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Sommaire 

 

 

 

La vaste majorité des plantes terrestres sont impliquées dans des interactions symbiotiques 

avec des champignons du sol. Ces interactions, appelées mycorhizes, jouent un rôle clé dans 

l’écologie des plantes en influençant plusieurs facettes de leur croissance ou de leur 

reproduction (e.g., nutrition, protection contre les pathogènes, activation du système 

immunitaire). Toutefois, nous connaissons encore très peu de choses sur l’assemblage des 

communautés mycorhiziennes en milieu naturel : existe-t-il de la spécificité entre certaines 

espèces de plantes et de champignons, ou ces associations sont-elles le fruit du hasard et des 

conditions locales seulement? Cette question pose un défi tant sur le plan fondamental, où 

nous cherchons à comprendre comment les mutualismes persistent évolutivement, que sur la 

plan appliqué, où nous aimerions connaître comment les écosystèmes naturels s’assemblent 

pour guider nos pratiques de restauration écologique. Ainsi, mon doctorat a gravité autour de 

cette question : quels sont les mécanismes responsables de l’assemblage des communautés 

mycorhiziennes? En d’autres termes, qu’est-ce qui détermine qu’une plante s’associera avec 

certains champignons, et ne s’associera pas avec d’autres, en milieu naturel.  

 

En premier lieu, j’ai approché cette question sur le plan théorique en utilisant la théorie des 

réseaux comme outil pour détecter les associations préférentielles entre plantes et 

champignons. J’ai aussi développé, pour prédire ces associations préférentielles, un cadre 

théorique basé sur les traits fonctionnels des organismes, en adaptant le triangle CSR de  J.P. 

Grime. Finalement, j’ai pu tester mes hypothèses par des observations en milieu naturel et des 

expériences en milieu contrôlé. L’ensemble de mes travaux ont contribué à mettre en lumière 

deux éléments clés de l’assemblage des communautés mycorhiziennes. Premièrement, 

l’assemblage semble se faire de manière hiérarchique, où d’abord des contraintes neutres 

comme l’abondance et la distribution spatiale déterminent quelles espèces auront l’opportunité 

d’interagir entre elles et ensuite, une sélection déterministe des partenaires s’opère, où les 
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plantes ayant des traits fonctionnels similaires tendent à interagir avec un pool similaire de 

champignons mycorhiziens. Deuxièmement, bien qu’il semble y avoir de la sélection 

déterministe de partenaires, tant en milieu naturel qu’en milieu contrôlé, ce choix de 

partenaires demeure extrêmement flexible et dépend probablement des conditions locales et de 

phénomènes stochastiques (e.g., conditions du sol, luminosité, effets de priorité par les plantes 

voisines, etc.).  

 

Ces résultats permettent de mieux comprendre la spécificité dans la symbiose mycorhizienne. 

Ils suggèrent aussi que ces communautés symbiotiques seront fortement résilientes aux 

perturbations (e.g., extinction locale d’une espèce), car la spécificité dans le choix de 

partenaires que l’on observe sur le terrain ne semble pas résulter d’évènements de coévolution 

réciproque et de spécialisation.  

 

 

 

   

 

 

Mots clés : Mycorhizes, Réseaux, Écologie des communautés, Symbioses, Sélection de 

partenaires, Résilience, Nestedness, Modularité. 
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Chapitre 1  

 

Introduction GÉNÉRALE 

 

 

 

La symbiose entre les plantes terrestres et les champignons mycorhiziens à arbuscules (CMA) 

est sans doute la plus vieille et la plus répandue des symbioses végétales (Parniske 2008). 

Cette association influence à peu près tous les aspects de la croissance et de la reproduction 

végétales, tels la nutrition (Smith and Read, 2008), la production de phytohormones (Allen et 

al., 1980), la compétition interspécifique (van der heijden et al., 2003) et intraspécifique 

(Moora and Zobel, 1996), la fréquence des visites par les pollinisateurs (Wolfe et al., 2005), 

etc. Cette symbiose est ainsi à la base de nombreux services écosystémiques tels la production 

de biomasse végétale, la réduction du lessivage des nutriments, la protection des cultures 

agronomiques contre les pathogènes, etc. Toutefois, en dépit de l’importance de cette 

symbiose dans les écosystèmes terrestres, nous savons encore très peu de choses sur 

l’assemblage des communautés mycorhiziennes naturelles. Ceci pose problème, car c’est en 

connaissant mieux l’assemblage actuel de ces communautés symbiotiques que nous serons en 

mesure d’établir des prédictions sur la façon dont ces communautés répondront aux 

changements environnementaux et aux perturbations d’origine anthropique. Tout au long de ce 

projet de doctorat, je me suis donc attardé à cette question centrale : quels sont les mécanismes 

via lesquels les communautés mycorhiziennes s’assemblent en milieu naturel? En d’autres 

termes, qu’est-ce qui détermine qu’une plante établisse des interactions avec certains CMA et 

n’en établisse pas avec d’autres? Cette question constitue en fait un volet substantiel de la 

recherche théorique sur la stabilité évolutive des mutualismes, où il est assumé que la sélection 

de partenaires est un des éléments clés permettant aux hôtes et aux symbiotes d’éviter les 

associations non bénéfiques (e.g. Bull and Rice, 1990). Avant d’aller plus loin dans la 

présentation du projet, il est nécessaire d’effectuer un recul historique pour mieux situer les 

connaissances que nous avions avant mon projet de doctorat, par rapport à la spécificité dans 

la symbiose entre plantes et CMA. 
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1.1 Spécificité au sein de la symbiose mycorhizienne à arbuscules, et implication pour sa 

stabilité évolutive 

 

 

Les mutualismes sont omniprésents au sein des écosystèmes. Ceci peut sembler contre-intuitif 

d’un point de vue de sélection naturelle, où cette dernière devrait favoriser chez une espèce 

l’évolution de traits qui favorisent son propre succès, et non de traits qui bénéficient à une 

autre espèce. Ainsi, au sein de mutualismes, la sélection naturelle devrait constamment 

favoriser l’émergence de stratégies où une espèce tente de maximiser les bénéfices retirés du 

mutualisme en payant le moins de coûts possibles (Sachs et al. 2004). Les termes « tricheurs » 

ou « passagers clandestins » (de l’anglais « free riders ») ont souvent été employés pour 

désigner les espèces évoluant une telle stratégie. L’augmentation de l’abondance relative de 

tricheurs dans une communauté devrait, ultimement, mener à la rupture évolutive du 

mutualisme, car il deviendrait trop risqué pour les espèces de s’associer avec des tricheurs, et 

il serait donc plus avantageux de ne pas initier de mutualisme (Herre et al. 1999). Toutefois, 

certains mutualismes, comme les mycorhizes à arbuscules, montrent une stabilité évolutive 

surprenante : les mycorhizes à arbuscules sont formées depuis plus de 450 millions d’années 

dans les écosystèmes terrestres (Redecker et al. 2000). Différents mécanismes ont été proposés 

pour expliquer la stabilité évolutive des mutualismes en milieu naturel : la transmission 

verticale (i.e., parents-enfants) des mutualismes (REF), les limites à la dispersion qui 

empêcherait les tricheurs de se propager dans une communauté (Doebeli and Knowlton 1998) 

et la sélection de partenaires (soit a priori, ou par le biais de récompenses préférentielles 

envers les bons partenaires et/ou les sanctions envers les tricheurs) (e.g., Bull and Rice 1990; 

Bever et al. 2009; Kiers et al. 2011). Selon ce dernier mécanisme (la sélection de partenaires), 

on devrait voir des patrons d’associations préférentielles entre les différentes espèces 

impliquées dans le mutualisme en question. Cette spécificité dans les interactions entre les 

plantes et les CMA demeure encore très peu comprise, et ce fut l’objet de mon doctorat de 

mieux comprendre son ampleur et les mécanismes qui pourraient en être les causes. 
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Historiquement, il a été assumé que la symbiose mycorhizienne à arbuscules était non 

spécifique, et que les associations naturelles s’établissaient plus ou moins par le fruit du hasard 

(e.g., Allen et al., 1995; Hoeksema, 1999). Cette assomption vient en partie du fait que jusqu’à 

relativement récemment, on ne distinguait que seulement ~ 200 espèces de CMA dans le 

monde, alors que des dizaines de milliers d’espèces végétales était connues pour former des 

associations avec ces champignons : on a donc assumé que ces ~ 200 CMA étaient des 

généralistes. Toutefois, avec l’avènement d’outils moléculaires pour définir les espèces de 

CMA en se basant sur leur ADN ribosomal, de nombreuses nouvelles espèces opérationnelles 

ont été définies (e.g., Öpik et al., 2010). Ces mêmes outils ont aussi permis d’identifier 

directement les CMA colonisant les racines de différentes espèces de plantes coexistant en 

milieu naturel. Dans la vaste majorité des cas, on a trouvé que différentes espèces de plantes 

ne s’associaient pas avec les mêmes espèces de CMA  (e.g., Husband et al., 2002; 

Vandenkoornhuyse et al., 2002; Öpik et al., 2009; Torrecillas et al., 2012). Toutefois, ces 

études ont généralement utilisé des méthodes très différentes pour démontrer la présence 

d’associations préférentielles (e.g., arbres de parsimonie, regroupement hiérarchique, modèles 

de log de vraisemblance) et ont fourni une réponse qualitative (oui/non) à la question de la 

présence de spécificité dans la symbiose mycorhizienne. Il devenait donc avantageux de 

définir des indices numériques pouvant quantifier numériquement le phénomène 

d’associations préférentielles à l’échelle de la communauté. C’est dans cette optique que j’ai 

commencé à m’intéresser de plus près à la théorie des réseaux. 

 

 

1.2 Mycorhizes, métacommunautés et réseaux 

 

Les jeux de données sur les plantes-CMA sont essentiellement de nature matricielle, où on 

regroupe des vecteurs d’abondance (ou de présence/absence) d’espèces de CMA pour 

différentes espèces végétales : ces vecteurs deviennent les rangées d’une matrice 

d’interactions. Ces jeux de données sont en tous points semblables à ceux que l’on regroupe 

lorsqu’on analyse une métacommunauté, i.e. une matrice de vecteurs d’abondances d’espèces 
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dans différents sites. La seule distinction est donc ici que l’on substitue les sites par des 

espèces de plante hôtes, ce qui en soit est logique puisqu’on peut considérer la plante hôte 

comme un habitat pour le CMA qui colonise ses racines. Une telle analogie a aussi été 

remarquée par Mihaljevic (2012), qui suggérait que l’ensemble des outils théoriques issus de 

la littérature sur les métacommunautés (e.g., Leibold et al., 2004; Cottenie et al., 2005) étaient 

aussi applicables aux communautés symbiotiques. Parmi ces outils, Leibold and Mikkelson 

(2002) suggéraient trois patrons clés quantifiables mathématiquement pour caractériser la 

structure d’ensemble d’une métacommunauté. Ces patrons sont : 

 

 (1) la Cohérence (i.e. la continuité dans la distribution d’une espèce le long d’un gradient, où 

par exemple si une plante est présente dans un sol à pH 4 et dans un autre à pH 7, elle devrait 

aussi être présente dans un sol à pH 5); 

 

(2) le Remplacement d’espèces (où la β-diversité entre les sites provient du fait que ces 

derniers ont différentes espèces, et non pas un nombre différents d’espèces); 

 

(3) la Compartimentalisation (où on peut définir des groupes bien délimités d’espèces qui se 

distribuent de façon semblable dans l’environnement, rappelant la théorie de Clements (1916) 

sur les communautés en tant que superorganismes).  

 

En parallèle, d’autres auteurs ont emprunté des outils mathématiques de la théorie des réseaux 

(exploitée dans l’étude des systèmes complexes et des réseaux sociaux, par exemple) pour 

analyser les communautés symbiotiques. Deux de ces outils ont connu une forte popularité 

dans la dernière décennie : (1) le « nestedness » (déjà présent en écologie dans la littérature sur 

la biogéographie insulaire, e.g. Atmar and Paterson, 1993) et (2) la modularité (Guimera and 

Amaral, 2005). Le nestedness est en fait un concept antithétique au remplacement d’espèces 

défini plus haut (e.g., Podani and Schmera, 2011; Carvalho et al., 2013), et la modularité 

réfère au même concept que la compartimentalisation aussi définie plus haut, mais elle est 

mesurée d’une manière différente. Ainsi, la théorie des réseaux et la théorie autour des 

métacommunautés fournissent un certain lot d’outils mathématiques redondants. Toutefois, la 
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théorie des métacommunautés a ce désavantage que ses indices mathématiques sont fortement 

influencés par l’ordre dans lequel les rangées et les colonnes de la matrice de données sont 

ordonnées. Pour offrir une approche standard, Leibold and Mikkelson (2002) ont suggéré 

d’utiliser les scores d’une analyse de correspondance pour ordonner la matrice, de manière à 

faire ressortir de façon optimale les gradients écologiques « cachés » dans les jeux de données, 

et à maximiser la cohérence mesurée de ces matrices. Toutefois, cette méthode demeure plutôt 

arbitraire et il existe souvent des façons d’ordonner la matrice de données qui maximisent 

davantage sa cohérence (Chagnon, données non publiées). À l’inverse, les outils issus de la 

théorie des réseaux sont largement indépendants de l’ordre des rangées et des matrices dans le 

jeu de données, ce qui pourrait en faire des solutions préférables. Un nombre croissant 

d’auteurs utilisent en effet ces outils pour étudier l’assemblage de communautés symbiotiques 

ou trophiques (e.g., Vazquez et al., 2009; Stang et al., 2009).    

 

Dans le prochain chapitre, je présente donc un article d’opinion visant à promouvoir 

l’utilisation des outils issus de la théorie des réseaux afin de mieux comprendre l’assemblage 

des communautés mycorhiziennes. Cet article est basé sur la ré-analyse d’un jeu de données 

publié et suggère que certains patrons dans les réseaux d’interactions plantes-CMA pourraient 

élucider l’importance relative de différents mécanismes dans l’assemblage de ces 

communautés symbiotiques.   
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Chapitre 2 

 

USING ECOLOGICAL NETWORK THEORY TO EVALUATE THE CAUSES AND 

CONSEQUENCES OF ARBUSCULAR MYCORRHIZAL COMMUNITY 

STRUCTURE 

 

 

 

Chagnon, P.L., Bradley, R.L., and Klironomos, J.N. 

 

Published in New Phytologist (2012), vol. 194: 307-312. 

 

 

2.1 Introduction 

 

Arbuscular mycorrhizal fungi (AMF) are widespread and their symbiotic interactions involve 

a majority of terrestrial plant species (Wang and Qiu, 2006). These obligate biotrophs 

generally improve the nutrition and vigor of the host, thereby affecting individual plant traits 

(van der Heijden et al., 1998) as well as the composition and functioning of entire plant 

communities (Moora and Zobel, 1996; Hartnett and Wilson, 1999; Bever, 2002). Studies on 

individual plant traits are useful in determining fitness benefits to the plant (e.g., increased 

growth, resistance to pathogens, etc.), whereas studies on community-level interactions can 

potentially explain constraints on host-symbiont web architecture (e.g. Blüthgen et al., 2007).  

Community-level studies have been limited, however, to small subsets of natural plant 

communities, because processing and identifying AMF species associated to numerous plant 

root systems have proven costly and painstaking. Recent advances in next generation 

sequencing technologies (Margulies et al., 2005) have removed this hurdle and improved the 

detection of rare AMF species (Öpik et al., 2009). This increased capacity in describing whole 

plant-AMF networks provides an opportunity to identify the causes, and assess the functional 

consequences, of symbiotic network architectures (i.e., topology). 
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Network theory, originally developed to describe the 

flow of information within computational and social 

networks (e.g., Emerson, 1972), has more recently 

been applied to ecological studies of various 

mutualistic systems (e.g. Jordano et al., 2003; Olesen 

et al., 2007; Joppa et al., 2010). The major advantage 

of an ecological network approach is that topological 

metrics can be quantified for any given network 

involving two or more groups of interacting 

organisms (e.g., plants and pollinators, food webs, 

etc.). For example, ecological networks may be 

described in terms of their “nestedness”. High 

nestedness occurs when specialist species interact 

with a subset of partners with which generalist species 

also interact. For example, a specialist pollinator 

would tend to specialize on a generalist plant, and 

vice-versa (Fig. 1a). This absence of reciprocal 

specialization was shown to be a pervasive feature of 

pollination networks (Bascompte et al., 2003; Joppa 

et al., 2009; Joppa et al., 2010) that potentially favors 

diversity and stability of ecological communities 

(Memmott et al., 2004; Burgos et al., 2007; Bastolla 

et al., 2009; Thébault and Fontaine, 2010). Ecological 

networks can also be described according to their 

“modularity”, that is the tendency of species to be grouped into modules in which interactions 

are more frequent than with the rest of the community (Fig. 1b).  Thompson (2005) suggested 

that communities may assemble into distinct modules based on the functional 

complementarity of their traits, and this may offer some insight into coevolutionary dynamics 

between symbiotic species (Guimarães et al., 2007).  

Figure 1. Hypothetical interaction 

matrices sorted so as to depict (a) 

the maximal nested state, or (b) the 

maximal modular state, of a plant-

AMF network. Filled cells represent 

an interaction between a given 

plants and AMF species. 
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In this Letter, we argue that an ecological network approach could provide a framework by 

which to characterize and compare plant-AMF communities from different environments or at 

different successional stages. This, in turn, could improve our understanding of mechanisms 

structuring mycorrhizal communities and bring mycorrhizal science to a more predictive level 

(Johnson et al., 2006). In a recent study, Öpik et al. (2009) used pyrosequencing to describe 

AMF communities associated with 10 plant species in a forest understory community. Here, 

we have used their published data set to demonstrate the applicability of ecological network 

theory to characterize plant-AMF communities. Our exercise revealed that this particular 

plant-AMF network was both highly nested and modular. We discuss possible reasons and 

implications for such topological features, and stress the potential for ecological network 

theory to direct future research on plant-AMF communities. In concluding, we argue that there 

may be a reciprocal advantage for advancing ecological network theory using plant-AMF 

communities as a model experimental system. 

 

2.2 Data set 

 

Öpik et al. (2009) sampled individual root systems from 10 plant species in a 100 m
2 

plot 

established in a hemiboreal forest in Estonia. A total of 458 root systems were sampled, from 

which DNA was individually extracted. DNA extracts were pooled by plant species and PCR 

amplified using the AMF specific primer AM1 and the general eukaryotic primer NS31. The 

exact conditions for PCR are described in Öpik et al. (2009). Amplicons were pyrosequenced, 

yielding the number of sequence reads of each AMF taxon associated with each plant species. 

 

2.3 Plant-AMF network topology 

 

An interaction matrix was drawn using the data published by Öpik et al. (2009) (Fig. 2). The 

matrix nestedness was calculated using the bipartite package of R statistical software (R 

Development Core Team, 2007).  This metric varies from 0 to 100 (perfectly nested matrix). 

To assess the statistical significance of this nested structure, random matrices were generated 
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using three different null models. These models use constrained randomizations of the original 

interaction matrix and, according to the level of constraints, can be prone to either type I or 

type II errors. The first model, originally developed by Atmar and Patterson (1993), is a full 

randomization of the filled cells across the matrix. Here, the probability (ρij) of each cell (ij) to 

be filled in the random matrices is equal to 1/N, where N is the total number of filled cells in 

the original matrix. This model has been criticized (e.g. Ulrich et al., 2009) for overestimating 

the statistical significance of nestedness (i.e., type I error). The second model, proposed by 

Bascompte et al. (2003), partially controls for row and column totals, so that the probability 

(ρij) of cell (ij) to be filled is equal to 
2)( ji  

, where i  and j
 are respectively the 

proportion of filled cells in row i and column j. This second null model is more conservative 

than the first in estimating the statistical significance of nestedness. The third null model fully 

controls for row and column totals, so that the probability (ρij) of cell (ij) to be filled is equal 

to (ρiρj). This third model is the most conservative of the three (i.e., most prone to Type II 

error), as the total number of filled cells for each row and each column in each random matrix 

is equal to the corresponding total in the original data matrix from Öpik et al. (2009). The 

third model thus controls for the effects of a species’ abundance on its level of generalism in 

partner choice (Vazquez, 2005). For each null model, 100 randomizations were performed and 

Figure 2. An interaction matrix in its maximal nested state, drawn from the published data set of 

Öpik et al. (2009). Rows and columns respectively represent plant and AMF species sampled in a 100 

m
2
 forest plot. Abbreviations for plant species : oxa – Oxalis acetosella, gal – Galeobdolon luteum, vio 

– Viola mirabilis, par – Paris quadrifolia, hep – Hepatica nobilis, fra – Fragaria vesca, hyp – 

Hypericum maculatum, geu – Geumrivale, ver – Veronica chamaedrys, ger – Geranium pratense. 

Abbreviations for AMF taxa : Acau – genus Acaulospora, Scut – genus Scutellospora, GlomA – genus 

Glomus group A, GlomB, genus Glomus group B, GlomC – genus Glomus group C. 
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the nestedness of each outcome was calculated as above. We considered nestedness to be 

significant if 95% or more of the random matrices of a given null model were less nested than 

the original data matrix.  

 

To analyze the modularity of the mycorrhizal network described by Öpik et al. (2009), we 

implemented an algorithm in R software that was developed by Guimerà and Amaral (2005). 

The algorithm uses a simulated annealing procedure to distribute the species of the community 

in different modules in order to reach maximal modularity (Mmax). For more details about the 

algorithm, see Guimerà and Amaral (2005). After determining Mmax for the original interaction 

matrix, we assessed its statistical significance by performing 100 randomizations while 

controlling for row and column totals (i.e., using the third null model described above), and 

recalculating Mmax. We considered modularity to be significant if 95% or more of the random 

matrices were less modular than the original data matrix. We then performed a Chi-squared 

test to assess the non-randomness of AMF taxa among the modules identified by the 

algorithm. 

 

2.4 Results 

 

The interaction matrix drawn from the mycorrhizal community described by Öpik et al. (2009) 

demonstrated significantly higher nestedness (N) than the randomly generated matrices under 

the first two null models (Original matrix, N = 82.6 ; Null model I, N = 40.5 ± 3.4 (1 SD) ; 

Null model II, N = 55.2 ± 4.3). Under the third null model, six out of 100 random matrices 

were more nested than the original data matrix, and 25 had a nestedness value above 80 (N = 

76.9 ± 4.6). 

 

The original mycorrhizal network was also found to be significantly modular (P < 0.01), as all 

of the randomized matrices had lower Mmax values (0.204 ± 0.02 SD) than the original data 

matrix (0.264). Figure 3 shows the original network divided into distinct modules according to 

the modularity algorithm. AMF taxa were not randomly distributed across these modules (χ
2 

= 

66.6, df = 36, P < 0.01). More specifically, members of the genera Acaulospora and 
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Scutellospora were mostly confined to a single module associated with Viola mirabilis, a 

“forest specialist plant” (sensu Öpik et al., 2009). On the other hand, members of the Glomus 

group A clade were the most generalist in their partner choice and mainly found in the module 

comprising the most plant species. 

 

2.5 Plant-AMF network structure 

 

Historically, all AMF species were considered broad generalists (Smith and Read, 2008), as 

laboratory assays demonstrated nearly complete compatibility between a range of host plants 

and cultured AMF species (Klironomos, 2000). This belief may have arisen from experimental 

artifact, as compatibility assessments can only be conducted with cultured fungi that are likely 

to exclude specialist and unculturable species (Sýkorová et al., 2007). Hence, both plants and 

AMF seemed to have a broad fundamental niche regarding their partner choice. It was later 

observed, however, that neighboring plants under field conditions can differ widely in their 

root-borne AMF communities (e.g., Vandenkoornhuyse et al., 2003; Alguacil et al., 2009). 

Here, we suggest that ecological network analysis can provide a valuable platform to evaluate 

Figure 3. An interaction matrix in its maximal modular state, drawn from the published data set 

of Öpik et al. (2009). Black cells represent recorded interactions found within one of the three 

modules identified by the modularity algorithm. Gray cells are interactions not included into any 

module, and white cells indicate that no interactions were observed between the corresponding 

species. Module affiliation is shown for AMF (above the matrix) and for plants (numbers in the 

left). 
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the relative contribution of niche-based vs. neutral mechanisms involved in plant-AMF 

community assembly. 

 

A highly nested structure, as we found in the interaction matrix drawn from data by Öpik et al. 

(2009), suggests that some AMF taxa specialize for only a few plant species. We thus argue 

that niche-based processes, driven by specific functional traits, may play a key role in the 

assembly of plant-AMF communities. For example, recent studies have suggested that the 

development of distinct AMF communities in the rhizosphere of different plant species (e.g. 

Johnson et al., 1992; Bever et al., 1996) may be driven by preferential allocation of plant 

carbon to the most beneficial fungal partner (Bever et al., 2009; Kiers et al., 2011). Also, both 

plants and AMF species have distinct seasonal peaks in their activities (Daniell et al., 2001; 

Pringle and Bever, 2002; Oehl et al., 2009), implying that phenological compatibility may be 

another niche-based mechanism driving partner choice. Likewise, our modularity analysis 

revealed a phylogenetic trend in the distribution of AMF taxa into different network modules. 

That important functional traits are conserved across major AMF lineages (Powell et al., 

2009) lends more support to the notion that plant-AMF communities are constructed so as to 

maximize functional matching among partners (Thompson 2005). 

 

Ecological network analysis may also evoke neutral mechanisms for plant-AMF community 

assembly, based on the abundance and spatial distribution of each species. For example, the 

nestedness of the interaction matrix drawn from data by Öpik et al. (2009) was significant 

only when compared to null models that did not control for the observed abundance of each 

species. Given the correlation that should exist between the abundance of a species and its 

degree of generalism in partner choice, our results suggest that the plant-AMF network studied 

by Öpik et al. (2009) relied at least partly on neutral assembly processes. One such process 

was proposed by Dumbrell et al. (2010), who found that a single fungal species displayed 

strong dominance in many AMF communities, with a disproportionately high number of 

subordinate AMF species. They suggested that fungal dominance was likely the result of a 

positive feedback occurring during the build-up of the plant-AMF community. A “founder 

AMF” species colonizing plant roots earlier during ecological succession would benefit from 
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more plant-derived carbon than “latecomers”, which would favor its growth and spread 

through the soil, and increase its probability of colonizing newly formed roots. This positive 

feedback, termed “preferential attachment” in the network theory literature (Barabasi and 

Albert, 1999), has been found to cause nestedness in other types of mutualistic networks 

(Medan et al., 2007).  

 

Our network analysis thus allowed us to conjure the existence of both niche-based and neutral 

mechanisms involved in structuring plant-AMF communities. From these, we may 

hypothesize a general assembly process based on successive filters (sensu Diamond, 1975), 

the first one being neutral and determined by overlapping spatial patterns, the second one 

being niche-based and determined by functional traits. Hence, during community build-up, 

AMF communities randomly associated to different plant species may gradually differentiate, 

subdividing the network into distinct functional modules. This is corroborated by data from 

Davison et al. (2011), who found that AMF communities associated to different plant species 

were more differentiated later in the growing season. To further verify this hypothesis, we 

suggest that more work be done to characterize the functional traits of AMF species belonging 

to same modules. This could be done by establishing pure cultures of AMF collected from a 

given site, growing them in standardized conditions and measuring ecologically relevant traits 

such as mycelial structure, hyphal life span, nutrient uptake and C acquisition (van der Heijden 

and Scheublin, 2007). 

 

2.6 Functional consequences of plant-AMF network topology 

 

Besides providing insights on the mechanisms that may be responsible for plant-AMF 

community assembly, a network approach could also help us understand the functional 

consequences of community structure. For example, high nestedness should limit interspecific 

competition among plants for AMF symbionts, thus favoring a higher diversity of co-existing 

species (Bastolla et al., 2009). Nested networks have also been shown to be more resistant to 

species extinction than randomly assembled communities (Thébault and Fontaine, 2010), thus 

conferring a greater stability to disturbance. However, those results arose from modeling 
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studies that assumed only niche-based processes. In other words, two non-interacting species 

were assumed to be fundamentally incompatible. The recent demonstration that neutral 

mechanisms can also produce nested structures as those observed in nature (e.g. Krishna et al., 

2008) calls for more work incorporating neutral mechanisms and their functional 

consequences. 

 

Even though less work has been conducted to explore the ecological consequences of 

modularity, this topological metric may be important from an evolutionary viewpoint. 

Coevolution between plant and AMF species has naturally been studied on a pairwise basis, 

where a plant is inoculated with a “home” or “away” mycorrhizal community (e.g. Johnson et 

al., 2010; Callaway et al., 2011). Modularity analysis may allow us to refine our 

understanding by predicting that species belonging to the same modules should be better co-

adapted to each other (Guimarães et al., 2007). Yet another consideration in modularity 

analysis is the turnover of species within and across modules. As AMF community structure 

may vary over time (Dumbrell et al., 2011), it is likely that some species change modules and 

perhaps even alter between being a specialist or generalist species, suggesting that reciprocal 

selective pressures exerted between plants and fungi may be themselves fluctuating over time. 

Such temporal variability in the generalism of a species has been reported in other mutualistic 

networks (e.g., Diaz-Castelazo et al., 2010; Lazaro et al., 2010) and should be investigated in 

plant-AMF communities. 

 

2.7 Advancing ecological network theory using plant-AMF communities  

 

As we’ve discussed, ecological network theory is a promising approach to test the relative 

importance of niche-based vs. neutral mechanisms involved in structuring plant-AMF 

communities, as well as to provide insights on the functional consequences of these structures. 

To face these challenges, there needs to be an empirical platform for testing various 

hypotheses. Most ecological networks that have been studied do not easily lend themselves, 

however, to experimental manipulation of community interaction patterns. For example, most 

data on mutualistic networks come from studies on pollination systems, because this 
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mutualism is widespread and data are readily available. Those systems are, however, rather 

unsuitable for manipulative experiments, as it is hard to control which organisms will interact. 

For this reason, recent advances in ecological network theory have relied on modeling work to 

depict the causes and consequences of divergent network topologies (Dunne et al., 2002; 

Thébault and Fontaine, 2010). Inevitably, these models simplify the interactive complexity of 

real communities. For example, community simulations have mainly used fixed interaction 

matrices depicting constant species interactions through time, a scenario that is unlikely to 

occur in nature (e.g., Petanidou et al., 2008; Diaz-Castelazo et al., 2010; Lazaro et al., 2010). 

There is thus a need to design manipulative experiments that will test predictions made by 

these models. 

 

The plant-AMF symbiosis may comprise a model experimental system for understanding the 

causes and consequences of different network topologies. It is possible to inoculate individual 

plants with specific AMF species and to grow these in a common garden. In other words, it is 

possible to build specific plant-AMF communities knowing the identity and initial abundance 

of each species, and the structure of the network. Such a model system could be used, for 

example, to test the importance of neutral mechanisms in structuring mutualistic communities, 

by testing the relationship between a species’ initial relative abundance and its level of 

generalism following the build-up of the community. Conversely, experimental manipulations 

of plant-AMF networks could be used to test the importance of niche-based mechanisms. For 

example, it was shown that phylogenetically distant AMF species have more distinct and 

complementary niches (Maherali and Klironomos, 2007; Powell et al., 2009) than closely 

related AMF species. This provides the opportunity to test whether roots colonized by 

phylogenetically overdispersed AMF assemblages are more apt to limit de novo root 

colonization (i.e., invasion) than those with phylogenetically clustered assemblages, as it is 

assumed that fewer empty niches would be left available in the formers (Elton, 1958). Finally, 

artificially constructed plant-AMF communities could be used to evaluate the functional 

consequences (in terms of species persistence, plant diversity, productivity, etc.) of different 

network structures. For example, it would be possible to test various hypotheses regarding the 

correlation between network nestedness and the rate of species extinction (Thébault and 
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Fontaine, 2010), using experimental protocols designed to test soil microbial stability 

following stress and disturbance (e.g., Lacombe et al., 2008; Royer-Tardif et al., 2010). 

 

2.8 Limitations of our analysis 

 

In other mutualistic systems, it is generally accepted that interaction frequency is a good proxy 

for the functional impact of one species on its partner (Vazquez et al., 2005). On the other 

hand, we lack evidence that the number of AMF sequence reads in plant roots is indicative of 

the functional impact of the fungus on its host, especially when considering the wide variation 

in biomass allocation inside vs. outside the roots (Powell et al., 2009). For this reason, we 

restricted our present analysis to two topological metrics that are quantified from binary (i.e. 

presence/absence) data matrices. Future work should strive, however, to find appropriate 

quantitative measures of interaction strengths in plant-AMF systems. For example, the number 

of independent interactions recorded in replicated data sets could be one way of corroborating 

results like those presented by Öpik et al. (2009). 

 

The fact that Öpik et al. (2009) may not have sampled all potential host plants in their plot 

could bias our estimate of nestedness. Nevertheless, Nielsen and Bascompte (2007) showed 

that estimates of nestedness were generally robust against incomplete sampling designs. 

Moreover, Bascompte et al. (2003) showed that larger networks were consistently more nested 

than smaller ones, which implies that our estimation of nestedness was probably conservative. 

 

2.9 Conclusions 

 

New molecular tools, such as pyrosequencing technology, have increased our capacity to 

thoroughly describe plant-AMF communities in natural settings. Ecological network theory 

provides quantitative tools to study such data sets and to generate hypotheses related to 

selective partnering and community-level functional attributes. Conversely, the plant-AMF 

symbiosis, or perhaps mycorrhizal symbioses in general, comprise a model experimental 

system for advancing ecological network theory, such as testing hypotheses related to neutral 
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vs. niche-based mechanisms controlling community structure, and to the functional 

consequences of different network topologies. 
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Dans ce dernier article, la théorie des réseaux est présentée comme un outil prometteur pour 

étudier l’assemblage des communautés plantes-CMA. Toutefois, elle porte aussi son lot de 

problèmes potentiels. En effet, ces nouveaux outils mathématiques en écologie des 

communautés ont aussi introduit un nouveau vocabulaire. Par exemple, très vite, les « nœuds » 

des réseaux d’interactions écologiques avec peu de liens (d’interactions) ont été identifiés 

comme des spécialistes. Toutefois, tel que noté par Poisot et al. (2011a), la spécialisation 

réalisée sur le terrain peut être le fruit de différents facteurs qui n’ont rien à voir avec un 

phénomène réel et évolutif de spécialisation : elle peut être le fruit d’une faible abondance 

relative ou d’effets historiques stochastiques, par exemple. Dans le cadre de la théorie des 

réseaux, une grande diversité d’indices ont été développés pour quantifier la spécialisation des 

espèces quant à leur choix de partenaires (e.g., Blüthgen et al., 2006; Albrecht et al., 2010; 

Poisot et al., 2011b). Toutefois, l’interprétation de ces indices a souvent omis la nuance 

mentionnée ci-dessus quant aux causes d’une spécialisation apparente sur le terrain. L’article 

publié par Toju et al. (2013) en est un bon exemple. Les auteurs utilisent l’indice d’ développé 

par Blüthgen et al. (2006) pour quantifier la « spécialisation » des espèces de plantes et de 

champignons endophytes en milieu naturel. Toutefois, l’interprétation qu’ils font de ces 

indices est purement basée sur des phénomènes évolutifs, alors que leur système d’étude 

implique des organismes sessiles, et donc limités par la dispersion. Ainsi, plusieurs espèces 

pourraient être perçus comme étant spécialistes parce qu’ils ont une faible abondance relative 

ou une distribution spatiale très agrégée (e.g. Blüthgen et al., 2008). Dans l’article qui suit, je 

démontre, par la ré-analyse de leurs données, que les inférences que l’on peut faire en 

calculant simplement des indices de spécialisation, sans données externes pour élucider les 

causes d’une telle spécialisation apparente, sont faibles (sensu Platt, 1964). Ceci démontre le 

besoin de complémenter des jeux de données sur les interactions entre les espèces avec 

d’autres données écologiques pertinentes (e.g., traits fonctionnels, abondance et distribution 

spatiale, phénologie).  
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3.1 Abstract 

 

Next-generation sequencing technologies are providing us with new opportunities to 

characterize plant-fungal communities in more depth and with better replication than ever 

before. The application of network concepts and numerical tools to analyze those extensive 

data sets is also rapidly increasing. Here we show, however, that network-based tools will 

further advance our understanding of the ecology of plant-fungal symbioses if (1) researchers 

characterize both the interaction patterns among species, and investigate the likely biotic and 

abiotic drivers of such interactions (e.g. species’ abundance, functional traits, environmental 

conditions) and (2) researchers make sure that the assumptions made by their network-based 

numerical tools are met by their data sets.  

 

3.2 Results and Discussion 

 

The increasing accessibility of next-generation sequencing technologies has sparked a new 

wave of studies that have characterized interaction patterns naturally occurring between plants 

and their fungal symbionts (e.g. Montesino-Navarro et al., 2012; Martos et al., 2012). One 

way to analyze such data sets, is to describe community structure using novel indices/metrics 
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derived from ecological network theory (Bascompte, 2009; Bahram et al., 2014). The 

advantage of this approach is that it is possible to detect community-level patterns and to 

evaluate, through the use of null models, their statistical significance and their ecological 

correlates (Chagnon et al., 2012). Thus, this approach has the potential to shed new light on 

the processes underpinning the ecological and co-evolutionary dynamics of symbiotic 

communities (Bascompte, 2009; Ulrich and Gotelli, 2013). However, field sampling schemes 

and numerical analyses need to be carefully designed in order to maximize the inference that 

can be extracted from data sets (Heleno et al., 2014). To emphasize this point, we have re-

analyzed data describing the interactions found between plants and root-colonizing fungi in an 

oak-dominated temperate forest in Japan (Toju et al., 2013). This recently published data set 

provides useful insights on the quantitative nature of plant-fungal interactions in a natural 

forest setting. Our re-analysis of their data suggests, however, that by strictly characterizing 

interaction patterns among plant and fungal taxa, the study provides little information about 

the relative importance of neutral versus niche-based processes that determine the assembly of 

plant–fungal communities. Given the growing importance of next-generation sequencing 

studies in belowground community ecology (Poisot et al., 2013), future network studies may 

have to invest less effort in characterizing interaction patterns among species to be able to 

invest more in investigating the biotic and abiotic drivers of community-level patterns. 

 

Toju et al. (2013) sampled a 59 m x 15 m grid comprising 960 soil sampling points. At each 

point, they collected one root fragment from which DNA was extracted. From these extracts, 

they identified plant species by amplifying and sequencing chloroplastic DNA. They also used 

the same DNA extracts to amplify and sequence fungal DNA (using general fungal ITS 

primers) to determine the fungal taxa composition inside of roots. After thorough 

bioinformatic filtering of the data set (see Toju et al., 2013), the authors identified a network 

of 10 plant species interacting with 49 fungal taxa. The aim of the study was to determine the 

degree of specialization in plant-fungal interactions in a natural forest setting. They calculated 

the specificity of associations between plants and fungi by computing the d’ index, which is an 

information-derived index (like Shannon diversity, see Blüthgen et al., 2006). This index is 

bounded between 0 and 1: high values indicate a low diversity of partners (i.e. specialist 
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species). This index was explicitly stated by its 

developers to be useful in studies focusing on 

spatial scales that are small enough to avoid 

situations where the absence of an interaction 

between two species could be simply ascribed 

to the absence of overlap in their spatial 

distribution (Blüthgen et al., 2006). In other 

words, at large spatial scales, the d’ index does 

not strictly address the issue of partner 

selection and association specificity, but it is 

also biased by the neutral effects of species 

abundances and spatial distributions. Thus, in 

the study by Toju et al. (2013), to assume that 

the d’ index actually characterizes association 

specificity, it is necessary to demonstrate that 

species are homogeneously distributed across 

the sampling points. To verify this assumption, 

we plotted the spatial distribution of plant and 

fungal taxa across the spatial grid sampled by 

Toju et al. (2013). For many species, there 

were obvious visual patterns of aggregation 

(see examples in Fig. 4). To test for the 

significance of this aggregation, we calculated 

Besag’s L function (Besag, 1977), an improved 

version of Ripley’s K function, which calculates and compares the frequency with which 

events occur at small pairwise distances with those predicted from Monte Carlo random 

simulations. For spatial scales between 1–10 m, we found that most plant species and about 

half of the fungal taxa were significantly aggregated (fig. 5). This confirms that species cannot 

be assumed to be homogeneously distributed across the landscape, and that the d’ index 

cannot be interpreted here to strictly infer preferential partner selection. For example, partners 

Figure 4. Examples of species that had 

clearly and significantly aggregated spatial 

distributions (i.e. the plant species Quercus 

serrata, and the fungal OTU 544). The 

matrices represent species’ occurrences 

across each spatial sampling units (i.e. cells) 

in a binary way (occurrences = filled cells). 
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that were found to interact more often than predicted by chance may simply have had 

overlapping spatial distributions arising from stochastic dispersion processes or from their 

similar responses to environmental gradients (e.g. soil properties). 

 

To test whether spatial co-occurrence 

patterns could predict the interactions 

observed between plants and fungi, we 

constructed a null model that allocated 

interactions in the network based on the 

co-occurrence patterns of plant and fungal 

taxa. First, we calculated a pairwise co-

occurrence index under the form of a z-

score. Briefly, for each plant-fungal pair, 

we compared the total number of co-

occurrences observed in the field to a null 

distribution that was obtained by shuffling 

the spatial distribution of the fungus. We 

thus ended up calculating 

nullC

nullobs
c

SD

CC
z


 , 

where zc is the co-occurrence index, Cobs is the total number of co-occurrences between the 

plant and fungal taxa in the field, 
nullC is the mean number of co-occurrences from 1000 

simulations, and 
nullCSD is the standard deviation around 

nullC . We then built 1000 random 

networks, allocating interactions using the z-scores calculated above as probabilities (i.e. high 

z-score = higher probability of interacting in simulated networks). It should be noted that the z-

scores can be negative if there are less co-occurrences than expected by chance between two 

species. To allow using them as probabilities in our simulations, we transformed the values by 

bounding them between 0 and 1, using the function decostand as implemented in the R 

package vegan (Oksanen et al., 2012). While assembling our random networks, we 

constrained interaction probabilities according to two important network attributes: (1) the 

Figure 5. Proportion of plant and fungal species 

in the data set having a significantly aggregated 

spatial distribution (test using Besag’s L function 

and Monte-Carlo randomizations) at spatial 

scales ranging from 1 to 10 meters. 
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total number of interactions (i.e. connectance) in the network, and (2) the total number of 

interactions per fungal taxa. Controlling for connectance is a routine procedure when 

simulating random interaction networks, because connectance is highly correlated to many 

network metrics (e.g. Almeida-Neto et al., 2008; Blüthgen et al., 2008). Controlling for the 

total number of interactions per fungal taxa was also important because the large number of 

taxa with very few interactions in the original data set would have artificially inflated the 

number of empty columns in the simulated random networks. Interactions that were found in 

more than half (i.e. >500) of our null network simulations were then assumed to be predictable 

by spatial co-occurrence patterns. As a result, we found that 257 of the 274 interactions 

present in the original data set (i.e. 94%) could be predicted by spatial co-occurrence patterns.  

 

The close relationship between spatial distributions and the observed interaction patterns was 

not surprising, given the nature of the data set: at each sampling point, fungal DNA was 

sequenced from roots of a single plant species. Thus, if a fungus co-occurred at a given 

sampling point with a given plant species, it was necessarily because it was found interacting 

with that plant (i.e. sequenced from its roots). In other words, co-occurrence and interaction 

were not independent, and should have been disentangled by independently characterizing the 

spatial distribution of plants and fungi. One way of doing this could have been to collect, at 

each sampling point: (1) roots and/or soil to characterize fungal community composition, (2) a 

compound sample of roots to characterize plant community composition, and (3) a single root 

fragment to characterize plant-fungal interactions (only the last point was done in the original 

study). Such a design would have increased sampling effort at each sampling point, but this 

could have been compensated by visiting less sampling points overall. At least, with such a 

design, the study would have provided valuable information on the relative importance of 

spatial overlap in driving plant-fungal interactions. Otherwise, it remains unsure whether the 

preferential interactions found by Toju et al. (2013) arose from co-evolutionary specialization, 

or simply from both partners responding similarly to environmental gradients (Lewinsohn et 

al., 2006). Alternatively, frequent pairs might result from overlapping spatial distributions that 

had been generated by stochastic processes, or even simply be an artefact of the sampling 

design. For example, it is known that spatial autocorrelation is high for ectomycorrhizal 
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communities that are less than 3m apart (Lilleskov et al., 2004). Thus frequent interactions in 

the data set may simply reflect the repeated sampling of a single interaction within a small 

neighborhood. Without any supplementary data from this system, we cannot interpret 

preferential associations in relation to ecological (neutral vs. niche-based) or evolutionary 

processes.  

 

There is no doubt that Toju et al. (2013) presented a valuable data set, which provides us with 

valuable true estimates of plant-fungal interaction frequencies in a natural forest setting. Their 

sequencing effort is the first to characterize plant-fungal interaction patterns so intensively and 

thus represents a major contribution. Our comment does not specifically seek to criticize their 

work, as many other plant-fungal interaction studies have used a network approach but are 

limited in their abilities to infer processes from patterns (e.g. Jacquemyn et al., 2010, 2011; 

Chagnon et al., 2012; Montesino-Navarro et al., 2012). Instead, here, we wish to emphasize 

the value of designing “network studies” that not only characterize interaction patterns, but 

also explore the likely biotic and abiotic drivers of these interaction patterns. For example, 

future studies should focus on collecting additional data on plant and fungal functional traits 

(e.g. Stang et al., 2009; Chagnon et al., 2013), on spatial variation in soil properties (Dumbrell 

et al., 2010) and on plant and fungal phenology (Olesen et al., 2011). By integrating such 

information, network analyses may shift from being a simple descriptive tool to a powerful 

approach for advancing our ecological and evolutionary understanding of community-level 

symbiotic interaction patterns. 
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Dans l’article qui précède, je souligne l’importance d’utiliser les outils de la théorie des 

réseaux non pas seulement comme outil exploratoire pour tester la présence ou l’absence de 

différents patrons reliés au nestedness, à la modularité ou à la spécialisation. Je préconise 

plutôt l’utilisation des ces nouveaux outils mathématiques pour tester de véritables hypothèses 

écologiques reliées à l’assemblage des communautés symbiotiques. Ainsi, il apparaît clair que 

l’analyse de données basées uniquement sur les patrons d’interactions entre les espèces est 

insuffisante : il faut aussi amasser des données sur les mécanismes potentiels qui déterminent 

quelles espèces interagiront ensemble.  

 

Dans le cadre de la sélection de partenaires dans la symbiose mycorhizienne, il existait très 

peu de théorie permettant de prédire quelles espèces de plantes devraient préférer quelles 

espèces de CMA. Certaines études très fragmentaires avaient suggéré que les plantes plus 

susceptibles aux pathogènes du sol devraient sélectionner de façon préférentielle les CMA qui 

fournissent une meilleure protection face aux pathogènes (e.g. Sikes et al., 2009). D’autres ont 

montré que certains CMA tendent à demeurer plus près de la racine lorsqu’ils colonisent le 

sol, suggérant que leur rôle dans la nutrition serait redondant avec celui des longs poils 

racinaires de la plante (e.g., Koide, 2000; Smith et al., 2000), suggérant ainsi que les plantes 

produisant beaucoup de poils racinaires auraient peu d’avantage à interagir avec de tels CMA. 

Toutefois, ces données demeurent largement insuffisantes pour prédire les associations 

préférentielles en milieu naturel, car dans la vaste majorité des cas, nous ignorons 

complètement l’aptitude des CMA à protéger les plantes contre les pathogènes où à pousser 

près de la racine dans le sol. Nous ignorons mêmes souvent la susceptibilité des plantes aux 

pathogènes du sol et l’abondance ou la longueur moyenne de leur poils racinaires. Ainsi, il y a 

un urgent besoin de développer des cadres conceptuel basés sur les traits fonctionnels des 

espèces impliquées (plantes et CMA), de manière à déterminer quels traits fonctionnels 

doivent être mesurés.  

 

C’est précisément ce que je propose de faire dans le prochain article. Je développe un cadre 

théorique déjà largement accepté en écologie végétale : le triangle CSR de J.P. Grime (e.g., 

Grime, 1977). Ce cadre théorique semble utile pour plusieurs raisons :  
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- Il permet de caractériser non pas seulement des traits fonctionnels uniques, mais aussi 

comment ces traits sont intégrés à des stratégies d’histoire de vie plus large, qui ont 

permis de résoudre des défis écologiques donnés comme la survie en milieu aride ou 

en milieu fortement perturbé (i.e. Stearns 1976); 

- En ayant un cadre théorique commun pour les plantes et les CMA, il est plus facile de 

faire des prédictions sur les associations préférentielles. Par exemple, une plante 

tolérante au stress, avec une stratégie axée sur la conservation des ressources (avec une 

biomasse coûteuse mais longévive), n’aurait probablement pas avantage à s’associer 

avec un champignon qui a une stratégie rudérale axée sur l’acquisition de ressource (où 

la plante devrait constamment fournir du carbone au champignon pour remplacer sa 

biomasse peu longévive); 

- Puisque très peu d’études ont jusqu’à maintenant mesuré de façon systématique les 

traits des CMA, un cadre théorique précis permettrait de focaliser les efforts et de 

suggérer certains traits clés à mesurer dans un futur proche. Par exemple, le triangle 

CSR mettant l’emphase sur les perturbations et le stress, on pourrait vouloir mesurer 

d’abord chez les CMA des traits reliés à leur taux de croissance ou à leur réponse à un 

stress nutritionnel (e.g., faible investissement en carbone de la part d’une plante à 

l’ombre). Ceci permettrait donc de faire converger les efforts déployés par différents 

groupes de recherche. 

 

Toutefois, bien que le prochain article soit centré autour du triangle CSR, je mets aussi 

l’emphase sur le fait que d’autres cadres théoriques pourraient être aussi valables et que 

l’étude ne constitue pas en effet le début d’un effort formel pour calibrer mathématiquement 

un triangle CSR à partir des traits des champignons. L’effort ici est davantage conceptuel, et 

vise plutôt à initier une recherche sur les traits fonctionnels des CMA qui soit ciblée et 

efficace, et surtout qui puisse contribuer à faire la lumière sur les associations préférentielles 

entre plantes et CMA. 
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Chapitre 4 

 

A TRAIT-BASED FRAMEWORK TO UNDERSTAND LIFE HISTORY OF 

MYCORRHIZAL FUNGI 
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4.1 Abstract 

 

Despite the growing appreciation for the functional diversity of arbuscular mycorrhizal (AM) 

fungi, our understanding of the causes and consequences of this diversity is still poor. In this 

Opinion article, we review published data on AM fungal functional traits and attempt to 

identify major axes of life history variation. We propose that a life history classification 

system based on the grouping of functional traits, such as Grime’s C-S-R (competitor, stress 

tolerator, ruderal) framework, can help to explain life history diversification in AM fungi, 

successional dynamics and the spatial structure of AM fungal assemblages. Using a common 

life-history classification framework for both plants and AM fungi could also help predict 

likely species associations in natural communities and increase our fundamental understanding 

of the interaction between land plants and AM fungi. 

 

4.2 Functional diversity in arbuscular mycorrhizal fungi: the need for a conceptual 

framework 

 

The symbiosis between plants and arbuscular mycorrhizal (AM) fungi (phylum 

Glomeromycota, see Glossary) originated some 450 million years ago (Redecker et al., 2000), 

and is thought to have facilitated the transition of plants from water to land. This symbiosis 
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occurs in a majority of species in the plant kingdom and may be a major driver of the 

assembly, dynamics and productivity of plant communities (e.g. van der heijden et al., 1998; 

Klironomos et al., 2000). There is a need, therefore, to understand the mechanisms through 

which AM fungi influence a wide range of plant responses in different environmental 

contexts. 

 

The historical notion that AM fungi are a functionally homogeneous group specialized in the 

provision of phosphorus (P) to their host plants (Gerdemann, 1975) has been expanded to 

consider other types of functions. It has been known for some time that AM fungi can confer 

plant pathogen protection as well as improve plant tolerance to drought and heavy metal 

contaminants (e.g. Schenck, 1981; Harris et al., 1985; Griffioen and Ernst, 1989). More 

recently, it has been demonstrated that AM fungi may alter plant hormone dynamics (Hause et 

al., 2007) as well as stabilize soil aggregates, which could have physical and resource benefits 

for the plant (Rillig et al., 2002). There is also interspecific variation for these functions and 

their attendant traits, suggesting the existence of functional trade-offs among AM fungal 

species (Daft, 1983). For instance, different AM fungal species can vary in their carbon 

demand from host plants (Pearson and Jakobsen, 1993), P translocation to roots (Ravnskov 

and Jakobsen, 1995), carbon storage (van Aarle and Olsson, 2003), and relative investment 

into extra-radical versus intra-radical biomass (Hart and Reader, 2002). To understand the 

origin of this variation and to predict its ecological consequences, it is necessary to develop a 

conceptual framework that organizes AM fungal species according to functional groups. 

 

Several advantages arise from classifying AM fungal species according to broad functional 

groups. Identifying sets of correlated functional traits within each group could help us to 

define major life-history strategies. Those strategies, in turn, could be used to predict 

biodiversity patterns and successional trajectories in a tractable way. For example, ecologists 

have been using r and K selection strategies (MacArthur and Wilson, 1967) to describe the 

early establishment of populations with a short generation time, rapid growth and low resource 

use efficiency (i.e. r strategy), and their eventual replacement by populations with delayed 

reproduction, high parental care and a few large off-spring (i.e. K strategy) (Reznick et al., 
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2002). In the case of AM fungi, as obligate plant biotrophs, an additional challenge would be 

to develop a common framework that categorizes both plant and AM fungal life-history 

strategies, since the level of matching between the life histories of interacting plant and fungal 

symbionts may predict the relative benefit that each partner will derive from the interaction. 

  

 

Frameworks that group species into functional groups along a few trait axes have helped to 

summarize biological variation, and has led to the development of hypotheses to explain the 

origins of functional diversity (MacArthur and Wilson, 1967), the distribution and abundance 

of species (Winemiller, 2005), and the consequences of functional traits for ecosystem 

functioning (Westoby and Wright, 2006). Of the many frameworks that have been proposed, 

the r-K selection model (MacArthur and Wilson, 1967) has likely been the most influential. 

Nevertheless, this framework has been criticized for its oversimplification of life history 

strategies along a single axis that combines both disturbance and resource availability 

(Winemiller, 2005). Other models that integrate additional axes have thus been proposed to 

more completely characterize diversity while remaining simple and tractable. One example in 

aquatic science is the Winemiller-Rose triangular model (Winemiller and Rose, 1992), which 

integrates both disturbance frequency and predictability, thus defining three main strategies: 

opportunistic (highly disturbed systems), seasonal (periodically disturbed systems) and 

equilibrium (undisturbed systems). One limitation of the triangular model, however, is that 

even though it provides a clearer role for two different qualitative aspects of disturbance in 

selecting for distinct life histories, it does not account for additional and potentially major 

aspects of life history, such as resource availability and abiotic stressors.  

 

In plant science, Grime’s C-S-R (competitor, stress tolerator, ruderal) framework overcomes 

some limitations of other models by classifying plant life history strategies according to the 

functional traits associated with responses to two major environmental filters, namely stress 

and disturbance (Grime, 1979). Stress refers to persistent adverse environmental conditions 

(e.g. low soil fertility and limited light availability) whereas disturbance refers to events 

leading to significant loss of functional biomass (e.g. fire and windthrow). The C-S-R 
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framework identifies three main life-history strategies. 'Competitors' thrive in low-stress and 

low-disturbance environments, where they gain a competitive advantage by delaying 

reproduction so as to invest in structures that optimize the acquisition of resources (Hodgson 

et al., 1999). 'Stress tolerators' endure sub-optimal environments owing to resource 

conservation strategies, such as the production of long-lived biomass, which increases 

resource use efficiency in the long term (Chapin, 1980; Cornellissen et al., 2001). 'Ruderals' 

cope with frequent disturbance by relying on high colonization ability, rapid production of 

low-cost biomass, and short reproductive cycles (Grime, 1979; Hodgson et al., 1999). 

According to the framework, no species can withstand both high levels of stress and 

disturbance, thus preventing the existence of a fourth life history strategy. As a whole, the C-

S-R framework has been useful for understanding the assembly of plant communities 

undergoing land-use change (Hodgson, 1991), and for predicting successional trajectories of 

plant communities after disturbance events (Cacciagana et al., 2006; Navas et al., 2010). In 

addition to plant studies, the C-S-R framework has been used to study functional variations in 

coral reef communities (Darling et al., 2012), and it has also been proposed as a means of 

studying life-history strategies of phyllosphere microorganisms (Nix-Stohr et al., 2008), thus 

supporting its generalizability to various systems. In this Opinion article, we employ the C-S-

R framework as an example of how trait-based classification approaches can advance our 

knowledge of the relationship between AM fungal life history traits, plant life history traits 

and environmental abiotic filters.  

 

4.3 Applying the C-S-R framework to AM fungi 

 

To better understand the biology and life history of AM fungi requires a mycocentric 

perspective, that is, an appreciation of AM fungi not only as plant symbionts but as organisms 

that have developed traits that maximize their own fitness in different environments (Fitter et 

al., 2000; Alberton et al., 2005). We must recognize, therefore, that what benefits the plant is 

not necessarily what benefits the AM fungus, and vice versa. For example, high soil P 

availability may promote the growth of the plant, but will in turn reduce the amount of carbon 

transferred to the AM fungal symbiont (Mosse and Hayman, 1973). Thus, when applying a C-
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S-R framework to AM fungi, we must consider which environmental conditions cause stress 

or disturbance to AM fungi, and then explore which functional traits improve the AM fungal 

response to those environmental filters (Figure 1). 

 

4.3.1 Competitive AM fungi 

 

The competitive ability of an individual derives from its capacity to acquire growth-limiting 

resources. Considering previous work on AM fungal foraging strategies, the main growth-

limiting resource for AM fungi appears to be plant-derived carbon (Olsson et al., 2002). 

Consequently, competitive AM fungi should be those with functional traits that improve 

carbon acquisition from the host plant. It is generally recognized that soil P deficiency 

increases the flow of plant carbon to AM fungi (Ratnayake et al., 1978). Furthermore, it has 

also been shown that the flow of plant carbon to the fungus is proportional to the amount of P 

that the fungus returns to its host (Kiers et al., 2011), thus supporting models of metabolic 

coupling between carbon and P transfer (Bücking and Shachar-Hill, 2005; Fitter, 2006). A 

high rate of P transfer to the host is related to extra-radical hyphal production (Jansa et al., 

2005; Avio et al., 2006) rather than to the intensity of root colonization (Ravnskov and 

Jakobsen, 1995). Hence, competitive AM fungi are likely to be those that allocate large 

quantities of carbon to growing mycelial biomass for soil exploration and soil P solubilization. 

In this situation, the trade-off traits are likely to be a lower investment in root-borne carbon 

storage structures (e.g. vesicles) and a delay in the reproductive effort. 
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There is evidence that AM fungi in the Gigasporaceae family show traits associated with a 

competitive life-history strategy. For example, members of the Gigasporaceae invest more 

biomass in extra-radical hyphae than in root-borne structures, compared with other 

phylogenetic groups (Hart and Reader, 2002; Maherali and Klironomos, 2007). Moreover, 

members of the Gigasporaceae increased dramatically in abundance in nitrogen (N)-fertilized 

plant communities where P availability in the soil was limited (Johnson et al., 2003). In this 

case, added N increases the carbon-fixing potential of plant hosts, which exacerbates P 

limitation and consequently prompts them to provide more carbon to their fungal symbionts. 

Several isotope tracer studies have also provided direct evidence of a 'competitive' strategy 

among the Gigasporaceae, revealing that these fungi are stronger carbon sinks for plant carbon 

than other lineages (Pearson and Jakobsen, 1993; Lerat et al., 2003). Finally, the 

Gigasporaceae in temperate ecosystems sporulate later in the growing season than AM fungi 

Figure 6. A C-S-R triangle identifying stress and disturbance factors as well as phenotypic traits 

of AM fungi classified as competitors, stress tolerators or ruderals. Empirical evidence is lacking 

for the suggested traits highlighted in red. On the triangle, we also illustrate the corresponding 

plant life-history strategy that would match each fungal strategy given that preferential 

associations are likely between plants and fungi with similar C, S or R strategies (see text). 
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from other taxa (Klironomos and Hart, 2002; Oehl et al., 2009), which is consistent with a 

competitive life-history. Taken collectively, these traits indicate that AM fungal communities 

in low P, or high N-to-P, environments should favor members of the Gigasporaceae family 

owing to their shared traits related to high carbon acquisition from their host plants. 

 

Plant species that would benefit most from competitive AM fungi are likely to be those with 

high soil P requirements and high carbon-fixing potential. This is likely to exclude ruderal 

plants, owing to their short life cycle and lack of nutrient limitation on disturbed, early-

successional soils. Likewise, stress-tolerant plants would not fully benefit from competitive 

AM fungi because of their low growth rate and high resource use efficiency. Preferential 

associations between competitive AM fungi and competitive host plants are, therefore, likely, 

particularly under low soil P supply. Besides their matched nutritional benefits, their matched 

delay in reproduction effort would allow both organisms to invest in vegetative growth so as 

to derive reciprocal nutritional benefits for an extended period of the growing season. 

According to functional equilibrium models (Johnson, 2010), this matching of functional traits 

should create a positive feedback favoring dominance and stability of both organisms in their 

respective communities, and delay ecological succession. 

 

 

4.3.2 Stress-tolerant AM fungi 

 

AM fungi are stressed, for example, when the carbon supply from their host is consistently 

low. Under such conditions, successful AM fungi may be those that use carbon most 

efficiently, through the slow production of high cost, long-lived biomass. Reduced turnover 

rates should then reduce carbon costs in the long term (Chapin, 1980). To date, hyphal 

turnover rates in the order of a week have been measured for a few AM fungal strains 

belonging to the Glomeraceae (Staddon et al., 2003). Measuring turnover rates across a 

broader phylogenetic spectrum may reveal that some taxa use plant carbon more efficiently 

than the Glomeraceae and, thus, correspond to a 'stress-tolerant' strategy. Efficiency in the use 

of host carbon could also be expressed by the ability of the fungus to complete its life cycle 



54 
 

with low biomass production, because this would reduce metabolic maintenance costs. 

Producing little extra-radical biomass would also reduce exposure to abiotic stress agents such 

as soil acidity or heavy metals.  

 

There is some evidence that stress-tolerant strategies do exist among AM fungal species. For 

example, shading experiments have shown reduced root colonization by whole AM fungal 

assemblages (Tester et al., 1985), suggesting a competitive advantage for carbon-efficient 

strains. This is corroborated by data from (Heinemeyer et al., 2004) who reported a shift in 

AM fungal community structure in response to shading. Likewise, abiotic stress such as high 

soil acidity has frequently been shown to drive AM fungal community structure (Porter et al., 

1987; Johnson et al., 1991; Oehl et al., 2010). Specifically, AM fungi belonging to the 

Acaulosporaceae family are commonly reported in lower pH environments (e.g. Porter et al., 

1987; Oehl et al., 2010; Morton, 1986). Also, high elevation sites with harsher climatic 

conditions frequently show a higher proportion of species belonging to the Acaulosporaceae 

family than is commonly seen in grasslands. Moreover, some Acaulosporaceae species are 

found exclusively in alpine environments (Oehl et al., 2011). Consistent with the expectation 

of stress tolerance, members of this family produce less biomass (both extra-radical hyphae 

and internal root structures) than members of the Glomeraceae and Gigasporaceae (Hart and 

Reader, 2002; Maherali and Klironomos, 2007).  

 

As with competitive AM fungi, we propose that there are likely to be preferential associations 

between stress-tolerant fungi and specific plant functional groups. For example, shade-tolerant 

plants will sparingly invest carbon in AM fungal symbionts because of their low rates of 

photosynthesis (Heinemeyer et al., 2004). Indeed, plants growing under any adverse condition 

that limits carbon fixation are likely to limit the amount of carbon supplied to the AM fungal 

symbiont. Given that stress-tolerant AM fungi may be slow to provide nutritional and other 

benefits to their hosts, the initial cost of a fungal symbiont to their host may be high, although 

these could be offset by their long term benefits. Thus, the plants that are likely to benefit the 

most from stress-tolerant AM fungi are those with slow growth rates, long life spans and 

resource conservation strategies: in other words, stress-tolerant plants. It is important to note 
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that the predicted matching between stress tolerating plants and AM fungi strictly relates to the 

life histories of the partners. Although AM fungi can improve plant tolerance to various 

stresses such as drought or heavy metals (Schenck, 1981; Harris et al., 1985; Griffioen and 

Ernst, 1989), the potential ability of AM fungi to alleviate host stress is not the basis for our 

prediction. Instead, we suggest that similarity in resource allocation to various components of 

the life history (i.e. growth and reproduction) may lead preferential associations between stress 

tolerant plants and AM fungi. 

 

 

4.3.3 Ruderal AM fungi 

 

From a mycocentric perspective, disturbance occurs when hyphal networks are broken, either 

by physical disruption of the soil structure or by faunal grazing. Disturbance could be an 

ecological filter selecting for ruderal traits that enable the rapid re-establishment of functional 

hyphal networks and symbiotic interactions with a plant host. A ruderal life history could be 

achieved through high growth rates and efficient hyphal fusion mechanisms by which 

fragmented hyphae can be reconnected to form functional mycelia (Avio et al., 2006). Another 

way for ruderal AM fungi to reestablish a symbiosis following disturbance is by maximizing 

de novo colonization of roots by propagules. Thus, a short life-cycle leading to an early and 

constitutive investment in asexual spores could be a strategy by which ruderal AM fungi cope 

with disturbance. Likewise, efficient healing mechanisms that prolong the viability of 

colonized roots and soil hyphae that have been severed (e.g. Klironomos and Hart, 2002; De la 

Providencia et al., 2005) would be consistent with an AM ruderal strategy. 

 

Frequently tilled agricultural soils are likely to select for ruderal AM fungal strategies. Studies 

have shown that these soils tend to have low AM fungal diversity, and are dominated by 

species belonging to the Glomeraceae, more specifically to the Glomus group (Gr.) A clade 

(e.g. Helgason et al., 1998; Jansa et al., 2002; Maherali and Klironomos, 2012). Compared 

with other AM fungal families, Glomus Gr. A species: (i) grow faster (Powell et al., 2009), (ii) 

fuse hyphae more readily (De la Providencia et al., 2005), (iii) invest earlier and more 
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abundantly in spore formation (Oehl et al., 2009), and (iv) form cross-walls that enable 

infected root pieces and severed hyphal fragments to heal and recolonize host roots 

(Klironomos and Hart, 2002; De la Providencia et al., 2005). All of these traits are consistent 

with a ruderal life-history strategy. Also, the ratio of intra-radical relative to extra-radical 

hyphal abundance appears to be higher in the Glomeraceae than in other AM fungal families 

(Hart and Reader, 2002), which may comprise a disturbance-avoidance strategy.  

 

Ruderal AM fungi with high growth rates and short life cycles should produce low-cost, albeit 

non-enduring, biomass. The cost of having to replace this short-lived biomass represents, 

therefore, a disadvantage to long-lived plants. Hence, ruderal plants with a similar short-term 

investment in low-cost biomass should preferentially interact with ruderal AM fungi. Given 

that ruderal plants colonize early-successional habitats where soil nutrients are rarely limiting 

(Navas et al., 2010), the primary benefit they derive from AM fungi may not be P uptake, but 

rather an increased protection against phytopathogens (Newsham et al., 1995). This is 

supported by the finding that early-successional ruderal plant species may be more prone to 

pathogen attacks than other plant functional groups (e.g. Kulmatiski et al., 2008). 

Accordingly, Glomus Gr. A strains are more efficient at providing protection to plant hosts 

than other AM fungal lineages (Maherali and Klironomos, 2007). It has been suggested that 

this protection relies partly on a jasmonate-based plant hormonal pathway that also activates a 

number of anti-herbivore mechanisms (Pozo and Azcon-Aguilar, 2007). Hence, it is possible 

that ruderal AM fungi are involved in priming plant responses against herbivores as well 

(Kempel et al., 2010). 

 

Despite our use of the C-S-R framework to organize functional variation in AM fungi, we 

emphasize that the aim of this opinion paper is not to simplistically allocate species or even 

families to C, S or R strategy, nor to promote the C-S-R framework as the best way to make 

sense of functional diversity in the AM fungi. Rather, our aim is to identify the traits that are 

likely to be the most important components of AM fungal life histories. Likewise, preferential 

associations between plants and fungi may not follow the idealized cases where C, S and R 

plants would interact with C, S and R AM fungi, respectively. Associations in nature will 



57 
 

likely be much more complex because (i) plants and AM fungi involved will rarely be at any 

of the three extremes of the C-S-R triangle, but most of the time will rather have an 

intermediate life history and (ii) many factors, other than preferential partner selection, will 

influence the assembly of fungal assemblages in plant roots (e.g. plant neighborhood, spatial 

constraints on fungal species’ availability, stochastic events). Still, the C-S-R framework 

offers a basis from which to develop a trait-based approach for AM fungi and advance our 

understanding of their life history strategies. In the following section, we identify five research 

areas where such a better understanding of AM fungal life history strategies would be 

particularly useful. 

 

4.4 Potential advances in AM fungal ecology using a trait-based approach  

 

4.4.1 Preferential association patterns with host communities 

 

Some plants and AM fungi are known to interact preferentially in natural communities (e.g. 

(Vandenkoornuyse et al., 2003); however, it is as yet unknown whether those over-represented 

interactions in communities are between symbionts that share compatible life-history 

strategies. If so, this would suggest a strong influence of niche-based (i.e. deterministic) 

processes underlying the assembly of plant–AM fungal communities. Such determinism could 

arise either from the matching of functional traits that optimize mutual benefits, or from both 

partners being similarly filtered along environmental gradients. Evidence for such 

determinism has been found (Chagnon et al., 2012) in a previously described plant–AM 

fungal community (Öpik et al., 2009): AM fungi from different families interacted 

preferentially with different plant species. Given the apparent phylogenetic conservatism of 

AM fungal traits at the family level (Powell et al., 2009), these results would suggest a strong 

influence of deterministic (i.e. niche-based) mechanisms driving plant–AM fungal community 

assembly. Nevertheless, the pattern described in Chagnon et al. (2012) was mainly the result 

of one plant species that interacted with distinct fungal species compared to the rest of the 

community. Hence, more field surveys are needed to test this hypothesis. One fruitful avenue 
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would be to couple data on interaction patterns at given sites with a characterization of plant 

and fungal traits from those sites, to test for correlations between the two.  

 

4.4.2 Succession patterns in AM fungal communities 

 

A major debate in plant ecology over the past century has been the theoretical basis for 

ecological succession (e.g. Clements, 1916; Gleason, 1926; Odum, 1969; Tilman, 1990). 

Although the C-S-R framework was mainly focused on describing plant history traits in 

contrasting environments, it implicitly drew linkages between plant traits and autogenic 

succession, particularly when reconciled with a resource-based theory of competition and 

succession (Tilman, 1985; Grace, 1990). From these two frameworks, the paradigm of 

secondary succession that has evolved is one whereby short-lived ruderal plants colonize 

newly disturbed environments, to be replaced by competitive plants that optimize resource-use 

over the longer term, which are themselves eventually replaced by stress-tolerant plants once 

the demand for resources exceeds supply. By extension, a C-S-R approach could provide a 

trait-based explanation of temporal patterns that have been reported in AM fungal 

communities. For example, in a microcosm succession experiment, the early-stage 

communities were dominated by Glomus mosseae (Oehl et al., 2009), which is often found 

dominating in agricultural fields (e.g. Helgason et al., 1998). Similarly, later-successional AM 

fungal inocula produced relatively more soil hyphae than early successional ones (Sikes et al., 

2012), which is consistent with a switch from ruderal towards competitive life-history traits. 

Finally, late-successional fungi tended to form either larger spores or sporocarps (Allen et al., 

2003; Oehl et al., 2011). More studies that link AM fungal traits and succession would help us 

to understand the potential interplay between plant and fungal succession, and its implications 

for ecosystem function. 

 

4.4.3 Specificity of responses in plant–AM symbioses 

 

A paradox of AM fungal ecology is that, although the specificity of association between 

different plant and AM fungal species is low (Smith and Read, 2008), the specificity of the 
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response to such associations is relatively high. Thus, the fitness consequences for both 

partners are highly dependent on the identity of the species involved (e.g. Sanders and Fitter, 

1992; Klironomos 2003). This is likely to be related to the compatibility of measurable traits 

in each partner. For example, plants with coarse root systems may be more apt to derive a P 

benefit, whereas those with ramified root systems may rather derive pathogen protection from 

their AM fungal symbionts (Newsham et al., 1995; Sikes et al., 2009). This is only one 

example of how trait-matching may promote mutualistic benefit in the symbiosis, and many 

possibilities can still be explored (Fitter, 2006). By integrating several functional traits into 

discrete life-history strategies, a C-S-R framework would provide a more predictive approach 

for studying the specificity of response of various associations. Such predictive power would 

be valuable for agriculture or horticulture where best matches between various plant and AM 

fungal genotypes would enhance production.  

 

4.4.4 Linkages between plant and AM fungal diversity 

 

A trait-based approach could also provide insights to link plant and AM fungal diversity at 

fine spatial scales (i.e. within-site β-diversity). It is known that AM fungal community 

structure is highly heterogeneous at a one meter scale (e.g. Wolfe et al., 2007). Given the 

specificity of the response of plants towards different AM fungal species, such a spatial 

structure in AM fungal communities may influence plant recruitment (van der Heijden, 2004) 

and contribute to the fine-grain spatial structure in plant communities. If there is preferential 

matching between AM fungi and plant hosts with analogous life histories, then it is likely that 

the spatial distribution of plants and fungi are tightly linked. There is thus an opportunity to 

test for such linkages in the spatial distribution patterns of plants and AM fungi that share 

similar life history strategies.  

 

4.4.5 Phylogeny as a proxy for life-history traits in AM fungi 

 

We suggested above that life-history traits of AM fungi may drive their biogeography and 

interaction patterns with host plant species (Fitter, 2005). To study the importance of this  
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Table 1. Examples of comparative studies with AM fungal isolatesa 

Trait measured AM fungal taxa Trait value C-S-R Explanation Refs 

Healing ability 

Glomus Gr. A 
Efficient healing, rapid 
re-growth 

R 
Re-establish functional mycelium 
after disturbance 

[1] 

Gigasporaceae 
Efficient healing, 
moderate regrowth 

–  

Growth rate 

Glomus 
intraradices 

High R 
Replace biomass lost after 
disturbance 

[2] Glomus etunicatum Intermediate –  

Gigaspora gigantea Low C/S  

Hyphal 
turnover rate 

Glomus spp. High Rb 
Low resource use efficiency (i.e. 
high tissue turnover rates) 

[3] 

Carbon sink 
strength 

Gigaspora rosea Strong C 
Relates to the ability of AM fungi 
to compete  for plant  carbon 

[4] Glomus mosseae Weak S/R  
Glomus 
intraradices 

Weak S/R  

Hyphal fusion 
Glomus Gr. A Frequent  R 

Re-establish functional mycelium 
after disturbance 

[1] 

Gigasporaceae Infrequent C/S  

Timing to 
sporulation 

Glomeraceae 
Early and 
constitutively 

R Short generation time 

[5,6,7] Gigasporaceae 
Fall in temperate 
systems 

C 
Delayed reproduction to favor 
resource acquisition 

Acaulosporaceae 
Spring in temperate 
systems 

–  

Biomass 
allocation 

Glomeraceae 
Low in soil, high in 
roots 

R 
Reduced exposure to soil 
disturbance 

[8,9] Gigasporaceae 
High in soil, low in 
roots 

C 
High P acquisition and transfer to 
host 

Acaulosporaceae 
Low in both soil and 
roots 

S 
Low metabolic costs and exposure 
to soil stressing agents 

a
We present functional trait values and their associated life-history strategy. No C-S-R strategy is assigned to a trait value 

when it does not constitute an explicit prediction of the C-S-R framework. 
 

b
Measured turnover rates are thought to be high, but comparisons with other taxa are needed. Ruderals are likely to have 

the highest turnover rates. 
 

c
references : [1] De la Providencia et al., (2005), [2] Hart & Reader (2005), [3] Staddon et al., (2003), [4] Lerat et al., 

(2003), [5] Oehl et al., 2009, [6] Klironomos et al., 2001, [7] Pringle & Bever 2002, [8] Hart & Reader (2002), [9] Maherali 

& Klironomos 2007. 
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phenomenon, we must characterize the life-history strategies of AM fungal species based on 

their functional traits. The obvious way to achieve this is by collecting AM fungal strains from  

 

a wide range of environments, cultivating these strains in pure cultures, and measuring a 

standardized set of traits. Given the enormity of this task, and considering that many AM 

fungal species are difficult to cultivate, it may be preferable to validate an established 

classification scheme that might correlate with AM fungal life histories. As we have alluded to 

in previous sections, many functional traits of AM fungi appear to be similar among close 

relatives within broad phylogenetic groupings (examples given in Table 1), particularly at the 

family level (Powell et al., 2009). Such phylogenetic conservatism indicates that phylogeny 

would be a viable proxy for predicting the life-history strategy of AM fungal species and their 

relative performance in the field. For example, phylogenetic data were recently used to show 

that environmental filtering and dispersal limitations are important drivers of AM fungal 

community assembly (Kivlin et al., 2011; Maherali and Klironomos, 2012). However, at this 

stage, AM fungal phylogeny is still undergoing major revisions (Redecker and Raab, 2006; 

Oehl et al., 2011b). Moreover, the Glomeraceae family is a very heterogeneous one, with 

some Glomus species found dominating mature stands (Öpik et al., 2009) or late stages of AM 

fungal succession (Oehl et al., 2009, 2011a). Furthermore, considerable functional variability 

has been found among isolates of the same species in the genus Glomus (Hart and Reader, 

2002; Munkvold et al., 2004). We thus acknowledge that an eventual mapping of life histories 

onto AM fungal phylogeny will yield a portrait much more complex than what is outlined 

here. Future work should capitalize on the development of high-throughput sequencing to 

define a reliable phylogeny for AM fungi (e.g. Krüger et al., 2012), and meanwhile, more 

effort should be placed to characterize life history traits of AM fungi with known phylogenetic 

affiliation. 

 

4.5 Moving forward 

 

The need for a trait-based approach in AM fungal ecology is not a novel idea in the literature 

(van der Heijden and Scheublin, 2007; Parrent et al., 2010; Powell et al., 2013). In this 
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opinion paper, however, we argue that grounding such a trait-based approach into an 

established life history classification scheme such as the C-S-R framework can provide more  

mechanistic insights about the relationship between AM fungal traits, plants traits and abiotic 

environment filters. In addition to its potential for summarizing the ecological niche of AM 

fungi based on functional traits, a C-S-R (or other similar) framework may help us to predict 

preferential associations between plant and AM fungal species in the field, as well as the 

specificity of response to these associations. Moreover, a trait-based functional grouping may 

improve our understanding of plant–AM fungal successional dynamics as well as biodiversity 

patterns in natural communities. However, moving our understanding forward will require that 

progress be made in at least two research areas.  

 

First, it may be tenuous to compare trait values and life-history strategies of AM fungal 

species based on data from disparate studies because trait variation may be biased by 

differences in experimental design. We need to develop, therefore, a standard trait database for 

AM fungi with standardized protocols for plant growth conditions, host choice, stages in 

ontogenic development, and other factors that influence fungal trait states. Second, we need to 

refine our understanding of the basic biology of AM fungi to link morphology to functions 

that are targeted by agents of natural selection such as plant hosts, other biota and the abiotic 

environment. For example, members of the Gigasporaceae tend to produce thicker-walled 

hyphae than members of other AM fungal families (e.g. Thonar et al., 2011), but it remains 

unknown whether this trait affects hyphal lifespan, resistance to fungivores, and the efficiency 

of nutrient translocation to hosts. 

 

In plant science, the trait-based functional grouping is one of the conceptual advances that 

spurred the rapid expansion of databases that classify plants on the basis of their traits, the 

climatic and soil resource conditions under which they grow, and the interactions between 

plants and other biota (Westoby and Wright, 2006; Katge et al., 2011). Such databases have 

facilitated comparative studies that correlate plant functions to their evolutionary history and 

their ecological consequences (Reich et al., 1997; Wright et al., 2004), leading to many 

insights about the mechanisms that govern the distribution and abundance of plants (McGill et 
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al., 2006). We suggest that an analogous database for AM fungi offers similar opportunities 

for understanding the causes of AM fungal distribution and abundance, and may eventually 

have important ramifications for applied fields such as agriculture and ecological restoration, 

where a judicious manipulation of the symbiosis could increase crop yields and the stability of 

introduced plant communities, respectively. 
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Après l’ensemble des articles présentés ci-dessus, un objectif clair émergeait : j’avais besoin 

d’un échantillonnage intensif sur un site donné pour collecter à la fois des données sur : 

 

1. les interactions entre plantes et CMA, i.e. le résultat de l’assemblage de la communauté  

symbiotique; 

2. les abondances relatives ou fréquences relatives des espèces de plantes et CMA     

interagissant sur ce site : il est facilement concevable que les interactions puissent être 

simplement le résultat de l’abondance, où les espèces rares ont tendance à peu interagir 

entre elles, puisqu’elles ne se rencontrent pas fréquemment dans l’environnement (e.g., 

Stang et al., 2007, Krishna et al., 2008, Chamberlain et al., 2010); 

3. des données sur la distribution spatiale des plantes et des CMA : une plante et un CMA 

auront plus d’opportunités pour interagir s’ils sont distribués de façon similaire dans 

l’espace, un point crucial considérant que nos organismes à l’étude sont sessiles (e.g., 

Lewinsohn et al., 2006); 

4. des données sur les propriétés abiotiques du sol : une plante et un CMA pourraient être 

distribués de façon similaire dans l’environnement parce qu’ils répondent de façon 

similaire aux paramètres du sol (e.g., Dumbrell et al., 2010); 

5. des données sur les traits des plantes, afin de déterminer si les plantes qui ont des traits 

semblables interagissent avec des CMA semblables, tel que prédit par l’article qui 

précède. 

 

Ainsi, l’article qui suit présente une étude observationnelle où j’ai collecté collecté l’ensemble 

de ces données en milieu naturel afin de déterminer l’importance relative de différents 

mécanismes neutres (e.g., abondance, distribution spatiale) ou basés sur la niche des espèces 

(e.g., sélection de partenaires basée sur les traits) dans l’assemblage d’une communauté 

mycorhizienne naturelle.  
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5.1 Abstract 

 

Plants and their microbial symbionts are often found to interact non-randomly in nature, but 

we have yet to understand the mechanisms responsible for such preferential species 

associations. Theory predicts that host plants should select symbiotic partners bearing traits 

complementary to their own, as this should favor cooperation and evolutionary stability of 

mutualisms. Here, we present the first field-based empirical test for this hypothesis using 

arbuscular mycorrhizas (AM), the oldest and most widespread plant symbiosis. Preferential 

associations occurring within a local plant-AM fungal community could not be predicted by 

the spatial distributions of interacting partners, nor by gradients in soil properties. Rather, 

plants with similar traits preferentially hosted similar AM fungi and, likewise, 

phylogenetically related AM fungi (assumed to have similar functional traits) interacted with 

similar plants. Our results suggest that trait-based partner selection may have been a strong 

force in maintaining plant-AM fungal symbioses since the evolution of land plants. 

 

5.2 Introduction 
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Communities containing species having mutualistic relationships are often assembled in a 

non-random way, and a current challenge facing community ecologists is to identify the 

mechanisms driving such patterns (Vazquez et al., 2009). Preferential partner selection is 

thought to be one important assembly mechanism for symbiotic communities, as it may be a 

way to avoid interacting with compatible, yet non-cooperative, symbionts (Sachs et al., 2004). 

This is corroborated by laboratory studies suggesting that host organisms may reward 

cooperative symbionts (Kiers et al., 2011), impose sanctions against cheating symbionts 

(Kiers et al., 2003), or selectively screen for partners displaying specific traits (Nyholm and 

McFall-Ngai, 2004). However, the relative importance of preferential partner selection in the 

assembly of natural symbiotic communities remains an open question. 

 

The arbuscular mycorrhizal (AM) association between plants and AM fungi is one of the most 

ancient and widespread terrestrial symbioses (Parniske, 2008). AM fungi are thought to have 

facilitated the colonization of terrestrial habitats by plants more than 450 million years ago, 

and it has been suggested that preferential partner selection has contributed to the surprising 

evolutionary stability of this symbiosis (Bever et al., 2009; Kiers et al., 2011). In natural 

communities, plants and AM fungi are generally found to interact non-randomly (e.g. Öpik et 

al., 2009, Wehner et al., 2014). Even though it has been argued that preferential partner 

selection may be important in structuring plant-AM fungal communities, any reported 

interaction patterns may also result from other mechanisms such as the ecological filtering of 

both partners along the same environmental gradients (Oehl et al., 2010), or from neutral 

mechanisms affecting the spatial distribution of each partner group (e.g. Dumbrell et al., 

2010). Thus, the relative importance of preferential partner selection in driving the assembly 

of plant–AM fungal communities so far has remained elusive. Recently, it was suggested that 

functional traits and life history strategies may lead to preferential partner selection in the 

plant-AM fungal symbiosis (Chagnon et al., 2013). More specifically, this framework predicts 

that preferential interactions observed in natural plant-AM fungal communities should involve 

hosts and symbionts sharing similar resource management strategies. For example, a stress-

tolerant plant, whose strategy is predicated on carbon-use efficiency, may preferentially 

associate with AM fungi that are able to complete their life cycle with low biomass production 
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and turnover (Chagnon et al., 2013). Given the evidence that AM fungi with similar functional 

traits appear to have close phylogenetic relatedness (Powell et al., 2009), we predict that 

plants with similar functional traits should interact with groups of AM fungi that are 

phylogenetically clustered. 

 

Here, we provide the first field-based empirical test for this hypothesis. We sampled a small 

natural plant–AM fungal community from which we calculated its modularity (Thébault 

2013). This index measures the tendency of a community to be subdivided into subgroups of 

species that interact more frequently together than with the rest of the community (i.e. 

preferential associations). Such “modules” may arise from either neutral or niche-based 

mechanisms. For that reason, we then used various statistical and numerical methods to 

evaluate how the observed modular pattern was related to plant and AM fungal spatial 

distributions, soil chemical properties, plant functional traits and AM fungal phylogeny. Under 

trait-based partner selection, our prediction was that there would be significant modules, and 

that species found in the same modules would share similar traits (plants) or phylogenetic 

affiliation (AM fungi).  

 

5.3 Materials and Methods 

 

5.3.1 Field sampling 

 

We sampled an old-field meadow near Sherbrooke, Canada (45° 24’ N, 71° 54’ W) that had 

not been cultivated for more than 40 years due to its low fertility. At the time of sampling, it 

was dominated by Populus tremuloides Michx., with a herbaceous understory. We randomly 

established a 5 m x 5 m plot in which we identified a total of 9 plant species that could 

potentially host AM fungi (verified by root staining and microscopic observations) and that 

had at least 10 individuals (shoots) in the plot. Within the plot, we established a square, 16 

point, sampling grid and noted the presence/absence of each plant species in a 30 cm radius 

around each point. P. tremuloides Michx. was excluded from the sampling because its root 

system was deemed too large relative to the size of the grid, thereby precluding an unbiased 
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estimation of its belowground spatial distribution. At each point, we also took a 15 cm 

diameter soil core (10-15 cm deep) in order to characterize the local AM fungal community 

(to monitor the spatial distribution of AM fungi in our grid) as well as soil chemical 

properties. These cores were placed on ice packs in a cooler and transported to the laboratory, 

where they were kept at 4 °C until the time of processing (within 8 h after sampling).  

 

Ten individuals of each plant species were randomly selected and destructively sampled to 

collect fine root material, which eventually would be used to characterize plant-AM fungal 

interactions. These samples thus served to build our bipartite network from which modularity 

was characterized (see below). Plant roots were stored in sealed plastic bags at -20 °C until 

DNA extraction (explained below). We collected fresh leaves and roots from an additional 

seven individuals per species to measure three traits: (1) specific leaf area (leaf area per dry 

mass), (2) leaf dry mass content (dry weight to fresh weight ratio) and (3) specific root length 

(root length per dry mass). These traits were chosen because they provide complementary 

information on plant life history strategy and leaf economics (Roumet et al., 2006; Pierce et 

al., 2013).  

 

 

5.3.2 Soil physico-chemical properties 

 

For each soil core, we measured the following: (1) % organic matter (% mass loss after 

ignition in a muffle furnace at 400°C for 16 h), (2) total C:N ratio (as measured by an 

Elementar Vario Macro analyzer), (3) % humidity (% mass loss after oven heating at 105°C 

for 36 hours), (4) Mehlich-III extractable phosphorus (P) (extraction of P with Melich-III 

solution and quantification by spectophotometry at 882 nm), and (5) pH in water and in KCl 

(using a Accumet AB-15 pH meter). More details about the methods can be found in Carter 

and Gregorich (2007).  

 

5.3.3 Characterizing AM fungal assemblages 
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The root systems of the sampled plants were washed thoroughly under tap water, and fine 

roots (1 mm diameter) were isolated and collected with forceps and scissors. We ensured that 

AM fungal interactions were associated to the correct plant species by only keeping fine root 

material still attached to the source plant after root washing. Approximately 300 mg (fresh wt) 

of each fine root sample were transferred to 1.5 mL tubes, and DNA was extracted with 

MoBio Ultra Clean Plant DNA isolation kits following the manufacturer’s instructions. To 

characterize AM fungal communities in each soil core, we extracted DNA from 5 soil 

subsamples (ca. 1-2 g) as well as from 5 fine root subsamples taken from each core. For the 

soil subsamples, we used MoBio Power Soil DNA isolation kits. By sampling DNA in soil as 

well as in roots from each core, we minimized the bias that could arise from some AM fungal 

species producing less biomass than others, or some AM fungal species investing different 

amounts of biomass in roots than in soil (e.g. Hart and Reader 2002).  

 

AM fungal DNA was amplified using a nested PCR approach, given that preliminary attempts 

at amplifying AM fungal DNA directly from the DNA extracts were unsuccessful. In the first 

round, total fungal DNA from each DNA extract was amplified using 2 μL of DNA extract 

solution, 10 μL of HotStart Taq Master Mix kit solution (QIAGEN), 0.125 μL of T4Gene32 

protein solution (New England Biolabs), 4 μL of 0.5 μM NS1-SR5 fungal-specific primer 

solution (White et al., 1990, RytasVilgalys’ lab, 

http://biology.duke.edu/fungi/mycolab/primers .htm) and 3.875 μL of ultra-pure water. In the 

second round of PCR, amplicons from round 1 were used as templates, and the primer set was 

the AM fungal specific AM1-NS31 couple (Helgason et al., 1998). Because PCR products 

were meant to be sequenced by 454 sequencing, additional nucleotides were attached to those 

primers, following instructions from the sequencing facility (Génome Québec, Montreal). All 

PCR products that belonged to the same plant species or soil core were tagged with a similar 

molecular identifier (MID – Roche) integrated in their primer to allow pooling of the different 

amplicons for sequencing. Thus, plant-AM fungal interactions were not monitored at the plant 

individual level, but rather at the species level. DNA was purified using Agencourt AMPure 

beads (Beckman Coulter) to isolate long, double-stranded DNA from single DNA strands, 

http://biology.duke.edu/fungi/mycolab/primers%20.htm
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remaining primers and impurities. DNA concentration in each sample was then quantified 

with replicated spectrophotometry (Nanodrop) lectures and an equimolar amount of each 

amplicon was added to the final pool, which was sent to be sequenced at Genome Québec 

facilities (Montréal, QC). 

 

For an unknown reason, no amplicon was sequenced for 1 of our 9 plant species. For the 

remaining samples, a sequence-based phylogenetic tree was built using the open source 

QIIME software package (Caporaso et al., 2010). First, the MIDs were split into separate 

sequence libraries for plant roots and soil cores. Sequences were excluded from the dataset if 

(1) their primer and/or barcode sequence was missing or erroneous, (2) their length after 

trimming out the primer was less than 200 (i.e. poor sequence) or more than 500 (i.e. too high 

for the 454 technology at that time), or (3) they included homopolymers longer than 5 base 

pairs. An equal number of sequence reads was randomly drawn from each library and AM 

fungal operational taxonomic units (OTUs) were based on a 97% sequence similarity 

threshold, using the USEARCH clustering algorithm (Edgar, 2010). Before clustering, 

sequences were sorted by length to increase the probability that longer sequences would 

develop into centroids of OTU clusters. This clustering procedure was performed once again, 

this time by identifying clusters based on comparisons with the MaarjAM database for 

Glomeromycota (Öpik et al., 2010). A subsequent Mantel test revealed a highly significant 

correlation between the two outputs (r = 0.784, P < 0.0001). Below, we present results from 

the first clustering output. Singletons as well as rare OTUs (with 5 or less occurrences), which 

may represent artifacts or transient species (Tedersoo et al., 2010) were removed from the 

dataset. We also excluded OTUs that exclusively were found in soil DNA extracts, as these 

were not relevant to the study, where we looked at preferential associations with host plants. 

 

After filtering the dataset, the remaining OTU sequences were blasted against the MaarjAM 

online database (Öpik et al., 2010). Sequences that did not match any entry in MaarjAM were 

blasted in GenBank and most of these were found to be either plant or non-AM fungal DNA. 

After eliminating non-AM fungal sequences, the remaining sequences were aligned and a 

phylogenetic tree was built using the MUSCLE algorithm (Edgar 2004).  
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5.3.4 Modularity analysis 

 

We computed modularity from our bipartite network, which consisted of plant-fungal 

interactions pooled at the plant species level. Modularity was calculated following Barber’s 

index (Barber 2007), which provides more consistent results than alternative indices (Thébault 

2013). Briefly, the algorithm uses a simulated annealing procedure to find the maximal 

modular configuration of the network. Simulated annealing is a heuristic optimization 

technique that allows exploring suboptimal configurations in the initial stages of the iteration 

process, which avoids getting “trapped” in local maxima (of modularity, in our case) and 

ensures converging on the global maximum. More details are given in Cěrny (1985). 

Statistical significance of the observed modularity pattern was tested using a null model that 

randomized the interactions in the matrix while preserving the total number of interactions as 

well as the number of interactions for each plant and AM fungal species (i.e. row and columns 

totals). This is argued to be the optimal null model to avoid type I errors (e.g. Ulrich and 

Gotelli 2013).  

 

5.3.5 Testing various factors that could explain plant-AM fungal interaction patterns 

 

We first tested for a relationship between the frequency of occurrence of plants or AM fungal 

OTUs (i.e. around or inside our soil cores, respectively) and their number of interactions, 

using Pearson’s correlation coefficient. We then tested whether the observed plant-AM fungal 

interaction pattern could be predicted by the spatial distributions of hosts and symbionts. For 

this, we randomized our bipartite network using a second null model that kept the same 

constraints as the first (described above), but allocated interactions between pants and AM 

fungi based on the relative overlap of their spatial distribution (monitored around and in our 

soil cores, respectively). In other words, two species that co-occurred frequently in our plot 

had a higher probability of interacting together in our simulations. To compute these 

probabilities, we compared the observed co-occurrence frequency of each species pairs to 

1000 randomized scenarios where the spatial distribution of plants and AM fungi had been 
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shuffled in our sampling grid. We calculated co-occurrence indices as z-scores (

), which we then scaled to values between 0 and 1 representing a 

probability for each species pair to interact. Thus, a plant and an AM fungus that co-occur 

frequently in our sampling grid would get a high z-score, and consequently a probability of 

interacting in our null matrices close to 1. We then used those interaction probabilities for each 

species pair to draw from a binomial distribution, in order to build our null matrices. We 

repeated the draws until each null matrix was filled according to our constraints (i.e. row and 

column totals identical to our real network). 

 

We investigated a possible link between plant and AM fungal spatial distribution and soil 

properties using canonical correspondence analysis (CCA), which correlated presence/absence 

of plants and AM fungi around or inside each soil core, respectively, to the measured soil 

physico-chemical properties of that core. This was done to ensure that preferentially 

interacting plants and AM fungi were not doing so simply because they were similarly filtered 

by the abiotic environment. CCA was also used to explore a possible link between plant-AM 

fungal interaction patterns and plant functional traits. Based on evidence that some AM fungal 

traits are phylogenetically conserved (Powell et al., 2009), we used AM fungal phylogenetic 

distance as a proxy for functional distance among AM fungal OTUs. To determine whether 

fungal phylogeny was linked to plant-AM fungal interaction patterns, we used (1) a Mantel 

test correlating AM fungal phylogenetic distances to Bray-Curtis distances that measured the 

similarity in plant host choice, and (2) a permutation-based test of the phylogenetic relatedness 

of AM fungi found within modules. This latter test calculated a ratio , where k 

identifies the network modules, n is the total number of modules, xk is the mean phylogenetic 

distance between AM fungal taxa comprised in module k, and X is the mean phylogenetic 

distance between all AM fungal taxa in the network. We compared this ratio to 1000 random 

values obtained by shuffling the tips of the phylogenetic tree and recalculating the ratio R, 

using a one-tailed z-test. 
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All statistical analyses were coded in R. CCAs were run using the vegan package (Oksanen et 

al., 2013), whereas phylogenetic analyses and tree plotting were respectively performed using 

the packages picante (Kembel et al., 2010) and ape (Paradis et al., 2004). Modularity analysis 

used the C++ executable program MODULAR (Marquitti et al., 2014). 

 

 

5.4 Results 

 

Our plant–AM fungal network was significantly modular under both null models, and revealed 

3 subgroups in which interactions between specific plant species and AM fungal taxa were 

significantly over-represented (fig. 7). This high modularity occurred despite a strong positive 

relationship between the 

spatial frequency of soil-

borne AM fungal taxa and 

their number of host 

plants (fig. 8): such 

neutral assembly of 

networks based on 

abundance or frequency 

could be expected to 

generate a strongly nested 

pattern with low 

modularity (e.g. Krishna et 

al., 2008).  Given that our 

second null model 

controlled for the spatial 

overlap of plant and AM 

fungal OTUs, our results 

Figure 7. The observed plant-AM fungal interaction matrix (with 

plants as rows and AM fungi as columns) sorted into its 

maximally modular state. The calculated modularity index was 

0.245, and was significant (P < 0.01) with both null models. Black 

cells represent interactions belonging to one of 3 modules 

(modules are boxed and numbered), grey cells are interactions 

that did not belong to any module, whereas white cells depict the 

absence of an interaction. Plant species: Rubus pubescens; 

Galium sp.; Spiraea alba var. latifolia; Fragaria virginiana; 

Tiarella cordifolia; Hieracium aurantiacum; Clematis virginiana; 

Impatiens capensis. AM fungal taxa: Glom = Glomeraceae 

family; Acau = Acaulosporaceae family. 
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confirm that the modular pattern was not generated by spatial distributions. More precisely, 

most of the interactions that were not predicted by spatial overlap occurred within network 

modules, while the majority of interactions that could be predicted by spatial patterns occurred 

outside network modules (i.e. grey cells in fig. 7), thus contributing to blur the modularity 

pattern (χ
2
 = 17.8, P < 0.0001). Furthermore, CCAs revealed no significant relationships 

between soil chemical properties and plant or soil-borne AM fungal spatial distributions (P = 

0.32 and P = 0.12, respectively). Instead, CCA revealed a significant relationship between 

plant traits and the structure of the root-borne AM fungal community (fig. 9). This relationship 

was marginally significant (P = 0.059) when all three measured plant traits were considered in 

the  analysis, but was highly significant (P < 0.01) when considering only leaf dry mass 

content. Furthermore, mean phylogenetic distance among AM fungal taxa, considered to be a 

proxy for functional distance (Powell et al., 2009), was significantly lower within than among 

modules (z = -4.48, P < 0.0001, fig. 10). Thus, module affiliation was not distributed 

randomly across AM fungal phylogeny. 

Likewise, the similarity of plant host 

choice among fungal taxa, as measured 

by Bray-Curtis distances, was 

significantly related to fungal 

phylogenetic distance (Mantel’s r = 0.27, 

P = 0.006). It should be noted that 

Mantel tests are expected to display 

higher rates of type II errors as compared 

to alternative methods such as 

phylogenetic eigenvectors, so our 

correlation estimates should be 

considered conservative (Tedersoo et al., 

2013). 

 

 

 

Figure 8. Positive relationship between the 

number of interactions (i.e. degree, k) of AM 

fungal taxa and their frequency of occurrence. 

Each circle represents an AM fungal taxon. 
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5.5 Discussion 

 

The present results show clear 

evidence for preferential partner 

selection in the plant-AM symbiosis. 

Our modularity analysis defined three 

subsets (i.e. modules) of preferentially 

interacting plant and AM fungal 

species. These modules were not 

comprised of species that responded 

similarly to gradients in soil 

properties, nor species that showed 

similar spatial distributions. Instead, 

network modules were comprised of 

plants with similar traits and AM 

fungi that were phylogenetically 

clustered. Taken collectively, these 

results provide strong support for our 

initial hypothesis that trait-based partner selection is an important mechanism driving plant-

AM fungal interaction patterns and community structure (Chagnon et al., 2013).  Our results 

thus provide a functional framework for understanding the non-random interaction patterns 

between plants and mycorrhizal symbionts that have previously been reported (e.g. Öpik et al., 

2009; Tedersoo et al., 2013; Wehner et al., 2014).  

 

Sikes et al. (2009) showed that the morphology of the root system was a major determinant of 

the type of benefit provided by a given AM fungal taxon (i.e., P acquisition vs. protection 

against pathogens). A highly branched root system (i.e. high specific root length) may increase 

a plant’s ability to forage for P, but it could  at the same time increase its exposure to 

pathogens. Thus, specific root length is a root trait considered by some to be a major driver of 

plant-AM fungal interactions (Hetrick et al., 1992; Newsham et al., 1995). It was, therefore, 

Figure 9. CCA biplot showing the relationship 

between plant traits and AM fungal assemblages in 

their roots. Plant species = black triangles and AM 

fungal taxa = grey circles. Displayed plant 

morphological traits are leaf dry mass content, 

specific leaf area, and specific root length. Ellipses 

delineate plant-AM community modules. 
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counter-intuitive that specific root 

length turned out to be the poorest 

predictor of the plant-AM fungal 

interaction pattern in our study. Instead, 

the plant trait that best predicted the 

structure of this below-ground 

symbiotic community was leaf dry 

mass content, an above-ground plant 

trait. As leaf dry mass content is related 

to a plant’s resource conservation 

strategy (Pierce et al., 2013), this result 

indicates that plants preferentially 

associate with AM fungal partners 

based on a broad set of traits related to 

life history strategies (Chagnon et al., 

2013), thus suggesting that plant-AM 

fungal cooperation may go beyond simple resource trading (Werner et al., 2014). In other 

words, partner selection in this system may not only come from selective reward and resource 

allocation: we may as well see hosts as habitat patches displaying specific traits that cause AM 

fungal species sorting (e.g. Mihaljevic, 2012; Chagnon et al., 2013). 

  

Partner selection, as suggested by our results, may be the basis for the evolution of 

cooperation in interspecific symbioses, by ensuring optimal fitness alignments between hosts 

and symbionts (e.g. Sachs et al., 2004). This theory is discordant, however, with some 

laboratory-based evidence that plants may accumulate detrimental AM fungal species in their 

rhizosphere, thus generating negative plant-soil feedbacks (e.g. Bever 2002). We can think of 

three reasons for this apparent contradiction: (1) laboratory-based plant-soil feedback 

experiments involve AM fungi that grow easily in pots, namely ruderal species that are not 

representative of natural AM fungal communities in the field (Sykorova et al., 2007; Hodge 

and Fitter, 2013),  (2) mechanisms controlling resource trading and, by implication, partner 

Figure 10. Phylogenetic tree showing the module 

affiliation for AM fungal taxa.The tips of the tree 

are colored following the module affiliation of 

each AM fungal taxon.  
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selection are not perfect, and may even promote cheaters under some circumstances (e.g. 

Walder et al., 2012), and (3) partner selection is not driven by preferential carbon allocation 

by the host, but by immutable host traits that only benefit the fungal symbiont. To argue that 

partner selection stabilizes the AM fungal symbiosis at evolutionary timescales, it is necessary 

to demonstrate that the preferentially selected partners are those that maximize host fitness, 

which we cannot achieve using only observational data as we have. 

 

We chose here to sample a small plot, specifically to limit heterogeneity in the abiotic 

environment (i.e. light and water availability, soil physico-chemistry). It should be of no 

surprise, then, that we found no effect of environmental filtering in generating the modular 

patterns. It seems very plausible, thus, that at larger spatial scales, modular patterns may 

results from the joint consequence of partner selection and spatial segregation due to 

environmental filtering. Also, given our small plot size, the plant niche gradient along which 

AM fungi could have been sorted in our study was relatively short as compared to the wide 

diversity of AM fungal hosts found in nature. More specifically, our sampled plants were 

mainly perennials displaying an intermediate tolerance to shade, whereas the regional pool of 

potential AM fungal hosts include ruderals (e.g. Plantago major) as well as long-lived 

competitive species (e.g. Acer saccharum ). Thus, over a wider range of plant functional types, 

it is likely that trait-based partner selection may be much more apparent than what we have 

shown here.  

 

Our approach also provides insights on the hierarchical organization of symbiotic networks. 

First, we revealed a strong relationship between the spatial frequency of AM fungal taxa and 

their number of host plant species. This indicates a role for stochastic neutral processes as a 

first filter driving the interaction patterns of plants and AM fungi (i.e. determining co-

occurrence patterns). Then we provided strong evidence that plants are able to locally select 

for specific AM fungal partners (and/or vice versa) according to trait-based and phylogenetic 

features. This indicates a role for niche-based processes as a second filter driving the 

interaction patterns of co-occurring plants and AM fungi. Thus, overall, our approach 

highlights the value of complementary data sets (e.g. species spatial distributions, soil or other 
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environmental gradients, functional traits, phylogenetic relatedness, etc.) that allows us to 

characterize interaction patterns among species, and also to disentangle the likely drivers of 

such interactions (Chagnon et al., 2014). 

 

In conclusion, this research raises several research areas that should be explored to better 

understand the assembly of plant-AM fungal networks. For example, future work should: 

 

- Characterize plant-AM fungal network structure along seasons: we know that network 

structure may change over the growing season (Bennett et al., 2013), but we do not yet 

understand the biological mechanisms underlying such changes (e.g. facilitating 

interactions among AM fungi, progressive AM fungal species sorting in plant roots, 

demographic stochasticity, accumulation of AM fungal DNA through deposition in storage 

propagules such as vesicles, etc.); 

- Characterize “active” plant-AM fungal networks: when using crude root DNA, there is a 

high probability of including transient or inactive species. One way to circumvent that 

problem is to use stable isotope probing methods to only capture DNA synthesized from 

recently transferred C to AM fungi by the hosts (e.g. Vandenkoornhuyse et al., 2008); 

- Repeatedly sample the same plant-AM fungal networks over several years: Modularity 

may have important consequences for species’ coevolution, as it may be expected that 

species that preferentially interact (i.e. belonging to the same module) will progressively 

become more tightly adapted to one another (Guimaraes et al., 2011). However, the 

underlying condition for this is that module affiliation is stable over generations (Chagnon 

et al., 2012); 

- Quantifying interaction strength in nature: Here we only report interactions in a binary 

way (presence/absence). Some species may depend more strongly on a small subset of 

their potential partners, and this would have important consequences on the resistance and 

resilience of communities facing perturbations (e.g. McCann et al., 1998). One way to 

assess interaction strength would be to sample replicated networks in a given study 

system: this would allow us to tease apart the species pairs that (a) never interact in spite 
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of frequent co-occurrence in a small plot (avoidance), (b) interact and co-occur frequently 

(potentially neutral/opportunistic interactions) and (c) species that are rare but always 

found co-occurring and interacting together (potentially tracking each other in the 

environment, i.e. very strong interaction); 

- Combine field surveys with laboratory studies: To provide direct evidence that plants tend 

to preferentially associate with AM fungi that best improve their own fitness, we need to 

combine natural observations of their interaction patterns with laboratory assays with pure 

AM fungal cultures. It may be that a plant’s traits make it a good habitat for specific AM 

fungi that do not necessarily improve host fitness. 

- Investigate for trait-based partner selection in early community assembly and over short 

intervals: There is evidence that priority effects exist in the assembly of AM fungal 

communities in plant roots (e.g. Mummey and Rillig 2009, Hausman and Hawkes 2010). 

Thus, the build-up of preferential interactions in the rhizosphere may be spread out over 

multiple generations. Here, we sampled a relatively mature system with long-lived 

perennials. It would be interesting to investigate community-level patterns in early 

successional communities, or short pot experiments. Regarding the latter, there is evidence 

that plants may build up specific AM fungal communities over a single generation (e.g. 

Bever et al., 1996; Eom et al., 2000; Bever, 2002). 

 

Furthermore, our results suggest that, more broadly, a trait-based framework could be 

developed to better understand the feedback dynamics between plants and their non-symbiotic 

rhizosphere or phyllosphere microbial communities. There is growing evidence that such 

interactions may dramatically influence plant community dynamics (e.g. Kardol et al., 2006), 

but our understanding of the underlying processes so far has remained limited.  By 

incorporating information on plant functional traits and microbial phylogeny in plant-

microbial feedback studies, we may find, for example, that the accumulation of 

beneficial/detrimental microbes may also be linked to hosts’ life-history strategies and 

reciprocal reward/sanction systems (e.g. Mitchell et al., 2010; Kobe and Vriesendorp, 2011; 

Chagnon et al., 2013). Plant-microbial network structures could, therefore, become more 

predictable, and their ecological and evolutionary significance better understood. 
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L’article qui précède démontre clairement la présence d’associations préférentielles entre 

plantes et CMA en milieu naturel, et l’implication potentielle des traits des plantes dans la 

sélection de partenaires. Toutefois, les patrons observés représentent ce qu’on pourrait 

qualifier de niche réalisée des espèces en ce qui a trait aux interactions mycorhiziennes. En 

d’autres termes, nous ignorons, avec cet échantillonnage, l’ensemble des interactions 

possibles, mais non réalisées, entre les plantes et les CMA échantillonnés. Les espèces 

apparaissant comme spécialistes sur le terrain le sont-elles à cause d’une réelle spécialisation 

ou simplement parce qu’elles sont localement rares ou ont une distribution spatiale agrégée? 

Poisot et al. (2011a) font à cet égard la distinction entre spécialisation potentielle et 

spécialisation réalisée : une espèce pourrait avoir peu d’interaction sur le terrain mais avoir la 

capacité d’interagir avec un bien plus grand nombre d’espèces (i.e. forte spécialisation 

réalisée, mais faible spécialisation potentielle).  

 

Afin d’adresser la question de la spécialisation dans la symbiose mycorhizienne, dans le 

prochain article je présente une étude empirique où j’ai fait pousser des plantes soit en 

communauté ou individuellement. Ainsi, dans un cas (plantes seules) la sélection de 

partenaires peut se faire sans aucune contrainte (hormis la disponibilité des différentes espèces 

de CMA dans le sol), alors que dans l’autre (plantes en communauté), la sélection peut être 

contrainte par les interactions compétitives avec les plantes voisines ou les effets de priorité 

dus à celles-ci. En effet, des études ont démontré que l’identité des plantes voisines peut 

influencer les communautés de CMA dans les racines d’une plante donnée (e.g., Mummey and 

Rillig, 2006; Hawkes et al., 2006; Hausmann and Hawkes, 2009), et Hausmann and Hawkes 

(2010) ont aussi trouvé que l’ordre d’établissement des plantes peut jouer un rôle dans 

l’établissement des interactions entre plantes et CMA. Ainsi, dans le cas où une plante aurait 

une forte spécialisation potentielle (i.e. réellement spécialisée pour interagir avec certains 

CMA seulement), on devrait trouver peu de variation entre ses interactions lorsqu’elle pousse 

seule ou en présence de plantes voisines. Cette étude constituait aussi une opportunité pour 

tester l’hypothèse selon laquelle la sélection de partenaires mycorhiziens par les plantes basée 

sur leurs traits peut s’effectuer à l’intérieur d’une seule saison de croissance. En effet, puisque 

l’étude présentée dans l’article précédent impliquait des plantes pérennes, les associations 
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préférentielles auraient pu résulter de l’effet additif de plusieurs années de sélection de 

partenaires, où des communautés différenciées de CMA se seraient bâties d’une année à 

l’autre dans la rhizosphère de chaque espèce de plante. 
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Chapitre 6  

 

MYCORRHIZAL NETWORKS HAVE A DETERMINISTIC, YET FLEXIBLE, 

ARCHITECTURE 

 

 

 

Chagnon, P.L., Bradley, R.L. and Klironomos, J.N. 

 

(In preparation, to be submitted to Ecology Letters) 

 

 

6.1 Abstract 

 

Most studies looking at the resilience and/or resistance of ecological networks to local 

disturbances such as species removal have only considered current interactions and neglected 

the ability of networks to rewire. Such rewiring, which may take place through the 

establishment of novel interactions or through shifts in interaction strengths, is likely to buffer 

the effects of disturbances on ecological networks. We thus need to better take it into account 

in future studies. Here, we assessed the flexibility in mycorrhizal networks’ structure, and thus 

its potential for rewiring under different circumstances. We show that although 

deterministically organized through trait-based partner selection, mycorrhizal networks have 

flexible structure. This is because most species can interact with a wide range of partners in 

different contexts. Thus, coextinction cascades are more likely to be buffered by flexible 

interaction patterns than by static network properties such as nestedness. This goes against 

received wisdom about the implication of network structure on community dynamics, and call 

for an assessment of interaction flexibility in other mutualistic systems.  
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6.2 Introduction 

 

One of the current major challenges for ecologists is to predict how species will evolve 

(Gienapp et al., 2014) or shift their distributional ranges (Savage and Vellend, 2014) in 

response to current global changes. But given that species are also involved in a myriad of 

interactions with other species (e.g., mutualisms, parasitisms, trophic interactions) an 

additional challenge is to predict how global change might influence such interactions. For 

example, many land plants rely on animal pollinators for reproduction, and it remains an open 

question whether the independent response of both guilds to global warming, for example 

through shifts in their phenology, is likely or not to decouple these pollination interactions and 

have consequences on community dynamics (e.g., Memott et al., 2007). On one hand, if an 

interaction becomes impossible between a plant and a pollinator, it may decrease pollen 

transfer for the plant, and even lead to its population collapse. On the other hand, the plant 

may simply experience more pollen transfer by its other current pollinators or establish novel 

interactions with new partners. Some species removal experiments have indeed showed that 

networks of interacting species can rewire after a disturbance such as species removal, thus 

giving rise to novel interactions (Borvall et al., 2000). However, for most ecological networks, 

we only have short-term data on interactions that occur at a given place and time, and we 

know little about the whole range of interactions that are possible between groups of species 

such as plants and pollinators. In other words, we may say that we only have data on realized 

interactions niches of species, that is, the interactions that are actually realized and observed in 

the field. However, we rarely have data on fundamental interaction niches, i.e. the whole range 

of possible interactions between species. Yet, the latter type of data is needed to evaluate the 

resistance and resilience of ecological networks to disturbances such as local species 

extinction. Indeed, broad fundamental interaction niches may contribute to buffer the effect of 

local extinctions and to avoid cascades of secondary extinctions (e.g., Loeuille 2010, Blüthgen 

2010).  

 

Mycorrhizal networks, that is, networks involving most land plants and soil symbiotic fungi, 

are no exception to the rule in that we still know very little about species’ fundamental and 
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realized interaction niches. New sequencing technologies have allowed an unprecedented 

effort in characterizing realized interactions in the field. Yet, we are still mostly ignorant of 

species’ fundamental interaction niches. As a result, we know virtually nothing about the 

resilience and resistance of these networks when facing local disturbance such as stochastic 

species extinction. If the fundamental interaction niches are very broad (i.e. much broader than 

what is observed in a single temporal/spatial snapshot in the field), then there is a high 

probability that the network will be very resilient to disturbances because it will allow 

extensive rewiring of the interactions following the disturbance, thus buffering its impact (fig 

11). On the other hand, if the interactions recorded in the field represent most of the possible 

interactions between plants and fungi (i.e. fundamental interaction niche no broader than 

realized ones), then very little rewiring of interactions is allowed after a disturbance, thus 

increasing the likelihood of coextinction cascades. In order to characterize those fundamental 

Figure 11. Two potential scenarios of interaction niches. In the rigth one, we see that on top 

of interactions that are realized in the field (blue lines in the top panel), many more 

interactions are possible but not realized in the field (dashed red lines in the right panel), thus 

part of the fundamental interaction niche. Conversely, in the left panel, no additional 

interactions are possible, indicating that fundamental interaction niche is no broader than 

the realized interaction niche. In this case, the system may be prone to coextinction cascades. 
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interactions niches, it is necessary to evaluate the relative importance of various deterministic 

and stochastic mechanisms in driving mycorrhizal interactions. For example, absences of 

interactions may be determined by species’ local relative abundances, where rare species 

rarely encounter each other in the landscape, or by priority effects whereby an AM fungus that 

colonized a root system earlier prevents other fungi to colonize it. Alternatively, interactions 

may be driven by patterns of specialization and deterministic partner selection. The former 

scenario would suggest that fundamental niches are broad, while the latter would suggest the 

reverse.  

 

To address this issue, we studied the assembly of mycorrhizal networks between 20 plant 

species and a natural community of arbuscular mycorrhizal (AM) fungi in 2 contrasted 

scenarios: when plants were growing individually in pots, vs. when plants were growing in a 

community context. In pots, the plants were thus selecting AM fungal partners in the soil with 

no constraint other than the availability of the different fungal species in the soil. In 

communities, other neutral or stochastic factors could also play a role in network assembly. 

For example, it has been shown that a plant’s root-associated fungal community can be 

influenced by the identity of its plant neighbors (e.g., Mummey and Rillig, 2006, Hausmann 

and Hawkes, 2009). Alternatively, assembly history may also influence interactions between a 

given plant species and AM fungi through priority effects (e.g., Hausmann and Hawkes, 

2010). Thus, our expectations were that in communities, there would be a larger role for 

stochastic mechanisms in driving network assembly, while in pots the assembly would be 

mostly deterministic and determined by preferential partner selection. Our results show 

evidence for stochastic network assembly in communities, although deterministic signals 

remain detectable. We also show that fundamental interaction niches are likely to be broad, 

which may confer stability to mycorrhizal networks.  

 

6.3 Materials and Methods 

 

6.3.1 Experimental design 

 

FUNGI 

PLANTS 
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We grew 20 plant species in natural soil collected in an old-field near Sherbrooke (Canada, 

45°24’ N 71°53’ W) that was abandoned more than 40 years ago. Plants were either grown 

alone in 650 mL cone tainers (Stuewe and Sons, USA) filled with the natural soil or in 20L 

wooden boxes containing 3 individuals from 10 randomly drawn species. Plants were placed 

in a growth chamber at 16 h daylight and 22 °C – 20 °C (day – night). Given logistical 

constraints, we were limited to cultivating 4 different plant communities, and 3 replicates per 

individual species (N=180 individuals). We also kept samples of the soil inoculum for 

eventual DNA extractions to identify the fungal taxa that were originally present in our 

inoculum, and their frequency, in order to see if frequent/abundant fungi in the original 

inoculum were those that became generalists during the build-up of the community. Because 

AM fungi can colonize roots from hyphae, roots and spores, we identified AM fungi from the 

soil inoculum using various types of samples: (1) 10 whole soil samples (~ 0.5 mL), 

containing hyphae, spores and roots, (2) 5 samples of spores extracted from 500 g of soil using 

a standard centrifugation-flotation protocol (Chagnon and Bradley, 2011) and (3) 5 samples of 

extraradical hyphae, isolated using the same protocol, but where hyphae were collected after 

having let spores decant in the bottom of the tubes. Those latter extractions allowed us to 

characterize the fungal material for a much larger soil volume than typical crude DNA 

extraction from soil directly.  

 

6.3.2 Harvest 

 

Plants were harvested after 130 days of growth. Fresh leaves were taken from each individual 

to measure the following traits: leaf dry mass content (dry mass / fresh mass), specific leaf 

area (area/dry mass), leaf [C] and [N] as measured by an Elemental analyzer, and mean leaf 

area. Remaining shoot material was dried to determine total shoot weight. Roots were 

separated from surrounding soil, thoroughly washed under tap water and rinsed with distilled 

water. Then, the root system was scanned, and cut in ~ 1 cm fragments to take a random 

subsample (~ 0.5 mL). This subsample was transferred to a 1.5 ml tube and stored at -20 °C 

until DNA extraction (to identify AM fungal community within the roots). The rest of the root 

system was dried and weighed.  
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6.3.3 Characterizing AM fungal communities 

 

To identify AM fungal taxa within roots, we first extracted total root DNA using MoBio 

UltraClean Plant DNA isolation kits following manufacturer’s instructions. We also extracted 

DNA from the soil subsamples (mentioned above) using MoBio PowerSoil DNA isolation 

kits. AM fungal DNA was amplified using a nested PCR approach. In the first round, total 

fungal DNA from each DNA extract was amplified using 2 μL of DNA extract solution, 10 μL 

of HotStart Taq Master Mix kit solution (QIAGEN), 0.125 μL of T4Gene32 protein solution 

(New England Biolabs), 4 μL of 0.5 μM NS1-SR5 fungal-specific primer solution (White et 

al., 1990, RytasVilgalys’ lab, http://biology.duke.edu/fungi/mycolab/ primers.htm) and 3.875 

μL of ultra-pure water. In the second round of PCR, amplicons from round 1 were used as 

templates, and the primer set was the AM fungal specific AML2-NS31 couple (Lee et al., 

2008). Because PCR products were meant to be sequenced by 454 sequencing, additional 

nucleotides were attached to those primers, following instructions from the sequencing facility 

(Génome Québec, Montreal). PCR amplicons were purified using Agencourt AMPure beads 

(Beckman Coulter) to isolate long, double-stranded DNA from single DNA strands, remaining 

primers and impurities. DNA concentration in each sample was then quantified with replicated 

spectrophotometry (Nanodrop) lectures and an equimolar amount of each amplicon was added 

to the final pool, which was sent to be sequenced at Genome Québec facilities (Montréal, QC). 

 

The resulting sequences were analyzed using the QIIME pipeline (Caporaso et al., 2010). We 

excluded from the dataset sequences that did not match our quality criteria (see chapter 5 for 

more details). We identified operational species of AM fungi using the published MaarjAM 

database (Öpik et al., 2010).  

 

6.3.4 Plant-AM fungal network structure 

 

Plant-AM fungal networks were characterized using 3 structural metrics: nestedness, C-score 

and modularity. Nestedness (here characterized using the NODF metric, Almeida-Neto et al., 

http://biology.duke.edu/fungi/mycolab/%20primers.htm
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2008) refers to a pattern where specialist species consistently interact with a subset of the 

partners with which more generalist species also interact. In other words, specialists tend to 

interact with generalists, while generalists interact with both generalists and specialists. The C-

score is used to measure the frequency of co-occurrences between pairs of species in a 

metacommunity or an interaction network (e.g., Stone and Roberts, 1990; Gotelli and Rohde, 

2002). A high C-score has been suggested to indicate strong interspecific competition, where 

some species co-occur less than by chance. Finally modularity refers to the presence of well-

defined groups of species (i.e. modules) that interact preferentially among themselves rather 

than with the rest of the community. This metric has been suggested to be useful in detecting 

preferential associations in ecological networks (e.g., Olesen et al., 2007; Chagnon et al., 

2012). To evaluate the statistical significance of these network patterns, we compared the 

observed values to 1000 random values, calculated from null matrices. Those matrices were 

generated using a conservative randomization algorithm that conserves the total number of 

interactions per row and columns in the matrix. Such null model is thus not prone to type I 

errors. Network indices (NODF, C-score and modularity) were thus expressed as z-scores 

(observed – mean(null) / sd(null)) and statistical significance was assessed by a Z-test. NODF 

and C-score were calculated using the R packages vegan and bipartite, respectively (Oksanen 

et al., 2012; Dormann et al., 2009). Modularity was calculated through simulated annealing 

using the C++ executable MODULAR (Marquitti et al., 2014).   

 

6.3.5 Trait-based and phylogenetic analyses 

 

In order to evaluate whether different plant species associated with different AM fungal 

partners, we compared communities of AM fungi associated with different plant individuals 

by calculating their pairwise bray-curtis distances. We then compared those distances within 

vs. among species. We also performed a canonical correspondence analysis (CCA) to see how 

plant traits could predict their interactions with AM fungi. Those analyses were performed 

using, respectively, the adonis and cca functions of the R package vegan (Oksanen et al., 

2012). We characterized the phylogenetic structure of AM fungal assemblages within each 

root system using the mean nearest taxon distance (MNTD) metric. The observed metric was 
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compared to 1000 random values generated by shuffling the tips of the AM fungal 

phylogenetic tree (Kembel et al., 2010). 

 

6.3.6 Beta-diversity partitioning methods 

 

Beta-diversity partitioning methods are increasingly used in community ecology to refine our 

understanding of species distributional patterns in metacommunities (e.g., Carvalho et al., 

2013). One recent way of partitioning beta-diversity among sites was proposed by Podani and 

Schmera (2011). This method, called the SDR simplex, partitions beta-diversity in two 

additive components: nestedness and species turnover. Indeed, two sites can be different (i.e. 

show a non null beta-diversity) because they have a different number of species (nestedness), 

or because they have species of different identity (species turnover). For example, consider a 

pair of sites A and B that contain, or not, the species 1 to 6. In the first scenario, let’s assume 

that site A contains species 1, 2, 3, 4, 5, and 6, while site B only contains species 1 and 2. 

Here, this is a case of extreme nestedness, because the only difference between the two sites 

relates to the number of species they contain, but not to their identity: the species poor site 

does not have unique species. On the other hand, if site A contains species 1, 2 and 3, while 

site B contains species 4, 5 and 6, then the only difference is in the identity of species (i.e., 

species turnover), their number being equal (i.e., 3). Such partitioning of beta-diversity has 

proved to offer new insights in understanding the structure of metacommunities (e.g., 

Carvalho et al., 2013). Because the structure of the data is similar for metacommunities (sites 

x species matrix) and ecological networks (e.g., plants x AM fungi matrix), those analytical 

tool may also be relevant to study patterns of species interactions between plants and CMA. 

Here, we partitioned beta-diversity within each networks using the SDR simplex (Podani and 

Schmera, 2011) as a way to validate our nestedness analysis. Indeed, a major component of 

the SDR simplex is the concept of nestedness, yet the pattern is characterized using a different 

method.  

 

We also partitioned the dissimilarity of our different networks into 2 additive components 

according to the framework developed by Poisot et al. (2012). The rationale of this framework 
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is that two mycorrhizal networks can be different because (1) they don’t involve the same 

plant and fungal species (i.e. species turnover) or (2) they involve the same species, but those 

species don’t interact similarly in the two networks (i.e. interaction turnover). This partitioning 

allowed us to investigate the level of flexibility in mycorrhizal interactions in our system (i.e. 

the important of interaction turnover).  

 

 

6.4 Results 

 

6.4.1 Network structure 

 

Interactions were significantly nested for both plants and AM fungi when plants were growing 

in pots, but not in communities (fig 12a-b). This was mainly mediated by the presence of 

highly generalist AM fungal taxa: the removal of those generalists from our dataset resulted in 

a loss of significance of this nested interaction pattern, while the removal of specialists or a 

random removal of taxa had no effect (fig 13). Thus, it does not seem that interactions are 

nested because specialists interact preferentially with generalists. The lower nestedness in the 

communities vs. in pots was present in spite of a higher connectance (i.e. proportion of filled 

cells in an interaction matrix) in the former treatment, while nestedness is well known to 

correlate positively with connectance in binary matrices (e.g. Olesen and Jordano, 2002). 

Further examination of the data revealed that nestedness was lower in communities because of 

a lower variance in the number of interactions per species: in pots, such variance was high, 

with some very generalist and some very specialist species. In communities, however, there 

was a consistent trend for plant species which were more specialist in pots to be more 

generalist (data not shown). This may explain the discrepancy between nestedness in 

communities vs. its corresponding counterpart in pots.  
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C-scores were always found to be lower than what would be expected by chance, yet the 

pattern was significant only for pot-based data, and not for communities (fig 12c). However, 

because C-score correlated strongly and negatively with interaction nestedness of both plants  

and AM fungi (r = -0.88 and r = -0.84, respectively), it remains unsure whether such C-score 

pattern arose from a true biological effect or as a negative correlate to nestedness (or vice 

versa). 

 

Figure 12. Network structure in pots (grey bars) vs in communities (black bars). Nestedness 

(NODF) was calculated for both plants, a), and AM fungi, b). The dashed lines indicate the 

level above which (or below which, for C-score) the metric is significantly different from 0. In 

e) we plot cumulative z-scores (in absolute values) for pots vs. communities. 
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There were no clear patterns regarding modularity data (fig 12d). Although in most cases 

observed modularity was higher than what was realized in our null matrices (z-score higher 

than 0), this was not significant. Moreover, there were no clear trends for modularity to be 

higher or lower in pots. However, if we cumulate all z-scores (in absolute values) related to 

network architecture (i.e. nestedness, C-score and modularity), we see that the values were 

significantly further away from 0 in pots  

vs. communities. This suggests that assembly was further away from randomness in pots. (fig 

12e) 

 

Plant species that were generalist with respect to their fungal partners when grown in mixtures 

were not necessarily more likely to be so in monocultures, while there was a strong tendency 

for AM fungi that were generalist with respect to their plant hosts in multispecies communities 

Figure 13. Role for generalist and specialist AM fungi in driving the nested network pattern. 

We plot the NODF z-scores for both plants in a), and AM fungi in b), as a function of the 

number of AM fungal taxa removed from the dataset. We either removed generalist AM 

fungal taxa first (solid lines), specialists first (dashed lines) or randomly (dotted lines). In 

both cases, when generalists are removed first, z-scores rapidly get close to 0 (nestedness not 

statistically significant). 
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to be also generalist when growing in plant monocultures (Plants: Mantel’s r = 0.15, P = 0.198 

; AM fungi: Mantel’s r = 0.89, P = 0.001) (Table 2).  

 

 

6.4.2 Trait-based and phylogenetic 

analyses 

 

Different plant species associated with 

different AM fungal partners, but the signal 

was stronger for pots vs. communities 

(paired-t = 2.67, P = 0.03). When pooling 

all data for pot-based plant-fungal 

interactions, we see that plant traits can 

significantly predict their interactions with 

AM fungi (P = 0.027) with two dominant 

axes: the most important around root 

production and allometry, and the second 

one around leaf traits (fig 14).  

 

Phylogenetic structure of AM fungal 

assemblages in single root systems showed 

a consistent trend towards clustering: 

Table 2. Correlations between the number of interactions of plants and AM fungi in given 

communities vs. corresponding data in pots. 

    Plants   AM fungi 

Community 
 

pearson's r 
 

p-val 
 

pearson's r 
 

p-val 

A 

 

-0.061 
 

0.87 
 

0.83 
 

<0.0001 

B 

 

0.39 
 

0.27 
 

0.87 
 

<0.0001 

C 

 

0.41 
 

0.24 
 

0.78 
 

<0.0001 

D   0.24   0.5   0.84   <0.0001 

Figure 14. CCA biplot showing the association 

between plant traits and interactions with AM 

fungi. Plants and AM fungi are respectively 

closed and open circles. LDMC = leaf dry mass 

content, SLA = specific leaf area, C:N = leaf [C] 

/ leaf [N], Root:Shoot = root dry mass / shoot 

dry mass. 
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MNTD z-scores were negative for 95% of the communities, and it was significant for about 

73% of them. Regarding the role for plant phylogeny in driving their interactions with AM 

fungi, a Mantel test revealed a weak and marginally significant correlation between plant 

phylogenetic distance and bray-curtis distance (in terms of fungal partners) (Mantel’s r = 0.18, 

P = 0.09). Interestingly, 6 AM fungal OTUs were only interacting with some clusters of the 

plant phylogeny (i.e. significantly negative MNTD z-scores). Three of those OTUs seemed to 

show a preference for Asteraceae species (e.g., Hieracium spp., Leontodon autumnalis) and 

another showed a preference for Rosaceae (e.g., Fragaria vesca, Potentilla recta).   

 

 

6.4.3 Beta-diversity partitioning within and among networks 

 

Within networks, partitioning of beta-diversity according to the SDR simplex (Podani and 

Schmera, 2011) confirmed results from nestedness analyses: in pots, plants tend to be different 

more because they have a different number 

of partners than because they have different 

ones, while the reverse is true for 

communities (fig 15).  

 

When partitioning the dissimilarity of 

different networks in its interaction vs. 

species turnover components according to 

Poisot et al. (2012), we found that much of 

the variation across plant communities 

could be explained by flexibility in 

interactions (fig 16). Indeed, around 65-

70% of the dissimilarity among pairs of 

networks was explained by the fact that 

species present in both networks had 

Figure 15. Beta-diversity partitioning within 

networks according to the SDR simplex (Podani 

& Schmera 2011). SJAC = jaccard similarity, 

DREL = relativised richness difference (i.e. 

nestedness), RREL = relativised species 

replacement/turnover. Each point represents the 

centroïd of all pair-wise comparisons within a 

community (open circles) and corresponding 

data in pots (closed circles).  
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different interactions, and not by the fact 

that the two networks were simply formed 

of different species. Also, this high 

proportion of pairwise network 

dissimilarity explained by variation in 

interactions cannot be solely explained by 

a corresponding low variation in species 

composition. All pairwise networks were 

designed to have a dissimilarity in plant 

species composition of around 70%, and 

were calculated to have a dissimilarity in 

AM fungal OTUs composition of around 

20%. Thus, combined, those 

dissimilarities in community composition 

would have been expected to explain a 

higher proportion of network-level 

dissimilarity if interactions were not 

flexible. 

 

6.5 Discussion 

 

In this study, we were interested in evaluating the relative importance of deterministic vs. 

stochastic mechanisms as drivers of mycorrhizal network assembly. We showed clear 

evidence for determinism, for example with the consistent phylogenetic clustering of AM 

fungal assemblages within single root systems. Also, in accordance with previous theoretical 

work (Chagnon et al., 2013), we found that plant leaf economics were related to their 

interaction patterns. This may suggest that plants are able to select AM fungal partners whose 

resource economics strategy is aligned with their own. For example, it seems a priori unlikely 

that a fast-growing ruderal plant species would benefit from associating with a slow-growing 

fungus that produces costly but persistent biomass in the soil. We also found root-shoot 

Figure 16. Beta-diversity partitioning among 

networks according to Poisot et al., (2012). βTOT = 

total variation between two networks, βINT = 

variation due the fact that species present in both 

networks interact with different partners (i.e. 

flexibility in interactions across networks). The 

dashed line is the 1:1 relationship, i.e. the theoretical 

maximum for βINT.  
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allometry (as measured by total root length and root:shoot ratio) to be related to plant 

interactions with AM fungi. This may have arisen because plants with various amounts of 

roots rely on AM fungi for different reasons. For example, a plant with limited root surface in 

the soil may rely on AM fungi for nutrition, while plants with massive amounts of roots in the 

soil may benefit more from AM fungi through their ability to protect them from soil-borne 

diseases. This old hypothesis (Newsham et al., 1995) has indeed received some empirical 

support (Sikes et al., 2009). Since different phylogenetic groups of AM fungi provide 

pathogen protection to various extents (e.g., Maherali and Klironomos, 2007), this could 

explain why plants with various amounts of roots associate with different AM fungi. However, 

most assumptions around this hypothesis remain to be further investigated. For example, it is 

largely unknown whether there is a clear trade-offs in AM fungi between the two functions 

(providing nutrients vs. protecting against pathogens). It even remains unclear what are the 

optimal root traits to evaluate a plant’s reliance on AM fungi for nutrition (e.g., Maherali 

2014) or susceptibility to soil-borne pathogens (Newsham et al., 1995). An alternative 

explanation for the role of root-shoot allometry in driving plant-fungal interactions would be 

that plants forming massive amounts of roots will provide much more colonizing opportunities 

for AM fungi, thus favoring those with better colonizing abilities. Conversely, plants with 

fewer roots may rather favor AM fungal species with better competitive abilities (assuming a 

trade-offs between colonizing and competitive abilities (e.g., Cadotte et al., 2006) among AM 

fungi). Overall, phylogenetic and trait-based analyses suggested a clear role for determinism in 

driving mycorrhizal interactions. 

 

In spite of such determinism, we also found strong evidence for flexibility in interactions. This 

is exemplified by the structure of networks in communities vs. in pots: communities appeared 

to have network structure closer to randomness. For example, interaction nestedness was 

consistently significant in pots, while it was not in communities. Conversely, C-scores showed 

the exact opposite pattern. Indeed, C-scores were consistently lower than expected by chance 

in pots. Given that high C-scores are generally assumed to represent the signature of 

interspecific competition in communities (e.g., Stone and Roberts, 1990), some authors have 

interpreted low C-scores as indicative of facilitation, an antithetic concept to competition 
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(Gorzelak et al., 2012; Pickles et al., 2012). Thus, from our results, it could appear that AM 

fungal communities within root systems assemble through facilitation rather than competition. 

However, it is in fact an oversimplification to expect facilitation to result in low C-score. 

Indeed, if subgroups of AM fungal species facilitate each other, this would result in interaction 

modules at the network scale. Such modular network configuration is in fact associated with a 

high C-score, which is progressively lost as we randomize the network (Chagnon, unpublished 

data). In our opinion, here, the low C-scores are not indicative of a specific ecological 

mechanism, but rather a by-product of the high nestedness (the two metrics are strongly and 

negatively correlated). We have shown that such nestedness was strongly mediated by the 

presence of generalist AM fungi, which were the most abundant species in the initial 

inoculum. This is the first empirical evidence showing that the generalism level of AM fungi 

can arise as a consequence of high local abundance, while up to now only correlative evidence 

was available (e.g., Chapter 5, fig 8 of this thesis). However, more direct tests for this 

hypothesis are needed to draw stronger inferences. Indeed, it is not impossible that fungi that 

were abundant in our inoculum achieved such high abundance in the field (where we took the 

inoculum) because they were host generalists. Future studies should build artificial plant-AM 

fungal networks from pure cultures as fungal inocula, where fungal abundance can be 

manipulated directly. Regarding the number of interactions for plants, it was largely unstable 

from a network to another, indicating that no single plant species had a clear propensity to be a 

generalist or a specialist.  

 

An even clearer indication of flexibility in mycorrhizal interactions in our system was 

demonstrated by our partitioning of the beta-diversity among our networks as suggested by 

Poisot et al. (2012). Indeed, we found that for most plant species, their set of fungal partners 

was likely to vary considerably from one community (plant species mixtures) to another, and 

vice versa for mycorrhizal fungal species. Thus, it seems clear that mycorrhizal interactions 

are very flexible and context dependent. This potentially illustrates the role for stochastic and 

historical processes in driving mycorrhizal network assembly (e.g., Hausmann and Hawkes 

2010). Future studies should explore the importance of such stochasticity along ecological 

gradients. For example, Chase (2007) has shown that as environmental filtering becomes more 
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important, community structure becomes, in turn, increasingly deterministic. It might be that 

in drier or colder climates, plants rely on more specific subsets of AM fungi. Alternatively, we 

should explore longer gradients of plant life history strategies. In our system, all potential 

hosts were herbaceous angiosperms, while a much broader range exists for AM fungi in nature 

(e.g., ferns, horsetails, shade-tolerant trees, gymnosperms). It might be that plants with highly 

contrasted life history strategies will consistently share very little AM fungal partners and 

display a deterministic network structure at the community level. 

 

Overall, our results suggest that mycorrhizal interactions can show some level of determinism. 

While numerous observational studies had reported similar patterns (e.g., Öpik et al., 2009; 

Torrecillas et al., 2012; Montesinos-Navarro et al., 2012), it remained unclear whether field-

based patterns were due to a progressive community assembly where perennial plants 

progressively build-up specific AM fungal communities in their rhizosphere year after year. 

Here we show that deterministic patterns can arise within 4 to 5 months of growth in pots, 

which mirrors results of other studies investigating sporulation dynamics in the rhizosphere of 

single hosts (e.g., Bever et al., 1996; Eom et al., 2000). It also suggests that even if pot-based 

studies may select for a biased subset of AM fungi, potentially more host-generalist and 

ruderal (e.g., Sykorova et al., 2007), they remain relevant to investigate mycorrhizal 

interactions: in our case, we found clear patterns of specificity of association among various 

plant species and a broad range of AM fungal taxa (not only ruderal Glomus taxa, for 

example). Our results also show that even if determinism can arise at a local scale, 

mycorrhizal interactions are very flexible. This suggests that mycorrhizal communities should 

be very resilient to local disturbances causing the local extinction of some potential partners. 

Indeed, such flexibility in interactions would allow networks to rewire and novel interactions 

would buffer the effect of local extinctions. This might explain why Urcelay et al. (2009) 

found that AM fungal communities were very resilient to the removal of plant functional 

groups, for example. As a whole, our results show that specificity in mycorrhizal interactions 

is at the realized niche level, rather than at the fundamental niche level (e.g., Aldrich-Wolfe, 

2007). In other words, preferential interactions recorded in the field are not likely to have 

arisen from fundamental specialization of the partners.  
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This points to an urgent research need in the literature surrounding ecological networks and 

their stability in nature. Most focus has been placed around how specific patterns promoted or 

not stability of trophic or symbiotic communities using either static (e.g., Memott et al., 2004; 

Burgos et al., 2007) or dynamic (e.g., May, 1973; Thébault and Fontaine, 2010; Gravel et al., 

2011) simulations. Those simulations typically make the assumption that interactions are 

inflexible through time (i.e. realized interaction niche = fundamental interaction niche), which 

in itself stands in contradiction with field observations showing that species can switch 

partners across years (e.g., Petanidou et al., 2008; Lazarro et al., 2010). In line with this, our 

results suggest that the opportunity for a network to rewire after a disturbance (through broad 

fundamental interaction niches of species) may be central to the resilience of natural 

communities. Community ecologists now have to (1) find creative ways to incorporate such 

process in their simulation studies and (2) gather much more data about fundamental 

interaction niche through long-term and/or manipulative studies. 
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L’article précédent montre clairement la flexibilité dans les interactions plantes-CMA. Bien 

que des signaux déterministes dans l’assemblage des communautés soient perceptibles, ils ne 

résultent nullement de spécialisation stricte des plantes envers certains groupes de CMA. 

Toutefois, cette étude impliquait des organismes qui n’ont aucune histoire de coévolution, 

puisque les graines de plantes ne provenaient pas du même site où l’inoculum fongique a été 

prélevé. Ainsi, pour valider ces résultats, une étude observationnelle a été conduite. Plutôt que 

de manipuler ou non la présence et l’identité de plantes voisines, j’ai caractérisé les 

interactions plantes-CMA de façon répliquée dans l’espace. Ainsi, si certaines plantes étaient 

spécialisées sur certains groupes de CMA, leurs patrons d’interactions devraient être les 

mêmes à travers les différentes communautés locales.  

 

Ce projet de recherche s’inscrit aussi dans un cadre plus large de recherche sur les réseaux 

d’interactions écologiques. En effet, il a été suggéré que certaines espèces ont un rôle plus 

important à jouer dans de telles communautés (typiquement les espèces généralistes) (e.g., 

Bascompte et al., 2003). Certains auteurs sont même allé jusqu’à les considérer comme des 

« keystone species » (sensu Paine, 1969) et qu’elles devraient être les cibles principales des 

efforts de conservation (e.g., Tylianakis et al., 2010). Toutefois, ce genre d’argumentation fait 

la supposition suivante : le généralisme d’une espèce est une propriété intrinsèque de cette 

espèce, et non pas le fruit de contingences locales. Le corollaire est donc que les espèces 

spécialistes sur le terrain le sont à cause de propriétés intrinsèques (e.g., faible compatibilité 

phénotypiques avec d’autres espèces), et non pas simplement parce qu’elles sont rares 

localement. Ainsi, le projet de recherche présenté dans le chapitre qui suit visait aussi à 

déterminer si le nombre d’interactions d’une espèce (ainsi que différents indices de centralité 

dans les réseaux écologiques) variait beaucoup d’une communauté locale à une autre. 
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Chapitre 7 

 

MYCORRHIZAL NETWORKS ARE NOT BUILT AROUND KEYSTONE SPECIES 

OR INFLEXIBLE INTERACTION MODULES 

 

 

 

Chagnon, P.L., Bradley, R.L., and Klironomos, J.N. 

 

(In preparation, to be submitted to Ecology Letters) 

 

 

7.1 Abstract 

 

In most ecological networks investigated to date, a few species tend to have disproportionately 

more interactions than the rest of the species. Some have argued that we should consider these 

generalists as keystone species, because static or dynamic simulation models suggested that 

their removal would have catastrophic consequences on the whole community. Likewise, 

mutualistic communities are often found to be built around modules of preferentially 

interacting species, that are thought to reflect coevolutionary history among subsets of species. 

Here, we show that 18 mycorrhizal networks show similar features, with the occurrence of 

both highly generalist species and preferential interactions. However, we also show that the 

level of generalism of a given species was highly fluctuating across space, and so were 

preferential interactions. Those results thus suggest that (1) being a generalist locally is an 

insufficient criterion to be considered a keystone species in an ecological network, and (2) 

preferential interactions can arise from local and contemporary partner selection without 

involving coevolutionary events. We argue that such flexibility in interaction patterns (either 

the number of interactions or the identity of the partners) urgently needs to be characterized in 

other systems to guide modeling studies on ecological networks. We also discuss the relevance 

of seeing the assembly of ecological networks as an optimization process. 
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7.2 Introduction 

 

Ecosystem services or functions are performed largely through species interactions, rather than 

by species alone. For example, nearly 100% of a plant’s phosphorus may be derived from its 

mycorrhizal fungal partner in the soil (Smith et al., 2004). Thus, ecosystem functioning relies 

on networks of interacting species, and a challenge facing community ecologists is to 

understand and predict how such networks will be resistant and resilient to natural or 

anthropogenic perturbations. Other scientific disciplines have used network-based tools to 

evaluate the potential fragility of networks when confronted to various forms of perturbations. 

For example, Watts and Strogatz (1998) have shown that various types of complex networks 

(e.g., neural, social, computational) were built around a few elements or nodes that were 

involved in many more link than the average nodes. Those central nodes have been typically 

referred to as hubs. Albert et al. (2000) have shown that the existence of such hubs increased 

the general efficiency of the network in performing its corresponding function (e.g., signal 

transmission when talking about the internet, or passenger flow when looking at networks of 

connected airports), yet it also made it more vulnerable to disturbances if they involved the 

loss of these hubs. Similar reasoning was transposed to species interaction networks, where it 

was argued that hubs in ecological communities should be considered as keystone species 

whose role is disproportionately important as compared to the rest of species comprised in the 

network (e.g., Sole et al., 2003). It was even argued that, in this view, the study of species 

interaction networks should become a central tool in conservation to provide guidance in 

settling management priorities (Tylianakis et al., 2010). However, a nuance should be made 

regarding the actual role of hubs in ecological networks. Indeed, while we often see natural 

networks organized around hub species, we don’t know how replaceable they are: it may well 

be that a disturbance eliminating a hub would simply lead to its rapid replacement by another 

hub species. Such rewiring was missing in the original simulations of network dynamics by 

Albert et al. (2000) and must be considered in ecological networks, where observed 

interaction patterns only reflect the realized “interaction niche” of a species, while its 

fundamental counterpart may be much broader (e.g., Blüthgen 2010). 
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The challenge when tackling the question of the replaceability of hubs in ecological networks 

is that extensive datasets are required to evaluate whether the identity of hubs vary in space 

and time. Indeed, we need to know whether hub species are so because, for example, they are 

locally abundant and so very prone to be interacting with many species, or because it is an 

intrinsic property of this species (for example, because it has a phenotype that makes it 

morphologically compatible with many other species). In other words, we need to separate 

between local contingency vs. deterministic species attribute. However, very few datasets have 

traced ecological network assembly through time over multiple years. When it has been done, 

some have found that the number of interactions of a species was highly likely to change 

drastically from one year to another (e.g., Petanidou et al., 2008; Lazzaro et al., 2010), and 

many have found that generalists were simply the most abundant species (e.g., Ollerton et al., 

2003; Vazquez et al., 2005). Others that have studied interaction networks in spatial designs 

have found that some species tend to be regionally abundant and to always appear as hubs, 

potentially by being superior competitors (e.g., Dattilo et al., 2014). However, in the latter 

case, if hubs are so because they are superior competitors, it might be that if they are removed, 

subordinate species may quickly take advantage of the situation and become hubs themselves. 

Hence, it remains unclear whether the existence of hubs in ecological networks has strong 

implications for their stability and functioning, because we still have very limited knowledge 

about the replaceability of these hubs, and more generally about flexibility and rewiring in 

species interaction networks. Recent theoretical work has provided tools to study such 

variation across networks (e.g., Poisot et al., 2012), but much data has yet to be collected to 

address this important issue. 

 

Mycorrhizal networks are widespread worldwide, with a vast majority of land plants forming 

these symbiotic associations (Wang and Qiu, 2006). Those networks provide important 

ecosystem functions such as improved plant nutrition and reduced nutrient runoff (e.g., van 

der Heijden, 2011), protection of plants against pathogens (e.g., Sikes et al., 2009), increased 

soil aggregation and physical protection of organic matter (e.g., Wilson et al., 2009) and 

increased plant C fixation by acting as carbon sinks (e.g., Wright et al., 1998; Miller et al., 

2002). There is still, though, limited data available at the whole community level to 
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characterize the structure of these ecological networks. This is because (1) mycorrhizal 

interactions have typically been characterized for a small proportion of plant species within 

communities (i.e. 2-3 plant species at most), and (2) until the development of high-throughput 

sequencing techniques, it was quite laborious to identify most mycorrhizal fungal partners 

associating with a given plant species. However, there has been recently a burst in community-

level studies characterizing the structure of mycorrhizal networks (e.g., Chagnon et al., 2012; 

Montesino-Navarro et al., 2012; Torrecillas et al., 2014). Yet, those studies, like most other 

studies of ecological networks, have been performed as snapshots of species interaction 

patterns, in one given place and at one given time. Thus, while it has been found that those 

mycorrhizal networks are also organized around interaction hubs (e.g., Chagnon et al., 2012), 

we still have no insight about their potential replaceability. Mycorrhizal networks have also 

been shown in many instances to be subdivided into modules of preferentially interacting 

species (e.g., Chagnon et al., 2012; Montesino-Navarro et al., 2012; Martos et al., 2012; 

Bahram et al., 2014). The existence of such modules in species interaction networks has been 

suggested to result from coevolutionary processes among species to favor trait matching (e.g., 

Olesen et al., 2007) but as noted by Chagnon et al. (2012), it must first be demonstrated that 

the species composition of such interaction modules is stable across space and time to argue in 

favor of coevolutionary processes.  

 

To address these issues, we studied the spatial variation in mycorrhizal network structure for 

18 local networks, in three different sites with contrasted successional status. We used high-

throughput sequencing to identify the mycorrhizal fungal partners present in the roots of every 

host plant species present in each local network. We then characterized species centrality in 

the network to reveal the potential hubs in each local network, and to assess whether a hub 

species in one network was more likely to be so in another network (i.e. if the hub “quality” 

was an intrinsic species property repeatable through space). We also subdivided our local 

networks into interaction modules to evaluate whether two species in the same module in one 

network were more likely to be so in another network. Our results show that although we 

could detect deterministic partner selection within local networks, interaction patterns were 

flexible through space (i.e. from one local network to another), which implies that hubs were 



122 
 

replaceable across sites. Also, module composition was flexible through space, implying that 

there was no evidence for tight reciprocal coevolution going on in these mycorrhizal 

communities, involving inflexible subsets of species.  

 

7.3 Materials and Methods  

 

7.3.1 Sampling 

 

We sampled 3 different sites in or near the city of Sherbrooke (Canada, 45° 24’ N 71° 53’ W): 

(1) a grassland disturbed the previous year, (2) an ancient agricultural field uncultivated since 

>40 years currently being colonized by Salix spp. and Populus spp. and (3) an old growth 

forest with a relatively closed canopy of ectomycorrhizal hosts. At each site, we established a 

30 m transect along which we delimited six 1 m
2
 quadrats (i.e. our local networks). Within 

each quadrat, we carefully excavated all potential host plants associated with arbuscular 

mycorrhizal (AM) fungi, and separated the root systems by species. Only the part of the root 

system still attached to the plant was conserved to guarantee host plant identity. Fresh root 

systems were placed in plastic bags and transported on ice to the laboratory, where they were 

thoroughly washed to take off attached soil and contaminating roots from other plants. The 

washed root systems were pooled by plant species separately for each local network, and kept 

at -20°C until processing within a week (see section 7.3.2). We also sampled supplementary 

leaf and root tissues from replicated individuals of each of the plant species to characterize the 

following traits: average root diameter, specific root length (root length per unit dry mass), 

root dry mass content (root dry mass per unit fresh mass), specific leaf area (leaf area per unit 

dry mass), leaf dry mass content (leaf dry mass per unit fresh mass) and leaf area. Those traits 

were selected for their relevance in mycorrhizal interactions: root coarseness is thought to be 

related to a plant’s dependency on AM fungi and susceptibility to pathogens (e.g., Hetrick et 

al., 1992; Newsham et al., 1995; Sikes et al., 2009; but see Maherali, 2014) and leaf traits 

collected provide information about plant resource acquisition and conservation strategy (e.g., 

Pierce et al., 2013). Such resource management strategies have been argued to be a key trait 

driving partner selection in the AM symbiosis (Chagnon et al., 2013). Thus, with these 
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additional data on plant traits, we could test for deterministic, trait-based partner selection in 

our mycorrhizal networks. However, some plants were rare in each site, so we were unable to 

sample additional individuals to measure functional traits, so in some cases data on plant traits 

was unavailable. Also, we did not measure trait data for the first site, which comprised mostly 

ruderal species, because at the time of sampling (end of July), some species had already 

flowered and leaves were beginning to die out.  

 

 

7.3.2 Characterizing AM fungal communities 

 

For each plant species of each local network, sampled root systems were cut in small pieces 

(~1 cm long) and a random subsample was selected and transferred to a 1.5 mL tube for DNA 

extraction, which was performed using MoBio UltraClean Plant DNA isolation kits following 

manufacturer’s instructions. AM fungal DNA was amplified using a nested PCR approach, 

given that preliminary attempts at amplifying AM fungal DNA directly from the DNA extracts 

were unsuccessful. In the first round, total fungal DNA from each DNA extract was amplified 

using 2 μL of DNA extract solution, 10 μL of HotStart Taq Master Mix kit solution 

(QIAGEN), 0.125 μL of T4Gene32 protein solution (New England Biolabs), 4 μL of 0.5 μM 

NS1-SR5 fungal-specific primer solution (White et al., 1990, RytasVilgalys’ lab, 

http://biology.duke.edu/fungi/mycolab/ primers.htm) and 3.875 μL of ultra-pure water. In the 

second round of PCR, amplicons from round 1 were used as templates, and the primer set was 

the AM fungal specific AML2-NS31 couple (Lee et al., 2008). Because PCR products were 

meant to be sequenced by 454 sequencing, additional nucleotides were attached to those 

primers, following instructions from the sequencing facility (Génome Québec, Montreal). 

PCR amplicons were purified using Agencourt AMPure beads (Beckman Coulter) to isolate 

long, double-stranded DNA from single DNA strands, remaining primers and impurities. DNA 

concentration in each sample was then quantified with replicated spectrophotometry 

(Nanodrop) lectures and an equimolar amount of each amplicon was added to the final pool, 

which was sent to be sequenced at Genome Québec facilities (Montréal, QC).  

 

http://biology.duke.edu/fungi/mycolab/%20primers.htm
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The resulting sequences were analyzed using the QIIME pipeline (Caporaso et al., 2010). We 

excluded from the dataset sequences that did not match our quality criteria (see chapter 5 for 

more details). We identified operational species of AM fungi using previously the published 

MaarjAM database (Öpik et al., 2010).  

 

 

7.3.3 Variation in species’ centrality 

 

We characterized plant and AM fungal species centrality in all local networks, in order to 

identify local hubs. Many indices exist to characterize such a species-level property. We chose 

a simple and potentially more intuitive method that simply compares the number of 

interactions of a focal species to the rest of the species under the form of a z-score (i.e. 

)(

)(

nbsd

nbmeannb
z i

i




), where nbi is the number of interactions involving the focal species, and 

mean(nb) and sd(nb) are respectively the mean and standard deviation in the number of 

interactions among species in the network. This approach has been used by various authors to 

discriminate central vs. peripheral species in ecological networks, using the arbitrary criterion 

that species with z > 1 are central/core species (e.g., Diaz-castelazo et al., 2010; Dattilo et al., 

2014). In our case, we used the crude z-scores as continuous input variables rather than to 

label each species as core or peripheral. Other centrality metrics have been argued to contain 

more information by also considering indirect paths between all species in a network. 

However, such metrics can become irrelevant when there are some species in the network 

linked to all other species (extreme generalists). In such case, indirect paths between species 

don’t exist, because all species are interlinked together by these extreme generalists. In such 

cases, indices like Freeman’s betweenness centrality (Freeman, 1977) take a value of 0 for all 

species, and thus provide no relevant information. Therefore, we chose to focus on a simple 

and relatively intuitive measure of centrality in our networks.  

 

7.3.4 Variation in module affiliation 
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Every local network was subdivided into modules of preferentially interacting species using a 

simulated annealing optimization procedure that maximizes Barber’s modularity (Barber, 

2007). This routine is implemented in the C++ executable MODULAR (Marquitti et al., 

2014). For each of our 18 networks, we tested the statistical significance of network 

modularity by comparing the observed value to 1000 randomized matrices. Those randomized 

matrices were generated using a null model that constrains for species number of interactions 

(and thus indirectly for connectance). Such null model is conservative and thus not prone to 

type I errors (Ulrich and Gotelli, 2013).  

 

7.3.5 Deterministic partner selection 

 

To evaluate whether mycorrhizal associations were deterministically driven by either plant or 

fungal characteristics, we evaluated (1) the relationship between plant traits and their 

interactions with AM fungi using a canonical correspondence analysis (CCA), and (2) the 

phylogenetic structure of fungal communities associated with a given host. For the latter, we 

used the mean nearest taxon distance (MNTD) index to look at phylogenetic clustering of 

fungal communities, and we compared the observed values to 1000 random scenarios where 

the tips of the phylogenetic tree were shuffled. These analyses were run in R using the 

packages vegan (Oksanen et al., 2012) and picante (Kembel et al., 2010), respectively. We 

also partitioned network beta-diversity, which we refer to as variation in interaction patterns 

between local networks. Poisot et al. (2012) have suggested to partition this measure in two 

additive components: variation in species composition in each network, and variation in 

interactions between the species shared by two networks (the latter being due to flexibility in 

interactions).  

 

7.4 Results  

 

7.4.1 Interaction modules and deterministic partner selection 
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Of the 163 compound root samples that were 

analysed, 160 presented a phylogenetically 

clustered AM fungal community, and the 

pattern was significant for 132 of them (82.5%) 

(fig. 17). In all but two networks we could 

build a CCA model that significantly (α = 0.05) 

predicted plant-fungal interactions based on 

plant traits. It should be noted that for one of 

these two networks, we only had trait data for 

three plant species in the network, which 

resulted in very few degrees of freedom in 

CCA models and thus low statistical power to 

detect a link between plant traits and 

interactions. By looking at the correlation 

between the number of times a plant and a 

fungal species co-occurred, and the number 

of times they interacted, we noted that 

among the species that co-occur often (i.e. 

more than 6 times), only 12 interacted more 

than 6 times, while 30 interacted only once 

and 38 did not interact at all. Thus, this 

provides little evidence for tightly 

specialized species that track each other in 

the environment. Conversely, some species 

pairs may apparently avoid each other or 

co-occur in a given m
2
 while not co-

occurring at finer spatial scales where 
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Figure 17. AM fungal phylogenetic 

community structure within roots, as 

measured by MNTD z-scores. Negative 

z-scores indicate phylogenetically 

clustered communities. 
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Figure 18. Among the species pairs that co-

occurred more than three times, how many 

times were those species pairs found to be in 

the same module?  
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interactions take place. Likewise, network modularity was significantly higher than expected 

by chance in only 3 networks out of 18. When comparing module affiliations for each pair of 

plant species, we see that there is no clear tendency for pairs of plant species to be consistently 

affiliated to the same module in different plot. Notable exceptions are Galium sp., Tiarella 

cordifolia and Oxalis montana which all tended to be in the same module 70-80% of the time 

(figure 18). 

 

By partitioning the network beta-diversity as suggested by Poisot et al. (2012), we show that 

most of the variation among networks is due to flexibility in interactions, which consistently 

explains ~80% of the total network beta-diversity (fig. 19). It should be noted that the high 

proportion of the total variation between interaction networks explained by interaction 

flexibility could not arise simply because there was a low species turnover among the 

networks (i.e. the other additive 

component of total network 

dissimilarity). Indeed, bray-curtis 

distance in terms of fungal and plant 

species composition among networks 

was consistently around 0.40 and 

sometimes up to 0.70. Thus, species 

turnover in itself could have been 

expected to account for a larger 

proportion of total network 

dissimilarity. 

 

7.4.2 Centrality of plant and fungal 

species 

 

To our surprise, plant centrality did not 

correlate with the number of individuals 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bwn

B
o
s

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 19. As for figure 16 (chapter 6), we plot 

the variation among networks that was due to 

variation in interaction patterns among shared 

species. The boxplots in the right panel show 

these values as proportion. Refer to figure 16 

for more details. 
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of that plant species in its network (R
2
 = 0.015, P = 0.15). However, we found a weak link 

between some plant traits and centrality. For example, leaf area and dry mass content 

contributed to increase plant centrality (P = 0.035 and P = 0.024, respectively). Yet, those 

results should be interpreted with caution, because a visual inspection of data revealed that this 

effect was mainly due to 3 particular plant species: Fragaria virginiana, Rubus pubescens 

which had high leaf dry mass content and Onoclea sensibilis which had much larger leaves 

than other species. Those species were consistently dominant in terms of root biomass in their 

local network, which may have contributed to their high number of interactions, and thus high 

centrality in the network.   

 

Regarding AM fungi, most species tended to have only few interactions, with a small minority 

of species were highly generalist. Within sites, the centrality of the different AM fungal 

species were weakly correlated from one plot to another (i.e., when making pairwise 

comparisons among the 6 plots found in a single site). However, in some comparisons the 

correlation was very close to 0 or even negative. We also compared centrality of AM fungal 

species among our three sites (for those AM fungal species present in more than one site). 

Again, correlation was extremely weak and never significant (fig 20). At the regional level 

(across sites), there were only 2 AM fungal taxa that tended to always be central. Indeed those 

taxa had centrality z-scores above 1 in all three sites, which corresponds to an arbitrary 

threshold sometimes used to delimit core vs. peripheral species in ecological networks (e.g. 

Diaz-Castelazo et al., 2010). Those taxa were not clustered in the AM fungal phylogeny, one 

being an Acaulosporaceae and the other a Claroideoglomeraceae. Given that in each site, 

there were respectively 26, 22 and 18 AM fungal taxa with an interaction z-score above 1, this 

shows how variable was the centrality of AM fungi. 
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7.5 Discussion 

 

While we did not find any evidence for strong modularity at the community level, CCA 

analyses revealed in most cases a significant role for plant traits in driving interaction patterns 

with AM fungi. Also, we found some pairs of species that tended to be consistently affiliated 

to the same interaction module (according to our modularity optimization by simulated 

annealing) across networks. It should be noted that those species (Galium sp., Tiarella 
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Figure 20. Centrality of AM fungi across 

sites. For those AM fungi that occurred in 

more than one site, we compared their mean 

centrality in a) site 1 vs. site 2, b) site 3 vs. 

site 2 and c) site 1 vs. site 3. AM fungal 

centrality was calculated as the interaction 

z-score (see Methods) and is presented as the 

mean ± 1 SE. 
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cordifolia and Oxalis montana) all have very shallow roots. This might reflect a vertical 

structuring of mycorrhizal fungal niches in our system, as reported elsewhere for 

ectomycorrhizal fungi (Pickles and Pither, 2014) or AM fungi in agricultural systems (Oehl et 

al., 2005). Indeed, in our two sites where these plant species occur, the soil profile changes 

drastically with soil depth, and roots of these species are predominantly found in the upper 

organic layer. Future studies should further investigate a vertical niche differentiation between 

organic and mineral soil among AM fungal species in late-successional systems. Such 

differentiation might reveal new insights about AM fungal life history strategies, with AM 

fungi dominating organic horizons potentially being ruderal with fast growth rates that would 

allow to scavenge for nutrients recently mineralized by saprotrophs. Alternatively, these fungi 

may be exerting a priming effect on the saptrotrophic community through exudation of plant-

derived carbon. 

 

The lack of stable interaction modules repeated across local mycorrhizal networks suggests 

that there is no tight and reciprocal coevolution in those systems at the site level, mediated by 

repeated interactions with the same species in the network (e.g., Olesen et al., 2007). We 

rather found high flexibility in those interactions, as evidenced by the β-diversity partitioning 

of these interaction networks (fig. 19). It is indeed remarkable that as much as 90% of the 

variation between two networks could be explained by the fact that the species shared by these 

networks interacted with different partners. However, at the site level, there were consistently 

a few AM fungal species that tended to be generalists in all local networks. This stable core of 

generalists may be more important in driving coevolution (Dattilo et al., 2014), especially if 

they are generalist because they are more abundant in the soil. Indeed, by being more 

abundant, they necessarily would exert a stronger selection pressure on the plant community. 

In this view, recently published evidence of local coevolution between plants and AM fungal 

assemblages (e.g., Johnson et al., 2010; Callaway et al., 2011) might reveal plant adaptation to 

the most abundant fungal partners in the soil. Future work using pure cultures should 

investigate this hypothesis.  
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When comparing AM fungal interaction centrality across site, we show a total absence of 

correlation, suggesting that centrality is not an inherent property of AM fungal species. It 

rather seems that the centrality of a fungus will be affected by local site contingencies such as 

its relative abundance or the identity of the hosts available. Only 2 AM fungi tended to be 

generalist in all three sites. It is yet to be determined if any key functional trait makes AM 

fungi more or less susceptible to become generalists in interaction networks. Helgason et al. 

(2007) have shown that fungi that recovered quickly after a disturbance tended to be those 

which had been seen to interact with many host species in previous studies globally. From 

this, it may be hypothesized that ruderal fungi are more likely to be generalists in interaction 

networks. Likewise, a meta-analysis using the maarjAM database (Öpik et al., 2010) revealed 

that a few AM fungal taxa tended to be widespread globally and also recorded in many 

different host species. Those fungi, such as Funneliformis mosseae, are well known to display 

a ruderal behavior with high growth rates within roots and early colonization (Jansa et al., 

2008; Oehl et al., 2009; Chagnon et al., 2013). One reason that might make ruderal fungi 

potentially good generalists is the nature by which plant-fungal communities assemble. 

Indeed, the new young roots that are made available to fungi may be first colonized by AM 

fungi with better colonizing abilities. And because necessarily, every plant species (although 

at various degrees) has to turnover a part of its root system and produce new roots every year, 

every plant species should provide a window of opportunity for ruderal fungi to colonize. If 

there is any role for a competition-colonization trade-offs to structure AM fungal communities 

within roots, then those ruderal species should eventually be replaced by better colonizers as 

the root ages. Future work should thus compare AM fungal communities between parts of a 

root system of different ages, to see whether younger roots are consistently dominated by a 

typical subset of the fungal community, i.e. potentially the ruderal species. 

 

Regarding plant interaction centrality, we could not predict it consistently with any species-

level property, thus suggesting that as for AM fungal centrality, plant centrality in mycorrhizal 

networks is the result of local contingencies rather than an inherent species property. The only 

trends that we could detect were (1) a higher centrality for species with high leaf dry mass 

content, which was mediated almost solely by two of our ~50 plant species investigated that 
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were very abundant in two of our three sites (i.e. Fragaria virginiana and Rubus pubescens), 

and (2) a positive effect of leaf area on plant centrality, which was solely mediated by a fern 

species (Onoclea sensibilis) that produced massive amounts of root biomass per individual 

when present in a local network. Thus, plant centrality rather appears to be very flexible for a 

given species from one site to the other, and it remains unclear what are the factors that control 

it. Although here we found no effect of a plant species’ abundance on its centrality, it should 

be reminded that even though we collected roots from all individuals of a given species, we 

did not include more root biomass in our root DNA extractions when a plant was abundant. 

Therefore, it is very likely that the more abundant a plant was in a local network, the more we 

underestimated the number of fungal partners with which it associated (because its root-

associated AM fungi were not sampled with an effort corresponding to its abundance). It thus 

remains possible that abundance could explain plant centrality in our networks. Such positive 

correlation between local abundance and number of interactions is in fact apparent in other 

mycorrhizal studies (e.g., Öpik et al., 2009; Montesino-Navarro et al., 2012). 

 

7.6 Conclusion 

 

Overall, our results highlight an important feature of mycorrhizal networks: although we can 

detect deterministic community assembly (e.g., plant interaction patterns predicted by their 

traits), mycorrhizal interactions remain highly flexible across space. Also, interaction modules 

rarely appear to be stable across space, indicating that there is no strong evidence for 

reciprocal coevolution at the site level between small subgroups of species: it may rather be 

the most abundant and generalist species that drive coevolution in those networks (e.g., 

Thompson 2005). Finally, the variation in plant and fungal centrality in the networks from one 

local patch to another, or among sites, indicate that mycorrhizal networks are not, in our 

system, built around a few keystone species. It rather appears that hubs are highly replaceable, 

which should contribute to the resilience of mycorrhizal networks when facing perturbations 

such as the stochastic extinction of a species locally. And if a species local abundance 

determines its propensity to become a hub in a mycorrhizal network, as suggested by other 

studies (e.g., Öpik et al., 2009; Montesino-Navarro et al., 2012; chapter 5 of this thesis), then 
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those species are the least likely to experience demographic stochasticity and local extinction, 

so the disappearance of a hub would be less likely.  

 

Those findings contrast with patterns evidenced in other types of networks. For example, 

airport networks tend to have few very big and connected airports that are crucial to the 

service provided by that network: passenger flow (e.g., Barrat et al., 2004). Likewise, 

electrical power grids have a tendency for similar network architecture (e.g., Watts and 

Strogatz, 1998). Such centralized network structure had been related in other fields to its 

efficiency or its stability when facing perturbation (e.g., Albert et al., 2000). It was thus 

appealing for ecologists a few years ago to find that ecological communities also display a 

trend towards network centralization around a few important generalists (e.g., Jordano et al., 

2003; Olesen et al., 2006), Yet, ecological networks remain different in one key aspect that 

has seemed to be rarely considered up to now. In other kinds of networks such as airports or 

power grids, there is an agency (private or governmental) that mediates the network assembly 

guided by some specific interests. It thus makes sense to see network assembly as an 

optimization procedure, where we want to maximize the service provided by the whole 

network. However, no such agency controls the assembly of ecological networks to maximize 

some community-level property. It has been suggested that communities naturally evolve 

towards higher stability, as the less stable communities may disassemble and leave room for 

the assembly of more stable ones (e.g., Fontaine et al., 2011). They based their reasoning on 

the fact that some simulation models predicted the emergence of a given structure of 

interaction networks, which was in fact frequent in nature. For example, most mutualistic 

networks show significant nestedness in nature, and Thébault and Fontaine (2010) have found 

that nested mutualistic networks were more stable in their simulations. However, such models 

rely on questionable assumptions. For example, they assume that (1) species interactions do 

not vary through time and/or space, while empirical studies (e.g., Petanidou et al., 2008; 

Lazarro et al., 2010; present study) have shown the opposite, (2) the only drivers of species 

dynamics are local interactions (i.e. no source-sink / mass effects of dispersal from nearby 

populations), which would only be typical of strictly isolated insular habitats, (3) no dispersal 

constraint in meeting the potential interaction partners, which is clearly unrealistic when 
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dealing with organisms with limited dispersal abilities (mycorrhizal networks are an extreme 

example involving two guilds of sessile organisms), etc. Hence, current modeling studies may 

have limited generality and it might have been an excess of enthusiasm to have concluded 

from them that ecological networks evolve towards more optimal structures (here optimizing 

stability in simulation models), as it is seen in other kinds of networks. Our results suggest that 

we may have pushed the analogy between abiotic networks and ecological communities too 

far. Maybe ecological networks do not evolve in a way that optimizes a community-level 

property such as stability or functioning: maybe ecological networks are rather built around 

individual-based interests, one of which would be for species to remain flexible in their 

interaction patterns, in order to buffer the potential loss of some partners. Such individual-

based interests would better fit an optimization scenario, where natural selection can select for 

optimal strategies in partner selection. 
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Les chapitres 1 à 7 forment le cœur de mon projet doctoral. Toutefois, plusieurs éléments 

périphériques ont été produits pendant ce doctorat, qui ont un lien parfois assez indirects avec 

mon projet mais témoignent tout de même de ma productivité scientifique. Je souhaitais donc 

les ajouter ici en tant que chapitres supplémentaires. Le Chapitre 8 formera une suite au 

chapitre 4, visant à définir un cadre théorique pour mieux comprendre les stratégies d’histoire 

de vie des CMA. Dans le chapitre 8, je me concentre sur un trait clé pour ces champignons, 

soit leur capacité à fusionner les hyphes pour échanger du matériel génétique ou pour reformer 

un réseau d’hyphes intact après une perturbation. Je revois la littérature sur le sujet, et discute 

de la façon dont ce trait peut s’insérer dans la stratégie d’histoire de vie d’un CMA. Le 

chapitre 9, quant à lui, porte sur les interactions entre CMA et autres champignons de la 

rhizosphère, par le biais indirect de la plante hôte. En effet, si le présent projet doctoral a mis 

l’emphase sur les interactions plantes-CMA, ces dernières ne sont qu’une forme des 

nombreuses interactions que la plante entretient avec des microorganismes du sol. Dans le 

même ordre d’idées, le chapitre 10 utilise un système d’étude très utile en phytopathologie 

(i.e. des souches de pathogènes de la tomate) pour déterminer l’importance du système 

hormonal de la plante dans la médiation des interactions CMA-champignons pathogènes. Dans 

le chapitre 11, je m’intéresse plutôt aux rétroactions plantes-sol, avec un système d’étude très 

intéressant impliquant diverses espèces d’asclépiades, où il est possible de séparer l’effet de la 

phylogénie des plantes de l’effet de leur stratégie de réponse aux ennemis. 

 

Finalement, je présente dans les chapitres 12 à 15 différentes analyses sur les aspects 

méthodologiques de mon doctorat. Dans le chapitre 12, j’évalue l’influence de divers 

protocoles d’extraction de spores de CMA sur leur viabilité. Dans le chapitre 13, je réalise des 

simulations afin d’estimer le biais potentiel dans les études sur les CMA qui emploient les 

techniques de biologie moléculaire, du à un sous-échantillonnage des communautés naturelles. 

Les chapitres 14 et 15 traitent plutôt des analyses numériques réalisées sur les matrices de 

données d’interactions plantes-CMA. Le chapitre 14 s’intéresse à l’influence de la 

connectance d’une matrice (nombre d’interactions réalisées sur le nombre total d’interactions 

possibles) sur notre aptitude à détecter des patrons comme les interactions nichées (i.e. 

« nestedness ») ou la modularité. Finalement, le chapitre 15 évaluent la performance de deux 
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méthodes alternatives pour calculer et tester la significativité statistique de la modularité dans 

des matrices binaires. 

 

En somme, même si ces chapitres (8 à 15) n’ont pas nécessairement contribué de façon directe 

à tester les hypothèses primaires ayant trait à mon projet de doctorat (concentré sur la présence 

de spécialisation dans la symbiose plantes-CMA), ils témoignent tout de même de ma 

productivité scientifique soutenue pendant ce projet doctoral. De plus, certains chapitres (i.e. 

12-13-14-15) ont contribué à éclairer mes choix quand à mes décisions méthodologiques pour 

répondre à mes questions d’ordre biologique.   
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ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS OF HYPHAL FUSION IN 

ARBUSCULAR MYCORRHIZAL FUNGI 
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8.1 Abstract 

 

Arbuscular mycorrhizal (AM) fungi are important plant symbionts widespread worldwide. 

Like other fungi, they have the ability to perform hyphal anastomosis, that is, the fusion of 

encountering vegetative hyphae. Research in other fungal phyla has evidenced numerous 

potential functional and evolutionary consequences of anastomosis. Yet, in AM fungal 

research, anastomosis has almost strictly been discussed in the context of fungal response to 

disturbance and inter-individual genetic exchange. Here, I review more broadly the 

implications of anastomosis for AM fungal ecology and evolution. I also identify major 

knowledge gaps, and research prospects to better ground hyphal anastomosis strategies of AM 

fungi in their general life history strategies. 
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8.2 Introduction 

 

Arbuscular mycorrhizal (AM) fungi (Glomeromycota) are widespread plant symbionts 

representing a significant portion of soil microbial biomass (Leake et al., 2004). As with other 

filamentous fungi, they have the capacity – unusual in the tree of life - to perform inter-

individual fusion of vegetative cells, a process termed hyphal anastomosis (or hyphal fusion). 

This finely tuned process has been relatively well studied in Ascomycota and Basidiomycota 

(e.g. Read et al., 2009), and has been argued to have multiple, far-reaching implications for 

ecology and evolution of fungi (Pontecorvo, 1946; Rayner, 1991). However, even though 

anastomosis has long been known to occur in AM fungi (e.g. Mosse, 1959), only recent 

research has started unearthing its potential functional consequences (e.g. Avio et al., 2006; 

Croll et al., 2009), and anastomosis has mostly been discussed as a mechanism promoting 

response to disturbance and speeding up asexual evolution (e.g. Young, 2009; Sanders and 

Croll, 2010). Here consequences of anastomosis on fungal ecology and evolution are broadly 

reviewed (see fig.21 for a visual overview) and potential selection pressures mediating fusion 

rates in nature, as well as research needs for the AM fungal system more specifically, are 

discussed.  

 

8.3 Functional consequences of anastomosis 

 

8.3.1 Homeostasis maintenance 

Most fungal species on earth are modular organisms formed by septate hyphae in which only 

small amounts of cytoplasmic material flows through pores in the septa. Some hyphal 

networks in soil can extend over large spatial scales (e.g. Smith et al., 1992 ; Beiler et al., 

2010), which poses a challenge for the maintenance of homeostasis. Intra-individual cross-

connections by hyphal fusion may help maintain significant levels of cytoplasmic flow 

through the network (Glass et al., 2000; Fu et al., 2011), and contribute significantly to 

maintenance of homeostasis (Read et al., 2009). Indeed, microscopic real-time observation of 

hyphal fusion events in Neurospora crassa revealed dramatic shifts in cytoplasm streaming 

after the fusion (Hickey et al., 2002; Leeder et al., 2011). Some fungi, however, are 
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coenocytic (i.e. lack septa in their hyphae), which 

allows cytoplasm to stream rather freely and thus 

rapidly across the hyphal network (Jany and 

Pawlowska, 2010; Purin and Morton, 2011). This is 

the case for Zygomycota and Glomeromycota (AM 

fungi). For those fungi, the homeostasis balance is 

potentially easier to maintain, which may explain 

lower incidence of fusion events found in those fungal 

phyla (e.g. Gregory et al., 1984; Purin and Morton, 

2011). Nevertheless, as no study has yet compared the 

frequency of fusion events in different fungal phyla in 

the same experiment, it is still too soon to speculate 

whether the differences observed among phyla result 

from experimental set-ups or from a true divergence 

of functional strategies.  

 

8.3.2 Genetic exchange and diversification 

Giovannetti et al. (1999) visually observed that nuclei 

could be transferred during fusion events between 

encountering AM fungal hyphae. By promoting nuclei 

exchange, anastomosis is likely to have great 

evolutionary consequences for AM fungi. Although 

heterokaryosis in AM fungi remains a debated issue 

(e.g. Pawlowska and Taylor, 2004), there is increasing 

empirical support to it (e.g. Croll et al., 2009). Thus, 

the nuclei acquired through anastomosis may bring 

new alleles (Glass et al., 2000). Croll et al. (2009) 

corroborated this by showing that following 

Figure 21. Inter-individual exchanges during 

anastomosis events. Two individuals of a given 

AM fungal species (here represented by blue 

and red hyphae, respectively), grow towards 

each other (potentially involving positive 

chemotropism, e.g. Sbrana & Giovannetti, 

2005). Their hyphae anastomose, which allows a 

bidirectional flow of cytoplasmic material 

between individuals. Material transferred 

involves nuclei, bearing alleles that may be 

beneficial in the given environment where they 

grow, or conversely coding for aggressive 

replication, and not for a function likely to 

increase organism fitness. Mycoviruses may also 

be transferred, with potentially positive or 

negative effect on fungal fitness. Likewise, 

parasitic or mutualistic endobacteria may be 

exchanged, as well as debilitated organelles 

(organelles that show a decreased function, 

while keeping replicating and thus draining 

energetic resource).  
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anastomosis between two genetically distinct AM fungal isolates, specific molecular markers 

from both parents were passed to progeny. This shows that anastomosis in AM fungi may 

have consequences for the genetic structure of populations by allowing genotypic mixing 

across different isolates, and it was noticeable from their study that even isolates pairs that 

anastomosed at very low frequencies exchanged detectable amounts of genetic material (Croll 

et al., 2009). Not all AM fungal isolates of a given species readily anastomose, though. For 

example, while Croll et al. (2009) found broad compatibility between isolates of a given AM 

fungal species (Rhizophagus irregularis) from a single site, Giovannetti et al. (2003) didn’t 

observe any anastomosis between geographically distant isolates of Funneliformis mosseae. 

The genes mediating the compatibility system in AM fungi are yet unkown, but in 

Ascomycota, het-genes have been identified as regulators of vegetative hyphal compatibility, 

through the additive effect of multiple het alleles (Pearson et al., 2009). Divergences in too 

many het-genes alleles between two encountering hyphae cause the heterokaryon generated by 

anastomosis to be unstable, by triggering a programmed cell death reaction (Glass and 

Kaneko, 2003). Nevertheless, even incompatible strains can exchange some genetic material 

through leakages during the incompatible interaction (Papazova-Anakieva et al., 2008), but to 

what extent this process may affect population genetic structure is still uncertain. It has been 

shown that strains compatibility in nature is negatively correlated to phylogenetic and 

geographic distances (Park et al., 2006; Roper et al., 2011; Mehrabi et al., 2011). This is 

consistent with the observation that variability at het loci appears to be maintained 

evolutionarily at noticeably high levels (Saupe et al., 2000), which suggests that without 

genetic homogeneization of fungal populations through anastomosis, between-isolates genetic 

differences at het loci will rapidly accumulate to eventually hinder any fusion event. More 

work at various spatial scales with AM fungi will clarify the process of natural genetic 

divergence between AM fungal populations.  

 

Genetic material exchange may significantly affect the ability of AM fungi to rapidly evolve 

in a changing environment not only by providing new alleles on which selection can act, but 
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also by potentially allowing recombination between nuclei of distinct origins, following 

karyogamy (Pawlowska, 2005). Empirical evidence is still lacking for AM fungi, but such 

post-fusion recombination is thought to be a major mechanism generating genetic diversity in 

pathogenic fungi, thus promoting virulence in their arms race with hosts (Wang and 

McCallum, 2009). Indeed, as fusion events may happen more frequently than sexual cycles in 

fungi, genetic exchange and recombination may represent an important way to quickly adapt 

to novel environmental conditions (Mehrabi et al., 2011). Such horizontal gene transfer has 

long been recognized in bacteria to promote genome plasticity, and thus adaptation (Juhas et 

al., 2009).  

 

Along with nuclei exchange, nuclei segregation (i.e. the transfer of only a random fraction of 

total nuclei from a parent to its progeny, thus generating a genetic bottleneck effect), has more 

recently been identified as a potentially important mechanism generating genetic variability in 

AM fungal populations (Angelard et al., 2010). It has been found that segregated lines of a 

given AM fungal isolate (i.e. sub-cultures of this isolate initiated from single spores of a 

parent culture) varied widely in their phenotypic characteristics (Angelard and Sanders, 2011), 

as well as on their effect on host plants (Angelard et al., 2010).  It may be thought that inter-

individual anastomosis events and nuclei segregation act in concert to contribute to AM fungal 

evolvability through fission-fusion dynamics (see fig. 22). On one hand, segregation reduces 

allele population size in a newly formed individual, thus favoring drift in the relative 

abundance of different alleles and promoting a novel phenotype (Angelard et al., 2010), and 

on the other hand, anastomosis may help reshuffling alleles in the population, promoting 

heterokaryosis maintenance (Bever and Wang, 2005). Combined, those two mechanisms may 

provide explanations to two major issues originally thought to hinder long term maintenance 

of an asexual strategy, namely (1) the Red Queen Hypothesis (asexual organisms should adapt 

more slowly because of absence of sex-based alleles recombination; Bell, 1982) and (2) the 

Mueller’s Ratchet (asexual organisms will accumulate deleterious mutations over generations 

because of absence of allele segregation through meiosis; Müller, 1932). Segregation and 
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genetic exchange both generate novel phenotypes 

on which natural selection can act (Red Queen), 

and segregation can limit the transfer of 

deleterious mutations to progeny by genetic drift 

(Mueller’s Ratchet). Those mechanisms may thus, 

at least partly, explain the apparent maintenance of 

asexuality in AM fungi, which is presumed to 

have lasted for the last 450 million years. The 

upcoming challenge will be to investigate how 

frequent are fusion events in natural AM fungal 

populations, and how widespread they are across 

different AM fungal lineages. Estimates for 

anastomosis frequency are also lacking in an 

ecologically relevant context, although significant 

progress has been made in designing novel study 

systems more relevant to natural conditions (e.g. 

Avio et al., 2006; Purin and Morton, 2011). 

Another future prospect for research is to 

investigate whether evidences from recombination 

in AM fungi are partly due to cryptic sexual 

events, as multiple meiosis genes and putative sex 

pheromones have been identified in Glomus spp. 

(Halary et al., 2011, 2013).  

8.3.3 Deleterious cytoplasmic elements (DCEs) 

transfer 

Cytoplasmic continuity between fungal individuals 

established through anastomosis results in 

bidirectional transfer of cytoplasmic elements (fig. 

Figure 22. Evolutionary fission-and-

fusion events (sensu Grant & Grant, 2008) 

in AM fungi. A growing mycelia (top-left 

corner) may harbor a balanced set of 

three nuclei (represented by red, green 

and yellow circles, respectively, and 

having a relative abundance ratio of 

1:1:1). During spore formation, a subset 

of those nuclei reach the spore and 

through drift, the relative abundance 

ratios among nuclei type may change (e.g.  

here to 3:2:1 and 1:2:3, respectively. This 

fission event is known as segregation. If 

those spores germinate locally (i.e. nearby 

their formation sites) or if they co-

disperse, a potential hyphal anastomosis 

may reshuffle nuclei among the fused 

mycelia and potentially re-balance the 

relative abundance of nuclei types (or not, 

if the abundance ratios among nuclei was 

not as symmetrical as shown here). 

Conversely, if spores disperse at different 

locations and germinate without 

possibility for anastomosis (right panel of 

the figure), the new abundance ratios 

among nuclei is likely to be preserved and 

is predicted to display a contrasted 

phenotype, as compared to the parent 

individual. Thus, like Darwin’s finches 

populations in Galapagos, populations of 

some AM fungal species are likely to 

undergo evolutionary fission (i.e. 

segregation) and fusion (anastomosis), 

which may contribute to fast, asexual 

evolution. 

 



147 
 

21). Among those elements, some may be deleterious. For example, transposons could be 

transferred via anastomosis, and even if they could facilitate recombination and thus 

adaptation (Mehrabi et al., 2011), they could also induce undesirable deleterious mutations, 

which are thought to be especially threatening for asexual fungi like AM fungi (Pawlowska, 

2005). Aggressive nuclei are also considered as DCEs (Glass et al., 2000). By aggressive 

nuclei, one means nuclei that contribute little to organism fitness, while coding for enhanced 

rates of anastomosis frequency to promote their own transfer (i.e. selfish nuclei) (Saupe et al., 

2000). Debilitated organelles, that can replicate but show decreased functional activities, can 

also be transferred during anastomosis and decrease fitness of the recipient individual by 

draining metabolic resource without providing any functional benefit in return (Caten, 1972; 

Milgroom et al., 1999). Currently, we have no information regarding (1) the frequency of 

transfer of such DCEs in AM fungi, and (2) their persistence in the recipient hyphae. Finally, 

mycoviruses can also take advantage of hyphal fusion events to spread in fungal populations 

(Ihrmark et al., 2002). They generally consist of double-stranded (ds) RNA molecules 

encapsidated (or not) in a peptide (Ghabrial et al., 1998). As they do not have any extracellular 

vector to spread between hosts, they must be transferred either vertically to progeny, or 

horizontally through anastomosis (Ghabrial et al., 1998). While most dsRNA have been 

shown to have limited effect on host phenotype, some viruses can be quite beneficial (Pearson 

et al., 2009) or detrimental (Dalzoto et al., 2006; Wu et al., 2007) to their host. In fact, 

reduced virulence of plant fungal pathogens caused by mycoviruses (i.e. hypovirulence) has 

raised much attention for its potential as a biocontrol strategy to protect economically 

important crops. In AM fungi, the only study reporting and manipulating mycoviruses was 

done using a single fungal isolate (Ikeda et al., 2012). The authors have found various dsRNA 

genomes in the AM fungal isolate, and they were able to raise an AM fungal line free of one 

particular dsRNA genome. They observed that this virus-free line produced twofold greater 

spore number and better promoted host plant growth than the infected isolate (Ikede et al., 

2012), which clearly indicates the potential top-down pressure that mycoviruses may exert on 

natural AM fungal populations. In natural populations of other fungal phyla, when surveys 

have been done, it has generally been observed that dsRNA are frequent in fungal hyphae in 

nature, thus suggesting that spread efficiency of mycoviruses in fungal populations offsets the 
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effect of selection against infected hosts (e.g. van Diepeningen et al., 1998). The vegetative 

incompatibility system can act as an effective transmission barrier in ascomycetes (e.g. Park et 

al., 2006), and theoretical work has suggested that DCEs such as viruses can even select for 

higher levels of vegetative incompatibility (Brusini et al., 2011). Nevertheless, for dsRNA to 

effectively act as a selective pressure restricting vegetative compatibility in fungal 

populations, they must have a negative (even if small), impact on fungal fitness (Brusini et al., 

2011). More work needs to be done to determine fitness costs of dsRNA (e.g. Ikede et al., 

2012;  Dalzoto et al., 2006) and to characterize their prevalence in natural AM fungal 

populations. Only with such data we can determine whether top-down regulation of AM 

fungal populations by parasitic dsRNA genomes is important (Purin and Rillig, 2008).  

 

8.3.4 Response to disturbance 

Fungal mycelia can experience various forms of disturbance (i.e. loss of functional biomass 

due to physical rupture of the mycelium), either caused by soil fauna, tillage, soil freezing or 

wetting-drying cycles. As obligate biotroph, AM fungi are dependent upon a functional hyphal 

network to colonize roots for carbon uptake and soil for mineral nutrition. Anastomosis of 

disrupted hyphae to form back a connected network after disturbance events has been 

suggested as a crucial mechanism allowing persistence of AM fungi in frequently disturbed 

environments (de la Providencia et al., 2005; Avio et al., 2006). Some even suggested that 

disturbance may be the strongest selection pressure maintaining high anastmosis rates in 

nature (Young, 2009). Even before post-disturbance hyphal fusion, healing mechanisms of 

disrupted hyphae are crucial to prevent cytoplasm leaking from hyphal breakpoints (de la 

Providencia et al., 2005). This is especially true for fungi with coenocytic hyphae (i.e. 

Zygomycota and AM fungi), which lack septa to limit cytoplasm leaking to the local injured 

section of the mycelium. In fact, it has been observed that in ecosystem recently invaded by 

earthworms, which cause physical disturbance in soils, there was a loss of Zygomycota species 

from the fungal community, probably due to their incapacity to cope with chronic injuries and 

cytoplasm leak (McClean et al., 2006). Other fungal species are known to have specific 
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organelles, the Woronin bodies, which rapidly plug the pores of the septa surrounding the 

injury to prevent excessive loss of cytoplasm after disturbance (e.g. Jedd and Chua, 2000). In 

AM fungi, little is known about hyphal healing. De la Providencia et al. (2005) observed 

distinct healing strategies in different AM fungal families, namely the Glomeraceae and the 

Gigasporaceae. In Glomeraceae, after hyphal disruption, a septal plug was formed at both 

injured tips, and multiple new hyphal branches were formed at each tip, which presumably 

reveals a strategy evolved to quickly reconnect the disrupted hyphae into a cohesive network 

after disturbance (de la Providencia et al., 2005). In Gigasporaceae, after disruption, a septal 

plug was assembled 50-300 μM away from the disrupted hyphal tips, resulting in considerable 

cytoplasm leakage, and four to six hours later, one or two hyphal branches were produced 

behind those septa. The authors argued that this strategy could reflect more a strategy to 

survive to adverse conditions, rather than a strategy to reconnect the hyphal network. Also, the 

growth of hyphal branches was directed towards each other if they were at short distances (40-

100 μM), but not if they were further away, indicating that repaired hyphae were not seeking 

to anastomose. Taken together, those results indicate that some AM fungal species should 

benefit from hyphal fusion to restore cohesive hyphal networks after disturbance, while other 

species may be more adapted to environments displaying less frequent disturbance. This is 

corroborated by the observation that Glomeraceae typically dominate conventionally tilled 

arable sites (Daniell et al., 2001; Oehl et al., 2003) while Gigasporaceae are at 

disproportionately low abundances in those sites compared to surrounding natural 

environments (e.g. Jansa et al., 2002, 2003).  

 

 

 

8.4 Synthesis and future work 

As shown above, anastomosis should be regulated evolutionarily following a balance between 

negative and positive functional consequences. If positive aspects (e.g. increasing genotypic 
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diversity and plasticity, favoring response to disturbance, etc.) offset negative ones (e.g. virus 

transmission, aggressive nuclei transfer, etc.), anastomosis should be maintained at high rates 

in natural AM fungal populations. Estimates of anastomosis rates in laboratory studies have 

been shown to vary according to the species taxonomic affiliation (e.g. Avio et al., 2006) and 

to the cultivation system used (Giovannetti et al., 2004; Voets et al., 2006; Purin and Morton, 

2011), thus preventing reliable predictions as to how frequent hyphal fusion events should be 

in natural AM fungal populations. Nevertheless, it was found by inspecting the genomes of 

other fungal phyla that high levels of allele polymorphism were conserved in het-genes, 

mainly through conservation of ancestral variability and unusually high substitution rates 

(Saupe et al., 2000). This suggests that the rate of anastomosis in natural populations is under 

tight evolutionary control. Fusion rate must be selected in fungal population in a way to 

maintain positive effects of inter-individual cytoplasmic exchange while limiting the costs 

through DCEs transfer (Brusini et al., 2011). As it has been shown that even short and 

infrequent fusion events can lead to substantial material transfer between fungi (Papazova-

Anakieva et al., 2008; Croll et al., 2009), it may be expected that fusion rates in nature are 

maintained at low levels through rapid evolution of fungal vegetative incompatibility.  

 

From an applied viewpoint, by bringing together most selection pressures acting on hyphal 

fusion rates in natural AM fungal populations, this short review may help envisaging how 

agricultural practices may affect AM fungal phenotypes. Indeed, as frequent ploughing may 

select for higher hyphal fusion rates in order for AM fungi to maintain a functional hyphal 

network (e.g. Avio et al., 2006), this may impact on AM fungal biology by promoting virus 

transmission for example, which may influence AM fungal symbiotic function either 

positively or negatively (Ikeda et al., 2012). Hence, a more comprehensive understanding of 

functional and evolutionary consequences of hyphal fusion in AM fungal populations will help 

addressing applied issues such as consequences of agricultural practices on symbiotic 

performance of AM fungi.  
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Future research should especially strive to link hyphal fusion strategies to overall species’ life 

history strategies. Here I list 3 potentially fruitful research avenues to explore: 

(1) We know that some AM fungal species can anastomose very frequently, while for other 

species we never observe any fusion event. Is this related to a live-fast die-young strategy 

(Promislow and Harvey; 1990), where the most ruderal species, adapted to disturbed 

environments, will grow quickly and readily fuse hyphae, while accepting the cost of 

accumulating deleterious organelles, nuclei and mycoviruses?  

(2) Can we link spore size to hyphal fusion strategy? Large-spored Gigasporaceae species may 

be less prone to experience nuclei segregation during spore formation (because nuclei 

populations may be larger). Thus, hyphal fusion could be avoided in order to limit the spread 

of deleterious mutations because nuclei segregation is not likely to purge such mutations out. 

Conversely, as small spores may be likely to disperse over larger distances and thus encounter 

very different environmental conditions, there could be a selection pressure for small-spored 

species to rapidly adapt to novel environments, which could be achieved through both nuclei 

segregation and hyphal fusion with native individuals at their “invasion” site, allowing allele 

exchange.  

(3) Hyphal fusion strategy vs. fungal response to hyphal grazing. It is not unreasonable to 

expect that AM fungi display a trade-offs between tolerance and resistance to fungivory (e.g. 

van der Meijden et al., 1988). Tolerant species may rely on high anastomosis frequency and 

high growth rate to quickly rebuild a functional hyphal network after fungivory (which is a 

form of disturbance), while resistant species may have traits that limit fungivory (e.g. thick 

and tough walls, repellent compounds, etc.).  

 

Hence, overall, to better understand the ecological and evolutionary bases of hyphal 

anastomosis, this particular function has to be considered in the broader context of organisms’ 

life history strategies. This may help to unearth trait syndromes (i.e. strategies) that may be 

evolutionarily conserved across the AM fungal phylum (e.g. Chagnon et al., 2013). Future 
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work on AM fungi will thus have to also include a wider range of species and genera of AM 

fungi, as past research has mainly focused on cosmopolitain, generalist taxa such as 

Rhizophagus irregularis or Funneliformis mosseae, which are known to display a fast-growing 

and massive reproduction strategy, typical of a ruderal life history strategy (Chagnon et al., 

2013).  

 

8.5 Concluding remark 

This short review is an example of how insights may be gained in AM fungal ecology by 

considering the knowledge gained with other fungal phyla. It is essential to capitalize on this 

latter literature which benefits from the availability of gene-deletion libraries with few model 

fungal species (e.g. Neurospora crassa, Aspergillus nidulans) to explore the functional roles 

of single genes on fungal phenotypic expression (Fu et al., 2011). This highlights the need to 

consider AM fungi first as fungi, not strictly as plant symbionts (Fitter 2000, 2005). Such 

mycocentric viewpoint will better enable mycorrhizal ecologists to broaden their view of AM 

fungi and to recognize the similarities those symbionts share with the rest of the fungal 

Kingdom.  
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9.1 Abstract 

 

A majority of plant species have roots that are colonized by both arbuscular mycorrhizal (AM) 

and non-mycorrhizal (NM) fungi. The latter group may include plant mutualists, commensals, 

parasites and pathogens. The co-occurrence of these two broad groups may translate into 

competition for root volume as well as for plant-derived carbon (C). Here we provide evidence 

that the relative availability of soil nitrogen (N) and phosphorus (P) (i.e., soil nutrient 

stoichiometry) controls the competitive balance between these two fungal guilds. A decrease 

in the soil available N:Pratio resulted in a lower abundance of AM fungi and a corresponding 

increase in NM fungi. However, when the same fertilization treatments were applied in a soil 

in which AM fungi were absent, lowering the soil available N:P ratio did not affect NM fungal 

abundance. Taken collectively, our results suggest that the increase in NM fungal abundance 

was not a direct response to soil nutrient stoichiometry, but rather a competitive release from 

AM fungi responding negatively to higher soil P. We briefly discuss the mechanisms that may 

be responsible for this competitive release. 
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9.2 Introduction 

 

Fungal competition has mainly been studied within various functional groups such as 

saprotrophs (Song et al., 2012), plant pathogens (Leonard et al., 1999) and ectomycorrhizal 

fungi (Kennedy et al., 2007). On the other hand, relatively few studies have examined inter-

guild fungal competition (Kennedy, 2010). As a result, little is known about the drivers of 

competitive interactions between broad groups of fungi occupying the same territory or 

volume. Given the wide diversity of fungal groups that may naturally colonize the interior of 

plant roots (Vandenkoornhuyse et al., 2002), the “endorhizosphere” may be a suitable arena 

for studying these interactions. 

 

Both arbuscularmycorrhizal (AM) and non-mycorrhizal (NM) fungi colonize the roots of a 

majority of terrestrial plants (Wang and Qiu, 2006). Members of the former group are obligate 

symbionts constituting the phylum Glomeromycota, whereas the latter group may include 

plant mutualists, commensals, parasites and pathogens.Both of these broad fungal groups may 

affect plant growth and population dynamics (Klironomos, 2002), and both depend on plant-

derived carbon(C) for energy (Olsson et al., 2002; Singh et al., 2000; Jeger et al., 2008). 

Hence, relative plant C allocation to these different groups of fungi may influence their 

competitive abilities within the root. Soil nutrient stoichiometry, notably the available N:P 

ratio, is considered a major driver of plant C transfer to AM fungi (Johnson, 2010). This is 

because the symbiosis is strongly related to the reciprocal exchange of C and P between plants 

and AM fungi (Hammer et al., 2011; Kiers et al., 2011; Smith and Smith, 2012). The more 

soil available P there is relative to soil available N, the less benefit a plant may derive from its 

AM symbiont (Johnson et al.,1997). Conversely, a high soil available N:Pratiomay stimulate 

plant C investment to AM fungi (Johnson et al., 2003). For their part, root-colonizing NM 

fungi do not acquire plant C through such intimate coupling mechanisms of nutrient transfer. 

Thus, soil nutrient stoichiometry may not be as important in determining their competitive 

ability within roots.   
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Here, we report on a study demonstrating how soil nutrient stoichiometry, more specifically 

the soil available N:P ratio, may drive competitive interactions between AM and NM fungal 

groups. Our results were obtained serendipitously from a plant-soil feedback experiment that 

was originally designed to test hypotheses regarding positive or negative plant-soil feedbacks 

in the absence or presence of AM fungi, and at low and high soil available P. Although results 

did not supportour initial hypotheses, they provided someunexpected insightsas to the role that 

soil nutrient stoichiometry may play in driving competitive interactions among different 

groups of root fungal endophytes. 

 

 

9.3 Methods 

 

The hypothesis that initially motivated our study was that AM fungal mediated plant-soil 

feedbacks, defined as the difference in crop yield over 2 successive generations (Kardol et al., 

2006), would be positive at high soil N:P ratio and negative at low soil N:P ratio. Thus, we 

used 4 treatments comprising a factorial array of 2 soil N:P ratios  2 soil fungal communities. 

Panicummiliaceum L. seedlings,grown from surface sterilized seeds (soaked in 70% ethanol 

for 1 min), were transplanted in 0.7 L pots filledwith 400g (dry wt. equiv.) soil that had been 

collected from an abandoned field(pH in H2O = 5.69; pH in KCl = 5.18;Mehlich-III 

extractable P = 0.41 ppm; organic matter = 13.4% (w/w); total N = 0.6 %(w/w)). The 

seedlings were grown for 10 weeks in a growth chamber at 20 C with a 16 hour diurnal 

daylight (600 μmol photons m
-2

 sec
-1

) period. Twice every week, half of the pots received a 

+N solution (5.65 mg NH4NO3 in 20 mL H2O) in order to alleviate any possible N deficiency 

to plants. The remaining pots were fertilized with a +N+P solution (N solution + 1 mg 

KH2PO4 in 20 mL H2O), which ensured no N deficiency but lowered the soil available N:P 

ratio.  

 

Additional NM “control” treatments were included in order to investigate the isolated effect of 

the soil N:P ratio on NM fungal root colonization. These were prepared by autoclaving the 
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same soil, and re-inoculating each pot with 50 mL of AM-free soil solution. This AM-free 

solution was prepared by blending 1 kg of non-autoclaved soil in 6 L of water, and filtering 

the suspension through a 30 μm nylon mesh. This filtering procedure excluded the larger AM 

fungal spores, but not the smaller NM fungal spores (e.g. Koide and Li 1989). Ideally, our 

experimental design would also have included AM “control” pots, that is, pots with plant roots 

colonized exclusively by AM fungi and grown at each soil N:P ratio. We were not able to 

produce these 2 treatments because preliminary tests showed that a too large number of AM 

fungal spores was required to achieve satisfactory root colonization, and that it was equally 

impossible to obtain a NM free sample by centrifugation. All 4 treatments (+N, +N+P, +N 

control, +N+P control) were replicated 20 times.  

 

Plants from the first generation were destructively sampled in order to measure AM and NM 

fungal root colonization. First, roots were cleared for 1 wk in a KOH aqueous solution (10% 

w/v) at room temperature and then stained in a blue ink-vinegar solution (5% v/v) (Vierheilig 

et al., 1998). Morphological discrimination of AM and NM hyphae was based on the criteria 

described by Rillig et al. (1998). Data were analyzed using t-tests, or non-parametric Mann-

Whitney rank sum tests when homoscedasticity between groups was not satisfied. 

 

9.4 Results and Discussion 

 

AM fungal colonization was significantly higher in the +N than in the +N+P treatment (U=0, 

P<0.01), while the opposite was true (t=-3.04, P<0.01) for NM fungi (Fig. 23). This resulted in 

a significant difference (U=0, P<0.01) in the AM:NM fungal colonization ratio between the 

two treatments (+N=2.2 vs. +N+P=0.2). In theNM control treatments, no AM fungal structures 

were found, and the soil N:P ratio had no effect (t=-1.417, P=0.16) on percent root 

colonization by NM fungi (Fig. 23). Thus, the positive effect of higher P on NM fungal 

biomass, within roots bearing both fungal guilds, ostensibly came about as a result of reduced 

competition from AM fungi, as opposed to a direct positive response to P fertilization.  
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We note that NM fungal root colonization 

was lower in the control soil than in the 

natural soil, which might suggest that AM 

fungi actually facilitate the development NM 

fungi. A difference in the absolute amounts of 

NM fungal colonization in each soil type does 

not, however, corroborate such a conclusion. 

In the natural soil, NM fungal propagules 

were likely to be present throughout the soil, 

such that newly forming roots had a high 

probability of encountering NM fungal 

propagules. The control soil, on the other 

hand, had been sterilized and re-inoculated, 

such that NM fungal propagules were likely 

to be more patchy and in lower densities. 

Thus, it is understandable that NM fungal 

root colonization in the control soil would take longer to develop than in the natural soil. This 

circumstance precludes us comparing the absolute amounts of NM colonization between soil 

types. The only valid comparisons are, in fact, between fertilizer treatments within each soil 

type, which allows us to verify whether differences in soil N:P ratio has a similar relative 

effect on NM colonization in the presence or absence of AM fungi. Thus, the only plausible 

interpretation of our data is that a high soil N:P ratio improves the competitive ability of AM 

fungi relative to root-borne NM fungi. 

 

Given the generally accepted relationship between soil N:P stoichiometry and plant C 

allocation to AM fungi (Johnson et al., 2003; Johnson 2010), we hypothesize that competitive 

interactions between AM and NM fungi were mediated, at least in part, by preferential plant C 

allocation to AM fungi when both guilds are present. Other factors that may have affected 

these competitive interactions are the production of antibiotics by different fungal guilds (St-

Figure 23. Effect of soil N fertilization, with or 

without P, on percent root colonization 

(%RLC) of arbuscular mycorrhizal (AM) and 

non-mycorrhizal (NM) fungi in Panicum 

miliaceum L. The control treatment refers to 

pots containing AM-free plant roots. Means are 

shown ± 1SE.  *** P< 0.001; ** P< 0.01; ns = 

non significant. 
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Arnaud et al., 1997; Cairney and Meharg, 2002), which may reduce metabolic activity of 

competitors (Kjøller and Rosendahl, 1997), or the priming of plant defenses and bacterial 

strains, which may suppress the growth of fungal pathogens and other NM fungi (Pozo and 

Azcon-Aguilar, 2007; Bharadwaj et al., 2012). It is not clear, however, how these alternative 

mechanisms could be linked to soil N:P stoichiometry. Furthermore, as only 15–35% of total 

root length was colonized by fungi across all treatments, we surmise that competition for 

limited root volume was an unlikely cause for our results. 

 

Our findings surfaced serendipitously from an experiment designed to test an entirely different 

research question than the topic of this short communication. Our interpretations are based, 

therefore, on a limited data set and need to be substantiated with future studies addressing 

specific data gaps. For example, it is still not clear how the competitive interactions that we 

reported would develop in unfertilized or N-limited soil. Secondly, autoclaving and re-

inoculating soil, in order to study the isolated effects of soil N:P stoichiometry on NM fungi, 

generates obvious experimental artifact such as altering soil nutrient concentrations and 

eliminating soil fauna. Thirdly, we only reported percent root colonization instead of total AM 

and NM fungal biomass estimates.  

 

In spite of its shortcomings, the small data set that we are presenting should motivate us to 

seek a better understanding of how different fungal guilds interact between themselves within 

competitive environments, and how these interactions are shaped by environmental factors 

such as soil nutrient stoichiometry. Previous work describing interactions between AM and 

root-borne NM fungi was mainly conducted with pure cultures (e.g. Larsen and Bødker, 

2001). Among the few trials that used native fungal assemblages, Klironomos et al. (1996) 

observed a relative increase in NM abundance following soil fertilization. Their study used a 

single fertilizer N:P ratio and did not control for a possible direct response of NM fungi to 

fertilization, thus precluding any inference of competitive interactions. More recently, 

Wehneret al. (2011) observed a decrease in NM fungal abundance when roots were co-

inoculated with AM fungi. While these results did suggest competitive interactions between 

the two guilds of fungi, they did not reveal the drivers of this competition. Our results are, 
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therefore, incremental to those of Wehner et al. (2011), as they point to soil N:P stoichiometry 

as a possible factor driving the competitive balance between AM and NM fungi. 
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10.1 Abstract 

 

Plants are routinely colonized by both beneficial and detrimental microorganisms. These two 

microbial guilds may indirectly interact with each other via their host, either by modifying its 

vigor, or by altering its hormonal/defense status. Here, we studied indirect interactions 

between arbuscular mycorrhizal (AM) fungi and three plant pathogens.  We show that AM 

fungal sporulation was only triggered by the least aggressive fungal pathogen, which is known 

to induce a jasmonate-based hormonal response by the host without affecting its vegetative 

growth and vigor. Conversely, the most aggressive fungal pathogen considerably reduced host 

vigor but did not alter AM fungal growth and sporulation. Our results thus suggest that the 

plant hormonal system is an important component of indirect interactions between AM fungi 

and plant pathogens. 

 

10.2 Results and discussion 

 

Most herbaceous plants are simultaneously colonized by pathogens and by arbuscular 

mycorrhizal (AM) fungi, both of which affectthe host plant’s competitive ability (van der 
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Heijden et al., 2003; Mordecai, 2011) and its fitness (Mills and Bever, 1998; Philip et al., 

2001). Although pathogens produce disease whereas AM fungi tend to provide benefits to the 

host plant, both depend on plant derived carbon (C) to grow and to reproduce. It is expected, 

therefore, that these two broad endophytic microbial groups may develop competitive or 

mutualistic strategies with respect to each other within the host plant. Moreoever, there is 

evidence that indirect interactions between the two groups can be mediated by the host’s 

physiological status (e.g. Tester et al., 1985; Chagnon and Bradley, 2013) or by its hormonal 

response to infection (e.g. Pozo and Azcon-Aguilar, 2007). Here, we present a small data set 

from which we can infer the relative importance of these two mechanisms in driving indirect 

interactions between plant pathogens and AM fungi.  

 

We used two fungal strains of Botrytis cinerea differing in their virulence. This pathogen has a 

necrotrophic lifestyle that promotes host cell death in order to acquire C and nutrients. The 

main component of plant defense against necrotrophic pathogens is the elicitation of the 

jasmonic acid-based (JA) pathway, which results in the production of JA and a subsequent 

increase in the expression of defense effector genes. This response is also elicited by other 

forms of stresses such as wounding or insect herbivory (Glazebrook, 2005). The strains of B. 

cinerea used in our experiment both have a necrotrophic lifestyle, but they differ in their 

interactions with the host’s hormonal defense system. The more aggressive strain has evolved 

a mechanism to down-regulate the host plant’s jasmonic acid-based (JA) hormonal response, 

but has a strong negative effect on host vigor (El’Oirdi et al., 2011). Conversely, the weaker 

strain elicits the JA pathway and more broadly antifungal defense compounds such as 

systemin (El’Oirdi et al., 2011), but it has a much lower effect on the physiological status of 

the host. Hence, both B. cinerea strains can lead, via different mechanisms, to a decrease in 

host quality for AM fungi. Either way, deteriorating conditions for AM fungi should lead to a 

decrease in mycelial biomass production and/or an increase in energy storage structures such 

as spores and vesicles (Douds et al., 2005). Our study system thus allowed us to measure the 

relative importance of host vigor vs. hormonal response in controlling the indirect effect of B. 

cinerea on AM fungi. Our study system also included a host infection treatment using 

Pseudomonas syringae, a biotrophic bacterial pathogen. Host infection by biotrophic 
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pathogens should trigger the anti-biotrophic salicylic acid-based (SA) hormonal pathway (Bari 

and Jones, 2009), without causing cell death to the host. As obligate biotrophs, AM fungi rely 

on a low expression of the anti-biotrophic pathway to maintain root colonization (Klopholz et 

al., 2011). We thus predicted that host infection by P. syringae would decrease somatic 

growth and/or increase energy storage structures by AM fungi. 

 

Tomato (Solanum lycopersicum cv. Moneymaker) plants were grown in a soil collected from 

an abandoned field left uncultivated for >40 years. Before potting, the soil was coarse-sieved 

(1 cm mesh) to remove large roots and other fragments, stored at 4 °C for 2 wk and then 

potted in 0.5 L pots. Three surface-sterilized (10% bleach) tomato seeds were planted in the 

middle of each pot. Pots were then transferred to a growth chamber set to a 16 h daylight 

period and temperatures of 20 °C day / 18 °C night. Within 2 wk of emergence, the two least 

vigorous seedlings were removed. Seedlings that germinated from the soil’s seed bank over 

the course of the experiment were also plucked and discarded. Symptoms of nutrient 

deficiencies appeared after 5 wk growth, therefore each pot was amended with 60 mg of N 

(NH4NO3) and 50 mg of P (KH2PO4) suspended in water. This amount of fertilizer has been 

shown to not significantly reduce root colonization by AM fungi in nutrient-poor soils (e.g. 

Collins and Foster, 2009).  

 

Following 8 wk growth, plants were inoculated with one of the three pathogen types according 

to the methods outlined in Yangui et al., (2010), with seven replicates per treatment. For the 

two B. cinerea strains, a spore suspension (10
6
 per mL in H2O) was sprayed on two leaves. For 

P. syringae, we soaked the two leaves for 30 s in a cell suspension of this pathogen (10
6
 per 

mL in 10 mM MgCl2) (Chakravarthy et al., 2003). Inoculated plants were placed in a 

polyethylene bag to retain moisture, and placed in a dark growth chamber for 24 h, after which 

the bags were removed and the normal light cycle was restored. Along with the pathogen 

infection treatments, the experiment included two control treatments: (1) two leaves sprayed 

with distilled water, and (2) two leaves soaked in MgCl2 solution (because the bacterial cells 

were suspended in MgCl2 in the biotroph inoculation treatment). 
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Plants were harvested 2 wk after inoculation, and total fresh shoot and leaf mass were 

recorded for each pot. Whole root systems from each pot were washed and digitized using a 

desktop optical scanner. Total root length and average root diameter were calculated using 

GIAROOTS image analysis software (Galkovkyi et al., 2012). Roots were then dried at 55 °C 

and weighed. To assess AM fungal colonization, roots were rehydrated and cut into ~1 cm 

fragments, cleared for 1 wk in a 10% p/v KOH solution, dipped 15 min in 2% v/v acetic acid, 

and then soaked for 1 d in an ink-vinegar (5% v/v) staining solution. Root fragments were then 

mounted onto glass slides and percent colonization of AM arbuscules, hyphae and vesicles 

were recorded using the gridline intersect method (McGonigle et al., 1990). A soil subsample 

from each pot was used to determine gravimetric moisture content, while the remaining soil 

was divided into two subsamples. The first was used to count spores by means of wet-sieving 

and centrifugation (Chagnon and Bradley, 2011), whereas the second was used to measure soil 

hyphal length (Johnson et al., 2003). Mycorrhizal hyphae were distinguished from non 

mycorrhizal ones using established criteria, such as absence of clamp connections or regular 

septation (e.g., Rillig et al., 1998). The densities of soil-borne spores and hyphae were 

calculated on a dry soil mass basis. Normality and homoscedasticity of the data were verified 

respectively using Shapiro-Wilk’s and Bartlett’s tests. The effects of treatments on plant 

biomass and fungal structures were tested using ANOVA, and the separation of means was 

performed using Tukey’s HSD test. All statistical analyses were coded in R statistical package 

(R Core Team, 2013). 

 

Pathogenic infection was deemed 100% successful, based on visual symptoms. The more 

aggressive Botrytis strain caused the loss of the infected leaves, and the leaves formed after 

inoculation were pale and small and accounted for a significantly smaller proportion of total 

aboveground biomass (F = 49.66, P < 0.0001) than in the other treatments (fig. 24). Also in 

this treatment, plants had significantly fewer roots (F = 3.25, P < 0.05), which were of higher 

diameter (F = 2.71, P < 0.05) than all other treatments. The weaker B. cinerea strain only 

caused the yellowing of the two inoculated leaves. Infection with P. syringae resulted in 

yellow spots on the inoculated leaves only. Treatments had no effect on the density of 
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arbuscules or vesicles occurring within roots, nor on soil hyphal length produced in the soil 

(not shown). However, soil-borne spores were significantly higher (F = 19.03, P < 0.001, fig. 

25) with the weak B. cinerea strain. 

 

Plants infected by the aggressive strain of B. cinerea were likely to transfer less C to their AM 

fungal symbionts due to a greater loss of photosynthetic tissues. However, this loss of host 

vigor did not trigger a sporulation response by AM fungi. Conversely, the weak B. cinerea 

strain did not substantially decrease host vigor, but AM fungal sporulation increased by nearly 

60% in this treatment (fig. 25). Given that this weaker strain is known to normally elicit an 

anti-fungal JA-based hormonal response (El’Oirdi et al., 2011), our results suggest that such a 

response to pathogen infection has a stronger effect, than a loss of host vigor, on AM fungal 

development. This has important implications for agriculture, as seemingly minor 

aboveground symptoms of pathogen infection may mask consequential impacts on the 

Figure 24. Plant aboveground biomass in 

response to the treatments. Bars = mean ± SE. 

Treatments were: Bot weak and Bot aggr = 

leaves sprayed with weak and aggressive 

strains of Botrytis cinerea, respectively; H2O = 

leaves sprayed with water ; Pseudomonas = 

leaves dipped in a Pseudomonas syringae 

suspension; MgCl2 = leaves dipped in a MgCl2 

control. Letters above bars are results from 

Tukey’s HSD test. 

 

 

Figure 25. AM fungal sporulation in response to 

the treatments. Bars = mean ± SE. Treatments 

were: Bot weak and Bot aggr = leaves sprayed 

with weak and aggressive strains of Botrytis 

cinerea, respectively; H2O = leaves sprayed with 

water ; Pseudomonas = leaves dipped in a 

Pseudomonas syringae suspension; MgCl2 = 

leaves dipped in a MgCl2 control. Letters above 

bars are results from Tukey’s HSD test. 
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belowground development of symbiotic AM fungi. By triggering a sporulation response, the 

weaker strain of B. cinerea appeared to cause a shift towards a C storage strategy by AM 

fungi. This may, in turn, reduce nutrient uptake for the plant and impact its fitness, especially 

for high P-demanding crops such as tomato. It may seem counter-intuitive that the weaker 

strain of B. cinerea did not increase vesicle production, as these structures are involved in 

storing plant-derived C (e.g., Denison and Kiers, 2011). One may speculate that when the 

quality of a host deteriorates due to local pathogen accumulation in the surrounding 

environment, AM fungi may better store C in soil propagules that are more likely to disperse 

(i.e. spores) instead of in root-borne propagules more likely to survive locally. Alternatively, it 

may be that vesicles are not optimal indicators of C storage by AM fungi (e.g., Lekberg et al., 

2013). Finally, contrary to our hypothesis, the biotrophic pathogen did not elicit any response 

in AM fungal development. This may be due to Pseudomonas infection being too low to 

trigger a significant hormonal response, as corroborated by the slighter visual infection 

symptoms in this treatment. Alternatively, the biotrophic pathogen may exert both positive and 

negative effects on AM fungi, which cancel each other out. For example, the elicitation of 

anti-biotrophic defense genes may harm AM fungi, but a successful infection by the pathogen 

may also indicate the suppression of other plant defense genes, which would benefit AM fungi 

(e.g., Abramovitch and Martin, 2004).  

 

Overall, our results suggest that a plant hormonal response to pathogens may have a strong 

impact on beneficial symbioses such as associations with AM fungi. This supports broader 

theories invoking potential trade-offs between defense and mutualisms in plants (e.g., 

Agrawal, 2011; Adler et al., 2012). Still more could be learned about plant-mediated 

interactions between pathogens and AM fungi. For example, what happens when a plant is 

infected early in the growing season, when AM fungal root colonization is not yet fully 

established? Does this initiate a plant screening process for AM fungi that are better at 

providing bioprotection against such pathogens (e.g., Newsham et al., 1995)? Also, what are 

the underlying physiological and hormonal causes for variation in AM fungal growth patterns 

following pathogen infection? Experimenting with mutant plants bearing defense-related 

knockout genes may be one way to shed light on these questions. 
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DYNAMICS WITH SOIL BIOTA? 
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11.1 Abstract 

 

Plant-soil feedback dynamics have rarely been studied in the context of plant life history 

strategies. Here, we build a framework linking plant resource management, life history, 

dispersal and interactions with enemies and mutualists. Central to our framework is the well-

known trade-offs in plants between tolerance and resistance to herbivores. We hypothesized 

that resistant plant species should accumulate fewer enemies in their rhizosphere (by being 

better defended), and have more neutral to positive feedbacks. The reverse should be true for 

tolerant, poorly-defended plants. We tested this hypothesis using two pairs of milkweed 

species. Each pair consisted of two phylogenetically close species that have contrasting enemy 

resistance-tolerance strategies. We found support for our hypothesis in one of the two species 

pairs, where the resistant plant species accumulated both more beneficial arbuscular 

mycorrhizal fungi and more beneficial (or less detrimental) non-mycorrhizal microorganisms. 

The lack of support for our hypothesis with the other species pair was driven by the 

accumulation of detrimental non-mycorrhizal microorganisms in the rhizosphere of the more 

resistant species. This may be explained by the fact that this species had finer roots than the 

rest of species, thus being more exposed to belowground enemies. Overall, this study suggests 
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that plant interactions with belowground biota may be integrated into broader evolutionary 

trade-offs related to defense or symbiotic strategies, and that root characteristics should be 

taken into account when investigating plant-soil feedback dynamics. Further studies are 

needed to test the generality of those findings. 

 

11.2 Introduction 

 

Microorganisms are major components of terrestrial ecosystems (van der Heijden et al., 2008), 

and they have the potential to drive plant community structure (e.g., O’connor et al., 2002; 

Schnitzer et al., 2010; Maron et al., 2011; Mordecai 2011). Plants are well known to exert 

bottom-up control on belowground microbial communities through qualitative and 

quantitative carbon allocation (reviewed in Wardle 2002; Ayres et al., 2009) and, in turn the 

microbial communities developed in the rhizosphere may influence positively or negatively 

plant performance through so-called plant-soil feedback effects (Bever, 1999; Kulmatiski et 

al., 2008; Harrison and Bardgett, 2010). Such feedback dynamics are likely to be important 

drivers of major plant community-level processes such as coexistence (Bever, 1999; Hart et 

al., 2003), invasion (Callaway et al., 2004; Agrawal et al., 2005), and succession (Kardol et 

al., 2006; Carbajo et al., 2011).  

 

Plant enemies are well known to induce feedback dynamics and, for example, there is much 

empirical evidence that plants can accumulate detrimental pathogens in their rhizosphere (e.g., 

Mills and Bever, 1998; Klironomos, 2002). Similar patterns have been found at the 

aboveground level (e.g., Bagchi et al., 2010). Likewise, soil mutualistic microorganisms may 

also produce feedback dynamics. Arbuscular mycorrhizal (AM) fungi are among the most 

widespread plant mutualists in terrestrial ecosystems, and again there is much empirical 

evidence that they can induce either positive plant-soil feedbacks (e.g., Klironomos, 2002; 

Mangan et al., 2010; Zhang et al., 2010) or negative ones (Bever, 2002). Yet, we still know 

very little about the relative importance of these two microbial guilds in driving plant-soil 

feedbacks in natural communities (Hodge and Fitter, 2013). In fact, quantifying such relative 
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importance of pathogens, mutualists and plant competitive interactions in driving plant 

community structure has been identified elsewhere as one of the most pressing issue in plant 

community ecology (Agrawal et al., 2007; Klironomos et al., 2011). Several bodies of 

research suggest that pathogens – or more broadly enemies - and AM fungi may not simply be 

additive components of natural plant-soil feedbacks. For example, AM fungi may protect 

plants from enemies through a variety of mechanisms (reviewed in Borowicz, 2001; 

Koricheva et al., 2009). Thus it is likely that in presence of AM fungi, ennemy-mediated 

plant-soil feedbacks would be reduced. Conversely, various plant enemies are known to 

modify AM fungal community structure, thus having a potential impact on AM fungal-

mediated plant-soil feedbacks (e.g., Kowalchuk et al., 2002; Alguacil et al., 2011). Also, it is 

increasingly acknowledged that most organisms interacting with plants (herbivores, 

pathogens, commensal endophytes, mutualists) elicit and/or are influenced by common and 

multifaceted components of the plant defense system, of which the most important are 

salicylic and jasmonic acids (e.g., Glazebrook, 2005; Hause and Schaarschmidt, 2009; 

Bezemer et al., 2005). It should not be surprising, then, to find that those organisms 

simultaneously interacting with plants have reciprocal influence on each other (e.g., Goverde 

et al., 2000; De Roman et al., 2011). It then becomes very difficult to predict the outcome of 

those multipartite interactions even in simplified laboratory systems. There is thus a need to 

develop a coherent theoretical framework integrating all plant interactions with those various 

guilds of organisms.  

 

Several theories have already been independently developed to link some key plant 

interactions together. For example, at a coarse level, it has been suggested that plant defense 

against enemies could be traded-offs against interactions with beneficial mutualists (Agrawal, 

2011). Accordingly, Adler et al. (2012) found that plants producing more defense compounds 

also relied less on pollinators for reproduction, potentially because those compounds acted as 

deterrent for the mutualists. Others have suggested that defense should be traded-offs against 

growth (e.g., Coley et al., 1985). Accordingly, it has been found that (1) predator 

preferentially feed on palatable (i.e. less defended) species that also grow and recruit at faster 

rates (Loh et al., 2014), (2) species suffering more from herbivory (less defended) are also 
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those that grow fast and do not tolerate low nutrient concentrations in soil (Lind et al., 2013) 

and (3) species that grow slowly and tolerate low nutrient concentrations accumulate less 

pathogens (Mitchell et al., 2010). Another premise at the core of the evolutionary theory of 

plant defense is the trade-offs between plant tolerance and resistance to enemies (Hay et al., 

2011). Following this trade-offs, plants should be either good at quickly re-growing after 

enemy attack, or good at resisting against enemy attack through defense. Mooney et al. (2010) 

found evidence for such a trade-offs in plant response to herbivory: plants that grew faster and 

responded positively to high nutrient concentrations were less resistant to herbivores. Finally, 

another body of research that links the interactions of plants with other biota to their life 

history strategy is the work on succession. There is increasing evidence, indeed, that 

successional replacement of species can be understood partly through plant interactions with 

soil biota. For example, Kardol et al. (2006) showed that early-successional plant species 

tended to consistently develop negative plant-soil feedbacks in microcosms, while late-

successional species developed positive ones. This suggests that early-successional species 

may be prone to accumulate soil-borne enemies, as suggested by the work of van der Putten et 

al. (1993) on sand dune succession. Those results could easily be reconciled with a growth-

defense trade-offs, where faster-growing, early-successional species tend to be less well 

defended against enemies, and thus are eventually replaced, along the successional trajectory 

of the community, by species that are better defended but grow more slowly. Hence, it seems 

clear from the work cited here that plant growth rate and responses to enemies and mutualists 

should be viewed as key components of their life history strategy. Here, we try to merge these 

aspects into a coherent framework and to include mycorrhizal fungi into it (which has yet to be 

done, in spite of the fact that most terrestrial plant species are mycorrhizal). We build upon the 

above-mentioned theories by predicting a continuum of strategies with the two following 

extremes: (1) plants that tolerate attack instead of resisting it, by having fast growth rates. 

Those species are likely to be short-lived and to disperse their seeds far away from their 

parents to avoid locally accumulated enemies. They would prefer early-successional, richer 

habitats. Such habitats are likely to favor a low dependency on AM fungi, because nutrients 

are readily available to plants (Chapin, 1980). Also, it has also been shown that short-lived 

annuals depended less on AM fungi than perennials (Boerner et al., 1992; Collier et al., 2003). 
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Such plants would have a resource management strategy that maximizes acquisition instead of 

conservation, with high specific leaf area, low leaf dry mass content and thin roots (e.g., 

Wright et al., 2004; Roumet et al., 2006; Pierce et al., 2013). This may overall be considered 

akin to a live-fast die-young trade-offs (Pearl, 1928), where a plant would maximize fast 

acquisition of resource and short term fitness gains instead of surviving and spanning its 

fitness over multiple generations. At the other end of the extreme, we would have (2) plants 

that invest more into defense, thus resisting to enemies. Those plants would have slower 

growth rates, would tolerate poorer environments and depend more on AM fungi for nutrient 

acquisition. They would be more efficient at conserving resource and would live longer. 

Overall, one might see our framework simply as an extension of the tolerance-resistance trade-

offs cited above, which would now include broader expectations regarding successional 

dynamics, plant resource economics and relationships with AM fungi. Regarding plant-soil 

feedbacks, our prediction would be that tolerant plants would predominantly develop negative 

plant-soil feedbacks, mostly driven by the accumulation of enemies. On the other hand, 

resistant plants would show neutral enemy-mediated feedbacks, and would rather develop 

positive feedbacks with AM fungi. The positive nature of AM fungal-mediated feedbacks is 

based on the empirical evidence that plants and AM fungi can control resource allocation to 

pay more when their partners also pays more (Bever et al., 2009; Hammer et al., 2010; Kiers 

et al., 2011; Fellbaum et al., 2012). Thus, at the community level, one would expect that 

plants progressively select optimal fungal partners (and vice versa), which should be 

beneficial to the plant in the next generation.  

 

Here, we tested this hypothesis using two pairs of milkweed species (Asclepias spp.). Each 

pair consisted of phylogenetically related species that showed contrasting tolerance-resistance 

strategies to herbivores (Mooney et al., 2010). This allowed us to test for the role of the 

tolerance-resistance trade-offs in driving plant-soil feedbacks, while controlling for 

confounding phylogenetic effects. We found mixed support to our framework, suggesting that 

it may be oversimplified and need further refinements at finer scales.  
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11.3 Materials and Methods   

 

11.3.1 First generation 

 

We germinated seeds of four milkweed species: Asclepias syriaca, Asclepias tuberosa, 

Asclepias subverticillata and Asclepias currassavica. The two former species formed the first 

pair (tolerant and resistant species, respectively) and the two latter, the other pair (tolerant and 

resistant species, respectively). To help germination, we nicked the seeds with a clean, 

disinfected razor blade, and cold-stratified them between moist filter papers at 4°C for three 

weeks. Then, we transferred them to a 28°C environment for germination. We then 

transplanted the germinated seedlings into 1 L pots filled with a bottom layer of 300 mL of 

turface®-natural soil 1:1 mixture, 600 mL of natural soil and 100 mL of turface®. Turface® 

was added to improve drainage. The natural soil was collected in an old-field near Sherbrooke, 

Canada (45° 24’ N, 71° 54’ W) that had not been cultivated for more than 40 years. Plants 

were grown for four months (March to July 2012) in a growth chamber with 16 hours of light 

per day, at 22°C during day and 20°C during night. After four months, plant shoots and roots 

were separately harvested to measure leaf economics traits (specific leaf area, leaf dry mass 

content and leaf thickness) and root traits (specific root length, mean root diameter). Soil was 

thoroughly mixed to prepare microbial inocula for the second generation. AM fungal inocula 

was prepared by extracting spores from 20 g equivalend dry mass of soil using a standard wet-

sieving and centrifugation technique (Chagnon and Bradley, 2011). Spores were collected on a 

30 μm nylon mesh and rinced three times with 10% bleach to surface sterilize them, in order 

to exclude as much non mycorrhizal (NM) microorganisms as possible. A second, NM 

microbial fraction was prepared by suspending 20 g equivalent dry mass of soil in 0.5 L of 

distilled water, and sieving through a 30 μm nylon mesh. The < 30 μm fraction, comprising 

small NM fungal spores, and bacterial cells and spores was collected.  
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11.3.2 Second generation 

 

For the second generation, plants were grown in 600 mL cone-tainers filled with 200 mL of 

sand-turface®-perlite 1:1:1 mix, 200 mL of sterilized natural soil, 150 mL of sand-turface®-

perlite 1:1:1 mix to which the microbial inocula were added and 50 mL turface ®. The 

microbial inocula consisted of either AM fungal spores, NM microbial filtrate, or both, and 

each plant species was inoculated with either its “home” microorganisms or the 

microorganisms developed in the rhizosphere of the other species of the pair (i.e. “away” 

microorganisms). Each treatment was replicated ten times, for a total of 240 experimental 

units. To ensure that AM fungal spore density was comparable to NM microbial densities as 

compared to what was found originally in generation one, we took care to inoculate each pot 

in generation two precisely with the microorganisms that were found in 15 g equivalent dry 

mass of soil from generation one. This was crucial to our design, where we want to assess the 

relative importance of the two microbial guilds in mixed inoculations. Seedlings were 

germinated and transplanted as explained for generation one. To avoid runoff of AM fungal 

spores or NM propagules during the first week of the seedlings establishment, we watered the 

plants frequently but with very small amounts of water using a transfer pipette. Plants were 

grown for four months, after which they were harvested as in generation one. Plant-soil 

feedback was calculated as (Performance home) – (performance away) / (performance away), 

which is alike to calculating a response ratio, considering the presence of . Incertitude around 

this feedback measure was calculated using a bootstrap approach, as in Carvalho et al. (2010). 

Also, in addition to the measurements made for generation one, we also measured in 

generation the proportion of root surface area that represented the pivot area. We did so using 

scanned images of the root systems, and the software WinRhizo. The rationale behind this is 

that pivot production may be an important component of a plant’s next generation 

performance, owing to its resource storage function. By considering pivot production in a 

second generation, we might thus get information on how a plant may perform in a third 

generation. 
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11.4 Results 

 

We found support to our hypothesis in one of the two species pairs. Indeed, the herbivore-

tolerant species A. subverticillata developed negative plant-soil feedbacks, while the 

herbivore-resistant A. currassavica developed positive ones (fig. 26). However, the negative 

feedbacks of A. subverticillata were driven mostly by AM fungi, not by NM microorganisms. 

On the other hand, for the other species pair, both species developed negative plant-soil 

feedbacks. It should be noted, for this species pair, that the resistant species, A. tuberose, had 

significantly finer roots than all other species.  

 

 We also found that the 

effects of AM fungi vs NM 

microorganisms tended to 

be largely additive in the 

two species of the first pair, 

and clearly not additive for 

the species of the second 

pair. This is visually 

obvious from fig 26, and it 

was confirmed numerically 

using a bootstrapping 

approach (data not shown).  

 

Here we measured plant-soil 

feedbacks from various 

biomass compartments: 

shoot mass, root mass, and 

Figure 26. Plant performance in home vs. away soil 

fractions. The values are reported as response to home 

inoculum (i.e. (home – away) / away. In this figure plant 

performance was monitored as shoot dry mass, but 

similar trends were revealed when using root dry mass 

or total dry mass. Asterisks indicate performance 

indices significantly deviating from 0. 
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pivot area. We found that using shoot vs. root biomass, or both, to estimate plant-soil feedback 

had very minor influence on the results, as the three were all highly correlated to each other 

(fig 27a-c). Conversely, when comparing feedback values in terms of root length production 

vs. pivot area, we found that feedbacks based on root length were consistently of larger 

magnitude than those based on pivot production (fig 27d). In other words, when looking at 

root length, one would consistently overestimate positive feedbacks and underestimated 

negative ones, as compared to pivot production.  

 

Figure 27. Comparisons of feedback values when using root dry mass vs. shoot dry mass 

(a), shoot dry mass vs. total dry mass (b), or root dry mass vs. total dry mass. In (d), we 

plot the feedback values for root length vs. for the area of the pivot (a positive feedback 

thus indicating that the plant formed a larger pivot in its own soil, for example).  
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11.5 Discussion 

 

Here, we tried to develop a coherent framework for predicting feedback dynamics between 

plants and their associated enemies and mutualists, with special emphasis on soil 

microorganisms. Plant interactions with such biota may be considered as traits integrated into 

broader life history strategies or tactics (Stearns, 1976). Traditionally, theoretical work on 

plant life history strategies has mostly focused on nutrient foraging and response to stress and 

disturbance (Grime, 1974), while neglecting interactions with other biotas. However, 

empirical evidence is accumulating regarding potential linkages between resource 

management strategies and interactions with enemies or mutualists. For example, shade 

tolerant species tend to suffer less from negative plant-soil feedbacks mediated by enemies 

(McCarthy-Neumann and Kobe, 2008; Kobe and Vriesendorp, 2011), and stress tolerating 

species tend to accumulate less pathogens in general (Mitchell et al., 2010). Conversely, fast-

growing early successional species tend to experience negative plant-soil feedbacks (Kardol et 

al., 2006), and growth rate has been associated to reduced investment in defense (Lind et al., 

2013; Loh et al., 2014). Central to our framework was a trade-offs between tolerance and 

resistance to enemies (e.g., Agrawal et al., 2004). We predicted that tolerant species would 

develop more negative feedbacks due to accumulation of enemies. This was expected because 

tolerant species usually have faster growth rates, which is generally associated to increased 

carbon transfer belowground (Bardgett et al., 2005; De Deyn et al., 2008) that can be used by 

opportunistic soil enemies. We also hypothesized that the effect of AM fungi and NM 

microorganisms on plant performance would be non additive, owing to the repeated evidence 

in the literature that those microbial guilds interact in the rhizosphere (e.g., Newsham et al., 

1995a; Sikes et al., 2009; Chagnon and Bradley, 2013). Our results lent mixed support to both 

our hypotheses. 

 

11.5.1 Tolerance vs. resistance to enemies 

 

In our first milkweed species pair (A. syriaca – A. tuberose), both species experienced mostly 

negative feedbacks with both microbial guilds. However, the tolerant species did not 
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accumulate detrimental NM enemies, but rather suffered more from its “own” AM fungi (fig 

26). Such negative AM-mediated feedbacks have been found elsewhere, although with a 

different methodological approach (inoculation with pure AM fungal cultures, Bever, 2002). 

This may indicate a poor ability for the plant to down-regulate investment into a non 

beneficial association. This would be consistent with recent empirical evidence showing that 

shaded plants that did not benefit from AM fungi were unable to stop carbon investment into 

the symbiosis (Olsson et al., 2010; Grman, 2012). Hart et al. (2013) also found that cheaters 

could accumulate in a diverse AM fungal community. Negative AM mediated feedback could 

also arise through a trade-offs for AM fungi between competitive ability and benefits provided 

to hosts (Bennett and Bever, 2009). It is possible that some AM fungi have costly strategies 

that make them good competitors (e.g., fast growth rates, allelopathic interference with other 

fungi), and in turn cannot afford to also provide extensive nutritional benefits to the host. 

Conversely, A. tuberosa, which is more resistant to herbivores (Mooney et al., 2010) and was 

expected to develop neutral to positive feedbacks, actually experienced negative ones with 

NM microorganisms. This may have been explained by the fact that this species had 

significantly finer roots than all the rest of our species (data not shown), which increased its 

exposure to soil pathogens (Newsham et al., 1995a, Sikes et al., 2009). This highlights the 

need to include root characteristics when trying to predict plant interactions with soil 

belowground microorganisms. 

 

In our second species pair (A. subverticillata – A. currassavica), the tolerant species, A. 

subverticillata, showed the same pattern as the tolerant species in the first pair (A. syriaca); it 

suffered from negative feedbakcs mediated solely by AM fungi. Regarding the resistant 

species of the pair, A. currassavica, as expected it experienced neutral feedback with NM 

microorganisms, and positive ones with AM fungal mutualists. This does not support a 

defense-mutualism trade-offs, as observed for other mutualisms (Adler et al., 2012): it does 

not seem that being well defended compromises the ability of a plant to interact with 

beneficial symbionts in general. It should also be noted that while NM microorganisms did not 

trigger a feedback response when considering biomass overall, they did modify the relative 

biomass allocation of A. currassavica. Indeed, in the presence of “home” NM 
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microorganisms, A. currassavica invested proportionally more biomass to shoots and less to 

roots. This could be a response of pathogens avoidance, and points to a caveat in our 

framework: while we consider the ability of plants to tolerate or to resist to enemies, we do not 

integrate avoidance in our range of strategies to cope with enemies. Yet, all three strategies are 

known to play important roles in plant response to other abiotic stressors such as drought 

(Gurevitch et al., 2006).  

 

11.5.2 Additivity in the effects of AM fungi and NM microorganisms 

 

In our first species pair, the two microbial guilds had very additive influence on plant 

performance, while in the second pair there were clear evidences of interactions in their effects 

(fig 26). Evidence for the additivity of various endophytes’ impact on plant performance is 

mixed in the literature (e.g., Newsham et al., 1995b, Larimer et al., 2012). One clear 

prediction that we had regarding interactions between AM fungi and NM microorganisms was 

that the former would counter-act any negative feedback response driven by the latter, because 

AM fungi are expected to provide bioprotection against NM pathogens (Bever, 2003; Wehner 

et al., 2011). Here, we found no evidence for such mechanism, potentially because plant 

protection from pathogens by AM fungi has mostly been observed when the AM fungus was 

inoculated to the plant well before the pathogen (e.g., Declerc et al., 2002). In our case, both 

microbial guilds were inoculated simultaneously. It can then be questioned whether pathogen 

protection by AM fungi is relevant to natural conditions, where pre-inoculation by AM fungi 

may not be the norm.  

 

11.5.3  Feedback and pivot production 

 

One striking result in our experiment was that feedbacks in terms of pivot production were 

always of lower magnitude than feedbacks in overall root production. This may be highly 

relevant for a perennial plant which would have to face an eventual third generation with soil 

microorganisms. In our system, it suggests that the negative feedbacks we found are in fact 

underestimation of microbial influence on plant performance: in those cases, not only the plant 



188 
 

produced less root biomass in the second generation with its “own” microorganisms, but it 

also stored less resource in the pivot for the next generation. This is likely to compromise even 

more plant performance on generation three. Conversely, regarding our positive feedback 

estimates, they may be overestimations of the positive microbial influence on plant 

performance. Thus, our results highlight the value of investigating other indicators of 

performance than simple shoot or root biomass in feedback studies, and use measures more 

directly related to a plant’s vegetative and sexual reproduction (e.g. genet spread, seeds), and 

thus fitness.  

 

11.5.4 Routes to refine our framework 

 

Our mixed results call for a refinement of several aspects of our framework. First, the 

definition of our microbial guilds here was very coarse, especially when considering NM 

microorganisms as a homogeneous group. Such microbial fraction, although convenient to 

isolate and inoculate, combines various fungi and bacteria, which may be either pathogens, 

parasites, commensals or mutualists. In other words, we could not directly test for a pathogen-

mediated or enemy-mediated feedback. This may explain the lack of negative NM-mediated 

feedbacks with our tolerant species: the balanced effect of enemies and mutualists comprised 

in the NM fraction. In fact, it could even prove to be a large oversimplification to consider all 

enemies as a homogeneous group: a plant may display tolerance to herbivores and resistance 

to soil fungal pathogens, for example. In fact, Ali and Agrawal (2014) have recently shown, 

using the same A. syriaca – A. tuberosa species pair that two specialist enemies responded 

very differently to the presence of the other on the plant. Much mechanistic understanding of 

plant defense in face of enemies is thus needed to guide future framework developments 

(Agrawal, 2011). Also, here, our framework considered AM fungi as strict mutualists, while it 

is well known that their impact on plant performance ranges along a continuum from 

parasitism to mutualism (Johnson et al., 1997).  

 

Future plant-soil feedback studies should also include additional effort to track microbial 

community structure (identity and abundances of microorganisms accumulated in the 
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rhizosphere). For example, typical plant-soil feedback studies are done in controlled 

conditions, in pots, and with shorter generations (i.e. 2-4 months) than what is usually 

achieved in a real-field situation. Such conditions may select for generalist, fast-growing 

ruderal AM fungi (e.g., Sykorova et al., 2007; Hodge and Fitter, 2013), which may be 

clustered in the AM fungal phylogeny (Chagnon et al., 2013). Indeed, Oehl et al. (2009) have 

shown that successional replacement of AM fungi occurs over 36 months in microcosms, with 

fast-growing fungi dominating early stages, and some other fungal taxa being restricted to 

later stages. Sikes et al. (2012) found that late-successional AM fungi tended to invest more 

biomass to extraradical hyphae, which may suggest a higher carbon cost to plants. 

Accordingly, Allen et al. (2003) found that late-successional AM fungal inocula were more 

costly to the plant and induced growth depressions, while early-successional inocula were 

beneficial. Thus, by working only with fast-growing ruderal AM fungi in short-term, 

greenhouse plant-soil feedbacks experiments, we may miss an important component of natural 

plant-soil feedbacks. Another reason for tracking AM fungal community structure in plant-soil 

feedbacks is to test whether the plants growing in their own soil preferentially screen for AM 

fungal partners that are better able to provide protection against “home” pathogens. Such AM 

fungi may also be clustered in the AM fungal phylogeny (Maherali and Klironomos, 2007; 

Chagnon et al., 2013). Also, monitoring changes in the NM community composition would 

allow to estimate the proportion of pathogens that are actually shared by the species involved. 

Given the repeated evidence that phylogenetically close species tend to share enemies (e.g., 

Ness et al., 2011; Yguel et al., 2011; Locke et al., 2013; Paine et al., 2012; Callaway et al., 

2013), it may be that our milkweed species accumulated similar NM enemy communities in 

their rhizosphere.  

 

It may also be useful to work with longer plant strategy gradients in future work. Here, we 

wanted to draw a link between plant tolerance-resistance and its feedback dynamics with soil 

microorganisms. However, while we identified extreme strategies in our framework as (1) 

fast-growing ruderal species tolerant to enemies and (2) more conservative and resistant 

species, here we worked on a short gradient of plant life history strategies. All our species 

were perennials with no clear distinction in leaf economic traits (non metric multidimensional 
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scaling shown in fig S1), and they were all similarly and positively responsive to AM fungi in 

a previous trial (not shown). A longer gradient of species may be needed to find any effect. 

For example, on theoretical grounds, Bennett et al. (2006) found that short-lived annuals 

should invest resource gains derived from AM fungi to growth rather than to defense. Such 

annuals may also display a fast growth and long distance dispersal strategy to evade enemies 

accumulated in the rhizosphere of the maternal plant (van der Putten et al., 2001). Thus, 

including such kind of species to test our framework would be relevant. 

 

Finally, as stated above, working in artificial, microcosms systems may not capture adequately 

the complexity of natural plant-soil feedbacks. It thus follows that our results should not be 

over-extrapolated, but rather validated by field plant-soil feedback assays. However, some 

clear advantages of microcosm systems should be exploited in future work on plant-soil 

feedbacks. For example, there is a great opportunity to follow root behavioral responses to soil 

biota in microcosms. Indeed, while greenhouse plant-soil feedback experiments typically force 

a plant to grow in “home” or “away” soils, in nature a plant invests its root production in a 

heterogeneous mixture of “home” and “away” soils. It should be tested whether plant can 

preferentially allocate root production to “away” soil in order to avoid enemies accumulated in 

its own rhizosphere (“own” soil). There is much evidence that plant respond to heterogeneity 

in soil abiotic components (Cahill and McNickle, 2011), so it is not unreasonable that plants 

also adopt complex root behaviors to respond to soil biota. It may be then possible to link root 

behavior with soil biota to their structural and functional traits (e.g., Hetrick et al., 1992; 

Hummel et al., 2007).  

 

 

11.6 Conclusion 

 

Overall, we presented here an attempt to include plant interactions with soil biota into a 

broader life-history strategies framework. Our results offered mixed support to our 

hypotheses, calling for much future work to refine this framework. We still think, however, 
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that it represents a valuable starting point to make plant-soil feedbacks more predictable. This 

will enable us to better integrate such feedbacks to applied issues such as restoration of 

degraded sites, conservation of endangered species and biodiversity management. 
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12.1 Abstract 

 

Extraction of arbuscular mycorrhizal fungal (AMF) spores from soil is widely used to assess 

AMF community structure and abundance. The most widely used protocol relies on a water-

sucrose gradient flotation technique. Na-hexametaphosphate has also been used to 

deflocculate soil aggregates prior to spore extraction in order to optimize recovery, but its 

effect on spore viability remains unknown. Here, we report that Na-hexametaphosphate 

increases average spore yield in a high clay soil by about 15%, but decreases average spore 

viability by about 20%. Na-hexametaphosphate should therefore be used cautiously where the 

extracted spores are destined to be used as inoculum for subsequent studies. 

 

12.2 Results and Discussion 

 

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are a prevalent group of soil 

microbes, comprising up to 30 % of total microbial biomass in some soils (Leake et al., 2004). 

These organisms have co-evolved with plants as these moved from water to land about 400 

million years ago (Redecker et al., 2000). AMF live as obligate biotrophs, colonizing roots 
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and scavenging for soil nutrients in exchange for plant photosynthates (Jakobsen, 1986; 

Pfeffer et al., 2004). Part of the carbon transferred from the host plant to the fungus is stored 

as asexual spores associated with extramatrical hyphae. These spores serve as propagules to 

initiate de novo colonization of young roots growing in their vicinity. Because AMF spores 

are large and easily discernible compared to those of other fungi, they are commonly extracted 

to quantify AMF abundance and fitness in natural and experimental systems (e.g. Pearson et 

al., 1994, Bever, 2002). AMF spore extraction and morphotyping have been used to determine 

which factors mediate species distribution across environmental or successional gradients (e.g. 

Johnson et al., 1991,1992; Fitzsimons et al., 2008). AMF spores have also been extracted in 

order to isolate, propagate and study the functional aspects of specific AMF species (e.g. 

Siqueira et al., 1994; Brundrett and Juniper; 1995). 

 

The most common AMF spore extraction protocol relies on a flotation technique using a 

water-sucrose gradient whereby AMF spores float over sucrose (60% p/v) but not over water 

(e.g. Brundrett et al., 1996). Spores can thus be harvested at the interface between water and 

sucrose after centrifugation. If the researcher’s objective is to quantify AMF spores from a 

given amount of soil, his extraction technique must strive to optimize spore recovery 

regardless of spore viability. If his objective is, however, to use the extracted spores as inocula 

for subsequent growth experiments, spore viability then becomes an important criterion 

guiding his choice of techniques. Hence, spore extraction protocols must be adapted to the 

specific objectives of the experiment. 

 

Na-hexametaphosphate is a dispersing agent often used in soil analyses to deflocculate soil 

aggregates. Consequently, treating soils with this agent may help release AMF spores 

embedded within soil aggregates (Moutoglis et al., 1995) and consequently optimize spore 

recovery. Studies have shown, however, that Na-hexametaphosphate may be an effective 

antimicrobial agent, as it damages the cell membranes of bacteria (Fukao et al., 2000). It is 

uncertain whether Na-hexametaphosphate would have a similar negative impact on AMF 

spore viability, given that spore walls are complex multilayered structures that contain 

polysaccharides, protein, lipids, chitin and melanin (Sward, 1981; Purin and Rillig, 2008). 
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In order to test the effects of adding Na-hexametaphosphate on AMF spore recovery and 

viability, we used soil from an agricultural field in southern Québec, Canada (45°47’ N, 

73°21’ W). The soil is classified as a clay loam (Soil Classification Working Group, 1998), 

with a pH of 7.15 (1:2 = soil:water), 0.48% organic matter content, and 66,0% clay. A 

subsample of the 0-20 cm surface layer was collected, sieved (2 mm mesh), hand-mixed into a 

homogeneous substrate and separated into 24 x 5 g subsamples. Twelve subsamples were 

soaked (10 h at 4 °C) in 25 mL of Na-hexametaphosphate (3.9 % p/v) while the other twelve 

subsamples were soaked in distilled water (i.e., control treatment). Each subsample was wet 

sieved at 710 μm to remove coarse material, and at 53 μm to retain AMF spores. The content 

of the finer sieve was rinsed under water to remove most clay and silt particles, transferred in a 

50 mL centrifuge tube containing 20 mL of sucrose 60% (p/v) overlain with 20 mL of distilled 

water, and centrifuged at 1900 g (5 min at 10°C). For half the tubes (n=6), the spore fraction at 

the interface between water and sucrose was spread on 30 μm nylon mesh and hand counted 

under a 50x stereomicroscope. For the other tubes (n=6), spores were dark-incubated (48 h at 

20°C) in 0.1% iodonitrotetrazolium (INT) salt. Following the incubation, total and viable (i.e., 

red coloration) spores were counted, as 

described above (Callaway et al., 

2008).Treatment means were compared 

with student t-tests using the R statistical 

package (R Development Core Team, 

2007).  

 

A higher (t=2.27, P=0.04) number of 

spores were recovered from soils soaked in 

Na-hexametaphosphate prior to extraction 

(fig. 28). Conversely, spore viability was 

lower (t=5.39, P<0.01) in Na-

hexametaphosphate treated soil. In both 

cases, the effect size was approximately 

Figure 28. Effect of pre-treating soil samples 

with Na-hexametaphosphate on spore 

recovery and viability. Error bars = 1 SEM 

(n=6). 
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15-20%. Since Na-hexametaphosphate optimizes spore recovery but compromises spore 

viability by approximately the same proportion, we conclude that there is no net gain in using 

Na-hexametaphosphate to produce inocula for subsequent growth experiments. Given the 

increasing awareness of the wide functional diversity among AMF species (e.g. Klironomos 

2000; Cavagnaro et al., 2005; Smith et al., 2000) and of the disproportionate contribution of 

rare species to community function (e.g. Lyons and Schwartz, 2001), there is a need to 

develop and test alternative methods (e.g., low energy sonication) that will optimize both 

spore recovery and viability. 
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13.1 Abstract 

 

Arbuscular mycorrhizal (AM) fungi are widespread plant symbionts that extensively colonize 

both soil and roots. Given their influence on ecosystem processes such as plant growth, soil 

carbon storage and nutrient cycling, there is great interest in understanding the drivers of their 

community structure. AM fungal communities are increasingly characterized by selectively 

amplifying their DNA from plant roots, thus assuming that AM fungal community structure 

within roots provides a reliable portrait of the total (i.e. soil + roots) community. Below, 

through numerical simulations, we test this assumption using published data. We show that 

community structure and diversity is well preserved when analyzing only a subset of the 

community biomass (i.e. roots or soil), provided that the community shows a typical skewed 

abundances distribution, with few very dominant species and a high prevalence of rare 

species. Given that this community structure has been shown to be common in natural AM 

fungal communities, the present work would suggest that characterizing AM fungal 

communities using only roots or soil can provide a reliable portrait of the overall community. 

However, we show through additional analyses that the proportion of sample biomass used for 
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molecular methods must be over a minimal threshold to properly characterize the community. 

Using published molecular datasets, we validate those results which suggest that typical 

molecular protocols using low amounts of biomass may strongly influence AM fungal 

community characterization. Finally, we also discuss other assumptions implied by the 

molecular analysis of AM fungal communities, and point urgent knowledge gaps. 

 

13.2 Results and Discussion 

 

Arbuscular mycorrhizal (AM) community ecology, that is, the study of the mechanisms 

governing AM fungal community assembly and dynamics, is a very active area (e.g. Mangan 

et al., 2004; Maherali and Klironomos 2007; Fitzsimmons et al., 2008; Verbruggen et al., 

2010; Dumbrell et al., 2010a). Many researchers have been interested in quantifying AM 

fungal biodiversity and relate it to land use (Oehl et al., 2003), abiotic stress (Alguacil et al., 

2011), host plant identity (Alguacil et al., 2009) or ecosystem function (van der Heijden et al., 

1998). For such purposes, selective amplification of AM fungal DNA from environmental or 

experimental samples has become the dominant approach (Öpik et al., 2014), because it is fast 

and requires little expertise in taxonomy, as compared to morphological identification of AM 

fungal spores. To date, most molecular studies characterizing AM fungal communities have 

used root DNA extracts, as it is thought to better reflect AM fungi actively colonizing roots 

(e.g. Krüger et al., 2009). However, root AM fungal biomass only represents a fraction of the 

community, as a considerable amount of energy and biomass is rather allocated to the soil 

compartment (Helgason and Fitter, 2009). Moreover, there is substantial interspecific variation 

in the relative investment of biomass inside vs. outside roots among AM fungal taxa (e.g. Hart 

and Reader, 2002). Accordingly, it has been found that, for a given soil core, characterizing 

the AM fungal community from soil or from roots yielded very different results (e.g. Hempel 

et al., 2007). Hence, it remains unclear whether root-derived AM fungal communities provide 

a reliable portrait of the total (i.e. roots + soil) community. Below, we explore this assumption 

in more details by simulating artificial AM fungal communities using published data. More 

specifically, we verify that (1) root AM fungal biodiversity is correlated to total (i.e. roots + 
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soil) biodiversity, and (2) the pairwise distances among communities are preserved if we use 

root community data as a proxy for the total community.  

 

We used data from Hart and Reader (2002), which is the most comprehensive effort to date 

that has quantified the relative biomass investment of AM fungal species inside vs. outside 

roots. From this data, we defined a pool of 30 species that allocated biomass according to the 

data from figure 6 of Hart and Reader (2002). We then built artificial AM fungal communities 

by picking up 20 AM fungal species from the pool, and assigning an abundance to each of 

them (i.e. a number of biomass units). Abundances were sampled from a lognormal 

distribution, which commonly fits natural AM fungal communities (Dumbrell et al., 2010b). 

In all communities, each AM fungal species allocated its biomass units in roots vs. soil 

according to data from Hart and Reader (2002). We then compared the structure of the total 

community (i.e. all biomass units) with the structure of the root community (i.e. only root 

biomass units), using two common biodiversity indices: Shannon’s and Simpson’s diversities. 

Shannon’s diversity was calculated as 
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diversities were compared using Pearson’s correlation coefficient.  

 

Figure 29 shows that total and root AM fungal Shannon’s diversity tends to be highly 

correlated. This pattern was robust to the structure of the community (i.e. the mean and the 

standard deviation of the lognormal distribution used to draw species’ abundances). The only 

exception to this is in cases where the standard deviation of the lognormal community tends to 

become small (i.e. when the community becomes increasingly normal, with a lower proportion 

of very rare species, data not shown). In such cases, root diversity is very poorly correlated 

with total diversity (even sometimes negatively correlated with it), and it overestimates total 

community diversity. However, a recent meta-analysis has shown that natural AM fungal 
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communities tend to be highly dominated by a single taxon, and display a very high number of 

very rare species (Dumbrell et al., 2010b). Thus, it seems unlikely, based on existing literature 

that the conditions that make root diversity a poor predictor of total community diversity are 

frequently, if ever, met in nature.  

Figure 29. Correlation between root (x axis) and total community (y axis) diversities for 

simulated AM fungal communities. Each graph shows results for communities drawn 

from a lognormal distribution with a given mean and a given standard deviation (SD). 

On each graph, each point corresponds to a single community (N = 1000 per graph). 

Diversity was calculated here as Shannon’s diversity (results for Simpson’s diversity are 

shown in fig. S1). On each graph, the solid line indicates the 1:1 relationship (at SD=0.1, 

1:1 relationship is not part of the graph, because root diversity largely underestimates 

total diversity). 
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Another assumption that is made when using root AM fungal community as a proxy for total 

AM fungal community is that it preserves the ecological distance among 

communities/samples. In other words, two samples that show dissimilar overall (i.e. roots + 

soil) AM fungal communities should also display dissimilar root AM fungal communities, and 

vice versa. To verify this assumption, we built metacommunities each comprising 20 local 

communities (all simulated as described in the previous paragraph). we then calculated 

pairwise bray-curtis distances between local communities, using either total biomass or only 

root biomass data. This generated, for each metacommunity, two distance matrices: one for 

total biomass data, and one for root biomass data. We compared those distance matrices using 

a Mantel test, and repeated the overall procedure 999 times to evaluate the frequency 

distribution of the Mantel’s correlation coefficient (r) between the two matrices. We used the 

R package ecodist to compute bray-curtis distances (R Core team 2013; Goslee and Urban 

2007). 

 

Figure 30 shows that in metacommunities, pairwise community distances are very similar, 

whether we use root data or total biomass data. This trend was robust to variation in initial 

community structure (fig. 30). In fact, Mantel’s r were hardly ever below 0.95, and always 

Figure 30. Frequency distributions of Mantel’s r, when correlating bray-curtis 

pairwise distances derived from root communities vs. total communities. As for fig. 

29, different SD values have been tested.  
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highly significant (P<0.001).  

 

Overall, data from those simulations suggest that the interspecific variation in biomass 

investment within vs. outside roots in AM fungi does not compromise the use of root DNA to 

characterize AM fungal communities. The level of diversity within roots was highly correlated 

with the total community diversity when the community abundances distribution was right 

skewed (i.e. high prevalence of very rare species), a pattern found to be common in natural 

AM fungal communities (Dumbrell et al., 2010b). Also, community pairwise distances were 

well preserved when using root biomass as a proxy for total biomass. This would tend to 

suggest that root biomass data may provide a reliable proxy for detecting spatio-temporal 

variation of AM fungal communities (e.g. Dumbrell et al., 2010a). However, those results are 

conflicting with empirical evidences that soil-borne AM fungal communities are frequently 

very different from root-borne or spore-based communities (e.g. Clapp et al., 2002 and 

references therein; Hempel et al., 2007; Saks et al., 2014). In fact, when using different 

sampling approaches, often some AM fungal taxa are even missing from some compartments 

(e.g. taxa found only as spores, or only colonizing roots). This suggests that other 

mechanisms, different from simple interspecific variation in biomass allocation to roots vs. 

soil, bias our samplings of natural AM fungal communities. One possibility is that our 

sampling imposes a strong bottleneck effect, as we only process small fractions of the total 

AM fungal biomass present in a sample. Indeed, typically AM fungal communities are only 

characterized from a very small proportion of the colonized roots or the soil available in the 

original environmental sample. For example, widely used commcercial DNA isolation kits 

allow around 250 mg of root or soil biomass while the whole AM fungal biomass in a small 

soil core may be orders of magnitude larger. To explore this potential bias numerically, we re-

conducted the analyses above while including a bottleneck in the sampling of biomass units. 

In other words, we constructed the communities as described above, but we subsampled only 

given fractions of all the biomass units present in the community (i.e. from 0.1 to 10%). Figure 

31 shows the percentage of species that are recovered under different percentages of biomass 

subsampling. We can clearly see that there is a sharp decrease when the sampling effort is 

below 2% of the biomass available in the sample. This also translates into a decrease in 
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correlation regarding the species composition (fig. 32) and the biodiversity indices (fig. 33). 

This may explain at least in part the discrepancies that are found when comparing AM fungal 

communities derived from different compartments of the same samples. Data presented here 

suggest that there is a threshold of minimal biomass to use in order to get a reliable picture of 

the AM fungal community: this needs to be substantiated by direct empirical tests. 

 

Because all the simulations presented above are derived 

from a single dataset (Hart and Reader, 2002) that is 

based on morphological (not DNA-based) 

characterization of AM fungi, we wanted to validate our 

results using published molecular datasets, as our 

inferences are meant to be done at the molecular level. 

Moreover, Hart and Reader (2002) collected biomass 

data in controlled greenhouse conditions, which does not 

take into account behavioral shifts in biomass allocation 

that AM fungi may display in a variable, natural 

environment (e.g. Lekberg et al., 2010). However, no 

published molecular dataset can be argued to properly characterize the total AM fungal 

community; instead, published data are based on DNA extracted from a small subset of total 

Figure 31. Proportion of species 

recovery in surveys with 

increasing biomass sampling 

effort. 

Figure 32. As for fig. 30, a frequency distribution of Mantel’s r, but with variation 

in the bottleneck effect of biomass sampling (from 0.1% to 10% of total biomass 

sampled). Here mean and SD of the lognormal species abundance distribution 

have been set to 5 and 1, respectively. 
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biomass available in the original communities 

characterized. Thus, for validation purposes, we did 

not correlate properties of total vs. root AM fungal 

communities (as done in our previous simulations): 

we rather compared root vs. soil-borne 

communities. Figure 34 presents results from 

analyses similar to those shown in fig. 32, but where 

the Mantel test was correlating root AM fungal 

species composition to soil AM fungal species 

composition. To see how published data map on 

this figure, we performed a similar Mantel test 

(again using the bray-curtis index to compute 

pairwise distances among root and soil samples) on 

two datasets. The first (Bainard et al., 2014) is 

derived from 454-sequencing of root and soil DNA 

in a Canadian prairie agroecosystem, while the second (Bainard et al., 2011) comes from T-

RFLP analyses of root and soil DNA sampled in a tree-based intercropping system. In both 

datasets, Mantel’s r was very low (r = 0.15, P = 0.003 ; r = 0.046, P = 0.14, respectively). 

Figure 33. Pearson’s correlation 

coefficient between total community 

diversity vs. sampled root community, 

as a function of the proportion of 

biomass units sampled. Results from 

both Shannon’s and Simpson’s 

diversity indices are reported.  

 

Figure 34. Results similar to those presented in fig. 4. Here, Mantel’s r is 

correlating root community structure to soil community structure (vs. correlating 

root to total community structure for fig. 4). As for fig.4, b indicates the proportion 

of biomass in the sample that is processed for community characterization (e.g. 

DNA extraction and sequencing). 
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According to our simulations, this would correspond to a sampling of c.f. 0.1 to 1% of total 

biomass available (see fig. 34). Interestingly, this seems to make sense with the sampling 

protocols used in our original studies (Bainard et al., 2011, 2014). Indeed, according to the 

original sampling design (i.e. volume of soil cores and soil bulk density, approximate amount 

of roots from which the subsample was drawn to perform DNA extraction, etc.), the biomass 

sampling effort should be, for these studies, around 0.05% to 0.1%. However, if we consider 

that only a fraction of the DNA extract is generally used as a template for PCR amplification, 

then those values should be even lower. 

 

Overall, our results suggest that interspecific variation in biomass allocation within vs. outside 

roots seems to have most dramatic impacts on AM fungal community characterization, only 

when a very low amount of sample biomass is used for DNA extraction (which is the case for 

our current molecular protocols). This bias was verified here to correlate well with patterns 

found in published molecular data. It should be noted, though, that several additional biases 

are inherent to characterizing root AM fungal communities by selective DNA amplification: 

(1) the amount of DNA per nuclei, or the number of copies of the operon sequenced for 

community characterization (most of the time, ribosomal DNA) could exhibit interspecific 

variation (Corradi et al., 2007), (2) the number of nuclei per unit of functional biomass may 

also exhibit interspecific variation, (3) the primer set used to amplify AM fungal DNA may 

not have a balanced affinity towards all AM fungi present in the community (Krüger et al., 

2009), (4) PCR biases may induce changes in relative abundances distribution of different AM 

fungal sequences (Kanagawa, 2003), and (5) even the choice of the DNA extraction 

method/commercial kit is likely to influence the outcome of the results (Vishnivetskaya et al., 

2014). Next-generation sequencing also introduces new challenges, as there are a wide variety 

of approaches to deal with sequencing errors (frequent with such technology, see Tedersoo et 

al., (2010)), and to cluster sequence reads into OTUs. However, for most of those issues, data 

is either absent, fragmentary or does not even come from the AM fungal system. There is thus 

an urgent need for further research to evaluate how those numerous potential biases affect the 

viability of root DNA as a proxy for AM fungal community characterization. Until 

comprehensive data is generated to assess the importance of such biases, researchers may try 
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multiple approaches to deal with their datasets a posteriori (and report results as 

supplementary material) or at least provide raw data for others to do so.   
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14.1 Abstract 

 

Species interact in nature to form complex ecological networks. There has been a rising 

interest in recent years to characterize the topology of such networks along various gradients 

(e.g. successional, climatic, elevational) to better understand how they assemble in space and 

time. However, to compare structure of networks that vary in size, shape and connectance, 

topological metrics need to be standardized (as most metrics covary with such network 

attributes). Traditionally, this has been done by transforming network metrics into z-scores 

prior comparisons. Here, I show that such standardized metrics are not independent of basic 

network properties such as connectance. Instead, I found that there was a consistent tendency 

for z-scores to approach 0 when connectance progressively decreased and approached its 

minimal value. This is probably due to the reduced null space available for null models to 

randomize interactions at such low connectance. I discuss ways to circumvent the problem in 

future studies. 

 

14.2 Introduction 

In the last decade, there has been a growing interest in characterizing the network structure of 

bipartite communities (i.e. two guilds of species interacting in a community context). Such 
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network-based approach to community ecology has been argued to allow uncovering universal 

constraints to the assembly of ecological communities (e.g. Bascompte et al., 2003; Solé et al., 

2003), or at least to identify drivers for local community assembly (e.g. Vazquez et al., 2009a, 

2009b ; Stang et al., 2009). More specifically, it has been suggested that characterizing 

network structure along gradients (e.g. disturbance, successional, seasonal, climatic, 

elevational,…) was the key to understanding how ecological interactions respond to a 

changing environment, and thus how climate change is likely to impact on ecological 

communities (e.g. Memmott et al., 2007; Benadi et al., 2014). However, it is well known that 

most metrics used to characterized network structure are influenced by basic network/matrix 

properties such as size, fill/connectance and shape) (e.g. Blüthgen et al., 2008; Almeida-Neto 

et al., 2008; Ulrich et al., 2009). Thus, when comparing structure of different networks along a 

gradient, one risks to compare apples with oranges if those matrix properties differ among 

networks. To circumvent this problem, it has been argued that network metrics should be 

standardized prior comparisons by transforming them into z-scores (Ulrich et al., 2009). This 

is done by comparing the actual metric value for the observed network to random values (i.e. 

calculated from randomized networks, generated following a given null model). Such 

standardized network metrics are expected to be independent from network size, connectance 

and shape, because null matrices display identical values for those latter attributes. Here, I re-

evaluate this assumption by computing z-score values for two well known network properties 

(i.e. nestedness and modularity) along a connectance gradient.  

 

14.3 Nestedness analyses 

I start with a 20 spp. x 20 spp. interaction matrix, half-filled (connectance = 0.5) and perfectly 

nested. (see fig 35). Then, interactions are progressively removed, while maintaining perfect 

nestedness of interactions for both rows and columns, up to the minimal connectance 

conformation (fig 35). This generated a gradient of 18 matrices, with connectance values 

ranging from 0.5 to 0.0975. For each matrix, 150 corresponding null matrices were generated 

using a null model that preserves rows and columns marginal totals. This number of null 

matrices to compute z-scores was chosen based on preliminary trials, which indicated that a 

higher number of null matrices did not increase significantly the precision of the z-scores (fig 



219 
 

36). Nestedness was calculated for the initial matrices and for the null matrices, using the 

NODF index (Almeida-Neto et al., 2008). This allowed to compute z-scores, as: z = (obs – 

meannull) / SDnull , where obs is the NODF value for the initial matrix, meannull   and SDnull  are 

respectively the mean and the standard deviation of NODF values for null matrices. NODF 

calculations were computed using the R package vegan (Oksanen et al., 2013).  

 

14.4 Modularity analyses 

Likewise, a gradient of perfectly modular 

matrices with decreasing connectance was 

generated. This was done by starting with a 2-

modules matrix (connectance = 0.5), and then 

progressively increasing the number of modules 

and, accordingly, decreasing module size 

(connectance values ranging from 0.5 to 0.05, see 

fig 37). Modularity was calculated using a 

simulated annealing procedure that maximizes 

Barber’s modularity index, using the C++ 

executable MODULAR (Marquitti et al., 2014). 

The z-scores were computed using the same 

procedure as for nestedness.  

 

Figure 35. Connectance gradient for perfectly nested matrices. Interactions are 

progressively removed, while conserving the optimal nestedness. 

Figure 36. How many null matrices are 

required to get a reliable z-score? For 

the matrix shown here, we see that the z-

score converges with as little as ~150-200 

null matrices. 
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14.5 Results and Discussion 

Our analyses clearly show that z-scores covaried with connectance (fig 38). Decreasing matrix 

connectance made z-score values converge towards 0, both for nestedness and modularity. 

Accordingly, matrix connectance and z-score values were strongly correlated for both 

Figure 37. Connectance gradient for perfectly modular matrices. Interactions are 

progressively removed, while conserving the optimal modularity. 

Figure 38. Nestedness (left panel) and modularity (right panel) z-scores covary with 

matrix connectance. Each boxplot represents replicates for a given initial perfectly nested 

or modular matrix along the connectance gradient. The boxplots are ordered in both cases 

from the most connected (left) to the least connected (right). 
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nestedness (pearson’s r = 0.99, P < 0.0001) and modularity (pearson’s r = 0.95, P < 0.0001). 

Of course, those analyses were based on matrices that displayed either a perfectly nested or a 

perfectly modular pattern, which may not reflect the usual “noisier” configuration of natural 

ecological networks. To ensure that our results could be generalized to real-world networks, 

similar analyses were conducted on “noisier” networks. Briefly, for nestedness analyses, noisy 

nested matrices were generated using a similar approach to Krishna et al. (2008): row and 

column species were given abundances drawn from a heterogeneous distribution (i.e. 

lognormal) and the probability of each species pair to interact was computed as the product of 

their relative abundances. Thus, if two species were very abundant, they had a probability of  

interacting close to 1, and vice versa for rare species. Given that the interactions were 

determined from binomial draws, using those probabilities explained above, the level of noise 

and the connectance of the matrices could both be manipulated by modifying those 

probabilities. For example, to build a low-connectance matrix, the probability for abundant 

species to interact could be set at only 0.5 instead of 0.95. 100 nested matrices were generated 

using this general procedure. For modularity analyses, the procedure was even simpler: I 

directly used the original, perfectly modular interaction matrices (fig 37), and switched a given 

proportion of 0’s to 1’s and vice versa (i.e. 10%). Note that this simpler procedure could not 

Figure 39. Nestedness and modularity both covary with connectance in noisy matrices. In 

b), black symbols represent the noisy matrices, and grey symbols represent the original, 

perfectly modular matrices. 
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be used to generate noisy nested matrices, because random switching from 0’s to 1’s and vice 

versa would have reduced heterogeneity in degree distributions (i.e. made specialists less 

specialist and generalists less generalist). Heterogeneous degree distribution is a prerequisite 

to a nested pattern (because it is based on specialists interacting preferentially with 

generalists), so using such an approach would have lead to loss in nestedness in the noisy 

matrices, and thus z-scores would have converged towards 0, regardless of connectance, thus 

hampering any test of our hypothesis. Conversely, random switching from 0’s to 1’s and vice 

versa is not a problem for modular matrices, because degree distributions are already highly 

homogeneous. The noisy matrices showed the same trend as the perfectly nested or modular 

matrices. Both NODF and modularity z-scores were positively correlated to connectance 

(NODF: r = 0.57, P < 0.0001, Modularity: r = 0.97, P < 0.0001 ) (fig 39).  

 

Hence, our results clearly show that z-scores are not independent from network basic 

properties such as connectance, as traditionally assumed (e.g. Almeida-Neto et al., 2008; 

Dattilo et al., 2014). Instead, a progressive decrease towards minimal matrix connectance 

causes a consequent reduction in z-score values for topological metrics such as nestedness or 

modularity. This may be due to the reduced null space available for null models to randomize 

the matrix at such low connectance. Indeed, as connectance is reduced, there is a progressive 

increase in matrix information and a corresponding decrease in entropy (Shannon, 1948; 

Atmar and Patterson, 1993): there are less 1’s to place, and important constraints as to how 

they must be placed in the matrix (i.e. very heterogeneous degree distributions for nested 

pattern and very even ones for modular pattern). Thus, null matrices tend to resemble more the 

original matrix when a constrained null model is used (that controls for row and/or column 

marginal totals). Overall, our results suggest that when comparing network structure along 

ecological gradients, the use of metrics standardized as z-scores should be used with caution: 

if there is a steep connectance gradient correlated to the ecological gradient of interest (e.g. 

Ramos-Jiliberto et al., 2010), this may bias the z-scores and introduce artefactual (i.e. 

statistical, not ecological) differences among the networks. In such situations, the use of other 

metrics that do not covary with connectance may be preferable. As an example, Baselga 

(2010) proposed a method to partition β-diversity into its nestedness and Simpson turnover 
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additive components, which allows to disentangle between species turnover and nestedness. 

This partitioning is unaffected by matrix connectance in perfectly nested matrices (data not 

shown) and thus, is not dependent upon matrix randomizations and calculation of z-scores. 

However, as for NODF used here, it covaries with connectance in noisy nested matrices. An 

alternative approach would be to regress network metrics directly with connectance (or other 

basic network properties that covary with the ecological gradient of interest) and use the 

regression residuals as topological properties of networks (e.g. Olesen and Jordano, 2002). In 

conclusion, I believe that characterizing network structure along gradients (or following 

response of network topology to experimental treatments [e.g. Yodzis, 1988; Woodward and 

Hildrew, 2002; Zhou et al., 2011; Chagnon et al., 2012]) is an important challenge that 

community ecologists need to tackle, but caution needs to be taken in order to compare apples 

with apples. As clearly stated by Ulrich (2009), the biggest upcoming challenge will be to 

“disentangle statistical from ecological processes” in driving ecological network topology.  

 

14.6 Acknowledgements 

I acknowledge the financial support of NSERC through a Vanier doctoral fellowship. 

 

 

14.7 References 

Almeida‐Neto, M., Guimaraes, P., Guimara, P.R.Jr., Loyola, R.D., and Ulrich, W. (2008) A 

consistent metric for nestedness analysis in ecological systems: reconciling concept and 

measurement. Oikos, 117, 1227–1239. 

Atmar, W., and Patterson, B. (1993). The measure of order and disorder in the distribution of 

species in fragmented habitat. Oecologia 96, 373–382. 

Bascompte, J., Jordano, P., Melián, C.J., and Olesen, J.M. (2003) The nested assembly of 

plant-animal mutualistic networks. Proc. Natl. Acad. Sci. USA 100, 9383–9387. 

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. 

Glob. Ecol. Biogeogr. 19, 134–143. 



224 
 

Benadi, G., Hovestadt, T., Poethke, H., and Blüthgen, N. (2014). Specialization and 

phenological synchrony of plant–pollinator interactions along an altitudinal gradient. J. Anim. 

Ecol. 83, 639–650. 

Blüthgen, N., Fründ, J., Vázquez, D., and Menzel, F. (2008). What do interaction network 

metrics tell us about specialization and biological traits. Ecology 89, 3387–3399. 

Chagnon, P., Bradley, R., and Klironomos, J. (2012). Using ecological network theory to 

evaluate the causes and consequences of arbuscular mycorrhizal community structure. New 

Phytol. 194, 307–312. 

Dáttilo, W., Marquitti, F., Jr, P.G., and Izzo, T. (2014). The structure of ant-plant ecological 

networks: is abundance enough? Ecology 95, 475–485. 

Krishna, A., Jr, P.G., Jordano, P., and Bascompte, J. (2008). A neutral‐niche theory of 

nestedness in mutualistic networks. Oikos 117, 1609–1618. 

Marquitti, F.M.D., Guimarães, P.R., Pires, M.M., and Bittencourt, L.F. (2014). MODULAR: 

software for the autonomous computation of modularity in large network sets. Ecography 37, 

221–224. 

Memmott, J., Craze, P.G., Waser, N.M., and Price, M. V. (2007). Global warming and the 

disruption of plant-pollinator interactions. Ecol. Lett. 10, 710–717. 

Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, 

G.L.,  Solymos, P., Henry, M., Stevens, H., Wagner H. 2013. Vegan: Community Ecology 

Package. R package version 2.0-8. http://CRAN.Rproject.org/package=vegan 

Olesen, J., and Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic 

networks. Ecology 83, 2416–2424. 

Ramos-Jiliberto, R., Domínguez, D., Espinoza, C., Lopez, G., Valdovinos, F.S., Bustamante, 

R., and Medel, R. (2010). Topological change of Andean plant–pollinator networks along an 

altitudinal gradient. Ecol. Complex. 7, 86–90. 

Shannon, C. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–

423. 

Solé, R., Ferrer-Cancho, R., Montoya, J.M., and Valverde, S. (2003). Selection, tinkering, and 

emergence in complex networks. Complexity 8, 20–33. 

Stang, M., Klinkhamer, P., Waser, N., Stang, I., and van der Meijden, E. (2009). Size-specific 

interaction patterns and size matching in a plant–pollinator interaction web. Ann. Bot. 103, 

1459–1469. 

http://cran.rproject.org/package=vegan


225 
 

Ulrich, W. (2009). Ecological interaction networks: prospects and pitfalls. Ecol. Quest. 11, 

17–25. 

Ulrich, W., Almeida‐Neto, M., and Gotelli, N. (2009). A consumer’s guide to nestedness 

analysis. Oikos 118, 3–17. 

Vázquez, D., Blüthgen, N., Cagnolo, L., and Chacoff, N.P. (2009a). Uniting pattern and 

process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457. 

Vázquez, D., Chacoff, N., and Cagnolo, L. (2009b). Evaluating multiple determinants of the 

structure of plant-animal mutualistic networks. Ecology 90, 2039–2046. 

Woodward, G., and Hildrew, A. (2002). Differential vulnerability of prey to an invading top 

predator: integrating field surveys and laboratory experiments. Ecol. Entomol. 27, 732–744. 

Yodzis, P. (1988). The indeterminacy of ecological interactions as perceived through 

perturbation experiments. Ecology 69, 508–515. 

Zhou, J., Deng, Y., Luo, F., He, Z., and Yang, Y. (2011). Phylogenetic molecular ecological 

network of soil microbial communities in response to elevated CO2. MBio 2, e00122–11. 

 

 

 

 

 

 

 

 

 

 

  



226 
 

Chapitre 15 

 

BARBER’S MODULARITY OUTPERFORMS BOUNDARY CLUMPING TO 

DETECT COMPARTMENTS IN BINARY MATRICES 

 

 

 

Chagnon, P.L. 
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15.1 Abstract 

 

Modularity is a central concept in biogeography and community ecology. Here, two distinct 

methods to evaluate the presence of compartments in a binary matrix are compared. I evaluate 

more specifically their propensity to type I and type II errors. The boundary clumping method 

seems to perform more poorly, especially when statistical significance is tested using a chi-

square test. I thus recommend the use of Barber’s modularity optimization with simulated 

annealing in future studies aiming at detecting modules in binary matrices. 

 

15.2 Introduction 

 

Understanding the factors determining species distribution in metacommunities is a central 

issue in community ecology. This dates back to the debate between Clements and Gleason: the 

former suggested that species within local communities are tightly interlinked and coevolved 

units, while the latter argued that every species is distributed independently in the 

environment, owing to local abiotic conditions and to chance historical events. Thus, 

according to Clements, species distributional patterns across sites in a metacommunity should 

be clustered, in such a way that we can define clear-cut groups or compartments comprising 
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species that are distributed similarly. On the other hand, a Gleasonian view would not predict 

the existence of such well-defined groups or compartments. More recently, similar questions 

have been asked in the study of interaction networks, to determine whether some groups or 

compartments of species interact more together than with the rest of species in a community. 

A Clementsian view of ecological networks would predict that some species interact 

preferentially because they are more tightly coevolved to each other, thus forming interaction 

compartments in the whole community, while a Gleasonian view would predict a fairly 

random distribution of interactions, or at least the absence of any well-defined compartments 

of preferentially interacting species. Thus, testing for the existence of compartments of species 

is a key component of the study of both species’ distributional and interaction patterns in 

natural communities. 

 

As for many other areas of community ecology, different tools have been developed in parallel 

to answer the same question. Leibold and Mikkelson (2002) suggested that the Morisita’s I 

index (Morisita, 1971) should be used to quantify the relative dispersion in species’ range 

boundaries: a Clementsian community pattern would predict those boundaries to be 

aggregated. Such analyses of boundary clumping have also been applied to interaction 

networks (e.g., Dallas et al., 2014). However, modularity analyses (e.g. Guimera and Amaral, 

2005) have become more popular in the study of interaction networks to detect compartments 

or modules of preferentially interacting species (e.g., Olesen et al., 2007; Donnatti et al., 2011; 

Chagnon et al., 2012). While the statistical performance of other metrics widely used in 

metacommunity analysis (e.g., nestedness indices, c-score) has been repeatedly evaluated to 

select the optimal metrics (e.g., Ulrich et al., 2009; Podani and Schmera, 2012), very few 

studies have looked at the performance of group-detecting methods such as the Morisita’s I 

index or modularity. Some studies have compared the performance of different modularity 

indices (e.g., Martin-Gonzales et al., 2012; Thébault, 2013), but to my knowledge no study 

has yet formally compared Morisita’s I index to the modularity optimization approach. Here, I 

present such analysis, where I evaluate how prone those two approaches are to type I and type 

II errors. 
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Two critical statistical properties are expected from an ideal metric when trying to characterize 

given pattern in a data matrix: (1) ability to detect the pattern when it is present (i.e. avoiding 

type II errors) and (2) ability to detect the absence of a pattern when it is absent (i.e. avoiding 

type I errors). To evaluate the former, I constructed artificial data matrices, that can be viewed 

either as species x sites (metacommunity) or species x species (interaction network) matrices. I 

started by constructing a perfectly modular or compartmented matrix. I then progressively 

deconstructed the modular pattern in the matrix by sequentially switching one filled and one 

empty cell in the matrix (thus preserving the total number of filled cells). This switching 

procedure was repeated 1000 times, to eventually obtain a matrix with fully randomized filled 

cells (fig 40). For ten matrices along this gradient, I calculated both the Morisita’s I index, 

using the R package metacom (Dallas, 2013), and Barber’s modularity (recently shown by 

Thébault (2013) to perform better than other modularity indices) using the C++ executable 

MODULAR (Marquitti et al., 2014). To evaluate whether the pattern was detected as 

significant using those two indices, I computed 150 null matrices for every of those 10 original 

matrices, using a conservative null model that preserves the number of filled cells for both 

Figure 40. Gradient of matrices from perfect to absent modularity. Those matrices 

were generated to perform what has been termed a noise test (e.g. Gotelli 2000), in 

order to see how rapidly a metric loses the ability to detect a pattern in a 

progressively noisier matrix. If it loses this ability too soon, we are prone to make 

type II errors, while if it loses it too late or not at all, we are prone to make type I 

errors. 
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rows and columns, as frequently suggested in the literature (e.g., Ulrich and Gotelli, 2013). 

Morisita’s I index and modularity were thus calculated as z-scores, by comparing the observed 

index value to the range of values calculated for the corresponding null matrices (z=observed-

mean(null)/sd(null)). Statistical significance was thus assessed using a z-test. For the 

Morisita’s I index, Hoagland and Collins (1997) had proposed an alternative way to test for 

statistical significance (based on a randomization of the range boundaries and a chi-square 

test) that is also implemented in the R package metacom. For the sake of comparisons, I also 

recorded those P-values provided by the package. 

 

Figure 41 shows how z-score and P-values change along the gradient of matrix randomization. 

Of course, the path of an ideal index would start at very low P-values, and then progressively 

increase above our set alpha type I error rate (most often 0.05). However, the P-value should 

not increase too fast and early during the randomization process, so that we can detect existing 

Figure 41. Statistical significance of the modularity/compartmentalization pattern 

along the gradient of matrix randomization. The circles represent the cases where 

the statistical significance was tested using null matrices and z-test, while the triangle 

represent the case where statistical significance of the Morisita’s I index was tested 

using the chi-square based test developed by Hoagland & Collins (1997). 
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but imperfect patterns. Figure 41 clearly shows that (1) the modularity index follows an 

expected path, (2) the Morisita’s I index is very prone to type II errors, as the pattern soon 

becomes insignificant after only 60 randomizations (while the matrix still shows a clear 

compartmentalization: as an example, the middle panel of figure 40 is taken after 150 

randomizations) and (3) the chisquare-based significance test is very prone to type I errors, as 

even the most random matrices remain significantly compartmentalized.  

 

Because matrix fill, or connectance, is well-known to influence its architectural patterns such 

as nestedness or modularity (e.g., Ulrich et al., 2009), I conducted additional analyses to 

evaluate how type I error rates would covary with connectance. I thus constructed random 

matrices with a connectance ranging from 10% to 90% fill. I then evaluated the statistical 

significance of both Morisita’s I index and modularity as described above. It is striking to see 

how prone high-connectance matrices are to type I errors when using Morisita’s I and the 

chisquare-based significance test (figure 42a). Virtually all random matrices with connectance 

above 30% were detected as significantly compartmentalized. On the other hand, when using a 

null model and z-score approach, neither Morisita’s I nor modularity were more sensitive to 

Figure 42. Statistical significance of the modularity/compartmentalization in random 

matrices (in order to assess type I error rates). In a), we show the P-value of 

Morisita’s I index as assessed by the chi-square test. In b) and c), we assess the 

statistical significance of the Morisita’s I and Modularity indices respectively, using 

null models. As expected in b) and c), z-scores tend to converge around 0, regardless 

of the connectance level.  
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type I errors at high connectance. (Fig 42b-c).  

 

Overall, the above analyses suggest that modularity outperforms Morisita’s I index in 

detecting compartments in binary matrices. The former is better able to detect existing but 

imperfect patterns. The chi-square based statistical significance test is clearly to be avoided in 

future research, as it is very prone to type I errors. Ever since Clements and Gleason, 

researchers have debated around the existence of compartments in metacommunities, and 

more recently in interaction networks. The work by Whittaker (1956) had appeared to better 

support the Gleasonian view, especially when observations were conducted along continuous 

environmental gradients (rather than abrupt ecotones). However, a re-analysis of these data by 

Leibold and Mikkelson (2002) had found a much higher proportion of significant 

compartments in metacommunities, thus arguing back in favor of Clements. Yet, their 

analyses were based on Morisita’s I index which was tested for significance using a chi-square 

based statistical test. The present work, however, clearly shows that such approach is very 

prone to type I error, which may shift the balance back in favor of Gleason. Hence, this study 

shows how having the right statistical tools is a crucial technical challenge when drawing 

inferences in community ecology. From this work it seems that the modularity index and its 

null-model based significance assessment should be kept as a useful part of the community 

ecologist’s toolbox. 
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Chapitre 16 

 

 

Discussion générale et conclusion 

 

 

 

16.1. Le débat autour de la spécialisation dans la symbiose mycorhizienne à arbuscules 

 

Avant le développement des outils moléculaires pour identifier directement les interactions 

entre plantes et CMA, il était traditionnellement assumé que ces interactions étaient non-

spécifiques, et que l’ensemble des plantes et des CMA étaient des généralistes (e.g. Allen et 

al., 1995; Smith and Read, 2008). En effet, les essais de colonisation en milieux contrôlés, 

avec des cultures pures de CMA révélaient que l’ensemble des champignons cultivables 

pouvaient coloniser une vaste gamme de plantes hôtes, et donc que la spécificité d’association 

due à des incompatibilités phénotypiques était peu probable en nature (e.g. Smith and Read, 

2008). Toutefois, certaines études ont montré qu’il existait de grandes variations dans la 

réponse de différentes plantes à différents CMA (e.g., Klironomos, 2003), et vice versa pour la 

réponse des CMA à différentes plantes hôtes (e.g., Bever et al., 1996;Eom et al., 2000; Bever, 

2002). Ainsi, il semblait exister une spécificité dans la réponse des hôtes et des CMA, reliée à 

l’identité de leur partenaire. Plus tard, avec le développement des outils moléculaires, on a 

trouvé que des associations préférentielles semblaient exister en milieu naturel entre certaines 

plantes et certains CMA (e.g., Husband et al., 2002; Vandenkoornhuyse et al., 2003). Ceci a 

remis en question l’existence de spécialisation chez certains CMA, qui ne se retrouvaient que 

sur certaines plantes hôtes (e.g., Fitter, 2005). Il a été suggéré que les outils moléculaires 

ouvraient la voie à une meilleure définition du concept opérationnel d’espèce chez les CMA et 

que l’existence de CMA fondamentalement spécialistes était plausible. Toutefois, à cette 

époque les évidences manquaient toujours pour soutenir une telle affirmation. Pour clarifier 

cette question, une étude empirique a été conduite par Aldrich-Wolfe (2007) au Panama. 

L’auteure a caractérisé les CMA dans les racines d’une espèce d’arbre dans deux contextes 
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contrastés : sur des plantules poussant naturellement en forêt vs. sur des plantules 

transplantées dans une prairie voisine. Elle a trouvé que les CMA associés à l’arbre en prairie 

n’étaient ni ceux retrouvés en forêt, ni ceux retrouvés dans les racines des plantes de prairie 

voisines, mais plutôt une communauté tout à fait distincte de CMA. Ces résultats montrent que 

les CMA présents dans les racines de cet arbre ne sont pas le fruit d’une spécialisation 

fondamentale où l’arbre dépend de certaines espèces pour croître et se reproduire. Ils montrent 

aussi que les CMA présents dans les racines ne sont pas non plus simplement le fruit de 

l’environnement local (i.e. quels partenaires sont disponibles via les plantes voisines). En 

somme, ces résultats raffinent notre conception de la spécialisation dans cette symbiose : il ne 

semble pas y avoir de spécialisation fondamentale où certaines espèces dépendent d’un petit 

nombre de partenaires, mais il y a tout de même une sélection de partenaires sur le terrain, 

c’est-à-dire que les interactions ne sont  pas aléatoires et qu’il existe des préférences entre 

plantes et CMA. Toutefois, ces données étaient pour le moins fragmentaires, car l’étude n’a 

étudié qu’une seule espèce de plante. Ici, nos résultats complémentent ces données en 

montrant que (1) des préférences existent entre plantes et CMA, (2) ces préférences sont liées 

aux traits des plantes et à la phylogénie des CMA, et (3) bien que des préférences existent, les 

interactions plantes-CMA demeurent flexibles localement et sont sans doute modulées par 

d’autres facteurs comme l’environnement abiotique ou des effets stochastiques et historiques. 

Nos données montrent aussi que l’ensemble des interactions possibles entre plantes et CMA 

semble très vaste (les courbes de raréfaction d’interactions sont très loin de saturer avec notre 

effort d’échantillonnage), corroborant la faible spécificité d’association suggérée par certains 

auteurs (e.g., Smith and Read, 2008). Un tel cadre théorique pour la spécialisation des plantes 

et des CMA est cohérent avec ce à quoi on s’attendrait considérant la biologie de ces 

organismes. En effet, les CMA sont totalement dépendants des plantes pour acquérir le 

carbone nécessaire à leur métabolisme (Smith and Read, 2008). Puisqu’ils sont sessiles et que 

des études montrent leur faible potentiel de dispersion (e.g., Dumbrell et al., 2010; Egan and 

Klironomos, 2014), la spécialisation d’un CMA sur certaines plantes hôtes seulement semble 

peu probable, car une absence de ces plantes hôtes localement entrainerait inévitablement son 

extinction locale (e.g. Hoeksema, 1999). De même, puisque les plantes rencontrent en milieu 

naturel des populations très agrégées de CMA (e.g., Whitcomb and Stutz, 2007), une espèce 
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de plante spécialisée sur un petit nombre de CMA aurait de fortes probabilités de se disperser 

sur des parcelles locales d’environnement où les CMA dont elle dépend sont absents.  

 

Avoir une stratégie de généraliste pourrait aussi être avantageux pour la plante du point de vue 

des bénéfices qu’elle retire de la symbiose. En effet, puisque différents CMA ont différents 

traits et contribuent à fournir différentes fonctions (e.g., Smith et al., 2000; Burleigh et al., 

2002; Sikes et al., 2009), une communauté diverse de CMA dans ses racines pourrait générer 

des effets de complémentarité quant aux bénéfices que les CMA lui fournissent (e.g., Koide, 

2000; Maherali and Klironomos, 2007). Ceci est analogue à la vaste littérature développée 

autour de la relation biodiversité-fonctionnement des écosystèmes (e.g., Loreau et al., 2001; 

Hector et al., 2006). De plus, il pourrait même être favorable pour une plante de maintenir des 

CMA qui fournissent des bénéfices semblables (i.e. qui sont redondants fonctionnellement) en 

tant qu’assurance si l’environnement devenait mauvais pour un CMA donné par exemple (le 

niveau de bénéfices retirés par la plantes des CMA serait donc très résilient aux perturbations 

locales) (e.g., Yachi and Loreau, 1999).  

 

Par ailleurs, ces résultats montrent aussi que les plantes peuvent constituer une force 

déterminante dans l’assemblage des communautés locales de CMA. Depuis les années 1990, 

un débat persiste à savoir si les CMA répondent davantage à l’environnement abiotique qu’ils 

rencontrent dans le sol, ou aux plantes hôtes qui sont disponibles. Certains auteurs ont trouvé 

que les CMA étaient différents dans la rhizosphère ou dans les racines de différentes plantes 

(e.g., Johnson et al., 1992; Bever et al., 1996; Öpik et al., 2009), alors que d’autres ont trouvé 

que les CMA suivaient davantage les gradients abiotiques, particulièrement le pH du sol (e.g., 

Dumbrell et al., 2010). Certains ont même avancé que puisqu’une portion majeure de la 

biomasse des CMA (jusqu’à 90% selon Olsson et al., 1999) est placée dans le sol et que les 

plantes offrent un environnement relativement stable et homéostatique, les CMA sont avant 

tout sélectionnés pour performer mieux dans le sol, sans égard à la plante hôte qu’ils 

colonisent (Helgason and Fitter, 2009). Toutefois, avec un éventail aussi large de plantes hôtes 

pour les CMA, il semblerait douteux de considérer des racines de plantain et d’onoclée comme 

étant des habitats similaires pour un CMA. En effet, les différentes plantes hôtes disponibles 
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pour les CMA varient énormément pour une grande variété de traits (e.g., phénologie, 

présence de canaux longitudinaux d’air dans les racines, finesse et taux de production des 

racines, etc.) qui forcément font de ces plantes des habitats contrastés pour les CMA (e.g., 

Brundrett and Kendrick, 1988, 1990; Newsham et al., 1995; Chagnon et al., 2013). Nos 

résultats vont dans ce sens. J’ai trouvé une relation claire entre les traits des plantes et les 

CMA qui colonisent leurs racines. Nos résultats ne ferment pas le débat autour de 

l’importance relative des plantes vs. du sol sur les communautés de CMA. En effet, il existe 

probablement un continuum d’importance relative entre les deux, qui sera déterminé par 

l’échelle spatiale, l’étendue des traits des plantes hôtes et l’étendue des conditions du sol. Par 

exemple, les études qui ont montré un rôle prépondérant du sol dans l’assemblage des 

communautés de CMA ont été réalisées généralement le long de gradients de pH du sol très 

prononcés (e.g., Porter et al., 1987; Dumbrell et al., 2010; Torrecillas et al., 2014).  

 

16.2 Structure des réseaux d’interactions plantes-CMA 

 

Un nombre croissant d’études utilisent de nouveaux indices dérivés de la théorie des réseaux 

pour caractériser la structure des communautés bipartites, où deux types d’organismes (ici 

plantes et CMA) interagissent (e.g., Bascompte et al., 2003; Jordano et al., 2003; Olesen et al., 

2007). Plus récemment, cette nouvelle tendance en écologie des communautés a aussi rejoint 

le domaine des symbioses mycorhiziennes (e.g., Martos et al., 2012; Chagnon et al., 2012; 

Bahram et al., 2014). Toutefois, la plupart des études se sont contentés de révéler des patrons 

significatifs en spéculant vaguement sur leurs causes potentielles. Par exemple, Montesinos-

Navarro et al. (2012) ont trouvé que leur réseau d’interaction était fortement niché, c’est-à-

dire que les espèces de plantes et de CMA spécialistes interagissaient davantage avec des 

partenaires généralistes. De plus, ils ont trouvé que cette tendance des spécialistes à avoir des 

interactions nichées dans celles des généralistes était plus forte pour les plantes que pour les 

CMA. Ils ont interprété ce patron, de façon assez élusive, comme une évidence que les plantes 

compétitionnent moins pour les CMA que les CMA compétitionnent pour les plantes. 

Toutefois, plusieurs études ont montré une aptitude des CMA à transférer plus de nutriments 

aux plantes qui leur donnaient plus de carbone en échange (e.g., Hammer et al., 2010; Kiers et 
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al., 2011). Ainsi, lorsque deux plantes s’associent avec le même CMA, elles entrent 

véritablement en compétition et on devrait s’attendre à ce que la plante qui fournissent plus de 

carbone retire plus de nutriments de ce CMA commun. Ceci n’est qu’un exemple du genre de 

dérapage qui peut se produire lorsqu’on se contente de décrire des patrons d’interactions et de 

seulement spéculer sur leurs causes potentielles plutôt que de véritablement récolter des 

données biologiques pour déterminer directement ces causes. Ce dernier problème était en fait 

l’objet du troisième chapitre de cette thèse. 

 

Un autre aspect évalué dans le présent projet de recherche était la présence de modules 

d’interaction où certaines espèces interagissent préférentiellement entre elles. Dans l’ensemble 

de nos travaux, j’ai délibérément évalué ce patron à faible échelle spatiale, pour la raison 

suivante : des modules d’interactions peuvent être formés parce que certaines espèces 

sélectionnent des partenaires de façon non aléatoires (tel qu’observé dans nos études) ou parce 

que ces espèces ont des distributions spatiales avec beaucoup de recoupement. Torrecillas et 

al., (2014) ont en effet remarqué que certaines interactions préférentielles, dans un réseau 

mycorhizien à l’échelle régionale, étaient dues au fait que certains CMA et certaines plantes 

ne se retrouvaient que dans les microsites acides et d’autres dans les microsites alcalins. Ainsi, 

si dans nos projets j’ai volontairement évalué la modularité à faible échelle spatiale pour 

limiter la variation environnementale, il importe de souligner que la modularité sera fort 

probablement un patron fortement dépendant de l’échelle spatiale et du niveau de variation 

dans l’environnement abiotique (e.g., Lewinsohn et al., 2006). La présence de modularité, 

sans autre données disponible, ne devrait donc pas être considérée comme suffisante pour 

détecter de la sélection de partenaires à proprement parler.  

 

Finalement, un autre patron clé qui émerge de nos données est l’absence frappante d’espèces 

clés (i.e. keystone species) dans nos réseaux mycorhiziens. En effet, l’étude des réseaux 

d’interaction a souvent montré que la majorité des interactions impliquaient une poignée 

d’espèces fortement généralistes, et des simulations mathématiques ont montré que retirer des 

généralistes de la communauté pouvait engendrer une cascade de coextinction (e.g., Memott et 

al., 2004; Burgos et al., 2007). Toutefois, nos données montrent que le niveau de généralisme 
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d’une espèce ne semble pas du tout être une propriété intrinsèque des plantes ou des CMA, et 

qu’au contraire il y a de fortes variations dans ce paramètre d’une communauté locale à une 

autre. Ceci contredit certains arguments en faveur de l’utilisation de la théorie des réseaux 

pour guider les pratiques de conservation (de manière à conserver les « keystone » 

généralistes) : il semble en effet que, à tout le moins pour les réseaux mycorhiziens, ces 

généralistes soient facilement remplaçables par d’autres espèces d’une communauté à une 

autre.  

 

En somme, la structure des réseaux mycorhiziens que j’ai trouvée au fil de nos études semble 

entrer en contradiction avec les études de modélisation sur les réseaux entre mutualistes (e.g., 

Thébault and Fontaine, 2010; Okuyama et al., 2008). En effet, ces études ont suggéré que les 

interactions nichées (i.e. nestedness) tendent à favoriser la stabilité des mutualismes 

(Okuyama et al., 2008) et surtout que la modularité tend à réduire cette stabilité, en favorisant 

l’extinction locale et les cascades de coextinction. À l’inverse, ici j’ai trouvé que les 

interactions nichées semblent simplement être le fruit de la présence de CMA généralistes, et 

non pas une propriété générale de l’ensemble des interactions mycorhiziennes. De plus, j’ai 

montré l’existence, dans certains cas, de modules d’interactions basés sur la sélection 

déterministes de partenaires. Ainsi, nos données empiriques ne corroborent pas du tout les 

prédictions faites autour de la stabilité des mutualismes (e.g., Thébault and Fontaine, 2010). 

Dans la prochaine section, j’explique comment cette divergence pourrait être due au fait que 

les modèles théoriques utilisés pour faire des prédictions sur la stabilité des mutualismes ne 

reflètent pas du tout le fonctionnement d’une communauté mycorhizienne naturelle. 

 

16.3 Pourquoi les modèles théoriques ne reflètent pas le fonctionnement des 

communautés mycorhiziennes naturelles 

 

Depuis les travaux pionniers de Robert May sur la relation entre diversité et stabilité des 

réseaux d’interactions (May, 1973), de nombreuses études ont tenté de peaufiner l’approche en 

manipulant, par exemple, la présence de compétition interspécifique à l’intérieur d’un guilde 

(e.g., Encinas-Viso et al., 2012), la symétrie dans les interactions (Okuyama and Holland, 
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2008), la structure des communautés d’interactions (e.g., Thébault and Fontaine, 2010), le 

nombre d’interactions (connectance) (Dunne et al., 2002), etc. Toutefois, la vaste majorité de 

ces études utilisent des extensions d’équations de type Lotka-Volterra, avec une croissance 

populationnelle densité-dépendante de chacune des espèces et des réponses fonctionnelles 

additives de chaque espèce à l’ensemble de ses partenaires mutualistes. Ainsi, en modélisant la 

dynamique des communautés de cette façon, ce genre d’études implique les assomptions 

suivantes (entre autres) : 

 

- Absence de limite à la dispersion (modèles spatialement implicites): à chaque génération 

dans le modèle, chaque espèce de plante va interagir avec toute espèce de CMA avec 

laquelle elle est compatible et dont la population est non nulle. Toutefois, en milieu naturel 

la symbiose mycorhizienne implique des organismes sessiles qui ont des distributions 

spatiales agrégées (e.g., Boerner et al., 1996; Whitcomb and Stutz, 2007; Dumbrell et al., 

2010; Maherali and Klironomos, 2012). De plus, l’assemblage des communautés plantes-

CMA a ceci de particulier que de nouvelles « patch » sont constamment rendues 

disponibles pour les CMA (les racines nouvellement produites). Il devrait donc y avoir un 

rôle important des phénomènes de dispersion locale dans la colonisation de ces jeunes 

racines, et il serait même envisageable que l’assemblage des communautés de CMA dans 

ces racines jeunes soit en partie stochastique (e.g., Hausmann and Hawkes, 2010; 

Dumbrell et al., 2010b; Chagnon et al., 2012). Ceci ne cadrerait pas avec des interactions 

purement déterministes telles que simulées dans les modèles; 

- Absence de variation temporelle dans les interactions : j’ai montré dans nos travaux que 

les partenaires mycorhiziens d’une plante donnée sont sujets à changer à la fois dans le 

temps et l’espace. Cette variation est importante, et n’est pas modélisée dans les 

simulations traditionnelles, où la matrice d’interaction initiale est la même pour des 

centaines de générations. De plus, les coefficients de réponses des plantes et des CMA à 

leurs partenaires symbiotiques (i.e. coefficient qui déterminent dans le modèle à quel degré 

une espèce bénéficie d’un partenaire donné en terme de croissance populationnelle) sont 

les mêmes durant la totalité des simulations, alors que nous savons très bien qu’un même 

CMA peut être parfois bénéfique et parfois parasite dans différents contextes 
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environnementaux (e.g., microsites avec des conditions abiotiques différentes, années avec 

différentes conditions en eau ou en lumière, etc.) (e.g., Johnson et al., 1997); 

- Le bénéfice retiré par une plante d’une association avec un CMA donné (et vice versa) est 

représenté comme une fonction saturante, en fonction de la densité du partenaire 

symbiotique. Ainsi, plus le partenaire est abondant, plus il est bénéfique pour l’hôte (et 

vice versa). Toutefois, des études ont montré que les bénéfices fournis ne suivent pas une 

fonction saturante (e.g., Vanette and Hunter, 2013). 

 

Ainsi, il semble clair qu’en milieu naturel, la dynamique des communautés mycorhiziennes 

sera probablement tout autre que ce que l’on modélise dans les simulations classiques. Par 

conséquent, ce genre de simulations semblent peu utiles pour prédire les conséquences de 

patrons d’interaction donnés (e.g., les interactions nichées ou la modularité) sur la dynamique 

de communautés mycorhiziennes naturelles (Chagnon et al., 2012). Toutefois, de telles 

interprétations basées sur des études de modélisation deviennent fréquentes dans la littérature 

sur les réseaux mycorhiziens (e.g., Martos et al, 2012; Haug et al., 2013). 

 

Un problème additionnel avec les études de modélisation est relié à l’interprétation qu’elles 

font de la modularité dans les réseaux écologiques. La plupart des auteurs discutent de la 

modularité comme d’une caractéristique d’un réseau qui limite les effets de contagion 

lorsqu’une perturbation survient. Cette notion, assez intuitive si on prend le cas de la 

contagion dans un réseau épidémiologique, a été étendue aux fluctuations démographiques 

dans les réseaux trophiques (e.g., Melian and Bascompte, 2002). Il a été argumenté que la 

présence de compartiments empêcherait des cascades de coextinction si certaines espèces 

venaient à s’éteindre localement. Toutefois, encore une fois, ce genre d’étude a négligé une 

caractéristique clé des réseaux naturels d’interaction : leur capacité à se réorganiser après une 

perturbation. En effet, de nombreuses études, dont la nôtre, montrent que les patrons 

d’interactions réalisés sur le terrain ne sont pas inflexibles, ce qui suggère que si une espèce 

d’un réseau vient à s’éteindre localement, de nouvelles interactions peuvent s’établir et venir 

tamponner l’effet négatif de cette extinction locale, prévenant ici des cascades de coextinction. 

À la lumière de nos travaux, la grande flexibilité dans les interactions mycorhiziennes suggère 
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que la réorganisation du réseau après une extinction locale est en fait potentiellement bien plus 

importante que la présence de compartiments ou de modules pour tamponner l’effet négatif 

des extinctions locales. 

 

16.4 La question de l’optimisation dans l’assemblage des systèmes complexes 

 

Les problèmes mentionnés dans la section précédente avec les études de modélisation de 

réseaux écologiques prend peut-être racine dans un problème philosophique de plus grande 

ampleur : l’obsession pour l’optimisation et le déterminisme dans l’assemblage des systèmes 

complexes. On peut remonter aussi loin que jusqu’à la théorie des Idées de Platon, qui voyait 

le développement des sociétés humaines comme un chemin directionnel vers la 

dégénérescence (Leroux, 2002). De même, en sciences naturelles, le déterminisme de Newton 

a eu des retombées incalculables dans toutes les grandes sciences, soit avec Malthus et ses 

travaux sur la croissance des populations humaines (reprenant le principe de l’inertie), ou 

encore avec Adam Smith, en économie, qui voyait l’assemblage des marchés comme étant un 

phénomène émergent (s’opérant par la « main invisible ») d’optimisation de l’alignement des 

intérêts des différents acteurs du marché. La théorie de l’évolution par sélection naturelle est 

aussi largement une extension des concepts Newtoniens de force et d’inertie. Plus récemment, 

vers la fin des années 1990, plusieurs études sur les systèmes complexes ont montré que ces 

derniers étaient articulés autour de quelques éléments clés, ce qui rendait ces systèmes plus 

résistants et résilients aux perturbations aléatoires (e.g., le bris d’un serveur dans un réseau 

internet). Ainsi, ces systèmes semblaient aussi avoir atteint une structure relativement 

optimale pour favoriser le fonctionnement et/ou la stabilité du système. Il a donc été fort 

attrayant pour des écologistes de trouver que les réseaux d’interactions semblaient montrer des 

structures semblables, suggérant ainsi que l’assemblage des communautés naturelles pourrait 

aussi être issue de l’optimisation. Toutefois, tel qu’argumenté dans le chapitre 7, il y a un 

problème logique à considérer l’assemblage des communautés comme un phénomène 

d’optimisation. En effet, aucun agent ne contrôle l’assemblage de ces communautés, comme 

c’est le cas dans les réseaux computationnels optimisés par l’homme, ou les réseaux 

neuronaux optimisés par la sélection naturelle agissant sur l’individu.  
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Néanmoins, au moins deux volets de la théorie autour des réseaux écologiques ont été 

développés en suivant une logique d’optimisation. Le premier est le concept d’ascendance, 

développé par Robert E. Ulanowicz (1986, 1997), qui prédit que l’information (sensu 

Shannon, 1948) dans les réseaux d’interactions écologiques devrait toujours augmenter au fil 

de la succession (i.e. de l’assemblage des communautés). Ce postulat de base avait été énoncé 

pour expliquer formellement des tendances empiriques observées précédemment dans l’étude 

des successions écologiques, comme le rétrécissement des niches écologiques et la tendance 

vers des organismes avec des stratégies conservatrices d’utilisation des ressources (e.g. Odum, 

1969). Le deuxième volet théorique suivant une logique d’optimisation est celui voulant que 

les communautés aient certains états stables alternatifs (e.g., Fontaine et al., 2011; Scheffer et 

al., 2012), et qu’au fil du temps les fluctuations dans la communautés fassent converger celle-

ci vers son état le plus stable. Ces deux volets théoriques, bien qu’offrant des solutions 

attrayantes pour expliquer l’existence de patrons observés dans les communautés naturelles 

(e.g., interactions nichées, modularité, distribution d’abondances biaisées vers une poignée de 

généralistes, etc.), ont ce problème commun qu’ils sont tous les deux dérivés de la 

thermodynamique. Ceci pose deux obstacles majeurs : 

- En thermodynamique, l’état des molécules est déterminé par leur énergie libre. Ce dernier 

concept demeure élusif en écologie, et ce manque de définition claire contribue à 

empêcher l’articulation d’hypothèses falsifiables autour de celui-ci. En admettant que les 

communautés tendent vers la « minimisation de l’énergie libre », comment peut-on 

mesurer cette entité? Le manque d’hypothèse falsifiable contribue donc à faire de ce volet 

théorique un élément non scientifique, sensu Popper (1934, 1963). 

- Le principe de base de la thermodynamique est de considérer seulement les phénomènes à 

larges échelles car les dynamiques à faible échelles sont imprévisibles ou inobservables. 

On peut donc considérer les atomes d’un récipient de gaz comme étant des entités 

équivalentes et soumises aux mêmes conditions, dont les dynamiques individuelles sont 

imprévisibles, mais dont la dynamique collective peut être prédite par des lois définies 

(e.g., relation entre température, pression et volume). Toutefois, les individus d’une 

communauté peuvent-ils réellement être considérés comme des atomes? Ces individus ne 
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sont certainement pas équivalents, et surtout, par le biais de la sélection naturelle, sont 

soumis à des pressions évolutives qui leur sont propres. Ainsi, peut-on vraiment s’attendre 

à pouvoir prédire la dynamique collective de ces individus comme nous prédisons l’état 

statistique moyen des molécules d’un gaz? Si en thermodynamique classique on se permet 

de négliger les phénomènes à l’échelle des molécules, en écologie de nombreuses 

évidences empiriques montrent que la stochasticité à petite échelle peut avoir de grandes 

répercussions sur les dynamiques à plus grande échelle. Par exemple, les dynamiques 

évolutives ont été montrées comme étant dépendantes de l’histoire d’assemblage des 

communautés bactériennes (e.g., Fukami et al., 2007).  

 

Ainsi, les cadres théoriques de l’assemblage des réseaux d’interaction basés sur l’optimisation 

et les analogies à la thermodynamique semblent être basés sur des assomptions non 

falsifiables, et pourraient donc constituer des avenues non productives de la recherche 

scientifique.  

 

16.5 Conclusion et perspectives 

 

À la lumière de ce projet de recherche, je suggère que l’avenue la plus productive pour faire 

avancer l’étude de l’assemblage des réseaux d’interactions consiste à récolter une grande 

quantité de données empiriques permettant d’élucider les mécanismes qui causent les patrons 

d’interactions observés en milieu naturel. Sans prétendre que l’écologie théorique n’a pas son 

rôle dans l’étude de tels réseaux, je suggère que l’accumulation d’études empiriques permettra 

de bâtir des modèles de simulations qui se rapprocheront davantage des dynamiques réelles 

des communautés écologiques. En effet, puisque la modélisation des dynamiques de 

communautés consiste à spécifier un nombre limité de règles d’assemblage simples sous 

forme mathématique, il semble naturel de guider de tels modèles par les réelles règles 

d’assemblage que l’on observe en milieu naturel.  

 

Ce projet de recherche suggère aussi plusieurs pistes de recherche pertinentes pour étudier la 

symbiose mycorhizienne. Par exemple, il sera urgent de travailler avec des cultures pures de 
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CMA isolées du terrain pour savoir si (1) les CMA sélectionnés par une plante donnée en 

milieu naturel sont ceux qui lui fournissent le plus de bénéfices, tel que prédit par les théories 

évolutives autour des mutualismes (e.g., Bull and Rice, 1991; Sachs et al., 2004; Bever et al., 

2009) et (2) le nombre d’interactions pour un CMA est une conséquence directe de son 

abondance dans le sol. De telles recherches permettront de mieux comprendre le rôle de la 

symbiose mycorhizienne dans la dynamique des communautés végétales, et la susceptibilité 

des communautés mycorhiziennes face aux perturbations comme l’extinction locale de 

partenaires. Puisque cette symbiose fournit des services écosystémiques primordiaux (e.g., van 

der Heijden, 2010; Bender et al., 2015), de telles connaissances apparaissent comme cruciales 

pour mieux comprendre la dynamique des écosystèmes terrestres. 
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