0.86 1.18 1.01 0.80 0.87 1.33 0.99
6#15G1 9.43 27 0.76 0.97 0.97 1.07 0.79 0.97 0.95 1.05
5#15G2 10.98 29 1.03 1.18 1.28 1.30 1.06 1.19 1.29 1.28
5#15G3 7.92 24 0.63 0.83 0.82 0.94 0.66 0.84 0.87 0.92
2#20G1 17.99 45 0.96 1.03 1.47 1.23 1.02 1.05 1.22 1.16
3#20G1 15.00 37 0.89 0.99 1.29 1.16 0.93 1.00 1.13 1.11
2#22G1 19.00 46 1.16 1.25 1.66 1.44 1.23 1.26 1.50 1.38
3#20G2 15.00 38 0.93 1.01 1.32 1.18 0.94 1.00 1.42 1.16
2#25G1 15.00 38 1.43 1.29 1.38 1.29 0.93 1.00 1.21 1.24
2#25G2 10.00 27 0.75 0.88 1.00 1.02 0.77 0.89 0.99 1.00
2#25G3 13.15 37 0.76 0.93 1.03 1.05 0.79 0.94 1.10 1.03

Average 0.89 1.01 1.25 1.15 0.90 1.00 1.22 1.12
Standard deviation 0.20 0.14 0.22 0.15 0.15 0.12 0.23 0.14

Coefficient of variation (%) 23% 14% 18% 13% 17% 12% 19% 12%
Overall average 0.95 1.20 0.95 1.17

Overall standard deviation 0.18 0.19 0.15 0.19
COY (%) 19% 16% 15% 16%

The relationships in Figure 5.6 indicated that regardless the small difference in concrete 

strength between beams; increasing the EjAf contributed to enhancing the deflection of the 

beams. On the other hand, beams with the same E jA f  reinforced with the same FRP bar type and 

surface configuration showed the same moment deflection relationships such as in case of 

5#15G3 and 2#25G3 and in case of 5#15G2 and 2#25G2. Thus, it could be concluded that using 

the equivalent E jA f  of different GFRP bar diameters of the same bar type and surface would not 

affect the load deflection properties. This is due to maintain both axial and bond properties of the 

GFRP bars.
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The deflection values were plotted against p /p p  and curvature as shown in Figure 5.7a; b. 

Figure 5.7a shows that the deflection of the beam specimens at 0.3A/„ was close to the 15.63 mm 

(27240) except three beams that exhibited larger deflections. Vijay et GangaRao [2001] 

concluded that a curvature limit of 0.005Id may yield beams satisfying deflection and cracking 

serviceability criteria. The relationships shown in Figure 5.7b indicated that most of the beams 

with curvatures less than 0.005/7 yielded deflection values less than 15.63 mm (27240).
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Figure 5.7 Deflection versus p/pjb and curvature W \/d

Crack pattern and crack width

The beams were initially un-cracked except beam 6#15G1 which showed a hair crack 

before testing. As the cracking moment was reached, cracks propagated vertically and 

perpendicularly to the maximum stress induced from the extreme fiber of the beam by the 

bending moment. More cracks appeared along the beam length as the load increased. The cracks 

in the bending zone grew vertically; however, the cracks in the shear span were inclined toward 

the central zone due to shear stresses in this region. After a load level corresponding 0.67 of the 

nominal moment, no more cracks appeared but the existence cracks widened.
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corresponds to 0.3A/„ and 0.67M„.
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reduces the average crack spacing. Comparing beams in Series III and IV, specifically, beams 

reinforced with GFRP-1 and GFRP-2 bars, it could be noticed that increasing the bar diameter 

from No. 15 to No. 25 for G2 (sand-coated) and G3 (helically-grooved) bars resulted in fewer 

number of cracks. In addition, increasing the EjAf  yielded smaller initial crack widths except in 

case of 6#15G1 which seems to be affected by pre-exists hair crack. Furthermore, comparing 

Series III and V, beams revealed fewer cracks in helically-grooved GFRP reinforced concrete 

beams compared to those reinforced with sand-coated bars. This tends to confirm that the sand- 

coated GFRP bars have better bond characteristics than the helically-grooved ones.

Figure 5.9 gives the moment crack width relationships for the tested beams. Table 5-6 

lists of crack widths at 2,000 microstrains in the FRP bars, 0.3M„ and 0.67M„. Generally, 

increasing the E jA f  decreased the crack widths at all load levels. The average crack width in 

beams with axial stiffness around 60 MN was 62% and 51%, on average, that of beams with 

axial stiffness around 18 MN at 2,000 microstrains and 0.3Mn, respectively. Figure 5.10 also 

confirms that beams with the same E jA f  with FRP bars of the same type and surface 

configurations are expected to exhibit the same moment-crack width relationship as in case of 

5#15G3 and 2#25G3 and in case of 5#15G2 and 2#25G2.
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Figure 5.9 Crack width vs. applied moment for beams reinforced with different GFRP bars: (a) 

and (b) for GFRP-1 ; (c) for GFRP-2 and (d) for GFRP-3.

Concerning Vijay et GangaRao [2001] conclusion for curvature limit of 0.005Id at 

service to satisfy the cracking serviceability criteria, the relationship between the crack width and 

the curvature was plotted in Figure 5.10. The figure indicates that limiting the curvature of the 

FRP-reinforced concrete beams may be a possible solution to satisfy the serviceability. More 

investigations, however, are needed to verify the limit.
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Table 5-6 Experimental-to-predicted crack widths (wexp/wprej)

Measured crack width, wexp (mm) ACI 440  (2006) ISISM^03'’(2007) CSA S6 (2010)

. . .  2000 2000 2000 2000Beam
Initial 2000

M£
0.30M„ 0.67M„ 2000

Me
0.30M„ 0.67 M„ 2000

ME
0.30M„ 0.67 M „

2000
ME

0.30M„ 0.67 M,

3#13G1 0.10 0.40 0.78 1.82 1.11 1.03 1.08 1.02 0.88 0 .90 1.95 1.68 1.73
5#13G1 0.05 0.23 0.46 0.82 0.76 0 .86 0.70 0 .70 0.75 0.59 1.33 1.39 1.12
2#13G2 0.20 0.77 1.03 2.38 1.62 0.95 1.01 1.71 0.94 0.99 2.81 1.58 1.63
3#15G1 0.10 0.37 0.85 1.44 1.04 1.39 1.07 0 .9 1.13 0.85 1.91 2.26 1.71
4#15G1 0.08 0.38 0.41 0.77 1.17 0.85 0.71 1.03 0.69 0.57 2.05 1.38 1.14
2#15G2 0.22 0.62 1.18 2.56 1.35 1.54 1.50 1.40 1.52 1.46 2.23 2.56 2.45
2#15G3 0.16 0.31 0.63 1.68 0.66 0.71 0.84 0 .69 0.69 0.81 0.92 0 .92 1.10
6#15G1 0.05 0.14 0.15 0.44 0.36 0.18 0.25 0.31 0.15 0 .20 0.64 0.31 0 .40
5#15G2 0.09 0.30 0.31 0.70 0.81 0.55 0.55 0.68 0 .44 0.44 1.40 0.92 0 .92
5#15G3 0.12 0.53 0.40 0.69 1.40 0.59 0.46 1.20 0.48 0.37 2.03 0.54 0.61
2#20G1 0.10 0.33 0.73 1.53 0.71 0.83 0.79 0 .70 0 .76 0.71 1.25 1.33 1.26
3#20G1 0.15 0.32 0.51 1.17 0.87 0 .94 0.96 0.75 0.73 0.76 1.54 1.48 1.52
2#22G 1 0.09 0.47 0.51 1.05 0.98 0 .70 0.65 0 .96 0.63 0.58 1.73 1.13 1.04
3#20G2 0.11 0.38 0.66 1.35 1.08 1.22 1.11 0.93 0.95 0.87 1.83 1.92 1.76
2#25G 1 0.10 0.36 0.55 1.28 0.76 0.87 0.9 0.72 0 .66 0 .70 1.31 1.37 1.42
2#25G2 0.06 0.33 0.36 0.73 0.70 0.65 0.58 0.66 0 .56 0 .50 1.21 1.02 0.92
2#25G3 0.13 0.53 0.45 0.93 1.09 0 .86 0.80 1.05 0.78 0.72 1.53 1.14 1.05

Average 1.03 0 .84 0.80 0 .97 0.73 0.70 1.74 1.32 1.26
Standard deviation 0.40 0.32 0.29 0 .43 0.30 0.28 0.69 0.56 0.49

Coefficient o f  variation (%) 39% 38% 37% 44% 40% 40% 40% 43% 38%
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Ductility and deformability

Ductility can be defined as the capacity of a structure to absorb energy without suffering 

failure, and is generally related to the amount of inelastic deformation that takes place before a 

complete failure. In other words, it could be represented as the ability to sustain inelastic 

deformations without loss of its load-carrying capacity prior to failure. For steel-RC members, 

ductility can be calculated as the ratio of the total deformation at failure divided by the 

deformation at yielding. This way of estimating ductility, however, cannot be applied to FRP- 

reinforced concrete structures because of the linear elastic behaviour o f the FRP until failure.

An alternative concept based on deformability rather than ductility has been proposed by 

Jaeger et al. [1997] and Newhook et al. [2002] to ensure that there is enough deformation of the 

structural FRP- reinforced concrete element before failure. ISIS Manual No.3 [2007] and 

CAN/CSA-S6.1S1 [2010] concept is based on computing the deformability factor, J, from Eq. 

[5.8] (where, M is the bending moment, W is the curvature, and the subscripts u and s refer to 

ultimate state and service limit state) at a corresponding concrete strain of 1,000 microstrains 

while Newhook et al. [2002] is based on calculating the J  factor at a corresponding strain of 

2,000 microstrains in the FRP reinforcement.

W„M,,
Deformation factor = —-— — 5  g

y/sM s

ISIS Manual No.3 [2007] and CAN/CSA-S6.1S1 [2010] state that the deformability 

factor, J, should equal to, at least, 4.0 for rectangular sections and 6.0 for T-sections. On the 

other hand, Newhook et al. [2002] suggested that the value *FS Ms should be taken corresponding 

to 2,000 microstrains in the FRP reinforcement (service state). Table 5-7 presents the 

deformability factor, J, of the tested beams according to CAN/CSA-S6.1S1 [2010] and Newhook 

et al. [2002]. According to CAN/CSA-S6.1S1 [2010], the deformability factor, J, ranged from
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0.5 to 8 which did not meet the requirements of the CAN/CSA-S6.1S1 [2010] for many beams. 

The premature buckling and the smaller concrete strains at failure affects the deformability index 

that may be used to verify the ductility of FRP- reinforced concrete members as provided by 

CAN/CSA-S6.1S1 [2010]. Thus, due to the limited strain capacity o f the concrete in the tested 

specimens, the deformability factor based on the experimental results may be below the 

CAN/CSA-S6.1S1 [2010] threshold. Moreover, to satisfy the deformability requirements, special 

attention should be devoted towards the lateral ties (stirrups) in the critical flexural zone.

Table 5-7 Deformability of the tested beams at ec = 1,000 pe and efrp = 2,000 pe

Beam
Curvature 

at £c = 
1,000 pe

Curvature 
at Ef r p  = 
2,000 pe

Moment 
at e c =

1,000 pe

Moment 
at Ef r p  =  

2,000 pe

Moment
at

Ultimate
state

curvature
at

Ultimate
state

Deformability 
at Ef r p  = 
2,000 pe

Deformability 
at e c = 1,000 

pe

3#13G1 0.0110 0.0012 58.98 16.07 81.34 0.0153 64 1.9
5#13G1 0.0068 0.0024 56.13 22.70 130.37 0.0170 40 5.8
2#13G2 0.0088 0.0033 37.56 19.59 82.78 0.0189 24 4.7
3#15G1 0.0065 0.0026 47.78 16.34 108.78 0.0129 33 4.5
4#15G1 0.0068 0.0024 56.13 22.70 130.41 0.0016 4 0.5
2#15G2 0.0085 0.0023 60.98 17.46 102.73 0.0137 36 2.7
2#15G3 0.0071 0.0023 49.73 15.46 95.66 0.0124 33 3.4
6#15G1 0.0051 0.0012 61.76 16.68 118.34 0.0097 56 3.7
5#15G2 0.0037 0.0026 51.41 37.98 129.32 0.0101 13 6.9
5#15G3 0.0047 0.0025 69.00 39.95 110.58 0.0083 9 2.8
2#20G1 0.0084 0.0031 60.10 25.01 107.39 0.0157 22 3.3
3#20G1 0.0057 0.0024 64.40 27.92 140.35 0.0155 33 5.9
2#22G1 0.0077 0.0023 59.74 20.42 132.26 0.0163 46 4.7
3#20G2 0.0063 0.0024 73.91 31.16 171.29 0.0220 51 8.0
2#25G1 0.0062 0.0020 81.59 32.97 155.36 0.0208 48 6.4
2#25G2 0.0054 0.0024 106.04 47.64 175.34 0.0170 26 5.2
2#25G3

1 ,

0.0046 0.0026 70.07 41.39 115.93 0.0081 9 2.9
1 Service state defined as strain corresponds to 1,000 pe o f  compressive strain in concrete
2 Service state defined as strain corresponds to 2 ,000 pe o f  FRP strain recommended by [ISIS Manual No.3, 2007]

In this respect, Park et Paulay [1975] suggested that the maximum spacing of closed ties 

in the plastic hinge zone of a RC member should be d/4 for proper moment redistribution.
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Rasheed et al. [2005] concluded that to ensure realization of full potential with respect to 

ductility, the maximum spacing of ties in RC flexural members need to be maintained at d!4, 

particularly at critical sections. This will prevent premature disintegration of the confined 

concrete core in the compression zone due to buckling of compression reinforcement.

Vijay et GangaRao [2001], based on experimental results, reported that c/d ratio in range 

of 0.15 to 0.30 appears to be a reasonable design choice for concrete beams and slabs to achieve 

a deformability factor of 6 or higher. Furthermore, the increase of deformability factor more than 

6 were attributed to several factors such as plastic hinge formation, confinement, significant 

concrete cracking in compression zone and stress distribution [Vijay et GangaRao, 1996]. The 

c/d ratio reported in Table 5-4 revealed that beams with c/d ratios greater than or equal to 0.15 

showed deformability factors, J, equal to 4 or above except two beams.

The deformability index calculated according to Newhook et al. [2002] (2,000 

microstrains in the FRP reinforcement) ranged from 4 to 64; however, there is no limit to 

compare with. Further investigation is needed to define limits when this definition is employed.

Deflection Provisions 

ACI-440.1R-06 (ACI 440,2006)

ACI 440.1R-06 [2006] specifies the effective moment of inertia formulation, l e, to be 

employed in calculating the deflection of the cracked FRP-reinforced concrete beams and one­

way slabs. The procedure entails calculating a uniform moment of inertia throughout the beam 

length and uses deflection equations derived from linear elastic analysis. The current ACI 

440.1R-06 [2006] deflection equation is shown in Eq. [5.9 and 5.10]:
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A  = 0 . 2 ^ / ^  )<1.0 5.10

5.9

ISIS Manual No. 3 (ISIS M-03, 2007)

ISIS Manual No.3 [2007] presented Eq. [5.11] which was based on Mota et al.

[2006a] proposal for the effective moment of inertia reported that Eq. [5.11] provides 

consistently conservative predictions over the entire range of the test specimens they used.

f
( m  ]

2 >

1-0 .5 cr

M  }
V \  a J J

ACI-440-H (2010)

ACI 440-H [2010] proposed an alternative expression for the effective moment of inertia, 

Ie, that works equally well for both steel and FRP-reinforced concrete members without the need 

for empirical correction factors [Bischoff, 2005; Bischoff et Scanlon, 2007c], The ACI 440-H 

[2010] equation was provided to estimate the deflection for GFRP-, CFRP-, AFRP- and steel- 

reinforced concrete beams and one-way slabs. The expression is presented in Eq. [5.12].

Ie =  x, < I g\ where rj^[  1 -  ^
\  a 5.12

CAN/CSA S806-02 (CSA S806, 2012)

CAN/CSA-S806 [2012] employs curvature integration along the span to determine the 

deflection of a concrete member at any point, assuming the section is fully cracked with no
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tension stiffness contribution in the cracked regions of the beam. Thus, CAN/CSA-S806 [2012] 

provided deflection equation such as Eq. [5.13] for a simply supported member subjected to two- 

point loading:

Crack Width Provisions

The FRP design codes and guidelines permit a larger crack width for FRP- reinforced 

concrete elements compared to their counter parts reinforced with steel. CAN/CSA-S806 [2012] 

and CAN/CSA-S6.1S1 [2010] specify on service-limiting flexural-crack width of 0.50 mm for 

exterior exposure (or aggressive environmental conditions) and 0.70 mm for interior exposure. In 

addition, ACI 440.1R-06 [2006] recommends using CAN/CSA-S6.1S 1 [2010] limits for most 

cases. On other hand, since there is a direct relationship between the strain in the reinforcing bars 

and the crack width, ISIS Manual No.3 [2007] specifies 2,000 microstrains as a strain limit in 

FRP reinforcing bars to central crack width.

ACI 440.1R-06 (ACI 440,2006)

Frosch [1999] observed that Gergely-lutz equation [Gergely et Lutz, 1968] was 

developed on the basis of limited range of concrete cover distance. Thus, an alternative 

expression was provided to best first the experimental results over a large range concrete cover. 

This was developed by replacing part of the equation, (Ac) tension zone area, by spacing between 

bars. The current ACI 440.1R-06 [2006] and CAN/CSA-S6.1S1 [2010] adopted the Frosch’s

where t} = {\ — —) 5.13
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equation [Frosch, 1999] by introducing kb bond-coefficient to the equation as following (Eq.

ISIS Manual No. 3 (ISIS M-03, 2007)

Historically, the most common used crack width equation was Gergely-lutz equation 

[Gergely et Lutz, 1968] which was developed using a data base of nearly 1000 crack width 

measurements from several studies [Gross et al., 2009], The equation was proposed for the steel 

reinforced concrete members. The equation was, then, generalized to other types of 

reinforcement such as FRP. This equation, as shown in Eq. [5.15] was modified by replacement 

the steel reinforcement stress with reinforcing strain and introducing bond-dependent coefficient 

to account for different surface configuration available in the current reinforcement used (GFRP 

bars).

The ISIS Manual No.3 [2007] set a kb value of 1.2 for all types of reinforcement bars in 

absence of significant test data.

CAN/CSA S6.1S1-10 (CSA S6, 2010)

The CAN/CSA-S6.1S1 [2010] employs the same equation as the ACI 440.1R-06 [2006] 

as shown in Eq. [5.16]. Similar to CAN/CSA-S806 [2012], the crack width has to be verified 

when maximum tensile strain in FRP reinforcement under full service exceeds 0.0015.

[5.14]):

5.14

5.15
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w = 2 ^ k b J d c2+(s / 2)2 5 .16
Ef \

The value of kb shall be determined experimentally, but in the absence of test data may be 

taken as 0.8 for sand-coated and 1.0 for deformed FRP bars. In calculating dc, the clear cover 

shall not be taken greater than 50 mm.

Comparison between Experimental and Predicted Results 

Deflection

Assuming that beam deflection limit at service load is span/240 (L/240) as provided for 

by CAN/CSA-S806 [2012] which yields 15.63 mm all beams except 3#15G1, 2#15G2, 2#20G1 

and 2#22G1 exhibited deflection smaller than 15.63 at 0.3M„. The predicted deflections of the 

tested beams were compared with the experimental deflection values at 0.3M„ and 0.67M„. 

Table 5-5 provides the experimental-to-predicted deflection ratios (Sex,/SpreJ). Based on the 

predicted deflections, the ACI 440.1R-06 [2006] and ACI 440-H [2010] underestimated the 

deflection at 0.3M„ load level with an overall average ôexf/ôpreti value of 1.22+0.23 and 

1.25±0.14, respectively. However, both CAN/CSA-S806 [2012] and ISIS Manual No.3 [2007] 

equations slightly underestimated the deflection for all beams at 0.67A/„ load level with an 

average 6exp/ôpred value of 1.01+0.14 and 1.00+0.12, respectively. On the other hand, CAN/CSA- 

S806 [2012] and ISIS Manual No.3 [2007] equations slightly overestimated the deflection for all 

beams at 0.3M„ load level with an average ôexp/ôpred value of 0.89+0.20 and 0.90+0.15, 

respectively. The ISIS Manual No.3 [2007] equation showed the lowest COV amongst the used 

equations, namely 15%.
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Crack Width

Most of the design codes specify a flexural crack width limit for steel-reinforced concrete 

structures to protect the reinforcing bars from corrosion and to maintain the structure’s 

aesthetical appearance unlike steel reinforcement, FRP is corrosion resistant. Therefore, the 

serviceability limits for crack widths in FRP reinforced concrete elements may be directly related 

to aesthetic considerations.

Table 5-6 compares the measured crack widths to predicted values. The comparison was 

conducted at three different load levels: at 2,000 microstrains in the reinforcing bars, 0.3M„ and 

0.67M„. The predictions were conducted using a kb value of 1.4 for ACI 440.1R-06 [2006], and 

1.2 for ISIS Manual No.3 [2007]. For CAN/CSA-S6.1S1 [2010], the predictions were conducted 

using a kb value of 0.8 for sand-coated FRP bars, and 1.0 for helically-grooved FRP bars. The 

average wexp/w prej. at 0.3M„ load level calculated according to ACI 440.1R-06 [2006], 

CAN/CSA-S6.1S1 [2010] and ISIS Manual No.3 [2007] were 0.84+0.32, 1.32+0.56 and 

0.73+0.30, respectively. Moreover, there were no significance differences between the wexp/w pred 

at 0.3M n and 0.67M„ load level. The degree of conservativeness was higher for the GFRP- 

reinforced concrete beams with multi-layer reinforcement.

At 2,000 pe, both ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007] yielded a good 

prediction for all beams with an average wexp/w pred. of 1.03+0.40 and 0.97+0.43, respectively. 

However, CAN/CSA-S6.1S1 [2010] underestimated the crack widths and the average wexp/w pred, 

was 1.74+0.69. Furthermore, ACI 440.1R-06 [2006] prediction equation revealed the lowest 

COV among all equations at 2000 pe, 0.3M„ and 0.67M„ load levels.
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It is worth mentioning that, as shown in Table 5-6, three beams showed crack widths 

exceeding 0.50 mm. Thus, maintaining the strain level in the GFRP reinforcing bars at 2000 

microstrains at service load [ISIS Manual No.3, 2007] may keep the crack width below 0.50 mm. 

On the other hand, at 0.3M„, most of the tested beams showed crack widths exceeding 0.50 mm.

Conclusions

This paper investigated the flexural behaviour o f concrete beams reinforced with 

different grades of GFRP bars that are being used extensively in Canada. Based on the results 

and discussions concluding remarks could be drawn as follows:

1- Generally, the axial stiffness (E jA f) is one of the key factors that govern the flexural 

behaviour of FRP-reinforced concrete members. The higher the E jA f, the better the flexural 

performance (higher ultimate capacity, lower deflection, smaller cracks widths).

2- Maintaining the same EjAf for beams reinforced with the same type of GFRP bars is expected 

to yield similar behaviour for deflection and ultimate capacity. The larger diameter of GFRP 

bars, however, is expected to yield fewer numbers of flexural cracks and larger crack widths.

3- At 2,000 microstrains in the GFRP reinforcing bars, some beams showed crack widths larger 

than 0.5 mm. Limiting the strain to 2,000 microstrains is not an absolute assumption to keep 

the crack width controlled. The crack widths should be verified at service load levels.

4- The curvature of the GFRP-reinforced concrete members at service may be considered as a 

limiting parameter to keep the crack width and deflection controlled. The 0.005/d provided 

by Vijay et GangaRao [2001] seems to be feasible for some beams. More verification and 

refinement, however, are needed.
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5- The cracking behaviour of the tested beams tends to confirm that the bond performance o f 

sand-coated GFRP bars is better than the helically-grooved GFRP bars due the bond 

mechanism difference between the sand-coated and helically-grooved GFRP bars.

6- At 2,000 microstrains in FRP bars, both ACI 440.1R-06 [2006] and ISIS Manual No.3 [2007] 

yielded good crack-width predictions, on average. However, CAN/CSA-S6.1S 1 [2010] 

underestimated the crack widths. At 0.3M„, ACI 440.1R-06 [2006] and CAN/CSA-S6.1S1 

[2010] showed un-conservative values of crack widths, while ISIS Manual No.3 [2007] 

showed good agreement with experimental results. The degree of conservativeness for all 

predictions was higher for the GFRP reinforced concrete beams with multi-layer 

reinforcement.

7- The predicted deflections ISIS Manual No.3 [2007] and CAN/CSA-S806 [2012] were in 

reasonable agreements with the experimentally measured values.

8- Newhook et al. [2002] deformability index definition seems feasible for GFRP-reinforced 

concrete beams. Governing limits, however, need to be provided.
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS FOR 

FUTURE WORK

6.1 Summary

This research program aimed at investigating the flexural behaviour and serviceability 

performance of concrete members reinforced with different types and ratios of carbon and glass 

FRP bars and fabricated using normal-and high-strength concretes. In addition, it evaluates the 

bond-dependent coefficient (kb) of glass and carbon FRP bars in normal- and high-strength 

concretes. This study included an experimental program for fabricating and testing of thirty three 

full-scale simply-supported beams measuring 4250-mm long x 200-mm wide x 400-mm deep. 

Twenty seven concrete beams were reinforced with glass FRP bars, four concrete beams were 

reinforced with carbon FRP bars and two control beams reinforced with steel. All beams were 

tested in four-point bending over a clear span of 3750 mm. The main variables considered in the 

study were reinforcement type and ratio, FRP bar diameter, surface configurations, number of 

layers, and concrete strength. The FRP properties were obtained from testing of five samples for 

each FRP type and diameter according to ASTM D7205 [2011]. The test results of the beam 

specimens were presented and discussed in terms of flexural capacity and mode of failure, 

concrete and reinforcement strains, deflection, and crack widths through three journal papers 

presented in the course of this thesis.
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Among the three papers presented in this thesis, two investigated the flexural behaviour 

and serviceability performance of carbon and glass FRP-reinforced concrete beams fabricated 

with normal- and high-strength concretes. The two papers investigated GFRP bars of different 

grades, diameters, and surface configurations. While the third one evaluated the current design 

recommendations for bond-dependent coefficient (fa) values and checked the dependency of the 

kb values on FRP bar type (glass and carbon), diameter, and concrete type and strength. The 

cracking moments and flexural capacity were compared against the provisions of the North 

American codes and guidelines [ACI 440.1R-06, 2006; ISIS Manual No.3, 2007; CAN/CSA- 

S6.1S1, 2010; CAN/CSA-S806, 2012], In addition, the experimental results were employed in 

assessing the accuracy of the current deflection and crack-width prediction equations and the kb 

values in the FRP design codes and guidelines in North America [ACI 440.1R-06, 2006; ISIS 

Manual No.3, 2007; CAN/CSA-S6.1S 1, 2010; CAN/CSA-S806, 2012], The results introduced 

the effect of different parameters on the flexural behaviour and serviceability performance of the 

FRP- reinforced concrete members. Furthermore, the findings did not support the unique fa value 

for FRP bars of different types (carbon and glass) with similar surface configurations and was 

found to be dependent on bar diameter.

6.2 Conclusions

Based on the results of this study and considering the used materials, the findings of this 

investigation can be summarized as follows:

6.2.1 Flexural behaviour of FRP reinforced beams

- All the GFRP- reinforced concrete beams showed typical bi-linear load-deflection 

relationships until failure. Both NSC and HSC evidenced reduced stiffness after cracking.
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The NSC and HSC beams showed similar behaviour until failure. The post-cracking 

flexural stiffness of the HSC was higher than that of the NSC when the same axial- 

reinforcement stiffness ( Ef Af )  was provided.

The EfAf is one of the key factors that govern the flexural behaviour of FRP-reinforced 

concrete members. The higher the EfAf the higher the ultimate capacity.

Concrete strength and reinforcement ratio have an influence in the flexural behaviour. 

Using HSC led to increase in the flexural capacity of ~ 30% than the NSC.

ACI 440.1R-06 [2006] predicted the flexural capacity with reasonable tolerance of 10 to 

12 %. This is attributed to reasonable assumption of ultimate concrete strain (3,000 

microstrains) for the unconfined concrete.

6.2.2 Concrete strain

The concrete stain at the extreme compressive fibre showed typical bi-linear relationship 

against the moment until failure. The concrete strains were affected by the reinforcement 

ratio and the concrete strength. Increasing the reinforcement ratio or the concrete strength 

reduced the concrete strain at the same load level.

The ultimate concrete strain was lower than expected due to the absence of stirrups in the 

critical flexural zone of the beams. This led to that concrete’s compression failure in 

some beams was triggered by the buckling of the compression steel reinforcement. This 

premature buckling was due to a large unsupported length of compression bars (300 mm). 

This confirms Park et Paulay [1975] and Rasheed et al. [2005] conclusions that a 

maximum spacing between closed ties of d/4 in the plastic hinge zone of a RC member is 

required for proper moment redistribution and to ensure realization of full potential with
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respect to ductility. This will prevent premature disintegration of the confined concrete 

core in the compression zone due to bucking of compression reinforcement.

6.2.3 FRP Strains

After cracking state, the strains in the FRP bars increase linearly till failure. As the bar 

diameter and the EjAj  decreases, the strains increased at the same load level. The surface 

configuration also indicated some effects on the measured strains.

The NSC and HSC beams with low reinforcement ratios, pj, (0.56% or less) showed very 

sharp increases in reinforcement strains at cracking o f over 3,000 microstrains. While the 

beams were designed as over-reinforced sections, this did not prevent the large strain 

increase due to poor energy absorption at cracking.

At 0.3M„, the strains in the FRP bars were around 4,000 microstrains. This is agreement 

with the findings of Vijay et GangaRao [1996].

6.2.4 Cracking behaviour and bond-dependent coefficient (kh)

Using HSC increased the cracking moment of the GFRP- reinforced concrete beams 

compared to the NSC beams. The CAN/CSA-S806 [2012] modulus of rupture equation 

seems applicable for both NSC and HSC in the range o f the tested concrete strengths. 

Maintaining the same EjAf with larger diameter of GFRP bars yielded fewer numbers of 

flexural cracks and larger crack widths.

Increasing the reinforcement ratio and concrete strength resulted in a larger number of 

cracks and smaller crack widths.
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- Beams reinforced with sand-coated GFRP bars produced larger numbers of cracks and 

smaller crack widths than those reinforced with helically-grooved GFRP bars. This tends 

to confirm the better flexural bond characteristics of the sand-coated bars.

Bar diameter had an effect on crack width as evidenced by the NSC and HSC beams 

reinforced with GFRP bars. Employing the same Ef Af  with two different diameters of 

GFRP bars (No. 15 and No. 25) yielded higher crack widths with the No. 25 than with the 

No. 15. The effect was higher in NSC than in HSC.

At 2,000 microstrains in the GFRP reinforcing bars, some beams showed crack widths 

larger than 0.5 mm. limiting the strain to 2,000 microstrains is not an absolute assumption 

to keep the crack width controlled. The crack widths should be verified at service load 

levels.

Maintaining minimum practical reinforcement may be of interest to ensure that the 

section behaves reasonably after cracking and the sudden increase in the strains is 

minimized. This may have an impact on the current test method in CAN/CSA-S806 

[2012], Annex S, to determine the kb values when only two bars are recommended.

The calculations of kb values determined at crack width (w) = 0.7 mm, 0.30Mn, and 0.25/g 

were somewhat close. This supports using any of those limits as the recommended level 

at which the kb values should be determined. The 0.30M„ value may be recommended as 

it has been used by many researchers as a service-load level. Moreover, at 0.30A/„, the 

crack width was less than 0.7 mm in all the beams tested, except 3#13G1 and 2#13G2, 

which implicitly satisfies the requirements of CAN/CSA-S806 [2012], Annex 5, of 

keeping 0.7 mm as the maximum crack width that could be used in determining kb values.
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The bond-dependent coefficient (kb) is dependent not only on bar surface configuration, 

but also on bar diameter and material type. Providing one value for kb based solely on 

surface configuration was not supported by the test results. The results indicated that 

concrete strength (normal- and high-strength) had an impact, yet no trend or clear 

relationship was evidenced.

At 2,000 microstrains in FRP bars, both ACI 440.1R-06 [2006] and ISIS Manual No.3 

[2007] yielded good crack-width predictions, on average. However, CAN/CSA-S6.1S1 

[2010] underestimated the crack widths.

- At 0.3M„, ACI 440.1R-06 [2006], and CAN/CSA-S6.1S1 [2010] showed un-conservative 

values of crack widths, while ISIS Manual No.3 [2007] showed good agreement with 

experimental results. The degree of conservativeness for all predictions was higher for 

the GFRP reinforced concrete beams with multi-layer reinforcement.

The small kb values of CAN/CSA-S6.1S1 [2010] compared to those of ACI 440.1R-06

[2006] and ISIS Manual No.3 [2007] contributed to underestimating crack widths.

With the helically-grooved GFRP bars (G3: No. 15 and No. 25), employing a kb of 1.2 in 

the ISIS Manual No.3 [2007] equation yielded very good agreement with the 

experimental results. The ACI 440.1R-06 [2006] equation, however, underestimated the 

crack width of No. 15 GFRP bars, while yielding good agreement for No. 25 GFRP bars. 

The bond coefficient (kb) value of 1.4 is very conservative for both of sand-coated and 

helically-grooved GFRP bars in NSC and HSC. Reasonable crack-width predictions were 

obtained from ACI 440.1R-06 [2006] and CAN/CSA-S6 [2006] using a kb factor of 1.2 

for the helically-grooved GFRP bars and 1.0 for the sand-coated bars in NSC and HSC. A 

kb of 0.8 provided by CAN/CSA-S6 [2006] yielded very un-conservative predictions, on
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average, for sand-coated and helically-grooved GFRP bars in NSC and HSC. This value 

(&fc=0.8), however, yielded good yet conservative crack-width prediction for multi-layer 

sand-coated GFRP bars in NSC and HSC.

- With the sand-coated CFRP bars (C l: No. 10 and No. 13), ACI 440.1R-06 [2006] and 

ISIS Manual No.3 [2007] showed reasonably close predictions using kb values of 1.4 and 

1.2, respectively. On the other hand, the predictions were reasonable with some diameters 

and showed discrepancies for the others with the sand-coated GFRP bars type (G1 and 

G2).

Using a kb of 0.8 for the sand-coated FRP bars (carbon and glass) with the CAN/CSA- 

S6.1S1 [2010] equation underestimated the predicted crack widths in most of the tested 

beams fabricated using normal- and high-strength concretes.

The bond-dependent coefficient (kb) introduced by FRP design codes and guidelines 

should be revised to include the effect of bar diameter, FRP material type, and concrete 

strength, in addition to the surface configuration.

6.2.5 Deflection and curvature

Except beams with low reinforcement ratios, />/, the curvature at 0.30M„ was 0.004Id. The 

GFRP beams satisfied deflection and crack-width serviceability limits (U 240 for 

deflection and 0.7 mm [0.03 in.] for crack width). This partially confirms Vijay et 

GangaRao [1996] findings. A minimum reinforcement ratio, however, has to be 

maintained to generalize this phenomenon.

The curvature of the GFRP-reinforced concrete members at service may be considered as 

a limiting parameter to keep the crack width and deflection controlled. The 0.005/d
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provided by Vijay et GangaRao [2001] seems to be feasible for some beams. More 

verification and refinement, however, are needed.

- After cracking phase, defection and flexural curvature follow a linear relationship till 

failure, which indicates that bar strain has more contribution to curvature than concrete 

strains.

Higher values of concrete strength and reinforcement-to-balanced ratio led to higher c/d 

ratio, smaller compressive concrete strains and thus, smaller curvature and deflections. 

The test results did not support any effect of bar diameter or surface configuration o f the 

GFRP bars on the deflection of the NSC and HSC beams.

ACI 440.1R-06 [2006] and ACI 440-H [2010] yielded un-conservative deflection values 

at the 0.3Mn and 0.67M„. While CAN/CSA-S806 [2012] and ISIS Manual No.3 [2007] 

yielded conservative deflection predictions at the 0.3Mn.

At load levels beyond the cracking, the load-deflection responses predicted by ACI 

440.1R-06 [2006]; ACI 440-H [2010]; CAN/CSA-S806 [2012]; ISIS Manual No.3

[2007] are noticed to have large increase in deflection and rapidly approach the behaviour 

of fully cracked section. This sudden loss in stiffness, however, was not observed during 

any experimental test and can be attributed to misevaluation of the tension stiffening 

phenomenon.

6.2.6 Deformability

- The stirrups’ spacing in the flexural zone is an important factor to provide appropriate 

deformability at service load. The absence of the transverse reinforcement (stirrups) may 

initiate the concrete failure due to buckling of the compression reinforcement.
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Deformability could depend on the concrete strains or the FRP strains, however, a well 

definition to service load state in term of load or strains in FRP or concrete will properly 

adjust predicting the deformability.

6.3 Recommendation for future work

Based on the findings of this study, the following suggestion for future work could be 

introduced:

Deformability of FRP reinforced members should be further investigated.

The effect of lateral reinforcement (stirrups) on the flexural behaviour and serviceability 

of FRP reinforced members should be investigated.

Serviceability (deflection and cracking) study should be extended to include the FRP- 

prestressed concrete members.

Shear induced deflection may be investigated considering different types of FRP stirrups 

as shear reinforcement.

Different concrete types may also be investigated such as self-consolidated concrete and 

high performance concrete.

Performance of FRP reinforced members subjected to fatigue and cyclic loads at service 

conditions should be investigated.

165



CHAPTER 7
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CONCLUSIONS, RECOMMANDATIONS ET DES 

TRAVAUX FUTURS

7.1 SOMMAIRE

Ce programme de recherché focalise sur l’investigation du comportement à la flexion et 

de la performance en service d ’éléments en béton renforcés avec différents types et différents 

pourcentages de barres d’armature à base de fibres de verre et de fibres de carbone et fabriqués 

avec un béton normal et un béton à haute performance.

Ce programme évalue aussi le coefficient d’adhérence (kb) de barres d ’armature en fibres 

de verre et de carbone et fabriqué avec du béton normal et du béton à haute performance. Cette 

étude inclue un programme expérimental pour la fabrication et les essais de 33 poutres à grande
C

échelle de 4250 mm de long, 200 mm de largeur et 400 mm m de profondeur. 27 poutres en 

béton étaient renforcées de barres en PRFV (verre), 8 poutres étaient renforcées de barres en 

PRFC (carbone) et 2 poutres en béton renforcés d’acier.

Toutes les poutres ont été testées en flexion quatre points sur une portée libre de 3750 mm. 

Les paramètres d'essai étaient: le type de renfort et ratio, le diamètre des barres d’armature, la 

configuration de surface, l’épaisseur et la résistance du béton. Les propriétés des barres en PRF 

étaient obtenues à partir des essais sur 5 échantillons pour chaque type de barre et chaque 

diamètre selon la norme ASTM D7205 [2011],
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Les résultats des essais effectués sur ces poutres sont présentés et analysés en termes de 

résistance à la flexion et mode de rupture, de déformations du béton et des renforcements, de 

déflection, et de largeur de fissures, à travers 3 articles scientifiques présentés dans cette thèse.

Parmi les trois journaux présentés dans cette thèse, deux ont étudié le comportement en 

flexion et les performances en service de membrures de béton armé de barres de PRFC et de 

PRFV fabriqués avec du béton normal ou à haute résistance

Les deux articles ont portés sur des barres de PRFV de différents grades, diamètres et 

configurations de surface. Le troisième article a, quant à lui, évalué les recommandations 

actuelles de conception liées au coefficient d ’adhérence (kb) et vérifié la dépendance des valeurs 

de kb en fonction du type de barre (PRFV ou PRFC), du diamètre des barres et du type et de la 

résistance du béton.

Les moments de fissuration et la capacité de flexion ont été comparés aux codes de 

conception et guidelines nord-américains [ACI 440.1R-06, 2006; ISIS Manuel No.3, 2007; 

CAN/CSA-S6.1S 1, 2010; CAN/CSA-S806, 2012]. En outre, les résultats expérimentaux ont été 

utilisés pour évaluer l'exactitude de la déflection et des équations de prédiction de largeur 

fissures et les valeurs du coefficient kb disponibles dans les codes de conception en Amérique du 

Nord [ACI 440.1R-06, 2006; ISIS Manuel No.3, 2007; CAN/CSA-S6.1S 1, 2010; CAN/CSA- 

S806, 2012],

Les résultats introduisent l'effet de différents paramètres sur le comportement en flexion et 

la performance en service des éléments de béton armé à l’aide de PRF. En particulier, les 

conclusions n ’adhèrent pas à l’hypothèse d ’une valeur unique de kb pour les barres en PRF de
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différents types (carbone ou verre) avec des configurations de surface similaires, kb s'étant avéré 

être dépendant du diamètre de la barre.

7.2 Conclusions

À la lumière des résultats de cette étude et en considérant les matériaux utilisés, les 

conclusions peuvent être résumées comme suit:

7.2.1 Comportement en flexion de poutres renforcées de PRF

Toutes les poutres renforcées de barres en PRFV ont montré un comportement charge- 

déflection typiquement bilinéaire jusqu’à la rupture. Le béton normal et le béton à haute 

performance réduisent la rigidité après fissuration. Les boutres fabriquées avec un béton 

normal et un béton à haute performance ont montré un comportement similaire jusqu’à la 

rupture. La rigidité de flexion après fissuration du béton à haute performance était plus 

élevée que celle du béton normal.

La rigidité axiale EfAf est l ’un des facteurs clé qui gouverne le comportement en flexion 

des éléments en béton renforcés de PRF.

En utilisant un béton à haute performance, il y a augmentation de la capacité de flexion 

d’environ 30% que le béton normal.

- Le code ACI 440.1R-06 [2006] prédit la capacité en flexion avec une tolérance 

raisonnable de 10 à 12%. Ceci est attribué à la supposition raisonnable de la déformation 

ultime du béton (3,000 microstrains) pour un béton non-confiné.
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7.2.2 Déformation du béton

La déformation du béton sur la fibre comprimée montre un comportement typiquement 

bilinéaire jusqu’à la rupture. Les déformations du béton étaient affectées par le 

pourcentage d’armature et la résistance à la compression du béton. L ’augmentation du 

pourcentage d ’armature et de la résistance du béton réduit les déformations du béton pour 

un même niveau de chargement.

La déformation ultime du béton était plus basse que celle attendue et est due à l ’absence 

d ’étriers dans la zone critique de flexion des poutres. La rupture en compression du béton 

dans certaines poutres était contrôlée par le flambement de l’armature en compression 

d ’acier. Ce flambement prématuré était dû au non support de barres en compression (300 

mm). Cela confirme les conclusions de Park et Paulay, [1975] et Rasheed et al., [2005] 

que l’espacement maximum de d/4 entre les étriers fermés dans la zone plastique d’un 

élément est requis pour le moment de redistribution et pour assurer le plein potentiel par 

rapport à la ductilité. Cela préviendra la désintégration prématurée du béton confiné dans 

la zone de compression du au flambement de l ’armature de compression.

7.2.3 Déformations des PRF

Après fissuration, les déformations dans les barres d’armature en PRF augmentent 

linéairement jusqu’à la rupture. Comme le diamètre de la barre et le rapport EjAf 

diminuent, les déformations augmentent pour un même niveau de chargement. La 

configuration de surface indique aussi quelques effets sur les déformations mesurées.
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Les poutres fabriquées avec un béton normal et un béton à haute performance avec un bas 

pourcentage d ’armature p/, (0,56 % ou moins) montrent une augmentation des 

déformations de l’armature à la fissuration de plus de 3000jie. Même si les poutres sont 

sur-renforcées, cela ne prévient pas l ’augmentation de larges déformations dues à une 

faible énergie d ’absorption à la fissuration

À 0.3M„, les déformations dans les barres d ’armature en PRF étaient d ’environ 4000pe. 

Ce qui est en accord avec les conclusions de Vijay et GangaRao [1996],

7.2.4 Comportement à la fissuration et coefficient d’adhérence (kb)

L’utilisation d’un BHP augmente le moment de fissuration des poutres en PRFV 

comparativement aux poutres avec un béton normal. L ’équation du module de rupture du 

code canadien CAN/CSA-S806, [2012] semble applicable pour les deux types de bétons 

(BHP et normal) dans les limites des résistances des bétons testés.

En maintenant le même rapport E jA f  avec des barres en PRFV de plus grand diamètre, il 

y a peu de fissures de flexion et des fissures plus larges

L’augmentation du pourcentage d’armature et de la résistance du béton résulte en un plus 

grand nombre de fissures et des largeurs de fissures plus petites.

Les poutres renforcées de barres en PRFV saupoudrées de sable produisent un plus grand 

nombre de fissures et des largeurs de fissures plus petites que celles renforcées de barres 

en PRFV avec des rainures hélicoïdales. Cela tend à confirmer de meilleures 

caractéristiques d ’adhérence en flexion des barres saupoudrées de sable.

Le diamètre de la barre a un effet sur la largeur des fissures pour les poutres renforcées de 

barres en PRFV. En utilisant le même E jA f avec deux diamètres différents de barres en
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PRFV (No. 15 et No. 25), des largeurs de fissures plus grandes avec le diamètre No. 25 

qu’avec le diamètre No. 15. L ’effet est plus prononcé avec le béton normal qu’avec le 

BHP.

Pour des déformations de l’ordre de 2000pe dans les barres en PRFV, certaines poutres 

montrent des largeurs de fissures plus grandes que 0,5 mm. La limitation de la 

déformation à 20000 pe n ’est pas une supposition absolue pour contrôler la largeur des 

fissures. Les largeurs de fissures devraient être vérifiées aux niveaux de la charge de 

service.

Le maintien d ’armature minimale peut être d ’un intérêt pour assurer que la section se 

comporte raisonnablement après fissuration et que l’augmentation soudaine dans les 

déformations soient minimisées. Cela peut avoir un impact sur la méthode d ’essai dans le 

code CAN/CSA-S806, [2012], Annexe S, pour déterminer les valeurs de kb lorsque 

seulement deux barres sont recommandées.

Le calcul des valeurs de kb déterminé pour une largeur de fissures (w) = 0,7 mm, 0.30M„, 

et 0.25f G étaient quelque peu proches. La valeur de 0.30M„ devrait être recommandée, 

comme elle l’a été utilisée par plusieurs chercheurs à un niveau de chargement en service. 

En outré, à 0.30M„ , la largeur des fissures était moins que 0,7 mm pour toutes les poutres 

testées, sauf la 3#13G1 et 2#13G2, lesquelles implicitement satisfont les exigences du 

code CAN/CSA-S806, [2012], Annexe S en gardant 0,7 mm comme la largeur maximale 

des fissures qui devrait être utilisée dans la détermination des valeurs de kb.

Le coefficient d’adhérence (kb) est dépendant, pas seulement de la configuration de la 

surface de la barre, mais aussi du diamètre de la barre et du type de matériau. Les
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résultats montrent que la résistance du béton (normal et à haute performance) a un 

impact.

Pour des déformations de l’ordre de 2000)ie  des barres en PRF, le code de l’ACI 440.1R- 

06 [2006] et le manuel d ’ISIS No.3, [2007] donnent, en moyenne, de bonnes prédictions 

de la largeur des fissures. Cependant, le code CAN/CSA-S6.1S1 [2010] sous-estiment les 

largeurs de fissures.

À 0.3M„, le code de l ’ACI 440.1R-06 [2006] et le code CAN/CSA-S6.1S1 [2010] 

montrent des valeurs non conservatrices des largeurs de fissures, alors que le manuel ISIS 

No.3 [2007] est en parfait accord avec les résultats expérimentaux. Le degré de 

conservation pour toutes les prévisions est plus élevé pour les poutres en béton renforcées 

de barres en PRFV avec plusieurs lits d ’armature.

Les petites valeurs de kb du code CAN/CSA-S6.1S 1 [2010] comparées à celles de l’ACI 

440.1R-06 [2006] et du manuel d’ISIS No.3 [2007] contribuent à la sous-estimation des 

largeurs de fissures.

Pour les barres en PRFV avec des rainures hélicoïdales (G3: No. 15 et No. 25), utilisant 

un kb de 1,2 du manuel d ’ISIS No.3 [2007], l’équation est en accord avec les résultats 

expérimentaux. Cependant, l’équation du code de l’ACI 440.1R-06 [2006] sous-estiment 

la largeur des fissures avec les barres en PRFV No. 15, alors qu’elle est en parfait accord 

avec les barres en PRFV No. 25.

La valeur du coefficient d’adhérence {kb) de 1,4 est très conservatrice pour les deux types 

de barres (recouvertes de sables et avec rainures hélicoïdales) dans des bétons normaux et 

des bétons à haute performance. Les prédictions raisonnables des largeurs de fissures
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étaient obtenues du code de l’ACI 440.1R-06 [2006] et du code CAN/CSA-S6 [2006] en 

utilisant un facteur kb de 1,2 pour les barres PRFV avec des rainures hélicoïdales et un 

facteur de 1,0 pour les barres saupoudrées de sable dans des bétons normaux et des 

bétons à haute performance. Un facteur kb de 0,8 fourni par le code CAN/CSA-S6 [2006] 

montre, en moyenne, des prédictions non conservatrices pour les barres saupoudrées de 

sable et les barres avec des rainures hélicoïdales dans des bétons normaux et des bétons à 

haute performance. Cependant, cette valeur de 0,8 montre encore une prédiction 

conservatrice de la largeur des fissures pour les barres en PRFV saupoudrées de sable 

dans des bétons normaux et des bétons à haute performance.

Avec des barres en PRFC saupoudrées de sable (C l: No. 10 et No. 13), le code de l’ACI 

440.1R-06 [2006] et le manuel d’ISIS No.3 [2007], montrent des prédictions proches en 

utilisant des valeurs de kb de 1,4 et 1,2 respectivement. D ’un autre côté, les prédictions 

sont raisonnables avec certains diamètres, mais sont contradictoires avec d ’autres barres 

en PRFV saupoudrées de sable (G1 et G2).

En utilisant un facteur kb de 0,8 pour les barres en PRF saupoudrées de sable (carbone et 

verre) avec le code CAN/CSA-S6.1S1 [2010], l’équation sous-estiment les largeurs des 

fissures prédites dans la plupart des poutres testées, et fabriquées avec des bétons 

normaux et des bétons à haute performance.

Le coefficient d’adhérence (kb) introduit par les codes de design et les guidelines de 

calcul devrait être révisé pour tenir compte de l’effet du diamètre de la barre, du type de 

matériau, de la résistance à la compression du béton ainsi que la configuration de surface.
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7.2.5 Déflection et courbure

Mis à part les poutres avec un bas pourcentage d ’armature/>/, la courbe était, à 0.30Mn, de 

0,004Id. Les poutres en PRFV satisfont la déflection et la largeur des fissures à l’état 

limite de service (Z/240 pour la déflection et 0,7 mm [0,03 in.] pour la largeur des 

fissures). Cela confirme partiellement les conclusions de Vijay et GangaRao, [1996]. 

Cependant, un minimum de pourcentage d’armature doit être maintenu pour généraliser 

ce phénomène.

La courbure des éléments en béton renforcés de barres en PRFV, en service, doit être 

considérée comme un paramétré limite pour contrôler la largeur des fissures et la 

déflection. Le rapport 0.005Id proposé par Vijay et GangaRao, [2001] semble être 

adéquat pour certaines poutres. Cependant, plus de verifications sont utiles.

Après la zone de fissuration, la courbe de la déflection suit une relation linéaire jusqu’à la 

rupture, ce qui indique que la déformation de la barre a contribué beaucoup plus que les 

déformations du béton.

Les valeurs les plus élevées de la résistance à la compression du béton et du pourcentage 

d ’armature correspondent au plus élevé du pourcentage c/d et aux plus petites 

déformations du béton en compression et par conséquent aux plus petites courbures et 

déflections.

Les résultats d’essais ne montrent aucun effet du diamètre de la barre ou de la 

configuration de surface des barres en PRFV sur la déflection des poutres en béton 

normal ou en béton à haute performance.
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- Le code de l’ACI 440.1R-06 [2006] et celui de l’ACI 440-H [2010] fournissent des 

valeurs non conservatrices de la déflection à 0.3Mn et à 0.67M„. Cependant, le code 

CAN/CSA-S806 [2012] et le manuel d ’ISIS No.3 [2007] fournissent des prédictions 

conservatrices de la déflection à 0.3M„ .

Au-delà des niveaux de chargement de fissuration, les réponses charge-déflection 

prédites par l’ACI 440.1R-06 [2006]; l'ACI 440-H [2010]; le code CAN/CSA-S806 

[2012] et le manuel d’ISIS No.3 [2007] montrent une importante augmentation de la 

déflection et se rapproche rapidement du comportement de la section pleinement fissurée. 

Cependant, cette perte soudaine en rigidité n’était pas observée durant les essais 

expérimentaux et peut être attribuée à la mauvaise évaluation du phénomène de la rigidité 

en tension.

7.2.6 Déformabilité

L’espacement des étriers dans la zone de flexion est un facteur important pour assurer la 

déformabilité appropriée à la charge de service. L ’absence d’armatures transversales 

(étriers) peut initier la rupture du béton à cause du flambement de l’armature en 

compression.

La déformabilité peut dépendre des déformations du béton ou des déformations des PRF, 

cependant, une bonne définition de l’état de la charge de service en termes de charge ou 

de déformation dans les PRF ou dans le béton ajustera convenablement la prévision de la 

déformabilité
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7.3 Recommandations pour des travaux futurs

À la lumière des résultats de cette étude, les suggestions suivantes pour des travaux futurs 

sont proposées.

La déformabilité des éléments renforcés de PRF devrait être investiguée plus 

profondément.

- L’effet du renforcement latéral (étriers) sur le comportement en flexion des éléments en 

béton renforcé de PRF devraient être analysés plus en profondeur.

L’étude de la déflection et la fissuration devrait inclure les éléments en béton 

précontraints de PRF.

Le cisaillement induisant la déflection devrait être investigué en considérant diffèrent 

types d ’étriers comme renforcement de cisaillement.

- Différents types de béton doivent être aussi investigués comme le béton auto plaçant et le 

béton à haute performance.

La performance des éléments renforcés de PRF soumis à des charges cycliques dans les 

conditions de service devrait être investiguée.
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