INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

UMI®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITÉ DE SHERBROOKE Faculté des sciences appliquées Département de génie civil

INFLUENCE DU TYPE DE MÛRISSEMENT ET DE L'AUTODESSICCATION SUR LA RÉSISTANCE AU GEL DES BÉTONS

Mémoire de maîtrise ès sciences appliquées Spécialité : génie civil

Aleksandra POPIC

Sherbrooke (Québec), CANADA

Août 1999

TU -1236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawe ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre rélérence

Our lie Note rélérance

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-67710-9

RÉSUMÉ

Dans ce mémoire, nous avons étudié l'influence de l'autodessiccation, du degré de saturation de la porosité capillaire lors du mûrissement et lors du gel sur la durabilité au gel des bétons en utilisant l'essai accéléré normalisé ASTM C 666, Procédure A. Nous avons essayé de mieux comprendre quelle est l'influence du type de mûrissement (scellé ou non scellé) sur la résistance au gel des bétons ordinaires et des BHP en laboratoire.

Une grande partie de cette recherche a porté sur l'étude de la relation entre l'humidité relative interne et la durabilité au gel des bétons. Nous avons également mesuré comment varie l'humidité relative interne en fonction de la profondeur et du temps à l'intérieur de blocs en BHP constamment immergés sous l'eau pour pouvoir estimer à partir de quelle profondeur sous la surface, l'autodessiccation interne pourrait contribuer à la déssaturation partielle de la porosité capillaire.

Deux séries de bétons sans air entraîné ont été réalisées. La première série a comporté deux bétons ordinaires et deux BHP. Chaque béton a été soumis à des cycles de gel-dégel en système scellé et non scellé après avoir subi un mûrissement en condition scellé ou non scellé. Le degré de saturation et l'humidité relative ont été déterminés avant et après les cycles. Pour réaliser la deuxième série, deux blocs en BHP ont été fabriqués et les profils d'humidité relative interne en fonction du temps ont été mesurés.

Cette recherche a démontré que le type de scellement lors des cycles de gel-dégel a une grande influence sur la résistance au gel des bétons en laboratoire. Les résultats tendent à montrer que l'essai accéléré normalisé ASTM C 666 permet d'estimer adéquatement la durabilité au gel des bétons ordinaires. Cependant, nos résultats suggèrent que cet essai sous estime la durabilité réelle des BHP sans air entraîné en condition in situ. L'essai accéléré ne permet pas aux BHP de développer leurs caractéristiques pouvant améliorer considérablement la durabilité au gel tels que l'autodessiccation interne, la désaturation de la porosité capillaire et la baisse de l'humidité relative.

REMERCIEMENTS

Je tiens à remercier sincèrement mon directeur de mémoire, Monsieur Richard Gagné ing. Ph.D., qui m'a guidé et bien dirigé tout au long de cette recherche.

Je tiens aussi à remercier tout le personnel du département de génie civil de l'Université de Sherbrooke pour l'aide technique qu'il m'a apporté lors de l'accomplissement de ce mémoire. Je remercie spécialement Messieurs Claude Faucher, Jean-Yves Roy, Sylvain Roy et Madame Gislaine Luc pour l'intérêt qu'ils ont porté à mes travaux et pour leur collaboration.

Je remercie également tous les membres du Groupe de Recherche sur le Béton pour leurs conseils et leur soutien.

Enfin, je voudrais remercier le Centre Interuniversitaire sur le Béton et Monsieur Richard Gagné pour leur participation financière lors de la réalisation de ce mémoire.

TABLE DES MATIÈRES

Page

1.	HYD	RATATION, BILAN VOLUMIQUE ET AUTODESSICCATION DE	
	LA P.	ÂTE DE CIMENT HYDRATÉ	1
1.1	Introd	luction	1
1.2	Le cir	nent Portland	1
	1.2.1	Fabrication du ciment Portland	2
	1.2.2	Composition chimique du ciment Portland	2
	1.2.3	Classification des ciments Portland	4
1.3	Hydra	atation du ciment Portland	4
	1.3.1	Cinétique de l'hydratation du ciment Portland	5
	1.3.2	Hydratation des silicates	10
	1.3.3	Hydratation des aluminates	10
1.4	Volun	ne des produits d'hydratation	11
	1.4.1	Contraction Le Châtelier	12
	1.4.2	Équations de Powers	13
1.5	Autod	lessiccation interne	17
	1.5.1	Origine de l'autodessiccation	17
	1.5.2	Loi de Laplace	18
	1.5.3	Loi de Kelvin	19
	1.5.4	Loi de Kelvin-Laplace	20
	1.5.5	Évolution de l'humidité relative interne en fonction du temps	21
		1.5.5.1 Influence du rapport E/L	22
		1.5.5.2 Influence de la fumée de silice	25
		1.5.5.3 Influence du type de ciment	26
	1.5.6	Isothermes d'adsorption et de désorption	28
2.	RÉSIS	STANCE AUX CYCLES DE GEL-DÉGEL	30
2.1	Introd	uction	30
2.2	Gélivi	té de la pâte de ciment hydraté	30
	2.2.1	Porosité interne et l'état de l'eau dans la pâte de ciment	31

	2.2.2	Point de fusion de la glace	32
	2.2.3	Calorimétrie à basse température	33
	2.2.4	Degré de saturation critique	34
	2.2.5	Comportement dimensionnel de la pâte de ciment lors du gel	38
2.3	Fissu	ration interne	39
	2.3.1	Modèle des pressions hydrauliques	40
	2.3.2	Modèle des pressions osmotiques	43
	2.3.3	Modèle thermodynamique	45
2.4	Résist	tance au gel des bétons à haute performance	46
	2.4.1	Résistance à la fissuration interne en laboratoire	46
		2.4.1.1 Représentativité de l'essai ASTM C 666 – A	51
	2.4.2	Résistance à la fissuration interne en nature	52
•			E A
3.	BOI	DE LA RECHERCHE ET PROGRAMME DES ESSAIS	54
3.1	Expos	sé de la problématique	54
3.2	Objec	tifs du projet	55
3.3	Métho	odologie	56
	3.3.1	Choix des paramètres à étudier	56
	3.3.2	Procédure expérimentale et les caractéristiques des échantillons	57
4.	MAT	ERIAUX, MÉLANGES ET PROCÉDURES EXPÉRIMENTALES	60
4.1	Matér	iaux	60
	4.1.1	Ciments	60
	4.1.2	Granulats	61
	4.1.3	Adjuvants	63
	4.1.4	Eau	64
4.2	Mélan	ges et procédures de gâchage	64
	4.2.1	Mélanges	64
	4.2.2	Procédure de gâchage	67
	4.2.3	Échantillonnage et fabrication des blocs	68

.

4.3	Procé	dures expérimentales	69
	4.3.1	Mûrissement des éprouvettes de gel-dégel	69
	4.3.2	Scellement des échantillons lors des essais de gel-dégel	69
	4.3.3	Essais de gel-dégel	70
		4.3.3.1 Mesure de la masse	72
		4.3.3.2 Mesure de l'allongement	73
		4.3.3.3 Mesure de la vitesse des ondes	74
	4.3.4	Résistance à la compression	75
	4.3.5	Caractéristiques des vides d'air	75
	4.3.6	Degré de saturation du béton	76
	4.3.7	Humidité relative interne	78
		4.3.7.1 Mesures de l'humidité relative dans les échantillons de	
		gel-dégel	79
		4.3.7.2 Mesures de l'humidité relative dans les blocs	80
5.	PRÉS	ENTATION DES RÉSULTATS	82
5.1	Introd	uction	82
5.2	Résist	ances à la compression et caractéristiques des bulles d'air	82
	5.2.1	Résistances à la compression	82
	5.2.2	Caractéristiques des bulles d'air	86
5.3	Essais	de gel-dégel	88
	5.3.1	Évolution des propriétés pendant le mûrissement (série I)	88
		5.3.1.1 Variations de la masse	88
		5.3.1.2 Variations de la vitesse des ondes sonores	91
		5.3.1.3 Variations de l'allongement	94
	5.3.2	Évolutions des propriétés pendant les cycles de gel-dégel (série I)	98
		5.3.2.1 Variations de la masse	9 8
		5.3.2.2 Variations de la vitesse	101
		5.3.2.3 Variations de l'allongement	101
	5.3.3	Évolution des propriétés des témoins	106

		5.3.3.1 Variations de la masse	107
	5.3.4	Synthèse	110
5.4	Degre	é de saturation	117
	5.4.1	Calcul du degré de saturation	117
	5.4.2	Degré de saturation à la fin du mûrissement	118
	5.4.3	Degré de saturation à la fin des cycles de gel-dégel	120
5.5	Humi	dité relative interne	122
	5.5.1	Humidité relative dans les prismes de gel-dégel	123
		5.5.1.1 Humidité relative à la fin du mûrissement	123
		5.5.1.2 Humidité relative à la fin des cycles de gel-dégel	126
	5.5.2	Humidité relative dans les blocs	1 28
6.	DISC	USSION DES RÉSULTATS	132
6.1	Relati	on entre le degré de saturation et la résistance au gel des bétons sans	
	air en	traîné	132
6.2	Relati	on entre l'humidité relative interne et la résistance au gel des bétons	
	sans a	ir entraîné	133
6.3	Analy	rse de la résistance au gel-dégel des BHP sans air entraîné en	
	labora	toire et en conditions in situ	139
	6.3.1	Introduction	139
	6.3.2	Cycles de gel-dégel	139
	6.3.3	État de saturation de la porosité capillaire	141
		6.3.3.1 Historique de mûrissement	141
		6.3.3.2 Effet d'échelle	143
	6.3.4	Synthèse	143
CON	CLUSIC	DN	146
BIBL	IOGRA	РНІЕ	149

154
15
15
17
19
20
212
21

LISTE DES FIGURES

Page

Figure 1.1	Courbe calorimétrique de l'hydratation d'une pâte de ciment	5
Figure 1.2	Période de gâchage	7
Figure 1.3	Période dormante	8
Figure 1.4	Période de prise ou d'accélération	8
Figure 1.5	Période de durcissement	9
Figure 1.6	Période de ralentissement	9
Figure 1.7	Expérience de contraction Le Châtelier	12
Figure 1.8	Bilan volumique de l'hydratation des pâtes de ciment ayant les	
	rapports E/C de 0,50 et 0,42 pour les différents degrés d'hydratation	15
Figure 1.9	Bilan volumique de l'hydratation des pâtes de ciment ayant les	
	rapports E/C de 0,35, 0,30 et 0,25 pour les différents degrés	
	d'hydratation	16
Figure 1.10	Le phénomène de l'autodessiccation	18
Figure 1.11	Illustration de la loi de Laplace	19
Figure 1.12	Abaissement de l'humidité relative interne en fonction du temps pour	
	les pâtes de ciment (CO et CH) et des bétons (BO et BH)	22
Figure 1.13	Courbes de porosimétrie au mercure de deux pâtes de ciment	
	conservées pendant 7 jours dans l'eau	23
Figure 1.14	Évolution de l'humidité relative dans les pâtes de ciment pour les	
	différents rapports E/C	24
Figure 1.15	Humidité relative des bétons en fonction du rapport E/C dans le cas	
	d'un mûrissement scellé (S – 10 % de fumée de silice)	24
Figure 1.16	Évolution de l'humidité relative due à l'autodessiccation dans une	
	pâte de ciment possédant un rapport $E/C = 0,35$ (contribution du	
	ciment et de la fumée de silice)	25
Figure 1.17	Influence de la fumée de silice et du rapport E/L sur l'évolution de	
	l'humidité relative dans des pâtes de ciment	26
Figure 1.18	Évolution de l'humidité relative des mortiers	28

Figure 1.19	Isothermes d'adsorption et de désorption de vapeur d'eau obtenus à la	
	température de 23 °C	2
Figure 2.1	Échelle de la taille des solides et des pores dans la pâte de ciment	
	hydraté	3
Figure 2.2	Relation entre la température de formation de la glace et le diamètre	
	des pores	3:
Figure 2.3	Influence du rapport E/C sur la formation de la glace (les échantillons	
	séchés à 20 °C et 50 % d'humidité relative puis résaturés)	34
Figure 2.4	Influence du degré de saturation d'un mortier ($E/C = 0,60$) sur son	
	comportement dimensionnel au cours du gel	3
Figure 2.5	Relation entre le paramètre F et le période d'absorption capillaire	30
Figure 2.6	Influence du taux d'humidité relative interne sur la résistance au gel	
	du béton	31
Figure 2.7	Comportements dimensionnels des pâtes de ciment au cours de gel	39
Figure 2.8	Représentation schématique de Lmax et L.	42
Figure 2.9	Illustration schématique du processus de la formation des pressions	
	osmotiques dans la pâte de ciment	44
Figure 2.10	Diagramme des phases de l'eau	46
Figure 2.11	Influence du rapport E/C sur la résistance à la fissuration interne	50
Figure 2.12	Influence de la résistance à la compression sur la résistance à la	
	microfissuration interne	50
Figure 3.1	Représentation schématique des paramètres choisis	58
Figure 4.1	Courbe granulométrique du granulat fin et fuseau normalisé	61
Figure 4.2	Courbe granulométrique du gros granulat et fuseau normalisé	62
Figure 4.3	Clé pour l'identification des échantillons de gel-dégel	67
Figure 4.4	Scellement des échantillons lors des cycles de gel-dégel	70

Figure 4.5	Combinaisons des types de scellement de la surface des échantillons	
	de gel-dégel lors du mûrissement et des cycles de gel-dégel	71
Figure 4.6	Vue schématique du montage pour le conditionnement des	
	éprouvettes	77
Figure 4.7	La sonde Novasina ms1	79
Figure 4.8	Mesure de l'humidité relative et de la température dans l'échantillon	
	de gel-dégel	80
Figure 4.9	Mesure de l'humidité relative et de la température dans le bloc	81
Figure 5.1	Résistances à la compression des bétons de rapport $E/L = 0,30$ (série	
	Ŋ	84
Figure 5.2	Résistances à la compression des bétons de rapport $E/L = 0,40$ (série	
	Ŋ	84
Figure 5.3	Résistances à la compression des bétons de la série II	86
Figure 5.4	Variations de la masse des échantillons de gel-dégel lors du	
	mûrissement (Bétons : 0,3 CP-747 et 0,3 SF-539)	89
Figure 5.5	Variations de la masse des échantillons de gel-dégel lors du	
	mûrissement (Bétons : 0,4 CP-817 et 0,4 SF-976)	90
Figure 5.6	Variations de la vitesse des ondes dans les échantillons de gel-dégel	
	lors du mûrissement (Bétons : 0,3 CP-747 et 0,3 SF-539)	92
Figure 5.7	Variations de la vitesse des ondes dans les échantillons de gel-dégel	
	lors du mûrissement (Bétons : 0,4 CP-817 et 0,4 SF-976)	93
Figure 5.8	Variations de l'allongement des échantillons de gel-dégel lors du	
	mûrissement (Bétons : 0,3 CP-747 et 0,3 SF-539)	96
Figure 5.9	Variations de l'allongement des échantillons de gel-dégel lors du	
	mûrissement (Bétons : 0,4 CP-817 et 0,4 SF-976)	9 7
Figure 5.10	Variations de la masse des échantillons de gel-dégel lors des cycles de	
	gel-dégel (Bétons : 0,3 CP-747 et 0,3 SF-539)	99
Figure 5.11	Variations de la masse des échantillons de gel-dégel lors des cycles de	
	gel-dégel (Bétons : 0,4 CP-817 et 0,4 SF-976)	100

.

Figure 5.12	Variations de la vitesse des échantillons de gel-dégel lors des cycles	
	de gel-dégel (Bétons : 0,3 CP-747 et 0,3 SF-539)	102
Figure 5.13	Variations de la vitesse des échantillons de gel-dégel lors des cycles	
	de gel-dégel (Bétons : 0,4 CP-817 et 0,4 SF-976)	103
Figure 5.14	Variations de l'allongement des échantillons de gel-dégel lors des	
	cycles de gel-dégel (Bétons : 0,3 CP-747 et 0,3 SF-539)	104
Figure 5.15	Variations de l'allongement des échantillons de gel-dégel lors des	
	cycles de gel-dégel (Bétons : 0,4 CP-817 et 0,4 SF-976)	105
Figure 5.16	Variations de la masse des témoins lors du temps correspondant aux	
	300 cycles de gel-dégel (Bétons : 0,3 CP-747 et 0,3 SF-539)	108
Figure 5.17	Variations de la masse des témoins lors du temps correspondant aux	
	300 cycles de gel-dégel (Bétons : 0,4 CP-817 et 0,4 SF-976)	109
Figure 5.18	Variations de la masse du béton 0,3 CP-747 pendant le mûrissement	
	et les cycles de gel-dégel	113
Figure 5.19	Variations de la masse du béton 0,3 SF-539 pendant le mûrissement et	
	les cycles de gel-dégel	114
Figure 5.20	Variations de la masse du béton 0,4 CP-817 pendant le mûrissement	
	et les cycles de gel-dégel	115
Figure 5.21	Variations de la masse du béton 0,4 SF-976 pendant le mûrissement et	
	les cycles de gel-dégel	116
Figure 5.22	Degrés de saturation avant les cycles de gel-dégel	119
Figure 5.23	Degrés de saturation après les cycles de gel-dégel	122
Figure 5.24	Humidités relatives internes avant les cycles de gel-dégel	124
Figure 5.25	Humidités relatives internes à la fin des cycles de gel-dégel	127
Figure 5.26	Profil d'humidité relative interne dans le bloc en BHP sans fumée de	
	silice (E/L = 0,30)	131
Figure 5.27	Profil d'humidité relative interne dans le bloc en BHP avec fumée de	
	silice (E/L = 0,30)	131

Figure 6.1	Relation entre le degré de saturation, le type de scellement lors du gel	
	et la durabilité au gel des bétons (mûrissement non scellé)	132
Figure 6.2	Relation entre le degré de saturation, le type de scellement lors du gel	
	et la durabilité au gel des bétons (mûrissement scellé)	132
Figure 6.3	Relation entre l'humidité relative, le type de scellement lors du gel et	
	la durabilité au gel des bétons (mûrissement non scellé)	134
Figure 6.4	Relation entre l'humidité relative, le type de scellement lors du gel et	
	la durabilité au gel des bétons (mûrissement scellé)	134

LISTE DES TABLEAUX

		Page
Tableau 1.1	Composition minéralogique des ciments Portland	3
Tableau 1.2	Composition et finesse typiques des ciments Portland	4
Tableau 1.3	Propriétés chimiques des ciments	27
Tableau 2.1	Valeurs du facteur d'espacement critique pour différents bétons en	
	fonction du milieu de gel et du type de ciment	48
Tableau 4.1	Composition chimique des ciments	60
Tableau 4.2	Composition minéralogique des ciments	61
Tableau 4.3	Granulométrie du granulat fin et fuseau normalisé	62
Tableau 4.4	Granulométrie du gros granulat et fuseau normalisé	63
Tableau 4.5	Caractéristiques du superplastifiant DISAL	63
Tableau 4.6	Caractéristiques physiques du réducteur d'eau	64
Tableau 4.7	Dénominations et principales caractéristiques des bétons de la série I	65
Tableau 4.8	Dénominations et principales caractéristiques des bétons de la série	
	П	65
Tableau 4.9	Caractéristiques des bétons de la série I	66
Tableau 4.10	Caractéristiques des bétons de la série II	66
Tableau 4.11	Conditions d'opération de l'appareil Novasina ms1	78
Tableau 5.1	Résistances à la compression des bétons de la série I	83
Tableau 5.2	Résistances à la compression des bétons de la série II	85
Tableau 5.3	Caractéristiques des bulles d'air (série I)	87
Tableau 5.4	Degrés de saturation avant les cycles de gel-dégel	118
Tableau 5.5	Degrés de saturation à la fin des cycles de gel-dégel (gel-dégel	
	scellé)	121
Tableau 5.6	Humidités relatives internes dans les prismes avant les cycles de gel-	
	dégel	123
Tableau 5.7	Humidités relatives internes à la fin des cycles de gel-dégel	126

Tableau 5.8	Humidités relatives internes dans les blocs immergés sous l'eau	130
Tableau 6.1	Température de formation de la glace en fonction de l'humidité	
	relative interne	136

LISTE DES ÉQUATIONS

Équation 1.1	Équations de Bogue	4
Équation 1.2	Réaction d'hydratation du C ₃ S	10
Équation 1.3	Réaction d'hydratation du C ₂ S	10
Équation 1.4	Réaction d'hydratation du C ₃ A (formation de l'ettringite)	11
Équation 1.5	Réaction d'hydratation du C3A (formation du monosulfoaluminate	
	de calcium hydraté)	11
Équation 1.6	Équation de Laplace	18
Équation 1.7	Humidité relative de la phase gazeuse dans un pore capillaire	19
Équation 1.8	Équation de Kelvin	20
Équation 1.9	Équation de Kelvin-Laplace	20
Équation 1.10	Équation de Kelvin-Laplace pour un pore cylindrique	21
Équation 2.1	Résistance potentielle d'un béton aux cycles de gel-dégel	36
Équation 2.2	Longueur maximale que l'eau peut parcourir sans fissurer la pâte	41
Équation 4.1	Allongement axial après n cycles de gel-dégel	73
Équation 4.2	Correction de l'allongement axial	73
Équation 4.3	Allongement axial corrigé après n cycles de gel-dégel	74
Équation 4.4	Vitesse des ondes après n cycles de gel-dégel	74
Équation 5.1	Degré de saturation des bétons	118
Équation 6.1	Relation théorique entre la température de formation de la glace et	
	l'humidité relative interne des bétons	135

1. HYDRATATION, BILAN VOLUMIQUE ET AUTODESSICCATION DE LA PÂTE DE CIMENT HYDRATÉ

1.1 Introduction

L'étude de la résistance aux cycles de gel-dégel des bétons à haute performance requiert une connaissance des principales propriétés des ciments Portland. Il est aussi important de comprendre le processus d'hydratation du ciment qui permet au béton de développer les propriétés mécaniques qu'on lui connaît.

Dans sa première partie, ce chapitre traite des caractéristiques principales des ciments Portland et de leur classification. Il décrit les différentes étapes de l'hydratation du ciment. Ensuite, la description de la réaction d'hydratation de chacun des constituants du ciment est présentée.

Dans sa deuxième partie, ce chapitre traite de la contraction Le Chatelier. C'est une contraction chimique due à l'hydratation du ciment qui engendre notamment une autodessication interne de la pâte. Étant plus prononcée dans des bétons à haute performance, l'autodessiccation provoque une diminution de l'humidité relative interne et une désaturation de la porosité capillaire, ce qui pourrait influencer la durabilité au gel de ces bétons.

1.2 Le ciment Portland

Le ciment Portland est le liant hydraulique, c'est-à-dire qu'il fait sa prise et durcit en se combinant avec l'eau par la réaction d'hydratation.

L'invention du ciment Portland est généralement attribuée au maçon anglais Joseph Aspdin. En 1824, il obtint un brevet pour son produit. Aspdin le nomma ciment Portland car il produisait un béton ayant la couleur de la pierre naturelle retrouvée sur la presqu'île de Portland située sur la Manche, à l'ouest de l'île de Wight [Kosmatka et coll., 1995]. De nos jours, ce nom reste utilisé pour le ciment artificiel, partout dans le monde.

1.2.1 Fabrication du ciment Portland

La fabrication du ciment Portland se fait à partir de la pierre calcaire et de l'argile ou du schiste. Ces matériaux sont extraits des carrières, concassés et stockés, puis l'analyse chimique est faite pour déterminer le dosage des matières premières. Après avoir été dosées, les matières premières sont broyées et mélangées. La poudre ainsi obtenue est introduite dans l'extrémité supérieure d'un four rotatif légèrement incliné. Un brûleur est placé à l'extrémité inférieure du four pour que la température soit comprise entre 1450 °C et 1650 °C. Une telle température provoque la fusion partielle des matériaux et transforme chimiquement les matières premières en clinker de ciment. Le clinker se retrouve sous forme de billes ayant un diamètre de 3 à 25 mm [Neville, 1996]. Par la suite, le clinker est refroidi et broyé, puis on ajoute une faible quantité de gypse (environ 3 % de la masse de ciment) [Folliot, 1982] pour contrôler la prise du ciment. Le produit ainsi obtenu constitue le ciment Portland. Ses grains sont généralement anguleux ayant un diamètre entre 1 et 80 μ m. La densité du ciment Portland est d'environ 3,14.

1.2.2 Composition chimique du ciment Portland

Les principaux oxydes qu'on trouve dans le ciment Portland sont : Chaux (CaO), silice (SiO₂), alumine (Al₂O₃) et oxyde de fer (Fe₂O₃). On trouve aussi les autres oxydes en plus faible quantité tels que l'oxyde de sodium (Na₂O), l'oxyde de potassium (K₂O), l'oxyde de soufre (SO₃) et la magnésie (MgO).

Ces quatre principaux oxydes sont combinés pour former quatre phases minérales qui représentent 90 % de masse du ciment Portland. Le tableau 1.1 montre les formules chimiques et les abréviations de ces phases minérales.

3 CaO • SiO ₂	C ₃ S
2 CaO • SiO ₂	C ₂ S
$3 \text{ CaO} \bullet \text{Al}_2\text{O}_3$	C ₃ A
$4 \operatorname{CaO} \bullet \operatorname{Al}_2\operatorname{O}_3 \bullet \operatorname{Fe}_2\operatorname{O}_3$	C₄AF
	$3 \text{ CaO} \bullet \text{SiO}_2$ $2 \text{ CaO} \bullet \text{SiO}_2$ $3 \text{ CaO} \bullet \text{Al}_2\text{O}_3$ $4 \text{ CaO} \bullet \text{Al}_2\text{O}_3 \bullet \text{Fe}_2\text{O}_3$

TABLEAU 1.1 - Composition minéralogique des ciments Portland

Le silicate tricalcique (C₃S) est le plus important composant car il constitue environ 50 % du ciment. On le retrouve sous la forme des cristaux polygonaux. Le C₃S contient jusqu'à 4 % d'impuretés qui se retrouvent principalement sous la forme d'oxydes de magnésium, aluminium et fer [Baroghel-Bouny, 1994, Kosmatka et coll., 1995]. En présence de ces impuretés, le C₃S porte le nom d'*alite*.

Le silicate bicalcique (C₂S), qui représente environ 25 % du ciment, se retrouve sous la forme des cristaux arrondis [Kosmatka et coll., 1995]. Le C₂S contient aussi une certaine quantité d'oxydes sous forme d'impuretés. En présence de ces impuretés, le C₂S porte le nom de *belite*.

Les aluminates (C₃A et C₄AF) représentent environ 16 % du ciment. Le C₃A et le C₄AF se retrouvent sous la forme des cristaux rectangulaires mais les aluminates sont aussi partiellement vitreux en raison du refroidissement rapide du clinker [Baroghel-Bouny, 1994]. Dans les grains de clinker, les aluminates forment la phase interstitielle qui lie les cristaux de C₃S et C₂S.

La détermination de la composition potentielle des différentes phases minérales d'un ciment peut se faire à l'aide des équations de Bogue [1955] en utilisant les résultats de l'analyse chimique de ce ciment (Équations 1.1).

$$C_{3}S = 4,07 CaO - 7,6 SiO_{2} - 1,43 Fe_{2}O_{3} - 6,72 Al_{2}O_{3} - 2,85 SO_{3}$$
(1.1)

$$C_{2}S = 8,6 SiO_{2} + 1,08 Fe_{2}O_{3} + 5,07 Al_{2}O_{3} - 3,07 CaO$$

$$C_{3}A = 2,65 Al_{2}O_{3} - 1,69 Fe_{2}O_{3}$$

$$C_{4}AF = 3,04 Fe_{2}O_{3}$$

1.2.3 Classification des ciments Portland

Pour répondre à des besoins précis, on fabrique plusieurs types de ciment Portland ayant différentes caractéristiques physiques et chimiques. La norme CSA – A5 propose une classification des ciments en fonction de leur composition minéralogique. Le tableau 1.2 présente la composition et la finesse des cinq principaux types de ciments Portland disponibles sur le marché.

TABLEAU 1.2 - Composition et	finesse typ	iques des	ciments F	Portland [Kosmatka	et
coll., 1995]						

Turne de eiment Dortland	Proportion en pourcentage				Einesse *
Type de ciment Portland	C ₃ S	C ₂ S	C ₃ A	C₄AF	- 1116356
10 Normal	50	24	11	8	72
20 Modéré	42	33	5	13	72
30 Haute résistance initiale	60	13	9	8	-
40 Faible chaleur d'hydratation	26	50	5	12	-
50 Résistant aux sulfates	40	40	3,5	9	72

* Pourcentage minimal passant le tamis de 45 µm

1.3 Hydratation du ciment Portland

Les constituants du ciment Portland sont hydrauliques, c'est-à-dire qu'ils réagissent avec l'eau de gâchage dans un ensemble de réactions chimiques appelé l'hydratation. Ces réactions commencent dès la mise en contact de l'eau et du ciment. Très rapide au début, la réaction d'hydratation ralentit dans le temps et peut durer plusieurs années si les conditions d'humidité sont favorables. Pendant ce processus, le ciment fait sa prise et durcit ensuite pour former une structure mécaniquement résistante.

1.3.1 Cinétique de l'hydratation du ciment Portland

La réaction d'hydratation du ciment Portland est une réaction exothermique qui peut être suivie à l'aide d'une courbe calorimétrique (Figure 1.1).

Figure 1.1 - Courbe calorimétrique de l'hydratation d'une pâte de ciment [Baroghel-Bouny, 1994]

Cette courbe (flux thermique) montre les cinq étapes principales du processus d'hydratation qui sont les suivants :

- <u>Période de gâchage</u>

Pendant la période de gâchage, des ions provenant des constituants du ciment passent en solution. La dissolution initiale est très rapide et exothermique ce qui provoque un pic de flux thermique. Pendant cette période, qui dure seulement quelques minutes, il se forme (Figure 1.2) : - le silicate de calcium hydraté (C-S-H) par la combinaison des ions Ca^{2+} , $H_2SiO_4^{2-}$ et OH⁻ provenant des silicates de calcium;

- l'ettringite (trisulfoaluminate de calcium hydraté) par la combinaison des ions Ca^{2^+} , AlO_2^- , $SO_4^{2^-}$ et OH⁻ provenant des aluminates et du régulateur de prise [Vernet et Cadoret, 1992]. Ces hydrates formés entourent les grains de ciment.

- Période dormante

Pendant la période dormante, qui dure quelques heures, l'élévation rapide du pH et de la teneur en calcium de l'eau de gâchage ralentit la dissolution des constituants du ciment ce qui provoque une diminution du flux thermique. La formation de C-S-H et d'ettringite se poursuit lentement et la phase aqueuse se sursature en chaux (Figure 1.3) [Vernet et Cadoret, 1992].

- Période de prise ou d'accélération

La prise est déclenchée par la précipitation de la portlandite $(Ca(OH)_2)$ qui survient après environ cinq heures. En effet, la réaction entre des ions Ca^{2+} et OH^{-} accélère la dissolution de tous les constituants du ciment. La précipitation de $Ca(OH)_2$ et de C-S-H est rapide mais l'augmentation du flux thermique est plus lente car la formation de portlandite est une réaction endothermique [Vernet et Cadoret, 1992]. Durant cette période, les grains de ciment commencent à être liés par les hydrates qui se forment et le matériau passe de l'état de suspension à l'état de solide (Figure 1.4).

Les ajouts minéraux, comme la fumée de silice, peuvent accélérer le déclenchement de la prise en catalysant la précipitation de la portlandite par leur surface très élevée [Baroghel-Bouny, 1994]. Également, elle accélère la dissolution de Ca⁺⁺ de C₃S.

- Période de durcissement

La quantité de régulateur de prise (gypse, semi-hydrate, anhydrite) est limitée dans le ciment Portland. La formation rapide d'ettringite à la fin de la période de prise (entre 9 et 15 heures) aboutit à l'épuisement du gypse. Donc, l'ettringite devient la source des sulfates qui réagit avec les aluminates excédentaires pour former les monosulfoaluminates de calcium hydraté (Figure 1.5). Cette réaction est marquée par un pic thermique surtout prononcé pour les ciments riches en C₃A. La chaleur ainsi produite accélère l'hydratation des silicates [Vernet et Cadoret, 1992, Baroghel-Bouny, 1994].

- <u>Période de ralentissement</u>

La coquille des hydrates qui entoure les grains de ciment devient de plus en plus épaisse, ce qui ralentit la diffusion de l'eau vers l'interface réactionnelle. Après environ quinze heures, commence la période de ralentissement diffusionnel. La matrice cimentaire devient plus dense et les espaces entre les grains de ciment diminuent (Figure 1.6). C'est durant la période de ralentissement que la fumée de silice commence à réagir chimiquement [Baroghel-Bouny, 1994].

Les figures 1.2 à 1.6 montrent l'évolution de la microstructure d'un mortier à faible rapport E/C en fonction du temps [Vernet et Cadoret, 1992].

T = 1 heure

1 - eau	2 - clinker	3 – gypse
4 – bulle d'air	5 – grain de sable	6 – hydrates (C-S-H)

Figure 1.2 – Période de gâchage [Vernet et Cadoret, 1992]

$\underline{T} = 2$ heures

Cristaux d'ettringite

Figure 1.3 – Période dormante [Vernet et Cadoret, 1992]

T = 5 heures

8

T = 9 heures

Figure 1.5 – Période de durcissement [Vernet et Cadoret, 1992]

<u>T = 28 jours</u>

Figure 1.6 – Période de ralentissement [Vernet et Cadoret, 1992]

1.3.2 Hydratation des silicates

En ne tenant pas compte des lois de la stœchiométrie, la réaction d'hydratation du C_3S et C_2S peut être écrite de la façon suivante [Neville, 1996] :

$$2C_3S + 6H \rightarrow C_3S_2H_3 + 3Ca(OH)_2$$
(1.2)

$$2C_2S + 4H \rightarrow C_3S_2H_3 + Ca(OH)_2 \tag{1.3}$$

Les équations 1.2 et 1.3 montrent qu'il existe deux produits d'hydratation des silicates. Le premier est le silicate de calcium hydraté ou C-S-H. Sa formule chimique est $C_3S_2H_3$ une fois que l'hydratation est complétée. Cette formule est approximative car la composition chimique des C-S-H est très variable. Les C-S-H sont mal cristallisés et possèdent une structure poreuse. Leur surface spécifique est très élevée (100 à 700 m²/g). Ils occupent de 50 à 60 % du volume de solides dans une pâte de ciment complètement hydratée [Khayat, 1991]. Les C-S-H sont la principale source de la résistance mécanique du béton.

Le deuxième produit d'hydratation des silicates est l'hydroxyde de calcium ou portlandite. La portlandite possède une composition chimique connue $(Ca(OH)_2)$ et elle se présente en forme des larges cristaux hexagonaux. Elle représente 20 à 25 % du volume de solide dans une pâte de ciment complètement hydraté [Khayat, 1996]. La portlandite ne contribue pas beaucoup à la résistance mécanique du béton puisque sa surface spécifique est faible. Cependant, elle a un rôle important dans de nombreux mécanismes associés à la durabilité des bétons.

1.3.3 Hydratation des aluminates

L'hydratation du C₃A est étroitement liée à la présence des ions sulfates provenant de la dissolution du gypse. Ces ions réagissent avec le C₃A pour former des trisulfoaluminates de calcium hydratés ou *ettringite*. La réaction dégage beaucoup de chaleur et survient lors du premier contact entre l'eau et le ciment. Cette réaction peut être présentée de la façon suivante [Baroghel–Bouny, 1994] :

$$C_3A + 3(CaSO_4.2H_2O) + 26H_2O \rightarrow C_3A.3CaSO_4.32H_2O$$
 (1.4)

Les cristaux d'ettringite, en forme de petites aiguilles, recouvrent les zones de C₃A. Étant donné que la quantité d'ions sulfates est limitée dans la solution, l'ettringite commence à réagir avec le C₃A excédentaire pour former le monosulfoaluminate de calcium hydraté dont la réaction peut être écrite de la façon suivante [Khayat, 1996] :

$$2C_3A + C_3A.3CaSO_4.32H_2O + 4H_2O \rightarrow C_3A.CaSO_4.12H_2O$$
(1.5)

La quantité de sulfates provenant du gypse peut influencer sérieusement l'état du béton frais. L'absence ou une faible quantité de SO₃, peut causer la prise éclair (une réaction très rapide entre le C₃A et l'eau, ce qui provoque un raidissement irréversible du béton frais). L'autre conséquence de la présence des sulfates est la fausse prise. Elle est due à la transformation partielle du gypse en semi-hydrate lors du broyage. Pendant le gâchage, le semi-hydrate se transforme en gypse et il peut y avoir un raidissement instantané. Si on continue à malaxer le béton, on peut cependant le fluidifier à nouveau [Khayat, 1996, Lessard, 1991].

La réaction d'hydratation du C₄AF est encore mal connue. Dans le cas du C₄AF, on obtient les mêmes produits qu'avec le C₃A, en substituant aux aluminates des alumino-ferrites [Baroghel–Bouny, 1994]. Cette réaction est lente et dégage peu de chaleur. Les aluminates représentent 15 à 20 % du volume de solide dans une pâre de ciment complètement hydraté [Khayat, 1996].

1.4 Volume des produits d'hydratation

Les réactions d'hydratation des composants du ciment Portland influencent beaucoup le volume des hydrates formés. On observe d'abord un gonflement structural (croissance cristalline de l'ettringite et de la portlandite) puis une diminution du volume total (contraction chimique ou contraction Le Chatelier).

1.4.1 Contraction Le Chatelier

Dans la réaction d'hydratation du ciment, le volume des hydrates formés est inférieur à la somme des volumes du ciment anhydre et de l'eau participant à la réaction. Ce phénomène, découvert par Le Chatelier en 1900, est appelé "contraction Le Chatelier". Il peut être observé à l'aide d'un récipient rempli d'eau et de ciment et surmonté d'un capillaire (Figure 1.7). On remarque que le niveau d'eau dans le capillaire diminue au fur et à mesure que l'hydratation se poursuit [Buil, 1979].

Après l'hydratation complète, la contraction Le Chatelier est de l'ordre de 9 % du volume de pâte initial et aussi, elle est approximativement égale à 25 % [Czernin, 1956] ou 27,9 % [Powers et Brownyard, 1948] du volume d'eau liée chimiquement. La masse d'eau liée chimiquement est elle-même de l'ordre de 20 à 25 % de la masse de ciment anhydre initiale [Baroghel-Bouny, 1994].

Étant donné que la réaction d'hydratation se poursuit après la prise, le squelette rigide des hydrates formés s'oppose à la diminution du volume liée à l'hydratation. Par conséquent, la déformation extérieure apparente sera inférieure à la valeur prévue par la contraction Le Châtelier.

Figure 1.7 – Expérience de contraction Le Châtelier [Buil, 1979]

1.4.2 Équations de Powers

Pendant l'hydratation, à cause de la contraction Le Chatelier, il y a une formation des vides gazeux dans la porosité capillaire du béton (en système scellé). Le volume de ces vides, comme les volumes des autres constituants de la pâte de ciment, peuvent être calculés à l'aide des équations dites "de Powers" [Pigeon, 1981] :

- L'eau combinée chimiquement représente environ 23 % de masse du ciment qui s'hydrate;
- Le volume des produits solides d'hydratation est égal au volume de ciment hydraté plus 0,746 fois le volume d'eau combinée chimiquement;
- La porosité de l'ensemble des hydrates est approximativement de 28 % et ces pores sont nécessairement remplis d'eau lors de la formation des hydrates;
- Le volume final de la pâte de ciment est égal au volume occupé par l'eau et le ciment dans le mélange au départ;
- L'hydratation se produit en milieu scellé.

Les figures 1.8 et 1.9 montrent les proportions volumiques de l'hydratation dans les pâtes de ciment ayant les différents rapports E/C pour les différents degrés d'hydratation (on suppose l'utilisation de 100 g de ciment).

Pour un rapport E/C = 0,42 il y a juste assez d'eau pour hydrater tous les grains de ciment. Pour un degré d'hydratation de 100 % il ne reste plus d'eau dans la porosité capillaire mais, en système scellé, il existe une porosité capillaire vide (vapeur d'eau) ce qui correspond à la contraction Le Châtelier (Figure 1.8).

Pour un rapport E/C = 0,50, après l'hydratation complète du ciment, il reste un surplus d'eau dans la porosité capillaire (Figure 1.8).

Ces exemples sont issus de calculs théoriques. Dans la réalité, l'hydratation n'est jamais complète à cause des gros grains de ciment qui ne s'hydratent jamais complètement. En effet, lors de l'hydratation, ces grains sont recouverts d'une épaisse coquille d'hydrates très dense qui empêche l'intérieur du grain de réagir avec l'eau environnante [Gagné, 1997]. De plus, l'hydratation s'arrête lorsque l'humidité relative interne devient inférieure à environ 80 %.

Dans le cas des rapports E/C inférieurs à 0,42 (Figure 1.9), un manque d'eau dans le système arrête l'hydratation avant que tout le ciment ne se soit hydraté. Par exemple, pour un E/C = 0,30, le degré théorique maximal d'hydratation est de l'ordre de 70 %. En pratique, cette valeur est encore plus faible en raison de ce qu'on vient de mentionner.

Quel que soit le rapport E/C, on remarque que, dans un système scellé, il existe toujours une certaine proportion de la porosité capillaire qui demeure vide et cette proportion augmente avec le degré d'hydratation. Dans les bétons à haute performance, ces vides capillaires forcent la formation de ménisques qui contribuent au développement du retrait endogène et ils pourraient peut-être offrir une certaine protection contre l'attaque par les cycles de gel-dégel.

E/C = 0.50

Figure 1.8 – Bilan volumique de l'hydratation des pâtes de ciment ayant les rapports E/C de 0,50 et 0,42 pour les différents degrés d'hydratation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E/C = 0.35

16

1.5 Autodessiccation interne

L'autodessiccation interne de la pâte, du mortier ou du béton est causée par la contraction chimique pendant l'hydratation du ciment Portland. Ce phénomène ne peut se produire que si le matériau est scellé (aucun échange hydrique avec l'environnement).

Les lois de Kelvin et de Laplace permettent l'étude du comportement hydrique du béton et sont à la base de l'équilibre thermodynamique des phases liquide et gazeuse dans la porosité capillaire.

1.5.1 Origine de l'autodessiccation

Au fur et à mesure que l'hydratation progresse, il y a une diminution de la quantité d'eau disponible pour la réaction avec le ciment et une augmentation de la quantité d'hydrates formés (Figures 1.8 et 1.9). À cause de la contraction Le Chatelier ces hydrates occupent moins de volume que les constituants au départ (eau et ciment). Après un certain degré d'hydratation l'eau ne peut donc plus occuper tout le volume de la porosité capillaire qui lui est offert. Il se forme une phase gazeuse dans les pores capillaires (constituée de vapeur d'eau et d'air) qui est séparé de la phase liquide par des ménisques d'interface [Baroghel-Bouny, 1994]. Étant donné que les tensions capillaires diminuent avec l'augmentation des tailles de pores, la phase gazeuse se formera premièrement dans les plus gros pores [Gagné, 1997]. La formation de ménisques entraîne une diminution de la pression partielle de vapeur d'eau et donc à température constante, de l'humidité relative à l'intérieur de la pâte ou du béton (Figures 1.6 et 1.10).

Dans le matériau durci, le volume de la phase gazeuse augmente à mesure que le ciment s'hydrate et, par conséquent, l'humidité relative s'abaisse. Les plus gros pores se vident peu à peu et le processus se poursuit dans les pores de plus en plus petits.
Donc, à partir d'un certain degré d'hydratation, on observe une autodessiccation du matériau si celui-ci n'est pas en contact avec une source d'eau extérieure [Baroghel-Bouny, 1994].

Figure 1.10 – Le phénomène de l'autodessiccation [Buil, 1979]

1.5.2 Loi de Laplace

En supposant que les pores capillaires dans la pâte de ciment sont cylindriques et que les interfaces liquide/gaz sont des ménisques sphériques (Figure 1.11), l'équilibre hydrostatique de l'eau liquide (l'eau ne s'écoule pas) dans un pore peut être exprimé par l'équation de Laplace [Baroghel-Bouny, 1994] :

$$\Delta P = P_g - P_l = \frac{2\sigma_{l/g}}{r_{ms}} \tag{1.6}$$

 $P_g = P_a + P_v$ Pression de la phase gazeuse;

P_a	Pression partielle d'air sec;
P _v	Pression partielle de vapeur d'eau;
P_l	Pression de l'eau liquide;
$\sigma_{l'g}$	Tension d'interface eau liquide/phase gazeuse;
$r_{ms} = \frac{r}{\cos \alpha}$	Rayon du ménisque sphérique;
r	Rayon du pore cylindrique;
α	Angle de mouillage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selon l'équation de Laplace, l'eau liquide est en dépression par rapport à la phase gazeuse (dans un tube capillaire on suppose que la pression de la phase gazeuse est égale à la pression atmosphérique). Cette dépression de l'eau capillaire est compensée par une compression de la phase solide de la pâte ce qui produit une partie du retrait endogène externe [Baron, 1982, Gagné, 1997]. Selon l'équation 1.6, les pores capillaires ayant de faibles diamètres possèdent une dépression capillaire élevée et par conséquent produisent un retrait endogène plus grand. C'est le cas des BHP qui développent plus de retrait endogène que de retrait au séchage [Aïtcin, 1996, Tazawa et Miyazawa, 1996].

Figure 1.11 – Illustration de la loi de Laplace [Baroghel-Bouny, 1994]

1.5.3 Loi de Kelvin

Dans un pore capillaire, l'humidité relative h de la phase gazeuse, à la température T, peut être exprimée de la façon suivante [Baroghel-Bouny, 1994] :

$$h = \frac{P_v}{P_{vs}} \tag{1.7}$$

 P_{v} Pression partielle de vapeur d'eau;

 P_{vx} Pression de vapeur saturante de l'eau à la température T.

L'équilibre thermodynamique entre l'eau liquide et la vapeur d'eau (l'eau ne s'évapore pas) contenus dans un pore capillaire, à la température T peut être exprimé par l'équation de Kelvin [Baroghel-Bouny, 1994] :

$$-P_{c} = -(P_{g} - P_{l}) = \frac{R \times T \times \rho_{l}}{M} \times \ln h \qquad (1.8)$$

- P_c Pression capillaire;
- *R* Constante des gaz parfaits;
- T Température absolue du système;
- ρ_l Masse volumique de l'eau liquide;
- M Masse molaire de l'eau.

L'équation de Kelvin donne une relation entre la dépression capillaire -Pc et l'humidité relative h qui règnent dans un pore capillaire.

1.5.4 Loi de Kelvin-Laplace

L'équilibre total dans les pores capillaires de l'eau liquide avec la phase gazeuse (non écoulement et non évaporation d'eau) peut être défini en combinant les équations 1.6 et 1.8. Cette relation est appelée l'équation de Kelvin-Laplace [Baroghel-Bouny, 1994]:

$$\ln h = -\frac{2\sigma_{l/g} \times M}{R \times T \times \rho_l \times r_{ms}}$$
(1.9)

Selon l'équation 1.9 l'humidité relative de la phase gazeuse est fonction de la courbure totale du ménisque. Plus le rayon du pore diminue, plus le ménisque est courbé. Quand la courbure du ménisque diminue, l'humidité relative de la phase gazeuse décroît.

En supposant que le pore est cylindrique est que le liquide est parfaitement mouillant ($\alpha=0$), l'équation de Kelvin-Laplace s'écrit [Baroghel-Bouny, 1994] :

$$r = \frac{2\sigma_{l/g} \times M}{R \times T \times \rho_l \times \ln h}$$
(1.10)

Donc, dans un béton possédant une humidité relative h, il existe des pores capillaires de rayon r dans lesquels l'eau liquide est en équilibre total avec la phase gazeuse. Tous les pores capillaires de rayon inférieur au rayon r sont pleins d'eau et les pores possédant le rayon supérieur au rayon r sont vides. La connaissance de l'humidité relative d'un béton à la température T, dans un temps donné, permet de trouver ce rayon d'équilibre. Si l'isotherme d'absorption du corps poreux est connu, on peut aussi déterminer le degré de saturation de la pâte ce qui influence la résistance au gel.

1.5.5 Évolution de l'humidité relative interne en fonction du temps

Au fur et à mesure que le ciment s'hydrate, l'humidité relative dans la porosité capillaire passe d'une valeur de 100 % vers des valeurs plus petites. Selon Paillère et col. [1990], l'abaissement de l'humidité relative dans les pâtes de ciment et dans les mortiers dû à l'autodessiccation est limité approximativement à 75 % [Jensen, 1995]. En général, dans les pâtes de ciment, l'humidité relative interne ne diminue pas sous la limite de 75 % car à ce moment, l'hydratation s'arrête et le système devient thermodynamiquement stable. L'humidité relative interne peut atteindre des valeurs plus faibles dans les bétons à cause de la présence de granulats. La porosité des granulats (absorption d'eau lors du gâchage) diminue la quantité d'eau disponible pour la réaction avec le ciment. Dans le cas d'un béton, cela engendre une autodessiccation plus forte que celle d'une pâte de ciment ayant le même rapport E/C [Baroghel-Bouny, 1994].

Figure 1.12 – Abaissement de l'humidité relative interne en fonction du temps pour les pâtes de ciment (CO et CH) et des bétons (BO et BH) [Baroghel-Bouny, 1996]

Dans un système fermé, l'évolution de l'humidité relative interne est influencée aussi par le rapport E/C, le type de ciment et l'ajout de la fumée de silice.

1.5.5.1 Influence du rapport E/L

Selon l'équation de Kelvin-Laplace, le taux d'humidité relative interne est fonction de la taille des pores. En même temps, la porosité est beaucoup influencée par le rapport E/C car ce rapport gouverne l'espacement initial entre les grains de ciment en suspension dans l'eau de gâchage. Pour les rapports E/C plus faibles, les grains de ciment sont rapprochés les uns des autres. Les espaces entre les grains sont moins grands et une très faible quantité d'hydrates est suffisante pour les combler [Gagné, 1997].

La réduction du rapport E/C permet de diminuer le volume total des pores capillaires et leur diamètre. Selon la figure 1.13, la réduction du rapport E/C de 0,45 à 0,25 permet de diminuer la porosité totale de 40 % à moins de 20 %. En même temps, le diamètre moyen des plus grands pores est diminué d'environ 10 fois.

Figure 1.13 – Courbes de porosimétrie au mercure de deux pâtes de ciment conservées pendant 7 jours dans l'eau [Gagné et Aïtcin, 1993]

Donc, le béton ayant un rapport E/C = 0,25 possède des pores capillaires de plus faible diamètre que celui ayant un rapport E/C = 0,45. Selon l'équation 1.9, la diminution du diamètre des pores entraîne la diminution de l'humidité relative dans les pores car le ménisque de l'interface devient plus courbé.

Buil [1979] a regroupé les résultats de Copeland, Bragg et Wittmann sur l'évolution de l'humidité relative en fonction du rapport E/C (Figure 1.14). On peut constater que l'autodessiccation, négligeable pour un rapport E/C supérieur à 0,40, devient importante pour un E/C de l'ordre de 0,25.

Figure 1.14 – Évolution de l'humidité relative dans les pâtes de ciment pour différents rapports E/C [Buil, 1979]

Selon Persson [1996], la réduction de l'humidité relative interne des bétons est fonction de leur rapport E/C (Figure 1.15). La même figure montre aussi que pour un même rapport E/C, l'humidité relative due à l'autodessication devient de plus en plus faible avec le temps.

Figure 1.15 – Humidité relative des bétons en fonction du rapport E/C dans le cas d'un mûrissement scellé (S – 10 % de fumée de silice) [Persson, 1996]

1.5.5.2 Influence de la fumée de silice

Comme le rapport E/C, la fumée de silice influence aussi la porosité capillaire du béton. Selon Feldman et Cheng-yi [1985], la teneur en fumée de silice n'influence à peu près pas le volume total de porosité capillaire [Gagné, 1992]. C'est plutôt le diamètre des pores qui est influencé par l'ajout de la fumée de silice. En effet, pendant la réaction pouzzolanique, la fumée de silice réagit avec la portlandite pour produire de nouveaux C-S-H, ce qui raffine les pores capillaires. Le diamètre des pores étant plus petit, le taux d'humidité relative qui règne dans ces pores est lui aussi plus faible (Équation 1.9).

Les recherches de Jensen et Hansen [1995 et 1996] montrent que l'humidité relative due à l'autodessiccation est gouvernée par deux principaux paramètres. Ces deux principaux paramètres sont le rapport eau/liant et la teneur en fumée de silice.

La figure 1.16 montre l'évolution de l'H.R. en fonction du temps pour un rapport E/L de 0,35. On constate qu'en l'absence de la fumée de silice l'humidité relative se stabilise à environ 94 %. Le remplacement du ciment par de la fumée de silice a pour effet de provoquer une baisse supplémentaire considérable qui atteint 85 % pour 10 % de fumée de silice.

Figure 1.16 – Évolution de l'humidité relative due à l'autodessiccation dans une pâte de ciment possédant un rapport E/C = 0,35 (contribution du ciment et de la fumée de silice) [Jensen et Hansen, 1995]

Hiroshi et coll. [1997] ont mesuré l'autodessiccation interne des pâtes de ciment soumises à un mûrissement scellé. Les rapports E/C testés sont 0,50 et 0,25. Les pâtes ont été fabriquées avec un ciment Portland normal, un ciment mélangé avec laitier et un ciment mélangé avec 10 % de fumée de silice. La figure 1.17 montre que toutes les pâtes avec un rapport E/C de 0,50 ne présentent pas d'autodessiccation interne. Par contre, les pâtes avec un rapport E/C de 0,25 présentent une forte autodessiccation qui fait passer l'humidité relative de 100 à 80 % pendant les 8 premiers jours. Dans ce cas, on remarque que la fumée de silice joue un rôle mineur et que c'est plutôt le rapport E/L qui a la plus grande influence sur l'autodessiccation.

Figure 1.17 – Influence de la fumée de silice et du rapport E/L sur l'évolution de l'humidité relative dans des pâtes de ciment [Hiroshi et coll., 1997]

1.5.5.3 Influence du type de ciment

Les ciments Portland diffèrent par leurs compositions chimiques et par leur finesse. La cinétique d'hydratation est fonction de la proportion des quatre principaux phases (C_2S , C_3S , C_3A , C_4AF), de la présence des sulfates alcalins, de type de sulfates de calcium et de la finesse du ciment. C'est à dire que la consommation d'eau pendant l'hydratation d'un ciment dépend de sa nature chimique et peut se traduire par une autodessiccation plus ou moins prononcée.

La teneur en C_3A est un des paramètres les plus influents. Les hydrates qui se forment à partir du C_3A réduisent le plus son volume pendant l'hydratation. C'est à dire qu'un béton fabriqué avec un ciment de faible teneur en C_3A aura une autodessiccation plus faible que celui fabriqué avec un ciment de plus forte teneur en C_3A [Tazawa, Miyazawa, 1995].

La teneur en alcalins du ciment est aussi importante. En effet, lors du gâchage, les ions alcalins engendrent une diminution de l'activité ionique dans la phase interstitielle ce qui se traduit par une diminution de l'humidité relative interne [Baroghel– Bouny, 1994].

Atlassi [1991] a testé des mortiers possédant des rapports E/C de 0,40 et 0,60 qui étaient fabriqués avec différents types de ciment (Tableau 1.3). Des mesures d'humidité relative ont été effectuées à 28, 90, 180 et 365 jours. Les résultats montrent que la composition chimique du ciment a une grande influence sur l'humidité relative interne. Les mortiers fabriqués avec les ciments ayant une faible teneur en C_3A et/ou une faible teneur en alcalis ont une humidité relative nettement plus élevée (Figure 1.18).

TABLEAU 1.3 - Propriétés chimiques des ciments [Atlassi, 1991]

	Trade name	Spec. surf. area n²/kg	Mineral ad- aixture	C.A- con- tent	и ₂ 0- еq. *	
DLS	Degerhanns Anläggnings- cement	330	-	2	0.5	low heat sulphate resistent
DIC	Degerhanns Injekterings- cement	600	lime- stone 5%	2	0.5	
SKP	Skövde Standard Portland	380	lime- stone 5%	8	1.0	
SIR	Skövde Snabb- hårdnande P.	580	-		1.1	rapid hardening
SIM	Skövde Modifierat P.	580	fly ash 23%	8	1.1	
SLP	Slite Standard Portland	380	lime- stone 5%	•	1.1	
SLR	Slite Snabb- hårdnande P.	550	•		1.1	rapid hardening

Figure 1.18 – Évolution de l'humidité relative des mortiers [Atlassi, 1991]

1.5.6 Isothermes d'adsorption et de désorption

Dans un milieu humide le béton adsorbe des molécules de vapeur d'eau sur ses surfaces. Étant un matériau poreux, il permet aussi la pénétration des molécules d'eau dans sa porosité par succion capillaire et par diffusion de vapeur. À une température donnée, le béton adsorbera un certain nombre de couches de molécules de vapeur d'eau en fonction de l'hygrométrie. Ce phénomène peut être présenté à l'aide des isothermes d'adsorption. Si l'hygrométrie dépasse une certaine valeur, les couches adsorbées deviennent suffisamment épaisses pour qu'une condensation capillaire se produise. Cette condensation modifie la forme des isothermes d'adsorption par un phénomène d'hystérésis. L'hystérésis peut être expliquée par la géométrie des pores capillaires (pores vides connectés entre eux par des cols de tailles inférieures) [Buil et Ollivier, 1992].

La figure 1.19 montre des isothermes d'adsorption et de désorption de vapeur d'eau pour un béton ordinaire (BO) et un béton à haute performance (BH) dont les caractéristiques sont présentées à la figure 1.12.

Dans la zone où l'humidité relative dépasse 44 % l'influence du rapport E/C sur les propriétés hydriques du béton est bien visible. Les courbes d'adsorption, et surtout de désorption du béton *BH*, sont plus basses car ce béton est moins poreux.

Dans la même zone (H.R. > 44 %) on peut voir l'effet de l'ajout de fumée de silice et du faible rapport E/L sur l'état hydrique du béton. Les pentes des courbes de désorption et d'adsorption sont plus faibles pour le béton BH qui possède une porosité bien plus fine. C'est à dire que ce béton est peu sensible aux variations d'humidité et possède une autodessiccation plus forte [Baroghel-Bouny, 1994].

Figure 1.19 – Isothermes d'adsorption et de désorption de vapeur d'eau obtenus à la température de 23 °C [Baroghel-Bouny, 1996]

L'effet du type de ciment est plus évident dans la zone de faible l'humidité relative (H.R. < 44 %) [Atlassi, 1991]. Selon Atlassi, c'est la finesse de ciment qui a l'influence la plus évidente sur les isothermes de désorption et d'adsorption.

2. RÉSISTANCE AUX CYCLES DE GEL- DÉGEL

2.1 Introduction

La durabilité au gel est très importante dans le cas des structures en béton exposées aux basses température. Le béton exposé aux cycles répétés de gel et de dégel peut notamment être endommagé par la fissuration interne. Dans le cas des bétons ordinaires, l'utilisation des adjuvants entraîneurs d'air permet une bonne protection contre la fissuration interne. Le cas des bétons à hautes performances est plus complexe. Certains BHP à faible rapport E/L (0,25) sont résistants à la fissuration interne sans air entraîné alors que d'autres BHP (E/L > 0,35) ont définitivement besoin de la protection d'un réseau de bulles d'air pour résister aux essais de gel accélérés (ASTM C 666). Des résultats récents montrent aussi qu'il semble que l'essai ASTM C 666 – Procédure A, couramment utilisé en laboratoire pour évaluer la durabilité au gel des bétons, tend à sous-estimer la durabilité réelle des BHP en conditions in situ [Hénault, 1995].

Ce chapitre présente les principaux phénomènes à la base de la fissuration interne des bétons lors du gel. Ensuite, il traite du cas particulier de la résistance au gel des BHP en laboratoire et en nature.

2.2 Gélivité de la pâte de ciment hydraté

La pâte de ciment durcie est constituée de trois phases. La phase solide, constituée des hydrates et du ciment non hydraté, occupe le plus grand volume. La phase fluide contient de l'eau et des substances en solution, notamment des ions sodium et potassium. La dernière phase est la phase gazeuse contenue dans la porosité capillaire et dans les bulles d'air. Le comportement de la pâte de ciment lors des cycles de gel-dégel dépend du comportement de chacune de ces phases et de leur interaction. La phase liquide possède le rôle le plus important. Elle se transforme en glace lors du gel, génère des pressions internes et peut aussi être le site d'un déséquilibre de concentration ionique pouvant causer des pressions osmotiques lors du gel.

2.2.1 Porosité interne et l'état de l'eau dans la pâte de ciment

La phase liquide est principalement localisée dans la porosité de la pâte qui comprend plusieurs familles de vides. Selon la figure 2.1, la dimension des vides est comprise entre quelques millimètres et quelques dizaines d'angströms.

Les plus grands vides sont les vides d'air entrappé et les défauts de compaction (diamètre > 1mm). Ensuite on retrouve les bulles d'air entraîné, dont le diamètre peut varier de 10 μ m à 1 mm. Viennent ensuite les pores capillaires ayant des diamètres compris entre 0,01 μ m et 5 μ m. Les plus petits sont les pores de gel possédant des diamètres inférieurs à 40 angströms.

Figure 2.1 – Échelle de la taille des solides et des pores dans la pâte de ciment hydraté [Metha, 1986]

L'eau dans la pâte de ciment hydraté peut être sous différentes formes selon l'endroit où elle se trouve.

On retrouve, tout d'abord, l'eau des pores capillaires. Il s'agit du surplus d'eau qui n'a pas pu réagir avec le ciment. L'eau contenue dans les plus gros pores (diamètre > 0,05 μ m) est libre car les forces de surface n'affectent qu'une proportion faible du volume total de pore. Par contre, l'eau contenue dans les pores plus petits (0,01 à 0,05 μ m) est non libre. Elle est presque toute soumise à des forces de surface qu'i deviennent de plus en plus importantes à mesure que le diamètre diminue.

On retrouve aussi de l'eau adsorbée qui est retenue par les forces de surface sur les solides, surtout sur les parois des pores capillaires et des pores de gel.

Dans la structure même des C-S-H, on retrouve de l'eau zéolitique et de l'eau combinée chimiquement. La première est retenue entre les feuillets de C-S-H par des liens hydrogène. Comme son nom l'indique, la deuxième est combinée chimiquement avec le ciment et fait partie intégrante des C-S-H. Elle représente environ 23 % de la masse du ciment qui s'est hydraté (Paragraphe 1.4.2).

2.2.2 Point de fusion de la glace

Dans une pâte de ciment durci, la quantité d'eau gelable, contenue dans la porosité capillaire, est fonction de taille des pores. C'est à dire que toute l'eau contenue dans les pores ne se transforme pas complètement en glace dès que la température s'abaisse au-dessous de 0 °C [Pigeon et Pleau, 1995]. Quand la température s'abaisse au-dessous de 0 °C, la glace se forme d'abord dans les plus gros pores pour ensuite se former dans les pores de plus en plus petits à mesure que la température s'abaisse. La formation de la glace est donc un processus graduel qui dépend de la dimension des pores, de la vitesse de refroidissement et de la température.

Selon Carles-Gibergues et Pigeon [1992], l'eau contenue dans les pores de gel (l'eau adsorbée sur les parois des pores de C-S-H) ne gèle que si la température s'abaisse au-dessous de – 78 °C. Pratiquement, cette eau est donc non gelable.

La figure 2.2 montre l'abaissement théorique du point de fusion de la glace en fonction du diamètre des pores dans le cas de l'eau pure.

Figure 2.2 – Relation entre la température de formation de la glace et le diamètre des pores [Carles-Gibergues et Pigeon, 1992]

En pratique, l'eau des pores n'est jamais pure. Elle contient des substances en solution, notamment des alcalis. Leur présence abaisse d'avantage les points de fusion de la glace présentés à la figure 2.2.

En résumé, plus la porosité capillaire d'un béton est faible et fine, plus la quantité de glace en mesure de se former lors de gel sera faible.

2.2.3 Calorimétrie à basse température

La calorimétrie à basse température est très utile pour évaluer la quantité de glace formée dans un béton. Cette technique est basée sur la mesure du flux de chaleur dégagé lorsque l'eau se transforme en glace à une température donnée.

Marchand [1993] a utilisé cette méthode pour étudier la formation de la glace dans les bétons à haute performance ayant des rapports E/C de 0,25 à 0,45. Les résultats de ces travaux sont présentés à la figure 2.3 où la quantité de glace formée, dans un intervalle de température, est proportionnelle à la surface sous la courbe. Chaque pic sur les courbes indique qu'une quantité importante de la glace a été formée pour un intervalle de température donné. Par exemple, lorsque la température est d'environ -5 °C, l'eau dans les plus gros pores gèle complètement pour chaque rapport eau/ciment. Il est évident que la quantité de glace formée est plus grande pour un E/C de 0,45 car ce béton possède une grande quantité de pores relativement gros et saturés. Par contre, la quantité de glace formée dans le béton ayant un rapport E/C de 0,25 est plus faible car sa porosité est faible et est constituée de pores relativement petits. En effet, pour le béton de E/C = 0,25, moins de 10 % de l'eau évaporable gèle à la température de -20 °C [Marchand et coll., 1996]. Cela montre bien l'effet positif de la diminution du rapport E/C sur la formation de la glace dans les bétons.

Figure 2.3 – Influence du rapport eau/ciment sur la formation de la glace (les échantillons séchés à 20 °C et 50 % d'humidité relative puis résaturés) [Marchand et coll., 1996]

2.2.4 Degré de saturation critique

Le degré de saturation d'une pâte de ciment est défini comme le rapport entre la quantité d'eau liquide et le volume de la porosité. Selon Carles-Gibergues et Pigeon [1992], le degré de saturation critique, qui définit la résistance au gel, est voisin de 0,90 (Figure 2.4). C'est à dire que la pâte de ciment ayant un degré de saturation supérieur à 0,90 a besoin d'air entraîné comme protection contre la fissuration interne. Par contre, la pâte de ciment ayant un degré de saturation inférieur à 0,90 possède une protection naturelle par les vides gazeux dans la porosité capillaire (Paragraphe 1.5.1). Ces vides

pourraient constituer un volume tampon dans lequel la glace pourrait se former sans exercer de contraintes internes [Gagné, 1997].

Figure 2.4 – Influence du degré de saturation d'un mortier (E/C = 0,60) sur son comportement dimensionnel au cours du gel [Ramachandran et coll., 1981 via Gagné, 1997]

La figure 2.4 montre que : - la glace et l'expansion commencent à se former vers -5 °C;

- dans les mortiers sans air entraîné, le degré de saturation critique est d'environ 90 %;
- l'air entraîné augment légèrement le seuil de saturation critique à environ 94 % et diminue significativement les expansions des mortiers saturés.

La notion de degré de saturation critique peut être utilisée pour estimer la résistance potentielle aux cycles de gel-dégel d'un béton. La RILEM a adopté la méthode du degré de saturation critique proposée suite aux travaux de Fagerlund [1971 et 1977]. Selon cette méthode, la résistance potentielle aux cycles de gel-dégel se définit par l'équation suivante [Pigeon et Pleau, 1995] :

$$F = Scr - Scap \tag{2.1}$$

Où : F représente la résistance potentielle aux cycles de gel-dégel;

Scr est la plus forte valeur du degré de saturation d'un béton qui puisse être atteinte pendant un gel sans qu'il y ait détérioration;

Scap est le degré de saturation atteint par absorption capillaire.

La figure 2.5 montre qu'il existe, pour chaque béton, un seuil de saturation critique au-delà duquel le béton n'est plus résistant au gel. Ce degré de saturation peut être atteint suite à une période d'immersion dans l'eau plus ou moins longue. En principe, tous les types de béton, quels qu'ils soient, seront éventuellement détruits par le gel suite à une exposition plus ou moins longue dans l'eau. La destruction par le gel s'amorcera lorsque la quantité d'eau absorbée sera suffisante pour atteindre le degré de saturation critique.

Figure 2.5 – Relation entre le paramètre F et le période d'absorption capillaire [RILEM 4-CDC Committee, 1977 via Pigeon et Pleau, 1995]

La méthode du degré de saturation critique montre que la résistance au gel d'un béton est non seulement fonction des propriétés du béton mais est aussi fonction des conditions d'essais ou d'exposition. Par contre, l'essai ASTM C 666 ne prend pas en considération les conditions d'exposition réelles qui ne sont jamais aussi sévères que celles de l'essai accéléré. Il faut également mentionner que le degré de saturation est relié à la saturation possible des bulles d'air entraîné et que le degré de saturation critique est fonction du nombre et de la taille des bulles.

Le degré de saturation de 100 % défini par cette méthode correspond au remplissage complet des pores capillaires et des bulles d'air. En réalité les bulles d'air ne peuvent jamais être remplies par la succion capillaire. C'est donc à dire qu'aucun béton à air entraîné n'atteindra l'état de saturation critique (Scr = 100 %). Par conséquent, dans le cas des bétons à air entraîné, le temps de bonne tenue au gel, défini à la figure 2.5, devient infini [Pigeon et Pleau, 1995]. Les bétons ayant un faible rapport E/L peuvent avoir un degré de saturation qui varie en fonction de la profondeur sous la surface. En effet, leur très faible perméabilité peu faire en sorte que le cœur de l'élément ne puisse jamais atteindre le degré de saturation critique alors que la pâte en surface l'ait déjà atteint. Au cœur, l'absence de pénétration d'eau externe, combinée à l'autodessiccation, peut donc créer des conditions de saturation très favorables à une bonne résistance à la fissuration interne.

Les travaux de Hooton et McGrath [1991] mettent en relation le taux d'humidité relative interne, dû à l'autodessiccation, et la résistance au gel des bétons (Figure 2.6).

Figure 2.6 – Influence du taux d'humidité relative interne sur la résistance au gel du béton [Hooton et McGrath, 1991]

La figure 2.6 montre que les bétons ayant une H.R. > 95 % n'ont pas résisté aux 300 cycles de gel-dégel selon la norme ASTM C 666 – A. Par contre, les bétons possédant une H.R. < 93 % ont conservé un facteur de durabilité de 100 % à la fin des essais. Ces résultats montrent, de nouveau, qu'il semble exister un seuil de saturation critique qui gouverne la résistance à la fissuration interne des bétons.

2.2.5 Comportement dimensionnel de la pâte de ciment lors du gel

La thermodynamique montre que, sous l'effet d'un gel suffisamment lent pour permettre de maintenir la pâte de ciment dans un état proche de l'équilibre, la glace se forme à l'extérieur du corps poreux. Cela provoque alors une contraction due au départ de l'eau à l'extérieur du corps poreux (surface, bulles d'air) [Carles-Gibergues et Pigeon,1992].

Dans une pâte de ciment sans air entraîné et saturé, on mesure un gonflement lorsque la température s'abaisse au-dessous de -5 °C (Figure 2.7). Ce gonflement est en partie provoqué par la formation de glace dans la porosité capillaire, ce qui entraîne une pression interne sur les parois des pores.

Dans le cas d'une pâte de ciment sèche, la courbe de contraction est à peu près égale à la courbe de contraction thermique.

Pour une pâte de ciment à air entraîné, on observe une forte contraction lors du gel. Cette contraction s'explique par la contraction thermique et par le départ de l'eau des plus petits pores capillaires ou des pores de gel vers les bulles d'air ou vers les plus grands pores non complètement saturés. C'est à dire que l'eau est attirée vers les sites de la formation de la glace plutôt que d'en être expulsée [Gagné, 1997].

Figure 2.7 – Comportements dimensionnels des pâtes de ciment au cours de gel [Powers et Helmuth, 1953 via Carles-Gibergues et Pigeon, 1992]

2.3 Fissuration interne

La fissuration interne est la destruction de toute la masse du béton causée par les cycles de gel-dégel. Un des facteurs qui influence ce phénomène est l'eau. Elle se trouve dans les pores de gel (C-S-H) et dans les pores capillaires.

Les pores de gel sont de très faibles diamètres (< 40 angströms). L'eau qu'ils contiennent est en grande partie adsorbée entre les feuillets de C-S-H. Étant très fortement retenue, elle ne gèle que si la température s'abaisse au-dessous de -78 °C. Pratiquement, on peut considérer que cette eau est non gelable.

Les pores capillaires sont beaucoup plus gros que les pores de gel $(0,01 \ \mu m \ a 5 \ \mu m)$. Par conséquent, l'eau des pores capillaires est moins retenue par les forces de surface. Elle se déplace et gèle plus facilement. Puisque les pores capillaires possèdent des diamètres différents, l'eau qu'ils contiennent gèle à des températures différentes. La formation de la glace commence dans les plus gros pores et se poursuit dans les plus petits à mesure que la température s'abaisse. La présence de substances en solution dans

un pore peut diminuer d'avantage le point de fusion de la glace. Donc, la formation de la glace dans les pores capillaires est un processus graduel qui dépend de la taille de pores et de la température. Il est important de souligner que la formation de la glace est reliée au phénomène de nucléation, et que la compréhension de ce phénomène est requise pour bien comprendre comment et où la glace peut se former.

Le degré de saturation de porosité capillaire joue un rôle important face à la fissuration interne du béton. Si ce degré est supérieur à environ 90 %, la glace qui se forme va générer des pressions suffisamment élevées pour fissurer la pâte qui entoure les pores. Si ce degré est inférieur à environ 90 %, il y a assez d'espaces vides où l'eau, en gelant, peut augmenter son volume sans créer de dommages. Dans ce cas, la pâte peut résister aux pressions internes mais seulement si la température s'abaisse suffisamment lentement.

Les trois modèles qui expliquent l'action du gel dans la pâte de ciment prennent en considération les phénomènes mentionnés ci-dessus. Ils prennent aussi en compte le rôle des bulles d'air.

2.3.1 Modèle des pressions hydrauliques

Ce modèle a été développé par Powers et publié en 1949. Selon ce modèle, l'eau des pores capillaires commence à geler lorsque la température s'abaisse au-dessous de 0 °C. Lors de la diminution de température, la formation de glace se fait graduellement en fonction du diamètre des pores et de la concentration des substances en solution dans l'eau. Si la pâte de ciment est saturée, les pores capillaires sont pleins d'eau. En gelant, l'eau augmente son volume de 9 % et causera une expulsion d'une certaine quantité d'eau contenue dans les pores. Si les pressions hydrauliques ainsi formées dépassent la résistance en traction de la pâte, il y aura une fissuration. Les bulles d'air peuvent recueillir une certaine quantité d'eau expulsée qui s'écoule au travers de la pâte. Si les bulles sont suffisamment rapprochées cette eau pourra geler sans créer de dommages (Figure 2.8).

L'eau expulsée des pores capillaires s'écoule dans un milieu poreux possédant une certaine perméabilité. L'application de la loi de Darcy permet de calculer la pression nécessaire pour qu'une certaine quantité d'eau traverse un milieu semi-perméable en un temps et une distance donnée. Si la pâte est peu perméable, ou le trajet de parcours est trop long, ou le taux de formation de glace est trop élevé, les pressions de l'écoulement deviennent supérieures à la résistance en traction de la pâte. La pâte commence à fissurer, ce qui représente le début de la destruction par le gel.

En utilisant la loi de Darcy, Powers a calculé la longueur maximale que l'eau peut parcourir sans fissurer la pâte. Pour une pâte bien protégée contre le gel, cette longueur maximale représente la distance maximale entre un pore capillaire et une bulle d'air. En supposant une seule bulle entourée d'une coquille de pâte (Figure 2.8) Powers a calculé Lmax en utilisant la formule suivante [Pigeon et Pleau, 1995] :

$$\frac{L^{3}_{\max}}{r_{b}} + \frac{3L^{2}_{\max}}{2} = \frac{K \times T}{U \times R} \times (const)$$
(2.2)

L _{max}	Longueur maximale que l'eau peut parcourir sans fissurer la pâte;
r _b	Rayon de bulle d'air;
K	Coefficient de perméabilité de la pâte de ciment;
Τ	Résistance à la traction de la pâte;
U	Quantité d'eau gelable lorsque la température s'abaisse de 1 °C;
R	Vitesse de refroidissement.

L'équation 2.2 montre que la valeur de Lmax diminue si la vitesse de refroidissement augmente ou la perméabilité de la pâte s'abaisse. L'augmentation de la quantité d'eau gelable diminue aussi la valeur de Lmax car la quantité d'eau qui s'écoule au travers de la pâte est plus importante.

Figure 2.8 – Représentation schématique de Lmax et \overline{L} [Carles-Gibergues et Pigeon, 1992]

L'équation 2.2 s'applique seulement aux pâtes possédant les bulles d'air de même diamètre et espacées également. Dans la pâte réelle, l'espacement et le diamètre des bulles d'air sont variables. Donc, il faut considérer Lmax comme une valeur qui ne doit pas être dépassée en aucun point de la pâte. Powers a également estimé la valeur moyenne de la distance maximale (\overline{L}) que l'eau doit parcourir pour venir jusqu'à la bulle d'air la plus proche. Selon lui, pour une pâte saturée de rapport E/C = 0,50 cette valeur est égale à 250 µm quand le taux de gel est 11 °C à l'heure.

La méthode des pressions hydrauliques est la seule méthode qui lie mathématiquement les propriétés de la pâte, le taux de gel et l'espacement des bulles d'air. Cette méthode explique aussi la protection du béton par les bulles d'air entraînées. Cependant, elle ne prend pas en considération la température minimale lors du gel [Pigeon et Pleau, 1995]. Également, cette méthode n'explique pas la contraction de la pâte lors de gel due au départ de l'eau des plus petits pores capillaires ou des pores de gel vers les bulles d'air ou vers les plus grands pores non complètement saturés. C'est la raison principale pour laquelle cette méthode a été trouvée inexacte par plusieurs chercheurs dont Powers lui-même. Même si elle n'explique pas la contraction de la pâte lors du gel, la méthode des pressions hydrauliques reste applicable en certains endroits de la pâte ou les conditions de saturation sont très élevées [Gagné, 1992].

2.3.2 Modèle des pressions osmotiques

Le modèle des pressions osmotiques a été formulé par Powers et Helmuth en 1953 après qu'ils aient constaté que le modèle des pressions hydrauliques ne pouvait pas expliquer la contraction de la pâte lors de gel. Ce modèle est basé sur le fait que l'eau des pores capillaires n'est pas pure. Elle contient des substances en solution, notamment des ions alcalins (Na⁺, K⁺). Quand la température s'abaisse au-dessous de 0 °C, l'eau des pores capillaires ne gèle pas immédiatement car les substances en solution dans l'eau et la taille faible des pores diminuent le point de fusion de la glace. Si la température devient suffisamment basse, l'eau commence à geler. La formation de la glace débute dans les plus gros pores. Puisque la glace est formée d'eau pure, la concentration de la solution non gelée augmente et le point de fusion de la glace s'abaisse.

Donc, lors du gel, il y a un déséquilibre de concentration entre les solutions plus concentrées dans les plus gros pores et les solutions moins concentrées dans les pores plus petits et dans les pores de gel. Selon le phénomène d'osmose, l'eau des pores plus petits ou des pores de gel, a tendance à rééquilibrer les concentrations en se dirigeant vers les plus gros pores. Si ces derniers sont pleins, les pressions osmotiques peuvent dépasser la résistance en traction de la pâte et causer sa fissuration. De plus, l'eau qui arrive dans les plus gros pores diminue la concentration de la solution ce qui permet de former davantage de glace et d'augmenter les pressions dans la pâte. L'abaissement de la température permet la formation de glace dans les pores plus petits, ce qui amplifie le phénomène.

Habituellement, les bulles d'air contiennent un peu d'eau. Cette eau gèle relativement tôt sur leurs parois à cause de leur grand diamètre. La solution non gelée devient plus concentrée et attire l'eau des pores capillaires vers les bulles d'air. Si les bulles d'air sont suffisamment rapprochées, la plus grande quantité d'eau contenue dans la porosité capillaire se dirige vers ces bulles ou elle peut s'accumuler sans créer de dommages (Figure 2.9).

Figure 2.9 - Illustration schématique du processus de la formation des pressions osmotiques dans la pâte de ciment [Pigeon et Pleau, 1995]

La méthode des pressions osmotiques permet d'expliquer la contraction de la pâte lors du gel. Elle explique aussi l'action néfaste des sels fondants. En effet, les sels dissous dans l'eau capillaire augmentent les pressions osmotiques et le degré de saturation de la pâte, ce qui explique la plus faible résistance au gel des bétons en contact avec des sels fondants [Gagné, 1997]. Selon Pigeon et Pleau [1995], la méthode des pressions osmotiques n'explique pas l'influence du taux de gel. Ils pensent également que le rôle des bulles d'air est mal expliqué. Plus précisément, le rôle des bulles d'air ne dépend pas de leur nombre dans la pâte. Il existe toujours entre deux bulles d'air une zone ou les pores capillaires gagnent "la compétition". Donc, certaines régions de la pâte ne sont pas bien protégées par les bulles d'air. C'est plutôt la méthode des pressions hydrauliques qui s'applique dans ce cas.

2.3.3 Modèle thermodynamique

Ce modèle a été proposé par Litvan en 1972. Il est basé sur la constatation que l'eau des pores capillaires ne gèle pas sur place lorsque la température descend sous 0 °C. Cette eau est plutôt surrefroidie. Sa présence dans la pâte provoque des gradients de pression de vapeur ce qui entraîne l'endommagement par le gel.

Supposons une pâte de ciment saturée. L'abaissement de la température audessous de 0 °C provoque la formation de la glace d'abord sur les parois des bulles d'air. En même temps, l'eau des pores capillaires est surrefroidie. La pression de vapeur audessus de l'eau surrefroidie étant plus élevée qu'au-dessus de la glace (Figure 2.10), une partie de l'eau capillaire se déplace vers les bulles d'air pour rétablir l'équilibre. La fissuration interne est causée par des mouvements désordonnés de l'eau. Un taux de gel trop élevé, ou un trajet à parcourir trop long, peuvent causer les fortes pressions dans la pâte et par conséquent sa fissuration.

Selon la loi de Kelvin-Laplace (Équation 1.10), l'évaporation affecte premièrement les plus gros pores. L'eau dans les pores plus petits s'évapore plus difficilement car cette eau est retenue plus fortement par les forces de surface. Donc, l'abaissement de la température cause un assèchement de la pâte qui atteint des pores de plus en plus fins.

Le modèle de Litvan met en liaison le taux de gel et la porosité de la pâte avec la quantité d'eau instable lors de gel. Si le taux de gel ou la porosité de la pâte augmentent, la quantité d'eau qui se déplace et sa vitesse augmentent aussi. Les contraintes dues aux mouvements de l'eau deviennent élevées et il y a la fissuration de la pâte. Cependant, cette méthode ne donne pas une relation claire entre l'espacement des bulles d'air requis pour protéger la pâte contre le gel [Pigeon et Pleau, 1995].

Figure 2.10 – Diagramme des phases de l'eau [Pigeon et Pleau, 1995]

2.4 Résistance au gel des bétons à haute performance

Pour des bétons ordinaires, l'entraînement de l'air permet une bonne protection contre la fissuration interne lors du gel. Dans le cas des bétons à haute performance l'entraînement des bulles d'air nécessite une quantité élevée d'agent entraîneur d'air. De plus, l'air entraîné a pour conséquence une diminution de la résistance en compression. En effet, une augmentation de 1 % du volume d'air peut diminuer jusqu'à 5 % la résistance en compression du béton. Pour cette raison, il peut être utile de limiter ou même parfois d'éviter la quantité d'air entraîné dans les BHP car cela facilite la production et abaisse les coûts.

2.4.1 Résistance à la fissuration interne en laboratoire

L'essai ASTM C 666 – A est très souvent utilisé en laboratoire pour estimer la résistance à la fissuration interne des bétons ordinaires et des BHP. C'est un essai accéléré effectué sur des éprouvettes immergées dans l'eau. Il a été utilisé par plusieurs chercheurs pour tester la résistance au gel des BHP avec et sans air entraîné.

Malhotra et col. [1987] ont étudié la résistance au gel des bétons ayant des rapports E/C entre 0,35 et 0,25. Tous les bétons sans air entraîné se sont détruits avant 90 cycles de gel-dégel. Seuls les bétons avec air entraîné ont résistés aux 300 cycles de gel-dégel en laboratoire. Ces résultats laissent croire qu'il est nécessaire d'utiliser l'air entraîné pour protéger les bétons contre le gel, quel que soit le rapport E/C [Malhotra et Mehta, 1996].

Selon Gagné [1992], l'abaissement du rapport E/C améliore la durabilité au gel des BHP (Tableau 2.1). Pour le béton possédant un rapport E/C de 0,50 la valeur du facteur d'espacement critique est 500 μ m. Par contre, pour le rapport E/C de 0,25, la valeur de ce facteur devient très élevée (750 μ m). Les résultats du tableau 2.1 montrent que globalement, la résistance au gel augmente lorsque le rapport E/L diminue. Ces résultats montrent aussi que la fumée de silice a plutôt un effet légèrement défavorable sur la tenue au gel du béton.

Okada et coll. [1981] ont testé des bétons ayant un rapport E/C entre 0,55 et 0,25. Les résultats de cette étude montrent que les bétons dont le rapport E/C est inférieur à 0,35 sont résistants au gel sans air entraîné (\overline{L} crit > 1000 µm). Seuls les bétons de rapport E/C > 0,50 requièrent un facteur d'espacement d'environ 200 µm ce qui correspond approximativement à la valeur prescrite par la norme CSA (230 µm) [Gagné, 1992].

Cependant, les études de Cohen et coll. [1992] ont montré que les bétons ayant un rapport E/C de 0,35 ne peuvent pas résister à 300 cycles de gel-dégel (ASTM C 666 – A).

Hooton [1993] a testé des bétons de rapport E/L = 0,35 contenant 0, 10, 15 et 20 % de fumée de silice. Les bétons sans fumée de silice se sont tous détruits après 58 cycles. Tous les bétons fabriqués avec fumée de silice possédaient des facteurs de durabilité supérieurs à 90 % après 300 cycles de gel-dégel.

	Facteur d'espacement critique, \overline{L} (µm)					
E/L	Gel-dége	Gel-dégel dans l'air				
	Туре 10	Type 10 + FS	Type 10 + FS			
0,50	500	250	400			
0,50 (SP)	500	200	400			
0,30 (SP)	400	300	450			
0,25 (SP)	750	-	-			

TABLEAU 2.1 – Valeurs du facteur d'espacement critique pour différents bétons en fonction du milieu de gel et du type de ciment [Gagné, 1992]

Selon les études de Pigeon et coll. [1991] faites sur un grand nombre de mélanges, les bétons de rapport $E/L \le 0,30$ fabriqués avec un ciment type 30 sont, en général, résistants aux cycles de gel-dégel dans l'eau même sans la protection d'un bon réseau de bulles d'air. De plus, les bétons ayant un rapport $E/L \le 0,26$ fabriqués avec un ciment type 10 SF ont résisté au gel sans air entraîné ($\overline{L} > 690 \mu m$).

Certains chercheurs ont étudié l'influence de fumée de silice sur la résistance au gel des bétons. Malhotra [1984] a testé des bétons avec et sans air entraîné ayant des rapports E/L de 0,40, 0,50 et 0,60 et possédant 0, 5, 10, 15, 20 et 30 % de fumée de silice. Tous les bétons sans fumée de silice possédaient des facteurs de durabilité inférieurs à 20 % à la fin des cycles. Dans le cas des bétons à air entraîné, la fumée de silice n'a pas augmenté la durabilité au gel. Dans une autre étude Malhotra et coll. [1986] ont testé des bétons possédant des rapports E/L de 0,35, 0,30 et 0,25 avec 0, 10 et 20 % de fumée de silice. Les bétons sans air entraîné se sont détruits en moins de 100 cycles de gel-dégel. Les bétons à air entraîné ne contenant pas la fumée de silice se sont comportés mieux que ceux avec 10 et 20 % de fumée de silice. Suite à ces expériences, Malhotra a conclu que la fumée de silice n'améliore pas la durabilité au gel des bétons avec ou sans air entraîné. Malhotra et plusieurs autres chercheurs pensent que la fumée de silice empêche les mouvements de l'eau dans la pâte en diminuant sa perméabilité. Les pressions générées lors de gel sont plus élevées dans ce cas et l'entraînement de l'air devient nécessaire pour

une bonne protection du béton contre la fissuration interne lors du gel [Malhotra et Mehta, 1996].

Hooton et McGrath [1991] ont étudié la résistance au gel de bétons avec et sans air entraîné ayant des rapports E/L de 0,60, 0,45 et 0,32 et contenant 0, 7,5 et 15 % de fumée de silice. Leurs résultats montrent que les bétons sans air entraîné ayant un rapport E/L de 0,32 et contenant de la fumée de silice possédaient un facteur de durabilité de 100 % après 300 cycles de gel-dégel (ASTM C 666 – A) (Figure 2.6). Hooton et McGrath expliquent cette bonne durabilité au gel par le phénomène d'autodessiccation plus prononcée dans les bétons contenant de la fumée de silice.

Il est évident que les résultats obtenus par différents chercheurs sont assez contradictoires. En essayant de mieux présenter le phénomène, Marchand et coll. [1996] ont groupé les résultats de 11 publications récentes (Figures 2.11 et 2.12) en mettant en relation le facteur de durabilité avec le rapport E/C et la résistance en compression.

La figure 2.11 est divisé en deux zones. Dans la zone II on retrouve des bétons ordinaires. Ces bétons requièrent un facteur d'espacement inférieur à 250 μ m pour avoir un facteur de durabilité supérieur à 60 %. Les BHP sont présentés dans la zone I. Il est évident que leur résistance au gel est très variable. Selon la figure 2.11, il ne semble pas y avoir de rapport E/L au-dessous duquel les BHP sont résistants au gel sans air entraîné. Certains bétons de la zone I, ont été scellés pendant la cure. On constate que ces bétons ont, en général, une bien meilleure résistance au gel probablement en raison d'un degré de saturation plus faible en partie dû à l'autodessiccation.

Figure 2.11 – Influence du rapport eau/ciment sur la résistance à la fissuration interne [Marchand et coll., 1996]

Figure 2.12 – Influence de la résistance à la compression sur la résistance à la microfissuration interne [Marchand et coll., 1996]

Selon la figure 2.12, la résistance au gel augmente avec la résistance en compression. Les bétons possédant une résistance en compression inférieure à 50 MPa ne sont pas résistants au gel sans air entraîné (zone I). Les bétons dont la résistance en compression est supérieure à 95 MPa peuvent résister au gel sans air entraîné (zone III). Dans la zone II, on retrouve des bétons possédant une résistance en compression de 50 MPa à 95 MPa dont la résistance au gel est très variable, ce qui montre que la résistance en compression n'est pas un indice très fiable.

Puisque les résultats obtenus par des chercheurs sont assez variables, il apparaît prudent de recommander l'utilisation d'agent entraîneur d'air dans les BHP. L'utilisation d'une petite quantité d'air entraîné est souhaitable, non seulement pour améliorer la maniabilité mais aussi pour éviter de produire des facteurs d'espacement très élevés ($\overline{L} >$ 700 µm) n'offrant absolument aucune protection contre le gel [Gagné, 1997].

2.4.1.1 Représentativité de l'essai ASTM C 666 - A

Lors de l'essai ASTM C 666 – A des éprouvettes en béton sont soumises à plusieurs cycles rapides de gel-dégel dans l'eau. La température durant un cycle varie de +4 à - 18 °C. Plusieurs chercheurs pensent que les cycles de gel-dégel lors de l'essai sont trop sévères par rapport à ceux en nature. Durant l'essai, le taux de gel est de 8 à 16 °C/h alors qu'en nature, au Québec la valeur maximale du taux de gel est 3 °C/h [Pigeon et Pleau, 1995].

Gagné et coll. [1998], ont étudié les températures minimales, le nombre de cycles de gel-dégel et le taux de gel dans des dalles sur sol exposées aux conditions in situ pendant deux ans. Ils ont trouvé que la température minimale caractéristique pendant un hiver est de -11 °C à 5 mm et de -8 °C à 100 mm au-dessous de la surface des dalles. Des valeurs moyennes par hiver montrent que le béton à 5 mm de profondeur a subi environ 50 cycles de gel-dégel dont 15 cycles ayant une température inférieure à -5 °C et 5 cycles ayant une température inférieure à -10 °C. Le béton situé à 100 mm au-dessous de la surface a subi environ 27 cycles de gel-dégel dont 6 cycles avec une température inférieure à -5 °C et seulement 1 cycle avec une température inférieure à -10 °C. Les valeurs moyennes de taux de gel à 5 et 100 mm sont respectivement de 0,87 °C/h et 0,49 °C/h. La valeur maximale de taux de gel mesurée à 5 mm de profondeur a été de 4,9 °C/h et de 1,0 °C/h à 100 mm.

Lorsqu'on utilise l'essai ASTM C 666 – A, les éprouvettes de gel-dégel sont, à partir de 24 heures, mûries dans l'eau pendant 13 jours. Puisqu'elles sont de faibles dimensions, les éprouvettes deviennent complètement saturées avant d'être exposées au gel. En nature, les éléments de béton sont rarement mûris dans l'eau après le démoulage.

Donc, ils sont presque toujours moins saturés que les éprouvettes de gel-dégel. En plus, les éléments sont plus massifs et par conséquent, leur cœur n'est pas complètement saturé. C'est surtout valable pour les BHP dont le cœur reste faiblement saturé en raison de l'autodessiccation interne et de leur faible perméabilité.

Kamada et coll. [1991] ont étudié l'influence du taux de gel, de la plus basse température atteinte lors du gel et du temps pendant lequel le béton est maintenu à cette température, sur la résistance au gel des bétons ordinaires (E/C = 0.50 et E/C = 0.70). Ils ont aussi étudié l'influence des conditions de mûrissement sur la résistance au gel en utilisant l'essai ASTM C 666 - A. Ils ont utilisé quatre différentes conditions de mûrissement durant trois semaines tels que le mûrissement dans l'eau, le mûrissement à l'air, le séchage à 20 °C et le séchage à 30 °C. Deux types de bétons ont été étudiés : des bétons résistants au gel et des bétons susceptibles au gel. Les résultats de cette étude montre que le séchage a peu d'effet sur la résistance au gel des bétons sans air entraîné. Par contre, les bétons à air entraîné qui ont été séchés avant de subir les essais se comportent beaucoup mieux au gel-dégel que les bétons qui ont subi les 2 autres types de mûrissement. Cette étude a aussi confirmé que le taux de gel a une influence significative sur la durabilité au gel des bétons à air entraîné possédant un rapport E/L de 0,50. Cependant, l'influence du taux de gel sur la durabilité au gel des bétons sans air entraîné a été négligeable. Finalement, l'étude a montré que la destruction lors du gel augmente avec l'abaissement de la température minimale du cycle de gel.

2.4.2 Résistance à la fissuration interne en nature

En nature, la résistance à la fissuration interne des bétons à haute performance est encore mal connue. Selon certaines études sur ce sujet faites à l'Université de Sherbrooke, il est sûr que la résistance au gel des BHP en nature est plus élevée que celle obtenue par l'essai ASTM C 666 – A. Gagné et coll. [1998] ont étudié la durabilité au gel de 9 dalles en BHP (200 x 750 x 1000 mm) qui ont été exposées à l'extérieur pendant 4 ans. Les dalles ont été fabriquées avec 9 bétons différents ayant un rapport E/L de 0,30 et 0,25 et contenant 4 types de liant : un ciment type 10, un ciment type 10 mélangé avec fumée de silice à la cimenterie, un ciment type 30, et un ciment type 30 avec 8 % de fumée de silice. Certains bétons contenaient de l'air entraîné (maximum de 4,6 % dans le béton frais). Des éprouvettes de gel-dégel ont aussi été coulées en même temps que les dalles et ensuite soumises à l'essai de fissuration interne en laboratoire. Après 4 ans d'exposition, toutes les dalles sont encore durables au gel. Par contre, certains échantillons de gel-dégel ne contenant pas d'air entraîné n'ont pas résisté aux 300 cycles. L'essai ASTM C 666 – A ne semble pas approprié pour déterminer la durabilité au gel des dalles en BHP sans air entraîné. Selon ces chercheurs, la faible durabilité au gel en laboratoire des bétons sans air entraîné est partiellement due à un degré de saturation élevé des échantillons.

Après 24 heures, les échantillons de faibles dimensions sont immergés dans l'eau pendant 13 jours avant d'être exposés aux cycles de gel-dégel. Donc, avant les cycles, les échantillons sont proches de la saturation complète car des vides, formés par la contraction Le Châtelier, sont remplis d'eau extérieure. Une faible humidité relative interne, mesurée dans les dalles (85 % - 92 %), indique que les bétons ne sont pas complètement saturés. Les dalles sont probablement suffisamment massives et imperméables pour ne pas permettre un remplissage par l'eau extérieure des vides crées par la contraction Le Châtelier. Alors, ces vides représentent une protection contre les pressions internes générées par l'action du gel.

Hooton [1993] a fait une étude sur la durabilité au gel de blocs en béton sans air entraîné (300 x 300 x 450 mm) semi-immergés dans l'eau ayant subi entre 45 et 72 cycles de gel-dégel par année. Tous les bétons avaient un rapport E/L de 0,35 et contenaient 0, 10, 15 et 20 % de fumée de silice. Un suivi de comportement sur plusieurs années a montré que ces bétons semblent parfaitement en mesure de résister au gel en condition in situ sans la protection d'un bon réseau de bulles d'air.
3. BUT DE LA RECHERCHE ET PROGRAMME DES ESSAIS

3.1 Exposé de la problématique

Les bétons à haute performance sont de plus en plus utilisés pour la construction d'infrastructures de transport en raison de leur plus grande durabilité en général et notamment de leur meilleure résistance au gel-dégel. De nos jours, il est bien connu que le coût initial des structures exposées à un environnement sévère peut être largement dépassé par les coûts de réparation. Par conséquent, il est important de mieux comprendre le comportement au gel des BHP pour pouvoir profiter pleinement de leur plus grande durabilité.

Pour être durable face aux cycles de gel-dégel, les bétons ordinaires doivent nécessairement être protégés par un bon réseau de bulles d'air entraîné. Par contre, des résultats de recherche en laboratoire ont démontré que certains BHP peuvent résister aux cycles de gel-dégel sans cette protection. Il faut cependant abaisser le rapport E/L à un niveau inférieur ou égal à 0,25 pour obtenir un BHP sans air entraîné résistant aux cycles de gel-dégel en laboratoire. Plus globalement, les résultats de recherche en laboratoire démontrent, en fait, que la plupart des BHP doivent être protégés des effets du gel par un réseau de bulles d'air entraîné. La production d'un réseau de bulles d'air dans les BHP diminue significativement les propriétés mécaniques et engendre des coûts de production supplémentaires pour maintenir le système de contrôle de qualité requis pour produire un réseau de bulles d'air stable durant le transport et la mise en place. La question actuelle est de déterminer s'il est vraiment nécessaire de produire un très bon réseau de bulles d'air ($\overline{L} < 230 \ \mu m$) pour assurer la durabilité au gel des BHP (in situ), compte tenu de la grande sévérité des essais de laboratoire.

Lors des essais de laboratoire, les échantillons sont soumis à des cycles de geldégel beaucoup plus sévères que ceux mesurés en nature. Le taux de gel utilisé est notamment beaucoup plus élevé que celui rencontré dans des conditions réelles d'exposition. Par exemple, durant les essais de laboratoire, le taux de gel est de 8 à 16 °C/h alors qu'en nature, au Québec, la valeur maximale du taux de gel est d'environ 3 °C/h [Pigeon et Pleau, 1995]. De plus, les essais en laboratoire s'effectuent avec des échantillons de petites dimensions qui sont constamment immergés dans l'eau durant le mûrissement et lors des périodes de gel. En pratique, les éléments en béton sont rarement en contact constant avec de l'eau. C'est notamment le cas du béton de "cœur" situé à l'intérieur des éléments. On constate que les conditions lors des essais de laboratoire diffèrent beaucoup des conditions naturelles d'exposition et nous pensons que, dans le cas particulier des BHP, ces différences peuvent avoir des conséquences importantes lors de l'interprétation des résultats des essais en laboratoire.

Le bon comportement in situ des BHP sans air entraîné pourrait être attribué à leur forte autodessiccation. C'est la contraction Le Châtelier qui est à l'origine de cette autodessiccation importante. L'autodessiccation interne contribue à désaturer partiellement la porosité capillaire. De plus, dans des conditions réelles d'exposition, il est probable que la pâte située à l'intérieur des éléments soit isolée du milieu extérieur. Ceci est particulièrement vrai pour les BHP qui sont beaucoup moins perméables que les bétons ordinaires. L'autodessiccation interne se développant au cœur des éléments en BHP pourrait donc contribuer à améliorer la résistance au gel des BHP soumis à des conditions d'exposition naturelles. En laboratoire, les conditions des essais ne permettent pas au béton de profiter de la protection offerte par l'autodessication. Nous croyons donc que les résultats des essais de gel-dégel en laboratoire doivent être interprétés différemment dans le cas des BHP.

3.2 Objectifs du projet

L'objectif principal de ce projet de recherche est de mieux comprendre la durabilité au gel des BHP pour pouvoir tirer pleinement profit de leur plus grande durabilité lors de la construction d'infrastructures de transport soumises à des conditions environnementales sévères. Plus précisément, ce projet de recherche tentera de déterminer s'il est vraiment nécessaire de produire un bon réseau de bulles d'air (6% à 7 % d'air entraîné, $\overline{L} < 230 \ \mu$ m) pour protéger des effets du gel-dégel les BHP soumis à des conditions réelles d'exposition.

Pour pouvoir répondre à cet objectif, nous avons défini les objectifs spécifiques suivants :

- Étudier les relations entre l'autodessiccation, le degré de saturation de la porosité capillaire (lors du mûrissement et pendant les cycles) et la durabilité au gel des bétons en laboratoire (essai ASTM C 666 Procédure A). Ces essais permettront notamment de mieux comprendre quelle est l'influence du mode de mûrissement (scellé ou non scellé) sur la durabilité au gel en laboratoire. Ils permettront aussi de mieux comprendre dans quelle mesure l'absorption d'eau externe lors des cycles peut influencer le comportement au gel des bétons conventionnels et des BHP.
- Étudier la relation entre l'humidité relative interne et la durabilité au gel des bétons en laboratoire. On vise notamment à déterminer si la mesure de l'humidité relative interne d'un béton (en laboratoire et in situ) peut être utile pour prévoir son comportement au gel à long terme.
- Déterminer comment varie l'humidité relative interne en fonction de la profondeur et du temps à l'intérieur de blocs en BHP constamment immergés sous l'eau. Ces essais permettront notamment d'estimer à partir de quelle profondeur sous la surface l'autodessiccation interne est en mesure de contribuer à la déssaturation partielle de la porosité capillaire.

3.3 Méthodologie

3.3.1 Choix des paramètres à étudier

Pour répondre aux objectifs du projet, quatre types de bétons ont été réalisés. Plus précisément, deux BHP (E/L = 0,30 avec et sans fumée de silice) et deux bétons ordinaires (E/L = 0,40 avec et sans fumée de silice) ont été fabriqués afin d'étudier les paramètres suivants :

- Le rapport eau/liant (0,30 et 0,40)
- La teneur en fumée silice (0 % et 8 %)
- Le type de mûrissement ("ouvert" et "fermé")
- Le type d'exposition aux cycles de gel-dégel ("ouvert" et "fermé")

La condition de type "ouvert" a consisté à immerger les éprouvettes directement dans l'eau lors du mûrissement et lors des cycles de gel-dégel. La condition de type "fermé" a consisté à empêcher l'absorption ou l'évaporation d'eau en scellant les éprouvettes dans un papier d'aluminium autocollant. Dans le cas des éprouvettes scellées soumises au gel, on a aussi utilisé des sacs en plastique épais pour s'assurer d'une étanchéité parfaite lors des cycles de gel-dégel.

La figure 3.1 présente les différentes conditions d'essais utilisées lors des essais de gel-dégel et pour les mesures du degré de saturation.

3.3.2 Procédure expérimentale et caractéristiques des éprouvettes

Les essais de gel-dégel ont été effectués selon la norme ASTM C 666 - Procédure A. Dans certains cas, on a cependant dû modifier légèrement la procédure normalisée pour pouvoir étudier l'influence du mode de scellement durant le mûrissement et lors des cycles de gel-dégel. Pour chaque mélange, on a fabriqué 14 éprouvettes de gel-dégel (75 x 75 x 350 mm). Huit éprouvettes ont été soumises à toutes les combinaisons type de mûrissement – scellement de surface lors du gel (2 éprouvettes par condition).

Les mesures de masse, d'allongement et de vitesse des ondes sonores ont été effectuées lors du mûrissement (1, 3, 7, 11, 14 jours) et tout au long des cycles de geldégel (maximum 300 cycles). À la fin des cycles de gel-dégel, on a mesuré le niveau d'endommagement et l'humidité relative interne à l'intérieure des éprouvettes. Les autres éprouvettes ont été utilisées pour les mesures d'humidité relative interne à 14 jours. Les mesures d'humidité relative interne ont été effectuées à l'aide d'une sonde hygrométrique de type Novasina ms1.

Figure 3.1 - Représentation schématique des paramètres choisis

La détermination du degré de saturation de la porosité capillaire a été effectuée au début et à la fin des cycles de gel-dégel. Chaque essai a été effectué à partir de 2 éprouvettes de 75 x 75 x 350 mm ayant aussi été utilisées pour les mesures d'humidité relative.

Pour chaque mélange, on a fabriqué 20 cylindres de 100 x 200 mm. Deux cylindres ont été utilisés pour déterminer les caractéristiques du réseau de bulles d'air. Les autres cylindres ont été utilisés pour déterminer la résistance à la compression à 14, 28 et 91 jours (3 cylindres par condition d'essai). Pour chaque échéance, 3 cylindres ont été mûris dans l'eau et 3 cylindres ont été scellés avec du papier d'aluminium autocollant.

L'étude de l'évolution de l'humidité relative interne en fonction de la profondeur et de la teneur en fumée de silice a été réalisée à partir de deux blocs en BHP de 240 x 420 x 540 mm. Ces blocs ont été constamment conservés dans l'eau à partir de 24 heures. Les mesures de l'humidité relative interne ont été effectuées à 3, 7, 14, 28, 91 et 350 jours à des profondeurs de 50 mm et 75 mm. Les profils d'humidité relative interne ainsi obtenus permettront d'estimer la profondeur à laquelle l'autodessiccation peut se développer.

4. MATERIAUX, MÉLANGES ET PROCÉDURES EXPÉRIMENTALES

4.1 Matériaux

4.1.1 Ciments

Tous les bétons ont été fabriqués avec deux types de ciment provenant de la même usine. Ces deux types de ciment sont un ciment Portland normal (type 10) et un ciment Portland contenant 8 % de fumée de silice (type 10 SF). Les compositions chimiques et minéralogiques de ces ciments sont présentées aux tableaux 4.1 et 4.2. La finesse Blaine est de 409 m²/kg pour le ciment type 10 et de 572 m²/kg pour le ciment type 10 SF.

TARLEAU 41	- (Composi	tion	chimia	me des	ciments
Inducino 4.1	- •	20mposi	HOIL	ommid	lac aca	ennente

COMPOSITION CHIMIQUE (%)	CIMENT TYPE 10	CIMENT TYPE 10 SF
SiO ₂	20,31	25,08
Al ₂ O ₃	4,50	4,06
Fe ₂ O ₃	3,07	3,22
CaO total	62,27	58,63
MgO	2,79	2,58
SO ₃	3,18	2,82
K ₂ O	0,94	0,94
Na ₂ O	0,36	0,43
TiO ₂	0,22	0,17
P ₂ O ₅	0,24	0,20
SrO	0,29	0,28
Mn ₂ O ₃	0,06	0,07
Perte au feu	2,14	1,30
TOTAL	100,37	99,78
Na ₂ O équivalent	0,98	1,05

COMPOSITION MINÉRALOGIQUE (%)	CIMENT TYPE 10	CIMENT TYPE 10 SF
C ₃ S	55	
C ₂ S	16	-
C ₃ A	7	5
C₄AF	9	10

 TABLEAU 4.2 - Composition minéralogique des ciments (composition de Bogue)

4.1.2 Granulats

Le granulat fin utilisé est un sable siliceux naturel de la région de Sherbrooke. Sa densité à l'état saturé superficiellement sec est de 2,65, son module de finesse est de 2,40 et son coefficient d'absorptivité est de 1,2 % (selon la norme CAN/CSA - A23.2 - 6A). La granulométrie du granulat fin et le fuseau normalisé (selon les normes CAN/CSA - A23.2 - 2A et CAN/CSA - A23.1) sont présentés au tableau 4.3 et à la figure 4.1.

Figure 4.1 - Courbe granulométrique du granulat fin et fuseau normalisé

TABLEAU 4.3 - Granulométrie du granulat fin et fuseau normalisé

Ouverture des tamis (mm)	10	5	2,5	1,25	0,630	0,315	0,160	0,080
Tamisat cumulé (%)	100	98	87	75	59	35	8	1
Fuseau normalisé (%)	100	95-100	80-100	50-90	25-65	10-35	2-10	-

Le gros granulat utilisé est une pierre calcaire dolomitique provenant de la région de Montréal. La pierre possède un diamètre nominal de 10 mm. Sa densité à l'état saturé superficiellement sec est de 2,78 et son absorption de 0,8 % (selon la norme CAN/CSA - A23.2 - 12A). La granulométrie du gros granulat et le fuseau normalisé (selon les normes CAN/CSA - A23.2 - 2A et CAN/CSA - A23.1) sont présentés au tableau 4.4 et à la figure 4.2.

Figure 4.2 - Courbe granulométrique du gros granulat et fuseau normalisé

TABLEAU 4.4 -	Granulométrie du	gros granulat et	fuseau normalisé
---------------	------------------	------------------	------------------

Ouverture des tamis (mm)	14	10	5	2,5	1,25
Tamisat cumulé (%)	100	100	27	2	1
Fuseau normalisé (%)	100	85-100	10-30	0-10	0-5

4.1.3 Adjuvants

Lors de cette étude nous avons utilisé deux types d'adjuvants. Le premier est le superplastifiant Disal. C'est un sel de sodium d'acide poly-naphtalène sulfonique dont les caractéristiques sont présentées au tableau 4.5.

TABLEAU 4.5 - Caractéristiques du superplastifiant DISAL

Apparence	Liquide brun clair
Forme	Solution aqueuse
Nature ionique	Anionique
Dilution dans l'eau	dilution rapide dans l'eau douce ou dure
Teneur en solides (% poids)	40,0-42,0
Sulfates (% poids) (sous forme SO_4^{-2})	1,35 max.
PH de la solution à 41 %	7,0-9,0
Densité à 25 °C	1,19-1,24
Chlorures (ppm) (sous forme Cl ⁻)	250 max.

Le deuxième adjuvant est un réducteur d'eau nommé TCDA DX et conforme aux exigences de la norme CAN/CSA - A266.2. Ce produit est composé d'acides hydroxycarboxiliques et d'un catalyseur permettant une hydratation plus complète du liant. Les principales caractéristiques physiques de ce réducteur d'eau sont présentées au tableau 4.6.

Densité relative à 25 °C	1,15
Solides	30 %
Valeur du pH	8,5
Couleur	Brun transparent
Ions chlorures	Max. 245 ppm

TABLEAU 4.6 - Caractéristiques physiques du réducteur d'eau

<u>4.1.4 Eau</u>

Pour le gâchage, nous avons utilisé l'eau du robinet provenant du système d'aqueduc de la Ville de Sherbrooke.

4.2 Mélanges et procédure de gâchage

4.2.1 Mélanges

Deux séries de bétons ont été fabriquées dans le cadre de cette recherche. La première série avait pour le but d'évaluer l'influence du mode de mûrissement et de l'autodessiccation interne sur la résistance au gel des bétons ordinaires et des bétons à haute performance (selon la norme ASTM C 666 – A). La deuxième série avait pour but d'étudier l'autodessiccation et les profils d'humidité interne dans deux blocs en BHP constamment immergés sous l'eau.

Pour réaliser la première série, nous avons fabriqué quatre bétons dont les dénominations et les caractéristiques principales sont présentées au tableau 4.7.

	TABLEAU 4.7 -	 Dénominations et 	principales	caractéristiques	des bétons	: de la	i série I
--	---------------	--------------------------------------	-------------	------------------	------------	---------	-----------

Béton	Caractéristiques de formulation
0,3 CP	E/L = 0,30; liant = ciment portland
0,3 SF	E/L = 0,30; liant = ciment portland + 8 % de fumée de silice*
0,4 CP	E/L = 0,40; liant = ciment portland
0,4 SF	E/L = 0,40; liant = ciment portland + 8 % de fumée de silice*

* La fumée de silice est ajoutée à la cimenterie lors du broyage du ciment

Pour la deuxième série, nous avons fabriqué deux bétons ayant un rapport E/L de 0,30 sans et avec fumée de silice. Les dénominations et les principales caractéristiques de ces bétons sont présentées au tableau 4.8.

TABLEAU 4.8 – Dénominations et principales caractéristiques des bétons de la série II

Béton	Caractéristiques de formulation
0,3 CP bloc	E/L = 0,30; liant = ciment portland
0,3 SF bloc	E/L = 0,30; liant = ciment portland + 8 % de fumée de silice*

* La fumée de silice est ajoutée à la cimenterie lors du broyage du ciment

Dans tous nos mélanges, le rapport entre le volume de la pâte (liant + eau + superplastifiant) et le volume du granulat (sable + pierre) a été maintenu constant (Vp/Vg = 0,4). Ce choix a été fait pour faire en sorte que seule la porosité intrinsèque de la pâte varie d'un béton à l'autre. Les tableaux 4.9 et 4.10 présentent les caractéristiques de formulation détaillées des bétons des deux séries d'essais.

Béton	0,3 CP	0,3 SF	0,4 CP	0,4 SF
Eau (kg/m ³)	138	139	163	162
Ciment (kg/m ³)	456	418	396	365
Fumée de silice (kg/m ³)	0	36	0	32
Granulat fin (kg/m ³)	759	746	765	755
Gros granulat (kg/m³)	1107	1101	1111	1117
Superplastifiant (1/m ³)	8	6	3	2
Réducteur d'eau (ml/100 kg de liant)	200	150	150	150
Affaissement (mm)	190	1 9 0	140	110
Teneur en air (%)	2,5	2,7	2,1	2,0
Masse volumique (kg/m ³)	2470	2447	2439	2433

TABLEAU 4.9 - Caractéristiques des bétons de la série I

TABLEAU 4.10 - Caractéristiques des bétons de la série II

Béton	0,3 CP bloc	0,3 SF bloc
Eau (kg/m ³)	140	139
Ciment (kg/m ³)	455	418
Fumée de silice (kg/m ³)	0	36
Granulat fin (kg/m ³)	758	749
Gros granulat (kg/m ³)	1103	1105
Superplastifiant (l/m ³)	7,5	5,2
Réducteur d'eau (ml/100 kg de liant)	200	150
Affaissement (mm)	160	150
Teneur en air (%)	2,6	2,4
Masse volumique (kg/m ³)	2465	2453

Pour faciliter l'analyse ultérieure des essais de gel-dégel, nous avons inclus dans les noms des éprouvettes certaines de leurs caractéristiques de formulation : Type de mûrissement avant les essais de gel, type de scellement durant les essais de gel et les caractéristiques de ses vides d'air. Un exemple d'interprétation des noms d'éprouvettes est donné à la figure 4.3. Les deux premiers chiffres indiquent d'abord la valeur du rapport eau/liant utilisé. Les deux lettres suivantes servent à déterminer le type de ciment qui a été employé. Les trois chiffres (à droite du premier trait d'union) indiquent la valeur du facteur d'espacement des vides d'air (μ m). Le type de mûrissement employé est défini par la lettre qui suit le deuxième trait d'union. La dernière lettre indique enfin le type de scellement lors du gel.

Figure 4.3 – Clé pour l'identification des éprouvettes de gel-dégel

4.2.2 Procédure de gâchage

Tous les mélanges ont été fabriqués dans un malaxeur d'une capacité maximale de 200 kg. La même procédure de gâchage a été utilisée pour tous les bétons :

- 1. Introduction du sable; malaxage pendant 30 secondes. Mesurer la teneur en eau et corriger si nécessaire les quantités d'eau et de sable;
- Introduction de la pierre et de 50 % d'eau de gâchage. Malaxage pendant 30 secondes;
- 3. Introduction du ciment et poursuite du malaxage;
- 4. Trente secondes après l'introduction du ciment, ajouter le réducteur d'eau dilué dans la même quantité d'eau de gâchage;

- 5. Deux minutes après l'introduction du ciment, ajouter le superplastifiant préalablement dilué dans le restant de l'eau de gâchage et continuer le malaxage jusqu'à 4 minutes;
- 6. Faire une pause jusqu'à 5 minutes et continuer le malaxage jusqu'à 8 minutes;
- Mesurer l'affaissement. Celui-ci doit être compris entre 150 et 190 mm pour les bétons de rapport E/L = 0,30 et entre 110 et 150 mm pour les bétons de rapport E/L = 0,40;
- 8. Mesurer la masse volumique et la teneur en air.

4.2.3 Échantillonnage et fabrication des blocs

Chaque béton de la série I a permis la fabrication de 14 éprouvettes de gel-dégel de 75 x 75 x 350 mm et 20 cylindres de 100 x 200 mm. Les éprouvettes de gel-dégel ont été coulées dans les moules en PVC préalablement huilés et comportant des plots permettant la mesure de l'allongement lors du mûrissement et des cycles de gel-dégel. Le béton frais est placé en deux couches vibrées pendant 10 secondes à l'aide de la table vibrante. Une fois le moule rempli, le surplus du béton a été arasé et la surface a été égalisée à la truelle. Les moules remplis par le béton frais ont été ensuite recouverts par les plaques de plastique jusqu'au démoulage.

Le démoulage a été fait après 24 heures. Les mesures de masse, d'allongement et de vitesse des ondes ont été effectuées pour la première fois immédiatement après le démoulage. Ensuite, 7 éprouvettes ont été emballées dans le papier d'aluminium autocollant et placées dans la chambre à température et à humidité contrôlées ($T = 23 \pm 1,7$ °C; H.R. = 50 ± 4 %). Sept autres éprouvettes ont été conservées dans l'eau saturée en chaux. Les méthodes du scellement de la surface lors du mûrissement et lors des cycles de gel-dégel seront expliquées plus précisément dans les paragraphes 4.3.1. et 4.3.2.

Les cylindres ont été fabriqués dans des moules de PVC préalablement huilés qui ont été remplis en deux couches. Chaque couche a été vibrée sur la table vibrante pendant 10 à 15 secondes pour obtenir une bonne compacité. Les cylindres ont été démoulés après 24 heures. Neuf cylindres ont été emballés dans le papier d'aluminium autocollant et placés dans la chambre à température et à humidité contrôlées. Onze cylindres ont été conservés dans l'eau saturée en chaux jusqu'au moment des essais.

Chaque béton de la série II a permis la fabrication d'un bloc de 240 x 420 x 540 mm et 9 cylindres de 100 x 200 mm. Les blocs ont été coulés dans des moules en bois préalablement huilés. Le béton a été placé en plusieurs couches et ensuite vibré à l'aide d'une aiguille vibrante. Le démoulage a été fait après 24 heures. Après le démoulage, les blocs ont été immergés dans des barils remplis d'eau. La manipulation des blocs a pu se faire à l'aide des crochets installés lors de la mise en place du béton dans les moules.

Les cylindres de cette série ont été fabriqués de la même façon que les cylindres de la série I. Ils ont été démoulés après 24 heures et placés dans l'eau saturée en chaux jusqu'au moment des essais.

4.3 Procédures expérimentales

4.3.1 Mûrissement des éprouvettes de gel-dégel

Pour les éprouvettes de la série I nous avons choisi deux types de mûrissement : scellé et non scellé. Les éprouvettes soumises au mûrissement scellé ont été démoulées après 24 heures et ensuite emballées dans un papier d'aluminium autocollant. Ces éprouvettes ont ensuite été conservées dans la chambre à température et humidité contrôlées pendant 13 jours. Le mûrissement non scellé a consisté à immerger les éprouvettes dans l'eau sans aucun enrobage.

4.3.2 Scellement des éprouvettes lors des essais de gel-dégel

Pour les essais de gel-dégel, nous avons aussi choisi deux types d'enrobage de surface : scellé et non scellé. L'enrobage scellé a consisté à placer des éprouvettes préalablement emballées dans du papier d'aluminium autocollant dans des sacs en plastique. Ces derniers ont été ensuite fermés de façon étanche à l'aide d'une reliure en plastique maintenue en place à l'aide de pinces métalliques. Avant de procéder à la fermeture complète du sac, on a pris soin d'expulser le maximum d'air de manière à ce que le sac de plastique épouse bien la forme de l'éprouvette (Figure 4.4). L'enrobage non scellé ne comportait aucun enrobage lors des cycles de gel-dégel (tel que recommandé par la norme ASTM C 666 – A).

Les différentes combinaisons possibles type de mûrissement – type d'enrobage lors du gel-dégel sont présentées à la figure 4.5. Pour chaque combinaison, 2 éprouvettes de gel-dégel et 1 témoin ont été fabriqués.

Figure 4.4 – Scellement des éprouvettes lors des cycles de gel-dégel

4.3.3 Essais de gel-dégel

Pour évaluer la résistance au gel des bétons, nous avons utilisé des essais accélérés de gel-dégel selon la norme ASTM C 666 – A : Resistance of Concrete to Rapid Freezing and Thawing.

Les éprouvettes non scellées lors du mûrissement et lors des cycles de gel-dégel ont été soumises aux cycles accélérés selon la procédure A. Les éprouvettes (prismes de

Figure 4.5 - Combinaisons des types de scellement de la surface des éprouvettes de gel-dégel lors du mûrissement et des cycles de gel-dégel

75 x 75 x 350 mm) ont été mûries dans l'eau pendant 13 jours et ensuite soumises aux cycles de gel-dégel dans l'eau. Lors d'un cycle, la température du béton passe de 4,4 \pm 1,7 °C à -17,8 \pm 1,7 °C. L'appareil de gel-dégel fait environ 5 cycles par jour et chaque cycle a une durée de 3 à 5 heures. À tous les 35 cycles environ, on mesure la masse, l'allongement des éprouvettes et la vitesse de propagation des ondes ultrasonique. Lorsque l'allongement d'une éprouvette dépasse 0,10 % ou lorsque le module d'élasticité dynamique (calculé à partir de la vitesse de propagation des ondes) devient inférieur à 60 %, l'éprouvette est considérée détruite et elle est retirée de l'appareil de gel-dégel.

Dans le cas des éprouvettes scellées lors du mûrissement ou lors des cycles de geldégel, une procédure légèrement différente a dû être utilisée. Les prismes scellés lors du mûrissement ont été gardés dans la chambre à température et humidité contrôlées pendant 13 jours. Pour s'assurer de l'étanchéité lors des cycles de gel-dégel les prismes, recouverts de papier d'aluminium, ont été placés dans des sacs en plastique. Les sacs en plastique épais ont été ensuite fermés de façon étanche puis placés dans l'appareil de geldégel. Les prismes, dans ces conditions, ont subi le même nombre de cycles journaliers, c'est à dire environ 5 cycles par jour. La présence des sacs a diminué légèrement la quantité d'eau dans les bacs de l'appareil. Dans ce cas, la température à l'intérieur des prismes a varié de 11.7 ± 1.7 °C à $- 20.7 \pm 1.7$ °C. Les prismes scellés ont donc subi un taux de gel légèrement plus sévère.

4.3.3.1 Mesure de la masse

Les mesures de masse ont été effectuées au moyen d'une balance électronique précise à $\pm 0,5$ gramme.

Au démoulage les éprouvettes ont été pesées pour la première fois. Ensuite la masse a été mesurée environ une fois par semaine lors du mûrissement et lors des cycles de gel-dégel. Toutes les éprouvettes non scellées ont été amenées à l'état saturé superficiellement sec avant d'être pesées. Toutes les éprouvettes scellées ont été pesées avec le papier d'aluminium autocollant.

4.3.3.2 Mesure de l'allongement

L'allongement des éprouvettes a été mesuré à l'aide d'un extensomètre muni de pointes coniques pouvant s'insérer dans la tête des plots. La précision de cet appareil est de $\pm 2,5 \mu m$. Les mesures ont été effectuées environ une fois par semaine pendant le mûrissement et pendant les cycles de gel-dégel. La mesure est prise deux fois sur chacune des faces et l'extensomètre a été étalonné à chaque mesure.

L'allongement axial (ε_n) après n cycles de gel-dégel est obtenu par l'expression :

$$\varepsilon_n = \frac{l_n - l_0}{l_0} \tag{4.1}$$

 l_n Longueur mesurée entre les plots après *n* cycles de gel;

*l*₀ Longueur mesurée entre les plots au début des cycles de gel.

La température des éprouvettes ayant pu varier d'une séance de mesure à l'autre, les valeurs obtenues de l'équation 4.1 doivent être corrigées afin de tenir compte de la dilatation thermique du béton. La valeur du coefficient de dilatation thermique que nous avons utilisé est celle que Lachance [1979] a déterminé pour des bétons usuels contenant des granulats calcaires, soit : $5,5 \ge 10^{-6}$ [Gagné, 1992].

La correction à utiliser est donnée par :

$$\varepsilon_c = 5.5 \times 10^{-6} \left(\theta_n - \theta_0 \right) \tag{4.2}$$

- θ_n Température en °C lors des mesures après *n* cycles de gel;
- θ_0 Température en °C lors des mesures au début des cycles de gel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L'allongement axial corrigé est ensuite obtenu par :

$$\varepsilon_n = \varepsilon_n - \varepsilon_c \tag{4.3}$$

4.3.3.3 Mesure de la vitesse des ondes

La mesure de la vitesse de transmission des ondes a été effectuée à l'aide d'un appareil appelé PUNDIT (*Portable Ultrasonic Non-Destructive Digital Indicator Testor*). Cet appareil mesure le temps que prend une onde ultrasonique pour parcourir la distance comprise entre l'émetteur et le récepteur placés à chaque extrémité de l'échantillon. Pour assurer une bonne continuité des interfaces émetteur-béton et béton-récepteur, une couche de vaseline a été appliquée à la surface du béton et des pièces métalliques. Dans le cas des prismes scellés, la vaseline a été directement appliquée sur le papier d'aluminium autocollant. Cette façon de procéder a certainement légèrement diminué la vitesse de propagation des ondes, mais la variation relative des vitesses demeure cependant valable.

Pour chaque éprouvette, quatre mesures consécutives ont été réalisées et l'appareil a été étalonné avant chaque mesure. La vitesse moyenne des ondes a été obtenue en divisant la distance parcourue par la moyenne des 4 mesures de temps.

La vitesse après n cycles (exprimée en pourcentage de la vitesse initiale) est obtenue par :

$$V = \frac{V_n}{V_0} \times 100 \tag{4.4}$$

 V_n Vitesse après *n* cycles (m/s);

 V_0 Vitesse au début des cycles de gel (m/s).

En général on utilise les vitesses de propagation des ondes sonores pour calculer le module d'élasticité dynamique et le facteur de durabilité. Ces deux quantités sont en fait proportionnelles au carré de la vitesse de propagation des ondes sonores. Lors de cette étude nous n'avons pas exprimé les résultats sous ces deux formes. Nous pensons que l'expression de la vitesse relative (V_n/V_0) represente un indice fiable qui permet bien comparer la tenue au gel des bétons. Dans le cadre de cette étude, nous avons considéré qu'une chute de 5 à 10 % de la vitesse relative $(V_n/V_0 < 90 \%)$ était le signe de l'amorce d'une destruction par le gel.

4.3.4 Résistance à la compression

Les essais de résistance à la compression ont été effectués sur des cylindres $100 \times 200 \text{ mm}$ conformément à la norme ASTM C 39 - 94: Compressive Strength of Cylindrical Concrete Specimens. Pour chaque béton de la série I, nous avons testé 3 cylindres scellés et 3 cylindres non scellés après 14, 28, et 91 jours de conservation. Pour les bétons de la série II, 3 cylindres non scellés ont été testés après 14, 28 et 91 jours.

Avant les essais, tous les cylindres ont été surfacés à l'aide d'une meule diamantée. Dans le cas des cylindres scellés le papier d'aluminium autocollant a dû être enlevé des extrémités du cylindre avant le surfaçage. Le reste du papier autocollant a été enlevé juste avant d'effectuer l'essai de compression pour éviter toute possibilité de confinement de l'éprouvette.

4.3.5 Caractéristiques des vides d'air

Pour chaque béton de la série I, nous avons coupé 2 plaques de 100 x 100 x 20 mm dans des cylindres de 100 x 200 mm après environ 14 jours de mûrissement. Les caractéristiques du réseau de bulles d'air ont été déterminées conformément à la norme ASTM C 457 - 90: Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete (Modified Point Count Method).

4.3.6 Degré de saturation du béton

Le degré de saturation a été déterminé pour tous les bétons de la série I après 14 jours de mûrissement et à la fin des cycles de gel-dégel. Pour la mesure du degré de saturation, les prismes ont d'abord été cassés à l'aide d'un petit marteau piqueur électrique qui permet de casser rapidement le béton en petits morceaux. Le prélèvement des morceaux est ensuite fait le plus vite possible pour éviter l'évaporation d'eau à la surface du béton. Pour chaque prisme, 4 morceaux pesant entre 180 et 350 grammes ont été prélevés. Lors des mesures à 14 jours, des morceaux ont été prélevés dans un prisme scellé et dans un prisme non scellé. Dans le cas des prismes soumis aux cycles de gel-dégel, nous avons prélevé des morceaux lorsque l'état du prisme permettait de le faire. En effet, les prismes non scellés se sont tous complètement détruits et il n'a pas été possible d'y prélever des morceaux suffisamment solides pour pouvoir effectuer les mesures.

Les morceaux ont été pesés immédiatement après le prélèvement, ce qui correspond alors à la masse humide. Les mesures de masse ont été effectuées à l'aide d'une balance précise à \pm 0,01 gramme. Les échantillons ont ensuite été conservés dans la chambre à température et humidité contrôlées jusqu'au moment de l'essai de saturation.

L'essai de saturation utilisé est le même que celui recommandé dans la norme ASTM C 1202 - 94: *Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration.* La saturation des morceaux de béton est réalisée dans une boîte de conditionnement contenant 8 cellules (Figure 4.6). La boîte étanche est reliée à une pompe à vide pouvant maintenir un vide inférieur à 1 µm (hauteur de mercure) pendant 4 heures. Pour protéger la pompe à vide contre l'attaque par l'humidité, la boîte de conditionnement est aussi reliée à un vase Dewar rempli d'azote liquide (Figure 4.6).

Dans un premier temps, les morceaux ont été placés dans la boîte de conditionnement. Après avoir fermé la boîte, la pompe à vide est activée et un vide inférieur à 1 µm est maintenu pendant 3 heures. De l'eau distillée est ensuite introduite

dans les cellules et les morceaux sont maintenus sous vide pendant une heure supplémentaire. Lorsque l'essai de saturation est terminé, on mesure alors la masse des morceaux dans l'eau et la masse saturée superficiellement sèche. Les morceaux sont ensuite placés dans l'étuve jusqu'à masse constante (masse sèche). Le degré de saturation peut alors être calculé à partir de la masse humide, de la masse saturée superficiellement sèche et de la masse sèche (Paragraphe 5.4.1).

Figure 4.6 - Vue schématique du montage pour le conditionnement des éprouvettes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<u>4.3.7 Humidité relative interne</u>

L'humidité relative interne a été mesurée à l'aide d'une sonde Novasina ms1 (Figure 4.7). Cet appareil portable permet de mesurer simultanément l'humidité relative et la température à l'intérieur du béton. La précision de cette sonde est d'environ ± 1 % H.R. L'humidité relative est calculée à partir de la température et de la mesure de la résistivité électrique d'un électrolyte hygroscopique. Les conditions d'opération de la sonde sont présentées au tableau 4.11.

TABLEAU 4.11 - Conditions of	l'opération de l	l'appareil Novasina ms1
------------------------------	------------------	-------------------------

Température minimale	-20 °C	
Température maximale	+50 °C	
Humidité relative minimale	6 %	
Humidité relative maximale	98 %	

Pour la mesure de l'humidité relative interne dans le béton, on a utilisé la procédure suivante. Un trou de 18 mm de diamètre et d'une profondeur variable (minimum 50 mm) est d'abord percé à l'aide d'un foret à sec et à percussion. La poussière à l'intérieur du trou est ensuite enlevée à l'aide d'une brosse. Un manchon en plastique spécialement conçu à cet effet est ensuite poussé jusqu'au fond de trou. Le rôle du manchon est de créer une chambre étanche en isolant l'air au fond du trou de forage de l'air de l'atmosphère extérieure. Après un temps de stabilisation de 2 heures, on perce la membrane supérieure du manchon pour y introduire le senseur d'humidité situé à l'extrémité de la tige de la sonde. L'extrémité de la sonde est poussée jusqu'au fond du trou de forage. Le manchon est spécialement conçu pour maintenir l'étanchéité de la chambre, même après y avoir introduit la tige de la sonde. La sonde est maintenue au fond du trou pendant 30 à 45 minutes.

Dans le cas des surfaces non scellées, nous avons recouvert la surface du béton avec un linge humide pendant le temps d'attente pour éviter une trop forte évaporation de l'eau en surface. L'humidité relative interne des bétons a été notée en même temps que la température, ce qui nous a permis de corriger toutes les valeurs d'humidité à une température constante de 22 °C. L'appareil a été calibré régulièrement en utilisant des solutions de calibration contenant des sels en équilibre avec une atmosphère à 75 % et 90 % d'humidité relative.

Figure 4.7 - La sonde Novasina ms1

4.3.7.1 Mesures de l'humidité relative dans les éprouvettes de gel-dégel

Les mesures d'humidité relative et de température ont été effectuées dans tous les bétons de la série I. Les mesures ont été prises à 14 jours (un prisme scellé et un prisme non scellé) et à la fin des cycles de gel-dégel. Les trous nécessaires pour les mesures ont été forés de chaque côté de prisme (surface 75 x 75 mm). La profondeur des trous était de 75 mm (Figure 4.8). L'humidité relative correspond donc à la moyenne des deux mesures effectuées dans chaque prisme.

Les mesures d'humidité ont été réalisées dans tous les prismes soumis au geldégel dont l'état final le permettait. Pour chaque combinaison de scellement lors du mûrissement et lors du gel-dégel (Figure 4.5), deux prismes ont été soumis au gel. L'humidité relative a été mesurée une fois dans chaque prisme et la moyenne de deux mesures a été calculée.

Figure 4.8 - Mesure de l'humidité relative et de la température dans l'éprouvette de geldégel

4.3.7.2 Mesures de l'humidité relative dans les blocs

La deuxième série de bétons est constituée de 2 blocs de 240 x 420 x 540 mm. Dans chaque bloc, les mesures d'humidité relative ont été effectuées après 3, 7, 14, 28, 91 et 350 jours d'immersion complète dans l'eau. À chaque échéance, nous avons effectué 2 mesures à 50 mm et 2 mesures à 75 mm de profondeur. L'humidité relative correspond à la moyenne de 2 mesures à chaque profondeur.

Après chaque série de mesures, les trous ont été bouchés à l'aide d'une résine polyester pour éviter la pénétration de l'eau par les orifices ayant servi à la mesure de l'humidité. La figure 4.9 illustre la procédure utilisée pour mesurer l'humidité relative interne dans les blocs.

Figure 4.9 - Mesure de l'humidité relative et de la température dans le bloc

5. PRÉSENTATION DES RÉSULTATS

5.1 Introduction

Dans ce chapitre, nous présenterons et analyserons les résultats obtenus avec les bétons des séries I et II (bétons sans air entraîné). La série I a permis d'étudier l'influence du mode de mûrissement et de l'autodessiccation interne sur la résistance au gel des bétons ordinaires et des bétons à haute performance. Pour ce faire, nous avons fabriqué 4 bétons en faisant varier le rapport E/L et la quantité de fumée de silice (0,3 CP, 0,3 SF, 0,4 CP, 0,4 SF). La deuxième série avait pour le but d'étudier l'autodessiccation interne des BHP pour pouvoir déterminer dans quelle mesure celle-ci peut être utile pour estimer la résistance au gel dans des conditions naturelles. Pour ce faire, nous avons fabriqué 2 BHP en variant seulement la quantité de fumée de silice (0,3 CP bloc et 0,3 SF bloc).

Dans le cas de la série I, nous présenterons les résistances à la compression, les caractéristiques des bulles d'air, les variations de masse, de vitesse et d'allongement lors du mûrissement et lors des cycles de gel-dégel. Également, nous présenterons les degrés de saturation et les humidités relatives internes avant et après les cycles de gel-dégel. Pour la série II, nous présenterons les résistances à la compression et les profils d'humidité relative interne dans les blocs.

5.2 Résistances à la compression et caractéristiques des bulles d'air

5.2.1 Résistance à la compression

Les résistances à la compression des bétons de la série I sont présentées au tableau 5.1 et aux figures 5.1 et 5.2. Les mesures à 14, 28 et 91 jours correspondent à la moyenne de 3 essais. Les valeurs individuelles de chaque essai de résistance à la compression et le mode de rupture sont présentées dans l'annexe A.

Béton			Résistance à la compression (MPa)					
E/L	Fumée de silice	Mûrissement	14 jours	Coefficient de variation	28 jours	Coefficient de variation	91 jours	Coefficient de variation
	(%)			(%)		(%)		(%)
	0	Eau	68,3	1	75,4	0	84,2	3
0 30		Scellé	66, 1	2	72,5	1	83,4	2
0,50	8	Eau	79,4	1	84,9	I	95,4	1
		Scellé	78,4	1	83,8	1	93,6	0
	0	Eau	49,7	2	56,2	2	63,4	3
0,40	U	Scellé	48,8	1	52,4	3	91 jours Coefficiende variation (%) 84,2 3 83,4 2 95,4 1 93,6 0 63,4 3 59,2 1 72,1 1 66,1 2	1
	8	Eau	57,6	1	66,1	1	72,1	1
		Scellé	56,5	1	64,8	2	66,1	2

TABLEAU 5.1 - Résistances à la compression des bétons de la série I

Les figures 5.1 et 5.2 montrent que les résistances à la compression à 28 jours des bétons de rapport E/L = 0,40 varient de 52,4 à 66,1 MPa. Ces valeurs sont typiques pour des bétons ordinaires de bonne qualité et sans air entraîné. Dans le cas des bétons de rapport E/L = 0,30, les résistances à la compression à 28 jours sont comprises entre 72,5 et 83,8 MPa.

Les figures 5.1 et 5.2 montrent que les résistances à la compression augmentent avec le temps quel que soit le rapport E/L, la teneur en fumée de silice ou le type de mûrissement. On constate aussi que les bétons avec fumée de silice ont systématiquement une plus grande résistance à la compression quel que soit le rapport E/L ou le type de mûrissement.

Figure 5.1 – Résistances à la compression des bétons de rapport E/L = 0,30 (série I)

Figure 5.2 – Résistances à la compression des bétons de rapport E/L = 0,40 (série I)

Les figures 5.1 et 5.2 montrent que le type de mûrissement influence la résistance à la compression. Pour un type de liant donné, on remarque que la résistance à la compression des cylindres scellés est toujours légèrement inférieure à celle des cylindres mûris dans l'eau. Puisque l'eau est nécessaire au processus d'hydratation du liant, une moins grande disponibilité de l'eau (scellé) a pour effet de diminuer légèrement la quantité d'hydrates formés. Les cylindres scellés ont donc probablement une pâte de ciment hydraté un peu moins compacte, ce qui diminue la résistance à la compression à tous les âges.

Dans le cas des bétons de la série II, les cylindres ont été testés à 14, 28 et 91 jours. Tous les cylindres ont été mûris dans l'eau. Les résultats présentés au tableau 5.2 correspondent à la moyenne de 3 essais. Les résultats détaillés des essais de résistance à la compression et le mode de rupture sont présentés dans l'annexe A.

 TABLEAU 5.2 – Résistances à la compression des bétons de la série II

	Béto	n	Résistance à la compression (MPa)					
E/L	Fumée de silice (%)	Mûrissement	14 jours	Coefficient de variation (%)	28 jours	Coefficient de variation (%)	91 jours	Coefficient de variation (%)
0.20	0	Eau	65,1	1	73,2	2	82,5	1
0,50	8	Eau	77,0	1	83,7	3	97,2	1

Les résultats du tableau 5.2 et de la figure 5.3 indiquent que, comme dans le cas des bétons de la série I, les résistances à la compression augmentent avec le temps et que la fumée de silice améliore les résistances quel que soit l'âge du béton.

La comparaison des résistances à la compression des bétons de la série I (0,3 CP et 0,3 SF) avec celles des mélanges similaires de la série II (0,3 CP bloc et 0,3 SF bloc) montre que l'écart maximal est inférieur à 2,5 MPa. Ce faible écart confirme que ces deux types de béton sont parfaitement comparables malgré le fait qu'ils aient été produits lors de gâchées distinctes.

Figure 5.3 – Résistances à la compression des bétons de la série II

5.2.2 Caractéristiques des bulles d'air

Les caractéristiques des bulles d'air de tous les bétons de la série I sont présentées au tableau 5.3. Les caractéristiques des vides d'air ont été déterminées conformément à la norme ASTM C 457. Les résultats détaillés sont présentés dans l'annexe B.

Les résultats du tableau 5.3, indiquent que les volumes d'air entraîné dans le béton durci sont tous inférieurs à 2,6 %, ce qui est normal pour des bétons sans air entraîné. Les valeurs de \overline{L} , comprises entre 500 et 1000 µm, sont elles aussi caractéristiques des bétons sans air entraîné.

On constate qu'il existe de légères variations entre les volumes d'air mesurés dans le béton durci et dans le béton frais. En général, les écarts sont relativement faibles (< 0,7 %) et sont donc considérés comme tout à fait normaux. Les facteurs d'espacement relativement élevés des bétons de la série I (> 500 μ m) résultent d'un faible volume d'air (< 3 %) et d'une surface spécifique faible (α < 13 mm⁻¹). Cette faible surface spécifique indique que le faible volume d'air est contenu dans les bulles relativement grosses, ce qui contribue à espacer davantage les bulles les unes des autres.

La fumée de silice n'a pas semblé affecter significativement les caractéristiques du réseau de bulles d'air sauf dans du béton 0,3 SF dont la valeur de \overline{L} est significativement plus faible que celle du béton sans fumée de silice.

	Béton	Teneur e	en air (%)	Surface	Facteur	
E/L	Fumée de silice	Frais Durci		spécifique	d'espacement	
	(%)			α (mm ⁻¹)	Ĺ (μm)	
0,30	0	2,5	1,8	11	750	
	8	2,7	2,6	13	540	
0,40	0	2,1	2,3	9	820	
	8	2,0	1,3	10	980	

TABLEAU 5.3 – Caractéristiques des bulles d'air (série I)

5.3 Essais de gel-dégel

5.3.1 Évolution des propriétés pendant le mûrissement (série I)

Pour évaluer dans quelle mesure le type de mûrissement peut influencer la résistance au gel, nous avons analysé les variations de la masse, de la vitesse des ondes et de l'allongement des prismes avant qu'ils soient soumis aux cycles de gel-dégel. Ces mesures ont été effectuées après 1, 3, 7, 11 et 14 jours de mûrissement. Ce chapitre présente les résultats obtenus sous forme de graphiques. Les résultats détaillés sont présentés sous forme de tableaux dans l'annexe C.

5.3.1.1 Variations de la masse

Les figures 5.4 et 5.5 présentent les variations de la masse en fonction du temps et du type de mûrissement. Globalement, on remarque que les variations de masse sont directement fonction du type de mûrissement. Dans le cas des éprouvettes non scellées, la masse augmente en fonction du temps. Cela est dû à la contraction Le Châtelier qui se développe lors de l'hydratation (Paragraphe 1.4.1). En effet, les vides formés dans la porosité de la pâte de ciment peuvent alors se remplir d'eau.

Le taux d'absorption diminue avec le temps car l'hydratation ralentit et les hydrates remplissent graduellement la porosité capillaire. De plus, les hydrates formés diminuent la perméabilité du béton, ce qui nuit à la pénétration de l'eau dans la pâte de ciment.

Dans le cas des prismes scellés, leur masse ne change pas car le papier d'aluminium autocollant empêche toute possibilité d'échange avec l'extérieur.

Figure 5.4 – Variation de la masse des éprouvettes de gel-dégel lors du mûrissement (Bétons : 0,3 CP-747 et 0,3 SF-539)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.5 – Variation de la masse des échantillons de gel-dégel lors du mûrissement (Bétons : 0,4 CP-817 et 0,4 SF-976)

Les figures 5.4 et 5.5 montrent que les bétons de rapport E/L = 0,30 ont absorbé moins d'eau que les bétons de rapport E/L = 0,40, quelle que soit la teneur en fumée de silice. Globalement, les bétons 0,3 CP et 0,3 SF ont absorbé entre 22 g et 28 g d'eau par éprouvette en 14 jours alors que, les bétons 0,4 CP et 0,4 SF ont absorbé entre 37 g et 42 g d'eau par éprouvette. La plus faible absorption des bétons avec E/L = 0,30s'explique d'une part par leur plus faible perméabilité qui nuit à la pénétration de l'eau externe et, d'autre part, par la plus faible quantité d'hydrates formés qui limite le volume total de la contraction Le Châtelier et, par conséquent, la quantité d'eau externe en mesure de pénétrer à l'intérieur de la pâte.

L'influence de la fumée de silice sur l'absorption d'eau lors du mûrissement est moins importante que celle du rapport eau/liant. En moyenne, les bétons avec fumée de silice ont légèrement moins absorbé d'eau (2 à 5 g) que les bétons sans fumée de silice. Cette plus faible absorption est probablement due à leur porosité capillaire plus faible et plus fine qui s'oppose à la pénétration de l'eau externe.

5.3.1.2 Variations de la vitesse des ondes sonores

Les figures 5.6 et 5.7 présentent les variations de la vitesse sonique lors du mûrissement des éprouvettes de la série I. Dans le cas des prismes n'ayant pas le même type de scellement lors du mûrissement et lors des cycles de gel-dégel, la vitesse des ondes n'a pu être mesuré qu'après 1 et 14 jours. Pour les autres prismes, les mesures ont été effectuées en même temps que les mesures de la masse et de l'allongement soit après 1, 3, 7, 11, et 14 jours.

On remarque qu'en général la vitesse tend à augmenter avec le temps. La vitesse des ondes est principalement fonction de la compacité du béton. Plus le temps de mûrissement dans l'eau augmente, plus la pâte de ciment s'hydrate et se densifie et plus la vitesse des ondes augmente. Dans tous les cas, les rapports V/Vo sont toujours supérieurs à 100 % après 14 jours de mûrissement. On remarque le même comportement dans le cas des échantillons scellés. Il y a donc peu d'effet des conditions de scellement sur la vitesse sonique lors du mûrissement. Il est probable que la quantité d'hydrates

Figure 5.6 – Variation de la vitesse des ondes dans les échantillons de gel-dégel lors du mûrissement (Bétons : 0,3 CP-747 et 0,3 SF-539)

Figure 5.7 – Variation de la vitesse des ondes dans les échantillons de gel-dégel lors du mûrissement (Bétons : 0,4 CP-817 et 0,4 SF-976)

Temps (jours)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

supplémentaires résultant de la pénétration d'eau extérieure lors du mûrissement non scellé, est négligeable par rapport à la quantité totale d'hydrates formés lors du mûrissement scellé.

L'augmentation de la vitesse sonique est plus faible pour les bétons de rapport E/L = 0,30 que pour les bétons de rapport E/L = 0,40. Avant le premier jour, la microstructure des bétons de rapport E/L = 0,30 évolue rapidement car les grains de ciment sont initialement très rapprochés les uns des autres. Une fraction importante de l'hydratation se produit donc durant les 24 premières heures si bien que la microstructure évolue plus lentement par la suite. Cette évolution plus lente se traduit par une évolution légèrement plus lente de la vitesse des ondes durant les 13 jours suivants.

Dans le cas des bétons de rapport E/L = 0,40, les grains de ciment sont initialement plus éloignés. Après 24 heures, la microstructure est relativement moins dense et l'hydratation se développe plus lentement sur une plus longue période. Ce phénomène explique probablement pourquoi l'augmentation de vitesse du béton de rapport E/L = 0,40 est plus importante.

La teneur en fumée de silice n'a pas eu d'effet significatif sur la variation des ondes lors du mûrissement. La fumée de silice favorise la formation d'hydrates supplémentaires mais leur quantité est probablement négligeable par rapport à la quantité d'hydrates totale formés en absence de la fumée de silice.

5.3.1.3 Variations de l'allongement

Les variations de l'allongement sont présentées aux figures 5.8 et 5.9. On constate que les prismes non scellés développent un léger gonflement dû à l'absorption d'eau et au remplissage des vides dans la porosité capillaire. Les gonflements varient de 25 à 75 μ m/m, ce qui est presque négligeable compte tenu de la précision de la mesure. Par contre, les prismes scellés présentent un léger retrait dû à la formation de ménisques dans les pores capillaires (l'absorption d'eau est empêchée). La formation de ménisques entraîne la mise en tension de l'eau dans les capillaires qui comprime le squelette minéral

et provoque le retrait du béton. Les valeurs du retrait mesurées sont cependant relativement faibles car elles sont toutes inférieures à 200 μ m/m.

On remarque aussi que dans les conditions scellées, le retrait est nettement plus important avec le rapport E/L = 0,30 (200 µm/m) qu'avec le rapport E/L = 0,40 (50 µm/m). La porosité plus fine des bétons avec un E/L = 0,30 fait en sorte que les ménisques sont plus courbés et les forces développées à l'intérieur des pores sont alors plus fortes (Paragraphe 1.5.2). Ces forces de traction capillaires plus importantes expliquent le retrait endogène légèrement plus prononcé des BHP (E/L = 0,30).

Sur chacune des figures, on constate que le retrait à 14 jours des prismes scellés lors du mûrissement et lors du gel est légèrement plus important que celui des prismes scellés lors du mûrissement mais non scellés lors du gel. Cet écart est difficile à expliquer mais pourrait résulter d'une différence dans la méthode de scellement lors du mûrissement (0-14 jours). En effet, les éprouvettes destinées à être non scellées lors du gel ont d'abord été recouvertes par un film de papier cellophane pour faciliter le décollement du papier d'aluminium autocollant avant le début des cycles.

Dans le cas des bétons de rapport E/L = 0,30 on remarque, dans tous les cas, une légère diminution du retrait après 7 jours. Cette diminution du retrait ne peut pas être due à l'absorption d'eau car ces éprouvettes ont subit un mûrissement scellé. Nous ne sommes pas en mesure d'expliquer ce phénomène.

Pour tous les rapports E/L (notamment pour E/L = 0,30), la fumée de silice augmente non seulement le retrait des éprouvettes scellées mais le retrait des éprouvettes non scellées. Il est probable que ce phénomène soit dû au raffinage des pores capillaires et par conséquent, à l'augmentation des tensions capillaires.

Figure 5.8 – Variations de l'allongement des échantillons de gel-dégel lors du mûrissement (Bétons : 0,3 CP-747 et 0,3 SF-539)

Figure 5.9 – Variation de l'allongement des échantillons de gel-dégel lors du mûrissement (Bétons : 0,4 CP-817 et 0,4 SF-976)

5.3.2 Évolution des propriétés pendant les cycles de gel-dégel

Les éprouvettes soumises au gel ont subi un maximum de 300 cycles de gel et dégel. Cependant, certaines éprouvettes particulièrement sensibles au gel ont parfois été retirées de l'appareil avant l'échéance de 300 cycles. Les résultats détaillés des essais de gel-dégel sont présentés dans l'annexe D.

5.3.2.1 Variations de la masse

Les variations de masse durant les cycles de gel sont présentées aux figures 5.10 et 5.11. Ces figures montrent que les prismes qui absorbent beaucoup d'eau se détruisent très rapidement. En général, la quantité d'eau absorbée par les prismes détruits au gel varie entre 35 et 100 g. On remarque aussi que le type de mûrissement avant les cycles de gel a une grande influence sur la quantité d'eau absorbée lors du gel. En effet, les prismes scellés lors du mûrissement ont systématiquement absorbé plus d'eau (environ 70 g) que les prismes mûris dans l'eau (environ 45 g). Cela est dû au fait que les prismes scellés lors du mûrissement sont probablement moins bien hydratés et possèdent une porosité et une perméabilité plus importantes à 14 jours. Dès les premiers cycles de gel-dégel, ils absorbent plus d'eau, ce qui augmente la quantité d'eau gelable et augmente leur susceptibilité au gel.

Les résultats des figures 5.10 et 5.11 montrent que le type de scellement durant le gel a une influence majeure sur le comportement au gel. En effet, les échantillons scellés lors du gel ne se sont pas détruits, quels que soient le rapport E/L ou le dosage en furnée de silice. À l'inverse, tous les échantillons non scellés lors du gel se sont détruits, ce qui est tout à fait normal compte tenu qu'ils ne contiennent pas d'air entraîné.

Les bétons non scellés de rapport E/L = 0,30 ont subitrès peu d'écaillage, notamment ceux contenant de la fumée de silice. Certains bétons non scellés de rapport E/L = 0,40 ont subitur écaillage très important (Figure 5.11), ce qui a provoqué une importante perte de masse avant la destruction complète par le gel (0,4 SF-976-N-N).

Figure 5.10 - Variation de la masse des échantillons de gel-dégel lors des cycles de geldégel (Bétons : 0,3 CP-747 et 0,3 SF-539)

Figure 5.11 – Variation de la masse des échantillons de gel-dégel lors des cycles de geldégel (Bétons : 0,4 CP-817 et 0,4 SF-976)

5.3.2.2 Variation de la vitesse

Les figures 5.12 et 5.13 présentent l'évolution de la vitesse des ondes sonore en fonction du nombre de cycles de gel-dégel. On constate à nouveau que le type de scellement durant le gel a une influence majeure sur la résistance au gel des bétons. En effet, les prismes scellés durant les cycles de gel-dégel ne se sont pas détruits quels que soient le rapport E/L ou la teneur en fumée de silice. À l'inverse, les prismes non scellés se sont tous détruits relativement rapidement (moins de 200 cycles).

Les mesures de vitesse confirment à nouveau que le type de scellement lors du mûrissement a aussi une influence sur la tenue au gel des bétons. Les courbes des figures 5.12 et 5.13 montrent que les prismes scellés lors du mûrissement se sont détruits plus rapidement que les prismes non scellés. La destruction plus rapide des prismes ayant subi un mûrissement scellé est probablement due à une perméabilité plus importante et une porosité plus grossière qui ont pour effet d'augmenter la quantité d'eau gelable dans la pâte.

Dans le cas des prismes non scellés, les figures 5.12 et 5.13 montrent aussi que le rapport E/L a aussi une légère influence sur la tenue au gel des bétons sans air entraîné. Les bétons possédant un rapport E/L plus faible (0,30) se sont détruits un peu moins rapidement que les bétons comparables mais fabriqués avec un E/L de 0,40.

L'influence de la fumée de silice sur la tenue au gel est variable en fonction du rapport E/L. Dans le cas du rapport E/L plus faible (0,30), la fumée de silice a pour effet de ralentir la destruction lors du gel. Dans le cas du rapport E/L élevé (0,40), elle a légèrement accéléré la destruction.

5.3.2.3 Variation de l'allongement

Les figures 5.14 et 5.15 présentent l'évolution des allongements en fonction du nombre de cycles de gel-dégel. Lors de l'analyse on a considéré qu'un béton est détruit lorsque son allongement dépasse 1000 μ m/m.

Figure 5.12 – Variation de la vitesse des échantillons de gel-dégel lors des cycles de geldégel (Bétons 0,3 CP-747 et 0,3 SF-539)

Figure 5.13 – Variation de la vitesse des échantillons de gel-dégel lors des cycles de geldégel (Bétons : 0,4 CP-817 et 0,4 SF-976)

Figure 5.14 – Variation de l'allongement des échantillons de gel-dégel lors des cycles de gel-dégel (Bétons : 0,3 CP-747 et 0,3 SF-539)

Figure 5.15 – Variation de l'allongement des échantillons de gel-dégel lors des cycles de gel-dégel (Bétons : 0,4 CP-817 et 0,4 SF-976)

Les courbes d'allongement des figures 5.14 et 5.15 confirment essentiellement les conclusions dégagées lors de l'analyse des variations de masse et de vitesse. On constate à nouveau que le scellement lors du gel a une influence majeure sur le comportement au gel des bétons. En effet, le scellement lors du gel fait en sorte que même les bétons sans air entraîné (E/L = 0,40 et 0,30) sont alors en mesure de résister à 300 cycles de geldégel.

Le type de scellement lors du mûrissement influence aussi la tenue au gel mais dans une moindre mesure. Cependant, on trouve à nouveau que le scellement durant le mûrissement a pour effet de diminuer légèrement la durabilité car les bétons scellés lors du mûrissement (et non scellés lors du gel) se sont toujours détruits plus rapidement que les bétons non scellés lors du mûrissement.

5.3.3 Évolution des propriétés des témoins

Nous avons fabriqué des éprouvettes témoins pour chaque combinaison de types de scellement lors du mûrissement et lors du gel. Ces éprouvettes témoins ont d'abord subi un mûrissement scellé ou non scellé, puis, au lieu d'être soumises au gel, elles ont été conservées soit dans l'eau, soit dans un état scellé dans une chambre à température et humidité contrôlées.

Cette section présente les variations de masse des éprouvettes témoins scellées ou non scellées durant une période de temps correspondant à environ 300 cycles de geldégel. Ces résultats permettront d'évaluer les variations de masse au cours du temps des éprouvettes n'ayant pas subi de cycles de gel-dégel. Les résultats détaillés des variations de masse sont présentés dans l'annexe E.

5.3.3.1 Variations de la masse

Les courbes des figures 5.16 et 5.17 montrent clairement que l'absorption d'eau des éprouvettes témoins dépend fortement du type de mûrissement (scellé ou non scellé). Les échantillons ayant subi un mûrissement scellé pendant 14 jours ont absorbé une plus grande quantité d'eau après avoir été immergées dans l'eau par la suite. On remarque la même tendance quels que soient le rapport E/L ou la teneur en fumée de silice. Les éprouvettes témoins ayant subi un mûrissement scellé sont probablement moins hydratées en raison de la faible disponibilité de l'eau. La pâte possède donc une porosité plus ouverte et plus connectée qui favorise une plus grande absorption d'eau par la suite.

Les figures 5.16 et 5.17 montrent aussi que les éprouvettes témoins ayant subi un mûrissement dans l'eau (non scellé) pendant 14 jours absorbent relativement peu d'eau lorsqu'elles sont maintenues dans l'eau pendant un temps correspondant à environ 300 cycles de gel. Cette plus faible variation de masse peut être due à deux facteurs. Premièrement, l'hydratation a probablement favorisé une microstructure plus dense et plus imperméable. Deuxièmement, ces éprouvettes ont déjà pu commencer à absorber de l'eau lors de leur mûrissement, ce qui a probablement limité leur absorption par la suite. Globalement, on peut montrer que, sur une longue période, les éprouvettes ont absorbé a peu près la même quantité d'eau totale quel que soit le type de mûrissement subi pendant les 14 premiers jours.

Pour un type de liant donné, la quantité d'eau absorbée a plutôt tendance à augmenter légèrement avec l'augmentation du rapport E/L. Ce phénomène est particulièrement évident dans le cas des éprouvettes témoins mûries à l'état scellé pendant 14 jours. Il est probable que la microstructure plus ouverte et la plus grande quantité d'hydrates formés dans les pâtes avec un E/L de 0,40 aient favorisé cette plus grande absorption.

La fumée de silice possède aussi certain effet sur les variations de la masse. Pour chaque rapport E/L, la fumée de silice diminue la quantité d'eau absorbée quel que soit le type de mûrissement.

Figure 5.16 – Variation de la masse des témoins lors du temps correspondant aux 300 cycles de gel-dégel (Bétons : 0,3 CP-747 et 0,3 SF-539)

Figure 5.17 – Variation de la masse des témoins lors du temps correspondant aux 300 cycles de gel-dégel (Bétons : 0,4 CP-817 et 0,4 SF-976)

5.3.4 Synthèse

Les figures 5.18 à 5.21 présentent les relations entre la variation de masse, le type de mûrissement et la résistance aux cycles de gel-dégel. Chaque figure est divisée en deux parties. La partie gauche présente la variation de masse durant le mûrissement et la partie droite présente la variation de masse durant les cycles de gel-dégel. Pour chaque courbe, on a indiqué le type de comportement au gel (DURABLE ou NON DURABLE) en se basant sur les résultats des mesures d'allongement et de vitesse des ondes sonores (Chapitre 4).

Globalement, on constate d'abord que les courbes obtenues ont sensiblement la même allure quels que soient le rapport E/L ou la teneur en fumée de silice. Cette première analyse suggère donc que l'influence du type de mûrissement (scellé vs non-scellé) est à peu près la même quel que soit le type de béton étudié.

Les courbes des figures 5.18 à 5.21 montrent clairement que le type de scellement, avant et pendant les cycles de gel-dégel, est un paramètre clé gouvernant la résistance aux cycles de gel-dégel des bétons ordinaires et des BHP sans air entraîné.

Considérons d'abord le cas des éprouvettes soumises à un mûrissement non scellé avant le début des cycles de gel-dégel (1 jour dans le moule et 13 jours dans l'eau). Lors du mûrissement, toutes ces éprouvettes ont d'abord absorbé une certaine quantité d'eau due au remplissage des vides gazeux créés par la contraction Le Châtelier. Au terme de ce mûrissement, on peut penser que toutes ces éprouvettes sont alors dans un état très voisin de la saturation complète. Dans ce groupe d'éprouvettes, celles ayant été soumises au gel sans scellement de surface se sont graduellement détruites en moins de 300 cycles de gel-dégel alors que celles ayant été soumises au gel avec scellement de surface sont demeurées intactes après plus de 300 cycles de gel-dégel. Dans le cas des éprouvettes non scellées lors du gel, ce comportement était tout à fait prévisible compte tenu de l'absence d'air entraîné dans tous les bétons étudiés. Le très bon comportement des bétons sans air entraîné soumis au gel en condition scellée est plus surprenant et suggère que l'absorption d'eau lors des cycles a une influence majeure sur le comportement au gel des bétons sans air entraîné. Ces résultats montrent notamment que des bétons sans air entraîné (et initialement saturés) peuvent être néanmoins durables au gel, à condition d'empêcher la pénétration d'eau externe lors des cycles de gel-dégel.

Considérons maintenant le cas des éprouvettes soumises à un mûrissement scellé avant le début des cycles de gel-dégel. L'absence d'apport d'eau externe lors du mûrissement a probablement favorisé une plus grande autodessiccation interne tout en ralentissant la cinétique d'hydratation par la suite. Juste avant d'être soumis aux premiers cycles de gel-dégel, ce groupe d'éprouvettes possédait vraisemblablement une porosité plus importante, plus ouverte et non complètement saturée. Parmi ce groupe d'éprouvettes, on observe à nouveau que celles ayant été soumises au gel sans scellement de surface se sont rapidement détruites alors que les éprouvettes scellées sont demeurées intactes après plus de 300 cycles de gel. En l'absence de scellement lors du gel, toutes les éprouvettes absorbent rapidement une grande quantité d'eau externe dès les 50 ou 100 premiers cycles (Figure 5.18 à 5.21). Cette grande absorption d'eau est due à une porosité plus ouverte et moins saturée de la pâte. Dès les premiers cycles de gel, les éprouvettes soumises à ces conditions de scellement possèdent donc une quantité d'eau gelable plus importante qui a pour effet de diminuer leur durabilité au gel. Les éprouvettes scellées lors du mûrissement et lors du gel ont toutes bien résisté au gel car, même si leur porosité est plus importante et plus ouverte, leur niveau de saturation plus faible (lors du gel), contribue vraisemblablement à les protéger contre la destruction par le gel.

En résumé, cette série d'essais démontre clairement que le scellement de surface lors du mûrissement a un effet légèrement défavorable alors que le scellement de surface lors des cycles de gel a un effet très favorable sur la tenue au gel des bétons ordinaires et des BHP.

La comparaison des courbes des figures 5.18 à 5.21 montre aussi que, pour une condition de scellement donnée, les éprouvettes en béton ordinaire (E/L=0,40) se détruisent systématiquement plus rapidement que celles en BHP (E/L=0,30). L'influence

de la fumée de silice est variable en fonction du rapport E/L. Celle-ci a pour effet ralentir la destruction dans le cas des E/L faibles (0,30) alors qu'elle a plutôt tendance à accélérer légèrement la destruction dans le cas des E/L plus élevé (0,40).

Figure 5.18 - Variations de la masse du béton 0,3 CP pendant le mûrissement et les cycles de gel-dégel

Figure 5.19 - Variations de la masse du béton 0,3 SF pendant le mûrissement et les cycles de gel-dégel

Figure 5.20 - Variations de la masse du béton 0,4 CP pendant le mûrissement et les cycles de gel-dégel

Figure 5.21 - Variations de la masse du béton 0,4 SF pendant le mûrissement et les cycles de gel-dégel

5.4 Degré de saturation

Le degré de saturation est un paramètre important gouvernant la résistance au gel des bétons. La connaissance du degré de saturation d'un béton avant son exposition au gel pourrait permettre d'estimer sa sensibilité au gel. Bien entendu, ce n'est pas le seul facteur qui gouverne la résistance au gel, mais, nous avons voulu déterminer de quelle manière ce facteur affecte la résistance au gel des bétons.

5.4.1 Calcul du degré de saturation

Le degré de saturation a été déterminé pour tous les bétons de la série I. Nous l'avons déterminé avant et après les cycles de gel-dégel selon la procédure expliquée au Chapitre 4. Rappelons que le calcul du degré de saturation est basé sur les hypothèses suivantes :

- Toute la porosité du sable et du gros granulat est complètement remplie d'eau lors de la saturation sous vide;
- Tous les pores du sable et du gros granulat sont complètement asséchés lors du séchage à l'étuve (T = 105 °C);
- 25 % du volume des bulles d'air est remplis par l'eau lors de la saturation sous vide.

Quand nous parlons des bulles d'air nous pensons aux vides remplis d'air entrappé car nous n'avons pas entraîné d'air dans nos bétons. En général, les vides d'air entrappé ont un grand diamètre. En contact avec de l'eau ils se saturent plus ou moins facilement. Lors de l'essai de saturation sous vide, il est logique de croire qu'un certain volume d'eau est forcé à l'intérieur de ces vides. En supposant que, suite à la saturation sous vide, 25 % du volume des bulles d'air est occupé par de l'eau, on trouve que le degré de saturation des bétons après 14 jours de mûrissement dans l'eau est compris entre 98 % et 102 %. L'hypothèse, selon laquelle 25 % du volume d'air est rempli par l'eau lors de la saturation sous vide, permet donc d'obtenir un degré de saturation des pores capillaires d'environ 100 %, ce qui nous semble à priori logique. Le degré de saturation des bétons avant et après les cycles de gel-dégel est déterminé en utilisant la formule suivante :

$$DS(\%) = \frac{m_{h} - m_{sec}}{m_{sss} - m_{sec}} *100$$
 (5.1)

m_h masse humide de l'échantillon;

- m_{sec} masse sèche de l'échantillon (après le séchage à l'étuve à 105 °C);
- m_{sss} masse de l'échantillon à l'état saturé superficiellement sec (après la saturation sous vide).

5.4.2 Degré de saturation à la fin du mûrissement

Dans cette partie nous présenterons les résultats sous forme de tableaux et de graphiques. Le tableau 5.4 et la figure 5.22 présentent les degrés de saturation de la porosité capillaire avant les cycles de gel-dégel. Le calcul exact du degré de saturation est présenté dans l'annexe F.

TABLEAU 5.4 – Degrés de saturation avant les cycles de gel-dégel

	Béton		Degré de saturation de la porosité capillaire (%)							
E/L	Fumée de silice (%)	Mûrissement	Mesure 1	Mesure 2	Mesure 3	Mesure 4	Moyenne	Écart type		
0,30	0	Eau	102	100	101	100	101	1,2		
		Scellé	90	93	82	86	88	4,9		
	8	Eau	98	97	98	97	98	0,5		
		Scellé	89	89	92	87	89	2,0		
0,40	0	Eau	103	103	101	100	102	1,5		
		Scellé	86	84	86	82	84	2,0		
	8	Eau	101	100	101	104	101	1,8		
		Scellé	85	90	83	83	85	3,5		

On remarque que les résultats présentés au tableau 5.4 sont assez reproductifs, surtout dans le cas des bétons mûris dans l'eau. Pour ces derniers, l'écart type est toujours inférieur à 2. Pour les bétons mûris scellés, l'écart type varie de 2 à 5 %. Nous pensons qu'une variabilité de 5 % est acceptable car la différence entre les degrés de saturation des bétons mûris dans l'eau et à l'état scellé est d'environ 15 %.

Figure 5.22 – Degrés de saturation avant les cycles de gel-dégel

Les résultats de la figure 5.22 montrent que toutes les éprouvettes ayant subi un mûrissement scellé ont un degré de saturation compris entre 84 et 89 %. Ce phénomène est vraisemblablement dû à la contraction Le Châtelier qui ne peut pas être compensée par l'absorption d'eau extérieure. On remarque aussi que l'effet du rapport E/L ou de la fumée de silice sur le degré de saturation est peu significatif.

La figure 5.22 montre que la porosité capillaire des bétons mûris dans l'eau est complètement saturée puisque les degrés de saturation sont compris entre 98 et 102 %. Il faut mentionner que un degré de saturation de 102 % n'a pas de signification physique. Cela découle de l'hypothèse de la saturation des bulles d'air lors de l'essai de saturation sous vide et aussi de la variabilité statistique de la mesure. Ces résultats laissent croire que, dans le cas des bétons mûris dans l'eau, la contraction Le Châtelier est complètement compensée par l'absorption d'eau extérieure.

En résumé, on peut conclure que le scellement lors du mûrissement a pour effet de créer des vides gazeux dans la porosité capillaire. Ces vides correspondent à environ 15 % du volume total de la porosité capillaire.

5.4.3 Degré de saturation à la fin des cycles de gel-dégel

Le tableau 5.5 et la figure 5.23 présentent les résultats des mesures du degré de saturation à la fin des cycles de gel-dégel. Le calcul détaillé est présenté en annexe F. Comme dans le cas précédant, on remarque une assez bonne reproductibilité des résultats. On constate aussi que la variabilité des résultats est plus faible pour les bétons mûris dans l'eau que pour les bétons mûris scellés.

Rappelons que les degrés de saturation des bétons non scellés lors du gel ont été supposés à 100 % (Figure 5.23). En effet, ces bétons ont toujours été détruits avant la fin des cycles de gel-dégel et l'état avancé de destruction ne permettait pas le prélèvement d'échantillons pour l'essai de saturation sous vide.

Dans le cas des prismes scellés durant les cycles de gel-dégel, on constate que les degrés de saturation sont très voisins de ceux des prismes scellés durant le mûrissement (Figures 5.22 et 5.23). Ce phénomène est tout à fait logique car le scellement lors du gel ne permet pas ni l'absorption ni la perte d'eau. Cela confirme aussi l'efficacité de la technique de scellement utilisée lors des cycles de gel-dégel.

Béton				Degré de saturation de la porosité capillaire (%)									
E/L	Fumée de silice (%)	Mûrissement	Gel-dégel *	Mesure 1	Mesure 2	Mesure 3	Mesure 4	Mesure 5	Mesure 6	Mesure 7	Mesure 8	Moyenne	Écart type
	0	Eau	Scellé	101	97	100	95	100	100	102	100	99	2,2
0.20		Scellé	Scellé	87	86	80	92	86	88	89	90	87	3,5
0,30	8	Eau	Scellé	100	98	95	98	96	97	101	-	98	2,3
		Scellé	Scellé	90	88	88	82	83	92	87	-	87	3,7
0,40	0	Eau	Scellé	100	102	98	101	100	101	103	100	101	1,5
		Scellé	Scellé	91	87	96	91	86	82	83	90	88	4,6
	8	Eau	Scellé	98	96	99	100	99	100	101	100	99	1,4
		Scellé	Scellé	90	90	85	88	85	89	84	92	88	2,8

TABLEAU 5.5 - Degré de saturation à la fin des cycles de gel-dégel (gel-dégel scellé)

* Il n'a pas été possible de déterminer expérimentalement le degré de saturation des bétons soumis au gel-dégel en condition non-scellé car ceux-ci se sont tous détruits avant la fin de l'essai.

Figure 5.23 – Degrés de saturation après les cycles de gel-dégel

5.5 Humidité relative interne

L'humidité relative interne est un autre facteur dont l'influence sur la résistance au gel a été étudiée. Plus précisément, nous voulons déterminer si la connaissance de l'humidité relative interne d'un béton pourrait être utile pour estimer sa résistance au gel à long terme. Dans le cadre de cette étude, nous avons déterminé l'humidité relative dans des prismes avant et après les cycles de gel-dégel et dans des blocs gardés sous l'eau pendant un an.

5.5.1 Humidité relative dans les prismes de gel-dégel

Des mesures d'humidité relative interne ont été effectuées dans tous les bétons de la série I. Dans les prismes de gel-dégel, l'humidité relative interne a été mesurée à l'aide de la sonde Novasina ms1. La procédure expérimentale a été présentée au Chapitre 4. Les mesures ont été effectuées à la fin du mûrissement et à la fin des cycles de gel-dégel.

5.5.1.1 Humidité relative à la fin du mûrissement

Les résultats des essais sont présentés sous forme de tableaux et de graphiques. Toutes les valeurs de l'humidité relative ont été corrigées de manière à les exprimer par rapport une température de référence de 22 °C. Chaque résultat correspond à la moyenne de deux mesures. Le tableau 5.6 présente les humidités relatives avant les cycles de geldégel. Les résultats détaillés sont présentés dans l'annexe G.

	Béton		Humidité relative interne (%)						
E/L	Fumée de silice (%)	Mûrissement	Mesure 1	Mesure 2	Moyenne	Écart type			
		Eau	97,8	98,1	98	0,2			
0,30	0	Scellé	94,6	95,7	95	0,7			
	0	Eau	92,8	94,4	94	1,1			
	0	Scellé	93,5	94,1	94	0,4			
	^	Eau	96,9	97,8	97	0,7			
0,40 .	Ū	Scellé	94,3	96,2	95	1,4			
	Q	Eau	90,8	92,9	92	1,5			
	o	Scellé	91,6	94,4	93	2,0			

TABLEAU 5.6 – Humidités relatives internes dans les prismes avant les cycles de geldégel

L'ensemble des résultats du tableau 5.6 est assez reproductif car les écarts types sont toujours inférieurs à 2. Lors des essais, nous avons cependant constaté une certaine dérive de la sonde pour des valeurs d'humidité relatives supérieures à environ 91 %. Dans ce cas, la valeur indiquée par la sonde est instable et a tendance à augmenter lentement en fonction du temps. Pour tenter d'obtenir des lectures les plus consistantes possibles, nous avons alors choisi de ne retenir que la valeur indiquée après un temps de "stabilisation" de 30 minutes.

Figure 5.24 - Humidités relatives internes avant les cycles de gel-dégel

Globalement, les résultats de la figure 5.24 montrent que le mode de scellement a relativement peu d'effet sur l'humidité relative interne à l'intérieur des prismes de geldégel. En effet, l'humidité relative interne mesurée dans les prismes scellés est comprise entre 93 % et 95 % alors que celle mesurée dans les prismes non scellés est comprise entre 92 % et 98 %. Les résultats montrent que l'influence du type de scellement varie en fonction de la formulation du béton, plus particulièrement en fonction de la teneur en fumée de silice. Dans le cas des bétons sans fumée de silice, le mûrissement non scellé a produit des humidités relatives internes légèrement plus élevées que celles obtenues avec le mûrissement scellé. Ces résultats sont logiques compte tenu que le mûrissement non scellé permet la pénétration de l'eau externe qui sature les plus grands pores et contribue ainsi à augmenter l'humidité relative interne. Dans le cas des bétons avec fumée de silice, les résultats tendent à montrer que le mode de mûrissement n'a pas d'influence significative sur l'humidité relative interne car les variations obtenues, en fonction du type de mûrissement, sont toutes inférieures à 1%. Dans ce cas, on peut formuler l'hypothèse que la présence de fumée de silice ait abaissé suffisamment la perméabilité de la pâte pour empêcher la pénétration de l'eau externe dans les prismes conservés dans l'eau. Cette hypothèse doit cependant être mise en doute compte tenu que les mesures du degré de saturation et de la variation de masse tendent plutôt à montrer que les prismes avec ou sans fumée de silice ont absorbé à peu près la même quantité d'eau lors du mûrissement non scellé.

Pour un mode de mûrissement donné, on remarque que le rapport E/L a relativement peu d'effet sur l'humidité relative dans les primes de gel. Il est cependant surprenant de constater que l'humidité relative interne tend à être légèrement plus faible dans les bétons avec un E/L de 0,40. Selon la documentation scientifique, quand le rapport E/L augmente, le volume total et le diamètre des pores augmentent. D'après l'équation de Kelvin-Laplace, l'augmentation du rayon des pores entraîne une diminution de la courbure totale des ménisques formés, ce qui devrait, par conséquent, engendrer une augmentation de l'humidité relative. C'est plutôt le phénomène contraire qu'on observe avec les résultats de la figure 5.24.

Pour un mode de mûrissement donné, on trouve que la fumée de silice a systématiquement pour effet de diminuer l'humidité relative interne. Ces résultats sont, cette fois-ci, conformes à la théorie selon laquelle la fumée de silice contribue à abaisser l'humidité relative interne par son action physico-chimique qui contribue à raffiner la porosité capillaire.

En résumé, nous croyons qu'il faut analyser les mesures d'humidité relative dans les prismes de gel avec prudence car, d'une part, la faible dimension des éprouvettes a peut-être influencé le résultat de la mesure et, d'autre part, nous avons déjà constaté que la précision de la sonde diminue pour des valeurs supérieures à environ 91 %.
5.5.1.2 Humidité relative à la fin des cycles de gel-dégel

Le tableau 5.7 présente les humidités relatives dans les prismes à la fin des cycles de gel-dégel. Les résultats détaillés sont présentés dans l'annexe G.

	I	Béton		Hum	idité relat	ive interne	(%)
	Fumée de silice	de silice		Mesure	Mesure		Écart
E/L	(%)	wunssement	Gel-degel*	1	2	Moyenne	type
	0	Eau	Scellé	97,2	97,9	98	0,5
0 30	U	Scellé	Scellé	94,3	96,2	95	1,3
0,50		Eau	Scellé	92,5	94,4	93	1,4
	Eau 8 Scellé	Scellé	91,7	92,5	92	0,6	
	0	Eau	Scellé	98,1	96,8	98	0,9
0 40	U	Scellé	Scellé	92,5	96, 7	95	3,0
0,40	o	Eau	Scellé	93,7	93,0	93	0,6
	0	Scellé	Scellé	92,2	93,5	93	0,9

TABLEAU 5.7 – Humidités relatives internes à la fin des cycles de gel-dégel

* Il n'a pas été possible de déterminer expérimentalement l'humidité relative des bétons soumis au geldégel en condition non scellé car ceux-ci se sont tous détruits avant la fin de l'essai.

Comme pour la section précédente, on remarque à nouveau que les résultats sont reproductifs puisque les écarts sont inférieurs à 1,5 à l'exception d'un résultat possédant un écart type de 3. Dans le cas des humidités relatives supérieures à 91 %, la remarque précédente sur la précision et la dérive de la sonde est encore applicable.

Avant d'analyser les résultats de la figure 5.25, il est important de rappeler qu'on a, par hypothèse, fixé à 100 % la valeur de l'humidité relative dans les prismes soumis au gel-dégel en condition non scellée (moitié droite de la figure 5.25). Pour cette condition d'essai, on a supposé que tous les bétons étaient complètement saturés en raison de leur état de destruction très avancé (donc H.R. = 100 %).

Figure 5.25 – Humidités relatives internes à la fin des cycles de gel-dégel

Globalement, les résultats de la moitié gauche de la figure 5.25 (prismes soumis au gel-dégel en condition scellée) sont très similaires à ceux de la figure 5.24. En effet, pour un type de mûrissement et une formulation donnés, l'écart entre les humidités relatives mesurées avant et après les cycles (gel-dégel en condition scellée) est toujours inférieur à 2 %. Ces résultats confirment l'efficacité de la technique de scellement utilisée lors des cycles de gel qui a effectivement été en mesure de bloquer les échanges d'eau avec l'extérieur. Ils tendent aussi à montrer que, malgré la variabilité de la sonde hygrométrique, celle-ci semble néanmoins donner des lectures consistantes pour une formulation de béton donnée (les deux séries de mesures ayant été prises à plus de 2 mois d'intervalle).

5.5.2 Humidité relative dans les blocs

Les blocs utilisés pour cette série de mesures ont été fabriqués avec les bétons de la série II (E/L = 0,30 avec et sans fumée de silice). Ils ont été immergés dans l'eau immédiatement après le démoulage et les mesures d'humidité relative ont été effectuées après 3, 7, 14, 28, 91 et 350 jours.

Le tableau 5.8 présente les mesures d'humidité relative et les moyennes en fonction du temps et de la teneur en fumée de silice. Les mesures ont été prises à 50 et 75 mm de profondeur. L'humidité relative a été obtenue à partir de la moyenne de 2 mesures. Tous les résultats ont été exprimés par rapport à une température de référence de 22 °C pour pouvoir comparer les valeurs obtenues dans les blocs et dans les prismes de gel-dégel. Les résultats détaillés sont présentés dans l'annexe H.

Les figures 5.26 et 5.27 présentent les profils d'humidité relative interne en fonction du temps pour chaque béton étudié (E/L = 0.30 sans et avec fumée de silice).

Les courbes de la figure 5.26 montrent que l'humidité initiale à 3 jours est comprise entre 95 et 98 %. Après 350 jours, elle a diminué pour atteindre 88 %. Le phénomène d'autodessiccation est donc présent dans ce type de béton (E/L = 0,30 sans fumée de silice). On remarque que les valeurs obtenues à 75 mm de profondeur sont systématiquement inférieures à celles obtenues à 50 mm. Il est probable que l'autodessiccation est moins importante en surface à cause de la pénétration d'eau externe dans les premiers millimètres de béton sous la surface. On remarque aussi que l'humidité relative interne est stabilisée après environ 28 jours.

Les courbes de la figure 5.27 montrent que l'humidité relative à 3 jours est comprise entre 93 et 94 %. Après 350 jours elle a diminué graduellement pour atteindre 88 %. Le phénomène d'autodessiccation est donc présent dans ce type de béton (E/L = 0,30 avec fumée de silice). Les courbes obtenues à 50 et 75 mm sont pratiquement identiques. Les niveaux d'autodessiccation à 50 et 75 mm sont donc pareils. Il n'y a

pratiquement pas de pénétration d'eau externe à 50 ou 75 mm de profondeur. On constate à nouveau que l'humidité relative interne se stabilise après environ 28 jours.

La comparaison des courbes des figures 5.26 et 5.27 suggère que, à une échéance donnée, la fumée de silice tend à diminuer légèrement l'humidité relative donc à augmenter l'autodessiccation interne. Il y a cependant peu d'effet de fumée de silice sur l'humidité relative à long terme.

La faible perméabilité des BHP a pour effet de limiter la pénétration d'eau dans la peau. Même à 50 mm de profondeur la pâte n'est vraisemblablement pas saturée (H.R. < 88 %) après plus de 350 jours d'immersion dans l'eau. Ces résultats suggèrent que même à 50 mm de profondeur, on puisse pratiquement considérer que la pâte pourrait donc subir des cycles de gel-dégel en conditions quasi scellées (peu d'échanges avec l'extérieur).

Béton		Temps de mesure	Humidité	relative à 5	0 mm (%)	Humidité	relative à 7	5 mm (%)
E/L	Fumée de silice (%)	(jours)	Mesure 1	Mesure 2	Moyenne	Mesure 1	Mesure 2	Moyenne
		3	97,0	97,8	97	94,5	95,7	95
		7	90,1	90,9	91	88,3	88,9	89
	0	14	90,4	90,3	90	88,3	89,2	89
	U	28	89,7	89,4	90	88,6	89,0	89
		91	88,5	88,9	89	88,7	88,8	89
0.20		350	88,5	88,8	89	88,3	88,6	88
0,30 -		3	92,9	92,6	93	93,0	91,9	92
		7	91,3	91,9	92	91,3	91,4	91
	0	14	89,6	88,6	89	88,9	88,2	89
	8	28	87,1	89,4	88	87,1	89,5	88
		91	87,8	88,2	88	87,7	88,3	88
		350	88,0	87,8	88	87,8	87,8	88

TABLEAU 5.8 – Humidités relatives internes dans les blocs immergés sous l'eau

Figure 5.26 – Profil d'humidité relative interne dans le bloc en BHP sans fumée de silice (E/L = 0,30)

Figure 5.27 – Profil d'humidité relative interne dans le bloc en BHP avec fumée de silice (E/L = 0,30)

6. DISCUSSION DES RÉSULTATS

Ce chapitre présente une analyse plus approfondie des résultats expérimentaux présentés au chapitre 5. On y retrouve notamment une étude des relations entre le degré de saturation, l'humidité relative, le mode de mûrissement et la résistance au gel des bétons de la série I. Nous analyserons aussi les relations entre la résistance au gel des BHP sans air entraîné en laboratoire et en conditions in situ sur la base des résultats expérimentaux de la série II.

6.1 Relation entre le degré de saturation et la résistance au gel des bétons sans air entraîné

Les figures 6.1 et 6.2 présentent les relations entre le degré de saturation, le type de scellement et la résistance au gel des bétons de la série I. Pour chaque condition d'essai, les degrés de saturation indiqués sur les figures 6.1 et 6.2 correspondent à la moyenne des degrés de saturation des bétons de la série I. Cette simplification a été faite pour clarifier la présentation, compte tenu qu'on a déjà constaté qu'il y avait peu de variations du degré de saturation en fonction du rapport E/L ou de la teneur en fumée de silice (Paragraphe 5.4).

Les résultats de la figure 6.1 montrent que les éprouvettes ayant subi un mûrissement non scellé ont débuté les cycles de gel avec une porosité capillaire complètement saturée (indépendamment du rapport E/L ou de la teneur en fumée de silice). Dans ces conditions, il était tout à fait prévisible que les éprouvettes soumises au gel sans scellement de surface (conformément à la norme ASTM C 666) se détruiraient au gel, compte tenu de l'absence d'air entraîné et de leur facteur d'espacement élevé ($\overline{L} > 500 \ \mu$ m). Les résultats de la figure 6.1 sont néanmoins très intéressants dans la mesure où on constate que, malgré une porosité capillaire initialement saturée, les éprouvettes soumises au gel en condition scellée se sont révélées parfaitement durables au gel. Ces résultats suggèrent que l'absorption d'eau lors du gel semble être un paramètre important gouvernant la tenue au gel des bétons soumis à l'essai accéléré ASTM C 666. Il est aussi

important de retenir que, dans ces conditions, les bétons ordinaires (E/L=0,40) se révèlent tout aussi durables au gel que les BHP (E/L=0,30).

Les résultats obtenus avec les prismes soumis à un mûrissement scellé (Figure 6.2) montrent clairement qu'une porosité capillaire initialement non saturée (< 90 %) n'offre pas nécessairement une protection suffisante pour garantir un bon comportement face aux cycles accélérés de gel-dégel. En effet, malgré un degré de saturation moyen de 87 %, tous les bétons soumis au gel sans scellement de surface se sont rapidement détruits. Les mesures de variation de masse (Paragraphe 5.3) ont bien montré que, dans ces conditions, la destruction s'accompagne effectivement d'une absorption rapide d'eau lors des premiers cycles de gel-dégel. Cette série de résultats confirme aussi que le scellement de surface durant les cycles (pas d'absorption d'eau) semble offrir une protection très efficace contre la destruction par le gel.

6.2 Relation entre l'humidité relative interne et la résistance au gel des bétons sans air entraîné

Les figures 6.3 et 6.4 présentent les relations entre l'humidité relative interne, le type de scellement et la résistance au gel des bétons étudiés. Les valeurs indiquées sont des moyennes pour tous les bétons de la série I. Comme pour la section précédente, nous avons choisi de ne présenter que des valeurs moyennes car l'humidité relative interne varie peu en fonction du rapport E/L ou de la teneur en fumée de silice (Paragraphe 5.5). De plus, la présentation des résultats s'en trouve fortement simplifiée.

Avant d'analyser les résultats des figures 6.3 et 6.4, il est bon rappeler que les mesures d'humidité relatives doivent être interprétées avec prudence en raison de l'incertitude relativement importante associée à ce type de mesure.

Figure 6.1 – Relation entre le degré de saturation, le type de scellement lors du gel et la durabilité au gel des bétons (mûrissement non scellé)

Figure 6.2 – Relation entre le degré de saturation, le type de scellement lors du gel et la durabilité au gel des bétons (mûrissement scellé)

Les résultats de la figure 6.3 montrent que les éprouvettes ayant subi un mûrissement non scellé ont débuté les cycles de gel avec une humidité relative interne inférieure à 100 % (94 %), alors que les mesures du degré de saturation tendent plutôt à indiquer que ces bétons étaient complètement saturés. Après 300 cycles de gel-dégel, avec ou sans scellement de surface, l'humidité relative interne a légèrement augmenté (96 % - 100 %) mais tout porte à croire que ces bétons étaient, en fait, complètement saturés. Les mêmes remarques s'appliquent aussi aux résultats de la figure 6.4 (mûrissement scellé) puisque les valeurs d'humidité relatives et les variations mesurées en fonction des différentes conditions d'essais sont pratiquement les mêmes.

Globalement, on constate qu'il n'y a pas de relation nette entre les mesures du degré d'humidité relative interne et le comportement face aux cycles de gel-dégel. Cette absence de relation est probablement due à deux phénomènes. Premièrement, on a déjà constaté que les résultats expérimentaux étaient plus ou moins fiables, notamment dans la plage de lecture comprise entre 91 et 100 %. Par conséquent, l'imprécision attachée à cette lecture a peut-être contribué à masquer, en partie, la relation entre l'humidité relative interne et la durabilité au gel. Deuxièmement, la valeur de l'humidité relative interne est théoriquement liée à la courbure du ménisque situé dans le plus grand pore. À l'équilibre, une humidité relative interne élevée (94 %) indique que les interfaces gaz-eau sont situées dans des grands pores mais n'indique pas nécessairement que la porosité capillaire est presque complètement saturée.

En pratique, l'humidité relative interne ne semble donc pas être un indice fiable de la durabilité au gel des bétons. C'est une mesure relativement simple et rapide (comparativement au degré de saturation) mais l'absence de relation directe avec le degré de saturation complique passablement l'interprétation de ce type de résultat.

L'analyse des mesures d'humidité relative et du degré de saturation, en rapport avec la résistance aux cycles de gel-dégel, montre clairement que la durabilité au gel est directement reliée à la capacité du béton à absorber de l'eau lors des cycles de gel.

Figure 6.3 – Relation entre l'humidité relative, le type de scellement lors du gel et la durabilité au gel des bétons (mûrissement non scellé)

Figure 6.4 – Relation entre l'humidité relative, le type de scellement lors du gel et la durabilité au gel des bétons (mûrissement scellé)

L'absorption de l'eau lors des cycles de gel-dégel a été déjà étudié par Moukwa [1988]. Selon Moukwa, l'absorption de l'eau se fait, en plus grande partie, durant la phase de dégel. Il y a alors une augmentation de température à la surface du béton qui est accompagnée d'une augmentation de pression de vapeur d'eau, d'après la loi de Clayperon-Clausius [Adkins, 1983]. L'eau se déplace alors dans la direction des températures plus basses, c'est à dire vers le cœur du béton. Ce phénomène favorise la pénétration de l'eau externe, ce qui cause une augmentation de masse des échantillons. Moukwa mentionne aussi que l'action du gel peut microfissurer le matériau. Lors du dégel, l'eau externe peut alors pénétrer dans les microfissures, ce qui augmente la quantité d'eau gelable et favorise la formation de nouvelles fissures. Dans le cas des bétons mal protégés contre le gel, ce processus se répète de cycle en cycle jusqu'à la destruction complète du béton. Sans toute fois décrire de processus thermodynamique impliqué Fagerlund [1997] a aussi confirmé que les cycles de gel-dégel pouvaient favoriser l'absorption d'eau dans les bétons.

Selon Fagerlund [1997], il existe une relation théorique entre la température de formation de la glace et l'humidité relative interne des bétons. Cette relation est exprimée par l'équation suivante :

$$\ln \Phi = \frac{\Delta H}{293R} \ln \left(\frac{T}{T_0} \right)$$
(6.1)

 Φ Humidité relative;

- ΔH Enthalpie de formation de la glace (J/kmol);
- T Température de formation de la glace (°K);
- T_0 Température de formation de la glace dans l'eau libre (°K);
- R Constante des gaz parfaits (J/kmol).

Le tableau 6.1 présente différentes températures de formation de la glace en fonction de l'humidité relative. On remarque que plus l'humidité relative diminue, plus la température de formation de la glace (ou la quantité d'eau gelable), diminue. Par exemple, pour un béton ayant une humidité relative interne de 85 %, il faut diminuer la température à -20 °C pour commencer à y former de la glace.

Humidité relative	Température de formation de la glace
(%)	(°C)
100	0
98	-2
95	-6
92	-10
88	-15
85	-20
79	-30
74	-40

 TABLEAU 6.1 – Température de formation de la glace en fonction de l'humidité relative interne [Fagerlund, 1997]

D'après l'équation 6.1 et les valeurs présentées au tableau 6.1 [Fagerlund, 1997], on constate que la quantité d'eau gelable est significativement affectée pour des variations d'humidité relative internes comprises entre 95 % et 100 %. En effet, dans cette plage, une baisse d'humidité relative interne de seulement 5 % a pour effet d'abaisser de 6 °C la température de formation de la glace. Ces résultats s'avèrent très utiles pour comprendre l'influence du scellement de surface lors du gel. En effet, on a constaté que les éprouvettes scellées lors du gel avaient une humidité relative comprise entre 94 % et 96 % (Figures 6.3 et 6.4). Par conséquent, il est possible que la meilleure durabilité de ces bétons ne résulte pas uniquement d'un degré de saturation plus faible. Elle peut aussi, en partie, résulter d'une plus faible quantité d'eau gelable due à l'abaissement de la température de formation de la glace. Les valeurs proposées par Fagerlund montrent qu'à une humidité relative de 85 %, la température de formation de la glace s'abaisse à -20 °C. Dans les BHP, généralement soumis à une forte autodessiccation, il est relativement fréquent de mesurer des valeurs encore plus faibles (généralement comprises entre 80 % et 85 %). Selon l'équation 6.1, ces bétons contiennent donc une quantité d'eau gelable pratiquement négligeable. Même si on a déjà mentionné que l'humidité relative interne ne constituait pas toujours un indice fiable pour estimer la durabilité au gel des bétons, il est cependant raisonnable de croire que les très faibles valeurs (inférieures à 85 %) doivent vraisemblablement être associées à une excellente durabilité au gel à long terme.

6.3 Analyse de la résistance au gel-dégel des BHP sans air entraîné en laboratoire et en conditions in situ

6.3.1 Introduction

La résistance au gel des bétons, en laboratoire et en condition in situ, est gouvernée par de nombreux paramètres. Parmi les plus importants, on retrouve notamment : les caractéristiques des cycles de gel-dégel, l'historique de mûrissement, les conditions de saturation de la porosité capillaire et les effets d'échelle. Dans cette section, nous tenterons de mieux comprendre les différences entre le comportement au gel des bétons en laboratoire et en condition in situ. Pour y arriver, nous utiliserons certains résultats expérimentaux obtenus dans le cadre de cette étude et d'autres résultats issus de la documentation scientifique.

6.3.2 Cycles de gel-dégel

Il est bien connu que les cycles de gel-dégel en condition in situ sont beaucoup moins sévères que ceux utilisés pour les essais accélérés en laboratoire (ASTM C 666 – A).

D'après Pigeon et Pleau [1995], le taux de gel maximum mesuré dans un bloc de béton d'environ 20 kg exposé à l'extérieur est de l'ordre de 3 °C/h. Hénault [1995] a mesuré des taux de gel maximum de 2 à 3 °C/h à la surface de dalles sur sol exposées à l'extérieur pendant deux hivers consécutifs. Cependant, au cœur de ces dalles (150 mm de profondeur), le taux de gel maximum a toujours été inférieur à 1 °C/h. Ces résultats montrent clairement que les taux de gel en nature sont nettement inférieurs de ceux généralement utilisés en laboratoire (6 à 10 °C/h).

Les températures minimales atteintes lors du gel en condition in situ sont généralement moins basses que celles utilisées lors des essais accélérés en laboratoire. Les températures minimales sont très variables en fonction de la profondeur sous la surface exposée. Hénault [1995] a mesuré des écarts thermiques moins importants au cœur du béton par rapport à la surface. En moyenne, lors d'un hiver, la surface des dalles sur sol a subi environ 15 cycles ayant une température minimale inférieure a -5 °C et environ 5 cycles ayant une température minimale inférieure a -10 °C. Au cœur des dalles, le béton a subi environ 6 cycles ayant une température minimale inférieure a -5 °C et environ 1 cycles ayant une température minimale inférieure a -10 °C.

Les mesures in situ effectuées par plusieurs chercheurs montrent que les sollicitations thermiques réelles sont bien moins sévères que celles utilisées en laboratoire. En nature, les taux de gel maximum au cœur et à la surface, sont généralement inférieures à 3 °C/h. Selon Pigeon et Lachance [1981] un taux de gel aussi faible ne produit généralement pas de destruction par le gel, même dans le cas de bétons sans air entraîné. Les mesures in situ montrent aussi que la température minimale atteinte est très rarement inférieure à -10 °C. Selon Marchand [1993], les effets des cycles de gel (écaillage) deviennent pratiquement négligeables lorsque la température minimale du cycle est supérieure à -10 °C [Hénault, 1995].

Le bon comportement des BHP sans air entraîné soumis à des conditions réelles d'exposition au gel [Hénault, 1995] peut donc, en partie, être expliqué par des sollicitations thermiques relativement peu sévères, probablement inférieures à un certain seuil critique nécessaire pour engendrer la destruction par le gel.

6.3.3 État de saturation de la porosité capillaire

Le comportement au gel n'est pas uniquement influencé par les caractéristiques des cycles de gel-dégel. Il peut aussi être influencé par l'état de saturation de la porosité capillaire lors des cycles de gel-dégel. Par exemple, la durabilité au gel des bétons ayant une porosité capillaire complètement drainée est toujours excellente, quelles que soient leurs caractéristiques de formulation. Par conséquent, pour bien comprendre, la sévérité relative des cycles accélérés de gel en laboratoire, par rapport aux conditions réelles d'exposition, il est donc essentiel de prendre en compte l'état de saturation de la porosité capillaire associé à chaque type d'exposition.

Plusieurs facteurs peuvent influencer le degré de saturation de la porosité capillaire du béton soumis à un environnement donné. Parmi les plus importants, on retrouve : l'historique de mûrissement, la profondeur sous la surface exposée et l'effet d'échelle (rapport surface/volume, dimension minimale de l'élément).

6.3.3.1 Historique de mûrissement

Les résultats de cette recherche ont notamment montré que les bétons conventionnels et à haute performance soumis à l'essai accéléré normalisé ASTM C 666 sont dans un état de saturation presque complet (> 98 %) avant et pendant les cycles de gel-dégel. Du point de vue de la durabilité au gel, ces conditions de saturation sont certainement parmi les plus défavorables. Le résultat de l'essai normalisé tend donc vers une estimation sécuritaire de la durabilité au gel des bétons.

Le degré de saturation élevé des bétons soumis à l'essai ASTM C 666 découle principalement du fait que les petites éprouvettes (dimension minimale de 75 mm) sont démoulés après 24 heures de mûrissement avant d'être immergées sous l'eau pendant les 13 jours suivants. À l'âge de 24 heures, même dans le cas des BHP, la pâte est encore très perméable et l'eau externe peut pénétrer facilement pour saturer complètement les vides gazeux créés par la contraction Le Châtelier durant les premiers jours d'hydratation. Plusieurs facteurs permettent de croire que les bétons exposés à des conditions réelles d'exposition ne sont pas nécessairement toujours dans un état de saturation aussi élevé.

- En pratique, les bétons sont rarement mûris sous l'eau pendant une période de 14 jours. Le mûrissement à l'eau est souvent interrompu après 3 à 7 jours. On utilise aussi fréquemment des membranes de mûrissement. Ces types de mûrissement engendrent une discontinuité dans la phase liquide, ce qui a pour effet de ralentir la pénétration de l'eau externe, sous l'effet de la contraction Le Châtelier et de diminuer le degré de saturation.
- Avant la première exposition au gel, et entre les saisons froides, la peau des bétons a la possibilité de sécher, donc de se désaturer.
- Dans le cas des BHP, les profils d'humidité dans les blocs montrent bien que l'autodessiccation peut se développer même à des profondeurs relativement faibles (50 mm). La pâte située à cette profondeur est donc non saturée. De plus, la faible perméabilité de la pâte s'oppose à la pénétration de l'eau externe durant les périodes humides et pendant les cycles de gel.

À très long terme, il ne faut pas négliger le fait que le degré de saturation des bétons conventionnels tende vraisemblablement à augmenter graduellement jusqu'à atteindre la saturation complète. En effet, leur perméabilité n'est généralement pas assez faible pour empêcher l'absorption d'eau externe durant les phases humides ou lors des cycles de gel-dégel. L'expérience pratique (in situ) montre d'ailleurs qu'il est nécessaire de prévoir un bon réseau de bulles d'air entraîné pour protéger ces bétons lorsqu'ils sont soumis à des cycles sévères de gel-dégel.

6.3.3.2 Effet d'échelle

La dimension des éléments en béton est importante car elle influence le rapport entre le volume du béton de "peau" (profondeur < 50 mm) et le volume du béton de "cœur" (profondeur > 50 mm). Rappelons que dans le cadre de ce travail, la peau du béton est définie comme la couche de béton dans les conditions de saturation variant en fonction des conditions d'exposition du béton. Cette définition sous entend que l'épaisseur de cette peau est variable d'un béton à l'autre. Elle est plus importante dans le cas des bétons conventionnels et elle est plus mince dans le cas des BHP.

Le béton de peau est certainement la région la plus affectée par les cycles de geldégel. En effet, c'est la peau qui se sature en premier et qui subi les cycles de gel-dégel les plus sévères. En laboratoire, en raison des dimensions réduites des éprouvettes (75 x 75 mm), on teste essentiellement du béton de "peau". Les conclusions de cet essai sont donc surtout applicables à la peau des bétons. En nature, le béton de "peau" correspond généralement à un volume relativement faible de l'élément. S'il y a une destruction de la peau de béton, le risque de compromettre la stabilité structurale de l'élément est faible. Cependant, les risques d'écaillage et problèmes d'ordre esthétiques (destruction de surface) demeurent toujours possibles.

6.3.4 Synthèse

Les résultats de cette étude tendent à montrer que l'essai accéléré normalisé ASTM C 666 permet d'estimer adéquatement la durabilité au gel des bétons conventionnels soumis à des conditions d'expositions réelles, mais néanmoins relativement sévères (fréquents cycles de gel-dégel dans un environnement humide favorisant la saturation du béton). Cette conclusion s'appuie sur le fait qu'on a montré que le mode de mûrissement et les conditions d'essai normalisé font en sorte que les éprouvettes soumises aux cycles de gel-dégel accélérés sont complètement saturées, comme c'est le cas des bétons conventionnels exposés à un environnement humide. En laboratoire et en conditions réelles d'exposition, la perméabilité élevée et l'absence d'autodessiccation interne dans les bétons conventionnels contribuent à maintenir leur porosité complètement saturée. L'essai accéléré utilise un taux de gel plus élevé et une température minimale bien plus faible que ce que l'on mesure en conditions réelles d'exposition. L'expérience pratique montre cependant que les bétons conventionnels qui ne résistent pas à l'essai accéléré ASTM C 666 ne possèdent généralement pas une bonne durabilité lorsqu'ils sont soumis à des cycles sévères de gel-dégel en condition in situ. La grande sévérité des cycles en laboratoire semble donc raccourcir l'échéance de destruction sans pour autant faire en sorte de rejeter des bétons qui pourraient être durables en condition in situ.

La représentativité de l'essai accéléré ASTM C 666 dans le cas particulier des BHP est plus problématique. La comparaison de leur durabilité au gel en laboratoire et en condition in situ montre que les essais accélérés ASTM C 666 tendent à sous estimer la durabilité réelle des BHP sans air entraîné en condition in situ [Hénault, 1995, Gagné et coll., 1998]. Les résultats de cette recherche permettent de dégager quelques hypothèses pour tenter d'expliquer ce phénomène.

- Le mode de mûrissement de l'essai ASTM C 666 entraîne la saturation complète de la porosité capillaire avant le début des cycles de gel-dégel. Nos résultats expérimentaux (séries I et II) et les résultats de Gagné et coll. [1998] montrent plutôt que la porosité capillaire (au cœur) des BHP en condition in situ n'est jamais complètement saturée.
- Les profils d'humidité relative de la série II, suggèrent qu'à long terme, la pâte située au cœur des éléments en BHP (> 50 mm de profondeur) demeurera dans un état non saturé en raison de la faible perméabilité de la peau qui s'oppose à la pénétration de l'eau externe lors du mûrissement et lors des cycles de gel.

En pratique, on ne peut pas ignorer le fait que la peau des éléments en BHP risque d'atteindre la saturation complète et, par conséquent, d'être endommagée par les cycles de gel-dégel. Cependant, durant les saisons sèches, la peau est soumise à des périodes de séchage qui peuvent contribuer à retarder la pénétration de l'eau et éviter d'atteindre la saturation complète lors des périodes de gel. C'est peut-être pour cette raison, qu'après plus de 5 hivers d'exposition intense, on n'observe aucune détérioration (fissuration interne, écaillage) à la surface d'éléments en BHP sans air entraîné [Gagné et coll., 1998].

Il n'est pas encore possible, pour l'instant, de proposer des modifications à la norme ASTM C 666 pour améliorer la représentativité de l'essai dans le cas particulier des BHP. Avant de pouvoir proposer des modifications précises (mode de mûrissement, scellement de surface), il est nécessaire de mieux caractériser l'état de saturation de la porosité capillaire (notamment en fonction de la profondeur) d'une large gamme de BHP soumise à différentes conditions d'exposition en nature.

L'utilisation d'un mûrissement scellé (13 jours) pourrait permettre de mieux simuler les conditions de saturation et la microstructure au cœur des éléments en BHP. Cependant ce n'est pas le cœur des éléments en BHP qui est les plus fortement exposé aux cycles de gel, c'est plutôt la peau. Par conséquent, il apparaît donc plus logique de conserver un mûrissement dans l'eau. Pour les mêmes raisons, nous ne pouvons pas non plus recommander de sceller la surface des éprouvettes de BHP lors des cycles de gel (représentatif des conditions au cœur mais pas représentatif de la peau). De plus, le fait de sceller la surface lors du gel aurait automatiquement pour effet de rendre durables tous les BHP puisque nos essais ont montré que, dans ces conditions, même un béton conventionnel sans air entraîné est durable au gel.

CONCLUSION

Cette recherche nous a permis de dégager les principales conclusions suivantes :

- Le mûrissement non scellé favorise l'absorption d'une certaine quantité d'eau consécutive au remplissage des vides gazeux crées par la contraction Le Châtelier. Ce type de mûrissement amène les éprouvettes dans un état très voisin de la saturation complète. Même si les éprouvettes sont alors dans un état presque saturé juste avant les cycles de gel-dégel, on a montré que ce type de mûrissement a néanmoins un effet favorable sur la résistance au gel. Nous pensons que le mûrissement dans l'eau produit une porosité capillaire moins importante et plus fine, ce qui pourrait contribuer à diminuer la quantité d'eau gelable et compenser l'effet défavorable d'une plus grande saturation.
- Le mûrissement scellé favorise une autodessiccation interne du béton tout en ralentissant la cinétique d'hydratation. Avant les cycles de gel-dégel, les éprouvettes possèdent donc une porosité capillaire plus importante et plus grossière. On a montré que lorsque ces éprouvettes sont ensuite soumises à des cycles de gel-dégel en condition non scellée, elles se resaturaient très rapidement dès les premiers cycles. Ce type de mûrissement à été le plus défavorable pour la résistance au gel en laboratoire.
- Le scellement de surface lors des cycles de gel-dégel empêche la pénétration d'eau externe et a eu un effet très favorable sur la durabilité au gel de tous nos bétons. Même les bétons sans air entraîné (E/L = 0,40 et 0,30) se sont révélés parfaitement durables au gel, même si pourtant, ils étaient dans un état très voisin de la saturation complète juste avant le début des cycles.
- Comme c'était à prévoir, les bétons sans air entraîné (E/L = 0,30 et 0,40) non scellés lors des cycles de gel-dégel ne sont pas durables au gel en laboratoire.

Ils n'ont pas résistés à 300 cycles de gel-dégel conformément à la norme ASTM C 666 – Procédure A.

- Le rapport E/L a une influence importante sur la durabilité au gel des bétons sans air entraîné. En effet, pour une condition de scellement donnée, les éprouvettes de béton ordinaire (E/L = 0,40) se détruisent systématiquement plus rapidement que celles en BHP (E/L = 0,30).
- L'influence de la fumée de silice sur la durabilité au gel des bétons étudiés est variable en fonction du rapport E/L. La fumée de silice a pour effet de ralentir la destruction lors du gel dans le cas des E/L faibles (0,30) alors qu'elle a plutôt tendance à accélérer légèrement la destruction dans le cas des E/L élevés (0,40). La porosité capillaire des bétons de rapport E/L élevé contient une quantité importante de l'eau gelable qui exerce les fortes pressions interne sur la pâte ayant une perméabilité plus faible grâce à la fumée de silice.
- Nos résultats montrent qu'il ne semble pas y avoir de relation directe entre le degré de saturation de la porosité capillaire et le comportement au gel des bétons sans air entraîné. Les éprouvettes non saturées avant et pendant les cycles (mûrissement et gel scellés) ont évidement une excellente durabilité au gel. Cependant, certaines éprouvettes saturées lors de cycle de gel dégel ont aussi montré une excellente durabilité (éprouvettes ayant subi un mûrissement non scellé puis soumises au gel en condition scellée). Ces résultats suggèrent que même des bétons dans un état très voisin de la saturation complète seraient en mesure de résister au gel, mais à condition d'empêcher la pénétration d'eau extérieure lors des cycles.
- Nos résultats démontrent qu'il n'y a pas de relation nette entre les mesures du degré d'humidité relative interne et le comportement face aux cycles de geldégel. Une humidité relative interne très élevée (> 95%) n'entraîne pas nécessairement une mauvaise durabilité au gel.

- Les résultats démontrent clairement que la capacité des éprouvettes à absorber de l'eau lors des cycles est un paramètre majeur gouvernant la durabilité au gel des bétons sans air entraîné. Toutes les éprouvettes n'ayant pas pu absorber de l'eau lors des cycles (condition scellée) se sont révélées parfaitement durables au gel alors que celles en mesure d'absorber de l'eau (condition non scellée) se sont systématiquement détruites.
- Les mesures d'humidité relative interne dans les blocs en BHP démontrent que l'autodessiccation se développe dans ce type de béton. Même à 50 mm de profondeur, la pâte de ciment n'est pas saturée après 350 jours d'immersion sous l'eau. En condition réelle d'exposition, ces résultats laissent croire que la pâte des BHP, située à une faible profondeur sous la surface (> 50 mm), pourrait être soumise au gel en condition de quasi-scellement (non saturée). Ce phénomène pourrait être à la base de la bonne durabilité au gel in situ des BHP sans air entraîné.

D'autres travaux de recherche devraient être entrepris pour analyser plus précisément la relation entre l'humidité relative interne et la durabilité au gel in situ et en laboratoire. Cette étude devrait être basée sur une technique de mesure plus précise, notamment dans la plage comprise en 90% et 100% H.R, et permettant un suivi en continu de l'évolution de l'H.R. interne dans des éprouvettes en laboratoire et en condition in situ.

Il serait aussi intéressant de disposer d'un calorimètre à basse température pour pouvoir mesurer les variations de quantité d'eau gelable en fonction du type de mûrissement et en fonction du nombre de cycles de gel-dégel en condition scellée et non scellée. Ces mesures pourraient permettre de mieux comprendre l'influence de l'absorption d'eau lors des cycles sur la durabilité au gel des bétons.

BIBLIOGRAPHIE

- ADKINS, C. J. (1983) Equilibrium Thermodynamics, Cambridge University Press, p 180 186.
- AÏTCIN, P-C. (1998) The Art and Science of High-performance Concrete, L'industria italiana del Cemento, No. 731, p. 350 – 365.
- AITCIN, P-C. (1997) Liants hydrauliques, Notes de cours, Département de génie civil, Université de Sherbrooke, 485 p.
- AÏTCIN, P-C. (1996) Le mûrissement des BHP, présenté dans Liants Hydrauliques Notes de cours, Département de génie civil, Université de Sherbrooke, 6 p.
- AÏTCIN, P-C., JOLICOEUR, G., MERCIER, M. (1992) Technologie des granulats, Deuxième édition édité par Le Griffon d'argile, Sainte-Foy, p. 23 – 89.
- ASTM C 39 94 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM, Vol. 04.02 Concrete and Aggregate.
- ASTM C 457 90 Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete, ASTM, Vol. 04.02 – Concrete and Aggregate.
- ASTM C 666 92 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM, Vol. 04.02 -- Concrete and Aggregate.
- ASTM C 1202 94 Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM, Vol. 04.02 – Concrete and Aggregate.
- ATLASSI, E. (1991) Influence of cement type on the desorption isotherm of mortar, Nordic Concrete Research, Vol. 10, p. 25 - 36
- BAROGHEL-BOUNY, V., PERRIN, B., CHEMLOUL, L. (1997) Détermination expérimentale des propriété hydriques des pâtes de ciment durcies – Mise en évidence des phénomènes d'hystérésis, <u>Materials and Structures/Matériaux et</u> <u>Constructions</u>, Vol. 30, p. 340 – 348
- BAROGHEL-BOUNY, V., GODIN, J., GAWSEWITCH, J. (1996) Microstructure and Moisture Properties of High-performance Concrete, 4th International Symposium on Utilization of High-strength/High-performance Concrete, Paris, p. 451 – 461.

- BAROGHEL-BOUNY, V., CHAUSSADENT, T. (1995) Pore Structure and Moisture Properties of Cement-based Systems From Water Vapour Sorption Isotherms, <u>Materials Research Society</u>, p. 245 – 254
- BAROGHEL-BOUNY, V. (1994) Caractérisation des pâtes de ciment et des bétons, Méthodes, analyse, interprétation, Paris, Laboratoire Central des Ponts et Chaussées, 468 p.
- BAROGHEL-BOUNY, V., CHAUSSADENT, T. (1993) Caractérisation de la texture d'un béton durci à partir des isothermes de sorption de vapeur d'eau, <u>Bulletin de</u> liaison des laboratoires des ponts et chaussées, Paris, No. 187, p. 69 - 75
- BARON, J. (1982) Les retraits de la pâte de ciment, Présenté dans <u>Le béton hydraulique</u>, Paris, Presses de l'École Nationale des Ponts et Chaussées, p. 485 - 501
- BUIL, M., OLLIVIER, J.-P. (1992) Conception des bétons : la structure poreuse, présenté dans <u>La durabilité des bétons</u> par BARON, J. et OLLIVIER, J.-P. Paris, Presses de l'École Nationale des Ponts et Chaussées, p. 227 – 284.
- BUIL, M. (1979) Contribution à l'étude du retrait de la pâte de ciment durcissante, Paris, Laboratoire Central des Ponts et Chaussées, p. 6 – 19.
- CARLES-GIBERGUES, A., PIGEON, M. (1992) La durabilité des bétons en ambiance hivernale rigoureuse, présenté dans <u>La durabilité des bétons</u> par BARON, J. et OLLIVIER, J.-P. Paris, Presses de l'École Nationale des Ponts et Chaussées, p. 227 - 284.
- COHEN, M. D., ZHOU, Y., DOLCH, W. L. (1992) Non-Air-Entrained High-Strength Concrete – Is It Frost Resistant?, ACI Materials Journal, V. 89, No. 2, p. 406 – 415
- FAGERLUND, G. (1997) Effect of Self-desiccation on the Internal Frost Resistance of Concrete, <u>Self-desiccation and its Importance in Concrete Technology</u>, Lund, édité par B. Persson et G. Fagerlund, p 227 – 238.
- FAGERLUND, G. (1997) The international cooperative test of the critical degree of saturation method of assessing the freeze-thaw resistance of concrete, <u>Matériaux et</u> <u>Construction</u>, No. 58, p. 231 – 253.
- FAGERLUND, G. (1994) Frost Resistance of High Performance Concrete Some Theoretical Considerations, <u>Durability of High Performance Concrete</u>, Vienna, édité par H. Sommer, p 112 – 140.
- FAGERLUND, G. (1971) Degré critique de saturation. Un outil pour l'estimation de la résistance au gel des matériaux de construction, <u>Matériaux et Construction</u>, No. 23, p. 271 285

- FOLLIOT, A. (1982) Le ciment, Présenté dans <u>Le béton hydraulique</u>, Paris, Presses de l'École Nationale des Ponts et Chaussées, p. 19 37
- GAGNÉ, R., HÉNAULT, G., MARCHAND, J. (1998) In-situ and Laboratory Evaluation of Chloride Penetration and Freeze-thaw Durability of High-performance Concrete Slabs, Concrete Under Severe Conditions 2, édité par O. E. GJORV, K. SAKAI et N. BANTHIA, Tromso, Norway, p. 173 – 182.
- GAGNÉ, R. (1997) Durabilité et réparations du béton, Notes de cours, Département de génie civil, Université de Sherbrooke, p. 21 200.
- GAGNÉ, R., BOISVERT, A., PIGEON, M. (1996) Effect of Superplasticizer Dosage on Mechanical Properties, Permeability, and Freeze-Thaw Durability of High Strength Concrete With and Without Silica Fume, <u>ACI Materials Journal</u>, Vol. 93, No. 2 p. 111 – 120.
- GAGNÉ, R., AÏTCIN, P-C. (1993) Superplasticizers for durable concrete, Présenté dans <u>Durabilité et réparations du béton</u>, Notes de cours, Département de génie civil, Université de Sherbrooke, 15 p.
- GAGNÉ, R. (1992) Durabilité au gel des bétons à hautes performances, Thèse de Doctorat, Département de génie civil, Université Laval, Québec, 433 p.
- GAGNÉ, R., PIGEON, M., AÏTCIN, P.-C. (1990) Durabilité au gel des bétons de hautes performances mécaniques, <u>Matériaux et Constructions</u>, No. 23, p. 103 109.
- HÉNAULT, G. (1995) Etude de la durabilité in-situ et en laboratoire des bétons à haute performance avec et sans air entraîné face aux cycles de gel-dégel en présence de sels fondants, Mémoire de Maîtrise, Département de génie civil, Université de Sherbrooke, 193 p.
- HIROSHI, H., HIROSHI, U., SHUNSUKE, H. (1997) Influence of Structural and Humidity Changes at the Inner Part of Hardened Cement Paste on Autogenous Shrinkage, Journal of Research of the Chichibu Onoda Cement Corporation, Vol. 48, No. 132, p. 3 – 9.
- HOOTON, R. D. (1993) Influence of silica fume remplacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity, <u>ACI Materials Journal</u>, Vol. 90, No. 2, p. 143 151.
- HOOTON, R.D., McGRATH, P. (1991) Influence of self-dessication of non-air entrained silica fume mortars on resistance to freezing and thawing, <u>CANMET / ACI</u> <u>International Workshop on the Use of Silica Fume in Concrete</u>, Washington D.C., p. 7-9.

- JENSEN, O. M., HANSEN, P. F. (1996) Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste, <u>ACI Materials Journal</u>, V. 93, No. 6, p. 539 – 543.
- JENSEN, O. M., HANSEN, P. F. (1995) Autogenous relative humidity change in silica fume-modified cement paste, <u>Advances in Cement Research</u>, Vol. 7, No. 25, p. 33 – 38.
- JENSEN, O. M. (1995) Thermodynamic limitation of self-desiccation, <u>Cement and</u> <u>Concrete Research</u>, Vol. 25, No. 1, p. 157 – 164.
- KAMADA, E., TABATA, M., KATSURA, O. (1991) A study of the Environnemental Conditions Affecting Frost Damage of Concrete, <u>Low Temperature Effects on</u> <u>Concrete, Proceedings Second Canada / Japan Workshop</u>, NRC-CNRC, p. 191 – 207.
- KHAYAT, K. H. (1996) Technologie avancée du béton, Note de cours, Département de génie civil, Université de Sherbrooke, 389 p.
- KOSMATKA, S. H., PANARESE, W. C. et col. (1995), Dosage et contrôle des mélanges de béton, Ottawa, Association Canadienne du Ciment Portland, 228 p.
- LANGAN, B. W., WARD, M. A. (1997) The Freezing-thawing Damage of Non Airentrained High Strength Concrete, Fourth <u>CANMET/ACI International Conference</u> on Durability of Concrete, Sydney, Australia, p 341 – 356.
- LESSARD, M., GENDREAU, M., GAGNÉ, R. (1993) Statistical Analysis of the Production of a 75 MPa Air Entrained Concrete, <u>High-strength Concrete</u>, Lillehammer, Norway, p.793 800.
- LESSARD, M. (1991) Les bétons à haute performance, présenté dans <u>Liants</u> <u>Hydrauliques</u> par AÏTCIN, P-C., Département de génie civil, Université de Sherbrooke, p. 10.1 - 10.53
- MALHOTRA, V. M., MEHTA, P.K. (1996) Pozzolanic and Cementitious Materials, Advanced Concrete Technology Program, CANMET, Ottawa, Ontario, 190 p.
- MARCHAND, J., GAGNÉ, R., JACOBSEN, S., PIGEON, M., SELLEVOLD, E.J. (1996) La résistance au gel des bétons à haute performance, <u>Revue canadienne de génie civil</u>, Vol. 23, No. 5, p. 1070 1080.
- MARCHAND, J., PLEAU, R., GAGNÉ, R. (1994) Deterioration of Concrete Due to Freezing and Thawing, Materials Science of Concrete IV, p. 283 354.
- MOUKWA, M. (1988) Durabilité du béton dans les mers arctiques, Thèse de Doctorat, Département de génie civil, Université de Sherbrooke, p. 1 – 200.

- NEVILLE, A. M. (1996) Properties of concrete, édité par John Wiley & Sons, Inc., Fourth édition, 844 p.
- PERSSON, B. (1997) Self-desiccation and its importance in concrete technology, Materials and Structures/Matériaux et Constructions, Vol. 30, p. 293 – 305.
- PERSSON, B. (1996) Hydration and Strength of High Performance Concrete, Advanced Cement Based Materials, Vol. 3, No. ³/₄, p. 107 – 123.
- PIGEON, M., PLEAU, R. (1995) Durability of concrete in cold climates, E & FN Spon, London, 244 p.
- PIGEON, M., GAGNÉ, R., AÏTCIN, P.-C., BANTHIA, N. (1991) Freezing and Thawing Tests of High-Strength Concretes, <u>Cement and Concrete Research</u>, Vol. 21, p. 844 – 852.
- PIGEON, M., GAGNÉ, R., FOY, C. (1987) Critical air-void spacing factors for low water-cement ratio concretes with and without condensed silica fume, <u>Cement and</u> <u>Concrete Research</u>, Vol. 17, p. 896 906
- PIGEON, M. (1981) Composition et hydratation du ciment Portland, <u>Symposium</u> <u>Progress in Concrete</u>, Québec, Canada, p. 36 – 72.
- RUTHERFORD, J. H., LANGAN, B. W., WARD, M. A. (1994) Use of Control Specimens in Freezing and Thawing Testing of Concrete, Cement, Concrete and Aggregates, Vol. 16, No. 1, p. 78 82.
- TAGNIT-HAMOU, A. (1997) Microstructure et physico-chimie des ciments et des bétons, Notes de cours, Département de génie civil, Université de Sherbrooke, 287 p.
- TAZAWA, E., MIYAZAWA, S. (1996) Influence of autogenous shrinkage on cracking in high-strength concrete, 4th International Symposium on Utilisation of Highstrength/High-performance Concrete, Paris, p. 321 – 330
- TAZAWA, E., MIYAZAWA, S. (1995) Influence of Cement and Admixture on Autogenous Shrinkage of Cement Paste, Cement and Concrete Research, Vol. 25, No. 2, p 281 – 287.
- VERNET, C., CADORET, G. (1992) Suivi en continu de l'évolution chimique et mécanique des bétons à haute performance pendant les premiers jours, Technodes, présenté dans <u>Liants Hydrauliques</u> par AÏTCIN, P-C., Département de génie civil, Université de Sherbrooke, p. 7.L1-7.L13.

ANNEXE A : RÉSISTANCES À LA COMPRESSION DES BÉTONS DE LA SÉRIE I ET DE LA SÉRIE II

Le tableau A.1 présente les résultats des essais de résistances à la compression des cylindres non scellés (mûris dans l'eau) et des cylindres scellés (mûris scellés dans un papier d'aluminium autocollant) provenant des bétons de la série I. Les résultats des essais de résistance à la compression sur des cylindres (mûris dans l'eau) provenant des bétons de la série II sont présentés au tableau A.2. Pour 2 séries, les cylindres ont eu des dimensions de 100 x 200 mm.

Âge	Dátan	Mâriagoment -	Résistance à la compre	ession (Mpa)	Mode de
(jours)	Deroll	Murissement -	Individuelle	Moyenne	rupture
	0.2 CD	Eau	67,2 / 69,2 / 68,4	68,3	J/J/A
	0,5 CF	Scellé	67,3 / 65,5 / 65,5	66,1	J/J/A
•	0255	Eau	78,7 / 79,0 / 80,4	79,4	A/J/A
14	0,5 55	Scellé	78,5 / 79,4 / 77,3	78,4	J/J/A
14	0 4 CD	Eau	48,7 / 49,5 / 51,0	49,7	J/J/J
	0,4 CF	Scellé	49,0 / 48,1 / 49,3	48,8	<u>J/J/J</u>
-	0 4 SE	Eau	57,2 / 58,0 / 57,6	57,6	J/J/J
	0,4 56	Scellé	56,4 / 56,9 / 56,3	56,5	J/A/J
	0.2 CD	Eau	75,2 / 75,2 / 75,7	75,4	J/J/J
	0,5 CF	Scellé	73,1 / 71,7 / 72,6	72,5	<u>J/J/A</u>
	0,3 SF	Eau	86,0 / 84,8 / 83,8	84,9]/]/]
28 -		Scellé	83,5 / 84,6 / 83,3	83,8	J/J/A
20	0.4.00	Eau	57,2 / 55,5 / 56,1	56,2	A/J/J
_	0,4 CP	Scellé	51,0 / 52,1 / 54,1	52,4	J/J/A
	0 4 SE	Eau	66,8 / 65,6 / 65,8	66,1	J/A/J
	0,4 31	Scellé	65,5 / 65,4 / 63,6	64,8	J <u>/A</u> /A
	0 2 CP	Eau	86,5 / 83,9 / 82,2	84,2	J/A/A
_	0,5 CF	Scellé	83,5 / 81,7 / 85,0	83,4	<u>J / A / J</u>
_	0 2 SE	Eau	95,9 / 95,3 / 94,8	95,4	A/A/J
01 -	0,3 35	Scellé	93,2 / 94,0 / 93,6	93,6	<u>A/J/A</u>
71 -		Eau	63,6 / 61,1 / 65,3	63,4	J/J/A
_	0,4 CF	Scellé	60,1 / 58,8 / 58,8	59,2	<u>A/J/J</u>
_	0 A SE	Eau	71,8 / 71,8 / 72,8	72,1	J/A/J
	0,4 Jr	Scellé	66,1 / 64,7 / 67,1	66,1	<u>J/A/J</u>

TABLEAU A.1 - Résistance à la compression des cylindres de la série I

Âge	Dátam	Mininger	Résistance à la comp	Mode de	
(jours)	Belon	Munssement	Individuelle	Moyenne	rupture
14	0,3 CP bloc	Eau	65,3 / 64,1 / 65,9	65,1	A/A/J
14	0,3 SF bloc	Eau	76,5 / 77,0 / 77,6	77,0	J/A/A
20	0,3 CP bloc	Eau	73,2 / 74,7 / 71,8	73,2	J/J/J
20	0,3 SF bloc	Eau	81,3 / 84,8 / 85,1	83,7	J/J/A
01	0,3 CP bloc	Eau	81,5 / 82,3 / 83,7	82,5	J/A/A
91	0,3 SF bloc	Eau	97,7/96,5/97,4	97,2	A/A/A

.

TABLEAU A.2 - Résistance à la compression des cylindres de la série II

ANNEXE B : CARACTÉRISTIQUES DES BULLES D'AIR DES BÉTONS DE LA SÉRIE I

Les tableaux B.1 à B.4 présentent les caractéristiques du réseau de bulles d'air des bétons de la série I. Les lectures ont été effectuées sur les plaques de $100 \times 100 \times 20$ mm coupées dans des cylindres de 100×200 mm après environ 14 jours de mûrissement. Les caractéristiques des bulles d'air ont été déterminées conformément à la norme ASTM C 457 - 90 : Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete (Modified Point Count Method).

Lectures expérimentales									
Plaque	St	N	Sv	Sp					
Plaque A Haut	1600	57	23	461					
Plaque B Bas	1600	55	33	482					
Total	3200	112	56	943					
		Résultats	6						
Plaque	Air (%)		$\alpha \ (mm^{-1})$	Ĺ(μm)					
Plaque A Haut	1,4		13,2	650					
Plaque B Bas	2,1		8,9	843					
Total	1,8		10,7	747					

TABLEAU B.1 - Caractéristiques du réseau de bulles d'air du béton 0,3 CP

TABLEAU B.2 - Caractéristiques du réseau de bulles d'air du béton 0,3 SF

	Lecture	s expérin	nentales	
Plaque	St	N	Sv	Sp
Plaque A Haut	1600	109	41	485
Plaque B Bas	1600	88	43	481
Total	3200	197	84	966
		Résultats		
		Résultats		
Plaque	<u> </u>		$\alpha (\text{mm})$	<u> </u>
Plaque A Haut	2,6		14,2	482
Plaque B Bas	2,7		10,9	611
Total	2,6		12,5	539

Lectures expérimentales									
Plaque	St	N	Sv	Sp					
Plaque A Haut	1600	75	38	502					
Plaque B Bas	1600	47	34	514					
Total	3200	122	72	1016					
·····		Résultats	<u> </u>						
Plaqua	A:= (9/)	resultat	~ (mm ⁻¹)	$\overline{\mathbf{T}}$					
r layue	All (70)			<u> </u>					
Plaque A Haut	2,4		10,5	681					
Plaque B Bas	2,1		7,4	1032					
Total	2,3		9,0	817					

TABLEAU B.3 - Caractéristiques du réseau de bulles d'air du béton 0,4 CP

TABLEAU B.4 - Caractéristiques du réseau de bulles d'air du béton 0,4 SF

Lectures expérimentales									
Plaque	St	Ň	Sv	Sp					
Plaque A Haut	1600	39	18	505					
Plaque B Bas	1600	34	23	477					
Total	3200	73	41	982					

Résultats								
Plaque	Air (%)	$\alpha \text{ (mm}^{-1})$	L (μm)					
Plaque A Haut	1,1	11,6	858					
Plaque B Bas	1,4	7,9	1106					
Total	1,3	9,5	976					

ANNEXE C: VARIATION DE LA MASSE, DE LA VITESSE ET DE L'ALLONGEMENT AXIAL LORS DU MÛRISSEMENT DES BÉTONS DE LA SÉRIE I

Les tableaux C.1 à C.12 présentent les variations de la masse, de la vitesse et de l'allongement axial des bétons de la série I lors du mûrissement.

Les prismes ont subi deux types de mûrissement : scellé et non scellé. Les prismes soumis au mûrissement scellé ont été démoulés après 24 heures et ensuite emballés dans un papier d'aluminium autocollant. Ils ont été ensuite conservés dans la chambre à température et humidité contrôlées pendant 13 jours. Les prismes soumis au mûrissement non scellé ont été aussi démoulés après 24 heures et ensuite immergés dans l'eau pendant 13 jours. Les mesures de masse, d'allongement et de vitesse des ondes ont été effectuées à 1, 3, 7, 11 et 14 jours. Les techniques de mesure et les traitements des résultats de mesure sont expliqués au chapitre 4.

Tous les prismes ont été nommés en utilisant certaines de leurs caractéristiques de formulation : Rapport eau/liant, type de mûrissement, type de scellement durant les cycles de gel-dégel, les caractéristiques des bulles d'air. Un exemple d'interprétation des noms de prisme est présenté au chapitre 4.

158

TABLEAU C.1 - Variation de la masse lors du mûrissement (Béton 0,3 CP)

Prismes :	: 0	,3	CP-	7	47	-S-	S
-----------	-----	----	-----	---	----	-----	---

Mûrissement Masse de prisme (g)			ne (g)	Varia	tion de m	sse (g)	Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5261	5187	5224	0	0	0	100	100	100
3	5261	5187	5224	0	0	0	100	100	100
7	526 1	5187	5224	0	0	0	100	100	100
11	5261	5187	5224	0	0	0	100	100	100
14	5261	5187	5224	0	0	0	100	100	100

Prismes: 0,3 CP-747-S-N

Mûrissement	Masse de prisme (g)			Varia	tion de ma	isse (g)	Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5191	5261	5226	0	0	0	100	100	100
3	5191	5261	5226	0	0	0	100	100	100
7	5191	5261	5226	0	0	0	100	100	100
11	5191	5261	5226	0	0	0	100	100	100
14	<u>5191</u>	5261	5226	0	0	0	100	100	100

Prismes: 0,3 CP-747-N-S

Mûrissement	it Masse de prisme (g)			Varia	tion de ma	isse (g)	Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5161	5141	5151,0	0	0	0,0	100,00	100,00	100,00
3	5178	5157	5167,5	17	16	16,5	100,33	100,31	100,32
7	5184	51 62	5173,0	23	21	22,0	100,45	100,41	100,43
11	5187	51 66	5176,5	26	25	25,5	100,50	100,49	100,50
14	5189	5168	5178,5	28	27	27,5	100,54	100,53	100,53

Prismes: 0,3 CP-747-N-N

Múrissement	Masse de prisme (g)			Varia	Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5177	5134	5155,5	0	0	0	100,00	100,00	100,00	
3	51 94	5153	5173,5	17	19	18	100,33	100,37	100,35	
7	5200	5159	5179,5	23	25	24	100,44	100,49	100,47	
11	5203	5162	5182,5	26	28	27	100,50	100,55	100,52	
14	5205	5164	5184,5	28	30	29	100,54	100,58	100,56	

Mûrissement (jours)	Vitesse (m/s)			Varia	Variation (V-Vo) (m/s)			Variation (V/V_0) (%)		
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4684	4692	4688	0	0	0	100,0	100,0	100,0	
3	4730	4715	4723	46	24	35	101,0	100,5	100,7	
7	4768	4764	4766	85	72	78	101,8	101,5	101,7	
11	4813	4821	4817	129	129	129	102,8	102,8	102,8	
14	4831	4848	4839	147	156	152	103,1	103,3	103,2	

Prismes :0,3 CP-747-S-S

Prismes: 0,3 CP-747-S-N

Mûrissement	Vitesse (m/s)			Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4730	4704	4717	0	0	0	100,0	100,0	100,0	
3	-	-	•	-	-	-	-	-	-	
7	•	-	•	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
14	4887	4892	4889	157	187	172	103,3	104,0_	103,6	

Prismes: 0,3 CP-747-N-S

Mûrissement	1	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4670	4664	4667	0	0	0	100,0	100,0	100,0	
3	-	-	-	-	-	-	-	•	-	
7	-	-	-	-	-	-	•	-	-	
11	•	-	-	-	-	•	. •	-	-	
14	4902	4914	4908	232	250	241	105,0	105,4	105,2	

Prismes : 0,3 CP-747-N-N

Mûrissement	it Vitesse (m/s)			Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4695	4692	4693	0	0	0	100,0	100,0	100,0	
3	4768	4773	4771	74	82	78	101,6	101,7	101,7	
7	4863	4859	4861	168	168	168	103,6	103,6	103,6	
11	4928	4950	4939	233	259	246	105,0	105,5	105,2	
14	4986	4973	4980	291	282	286	106,2	106,0	106,1	

TABLEAU C.3 - Variation de l'allongement axial lors du mûrissement (Béton : 0,3 CP)

.

Mûrissement (jours)		Longueur (mm	l)	Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,493	249,746	249,619	0	0	0	
3	249,469	249,707	249,588	-94	-156	-125	
7	249,459	249,701	249,580	-134	-180	-157	
11	249,464	249,701	249,583	-114	-178	-146	
14	249,464	249,710	249,587	-116	-142	-129	

Prismes : 0,3 CP-747-S-S

Prismes : 0,3 CP-747-S-N

Mûrissement (jours)		Longueur (mm)	Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,682	249,667	249,674	0	0	0	
3	249,677	249,657	249,667	-20	-40	-30	
7	249,681	249,657	249,669	-2	-38	-20	
11	249,681	249,656	249,669	-2	-42	-22	
14	249,687	249,658	249,672	20	-34	-7	

Prismes: 0,3 CP-747-N-S

Mûrissement		Longueur (mm)	Allongement (µm/m)			
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	250,030	249,464	249,747	0	0	0	
3	250,039	249,473	249,756	36	38	37	
7	250,042	249,475	249,759	50	46	48	
11	250,050	249,480	249,765	80	66	73	
14	250,048	249,479	249,764	74	62	68	

Prismes: 0,3 CP-747-N-N

Mürissement		Longueur (mm)	Allongement (µm/m)						
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne				
1	250,155	250,066	250,111	0	0	0				
3	250,167	250,075	250,121	46	34	40				
7	250,170	250,077	250,123	58	44	51				
11	250,174	250,083	250,128	74	66	70				
14	250,175	250,083	250,129	80	68	74				
Mûrissement	Mas	se de prist	ne (g)	Varia	Variation de masse (g)			Variation de masse (%)		
-------------	-------------	-------------	----------------	----------	------------------------	---------	----------	------------------------	---------	--
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5098	5115	5106,5	0	0	0	100	100	100	
3	5098	5115	51 06,5	0	0	0	100	100	100	
7	5098	5115	51 06,5	0	0	0	100	100	100	
11	5098	5115	51 06,5	0	0	0	100	100	100	
14	5098	5115	5106,5	0	0	0	100	100	_100	

Prismes : 0,3 SF-539-S-N

Mûrissement	Masse de prisme (g)			Varia	Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5105	5142	5123,5	0	0	0	100	100	100	
3	5105	5142	5123,5	0	0	0	100	100	100	
7	5105	5142	5123,5	0	0	0	100	100	100	
11	5105	5142	5123,5	0	0	0	100	100	100	
14	5105	5142	5123,5	0	0	0	100	100	100	

Prismes: 0,3 SF-539-N-S

Mûrissement	Mas	se de prist	ne (g)	Varia	Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5061	5102	5081,5	0	0	0	100,00	100,00	100,00	
3	5077	5118	5 097,5	16	16	16	100,32	100,31	100,31	
7	5081	5122	5101,5	20	20	20	100,40	100,39	100,39	
11	5083	5124	5103,5	22	22	22	100,43	100,43	100,43	
14	5084	5125	5104,5	23	23	23	100,45	100,45	100,45	

Prismes : 0,3 SF-539-N-N

Mûrissement	Masse de prisme (g)			Varia	Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5102	5135	5118,5	0	0	0,0	100,00	100,00	100,00	
3	5116	51 49	5132,5	14	14	14,0	100,27	100,27	100,27	
7	5121	5153	5137,0	19	18	18,5	100,37	100,35	100,36	
11	5122	5155	5138,5	20	20	20,0	100,39	100,39	100,39	
14	5123	5155	5139,0	21	20	20,5	100,41	100,39	100,40	

Mûrissement (jours)	1	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4599	4598	4598	0	0	0	100,0	100,0	100,0	
3	4711	4733	4722	111	135	123	102,4	102,9	102,7	
7	4795	4829	4812	195	232	213	104,2	105,0	104,6	
11	4866	4871	4869	267	274	270	105,8	105,9	105,9	
14	4899	4892	4895	299	294	297	106,5	106,4	106,5	

Prismes : 0,3 SF-539-S-S

Prismes : 0,3 SF-539-S-N

Mûrissement		Vitesse (m.	/s)	Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4643	4668	4656	0	0	0	100,0	100,0	100,0	
3	-	•	-	•	-	-	-	-	•	
7	-	-	-	-	-	•	-	-	-	
11	-	-	-	-	•	-	-	-	-	
14	4870	4851	4860	226	183	204	104,9	<u>103,9</u>	104,4	

Prismes : 0,3 SF-539-N-S

Mûrissement	1	Vitesse (m	/s)	Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4616	4613	4614	0	0	0	100,0	100,0	100,0	
3	-	-	-	-	-	-	-	-	-	
7	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
14	4887	4885	4886	271	272	271	105,9	105,9	105,9	

Prismes : 0,3 SF-539-N-N

Mûrissement		Vitesse (m/	/s)	Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4631	4643	4637	0	0	0	100,0	100,0	100,0	
3	4813	4788	4800	181	145	163	103,9	103,1	103,5	
7	4909	4880	4894	278	236	257	1 06 ,0	105,1	105,5	
11	4956	49 17	49 37	325	274	299	107,0	105,9	106,5	
14	4980	4954	496 7	349	311	330	107,5	106,7	107,1	

TABLEAU C.6 - Variation de l'allongement axial lors du mûrissement (Béton 0,3 SF)

Mûrissement		Longueur (mm))	Allongement (µm/m)				
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne		
1	249,756	249,601	249,679	0	0	0		
3	249,748	249,566	249,657	-32	-140	-86		
7	249,710	249,544	249,627	-184	-228	-206		
11	249,726	249,563	249,645	-120	-152	-136		
14	249,731	249,585	249,658	-100	-66	83		

Prismes : 0,3 SF-539-S-S

Prismes : 0,3 SF-539-S-N

Mûrissement		Longueur (mm))	Allongement (µm/m)				
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne		
1	249,633	249,899	249,766	0	0	0		
3	249,608	249,884	249,746	-98	-60	-79		
7	249,614	249,860	249, 737	-76	-158	-117		
11	249,6 13	249,865	249,739	-78	-138	-108		
14	249,639	249,877	249,758	26	-88	-31		

Prismes : 0,3 SF-539-N-S

Mûrissement		Longueur (mm)	Allongement (µm/m)			
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	250,013	249,829	249,921	0	0	0	
3	250,001	249,825	249,913	-50	-18	-34	
7	250,003	249,822	249,912	-42	-28	-35	
11	250,000	249,816	249,908	-54	-52	-53	
14	250,007	249,836	249,921	-26	26	0	

Prismes: 0,3 SF-539-N-N

Mûrissement (jours)		Longueur (mm)	Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,837	249,852	249,844	0	0	0	
3	249,824	249,849	249,836	-50	-12	-31	
7	249,821	249,841	249,831	-62	-44	-53	
11	249,816	249,844	249,830	-82	-30	-56	
14	249,845	249,865	249,855	32	54	43	

TABLEAU C.7 - Variation de la masse lors du mûrissement (Béton 0,4 CP)

Mûrissement	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5202	5011	5106,5	0	0	0	100	100	100
3	5202	5011	5106,5	0	0	0	100	100	100
7	5202	5011	5106,5	0	0	0	100	100	100
11	5202	5011	5106,5	0	0	0	100	100	100
14	5202	5011	5106,5	0	0	0	100	100	100

Prismes: 0,4 CP-817-S-S

Prismes : 0,4 CP-817-S-N

Mûrissement	Mas	se de prist	ne (g)	Varia	tion de ma	usse (g)	Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5214	5063	5138,5	0	0	0	100	100	100
3	5214	5063	5138,5	0	0	0	100	100	100
7	5214	5063	5138,5	0	0	0	100	100	100
11	5214	5063	5138,5	0	0	0	100	100	100
14	5214	5063	5138,5	0	0	0	100	100	100

Prismes: 0,4 CP-817-N-S

Mûrissement	Masse de prisme (g)			Varia	tion de ma	isse (g)	Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5039	5102	5070,5	0	0	0,0	100,00	100,00	100,00
3	5077	5136	5106,5	38	34	36,0	100,75	100,67	100,71
7	5079	5139	5109,0	40	37	38,5	100,79	100,73	100,76
11	5083	5142	5112,5	44	40	42,0	100,87	100,78	100,83
14	5084	5144	5114,0	45	42	_43,5	100,89	100,82	100,86

Prismes: 0,4 CP-817-N-N

Mûrissement	Masse de prisme (g)			Varia	tion de ma	isse (g)	Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5079	5170	5124,5	0	0	0,0	100,00	100,00	100,00
3	5114	5200	5157,0	35	30	32,5	100,69	100,58	100,63
7	5117	5203	5160,0	38	33	35,5	100,75	100,64	100,69
11	5120	5206	5163,0	41	36	38,5	100,81	100,70	100,75
14	5122	5208	5165,0	43	38	40,5	100,85	100,74	100,79

Mûrissement	ement Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	4407	4360	4383	0	0	0	100,0	100,0	100,0
3	4617	4611	4614	211	251	231	104,8	105,8	105,3
7	4695	4654	4675	288	2 9 4	291	106,5	106,7	106,6
11	4733	4707	4720	326	347	337	107,4	108,0	107,7
14	4747	4738	4743	341	378	359	107,7	108,7	108,2

Prismes: 0,4 CP-817-S-S

Prismes: 0,4 CP-817-S-N

Mûrissement		Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4422	4439	4430	0	0	0	100,0	100,0	100,0	
3	-	-	-	-	-	•	-	-	-	
7	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
14	4715	4731	4723	293	293	293	106,6	106,6	106,6	

Prismes: 0,4 CP-817-N-S

Mûrissement		Vitesse (m	/s)	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	4365	4344	4355	0	0	0	100,0	100,0	100,0
3	-	-	-	-	•	•	-	•	-
7	-	-	-	-	•	-	-	-	-
11	-	-	-	-	•	-	-	•	-
14	4821	4781	4801	455	438	447	110,4	110,1	110,3

Prismes : 0,4 CP-817-N-N

Mûrissement	Vitesse (m/s)			Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4387	4403	4395	0	0	0	100,0	100,0	100,0	
3	46 37	4645	4641	250	242	246	105,7	105,5	105,6	
7	4715	4744	4730	328	342	335	107,5	107,8	107,6	
11	4795	4762	4778	407	359	383	109,3	108,2	108,7	
14	4793	4791	4792	406	<u>389</u>	39 7	109,2	108,8	109,0 _	

TABLEAU C.9 - Variation de l'allongement axial lors du mûrissement (Béton 0,4 CP)

Mûrissement _ (jours)		Longueur (mm))	Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,735	249,821	249,778	0	0	0	
3	249,729	249,815	249,772	-26	-22	-24	
7	249,729	249,809	249,769	-26	-46	-36	
11	249,725	249,810	249,767	-42	-44	-43	
14	249,725	249,810	249,768	-40	-42	_41	

Prismes : 0,4 CP-817-S-S

Prismes : 0,4 CP-817-S-N

Mûrissement		Longueur (mm)		Allongement (µm/m)			
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,197	249,730	249,464	0	0	0	
3	249,194	249,738	249,466	-12	32	10	
7	249,191	249,736	249,464	-24	24	0	
11	249,192	249,736	249,464	-22	22	0	
14	249,191	249,726	249,458	-26	-18	-22	

Prismes: 0,4 CP-817-N-S

Mûrissement _ (jours)_		Longueur (mm)		Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,483	249,928	249,705	0	0	0	
3	249,491	249,934	249,712	30	24	27	
7	249,495	249,935	249,715	48	28	38	
11	249,496	249,939	249,717	50	46	48	
14	249,493	249,940	249,717	40	50	_ 45	

Prismes : 0,4 CP-817-N-N

Mûrissement (jours)		Longueur (mm)		Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,691	249,722	249,706	0	0	0	
3	249,6 9 4	249,724	249,709	14	10	12	
7	249,697	249,732	249,714	24	40	32	
11	249,705	249,731	249,718	56	38	47	
14	249,696	249,732	249,714	22	42	32	

Mûrissement	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5125	5207	5166	0	0	0	100	100	100
3	5125	5207	51 66	0	0	0	100	100	100
7	5125	5207	5166	0	0	0	100	100	100
11	5125	5207	51 66	0	0	0	100	100	100
14	5125	5207	5166	0	0	0	100	100	100

Prismes: 0,4 SF-976-S-S

Prismes : 0,4 SF-976-S-N

Mûrissement	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	5017	5113	5065	0	0	0	100	100	100
3	5017	5113	5065	0	0	0	100	100	100
7	5017	5113	5065	0	0	0	100	100	100
11	5017	5113	5065	0	0	0	100	100	100
14	5017	5113	5065	0	0	0	100	100	100

Prismes: 0,4 SF-976-N-S

Mûrissement	Masse de prisme (g)			Varia	Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5059	5014	5036,5	0	0	0,0	100,00	100,00	100,00	
3	5 092	5044	5 068 ,0	33	30	31,5	100,65	100,60	100,63	
7	5096	5049	5072,5	37	35	36,0	100,73	100,70	100,71	
11	5098	5050	5074,0	39	36	37,5	100,77	100,72	100,74	
14	5100	5052	<u>5076,0</u>	41	38	39,5	100,81	100,76	100,78	

Prismes : 0,4 SF-976-N-N

Mûrissement	Masse de prisme (g)			Varia	Variation de masse (g)			Variation de masse (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	5133	5010	5071,5	0	0	0,0	100,00	100,00	100,00	
3	5161	5037	5 099, 0	28	27	27,5	100,55	100,54	100,54	
7	5165	5042	5103,5	32	32	32,0	100,62	100,64	100,63	
11	5167	5043	5105,0	34	33	33,5	100,66	100,66	100,66	
14	5168	5044	<u>5106,0</u>	35	34	34,5	100,68	100,68	100,68	

Múrissement	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	4322	4320	4321	0	0	0	100,0	100,0	100,0
3	4538	4510	4524	216	191	203	105,0	104,4	104,7
7	4681	4654	4667	358	335	346	108,3	107,7	108,0
11	4746	4689	4717	423	369	3 96	109,8	108,5	109,2
14	4728	4730	4729	406	410	408	109,4	109,5	109,4

Prismes: 0,4 SF-976-S-S

Prismes : 0,4 SF-976-S-N

Mûrissement		Vitesse (m	/s)	Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4364	4365	4365	0	0	0	100,0	100,0	100,0	
3	-	-	-	-	•	-	•	-	-	
7	-	-	-	-	-	•	-	-	•	
11	-	-	-	-	-	-	-	•	-	
14	4739	4767	4753	375	401	388	108,6	109,2_	108,9	

Prismes: 0,4 SF-976-N-S

Mûrissement	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
1	4271	4357	4314	0	0	0	100,0	100,0	100,0
3	-	•	-	-	-	-	•	-	-
7	-	-	-	-	-	•	-	-	-
11	•	-	-	-	-	-	-	-	-
	4754	4773	4764	483	416	449	111,3	109,5	110,4

Prismes: 0,4 SF-976-N-N

Mûrissement	1	Vitesse (m	/s)	Varia	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	4310	4338	4324	0	0	0	100,0	100,0	100,0	
3	4574	4592	4583	263	253	258	1 06 ,1	105,8	106,0	
7	4715	4720	4718	405	382	393	109,4	108,8	109,1	
11	4773	4786	4780	463	448	455	110,7	110,3	110,5	
14	4772	479 3	4782	461	454	458	110,7	110,5	110,6	

TABLEAU C.12 - Variation de l'allongement axial lors du mûrissement (Béton 0,4 SF)

Mûrissement (jours)		Longueur (mm))	Allongement (µm/m)			
	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,607	250,211	249,909	0	0	0	
3	249,602	250,206	249,904	-18	-22	-20	
7	249,595	250,197	249,896	-46	-56	-51	
11	249,599	250,201	249,900	-32	-40	-36	
14	249,600	250,195	249,897	-28	-64	-46	

Prismes : 0,4 SF-976-S-S

Prismes: 0,4 SF-976-S-N

Mürissement		Longueur (mm))	Allongement (µm/m)			
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,835	249,847	249,841	0	0	0	
3	249,830	249,859	249,844	-22	46	12	
7	249,826	249,855	249,840	-36	30	-3	
11	249,820	249,848	249,834	-62	2	-30	
14	249,820	249,838	249,829	-60	-36	-48	

Prismes : 0,4 SF-976-N-S

Mürissement		Longueur (mm)	Allongement (µm/m)			
(j ours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
1	249,894	249,466	249,680	0	0	0	
3	249,882	249,484	249,683	-48	74	13	
7	249,891	249,481	249,686	-10	62	26	
11	249,899	249,482	249,690	20	64	42	
14	249,899	249,479	249,689	20	52	36	

Prismes: 0,4 SF-976-N-N

Mûrissement		Longueur (mm)	Allongement (µm/m)				
(jours)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne		
1	249,796	249,726	249,761	0	0	0		
3	249,805	249,723	249,764	36	-10	13		
7	249,807	249,723	249,765	44	-10	17		
11	249,805	249,725	249,765	38	-2	18		
14	249,806	249,726	<u>2</u> 49,766	42	2	22		

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ANNEXE D: VARIATION DE LA MASSE, DE LA VITESSE ET DE L'ALLONGEMENT AXIAL LORS DES CYCLES DE GEL-DÉGEL DES BÉTONS DE LA SÉRIE I

Les tableaux D.1 à D.24 présentent les variations de la masse, de la vitesse et de l'allongement axial des bétons de la série I lors des cycles de gel-dégel.

Les prismes ont eu deux types d'enrobage de surface lors du gel : scellé et non scellé. L'enrobage scellé a consisté à placer des prismes préalablement emballés dans du papier d'aluminium autocollant dans des sacs en plastique. Les sacs ont été ensuite fermés de façon étanche à l'aide d'une reliure en plastique maintenu en place à l'aide de pinces métalliques. L'enrobage non scellé ne comportait aucun enrobage lors des cycles de gel-dégel.

Les mesures ont été effectuées à tous les 35 cycles environ. Les techniques de mesure et les traitements des résultats de mesure sont présentés au chapitre 4. Les noms de prismes expliqués au chapitre 4 ont été aussi utilisés pour les cycles de gel-dégel.

Cycles de	Mas	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5261	5187	5224	0	0	0	100	100	100	
30	5 261	5187	5224	0	0	0	100	100	100	
65	52 6 1	5187	5224	0	0	0	100	100	100	
105	5261	5187	5224	0	0	0	100	100	100	
140	5261	5187	5224	0	0	0	100	100	100	
170	5261	5187	5224	0	0	0	100	100	100	
205	5261	5187	5224	0	0	0	100	100	100	
240	5261	5187	5224	0	0	0	100	100	100	
275	52 6 1	5187	5224	0	0	0	100	100	100	
308	5261	5187	5224	0	0	0	100	100	100	

Prismes : 0,3 CP-747-S-S

Prismes : 0,3 CP-747-S-N

Cycles de	Masse de prisme (g)			. Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5151	5229	5190,0	0	0	0,0	100,00	100,00	100,00
30	51 86	52 6 1	5223,5	35	32	33,5	100,68	100,61	100,65
65	5247	5327	5287,0	96	98	97,0	101,86	101,87	101,87
105	-	-	-	-	•	•	-	-	-
140	-	-	-	-	-	-	-	•	•
170	-	-	-	-	•	-	-	-	•
205	-	-	•	•	-	-	-	-	-
240	-	-	-	-	-	-	-	-	-
275	-	•	•	•	-	•	-	-	-
308	-	-	•	-	-	-	-	-	-

Cycles de	Mas	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5220	5199	5209,5	0	0	0	100,00	100,00	100,00	
30	5220	51 99	5209,5	0	0	0	100,00	100,00	100,00	
65	5220	51 99	5209,5	0	0	0	100,00	100,00	100,00	
105	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	
140	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	
170	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	
205	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	
240	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	
275	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	
308	5220	5203	5211,5	0	4	2	100,00	100,08	100,04	

Prismes : 0,3 CP-747-N-S

Prismes : 0,3 CP-747-N-N

Cycles de	Cycles de Masse de prisme (g)			Varia	Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5205	5164	5184,5	0	0	0,0	100,00	100,00	100,00	
30	520 7	51 66	5186,5	2	2	2,0	100,04	100,04	100,04	
65	5210	5168	5189,0	5	4	4,5	100,10	100,08	100,09	
105	5215	5172	5193,5	10	8	9,0	100,19	100,15	100,17	
140	5226	5181	5203,5	21	17	19,0	100,40	100,33	100,37	
170	5239	5194	5216,5	34	30	32,0	100,65	100,58	100,62	
205	-	-	-	-	-	-	-	-	-	
240	-	-	-	-	-	-	-	-	-	
275	-	-	-	-	-	-	-	-	-	
308	•			-	-	•	-	-	-	

TABLEAU D.3 - Variation de la vitesse lors des cycles de gel-dégel (Béton 0,3 CP)

Cycles de		Vitesse (m	/s)	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4831	4848	4839	0	0	0	100,0	100,0	100,0
30	4806	4808	4807	-25	-40	-32	99 ,5	99,2	99,3
65	4824	4826	4825	-7	-22	-14	99,9	99,6	99, 7
105	4829	4844	4837	-2	-3	-3	100,0	99,9	99,9
140	4829	4848	4838	-2	0	-1	100,0	100,0	100,0
170	4839	4846	4843	8	-2	3	100,2	100,0	100,1
205	4833	4849	4841	2	2	2	100,0	100,0	100,0
240	4851	4866	4859	20	19	19	100,4	100,4	100,4
275	4851	4868	4859	20	20	20	100,4	100,4	100,4
308	4833	4841	4837	2	-7	-3	100,0	99,9	99,9

Prismes: 0,3 CP-747-S-S

Prismes: 0,3 CP-747-S-N

Cycles de	۲	Vitesse (m	/s)	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4887	4892	4889	0	0	0	100,0	100,0	100,0
30	4447	4571	4509	-439	-321	-380	91,0	93,4	92,2
65	2507	2738	2623	-2379	-2154	-2266	51,3	56,0	53,6
105	-	•	-	-	-	-	-	-	-
140	-	-	-	-	-	-	-	-	-
170	-	-	•	-	-	•	-	-	-
205	•	-	-	-	-	-	-	-	•
240	-	-	-	-	-	•	-	•	•
275	-	-	-	•	•	-	-	-	-
308	-	•	•	-	-	•	•	•	-

TABLEAU D.4 - Variation de la vitesse lors des cycles de gel-dégel (Béton 0,3 CP)

Cycles de		Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	4902	4914	4908	0	0	0	100,0	100,0	100,0	
30	4924	4905	4915	22	-9	7	100,5	99,8	100,1	
65	4917	4926	4922	15	12	14	100,3	100,2	100,3	
105	4942	4924	4933	40	10	25	100,8	100,2	100,5	
140	4970	4966	4968	68	52	60	101.4	101.1	101,2	
170	4970	4944	49 57	68	29	49	101,4	100,6	101,0	
205	4975	4965	4970	73	51	62	101.5	101,0	101,3	
240	4965	4986	4975	63	72	67	101.3	101,5	101,4	
275	4970	4988	4979	68	74	71	101.4	101.5	101.4	
308	5000	4973	4987	98	59	79	102.0	101.2	101.6	

Prismes: 0,3 CP-747-N-S

Prismes: 0,3 CP-747-N-N

Cycles de	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4986	4973	4980	0	0	0	100,0	100,0	100,0
30	4919	4954	4937	-67	-19	-43	98,7	99,6	99,1
65	4924	4949	4937	-61	-25	-43	98,8	99,5	99 ,1
105	4928	4 9 42	4935	-58	-32	-45	98,8	99,4	99 ,1
140	4657	4715	4686	-328	-258	-2 9 3	93,4	94,8	94,1
170	3813	3948	3880	-1173	-1025	-1099	76,5	79,4	77,9
205	-	•	•	-	-	-	-	-	•
240	-	-	-	•	-	-	-	-	-
275	-	-	-	-	•	-	-	•	-
308	-	•	-	-	•	-			

TABLEAU D.5 - Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,3 CP)

Cycles de	Température		Longueur (mm)	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	21,7	249,464	249,710	249,587	0	0	0
30	16,3	249,469	249,709	249,589	50	26	38
65	12,4	249,455	249,704	249,579	17	25	21
105	14,1	249,452	249,696	249,574	-6	-16	-11
140	1 6 ,1	249,464	249,718	249,591	31	61	46
170	13,7	249,459	249,705	249,582	24	22	23
205	22,1	249,471	249,713	249,592	28	8	18
240	16,1	249,468	249,709	249,589	49	27	38
275	17,3	249,467	249,707	249,587	38	12	25
308	16,1	249,465	249,715	249,590	35	49	42

Prismes: 0,3 CP-747-S-S

Prismes: 0,3 CP-747-S-N

Cycies de	Température		Longueur (mm)	Allo	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	21,7	249,687	249,658	249,672	0	0	0	
30	16,3	249,801	249,765	249,783	486	456	471	
65	13,5	251,003	250, 997	251,000	5318	5408	53 6 3	
105	-	-	-	-	-	-	-	
140	-	-	-	-	-	-	-	
170	-	-	•	-	-	•	-	
205	-	-	-	-	-	-	-	
240	-	-	-	•	-	-	-	
275	-	-	•	•	-	•	-	
308	-	•	-	•	-	-	-	

TABLEAU D.6 - Variation de l'allongement axial lors des cycles de gel-dégel
(Béton 0,3 CP)

Cycles de	Température		Longueur (mm	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	17,6	250,048	249,479	249,764	0	0	0
30	1 6,3	250,043	249,482	249,762	-15	17	1
65	12,4	250,023	249,482	249,752	-73	39	-17
105	14,1	250,035	249,488	249,762	-33	55	11
140	1 6 ,1	250,048	249,492	249,770	6	60	33
170	13,7	250,038	249,484	249,761	-21	41	10
205	22,1	250,049	249,497	249,773	-21	47	13
240	16,1	250,050	249,494	249,772	1 6	66	41
275	17,3	250,049	249,496	249,772	4	68	36
308	16,1	250,049	249,497	249,773	10	78	44

Prismes: 0,3 CP-747-N-S

Prismes: 0,3 CP-747-N-N

Cycles de	Température		Longueur (mm))	Allo	m/m)	
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	17,6	250,175	250,083	250,129	0	0	0
30	16,3	250,184	250,092	250,138	41	43	42
65	13,5	250,191	250,0 9 4	250,142	87	65	76
105	15,3	250,205	250,101	250,153	131	83	107
140	15, 9	250,349	250,182	250,266	705	405	555
170	14,7	250,732	250,521	250,626	2242	1765	2004
205	-	-	-	-	-	-	•
240	-	-	-	-	-	-	-
275	-	-	-	-	-	-	-
308	<u> </u>		-	-	-	-	-

Cycles de	Mas	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5098	5115	5106,5	0	0	0	100	100	100	
20	5098	5115	5106,5	0	0	0	100	100	100	
55	5 098	5115	5106,5	0	0	0	100	100	100	
90	5098	5115	5106,5	0	0	0	100	100	100	
135	5 098	5115	5106,5	0	0	0	100	100	100	
160	5098	5115	5106,5	0	0	0	100	100	100	
195	5098	5115	5106,5	0	0	0	100	100	100	
230	5098	5115	5106,5	0	0	0	100	100	100	
270	5098	5115	5106,5	0	0	0	100	100	100	
305	5098	5115	5106,5	0	0	0	100	100	100	

Prismes: 0,3 SF-539-S-S

Prismes: 0,3 SF-539-S-N

Cycles de	Mas	se de prisr	ne (g)	Varia	Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5069	5105	5087,0	0	0	0,0	100,00	100,00	100,00	
20	5083	5120	5101,5	14	15	14,5	100,28	100,29	100,29	
55	5106	5139	5122,5	37	34	35,5	100,73	100,67	100,70	
90	5141	5173	5157,0	72	68	70,0	101,42	101,33	101,38	
135	-	•	•	•	-	•	-	-	•	
160	•	-	-	-	-	-	-	-	-	
195	-	-	-	-	-	•	-	-	-	
230	•	-	-	-	-	-	-	-	-	
270	-	-	-	-	•	•	-	-	•	
	-	-	-	<u> </u>			-	-		

Cycles de	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5114	5153	5133,5	0	0	0	100	100	100
20	5114	5153	5133,5	0	0	0	100	100	100
55	5114	5153	5133,5	0	0	0	100	100	100
90	5114	5153	5133,5	0	0	0	100	100	100
135	5114	5153	5133,5	0	0	0	100	100	100
160	5114	5153	5133,5	0	0	0	100	100	100
195	5114	5153	5133,5	0	0	0	100	100	100
230	5114	5153	5133,5	0	0	0	100	100	100
270	5114	5153	5133,5	0	0	0	100	100	100
305	5114	5153	5133,5	0	0	0	100	100	100

Prismes: 0,3 SF-539-N-S

Prismes: 0,3 SF-539-N-N

Cycles de	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5123	5155	5139,0	0	0	0,0	100,00	100,00	100,00
20	5124	5156	5140,0	1	1	1,0	100,02	100,02	100,02
55	5125	5158	5141,5	2	3	2,5	100,04	100,06	100,05
90	51 29	5163	51 46,0	6	8	7,0	100,12	100,16	100,14
135	5137	51 69	5153,0	14	14	14,0	100,27	100,27	100,27
160	5145	5177	5161,0	22	22	22,0	100,43	100,43	100,43
195	5153	5188	5170,5	30	33	31,5	100,59	100,64	100,61
230	5165	5204	5184,5	42	49	45,5	100,82	100,95	100,89
270	•	-	•	-	-	-	-	-	-
305	-	-	•		-	-	-	-	-

Cycles de	cles Vitesse (m/s)				Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	4899	4892	4895	0	0	0	100,0	100,0	100,0	
20	4780	4808	4794	-119	-84	-101	97,6	98,3	97,9	
55	4839	4833	4836	-59	-59	-59	98,8	98,8	98,8	
90	4866	4851	485 9	-32	-41	-37	99 ,3	99,2	99,3	
135	4883	4848	4865	-15	-44	-30	99 ,7	99 ,1	99,4	
160	4885	4885	4885	-14	-7	-10	99, 7	99,9	99, 8	
1 95	4848	4824	4836	-51	-67	-59	99 ,0	98,6	98,8	
230	4853	4864	4859	-46	-27	-37	99 ,1	99,4	99,3	
270	4803	4809	4806	-96	-82	-89	98,0	98,3	98,2	
305	4798	4844	4821	-101	-47	-74	97,9	99,0	98,5	

Prismes : 0,3 SF-539-S-S

Prismes: 0,3 SF-539-S-N

Cycles de	Cycles Vitesse (m/s)				tion (V-Vo	o) (m/s)	Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4870	4851	4860	0	0	0	100,0	100,0	100,0
20	4834	4778	4806	-35	-73	-54	99, 3	98,5	98,9
55	4657	4690	4674	-212	-161	-187	95,6	96, 7	96,2
90	3207	3613	3410	-1662	-1238	-1450	65,9	74,5	70,2
135	-	-	-	-	-	-	-	-	-
160	-	-	-	-	-	-	-	-	-
195	-	-	-	-	-	-	-	-	-
230	-	-	-	-	-	-	-	-	-
270	-	-	-	-	-	-	-	•	-
305	-	-	•	-	-	-	-	•	-

Cycles de	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4887	4885	4886	0	0	0	100,0	100,0	100,0
20	4809	4785	4797	-77	-100	-89	98,4	97,9	98,2
55	4870	4861	4865	-17	-24	-20	99, 7	99, 5	99,6
90	49 14	4885	489 9	27	0	14	100,6	1 00,0	100,3
135	4 9 42	4933	49 37	55	48	52	101,1	101,0	101,1
1 60	4916	489 9	490 7	29	14	21	100,6	100,3	100,4
195	4863	4851	4857	-24	-34	-29	99,5	99,3	99,4
230	4930	4868	4899	43	-17	13	100,9	99, 7	100,3
270	4890	4881	4886	3	-3	0	100,1	99,9	100,0
305	4871	489 7	4884	-15	12	-2	99,7	100,2	100,0

Prismes: 0,3 SF-539-N-S

Prismes : 0,3 SF-539-N-N

Cycles de	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4980	4954	4967	0	0	0	100,0	100,0	100,0
20	4881	4885	4883	-99	-69	-84	98,0	98,6	98,3
55	4921	489 7	4909	-60	-57	-58	98,8	98,8	98,8
90	4928	47 64	4846	-53	-190	-122	98, 9	96,2	97,5
135	4728	4709	4719	-252	-245	-249	94, 9	95,1	95,0
160	4633	4605	4619	-348	-349	-348	93,0	93,0	93,0
195	4439	4444	4442	-542	-510	-526	89,1	89,7	89,4
230	3668	3429	3548	-1313	-1525	-1419	7 3,6	69,2	71,4
270	-	-	-	-	-	-	-	-	-
305	-	-	-	-	-	•	-		-

.

TABLEAU D.11 – Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,3 SF)

Cycles de	Température		Allongement (µm/m)				
gel-dégel	_(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	23,7	249,730	249,566	249,648	0	Ō	0
20	19,3	249,740	249,554	249,647	64	-22	21
55	15,8	249,716	249,566	249,641	-15	43	14
90	18,4	249,710	249,548	249,629	-53	-43	-48
135	15,0	249,718	249,539	249,628	-2	-58	-30
160	18,0	249,711	249,532	249,622	-45	-103	-74
195	15,2	249,712	249,542	249,627	-25	-49	-37
230	19,0	249,709	249,559	249,634	-58	-2	-30
270	17,2	249,714	249,548	249,631	-28	-36	-32
305	16,6	249,715	249,578	249,646	-23	89	33

Prismes: 0,3 SF-539-S-S

Prismes: 0,3 SF-539-S-N

Cycles de	Température		Longueur (mm)	Allongement (µm/m)			
gel-dégel	(°C) –	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	23,7	249,639	249,877	249,758	0	0	0
20	19,6	249,608	249,853	249,730	-104	-73	-89
55	16,2	249,691	249,891	249,791	250	9 7	173
90	17,6	250,339	250,433	250,386	2838	2259	2548
135	-	-	•	-	•	-	-
160	-	-	-	-	-	-	-
195	-	-	•	- ·	•	-	-
230	-	-	-	-	-	-	-
270	-	-	-	-	-	-	-
305	•	•					

TABLEAU D.12 – Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,3 SF)

Cycles de	Température		Longueur (mm))	Allo	m/m)	
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	19,3	250,007	249,836	249,921	0	0	0
20	1 9,3	250,000	249,814	249,907	-26	-86	-56
55	15,8	249,983	249,811	249,897	-75	-79	-77
90	18,4	249,988	249,817	249,902	-71	-69	-70
135	15,0	249,982	249,811	249,897	-74	-74	-74
160	18,0	249,991	249,816	249,903	-57	-73	-65
195	15,2	249,984	249,809	249,896	-69	-86	-77
230	19,0	250,000	249,821	249,910	-26	-56	-41
270	17,2	249,989	249,814	249,902	-58	-75	-66
	16,6	249,988	249,815	249,901	-59	-69	-64

Prismes : 0,3 SF-539-N-S

.

Prismes: 0,3 SF-539-N-N

Cycles de	Température		Longueur (mm)	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	19,3	249,845	249,865	249,855	0	0	0
20	19,6	249,826	249,851	249,839	-76	-58	-67
55	16,2	249,825	249,850	249,837	-63	-43	-53
90	17,6	249,834	249,858	249,846	-33	-19	-26
135	15,4	249,900	249,917	249,908	242	228	235
160	17, 9	249,962	249,996	249,979	476	532	504
195	15,8	250,040	250,150	250,095	802	1158	980
230	13,8	250,424	250,485	250,454	2348	2510	2429
270	-	-	-	-	-	•	-
305	•	-	-	-	-	-	•

Cycles de	Mas	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5202	5011	5106,5	0	0	0	100	100	100	
24	5202	5011	5106,5	0	0	0	100	100	100	
48	52 02	5011	5106,5	0	0	0	100	100	100	
83	5202	5011	5106,5	0	0	0	100	100	100	
148	5202	5011	5106,5	0	0	0	100	100	100	
183	5202	5011	5106,5	0	0	0	100	100	100	
218	5202	5011	5106,5	0	0	0	100	100	100	
253	5202	5011	5106,5	0	0	0	100	100	100	
288	5202	5011	5106,5	0	0	0	100	100	100	
308	5202	5011	5106,5	0	0	0	100	100	100	

Prismes : 0,4 CP-817-S-S

Prismes: 0,4 CP-817-S-N

Cycles de	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5179	5029	5104	0	0	0	100,00	100,00	100,00
24	5237	507 7	5157	58	48	53	101,12	100,95	101,04
48	5256	5 096	5176	77	67	72	101,49	101,33	101,41
83	-	-	-	-	-	-	-	-	•
148	-	-	-	-	-	-	-	-	•
183	-	•	-	-	-	-	-	•	•
218	-	-	-	-	-	-	-	-	-
253	-	-	-	-	•	•	-	-	-
288	-	-	-	•	-	-	-	-	•
308	•			-		-	-	-	-

TABLEAU D.14 – Variation de la masse lors des cycles de gel-dégel (Béton 0,4 CP)

Cycles de	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5110	5170	5140	0	0	0	100	100	100
24	5110	5170	5140	0	0	0	100	100	100
48	5110	5170	5140	0	0	0	100	100	100
83	5110	5170	5140	0	0	0	100	100	100
148	5110	5170	5140	0	0	0	100	100	100
183	5110	5170	5140	0	0	0	100	100	100
218	5110	5170	5140	0	0	0	100	100	100
253	5110	5170	5140	0	0	0	100	100	100
288	5110	5170	5140	0	0	0	100	100	100
308	5110	5170	5140	0	0	0	100	100	100

Prismes: 0,4 CP-817-N-S

Prismes: 0,4 CP-817-N-N

Cycles de	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5122	5208	5165,0	0	0	0,0	100,00	100,00	100,00
24	5124	5211	5167,5	2	3	2,5	100,04	100,06	100,05
48	5132	5219	5175,5	10	11	10,5	100,20	100,21	100,20
83	5149	5250	5199,5	27	42	34,5	100,53	100,81	100,67
148	•	-	-	•	-	-	-	-	•
183	-	-	-	-	•	•	-	-	-
218	•	-	-	-	-	-	-	-	-
253	-	•	-	-	•	-	-	-	-
288	-	-	-	-	•	-	-	-	-
308				-		-	-	-	-

Cycles de		Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	4747	4738	4743	0	0	0	100,0	100,0	100,0	
24	4727	4727	4727	-21	-11	-16	99,6	99 ,8	99, 7	
48	4765	4738	4751	18	0	9	100,4	100,0	100,2	
83	4754	4752	4753	6	14	10	100,1	100,3	100,2	
148	4719	4735	4727	-29	-3	-16	99,4	99,9	99, 7	
183	4754	4755	4755	6	18	12	100,1	100,4	100,3	
218	4746	4759	4752	-2	21	10	100,0	100,4	100,2	
253	4754	4746	4750	6	8	7	100,1	100,2	100,2	
288	4777	4752	4764	29	14	22	100,6	100,3	100,5	
308	4746	4752	4749	-2	14	6	100,0	100,3	100,1	

Prismes : 0,4 CP-817-S-S

Prismes : 0,4 CP-817-S-N

Cycles de	Cycles Vitesse (m/s)				Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	4715	4731	4723	0	0	0	100,0	100,0	100,0	
24	4400	4393	4396	-316	-338	-327	93,3	92,8	93,1	
48	3982	3820	39 01	-734	-911	-823	84,4	80, 7	82,6	
83	-	-	-	-	-	-	-	-	-	
148	-	-	-	-	-	-	-	-	-	
183	-	-	-	-	-	-	-	-	-	
218	-	•	-	•	-	-	-	-	-	
253	•	-	-	-	-	-	-	-	-	
288	-	-	-	-	-	-	-	-	-	
308	-	-		- 	•	-		-		

Cycles de	•	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	4821	4781	4801	0	0	0	100,0	100,0	100,0	
24	4799	4804	4802	-21	23	1	99,6	100,5	100,0	
48	4818	4829	4823	-3	48	22	99,9	101,0	100,5	
83	4833	4826	4829	12	45	28	100,2	100,9	100,6	
148	4801	4804	4803	-20	23	2	99,6	100,5	100,0	
183	4801	4816	4809	-20	35	7	99,6	100,7	100,2	
218	4821	4851	4836	0	70	35	100,0	101,5	100,7	
253	4818	4849	4833	-3	68	32	99,9	101,4	100,7	
288	4806	4836	4821	-15	55	20	99,7	101,1	100,4	
308	4809	4836	4823	-12	55	21	99,8	101,1	100,4	

Prismes : 0,4 CP-817-N-S

Prismes: 0,4 CP-817-N-N

Cycles de	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4793	4791	4792	0	0	0	100,0	100,0	100,0
24	4749	4749	4749	-44	-42	-43	99,1	99,1	99 ,1
48	467 3	4662	466 7	-120	-129	-125	97,5	97,3	97,4
83	3986	4042	4014	-807	-750	-778	83,2	84,4	83,8
148	-	-	-	-	-	-	-	-	-
183	-	-	-	-	-	-	-	-	-
218	-	-	-	-	-	-	-	-	-
253	-	-	-	-	-	-	•	-	-
288	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	•	•	-

TABLEAU D.17 – Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,4 CP)

Cycles de	Température		Longueur (mm)	Allo	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	21,4	249,725	249,810	249,768	0	0	0	
24	13,3	249,719	249,794	249,756	21	-22	0	
48	11,6	249,713	249,784	249,748	4	-50	-23	
83	11,6	249,713	249,788	249,750	4	-34	-15	
148	13,8	249,724	249,794	249,759	38	-24	7	
183	12,5	249,716	249,789	249,753	13	-35	-11	
218	11,9	249,715	249,787	249, 751	12	-40	-14	
253	13,5	249,717	249,795	249,756	9	-17	-4	
288	14,2	249,720	249,795	249,757	18	-20	-1	
308	17,3	249,730	249,795	249,763	43	-37	3	

Prismes : 0,4 CP-817-S-S

Prismes: 0,4 CP-817-S-N

Cycles de	Température		Longueur (mm))	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	21,4	249,191	249,726	249 - 3	0	0	0	
24	13,3	249,382	249,898	249 , ()	811	733	77 2	
48	11,6	249,803	250,298	250,050	2510	2346	2428	
83	-	-	•	-	-	-	-	
148	•	-	-	➡	-	-	•	
183	-	-	-	-	-	•	-	
218	-	-	-	•	-	-	-	
253	-	-	-	-	-	•	-	
288	-	-	-	-	-	-	-	
308	•	-	-		-	•	-	

TABLEAU D.18 – Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,4 CP)

•

Cycles de	Température		Longueur (mm	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	19,6	249,493	249,940	249,717	0	0	0
24	13,3	249,487	249,936	249,711	9	19	14
48	11,6	249,485	249,932	249,709	12	12	12
83	11,6	249,488	249,938	249,713	24	34	29
148	13,8	249,494	249,949	249,721	36	66	51
183	12,5	249,496	24 9,94 5	249,720	49	57	53
218	11,9	249,488	249,934	249,711	20	16	18
253	13,5	249,489	249,944	249,716	18	48	33
288	14,2	249,499	249,940	249,719	54	28	41
308	17,3	249,510	249,950	249,730	79	53	66

Prismes : 0,4 CP-817-N-S

Prismes: 0,4 CP-817-N-N

Cycles de	Température		Longueur (mm))	Allongement (µm/m)			
gel-dégel	(°C) –	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	19,6	249,696	249,732	249,714	0	0	0	
24	13,3	249,705	249,73 3	249,719	69	37	53	
48	11,6	249,742	249,772	249,757	228	202	215	
83	11,6	250,121	250,248	250,184	17 46	2108	1 92 7	
148	-	-	-	-	-	•	-	
183	-	-	-	-	-	-	-	
218	-	-	-	-	-	-	-	
253	-	-	-	-	-	-	-	
288	-	-	-	-	-	-	-	
308	*	•	•	-	•	-	-	

TABLEAU D.19 - Variation de la masse lors des cycles de gel-dégel (Béton 0,4 SF)

Cycles de	Mas	se de prisi	ne (g)	Varia	Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5125	5208	5166,5	0	0	0	100	100	100	
35	5125	5208	5166,5	0	0	0	100	100	100	
70	5125	5208	5166,5	0	0	0	100	100	100	
105	5125	5208	5166,5	0	0	0	100	100	100	
135	5125	5208	5166,5	0	0	0	100	100	100	
170	5125	5208	51 66 ,5	0	0	0	100	100	100	
200	5125	5208	51 66 ,5	0	0	0	100	100	100	
245	5125	5208	5166,5	0	0	0	100	100	100	
275	5125	5208	5166,5	0	0	0	100	100	100	
310	5125	5208	5166,5	0	0	0	100	100	100	

Prismes : 0,4 SF-976-S-S

Prismes : 0,4 SF-976-S-N

Cycles de	Mas	se de prisr	ne (g)	Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	5017	5113	5065,0	0	0	0,0	100,00	100,00	100,00
35	5104	5203	5153,5	87	90	88,5	101,73	101,76	101,75
70	-	•	-	-	-	-	-	-	-
105	-	-	-	-	-	-	-	•	-
135	•	•	-	-	-	-	-	-	-
170	-	-	-	-	-	-	-	-	-
200	-	•	-	-	-	•	-	-	-
245	-	•	-	-	•	-	-	-	-
275	-	-	-	-	-	•	-	•	-
310	-	-	•	-	-	•	-	-	-

Cycles de	Mas	Masse de prisme (g)			Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5125	5081	5103	0	0	0	100	100	100	
35	5125	5081	5103	0	0	0	100	100	100	
70	5125	5081	5103	0	0	0	100	100	100	
105	5125	5081	5103	0	0	0	100	100	100	
135	5125	5081	5103	0	0	0	100	100	100	
170	5125	5081	5103	0	0	0	100	100	100	
200	5125	5081	5103	0	0	0	100	100	100	
245	5125	5081	5103	0	0	0	100	100	100	
275	5125	5081	5103	0	0	0	100	100	100	
310	5125	5081	5103	0	0	0	100	100	100	

Prismes : 0,4 SF-976-N-S

Prismes: 0,4 SF-976-N-N

Cycles de	Cycles de Masse de prisme (g)				Variation de masse (g)			Variation de masse (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	
0	5168	5044	5106,0	0	0	0,0	100,00	100,00	100,00	
35	5189	5065	5127,0	21	21	21,0	100,41	100,42	100,41	
70	5178	5054	5116,0	10	10	10,0	100,19	100,20	100,20	
105	5170	5045	5107,5	2	1	1,5	100,04	100,02	100,03	
135	-	-	•	-	-	-	-	-	-	
170	-	•	-	-	-	•	•	-	-	
200	-	-	-	-	-	•	-	-	-	
245	-	-	-	-	-	-	-	-	-	
275	-	-	-	-	-	-	-	•	-	
310	-	•	-	-	-	-		-	-	

Cycles de	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4728	4730	4729	0	0	0	100,0	100,0	100,0
35	4728	4693	4711	0	-36	-18	100,0	99,2	99, 6
70	4707	4668	4688	-21	-62	-41	99,6	98, 7	99 ,1
105	4693	4674	4684	-35	-55	-45	99,3	98,8	99, 0
135	4727	4687	4707	-2	-43	-22	100,0	99,1	99,5
170	4767	4693	4730	39	-36	1	100,8	99,2	100,0
200	4701	4684	4692	-27	-46	-36	99,4	99, 0	99,2
245	4747	4693	4720	19	-36	-9	100,4	99,2	99, 8
275	4772	4701	4736	44	-29	7	100,9	99,4	100,2
310	4757	4717	4737	29	-13	8	100,6	99 ,7	100,2

Prismes: 0,4 SF-976-S-S

Prismes : 0,4 SF-976-S-N

Cycles de	1	/itesse (m/	s)	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4739	4767	4753	0	0	0	100,0	100,0	100,0
35	2338	2235	2287	-2401	-2532	-2467	49,3	46,9	48,1
70	-	•	-	•	-	-	•	-	-
105	-	•	-	-	-	-	-	-	-
135	-	-	-	-	-	-	-	-	-
170	-	-	-	-	-	-	-	-	-
200	-	-	-	-	-	-	-	-	-
245	-	-	•	-	-	-	-	-	-
275	•	-	-	-	-	-	-	-	-
310	-	-	-	-	-	-	-	-	

Cycles de	Vitesse (m/s)			Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4754	4773	4764	0	0	0	100,0	100,0	100,0
35	4739	4764	4751	-14	-10	-12	99,7	99,8	99,7
70	4707	4747	4727	-46	-26	-36	99,0	99,5	99,2
105	4711	4749	4730	-43	-24	-34	99,1	99 ,5	99,3
135	4760	4767	4764	6	-7	0	100,1	99, 9	100,0
170	4749	4747	4748	-5	-26	-15	99,9	99,5	99, 7
200	4747	4775	4761	-6	2	-2	99,9	100,0	99,9
245	4754	4799	4777	0	26	13	100,0	100,5	100,3
275	4751	4816	4783	-3	43	20	99,9	100,9	100,4
310	4795	4790	4792	41	16	29	100,9	100,3	100,6

Prismes : 0,4 SF-976-N-S

Prismes: 0,4 SF-976-N-N

.

Cycles de	v	itesse (m/s	s)	Variation (V-Vo) (m/s)			Variation (V/Vo) (%)		
gel-dégel P	risme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	4772	4793	4782	0	0	0	100,0	100,0	100,0
35	4575	4586	4580	-196	-207	-202	95,9	95, 7	95,8
70	3598	3 63 7	3618	-1174	-1156	-1165	75,4	75,9	75,6
105	3063	2937	3000	-1709	-1856	-1782	64,2	61,3	62,7
135	2797	2590	2693	-1 9 75	-2203	-2089	58,6	54,0	56,3
170	-	-	-	-	-	-	-	-	-
200	-	-	•	-	-	-	-	•	-
245	-	-	-	•	-	-	•	-	-
275	-	-	-	-	-	-	•	•	-
310	-	•		-	•	-	-	-	-

TABLEAU D.23 – Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,4 SF)

Cycles	Température		Longueur (mm)	Allongement (µm/m)			
gel-dégel	(°C) -	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	23,0	249,600	250,195	249,897	0	0	0
35	1 6 ,7	249,591	250,192	249,891	-1	21	10
70	15,6	249,587	250,194	249,890	-11	35	12
105	18,9	249,596	250,193	249,895	9	15	12
135	18,0	249,590	250,191	249,890	-11	10	-1
170	18,0	249,583	250,186	249,884	-39	-10	-25
200	19,3	249,597	250,192	249,894	8	8	8
245	18,7	249,587	250,192	249,889	-26	10	-8
275	19,0	249,592	250,196	249,894	-8	26	9
310	19,0	249,589	250,191	249,890	-20	4	-8

Prismes : 0,4 SF-976-S-S

Prismes: 0,4 SF-976-S-N

Cycles de	Température		Longueur (mm)	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	23,0	249,816	249,839	249,828	0	0	0
35	15,0	251,038	251, 029	251,034	4936	4807	4871
70	-	-	-	-	-	-	-
105	-	-	-	-	-	-	-
135	-	-	-	-	-	-	-
170	-	-	-	-	-	•	-
200	-	-	-	-	-	-	-
245	•	-	-	-	-	-	-
275	-	-	•	-	-	• ·	-
310	•			•	.	-	•

TABLEAU D.24 – Variation de l'allongement axial lors des cycles de gel-dégel (Béton 0,4 SF)

Cycles de	Température		Longueur (mm	Allongement (µm/m)			
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	17,4	249,906	249,479	249,692	0	0	0
35	1 6 ,7	249,902	249,481	249,692	-12	14	1
70	15,6	249,907	249,490	249,699	14	56	35
105	18,9	249,914	249,492	249,703	22	44	33
135	18,0	249,909	249,485	249,697	9	23	16
170	18,0	249,908	249,476	249,692	5	-15	-5
200	19,3	249,912	249,480	249,696	14	-4	5
245	18,7	249,910	249,478	249,694	7	-9	-1
275	19,0	249,913	249,485	249,699	17	15	16
310	19,0	249,909	249,482	249,695	3	3	3

Prismes: 0,4 SF-976-N-S

Prismes: 0,4 SF-976-N-N

Cycles de	Température	Longueur (mm)			Allongement (µm/m)		
gel-dégel	(°C)	Prisme 1	Prisme 2	Moyenne	Prisme 1	Prisme 2	Moyenne
0	17,4	249,806	249,726	249,766	0	0	0
35	15,0	249,845	249,770	249,807	167	189	178
70	15,6	250,262	250,178	250,220	1835	1820	1828
105	18,9	250,5 66	250,494	250,530	3034	3065	3050
135	18,0	250,805	250,738	250,771	3 994	4049	4021
170	-	-	-	-	-	-	-
200	-	-	-	-	-	-	-
245	-	-	-	-	-	-	-
275	-	-	-	-	-	-	•
310	-	•	-	-	-	-	

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ANNEXE E : VARIATION DE LA MASSE DES TÉMOINS (BÉTONS DE LA SÉRIE I)

Les tableaux E.1 à E.8 présentent les variations de la masse des prismes témoins lors du temps correspondant aux 300 cycles de gel-dégel.

Les prismes témoins ont d'abord subi un mûrissement scellé ou non scellé, puis, au lieu d'être soumis au gel, ils ont été conservés soit dans l'eau, soit dans un état scellé dans une chambre à température et humidité contrôlées.

Pour faciliter l'analyse, nous avons utilisé les même noms de prismes que ceux des prismes de gel-dégel en ajoutant une lettre T en avant du nom.

Cycles de	Masse de prisme	Variation de masse	Variation de masse	
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)	
0	5236	0	100	
30	5236	0	100	
65	5236	0	100	
105	5236	0	100	
140	5236	0	100	
170	5236	0	100	
205	5236	0	100	
240	5236	0	100	
275	5236	0	100	
308	5236	0	100	

Prisme : T 0,3 CP-747-S-S

Prisme : T 0,3 CP-747-S-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5081	0	100,00
30	5101	20	100,39
65	5105	24	100,47
105	5109	28	100,55
140	5111	30	100,59
170	5112	31	100,61
205	5114	33	100,65
240	5115	34	100,67
275	5116	35	100,69
308	5116	35	100,69
Cycles de	Masse de prisme	Variation de masse	Variation de masse
---------------	-----------------	----------------------	----------------------
gel-dégel 	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5256	0	100
30	5 256	0	100
65	5 256	0	100
105	52 56	0	100
140	5256	0	100
170	5256	0	100
205	5256	0	100
240	5256	0	100
275	5256	0	100
308	5256	0	100

Prisme : T 0,3 CP-747-N-S

Prisme : T 0,3 CP-747-N-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5152	0	100,00
30	5155	3	100,06
65	5157	5	100,10
105	5159	7	100,14
140	5160	8	100,16
170	5161	9	100,17
205	5162	10	100,19
240	5163	11	100,21
275	51 64	12	100,23
308	5164	12	100,23

· · .

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5118	0	100
20	5118	0	100
55	5118	0	100
90	5118	0	100
135	5118	0	- 100
160	5118	0	100
195	5118	0	100
230	5118	0	100
270	5118	0	100
305	5118	0	100

Prisme : T 0,3 SF-539-S-S

Prisme : T 0,3 SF-539-S-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5101	0	100,00
20	5116	15	100,29
55	5118	17	100,33
90	5120	19	100,37
135	5121	20	100,39
160	5122	21	100,41
1 95	5122	21	100,41
230	5123	22	100,43
270	5124	23	100,45
305	5125	24	100,47

TABLEAU E.4 – Variation de la masse des prismes témoins (Béton 0,3 SF)

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5119	0	100
20	5119	0	100
55	5119	0	100
90	5119	0	100
135	511 9	0	100
160	5119	0	100
1 95	5119	0	100
230	5119	0	100
270	5119	0	100
305	5119	0	100

Prisme :	Т	0,3	SF-539-N-S
----------	---	-----	------------

Prisme : T 0,3 SF-539-N-N

Cycles de gel-dégel équivalents	Masse de prisme témoin (g)	Variation de masse du prisme témoin (g)	Variation de masse du prisme témoin (%)	
0	5125	0	100,00	
20	5125	0	100,00	
55	5126	1	100,02	
90	5128	3	100,06	
135	5128	3	100,06	
1 6 0	51 29	4	100,08	
195	5129	4	100,08	
230	5130	5	100,10	
270	5131	6	100,12	
305	5131	6	100,12	

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5109	0	100
24	5109	0	100
48	5109	0	100
83	5109	0	100
148	5109	0	100
183	5109	0	100
218	510 9	0	100
253	51 09	0	100
288	5109	0	100
308	51 09	0	100

Prisme : T 0,4 CP-817-S-S

Prisme : T 0,4 CP-817-S-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5117	0	100,00
24	5143	26	100,51
48	5146	29	100,57
83	5149	32	100,63
148	5152	35	100,68
183	5153	36	100,70
218	5154	37	100,72
253	5154	37	100,72
288	5155	38	100,74
308	5156	39	100,76

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5060	0	100
24	5060	0	100
48	5060	0	100
83	5060	0	100
148	5060	0	100
183	5060	0	100
218	5060	0	100
253	5060	0	100
288	5060	0	100
308	5060	0	100

Prisme :	: T	0.4	CP-	-81	7-1	₹-N
----------	-----	-----	-----	-----	-----	-----

Prisme : T 0,4 CP-817-N-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5091	0	100,00
24	5093	2	100,04
48	5095	4	100,08
83	509 7	6	100,12
148	5099	8	100,16
183	5100	9	100,18
218	5100	9	100,18
253	5101	10	100,20
288	5102	11	100,22
308	5103	12	100,24

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5070	0	100
35	5070	0	100
70	5070	0	100
105	5070	0	100
135	5070	0	100
170	5070	0	100
200	5070	0	100
245	5070	0	100
275	5070	0	100
310	5070	0	100

Prisme :	T	0,4	SF-9)76-S-	S
----------	---	-----	------	--------	---

Prisme : T 0,4 SF-976-S-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5037	0	100,00
35	5060	23	100,46
70	5062	25	100,50
105	5064	27	100,54
135	5065	28	100,56
170	5065	28	100,56
200	5066	29	100,58
245	5067	30	100,60
275	5067	30	100,60
310	5067	30	100,60

.

Cycles de	Masse de prisme	Variation de masse	Variation de masse		
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%		
0	5152	0	100		
35	5152	0	100		
70	5152	0	100		
105	5152	0	100		
135	5152	0	100		
170	5152	0	100		
200	5152	0	100		
245	5152	0	100		
275	5152	0	100		
310	5152	0	100		

Prisme : T 0,4 SF-976-N-S

Prisme : T 0,4 SF-976-N-N

Cycles de	Masse de prisme	Variation de masse	Variation de masse
gel-dégel équivalents	témoin (g)	du prisme témoin (g)	du prisme témoin (%)
0	5291	0	100,00
35	5293	2	100,04
70	5294	3	100,06
105	5295	4	100,08
135	5296	5	100,09
170	5296	5	100,09
200	5296	. 5	100,09
245	5297	6	100,11
275	5297	6	100,11
310	5297	6	100,11

ANNEXE F : DEGRÉ DE SATURATION DES BÉTONS DE LA SÉRIE I

Les tableaux F.1 à F.6 présentent les degrés de saturation des bétons de la série I à la fin du mûrissement et à la fin des cycles de gel-dégel.

La procédure du prélèvement des échantillons dans les prismes de gel-dégel est expliquée au paragraphe 4.3.6. L'essai de saturation a été effectué conformément à la norme ASTM C 1202 – 94 : *Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration*. Le degré de saturation a été calculé à partir de la masse humide, de la masse saturée superficiellement sèche et de la masse sèche (Paragraphe 5.4.1).

Béton	:	0.3	СР
	٠	~,~	<u> </u>

Prisme	Échantillon	Mûrissement	M humide (g)	M _{SSS} (g)	M sèche (g)	M dans l'cau (g)	V _{SSS} (l)	d _{sss}	M eau (sable) (g)	M cau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	262,51	263,89	252,16	159,50	0,10	2,53	0,95	0,92	0,47	90
1	2	Scellé	223,32	224,28	214,00	136,22	0,09	2,55	0,80	0,78	0,40	93
	3	Scellé	246,91	249,09	237,22	151,13	0,10	2,54	0,89	0,87	0,44	82
	4	Scellé	322,69	324,81	310,70	196,71	0,13	2,54	1,17	1,13	0,58	86
	1	Eau	297,31	297,59	284,40	180,23	0,12	2,54	1,07	1,04	0,53	102
2	2	Eau	217,32	217,72	207,92	132,04	0,09	2,54	0,78	0,76	0,39	100
2	3	Eau	300,49	300,88	287,14	182,78	0,12	2,55	1,08	1,05	0,53	101
	4	Eau	284,90	285,42	272,22	173,03	0,11	2,54	1,02	1,00	0,51	100

Béton : 0,3 SF

Prisme	Échantillon	Mûrissement	M humide (g)	M _{SSS} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (I)	d _{sss}	M cau (sable) (g)	M eau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	302,81	304,93	290,10	183,05	0,12	2,50	1,09	1,07	0,79	89
	2	Scellé	302,79	304,90	290,19	183,22	0,12	2,51	1,06	1,05	0,77	89
1	3	Scellé	297,52	299,21	284,92	179,93	0,12	2,51	1,05	1,03	0,76	92
_	4	Scellé	310,18	312,47	297,89	188,06	0,12	2,51	1,09	1,08	0,79	87
	1	Eau	301,22	302,23	287,40	181,93	0,12	2,51	1,05	1,04	0,77	98
2	2	Eau	241,88	242,76	231,04	146,57	0,09	2,52	0,85	0,83	0,62	97
2	3	Eau	231,71	232,45	221,39	140,20	0,09	2,52	0,81	0,80	0,59	98
	4	Eau	190,21	190,90	181,33	114,44	0,07	2,50	0,67	0,65	0,48	97

Béton : 0,4 CP

Prisme	Échantillon	Mûrissement	M humide (g)	M _{SSS} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (1)	d _{sss}	M cau (sable) (g)	M cau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	272,71	274,83	261,25	165,60	0,11	2,52	1,00	0,97	0,63	86
1	2	Scellé	257,09	259,44	246,25	155,88	0,10	2,51	0,95	0,92	0,60	84
	3	Scellé	254,72	256,81	243,74	154,32	0,10	2,51	0,94	0,91	0,59	86
	4	Scellé	231,40	233,78	221,31	140,10	0,09	2,50	0,86	0,83	0,54	82
<u> </u>	1	Eau	230,63	230,90	219,29	138,59	0,09	2,50	0,85	0,82	0,53	103
•	2	Eau	240,98	241,21	228,50	143,72	0,10	2,47	0,89	0,87	0,56	103
2	3	Eau	266,80	267,27	254,04	159,88	0,11	2,49	0,99	0,95	0,62	101
	4	Eau	276,64	277,30	263,11	166,12	0,11	2,49	1,02	0,99	0,64	100

Béton : 0,4 SF

Prisme	Échantillon	Mûrissement	M humide (g)	M _{SSS} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (I)	d _{sss}	M cau (sable) (g)	M cau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	242,71	244,77	231,06	145,46	0,10	2,46	0,90	0,89	0,32	85
•	2	Scellé	237,53	238,83	226,69	142,41	0,10	2,48	0,87	0,86	0,31	90
I	3	Scellé	239,51	241,62	229,03	144,18	0,10	2,48	0,88	0,87	0,32	83
	4	Scellé	269,18	271,67	257,12	161,56	0,11	2,47	1,00	0,98	0,36	83
	1	Eau	212,63	212,77	201,43	126,85	0,09	2,48	0,78	0,80	0,28	101
2	2	Eau	211,01	211,32	200,03	126,32	0,09	2,49	0,77	0,76	0,28	100
2	3	Eau	229,52	229,74	217,59	136,93	0,09	2,48	0,84	0,83	0,30	101
	4	Eau	221,55	221,48	210,30	132,81	0,09	2,50	0,80	0,79	0,29	104

TABLEAU F.3 – Degré de saturation à la fin des cycles de gel-dégel (Béton 0,3 CP)

Béton	:	0,3	CP
-------	---	-----	----

Prisme	Échantillon	Mûrissement	Gel-dégel	M humide (g)	M _{SSS} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (I)	d _{SSS}	M eau (sable) (g)	M cau (picrre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
1	1	Scellé	Scellé	246,80	248,40	237,45	150,80	0,10	2,55	0,89	0,86	0,44	87
	2	Scellé	Scellé	212,90	214,30	204,95	130,10	0,08	2,55	0,77	0,75	0,38	86
	3	Scellé	Scellé	223,23	225,70	213,30	133,64	0,09	2,45	0,84	0,82	0,41	80
	4	Scellé	Scellé	275,23	276,71	262,41	165,24	0,11	2,48	1,02	0,99	0,50	92
	1	Scellé	Scellé	277,17	279,45	263,98	165,77	0,11	2,46	1,04	1,01	0,51	86
2	2	Scellé	Scellé	235,68	237,36	224,60	141,12	0,10	2,47	0,88	0,85	0,43	88
2	3	Scellé	Scellé	283,65	285,55	270,19	170,12	0,12	2,47	1,05	1,02	0,52	89
	4	Scellé	Scellé	266,65	268,30	254,57	159,86	0,11	2,47	0,99	0,96	0,49	90
<u></u>	1	Eau	Scellé	230,90	231,25	220,25	140,10	0,09	2,54	0,83	0,81	0,41	101
•	2	Eau	Scellé	274,00	274,75	262,15	166,80	0,11	2,55	0,98	0,96	0,49	97
3	3	Eau	Scellé	230,61	231,02	218,92	137,01	0,09	2,46	0,86	0,83	0,42	100
	4	Eau	Scellé	302,10	303,28	287,97	180,00	0,12	2,46	1,12	1,09	0,55	95
	1	Eau	Scellé	260,48	260,99	247,16	155,63	0,11	2,48	0,96	0,93	0,47	100
4	· 2	Eau	Scellé	263,27	263,77	250,04	157,69	0,11	2,49	0,97	0,94	0,48	100
	3	Eau	Scellé	349,45	349,78	333,55	208,54	0,14	2,48	1,29	1,25	0,64	102
	4	Eau	Scellé	285,32	285,88	271,58	169,90	0,12	2,46	1,06	1,03	0,52	100

TABLEAU F.4 – Degré de saturation à la fin des cycles de gel-dégel (Béton 0,3 SF)

Béton : 0,3 SF

Prisme	Échantillon	Mûrissement	Gel-dégel	M humide (g)	M _{sss} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (l)	d _{SSS}	M eau (sable) (g)	M cau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	Scellé	273,91	275,91	263,39	165,00	0,11	2,49	0,99	0,98	0,72	87
1	2	Scellé	Scellé	278,59	280,03	268,01	168,20	0,11	2,50	1,00	0,98	0,73	92
	3	Scellé	Scellé	209,70	211,52	202,00	127,31	0,08	2,51	0,75	0,74	0,55	83
	1	Scellé	Scellé	201,52	203,49	193,62	122,59	0,08	2,52	0,72	0,71	0,53	82
2	2	Scellé	Scellé	236,00	237,68	226,60	142,33	0,10	2,49	0,85	0,84	0,62	88
2	3	Scellé	Scellé	235,28	236,92	226,30	142,54	0,09	2,51	0,84	0,83	0,61	88
	4	Scellé	Scellé	189,01	190,21	181,17	114,67	0,08	2,52	0,68	0,67	0,49	90
	1	Eau	Scellé	297,35	298,17	285,24	178,52	0,12	2,49	1,07	1,05	0,78	100
3	2	Eau	Scellé	264,84	265,71	254,10	160,11	0,11	2,52	0,95	0,93	0,69	98
	3	Eau	Scellé	180,31	181,13	172,47	108,88	0,07	2,51	0,65	0,64	0,47	95
	1	Eau	Scellé	278,60	279,50	267,04	167,10	0,11	2,49	1,01	0,99	0,73	98
	2	Eau	Scellé	203,49	204,31	195,21	123,52	0,08	2,53	0,72	0,71	0,53	96
4	3	Eau	Scellé	195,03	195,79	186,60	117,47	0,08	2,50	0,70	0,69	0,51	97
	4	Eau	Scellé	292,28	292,90	280,78	176,21	0,12	2,51	1,04	1,03	0,76	101

	TABLEAU F.5 -	Degré de saturation	à la fin des c	ycles de gel-d	égel (Béton 0,4 CP)
--	---------------	---------------------	----------------	----------------	---------------------

Béton : 0,4 CP

Prisme	Échantillon	Mûrissement	Gel-dégel	M humide (g)	M _{SSS} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (l)	d _{SSS}	M cau (sable) (g)	M cau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	Scellé	304,92	306,81	291,31	183,56	0,12	2,49	1,13	1,10	0,71	91
•	2	Scellé	Scellé	265,57	267,69	253,70	160,16	0,11	2,49	0,99	0,96	0,62	87
1	3	Scellé	Scellé	252,48	253,47	240,81	152,20	0,10	2,50	0,93	0,90	0,58	96
	4	Scellé	Scellé	215,20	216,55	205,11	129,82	0,09	2,50	0,80	0,77	0,50	91
	1	Scellé	Scellé	299,64	302,20	286,21	179,91	0,12	2,47	1,12	1,09	0,70	86
•	2	Scellé	Scellé	270,79	273,55	258,94	163,15	0,11	2,48	1,01	0,98	0,63	82
2 	3	Scellé	Scellé	232,22	234,49	222,06	139,02	0,10	2,46	0,88	0,85	0,55	83
	4	Scellé	Scellé	273,38	275,11	261,54	165,07	0,11	2,50	1,01	0,98	0,63	90
	1	Eau	Scellé	239,03	239,56	227,33	143,50	0,10	2,49	0,88	0,85	0,55	100
2	2	Eau	Scellé	264,56	264,92	252,14	159,05	0,11	2,50	0,97	0,94	0,61	102
3	3	Eau	Scellé	241,24	242,04	229,32	144,16	0,10	2,47	0,90	0,87	0,56	98
	4	Eau	Scellé	266,82	267,33	253,60	159,82	0,11	2,49	0,99	0,96	0,62	101
	1	Eau	Scellé	283,82	284,44	270,37	170,87	0,11	2,50	1,04	1,01	0,65	100
	2	Eau	Scellé	282,81	283,39	269,13	169,42	0,11	2,49	1,05	1,01	0,66	101
4	3	Eau	Scellé	289,03	289,40	275,13	172,86	0,12	2,48	1,07	1,04	0,67	103
	4	Eau	Scellé	230,35	230,89	219,55	138,81	0,09	2,51	0,85	0,82	0,53	100

TABLEAU F.6 - Degré de saturation à la fin des cycles de gel-dégel (Béton 0,4 SF)

Béton : 0,4 SF

Prisme	Échantillon	Mûrissement	Gel-dégel	M humide (g)	M _{sss} (g)	M sèche (g)	M dans l'eau (g)	V _{SSS} (I)	dsss	M cau (sable) (g)	M cau (pierre) (g)	M cau (bulles d'air) (g)	Degré de saturation (%)
	1	Scellé	Scellé	291,02	292,67	277,11	174,42	0,12	2,48	1,07	1,06	0,38	8
-	2	Scellé	Scellé	293,99	295,64	280,17	176,72	0,12	2,49	1,08	1,06	0,39	8
-	e.	Scellé	Scellé	279,82	281,97	267,33	168,44	0,11	2,48	1,03	1,01	0,37	85
	4	Scellé	Scellé	256,57	258,30	244,66	154,02	0,10	2,48	0,94	0,93	0,34	88
	1	Scellé	Scellé	295,65	297,96	282,35	177,38	0,12	2,47	1,09	1,08	0,39	85
ç	2	Scellé	Scellé	298,52	300,42	284,28	178,65	0,12	2,47	1,10	1,09	0,40	89
7	ŝ	Scellé	Scellé	310,78	313,51	296,17	186,72	0,13	2,47	1,15	1,13	0,41	84
	4	Scellé	Scellé	339,87	341,52	324,22	204,28	0,14	2,49	1,24	1,23	0,45	92
	1	Eau	Scellé	283,97	284,56	268,72	168,89	0,12	2,46	1,05	1,03	0,38	98
~	7	Eau	Scellé	237,26	237,96	224,92	142,13	0,10	2,48	0,87	0,86	0,31	96
ŋ	e.	Eau	Scellé	295,78	296,31	280,37	176,35	0,12	2,47	1,09	1,07	0,39	8
	4	Eau	Scellé	277,20	277,51	262,81	165,80	0,11	2,48	1,01	1,00	0,36	100
	1	Eau	Scellé	343,33	343,89	325,26	205,19	0,14	2,48	1,26	1,24	0,45	66
-	7	Eau	Scellé	290,31	290,74	275,39	173,46	0,12	2,48	1,06	1,05	0,38	<u>8</u>
t	m	Eau	Scellé	299,88	300,14	284,30	178,97	0,12	2,48	1,10	1,08	0,39	101
	4	Eau	Scellé	272,48	272,84	258,19	163,00	0,11	2,48	1,00	0,98	0,36	100

ANNEXE G : HUMIDITÉ RELATIVE INTERNE DES BÉTONS DE LA SÉRIE I

Les tableaux G.1 et G.2 présentent les humidités relatives internes des bétons de la série I à la fin du mûrissement et à la fin des cycles de gel-dégel

L'humidité relative interne a été mesurée à l'aide d'une sonde Novasina ms1. Cet appareil mesure simultanément l'humidité relative et la température à l'intérieur du béton. Les procédures de mesure dans les prismes scellés et non scellés sont expliquées au paragraphe 4.3.7.

TABLEAU G.1 - Humidité relative interne à la fin du mûrissement

BÉTON: 0,3 CP

		N	Mesure 1		N	Mesure 2		Movemme
Prisme	Mûrissement	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	22,5	94,6	94,6	22,8	95,6	95,7	95
2	Eau	24,4	97,6	97,8	24,5	97,9	98,1	98

BÉTON : 0,3 SF

		N	Mesure 1		N	Mesure 2		Movembe
Prisme	Mûrissement	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	24,2	93,3	93,5	24,1	93,9	94,1	94
2	Eau	22,1	92,8	92,8	22,2	94,4	94,4	94

BÉTON : 0,4 CP

·····	······································	N	Aesure 1		N	Aesure 2		Mayanna
Prisme	Mûrissement	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	21,4	94,3	94,3	21,3	96,3	96,2	95
2	Eau	21,5	96,9	96,9	21,3	97,9	97,8	97

BÉTON : 0,4 SF

		N	Aesure 1		N	Aesure 2		Movembe
Prisme	Mûrissement	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	23,5	91,5	91,6	23,3	94,3	94,4	93
2	Eau	20,8	90,9	90,8	21,0	93,0	92,9	92

TABLEAU G.2 - Humidité relative interne à la fin des cycles de gel-dégel

BÉTON: 0,3 CP

			N	Mesure 1		N	Mesure 2		Moverno
Prisme	Mûrissement	Gel dégel	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	Scellé	23,7	94,2	94,3	-	•	•	06
2	Scellé	Scellé	-	-		23,8	96, 1	96,2	95
3	Eau	Scellé	23,7	97,1	97,2	-		-	08
4	Eau	Scellé	-	-	-	23,7	97,8	97,9	70

BÉTON : 0,3 SF

			N	Mesure 1		N	Aesure 2		Moverne
Prisme	Mûrissement	Gel dégel	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	Scellé	21,4	91,7	91,7	-	-	•	02
2	Scellé	Scellé	-	-	-	22,8	92,4	92,5	92
3	Eau	Scellé	21,5	92,5	92,5	•	-	•	07
4	Eau	Scellé	-	-	•	23,0	<u>94,3</u>	94,4	93

BÉTON: 0,4 CP

			N	Aesure 1		N	Mesure 2		Maurana
Prisme	Mûrissement	Gel dégel	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	Scellé	23,4	92,4	92,5	-	-	-	05
2	Scellé	Scellé	-	•	-	23,2	96,6	96,7	95
3	Eau	Scellé	23,2	98,0	98,1	-	•	•	08
4	Eau	Sc <u>ell</u> é	-	-	-	22,5	96,8	96,8	70

BÉTON : 0,4 SF

			N	Mesure 1		N	Aesure 2		Movenne
Prisme	Mûrissement	Gel dégel	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	Température (°C)	Humidité relative (%)	Humidité relative à 22°C	(H.R.à 22°C) (%)
1	Scellé	Scellé	23,7	92,1	92,2	-	•	•	03
2	Scellé	Sc <u>ell</u> é	-	-	-	24,1	93,3	93,5	93
3	Eau	Scellé	23,8	93,6	93,7	-	-	-	03
4	Eau	Scellé	•	-	•	24,0	92,8	93,0	

ANNEXE H : HUMIDITÉ RELATIVE INTERNE DES BÉTONS DE LA SÉRIE II

Le tableau H.1 présente les humidités relatives internes des bétons de la série II. Les bétons de la série II ont été utilisés pour fabriquer 2 blocs de 240 x 420 x 540 mm. Dans chaque bloc, les mesures ont été effectuées après 3, 7, 14, 28, 91 et 350 jours d'immersion complète sous l'eau. À chaque échéance, nous avons effectué 2 mesures à 50 mm et 2 mesures à 75 mm de profondeur. La procédure de mesure est expliquée au paragraphe 4.3.7.

TABLEAU H.1 - Humidité relative interne dans les blocs

BÉTON : 0,3 CP bloc

		Profondeur 50 i		Profondeur 75 mm										
Temps (jours)	Mesure 1			Mesure 2			Movenne	Mesure 1			Mesure 2			Mouenne
	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	(H.R.% & 22 °C) (%)	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	(H.R.% à 22 °C) (%)
3	23,1	96,9	97,0	23,1	97,7	97,8	97	22,7	94,4	94,5	22,6	95,7	95,7	95
7	21,3	90,2	90,1	21,2	91,0	90,9	91	21,4	88,3	88,3	21,3	89,0	88,9	89
14	22,7	90,3	90,4	22,7	90,2	90,3	90	22,6	88,3	88,3	22,8	89,1	89,2	89
28	20,4	89,8	89,7	20,8	89,5	89,4	90	20,8	88,7	88,6	20,7	89,1	89,0	89
91	18,1	88,8	88,5	17,8	89,2	88,9	89	17,7	89,0	88,7	17,5	89,2	88,8	89
350	20,5	88,6	88,5	20,2	88,9	88,8	89	20,6	88,4	88,3	20,5	88,7	88,6	88

BÉTON : 0,3 SF bloc

				Profondeur 50	mm			Profondeur 75 mm							
Temps (jours)	Mesure I			Mesure 2				Mesure 1			Mesure 2			-	
	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	Moyenne (H.R.% à 22 °C) (%)	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	Température (°C)	Humidité relative (%)	Humidité relative à 22 °C	Moyenne (H.R.% à 22 °C) (%)	
3	16,5	93,3	92,9	16,4	93,0	92,6	93	16,8	93,4	93,0	16,7	92,3	91,9	92	
7	19,7	91,5	91,3	19,5	92,1	91,9	92	19,7	91,5	91,3	19,4	91,6	91,4	91	
14	22,9	89,5	89,6	23,2	88,5	88,6	89	23,1	88,8	88,9	22,9	88,1	88,2	89	
28	21,3	87,2	87,1	21,2	89,5	89,4	88	21,1	87,2	87,1	21,0	89,6	89,5	88	
91	17,2	88,2	87,8	17,6	88,6	88,2	88	16,9	88,1	87,7	17,2	88,7	88,3	88	
350	20,2	88,1	88,0	20,4	87,9	87,8	88	21,3	87,9	87,8	21,4	87,8	87,8	88	