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SOMMAIRE 

Le suivi et la comprehension de la dynamique des populations sont essentiels pour la gestion 

et la conservation de la faune. Une taille de population ou une densite elevee peut affecter 

negativement les parametres demographiques comme la reproduction, le recrutement et la 

survie. Chez les grands mammiferes, ces parametres sont intimement lies a la taille des 

individus et a leur condition corporelle. Le caribou migrateur (Rangifer tarandus) est une 

espece cle dans la toundra. Les populations peuvent fluctuer considerablement et rapidement, 

rendant leur suivi et leur gestion difficiles. Les indicateurs ecologiques indirects, qui sont des 

indices dependants de la densite bases sur des caracteristiques physiques individuelles ou de 

performance, ont ete proposes comme une alternative aux estimes de population pour gerer les 

populations d'ongules. Des donnees morphologiques mesurees sur des nouveaux-nes, des 

individus ages de 1 an et des femelles adultes pour quatre troupeaux de caribous migrateurs 

(Riviere-George, Riviere-aux-Feuilles, Beverly et Porcupine) ont ete compilees. La relation 

entre la condition corporelle et la dynamique des populations au niveau individuel a ete 

etudiee en regardant comment la taille individuelle, la condition corporelle et la taille de la 

population influencent la gestation des femelles adultes dans le troupeau de la Riviere-George. 

Au niveau de la population, l'efficacite des indices de condition corporelle pour estimer les 

tendances demographiques pour les quatre troupeaux a ete evaluee. 

La condition corporelle des femelles adultes etait positivement liee a leur probability de 

gestation. La taille de la population influen9ait negativement le taux de gestation, mais les 

femelles n'ont pas adopte une strategie conservatrice de reproduction. En effet, la masse 

minimale des femelles adultes requise pour la reproduction ne variait pas avec la taille de la 

population. Au niveau populationnel, il y avait des effets dependants de la densite negatifs sur 

les traits morphologiques pour trois des quatre troupeaux. Cependant, les traits 

morphologiques n'etaient pas toujours correles avec la taille de la population et ils n'etaient 

pas de bons parametres pour predire les changements dans la taille des populations. II a 

souvent ete montre que les effets dependants de la densite sur les traits physiques sont plus 

forts, voire meme limites, aux periodes de croissance demographique. Les traits physiques des 
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jeunes semblaient repondre aux changements de la taille de la population plus rapidement que 

ceux des femelles adultes. L'effet de la taille de la population a la naissance sur les traits 

physiques persistait pour les mesures squelettiques des femelles adultes. Les effets dependants 

de la densite apparents chez certains troupeaux mettent en evidence I'importance de determiner 

les facteurs mfluen^ant la dynamique des populations, en particulier pendant les periodes de 

declin. Les relations entre la taille et la condition corporelle, les taux demographiques et la 

dynamique des populations sont complexes, de sorte que les changements dans la taille des 

populations ne peuvent pas etre predits de maniere efficace par un suivi des traits physiques 

individuels. 
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SUMMARY 

Monitoring and understanding wildlife population dynamics is key to their management and 

conservation. High population size or density can negatively affect demographic parameters 

including reproduction, recruitment and survival. These parameters are intricately linked to 

individual body size and condition. Migratory caribou (Rangifer tarandus) are a keystone 

species in the tundra. Populations can fluctuate drastically and rapidly and are challenging to 

monitor and manage. As an alternative to population estimates, indirect ecological indicators, 

which are density-dependent indices based on individual physical characteristics or 

performance, have been proposed to monitor ungulate populations. I amalgamated 

morphological data measured on newborns, yearlings and adult females for four migratory 

caribou herds; the Riviere-George, Riviere-aux-Feuilles, Beverly and Porcupine. I investigated 

how body condition relates to population dynamics at the individual level by determining how 

body size, condition and population size impact female reproductive success in the Riviere-

George herd. At the population level, I determined the efficacy of body condition indices to 

estimate demographic trends for all four herds. 

Body condition of adult females was positively related to the probability of gestation for the 

Riviere-George herd. Although population size negatively affected gestation rates, females did 

not adopt a conservative reproductive strategy as predicted, because the threshold adult female 

mass required for gestation did not vary with population size. At the population level, physical 

traits showed negative density dependence in three of the four herds. Physical traits, however, 

did not consistently correlate with population size nor did they predict numerical changes in 

population size. Physical traits often showed density dependence stronger, or even exclusively, 

during periods of demographic growth. Physical traits of juveniles seemed to respond to 

changes in population size more readily than those of adult females, and the effect of 

population size at birth persisted in skeletal measures of adults. Density dependence was 

apparent only in some herds, highlighting the importance of determining the drivers of 

population dynamics, particularly during periods of decline. Relationships between body 
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condition, demographic rates and population dynamics are complex, so that changes in 

population size cannot be predicted reliably by monitoring physical traits. 
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GENERAL INTRODUCTION 

Population Dynamics and Monitoring 

Wildlife management requires knowledge of population dynamics. Monitoring population size 

is not only fundamental (Morellet et al., 2007; Zannese et al., 2006), it is high priority for 

managers (Klein et al., 1999), yet it poses logistical difficulties. A plethora of ways to estimate 

population size or proxies of population size exist (Nugent and Frampton, 1994) but their 

accuracy and precision have been questioned (Jachmann, 2002; Pettorelli et al., 2007; Redfern 

et al., 2002). New statistical methods have been devised to analyze demographic data, but still 

offer an imperfect solution (Saether et al., 2007). 

General Objectives 

The overall objective of my research was to better understand population dynamics of 

migratory caribou (Rangifer tarandus) based on body condition indices, or individual physical 

traits. Individual body size and condition are associated to demographic parameters 

(ex.fecundity) that affect population dynamics, and are affected by a variety of factors 

including population density. The two main objectives of my research were to determine the 

effect of population size on the relationship between gestation and female size and condition 

and to determine the efficacy of physical traits to monitor population size. With the aim of 

improving our understanding of the factors that affect demographic parameters that in turn, 

influence population dynamics, to allow for more informed management decisions. 

Discovering new proxies of population size could improve methods of wildlife populations 

monitoring, especially populations of migratory caribou, where it is particularly difficult to 

obtain consistent population estimates. 
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Demographic Parameters 

Changes in population size can be partitioned into their component demographic parameters 

such as age specific reproduction and survival (Fowler, 1987). For ungulates in general, 

juvenile survival is typically more sensitive to various ecological factors and variable over 

time compared to adult survival (Gaillard et al., 2000). Senescent individuals and males 

typically have relatively lower survival rates than prime-aged females (Dumont et al., 2000; 

Loison et al., 1999). Recruitment rates of juveniles affect population growth rates (Gaillard et 

al., 1998) but if adult female survival varies, it will typically have a dramatic impact on 

population growth (Crete et al., 1996; Eberhardt et al, 2007; Walsh et al., 1995). 

Intrinsic factors such as the age-sex structure and density of a population (Coulson et al., 

2001; Festa-Bianchet et al., 2003; Pelletier et al., 2011), along with extrinsic factors like 

predation (Sinclair et al., 2003), environmental stochasticity (Post and Forchhammer, 2002), 

disease (Joly and Messier, 2004), and catastrophes influence population dynamics through 

their impact on demographic rates. Similar factors influence several species but the relative 

importance of specific factors varies among species (Coulson et al., 2000) and populations. 

For example, the most important determinant of population growth was age structure in red 

deer (Cervus elaphus) (Pelletier et al., 2011), bighorn sheep (Ovis canadensis) and mountain 

goats (Oreamnos americanus) (Festa-Bianchet et al., 2003), but density superseded age 

structure for Soay sheep (Ovis aries) (Coulson et al., 2008). The effects of intrinsic and 

extrinsic factors can occur simultaneously (Coulson et al., 2000) or interact (Skogland, 1985). 

The effects of density can be exacerbated by harsh environmental conditions (Coulson et al., 

2001; Pelletier etal., 2011). 

Linking Size and Condition to Demographic Rates 

Bone measurements proximate skeletal or "structural" size (Dobson, 1992), whereas measures 

of body condition assess the physical state of an individual and typically include a 

quantification of fat. Mass is therefore the combination of body size and condition, together, 
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which represents phenotypic quality. Phenotypic quality affects life history traits (Bergeron et 

al., 2011) including survival and reproductive success, ultimately influencing individual 

fitness and affecting population growth rates. 

Individual condition and size are positively associated to individual survival in juvenile roe 

deer (Capreolus capreolus) (Gaillard et al., 1997), mule deer (Odocoileus hemionus) (White 

and Bartmann, 1998), bighorn sheep (Festa-Bianchet et al., 1997), elk (Cervus elaphus) 

(Singer et al., 1997) and moose (Alces alces) (Keech et al., 2000). Adult body condition and 

size are positively linked to reproductive success for many species. Females that are heavier 

(Adams and Dale, 1998), fatter (Crete et al., 1993) or both heavier and fatter (Thomas, 1982), 

breed at a younger age (Messier et al., 1988), have a higher probability of pregnancy 

(Cameron et al., 1993; Gerhart et al., 1997; Reimers, 1983; Russell et al., 1998), produce more 

offspring, reproduce more frequently (Cameron, 1994) and produce better quality offspring 

(Tveraa et al., 2003). 

Factors that Affect Body Size and Condition 

Individual morphology is partly determined by resource availability (Simard et al., 2008; 

Zedrosser et al., 2006) and quality (Cote and Festa-Bianchet, 2001). Nutritional plane during 

development affects individual growth, which determines structural size that is fixed once 

growth is completed, and current condition. Morphology is therefore affected by a multitude 

of heritable, intrinsic and environmental factors. Time to complete somatic growth varies 

between species, sexes, and the different bones and the allocation of resources to bone, tissue 

and organ growth is species-specific (Hilton et al., 2000). For example, caribou leg bones may 

have growth priority (Klein et al., 1987) and take 2.5 years to complete growth compared to 

mandibles whose growth takes 4 years for females and 5 years for males (Parker, 1981). For 

neonates that rely on maternal nutrition, growth and condition are influenced by maternal traits 

from conception to weaning (Taillon et al., 2012a; Therrien et al., 2007). 
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Individual reproductive strategy can also influence body condition of females. Age of 

primiparity can affect adult body size of females as seen by hindered growth in bighorn ewes 

due to early reproduction (Festa-Bianchet et al., 1995). In caribou, mandible length was 

thought to be affected by age at first reproduction (Gerhart et al., 1997). Female condition 

typically differs between reproductive classes (Allaye Chan-McLeod et al., 1999) during 

pregnancy (Cameron et al., 1993; Russell et al., 1998) and lactation (Gerhart et al., 1997; 

Reimers et al., 2005). The cost of lactation is high (Barboza and Parker, 2008) and can cause 

reproductive pauses (Adams and Dale, 1998) due to decreased body condition. 

Climate can directly impact body condition through energy expenditures (Couturier et al., 

2010), or indirectly by affecting the availability and abundance of resources (Boelman et al. 

2005, Barrette and Vandal 1986). Availability and abundance of resources can vary between 

seasons causing body condition to vary (Chan-McLeod et al., 1999; Crete and Huot, 1993). 

For most northern ungulates, mass and body fat content typically decrease over winter 

(Bergerud et al., 2008), with the exception of the Riviere George herd females that gain fat 

over winter (Couturier et al., 2009a). 

Effects of Density on Body Condition and Size 

Density dependence can be defined as a decrease in population growth rate as density 

increases. As population size increases, body condition typically decreases although not 

necessarily linearly (Moller et al., 2004). Although few studies have provided empirical 

evidence of this negative density dependent effect (Bonenfant et al., 2009), the mechanism is 

thought to be nutritional limitation due to increased competition. When nutrition is limited, it 

affects a variety of morphological measures. Due to differential nutritional requirements, the 

effects of density are often age and sex dependent (Coulson et al., 2001). 

The negative effect of density on juvenile size and mass is well document in red deer 

(Mysterud et al., 2001), bighorn sheep (Leblanc et al., 2001), male moose (Ferguson et al., 

2000), roe deer (Hewison et al., 2002; Zannese et al., 2006), caribou and reindeer (Couturier et 

4 



al., 2009b; Post and Klein, 1999; Weladji et al., 2003). Female body mass in reindeer is 

negatively correlated to population density (Helle and Kojola, 1994). In roe deer, density had 

negative effects on body weight for juveniles and adult males, but not for adult females 

(Vincent et al., 1995). Yet an experimental increase of density in elk caused a reduction in the 

body condition of females (Stewart et al., 2005). Density dependent effects on adult body size 

have been documented in fallow deer (Dama dama) metacarpus length (Serrano et al., 2007), 

roe deer leg length (Zannese et al., 2006), diastema mandible height in fallow deer (Nugent 

and Frampton, 1994) and mandible length in roe deer (Hewison et al., 1996) and caribou 

(Couturier et al., 2010) but may differ between sexes as observed in muskox (Lyberth et al., 

2007). 

Different morphological measures may also respond differently to changes in resource 

availability. Juvenile mass may respond before skeletal measures to changes in density, as 

seen in roe deer (Toigo et al., 2006). White-tailed deer (Odocoileus virginianus) fawns under 

resource limitation allocated resources to lipogenesis before body growth, ultimately affecting 

body size (Lesage et al., 2001; Verme and Ozoga, 1980). 

Effects of Density on Survival and Reproduction 

Life history theory posits that under resource limitation, individuals must make trade-offs in 

the allocation of resources to growth, maintenance and reproduction (Stearns, 1992). In 

addition to the negative effects of density on growth and condition, negative effects on 

demographic rates including reproduction and survival have been well documented 

(Bonenfant et al., 2009). As a population increases and approaches carrying capacity, changes 

in its demographic parameters typically follow a predictable sequence beginning with an 

increase in juvenile mortality, followed by an increase in the age of primiparity, then a 

reduction in reproductive rates and lastly, in extreme cases, an increase in adult mortality 

(Eberhardt, 2002). 
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Density has been shown to reduce survival probability of juveniles in many species 

(Bonenfant et al., 2009 and Gaillard et al., 1998). Density affects juvenile survival more than 

adult survival, as adult female survival is buffered against density and environmental 

stochasticity (Gaillard et al., 1998). Density effects on adult survival have been reported for 

buffalo (Syncerus cafer) (Mduma et al., 1999), Soay sheep (Clutton-Brock et al., 1992) and 

reindeer (Helle and Kojola, 2008) where density interacted with climate. Females may buffer 

their own survival when resources are limited by reducing litter size (Sand et al., 1996), 

maternal care (Bardsen et al., 2008; Martin and Festa-Bianchet, 2010), or fertility (Albon et 

al., 1983; Sand et al., 1996). During demographic growth, age of primiparity increases 

(Messier et al., 1988), gestation rates decrease (Mduma et al., 1999), fecundity decreases 

(Hewison, 1996; Stewart et al., 2005), and the threshold mass needed to conceive increases 

(Albon et al., 1983; Heard et al., 1997; Sand et al., 1996). 

In theory, the effects of density should become apparent either as a population approaches its 

carrying capacity (Fowler, 1981) or after a threshold density has been reached (Getz, 1996). 

Most studies of density dependence document negative effects during demographic growth. 

Because density acts indirectly to limit body size and condition by limiting resources, effects 

on body condition should be reversible. Indeed, adult female caribou from the Riviere George 

herd fed ad libitum gained weight and became fatter (Crete et al., 1993). Similarly, 

experimental reduction of a feral donkey (Equus asinus) population increased juvenile growth 

rate and condition (Choquenot, 1991). Population reduction led to an increase in white-tailed 

deer male mass and hind foot length for fawns, yearling and adults (Ashley et al., 1998). Other 

examples of improved condition during periods of natural population declines include 

mandible size of female caribou (Couturier et al., 2010), birth weights of caribou (Skogland, 

1990), and roe deer (Hewison et al., 2002). Demographic parameters have also been shown to 

improve as populations declined, including age of primiparity in caribou (Crete et al., 1993), 

mortality rates of donkeys (Choquenot, 1991), and survival of mule deer fawns (White and 

Bartmann, 1998). 
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Density dependence can have an immediate effect on body condition (Gaillard et al., 2000), or 

it can manifest after a time lag (Fryxell et al., 1991; Messier et al., 1988) due to delays in 

vegetation re-growth (Henry and Gunn, 1991) after overgrazing. Lags in density dependent 

responses can also be due to cohort effects as conditions at birth may affect reproductive rates 

only after sexual maturity has been reached years later (Forchhammer et al., 2001; Gaillard et 

al., 2003; Pettorelli et al., 2002; Simard et al., 2011). 

Ecological Indicators 

Ecological indicators are density-dependent physical characteristics or demographic 

parameters that reflect changes in a population relative to its environment (Morellet et al., 

2007). Ecological indicators have been proposed to monitor ungulate populations including 

roe deer (Hewison et al., 1996; Morellet et al., 2007; Toigo et al., 2006; Zannese et al., 2006) 

and several African species (Du Toit, 2002). Examples of ecological indicators used in roe 

deer include fawn leg length (Toigo et al., 2006), fawn mass (Gaillard et al., 1996), cohort 

mandible length (Hewison et al., 1996), and female to young ratios (Vincent et al., 1995). 

However, density-dependent responses vary according to whether a population is increasing or 

decreasing (Fryxell et al., 1991) and ecological indicators have only been validated during 

periods of demographic growth or high density (Zannese et al. 2006, Morellet et al. 2007, 

Hewison et al. 1996 and Vincent et al. 1995). 

Model Species and Specific Objectives 

Migratory caribou and reindeer are found throughout the circum-arctic and have high cultural 

importance for many aboriginal communities (Kendrick and Manseau, 2008) as well as 

economical importance. Currently, most populations are declining (Festa-Bianchet et al., 

2011; Vors and Boyce, 2009). Populations of migratory caribou appear to fluctuate more 

rapidly and drastically than those of other large mammals (Bergerud et al., 2008) presenting a 

challenge to consumptive management of this species. Due to large home ranges and northern 

distribution (Figure 1), aerial surveys are currently the only effective way to obtain population 
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estimates. Because they are costly, population counts are infrequent (Figure 2). In addition, 

estimates often have large confidence intervals (Couturier et al., 2010) (Figure 2). 

Factors that influence caribou population dynamics include large-scale climate patterns (Joly 

et al., 2011; Vors and Boyce, 2009), weather and predation (Adams and Dale, 1998; Boertje, 

1990), parasites (Albon et al., 2002), density-dependent food limitation (Skogland, 1983) and 

reduced adult survival (Crete et al., 1996). Caribou managers have monitored growth, 

condition, survival and reproduction to better understand population fluctuations. However, 

the proximal causes of population fluctuations remain poorly understood. Density dependence 

in demographic parameters and morphology has been documented in many herds, along with 

the relationships linking body size and condition to demographic rates, but gaps in knowledge 

still exist. Body condition and size are positively correlated to fecundity and population size 

reduces productivity (Crete et al., 1996). Whether population size influences fecundity 

indirectly by affecting body condition or if females adopt a conservative reproductive strategy 

at high density as seen in other species, however, has yet to be investigated in migratory 

caribou. Similarly, many morphological measures of migratory caribou and vital rates have 

shown density dependence. However, unlike other species, morphological measures have not 

been validated as ecological indicators and the overall usefulness for ecological indicators to 

inform on changes at the population level during various phases of population abundance has 

not been assessed. 
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Figure 1. Distribution of major North American migratory tundra caribou herds with their 

associated calving grounds, including the four study populations: the Porcupine, Riviere-

George, Riviere-aux-Feuilles and Beverly herds. Figure from (Hummel et al., 2008). 

These gaps in knowledge led to the two main objectives of this study. Firstly, at the individual 

level, I sought to determine if females adopt a conservative reproductive strategy by 

investigating the mechanism by which population size affects fecundity rates through its 

interaction with body size and condition. More specifically, I wanted to determine which body 

size, condition or health indices, including mass, body fat, parasite infection and leg length, 

affect the probability of gestation. Also, I investigated the effect of population size on 

gestation rates and its effect on the relationship between physical condition and gestation rates. 

The Riviere George herd was examined to test this hypothesis since body condition data on 

pregnant and non-pregnant females were available over a large range of population sizes. 1 

hypothesized that, similar to other herds, larger, heavier and fatter females with low parasite 
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infections would have a higher probability of gestation. And similar to other long lived 

iteroparous mammals, females would adopt a conservative reproductive strategy at high 

population size. 

The second objective, at the population level, was to determine which physical traits act as 

ecological indicators for migratory caribou and to assess their usefulness to predict population 

size. Specifically, my goal was to quantify correlations between juvenile morphology (mass 

and leg length), seasonal adult condition (mass and fat) and adult size (leg length) with 

population size for four migratory caribou herds. Because nutrition can determine adult size 

and current condition (Parker et al., 2009), I hypothesized that average physical traits would 

vary according to population size when nutrition was the limiting factor. An increase in 

density often limits resource availability, whereas reduced density is not always associated 

with an increase in resources (Bonenfant et al., 2009). Therefore, I hypothesized that density 

dependence would be more prominent during periods of demographic growth. And as seen in 

other ungulates, I hypothesized that juveniles would respond more readily than adults to 

changes in population size (Gaillard et al., 2000). Ecological indicators that inform on 

population size would act as an alternative to infrequent population counts and be invaluable 

for caribou managers and the conservation of migratory caribou. 
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Figure 2. Population estimates (points) of the Riviere-George, Riviere-aux-Feuilles, Porcupine 

and Beverly migratory caribou herds over time. Bars represent 90% confidence intervals for 

the Riviere-aux-Feuilles and Riviere-George herds and standard error for the Beverly herd, 

when available. Lines depict population trajectories for all four herds based on loess 

smoothing. 
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CHAPTER 1 

SPRING-LOADED REPRODUCTION: EFFECTS OF BODY CONDITION AND 

POPULATION SIZE ON GESTATION RATES IN MIGRATORY CARIBOU 

ABSTRACT 

In many ungulates, including caribou, female fecundity is affected by body condition and has 

important effects on population dynamics. In some species, females adopt a conservative 

strategy, reducing reproductive effort when population density is high. We investigated what 

factors affect the probability of gestation in adult female caribou from the Riviere-George herd 

in northern Quebec and Labrador over five years that spanned various population sizes and 

trends. Similar to other populations of migratory caribou, the probability that a female was 

pregnant in spring increased with body mass and percentage of body fat. The probability of 

gestation appeared to be reduced by high warble infestation. The proportion of females 

pregnant varied between years and was reduced at high population size. Females of similar 

mass, however, were pregnant regardless of whether the population was increasing at low 

density, had reached a peak, or was declining. Compared to other ungulates that reduce 

maternal expenditure at high density, female caribou of the Riviere-George herd may have a 

risk-prone reproductive strategy. 

INTRODUCTION 

Life history theory assumes that limited resources force trade-offs among fitness components 

such as growth, reproduction and survival (Stearns, 1992). These trade-offs lead to variation in 

life history traits including fecundity, age at primiparity and reproductive lifespan or aging. 

Because fecundity affects population productivity (MacDonald et al., 2009; Promislow and 

Harvey, 1990), understanding female reproductive strategy is key to population dynamics and 

management (Festa-Bianchet and Cote, 2008). Indeed, measures of reproductive performance 

such as fecundity (Cameron and Hoef, 1994), female to young ratios and recruitment rates 
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(Couturier et al., 2009; Vincent et al., 1995) are regularly suggested as management tools to 

evaluate population performance. 

Reproductive performance may vary with individual characteristics such as age (Festa-

Bianchet, 1988; Ropstad, 2000; Sand et al., 1996), body condition (Sand et al., 1996; Testa 

and Adams, 1998) and previous reproductive experience. Extrinsic factors including density 

(Albon et al., 1983; Sand et al., 1996), predation, parasitism (Hughes et al., 2009) and weather 

(Adams and Dale, 1998; Post and Stenseth, 1999) may also affect reproductive performance. 

Most research has focused on how female body size and condition relates to reproductive 

success through age at primiparity (Jorgenson et al., 1993), lifetime reproductive success and 

fecundity (Crete et al., 1993; Dauphine and McClure, 1974; Reimers, 1983). Good body 

condition allows females to reproduce earlier, more often, and produce more or larger 

offspring with high survival rates (Tveraa et al., 2003). Environmental factors such as climate 

may affect body condition indirectly by affecting food availability and energy expenditure 

(Solberg et al., 2001). High population density can limit resource availability through 

increased competition (Clutton-Brock et al., 1982). 

When resources are limited, females may increase their survival by limiting investment in 

reproduction. Indeed, long lived iteroparous animals typically adopt a conservative 

reproductive strategy at high population densities by reducing litter size (Sand et al., 1996), 

maternal care (Bardsen et al., 2008; Martin and Festa-Bianchet, 2010), or fertility (Albon et 

al., 1983; Sand et al., 1996). Few studies have revealed density-dependent effects on adult 

female survival (Gaillard et al., 2000) supporting the contention that females favor 

maintenance and survival over reproduction. That contention is also supported by the 

sequence with which vital rates usually change as population density increases: first survival 

of young decreases, then age of primiparity increases, after which reproductive rates decrease 

and lastly, but rarely, adult survival decreases (Eberhardt, 2002). 

Potential mechanisms for how density impacts reproductive rates have been identified. 

Density affected age of primiparity through a reduction in body condition for bighorn sheep, 
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but also selected for a more conservative reproductive strategy, independent of body condition 

(Jorgenson et al., 1993). Similarly, density reduced not only adult female mass but also age-

specific fecundity in moose (AIces alces), beyond what could be explained by the decrease in 

body condition (Sand et al., 1996). In red deer hinds, the threshold mass required for females 

to conceive was higher at high than at low population density (Albon et al., 1983). 

Understanding reproduction of migratory caribou is of particular interest because populations 

undergo rapid and extensive fluctuations (Morneau and Payette, 2000). Reproduction is one of 

the first vital rates affected by an increase in population size in migratory populations (Crete et 

al, 1996). In rapidly increasing populations, yearling females have high pregnancy rates 

(Ouellet et al., 1997; Parker, 1980) but yearlings may stop conceiving at high density (Crete 

and Huot, 1993). Reproduction in caribou is associated with body size (Gerhart et al., 1997) 

and condition in both autumn (Adams and Dale, 1998; Cameron and Hoef, 1994; Cameron et 

al., 1993) and spring (Russell et al., 1998). Female caribou that first reproduce at a young age 

are typically heavier (Adams and Dale, 1998), fatter (Crete et al., 1993) or both heavier and 

fatter (Thomas, 1982) than those that delay primiparity. Among adults, females that conceive 

are heavier and fatter than those that do not conceive (Allaye Chan-McLeod et al., 1999). 

Fecundity-body condition relationships for adults have been determined for several 

populations, including the Denali herd (Adams and Dale, 1998), the Porcupine herd (Gerhart 

et al., 1997), the Central Arctic Herd (Cameron et al., 1993) and Peary populations (Thomas, 

1982). 

The relationship between body condition and fecundity in caribou varies with age (Adams and 

Dale, 1998; Cuyler and Astergaard, 2005), lactation status (Gerhart et al., 1997) and weather 

(Adams and Dale, 1998). Although the effect of density on reproductive rates has also been 

examined, its effect on the relationship between condition and fertility has yet to be assessed. 

Our objectives were to determine if (1) the relationship between body condition and fecundity 

seen in other herds was conserved in the Riviere-George herd and (2) if females adopted a 

conservative reproductive strategy at high population densities. We hypothesized that once age 

and body size were controlled for, females in better body condition (higher mass and percent 



body fat) and health (lower parasitic infection) would have a higher gestation rate in spring 

compared to females in poorer condition and/or health. As well, because caribou are long-

lived and iteroparous, we expected females to adopt a conservative reproductive strategy, so 

that the threshold body condition required to reproduce would increase with population 

density. 

METHODS 

Study Area and Population Estimates 

The Riviere-George herd is a migratory caribou herd in Northern Quebec and Labrador. The 

annual range estimate was 213 390 km2 in 2009 (Taillon, J. per. comm.), although range size 

varies with population size (Couturier et al., 2010). The Riviere-George increased from 

approximately 5000 in the 1950s to an apparent peak approximating 1 000 000 individuals in 

1989 (Crete et al., 1996). It then declined to 776 000 in 2001 (Couturier et al., 2009b) and to 

less than 75 000 individuals in 2010 (Quebec Government aerial count). 

Data Collection 

Scientific culls from the Riviere-George have been conducted for decades, but sampling 

methods and purposes differed between researchers and years. We restricted analyses to 

collections where the selection of females was not biased towards particular reproductive 

classes. Age of females was assessed by counting the cementum annuli of an incisor (Miller, 

1974). Data we used were collected from late February to April and limited to known-age 

individuals, where the presence or absence of a foetus was recorded. Data meeting these 

requirements were collected in April 1980 by G. Parker; in April 1984 by J. Huot; and in 

March 1986-1987, February and April 1987, and March 2002 by S. Couturier. 

Because not all age classes were sampled equally in all years and to avoid the possible 

complications associated with primiparity, we defined adult females as > 3 years old. Limited 



number of old individuals sampled precluded the analysis of senescence effects. We therefore 

excluded the oldest female collected, a barren 17-year-old, from analyses. Our data set 

included 160 females, of which 23 were barren and 137 were pregnant. 

Caribou Body Condition 

Body condition indices typically measured included whole mass and/or eviscerated body 

mass, hind foot length and/or metatarsal length, kidney fat mass and kidney mass, percentage 

of femur marrow fat, and parasite load denoted by the absolute number of warbles 

(Hypoderma tarandi) counted. Protocols for animal culls and body condition measurements 

are described elsewhere (Couturier et al., 2009a; Huot, 1989; Parker, 1980). Percentage of 

body fat was calculated as 0.091*KFFI-1.382 based on (Crete et al., 1993), where KFFI is the 

kidney fat femur index (KFI + % Femur marrow fat) (Huot and Picard, 1988). KFI is the 

kidney fat index based on the Riney fat index (Riney, 1955). The average of the right and left 

kidney weights and kidney fat weights was used to calculate the KFI, except for 15 of 172 

cases where only one kidney or kidney fat was weighed. 

Because body condition varies seasonally, we used ANCOVAs to test for an effect of 

collection date on mass and percent body fat and for a possible interaction between these 

variables and pregnancy status. We used eviscerated masses collected from February to May 

in 1987 to test for an effect of collection date on body mass. Collection date did not affect 

eviscerated body mass (F(i,3g)=0.94, p=0.34) nor did it affect pregnant and barren females 

differently (interaction: p=0.63). 

Pooling all years, percent body fat decreased from late February to April (F(3,i6l)=5.80, 

p<0.01) and in interaction with pregnancy status (p=0.02) such that there was a decrease in 

body fat for gestating but not for barren females. We therefore adjusted body fat of pregnant 

females to March 23, the middle of the sampling period for all years. Pregnant females lost on 

average 0.05% body fat per day. The maximum number of days corrected for was 24 with a 

maximum correction of 1.08% body fat loss. 



To compare metatarsal lengths measured in 1980 with hind foot lengths measured in 1984-

2002, we transformed metatarsal lengths using a correlation based on 132 adult females from 

the Riviere-George from 8 years (1986-1988, 2001-2003 and 2007) including collections 

outside of this study (F(lii29)==275.80, r2=0.68, p=2,20*10"16, hind foot length=1.31*metatarsal 

length+4.69). 

Population Estimates 

Population counts were available for two years when body condition data were collected 

(1980 and 1984). Population size for 1986, 1987 and 2002 was estimated by fitting a loess 

smoothing spline on available population counts. Aerial counts were made in 1988, 1993 and 

2001, so all population estimates were within one or two years of actual counts. We accounted 

for population size and trend in three ways: (1) as a continuous vector using actual counts and 

inferred estimates, (2) grouped into two categories: above and below 500 000 individuals, 

following Couturier et al. (2009), and (3) grouped into three phases that accounted for both 

population density and trend: low and increasing (1980), high and approaching the peak 

(1984-1987), and declining (2002). 

Statistical Analyses 

We used R software version 2.12.1 (R Development Core Team 2010) for all statistical 

analyses. General Linear Models (GLM) with a binomial distribution were used to model the 

probability of gestation as a function of female age, mass, hind foot length, percent body fat, 

warble infection, population size and trend. Year of collection was tested as a random effect in 

mixed models but was not significant so analyses were performed using GLMs. Our data were 

non-orthogonal. Unequal sample sizes were due to missing data on several individuals. We 

first used maximum sample sizes (ranging from 86 to 160) to model the probability of 

gestation based on each variable separately. We then excluded warble counts from further 

multivariate analyses, as counts were only available for two of the five years, to test all other 
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body condition variables with population size and trend. These analyses were performed using 

a data set with 115 individuals. Subsequent analyses excluded body fat and therefore only 

included variables that can be measured or estimated on live animals. Body fat was not 

available for 16 females. Therefore when body fat was excluded for analyses, the sample 

increased to 131 individuals. 

We checked all explanatory variables for collinearity before combining them in the same 

model. We used the vif function in the "car" package to test the variance inflation factor of 

variables in all full models. Variables were not combined in models if the variance inflation 

factor exceeded 2. The highest correlation for both sample sets was between mass and body fat 

(0.47) in the set containing all variables (n—115). All other variables were only weakly 

correlated (r<0.32). Older females were larger, heavier and fatter than younger females. 

Warble count and population size were negatively correlated to all other variables such that 

older, larger, heavier and fatter females had fewer warbles and were mostly sampled at low 

population size. 

We considered all results significant at a<0.05 for univariate General Linear Models. Due to 

small sample size, model selection was performed using a second order Aikaike Information 

Criterion (AICc). The model with the lowest AICc was retained (Burnham and Anderson, 

2002). Differences in AICc values of at least 2 were used to determine if one model was better 

than another. Because several models were indistinguishable based on AICc values, we used 

the modavg function from the "AlCmodavg" package in R to calculate weighted (w,) 

parameter estimates for explanatory variables along with their standard errors and 95% 

confidence intervals. Variables were considered significant if the confidence interval of their 

estimate did not overlap zero. Step-wise model selection following (McCullagh and Nelder, 

1989) led to similar models being selected. 

18 



RESULTS 

Fertility 

When all years were pooled, 27% of 33 yearlings were pregnant. Gestation rates increased to 

76% for 122 females aged two to four years and 90% for 103 females aged 5 years or older. 

Nine of 16 yearlings were gestating in 1980, when the population was low and increasing. 

These animals would have given birth as two-year-olds. In 1984, 1986 and 1987, none of 12 

yearlings collected were pregnant. No yearlings were collected in 2002 when the population 

was decreasing. 

Adult female body condition 

Pregnant females were on average 13.5 kg heavier, 2.3% fatter, were older and had fewer 

warbles than barren females, but did not differ in hind foot length (Table 1). Females were in 

good condition when the population was low and increasing (1980), as they were heavier and 

larger (based on hind foot length) compared to when the population was high (1984-1987) or 

decreasing (2002) (Table 1). The different age distribution in 1980 compared to all other 

periods (Table 1) was likely due to differences in yearly sample sizes caused by variation in 

sampling methods. Based on percent body fat, females were in good condition with over 10% 

body fat for all periods of demographic trend (Table 1). However, females had 1.1 % less 

body fat when the population was nearing a peak compared to when the population was low 

(Table 1). Average number of warbles nearly doubled as the population increased (Table 1). 

Gestation Predictors 

For females aged 3 or older, hind foot length (estimate= 0.03 ± 0.17, n=140, p=0.90) and age 

(estimate= 0.26 ± 0.13, n=160, p=0.08) did not affect fecundity in simple logistic models 

(Figures 3C and 3D, respectively). Fecundity increased with both mass (estimate=0.17 ± 0.04, 

n=133, p<0.01) and percent body fat (estimate^ 0.44 ± 0.04, n=132, p<0.01) (Figures 3A and 
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3B). Fewer females were pregnant at high population size than at lower population size 

(estimate= -0.0004 ± 0.0001, n=160, p<0.01) (Figure 3F). Warble infestation reduced the 

probability of gestation (estimate= -0.02 ± 0.01, n=84, p=0.01, Figure 3E). When the female 

with the highest infestation (336 warbles) was removed, however, the regression was not 

significant (estimate= -0.02 ± 0.01, p=0.06, n=83, Figure 3E). If we excluded this potential 

outlier but included 2-year-olds as in Gerhart et al. (1997) and Hughes et al. (2009), the 

negative effect remained significant. 

In simple logistic models, body mass was the best predictor of pregnancy rate and explained 

22.5% of the variation in fertility. Percent body fat was significant but explained only 12.1% 

of the variation. At average mass (91.2 kg), females had a 91% probability of being pregnant. 

All but 3 non-pregnant females were lighter than this threshold. At average percent body fat 

(10.9%), females had a 95% chance of being pregnant. 

Population Size as a Predictor of Pregnancy 

Population size as a continuous variable had the lowest AICc value (62.8) compared to 

population size grouped into 2 groups (AICc=64.3) or population trend (3 groups) 

(AICc=63.1). Therefore, we used population size as a continuous variable in AICc model 

selection. There were 115 females with all variables measured, including body fat. Both AICc 

and step-wise model selection with nested models suggested that mass was the most important 

factor affecting the probability of gestation (Tables 2 and 3). The inclusion of a quadratic 

effect of age did not affect model selection based on AICc and did not alter parameter 

estimates. Although hind foot length was included among the best models using AICc, its 

parameter estimate did not significantly differ from zero (Table 2) and it bordered on 

significance (p-0.07) in models obtained by a step-wise selection. Based on AICc model 

selection, the relationship between mass and fertility did not vary according to population size 

as no interaction between population size and body condition variables were retained (Table 

2). Although population size did appear in one of the best models, its parameter estimate was 

not significantly different than zero (Table 3). 



Table 1. Average mass (kg), body fat (%), hind foot length (hflT) (cm), number of warbles and age with standard error (se) and 

sample size (n) grouped by reproductive status (pregnant or barren) and demographic trend (low and increasing, high and increasing 

or low and decreasing) of known-age female caribou (>3 years) from the Riviere-George herd collected in 1980, 1984, 1986, 1987 

and 2002. Presence or absence of a foetus was recorded during March and April, except for 5 individuals collected in late February 

in 1987. Values that differ significantly based on Tukey post-hoc tests for mass, body fat and hind foot length and based on 

Kruskal-Wallis tests for differences in age distribution and number of warbles, are denoted by different letters. Bonferonni 

correction was applied to determine significance between demographic trends for age (p=0.02). 

Mass (kg) Body fat (%) HflT (cm) Warbles Age 

mean se n mean se n mean se n mean se n mean se n 

Reproductive status 

Pregnant 92.5a 0.8 117 11.1a 0.2 111 56.7a 0.1 122 35.3a 4.2 82 6.7a 0.2 137 

Barren 79.0b 2.6 16 8.9b 0.6 14 56.6a 0.4 18 146.8b 67.3 4 5.6b 0.4 23 

Demographic trend 

Low 94.0a 0.9 81 11.2a 0.2 76 57.0a 0.1 80 36.4a 4.5 76 7.2a 0.3 81 

High 86.2b 1.9 39 10.2b 0.3 40 56.2b 0.2 47 71.9b 31.7 10 5.7b 0.2 66 

Decreasing 85.5b 2.6 13 11,4ab 1.3 9 56.8ab 0.5 13 7.1b 0.6 13 
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Figure 3. Logistic regressions of the probability of gestation according to body condition indices and population size for Riviere-

George caribou females aged 3 to 16 years collected in spring of 1980, 1984, 1986, 1987 and 2002. Regressions predicting presence 

(1) or absence of foetus (0) for (A) mass, (B) percentage of body fat and (F) population size were significant. Regressions for (C) 

hind foot length and (D) age were not significant. Logistic regression of (E) the number of warbles was significant (solid line) but 

became marginally insignificant after removing the female with the highest warble count (dotted line). Raw data (points) are shown, 

except for (F), where grey bars show the proportion of pregnant females at given population sizes. 

300000 500000 700000 900000 

N> ho 



Table 2. Model selection based on second order Akaike's information criterion corrected for 

small sample size (AICc) for the determinants of gestation in adult female migratory caribou 

of the Riviere-George herd in spring (March and April) 1980, 1984, 1986, 1987 and 2002. 

Models include 115 known-age individuals with all morphological measurements including 

mass (mass), percent body fat adjusted to March 23 (bodyfatC) and hind foot length (hflT). 

Population size (popest), and interactions denoted by asterisk (*) were also included in models 

along with a model containing no explanatory variables (null model). Models are listed in rank 

order with the 6 best models, with AICc values that do not differ by more than 2, in bold. 

Number of estimated parameters (k), change in AIC from lowest AICc value (AAICc), and 

cumulative weight of model (Cum. Wt) based on the likelihood that that model is the best 

model (LL) are presented. 

Model K AICc AAICc AlCcWt Cum.Wt LL 
mass+hfiT 3 60.64 0 0.19 0.19 -27.21 
mass 2 61.14 0.5 0.15 0.34 -28.52 
age+mass+hflT+bodyfatC 5 61.4 0.76 0.13 0.48 -25.42 
mass+bodyfatC 3 61.59 0.95 0.12 0.6 -27.69 
mass+hflT+bodyfatC 4 61.74 1.1 0.11 0.71 -26.69 
popest+mass 3 62.49 1.85 0.08 0.79 -28.14 
mass+age 3 62.51 1.87 0.08 0.86 -28.15 
age+mass+h flT+bodyfatC+popest 6 62.67 2.03 0.07 0.93 -24.95 
popest*mass 4 63.64 3 0.04 0.97 -27.64 
bodyfatC+age 3 65.43 4.8 0.02 0.99 -29.61 
popest+bodyfatC 3 68.13 7.49 0 1 -30.96 
popest*bodyfatC 4 70.17 9.54 0 1 -30.9 
bodyfatC 2 70.92 10.28 0 1 -33.41 
hflT+bodyfatC 3 72.97 12.34 0 1 -33.38 
popest 2 74.86 14.22 0 1 -35.37 
popest*age 4 75.91 15.27 0 1 -33.77 
age 2 76.82 16.18 0 1 -36.36 
popest+hflT 3 76.87 16.24 0 1 -35.33 
popest*hflT 4 77.52 16.89 0 1 -34.58 
null 1 78.98 18.34 0 1 -38.47 
hflT 2 81.05 20.41 0 1 -38.47 
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Table 3. Model averaged parameter estimates, standard error (se) and 95% confidence 

intervals (CI) for variables from the 6 competing models from Table 2 for the determinants of 

gestation in adult female migratory caribou of the Riviere-George herd in spring (March and 

April) 1980, 1984, 1986, 1987 and 2002. Models included 115 known age individuals with all 

morphological measurements including mass (mass), percent body fat adjusted to March 23 

(bodyfatC), hind foot length (hflT) and population size (popest). 

variables estimate se CI low CI high Significant 

mass 0.15 0.07 0.01 0.3 YES 

hflT -0.42 0.28 -0.97 0.13 NO 

bodyfatC 0.25 0.19 -0.3 0.62 NO 

age 0.31 0.25 -0.18 0.81 NO 

popest 0 0 0 0 NO 

When body fat was not considered, the best model explaining gestation in adult females 

included hind foot length and mass (Table 4; AIC=67.3, and AIC>69.7 for all other models). 

The relationship between mass and probability of gestation remained positive for mass (0.22 ± 

0.07, CI: 0.09 to 0.34, Figure 4) but the effect of hind foot length became negative once mass 

was controlled (-0.58 ± 0.26, CI: -1.1 to -0.07, Figure 4). The model containing both hind foot 

length and mass explained 31% of the variation, 8.5% more than mass alone. To have a 50% 

chance of pregnancy, females had to be ~76kg in spring. However, females of a given mass 

were ~5% less likely to be pregnant if their hind foot length was ~4 cm larger. 

DISCUSSION 

Fecundity-condition relationships seen in other caribou herds were mainly confirmed in the 

Riviere-George. Mass and percent body fat positively affected gestation rates and there was no 

effect of age. High warble infection was associated with a reduced probability of pregnancy in 

spring. Hind foot length itself was not a good indicator of whether a female would reproduce, 

but reduced the probability of gestation after body mass was controlled. 
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Table 4. Model selection based on second order Akaike's information criterion corrected for 

small sample size (AICc) for the determinants of gestation in adult female migratory caribou 

of the Riviere-George herd in spring (March and April) 1980, 1984, 1986, 1987 and 2002. 

Models include 131 known age individuals with measured mass (mass) and hind foot length 

(hflT). Population size (popest) and interactions denoted by asterisk (*) were also included in 

models. Models are listed in ranked order with the best model in bold. Number of estimated 

parameters (k), change in AIC from lowest AICc value (AAICc), and cumulative weight of 

model (Cum. Wt) based on the likelihood that that model is the best model (LL) are presented. 

Model K AICc AAICc AlCcWt Cum.Wt LL 

mass+hflT 3 67.26 0 0.72 0.72 -30.53 

mass 2 70.96 3.7 0.11 0.83 -33.43 

mass+age 3 71.68 4.43 0.08 0.91 -32.75 

popest+mass 3 72.11 4.85 0.06 0.97 -32.96 

popest*mass 4 73.84 6.58 0.03 1 -32.76 

popest+age 3 93.38 26.12 0 1 -43.59 

age 2 94.64 27.39 0 1 -45.27 

popest 2 94.96 27.7 0 1 -45.43 

popest*age 4 95.09 27.84 0 1 -43.39 

hflT+age 3 96.55 29.29 0 1 -45.18 

popest+hflT 3 96.71 29.45 0 1 -45.26 

popest*hflT 4 98.65 31.39 0 1 -45.17 

1 1 99.28 32.02 0 1 -48.62 

hflT 2 101.26 34 0 1 -48.58 

Population size negatively affected the proportion of females that were pregnant but contrary 

to our second hypothesis, threshold mass and body fat necessary for gestation did not vary 

with population size, suggesting that females did not adopt a conservative reproductive 

strategy when resources were scarce. Productivity of this herd remained high but was reduced 

by smaller mass at high population size. 
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Figure 4. Model predictions, from best model with 131 individuals selected using AICc in 

Table 4, of gestation in relation to mass in April and May at average hind foot length (left 

panel), and in relation to hind foot length at average mass (right panel) for adult female 

caribou of the Riviere-George herd in 1980, 1984, 1986, 1987 and 2002. 

Condition-Fecundity Relationships 

As seen in other caribou herds, both mass and fat were important determinants of fecundity 

(Adams and Dale, 1998; Cameron et al., 1993; Dauphine and McClure, 1974; Russell et al., 

1998; Thomas, 1982). Although it has been proposed that a critical level of mass and fat are 

needed for caribou to conceive (Crete et al., 1993), we did not observe a sharp threshold. A 

threshold may have existed during autumn when ovulation occurred but did not persist until 

spring. We did not detect an effect of age on the probability of gestation. Congruent with 

results from the Porcupine caribou herd (Gerhart et al., 1997), hind foot length in simple 

logistic regressions did not affect the probability of gestation; its negative effect after 

accounting for body mass suggests that caribou with relatively fewer body reserves were less 

likely to be pregnant. 
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Warble infestation reduced the probability of gestation. When we included two-year-olds to 

compare with analyses of the Dolphin-Union herd (Hughes et al., 2009), our results 

corroborated the finding that the probability of gestation in spring decreases with warble 

abundance. Relationships between parasite load and fecundity, however, are often confounded 

by body condition. Because parasite load is correlated with body condition, it is difficult to 

ascertain whether individuals are in poor condition due to high parasite load or poor condition 

allows high intensity infections. Both parasite load and condition are correlated with 

fecundity. For caribou from the Dolphin Union herd, high warble infection was correlated to 

minimal back fat levels (Hughes et al., 2009) and for the Riviere-George in this study both 

mass (r=-0.22 (n=82)) and percent body fat (r=-0.26 (n=82)) were negatively correlated to 

infection intensity. Reduction of parasite infections improves body mass, back fat and 

fecundity in reindeer (Stien et al., 2002). Parasite infections may affect the assimilation of 

nutrients needed for maintenance (Hughes et al., 2009). Although condition may be more 

closely associated to fecundity, it is important to understand the role of parasites because 

parasite abundance may affect population growth in Rangifer (Albon et al., 2002). Since 

intensity of infection typically increases with host density (Arneberg et al., 1998), as observed 

in this population, it is important to monitor parasite loads, especially if parasite abundance is 

influenced by climate change (Brotton and Wall, 1997). 

Mass was clearly the best predictor of gestation in the study herd. Our results contradicted 

those of the Porcupine herd in autumn, where body fat (Gerhart et al., 1997) was the best 

predictor of pregnancy. This could be due to several factors; firstly, in this study, body fat was 

calculated from direct measures of fat compared to body condition scores used for the 

Porcupine herd. Secondly, seasonal differences between the two herds could account for the 

different results obtained. For example, body condition for females of different reproductive 

classes in the Porcupine herd converged over winter (Allaye Chan-McLeod et al., 1999). 

Similarly, the percentage of body fat of pregnant females decreased over the collection period 

in the Riviere-George. Lastly, pregnancy-condition relationships may vary among herds. 
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Although percentage of body fat affected whether or not a female would be pregnant in spring, 

it did not improve on mass as a predictor of gestation. When body fat was excluded from 

models, our results corroborated those from the Porcupine herd; both mass and hind foot 

length were related to the probability of pregnancy (Gerhart et al., 1997). The effect size of 

hind foot length was small and in analyses with a smaller sample size that included percent 

body fat, only mass was a significant explanatory variable. Therefore, in the Riviere-George, 

the importance of hind foot length appears to be minor. 

Effect of Population Size 

Female fecundity was lower when population size was high. Contrary to our expectation, the 

threshold condition necessary for gestation did not vary with population size, despite an 

estimated difference of 400 000 individuals, suggesting a near-doubling of population size. 

Caribou, therefore, did not adopt the conservative reproductive strategy reported for other 

ungulates (Festa-Bianchet et al., 1998; Therrien et al., 2007), at least in terms of conception 

rates. This seemingly risky strategy could be due to a low potential cost of gestation compared 

with the potentially high fitness cost associated with foregoing reproduction. Outside 

Greenland (Cuyler and Astergaard, 2005), caribou are not known to twin and consequently, 

their lifetime reproductive success is mostly affected by the number of years in which they 

reproduce. Therefore, unlike species that reduce litter size under resource restriction (Sand, 

1998), caribou forego their yearly reproduction if they do not conceive. Perhaps caribou have 

a fixed pregnancy rate that depends on body condition but vary foetal growth or postpartum 

maternal investment based on their seasonal condition, as seen in reindeer (Bardsen et al., 

2008). For example, females may abort if their condition deteriorates (Russell et al., 1998). 

Calf mass is also affected by female condition (Adams, 2005), suggesting that females 

modulate allocation of resources to their foetus according to their own condition. Lactation is 

the most energetically costly component of reproduction (Gerhart et al., 1997) and when 

resources are scarce females may allocate more to maintenance than to offspring growth 

postpartum (Bardsen et al., 2009). Females from the Riviere-George, however, appeared to 

prioritize gestation over their own condition, as suggested by the decrease in mass and not in 
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gestation rate. We therefore hypothesize that for caribou, the fitness cost of foregoing 

reproduction is high relative to the investment of carrying a calf to term. Despite this 

apparently fixed reproductive strategy, we still observed a reduction in herd productivity 

during the population increase. 

Similar to the Denali population (Adams and Dale, 1998), we suggest that the mechanism 

affecting gestation rates in Riviere-George females was a reduction in mass. However, our 

results contrast with those from the Porcupine herd where variation in body condition of 

females was not reflected in pregnancy rates (Gerhart et al., 1997). Despite a drastic increase 

in population size, pregnancy rates in the Riviere-George remained high compared to other 

populations. For example, in Peary caribou, pregnancy rates fell as low as 4% at high density 

(Thomas, 1982). One explanation for the high pregnancy rates could be that female condition, 

based on percent body fat, remained high throughout the period of increase and was 

maintained even during the beginning of the subsequent decline. During our study, percent 

body fat averaged 11.0 ± 0.2 % (n= 115), consistent with high pregnancy rates if indeed the 

threshold of 7.3% body fat needed for females to conceive (Crete et al., 1993) holds true. 

Although we suggest that a decline in mass reduced reproductive rates, other demographic 

parameters including age at primiparity and survival may have also affected productivity. 

Determining both the intrinsic and extrinsic factors that affect the probability of gestation in 

caribou is important to understand population dynamics. Although there is no known causal 

relationship between body condition and fertility, the relationship between body condition and 

gestation remains uncontested. For management purposes, adult female mass and hind foot 

length measurements in spring predict pregnancy rates in the Riviere-George. Both measures 

can be obtained through live captures. We showed that caribou prioritize reproduction even at 

high population densities as we were unable to detect a conservative reproductive strategy for 

gestation. High gestation rates, however, did not seem to affect changes in population size in 

this herd. That result highlights the importance of monitoring post-gestational demographic 
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CHAPTER 2 

MORPHOLOGICAL TRAITS OF MIGRATORY CARIBOU PREDICT 

POPULATION SIZE BETTER IN PERIODS OF DEMOGRAPHIC GROWTH THAN 

DECLINES 

ABSTRACT 

Population estimates are key to monitoring and managing wildlife. Migratory caribou 

populations are particularly difficult to monitor due to their northern location, immense range 

and drastic population fluctuations. Currently, aerial surveys are the main tool to obtain 

population estimates, but lack both accuracy and precision. Because they are costly, aerial 

surveys are infrequent. Ecological indicators that provide information about a population 

relative to its environment have been proposed to monitor ungulate density. These indicators 

include size, mass, and body fat. Density-dependent factors have been identified in caribou but 

the extent that individual traits inform on population size has not been assessed. We examined 

body condition and morphology of different age classes of caribou from four North American 

herds to determine which indices best predict population size. Most physical traits only 

predicted population size during periods of demographic growth. Traits that correlated with 

population size were age-dependent; juveniles responded more consistently than adults, but 

correlations also varied between herds. Adult mass was positively related to population size in 

the Beverly and Porcupine herds. Adult hind foot length decreased with increasing density in 

the Riviere-aux-Feuilles and Porcupine herds. Monitoring physical traits can be useful to 

determine whether resource limitation or other factors are mainly driving population 

dynamics, but the ability of morphological traits to quantify numerical change at the 

population level is restricted to particular ecological contexts. We recommend that mass in 

juveniles and bone measurements in adults be measured to inform on population size. 

However, monitoring physical traits can only complement and not replace costly aerial counts. 

To better manage populations of migratory caribou, continued research and monitoring is 
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needed to identify herd-specific factors driving population dynamics, and potential ecological 

indicators, particularly during periods of population decline. 

INTRODUCTION 

Successful monitoring and management of wildlife populations hinges on knowledge about 

population size and trend, which require reliable population estimates (Morellet et al., 2007; 

Williams et al., 2002). In ungulates, various techniques such as the number of animals seen 

per kilometer of transects, capture-mark-recapture and hunting success rates (Nugent and 

Frampton, 1994) are used as proxies for population density, and aerial surveys are typically 

conducted for species that have large home ranges (Redfern et al., 2002), such as migratory 

caribou. Indeed, aerial surveys are currently considered the only effective tool for monitoring 

migratory caribou. Although population estimates are a high priority for managers (Klein et 

al., 1999), aerial surveys are costly and therefore infrequent. The accuracy and precision of 

aerial counts have also been questioned (Jachmann, 2002; Pettorelli et al., 2007; Redfern et al., 

2002). Estimates often have large confidence intervals, which tend to increase with herd size 

(Couturier et al., 2010). 

Monitoring migratory caribou populations is of utmost importance since most populations are 

declining globally (Festa-Bianchet et al., 2011; Vors and Boyce, 2009). Migratory populations 

also fluctuate more rapidly and drastically than those of other large mammals (Bergerud et al., 

2008). Such drastic fluctuations present a major challenge to consumptive management of this 

species. Migratory caribou have high cultural and economical importance for aboriginal 

communities (Kendrick and Manseau, 2008). Because population estimates are infrequent, 

annual management decisions, including harvest quotas, are based on imprecise information, 

often without recent information on demographic trends. 

In lieu of population counts, ecological indicators have been proposed to monitor ungulate 

populations (Du Toit, 2002; Morellet et al., 2007; Zannese et al., 2006). Ecological indicators 

provide valuable information about a population relative to its environment. Indirect 



ecological indicators are density-dependent indices based on physical characteristics or 

performance of individuals, such as female reproductive success, juvenile body mass or other 

morphological measures (Morellet et al., 2007; Zannese et al., 2006) that reflect changes in 

population density. Ideally ecological indicators provide yearly information about a population 

for a fraction of the cost of population counts, but they require validation. 

Indirect ecological indicators rely on the principle of density dependence; as density increases, 

the number of resources per individual decreases, affecting individual nutrition. The negative 

impact of density on ungulate size and condition is well documented. Hind foot length 

(Zannese et al., 2006) and fawn mass (Hewison et al., 2002) of roe deer (Capreolus 

capreolus), caribou calf mass (Couturier et al., 2009b; Post and Klein, 1999; Weladji et al., 

2003), red deer birth mass (Nussey et al 2005), body size of adult red deer (Mysterud 2001), 

roe deer (Toigo et al. 2006) and brown bear (Ursus arctos) (Zedrosser et al. 2006) have all 

shown negative density dependence during periods of population growth. 

Reversal of the negative effects of high density requires that the nutritional plane improve as a 

population is reduced. Fewer studies have examined this relationship than those documenting 

the negative effects of increasing density. Cohort mandible size of caribou (Couturier et al., 

2010), reindeer birth mass (Skogland, 1990), roe deer birth mass (Hewison et al., 2002), 

white-tailed deer fawn mass, yearling male mass and hind foot lengths (Ashley et al., 1998), 

and juvenile body condition of feral donkeys (Choquenot, 1991) all tended to increase when 

populations were reduced or declined naturally. However, a response in demographic 

parameters or physical traits does not always occur after population reduction, as seen in 

white-tail deer (Shea et al., 1992). 

The response of demographic parameters and physical traits to density may vary according to 

whether a population is increasing or decreasing (Fryxell et al., 1991), although this possibility 

has received little attention. Demographic parameters and physical traits may mirror changes 

in density during periods of population growth, as resources become scarce, but may lag 

during periods of decline (Fryxell et al., 1991) until forage quality recovers. Cohort effects can 
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also cause delayed responses. For example, poor environmental conditions at birth can affect 

adult mass and reproductive success even if density declines by when those individuals reach 

maturity (Gaillard et al., 2003; Pettorelli et al., 2002). 

In addition to conducting population estimates, caribou managers have monitored productivity 

(pregnancy rates, birth rates, calf recruitment in autumn), adult survival (Crete et al., 1996), 

calf mass (Couturier et al., 2009b) and survival (Whitten et al., 1992), annual ranges, 

movements (Couturier et al., 2010), and adult body condition (Huot, 1989; Parker, 1980; 

Taillon et al., 2012a) to improve understanding of populations and their limiting factors. Due 

to limited financial resources, such data are not collected consistently over time nor for all 

herds (Klein et al., 1999). Managers therefore must make decisions with limited knowledge 

about the current state of a population. Alternatives such as ecological indicators would 

therefore be invaluable to inform on a population's state. 

Our objective was to quantify correlations between individual physical characteristics 

including juvenile morphology (mass and leg length), seasonal adult condition (mass and fat) 

and adult size (leg length) with population size in four migratory caribou herds. We 

hypothesized that (1) average physical traits would vary according to population size for food-

limited herds, that (2) the correlation between physical traits and population size would be 

strongest in populations at or near peak density, assumed to reflect carrying capacity, and that 

(3) juveniles would respond more readily to changes in population size compared to adults 

(Gaillard et al., 2000). 

STUDY AREA 

We studied four demographically independent (Figure 2) migratory caribou herds in North 

America; the Riviere-George herd and the Riviere-aux-Feuilles herd in Quebec and Labrador, 

the Beverly herd in central Canada and the Porcupine herd in the Northwest Territories, 

Yukon and Alaska. The Riviere-George and Riviere-aux-Feuilles herds together range over 

1.2 million km2 north of 50°30'N (Couturier et al., 2010), are genetically undifferentiated 



(Boulet et al., 2007) and despite winter range overlap in some years, have unique calving 

grounds (Taillon et al., 2012b) and summer ranges (Boulet et al., 2007), differ 

morphologically (Couturier et al., 2010) and are managed as distinct populations. The 

Porcupine herd ranges over 250 000km2 from 64-70°N and 130-150°W in northeastern 

Alaska, northern Yukon Territory and northwestern Northwest Territories (Chan-McLeod et 

al., 1999). The Beverly herd ranges over 700 000km2 (Klein et al., 1999) including part of 

Manitoba, Saskatchewan, the Northwest Territories and Nunavut, 

METHODS 

Population Counts, Interpolating Population Estimates 

Population estimates were obtained from post calving photography surveys for the Porcupine 

(http://www.nwtwildlife.com/NWTwildlife/caribou/herds.htm) and Riviere-aux-Feuilles 

herds, as well as for the Riviere-George herd after 1993. Population estimates for the Beverly 

and Riviere-George herds from 1976 to 1993 were extrapolated from counts of reproductive 

females on the calving ground and autumn classification counts. Estimates of the Riviere-

George herd before 1976 were extrapolated from visual aerial censuses of the winter 

population. 

From 1976-2010, seven photographic aerial counts of the Riviere-George herd were 

conducted. Confidence intervals were calculated for population counts beginning in 1980. The 

herd increased from about 5000 individuals in the 1950s to an estimated 776 000 in 1993, then 

declined to approximately 400 000 by 2001 (Couturier et al., 2009b) and 74 000 in 2010 

(Quebec Government aerial survey). The population trajectory for the Riviere-George herd 

was validated up to the year 2000 using tree ring analyses (Boudreau et al., 2003). Based on 

population counts, we assumed that the Riviere-George peaked in 1993. Because 

dendroecological analyses (Boudreau et al., 2003) and population simulations (Crete et al., 

1996) suggested that the herd actually peaked in 1989, we also verified a population trajectory 

with a peak in 1989. 

http://www.nwtwildlife.com/NWTwildlife/caribou/herds.htm


Discovered by Le Henaff (1976) in 1975, the Riviere-aux-Feuilles herd has had six population 

estimates conducted. The population was estimated at 56 000 in the 1975, increased to over 

1.1 million in 2001 (Couturier et al., 2009b), and declined to 430 000 individuals in 2011 

(Quebec Government aerial count). 

Nine counts have been conducted for the Beverly herd. The herd decreased from more than 

200 000 in 1971 to half as many in 1980. It increased again to 250 000 caribou in 1994 

(http://www.enr.gov.nt.ca/ live/pages/wpPages/Beverlv herd.aspx) then decreased to 5 160 in 

2009 (CARMA Network). Poor census conditions in 1993 led to a recount in 1994. Therefore, 

the 1994 estimate was exclusively used in analyses. Dendroecological analyses have also 

confirmed historical abundance in the Beverly herd (Zalatan et al., 2006). 

Since 1977, ten population counts of the Porcupine herd have been conducted. Originally 

estimated at over 110 000 in 1977, it peaked in 1989 at over 170 000. The herd had declined to 

123 000 by 2001 (CARMA network) and the 2010 estimate showed an increase to 169 000 

individuals (Alaska Department of Fish and Game and Canadian wildlife agencies - aerial 

count: http://www.adfg.alaska.gov/index.cfm?adfg=pressreleases.pr03022011). 

We assumed constant population growth rate between counts and estimates of population size 

each year, for all herds. 

Morphological Data 

Data were collected over various years and seasons for different purposes, including studies of 

body condition, organochlorine and heavy metal contamination, range quality, calf survival 

and maternal investment (Table 5). Measurements were obtained on hunted animals, live-

captured animals and scientific culls and in one instance from a mass drowning. Measures 

obtained included whole mass, eviscerated mass, leg length measured as hind foot length (tip 

of the calcaneus to the hoof), metatarsus length, and/or metatarsal bone length and body fat 

percent. 
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For analyses of adult body condition, we followed Couturier et al. (2010), and included only 

adult females >2 years old. For leg length analyses we included only females >2.5 years old 

since leg length growth is completed at that age (Parker, 1981; Thomas and Barry, 2005). Leg 

length analyses required cohort assignation, therefore only caribou with precise age estimates 

were included. Methods of age determination have been presented elsewhere (see Table 5 for 

references), with the exception of live-captured yearlings. Yearlings were identified from 

helicopters and sex and age were confirmed at capture. Yearling age was determined by tooth 

eruption pattern, i.e. the presence of tricuspid molars. 

Reproductive females were lactating in summer or autumn and pregnant in spring. Only 

lactating females from the Riviere-aux-Feuilles and Riviere-George herds were collected in 

summer and autumn in 2007-2009. Because reproductive status affects female condition 

(Chan-McLeod et al., 1999) we restricted autumn and summer analyses for the Riviere-aux-

Feuilles and Riviere-George herd to reproductive females. For the Riviere-George, Beverly 

and Porcupine herds in spring, as well as the Porcupine herd in autumn, both reproductive 

classes were collected. Therefore we performed analyses on average condition of pooled 

reproductive classes, as well as using reproductive females only. Results using pooled classes 

were not significant so we presented results from reproductive females only. Lactation status 

was not assigned to Beverly females collected in December so all females were included in 

analyses. 

Because body condition varies seasonally (Couturier et al., 2009a; Crete and Huot, 1993) we 

analyzed seasons separately and assessed within season effects for collection date. Both 

lactating and non-lactating females of the Porcupine herd lost mass and gained fat at the same 

rate from September to November. We corrected for a decrease in mass, of 0.11kg per day, 

and an increase of percent body fat, of 0.012% per day, for adult females from the Porcupine 

by adjusting condition to the mean collection date (September 25) using linear regressions. 

Metatarsal lengths (n=101) for adult (>2.5 years) Riviere-George females measured in 1980 

were transformed into hind foot lengths using the regression (transformed hind foot 



length=0.99*metatarsal length +16.64, F(ij43)=84.6, p<0.0001, r2=0.37) to compare to hind 

foot lengths measured in other years. Results that excluded transformed metatarsal lengths did 

not differ significantly from when transformed measures were included; therefore we present 

results including transformed data from 1980. 

Statistical Analyses 

We modeled population size based on average morphological measures for each herd and age 

class using linear models. We only included years or cohorts where at least 5 individuals were 

measured. 

For both calves and yearlings, we included mass and leg length in the same model as both 

measures are associated with year of birth. For these multivariate regressions we used the vif 

function in the "car" package to test for multi-collinearity between explanatory variables. 

None of the variance inflation factors exceeded 10 (Kleinbaum, 1988). Adult condition (mass 

and body fat) were modeled according to population size at year of collection and adult leg 

lengths were modeled according to population size in the year of birth. 

Riviere-George calf birth masses and cohort leg lengths were analyzed separately for periods 

of population growth and decline. Small sample size for adult female body condition 

precluded similar analyses. We used stepwise model selection following (McCullagh and 

Nelder, 1989) and variables were considered significant at a<0.05. Due to small sample sizes 

we reported adjusted r2 values. All analyses were performed using R software version 2.12.1 

(R Development Core Team 2010). 

RESULTS 

We assessed the usefulness of juvenile mass and leg length, adult seasonal condition (mass 

and fat) and adult leg length to predict population size in four migratory caribou herds. All 

herds underwent an increase and a decrease phase during the period of sampling, with only the 



Beverly herd having two periods of increase. The Riviere-aux-Feuilles and the Riviere-George 

herds underwent larger fluctuations in size than the Beverly and Porcupine, with the Riviere-

aux-Feuilles herd fluctuating with the largest amplitude (Figure 2). Data were non-orthogonal 

due to the different purposes and methods of collection, therefore not all physical traits were 

measured during both phases for each age class and herd (Table 5 and 6). 

Correlation of population size and average physical traits 

For the Riviere-George herd, the longest time series was for calf mass, which spanned an 

increase of -460 000 and a decrease of -710 000 individuals (Table 5). Calf mass was not 

correlated with population size over the whole time series (Table 6). Calf hind foot length was 

not correlated to population size either (Table 6, Figure 5B) but there were fewer years with 

data on calf hind foot lengths than on calf mass. Calf mass was strongly and negatively 

correlated to population size (parameter estimate—168309±56474) during a population 

increase from 1978 to 1992 (F(i,6)=8.9, p=0.02, Figure 5A) and explained 53% of the variation 

in population size, but there was no correlation during the decline from 1993 onward 

(F(i,i6)=0.13, p=0.88, r2=0, Figure 5A). For an average calf mass of 5, 6 and 7 kg, during a 

period of population growth, the predicted population size and 95% confidence interval would 

be -812 000 ± 243 000, 645 000 ± 129 000 and 476 000 ± 113 000, respectively. The 

relationship between population size and hind foot length during a period of population 

growth could not be determined since hind foot length was only measured in 3 years of 

demographic growth (Figure 5B). During the decline however, the negative correlation of 

population size and calf hind foot approached significance (F(i,i4)=3.8, p=0.07, r2=0.16) 

reflecting the positive trend of hind foot length during the decline (Figure 5B). 
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Table 5. Number of individuals and years where body condition variables were sampled in four migratory herds (Riviere-George, 

Riviere-aux-Feuilles, Beverly and Porcupine), according to age class (newborn, yearling, adult), season (summer, autumn, spring 

and autumn/winter), and physical traits measured (whole mass (mass), eviscerated mass (mass2), hind foot length (hfl), metatarsus 

length (meta), metatarsus bone length and percent body fat (fat)) with reference to publications. Traits with the same sample size are 

conjoined with a "+" and traits that differ appear in brackets, with associated sample sizes and changes in population size in 

brackets. Total number of individuals and years are shown for each trait, with the number of years during periods of population 

increase and decrease and the estimated change in population size for each growth and decline phases. 

sample size period (n) years change in pop 
Herd Age Class Season trait individuals years increase decrease growth decline years (range) References 
Riviere- newborn summer mass (hfl) 27(10) 2 1978-1979 Bergerud (unpub) in Couturier et al. 2009b 
George 118(0) 

438(384) 
20(20) 

240(134) 

2 
15(13) 
I 

7 

1981,1985 
1986-2003 
2010 
1999, 2000, 2002, 2004, 
2005, 2007, 2008 

I.uttich (unpub) in Couturier et al. 2009b 
(Couturier et al., 2009b) 
MRNF 

Government of Labrador 
46 (46) 
888(592) 

3 
25 (20) 8(3) 17(17) 459734 690978 

2007-2009 
All years 

(Taillon et al., 2012a) 

yearling summer mass + hfl 132 12 0 12 NA 639979 1994-2010 MRNF 
adull 
reproductive 

fall mass (fat) 15(15) 
44(73) 
45(36) 

1 
3 
3 

1983 
1985-1987,2001,2002 
2007-2009 

(Huot, 1989) 
(Couturier et al., 2009a) 
(Taillon et al., 2012a) 

104(124) 7(9) 2(4) 5(5) 165145 535427 All years 
summer mass2 (fat) 18 

20 
27 
45 
110(106) 

1 
1 
2 
3 
7(7) 1 6 114579 690978 

1988 
1993 
2001-2002 
2007-2009 
All years 

(Crete and Huot, 1993) 
(Manseau et al., 1996) 
(Couturier et al., 2009a) 
(Taillon et al., 2012a) 

spring mass (fat) 21 

100 
12 
50 

1976 

1980 
1984 
1986,1987,2002 

Drolet and Dauphine 1976 in 
(Couturier et al. 2009b) 
(Parker, 1980) 
(Huot, 1989) 
(Couturier et al., 2009a) 

183(134) 6(5) 5(4) 1 (1) 381609 324008 All years 

4^ o 



Table 5. (Continued) 

sample size period (n) years change in pop 
Herd Age Class Season trait individuals years increase decrease growth decline years (range) References 
Riviere- newborn summer mass (hfl) 208(204) 12 1991-2003 (Couturier et al., 2009a) 
aux- 59(58) 3 2007-2009 (Taillon et al., 2012a) 
Feuilles 53 

315 
2 
15 9 8 917000 763000 

2010-2011 
All years 

MRNF 

yearling summer mass + hfl 99 9 1 8 162454 716804 2001-2010 MRNF 
adult autumn mass (fat) 24 2 2001-2002 (Couturier et al., 2010b) 
reproductive 

total 
48(46) 
72(70) 

3 
5 0 5 NA 665645 

2007-2009 
All years 

(Taillon et al., 2012a) 

summer mass (fat) 15 
24 
48 
88(87) 6 1 5 1024719 665645 

1988 
2001-2002 
2007-2009 
All years 

(Crete and Huot, 1993) 
(Couturier et al., 2010) 
(Taillon et al., 2012a) 

Porcupine adult 

reproductive 

spring mass (fat) 16(16) 

66 (48) 
36 

2 

6 
1 

1987-1998 
1990-1992, 1994, 1996, 
1997 
1994-1995 

(Chan-McLeod et al., 1999) 

(PCTC) 1990-1998 
(Russell et al., 1998) 

118(67) 9(7) 2 7(5) 6785 42785 All years 
autumn mass (fat) 16 

131 
87 

2 
6 
10 

1987-1988 
1990-1995 
1989-1998 

(Chan-McLeod et al., 1999) 
(Russell et al., 1998) 
PCTC 

231 (76) 11(8) 2 9(6) 13000 49000 All years 
Beverly adult spring mass - fat 425 8 4 4 153691 57825 1980-1987 (Couturier et al., 2009a) 

autumn mass- fat 153 5 2 3 99353 40117 1982-1986 (Couturier et al., 2009a) 
Riviere- adult all hfIT (meta) 101 (101) 1980 (Parker, 1980) 
George 187(17) 

136 (25) 
84 (66) 

675000 557682 

1983-1993 
2000-2002 
2007-2009 

(Couturier et al., 2010a) 
(Couturier et al., 2010a) 
(Taillon et al., 2012a) 

470(190) 28(18) 16(7) 12(11) (609110) (491792) Cohort : 1973-2006 
Riviere- adult all Hfl (mcta) 93 (43) 2000-2002 (Couturier et al., 2010a) 
aux- 87(82) 2003 Couturier (unpub.) 
Feuilles 102 (83) 

958963 399820 
2007-2009 (Taillon et al., 2012a) 

274(208) 16 11 5 (823125) (399820) Cohort: 1991-2005 
9 100000 
and and 1980-1987 Thomas,D.(unpub) 

Beverly adult female all metatarsus 653 15 4 2 153691 20885 Cohort : 1971-1985 
metatarsal 1989-1997 

Porcupine adult female all bone 137 11 8 3 59650 12212 Cohort: 1980-1992 PCTC 
PCTC: Porcupine Caribou Technical Committee 



Table 6. Correlations between estimated population size and average morphological measures (whole body mass (mass) eviscerated 

mass (mass2), hind foot length (hfl), and percent body fat (fat)) with condition corrected for collection date denoted with a "C", 

according to age class (calves, yearling females (yearling) and adult (>2 years old) females and season (spring, summer, autumn and 

autumn/winter), of caribou from four migratory herds (Riviere-George, Riviere-aux-Feuilles, Beverly and Porcupine). Females 

were considered reproductive if they were pregnant in spring or lactating in summer and autumn. Parameter estimates arc shown 

with their standard error (se), p-values (p), variation they explained in population size (r2), degrees of freedom (df) and f-statistic (f). 

Significant models (p<0.05) are in bold. 

Sample Size (N) 
Herd class season model individuals years parameter estimate se P r2 df f 
Riviere- newborn summer mass 888 25 intercept 335195 415186 0.43 0 1,23 0.05 
George mass 15952 68068 0.82 

mass+ hfl 592 20 intercept 2512183 2027838 0.23 0 1,18 1.08 
hfl -64387 62053 0.31 
mass 193031 142539 JH9 

yearling summer mass+hfl 137 14 intercept 1760752 629413 0.02 0.25 1,12 5.27 
mass -34096 14860 0.04 
hfl 66584 50144 0.21 

reproductive spring mass 140 5 intercept 2381559 1833875 0.29 0.01 1,3 1.04 
females mass -20930 20529 0.38 

fat 134 5 intercept 
fat 

1237947 
-61697 

805901 
68357 

0.22 
0.43 

0 1,3 0.81 

autumn mass 104 7 intercept 
mass 

4996531 
-48169 

1627970 
16695 

0.03 
0.03 

0.55 1,5 8.32 

fat 124 9 intercept 
fat 

-500985 
124103 

359133 
50260 

0.21 
0.04 

0.39 1,7 6.10 

summer mass2 127 8 intercept 
mass2 

834137 
-8385 

1820431 
34311 

0.66 
0.82 

0 1,6 0.06 

fat 127 8 intercept 
fat 

620368 
-83313 

251519 
71798 

0.06 
0.30 

0.05 1,5 1.35 

K> 



Table 6. (Continued) 

Sample Size (N) 
Herd class season model individuals years parameter estimate se P r2 df f 
Riviere-aux- newborn summer mass 320 17 intercept 1788983 729829 0.03 0.08 1.15 2.37 
Feuilles mass -191148 124298 0.15 

hfl 315 17 intercept 
hfl 

5046291 
-133919 

2133461 
65273 

0.03 
0,06 

0.17 1.15 4.21 

yearling summer mass +hfl 90 10 intercept 331263 1096915 0.77 0 1,8 0.19 
mass 11786 27400 0.68 

-1̂  hfl 132984 115050 0.29 
productive summer mass2 88 6 intercept 

mass2 
4234336 
-71160 

1347343 
27042 

0.03 
0.06 

0.54 1,4 6.93 

fat 87 6 intercept 
fat 

1380333 
-195348 

85700 
22042 

0.00 
0.00 

0.94 1,4 78.54 

autumn mass 72 5 intercept 
mass 

6213579 
-59514 

4953510 
54494 

0.30 
0.36 

0.05 1,3 1.19 

fat 70 5 intercept 
fat 

-1345151 
362604 

875164 
146745 

0.22 
0.09 

0.56 1,3 6.11 

Beverly reproductive spring mass 428 8 intercept 
mass 

-862594 
12596 

620029 
7388 

0.21 
0.14 

0.21 1,6 2.91 

fat 372 7 intercept 
fat 

-420057 
47204 

173309 
13110 

0.06 
0.02 

0.67 1,5 12.96 

adult autumn/winter mass 196 5 intercept 
mass 

-976372 
14641 

481443 
5888 

0.14 
0.09 

0.56 1,3 6.18 

fat 161 5 intercept 
fat 

-631808 
75869 

541374 
48173 

0.33 
0.21 

0.27 1,3 2.48 

Porcupine reproductive spring mass 118 9 intercept 
mass 

121703 
370 

146471 
1625 

0.43 
0.83 

0 1,7 0.05 

fat 67 7 intercept 
fat 

252356 
-7709 

40148 
3213 

0.00 
0.06 

0.44 1,5 5.76 

autumn massC 234 12 intercept 
massC 

-33430.9 
2097.2 

80035.5 
886.2 

0.69 
0.04 

0.29 1,10 5.60 

fatC 78 9 intercept 
fatC 

190281 
-3499 

64813 
6525 

0.02 
0.61 

0 1,7 0.29 



Data on yearling females from the Riviere-George herd were mainly collected during a period 

of decline. Female yearling mass but not hind foot length was negatively correlated to 

population size and explained 25% of the variation (Table 6, Figures 5C, D). Of three seasons 

with available data (spring, summer and autumn), body condition of reproductive females was 

correlated to population size in autumn only. Autumn mass of reproductive females decreased, 

whereas percent body fat increased with population size (Table 6). Both autumn mass and 

body fat explained more variation in population size (55% and 39% respectively) compared to 

yearling mass, however, fewer years of data were available (7 and 9 years respectively). 

In general, morphological measures of calves and yearlings were not correlated to population 

size for the Riviere-aux-Feuilles herd (Table 6, Figure 6). Although calves in the Riviere-aux-

Feuilles herd were measured for fewer years compared to the Riviere-George, calf 

measurements spanned a larger range in population size; an increase of -920 000 and a 

decrease of -760 000 caribou. Calf mass was not correlated with population size but the 

negative relationship with calf hind foot length approached significance (Table 6). In contrast 

to the Riviere-George herd, yearling morphology was not correlated to population size despite 

a similar decrease of -700 000 caribou. Body fat of lactating females in summer but not 

autumn was negatively correlated with population size (Table 6) and explained 94% of the 

variation over the 6 years where caribou were collected. The negative relationship with 

eviscerated mass of lactating females in summer approached significance (Table 6). Although 

not significant, the relationship between autumn body fat of lactating females and population 

size was positive (Table 6), confirming the pattern observed in the Riviere-George. 
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Figure 5. Average calf birth mass and yearling mass in June (kg) (a,c) and average calf and 

yearling hind foot length (cm) (b,d) with standard errors, overlaid with estimated population 

size (red line) (based on average growth rate between population counts) over time for caribou 

of the Riviere-George herd. 
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Figure 6. Average calf birth mass and yearling mass in June (kg) (left panels) and average calf 

and yearling hind foot lengths (cm) (right panels) with standard errors overlaid on estimated 

population size (based on average growth rate between population counts) over time for 

caribou of the Riviere-aux-Feuilles herd. 

Body condition and size of adult females was not useful to predict population size in the 

Beverly herd as no traits were negatively correlated with population estimates. Although the 

range in population size was much smaller for the Beverly herd compared to the Riviere-

George and Riviere-aux-Feuilles herds, the ~ 154 000 increase represented a doubling of the 

population. The positive relationship between population size and body fat of adult females in 

spring was significant (Table 6) and explained 67% of the variation. Both early winter mass 

46 



and body fat of adult females were positively associated to population size, but only mass 

approached significance (Table 6). 

Body condition, mass and body fat of females of the Porcupine herd in spring were not 

correlated to population size. In contrast to the positive relationship between mass and 

population size seen in the Beverly herd in spring, the nearly-significant relationship between 

body fat and population size was negative (Table 6). Autumn mass and population size of 

Porcupine females was positively correlated to population size and explained 29% of the 

variation. 

Correlation of population size and average leg lengths 

Average cohort leg length varied over time for all four herds (Figures 7A-D), but was 

negatively correlated to population size only in the Riviere-aux-Feuilles and Porcupine herds 

(Table 7). Neither metatarsus length nor hind foot length correlated with population size in the 

Riviere-George herd. Although metatarsal length was not correlated with population size in 

the Riviere-aux-Feuilles herd, average hind foot length explained 70% of the variation in 

population size at birth. This negative relationship reflected a decrease in hind foot length 

during a period of population growth (up to 2001) (Figure 7B). An additional 9% of variation 

in population size was explained by hind foot length when we analyzed cohorts born during a 

period of population growth, but there was no correlation during the period of decline (Table 

3). Average metatarsal bone lengths of Porcupine females declined over time and were 

negatively correlated to population size (Table 7, Figure 7D). Variation explained in 

population size at year of birth increased by 26% when analyses were restricted to cohorts 

born during a period of population growth (Table 7), but lack of leg length measurements for 

cohorts born after 1989 precluded assessing the relationship during a decline. Metatarsal 

lengths of Beverly caribou were not significantly correlated to population size (Table 7). 
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DISCUSSION 

Physical traits of migratory caribou correlated with population size in some instances, but 

these correlations were context dependent and varied between morphological measures, age 

groups and herds. Our findings from the Riviere-George herd supported our first hypothesis 

that physical traits are correlated to population size. However, this was not true for other herds 

despite large changes in population size. In support of our hypothesis that density dependence 

will be more prominent during demographic growth; calf mass and population size in the 

Riviere-George were only correlated when the population was growing and not during a 

period of decline. Lastly, our finding that female yearling mass in the Riviere-George herd 

increased during a period of population decline supports our hypothesis that juveniles respond 

to changes in population size more consistently than adults. Between-herd comparisons were 

particularly difficult since populations differed in demographic trajectories, time periods when 

data was collected, sampling effort and ecology. Therefore we discuss the results of each herd 

within its ecological context and limits before presenting overall conclusions. 
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Figure 7. Average leg lengths (hind foot length (cm), metatarsus length (cm) and metatarsal 

bone length (mm) with standard error plotted according to year of birth, overlaid with 

estimated population size (based on average growth rate between population counts) over 

time, for caribou of the (a) Riviere-George, (b) Riviere-aux-Feuilles, (c) Beverly and (d) 

Porcupine herds. 
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Table 7. Correlations between estimated population size and average leg lengths (metatarsal length (meta) and hind foot length (hfl) 

for adult (>2.5 years old) female caribou from four migratory herds (Riviere-George, Riviere-aux-Feuilles, Beverly and Porcupine). 

Data that included transformations of measurements are denoted with a "T" (see text). Parameter estimates are shown with 

associated standard error (se), p-values (p), variation explained in population size estimate (r2) and degrees of freedom (df). Sample 

size of number of individuals and cohorts included in analyses arc presented. Cohorts with fewer than 5 individuals were excluded 

from analyses. Significant parameters (p<0.05) are in bold. 

all available years period of population growth period of decline 

Herd parameter estimate se P 
•> 
r df estimate se P r2 df estimate se P rj df 

Riviere-

George intercept 5502777 3966849 0.18 0.04 1,17 5823843 2736505 0.09 0.34 1,5 4048321 4974913 0.44 -0.05 1,10 

meta -129760 100884 0.22 -141642 69526 0.10 -90571 126595 0.49 

intercept -2098394 2483956 0.41 0.00 1,26 -7481110 4772658 0.14 0.10 1,14 -8381545 4108888 0.07 0.25 1,10 

hflT 45913 44756 0.31 141083 85220 0.12 161819 74949 0.06 

Riviere-
aux-Feuillcs intercept 14314660 2368668 >0.001 0.70 1,13 13715503 2251231 >0.001 0.79 1,8 -14529420 10230089 0.25 0.25 1,3 

hfl -246977 43011 >0.001 -236700 40567 >0.001 286132 188695 0.23 
intercept 9402851 10686290 0.40 -0.03 1,11 16916758 10825753 0.17 0.15 1,6 -7598104 11277842 0.55 -0.12 1,3 

meta -220259 272951 0.44 -415297 276425 0.18 219295 288208 0.50 

Beverly intercept -397624 2409734 0.87 -0.07 1,13 23051375 6984779 0.08 0.76 1,2 -1077012 2488992 0.68 -0.08 1,9 

meta 21501 90619 0.82 -860633 262536 0.08 47330 93614 0.63 

Porcupine intercept 

meta 

1042519 

-3200 

312357 

1124 

0.01 

0.02 

0.42 1,9 1572107 

-5116 

367472 

1319 

0.01 

0.01 

0.67 1,6 

O 



Riviere-George 

In the Riviere-George herd, the density dependence of calf birth mass (Couturier et al., 2009b) 

existed exclusively during a period of population growth. Calf mass decreased by an average 

of 1.1 kg or 20% during 15 years of population growth. Because birth mass in ungulates is 

often associated with survival (Clutton-Brock et al., 1987; Festa-Bianchet et al., 1997), the 

decrease in average calf mass would likely reduce recruitment. Indeed, calf mass has 

previously been correlated to autumn recruitment rates in this herd during demographic 

growth (Couturier et al., 2009b). A decline in birth mass over time can therefore indicate that 

the population is approaching carrying capacity. Despite the strong correlation between birth 

mass and population size during demographic growth, large confidence intervals for predicted 

population size highlight that the predictive power is low. The lack of relationship between 

population size and calf mass during a population decline could partly be due to constraints on 

calf mass variability. Females are physiologically limited by the upper size-limit of calves they 

can produce, so regardless of how small the population size becomes, calves cannot be born 

any larger. Low calf mass during periods of decline could also reflect maternal effects (Taillon 

et al., 2012b). On average, Riviere-George adult females were heavy in autumn during the 

population decline but had little fat reserves (discussed below). Nutrition based on forage 

availability may have been sufficient for females to conceive in autumn, but not adequate 

enough to gain fat reserves and produce heavy calves (Cook et al. 2002). Alternatively, harsh 

environmental conditions with high calf mortality during the decline could have relieved 

females from the burden of energetic lactation such that they could subsequently breed the 

following year (Adams and Dale, 1998; Gerhart et al., 1997). Unlike reindeer calf mass that 

improved 5 years after the onset of a decline (Skogland, 1990), calf mass in the Riviere-

George remained low for 18 years. Continued light calf mass for extended periods is 

concerning since birth weight is often correlated with survival (Festa-Bianchet et al., 1997). 

Yearling female mass in the Riviere-George herd increased during a population decline. That 

relationship can be explained by either cohort effects of calf mass or by a direct sensitivity to 

changes in density. If there was a strong selective pressure on calf mass, only large calves 



would survive and presumably become large yearlings. In other ungulate species individuals 

that are heavy as adults were heavy at birth (Festa-Bianchet et al., 1996). Lack of a correlation 

between average calf birth mass and autumn calf mass (Couturier et al., 2009b) in this herd, 

could reflect variability in mortality rates and therefore changes in selection pressure favoring 

larger calves. Evidence is accumulating that selection pressure is strongest in harsh 

environments with low survival (Pelletier et al., 2007). Alternatively, regardless of birth mass, 

yearlings could benefit from reduced food competition during a population decrease and 

therefore could grow quickly. Juvenile ungulates are known to be more sensitive than adults to 

changes in population density (Bonenfant et al., 2009; Festa-Bianchet et al., 2003; Gaillard et 

al., 2000). Our results identify yearlings as ecological indicators in the Riviere-George herd, 

although whether they respond negatively to increases in population size remains to be 

established. 

Adult female condition in autumn, but not in summer or spring, was correlated with 

population size. Female mass and body fat, however, had opposing relationships with 

population size. These results differ from Couturier et al. (2009) where autumn condition 

(mass and body fat) was independent of herd size. Once data from 2007-2009 were included, 

however, the trend in body condition was apparent; average female mass increased from 1983 

to 2009 by an average of ~10kg, and percent body fat decreased by -2% from 1985-1987 to 

2007-2009. Summer forage was thought to be the limiting factor for this herd up to 1993 

(Crete et al., 1996) which could account for the increase in adult autumn mass during a period 

of population decline. In this herd, the accumulation of fat but not protein reserves seems to be 

limited over summer (Huot, 1989). If summer nutrition is the limiting factor, specifically 

limiting accumulation of fat reserves, then our results suggest that the summer range continued 

to deteriorate while the population declined, since females were leaner. Low population size is 

not necessarily indicative of good environmental conditions as forage recovery time may lag 

by over 20 years for slow growing lichen (Henry and Gunn, 1991). 

Many traits responded to changes in population size in the Riviere-George with the exception 

of adult female leg length. Although leg length was not correlated to population size, there 
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appears to be a decreasing trend in leg length that continued throughout the population 

decline. Perhaps leg length was slow to respond as it may have high growth priority (Klein et 

al., 1987). Selection pressure on leg length may be strong for migratory caribou due to the 

large distances they travel each year. Density-dependent effects may be more evident in 

skeletal measures that have lower growth priority, as seen in cohort mandible size for this herd 

(Couturier et al., 2010). 

In support of our first hypothesis, we observed several correlations of physical traits and 

population size in a herd thought to be limited by nutrition. Summer nutritional limitation was 

further supported by the response in average yearling and adult autumn mass during a 

population decline. We also confirmed our second hypothesis, that the relationship between 

physical traits, (e.g. calf mass) and population size was stronger during periods of population 

growth. Although there is support for food-limited regulation in this herd (Arseneault et al., 

1997; Messier et al., 1988), low adult survival has previously been determined as the 

proximate cause of the population decline (Crete et al, 1996; Hearn et al., 1990). 

Riviere-aux-Feuilles 

The Riviere-aux-Feuilles herd underwent similar fluctuations in size as the Riviere-George so 

we expected to see density dependent effects. However, neither of mass and hind foot length 

for calves and yearlings in the Riviere-aux-Feuilles was correlated to population size. The 

decrease in calf mass from 1991-2003 was nearly significant (Couturier et al., 2009b), but calf 

mass was not correlated with population size during a period of population growth nor during 

a decline. Density effects on calf mass may not have been detected because the range of calf 

mass was relatively small compared to the Riviere-George. Range of yearling mass was 

similar to that in the Riviere-George, but there was no trend as average mass varied 

extensively from year to year. Variation in calf and yearling morphological measures could 

have been caused by density-independent factors therefore masking any density dependent 

effects. Adult female body fat in summer was negatively correlated to population size, 

confirming previous findings (Couturier et al., 2009a). Although adult body fat appeared to 
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explain most of the observed variation in population size, the r2 value is not very reliable since 

the regression was based on 6 data points. 

The relationship between adult female leg length and population size in the Riviere-aux-

Feuilles herd was not clear because hind foot length was negatively associated with population 

size whereas metatarsal length was not. The larger range of hind foot lengths compared to 

metatarsal lengths meant that statistically, the probability of detecting a difference in hind foot 

length was greater. Both measures of leg length have substantial measurement error leading to 

low repeatability and large observer differences (Martin, J. unpub.). Despite the lack of 

precision, the ~4 cm decrease in leg length in the 16 cohorts over an increase of 959 000 

individuals likely reflected a real temporal trend. Inferences regarding the Riviere-aux-Feuilles 

herd are difficult since analyses were especially limited by imprecise and infrequent 

population estimates in this herd. We assumed that the Riviere-aux-Feuilles herd peaked in 

2001 when the population count was obtained. Although it is very likely that the herd peaked 

near or after 2001, since the population more than doubled from 1991 to 2001 (from 276 000 

to at least 628 000 caribou), the peak might have happened between the 1991 and 2011 counts. 

Imprecise estimate of the population peak could have affected our results. 

Beverly and Porcupine 

The Beverly and Porcupine herds underwent smaller changes in population size compared to 

the Quebec-Labrador herds. Therefore, we did not anticipate large density-dependent effects. 

Contrary to our predictions, population size was positively associated with spring fat in the 

Beverly and with autumn mass in the Porcupine. The only measurement that showed a 

negative effect of population size was leg length in the Porcupine herd. The unexpected 

positive relationship between body fat of reproductive Beverly females in spring and 

population size may be an artifact of low sample size. Relatively low body fat (11.4%) in 1980 

occurred at the lowest population size and was highly influential in the statistical analysis. 

Casting further doubts on this result, the lowest and highest body fat averages (11.4% and 

14.2%) were observed in consecutive years; 1980 and 1981. The relationship between 
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population size and autumn mass of Porcupine females was also not robust. Using weighted 

regression to account for differences in sample size (results not shown) or by removing one of 

the two years when mass was low, the effect disappears. Average autumn mass of adult 

females in the Porcupine herd fluctuated by as much as 6.3 kg from one year to the next. We 

may have observed positive relationships in adult females if a lag was present since few years 

of data were available for these herds. 

Population size was negatively correlated with cohort leg length of adult females in the 

Porcupine but not the Beverly herd. This relationship may have manifested in the Porcupine 

herd, despite having the smallest change in population size, because most cohorts were born 

during a period of growth and the metatarsal bone was measured. Measurement error 

associated with bone length is minimal compared to live measures, making small differences 

in bone length easier to detect. Indeed, the decrease of 11mm while the population increased 

by ca. 60 000 individuals was significant. Similar decreases in leg length with increasing 

population size were observed in roe deer (Toigo et al., 2006; Zannese et al., 2006). Leg 

length of adult females was correlated with population size for two of the four herds we 

studied. The variation in population size explained by leg length in both herds increased when 

only cohorts born during demographic growth were included in analyses. Measuring leg 

length of harvested animals that can be aged from tooth section has a relatively low cost and 

appears to be informative of population size increases in migratory caribou. Managers should 

be aware of the large error associated with leg length measures and ensure that measurement 

error and observer differences are minimized over time by using specifically designed tools 

(Garel et al., 2010) or take more accurate measures like bone lengths instead. 

Conclusion 

We showed that analyzing periods of population growth and decline simultaneously can mask 

density dependent effects on ecological indicators. This finding highlights the importance of 

taking the phase of the population cycle into consideration. Although juveniles responded to 

changes in density more consistently than adults, there were inconsistencies between herds. 



Direction of correlations between adult female condition and population size varied between 

herds perhaps because size and condition of adult females is less likely to respond to changes 

in density compared to juveniles or males (Ashley et al., 1998; Clutton-Brock et al., 1982; 

Vincent et al., 1995). Or because adult mass can be confounded by environmental conditions 

present at birth (Solberg et al., 2004) and females can buffer their own condition by allocating 

more resources to maintenance compared to reproduction (Festa-Bianchet and Jorgenson, 

1998; Therrien et al., 2007). 

The effects of phenotype on population growth are just beginning to be studied (Schoener, 

2011) and although they may contribute to population growth rate, their relative contribution 

appears to be small (Pelletier et al., 2011). Therefore, the main drivers of population dynamics 

should be investigated. Density independent factors were thought to be the primary drivers of 

population dynamics in Peary caribou (Tews et al., 2007) and several large scale climate 

patterns have been correlated to population dynamics of Rangifer regionally (Joly et al., 2011) 

and globally (Vors and Boyce, 2009). Despite being buffered against environmental 

stochasticity, adult female survival can have the greatest impact on population growth. Few 

studies have identified the role of starvation in adult survival (Owen-Smith and Mason, 2005) 

whereas the role of predation for population regulation is well documented (Owen-Smith et 

al., 2005). When predation is the limiting factor in a population, body condition is not 

associated with population size or changes in population size as seen in a mountain caribou 

population (McLellan et al., 2011). Although predation did not seem to be regulating the 

Riviere-George herd (Messier et al., 1988), whether predation rates and hunting pressure are 

implicated in population declines as seen in other species (Patterson and Power, 2002) requires 

investigation. 

From a management perspective, the ability of physical traits to predict population size of 

caribou is limited. Ecological indicators can complement, but not replace population counts. 

As previously proposed, rather than rely on a single indicator, a suite of ecological indicators 

is recommended (Dale and Beyeler, 2001; Morellet et al., 2007). If caribou managers intend to 

measure physical traits as ecological indicators, we recommend they focus on juvenile mass, 



which seems to respond quickly to changes in population size, and restrict measurement of 

adults to more accurate bone measurements. To predict and monitor changes at the population 

level, factors limiting and influencing population dynamics should be identified. 
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GENERAL CONCLUSION 

The positive relationship between condition and probability of gestation for female caribou in 

the Riviere-George herd did not vary with population size. Therefore, these caribou did not 

adopt a conservative reproductive strategy, at least in terms of conception rates. However, 

density-dependent changes in female condition affected gestation rates. My analysis of the 

interactions between individual mass and population size was limited by the small sample of 

non-pregnant females and by the availability of data over a limited number of years. Although 

a larger sample size of non-pregnant caribou may have enabled the detection of subtle 

differences in the relationship between morphological measures and the probability of 

gestation, there were no light females when the population was at low density and increasing. 

That made it difficult to evaluate independently the effects of population density and female 

condition. At the individual level, reproductive success increases with adult body condition 

and size. Population size influences productivity, thereby influencing recruitment rates and 

affecting population dynamics. Therefore, monitoring adult condition and gestation rates for 

the Riviere-George herd will provide insight regarding changes in population size. 

To determine which physical traits of migratory caribou predict numerical changes in 

population size, 1 had planned to examine which trait, sex, and age class best predicted 

changes at the population level for periods of population increase and decline. My analysis, 

however, was constrained by the available data from previous monitoring and research 

initiatives. Despite a total of over 6000 measurements, the number of years with data available 

for a given herd-age-season-trait and reproductive class ranged from 5 to 25 (with a maximum 

of 28 for cohort year) and from 0 to 17 when divided according to population phase. 

Unfortunately, adequate comparisons between sexes and between most population phases 

were not possible. In addition, sample size was equivalent to the number of years where data 

were collected, because population size was modeled on the average of traits per year. Small 

sample size precluded most multivariate analyses, did not allow for the inclusion of non-

linearity in models and led to poor model fit. 
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Despite these limitations, this research produced several important conclusions. Firstly, 

physical traits did not predict population size consistently or accurately in migratory caribou. 

Similar results were obtained from long term studies of other ungulates with complete data on 

recruitment and survival rates which showed that the influence of individual traits on 

population growth was minimal (Coulson et al., 2011; Pelletier et al., 2011). Secondly, traits 

that are useful ecological indicators for three of the four populations of migratory caribou 

during periods of population growth, and one herd-specific trait useful during a decline, were 

identified. 

Most importantly, I provided a rare empirical example supporting the view that density-

dependence is stronger during demographic growth than during declines (Bonenfant et al., 

2009). This finding stresses the importance of taking population phase into consideration 

when analyzing trends in morphological measures. It has important management implications: 

managers should not use ecological indicators out of context, because traits respond 

differently to changes in density in different contexts or population phases. Managers also 

need to be aware that ecological indicators provide information about a population relative to 

its environment and the changes therein, but population estimates are required to put changes 

in traits into context. Ecological indicators may be useful for the management of overabundant 

ungulates to show when populations are becoming a nuisance, but are less useful for migratory 

caribou populations where managers are more concerned about drastic population declines. 

Future research should continue to monitor female yearling mass in the Riviere George herd 

and attempt to determine factors that regulate other herds including the Riviere-aux-Feuilles 

herd. My research also highlighted that physical traits that respond to population increases do 

not necessarily drive population declines. For migratory caribou, more research is needed to 

determine the factors that contribute to population declines and crashes. I suggest that 

monitoring how predation and hunting may affect adult survival may be particularly 

important. We cannot predict the future, but we should work to ensure that caribou are a part 

of ours. 
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