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ABSTRACT 

Nuclear import mechanism of Php4 under iron deprivation in 

fission yeast Schizosaccharomyces pombe. 

Md Gulam Musawwir Khan 

Département de Biochimie, 

Faculté de Médecine et des Sciences de la Santé, 

Université de Sherbrooke, Sherbrooke, QC, Canada 

 

Php4 is a subunit of the CCAAT-binding protein complex that has a negative regulatory 

function during iron deprivation in the fission yeast Schizosaccharomyces pombe. Under low 

iron conditions, Php4 fosters the repression of genes encoding iron using proteins. In contrast, 

under iron-replete conditions, Php4 is inactivated at both transcriptional and post-

transcriptional levels. Our group has already described that Php4 is a nucleo-cytoplasmic 

shuttling protein, which accumulates into the nucleus during iron deficiency. On the contrary, 

Php4 is exported from the nucleus to the cytoplasm in response to iron abundance. Php4 

possesses a leucine-rich NES (93LLEQLEML100) that is necessary for its nuclear export by 

the exportin Crm1. Our current study aims at understanding the mechanism by which Php4 

is imported in the nucleus during iron starvation. Through microscopic analyses using 

different mutant strains, we showed that the nuclear localization of Php4 is independent of 

the other subunits of the CCAAT-binding core complex namely Php2, Php3 and Php5. 

Deletion mapping analysis of Php4 identifies two putative nuclear localization sequences 

(NLSs) in Php4 (171KRIR174 and 234KSVKRVR240). Using chimeric proteins that consist of 

GFP fused to Php4, we engineered substitutions of the basic amino acid residues 171AAIA174 

and 234ASVAAAA240 and analyzed the functionality of both NLSs. We observed that both 

monopartite NLSs play critical role for Php4 nuclear localization. We also observed that 
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mutant strains of cut15+, imp1+ or sal3+ exhibited defects in nuclear targeting of Php4, 

revealing that nuclear accumulation of Php4 is dependent on two karyopherin α (Imp1 and 

Cut15) and one karyopherin β (Sal3) receptors. Consistently, the Php4-mediated repression 

activity is abolished in the absence of two functional NLSs.  Moreover, loss of Imp1, Cut15 or 

Sal3 resulted in increased expression of isa1+, which is a target gene of Php4. Co-

immunoprecipitation assay (Co-IP) reveals physical interaction of Php4 with Imp1, Cut15 

and Sal3 in vitro. Collectively, our results demonstrate that Php4 has two distinct NLS 

regions responsible for its nuclear localization. Furthermore, karyopherin α and β receptors 

play a role in the nuclear import of Php4. Because Php4 is essential for growth under low 

iron conditions, the presence of two NLSs would ensure the protein to reach its nuclear 

destination when cells undergo a transition from iron-sufficient to iron-limiting conditions.
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INTRODUCTION 

1. Iron: An essential element for living organisms 

Iron is an essential microelement for almost all living eukaryotes; ranging from yeast to 

mammals. The capacity to freely lose and gain electrons permits iron to play a substantial 

role in biochemistry and cellular physiology. Due to its ability to exchange electrons, iron 

can be found in the ferrous form (Fe2+), which is an electron donor and ferric form (Fe3+), 

which is an electron acceptor. This property makes it a cofactor of choice for many enzymes 

involved in oxido-reduction reactions including oxygen transport, respiration and the 

tricarboxylic acid cycle. Iron can be found in various forms such as inorganic iron, oxoiron, 

heme and iron-sulfur cluster. These facts make this transition metal indispensable for the 

function of several enzymes and thus, for the viability of virtually all living organisms. 

Exceptionally, only few species of bacteria do not require iron (VAN HO et al. 2002). 

 

Although iron is the fourth most abundant metal on earth, its bioavailability is highly 

restricted. Major geographical areas like ocean, lakes and other water surfaces possess very 

low concentrations of iron. When abundant, iron is found in various biologically inaccessible 

forms such as magnetite (Fe3O4), hematite (Fe2O3), goethite (FeO(OH)), 

limonite (FeO(OH).n(H2O)) or siderite (FeCO3). Furthermore, due to its redox chemical 

properties, iron is rapidly oxidized in the presence of O2 to generate insoluble ferric 

hydroxides. To combat the poor bioavailability, iron must be acquired through specialized 

cellular transport systems which have been developed by organisms throughout their 

evolution.  

 

http://en.wikipedia.org/wiki/Magnetite
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Unfortunately, the redox property of iron could make it toxic to cells, especially when its 

concentration exceeds the normal requirements. In cytoplasm of cells, free iron is found in 

its reduced state (Fe2+). Ferrous ions can easily react with hydrogen peroxide (H2O2) to 

generate both hydroxyl ion (OH-) and hydroxyl radical (•OH), according to the Fenton 

reaction (Figure 1) (HALLIWELL and GUTTERIDGE 1992). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Fenton reaction produces free hydroxyl radicals that have potential to 

damage DNA, proteins and lipids in cells. 

 

Hydroxyl radicals produced via this reaction are part of the reactive oxygen species (ROS) 

family. These possess a strong oxidative power and are known for their ability to alter certain 

cellular components like proteins, membrane phospholipids and nucleic acids (REITER et al. 

1995). More specifically, free radicals affect the DNA backbone by breaking the links 

between DNA bases at the phosphodiester bonds resulting in single and double stranded 

DNA breaks. Free hydroxyl radicals cause oxidative degradation of membrane lipids through 
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a free radical chain reaction mechanism. This sequesters electrons at polyunsaturated fatty 

acids and results in the damage of lipoprotein (HALLIWELL and CHIRICO 1993). Positively 

charged iron can directly bind to DNA and interfere with the attachment of magnesium. This 

results in adverse effects on DNA repair mechanisms and  subsequently on DNA integrity 

(LI et al. 2009b). Iron also has the ability to substitute the zinc in “zinc finger structural 

motifs” resulting in the loss of stability and function of the proteins. Furthermore, iron-

substituted zinc fingers may also generate free radicals and lead to adverse consequences 

which could be fatal for cell survival (SARKAR 1995; CONTE et al. 1996). 

Considering iron is both essential and toxic for organisms, maintaining a delicate balance of 

this transition metal in the cell is vital. A tight regulation of the acquisition and distribution 

of iron inside the cell prevents deficiency as well as toxicity that comes with iron excess. So 

organisms developed mechanisms to absorb precise quantity of iron to meet their metabolic 

requirements. To study prevailing mechanisms at the molecular level, Schizosaccharomyces 

pombe provides us with an excellent model for understanding how eukaryotic cells regulate 

the acquisition of iron. 

 

2. Yeasts as model system to study molecular and cell biology 

For many years, the budding yeast Saccharomyces cerevisiae, commonly known as baker’s 

yeast, has been used for baking, brewing and winemaking. Therefore, its extensive 

commercial applications have been observed in the food and beverage industries. For several 

years, the use of the budding yeast S. cerevisiae in biological research has greatly advanced 

our knowledge of several biological and cellular mechanisms. Several advantageous traits 

like its non-pathogenic nature, simple growth conditions, rapid proliferation, low cost 
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associated with its use, and conservation of several biochemical and physiological processes 

in higher eukaryotes make it a widely studied model organism in biochemistry, molecular 

and cell biology. Moreover, this is the first eukaryotic organism whose complete genome 

sequence has been elucidated (GOFFEAU et al. 1996).  

In the case of Schizosaccharomyces pombe, it has been first isolated in 1893 from an African 

beer by Paul Lindner. S. pombe holds some advantages of having more genetic similarities 

with complex organisms. It is a single celled, rod-shaped fungus which reproduces by binary 

fission (that’s why it is often called as ‘fission yeast’), a mechanism similar to mammalian 

cells (CHANG and NURSE 1996). Its complete genome sequence was performed jointly by the 

Sanger Institute and Cold Spring Harbor Laboratory in 2002 (WOOD et al. 2002). By many 

features S. pombe is closer to higher eukaryotes than S. cerevisiae. For example S. cerevisiae 

proliferates by budding and lacks RNA-dependent RNA interference machinery, which is 

conserved in S. pombe as well as in mammals. As a laboratory model, S. pombe has proven 

its excellency in the field of cellular biology in terms of harmless nature, ease of handling, 

well defined internal organelles, rapid division cycle, and its constitutive haploid genetic 

nature (also workable in diploid state by conjugation during nutritional deficiency). Use of 

fission yeast has allowed many research studies to be carried out, which improved our 

understanding of many cellular mechanisms. Some of those are well conserved in higher 

eukaryotes including mammals. For example, DNA damage and repair mechanisms (ALAO 

and SUNNERHAGEN 2008; LIN et al. 2012; QU et al. 2012, 2013), cell death, aging and 

apoptosis (LOW and YANG 2008; OHTSUKA et al. 2013; LIN and AUSTRIACO 2013), gene 

silencing mechanisms (REYES-TURCU and GREWAL 2012; SMIALOWSKA et al. 2014), 

chromatin remodeling and histone dynamics  (KHOROSJUTINA et al. 2010) and metal ion 
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homeostasis and transport mechanisms (LABBÉ et al. 2007, 2013; LABBÉ 2010; BEAUDOIN et 

al. 2013) were thoroughly studied using the fission yeast model.  

In this study we have used the fission yeast to understand the regulatory mechanism of iron 

economy during iron deficiency. The details of these mechanisms will be described in the 

following sections. 

 

3. Iron homeostasis in budding yeast S. cerevisiae 

The budding yeast S. cerevisiae is a well-studied eukaryote used to understand the molecular 

mechanisms of iron homeostasis. Studies at the cellular level in this yeast model organism 

have been performed successfully, providing with important information about iron 

physiology and eukaryotic diseases related to iron deficiency. This is possible because many 

of those genes and pathways are conserved in mammals (ASKWITH and KAPLAN 1998; DE 

FREITAS et al. 2003). Furthermore, several components of iron acquisition systems operating 

in budding yeast are well conserved throughout many other yeasts and pathogenic fungi 

(RAMANAN and WANG 2000; JUNG et al. 2008). The following sections will focus on modes 

of iron acquisition, and mechanisms of regulation of iron homeostasis in budding yeast. 
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3.1. Mechanisms of iron acquisition in S. cerevisiae 

S. cerevisiae possesses two well-characterized iron acquisition systems. The high affinity 

system is privileged under limited iron conditions (KM < 1μM). The high affinity iron uptake 

system deploys two different mechanisms, one is reductase independent and the other is 

reductase dependent. In contrast, a low affinity system becomes active under high iron 

conditions (KM > 40μM) (KOSMAN 2003). The integration of both iron acquisition systems 

and their roles in iron homeostasis of S. cerevisiae will be addressed in the following sections. 

 

3.1.1. High-affinity iron uptake: reductase-independent 

The mechanism of reductase independent iron uptake relies mainly on capturing small Fe-

siderophore complexes. Siderophores are small organic molecules synthesized and secreted 

by many microorganisms, including Gram negative and positive bacteria, as well as several 

fungal species (BYERS and ARCENEAUX 1998). Siderophores are non-proteinaceous 

compounds of relatively low molecular weight (Mr <1500), having the characteristic of 

chelating ferric ion with an extraordinary high affinity.  This allows them to scavenge iron 

from the environment where it is often present in an insoluble form (NEILANDS 1993, 1995). 

Unlike the majority of microorganisms, the budding yeast S. cerevisiae is unable to 

synthesize siderophores, but can assimilate those produced by other organisms (NEILANDS 

1995; LESUISSE et al. 1998). Nevertheless, the siderophore-mediated iron uptake in S. 

cerevisiae occurs through the function of a group of siderophore-iron-transporters (SIT) that 

comprise the ARN/SIT subfamily of the major facilitator superfamily of transporters. In S. 

cerevisiae, there are four members of these transporters that have been designated: Sit1/Arn3, 
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Arn1, Taf1/Arn2, and Enb1/Arn4. These are responsible for transporting siderophore-iron 

chelates under iron depletion conditions (PHILPOTT 2006).  

Specificity of these transporters (Table 1) for fungal or bacterial siderophores varies from 

specific to broad spectrum (HEYMANN et al. 2000; YUN et al. 2000; LESUISSE et al. 2001). 

Two of those siderophore transporters, Arn1 and Arn3/Sit1, are regulated post-

translationally. When substrates are unavailable, both Arn1 (ferrichrome transporter) and 

Sit1 (ferrioxamine B transporter) are sorted in endosome-like intracellular vesicles resulting 

in their degradation in the vacuolar lumen. The presence of siderophore substrates, even in 

very low concentration, causes Arn1 and Sit3 to relocalize to the plasma membrane (KIM et 

al. 2002, 2005; FROISSARD et al. 2007). Curiously, Sit1 exhibits similar endosome-to-plasma 

membrane tafficking even in the presence of a non-specific substrate such as coprogen 

(FROISSARD et al. 2007). In contrast, the enterobactin transporter Enb1/Arn4 is consititutively 

localized to the plasma membrane even in the absence of its specific substrate. Thus, different 

intracellular trafficking responses are found with different siderophore transporters upon the 

iron status and substrates (FROISSARD et al. 2007). It has been demonstrated that intact 

ferrichrome-iron chelate (transported by Arn1) can be accumulated in the cytosol of S. 

cerevisiae where the iron can be recovered upon siderophore degradation. This indicates a 

direct role of siderophores in iron storage (MOORE et al. 2003). 
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Table 1. Siderophore substrates of ARN/SIT family of transporters  

Transporter  Siderophore substrates Km for transport (μM) 

Arn1 Ferrichromesa 

Coprogen (Triacetylfusarinine C)b 

0.9 

Arn2/Taf1 Triacetylfusarinine C 1.6 

Arn3/Sit1 Ferrioxamine B 

Ferrichromesa 

Coprogen (Triacetylfusarinine C)b 

0.5 

2.3 

Arn4/Enb1 Enterobactin 1.9 

 

a Arn1 and Arn3 exhibit specificity for multiple members of the ferrichrome family of 

siderophores.  

b Arn1 and Arn3 exhibit a trace amount of transport activity for triacetylfusarinine C 

 

 

3.1.2 High-affinity iron uptake: reductase-dependent 

S. cerevisiae uses a second mechanism for high-affinity Fe acquisition that relies on cell 

surface metalloreductase activity. Two metalloreductases encoded by the gene FRE1 and 

FRE2 play a major role in the exogenous iron uptake of budding yeast. These two 

flavocytochromes constitute the majority (>98%) of plasma membrane-associated ferric 

reductase activity (DANCIS et al. 1990, 1992; GEORGATSOU and ALEXANDRAKI 1994; 

GEORGATSOU et al. 1997). The expression of both FRE1 and FRE2 genes is induced under 

iron-depleted conditions, and double deletion of both genes shows a drastic decrease in 

ferrireductase activity (only 2-10%) compared to wild type cells (DANCIS et al. 1992; 

GEORGATSOU and ALEXANDRAKI 1994). Due to their broader substrate specificity, Fre1 and 
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Fre2 are enabled to catalyze the reduction of ferric-siderophore complexes resulting in the 

release of divalent iron (Fe2+). Subsequently, the ferrous iron can be transported across the 

plasma membrane by ferrous specific transporters (Figure 2) (YUN et al. 2001). Transcription 

of the family members, FRE1, 2, 3, 4, 5, and 6, is induced under iron-depleted conditions, 

whereas transcription of FRE1 and FRE7 is also found to be induced under copper limited 

conditions (YUN et al. 2001). Fre3 and Fre4 possess a weaker catalytic activity in the 

reduction of some ferric-siderophore complexes (YUN et al. 2001). Although, the function of 

Fre5 is still unclear, the protein exhibits a mitochondrial localization. In the case of Fre6, the 

protein localizes in the vacuole (SICKMANN et al. 2003; REES and THIELE 2007; SINGH et al. 

2007). The FRE reductases mediate reduction of oxidized forms of iron and copper, as well 

as  other non-metallic compounds which are capable of accepting one-electron (LESUISSE et 

al. 1987). 

Under conditions of iron starvation, the high-affinity transport complex is activated in S. 

cerevisiae to assimilate soluble iron (Fe2+) into the cell following the external reduction of 

Fe3+. The high-affinity transport system is activated with a Km of ~0.15μM (DE SILVA et al. 

1996) and its action is performed by the combined action of two proteins: a copper-dependent 

ferrous oxidase, Fet3 (ASKWITH et al. 1994) and an iron permease, Ftr1 (STEARMAN et al. 

1996). In S. cerevisiae, FET3 was first discovered through a genetic screen for mutants 

exhibiting a defect in high-affinity iron transport (ASKWITH et al. 1994). Moreover, defective 

utilization of non-fermentable carbon sources, malfunctioning respiratory systems, as well as 

growth retardation under iron and copper depleted conditions, were observed  in fet3Δ mutant 

strains (DANCIS et al. 1994; ASKWITH and KAPLAN 1998). Sequence analysis suggests that 

Fet3 is a multi-copper oxidase which oxidizes ferrous iron to ferric iron before allowing its 



10 
 

transport across the plasma membrane. This mechanism of action is strictly copper dependent 

and requires molecular oxygen. For the function of Fet3, four copper ions are required as 

cofactors. They are loaded onto the protein during its maturation in the secretory pathway. 

Thus, an intrinsic connection has been observed between iron and copper uptake in S. 

cerevisiae, where copper depletion can lead to a secondary defect, which is iron starvation 

(DANCIS et al. 1994; YUAN et al. 1995, 1997; HASSETT et al. 1998b).  

The expression of Fet3 alone is not enough to induce high-affinity iron transport. This 

suggests the involvement of other proteins required for the transmembrane iron transport (DE 

SILVA et al. 1996). This question was resolved when a permease encoded by the FTR1 gene 

had been found to be involved in the high-affinity iron transport system along with Fet3 

(STEARMAN et al. 1996). The expression of either one of these proteins in a mutant strain null 

for both genes (fet3Δftr1Δ) results in the retention of the “orphan” protein in the endoplasmic 

reticulum (ER) (STEARMAN et al. 1996). Thus, it is important that both proteins assemble 

together and mature through the secretory pathway to form a stable complex prior trafficking 

to the plasma membrane. The association between Fet3 and Ftr1 has also been demonstrated 

by FRET (fluorescence resonance energy transfer) and yeast two-hybrid analysis 

experiments (SINGH et al. 2006). Accordingly, in the high-affinity iron transport system, Fet3 

catalyzes the ferroxidase reaction to convert ferrous iron into ferric iron which is transported 

across the plasma membrane by Ftr1 (Figure 2) (KWOK et al. 2006). Interestingly, a 

paralogous oxidase/permease complex has been found to be expressed on vacuolar 

membranes, encoded by FET5 and FTH1, which are homologs of FET3 and FTR1, 

respectively. The Fet5/Fth1 complex directs the transport of iron from the vacuole to the 
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cytosol which will be discussed in the following section (3.1.4) (URBANOWSKI and PIPER 

1999). 

 

 
 

 

Figure 2. Reductase-dependent iron acquisition in S. cerevisiae. A) Uptake of inorganic 

Fe requires the initial reduction of Fe3+ to Fe2+ by the plasma membrane reductases Fre1/2. 

Subsequently, Fe2+ is oxidized by Fet3 before its passage across the plasma membrane via 

Ftr1. B) Fe3+ sequestered in siderophore chelates is reduced by the action of Fre1/2/3/4 

ferrireductases. Subsequently, free reduced Fe2+ is re-oxidized to Fe3+ by the multi-copper 

oxidase Fet3 and then transported across the plasma membrane by the membrane permease 

Ftr1.  
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3.1.3 Low-affinity iron uptake 

It is interesting that S. cerevisiae mutant strains defective for high-affinity iron transport are 

still able to grow on an iron supplemented media. A low-affinity iron transport system is 

activated when cells are exposed to an iron-rich environment and is functionally independent 

of the high-affinity iron transport systems. The low-affinity iron system prefers Fe2+ over 

Fe3+ and continues to work properly in the absence of oxygen. In the case of  the high-affinity 

iron transport, the presence of oxygen is required since Fet3 is an oxygen- and Cu-dependent 

protein (DIX et al. 1994, 1997).  

Fet4 is a low-affinity transporter and its function is not only limited to iron transport but is 

also able to transport a wide range of other divalent metals such as copper, cobalt, manganese, 

and zinc  (DIX et al. 1994; LI and KAPLAN 1998). Fet4 shows relatively low-affinity to iron 

(Km = 30μM) as compared to an affinity of 0.15μM found in the high-affinity iron system. 

That is why the Fet4 function is inactive when iron concentrations are in the lower Km (<1 

μM) range. Under conditions of excess iron, the expression of Fet4 is increased and low-

affinity transport system plays a primary role in iron uptake, especially under anaerobic 

conditions (HASSETT et al. 1998a; JENSEN and CULOTTA 2002). 

Budding yeast also expresses three proteins, Smf1, Smf2 and Smf3 that are encoded by the 

SMF1, 2 and 3 genes, respectively. These proteins also play a role in low-affinity iron 

transport. They are similar to members of the Nramp (natural-resistance-associated 

macrophage protein) family, which are involved in the iron transport in mammals (CHEN et 

al. 1999; PORTNOY et al. 2000; FORBES and GROS 2001). Although Smf1 and Smf2 primarily 

function as manganese ion transporters, they can also efficiently transport ferrous iron across 

the plasma membrane under iron-replete conditions. Overexpression of Smf1 results in the 



13 
 

accumulation of cytosolic iron (COHEN et al. 2000). Smf3, a paralogue of Smf1 and Smf2, is 

induced under oxygen depletion and is the only member of the Nramp family found in yeast 

that is regulated by the cellular iron status. Smf3 localizes on the vacuolar membrane 

(discussed in the following section 3.1.4) and is required as a means to mobilize stored iron 

from the vacuole to cytosol (PORTNOY et al. 2000). 

 

3.1.4 Storage of iron in the vacuoles 

Storage of iron in vacuoles is an important homeostatic mechanism found in S. cerevisiae 

that allows cells to maintain an adequate amount of intracellular iron. It is also known that 

these vacuolar reserves of iron contribute to the survival of cells when iron is scarce 

(PHILPOTT and PROTCHENKO 2008).  

Ccc1 is the only identified vacuolar iron importer in budding yeast. The expression of CCC1 

is induced in response to high levels of iron (LAPINSKAS et al. 1996; LI et al. 2001). The 

transcription factor Yap5 induces expression of CCC1 under conditions of excess iron (LI et 

al. 2008). Cells lacking CCC1 exhibit hypersensitivity to detrimental effects of high iron and 

are unable to grow on iron-rich media (LI et al. 2001). The molecular form of iron stores in 

the vacuole is still poorly understood. However, it is has been shown that iron can form 

complexes with polyphosphates in this compartment (PHILPOTT and PROTCHENKO 2008). 

In contrast, under iron-depleted conditions, the transcription of CCC1 is shut down, thereby 

preventing vacuolar iron accumulation. The iron-responsive transcription factors Aft1 and 

Aft2 induce transcription of several genes that encode proteins involved in iron acquisition 
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and iron utilization. Some of these genes encode proteins that mobilize stored iron out of the 

vacuole (PHILPOTT and PROTCHENKO 2008). Among those proteins, Fre6 localizes on the 

 

 

 

Figure 3. Vacuolar iron storage and mobilization. Excess Fe is transported into the 

vacuole through the Ccc1 transporter for safe storage. Vacuolar Fe can be mobilized out of 

the vacuole after its reduction that is carried out by Fre6. Iron transport is then mediated by 

Smf3 or Fet5/Fth1. 

 

vacuolar membrane and is involved in the vacuolar iron reduction prior to its transport into 

the cytosol (Figure 3) (REES and THIELE 2007; SINGH et al. 2007). As mentioned in the 

previous section, the Fet5 and Fth1 are paralogues of Fet3 and Ftr1, respectively. They are 
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found on the vacuolar membrane under low iron conditions. Under those conditions, Fet5 

and Fth1 mobilize stored iron from the vacuole to replenish the cytosol according to iron 

need (Figure 3) (URBANOWSKI and PIPER 1999; SINGH et al. 2007). Another mechanism by 

which the reduced iron can be exported out of the vacuole requires the action of Smf3 (Figure 

3). Expression of SMF3 is induced under iron-depleted and hypoxic growth conditions 

(PORTNOY et al. 2000). Cells lacking Smf3 accumulate iron in the vacuole, whereas 

overexpression of Smf3 results in the diminished retention of iron in the vacuole as compared 

to the wild-type cells (SINGH et al. 2007). 

 

3.2. Regulation of iron homeostasis in budding yeast 

3.2.1. Regulation of iron transport by Aft1 and Aft2 

Iron homeostasis is sternly regulated in budding yeast so that necessary iron can carry out all 

the cellular processes such as respiration, while retaining the levels of free iron below toxic 

levels. In the iron homeostasis of S. cerevisiae, Aft1 and Aft2 are the major players that 

regulate the expression of genes encoding proteins involved in iron transport and utilization 

depending on the cellular iron status (YAMAGUCHI-IWAI et al. 1995; RUTHERFORD et al. 

2003). Under iron limiting conditions, Aft1 localizes within the nucleus and activates 

transcription of target genes. In contrast, under high iron conditions, Aft1 is rapidly exported 

into the cytoplasm by the nuclear export receptor Msn5, resulting in the repression of target 

genes (UETA et al. 2007). aft1Δ mutant cells exhibit severe iron deficiency phenotype in 

comparison to aft2Δ mutant cells, signifying that Aft1 plays the major role in iron 

homeostasis over Aft2. Although aft1Δ aft2Δ double mutant cells are more vulnerable during 

iron scarcity than single aft1Δ, when AFT2 was overexpressed in aft1Δ cells, it could rescue 
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from iron-dependent defects. This is due to increased expression of FET3 and FTR1 via Aft2, 

suggesting that Aft2 is able to compensate for the loss of Aft1. Thus, both Aft1 and Aft2 have 

partially overlapping roles in iron regulation, with Aft1 possessing the major regulatory 

function (BLAISEAU et al. 2001; RUTHERFORD et al. 2001, 2003).  

Both transcription factors, Aft1 and Aft2, activate a group of genes during iron deficiency 

whose products are involved in the reductase-dependent iron transport, siderophore transport, 

and others that are involved in the modulation of cellular metabolism (RUTHERFORD et al. 

2003; SHAKOURY-ELIZEH et al. 2004; COUREL et al. 2005) (Table 2). Although Aft1 and Aft2 

recognize the same consensus sequence (GCACCC) at the promoter of target genes, Aft1 

shows stronger binding affinity to TGCACCC element, whereas Aft2 prefers to bind with 

G/CGCACC element (COUREL et al. 2005). 
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Table 2. Examples of genes that are up-regulated by Aft1/ Aft2 during iron deficiency.  

Gene Function 

Iron uptake 

FRE1 and FRE2 Major plasma membrane metalloreductases 

FRE3 and FRE4 Plasma membrane metalloreductases involved in the 

reduction of siderophore bound Fe3+ 

FET3  Plasma membrane multicopper oxidase 

FTR1 Plasma membrane Fe2+ permease 

FET4 Plasma membrane low affinity Fe2+  transporter 

FIT1, FIT2 and FIT3 Cell wall proteins that are involved in siderophore capture  

ARN1, ARN2, ARN3, and ARN4 Plasma membrane siderophore transporters 

Vacuolar iron mobilization 

FRE6 Vacuolar metalloreductase 

FET5 Vacuolar multicopper oxidase 

SMF5 Low affinity vacuolar iron tansporter 

FTH1 Vacuolar Fe2+ permease 

Metabolic adaptation 

VTH1 Biotin transporter 

HMX1 Heme oxygenase homologue 

CTH1 mRNA regulatory protein 

CTH2 mRNA regulatory protein 
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3.2.2. Regulation of iron storage by Yap5 

Recently another iron-responsive transcription factor, Yap5, has been identified that is 

responsible for up-regulating a gene, which encodes the vacuolar iron transporter Ccc1 (LI 

et al. 2008). Ccc1 is required for iron import into vacuole in yeast and plants, although no 

mammalian homologue of Ccc1 has yet been identified (LI et al. 2001). In Candida albicans, 

Ccc1 is involved in multiple functions, including maintenance of cell-wall integrity, 

filamentous growth and virulence, mitochondrial function and drug resistance (XU et al. 

2013). In budding yeast, Yap5 is constitutively expressed and accumulated into the nucleus 

where it interacts with the TTCACGA sequence of the CCC1 promoter. The association of 

Yap5 with the CCC1 promoter is not iron-dependent. However, in response to high levels of 

iron Yap5 transcriptionally activates CCC1 gene expression. Two conserved cysteine-rich 

domains (CRDs) of Yap5 are predicted to play a critical role in iron-dependent transcriptional 

activation. The N-terminal CRD (composed of four cysteine) is separated by a 37 amino acids 

linker from C-terminal CRD (composed of three cysteine). Mutation of all the seven cysteine 

residues results in the loss of transcriptional induction ability of Yap5 even in the presence 

of iron. This occurs without affecting the nuclear localization of Yap5. Cells expressing this 

mutant allele are found to be more vulnerable to iron-toxicity. It has been proposed that 

excess iron might affect the thiol groups of cysteine residues within CRDs, which would 

trigger conformational changes of Yap5, conferring the protein with an ability to trans-

activate  gene expression (LI et al. 2008). Interestingly, the expression of CCC1 is not 

exclusively regulated by Yap5. Under low-iron conditions, CCC1 mRNA is degraded by 

Cth1 and Cth2, thus limiting iron storage through this vacuolar iron transporter. The role of 

Cth1 and Cth2 in iron homeostasis will be discussed in the next section. 
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3.3. Post-transcriptional regulation of iron homeostasis by Cth1 and Cth2 

During iron deficiency, budding yeast also employs a post-transcriptional mechanism to 

tightly regulate several components involved in iron homeostasis. Two proteins, Cth1 and 

Cth2, are involved in this mechanism. Their expression is regulated under the control of Aft1 

and Aft2 (Figure 4) (PUIG et al. 2005, 2008).  

Cth1 and Cth2 belong to the family of human tristetraprolin (HTTP). They are characterized 

by the presence of two CCCH-type tandem zinc fingers (TZFs) in their carboxy-terminal 

regions. Cth1 and Cth2 possess a mRNA binding domain that binds to the AU-rich elements 

(AREs) within the 3’unstranslated region (3’-UTR) of their target mRNAs (THOMPSON et al. 

1996; BLACKSHEAR 2001). The association of these proteins with AREs promotes 

destabilization and rapid degradation of transcripts through the recruitment of an RNA 

decaying enzyme (e.g. Dhh1 helicase) (LYKKE-ANDERSEN and WAGNER 2005; PEDRO-

SEGURA et al. 2008). Under iron-limiting conditions, Cth2 appears to down-regulate 94 

transcripts harboring AREs within their 3’UTR; half of those encode proteins that are 

involved in iron-dependent metabolic pathways. In the case of Cth1, it is responsible for 

down-regulation of 20 ARE-containing transcripts; most of them encode mitochondrial 

proteins that are involved in respiration (PUIG et al. 2008; PHILPOTT et al. 2012).  

The mechanism by which Cth1/Cth2 recognize their target mRNAs is still unknown. A recent 

study has demonstrated that the nucleo-cytoplasmic shuttling of Cth2 is important for its role 

in ARE-dependent mRNA decay. A nuclear localization signal located within its TZF domain 

promotes its binding with target mRNAs. Interestingly, nuclear export of Cth2 is not 

dependent on a classical nuclear export signal (NES). Instead, nuclear export of Cth2 relies 

on the nuclear mRNA export machinery (VERGARA et al. 2011).  
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The action of Cth2 is indispensable for iron economy in S. cerevisiae. In contrast, CTH1 can 

be inactivated without compromising the iron sparing response in S. cerevisiae (PUIG et al. 

2005, 2008). Interestingly, when CTH1 is expressed under control of a CTH2 promoter, it 

could replace Cth2 in a double mutant cth1Δcth2Δ strain (PUIG et al. 2008). This suggests a 

redundant function for both proteins, Cth1 and Cth2.  

 

  

 

 

 

 

 

 

 

 

Figure 4. Cth1 and Cth2 control post-transcriptional regulation of iron-using gene 

transcripts under iron deficiency. Under conditions of iron-starvation (-Fe), Cth1 and Cth2 

bind to specific AU-rich elements in the 3′ untranslated region of mRNAs, leading to their 

degradation. 
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4. Iron homeostasis in S. pombe 

4.1.  Extracellular iron scavenging systems: high-affinity iron uptake 

4.1.1. Reductive iron acquisition system 

Iron bioavailability is restricted in natural environment due to the fact that iron is oxidized 

into insoluble compounds such as ferric oxides. The fission yeast possesses a reductive iron 

scavenging system for high-affinity iron uptake. One of the components of its reductive iron 

acquisition system is the ferricreductase Frp1.  

The function of Frp1 was first described in 1993 when it was discovered that this protein is 

responsible for plasma membrane reductase activity in fission yeast (ROMAN et al. 1993). 

Frp1 reduces ferric iron to its ferrous state. frp1Δ mutant cells show impaired ferric iron 

uptake, whereas ferrous iron uptake remains unaffected. Frp1 shows sequence homology with 

gp91-phox, a membrane component of an oxidoreductase complex that is present in human 

granulocytes. Furthermore, Frp1 exhibits a strong similarity with Fre1 in budding yeast 

(DANCIS et al. 1992; ROMAN et al. 1993; FINEGOLD et al. 1996). Frp1 orthologs in other 

fungal pathogenic species are important virulence factors (JONKERS et al. 2011).  

The high-affinity iron transport system requires two other components, Fio1 and Fip1. Fio1 

is a plasma membrane multicopper oxidase, which re-oxidizes the reduced iron by Frp1 into 

ferric ion (ASKWITH and KAPLAN 1997). Ferric iron is then transported across the plasma 

membrane by Fip1, an iron permease. S. pombe Fio1 and Fip1 proteins show sequence 

homology and share similar functions with their counterparts in S. cerevisiae, Fet3 and Ftr1, 

respectively. When both S. pombe fio1+ and fip1+ genes are expressed in a S. cerevisiae fet3Δ 

mutant strain, restoration of iron transport is observed. This demonstrates that both oxidase 

and permease activities are required for reconstitution of high-affinity iron transport in yeasts 

(ASKWITH and KAPLAN 1997). Interestingly, both fio1+ and fip1+ genes are under the control 
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of a common promoter in the S. pombe genome. Furthermore, their expression is 

transcriptionally regulated by the cellular iron status (ASKWITH and KAPLAN 1997). 

 

4.1.2. Non-reductive iron acquisition system 

In order to warrant a delicate supply of iron, S. pombe acquires iron through siderophores. 

Siderophores are low molecular weight chemical compounds with strong iron (ferric) 

chelating ability (NEILANDS 1993). Several organisms including bacteria, fungi and some 

plants synthesize and utilize siderophores to counteract the problem of iron bioavailability in 

the environment. With the exception of a novel polycarboxylate type siderophore 

(Rhizopherine) synthesized by zygomycetes (THIEKEN and WINKELMANN 1992), the 

majority of fungal species produce a particular type of siderophore that belongs to the class 

of hydroxamates (VAN DER HELM and WINKELMANN 1994). Fungal hydroxamates are 

derivatives of ornithine, an amino acid not coded by DNA (non-proteinogenic). They are 

divided into four structural families: (I ) rhodotorulic acid, (II) fusarinines, (III ) coprogens, 

and (IV) ferrichromes (HAAS et al. 2008). 

Although most of the fungi produce more than one siderophores for iron acquisition and 

storage (HAAS et al. 2008), ferrichrome is the only one that is produced by S. pombe 

(SCHRETTL et al. 2004). Unlike S. cerevisiae, which is unable to produce siderophores, S. 

pombe possesses all the machinery that is required for their biosynthesis (SCHRETTL et al. 

2004). The first enzyme of the ferrichrome synthesis pathway is the L-Ornithine N5-

oxygenase, Sib2, which catalyzes N-hydroxylation of the precursor L-orthinine to form N5-

hydroxy-L-ornithine. Sib2 protein exhibits sequence homology with A. nidulans SidA 

(EISENDLE et al. 2003) and was predicted to share common features of amino acid 
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hydroxylases, including (i) a flavine adenine dinucleotide (FAD)-binding domain, (ii) a 

nicotinamide adenine dinucleotide phosphate (NADP)-binding domain, and (iii) a domain 

anticipated to be involved in substrate binding (SCHRETTL et al. 2004). The next step is N5- 

acylation of N5-hydroxyornithine, which is accomplished with the attachment of an acyl 

group from acyl-CoA derivatives by N5-transacylases, a gene product of SPBC17G9.06c in 

the fission yeast. From here the pathway is divided depending on the choice of acyl group 

that produces hydroxamate siderophores (HAAS et al. 2008). In the final step of ferrichrome 

biosynthesis, the hydroxamates are covalently linked to peptides by a non-ribosomal peptide 

synthetase (NRPS) termed Sib1. Sib1 adds amino acid glycine to hydroxamate groups and 

produces ferrichrome (Figure 5) (SCHWECKE et al. 2006).  

S. pombe mutant sib1Δsib2Δ strains show severe growth impairment during iron deficiency. 

Cellular growth can be restored by adding exogenous ferrichrome ((MERCIER and LABBÉ 

2010). Therefore, ferrichrome synthesis is an important property of fission yeast in terms of 

extracellular iron acquisition. Ferrichrome also serves as an iron storage molecule during iron 

replete conditions (SCHRETTL et al. 2004).  
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Figure 5. Ferrichrome biosynthesis pathway in the fission yeast S. pombe 

In addition to the ability to produce and excrete ferrichrome, three siderophore transporters 

have been identified in S. pombe. They are denoted as Str1, Str2 and Str3. Moreover, they 

differ in their substrate preference (PELLETIER et al. 2003). The expression of these 

siderophore transporters is repressed by iron. In contrast, they are induced under low-iron 

conditions. The siderophore transporter Str1, a protein of 614 amino acids, contains 14 

transmembrane domains. Str1 exhibits  significant sequence homology and shares common 

structural features with four siderophore transporters that have been previously identified in 

S. cerevisiae (PELLETIER et al. 2003; LABBÉ et al. 2007). When str1+ gene is ectopically 

expressed under the control of a heterologous promoter in S. cerevisiae fet3Δ arn1-4Δ mutant 

cells, Str1 transports ferrichrome. On the other hand, Str1 fails to transport other types of 

siderophores (PELLETIER et al. 2003). Similar experiments with S. cerevisiae fet3Δ arn1-4Δ 

mutant cells have revealed that Str2 mobilizes ferroxiamine B-iron in a highly efficient 
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manner, although it is able to transport ferrichrome-iron complexes in a lower magnitude 

(PELLETIER et al. 2003). In the case of Str3, its substrate specificity has not yet been defined 

(PELLETIER et al. 2003).  

 

4.2. Intracellular iron storage system 

Yeast vacuoles serve as an important storage depot for essential transitional metals such as 

zinc, copper and iron (RAMSAY 1997; SZCZYPKA et al. 1997). This is not only to supply these 

metal ions during deficiency, but also to prevent cells from the toxic effect of excess cytosolic 

metal ions (RAMSAY 1997; REES et al. 2004; SIMM et al. 2007; SINGH et al. 2007). In S. 

pombe, the vacuole iron transporter is Pcl1. It belongs to the DUF125 transmembrane protein 

family. Pcl1 possesses significant sequence homology, especially within two regions that 

encompass five transmembrane domains, with other members of the DUF125 family, e.g. 

Ccc1 from S. cerevisiae (MERCIER et al. 2006). The pcl1+ gene transcription is induced in 

the presence of excess iron. pcl1Δ disrupted mutant cells show hypersensitivity to iron as 

compared to wild type cells. Similar observations have been reported for Ccc1 in the budding 

yeast (MERCIER et al. 2006). Consistent with the role of Pcl1 as an iron storage transporter in 

the vacuole, it has been observed that pcl1Δ mutant cells can store less iron than the wild-

type cells (POULIOT et al. 2010).  

Due to the absence of functional homologs of S. cerevisiae Fth1/ Fet5 proteins, S. pombe 

vacuolar iron export mechanisms seem to function in a novel way (POULIOT et al. 2010). In 

fission yeast, an active export of iron from the vacuole to the cytosol is mediated by the Abc3 

protein which shares significant sequence homology with the ABCC subfamily of ATP-
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binding cassette transporters (POULIOT et al. 2010). Expression of abc3+ is induced under 

iron deprivation conditions. It could mobilize vacuolar iron to satisfy cytosolic iron 

requirements. abc3Δ mutant cells also exhibit a significant increase of cell surface Frp1 

ferrireductase activity (POULIOT et al. 2010). The discovery of Abc3 in S. pombe opens the 

door to perform more detailed studies in other similar ABC-like proteins that are found in 

filamentous yeasts. Like Abc3 in S. pombe, they are regulated by iron and may play a similar 

role in iron homeostasis. 

A summary of iron acquisition systems in fission yeast has been illustrated in Figure 6.

 

A 
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Figure 6. Proposed model for iron transport in S. pombe. (A) Upon iron starvation (-Fe), 

components of the reductive iron acquisition system (Frp1, Fio1 and Fip1) and siderophore-

iron transporters (Str1, Str2 and Str3) are activated, leading to acquisition of iron from the 

extracellular environment. Moreover, the vacuolar iron transporter Abc3 is also activated to 

supply stored iron from the vacuole to the cytosol. (B) Under iron-replete conditions, the 

GATA-type transcription factor Fep1 along with co-repressors Tup11/12 (discussed in the 

section 4.3) bind to the DNA to repress all the components of reductive and non-reductive 

iron transport systems at the level of transcription. In contrast, Pcl1 that encodes for a 

vacuolar iron transporter is transcriptionally induced under iron-replete conditions. Figure 

modified from the original (LABBÉ et al. 2007; LABBÉ 2010). 

 

 

 

B 
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4.3. Iron transport regulation: role of Fep1 

In S. pombe, under iron-replete conditions, genes that encode components of reductive, non-

reductive and vacuolar iron transport systems are repressed by the GATA-type transcription 

factor Fep1 (PELLETIER et al. 2002, 2003; POULIOT et al. 2010). Although Fep1 constitutively 

localizes to the nucleus (PELLETIER et al. 2005), its binding to the chromatin is strictly iron-

dependent and is lost when iron is depleted  (JBEL et al. 2009). Iron-mediated transcriptional 

repression by Fep1 is achieved through its recognition of the cis-acting element (A/ 

T)GATA(A/T) in the promoter of target genes (PELLETIER et al. 2002, 2003). The Fep1-

dependent repression appears to be stronger when the cis-acting DNA element is ATC(A /T) 

GATAA (POULIOT et al. 2010). The amino-terminal region of Fep1 possesses two 

Cys2/Cys2-type zinc fingers (ZF1 and ZF2) which are involved in its association with DNA 

(PELLETIER et al. 2005). It has been shown that ZF2 is essential to allow Fep1 to interact with 

the DNA sequence 5’-(A/T)GATA(A/T)-3’. Moreover, it has been shown that the amino-

terminal ZF1 increases the Fep1 DNA binding activity by approximately fivefold (PELLETIER 

et al. 2005). Interestingly, the N-terminal region (1-241 amino acids) of Fep1is highly similar 

to other members of iron-responsive GATA-type transcriptional repressors found in 

filamentous fungi such as Urbs1 in Ustaligo maydis (AN et al. 1997a; b), SRE in Neurospora 

crassa (ZHOU and MARZLUF 1999), SREA in Aspergillus nidulans (HAAS et al. 1999), SREP 

in Penicillium chrysogenum (HAAS et al. 1997), Sre1 in Histoplasma capsulatum (PATHOGEN 

et al. 2008) and Sful in Candida albicans (LAN et al. 2004). A conserved N-terminal 27-

amino acid fragment between the two zing fingers, bearing four highly conserved Cys 

residues, plays a critical role for the iron sensing by Fep1. It also participates in its DNA 

binding activity (Figure 7) (PELLETIER et al. 2005). Mutation of these four conserved cysteine 
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residues leads to the failure of Fep1 to repress its target genes under iron excess conditions 

(PELLETIER et al. 2005). 

The C-terminal region of Fep1 is also critical for iron-dependent transcriptional repression. 

The 522-536 amino acid region of Fep1 contains a leucine-zipper motif that allows the 

formation of Fep1-Fep1 homodimers (Figure 7) (PELLETIER et al. 2005). Mutation in this 

region of Fep1 abolishes its ability to form homodimers, leading to reduced transcriptional 

repression by Fep1 (PELLETIER et al. 2005). Moreover, the function of Fep1 as a 

transcriptional repressor depends on two corepressors, Tup11 and Tup12 (Figure 6) 

(PELLETIER et al. 2002). Deletion of both of these genes results in the abolition of the ability 

of Fep1 to exert transcriptional repression even under iron-replete conditions (PELLETIER et 

al. 2002; ZNAIDI et al. 2004). The C-terminal region of Fep1 (405-541) is critical for its 

association with Tup11 (Figure 7). Tup11 harbors WD40-repeat sequence motifs, which are 

required for its interaction with Fep1 (ZNAIDI et al. 2004). The Tup12 protein also interacts 

with Fep1, but its minimal region that is required for physical association with Fep1 has not 

yet determined (LABBÉ et al. 2007, 2013). Interestingly, the ortholog (Tup1) of Tup11/12 

that is present in the pathogenic yeast Candida albicans, is also involved in iron-mediated 

transcriptional repression of iron transport genes (KNIGHT et al. 2002). 
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Figure 7. Schematic representation of Fep1. Two zinc finger motifs are designated as ZF1 

and ZF2, four conserved cysteine residues are located within the region (68-94) between ZF1 

and ZF2, a coiled-coil region (522-536) is required for the formation of Fep1 homodimer. 

Furthermore, a region encompassing amino acid residues 405-541 is required for the Fep1-

Tup11 association.  

 

4.4. The CCAAT binding complex (CBC) and its role in iron homeostasis 

The CCAAT motif is present frequently in the eukaryotic promoter regions ranging from 

yeast to mammals. Statistical analysis reveals that 30% of eukaryotic promoters possess a 

cis-acting sequence CCAAT (BUCHER 1990). CCAAT sequences are bound by a variety of 

evolutionary conserved transcription factors, often in a heterotrimeric form, designated as the 

CCAAT-binding complex (CBC). In eukaryotes, CBC can modulate a variety of genes that 

encode for components involved in specific metabolic pathways (RAYMONDJEAN et al. 1988; 

SANTORO et al. 1988; JOHNSON and MCKNIGHT 1989). One of the unique features of CBC is 

that all three protein subunits are required for the formation of the DNA binding complex; 

this has been well demonstrated in budding yeast, filamentous fungi and humans (MCNABB 

et al. 1995; BELLORINI et al. 1997; STEIDL et al. 1999).  
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CCAAT-binding factors play a crucial role in iron homeostasis in several filamentous fungi 

and in fission yeast by repressing genes encoding iron-using proteins during iron deprivation, 

thereby conferring iron economy (LAN et al. 2004; MERCIER et al. 2006; HORTSCHANSKY et 

al. 2007). The Hap complex was first discovered in the budding yeast S. cerevisiae where 

Hap2, Hap3 and Hap5 form the core CBC to bind DNA and Hap4 is involved in the 

transcriptional activation of the complex (MCNABB et al. 1995); although in budding yeast 

the CBC complex has no direct implication in iron homeostasis under conditions of iron 

starvation. 

 During iron deficiency, A. nidulans CBC plays a critical role in the down regulation of genes 

encoding iron-using proteins. Under low-iron conditions, the  HapX protein physically 

interacts with CBC, resulting in negative regulation of gene expression (HORTSCHANSKY et 

al. 2007). A mutual transcriptional control was also observed between HapX (homolog of 

Php4) and GATA-type transcription factor SreA in A. nidulans (HORTSCHANSKY et al. 2007). 

In a recent study, a similar reciprocal transcriptional regulation was reported in a soil-borne 

fungal pathogen Fusarium oxysporum (LOPEZ-BERGES et al. 2012). In F. oxysporum, the 

CCAAT-binding factor HapX has a similar function as its counterpart (HapX) from A. 

nidulans. Furthermore, its function is required for plant infection. Deletion of hapXΔ  does 

not affect the iron uptake machinery, but leads to impaired growth under iron-scarce 

conditions (LOPEZ-BERGES et al. 2012). Likewise, the CCAAT-binding homologous protein 

HapX in A. fumigatus mediates transcriptional remodeling when fungal cells face iron 

starvation; this adaptation is crucial for yeast virulence (SCHRETTL et al. 2010). In Candida 

albicans, a HapX homolog is named as Hap43. It is activated under low-iron conditions. 

Hap43 also acts as an iron-dependent negative regulatory repressor when it is bound to CBC. 
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Its participation in iron sparing response is required for rendering C. albicans virulent and 

pathogenic (HSU et al. 2011).  

In S. pombe, Php2/3/5 (Hap2/3/5 orthologs) compose the core CBC.  Php4 (HapX ortholog) 

is a subunit of the CBC. It exerts a negative regulatory function on gene expression of iron-

using proteins during iron scarcity (MERCIER et al. 2006). The expression of php4+ is 

repressed by Fep1 when cells are grown under iron-replete conditions. When iron is 

sufficient, Php4 is not only inactivated at the transcriptional level, but also at the post-

translational level (MERCIER et al. 2006, 2008). Microarray data analysis reveals that during 

iron deprivation, Php4 is able to repress 86 genes, including genes encoding the TCA cycle 

components, electron transport chain proteins, amino acid biosynthesis enzymes, and iron-

sulfur cluster biogenesis proteins. Thus, Php4 plays a key regulatory role in iron economy 

(MERCIER et al. 2008). The following sections will explain in more detail the iron-mediated 

regulatory function of Php4, its subcellular localization and its iron-dependent inactivation 

mechanism. 
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5. Php4, a subunit of CBC, plays a critical role in iron economy 

Budding yeast S. cerevisiae experiences a metabolic reprogramming during iron deprivation 

conditions. Two proteins, designated Cth1 and Cth2, promote the degradation of many mRNAs 

encoding proteins involved in Fe-dependent metabolic pathways, which leads to optimize iron 

utilization (Discussed in the section 3.3) (MARTÍNEZ-PASTOR et al. 2013). In bacteria, small RNAs 

are responsible for down-regulating mRNAs of iron-using proteins to repress iron-dependent 

metabolic pathways under iron deficiency (JACQUES et al. 2006; DESNOYERS et al. 2013). However, 

in fission yeast, regulation of iron sparing response is controlled by a regulatory subunit of the 

CCAAT-binding factor, denoted as Php4. The mechanism of action of Php4 and the importance of 

its function during iron deficiency will be described in detail in the following sections.  

 

5.1. Php4 subunit 

In S. pombe, a group of genes are repressed during iron deficiency and the conserved cis-

acting regulatory sequence CCAAT has a significant role in this action (MERCIER et al. 2006). 

The CCAAT sequence is recognized by a hetero-protein complex composed of Php2, Php3 

and Php5 (MCNABB et al. 1997). These proteins are constitutively expressed and form the 

core constituents of the CBC. However, they are not sufficient to exert transcriptional 

repression under iron deficiency. A fourth subunit, Php4, harboring a functional repression 

domain, triggers transcriptional repression activity when associated with Php2/3/5 subunits 

under iron-depleted conditions. Php4 itself is unable to bind DNA directly. Expression of 

php4+ is induced under iron starvation, whereas it is repressed under iron-replete conditions 

(MERCIER et al. 2006, 2008).  
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Using computational analysis of the S. pombe whole genome sequence, Php4 was first 

predicted to be a putative S. cerevisiae Hap4 homolog (SYBIRNA et al. 2005). Php4 harbors 

a conserved 16-amino acid region (26RVSKQWVVPPRPKPGR41) that is also present in that 

of Hap4. This conserved motif is required for the association of Hap4 with the Hap2/3/5 

heterocomplex in S. cerevisiae. However, the rest of Php4 protein shares a limited overall 

sequence homology with that of Hap4 (MCNABB and PINTO 2005; MERCIER et al. 2006). 

 

5.2. Php4 regulon 

Three genes encoding iron-using proteins, pcl1+ (encoding an iron storage protein), sdh4+ 

(encoding a protein involved in the TCA cycle), and isa1+ (encoding a protein involved in  

the iron-sulfur cluster biogenesis), were primarily found to be down-regulated during iron 

deficiency (MERCIER et al. 2006). It has also been demonstrated by genetic studies that the 

presence of Php4 is essential for transcriptional repression of those genes under iron 

starvation conditions (MERCIER et al. 2006). Later, microarray analyses were performed and 

identified several additional genes that are differentially regulated by Php4 in response to 

iron starvation. The genome-wide picture reveals that 86 genes are down-regulated by Php4 

in response to iron depletion (MERCIER et al. 2008). Among these 86 genes, 55 encode 

proteins that have been assigned a probable function in iron-related processes, including the 

TCA cycle, mitochondrial respiration, heme biosynthesis, amino acid biosynthesis, and 

oxidative stress defense. All of those Php4 target genes possess one or more potential 

CCAAT sequence in their promoters (MERCIER et al. 2008). Under iron depleted conditions, 

Php4 is associated with the Php2/3/5 heterotrimer on a CCAAT sequence and exerts its 

negative regulatory function to repress gene expressions (Figure 8). 
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Figure 8. Php4 plays a significant role in the transcriptional regulation of genes 

encoding iron-using proteins in S. pombe. In fission yeast, the CCAAT-binding factor is a 

multi-subunit complex that is composed of Php2, Php3, and Php5. Under low-iron 

conditions, Php4 acts as a negative regulatory subunit of the CCAAT-binding factor and 

fosters repression of genes encoding iron-using proteins. Under conditions of iron excess, 

Php4 expression is turned off by GATA-type transcription factor Fep1, resulting in the de-

repression of genes encoding iron-using proteins. 

 

5.3. Iron-dependent subcellular localization of Php4 and its post-translational 

regulation 

The function of Php4 is regulated at different levels. As already described, the expression of 

Php4 is transcriptionally regulated by the iron-dependent repressor Fep1(MERCIER et al. 

2006). Moreover, Php4 also undergoes an iron-dependent post-translational regulation that 

requires the action of the monothiol glutaredoxin Grx4 (MERCIER et al. 2008; MERCIER and 

LABBÉ 2009). This regulation of Php4 is critical for its subcellular localization, as well as its 

inactivation by iron. In the presence of excess iron, Php4 is exported from the nucleus to the 
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cytosol, while under iron deficiency, Php4 accumulates in the nucleus (MERCIER and LABBÉ 

2009). 

The mechanism underlying the Php4 nuclear export in response to excess iron has been 

characterized (MERCIER and LABBÉ 2009). A functional leucine-rich (93LLEQLEML100) 

nuclear export sequence (NES) has been identified within Php4, which is necessary for its 

iron-mediated nuclear export (MERCIER and LABBÉ 2009). The export of Php4 also requires 

the action of two other proteins: the monothiol glutaredoxin Grx4 and the exportin Crm1. 

Grx4 is an interacting partner of Php4 during its nuclear export. Grx4 is also required for iron 

inhibition of Php4 function (MERCIER and LABBÉ 2009). In grx4Δ mutant cells, Php4 exhibits 

a constitutive nuclear localization and represses target gene expression irrespective of the 

cellular iron status. Further studies have revealed that the thioredoxin (TRX)-like domain of 

Grx4 constitutively interacts with Php4, whereas the glutaredoxin (GRX)-like domain of 

Grx4 associates with Php4 only under iron-replete conditions (VACHON et al. 2012).  Site-

directed mutagenesis revealed that Cys 172 of Grx4 and two conserved cysteine residues, 

Cys 221 and Cys 227, in Php4 are required for the iron-dependent association of GRX domain 

and Php4. The GRX-Php4 interaction would prevent Php4 to associate with the hetero-

complex Php2/3/5, leading to its release and subsequent export from the nucleus to the 

cytosol by the exportin Crm1. The leucine-rich NES in Php4 is recognized by Crm1 and leads 

to the export of the protein from the nucleus to the cytoplasm. In the presence of the Crm1-

inhibitor leptomycin B, the nuclear export mechanism is abolished and this results in a 

permanent nuclear accumulation of Php4 (MERCIER and LABBÉ 2009). 

In contrast, when cells are exposed to iron-depleted conditions, Php4 is imported inside of 

the nucleus where it could exert its negative regulatory function. To date, its nuclear import 
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mechanism is unclear. My studies mainly focused to unveil the mechanism underlying the 

nuclear localization of Php4 during iron starvation conditions. My results are presented in 

the result section. 

 

6. Role of monothiol glutaredoxin and BolA-like proteins in iron homeostasis  

Monothiol glutaredoxins (Grxs) with a conserved CGFS active site and BolA-like proteins, 

have become recognized as novel players in iron homeostasis. Their functions include 

intracellular iron signaling, iron trafficking, and maturation of Fe−S cluster proteins. Studies 

on CGFS Grxs and BolA-like proteins using model organisms S. cerevisiae and S. pombe 

have provided a framework for understanding many aspects of iron regulation at the cellular 

level (LI and OUTTEN 2012). Given the widespread distribution of BolA-like proteins and 

CGFS Grx homologs in other prokaryotes and eukaryotes, it is of paramount importance to 

uncover their involvement in iron homeostasis. The following sections will address the roles 

of CGFS Grxs and BolA-like proteins in the regulation of iron metabolism in both budding 

and fission yeast. 

 

6.1. Role of Grx3/4 and Fra2 in iron homeostasis in budding yeast 

Grxs can be of single- or multi-domains, with an N-terminal thioredoxin (TRX)-like domain 

and a C-terminal glutaredoxin (GRX)-like domain. In S. cerevisiae, Grx5 plays a crucial role 

in mitochondrial iron-sulfur cluster synthesis. In the cases of Grx3 and Grx4, they participate 

in sensing of cellular iron status, cytosolic iron trafficking, and in communicating the 
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presence of iron to iron-responsive transcription factors (ROUHIER et al. 2010; MÜHLENHOFF 

et al. 2010).  

Out of three subfamilies of BolA-like proteins (BolA1-, BolA2-, and BolA3-), BolA1-like 

proteins are found in both prokaryotes and eukaryotes, whereas the BolA2- and BolA3-like 

proteins are found only in eukaryotes (LI and OUTTEN 2012). In S. cerevisiae, a role for Fra2 

(a BolA2-like protein) in iron homeostasis has been revealed based on a phenotypic analysis 

of FRA-deleted mutant cells. fra2Δ mutant cells exhibited aberrant regulation of iron 

metabolism, including accumulation of mitochondrial iron, constitutive siderophore, and 

ferrous iron uptake (LESUISSE et al. 2005). In S. cerevisiae, Aft1 and Aft2 are the transcription 

factors that regulate the expression of genes encoding proteins involved in iron transport and 

distribution (Discussed in the section 3.2.1). Under iron-replete conditions, Fra2 along with 

Grx3/4 inhibit the function of Aft1 and Aft2 through an iron-dependent mitochondrial 

inhibitory signal  that leads to the nuclear export of Aft1/Af2 (UETA et al. 2007; KUMÁNOVICS 

et al. 2008). Under iron starvation conditions, due to the interruption of mitochondrial Fe−S 

cluster biogenesis, the Fra-Grx complex can no longer inhibit the activity of Aft1/2, resulting 

in their accumulation within the nucleus and subsequent activation of the iron regulon. The 

interaction between Fra2 and Grx3/4 has been characterized, revealing that Fra2 forms [2Fe-

2S]2+ -bridged heterodimers with Grx3 and Grx4 (LI et al. 2009a, 2011). A recent study also 

confirmed the nature of the Fra2−Grx3/4 heterodimer, revealing that the conserved Cys 

residue of the CGFS active site in Grx3/4, a conserved His in Fra2 (His103), and a Cys from 

GSH provide the iron ligands in the Fra2−Grx3/4 heterodimer (LI et al. 2011). It is 

indisputable that the Fra2-Grx3/Grx4 heterodimer has a significant role in the inhibition of 

Aft1/2, and plays a key role in regulating iron homeostasis in S. cerevisiae. 
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6.2. Role of Grx3/4 and Fra2 for iron homeostasis in S. pombe 

Under iron starvation, the S. pombe CGFS monothiol glutaredoxin Grx4 exerts a negative 

regulatory action on Fep1 activity. Mutant cells lacking grx4Δ exhibit a permanent Fep1 

occupancy on chromatin, leading to a constitutive repression of iron transport genes (JBEL et 

al. 2011). It has been demonstrated that the TRX-like domain of Grx4 strongly interacts with 

the C-terminal region of Fep1 in an iron-independent manner, whereas the GRX-like domain 

associates with the N-terminal region of Fep1 in an iron-dependent manner. Further analysis 

revealed that Cys35 of Grx4 (located within the TRX-like domain, WAAPCK motif) is 

required for the interaction between the C-terminal region of Fep1 and the TRX domain, 

whereas Cys172 of Grx4 (located within the conserved CGFS motif) is essential for the 

interaction between the Fep1 N-terminus and the GRX domain. The molecular mechanism 

underlying the cross-talk between Grx4 and Fep1 is still unknown. Protein-protein interaction 

assays have revealed that under low-iron conditions, the GRX domain associates with the N-

terminal DNA-binding domain of Fep1. This Fep1-GRX interaction would foster 

conformational changes that cause interference with Fep1’s ability to associate with its 

GATA recognition sequences. Consequently, Fep1 would be unable to trigger repression of 

its target genes. In contrast, under conditions of high iron levels, it is predicted that two GRX 

domains of Grx4 can generate [2Fe-2S]-bridged homodimers with the coordination of two 

cysteine ligands (from each CGFS motif) along with the aid of two cysteines from glutathione 

(GSH) molecules (PICCIOCCHI et al. 2007; BANDYOPADHYAY et al. 2008; IWEMA et al. 2009) 

. Thus, the N-terminal region of Fep1 would be available to bind chromatin and functions as 

a transcriptional repressor, shutting down gene expression. 



40 
 

Studies also suggest that Grx4 exerts an inhibitory effect on Php4 function in an iron-

dependent manner (Discussed in the section 5.3) (MERCIER and LABBÉ 2009; VACHON et al. 

2012). Under conditions of excess iron, the GRX domain interacts with Php4. Php4 is 

exported from the nucleus to the cytosol by exportin Crm1, resulting in the inactivation of 

Php4 function. In contrast, under iron starvation conditions, the GRX domain can no longer 

interact with Php4, which would lead to its association with Php2/3/5, thereby allowing Php4 

to repress target gene expression of iron-using proteins. 

To date, the role of BolA homologues in the regulation of iron homeostasis is poorly 

understood in fission yeast. A recent study has demonstrated the role of Fra2 as a co-regulator 

of Fep1 activity during iron deficiency (JACQUES et al. 2014). Results have demonstrated that 

Fra2 exhibits a negative regulatory action on Fep1 activity under iron starvation. Mutant cells 

lacking fra2+ (fra2Δ) invariably activate Fep1 and allow Fep1 to bind promoters of target 

genes, resulting in their constitutive repression. Microscopic analyses reveal that Fra2 is 

localized throughout the cells under both iron deficient and iron-replete conditions, although 

a significant proportion of Fra2 is detected in nuclei. This permits Fra2 to be available for 

interactions with Grx4 and Fep1 in the nucleus. Coimmunoprecipation analyses have 

confirmed that Fra2, Grx4 and Fep1 form a heteroprotein complex in cells. Furthermore, in 

vivo BiFC experiments revealed that Fra2 associates with Fep1 in nuclei. All these findings 

suggest that under iron deficiency, Fra2 plays an important role to inactivate Fep1. Further 

investigations are required to discover the detail molecular mechanism underlying this Fra2-

mediated inactivation of Fep1.   
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7. Nucleo-cytoplasmic trafficking of proteins 

Synthesis of proteins take place in the cytoplasm, but some proteins need to be translocated 

into the nucleus to accomplish important cellular functions (e.g. gene control through 

transcriptional regulation). As like other eukaryotic cells, transport of S. pombe 

macromolecules between the cytoplasm and the nucleus occurs through the nuclear pore 

complex (NPC).  The NPC is composed of about 30 different proteins (nucleoporins). It 

forms a  gateway that facilitates the nucleo-cytoplasmic exchange of soluble proteins 

(SOROKIN et al. 2007; HOELZ et al. 2011). Several factors have been identified and found to 

be involved in nucleo-cytoplasmic trafficking of proteins. This includes karyopherins 

(transport receptors), nuclear localization signal (NLS) for nuclear import of cargo proteins, 

nuclear export signal (NES) for nuclear export of cargo proteins and GTPase Ran that 

regulates the interaction between karyopherin and cargo proteins (SOROKIN et al. 2007). This 

section will describe the detailed mechanisms underlying nuclear import of proteins.  

 

7.1. Nuclear localization sequence (NLS) triggers nuclear import of proteins 

Nuclear import of proteins is a regulated process in eukaryotes. Proteins to be imported into 

the nucleus often possess nuclear localization signals (NLSs) that are recognized by carrier 

proteins, termed importins or karyopherins. Importins can distinguish cargo proteins targeted 

for nuclear localization from other cellular proteins through the recognition of NLSs (LANGE 

et al. 2007). Typically, NLSs consist of one or more short basic amino acid sequences and 

were first described for their role in the nuclear import of simian virus 40 (SV40) T antigen 

and nucleoplasmin (DINGWALL et al. 1982; KALDERON et al. 1984).  
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Based on the NLS’s recognition by the adaptor protein (importin α), there are two types of 

classical NLSs (cNLSs) that have been identified (LANGE et al. 2007). The monopartite cNLS 

consists of single stretches of basic amino acid residues, whereas in bipartite cNLSs two basic 

clusters are separated by a 10-12 short, non-conserved amino acid spacer. Monopartite NLSs 

can be of two types; one has at least four consecutive basic amino acids and the second type 

has only three basic amino acid residues present in a loose consensus sequence (K-K/R-X-

K/R). A number of experimentally defined NLSs do not match the classical consensus 

sequence. Furthermore, some other NLSs that match consensus sequences could be found 

non-functional (LANGE et al. 2007).  

Recently, a new consensus sequence called PY-NLS has been identified apart from classical 

NLSs. It is recognized by the Kapβ transport receptor. PY-NLS consensus sequence consists 

of  a hydrophobic or basic region followed by an arginine (R)/lysine (K)/histidine (H), then 

a proline and tyrosine (R/K/H-X(2–5)-PY) (LEE et al. 2006). Several RNA binding proteins 

that shuttle between nucleus and cytoplasm have been reported to possess PY-NLS motifs 

(LANGE et al. 2008; TWYFFELS et al. 2013; MALLET and BACHAND 2013). 

 

7.2. Role of karyopherin α/β in transporting cargo protein bearing NLSs 

Karyopherins are a group of proteins that play a crucial role in the nuclear import of proteins 

that possess NLSs. There are two types of karyopherins: karyopherin-α (Kap α) and 

karyopherin-β (Kap β). Kap β can be further subdivided into Kap β1 and Kap β2. In nuclear 

import pathways, Kap β1 is involved in the recognition of cNLSs along with a Kap α adaptor, 

whereas Kap β2 recognizes only PY-NLSs containing cargo proteins (MARFORI et al. 2011). 
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During the nuclear transport, kap-α first binds to cargo proteins bearing NLSs. Kap α can 

also bind to Kap β in the cytoplasm through its N-terminal importin-beta-

binding (IBB) domain. Then, Kap β interacts with the components of the NPC and, 

subsequently, the heterotrimer complex is transported through the NPC. Translocation is an 

active process involving the GTPase Ran and other accessory molecules. This multi-step 

process involves hydrolysis of GTP molecules. After translocation into the nucleoplasm, at 

some point, the cargo protein dissociates from the importins, which are recycled into the 

cytoplasm (Figure 9) (CHOOK and BLOBEL 2001; KUERSTEN et al. 2001). 

 

Figure 9. Schematic representation of nuclear protein import. 
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In S. cerevisiae, Srp1 is the only Kap α that can translocate NLS-bearing cargo proteins, 

whereas 10 out of the 14 known Kap βs are involved in nuclear import (TRAN et al. 2007). 

In contrast, two members of the Kap α family of proteins have been characterized in S. 

pombe: Cut15 and Imp1. Both proteins can efficiently import classical monopartite and 

bipartite NLS-containing cargo proteins (UMEDA et al. 2005). Moreover, there are 12 

candidate Kap βs that have been identified in fission yeast through gene bank annotation, 

most of them are still uncharacterized (WOOD et al. 2002). Studies have shown that Sal3, a 

member of the Kap β family, is involved in the nuclear accumulation of Cdc25 (mitotic 

regulator phosphatase) (CHUA et al. 2002) as well as in the nuclear import of Clp1 (a key 

player for phosphatase regulation during mitotic exit and cytokinesis) (CHEN et al. 2013). 

Sal3 is also required for the nuclear import of Rdp1, a RNA-dependent RNA polymerase, 

which plays a critical role in the RNA interference pathway (PARK et al. 2012). Nuclear 

localization of nuclear poly(A)-binding proteins (PABPs) in fission yeast is mediated by 

another Kap β member, named Kap104 (a Kap β2-type receptor) (MALLET and BACHAND 

2013). 
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8. Hypothesis and research objectives: 

It is evident that the iron-responsive transcription factor Php4 plays a crucial role in iron 

economy in fission yeast. We already learned about the iron-dependent inactivation of Php4 

and its subsequent nuclear-to-cytosolic export, which relies on Grx4 and Crm1. However, 

how Php4 translocates inside the nucleus under iron starvation conditions is still unknown. 

My studies were designed to identify the factors underlying the nuclear import of Php4. 

Objectives of my project were: 

1. To identify the role of other CCAAT-binding subunits (Php2/3/5) in the nuclear 

localization of Php4. 

2. To identify functional nuclear localization sequences in Php4.  

3. To identify karyopherins (α/β) that can recognize NLSs and then mediate nuclear 

import of Php4 under iron starvation conditions. 
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RESULTS 

Résumé 

La protéine Php4 possède la propriété de se déplacer entre le cytosplasme et le noyau selon le 

statut cellulaire en fer. En conditions de carence en fer, Php4 est nucléaire, alors que sa 

localisation est cytoplasmique lorsque le fer est abondant. Lorsque qu’elle se localise au noyau, 

Php4 s’associe au complexe protéique liant les boîtes CCAAT afin de réprimer l’expression des 

gènes codant pour des protéines qui requièrent du fer comme co-facteur. Dans cette présente 

étude, nous montrons que l’importation nucléaire de Php4 se déroule de façon indépendante et 

ne requiert pas la présence des autres sous-unités protéiques qui composent le complexe CCAAT. 

L’importation nucléaire de Php4 requiert deux signaux de localisation nucléaire (NLSs) qui se 

retrouvent d’une part, entre les acides aminés 171 et 174 (KRIR) et d’autre part, entre les résidus 

234 et 240 (KSVKRVR). Les substitutions spécifiques de ces acides aminés pour des résidus 

alanines empêchent la localisation nucléaire de Php4. Les deux NLSs sont autonomes et 

fonctionnellement redondants. De plus, ils sont suffisants, par eux-mêmes, pour forcer la 

localisation au noyau d’une protéine rapportrice. En conditions de carence en fer, la protéine de 

fusion GFP-Php4, qui, malgré le fait qu’elle est fonctionnelle, se localise que partiellement au 

noyau lorsqu’elle est exprimée dans des cellules imp1 ou sal3 mutantes. Un phénotype 

similaire a également été observé lorsque GFP-Php4 est exprimée chez des cellules exprimant la 

protéine thermosensible Cut15 à une température non permissive pour cette dernière. Des 

analyses d’interactions protéine-protéine ont montré l’existence d’associations protéiques entre 

Php4 et l’une ou l’autre des trois karyophérines : Imp1, Cut15 ou Sal3. Collectivement, les 

résultats indiquent que Php4 peut être reconnue et liée par différentes karyophérines, suggérant 

que son transport au noyau peut s’effectuer par plus d’un sentier d’importation.    
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Abstract 

Php4 is a nucleo-cytoplasmic shuttling protein that accumulates in the nucleus during iron deficiency. 

When present in the nucleus, Php4 associates with the CCAAT-binding protein complex and 

represses genes encoding iron-using proteins. Here, we show that nuclear import of Php4 is 

independent of the other subunits of the CCAAT-binding complex. Php4 nuclear import relies on two 

functionally independent nuclear localization sequences (NLSs) that are located between amino acid 

residues 171 to 174 (KRIR) and 234 to 240 (KSVKRVR). Specific substitutions of basic amino acid 

residues to alanines within these sequences are sufficient to abrogate nuclear targeting of Php4. The 

two NLSs are biologically redundant and are sufficient to target a heterologous reporter protein to the 

nucleus. Under low-iron conditions, a functional GFP-Php4 protein is only partly targeted to the 

nucleus in imp1 and sal3 mutant cells. We further found that cells expressing a temperature-

sensitive mutation in cut15 exhibit increased cytosolic accumulation of Php4 at the nonpermissive 

temperature. Further analysis by pull-down experiments revealed that Php4 is a cargo of the 

karyopherins Imp1, Cut15 and Sal3. Collectively, these results indicate that Php4 can be bound by 

distinct karyopherins, connecting it into more than one nuclear import pathway.  
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Introduction 

In eukaryotic cells, the nucleus is a membrane-enclosed organelle that physically separates genetic 

material and transcriptional machinery from cytoplasm. Although proteins are translated in the 

cytoplasm, several of them play important roles in the nucleus. In order to accomplish their cellular 

function, they must be imported into the nucleus. The way that proteins can be transported into and 

out of the nucleus is through large protein assemblies denoted nuclear pore complexes (NPCs)[1]. 

Although some proteins smaller than ~40-60 kDa can passively diffuse through NPCs, most of the 

proteins with functions in the nucleus are actively transported by specific soluble carrier proteins 

called karyopherins (Kaps) [2,3]. The orientation of transport through NPCs is determined by short 

signal sequences within proteins or cargoes. The nuclear localization signal (NLS) triggers proteins 

into the nucleus, whereas the nuclear export signal (NES) fosters the transport of proteins into the 

cytoplasm [4]. Kaps are responsible for the vast majority of protein flow through NPCs. Kaps are 

classified in two families: Kap  (also known as importin ) and Kap β (also known as importin β) 

[5]. Kap  is an adaptor protein that recognizes two classes of NLSs, which are also called classical 

NLSs [6]. One class, denoted monopartite NLS, is composed of a single cluster of basic amino acid 

residues, whereas the second class, termed bipartite NLS, possesses two clusters of basic amino acid 

residues separated by a 10-12-amino acid spacer. Furthermore, there are two types of monopartite 

NLSs. The first type has at least four consecutive basic amino acid residues in its primary structure, 

whereas the second type possesses the degenerate consensus sequence of K(K/R)X(K/R) [6]. To be 

transported in the nucleus, a protein containing a classical NLS is recognized by a Kap . 

Subsequently, a Kap β1 binds the Kap -cargo-complex to mediate its transport across NPCs. Kap 

β1 interacts with both Kap -cargo-complex and NPC proteins (nucleoporins), thereby targeting the 

cargo to the NPC for its translocation into the nucleus [6,7]. Numerous proteins contain nonclassical 

NLSs. These proteins bind directly and specifically to different Kap β1 homologs that constitute the 

Kap β family [2]. Kap β1 is unique among the Kap β family in its use of Kap  as an adaptor protein. 
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Other members of the Kap β family bind their substrates directly [2]. The dissociation of Kap β-cargo 

complexes is under the control of the GTPase Ran. Inside the nucleus, Ran-nucleotide guanine 

triphosphate (GTP) binds to Kap β-cargo complexes, resulting in the dissociation and release of 

cargoes into the nucleus [8].  

In the fission yeast Schizosaccharomyces pombe, Imp1 and Cut15 are two members of the Kap  

family [9]. In the case of Kap βs, twelve candidates have been annotated from the S. pombe Genome 

Project [10]. Although the majority of them have not yet been characterized, Kap95 is predicted to be 

the ortholog of S. cerevisiae Kap95, which is a Kap β1 [2,11]. Recent studies have also shown that 

Kap104 is a Kap β2-type receptor, which mediates nuclear import of proline-tyrosine (PY)-NLS 

cargoes [12]. Unlike classical NLSs, PY-NLS consensus sequence corresponds to 

basic/hydrophobic]-Xn-R/H/K]-X2-5-PY [12,13]. 

Iron-regulatory transcription factors play fundamental roles by controlling expression of multiple 

genes encoding proteins involved in iron homeostasis. In the model organism S. pombe, regulation of 

iron homeostasis is mainly controlled by two iron-responsive proteins, the GATA-binding 

transcription factor Fep1 and the CCAAT-regulatory subunit Php4 [14]. When iron levels exceed 

those needed by the cells, Fep1 binds to GATA-type cis-acting elements and represses the expression 

of a number of genes involved in iron transport and intracellular iron utilization [15,16]. In contrast, 

Fep1 is unable to bind chromatin in response to iron deficiency [17]. This situation leads to 

transcriptional activation of the Fep1 regulon, which includes the php4+ gene [18,19]. During iron 

starvation, Php4 is synthesized and coordinates the iron-sparing response by repressing many genes 

encoding iron-using proteins [19]. At the molecular level, Php4 regulates its target genes by 

recognition of the CCAAT-binding complex which is constituted of Php2, Php3 and Php5. The 

Php2/3/5 heterotrimer binds CCAAT cis-acting elements whereas Php4 lacks DNA-binding activity. 

Php4 is responsible for the ability of the Php complex to repress transcription as a consequence of its 

association with the heteromeric complex [18,19]. As for Fep1 orthologs, Php4-like proteins are 
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widely distributed in other fungal species. Saccharomyces species is the only group that lacks Php4 

and Fep1 orthologs [20].  

Studies have shown that the monothiol glutaredoxin Grx4 is a binding partner of Php4 and that it 

plays an essential role in inhibiting Php4 function when cells undergo a shift from iron-limiting to 

iron-replete conditions [21,22]. Under conditions of iron abundance, Php4 is exported from the 

nucleus to the cytoplasm. The nuclear export of Php4 requires both exportin Crm1 and Grx4 [21]. 

Consistently, disruption of the grx4+ gene (grx4) results in Php4 being constitutively active and 

invariably located in the nucleus. Although the mechanism by which Grx4 communicates the high 

concentrations of iron to Php4 remains unclear, deletion mapping analysis revealed that the 

thioredoxin (TRX) domain of Grx4 interacts strongly and constitutively with Php4 [22]. Further 

analysis has revealed that, in response to iron repletion, the glutaredoxin (GRX) domain of Grx4 

associates with Php4. A putative mechanism for Grx4-mediated inhibition of Php4 function would be 

that the Php4-GRX domain iron-dependent association disrupts the Php4/Php2/Php3/Php5 

heteromeric complex, leading to Php4 release and its subsequent export from the nucleus to the 

cytoplasm by Crm1. 

Exported Php4 is observed in the cytosol. However, when external growth conditions change and 

cells are exposed to iron-poor conditions, it follows that nuclear localization of Php4 should be re-

established via its import to the nucleus. To address this issue, we have characterized the mechanism 

of cytosolic-to-nuclear import of Php4. In response to iron deficiency, nuclear import of Php4 

occurred and deletion of php2+, php3+ and php5+ (php2 php3 php5) did not cause any defects in 

its nuclear localization. Protein function analysis identified two independent and biologically 

redundant NLSs within Php4. Each NLSs was sufficient to target an unrelated reporter protein to the 

nucleus. Disruption of imp1 or sal3 gene caused GFP-Php4 to partly mislocalize to the cytoplasm 

under low-iron conditions. Similarly, in cells containing a temperature-sensitive mutation of cut15, 

GFP-Php4 was mistargeted to the cytoplasm at the nonpermissive temperature. Further analysis by 
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pull-down experiments showed that Php4 interacted with Imp1, Cut15 and Sal3 in S. pombe. 

Collectively, our findings show that Php4 possesses two nuclear targeting sequences that are used by 

different Kaps for its nuclear import in response to iron starvation. 

 

 

 

 

Materials and methods 

Strains and growth media. S. pombe strains used in this study are listed in Table 1. Cells were grown 

in yeast extract medium plus supplements (YES) containing 0.5% yeast extract, 3% glucose, and 225 

mg/l of adenine, histidine, leucine, uracil and lysine. Strains for which plasmid transformation was 

required were grown in synthetic Edinburgh minimal medium (EMM) lacking specific amino acids 

required for plasmid selection and maintenance [23]. Cells constitutively expressing a GFP-php4+ 

allele were seeded to an A600 of 0.2, grown to mid-logarithmic phase (A600 of 0.5) and then treated 

with either 2,2’-dipyridyl (Dip, 250 μM) or FeCl3 (100 μM), or were left untreated for 3 h, unless 

otherwise stated. When the wild-type or mutant php4 alleles were expressed under the control of the 

nmt1+ promoter, induction of transcription was initiated by removal of thiamine to cells grown to an 

A600 of 0.2. After 12 h of induction, cells were incubated with Dip (250 μM) or FeCl3 (100 μM) for 3 

h. In contrast, to prevent expression of php4 alleles, cells were grown in the presence of thiamine (15 

μM or 45 μM), unless otherwise indicated. In the case of cut15-85ts cells expressing a thermolabile 

Cut15, cells were grown at the permissive temperature (25oC) to an A600 of ~0.4. The cells were then 

shifted to 36oC for 1 h and then further incubated at 36oC in the presence of Dip (250 μM) or FeCl3 

(100 μM) for an additional 3 h. 
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Plasmids. pJK-194*promphp4+-GFP-php4+ plasmid has been described previously [21]. Plasmids 

pJKGFP-1Php488, pJKGFP-1Php4144, pJKGFP-1Php4179, pJKGFP-1Php4218, pJKGFP-152Php4295, 

pJKGFP-188Php4295, pJKGFP-219Php4295, and pJKGFP-245Php4295 were created by cloning different 

truncated versions of the php4+ gene into pJK-194*promphp4+-GFP-php4+. Different lengths of 

php4+ were generated by PCR using primers that contained SalI and Asp718 restriction sites at their 

ends. After amplification, purified DNA fragments were digested with these two enzymes and then 

swapped into the corresponding sites of pJK-194*promphp4+-GFP-php4+, generating a series of 

plasmids bearing deletions within different regions of php4+. To create php4 mutant alleles 

K171A/R172A/I173/R174A, K214A/I215/R216A/K217A/R218A, and 

K234A/S235/V236/K237A/R238A/V239A/R240A, the plasmid pJK-194*promphp4+-GFP-php4+ 

was used in conjunction with the overlap extension method [24]. Primers were designed to ensure the 

presence of nucleotide substitutions that gave rise to the above-mentioned mutations. Using two 

additional oligonucleotides corresponding to the start and stop codons of the ORF of php4+, overlap 

extension PCR allowed generation of php4-K171A/R172A/I173/R174A, php4-

K214A/I215/R216A/K217A/R218A, and php4-K234A/S235/V236/K237A/R238A/V239A/R240A 

alleles. These mutant alleles were used to replace the equivalent wild-type php4+ DNA segment in 

pJK-194*promphp4+-GFP-php4+. Similarly, overlap extension PCR was used to generate additional 

php4 mutants that included different combinations of K171A/R172A/I173/R174A mutations with 

K214A/I215/R216A/K217A/R218A or/and K234A/S235/V236/K237A/R238A/V239A/R240A 

mutations. Plasmid pSP-1178nmt-GST-GFP [25] was digested with SpeI and SacI restriction 

enzymes and used to join annealed synthetic DNA fragments encoding wild-type versions of SV40 

NLS and Pap1 NES [26-28]. Wild-type php4+ coding regions corresponding to amino acid residues 

160-190, 188-224, and 219-246 were isolated by PCR and cloned downstream of and in-frame to 

GST-GFP fusion genes, generating plasmids pSP-1178nmt-GST-GFP-160Php4190, pSP-1178nmt-

GST-GFP-188Php4224, and pSP-1178nmt-GST-GFP-219Php4246, respectively. Similarly, these php4+ 

coding regions (amino acid residues 160-190, 188-224, and 219-246) were amplified from plasmids 
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pJK-194*promphp4+-GFP-php4-K171A/R172A/I173/R174A, pJK-194*promphp4+-GFP-php4-

K214A/I215/R216A/K217A/R218A, and pJK-194*promphp4+-GFP-php4-

K234A/S235/V236/K237A/R238A/V239A/R240A to create plasmids pSP-1178nmt-GST-GFP-

mutant160Php4190, pSP-1178nmt-GST-GFP-mutant188Php4224, and pSP-1178nmt-GST-GFP-

mutant219Php4246, respectively. The wild-type php4+ coding region corresponding to amino acid 

residues 160-246 was amplified by PCR using primers designed to generate SpeI and SacI sites at 

each extremity of the PCR product. The DNA fragment was inserted into the corresponding sites of 

pSP-1178nmt-GST-GFP. The resulting plasmid, named pSP-1178nmt-GST-GFP-160Php4246, was 

subsequently used to create three additional plasmids harboring K171A/R172A/I173/R174A, 

K234A/S235/V236/K237A/R238A/V239A/R240A or 

K171A/R172A/I173/R174A/K234A/S235/V236/K237A/R238A/V239A/R240A substitutions.  

 

RNase protection analysis. Total RNA was extracted using a hot phenol method as described 

previously [29]. In the case of RNase protection assays, RNA (15 g per reaction) was hybridized 

and digested with RNase T1 as described previously [19]. Riboprobes derived from plasmids 

pSKisa1+ and pSKact1+ [18] were used to detect isa1+ and act1+ transcripts, respectively. Plasmids 

were linearized with BamHI for subsequent antisense RNA labeling with -32P]UTP and T7 RNA 

polymerase. act1+ mRNA was probed as an internal control for normalization during quantification 

of RNase protection products.  

 

Fluorescence microscopy analysis. Fluorescence microscopy was performed as described previously 

[30]. Both fluorescence and differential interference contrast images (Nomarski) of cells were 

obtained using a Nikon Eclipse E800 epifluorescent microscope (Nikon, Melville, NY) equipped with 

a Hamamatsu ORCA-ER digital cooled camera (Hamamatsu, Bridgewater, NJ). Samples were 
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analyzed using a 1,000X magnification with the following filters: 520 to 550 nm (YFP), 465 to 495 

nm (GFP), and 340 to 380 nm (Hoechst 33342). Cell fields shown in this study represent a minimum 

of five independent experiments.   

 

TAP pull-down experiments. For pull-down experiments, we created php4 null strains in which the 

TAP coding sequence was integrated at the chromosomal locus of imp1+, cut15+, or sal3+. These 

integrations were performed using a PCR-based gene fusion approach as described previously [31], 

except that pFA6a-kanMX6-CTAP2 [32] was used to amplify the TAP coding sequence. The method 

allowed homologous integration of TAP at the chromosomal locus of imp1+, cut15+, or sal3+, thereby 

replacing wild-type allele by imp1+-TAP, cut15+-TAP or sal3+-TAP allele. To determine whether 

Php4 interacted with Imp1, Cut15 or Sal3 in S. pombe, php4 imp1+-TAP, php4 cut15+-TAP, or 

php4 sal3+-TAP cells were transformed with pBPade6+-nmt41x-GFP-php4+. The cells were grown 

to mid-logarithmic phase in a thiamine-free medium and then treated with Dip (250 μM) for 3 h. Total 

cell lysates were prepared as described previously [33], except that PMSF (1 mM) was directly added 

to cell cultures 10 min before cell lysis. Preparation of IgG-Sepharose 6 Fast-Flow beads (GE 

Healthcare) and coupling of proteins to beads were carried out as described previously [33]. After 

end-over-end mixing for 30 to 60 min at 4oC, the beads were washed four times with lysis buffer (1 

ml each time) and then transferred to a fresh microtube prior to a final wash. The immunoprecipitates 

were resuspended in sodium dodecyl sulfate loading buffer (60 μl), heated for 5 min at 95°C and 

proteins resolved by electrophoresis on 9% sodium dodecyl sulfate-polyacrylamide gels. The 

following antibodies were used for Western blotting analysis of Imp1-TAP, Cut15-TAP, Sal3-TAP, 

GFP-Php4 and -tubulin: polyclonal anti-mouse IgG antibody (1:500) (ICN Biomedicals); 

monoclonal anti-GFP antibody B-2 (1:500) (Santa Cruz Biotechnology) and monoclonal anti--

tubulin antibody (1:5000) (clone B-5-1-2; Sigma-Aldrich). Following incubation with primary 

antibodies, membranes were washed and incubated with the appropriate horseradish peroxidase-
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conjugated secondary antibodies (1:5000) (Amersham Biosciences), developed with enhanced 

chemiluminescence (ECL) reagents (Amersham Biosciences) and visualized by chemiluminescence. 

 

 

 

 

Results 

Localization of Php4 to the nucleus in a Php2/Php3/Php5-independent manner under low-iron 

conditions. As we have previously shown, functional GFP-Php4 localized in the cytoplasm of cells 

under iron-sufficient conditions (Fig. 1) [21]. Conversely, GFP-Php4 accumulated in the nucleus 

when cells underwent a transition from iron-sufficient to iron-limiting conditions (Fig. 1) [21]. To 

further investigate the mechanism by which GFP-Php4 was imported in the nucleus, we tested 

whether Php2, Php3, and Php5 were required for its nuclear accumulation in response to iron 

starvation. To perform these experiments, php4 and php2 php3 php4 php5 mutant strains were 

transformed with an integrative plasmid harboring a GFP-php4+ allele constitutively expressed from 

a GATA-less php4+ promoter. Cells expressing GFP-Php4 were grown under basal conditions to mid-

logarithmic phase and then treated with the iron chelator Dip or with FeCl3 for 3 h. Results showed 

that in the presence of Dip, GFP-Php4 accumulated in the nucleus of both php4 and php2 php3 

php4 php5 mutant strains (Fig. 1). In contrast, when these strains were treated with FeCl3, GFP-

Php4 was observed primarily in the cytoplasm (Fig. 1). As we have previously observed, GFP alone 

displayed a pancellular-fluorescence pattern, regardless of cellular iron status (Fig. 1) [21]. Taken 

together, these results indicated that GFP-Php4 localizes to the nucleus in iron-starved cells in a 

Php2/Php3/Php5-independent manner. Conversely, in iron-replete cells, GFP-Php4 exhibits a distinct 

distribution pattern that is cytoplasmic.  
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Mapping NLSs of Php4. To begin to characterize regions within Php4 responsible for nuclear 

localization, we created a series of N- and C-terminal deletions and fused GFP to the N terminus of 

each truncated protein (Fig. 2A). php4 cells expressing these truncated versions of GFP-Php4 were 

analyzed by fluorescence microscopy to identify which mutants localized to the nucleus. Truncated 

GFP-1Php488, in which the last 207 amino acid residues of Php4 were deleted exhibited a pancellular-

fluorescence pattern under both low and high iron concentrations (Fig. 2B), suggesting that GFP-

1Php488 was able to passively enter and exit the nucleus. In the case of GFP-1Php4144, results showed 

that it primarily accumulated in the cytoplasmic region of php4 cells (Fig. 2B). This finding was 

consistent with the presence of a NES encompassing amino acid residues 93-100 [21]. GFP-1Php4179 

and GFP-1Php4218 were located in the nucleus under both iron-limiting and iron-replete conditions 

(Fig. 2B). Although their nuclear location was independent of the cellular iron status, these 

observations were consistent with the interpretation of the presence of at least one NLS encompassing 

a common minimal region composed of amino acid residues 144-179. One reason that may explain 

the absence of iron-mediated nuclear export of GFP-1Php4179 and GFP-1Php4218 is the fact that these 

chimeric proteins miss part of the C-terminal region (positions 152 to 254) of Php4. Previous 

structure-function studies have revealed that the association of the GRX domain of Grx4 and Php4 

depends on the presence of this region (Php4 152-254) [22]. Furthermore, it is known that the GRX 

domain-Php4 association is required for the iron-mediated inhibition of Php4 that leads to its 

recruitment by Crm1 (via Php4 NES 93-100), and its subsequent export out of the nucleus to the 

cytoplasm [21]. Deletion of amino acid residues 1 to 151, 1 to 187, and 1 to 218 from the N-terminus 

to generate GFP-152Php4295, GFP-188Php4295, and GFP219Php4295 did not affect nuclear localization. 

Due to the absence of NES, GFP-152Php4295, GFP-188Php4295 and GFP219Php4295 were located 

exclusively in the nucleus, regardless of cellular iron status. However, further deletion of 26 amino 

acid residues in GFP219Php4295 to generate GFP245Php4295, nullified its ability to localize exclusively 
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in the nucleus. Instead, GFP245Php4295 exhibited pancellular localization in iron-starved and iron-

replete cells (Fig. 2B), revealing loss of signal to promote active entry of Php4 into the nucleus. Taken 

together, these results were consistent with the interpretation that regions of Php4 from amino acid 

residues 144 to 179, 188 to 245, and 219 to 245 are sufficient to mediate nuclear import and 

accumulation of Php4. 

 

Mutation of three predicted NLSs of Php4. In light of these observations, we sought to identify amino 

acid residues in regions 144 to 179, 188 to 245, and 219 to 245 of Php4 that could serve as NLSs. 

One of the characteristic features of a classical NLS is a degenerate consensus sequence of 

K(K/R)X(K/R) (where X indicates any amino acid residue) [6]. Analysis of Php4 using the NLS 

Mapper [34] prediction program highlighted three short regions containing positively charged 

residues that matched or partially matched the consensus K(K/R)X(K/R) motif. The first potential 

NLS, 171KRIR174 (amino acid residues 171-174) was found in region 144 to 179, whereas the second 

214KIRKR218 (amino acid residues 214-218) and the third 234KSVKRVR240 (amino acid residues 234-

240) putative NLSs were located in region 188 to 245. In the case of region 219 to 245, it contained 

only the 234KSVKRVR240 motif. To determine a functional NLS within Php4 that directs nuclear 

localization, we first mutated three positively charged amino acids, K171, R172, and R174 to Ala in full-

length Php4 to generate Php4-N1. We also examined the effect of mutating K214, R216, K217, and R218 

(Php4-N2) or K234, K237, R238, V239, and R240 (Php4-N3) to Ala on the ability of Php4 to localize to the 

nucleus (Fig. 3A). Results showed that Php4-N1, Php4-N2, and Php4-N3 mutants were efficiently 

targeted to the nucleus under iron starvation conditions, whereas their localization was predominantly 

cytoplasmic under high levels of iron (Fig. 3B). Iron-dependent nuclear-cytoplasmic trafficking of 

these mutants was similar to that of wild-type GFP-Php4 fusion protein (Fig. 3B). Subsequently, we 

combined the mutated residues within Php4-N3 with mutations in Php4-N2 (generating Php4-N4) or 

with mutations in Php4-N1 (generating Php4-N6) or with mutations in Php4-N1 and Php4-N2 
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(creating Php4-N7) (Fig. 3A). Similarly, mutated residues within Php4-N1 were combined with 

mutations in Php4-N2 to generate Php4-N5 mutant. php4 cells expressing Php4-N4 displayed 

nuclear accumulation following treatment with Dip. In contrast, Php4-N4 was exported out of the 

nucleus to the cytoplasm when cells had been treated with iron (Fig. 3B). Microscopy analysis showed 

that iron-starved cells expressing the php4-N5 allele appeared to have less nuclear accumulation than 

wild-type protein or Php4-N1, -N2, -N3, and N4 mutants. On the other hand, cells harboring Php4-

N6 and Php4-N7 did not show obvious nuclear accumulation under iron deprivation conditions (Fig. 

3B). Under elevated iron levels, Php4-N5, Php4-N6, and Php4-N7 remained in the cytoplasm as 

observed in the case of wild-type GFP-Php4 protein. Taken together, these results revealed that Php4 

harbors two functionally redundant NLSs, 171KRIR174 and 234KSVKRVR240, which could mediate 

nuclear import of Php4 independently. 

Because nuclear import is prerequisite to Php4 function, we hypothesized that mutations in Php4-N6 

mutant (171AAIA174 and 234ASVAAAA240) would cause loss of Php4 function as well as produce cells 

defective in repression of the Php4 regulon in response to iron starvation. Indeed, cells expressing 

mutant php4-N6 allele exhibited elevated isa1+ mRNA levels that were virtually not repressed by iron 

starvation (Fig. 4A). In fact, steady-state levels of isa1+ mRNA under low iron conditions were 

increased at least ~7-fold above the levels of wild-type or a strain expressing a functional GFP-Php4 

protein that was treated with Dip (Fig. 4B). In contrast, isa1+ transcript levels were down-regulated 

under conditions of iron starvation in cells expressing the wild-type Php4 protein or Php4-N1, -N2, 

and -N3 mutants. In the case of the Php4-N5 mutant (171AAIA174 and 214AIAAA218), its mutations 

resulted in a ~2-fold increase in the expression of the isa1+ gene in the presence of low iron 

concentrations when compared to the levels observed in iron-starved cells expressing the wild-type 

GFP-Php4. Nonetheless, the levels of isa1+ expression in the Php4-N5 mutant were still much lower 

under low iron than those under basal or iron-replete conditions (Fig. 4, A and B). Because the 

absence of Php4 led to a constitutive expression of iron-using genes, php4 mutant cells are known 
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to be hypersensitive to low iron conditions (lack of optimization of iron utilization when iron is 

limited) (Fig. 4C). Results consistently showed that php4 cells expressing the php4-N6 allele 

exhibited poor growth on low iron medium in comparison to wild-type cells (Fig. 4C). In contrast, 

cells expressing the wild-type GFP-Php4 protein or Php4-N1, -N2, -N3, and -N5 mutants were able 

to grow on medium containing Dip (Fig. 4C). Taken together, these results indicated that Php4 nuclear 

localization is necessary for Php4-mediated repressive transcriptional regulation of gene expression. 

 

Two NLSs trigger nuclear import by themselves. To assess whether NLS regions of Php4 had the 

ability to trigger nuclear import, Php4 160-190, Php4 188-224, and Php4 219-246 fragments were 

fused to GST-GFP, which was used as a reporter protein in sufficiency experiments [35]. In addition, 

we examined the effect of mutating K171, R172, and R174 to Ala in Php4 160-190 (mutant 160-190), 

K214, R216, K217, and R218 to Ala in Php4 188-224 (mutant 188-224), and K234, K237, R238, V239, and 

R240 to Ala in Php4 219-246 (mutant 219-246) (Fig. 5A). GST-GFP-Php4 160-190 (wild-type and 

mutant), GST-GFP-Php4 188-224 (wild-type and mutant), and GST-GFP-Php4 219-246 (wild-type 

and mutant) fusion alleles were expressed under the control of the thiamine-regulatable promoter 

[36]. This system allowed us to induce cellular pools of the above-mentioned fusion proteins and 

assess the effect of the presence of a given NLS (171KRIR174, 214KIRKR218, or 234KSVKRVR240) on 

their localization. Cells expressing GST-GFP-Php4 160-190 and GST-GFP-Php4 219-246 exhibited 

nuclear accumulation, whereas their mutant derivatives displayed a pancellular-fluorescence pattern 

in a manner similar to GST-GFP alone (Fig. 5B). In the case of GST-GFP-Php4 188-224, its location 

was cytoplasmic as well as nuclear, irrespective of the presence or absence of the basic residues K214, 

R216, K217, and R218 (Fig. 5B). Controls for nuclear import and export were GST-GFP-SV40NLS and 

GST-GFP-Pap1NES, respectively. Results showed that reporter proteins tested in sufficiency 

experiments were unaffected by cellular iron status (Fig. 5B). Furthermore, immunoblot analyses 

revealed that reporter proteins were stable and intact under the conditions analyzed (Figure S1). Taken 
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together, the data revealed that Php4 contains intrinsic determinants involved in nuclear import of the 

protein. Indeed, the Php4 160-190-(171KRIR174) and Php4 219-246-(234KSVKRVR240) regions 

function as transferable NLS sequence when fused with a reporter protein.  

To further validate the observation that Php4 contained two functionally redundant NLSs, we 

expressed and analyzed a segment of Php4 comprising amino acid residues 160 to 246 using the GST-

GFP reporter system (Fig. 6A). Amino acids K171, R172, and R174 were substituted by Ala in Php4 160-

246 to generate Php4-N8. We converted the K234, K237, R238, V239, and R240 residues to Ala to generate 

Php4-N9. We also combined the mutated residues within Php4-N8 with those in Php4-N9 to generate 

the Php4-N10 mutant (Fig. 6A). Fluorescence microscopy analysis showed that php4 cells 

expressing mutant GST-GFP-php4-N8 and GST-GFP-php4-N9 alleles accumulated Php4 in the 

nucleus in a manner comparable to that of the wild-type GST-GFP-160Php4246 fusion protein (Fig. 

6B). When both clusters of mutated residues were combined, GST-GFP-php4-N10 was not efficiently 

targeted to the nucleus, showing primarily cytosolic fluorescence and to less extent some pancellular 

distribution (Fig. 6B). Western blot analysis of cell extracts showed that the chimeric proteins were 

present at their expected size (Fig. 6C). Collectively, the results showed that the two NLS regions of 

Php4 (171KRIR174 and 234KSVKRVR240) are functionally redundant in the context of the truncated 

protein comprising amino acid residues 160 to 246. However, while the 234KSVKRVR240 element is 

fully functional in the truncated protein, this element is not fully competent to mediate nuclear import 

in the context of the full protein.  

 

Involvement of - and β-karyopherins in import of Php4. Due to the fact that the two NLSs found in 

Php4 contained the degenerate consensus sequence of K(K/R)X(K/R), we concluded that both 

represented short basic classical NLSs [6]. To be transported in the nucleus, a protein containing a 

classical NLS is recognized by an importin  (karyopherin  or Kap) protein, which serves as an 

adaptor. Subsequently, a karyopherin β1 (Kapβ1 or importin β1) binds the importin--cargo-complex 
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to mediate its transport across the nuclear pore. Imp1 and Cut15 are the two importin  proteins in S. 

pombe. These two import adaptors have both unique and common binding cargoes [9]. To test 

whether the nuclear import of Php4 required Imp1, we disrupted the imp1+ gene (imp1) and 

determined the effect on the localization of GFP-Php4. Results showed that under conditions of iron 

starvation, the absence of Imp1 caused a partial mislocalization of GFP-Php4 to the cytoplasm, 

although a nuclear accumulation of GFP-Php4 was still observed to some extent (Fig. 7A). cut15+ is 

essential for cell growth and our approach was to used cut15-85 cells expressing a thermolabile Cut15 

in which a GFP-php4+ allele was previously integrated. At the permissive temperature (25oC) in 

which case Cut15 is functional, GFP-Php4 accumulated in the nuclei of iron-starved cells (Fig. 7B). 

However, incubation of iron-starved cells at the nonpermissive temperature (36oC) resulted in an 

alteration of GFP-Php4 nuclear localization and the GFP-Php4 signal was detected to both the 

cytoplasm and nucleus (Fig. 7B). Control experiments showed that GFP-Php4 was localized 

exclusively in the cytoplasm of wild-type and cut15-85 strains when these transformed cells were 

incubated in the presence of iron under both temperature conditions (Fig. 7).  

S. cerevisiae iron-responsive regulator Aft1 undergoes nucleo-cytoplasmic shuttling in response to 

changes in intracellular iron concentration in a manner analogous to Php4 [37,38]. Aft1 accumulates 

in the nucleus upon iron starvation, whereas high iron concentrations result in nuclear export. Nuclear 

import of Aft1 is mediated by the Kapβ1 Pse1, which is a putative ortholog of S. pombe Sal3 [11,38]. 

Based on this fact, we deleted the sal3+ gene (sal3). Results showed that disruption of Sal3 caused 

a partial mislocalization of GFP-Php4 to the cytoplasm under low levels of iron, suggesting that Sal3 

also participated in nuclear import (Fig. 7A). As expected, when sal3 deletion cells were treated 

with iron, GFP-Php4 was primarily distributed in the cytoplasm (Fig. 7A). Nuclear accumulation of 

GFP-Php4 in response to iron starvation appeared to rely on more than one karyopherins. Thus, we 

investigated whether a imp1 sal3 double deletion would favor increased mislocalization of Php4 

under low-iron conditions. Results showed that a double deletion of imp1+ and sal3+ exhibited a 
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greater cytoplasmic accumulation of GFP-Php4, suggesting that Imp1 and Sal3 may use distinct 

nuclear import mechanisms for targeting Php4 to the nucleus (Fig. 7A). As a control, we tested 

whether the absence of Kap104 influenced Php4 localization. Kap104 is a Kapβ2 that specifically 

binds proline-tyrosine-NLS (PY-NLS) rather than classical NLS [12]. In this case, GFP-Php4 was 

properly localized in the nucleus in iron-starved kap104 cells, supporting the interpretation that the 

negative effect of the absence of Imp1, Cut15, or Sal3 on Php4 nuclear import was specific (Fig. 7A). 

When wild-type and mutant karyopherin strains were incubated in the presence of exogenous iron, 

GFP-Php4 was distributed in the cytoplasm of cells (Fig. 7). Taken together, the results revealed that 

Imp1, Cut15 or Sal3 could participate in nuclear accumulation of Php4 when cells are grown under 

low iron conditions. 

Given the involvement of Imp1, Cut15 and Sal3 in nuclear import of Php4, we tested whether the 

repression of isa1+ expression was affected in imp1, cut15-85 and sal3 mutant cells. Deletion of 

imp1+ (imp1) resulted in steady-state levels of isa1+ that were increased (~30%) in cells treated with 

Dip in comparison with iron-starved control cells (Fig. 8). In the case of disruption of sal3+ (sal3) 

that resulted in a modest upregulation (~10%) of isa1+ transcription under low iron conditions. 

Similarly to imp1 cells, mRNA levels of isa1+ were upregulated (~40%) in imp1 sal3 cells, 

especially in the case of iron-starved control cells (Fig. 8). Similar increases in isa1+ mRNA levels 

were observed in imp1, sal3 and imp1 sal3 cells expressing an endogenous Php4 protein (Figure 

S2). We also examined steady-state mRNA levels of isa1+ in cut15-85 cells expressing a thermolabile 

Cut15. php4 and php4 cut15-85 cells expressing GFP-Php4 were grown at the permissive 

temperature (25oC). At mid-logarithmic phase, cells were divided in aliquots which were then 

incubated at permissive (25oC) or nonpermissive (36oC) temperature in the presence of Dip (250 M), 

FeCl3 (100 M), or left without treatment. At 25oC, a temperature where Cut15 was functional, cells 

displayed very low isa1+ transcript levels under low iron conditions (Dip). In contrast, isa1+ mRNA 

levels were up-regulated under basal and iron-replete conditions (Fig. 8). At nonpermissive 
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temperature (36oC), inactivation of Cut15 resulted in a 34% increase in isa1+ transcription under low 

iron conditions compared to levels of isa1+ observed in a cut15+ strain under the same conditions 

(Fig. 8). In cut15-85 cells expressing an endogenous Php4 protein, inactivation of Cut15 resulted in 

a 20% increase in isa1+ transcription under iron starvation conditions (Figure S2). As expected, isa1+ 

mRNA levels in both untreated and iron-treated php4 cut15-85 GFP-php4+ or cut15-85 cells were 

induced as compared to iron-starved cells (Fig. 8 and Figure S2). Collectively, these results indicated 

that Php4 is less competent to repress gene expression under low iron conditions in the absence of 

Imp1, Cut15 or Sal3. 

 

Imp1, Cut15 and Sal3 are interacting partners of Php4. Given the fact that inactivation of imp1+, 

cut15+ or sal3+ negatively altered import of Php4 to a different extent, we examined whether Php4 

could form complexes with Imp1, Cut15 or Sal3 in vivo. To address this possibility, we investigated 

Php4 capacity to interact with these proteins using TAP pull-down experiments. In these assays, we 

used iron-starved cells co-expressing distinct pairs of fusion proteins, including GFP-Php4 and Imp1-

TAP, GFP-Php4 and Cut15-TAP, GFP-Php4 and Sal3-TAP or GFP-Php4 and TAP (Fig. 9). Total 

cell extracts were incubated in the presence of IgG-Sepharose beads that selectively bound unfused 

TAP or TAP-tagged proteins. This strategy allowed an enrichment of Imp1, Cut15 or Sal3 and 

detection of their potential interacting partners. Western blot analysis of proteins retained by the beads 

using an anti-GFP antibody revealed that GFP-Php4 was present in the immunoprecipitate fraction 

of cells expressing Imp1-TAP, Cut15-TAP or Sal3-TAP (Fig. 9). In contrast, GFP-Php4 was absent 

in the bound fraction of cells expressing TAP alone (Fig. 9). Whole-cell extract fractionation was 

confirmed using an antibody directed against α-tubulin. Results showed that α-tubulin was present in 

total cell extracts but not in the retained protein fractions (Fig. 9). To ascertain the steady-state protein 

levels of Imp1-TAP, Cut15-TAP, or Sal3-TAP, Western blot analyses of both whole cell protein 

preparations and bound fractions were performed using an anti-IgG antibody (Fig. 9). Taken together, 



66 
 

these results showed the existence of Php4-Imp1, Php4-Cut15 and Php4-Sal3 interactions in S. 

pombe. 

 

Discussion 

Php4-like proteins are widely distributed among fungal species [20,39]. These proteins include Hap43 

(from Candida albicans), AnHapX (from Aspergillus nidulans), AfHapX (from Aspergillus 

fumigatus) and CnHapX (from Cryptococcus neoformans) [40-43] [44]. Of note, Saccharomyces 

species are one of the rare groups that lack Php4 orthologs. Although Php4-like proteins are key 

nuclear regulators for preventing futile expression of genes encoding iron-using proteins under low-

iron conditions, the nature of their NLSs and the mechanisms responsible for triggering their nuclear 

import have remained poorly characterized. In this study, we have identified two functionally 

independent and redundant NLSs that are responsible for delivery of Php4 into the nucleus. The first 

NLS (171KRIR174) possessed a sequence that matched the degenerate consensus K(K/R)X(K/R) motif, 

which represents one of the two types of conventional monopartite NLSs. Furthermore, classical 

monopartite NLSs are known to specifically bind Kap α proteins. The second NLS (234KSVKRVR240) 

is a modified version of the first one. It has 237KRVR240 K(K/R)X(K/R)] as a basic core motif and 

few flanking residues (234KSV236) immediately upstream of the core basic residues. These properties 

represent a modified pattern of classical monopartite NLS that has been previously shown to be 

competent for binding with Kap α proteins [27]. Indeed, a previous study has shown that the 

RVSKRPR motif, which is highly reminiscent to KSVKRVR found in Php4, is specifically 

recognized by Kap α [27]. When we examined the effect of mutating 234K to Ala on the ability of 

GST-GFP-219Php4246 protein to localize to the nucleus, we observed only a weak mislocalization of 

the protein to the cytoplasm (in comparison with an unmodified GST-GFP-219Php4246). Yet, most 

GST-GFP-219Php4246 234K→A signal was detected in the nucleus in response to iron starvation 

(unpublished data). When 237KRVR240 were mutated to Ala residues in GST-GFP-219Php4246, the 
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mutant exhibited a pancellular distribution pattern, revealing that the basic core amino acid residues 

were essential for nuclear import (unpublished data). 

Consistent with the amino acid composition of the two Php4 NLSs, we found that the two S. pombe 

Kap α proteins, Imp1 and Cut15, were involved in nuclear import of Php4. This observation meant 

that Php4 is a common cargo for Imp1 and Cut15. This situation has been reported before. SV40 NLS 

is functional in S. pombe and has been used to assess nuclear protein import competence. As observed 

in the case of Php4, both cut15-85 and imp1 mutant cells were less efficient at accumulating a SV40 

NLS fusion protein in the nucleus than wild type cells [9], revealing that Imp1 and Cut15 have 

overlapping functions for the import of an SV40 NLS-containing protein. Similarly to Php4, it has 

been reported that S. pombe transcription factor Pap1 interacts with both Imp1 and Cut15 [9]. Neither 

imp1 nor cut15-85 mutant cells were competent to efficiently import Pap1 into the nucleus as 

compared to wild-type cells. This observation suggested an overlapping function of Imp1 and Cut15 

for nuclear import of Pap1. In S. cerevisiae, Kap95 is a Kapβ1 involved in the nuclear import of 

proteins with classical NLSs. One pathway by which Kap95 mediates nuclear import of cargo proteins 

involves its association with a Kap α protein. One could envision that S. pombe Kap95, which is 

essential for cell viability, is required for the Imp1- or Cut15-mediated nuclear import of Php4. 

However, the potential involvement of Kap95 remains speculative at this time and needs further 

investigation.  

In general, protein containing NLSs that are recognized by Kap α proteins are transported as a trimeric 

complex with Kapβ1 proteins. However, it has been shown in the case of some proteins that their 

nuclear import can be mediated by distinct Kaps or groups of Kaps. These proteins include histones, 

ribosomal proteins and stress-responsive transcription factors such as Asr1 and AlcR [45,46]. These 

findings led us to examine whether some nonessential members of the Kap β family could be required 

for nuclear import of Php4. Results showed that the inactivation of Sal3 caused a mislocalization of 

Php4 to the cytoplasm (although a significant proportion of Php4 could still be seen into the nucleus). 
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In S. pombe, Sal3 is the ortholog of S. cerevisiae Pse1. Interestingly, Pse1 is required for the nuclear 

localization of the iron-responsive transcription factor Aft1 in S. cerevisiae. Although Aft1 is a 

transcriptional activator and in contrast, Php4 is a transcriptional repressor, both are active and 

accumulate in the nucleus under conditions of iron starvation. Similarly to Php4, Aft1 possesses two 

functionally independent NLSs. Although their amino acid composition (KPKKKR and RKPK) is 

different than those of Php4 (KRIR and KSVKRVR), each of these NLSs is monopartite and is closely 

related to the consensus sequence K(K/R)X(K/R). However, as opposed to Kap α proteins that are 

required for nuclear import of Php4, S. cerevisiae Kap α (Srp1) is not involved in nuclear import of 

Aft1. Furthermore, it has been shown that nuclear translocation of Aft1 is exclusively dependent on 

Pse1 in S. cerevisiae and does not depend on other Kap β family members [38].  

In contrast, some proteins in S. cerevisiae are import substrates of more than one Kaps. For instance, 

Kap114, Kap95, Kap123, Pse1, and Kap104 recognize NLSs present in histones H2A and H2B, 

whereas these Kaps mediate nuclear transport of Asr1 [46]. Based on these data, it is likely that S. 

pombe Php4 interacts with more than one type of nucleo-cytoplasmic factors, thereby leaving more 

options for its nuclear import when iron levels are low. However, the question whether one Php4 NLS 

is more specific than the others in being recognized by either Kaps α (Imp1 and Cut15) or Kap β1 

(Sal3) awaits further studies. 

In A. nidulans, the CCAAT-binding factor is composed of the HapB, HapC, HapE and HapX subunits 

[40,47]. Whereas HapC and HapE lack NLSs, HapB contains one functional NLS. In the case of 

HapX, the presence of functional NLS has not been reported. Under iron sufficient conditions, while 

the HAPX gene is repressed, HapB, HapC and HapE are expressed and assembled as a heterotrimeric 

complex. To enable cells to provide equimolar concentrations of HapB/C/E subunits to the nucleus, 

HapB subunit acts as a primary cargo for nuclear import of HapC and HapE. According to a proposed 

model, HapC and HapE have first to form a heterodimer that is transported into the nucleus only in 

complex with HapB by way of a piggy-back mechanism [47]. Although the nuclear import 
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mechanism of S. pombe CCAAT-binding Php2/3/5 subunits is unknown, we investigated whether 

nuclear import of Php4 was dependent of the presence of these subunits. Under iron-limiting 

conditions, disruption of php2+, php3+ and php5+ had no effect on the nuclear import of Php4. Results 

showed that Php4 accumulated within the nucleus of iron-starved php2 php3 php5 triple mutant 

cells. In the presence of iron, Php4 exhibited a steady-state distribution in the cytoplasm of both 

php2+/3+/5+ and php2/3/5 strains. We concluded that nucleocytoplasmic trafficking of Php4 was 

Php2/3/5-independent. This mechanism is different in comparison with the piggy-back nuclear import 

mechanism that occurs for the heterotrimeric CCAAT-binding complex in A. nidulans. 

Our findings suggest that NLS-mediated import of Php4 is not iron-regulated, as we found that the 

presence of iron did not affect the nuclear localization of the three GST-GFP-Php4 NLS fusion 

proteins (GST-GFP-160Php4190, GST-GFP-219Php4246, and GST-GFP-160Php4246) (Figs 5 and 6). 

Furthermore, in the context of full-length protein, when nuclear export sequence (NES) of Php4 was 

mutated, Php4 exhibited a constitutive nuclear localization under both iron-depleted and iron-replete 

conditions [21]. This observation suggested that the recognition of Php4 NLSs by Imp1, Cut15 or 

Sal3 occurred regardless of iron conditions. Nevertheless, it is intriguing to note that Php4 NLSs 

(positions 171 to 174 and 234 to 240) are included in a region of Php4 from residues 152 to 254 that 

is known to be required for interaction with the GRX domain of Grx4 [22]. As opposed to the TRX 

domain, the GRX domain of Grx4 interacts in an iron-dependent manner with Php4. Under high-iron 

conditions, the GRX domain interacts with the region 152 to 254 of Php4, which may induce 

conformational changes that negatively affect interactions between NLSs and their import receptors. 

This may contribute in cytoplasmic accumulation of Php4 under iron-replete conditions. In contrast, 

under iron-limiting conditions, the GRX domain is no longer able to interact with Php4, which may 

favor associations between Php4 NLSs and Kaps, therefore contributing in nuclear accumulation of 

Php4. Although this dynamic interplay may occur in the context of the full-length Php4 protein, 

further investigation is needed to address this possibility. 
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Figure legends 

 

 

Fig. 1. Iron-regulated nucleo-cytoplasmic trafficking of Php4 is independent of Php2, Php3 and Php5 

proteins. php4 or php2 php3 php4 php5 mutant cells were transformed with an integrative 

vector expressing GFP alone or a GFP-php4+ allele under the control of a GATA-less php4+ 

promoter. Transformed cells were treated with either Dip (250 M) or FeCl3 (Fe) (100 M) for 3 h. 

Nuclear DNA was visualized by Hoechst staining whereas Nomarski optics (Nomarski) was used to 

reveal cell morphology. For simplicity, only php4 cells transformed with GFP alone are shown 

because fluorescent images of php2 php3 php4 php5 cells were identical. The results shown are 

representative of five independent experiments. 

 

Fig. 2. Distinct regions of Php4 are required for its nuclear localization. A, Schematic representation 

of the GFP-Php4 fusion protein and different GFP-Php4 fusion derivatives. The red box indicates the 

nuclear export signal (NES) found in Php4 (residues 93-100). Blue boxes represent putative nuclear 

localization signals (NLSs) that were identified in Php4 (residues 171-174, residues 214-218 and 

residues 234-240). The segment encompassing residues 152-254 (light-grey box) is a C-terminal 

region of Php4 required for interaction with the GRX domain of Grx4, which is required for iron-

mediated exportation of Php4. The green box represents the GFP coding sequence. The amino acid 

sequence numbers refer to the positions relative to the first amino acid of Php4. B, php4 cells 

expressing the indicated fusion alleles under the control of a GATA-less php4+ promoter were 

incubated in the presence of Dip (250 M) or FeCl3 (Fe) (100 M). After 3 h, cells were examined 

by fluorescence microscopy to visualize GFP-Php4 and its different fusion derivatives. Hoechst 

staining revealed nuclear DNA whereas Nomarski optics was used to monitor cell morphology. The 

results shown are representative of five independent experiments. 
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Fig. 3. Two regions of Php4 encompassing amino acid residues 171 to 174 and 234 to 240 are 

involved in targeting Php4 to the nucleus. A, Schematic illustration of wild-type (WT) and mutant 

versions (N1 to N7) of GFP-Php4 fusion protein. Green, red and blue boxes represent GFP coding 

sequence, NES, and putative NLS, respectively. Black boxes (marked with an asterisk) indicate 

mutated NLS. The amino acid residues of Php4 are numbered relative to its initiator codon. B, 

Fluorescence microscopy was used to visualize cellular location of GFP-Php4 and its mutant 

derivatives that were expressed in php4 cells. When indicated, cultures were treated with Dip (250 

M) or FeCl3 (Fe) (100 M) for 3 h. Cells were stained using Hoechst to visualize nuclear DNA, 

whereas Nomarski optics was used to monitor cell morphology. The results shown are representative 

of five independent experiments.  

 

Fig. 4. Php4 NLSs are required for Php4-mediated repressive function. A, Cells carrying a disrupted 

php4 allele were transformed with an empty plasmid (vector alone) or plasmids expressing GFP-

php4+, GFP-php4+-N1, GFP-php4+-N2, GFP-php4+-N3, GFP-php4+-N5, and GFP-php4+-N6. 

Transformed cells were grown under basal (-), iron-deficient conditions (250 M Dip) or excess iron 

(100 M FeCl3) (Fe). After total RNA extraction, isa1+ and act1+ steady-state mRNA levels were 

analyzed by RNase protection assays. Results shown are representative of three independent 

experiments. B, Quantification of isa1+ levels after treatments shown in panel A. Data are shown as 

the mean of triplicate ± standard deviations. C, Wild-type (WT) and php4 cells expressing the 

indicated wild-type or mutant GFP-php4 allele were spotted onto YES medium containing none (-) 

or 140 M Dip and incubated at 30oC for 5 days. A php4 mutant containing an empty vector (vector 

alone) was used as a control strain known to be hypersensitive to Dip. 
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Fig. 5. Amino acid fragments 160-190 and 219-246 of Php4 contain nuclear import activity. A, 

Schematic representation of Php4 and several GST-GFP fusion reporter proteins containing NES or 

NLS regions of different proteins such as Pap1, SV40, and Php4. Color codes are, orange (GST), 

green (GFP), blue (putative Php4 NLS) and black (mutated NLS). B, Shown are representative php4 

cells expressing GST-GFP, GST-GFP-Pap1NES, GST-GFP-SV40NLS, GST-GFP-Php4160NLS190, 

GST-GFP-Php4160mutantNLS190, GST-GFP-Php4188NLS224, GST-GFP-Php4188mutantNLS224, GST-

GFP-Php4219NLS246, and GST-GFP-Php4219mutantNLS246, respectively. Cultures were grown in 

thiamine-free media for 12 h. After 3 h treatment in the presence of Dip (250 M) or FeCl3 (Fe) (100 

M), cells were analyzed by fluorescence microscopy for GFP. As controls, nuclear DNA was 

visualized by Hoechst staining and cell morphology by Nomarski optics. The results shown are 

representative of five independent experiments.  

 

Fig. 6. Identification of two functional Php4 NLSs. A, Schematic representation of Php4 that shows 

relative locations of NLSs (blue boxes). The left bottom panel shows GST-GFP fusion proteins 

containing the amino acid fragment 160-246 of Php4, including wild-type (WT) and mutant (N8 to 

N10) versions. Color codes are, orange (GST), green (GFP), blue (NLS) and black (mutated NLS). 

Amino acid sequence numbers refer to the position relative to the first amino acid of Php4. B, Cells 

harboring a php4 deletion were transformed with the indicated integrative constructs. Cells were 

grown to early-logarithmic phase and then thiamine was withdrawn from cell cultures. Thiamine-free 

cultures were grown for 12 h, and then incubated in the presence of Dip (250 M) or FeCl3 (Fe) (100 

M) for 3 h. Subsequently, cells were subjected to fluorescence microscopy for GFP detection. Cell 

morphology was examined through Nomarski optics (Nomarski) and nuclear DNA was detected by 

Hoechst staining. The results shown are representative of five independent experiments. C, Cell 

extracts were prepared from strains observed in panel B, and analyzed by immunoblotting. GST-GFP-

160Php4246 (WT) and its mutant (N8 to N10) versions were detected using anti-GFP antibody. As an 
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internal control, extracts preparations were probed with anti--tubulin antibody. The positions of the 

molecular weight standards are indicated to the left. 

 

Fig. 7. Inactivation of imp1+, cut15+ and sal3+ produced defect in nuclear import of GFP-Php4. A, 

An integrative plasmid expressing a functional GFP-tagged php4+ allele was transformed into php4, 

php4 kap104, php4 imp1, php4 sal3, and php4 sal3 imp1 mutant strains. Mid-

logarithmic phase cultures were treated with Dip (250 µM) or FeCl3 (Fe, 100 µM) for 3 h. 

Fluorescence microscopy was used to visualize cellular location of GFP-Php4. Cells were treated 

with Hoechst dye for nuclear DNA staining. Cell morphology was examined using Nomarski optics. 

B, Mid-logarithmic phase cultures of the indicated strains were grown at either the permissive (25oC) 

or nonpermissive (36oC) temperature for 1 h. Cultures were subsequently divided into four separate 

aliquots which were treated with Dip (250 µM) or FeCl3 (Fe, 100 µM) at permissive (25oC) or non-

permissive (36oC) temperature. After 3 h treatment, cells were analyzed by fluorescence microscopy 

for GFP detection. The results shown are representative of five independent experiments. 

 

Fig. 8. Loss of Imp1, Cut15 or Sal3 resulted in increased expression of isa1+ under low iron 

conditions. A, Strains harboring insertionally inactivated php4, php4 imp1, php4 sal3, or 

php4 imp1 sal3 genes were transformed with the GFP-tagged php4+ allele. The indicated strains 

were assessed for their ability to repress isa1+ gene expression in the presence of Dip (250 µM) versus 

basal (-) or iron-replete (Fe, 100 µM) conditions. After 3 h of treatment, total RNA was prepared and 

then analyzed by RNase protection assays. Steady-state levels of isa1+ and act1+ mRNAs are shown 

with arrows. B, Quantification of three independent RNase protection assays, including the 

experiment shown in panel A. C, php4 and php4 cut15-85 strains were transformed with an 

integrative plasmid expressing a functional GFP-Php4 protein. Mid-logarithmic phase cultures were 
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divided into four aliquots which were treated with Dip (250 µM) or FeCl3 (100 µM) at permissive 

(25oC) or nonpermissive (36oC) temperature. After 3 h, total RNA was extracted and used in RNase 

protection protocol to determine isa1+ and act1+ mRNA levels. D, Quantification of isa1+ transcript 

levels after treatments. Data are shown as the mean values of triplicate ± standard deviations. 

 

Fig. 9. Php4 interacts with Imp1, Cut15, and Sal3 in S. pombe. php4 cells expressing GFP-tagged 

Php4 and TAP alone (A), GFP-tagged Php4 and TAP-tagged Imp1 (B), GFP-tagged Php4 and TAP-

tagged Sal3 (C), or GFP-tagged Php4 and TAP-tagged Cut15 (D) were grown to mid-logarithmic 

phase in EMM without thiamine in the presence of Dip (250 µM). Extracts (Total) were subjected to 

immunoprecipitation (IP) using IgG-Sepharose beads. The bound proteins were eluted and analyzed 

by immunoblot assays using a mouse anti-GFP antibody (-GFP). A portion of the total cell extracts 

(~2%) was included to ascertain the presence of proteins prior to chromatography. As additional 

controls, aliquots of whole-cell extracts and bound fractions were probed with an anti-mouse IgG 

antibody (-IgG) and an anti-tubulin antibody (-tubulin). The positions of the molecular weight of 

protein standards (in kDa) are indicated on the left-hand side.  
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TABLE 1. S. pombe strain genotypes.  

  Source or  

Strain Genotype reference 

FY435 h+    his7-366 leu1-32 ura4-18 ade6-M210 [48] 

AMY17 h+    his7-366 leu1-32 ura4-18 ade6-M210 php4::loxP [21] 

GKY1 
h+    his7-366 leu1-32 ura4-18 ade6-M210 php4::loxP php2::loxP 

php3::loxP php5::loxP 
This study 

GKY2 h+    his7::loxP leu1-32 ura4-18 ade6-M210 kap104::natMX6 php4::KANr This study 

GKY3 h+    his7-366 leu1-32 ura4-18 ade6-M210 imp1::loxP php4::KANr This study 

GKY4 h+    his7-366 leu1-32 ura4-18 ade6-M210 sal3::loxP php4::KANr This study 

GKY5 
h+    his7-366 leu1-32 ura4-18 ade6-M210 imp1::loxP sal3::loxP 

php4::KANr 
This study 

GKY6 h+    his7::loxP leu1-32 ura4::loxP ade6::loxP php4::KANr This study 

GKY7 h+    his7::loxP leu1-32 ura4::loxP ade6::loxP cut15-85 php4::KANr This study 

GKY8 h+    his7-366 leu1-32 ura4-18 ade6-M210 php4::loxP imp1+-TAP::KANr This study 

GKY9 h+    his7-366 leu1-32 ura4-18 ade6-M210 php4::loxP sal3+-TAP::KANr This study 

GKY10 h+    his7-366 leu1-32 ura4-18 ade6-M210 php4::loxP cut15+-TAP::KANr This study 
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Figure 1 – Khan et al. 
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 Figure 2 – Khan et al. 
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 Figure 3 – Khan et al. 
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Figure 4 – Khan et al. 
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Figure 5 – Khan et al. 
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Figure 6 – Khan et al. 
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Figure 7 – Khan et al. 
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Figure 8 – Khan et al. 
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Figure 9 – Khan et al. 
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SUPPLEMENTAL DATA 

Khan et al. 

 

Figure S1. Detection of intact GST-GFP and GST-GFP fusion proteins. 

 

 

 

Figure S1. Detection of intact GST-GFP and GST-GFP fusion proteins. Cell lysates from aliquots of 

the cultures described in figure 5 were analyzed by immunoblotting using either anti-GFP or anti--

tubulin (as an internal control) antibody. The positions of the molecular weight of protein standards 

(in kDa) are indicated on the left-hand side.  

 

 

 

 

 

 

 

 

 

 

 

 

 



91 
 

Figure S2. Inactivation of imp1, cut15-85 or sal3 resulted in increased expression of isa1+ under 

iron starvation conditions. 
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Figure S2. Inactivation of imp1, cut15-85 or sal3 resulted in increased expression of isa1+ under 

iron starvation conditions. A, The indicated strains containing an endogenous Php4 were assessed for 

their ability to repress isa1+ gene expression in the presence of Dip (250 µM) versus basal (-) or iron-

replete (Fe, 100 µM) conditions. After 90 min of treatment, total RNA was prepared and then 

analyzed by RNase protection assays. Steady-state levels of isa1+ and act1+ mRNAs are shown with 

arrows. B, Quantification of three independent RNase protection assays, including the experiment 

shown in panel A. C, cut15+ and cut15-85 strains expressing an endogenous Php4 were grown to mid-

logarithmic phase and then were divided into four aliquots which were treated with Dip (250 µM) or 

FeCl3 (100 µM) at permissive (25oC) or nonpermissive (36oC) temperature. After 3 h, total RNA was 

extracted and used in RNase protection protocol to determine isa1+ and act1+ mRNA levels. When 

indicated (-), cells were left untreated. D, Quantification of isa1+ transcript levels after treatments. 

Data are shown as the mean values of triplicate ± standard deviations. 
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DISCUSSION 

In the previous section, I described the results of my study that I have generated during my 

tenure of master research. During this time, I have also generated other results that raise 

important research questions regarding iron homeostasis in the fission yeast. In the following 

sections, I will focus on those issues regarding my observations and some other research 

perspectives. Given these observations into consideration, it could open new doors for future 

research that would resolve some unanswered questions in the field of iron homeostasis. 

1. Role of other karyopherin  β in the recognition of  Php4 NLSs 

In this study, we have determined that nuclear import of the iron-responsive transcription 

factor Php4 depends on two kap α (Cut15 and Imp1) and one kap β (Sal3) (KHAN et al. 2014). 

In fission yeast, 12 kap β have been acknowledged through the S. pombe genome (WOOD et 

al. 2002); thus far, a majority of them are uncharacterized. In the result section, we have 

shown that another kap β, Kap104, has no implication in Php4 import as it has a strong 

affinity for PY-NLS.  Therefore, we cannot rule out the possibility of other kap β could 

contribute to the efficient nuclear import of Php4.  

Generally, β karyopherins directly recognize NLSs in cargo proteins. In a classical 

mechanism, importin α acts as an adaptor that can recognize NLSs in the cargo proteins as 

well as facilitates binding of importin β through its importin beta-binding domain (IBB). 

Importin β then functions in the docking on NPC, thus mediating nuclear import of cargo 

protein through the NPC (GÖRLICH et al. 1995). Structural analysis reveals that Importin α 

contains several tandem armadillo repeats (ARMs) which produce a curving structure, 

therefore facilitating binding to classical NLSs (cNLSs) bearing cargos.  Conversely, the N-
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teminus of importin α contains a flexible arginine-rich IBB domain that is responsible for 

binding importin β, generating the importin α/β heterodimer (GÖRLICH et al. 1996; 

GOLDFARB et al. 2004). Interestingly, Cut15 and Imp1 also possess a conserved IBB domain 

and are known to be the only ones IBB-containing proteins in S. pombe (UMEDA et al. 2005). 

This infers a strong possibility that other kap βs might interact with the two importin αs 

through their IBB-domain and contribute to the Php4 nuclear import. 

Kap95 is a potential kap β candidate that might participate in the nuclear import of Php4. Its 

ortholog in S. cerevisiae, Kap95, can import a set of cargo proteins bearing cNLSs through 

NPC with the aid of importin α: importin α/β heterodimer (MACKINNON et al. 2009; 

TABERNER and IGUAL 2010; PELÁEZ et al. 2012). Studies on the role of Kap95 in S. pombe 

are still in its infancy. However, the presence of IBB domains in Cut15 and Imp1 implies a 

strong possibility for their association with Kap95 during nuclear import of cargo proteins. 

Another possibility is that Kap95 can directly recognize NLSs without using kaps α as 

adaptor molecules like it has been found in budding yeast (YOSHIDA and BLOBEL 2001; 

FERNÁNDEZ-CID et al. 2012).  Consistent with a role of Kap95 in nuclear import of many 

transcription factors in S. cerevisiae, we cannot exclude the participation of S. pombe Kap95 

in the nuclear import of Php4.  

In this study, if we could observe a complete abolishment of Php4 nuclear import in mutant 

cells lacking Imp1, Sal3 and Cut15 (imp1Δ cut15 Δ sal3Δ), it would be easy to rule out the 

participation of other karyopherins. Unfortunately, it is not possible to generate such a 

mutant, as simultaneous mutation in imp1 and cut15 is synthetically lethal for S. pombe cells 

(UMEDA et al. 2005). However, we could construct different kap β null mutant cells and 

through florescence microscopy, we could track the effect of knocking out other kap βs on 
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the nuclear import of Php4. Some kap βs in S. pombe are essential for its survival (e.g. Kap 

95). In those cases, we could generate mutant cells by replacing essential kap β genes with 

their corresponding temperature sensitive alleles or use an inducible/repressible promoter for 

shutting down expression of essential kap β genes for only few hours.  

 

2. Validation of Php4 subcellular localization with a small tag 

Cargo proteins larger than 40 kDa are unable to shuttle through NPC without an active 

nuclear transport receptor (LIM et al. 2006). In contrast, a majority of smaller proteins (<40 

kDa) can passively diffuse through the NPC (BREEUWER and GOLDFARB 1990; MARFORI et 

al. 2011). Php4 itself is a small protein (~27 kDa) consisting of only 295 amino acids. In this 

study, we have always used the GFP-Php4 fusion protein or its mutant derivatives for 

tracking subcellular localization of Php4. The predicted mass of the GFP-Php4 fusion protein 

is around 59.8 kDa, which is larger than NPC cut-off. Moreover, we have shown that other 

subunits of CCAAT-binding complex (CBC) are not responsible for Php4 nuclear import. 

Despite having NLSs, we cannot rule out the possibility that a smaller form of Php4 

(untagged) could passively diffuse through the NPC even under iron-replete conditions. So, 

we have done further experiments to confirm results with a smaller tag (HA3) for which the 

molecular size issue will not apply.  

To assess whether a smaller tag (HA3) fused with Php4 had the ability to trigger nuclear 

import as like GFP-Php4, php4Δ mutant cells were transformed with an integrative plasmid 

harboring a HA3-php4+ allele constitutively expressed from a GATA-less php4+ promoter. 

Cells expressing HA3-Php4 were grown under basal conditions to mid-logarithmic phase and 
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then treated with the iron chelator Dip or with FeCl3 for 3 hours. Indirect fluorescence 

microscopy showed that in the presence of Dip, HA3-Php4 efficiently accumulated in the 

nucleus of cells. In contrast, in the case of cells treated with FeCl3, HA3-Php4 was observed 

primarily in the cytoplasm (Figure 10). These results correlate with identical observations 

found for subcellular localization of GFP-Php4 (see Figure 1 in result section). Furthermore, 

no passive diffusion of HA3-Php4 was observed in the presence of iron. The levels of isa1+ 

expression (a Php4 target gene) were regulated as a function of iron availability in an identical 

manner as observed in a wild-type strain or a php4Δ mutant strain expressing GFP-Php4 

(unpublished data). These results suggest that a smaller tag does not influence the ability of 

Php4 to be imported in the nucleus in response to iron deficiency. 

 

 

Figure 10. Iron-responsive nucleo-cytoplasmic trafficking of HA3-Php4. php4 mutant 

cells were transformed with an integrative vector expressing HA3-php4+allele under the 

control of a GATA-less php4+ promoter. Transformed cells were treated with either Dip (250 

M) or FeCl3 (Fe) (100 M) for 3 h. Cells were analyzed by indirect immunofluorescence 

microscopy for subcellular localization of a functional HA3-Php4 fusion protein. Nuclear 

DNA was visualized by Hoechst staining whereas Nomarski optics (Nomarski) was used to 

reveal cell morphology. Merged images are shown in the far right column of the panels. 
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3. Php4 NLSs specificity for karyopherins 

Nuclear import of protein requires the interaction of karyopherins β directly or indirectly 

where importin α recognizes and binds cargos, and then recruits karyopherins β. In both 

cases, nuclear localization sequences (NLSs) are required for the import process by 

karyopherins. In this study, we have shown that three karyopherins are responsible to 

recognize two NLSs of Php4. However, at this point, we do not know if these karyopherins 

exhibit a preference for the first NLS or the second NLS found in Php4. Further studies are 

required to determine the karyopherin specificity or recognition preference for the two 

identified NLSs that are involved in the nuclear import of Php4. It is possible that the 

presence of two NLSs might allow more precise control of Php4 nuclear import, ensuring its 

proper nuclear localization in response to iron starvation conditions. 

We already observe that the two NLSs in Php4 (171KRIR174 and 234KSVKRVR240) possess 

high sequence homology with one of the six identified classes of NLSs (KOSUGI et al. 2009), 

especially those recognized by importin α. Furthermore, it is already known that Cut15 and 

Imp1 could recognize common NLSs in cargo proteins (UMEDA et al. 2005). So, we could 

envision that both NLSs in Php4 are recognized simultaneously by Cut15 and Imp1. Now, it 

would raise a question that how Sal3 participates in the nuclear import of Php4? Does it bind 

to both NLSs directly or does it associates with one importin α through its IBB domain? In 

the result section, we have shown that in sal3Δ mutant cells, Php4 is still able to accumulate 

within the nucleus, which implies a possibility that Sal3 is not required for Cut15 and Imp1 

in the nuclear import process of Php4. This reinforce the possibility of a participation of other 

kaps β in the import of Php4. To gain more insight regarding a NLS preference in Php4 by a 

given karyopherin, experiments could be designed to assess if one NLS region of Php4 has 
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the ability to be imported within the nucleus by a specific karyopherin mutant. For this, Php4 

160–190 (bearing the NLS 171KRIR174) and Php4 219–246 (bearing the NLS 

234KSVKRVR240) regions will be fused with GST-GFP and express under the control of the 

thiamine-regulated promoter. Each construct will be separately express in different mutant 

cells: imp1Δ, sal3Δ or cut15-85ts. If we observe an abolishment in the nuclear accumulation 

in any of the mutant strain expressing GST-GFP-Php4 160-190 or GST-GFP-Php4 219– 246, 

it would mean that a given karyopherin specifically recognizes a particular NLS. If 

inactivation of imp1+, cut15+ or sal3+ alter nuclear import of Php4 160–190 or Php4 219–

246 fragment, we would further examine whether GFP-Php4 160-190 or GFP-Php4219– 246 

could form complexes with Imp1, Cut15 or Sal3 in vitro. To test this possibility, we would 

investigate the capacity of each NLS in Php4 to interact with either one of the three 

karyopherins using TAP pull-down experiments. In these assays, we will use imp1, sal3 and 

cut15-85ts mutant cells in which we would co- express distinct pairs of fusion proteins, 

including GFP-Php4 160-190 or 219-246 and Imp1-TAP, GFP-Php4 160-190 or 219-246 

and Cut15-TAP, GFP-Php4 160-190 or 219-246 and Sal3- TAP. Total cell extracts would be 

incubated with IgG-Sepharose beads that selectively bind with TAP-tagged proteins. Finally, 

Western blot analysis using an anti-GFP antibody would reveal the presence of GFP-Php4 

160-190 or 219-246 in the immunoprecipitate fraction of cells expressing Imp1-TAP, Cut15-

TAP or Sal3-TAP. These results would help to elucidate if there is any preference between a 

given NLS in Php4 and a particular karyopherin.  
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4. Assembly of other subunits of CBC: one-step or piggy-back mechanism? 

Although we have learnt about iron-mediated subcellular localization of Php4 in S. pombe 

and the mechanism underlying its nuclear importation and exportation, it is still unknown 

how the other subunits of CBC (Php2, Php3 and Php5) assemble to form a heterocomplex in 

the nucleus. In budding yeast, the subunits of Hap-complex (Hap2, Hap3 and Hap5) assemble 

in a one-step pathway to form a DNA-binding heterotrimer (Hap2/Hap3/Hap4) (MCNABB 

and PINTO 2005). In other organisms, it has been found that Hap-complex assembly employs 

a two-step assembly mechanism as that of mammalian counterparts, termed CBF-A (Hap3p), 

CBF-B (Hap2p), and CBF-C (Hap5p) in rats or NFY-A (Hap2p), NFY-B (Hap3p), and NFY-

C (Hap5p) in human (SINHA et al. 1995; MANTOVANI 1999). This mechanism was well 

demonstrated for filamentous fungi, including A. nidulans Hap complex where HapC and 

HapE form a heterodimer in a first step and then, HapB, which possesses a functional NLS 

imports the heterodimer into the nucleus in a piggy-back manner (STEIDL et al. 2004). In the 

case of CBC from Aspergillus oryzae,  similar results support a two-step transport mechanism 

(GODA et al. 2005). As the fission yeast is evolutionary more connected to filamentous fungi, 

we also predict the presence of a similar piggy-back mechanism for the assembly of Php2, 

Php3 and Php5. The proposed model for piggy-back mechanism has been illustrated in Figure 

11-A. 
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Figure 11. A) A proposed piggy-back model in S. pombe: A two-step mechanism may be 

employed for the assembly of Php2, Php3 and Php5 in which Php3 and Php5 form a 

heterodimeric complex in the first step and then, Php2 binds with Php3/5 subunits (assemble 

together) to mediate their nuclear import. B) Amino acid sequence of Php2 exhibits 

potential NLSs. Basic residue-rich regions are highlighted (red) and two predicted NLSs are 

underlined. 

 

 

To test the proposed model we could design an experiment to determine the localization of 

Php2, Php3 and Php5 in each of the mutant strains php2Δ, php3Δ, and php5Δ, and compare 

A 

B 
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the localization pattern against a wild-type strain (Table 3). The cNLS mapper software 

predicts the presence of potential NLSs in Php2 (Figure 11-B), but not in Php3 and Php5. 

Therefore, it seems that Php3 and Php5 themselves cannot be transported within nucleus 

without Php2. Furthermore, S. pombe ORFeome database reveals a predominantly nuclear 

localization of Php2 (fused with YFP), although a small fraction of fluorescent signals were 

detected in microtubules. On the other hand, scattered fluorescence dots (mostly cytosolic, 

some in the nucleus) were observed for Php5-YFP, implying that this fusion protein was most 

likely non-functional. Unfortunately, no subcellular localization has been found for Php3 in 

the ORFeome database. The reason might be is low molecular weight of ~12.9, which makes 

the protein (Php3) very difficult to engineer with a fusion without affecting its function. To 

gain more insights about the localization of each of the subunit, we could fuse each of the 

three subunit with different reporter proteins (for example, Php2-GFP, Php3-HA3 and Php5-

Myc13) and check the functionality of each fusion protein. Functionality of each of the fusion 

protein could be ascertained by tracking the down-regulation of isa1+ at the mRNA level in 

response to iron depletion. The possible localization pattern for each of the subunit in 

different mutant strains has been hypothesized in Table-3. Given the fact that Php3 may 

associate with Php5 to form a heterodimer in the first step of a putative piggy-back 

mechanism, we could further investigate their capacity to interact in vivo by using a BiFC 

approach in fission yeast. In these experiments, Venus N-terminal fragment (VN) and Venus 

C-terminal fragment (VC) will be fused to the N- and C- terminal portions of Php3 and Php5, 

respectively. The functionality of VN-Php4 or Php5-VC fusion proteins would be verified 

by tracking the down-regulation of isa1+ at the mRNA level in response to iron deficiency. 

Association between VN-tagged Php3 and VC-tagged Php5 will produce BiFC signal, 

indicating that formation of Php3-Php5 heterodimer.  In php2Δ mutant cells, this BiFC signal 



102 
 

should be predominantly found in the cytosol due to the absence of the nuclear importer 

Php2. Finally, in vitro protein-protein interaction assays could be carried out to investigate 

the possibility that Php2 physically associated with Php3 and Php5 in S. pombe. Co-

immunoprecipitation experiments could be performed in cells co-expressing TAP-php2+, 

php3+-HA3 and php5+-Myc13. In the case of piggy-back mechanism, TAP pull-down 

experiments will reveal that TAP-Php2 interacts with both Php3-HA3 and Php5-Myc13 to 

form a stable heteroprotein complex.  

Table 3. Possible localization of Php2-GFP, Php3-HA3 or Php5-Myc13 in wild-type, 

php2Δ, php3Δ, and php5Δ strains that would support a piggy-back mechanism. 

Strains Php2-GFP Php3-HA3 Php5-Myc13 

Wild-type Nuclear Nuclear Nuclear 

php2Δ Nuclear Cytoplasmic Cytoplasmic 

php3Δ Nuclear Nuclear Cytoplasmic 

php5Δ Nuclear Cytoplasmic Nuclear 

 

 

5. Role of phosphorylation in the nuclear localization of Php4 

Phosphorylation is one of the most frequent post-translational modification in cellular 

biology. It is involved in the regulation of many cellular processes, including control of 

nuclear trafficking of many cargo proteins. Phosphorylation either enhances the cargo 

binding affinities to Kaps or masks an NLS or NES, preventing their recognition by Kaps. 

Based on recent literature reviews, six different strategies have been defined by which 

phosphorylation of residues close to NLSs can up-regulate nuclear import of proteins 

(NARDOZZI et al. 2010). The mechanisms are as follows: 
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1) Phosphorylation within the NLS increases the binding affinity for importin α. 

2) Phosphorylation facilitates docking of cargo proteins to the NPC. 

3) Phosphorylation of serine residues upstream of cNLS enhances its recognition 

affinity by importin α. 

4) Phosphorylation triggers conformational changes that expose a dimer-specific NLS 

(an unconventional NLS that only functions in the context of phosphorylation of 

STAT1 protein) thus facilitating nuclear importation. 

5) Phosphorylation enhances nuclear import by unmasking a NLS as well as by masking 

a NES. 

6) Phosphorylation can promote nuclear import by activating non-canonical NLS. 

Phosphorylation of amino acid residues (mostly serine/threonine) adjacent to NLSs can 

modulate nucleo-cytoplasmic trafficking of a number of proteins (Table 4) (HARREMAN et 

al. 2004; NARDOZZI et al. 2010; RÓNA et al. 2013). In the case of Php4, its nuclear 

localization has been observed only under iron deficiency, whereas under iron-replete 

conditions, Php4 is inhibited by Grx4 and exported from the nucleus to the cytosol by Crm1 

(MERCIER and LABBÉ 2009; KHAN et al. 2014). The presence of several serine residues 

adjacent to both functional NLSs in Php4 (Table 4) suggests a possibility that serine-

phosphorylation might play a role in the nuclear import of Php4. NLS1 (171KRIR174) is 

located near three serine residues, which are at positions 169, 177 and 179. In the case of 

NLS2 (234KSVKRVR240), three serine residues at positions 231, 233 and 241 are found 

(Table 5). It can be envisioned that those serine residues in Php4 are potential candidates for 

phosphorylation. This phosphorylation event may be induced under low-iron conditions, 

which would subsequently facilitate the enhanced recognition of Php4 NLSs by karyopherins 
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α and β. To test this hypothesis, site-directed mutagenesis could be performed to substitute 

serine for alanine residues. Then mutated versions of Php4 could be fused to the reporter GFP 

and we could determine the effects of serine mutation in the nuclear import of Php4 under 

low-iron conditions. It will require further studies on the effect of serine phosphorylation 

(adjacent to both NLSs) of Php4 to learn how this modification may affect the docking of 

Php4 with karyopherins or its role in unmasking NLS. To address this possibility, we could 

design in vitro co-immunoprecipitation experiments to investigate the capacity of Php4 with 

serine mutation (near NLSs) to interact with three karyopherins (Sal3, Imp1 and Cut15) using 

TAP pull-down experiments. In these assays, we will use iron-starved cells co- expressing 

distinct pairs of fusion proteins, including GFP-Php4 (serine mutated) and Imp1-TAP, GFP-

Php4 (serine mutated)  and Cut15-TAP, GFP-Php4 (serine mutated) and Sal3- TAP or GFP-

Php4 and TAP. Total cell extracts will be incubated in the presence of IgG-Sepharose beads 

that selectively bind unfused TAP or TAP-tagged proteins. If serine mutation near the NLSs 

of Php4 negatively modulate the interaction of Php4 with karyopherins, GFP-Php4 (serine 

mutation) will not be retained by the beads which would be confirmed by Western blot 

assays.  
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Table 4. List of several known cargo proteins nuclear localization sequences whose 

nuclear importation are regulated by phosphorylation 

 

a Basic amino acid sequences are colored in blue and phosphorylation sites are colored in red. In the case 

of Php4, potential serine residues are colored in green. 

 

 

6. Role of Grx4 in iron sensing 

We already addressed in the introduction that Php4 is inhibited by Grx4 at the post 

translational level under conditions of excess iron (MERCIER and LABBÉ 2009; VACHON et 

al. 2012). However, the molecular mechanism underlying the Grx4-mediated inhibition of 

Php4 is still unknown.  It has been experimentally established that the GRX-like domain of 

Grx4 associates with Php4 in an iron-dependent manner. The 152-254 amino acid region of 

Php4 is required to coordinate this interaction under iron-replete conditions. Interestingly, 

two conserved cysteine residues (Cys 221 and Cys 227) located within Php4 (152-254) region 

are required for this iron-dependent interaction with the GRX-like domain of Grx4. Similarly, 
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it has been demonstrated that Cys 172 in the CGFS active site of the GRX-like domain is 

required for the interaction with Php4. Mutation of either of these three cysteine residues 

results in complete annihilation of the Php4-GRX domain interaction. Based on the previous 

findings, it can be hypothesized that under iron-replete conditions, Php4 might form an [2Fe-

2S] cluster (Figure 12) with the GRX domain of Grx4, which would inhibit Php4 activity. 

This hypothetical [2Fe-2S] cluster is predicted to be coordinated by Cys 172 of Grx4, Cys 

221 and 227 of Php4 and a fourth cysteine residues from glutathione (GSH). According to 

this proposed model, it is possible that in the presence of iron, Grx4 ligated with a [2Fe-2S] 

cluster leads to its association with Php4 through the GRX-like domain. This interaction 

would induce conformational changes that subsequently inhibit the ability of Php4 to 

suppress the transcription.  

It is worth to test the predicted [2Fe-2S] cluster coordinated by Grx4 and Php4. For this, an 

experiment can be designed to determine the ability of purified, bacterially expressed forms 

of both proteins if they could physically associate in an in vitro system. Co-expression and 

co-purification of Grx4 with Php4 will be accomplished based on the procedures described 

previously (LI et al. 2009a). In vitro Fe-S reconstitution of Grx4 and Php4 protein will be 

done anaerobically after treating them with different concentration of dithionate, which 

maintains Fe-S cluster. UV-visible absorption spectra will be recorded under anaerobic 

conditions using a spectrophotometer. UV-visible absorption will also reveal differences in 

the cluster coordination environment for Grx4 co expressed with Php4 with Cys residues 

mutants. This will validate the role of Cys 221 and Cys 227 of Php4 and Cys 172 of Grx4 in 

the coordination of [2Fe-2S] cluster. 
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Figure 12. Proposed [2Fe-2S] cluster model. The putative [2Fe-2S] cluster is 

coordinated by Cys172 of Grx4, Cys221 and Cys227 of Php4, and the cysteine residue 

of one molecule of glutathione (GSH). 

 

7. Php4 as an antifungal therapeutic target 

The cis‐acting regulatory sequence CCAAT is a very common regulatory element found 

upstream of 30% of eukaryotic genes, ranging from yeast to mammals (BUCHER 1990; 

MANTOVANI 1999). An evolutionary conserved transcription factor complex, the CCAAT-

binding complex (CBC), specifically recognizes the CCAAT motif and modulates 

transcription directly or along with other transcription factors (MANTOVANI 1999). 

Depending on the organism, a positive or negative regulation of the CBC target genes has 

been observed. The CBC is designated under different names in different organisms. These 

include the Hap complex in S. cerevisiae, Aspergillus nidulans, Candida albicans, 

Cryptococcus neoformans, and Arabidopsis thaliana (PINKHAM and GUARENTE 1985; 

EDWARDS et al. 1998; BRAKHAGE et al. 1999; JOHNSON et al. 2005; JUNG et al. 2010), the 

Php complex in S. pombe (MCNABB et al. 1997), and the NF-Y complex in mammals (MAITY 

et al. 1990). In pathogenic yeasts, an exclusive connection between CBC and the regulation 

of virulence traits has been established in the last decade. On the other hand, due to the limited 
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availability of current antifungal therapeutic agents, CCAAT binding factors are considered 

as a lucrative target for future research for developing novel antifungal drugs.   

The model organism S. pombe shares many cellular features with filamentous pathogenic 

yeasts. The availability of genomic resources of S. pombe as well as advanced molecular 

approaches make fission yeast an excellent model for the investigation of novel antifungal 

drugs. Iron homeostasis in S. pombe has been extensively studied over the last decade. 

Interestingly, optimized utilization of iron and lack of bioavailable iron in hosts represent the 

important virulence attributes for most pathogenic yeasts. As addressed in the introduction 

section, all four subunits of the CBC in S. pombe, including the iron-responsive transcription 

factor Php4, are well conserved in some pathogenic yeasts. Interestingly, we have shown that 

Php4 is obligatory for the survival of S. pombe under iron-depleted conditions (Figure 4C in 

the Result section). php4Δ mutant cells cannot grow under low-iron conditions. Similar 

observations have been found for other filamentous and pathogenic yeasts under low-iron 

conditions where Php4 orthologs are conserved. In fact, Php4 ortholog HapX (A. fumigatus) 

and Hap43 (C. albicans) are important virulence factors (BAEK et al. 2008; SCHRETTL et al. 

2010). Due to the high sequence homology and functional similarities, inhibition of Php4 

orthologs in pathogenic yeasts could be an important strategy for future antifungal drug 

developments. Furthermore, Php4 possesses a conserved region encompassing amino acids 

28-42 that would be critical for its association to the Php2/3/5 heterocomplex (MCNABB and 

PINTO 2005; LABBÉ et al. 2007). This motif is highly conserved across other Php4 orthologs 

present in filamentous and pathogenic fungi (Alex Mercier PhD Thesis). This strong 

sequence homology offers promising prospects for designing antagonistic molecules (small 

peptides) that could prevent the binding of Php4 orthologs in pathogenic yeast to other 
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components of CBC. Thus, the failure of Php4 orthologs to interact with the DNA-binding 

CBC complex results in the loss of target gene expression as well as virulence properties. 

Moreover, absence of Php4 orthologs in other eukaryotes and mammals represents it as a 

unique, potential and specific fungal target for antifungal drug development.   

Inhibition of nuclear import of Php4 orthologs could be another strategy for antifungal drug 

design. For example, introducing small peptides resembling NLS sequences could be an 

effective strategy to compete with karyopherins receptors and inhibit the nuclear import of 

Php4 orthologs. In this study, we characterize the NLSs of Php4, which are crucial for its 

nuclear import and subsequent triggering of iron-mediated transcriptional repression under 

iron-depleted conditions. Although nuclear import mechanism of other Php4 orthologs in 

pathogenic yeasts has not yet characterized, cNLS mapper software indicates the presence of 

potential NLSs in Php4 orthologs of pathogenic yeasts (Table 5). This may suggest the 

presence of a similar nuclear import mechanism in pathogenic yeasts as that of S. pombe. So, 

it deserves further studies to determine the functionality of the predicted NLSs as well as to 

understand detail molecular mechanism underlying the nuclear import of Php4 orthologs in 

pathogenic yeasts. It is of paramount importance to determine crystallographic structure of 

Php4, which could provide deep insights in designing potential antifungal drugs. 
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Table 5. Predicted NLSs in Php4 orthologs in pathogenic yeasts 

Pathogenic 

yeast/fungi 

Php4 orthologs Potential NLSs 

C. albicans Hap43 

(CaO19.681) 

85PASKRKAQNR94(monopartite) 
315LSRKRKIKST324(monopartite) 

A. oryzae HapX 

(BAB47239) 

61PPTKRKAQNR70(monopartite) 

48RPKPGRKPATDTPPTKRKA67(bipartite) 

A. nidulans HapX 

(XM_676428.1) 

60PPTKRKAQNR69(monopartite) 
47PRPKPGRKPATDTPPTKRKA66(bipartite) 

A. fumigatus HapX 

(XM742859.1) 

57PPTKRKAQNR66(monopartite) 
44PRPKPGRKPATDTPPTKRKA63(bipartite) 

C. neoformans HapX 

(CNAG_01242 

706DRESKRRRIE715(monopartite) 

 

*Basic residues of potential NLSs are indicated in bold font. 
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