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UNIVERSITÉ DE SHERBROOKE
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Résumé

Nous étudions dans cette thèse plusieurs propriétés du gaz d’électrons bidimensionnel

(GE2D) dans le graphène et la bicouche de graphène (BG). Nous commençons par étudier

la nature des excitations à une particule du GE2D dans le graphène près des facteurs de

remplissage entiers dans les niveaux de Landau N �= 0. Nous utilisons une approche de

type Hartree-Fock (HF) pour comparer l’énergie de l’excitation d’une paire électron-trou

à celle d’une paire skyrmion (SK)-antiskyrmion (ASK). Dans le graphène, les excitations

SK et ASK sont des excitations chargées avec une texture de spin et/ou de pseudospin de

vallée qui est quantifiée topologiquement. Nos calculs montrent que les paires SK-ASK

sont les excitations chargées de plus basse énergie jusqu’au niveau de Landau |N | = 3.

Notre approche permet en plus de calculer le domaine de couplage Zeeman pour lequel

les paires SK-ASK sont les excitations de plus basse énergie et de déterminer comment

l’énergie de ces paires est modifiée par les corrections d’écrantage.

Le diagramme de phase du GE2D dans la bicouche de graphène a fait l’objet d’intenses

recherches théoriques et expérimentales [8, 13, 15, 16], mais jusqu’à maintenant, seuls les

états uniformes ont été considérés. Nous adaptons notre approche HF à l’étude des

états non uniformes pour montrer que le GE2D dans la BG à remplissage ν = −1 dans

le niveau de Landau N = 0 subit une série de transitions de phase lorsqu’un champ

électrique perpendiculaire à la BG est appliqué. Nous étudions tout particulièrement les

phases comportant une texture de pseudospin orbital soit un cristal de skyrmions et une

phase spirale. Nous calculons les modes collectifs de ces phases ainsi que leur absorp-

tion électromagnétique. Nous poursuivons ensuite avec une étude des phases cristallines

autour de certains remplissages entiers dans la BG.

Le GE2D dans la bicouche de graphène a principalement été étudié dans le niveau

de Landau N = 0. Comme dernier problème, nous étudions le diagramme de phase

lorsqu’un nombre entier de niveaux de Landau est occupé dans les niveaux supérieurs
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Résumé v

|N | > 0. Alors que l’état fondamental du GE2D dans le graphène pour ces mêmes niveaux

est un ferroaimant de Hall quantique (FHQ) avec une symétrie SU(2) pour le spin (en

l’absence de couplage Zeeman) et le pseudospin de vallée, le GE2D dans la BG a plutôt

un comportement FHQ de type Ising avec une symétrie Z2 à champ électrique nul. Cette

différence de comportement a une grande influence sur la nature des transitions de phase

possibles ainsi que sur celle des excitations topologiques.



Abstract

In this thesis, we study several properties of the two-dimensional electron gas (2DEG)

in graphene and bilayer graphene. We first study the nature of the single-particle exci-

tations in graphene near integer filling factors in Landau levels (LLs) N �= 0. We use

a Hartree-Fock approach to compare the energy of an electron-hole excitation pair with

that of a Skyrmion-antiskyrmion pair. In graphene, Skyrmions are charged excitations

with a topological quantized spin and/or valley pseudo-spin texture. We give the range

of Zeeman coupling for which Skyrmion-antiskyrmion has the lowest energy up to LL

N = 3. Then we discuss how screening corrections modifies these results.

The phase diagram of the 2DEG in bilayer graphene had been studied previously by a

number of authors [8,13,15,16] but only uniform states had been considered. Extending

the Hartree-Fock approach to non-uniform states, we show that at filling factor ν = −1
in LL N = 0, the 2DEG goes through a series of phase transitions as the bias from an ex-

ternal electric field between two layers is increased. We study a crystal phase with orbital

SK textures and a spiral state with the orbital pseudospin rotating in space. We compute

the collective mode of these phases and their signatures in electromagnetic absorption

experiments. We finally extend the Hartree-Fock approach to study the crystal states

with valley or orbital textures near integer filling factors. The research on the 2DEG in

bilayer graphene has been focussed almost exclusively in LL N = 0. As our last problem,

we study the phase diagram at quarter and half fillings of the quartet of states in LLs

|N | > 0. While the ground state of the 2DEG in graphene in |N | > 0 is a valley and spin

quantum Hall ferromagnet with SU(2) symmetry in the absence of Zeeman coupling, the

ground state in bilayer graphene is an Ising quantum Hall ferromagnet with a Z2 valley

symmetry at zero bias. We note that this change has important consequences on the

nature of the transport properties and the single-particle excitations at integer fillings.
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Introduction

Graphene, isolated in 2004 [1], is almost an exact 2-dimensional (2D) system, although

there are small ripples on its surface to avoid the collapse of the 2D lattice due to Mermin-

Wagner theorem [2]. In this thesis, the third dimension in the system is neglected, so

that the carbon atoms form a 2D honeycomb structure and each carbon atom has three

σ bonds linking to its neighbors. The last electron in a carbon atom forms a π bond

which allows electron to hop between adjacent sites.

In the tight-binding approximation, we only consider electron hopping between the

nearest neighbor sites. It then follows that electrons in graphene must be described by

the massless Dirac equation and have relativistic properties. The wave function of an

electron is a two-component spinor
(

α β
)T

in the basis |A〉, |B〉 of the two sublattices

of the honeycomb lattice. The electron has chirality since the direction of sublattice

pseudo-spin (the angle between the two complex numbers α and β) must be parallel or

anti-parallel to its momentum. So the electron gas in graphene is a chiral 2-dimensional

electron gas (C2DEG). The chirality plays an important role in the transport properties

of graphene [3]. Moreover, the large mobility of electrons make it possible to observe the

quantum Hall effect in graphene [4].

In the presence of a magnetic field, the conduction and valence bands of the C2DEG in

graphene are quantized into a series of Landau levels N = 0,±1,±2 . . .. In each Landau

level (LL), there are four levels because an electron is described by its valley and spin

indices. The quantum Hall effect can be observed [5], at room temperature [6] because

of the large LL gap and the high electronic mobility. The Hall conductivity is quantized

as σxy = 4(N +1/2) e
2

h
[8]. This is different from the quantization σ = 2N e2

h
measured in

a semiconductor 2-dimensional electron gas (2DEG). The factor 4 comes from the four

degeneracy of a LL. In this thesis, we concentrate on the transport properties of graphene

in the quantum Hall regions.

1
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We study three aspects of graphene and bilayer graphene (BLG):

1) The quasi-particles and topological excitations with spin and/or valley

textures in higher LL of graphene at finite Zeeman coupling;

2)A variety of non-uniform states of the C2DEG in BLG near/at filling factors

ν = −1, 3 of LL N = 0 where the “orbital” pseudo-spin (a concept we will

define later) rotates in space;

3) The quasi-particles and topological excitations with valley and/or spin

texture in higher LLs of BLG and the phase diagram of the 2DEG at integer

fillings of these LLs.

Thus, our thesis is concerned with the study of various kinds of topological excitations

where the texture is that of spin, valley pseudo-spin, or “orbital” pseudo-spin.

Skyrmion excitations (part 1 above) in graphene has been studied before but only at

zero Zeeman coupling [9] or in the form of crystal (skyrmion crystal [38]). Extending the

calculation to finite Zeeman coupling requires a new technique.

The phase diagram of the 2DEG for N = 0 is the subject of intense research, both

theoretical and experimental [8,15,16]. However, our study of the modulated states (part

2) is completely new.

The phase diagram of the 2DEG and its excitations in |N | > 0 of BLG (part 3) have

not been studied before.

The charged excitations in a quantum Hall system are related to the transport gap

Δtrans. Basically, the charged excitation states are obtained by removing or adding one

charge from the ground state. The transport gap is obtained by summing the excitation

energies of two infinitely separated charged excitations, one consisting in removing one

charge and the other one consisting in adding one charge. The transport experiments

measure the resistivity Rxx ∝ e−Δtrans/(kBT ), where kB is the Boltzman constant and T

is the temperature. Because different types of excitations have different energies, the

nature of the charged excitations can be explored by measuring the transport gap.

The simplest case of charged excitation is when an electron or a hole is added to

the ground state. More complex charged excitations consist of electron or hole carrying

a spin (as we will explain later) or a pseudo-spin texture. An example of textured

excitation is a skyrmion which is a solution of the nonlinear σ model (NLσM) which is

derived by considering only the Fock interaction in the Hamiltonian. The skyrmion is a

topological soliton with a texture that carries a topological charge. In the quantum Hall
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region, this topological charge is related to the electric charge. The skyrmion is thus a

charged excitation, and contains vortex-like spin or pseudo-spin texture. The (pseudo-

)spin texture of a skyrmion is such that neighboring spins are almost parallel. This

decreases the Coulomb energy and may make the skyrmion energetically more favorable

than the bare quasi-particle excitation. To compute the skyrmion energy, we may use

the NLσM.

At some integer filling factors, the ground state of the C2DEG has all the spin or

pseudo-spin aligned. This state is called a quantum Hall ferromagnet (QHF). The QHF,

essentially, is induced by the nature of the exchange interaction of spin or psuedo-spin.

There is no exchange interaction between different spins. So the spin must be polarized

and be parallel to each other to minimum the exchange energy. In the lowest order of

approximation, the excitations of this ground state can be described by the NLσM when

the spin S or pseudo-spin P is mapped into a classical field m.

The Lagrangian of the Nonlinear σ model (NLσM) [27] is written as:

LNLσM =
ρs
2

∫
dr∂μm·∂μm, (1)

where ρs is called spin stiffness and m is a unitary field, |m|2 = 1. The spin stiffness

characterizes the strength to tilde the spin. Hence, the energy of a skyrmion must be

related to this quantity.

The field m(r) could be the real spin or the valley pseudo-spin field in graphene.

The static solutions of the Euler-Lagrangian equation in Eq. (1) are skyrmion and anti-

skyrmion which are topological solitons. The skyrmion field can be given by

mx (r, θ) =
2kQrQ

r2Q + k2q
cos (Qθ) , (2)

my (r, θ) = ± 2kQrQ

r2Q + k2Q
sin (Qθ) , (3)

mz (r, θ) =
r2Q − k2Q

r2Q + k2Q
, (4)

where k is related to the radius of the skyrmion, ± represent skyrmion and antiskyrmion

respectively, and Q is the topological charge which is an integer defined by [27, 28] the

Pontryagin index,

Q =
1

8π

∫
drεabcεijma∂imb∂jmc, (5)
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where ε is the Levi-Civita symbol. Details can be found in Refs. [27] and [29]. The spin

textures of a skyrmion and an anti-skyrmion can be found in Fig. 1. The excitation

energy of skyrmion in the NLσM is given by [24, 27]

ΔNLσM = 4πρs. (6)

In the NLσM of a classical field m, the radius of a skyrmion can be arbitrary. But

in an electron gas system, the size of a skyrmion is controlled by the classical Coulomb

interaction and the Zeeman coupling. The Coulomb repulsive interaction makes the size

of the skyrmion as large as possible. On the other hand, the Zeeman energy prevents the

spin flipping. Spins are flipped as few as possible at finite Zeeman coupling.

The NLσM only includes partly the Fock interaction of the electron gas. When

the Zeeman coupling is zero, the Hartree interaction can be cancelled by the positive

background and the skyrmion is infinitely large, then the NLσM can deal with the

skyrmion very well. At finite Zeeman coupling, the skyrmion is stabilized by the bal-

ance of Hartree, Fock and Zeeman energies. Then it must be described by the mi-

croscopic wavefunction. For example, a topological charge 1 skyrmion state can be

written as |SK〉 = c†1,0
∏

m=0(umc
†
0,m + vm+1c

†
1,m+1)|0〉, and the anti-skyrmion state as

|ASK〉 = ∏
m=1(umc

†
0,m + vm−1c

†
1,m−1)|0〉, where c†i,m is the creation operator of electron

in state i (i = 0, 1 represents two spins or two pseudo-spins) at angular momenta m, and

|0〉 is the vacuum state. The ground state is supposed to be |GS〉 = ∏
m=0 c

†
0,m|0〉. The

factors |um|2 and |vm|2 represent the electron occupation of the different angular momen-

tum states. We can clearly see that the added charge (electron or hole) flips electrons

to level 1, if vm �= 0. If we set vm = 0, the skyrmion state becomes just a usual electron

excitation. In Fig. 1, it is shown that the spin projected to the x − y plane rotates by

2π around the center of the skyrmion or the anti-skyrmion.

The skyrmion requires more than one spin flip (vm �= 0) to create the spin texture

(rotation of the spin), in comparison with the quasi-particle state where only one spin

is flipped. The spin texture of a skyrmion is also associated with the larger density

modulation than that in a usual electron excitation, since the size of the skyrmion is

related to the number of flipped spins. At zero Zeeman coupling, the size of a skyrmion

is infinite, when the Coulomb repulsion is taken into account. At finite Zeeman coupling

the size of a spin skyrmion (SSK) is restricted since a Zeeman energy must be paid when

each spin is flipped. Hence, an optimal size of a SSK is obtained by balancing of the
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Figure 1: (a) The spin texture projected to the x− y plane of a skyrmion, and (b) the
density profile δn = nskyrmion−ngroundstate of a skyrmion. (c) The spin texture projected
to the x − y plane of an anti-skyrmion and (d) the density profile δn = nantiskyrmion −
ngroundstate of an antiskyrmion. The color contours represent Sz.
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Coulomb and Zeeman energies. The textured excitations obtained when considering the

Zeeman and Coulomb interactions are no longer exact skyrmions. Nevertheless, in accord

with the literature, we will continue to refer to them as “skyrmions”.

Spin skyrmions were first detected by a measurement of the Knight shift which is

related to the magnetization of the 2DEG [10]. Moreover, the transport gap is due

to the lowest energy excitation of the system at a given temperature. The energy of

skyrmions and quasi-particles as a function of the Zeeman coupling are not the same.

So the transport gap can be measured at different Zeeman energies to see if the charge

excitations are skyrmions or quasi-particles.

In graphene, the valley degree of freedom makes possible to study a perfect valley

skyrmion (VSK), since there is no energy gap between the two valleys. For a VSK [11],

the valley pseudo-spin field instead of real spin characterizes the nature of the topological

soliton. We show in this thesis that the VSK can exist at 1/4 and 3/4 fillings up to Landau

level N = 3 [9], while the SSK exists only at ν = 1 in the lowest Landau level (LLL) in

a conventional semiconductor 2DEG.

We first compute the skyrmion energy by using the Hartree-Fock approximation for

the Coulomb interaction. However, to better compare our studies of VSK at 1/4 and 3/4

fillings and the SSK at 1/2 filling with experiment [12], we also consider the LL screening

which plays an important role to decrease the Coulomb interaction strength. Essentially,

the screening is from the virtual transitions between full filled LLs and the empty (or

partially filled) LLs. The LL gap which is given by the cyclotron frequency �ωc is of the

order of 0.01eV and is much smaller than in a typical insulator. Hence, the Landau level

screening is important.

The other system studied in this thesis is the Bernal stacked BLG. It contains richer

physics than monolayer graphene, since it is possible to open a gap between two valleys

by applying an external electric field. A unique property of BLG is that there are

8 degenerate levels in N = 0 due to the presence of an extra “orbital” degeneracy

(that will be explained in the thesis) while the other LLs are four-time degenerate. In

experiments, this is revealed by a jump in the quantized Hall conductivity σxy from

−4e2/h to +4e2/h.The ground states of the 2DEG in BLG depend on the electric bias

ΔB, the magnetic field B, the Zeeman coupling ΔZ and the filling factors. A possible

phase diagram at integer filling is presented in Ref. [13]. However, the ground state at

some filling factors such as ν = 0 is still the subject of controversy [8, 15, 16].

We know that a quantum Hall ferromagnet, in which all the electrons in the ground
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state share the same spin or pseudo-spin, in a conventional semiconductor 2DEG or in

the C2DEG in graphene supports skyrmion excitations. In graphene bilayer, the orbital

degree of freedom may also lead to orbital skyrmions. We have not found a way to

compute the energy of an isolated orbital skyrmion for reason that will be explained in

the thesis. We have thus decide to study the orbital skyrmion crystal phases instead.

At non integer filling factors, the excitations such as electron, hole or skyrmions can

crystallize to form an electron or hole Wigner crystal or a skyrmion crystal. We study

several crystal phases associated with valley and/or orbital pseudo-spin texture near

integer filling factors. We find bubble orbital skyrmion crystals with charge q = −e or

−2e per site at ν = 1.2, 3.2, which are analogous to the bubble Wigner crystals existing

in a conventional 2DEG in higher LLs [66]. The reason is intuitive: the orbital n = 1 in

graphene bilayer is like the LL N = 1 in a conventional 2DEG. In a conventional 2DEG,

the bubble crystals with charge up to q = −(N +1)e per site exist in Landau level N . So

the orbital skyrmion crystals in graphene bilayer support two types of bubbles: q = −e
and −2e per site.

Meron, essentially, is half of a skyrmion. It has half-integer topological charge and

electric charge. The spin texture of a meron is also vortex-like similar to a skyrmion,

but the z component of the spin is zero at infinity. We find a checkerboard valley meron

crystal at ν = 2.2, which can be treated as the crystallization of the isolated VSK in

orbital n = 0 plus another VSK crystal in orbital n = 1 [14]. At zero and small bias

ΔB between the two valleys, one skyrmion splits into two merons. So the VSK crystal

evolves to a valley meron crystal.

In order to link our numerical studies of crystals to the real experiments, the local

density of states (LDOS) is also calculated, since the LDOS can be related to scanning

tunneling microscopy experiments.

At integer filling factors ν = −1, 3, the Hamiltonian of the 2DEG contains a Dzyaloshinskii-

Moriya (DM) interaction between the orbital pseudo-spin. The DM interaction is able

to induce some non uniform phases in the ground state. We derive the phase diagram

with respect to the bias, which contains the uniform liquid phase, the orbital skyrmion

crystal phase, and the helical phase. In the last two phases, the orbital pseudo-spin

is modulated in space. We describe the physics of these phases and in particular the

competition between the Heisenberg exchange and the DM interactions.

To characterize the phase transition in the phase diagram, we study the density

of states, collective modes and optical absorption. The collective modes of the crystal
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phases show a skyrmion-like pseudo-spin x−y mode gapped by the DM interaction. And

the absorption seems isotropic in the crystal phase. With the increase of the bias, the

absorption peaks vary when the phase transition occurs, which might serve as a criterion

to observe the phase transitions experimentally.

In higher LLs N > 0 in graphene bilayer, there are four-level degenerated (2-spin by

2-valley), which is the same as in monolayer graphene. However, the eigenvectors for

each LL depend on the external bias ΔB. This makes the system interesting and very

different from other 2-dimensional systems. By comparison with monolayer graphene, the

single-particle excitations in higher LLs in graphene bilayer are even more interesting,

since the valley gap can be tuned by an electric field perpendicular to the sample.

We first study the ground states in LLs N = 1, 2, 3. The spin is always polarized at

1/4 and 3/4 fillings of a LL, so that we can neglect spin at these fillings. Our calculations

show that all the electrons must be in only one valley and neither valley nor spin coherence

exists. Particularly, at zero bias, the ground state selects one valley randomly, and the

other valley is completely empty. Moreover, the two valleys are absolutely equivalent

at zero bias. Hence, we conclude that the symmetry-broken ground state at 1/4 or 3/4

fillings in LLs n > 0 has a Z2 symmetry. It is called an Ising valley quantum Hall

ferromagnet (VQHF).

In such an Ising VQHF [79–82], the topological excitation of the VQHF are domain

walls (as well as valley skyrmions). A domain wall separates two areas with opposite

valley pseudo-spin polarizations. The domain walls increase the entropy of the system to

lower the free energy at finite temperature. According to a theory presented in Ref. [80],

along the center of a domain wall, a 1D channel where charge diffuses is formed. At

very low temperature, the domain wall soup disappears or is very dilute. The charge

diffusion in the 1D channel in a domain wall can not dissipate the transport charge.

When the temperature is sufficiently high (below a critical temperature), the density of

the domain wall soup is high enough, so that the domain walls could connect with each

other and dissipate the transport charge. Above the critical temperature, the domain

wall is as large as the size of the sample, so that the domain wall does not affect to the

charge transport. This charge in dissipation gives rise to a resistance spike in Rxx that

is detectable experimentally [81, 82]. In graphene bilayer, such resistance spikes are also

observed [77].

The Ising behavior of the ground state at 1/4 and 3/4 fillings does not only exists in

graphene bilayer. We demonstrate that it also exists at 1/4 and 3/4 fillings in any LL



Introduction 9

|N | > 0 in chirally-stacked multi-layer graphene. Consequently, we predict that there is

also a resistance spike in Rxx in these multi-layer graphene systems.

The phase diagram is richer at 1/2 filling of a LL in BLG. Both experiment and

our numerical calculations indicate phase transitions between a spin-polarized state and

a valley-polarized state when the bias is changed. At zero bias, the ground state is

a spin-polarized state in which the |K, ↑〉 and |K ′, ↑〉 are full and the other two spin-

down levels are empty (we suppose the magnetic field points up). In the spin language,

SZ = 1/2(〈ρK,↑〉 + 〈ρK′,↑〉 − 〈ρK,↓〉 − 〈ρK,↓〉) = 1/2, where 〈ρi,j〉 represents the electron

distribution in the level with valley index i and spin index j. At finite bias, the ground

state will be converted to a valley pseudo-spin polarized state where PZ = 1/2(〈ρK,↑〉 +
〈ρK,↓〉−〈ρK′,↑〉−〈ρK′,↓〉) = ±1/2 (the ± depends on the magnetic field, dielectric constant

and LL index). Therefore, the C2DEG in graphene bilayer is a system where the (pseudo-

)spin can be controlled by external electric field. The reason why these phase transitions

occur can be simply explained by a minimization of the total energy.

Once the ground states are determined, we can study the charged excitations at 1/4

or 3/4 filling of a LL. The NLσM for spins in which we assume that no valley coherence

exists is also applied to figure out that the SSK exists up to LL N = 4 in the absence of

the Zeeman coupling. However, this NLσM is not enough to study the whole four levels.

Moreover, the assumption of no valley coherence may be questioned. In such a 4−level
system, we must use the microscopic Hamiltonian to study a general CP 3 skyrmion [56]

which mixes all the four levels and contains both spin and valley coherence in principle.

In the double quantum well, which is similar to the graphene bilayer and also has four

levels in a LL (2 spins by 2 layers), the CP 3 skyrmion with both the spin and the layer

pseudo-spin textures mixes all four levels in a LL. In general, we use the microscopic

Hamiltonian to calculate the CP 3 skyrmion at finite Zeeman coupling and zero bias.

Unexpectedly, the CP 3 skyrmion degenerates to a SSK without valley coherence at weak

Zeeman coupling and to a VSK (only for N = 1) without spin coherence at strong

Zeeman coupling, and there is no intermediate region between the SSK and the VSK

containing the spin-valley mixed texture. For N ≥ 2, the CP 3 skyrmion degenerates to

a quasi-particle when the Zeeman coupling is large. This supports our assumption that

we can neglect valley coherence in the NLσM for spins at small Zeeman coupling.

The VSK can not be obtained by the NLσM for valley pseudo-spin, since the ground

state has a Z2 symmetry for the two valleys. The spinor that describes an electronic

state in BLG mixes different LL orbitals (see Eq. (1.33) in Chapter 1). It is thus, in
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some sense, surprising to find skyrmion excitation in BLG since it has been shown [62]

that inter-LL skyrmions (charged excitation in a Ising QHF system where two LLs cross

each other) are not the lowest-energy excitations.

To refine our calculation of the phase diagram in LL |N | > 0 of BLG, we consider the

effect of screening. The Ising behavior of the ground states at 1/4 and 3/4 fillings of a

LL does not changed. At 1/2 filling of the LLs N = ±1,±2,±3, we compare the critical

biases of the phase transitions calculated with and without screening. The critical bias

with screening correction can explain the experiment qualitatively for |N | > 0. We also

study how the screening changes the SSK in the NLσM.

Some of our works have been published. Chapter 2 is published in Ref. [29]. The

works in Chapter 3 have been published in Refs. [59] and [70]. The papers for Chapter

4 are in preparation.

The thesis is organized as follow: In Chapter 1, the basic concepts and formalism

related to the topics of this thesis are presented. Then we introduce the calculations

of charged excitations in monolayer graphene in Chapter 2. The excitation energies of

skyrmions and quasi-particles with Zeeman coupling and screening correction are cal-

culated in order to compare with the experimental results. In Chapter 3, we study the

pseudo-spin textured crystal phases in the LLL of graphene bilayer, as well as the density

of states, collective modes and electromagnetic absorptions for experimental proposals.

In the last chapter, both the ground states and the charged excitations in graphene

bilayer in Landau level N = 1, 2, 3 are studied.



Chapter 1

Models and methods

Some basic concepts, models, and the theoretical methods which will be used widely

in the thesis are introduced in this chapter.

1.1 Tight-binding model in monolayer graphene

In this section, we introduce the lattice structure of graphene and derive its band

structure in the tight-binding approximation. For a general review of the properties of

graphene, see, for example, Refs. [8, 15, 16].

Graphene has a 2-dimensional honeycomb lattice of carbon atoms as shown in Fig.

1.1. There are two carbon atoms per unit cell, which we denote by A (the red dots) and

B (the blue dots) in Fig. 1.1. The set of all red or blue dot forms a triangular lattice, of

which the basis vectors a1 and a2 are in the plane xOy. We choose the atoms A as our

triangular lattice whose basis vectors are:

a1 = a0

(
1

2
,−
√
3

2

)
, (1.1a)

a2 = a0 (1, 0) , (1.1b)

where a0 =
√
3c, and c = 1.42Å is the distance between two nearest-neighbor atoms.

δ1 = (1/2a0, 1/(2
√
3)a0), δ2 = (−1/2a0, 1/(2

√
3)a0), delta3 = 0,−a0. The reciprocal

11
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Figure 1.1: Graphene crystal lattice. The carbon atoms can be separated into two kinds
of atoms in a unit cell. Red dots are classified as atoms A and blue dots are classified as
atoms B. Each red atom is linked to its three nearest neighbors by the vectors δ1, δ2, δ3.

lattice vectors are given by:

b1 =
2π

a0

(
1,

1√
3

)
, (1.2a)

b2 =
2π

a0

(
0,− 2√

3

)
, (1.2b)

which is also a regular hexagonal lattice as shown in Fig. 1.2. The first Brillouin zone

is the smaller regular hexagon plotted in Fig. 1.2. In the first Brillouin zone, there are

two inequivalent points respectively, K and K ′. Each K or K ′ point can be translated to

other equivalent K or K ′ by a combination of the basis vectors of the reciprocal lattice.

We choose:

K =
2π

a0

(
−2

3
, 0

)
, (1.3a)

K′ =
2π

a0

(
+
2

3
, 0

)
. (1.3b)

Each carbon atom has 4 valence electrons. In graphene, three sp2 electrons bind co-

valently with the three nearest neighbor C atoms to form three σ bonds. The last valence

electron, in the pz orbital, makes π bond with other pz electrons. These electrons are less
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x

y

O

K

K

K

K’

K’

K’

Figure 1.2: Reciprocal lattice with lattice vectors {b1,b2} and the first Brillouin zone
represented by the red regular hexagon.

localized than the other three sp2 electrons, and are responsible for the conductivity of

graphene. In the simplest model of graphene, we only consider the hopping of π electrons

between nearest-neighbor atoms in the tight binding approximation. In this case, we can

write the tight-binding hamiltonian as:

H = −t
∑
i,j

(
a†ibj + h.c.

)
, (1.4)

where t ≈ 2.8 eV is the coupling constant between the two nearest-neighbor C atoms in

the pz orbital. The value of the second and third nearest neighbors coupling parameters

are 0.1eV and 0.07eV respectively. The are very small in comparison with the first

nearest-neighbor hopping. The symbol ai denotes the annihilation operator of an electron

on site A on lattice site i and bj denotes the annihilation operator of an electron on site

B at position j. Actually, a and b are fermion operators so that they satisfy the anti-

commutation relation, {
c†i , dj

}
= δc,dδi,j (1.5)

all others = 0, (1.6)

where c and d represent a or b. To analyze the system easily, we define the Fourier
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transformation of a and b:

cRC
=

1√
N

∑
k

eik·RCck, (1.7)

where N is the total number of crystal sites, ck is the annihilation operator in momentum

space, RC represents RA for c = a, and RB for c = b. RA(B) is the coordinate vector for

site A(B). We have {
c†k, ck′

}
= δk,k′ , (1.8)

all others = 0. (1.9)

By a Fourier transformation, the tight binding hamiltonian can be written as,

H =
∑
k

(
a†k b†k

)( 0 Λ (k)

Λ∗ (k) 0

)(
ak

bk

)
, (1.10)

where Λ (k) = −t∑δ e
ik·δ.

Diagonalizing the Hamiltonian in Eq. (1.10), we obtain the band structure,

E(k) = ±t
√√√√1 + 4 cos2

(
kxa

2

)
+ 4 cos

(
kx
2
a

)
cos

(√
3

2
kya

)
. (1.11)

This is represented in Fig. 1.3(a). For pristine graphene, the Fermi level is at E = 0,

the neutrality point. When the electronic doping is small and the Fermi level is close

to the neutrality point, we can consider that the electronic properties are determined

by electrons in the six valleys K,K ′ where the dispersion is linear in momentum space.

That is

E(K(′) + k) ≈ ±
√
3

2
t|k|a0, (|k| � |K|) , (1.12)

where + is for the conduction band and − is for the valence band. This approximation

is called the continuum model. In momentum space, the band structure is almost linear

in momentum k near the six valley points at the corners of the Brillouin zone. We call

the 6 cones at K and K ′ points the Dirac’s cones because the dispersion relation near

K and K ′ is that of a relativistic E =
√
p2c2 +m2

0c
4 → pc massless particle. The group
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Figure 1.3: (a) The dispersion relation of the energy bands of graphene. There are 6
valleys in the first Brillouin zone. (b) Near each valley, there is a Dirac cone, in which
the dispersion relation is linear. The momenta are in units of 1/a0 and the energy is in
units of eV.

velocity at points K or K ′ is given by

vF =
1

�

∂E

∂|k| =
√
3

2�
ta0. (1.13)

It is about 1 × 106 m/s, i.e. 300 times smaller than the velocity of light. We can write

the energy in terms of vF and |k| as E(k) = ±�vF |k|.
Around points K and K′, the 2× 2 matrix in Eq. (1.10) becomes

HK (k) = −
√
3

2
a0t

(
0 ke−iθ

keiθ 0

)
= −�vF

(
0 ke−iθ

keiθ 0

)
, (1.14a)

HK′ (k) = +

√
3

2
a0t

(
0 keiθ

ke−iθ 0

)
= +�vF

(
0 keiθ

ke−iθ 0

)
, (1.14b)

where θ = arctan py
px
. Hence, the total Hilbert space of the system is K

⊕
K′. For the

isolated K and K ′ valleys, the eigenfunctions are two-component spinors in the basis
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{|A〉, |B〉},

φK =
1√
2

(
1

∓eiθ

)
, (1.15)

φK′ =
1√
2

(
1

±e−iθ

)
, (1.16)

where the upper signs in both ± and ∓ are for the conduction band and the lower

signs are for the valence band. The total wavefunctions including the two valleys are

4-component spinors.

In a pseudo-spin representation where site |A〉 → | ↑〉 and |A〉 → | ↓〉, the direction

of the sublattice pseudo-spin in Eqs. (1.15) and (1.16) is either parallel or antiparallel to

the momentum of the electron. This is the property of chirality. The electrons are thus

chiral fermions in graphene, and we will refer to the 2DEG as the chiral 2DEG (C2DEG)

in graphene.

If we introduce an external perpendicular magnetic field B = Bẑ, the canonical

momentum operator p must be replaced by the covariant momentum p + eA where

q = −e is the electron charge, and A is the vector potential of the magnetic field B.

The vector potential can be chosen arbitrarily. However, for convenience, we choose the

Landau gauge A = (0, Bx, 0). For the single-particle excitations, which have a circular

symmetry, we need to study the Hamiltonian in symmetric gauge A = (−1
2
By, 1

2
Bx, 0).

It is well known that there are Landau levels with negative kinetic energies in graphene,

unlike in a normal 2DEG. The conduction band of graphene is quantized into a series of

positive Landau levels, while the valence band gives a series of negative Landau levels.

At the Dirac point where the two bands touch each other, there is a LL with zero kinetic

energy.

The solutions of the Hamiltonian of Eq. (1.14) in a magnetic field are the Landau

levels and the associated wave functions. They are well-known and can be easily found

in the literature [8, 15, 16]. In Landau gauge, the kinetic energies of Landau level N in

the K valley is given by

EK
N = sgn(N)

√
2�vF
�

√
|N |. (1.17)

The Hamiltonian is two-dimensional, so that there are two quantum numbers for the wave

functions. One is the Landau level N, and the other is the guiding center X. Electrons

do a cyclotron motion in a magnetic field, X is the center of this cyclotron oscillation.
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The wave function spinor in the {|A〉, |B〉} basis is then given by

φK
N,X (r) =

(
0

h0 (r)

)
δN,0 +

1− δN,0√
2

(
−sgn (N)h|N |−1,X (r)

h|N |,X (r)

)
. (1.18)

In the K ′ valley,

EK′
N = sgn (N)

√
2�vF
�

√
|N |, (1.19)

and the spinors are

φK′
N,X (r) =

(
h0 (r)

0

)
δN,0 +

1− δN,0√
2

(
h|N |,X (r)

sgn (N)h|N |−1,X (r)

)
. (1.20)

In the wave function spinors, we use the Landau level wave function for a normal 2DEG

in the Landau gauge [17],

hn,X (r) =
1√

Ly�
√
π2nn!

e−iXy/�2e−
1
2

(x+X)2

�2 Hn

(
x+X

�

)
, (1.21)

where Ly is the y direction size of the sample, Hn is the Hermite polynomial of order n,

and � is the magnetic length

� =

√
�c

eB
. (1.22)

In the symmetric gauge, the eigenenergies are the same as the ones in the Landau

gauge. However, the guiding center index must be replaced by the angular momentum

index. The wave functions for different Landau levels are given by

φK
N,m =

(
0

h0,m

)
δN,0 +

1− δN,0√
2

(
−sgn(N)h|N |−1,m

h|N |,m

)
, (1.23a)

φK′
N,m =

(
h0,m

0

)
δN,0 +

1− δN,0√
2

(
h|N |,m

sgn(N)h|N |−1,m

)
, (1.23b)

where the generalized angular momenta takes the values by m = 0, 1, 2, ..., and the real

angular momenta is M = m − n in the wave function hn. The wave function of an
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Figure 1.4: The crystal structure of a graphene bilayer in Bernal stacking. The numbers
denote different layers. The dashed lines represent the hopping interactions: γ0 is the
intra layer nearest neighbor hopping; γ1 links A1 and B2; γ3 links A2 and B1; γ4 links B1

and B2, or A1 and A2. Other interactions are much weaker, so they are neglected.

electron in the symmetric gauge is given by

hn,m (r) =

√√√√ (
n+ M−|M |

2

)
!

�2π2|M |+1(n+ M+|M |
2

)!
e−iMϕ

(r
�

)|M |
e−

r2

4�2L
|M |
n+

M−|M|
2

(
r2

2�2

)
, (1.24)

where Lb
a (x) is the Laguerre polynomial, and ϕ is the angle between r and the x axis.

An electron must be described by its spin and valley indices in addition to Landau

level quantum numbers n,X (or n,m). In the absence of the Zeeman coupling, each level

is fourfold degenerate. If we consider the Zeeman coupling, the spin degeneracy is lifted,

but the valley degeneracy remains. If the symmetry of site A and site B is broken, then

the valley degeneracy could be lifted. This symmetry breaking could be from the spin-

orbital coupling. However, in graphene, the spin-orbital coupling of the π bond electron

in carbon atom is so weak that the valley degeneracy can not be lifted.

1.2 Tight-binding models of bilayer graphene

We consider a bilayer graphene, i.e. a two-layer graphene with Bernal (or AB) stack-

ing. The crystal structure is shown in Fig. (1.4). For the tight-biding approximation, we
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only consider the nearest neighbor intra-layer hopping −γ0
∑
〈i,j〉

(
a†1ib1j + a†2ib2j + h.c.

)
,

and inter layer hopping −γ1
∑

i

(
a†1ib2i + h.c.

)
, −γ4

∑
〈i,j〉

(
a†1ia2j + b†1ib2j + h.c.

)
,

−γ3
∑
〈i,j〉

(
b†1ia2j + h.c.

)
, and the offset energy between sublattices in a layer

Δ
∑

i

(
a†1ia1i + b†2ib2i

)
. In monolayer graphene, the two sublattices are equivalent, so that

there is no offset energy. However, in bilayer graphene, the offset energy represents that

the sublattice symmetry is broken so that the electric charge distributes unequally on

different sublattices. Here 〈i, j〉 represents the nearest neighbor pairs. a and b are the

operators for sublattice A and B respectively. The number in their lower index means

the order of the layer, 1 is the top layer and 2 is the bottom layer. If we couple a per-

pendicular electric field to the system, we get the bias term ΔB

2

∑
i

(
a†1ia1i + b†1ib1i

)
−

ΔB

2

∑
i

(
a†2ia2i + b†2ib2i

)
, where ΔB is the bias energy. The bias ΔB = eEd is related

to the perpendicular electric field E and the distance d = 3.337Å between two layers.

Combining all these terms, we get the full Hamiltonian in the momentum space (in basis

{|A1〉 , |B1〉 , |A2〉 , |B2〉}),

H =
∑
k

(
a†1k b†1k a†2k b†2k

)
⎛⎜⎜⎜⎜⎝

ΔB

2
+Δ −γ0Λ −γ4Λ

∗ −γ1

−γ0Λ
∗ ΔB

2
−γ3Λ −γ4Λ

∗

−γ4Λ −γ3Λ
∗ −ΔB

2
−γ0Λ

−γ1 −γ4Λ −γ0Λ
∗ Δ− ΔB

2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a1k

b1k

a2k

b2k

⎞⎟⎟⎟⎟⎠ ,

(1.25)

where we use the Fourier transformation in Eq. (1.7) for the creation and annihilation

operators, and Λ =
∑

δ e
ik·δ. The hopping parameters that we use in this thesis are

γ0 = 3.12eV, γ1 = 0.39eV, γ4 = 0.12eV, γ3 = 0.29eV, and Δ = 0.0156eV. (These values

are discussed in Refs. [18–20]). Notice that the value of γ0 in bilayer graphene is not the

same as that in monolayer graphene.

We can diagonalize numerically the Hamiltonian in Eq. (1.25) to obtain its band

structure. There are four bands since there are four atoms in a unit cell. Near the valley

points, the bands are all quadratic (see for example Ref. [8]). We identify the four bands

with the band index b = 1, 2, 3, 4 from high to low energy. The middle two bands touch

each other at zero energy where the chemical potential lays if the system is without

doping. The upper band has a gap γ1 with the band 2, while the bottom band also has

a gap γ1 with band 3.

A finite bias ΔB opens the gap between bands 2 and 3 at the neutrality point. When
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Figure 1.5: (a) The dispersion relation of the energy bands of graphene bilayer along
the line ky = 0. The middle two bands touch each other at the K and K ′ points. (b)
The gap between the middle two bands is opened by a bias ΔB = 0.06eV. The momenta
are in units of 1/a0 and the energy is in units of eV.

this occurs, the middle two bands no longer touch each other. The bands along the line

ky = 0 are shown without bias in Fig. 1.5a, and with bias ΔB = 0.06eV in Fig. 1.5b.

The γ3 hopping creates a warping of the Fermi surface [21]. Usually, we can neglect the

warping term which is the γ3 hopping term. We will not consider this term in our analysis

since it has only a very small effect in the presence of a magnetic field B > 1T [21, 76].

Our approximated four-band model without γ3 is,

H =

⎛⎜⎜⎜⎜⎝
ΔB

2
+Δ −γ0Λ −γ4Λ

∗ −γ1

−γ0Λ
∗ ΔB

2
0 −γ4Λ

∗

−γ4Λ 0 −ΔB

2
−γ0Λ

−γ1 −γ4Λ −γ0Λ
∗ Δ− ΔB

2

⎞⎟⎟⎟⎟⎠ . (1.26)

If we look at the reciprocal lattice of bilayer graphene, we find that the first Brillouin

zone is the same as that of the monolayer graphene (see Fig. 1.2). There are also two

inequivalent valleys K and K ′. For the same reason that we mentioned in the previous

section, we only consider small momentum around the two valleys and so work in the

continuum model. We obtain the Hamiltonians around K and K ′ valleys,

H =

⎛⎜⎜⎜⎜⎝
ΔB

2
+Δ −ξu0pe

−ξiθ −ξu4pe
ξiθ −γ1

−ξu0pe
ξiθ ΔB

2
0 −ξu4pe

ξiθ

−ξu4pe
−ξiθ 0 −ΔB

2
−ξu0pe

−ξiθ

−γ1 −ξu4pe
−ξiθ −ξu0pe

ξiθ Δ− ΔB

2

⎞⎟⎟⎟⎟⎠ , (1.27)
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where ξ = 1 for valley K, ξ = −1 for valley K ′, and

ui = γi

√
3

2�
a0. (1.28)

Here the variable p represents the momentum of the electron and not its wave vector,

and θ is the angle between the momentum and the x axis.

In presence of magnetic field, the momentum in the Hamiltonian in Eq. (1.27) must

be replaced by the canonical one to obtain the LL structure.

1.2.1 Four-band model in the presence of a magnetic field

We have already derived the four-band model without the warping term γ3 in the

previous section. In presence of a magnetic field, as usual, the kinetic momentum p

should be replaced by the canonical one, P = p+ eA
c
, where vector potential A is defined

in the Landau gauge. Since we know the non-interacting Hamiltonian in Eq. (1.27) (in

the sublattice basis of {|A1〉 , |B1〉 , |A2〉 , |B2〉}) without magnetic field, we can write the

one in presence of a magnetic field in the K valley as,

HK =

⎛⎜⎜⎜⎜⎝
Δ+ ΔB

2
iv0a −iv4a

† −γ1

−iv0a
† ΔB

2
0 −iv4a

†

iv4a 0 −ΔB

2
iv0a

−γ1 iv4a −iv0a
† Δ− ΔB

2

⎞⎟⎟⎟⎟⎠ . (1.29)

In the K ′ valley (also in the sublattice basis of {|A1〉 , |B1〉 , |A2〉 , |B2〉}),

HK′ =

⎛⎜⎜⎜⎜⎝
Δ+ ΔB

2
iv0a −iv4a

† −γ1

−iv0a
† ΔB

2
0 −iv4a

†

iv4a 0 −ΔB

2
iv0a

−γ1 iv4a −iv0a
† Δ− ΔB

2

⎞⎟⎟⎟⎟⎠ , (1.30)

where we define

vi = γi

√
3

2

a0
�
, (1.31)
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and use the Landau level ladder operators a and a†

peiθ =

√
2�

�
ia†, (1.32a)

pe−iθ = −
√
2�

�
ia. (1.32b)

To justify the approximation of neglecting the warping term γ3, we remark that

McCann and Fal’ko [21] have proved that the warping can be neglected in the effective

two-component model (to be derived below) when the magnetic field is strong enough

(> 1T). And also, for the four-band model, Côté and Barrette [76] have proved that

both the eigenenergy and eigenvector are well approximated without γ3 in the method of

exact diagonalization of the full Hamiltonian when we only consider low Landau levels

(|N | < 10).

To diagonalize the Hamiltonians in Eqs, (1.29) and (1.30), we use the eigenspinors⎛⎜⎜⎜⎜⎝
yK,b
1,n hn−1 (r)

yK,b
2,n hn (r)

yK,b
3,n hn−2 (r)

yK,b
4,n hn (r)

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
yK

′,b
1,n hn−1 (r)

yK
′,b

2,n hn−2 (r)

yK
′,b

3,n hn (r)

yK
′,b

4,n hn (r)

⎞⎟⎟⎟⎟⎠
for the K and K ′ valley respectively, where we define hn<0 = 0. For n = 0, there is only

one solution that we identify in the band b = 3. For n = 1, there are three solutions

which are in bands b = 1, 2, 4, respectively. For n > 1, there are four solutions with band

indices b = 1, 2, 3, 4. We explain these levels in Fig. 1.6.

Note that the LL index N ∈ [0,∞) in bands 1 and 2, while N ∈ (−∞, 0] in bands

3 and 4. This is because that the kinetic energies Ek,b
N , where k is the valley index, in

bands 1 and 2 are positive, while the kinetic energies in bands 3 and 4 are negative at

zero bias.

We notice that without magnetic field, there are four bands and the middle two bands

touch each other at the center of the two valleys. In the presence of a magnetic field, this

property still holds. It means that the lowest Landau levels of the middle two bands are

very close to each other. In the last chapter, when we study the pseudo-spin textured

coherence, we call them orbitals 0 and 1 in the lowest Landau level. In the four-band

model, we thus use the index of band b to replace the orbital index, because different

orbitals belong to different bands in the LL N = 0. We notice that the property of the
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Figure 1.6: The schematic diagram of the solutions of the 4-band model. This schematic
diagram is valid for both two valleys.

band-orbital corresponding is only valid in bilayer graphene. In ABC trilayer graphene,

there are three obitals in N = 0, although two bands touch each other at zero energy.

Next, we can write all the wave function spinors in a uniform format. In the LL

N = 0, we use b = 1, 2, 3, 4 to distinguish four orbitals in one valley, in which two

are near zero-energy and the other two are far away from zero. In other LLs, b = 1, 2

belong to positive LL |N | and b = 3, 4 belong to negative LL − |N | , and we define

Ek,1
|N | > Ek,2

|N | > Ek,3
−|N | > Ek,4

−|N | at zero bias. We conclude the eigenenergies and eigenvectors

with band index b instead of orbital as follows:

σ = (k, s, b)

k : K = 1, K ′ = −1⎛⎜⎜⎜⎜⎝
yk,b1,Nh|n|

yk,b2,nh|n|+k−δn,0δk,Kδb,3

yk,b3,nh|n|−k−δn,0δk,K′δb,3

yk,b4,nh|n|

⎞⎟⎟⎟⎟⎠ → Eσ
n =

− (−1)s

2
Ez + k

ΔB

2
+ Ek,b

n , (1.33)

where we have defined

hi<0 = 0. (1.34)
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1.2.2 Effective two-component model (2CM)

The four-band model is a solvable system. As we saw, however, the Hamiltonian is a

4× 4 matrix and this complicates the calculations. McCann developed a reduced Hamil-

tonian to describe the system [21], which is called the effective two-component model.

The reduced model not only keeps the middle two bands which are the most important

when we consider the low energy excitations, but also integrates the information of the

other two bands that are far away from the Fermi surface. The effective two-component

model is valid for the lowest Landau level, but not for the higher LLs. An analysis of the

validity of this model has been done in Ref. [76].

We give here the results of the effective two-component model including terms γ0, γ1, γ4,

Δ,ΔB and dropping the warping term γ3, since it does not affect to the band structure

much in the presence of a strong magnetic field (B � 1T). In the basis of {|A2〉, |B1〉},
the effective two-component Hamiltonian, in a magnetic field, is given by,

HK =

⎛⎝ 2�2

�2

[
2u0u4

γ1
+ (Δ +ΔB)

u2
0

γ2
1

]
aa† − ΔB

2
2�2

�2
u2
0

γ1
a2

2�2

�2
u2
0

γ1

(
a†
)2 2�2

�2

[
2u0u4

γ1
− (ΔB −Δ)

u2
0

γ2
1

]
a†a+ ΔB

2

⎞⎠ ,

(1.35)

HK′ =

⎛⎝ 2�2

�2

[
2u0u4

γ1
+ (Δ +ΔB)

u2
0

γ2
1

]
a†a− ΔB

2
2�2

�2
u2
0

γ1

(
a†
)2

2�2

�2
u2
0

γ1
a2 2�2

�2

[
2u0u4

γ1
− (ΔB −Δ)

u2
0

γ2
1

]
aa† + ΔB

2

⎞⎠ .

(1.36)

In the LL N = 0, there are two degenerate eigenstates when ΔB, γ4 and Δ are all

zero. We name the two degenerate eigenstates orbital 0 and 1, since the eigenvectors

are related to the 0 and 1 Landau level wave functions h0 and h1, respectively. It

follows that there is a 8-fold degeneracy of this LL when including spin and valley.

Experimentally, the eightfold degeneracy of the LL is revealed by a jump in the quantized

Hall conductivity from −4(e2/h) to +4(e2/h) when the charge density is tuned across

neutrality in moderately disordered samples [22]. For finite ΔB,Δ, γ4, the energies of

n = 0, 1 states are given by
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EN=0
K,0 =

ΔB

2
→

(
0

h0

)
, (1.37)

EN=0
K,1 =

ΔB

2
−ΔBβ + β4 +Δβ →

(
0

h1

)
, (1.38)

where we also gave the associated spinor in the {A2, B1} basis. In the K ′ valley:

EN=0
K′,0 = −ΔB

2
→

(
h0

0

)
, (1.39)

EN=0
K′,1 = −ΔB

2
+ ΔBβ + β4 +Δβ →

(
h1

0

)
. (1.40)

In these eigenvectors, hn = hn(r). From the eigenvectors, we find that the valley index

is equivalent to layer index since the electrons in K valley are all on site B1 of layer 1,

while the electrons in K ′ valley are all on site A2 of layer 1.

In the minimal model (i.e. ΔB = Δ = γ4 = 0) the LL energy spectrum is given by

EN =
√
N (N + 1)�ω∗c , (1.41)

where ω∗c = �

m∗�2 is the cyclotron frequency and the effective mass m∗ = 2�2γ1
3a20γ

2
0
. This

quantization has been observed experimentally [23].

In the effective two-component model, we integrate bands 1 and 4. The energies of

the LL N = 0 in the 2CM are very close to these of the four-band model, and also

to those of an exact diagonalization of the full Hamiltonian [76] that includes γ3. But

the energies of effective 2CM is far away from the four-band model in other LLs. And

more, the first and last components in the wave function spinors are neglected in the

2CM, which is unacceptable sometimes. In summary, the effective two-component model

is only reliable in N = 0 and it is necessary to use the four-band model in the case of

higher LLs.
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1.3 Many-body Hamiltonian in the Hartree-Fock ap-

proximation for graphene (monolayer)

The kinetic energy of the electrons is frozen in a Landau level of which the degeneracy

is given by Nφ = m∗ω∗
cS

h
= S

2π�2
where S is the area of the sample. But the kinetic energy

can not describe the system completely. The Coulomb interaction is also very important.

Moreover, transport properties are closely related to the Coulomb interaction. To deal

with Coulomb interaction, we write the second quantization Hamiltonian as,

U =
1

2

∑
α,β

∫
drdr′Ψ†α(r)Ψ

†
β(r

′)V (r− r′)Ψβ(r
′)Ψα(r), (1.42)

where α, β could be spin and valley indices, the field operator Ψ is defined by

Ψα (r) =
∑
n,k

φα,n,k (r) cα,n,k, (1.43)

with wave function φα,n,k and annihilation operator cα,n,k in LL n and guiding center k.

The Coulomb potential is given by

V (r− r′) =
1

S

∑
q

2πe2

κq
eiq·(r−r

′) ≡ 1

S

∑
q

V (q)eiq·(r−r
′). (1.44)

In the Hartree-Fock approximation (HFA), the Hamiltonian is given by the summation

of the Hartree term UH and the Fock term UF ,

U = UH + UF , (1.45)

UH =
1

S

∑
q

V (q)
∑
α,β

∫
dr

∫
dr′

〈
Ψ†α(r)Ψα(r)

〉
Ψ†β(r

′)Ψβ(r
′)eiq·(r−r

′), (1.46)

UF = − 1

S

∑
q

V (q)
∑
α,β

∫
dr

∫
dr′

〈
Ψ†α(r)Ψβ(r

′)
〉
Ψ†β(r

′)Ψα(r)e
iq·(r−r′). (1.47)
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We write the Hamiltonian in terms of creation and annihilation operators to obtain

UH =
1

S

∑
q

V (q)
∑
α,β

∑
n1···n4

∑
k1···k4

∫
drφ∗α,n1,k1

(r) eiq·rφα,n2,k2 (r)∫
dr′φ∗β,n3,k3

(r′) e−iq·r
′
φβ,n4,k4 (r

′)
〈
c†α,n1,k1

cα,n2,k2

〉
c†β,n3,k3

cβ,n4,k4 , (1.48)

UF = − 1

S

∑
q

V (q)
∑
αβ,ss′

∑
n1···n4

∑
k1···k4

∫
drφ∗α,n1,k1

(r) eiq·rφα,n4,k4 (r)∫
dr′φ∗β,n3,k3

(r′) e−iq·r
′
φβ,n2,k2 (r

′)
〈
c†α,n1,k1

cβ,n2,k2

〉
c†β,n3,k3

cα,n4,k4 . (1.49)

The integrals in UH and UF can be simplified by defining a function Ξ,∫
drφ∗α,n1,k1

(r) eiq·rφβ,n2,k2 (r) ≡ Ξα,β
n1,n2

(q) δk1,k2−qy . (1.50)

We define the density matrix elements,

ρσ,σ
′

n,n′ (q) ≡ 1

Nφ

∑
k,k′

e−
i
2
qx(k+k′)�2δk,k′+qyc

†
σ,n,kcσ′,n′,k′ , (1.51)

and

c†σ,n,kcσ′,n′,k′ =
∑
p

ρσ,σ
′

n,n′ (p) e
i
2
px(k+k′)�2δk,k′+py , (1.52)

so that any phase of the system is well described by the average value 〈ρσ,σ′
n,n′(q). All the

coherences between electrons are given by these order parameters. Then we can write

the Hartree and Fock terms in terms of density matrix elements,

UH =
e2

κ�

∑
q

∑
α,β

∑
n1···n4

Hα,β
n1,n2,n3,n4

(q)
〈
ρα,αn1,n2

(−q)
〉
ρβ,βn3,n4

(q), (1.53)

UF = − e2

κ�

∑
q

∑
α,β

∑
n1···n4

Xα,β
n1,n4,n3,n2

(q)
〈
ρα,βn1,n2

(−q)
〉
ρβ,αn3,n4

(q), (1.54)

where Hα,β
n1,n2,n3,n4

and Xα,β
n1,n4,n3,n2

are Hartree and Fock interaction functions respectively,

Hα,β
n1,n2,n3,n4

(q) =
1

2π�2
V (q) Ξα,α

n1,n2
(q) Ξβ,β

n3,n4
(−q) , (1.55)

Xα,β
n1,n4,n3,n2

(q) =
1

S

∑
p

V (p) Ξα,α
n1,n4

(p) Ξβ,β
n3,n2

(−p) e−iq×p�
2

, (1.56)
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with q× p ≡ (q× p) · ẑ.
Usually, we do not consider Landau level mixing, since the Landau gap is large enough

to avoid inter Landau level coherence, i.e.
〈
ρα,βn,n′ (q)

〉∣∣∣
n 	=n′

= 0. In this case, n1 = n2 =

n3 = n4, so that the Landau level index can be neglected and the Hartree and Fock

interaction functions can be simplified to Hα,β and Xα,β, respectively. Note that the

Hartree interaction functions diverge at zero momenta, limq→0 Hα,β (q) → 1
q
. However,

these diverging terms Hα,β (0) are usually cancelled by the postive background. If the

system is a bilayer 2DEG, then there would be a capacitive term left, which can be

combined into the Zeeman term. The capacitive energy is induced by the imbalance of

the charge of the two layers. It forces the charge distributes equally on the two layers.

Hence, we obtain the total Hamiltonian with Zeeman coupling in the second quantization:

H =
∑
α

Eαρα,α(0) +
e2

κ�

∑
q

∑
α,β

Hα,β (q) 〈ρα,α(−q)〉 ρβ,β(q)

− e2

κ�

∑
q

∑
α,β

Xα,β (q) 〈ρα,β(−q)〉 ρβ,α(q), (1.57)

where Eα includes the Zeeman energy, the kinetic energy of level α and the capacity

energy if it is a bilayer system. The sum symbol with a bar represents the summation

excluding q = 0. This Hamiltonian does not apply to BLG with N = 0. For N > 0, the

index α or β should be a spin-valley index.

1.4 Green’s functions and correlation functions

In this thesis, the theoretical tools are the Green’s functions and the correlation

functions, which are introduced in this section.

The single-particle Matsubara Green’s function is defined by

Ga,b (τ) = −
〈
Tτca (τ) c

†
b (0)

〉
= −

〈
ca (τ) c

†
b (0)

〉
θ (τ) +

〈
c†b (0) ca (τ)

〉
θ (−τ) , (1.58)

where Tτ is the time ordering operator, and θ (x) is the step function. The indices in the

Green’s function, a and b, could be Landau level, spin, valley, layer, orbital, etc.. The

equation of motion for the Green’s function in the Matsubara formalism is obtained by
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using the Heisenberg equation of motion

�
∂

∂τ
(. . .) = [HHF − μN, (. . .)] , (1.59)

where HHF is the many-body Hamiltonian in the HFA (for example, the Hamiltonian in

Eq. (2.8)), μ is the chemical potential, and N is the particle number. On the left hand

side of Eq. (1.59), we have

�
∂

∂τ
Ga,b (τ) = −�δ(τ)δa,b − �

〈
T

[
∂

∂τ
ca(τ)

]
c†b(0)

〉
. (1.60)

And the right part depends on the Hamitonian HHF .

We can derive the equation of motion in Eq. (1.59) as

(−i�ωn + Ea − μ)Ga,b (q,ωn)

= −�δa,bδq,0 − e2

κ�

∑
q′

∑
c

Hc,a (q
′) 〈ρc,c (−q′)〉 e− i

2
q×q′�2Ga,b (q+ q′,ωn)

+
e2

κ�

∑
q′

∑
c

Xc,a(q
′) 〈ρc,a (−q′)〉 e− i

2
q×q′�2Gc,b (q+ q′,ωn) (1.61)

where we define q× q′ ≡ (q× q′) · ẑ and use the Fourier transformations:

G(τ) =
1

β�

∑
ωn

exp(−iωnτ)G(ωn) (1.62)

G(ωn) =

∫ β�

0

exp(iωnτ)G(τ)dτ, (1.63)

with the Fermion Matsubara frequencies iωn = (2n+1)π
β�

. The Hc,a and Xc,a are Hartree

and Fock interaction fucntions, respectively.

If we only consider the case of electron crystal, then the electron gas forms a periodic

structure. The order parameters 〈ρ (q)〉’s are nonzero only at the reciprocal lattice vectors
in the momentum space. And the value of 〈ρ (q)〉 decreases when q increases. These

properties make it possible to study the system at finite momenta. So, a set of vectors

{q} can well describe the ordered phases which are defined by all the density matrix

elements 〈ρα,β (q)〉. On the other hand, the Green’s function can be solved to describe

completely the system, because of the relation between order parameters and Green’s
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functions,

〈ρa,b (q)〉 = Gb,a

(
q,τ = 0−

)
. (1.64)

In the case of electron crystal phases, we can write the Eq. (1.61) in a matrix form,

(i�ωnI − F )G = B, (1.65)

where I is the unitary matrix. Assume, for example, that a, b, c can all take four values,

then

B (q) = �

⎛⎜⎜⎜⎜⎝
−→
1

−→
0

−→
0

−→
0−→

0
−→
1

−→
0

−→
0−→

0
−→
0

−→
1

−→
0−→

0
−→
0

−→
0

−→
1

⎞⎟⎟⎟⎟⎠
4n×4

, (1.66)

where n is the number of reciprocal lattice vectors and

−→
1 = (1, 0, 0, ..., 0)T , (1.67)
−→
0 = (0, 0, 0, ..., 0)T . (1.68)

The F matrix can be obtained from Eq. (1.61). The matrix F is Hermitian, and so it can

be diagonalized by a unitary transformation F = UDU † where D is a diagonal matrix

and the Hermitian matrix U is the unitary transformation matrix satisfying UU † = I.

So the Eq. (1.65) can be calculated by

U (i�ωnI −D)U †G = B, (1.69)

G = U (i�ωnI −D)−1 U †B, (1.70)

Gij (ωn) =
∑
k,l,p

Uik (i�ωnI −D)−1kl U †lpBpj

=
∑
k,l,p

UikU
†
lpδp,jδk,l

i�ωn −Dkl

=
∑
k

UikU
†
kj

i�ωn −Dkk

. (1.71)
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Hence,

〈ρji (q)〉 = Gij

(
τ = 0−,q

)
=

1

β�

∑
ωn

e−iωnτGij
n

=
1

β�

∑
ωn

∑
k

e+iωnδ
Um+(i−1)N,kU

∗
(j−1)N+1,k

i�ωn −Dkk

=
∑
k

1

eβdkk + 1
Um+(i−1)N,kU

∗
(j−1)N+1,k. (1.72)

In Eq. (1.72), 〈ρji (q)〉 is given in terms of the matrix U which itself depends on the set

of {〈ρji (q)〉}. It is thus a self-consistent equation that must be solved numerically. The

numerical procedure is described in details in Ref. [26].

The poles of G (τ = 0−,q) give the energies of the quasi-particle in the system. For

example, consider a liquid phase where 〈ρji (q �= 0)〉 = 0. The equation of motion of the

Green’s function can then be simplified to,[
−i�ωn + Ea − e2

κ�
Xa,a(0) 〈ρa,a (0)〉

]
Ga,b (q,ωn)

= −�δa,bδq,0 +
e2

κ�

∑
c 	=a

Xc,a(0) 〈ρc,a (0)〉Gc,b (q,ωn) . (1.73)

We do the analytical continuation iωn → ω + iδ, then the poles are given by �ω =

Ea − e2

κ�
Xa,a(0) 〈ρa,a (0)〉 which are the energies of the quasi-particles in the system.

To study the collective excitations of the system, the single-particle Green’s function

is not enough. We need to compute the two-particle Green’s functions as well, which are

defined as

χAB (q, τ) = −1

�
〈TτA (q, τ)B (−q, 0)〉 , (1.74)

where τ is the imaginary time, and A andB are the operators of two observable quantities.

Fourier transforming and making the analytical continuation iωn → ω + iδ, we get the

space and time Fourier transform of the retarded function:

χR
AB (q, t) = − i

�
〈[A (q, t) , B (−q, 0)]〉 θ (t) . (1.75)

In the linear response theory, we need to set A,B as density field when we calculate

the collective mode, absorption and dielectric function. Then we can write the Eq. (1.74)
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in terms of the operators of density field,

χninj
(q, τ) = − i

�
〈Tτni (q, τ)nj (−q, 0)〉

= − i

�

∑
n,n′,m,m′

Ξn,n′ (q) Ξm,m′ (−q)
〈
Tτc

†
i,a(τ)ci,b(τ)c

†
j,c(0)cj,d(0)

〉
,(1.76)

where the density field (nx, ny, nz) is defined by ni =
∑

a,b Ξa,bc
†
i,aci,b.

In a 2DEG system in a magnetic field, an electronic state is defined by the Landau

level, guiding center, spin and valley indices (in some cases, more indices may be needed).

We thus write cn,X,a for the electron annihilation operator, where n is Landau level index,

X is guiding center index, and a includes all the other indices. It will be useful to define

the density operator

ρ(n,a);(n′,b) (q) =
1

Nφ

∑
X,X′

e−
i
2
qx(X+X′)δX,X′+qy�2c

†
n,X,acn′,X′,b, (1.77)

where Nφ is the Landau level degeneracy. A general two-particle Green’s function can

be written as,

χa,b,c,d
n1,n2,n3,n4

(p,p′; τ1 − τ3) = −Nφ

〈
Tτδρ(n1,a);(n2,b) (p,τ1) δρ(n3,c);(n4,d) (−p′, τ3)

〉
= −Nφ

〈
Tτρ(n1,a);(n2,b) (p,τ1) ρ(n3,c);(n4,d) (−p′, τ3)

〉
+Nφ

〈
ρ(n1,a);(n2,b) (p)

〉 〈
ρ(n3,c);(n4,d) (−p′)

〉
. (1.78)

These Green’s functions share the same poles as the response functions. Moreover, the

poles of these Green’s functions correspond to the frequency of the collective excitations

of the C2DEG. In the generalized random phase approximation (GRPA), we can obtain

the self-consistent equation for the two-particle Green’s function,

χa,b,c,d
n1,n2,n3,n4

(q,q′; iΩn) = χ0,a,b,c,d
n1,n2,n3,n4

(q,q′; iΩn) (1.79)

+
1

�

e2

κ�

∑
e,g

∑
q′′

∑
m1,m2,m3,m4

χ0,a,b,e,e
n1,n2,m1,m2

(q,q′′; iΩn)H
e,g
m1,m2,m3,m4

(q′′)χg,g,c,d
m3,m4,n3,n4

(q′′,q′; iΩn)

−1

�

e2

κ�

∑
e,f

∑
m1,m2,m3,m4

∑
q′′

χ0,a,b,e,f
n1,n2,m1,m2

(q,q′′; iΩn)X
e,f
m1,m4,m3,m2

(q′′)χf,e,c,d
m3,m4,n3,n4

(q′′,q′; iΩn) ,

where He,g and Xe,f are Hartree and Fock interaction functions, and χ0
a,b,c,d is called the
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Hartree-Fock two-particle Green’s function. It is given by the equation of motion,

[−i�Ωn − (En1,a − En2,b)]χ
0,a,b,c,d
n1,n2,n3,n4

(q,q′,Ωn) (1.80)

= −�

[
δb,cδn2,n3

〈
ρa,dn1,n4

(q− q′)
〉
e

i
2
q×q′�2 − δa,dδn1,n4

〈
ρc,bn3,n2

(q− q′)
〉
e−

i
2
q×q′�2

]
+
e2

κ�

∑
m1,m2,m3

∑
e

∑
q′′

He,a
m1,m2,m3,n1

(q′′ − q)
〈
ρe,em1,m2

(q− q′′)
〉
e−

i
2
q′′×q�2χ0,a,b,c,d

m3,n2,n3,n4
(q′′,q′,Ωn)

− e2

κ�

∑
m1,m2,m4

∑
e

∑
q′′

He,b
m1,m2,n2,m4

(q′′ − q)
〈
ρe,em1,m2

(q− q′′)
〉
e

i
2
q′′×q�2χ0,a,b,c,d

n1,m4,n3,n4
(q′′,q′,Ωn)

− e2

κ�

∑
m1,m2,m3

∑
e

∑
q′′

Xa,e
m1,n1,m3,m2

(q′′ − q)
〈
ρa,em1,m2

(q− q′′)
〉
e−

i
2
q′′×q�2χ0,e,b,c,d

m3,n2,n3,n4
(q′′,q′,Ωn)

+
e2

κ�

∑
m1,m2,m4

∑
e

∑
q′′

Xe,b
m1,m4,n2,m2

(q′′ − q)
〈
ρe,bm1,m2

(q− q′′)
〉
e

i
2
q′′×q�2χ0,a,e,c,d

n1,m4,n3,n4
(q′′,q′,Ωn) ,

where En1,a is the kinetic energy of level (n1, a), and the bar over the sum symbol means

that the summation excludes q′′ = q. If we neglect the Hartree-Fock interactions in Eq.

(1.80), the χ0 is called bare bubble approximation to the two-particle Green’s function.

These equations are derived in Chapter 4 of Ref. [25].

The equation of motion of the two-particle’s Green function in Eq. (1.79) can be also

written in a matrix form [26],

(iΩnI − F )χ = B, (1.81)

where the F matrix contains the Hartree-Fock interactions and the densities 〈ρ〉, and
the B matrix contains only the 〈ρ〉’s. In the matrix form, χ can be easily solved by

diagonalizing the matrix F .

In this thesis, we will use the self-consistent equation of the two-particle Green’s

function to compute the dispersion relations of the collective modes and their contribution

to the electromagnetic absorption. We will use the bare bubble approximation to derive

the dielectric function of the C2DEG.

1.5 Nonlinear σ model and its topological solution

If we look for an excitation of the QHF that varies slowly in space, the main contri-

bution to the energy, in the absence of Zeeman or other coupling, comes from the Fock

or exchange term in Hartree-Fock (HF) Hamiltonian since it is the term that keeps the
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spin parallel. To get the NLσM from the HF Hamiltonian we write the Fock term in the

gradient approximation, i.e. we expand the densities 〈ρi,j(r)〉 (which are related to the

classical field m) around the ground state solution. We start with the Fock energy,

E = −Nφ

2

∑
ss′

∑
q

Xs,s′ (q) 〈ρs,s′ (q)〉 〈ρs′,s (−q)〉 , (1.82)

where s and s′ are the spin or valley indices of the system. Notice that, for the Fock

interaction function, Xs,s′ = Xs′,s. In real space,

E = −1

2

∑
ss′

∫
dr

∫
dr′Xs,s′ (r− r′) 〈ρs,s′ (r)〉 〈ρs′,s (r′)〉 . (1.83)

Now, let us suppose there is a weak pertubation in the density matrix, or say, the den-

sity matrix elements vary slowly in real space. Using a Taylor expansion for ∇〈ρs′,s (r′)〉,
the energy functional becomes,

E = −1

2

∑
ss′

∫
drdr′Xs,s′ (r− r′) 〈ρs,s′ (r)〉

×
[
〈ρs′,s (r)〉+ (r′ − r) · ∇r′ 〈ρs′,s (r′)〉 |r′=r +

1

2
(r′ − r)

2 ∇2
r′ 〈ρs′,s (r′)〉 |r′=r + . . .

]
= −1

2

∑
ss′

∫
dr′Xs,s′ (−r′)

∫
dr 〈ρs,s′ (r)〉 〈ρs′,s (r)〉

−1

4

∑
ss′

∫
dr

∫
dr′Xs,s′ (r− r′) 〈ρs,s′ (r)〉 (r′ − r)

2 ∇2 〈ρs′,s (r)〉 , (1.84)

where ∫
dr

∫
dr′Xs,s′ (r− r′) 〈ρs,s′ (r)〉 (r′ − r) · ∇r 〈ρs′,s (r)〉

=

∫
dr

∫
dr′Xs,s′ (−r′) 〈ρs,s′ (r)〉 r′ · ∇r 〈ρs′,s (r)〉 = 0, (1.85)

because, in our case, Xs,s′ (−r′) is even and r′ is odd. Notice that we neglect the higher

orders because of the condition that ρi,j vary slowly in real space. Hence, the excitation

energy is given by

δE =
1

4

∫
dr′Xs,s′ (r

′) r′2
∑
ss′

∫
dr∇〈ρs,s′ (r)〉 · ∇ 〈ρs′,s (r)〉 , (1.86)
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which has the form of Eq. (1). In the spin language,

Sx =
1

2
Re 〈ρ↑,↓ (r)〉 , (1.87)

Sy =
1

2
Im 〈ρ↑,↓ (r)〉 , (1.88)

Sz =
1

2
(〈ρ↑,↑ (r)〉 − 〈ρ↓,↓ (r)〉), (1.89)

so the term ∑
s,s′

∇〈ρs,s′ (r)〉 · ∇ 〈ρs′,s (r)〉 = 2
∑

i=x,y,z

∇Si · ∇Si = 2∂μS·∂μS, (1.90)

where we use Einstein’s summation convention. Notice in the nonlinear sigma model,

the field is a unit vector, while S here is not, since |S (r)| is in units of 1
2

1
2π�2

= 1
2

Nφ

S
, so

we define

m = 2
S

Nφ

S = 4π�2S, (1.91)

to keep m2 = 1. So
∑

ss′ ∇〈ρs,s′ (r)〉 · ∇ 〈ρs′,s (r)〉 = 1
2

(
Nφ

S

)2

∂μm·∂μm. Hence, the

excitation energy functional becomes,

δE = −1

8

Nφ

S
∇2

qXn (q) |q=0

∫
dr∂μm·∂μm, (1.92)

which is consistent with the Lagrangian of the NLσM in Eq. (1). From this expression,

we get the spin stiffness,

ρs = −1

4

1

2π�2
∇2

qXn (q) |q=0. (1.93)

The charged excitation energy δE = 4πρs only depends on the Fock interaction Xs,s′ (q).

For a more realistic model, the Hartree energy must also be considered since a modulation

of the charge density costs energy. In the quantum Hall system, skyrmions carry a charge

qe = Qe.

1.5.1 Anisotropic Nonlinear σ model and bimeron

Not all the 2DEG systems are described by the NLσM. In bilayer 2DEG, the single-

particle excitation with a layer texture is described by the anisotropic NLσM (ANLσM)

[30]. Here the 2DEG is assumed to be spin polarized and the important degree of freedom
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is the layer index. Because of the finite distance between the two layers, the inter-layer

and intra-layer Coulomb interactions are not identical. Hence, the O(3) symmetry of the

NLσM Lagrangian is broken. The spin stiffnesses for different components of the field

are not the same. The Lagrangian of an ANLσM is given by

LANLσM =
1

2

∑
i=x,y,z

ρi

∫
dr (∇mi) · (∇mi) . (1.94)

If ρx = ρy �= ρz, then the solutions of the Lagrangian in Eq. (1.94) are no longer

skyrmions or anti-skyrmions. They are called bimerons and anti-bimerons. The excita-

tion energy of a bimeron or anti-bimeron is given by

ΔANLσM =
4π

3
(ρx + ρy + ρz). (1.95)

The bimeron field, for example, is given by [30]

mx ± imy =
2w

1 + |w|2 , (1.96)

mz =
|w|2 − 1

|w|2 + 1
, (1.97)

which is the same as skyrmion, but, the w field is different. In a skyrmion, w =
(
z
k

)q
=(

r
k

)q
eiqθ, where z = x + iy, θ = arctan y

x
. But in the bimeron, w = z−zL

z−zR e
iφ, where φ is

an arbitrary angle, zL and zR are the positions of the left and right cores in a bimeron,

where Sz = ±1 respectively.

The spin textures and density profiles of a skyrmion and an antiskyrmion are shown

in Fig. 1. A bimeron projected on the x − y plane are shown in Fig. 1.7a, while the

spin textures of an anti-skyrmion and an anti-bimeron projected on the x− y plane are

shown in Fig. 1.7c. The density profiles of a bimeron and an anti-bimeron are shown in

Figs. 1.7b and 1.7d, respectively. The two cores, which are located at x = zl = −5 and

x = zr = 5, in the bimeron and anti-bimeron are clearly seen in these figures. Notice that

the spin points up at infinity in an anti-skyrmion (or skyrmion) while the spin points

along the x direction and there is no z component in the spin field in an anti-bimeron (or

bimeron) at infinity. This is due to the fact that in a bilayer 2DEG, the capacitive energy

forces the electrons to occupy both layers equally at zero bias. In a layer pseudo-spin

language, this is equivalent to having all the layer pseudo-spin point in the same direction
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in the x− y plane.
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Figure 1.7: (a) The spin texture projected to the x− y plane of a bimeron, and (b) the
density profile δn = nbimeron − ngroundstate of a bimeron. (c) The spin texture projected
to the x − y plane of an anti-bimeron and (d) the density profile δn = nanti−bimeron −
ngroundstate of an anti-bimeron. The color contours represent mz.



Chapter 2

Skyrmions in monolayer graphene

In the previous chapter, we have studied the Landau quantization in graphene. The

conduction and valence bands are replaced by a series of Landau levels with positive and

negative energies. The kinetic energy for each Landau level is given by Eq. (1.17). When

counting spin and valley degrees of freedom, each Landau level is four-time degenerate.

If we do not consider Landau level mixing, the many-body Hamiltonian in the lowest

Landau level (LLL) in graphene is the same as the LLL of a conventional 2DEG in a

quantum well. This is because the form factors of the wave functions of graphene are

equivalent to those of a conventional 2DEG in the LLL. However, the form factors in

higher LLs in graphene are different from those in a conventional 2DEG. Hence, the many-

body Hamiltonian of graphene gives a different excitation energy functional, which can be

described by a nonlinear σ model (NLσM), from the conventional 2DEG. The difference

is represented by the spin stiffness in the NLσM. The spin stiffness is a constant which is

related to the form factors of the wave functions, and represents the excitation energy of

a spin system if there is a slow twist of the spins in the ground state. It is already known

that the spin twisted excitation states (skyrmions) only exist in the LLL in a conventional

2DEG. In higher LLs, the spin stiffness is so large that the spin textured excitations have

higher energies than the quasi-particle excitations where only one spin is flipped and

there is no spin texture. However, it is possible that the spin textured excitation states

survive in higher LLs in graphene system due to the different spin stiffness [9]. This is

what we wanted to find out.

Recently, an experimental paper [12] studied the single-particle excitations in graphene

in the presence of a magnetic field. In a high-quality sample, which was fabricated on

38
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the boron nitride (BN) substrate, the four plateaus of the Hall conductivity σxy coming

from the lifting of the four-fold degeneracy of a LL were observed if the filling factors

could be well controlled [5]. The experiment allowed to study the nature of the quantum

Hall ground states of the C2DEG as well as their single-particle excitations. The authors

measure the resistivity to determine the energy gap of the single-particle excitation, due

to the relation in the Quantum Hall states

Rxx ∝ e−Δgap/(2kBT ), (2.1)

where Rxx is the resistivity, Δgap is the transport gap of a single-particle pair, kB is the

Boltzman constant, and T is the temperature. Here, the single-particle excitation could

be quasi-particle states, or (pseudo-)spin textured excitations. The former one is trivial

and the latter one is more interesting in both theoretical and experimental physics. The

authors have proved experimentally that the spin and valley skyrmions exist in higher

LLs in graphene (see the Figs. 2, 3, and 4 in Ref. [12]). In this work, we will figure out

what type of single-particle excitation is preferred in certain conditions, and compare our

numerical calculations with the experimental results.

2.1 Hartree-Fock Hamiltonian in symmetric gauge

To study the single-particle excitations, it is more convenient to work in the symmetric

gauge. This is because the excitations have a rotational symmetry, just like the wave

functions in the symmetric gauge.

In the lowest Landau level of graphene, the Coulomb interaction is identical to that

of the LLL in a conventional 2DEG. Skyrmion excitations in this case have been studied

in details [31,32]. For this reason, the LLL is not taken into consideration in this section.

Due to the electron-hole (EH) symmetry, the ground state at positive filling factor ν

is the same as the ground state at negative filling factor −ν, even when screening effect

is taken into account. Without loss of generality, we can thus take the filling factor as

positive in our calculations.

At filling factors ν = 4, 8, 12, which correspond to half-filling of the Landau levels

n = 1, 2, 3, the Landau level gap (which is about �ωc = 0.033
√
BeV, where ωc is the

cyclotron frequency and B is the magnetic field) is much larger than the Zeeman (ΔZ =

1.2 × 10−4B eV) or Coulomb gap (which is typically e2/(κ�) = 0.056(
√
B/κ)eV where
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κ is the dielectric constant of the substrate), so that we can neglect the Landau level

mixing. Only the partially filled Landau level is considered. The ground states at these

fillings should be a spin polarized ferromagnet, since the spin polarized state can minimize

the exchange interaction [33]. However, both in experiment [12] and in theory [42], the

ground state in the LLL in graphene is more complicated and is probably not fully spin

polarized. We will not consider the LLL.

With a magnetic field B = Bẑ, the ground states of the C2DEG at ν = 4, 8, 12 should

be that |K, ↑〉 and |K ′, ↑〉 are fully filled, while the other two levels |K, ↓〉 and |K ′, ↓〉 are
empty levels. In an interacting picture, the four levels in a single Landau level should

be instead the symmetric states |S, ↑〉 = α|K, ↑〉 + β|K ′, ↑〉, |S, ↓〉 = α|K, ↓〉 + β|K ′, ↓〉,
and antisymmetric states |AS, ↑〉 = α|K, ↑〉 − β|K ′, ↑〉, |AS, ↓〉 = α|K, ↓〉 − β|K ′, ↓〉. For
a half-filling state, |S, ↑〉 and |AS, ↑〉 are full and the other are empty. The α, β are the

arbitrary parameters which satisfy |α|2 + |β|2 = 1 due to the SU(2) symmetry of the

valley pseudo-spin. Hence, the two basis, K,K ′ and S,AS are equivalent, since we could

choose α = 1 and β = 0. So the single particle problem in both two basis is equivalent,

i.e. the energy would not change if we change the basis. It means that the spin skyrmion

at half-filling could be considered to occur in only one valley and we can simplify our

problem by working with a two-level system. This assumption has been verified by the

experiments [12], which we will discuss later. Based on this approximation, we write the

Hamiltonian for single-particle excitation at half filling as

H = EZ + U +He−b +Hb−b, (2.2)

where EZ is the Zeeman coupling, U is the Coulomb interaction between electrons

U =
1

2

∑
s,s′

∫
drdr′Ψ†s (r)Ψ

†
s′ (r

′)V (r− r′)Ψs′ (r
′)Ψs (r) , (2.3)

He−b is the Coulomb interaction between the electrons and the background, and Hb−b is

the Coulomb interaction between the positive charges in the background. Notice that in

Eq. (2.3), we keep the spin indices s, s′ and drop the valley index since we consider only

one valley. We do not consider Landau level mixing, so the field operator Ψ is defined by

Ψs(r) =

Nφ−n∑
M=−n

φn,M (r) cs,n,M =

Nφ∑
m=0

φn,m (r) cs,n,m, (2.4)
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where φn,M is the wave function in symmetric gauge (defined in Eq. (1.23)) in either

K or K ′ valley (the two valleys are equivalent, we choose one arbitrarily), and c is the

annihilation operator of electrons with Landau level index n and angular momenta M .

Notice that there are Nφ electrons in the ground state. However, Nφ is so large that

we can approximately set M → ∞ in the upper limit. We define m as the generalized

angular momenta, m = M +n. Hence, m has values from zero to infinity for any Landau

level, which simplifies the analysis in the following. In practice, we need to consider a

finite system with finite m, since the skyrmion is localized if the Zeeman coupling is

nonzero. The maximum of m controls the size of the system. The background charge is

uniform with density nb = ne, where ne is the average electronic density. So,

He−b = −nb

∫
drΨ†s (r)Ψs (r)V (r) , (2.5)

Hb−b =
n2
b

2

∫
drV (r) , (2.6)

EZ = Es

∫
drΨ†s (r)Ψs (r) , (2.7)

where the Zeeman coupling Es = 1
2
sgμBB. The index s = ±1 is for spin down and up

respectively, g = 2 is the Landé factor in graphene, μB is the Bohr magneton.

In the Hartree-Fock approximation, we obtain the full Hamiltonian

H =
∑
s,m

1

2
sgμBBc†s,mcs,m (2.8)

+
1

4

∑
s,s′

∑
m1,...,m4

(
V n−1,n−1,n−1,n−1
m1,m2,m3,m4

+ V n,n,n,n
m1,m2,m3,m4

+ V n−1,n−1,n,n
m1,m2,m3,m4

+V n,n,n−1,n−1
m1,m2,m3,m4

) (〈
c†s,m1

cs,m2

〉
c†s′,m3

cs′,m4 −
〈
c†s,m1

cs′,m4

〉
c†s′,m3

cs,m2

)
−1

4

∑
s

∑
m′,m

(
V n−1,n−1,n,n
m′,m′,m,m + V n−1,n−1,n−1,n−1

m′,m′,m,m + V n,n,n−1,n−1
m′,m′,m,m + V n,n,n,n

m′,m′,m,m

)
c†s,mcs,m

+
1

8

∑
m,m′

(
V n−1,n−1,n,n
m′,m′,m,m + V n−1,n−1,n−1,n−1

m′,m′,m,m + V n,n,n−1,n−1
m′,m′,m,m + V n,n,n,n

m′,m′,m,m

)
,

where we use the generalized angular momenta mi and the Coulomb interaction elements
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are defined by the general equation

V n1,n2,n3,n4
m1,m2,m3,m4

=
e2

κ�
δM1−M2+M3−M4

√
min(m1,m2)!min(m3,m4)!

max(m1,m2)!max(m3,m4)!

×
√

min(n1, n2)!min(n3, n4)!

max(n1, n2)!max(n3, n4)!

∫
dke−k

2

(
k2

2

)|n1−n2|+|m1−m2|

× (−1)|n1−n2|
n1<n2

(−1)|n3−n4|
n3≥n4

i|m1−m2| (−i)|m3−m4|

×L
|n1−n2|
min(n1,n2)

(
k2

2

)
L
|n3−n4|
min(n3,n4)

(
k2

2

)
L
|m1−m2|
min(m1,m2)

(
k2

2

)
L
|m3−m4|
min(m3,m4)

(
k2

2

)
(2.9)

with

(−1)|n1−n2|
n1<n2

=

{
(−1)|n1−n2|

1

n1 < n2

n1 ≥ n2

, (2.10)

(−1)|n3−n4|
n3≥n4

=

{
(−1)|n3−n4|

1

n3 ≥ n4

n3 < n4

. (2.11)

In Eq. (2.8), we have used the relation
∑

m φ∗n,m (r)φn,m (r) = 1
2π�2

.

The Hamiltonian in Eq. (2.8) is very general. It contains all possible coherences〈
c†s,mcs′,m′

〉
between different angular momenta and spins. These order parameters are

used to describe the spin textured states. For example, if the coherence
〈
c†↑,mc↓,m+δ

〉
is

nonzero, then a 2δπ rotation of the spin field in real space will occur.

2.2 Single-particle excitations

In the higher Landau levels, the ground state is a quantum Hall ferromagnet and is

given by,

|GS〉 =
∞∏

m=0

c†n,↑,m |0〉 . (2.12)

We choose the valley K for our calculation in order to specify the Hamiltonian in Eq.

(2.8). The ground state is shown in Fig. (2.1). Each dot represents an electron at certain

angular momentum. According to the wave functions in Eq. (1.23), one electron is split

into two parts, one part is located at site A and the other is located at site B. Hence,

an entire electron should be represented by a two-component spinor. The upper element

represents the part at site A, and the lower element represents the part at site B. The
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B 

 m =  0      1       2       3       4       5 ……   

Figure 2.1: The spin degenerate ground state (in one valley of an arbitrary Landau level
n > 0) is split by the Zeeman energy due to external magnetic field B. The gap between
the two levels is the Zeeman energy ΔB = gμBB. Each blue ball represents one electron
at generalized angular momentum m = 0, 1, 2, . . . from left to right respectively.

two parts at sites A and B are described by the wave functions of Landau levels n − 1

and n, respectively. The generalized angular momenta for the two elements of a spinor

are the same, although the real angular momenta are different. For convenience, we use

the generalized angular momenta to identify the spinor of the entire electron.

For the ground state in Eq. (2.12), the energy per electron is given by

EGS

Nφ

= −1

2
gμBB

−1

8

∞∑
m=0

(
V n−1,n−1,n−1,n−1
m,0,0,m + V n,n,n,n

m,0,0,m + 2V n−1,n−1,n,n
m,0,0,m

)
. (2.13)

For example, in LL 1 at zero Zeeman coupling,

EGS,n=1

Nφ

= −1

8

(√
π

2
+

3

4

√
π

2
+

√
π

2

)
e2

κ�
= −0.430 83

e2

κ�
. (2.14)

For LL=2,

EGS,n=2

Nφ

= −1

8

(
3

4

√
π

2
+

41

64

√
π

2
+

7

8

√
π

2

)
e2

κ�
= −0.354 94

e2

κ�
. (2.15)

For LL=3,

EGS,n=3

Nφ

= −1

8

(
41

64

√
π

2
+

147

256

√
π

2
+

51

64

√
π

2

)
e2

κ�
= −0.315 16

e2

κ�
. (2.16)
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B 

Figure 2.2: Quasi-hole state (left) and quasi-electron state (right). Each blue dot
represents an entire electron.

2.2.1 Quasi-particle states

Now, we consider the charge excitations without spin texture. If we remove or add one

electron from the ground state, we make a quasi-hole or quasi-electron state, respectively.

The quasi-particle states are represented in Fig. (2.2). In the symmetric gauge, the quasi-

hole and quasi-electron states can be written as

|h〉 =
∞∏

m=0,m 	=i

c†n,↑,m |0〉 , (2.17)

|e〉 = c†n,↓,i

∞∏
m=0

c†n,↑,m |0〉 , (2.18)

respectively. Notice that we put the quasi-particle at m = i (or M = −n+ i). Physically,

the quasi-particle energy is independent of the value of i. In fact, the summation,

∞∑
m=0

V n,n,n′,n′
i,m,m,i = C (n, n′) , (2.19)

gives a constant, where C is a constant which does not depend on i, it only depends on

the Landau level indices n and n′.

We obtain the excitation energy of a quasi-hole Δh and the excitation energy of a
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quasi-electron Δe from the Hamiltonian in Eq. (2.8),

Δh =
1

2
gμBB +

1

4

∞∑
m=0

(
V n−1,n−1,n−1,n−1
i,m,m,i + V n,n,n,n

i,m,m,i + 2V n−1,n−1,n,n
m,i,i,m

)
, (2.20)

Δe =
1

2
gμBB. (2.21)

Note that adding an electron with opposite spin to the ground state costs no Coulomb

energy, the Hartree electron-electron interaction is cancelled by the electron-background

interaction and there is no Fock interaction between different spins. For convenience, we

set i = 0. Hence, the excitation energy of a quasi-particle pair is given by

Δeh = gμBB +
1

4

∞∑
m=0

(
V n−1,n−1,n−1,n−1
0,m,m,0 + V n,n,n,n

0,m,m,0 + 2V n−1,n−1,n,n
m,0,0,m

)
, (2.22)

The energy Δeh is valid when the quasi-hole and quasi-electron are infinitely separated

so that there is no interaction between these two quasi-particles.

We can also calculate the excitation energy of quasi-particle in the Landau gauge.

The results are identical to Eq. (2.22). The excitation energy Δeh is directly related to

the resistivity measured in a transport experiment by Eq. (2.1). Therefore, the energy

gap can be measured by the transport experiment at finite temperature.

2.2.2 Spin-textured excitations

Besides the quasi-particles, another way to excite the system involves spin textures.

Yang et al. [9] have proved, using a field theory approach (the nonlinear σ model that

we discussed in Sec. 1.5), that the skyrmion can exist up to Landau level n = 3 in

graphene, while the transport gaps are due to quasi-particle states in higher Landau

levels. By contrast, in a semiconductor 2DEG, skyrmions are the lowest-energy charged

excitations only in n = 0 at filling factor ν = 1 (when the width of the quantum well is

neglected) [31, 32].

The same conclusion for graphene was reached by using the density matrix renormal-

ization group (DMRG) method for n = 0, 1, 2. For n = 3, the skyrmion-antiskyrmion

(S-AS) pair and electron-hole (E-H) pair energies are very close and it was not possible

to stabilize a skyrmion solution with the DMRG method [36]. Exact diagonalization

studies of valley skyrmions have also been done in Ref. [37]. Crystals of valley skyrmions
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have been shown to be the ground state of the C2DEG around quarter filling of the

Landau levels n = 0, 1 [38]. A theoretical study of the possible coherence between the

spin and valley pseudo-spin in graphene, which could lead to CP 3 skyrmions, was done

in Ref. [39]. This work did not include a calculation of the behavior of the transport gap

with Zeeman coupling however.

In quantum Hall system, the spin texture of the skyrmion always includes a charge

density modulation. However, the nonlinear σ model (NLσM), applying only to large

skyrmions, is valid at zero Zeeman coupling, and neglects the Coulomb energy cost to

induce the charge modulation. Our approach that uses the Hamiltonian in section 2.1

can deal with smaller skyrmion at finite Zeeman coupling. It also takes into account the

Coulomb energy of the charge distribution. Following Fertig et al. [40], we write down

the skyrmion and antiskyrmion states as:

|sk〉 = c†n,↓,0

∞∏
m=0

(
umc

†
n,↑,m + vmc

†
n,↓,m+δ

)
|0〉 , (2.23)

|antisk〉 =
∞∏

m=1

(
umc

†
n,↑,m + vmc

†
n,↓,m+δ

)
|0〉 , (2.24)

where δ is positive in |sk〉 and negative in |antisk〉. The normalization condition requires

u2
m + v2m = 1. Furthermore, δ is related to the topological charge Q of the skyrmion or

anti-skyrmion. In a quantum Hall system, the topological charge is associated with the

electric charge q by the Pontryagin index Q [27, 28],

q = Qe. (2.25)

In the NLσM of Eq. (1), the topological charge is defined by Eq. (5). In the field

theory, the skyrmion is an exact solution, and the topological charge is an integer. With

Zeeman coupling, the skyrmion is no longer the exact solution, and we will see that the

topological charge is not exactly quantized.

We now analyze the spin textured states in Eqs. (2.23) and (2.24). If um = 1 and

vm = 0 for all m, then the quasi-particle states in Eqs. (2.18) and (2.17) are recovered:

|sk〉 → |e〉 and |antisk〉 → |h〉 .
The Zeeman coupling depends on the total magnetic field BT . By changing the angle

θ between the magnetic field and the 2DEG, keeping the magnetic field B⊥ perpendicular

to the 2DEG constant, and enlarge the total magnetic field without changing the filling
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Figure 2.3: Rotation of magnetic field from the direction of B⊥ to the direction BT .
The rotation angle is θ. The perpendicular component of BT is B⊥.

⋯⋯

(a)

⋯⋯

(b)

Figure 2.4: Suppose the topological charge is ±1, i.e. δ = −1 and +1 for (a) and (b),
respectively. In Landau level n, (a) representsthe antiskyrmion state (Eq. 2.24) where
the electron at m = 0 (M = −n) is removed; (b) represents the skyrmion state (Eq.
2.23), the blue dot is the added electron at m = 0 (M = −n), but with spin opposite to
the electrons in the ground state. The BCS-like pairs are formed in spin texture states.
The lines indicate the pairings of states defined by Eqs. (2.23) and (2.24).

factor. The device is shown in Fig. 2.3. In this case, ones can tune the Zeeman coupling

without changing the Landau gap or the Coulomb interaction since these quantities are

related to the perpendicular component of the magnetic field. At large Zeeman coupling,

the quasi-particle states are recovered since the spin flips are too costly.

The added or removed electron flips some spins around it thus making a texture in

the spin field. In this case, each spin-up electron with m angular momentum is paired to

the spin-down one with (m± 1) angular momentum (as shown in Fig. 2.4), so that the

projection of spin polarization on the xOy plane rotates by 2π along any path winding

around the origin one time. In each pair, there is only one charge or one electron. The

electron has a probability u2
m to be in the mth angular momentum of spin-up level and

a probability v2m to be in the (m ± 1)th angular momentum of spin-down level in a

pair. If vm is nonzero at m = 0 and decays to zero as m increases, the direction of spin

polarization goes from downward at the origin to upward at infinity and rotates around

the origin.
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We simplify the general Hamiltonian by inserting the skyrmion states into Eq. (2.8),

H =
∑
s′,m′

Es′c
†
n,s′,m′cn,s′,m′ +

∑
s′,m′

(UH,m′ − UF,s′,m′) c†n,s′,m′cn,s′,m′

−
∑
m′

Usk,m′+δc
†
n,1,m′+δcn,0,m′ −

∑
m′

U∗sk,m′+δc
†
n,0,m′cn,1,m′+δ

−
∑
s′,m′

Ubg,m′c†n,s′,m′cn,s′,m′ , (2.26)

where we define

Es′ = (−1)s
′ 1

2
gμBB, (2.27)

UH,m′ =
1

4

∑
s

∞∑
m=0

(
V n−1,n−1,n−1
m,m,m′,m′ + V n,n,n,n

m,m,m′,m′ + 2V n−1,n−1,n,n
m,m,m′,m′

)
× 〈

c†n,s,mcn,s,m
〉
, (2.28)

UF,s′,m′ =
1

4

∞∑
m=0

(
V n−1,n−1,n−1
m,m′,m′,m + V n,n,n,n

m,m′,m′,m + 2V n−1,n−1,n,n
m,m′,m′,m

) 〈
c†n,s′,mcn,s′,m

〉
,

(2.29)

Usk,m′+δ =
1

4

∞∑
m=0

(
V n−1,n−1,n−1,n−1
m,m′,m′+δ,m+δ + V n,n,n,n

m,m′,m′+δ,m+δ + 2V n−1,n−1,n,n
m,m′,m′+δ,m+δ

)
×

〈
c†n,0,mcn,1,m+δ

〉
, (2.30)

Ubg,m′ =
1

4

∞∑
m=0

(
V n−1,n−1,n−1
m,m,m′,m′ + V n,n,n,n

m,m,m′,m′ + 2V n−1,n−1,n,n
m,m,m′,m′

)
, (2.31)

with the spin indices,

↑ = 0, (2.32)

↓ = 1. (2.33)

In order to find a skyrmion solution, we have to solve for um and vm in Eqs. (2.23)

and (2.24). In the HFA, the Hamiltonian in Eq. (2.26) is easy to diagonalize. There

are three equivalent methods to do that: (1) minimizing the energy functional of the

Hamiltonian; (2) making canonical transformation to diagonalize the Hamiltonian; and

(3) using Green’s functions. Actually, the three methods are equivalent [41]. In this

thesis, only the Green’s function method is used.
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We define the Green’s function:

G
(m)
i,j (τ) = −

〈
Tτcn,i,m+iδ (τ) c

†
n,j,m+jδ (0)

〉
, (2.34)

where n is the Landau level and δ is identical to that in Eqs. (2.23) and (2.24). The spin

indices i, j = 0, 1 according to the Eqs. (2.32) and (2.33). This Green’s function is a 2×2

matrix. The number of Green’s function matrices is the same as the number of angular

momenta used in the system. Since we could not let m → ∞ numerically, it is necessary

to put a cut-off on the angular momentum. This approximation is qualified since the

order parameters um → 1 and vm → 0 when m is large. Using the same method as in

Sec. 1.2, we obtain the matrix equation of motion of the Green’s function G(m)(iωn),(
i�ωnI − F (m)

)
G(m) = B(m) (2.35)

for each m, since G(m) is not coupled to G(m′ 	=m). The elements of the F (m) matrix are

given by

F
(m)
11 = E0 + (UH,m − UF,0,m − Ubg,m) , (2.36)

F
(m)
12 = −U∗sk,m+δ, (2.37)

F
(m)
21 = −Usk,m+δ, (2.38)

F
(m)
22 = E1 + (UH,m+δ − UF,1,m+δ − Ubg,m+δ) . (2.39)

We obtain the Green’s function self-consistently by diagonalizing the F matrix (see the

details in Sec. 1.3). The density matrix at zero temperature is given by

〈
ρ(j,m+jδ),(i,m+iδ)

〉
= G

(m)
i,j

(
τ = 0−

)
, (2.40)

where ρ(j,m+jδ),(i,m+iδ) = c†n,j,m+jδcn,i,m+iδ is the coherence between an electron with spin

j, angular momentum m + jδ and an electron with spin i, angular momentum m + iδ.

The elements of density matrix
〈
ρ(j,m+jδ),(i,m+iδ)

〉
are also related to the parameters in

Eqs. (2.23) and (2.24) by,

〈
ρ(0,m),(0,m)

〉
= u2

m, (2.41)〈
ρ(1,m+δ),(1,m+δ)

〉
= v2m, (2.42)〈

ρ(0,m),(1,m+δ)

〉
= umvm. (2.43)



Chapter 2 : Skyrmions in monolayer graphene 50

In the spin language, we use the wave functions in Eq. (1.23) to calculate the observ-

able quantities: the spin density ns and the three components of the spin field sx, sy, sz.

These order parameters are defined by

ns =
1

2

∞∑
m=0

(|hn,m|2 + |hn−1,m|2
) 〈

ρ(s,m+sδ),(s,m+sδ)

〉
, (2.44a)

sx =
1

2
Re

[ ∞∑
m=0

(
h∗n,mhn,m+δ + h∗n−1,mhn−1,m+δ

)] 〈
ρ(0,m),(1,m+δ)

〉
, (2.44b)

sy =
1

2
Im

[ ∞∑
m=0

(
h∗n,mhn,m+δ + h∗n−1,mhn−1,m+δ

)] 〈
ρ(0,m),(1,m+δ)

〉
, (2.44c)

sz =
1

2
(n1 − n0) . (2.44d)

The spin fields defined here are not normalized to 1, the relation between s and a unit

field m is given by Eq. (1.91).

2.2.3 Nonlinear σ model for spin skyrmion at zero Zeeman en-

ergy or valley skyrmion

According to Sec. 1.4, it is easy to write the excitation energy functional for the

QHF. From the Hamiltonian in Eq. (2.26), we obtain the NLσM spin stiffness,

ρs = −1

4

1

2π�2
∇2

qXn (q) |q=0

=
1

16π

1

4

e2

κ�

∫
dqq2e

−q2

2

[
Ln

(
q2

2

)
+ Ln−1

(
q2

2

)]2
, (2.45)

where Xn (q) is the Fock interaction written in the Landau gauge, and Ln is a Laguerre

polynomial of degree n. The skyrmion or anti-skyrmion excitation energy is given by

Δskyrmion = Δanti−skyrmion = 4πρs, and the excitation energy of a unbound S-AS pair is

given by [33]

ΔNLσM = Δskyrmion +Δanti−skyrmion = 8πρs. (2.46)

Δskyrmion or Δanti−skyrmion gives the energy to make a skyrmion or an anti-skyrmion

spin texture and keep the number of electrons constant. These excitations are uncharged.

For an isolated skyrmion or antiskyrmion, the energy in field theory is not identical to

the charged excitation obtained when one electron is added or removed from the 2DEG.
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However, the excitation energy of a S-AS pair given by Eq. (2.46) in field theory is

identical to the unbound charged S-AS pair [43]. Hence, we can use Eq. (2.46) to

calculate the excitation energy of a unbound charged S-AS pair at zero Zeeman energy.

In a semiconductor 2DEG, it is possible to tune the Zeeman energy by changing the

Landé g factor in experiments. It is even possible to change the sign of g. However, in

graphene, the Zeeman energy can not be set to zero. It can only be enlarged by tilting

the magnetic field. So the excitation energy of a unbound charged S-AS pair at zero

Zeeman coupling only exists in theory in graphene. The excitation energy calculated

in the microscopic quantum theory should approach the value in Eq. (2.46) when the

Zeeman coupling is close to zero.

Due to the SU(2) symmetry, the valley pseudo-spin skyrmion exists around 1/4 and

3/4 fillings of a Landau level. In this case, the analog of the Zeeman energy is the gap

between two valleys. It is zero, i.e. the two valleys have the same energy. In this case,

the skyrmion excitation must be calculated in NLσM with Eq. (2.46), since the size of

skyrmion is infinite and required maximum of m is also infinite, i.e. the microscopic

quantum theory fails when the energy difference between the two states considered is

zero.

2.2.4 Numerical results at finite Zeeman coupling

The quantum microscopic Hamiltonian and the Green’s function method are well

suited for calculating the excitation energy and the number of flipped spins at finite

Zeeman energy where the size of skyrmion is also finite. However, as we mentioned in

the last section, we need to cut off the angular momentum at a large number mmax. The

single particle orbital with angular momentum m is localized near a ring with radius√
2m+ 1�, so the size of skyrmion should not exceed a disk of radius ≈ √

2mmax�. At

the edge of the disk (with radius
√
2mmax�), the spin texture should approach that of

the ground state outside the disk radius. The associated density profile should also be

flat as that of the ground state outside of the disk. However, when the Zeeman coupling

decreases below a certain value, the skyrmion size becomes large and mmax becomes too

big to handle numerically.

The Landau level wave functions obey the identity

mmax=∞∑
m=0

|hn,m (r)|2 = 1

2π�2
. (2.47)
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Figure 2.5: Energy of one skyrmion Esk and the corresponding number of down spins
N↓ = K as a function of the Zeeman coupling for different values of the cutoff angular
momentum used in the computation. Figure is taken from our publication [29].

In our numerical calculations, we set mmax = 1000. It follows that the charged excitation

that we compute must be restricted to a disk with radius rmax/� � 40. To find out

the lowest Zeeman coupling where the calculation with mmax = 1000 is reliable, we plot

the skyrmion excitation energies Esk as well as the spin flipped number N↓ for different

mmax in Fig. (2.5). Note that when the Zeeman coupling decreases, the skyrmion energy

approaches its asymptotic value much more rapidly with increasing mmax. When the

Zeeman energy is lower than 0.0005e2/κ� the calculation with mmax = 1000 becomes

unreliable.

Because of the electron-hole symmetry around ν = 0 in graphene our calculation for

n > 0 also applies to Landau levels n < 0. In Fig. (2.6), we indicate our numerical

results for the excitation energies of a quasi-particle pair and a S-AS pair in Landau

levels |n| = 1, 2, 3 as a function of the Zeeman coupling. In Fig. (2.6), the lowest

Zeeman energy is 0.0004e2/κ�. The excitation energies approach the NLσM results at

small Zeeman coupling.

The S-AS energy approaches smoothly the line of the quasi-particle energy in Landau

level |n| = 1, so that there is a second-order transition between skyrmion and quasi-

particle at about Zeeman coupling Δ
|n|=1
C = 0.048e2/κ�. In Landau level |n| = 2, the

critical value of the Zeeman energy, where the transition between skyrmion and quasi-
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Figure 2.6: (a) Excitation energy of a S-AS pair ΔS−AS and an E-H pair Δeh as a
function of the Zeeman coupling ΔZ in |n| = 1, 2, 3. The horizontal arrows indicate
the value of the S-AS gap ΔNLσM calculated in the NLσM. The upward vertical arrows
point to values corresponding to total magnetic fields B = 15, 25, 30T. The downward
arrow points to the value of Δ

|n|=2
C . (b) Number of down spins N↓ = 2K + 1 in a S-AS

pair as a function of ΔZ in |n| = 1 with and without screening. The arrows are placed
at B = 15, 25, 30T. The dashed line indicates the E-H limit N↓ = 1. The results are
calculated under the conditions that the perpendicular magnetic field B⊥ = 15T and
κ = 2.5. Figures are taken from our publication [29].



Chapter 2 : Skyrmions in monolayer graphene 54

particle occurs, is about Δ
|n|=2
C = 0.0026e2/κ� which is one order magnitude smaller than

the critical Zeeman energy in |n| = 1. The existence region of skyrmion is much smaller

than |n| = 1. The gap ΔS−AS crosses Δeh at Δ
|n|=2
C and goes over Δeh when ΔZ > Δ

|n|=2
C ,

instead of reaching Δeh smoothly. Since the number of flipped spins at Δ
|n|=2
C is very

large, about 25, there would be an abrupt change of magnitization in the C2DEG at

Δ
|n|=2
C . A similar first order transition in the magnetization was predicted theoretically

for skyrmions in a conventional 2DEG when the finite width of the well was considered

at filling factor ν = 3 [32]. This first order transition has been observed in experiments

in a conventional 2DEG at ν = 1 [44] and also in a conventional bilayer 2DEG at ν = 1

when the electrons occupy only one of the two layers [45]. Our calculation shows that it

can also happen in graphene.

In Landau level |n| = 3, the microscopic quantum Hamiltonian calculation is not valid

since ΔS−AS is very close to Δeh even at zero Zeeman coupling. This implies that the

existence region of the skyrmion is too small to be calculated numerically. The transition

occurs below 0.0002e2/κ�, so the range is approximately one order magnitude smaller

than that in |n| = 2, based on a rough calculation.

The number of down spins N↓ > 1 for a skyrmion-antiskyrmion pair while N↓ = 1

for an electron-hole pair. Fig. (2.6b) shows that the rapid increase in energy of ΔS−AS

with ΔZ is associated with a rapid decrease in N↓. At B⊥ = 15 T, N↓ ≈ 6 for n = 1

corresponding to 2.5 flipped spins per skyrmion.

In a skyrmion or an antiskyrmion, a density modulation is always associated with the

spin texture, because of the spin charge coupling inherent to quantum Hall ferromag-

nets. In Fig. (2.7), the density profiles of skyrmions with respects to the ferromagnet

ground state density nGS = 1/(2π�2) are shown. The induced density is defined as

δn = nskyrmion − nGS. Because of the electron-hole symmetry of the Hamiltonian near

half-filling, the density profile of an antiskyrmion is just the opposite to that of the

skyrmion, δnantisk = −δn. Fig. (2.7) shows that the size of the skyrmions shrinks with

increasing Zeeman coupling and also with increasing Landau level index at fixed Zeeman

coupling. Moreover, the size of a skyrmion is proportional to the number of flipped spins.

Notice that all skyrmions in Fig. (2.7) are within the calculation limit set by rmax = 35�.

In Fig. (2.8), the spin textures of a skyrmion and an antiskyrmion are indicated.

We see that not only the density but also the spin textures are rotationally invariant.

This is the reason why we study the skyrmion problem in the symmetric gauge. The

in-plane component of the spin winds around the center of the skyrmion counterclockwise
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Figure 2.7: Profile of the induced density δn (r) when a skyrmion is added to the ground
state in Landau level n = 1 for several values of the Zeeman coupling ΔZ/ (e

2/κ�). The
profiles for the screened skyrmion in n = 1 and the unscreened skyrmion in n = 2 are
also shown. Because of the electron-hole symmetry, the results in the picture are also
valid for the corresponding negative Landau levels. Figure is taken from Ref. [29].

(skyrmion) or clockwise (antiskyrmion). For a topological charge Q = ±1, the rotation

angles are ±2π. At infinity (far enough from the center), the spin texture is that of the

ferromagnetic ground state.

We have discussed the topological charge and Pontryagin index in Eqs. (2.25) and

(??). The skyrmion is defined in the field theory via the NLσM where the topological

chargeQ is an integer, 1 for skyrmion and−1 for antiskyrmion. However, at finite Zeeman

coupling, the skyrmion is not perfect and is not exactly the same as the one defined in

NLσM. Hence, the topological charge at nonzero Zeeman coupling is not an integer, but

just a number between 0 and 1. Consequently, when the Zeeman coupling ΔZ → 0, the

topological charge Q → ±1. Indeed, a numerical integration of the topological charge

defined in Eq. (??) proves this point. The integration of the density profile in Fig. (2.7)

shows that the total charge by contrast with the topological charge, however, is always

q = −e for a skyrmion and q = e for an antiskyrmion. We remark that (anti-)skyrmion

can have topological charge Q = ±1,±2, . . .. However, creating skyrmion with high |Q|
requires more energy than the one with low |Q|. We would like to consider the lowest

excitation in the C2DEG, so that we do not consider the case of |Q| > 1.
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Figure 2.8: Spin texture in the x− y plane for a (a) skyrmion and (b) an antiskyrmion
in Landau level |n| = 1 at Zeeman coupling ΔZ = 0.011 (e2/κ�) . The color plot shows
sz (r) in units of �/(2π�2). Figures are taken from Ref. [29].

Our results can be compared with those of Ref. [12] [see Fig. 2(e) of this paper]

where the transport gap was measured at total magnetic fields B = 15, 25, 30T with

the perpendicular magnetic field B⊥ = 15T kept fixed. The substrate under graphene

in the experiment is Boron Nitride (BN) with a dielectric constant κ = 2.5 in CGS

units. The experiment was carried out at filling factors ν = −4,−8,−12 in Landau

levels n = −1,−2,−3 respectively. At B = 15, 25, 30T, according to our calculations in

Fig. (2.6.a), the transport gap is given by the skyrmion-antiskyrmion pair in n = −1

and electron-hole pairs in n = −2,−3. This result is consistent with the experimental

result except for n = −2. In this case, the experiment observes a small number of spin

flips, N↓ ≈ 1.4 (in experiment, the flip number is obtained by the differential Nflip =

∂Δsk/∂ΔZ) which is very close to the electron-hole flipping N eh
↓ = 1 though. It still

suggests that Δ
|n|=2
sk < Δ

|n|=2
eh , i.e. the skyrmion is still favored. However, we cannot

explain this difference with our model of skyrmion excitations.

Another difference between the experimental and theoretical results is the size of the

transport gap. For example, the experimental value of Δ
|n|=1
sk ≈ 75K at B = 30T, while

we find Δ
|n|=1
sk ≈ 910K, one order magnitude higher than the experimental result. Several

effects may affect our results such as disorder, Landau level mixing [31], and screening.

In a conventional 2DEG, the quantum well width is also considered to decrease the

excitation energy, but this effect does not exist in graphene, because the wave function
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along the z direction is a delta function, since graphene is a one atomic layer material.

The important effects must come from disorder, LL mixing and screening. However,

disorder and LL mixing are difficult to handle, so we deal with the screening first.

2.3 Landau level screening

Screening in a metal is very important, since there is no gap in a metallic state. For an

insulator, the screening effect is weak, since the gap between the valence and conduction

bands is large. In a quantum Hall system, the screening effect depends on the value of

the LL gap.

To study the effect of screening on the excitation energy of skyrmion and quasi-

particle, we need to compute the dielectric function ε (q) (we consider the static screening

only, leaving the dynamical screening correction to a future work). The bare Coulomb po-

tential V (q) = 2πe2/κq has to be replaced by the screened interaction Vs(q) = 2πe2/ε(q)κq.

Because of screening, ε(q) ≥ 1 and the excitation energy of transport gap is reduced.

Next, we calculate the dielectric function in the random phase approximation (RPA).

In RPA, the screened Coulomb potential is given by

Vs (q) =
V (q)

1− V (q)χnn (q)
, (2.48)

where χnn is the density-density response function. The dielectric function is given by

ε (q) = 1− V (q)χnn (q) = 1− 2πe2

κq
χnn (q) . (2.49)

We have discussed the response function in Sec. 1.3. The density-density two-particle

Green’s function is defined by,

χnn (q,τ) = − 1

�S
〈Tτδn (q,τ) δn (−q,0)〉

=
Nφ

�S

∑
n1,n2,n3,n4

Θn1,n2 (−q)Θn3,n4 (q)
∑

σ1,σ2,σ3,σ4

χσ1,σ2,σ3,σ4
n1,n2,n3,n4

(q,τ) , (2.50)

where we use

n (q,τ) = Nϕ

∑
n1,n2

∑
σ1,σ2

Θn1,n2 (−q) ρσ1,σ2
n1,n2

(q,τ) δσ1,σ2 , (2.51)
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and define the two-particle Green’s function

χσ1,σ2,σ3,σ4
n1,n2,n3,n4

(q,τ) = −Nϕ

〈
Tτδρ

σ1,σ2
n1,n2

(q,τ) δρσ3,σ4
n3,n4

(−q)
〉
. (2.52)

The index n under χ means density, ni is the Landau level index and σi is the spin-valley

index. Nφ is the Landau level degeneracy and S is the area of the sample. In the simplest

approximation, the correlation function χ0
nn is given by the noninteracting two-particle

Green’s function χ0,σ1,σ2,σ3,σ4
n1,n2,n3,n4

,

χ0
nn (q,iΩn) =

Nϕ

�S

∑
n1,n2,n3,n4

Θn1,n2 (−q)Θn3,n4 (q)
∑

σ1,σ2,σ3,σ4

χ0,σ1,σ2,σ3,σ4
n1,n2,n3,n4

(q,iΩn) δσ1,σ2δσ3,σ4 .

(2.53)

According to Sec. 1.3, the noninteracting two-particle Green’s function is given by

χ0,σ1,σ2,σ3,σ4
n1,n2,n3,n4

(q, iΩn) =
δσ2,σ3δn2,n3

〈
ρσ1,σ4
n1,n4

(0)
〉− δσ1,σ4δn1,n4

〈
ρσ3,σ2
n3,n2

(0)
〉

iΩn + (En1,σ1 − En2,σ2) /�
, (2.54)

where En1,σ1 is the kinetic energy of Landau level n1 with spin-valley index σ1. In

this thesis, only the static dielectric function is considered. We first take the analytic

continuation iΩn → ω + iδ in Eqs. (2.53) and (4.83) to get the retarded function χR.

Then we set ω → 0 to obtain the static dielectric function.

In graphene, the form factor Θ is given by,

Θn,n′ (q) =
1√

22−δn,0−δn′,0

[
F|n|,|n′| (q) + sgn (n) sgn (n′)F|n|−1,|n′|−1 (q)

]
, (2.55)

where

Fn,n′ (q) =

√
min (n, n′)!√
max (n, n′)!

e−q
2�2/4

[
(sgn (n− n′) qy + iqx) �√

2

]|n−n′|
L
|n−n′|
min(n,n′)

(
q2�2

2

)
.

(2.56)

We find that the dielectric function at filling factor ν is the same as that at −ν, i.e.

εν = ε−ν . Hence, the screening effect does not change the electron-hole symmetry in

graphene.

The dielectric function ε(q) of the C2DEG has been studied previously [48]. We show

our numerical results obtained at different filling factors in Fig. (2.9). In our calculation,

we also need to set a cut-off of the Landau levels in the summation in Eq. (2.53). The

effects from very high or very low Landau levels are weak (especially at small q). It is
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Figure 2.9: Static dielectric functions computed in the RPA at different filling factors
|ν| (indicated by the number below each curve) in Landau levels |n| = 0, 1, 2, 3. Figure
is taken from Ref. [29].

reasonable to restrict the Landau levels to the range [−800, 800], because in this region,

the summation in Eq. (2.53) converges below q� < 20, and the integrand in the Coulomb

interaction also approaches zero rapidly when q� � 20. The dielectric function ε(q) = 1

at q = 0 and q → ∞. The maximal value is around q� ≈ 1 and increases with increasing

absolute values of the filling factors (for both electron and hole). In particular, screening

is larger at 3/4 filling of a given Landau level than at 1/4 filling for all the Landau levels

as shown in Fig. (2.9). This fact is important in the next section when we discuss the

valley skyrmion.

To include screening properly, we follow Ref. [49] where it was shown that when all the

Landau levels under the partially filled level are integrated out, the low frequency dynam-

ics of the 2DEG is described by the electrons belonging to the partially filled Landau level,

but the Coulomb interaction between these electrons as well as the electron-background

and background-background interactions are renormalized due to the polarizability of all

the other Landau levels. Since the filled Landau levels constitute an ”external” system

for the electrons in the partially filled level, both the Hartree and Fock interactions must

be screened. Such procedure was used, for example, in the study of inhomogeneous states

such as bubble and stripe phases in quantum Hall systems [50]. Our single-particle exci-

tation problem is also an inhomogeneous system. Hence, the way to screen the Coulomb
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interaction is simply to replace all the Coulomb interaction elements V
(s),n1,n2,n3,n4

M1,M2,M3,M4
by the

screened ones

V (s),n1,n2,n3,n4
m1,m2,m3,m4

=
e2

κ�
δM1−M2+M3−M4

√
min(m1,m2)!min(m3,m4)!

max(m1,m2)!max(m3,m4)!

×
√

min(n1, n2)!min(n3, n4)!

max(n1, n2)!max(n3, n4)!

∫
dk

e−k
2

ε(k)

(
k2

2

)|n1−n2|+|m1−m2|

× (−1)|n1−n2|
n1<n2

(−1)|n3−n4|
n3≥n4

i|m1−m2| (−i)|m3−m4|

×L
|n1−n2|
min(n1,n2)

(
k2

2

)
L
|n3−n4|
min(n3,n4)

(
k2

2

)
L
|m1−m2|
min(m1,m2)

(
k2

2

)
L
|m3−m4|
min(m3,m4)

(
k2

2

)
(2.57)

in all the interactions in Eqs. (2.28), (2.27), (2.30), and (2.31). The electron-hole exci-

tation energy in Eq. (2.22) is also screened by replacing V by V (s). Note that if we only

screen the Fock interaction as we normally do in a screened exchange approximation, the

excitation energies of the quasi-particle states depend on the angular momenta of the

added or removed electron, which is unphysical. For the zero Zeeman case, where the

NLσM is valid, the spin stiffness in Eq. (2.45) which is from the Fock interaction must

be replaced by the screened version:

ρ(s)s =
1

16π

1

4

e2

κ�

∫
dq

ε(q)
q2e

−q2

2

[
Ln

(
q2

2

)
+ Ln−1

(
q2

2

)]2
. (2.58)

How the screening changes the energies of an electron-hole pair and the skyrmion-

antiskyrmion pair is shown in Fig. (2.10). The results are obtain at dielectric constant

κ = 2.5 and magnetic field B = 10T. The screening correction significantly decreases

the excitation energies. However the highest Landau level in which skyrmion exists is

still |n| = 3. We see that the Δ
(s)
eh is much closer to Δ

(s)
NLσM in |n| = 3 than that in the

unscreened case. So the existence region of a skyrmion at finite Zeeman coupling would

be too narrow to calculate in the microscopic quantum method. In Fig. (2.11), we see

that the existence regions of skyrmions in all the Landau levels are narrowed very much.

In |n| = 2, the results in Fig. (2.11) are not very reliable, since the Zeeman energies

are too small and the skyrmions are too large. However, we can say that the first order

transition occurs at ΔZ ≈ 0.0001e2/κ�.

At the end of this section, we would like to compare our results with the experimental

measurements. From Figs. and (2.10) and (2.11), we find that the skyrmion still exists
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Figure 2.10: Evolution of the NLσM and electron-hole transport gaps at zero Zeeman
coupling in Landau levels |n| = 1, 2, 3. The full lines are only a guide to the eyes. The

inset shows the ratios Δeh/ Δ
(S)
eh and ΔNLσM/ Δ

(S)
NLσM with Landau level index. Figure

is taken from Ref. [29].
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Figure 2.11: In HFA, the excitation energies of an electron-hole pair Δ
(s)
eh and a spin

skyrmion-antiskyrmion pair Δ
(s)
sk with screening corrections in Landau levels |n| = 1

(lower x axis), |n| = 2 (upper x axis) and |n| = 3 (lower x axis) at half-filling. The arrow
points to the excitation energy of skyrmion-antiskyrmion pair obtained by NLσ model
at zero Zeeman coupling with a screened spin stiffness. Figure is taken from Ref. [29].
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Figure 2.12: The ground states at (a) 1/4 and (b) 3/4. Red thicker lines represent
filled levels and black ones represent empty levels. The valley pseudo-spin is chosen to
be polarized.

even when the screening correction is considered, but the excitation energies are signif-

icantly decreased. The energies of a skyrmion-antiskyrmion pair is still 4 times larger

than the experimental results [12]. This is mostly due to the Landau level broadening.

If we take the broadening into account, the effective Zeeman coupling Δeff
Z is less than

ΔZ = gμBB. For example, at B = 15T, ΔZ = 0.02e2/κ� the skyrmion does not exist,

according to Fig. (2.11). However, the real Zeeman gap, Δeff
Z < 0.02e2/κ�, and the S-AS

pair energy is in reality smaller than what we have computed, so that skyrmion could be

the lowest charged excitation.

2.4 Valley skyrmion at 1/4 and 3/4 fillings

In the NLσM, we can also study the valley skyrmion at 1/4 and 3/4 fillings. Due to

the SU(2) symmetry of valleys, the valley pseudo-spin orientation is arbitrary. So the

ground states could be valley polarized, as shown in Fig. (2.12).

In both the 1/4 and 3/4 cases, the four-level system can also be simplified to a

two-level system. The Zeeman coupling is finite while the effective Zeeman energy be-

tween valleys is zero. So the electrons favor the valley pseudo-spin coherence rather than

spin coherence. Experimentally, the lowest-energy charged excitations may be valley

skyrmions [12]. Since the excitation energies do not depend on Zeeman energy. There-

fore, the 4-level system is reduced to a 2-valley-level system with spin ↑ at 1/4 filling or a

2-valley-level system with spin ↓ at 3/4 filling. In such a system, the effective ”Zeeman”

coupling is zero, so that the NLσM is valid.

We use the unscreened and screened pseudo-spin stiffnesses in Eqs. (2.45) and (2.58)

to calculate the energies of valley skyrmions. In Fig. 2.13, the 1/4 and 3/4 fillings in

|n| = 1 correspond to |ν| = 3, 5 respectively; the 1/4 and 3/4 fillings in |n| = 2 correspond
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Figure 2.13: Excitation energy of a valley skyrmion-antiskyrmion pair for different
filling factors with and without screening corrections. The screening is calculated with
the parameters: κ = 2.5, B = 15T. The dashed lines are only a guide to the eyes. Figure
is taken from Ref. [29].

to |ν| = 7, 9 respectively; the 1/4 and 3/4 fillings in |n| = 3 correspond to |ν| = 11, 13

respectively.

The screening at 3/4 filling are stronger than at 1/4 filling. So we see that the

electron-hole symmetry in a Landau level is broken, and the valley skyrmion energy at

1/4 is higher than that at 3/4. This conclusion agrees with the experimental results

shown in Fig. 2.14. Experimentally, the transport gaps also depend on other effects,

such as disorder. Our numerical results can not be exactly equal to the experimental

ones.

In fact, the BN substrate is able to flatten the graphene sheet very much [47]. So

the impurities are much weaker than those on a SiO2 substrate. If we do not consider

impurities, then the disorder basically renders the background inhomogeneous. These

inhomogeneities are also screened. We assume that the disorder is weak, and the disorder

at 1/4 filling is the same as that at 3/4 filling without screening. The disorder |Γ| �
Δvalleysk should be added to the total transport gap Δtrans in absence of screening. If the

disorder is screened in the same way as skyrmions are, then we can estimate the ratio of

the transport gaps at 1/4 and 3/4 fillings. Because of the screening effect, Γ → Γ(s), and
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(a) (b)

Figure 2.14: The perpendicular magnetic field is 15T. Tilting the magnetic field angle
to enlarge the Zeeman coupling. (a) and (b), which are extracted from Figs. 4b and 4c in
Ref. [12], are the dependence between the excitation energies and total magnetic field at
ν = −3 and −5 for different samples (different dots). The excitation energies are almost
independent of the Zeeman coupling.

Γ(s) ≈ Δ
(s)
valleysk

Δvalleysk
Γ, we obtain the ratio, in the Landau level n = 1:

Δν=3
trans

Δν=5
trans

=
Δ

(s),ν=3
valleysk + Γ(s),ν=3

Δ
(s),ν=5
valleysk + Γ(s),ν=5

≈
Δ

(s),ν=3
valleysk

Δν=3
valleysk

(
Δν=3

valleysk + Γ
)

Δ
(s),ν=5
valleysk

Δν=5
valleysk

(
Δν=5

valleysk + Γ
)

=
Δ

(s),ν=3
valleysk

Δ
(s),ν=5
valleysk

= 1.3 (2.59)

in the numerical calculation, which is almost the same as the experimental results in Fig.

2.14 (extracted from Fig. 4 in Ref. [12]).

In this chapter, we study the single skyrmion excitation in graphene system in LL

|N | > 0 with Zeeman coupling and screening correction. We also try to compare our
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numerical results with the experiment. Our numerical results for a spin skyrmion around

half-filled LL agree with the experiment qualitative. Moreover, we explain quantitatively

by the screening effect why the transport gap at 1/4 filling is different from that at 3/4

filling.



Chapter 3

Pseudo-spin textured phases in

bilayer graphene in LL N = 0

The Bernal-stacked bilayer graphene (BLG) was introduced in Chapter 1. By properly

gating the structure, it is possible to control both the total electron density in the BLG

as well as the density in each layer. The electric field created by the gates also open a

gap between the two degenerate bands at the K and K ′ points.

In this chapter, we use the HFA to explore the possible crystal phases at and near

integer filling factors in the Landau level N = 0. We then study some experimental

signatures of these phases such as their collective modes and electromagnetic absorption.

In Section 1.2, we have studied the crystal structure of the Bernal stacked graphene

bilayer. The tight binding Hamiltonian for the band structure is given in Eq. (1.25).

In Section 1.2.1, we have shown that it was possible to derive a simple effective two-

component model to analyse the electronic properties in N = 0. In the presence of a

transverse magnetic field, the two-component model is a particularly good approximation

in N = 0 [76]. We use this model in this chapter.

In the absence of external electric field and Zeeman coupling and when the small

quantities γ4 = Δ = 0 in Eqs. (1.37), (1.38), (1.39) and (1.40), the LL N = 0 has 8-fold

degeneracy: 2 spins by 2 valleys by 2 orbitals. Consequently, an electron in the N = 0

must be described by its spin, valley (or layer), and orbital quantum numbers n = 0, 1

in addition to its guiding center index X in the Landau gauge. We remark that the

filling factors range from −4 to 4 in N = 0. When the Coulomb interaction is taken

into account, a rich phase diagram for the bilayer graphene’s 2-dimensional electron gas

66
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(2DEG) appears.

In recent works [51–53], it was shown that the octet degeneracy in N = 0 is lifted by

the Coulomb interaction. The broken symmetry ground states can be described in the

pseudo-spin language in which the two valleys (or two orbitals) are supposed to be the

pseudo-spin “up” and “down”. The coherence between valleys or between orbitals can

be represented by a valley or an orbital pseudo-spin. Due to the tunable electric field and

the orbital degeneracy, the phase diagram is very rich and interesting. The extra orbital

degree of freedom provides different Coulomb interaction from that in a conventional

2DEG when we study the ground states and excitations.

It is known that the topological excitations, such as skyrmion, exist near ν = 1 in a

normal 2DEG semiconductor [27]. The spin texture can be found in Sec. 1.3. In bilayer

graphene, the orbital pseudo-spin may also be textured in an excitation.

We study the phase diagram of the N = 0 LL assuming that the C2DEG is fully

spin polarized and neglecting LL mixing. We present several crystal phases with valley

or orbital pseudo-spin texture at and near some integer filling factors in N = 0.

3.1 Hartree-Fock Hamiltonian

The effective two-component model for the BLG structure is given by

HK =

(
−ΔB

2
+ (βΔB + ζ1) aa

† βγ1a
2

βγ1
(
a†
)2 ΔB

2
+ (−βΔB + ζ1) a

†a

)
, (3.1)

HK′ =

(
−ΔB

2
+ (βΔB + ζ1) a

†a βγ1
(
a†
)2

βγ1a
2 ΔB

2
+ (−βΔB + ζ1) aa

†

)
, (3.2)

where we define

ζ1 = βΔ+ β4, (3.3)

β =
u2
0

γ2
1

, (3.4)

β4 = 2
u0u4

γ1
, (3.5)

and ui is defined in Eq. (1.28). An external electric field lifts both the valley and the

orbital degeneracies. It introduces a gap ΔB between the K and K ′ valleys. The kinetic

energies of the two oribals are given by Eqs. (1.37) and (1.38) in the K valley, and by
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Figure 3.1: Noninteracting levels in the LLL with respect to an electric field ΔB. The
spin is neglected here, so there are four levels in all.

Eqs. (1.39) and (1.40) in the K ′ valley. The positions of the four levels are plotted in

Fig. 3.1.

If two states |0〉 and |1〉 are coherent, then the order parameter 〈c†0c1〉 is nonzero,

where operators ci and c†i are the annihilation and creation operators of state |i〉. The

Coulomb interaction can induce two coherent states. Let us define the coherence first. If

c†α,n,X is a fermion operator that creates an electron in the state (α, n,X) in the Landau

gauge (where the valley index α = K,K ′, n = 0, 1 is the orbital index, and X is the

guiding center index), then a state where
〈
c†α,n,Xcα,n,X

〉
α 	=σ

�= 0 has inter-valley (or inter-

layer in the LLL) coherence while a state with
〈
c†α,n,Xcα,m,X

〉
m 	=n

�= 0 has inter-orbital

coherence. In the most general case, both coherences occur.

It is shown in Refs. [51–53] that when ζ1 = 0, the phase diagram of the 2DEG at

integer filling factors ν ∈ [−3, 4] contains phases with interlayer and/or inter-orbital

coherence. Due to the small interlayer spacing (d = 3.337Å� �) in a graphene bilayer,

the capacitive energy which balances the charge in two layers (or equivalently in the two

valleys) is so small that the interlayer coherence is rapidly lost when the bias ΔB increases

i.e. for ΔB � 0.001 (e2/κ�) according to Ref. [51–53] (κ is the effective dielectric constant

of the substrate). Above this value, inter-orbital coherence sets in when EN=0
K,0 = EN=0

K,1 .

Since the orbital index is not necessarily conserved, the Coulomb interaction can make the

two orbitals coherent. If the C2DEG is assumed fully spin polarized, orbital coherence is



Chapter 3 : Pseudo-spin textured phases in bilayer graphene in LL N = 0 69

only possible when valley K is partially filled and valley K ′ is fully filled. This is because,

as Fig. 3.1, the state |K, 1〉 can be made lower in energy than the state |K, 0〉. When

the Coulomb exchange energy is optimal in |K, 0〉, there is in this case a competition

between bias and Coulomb energies, and obital coherence sets in. This possibility does

not exist in valley K ′ since EK′,1 ≥ EK′,0 for any bias.

We would like to study the pure orbital coherence crystal phases, so that we need

to apply a sufficient electric field (ΔB > 0.001e2/κ�) to avoid the valley coherence.

At ν = −1, 3, i.e. three or seven levels are filled in the LL, the valley pseudo-spin is

polarized, since the gap between two valleys ΔB is large enough. For other filling factors,

the orbital coherence may be disappeared or mixed with other coherence (like valley or

spin coherence). Hence, we study the orbital crystal phases at or near ν = −1, 3.

The precise values of the bias for the transitions between the different liquid phases

at integer filling factors are very sensitive to the exact values of the hopping parameters.

The same is true for the boundaries between various crystal phases at non-integer filling

factors. We assume ζ1(γ4,Δ) = 0 for all our calculations. In fact, this simplification is

acceptable since both γ4 and Δ are much smaller than γ0, and the finite γ4 and Δ are

equivalent to a finite shift of ΔB. In our opinion, reliable determination of the phase

boundary characterizing the many possible crystalline phases will require experimental

input.

Whether at filling factor −1 or 3, there is a 4-level system if the spin degree of freedom

is frozen. We could write down the Coulomb interaction in the second quantization

language as,

HCoulomb =
1

2

∑
α,σ

∫
du

∫
du′Φ†α (u) Φ

†
σ (u

′)V (u− u′) Φσ (u
′) Φα (u) , (3.6)

where valley index α, σ = K,K ′ and Φα (u) is the three-dimensional field operator of an

electron. In our case, the layers of graphene have no width, so we can write

Φα (u) =
∑
n

∑
X

Ψα,n,X (r)χα (z) cα,n,X , (3.7)

where we neglect the spin degree of freedom, χα (z) is the wave function in the z direction

with |χ(z)|2 = δ(z ± d/2), n = 0, 1 is the orbital index, and r is a vector in the plane of



Chapter 3 : Pseudo-spin textured phases in bilayer graphene in LL N = 0 70

the C2DEG. Ψ is the wave function spinor and is defined by

ΨK,n,X (r) =

(
0

hn,X (r)

)
, (3.8)

ΨK′,n,X (r) =

(
hn,X (r)

0

)
, (3.9)

in the basis of {B2, A1}, where h is the wave function defined by Eq. (1.21). If we take

the limit of zero-width layers

χ∗K (z)χK (z) = δ (z − d/2) , (3.10)

χ∗K′ (z)χK′ (z) = δ (z + d/2) , (3.11)

and use the Coulomb potential in Fourier transformed is given by by

V (u− u′) =
1

S

∑
q

2πe2

κq
eiq·(r−r

′)e−q|z−z
′|, (3.12)

where S is the area of the sample, so the Coulomb interaction is given by

HCoulomb =
1

2S

∑
α,σ

∑
q

∑
X1,...X4

2πe2

κq
e−Δα,σqd (3.13)∫

drdr′Ψ†α,n1,X1
(r)Ψ†σ,n2,X2

(r′) eiq·(r−r
′)Ψσ,n3,X3 (r

′)Ψα,n4,X4 (r)

c†α,n1,X1
c†σ,n2,X2

cσ,n3,X3cα,n4,X4 ,

where we define the function

Δα,σ = 1− δα,σ, (3.14)

to distinguish the intra- and inter-layer Coulomb interactions.

The substrate of the graphene bilayer also plays an important role in the system.

We suppose that the sample is deposited on a substrate, which could be SiO2 or Boron

Nitride (BN) with effective dielectric constant κ. We define the density matrix,

ρα,n1;σ,n2 (q) ≡
1

Nφ

∑
X1,X2

e−
i
2
qx(X1+X2)δX1,X2+qy�2c

†
α,n1,X1

cσ,n2,X2 , (3.15)
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where Nφ is the degeneracy of a level. The average value of the density matrix is related

to observable quantities. In the LLL, there are 8 degenerate levels, so that the total

degeneracy of the LLL is 8Nφ. The effect of the positive background is discussed in

Appendix B. The interaction of the 2DEG with the positive background is given by

H+ = n0Nφ

[
πe2d

κ
− V (q = 0)

]∑
α

∑
n1,n2

ρα,n1;α,n2 (q = 0) +
1

2
Sn2

0V (q = 0) . (3.16)

The background term can cancel the diverging part of the Hartree interaction at q = 0.

The non-diverging part is the so-called capacitive energy Ecap ∝ d
�
which favors a uniform

distribution of charge between the two layers (or valleys). Although the capacitive energy

which is related to the distance between two layers is weak, it plays an important role

in the phase diagram. In the Hartree-Fock approximation (HFA), taking the Eq. (3.16)

into account, the total Hamiltonian is then given by

H = HCoulomb +H+ = Nφ

∑
α,n

Ẽα,nρα,n;α,n (0) (3.17)

+Nφ
e2

κ�

∑
α,σ

∑
q

∑
n1,...,n4

Hα,σ (n1, n2, n3, n4;q) 〈ρα,n1;α,n2 (−q)〉 ρσ,n3;σ,n4 (q)

−Nφ
e2

κ�

∑
α,σ

∑
n1,...,n4

∑
q

Xα,σ (n1, n4, n3, n2;q) 〈ρα,n1;σ,n2 (−q)〉 ρσ,n3;α,n4 (q) .

We define the energies,

Ẽα,n = ELLL
α,n + Ecap

= α
ΔB

2
− αΔBβn+

(
e2

κ�

)
d

�

[ν
2
− να

]
, (3.18)

where α = −1, 1 corresponds to K ′ and K valley respectively, and α is the opposite

valley of α. The symbol
∑

q means the summation over q except q = 0. The reason

that
∑

only appears in the Hartree term is that the terms at q = 0 are cancelled by

the background H+. Also, the Hartree and Fock interaction functions Hα,σ and Xα,σ are
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defined by

Hα,σ (n1, n2, n3, n4;q) = e−Δα,σqd
1

q�
Fn1,n2 (q)Fn3,n4 (−q) , (3.19)

Xα,σ (n1, n4, n3, n2;q) =

∫
dp�2

2π
e−Δα,σpd

1

p�
Fn1,n4 (p)Fn3,n2 (−p) eiq×p�

2

, (3.20)

where the F function is defined by Eq. (2.56).

3.1.1 Single-particle Green’s function

Once we obtain the Hamiltonian, the next step is to solve for the observable quantities

〈ρα,n1;σ,n2〉 using the equation of motion of the single-particle Green’s function. The

method has been introduced in Sec. 1.3. According to Eq. (1.58), We define the Green’s

function in imaginary time,

Gα,n;σ,n′ (X,X ′, τ) = −
〈
Tτcα,n,X (τ) c†σ,n′,X′ (0)

〉
(3.21)

= −
〈
cα,n,X (τ) c†σ,n′,X′ (0)

〉
θ (τ) +

〈
c†σ,n′,X′ (0) cα,n,X (τ)

〉
θ (−τ) .

We define the Fourier transform of the Green’s function by,

Gα,n;σ,n′ (q,τ) =
1

Nφ

∑
X,X′

e−
i
2
qx(X+X′)δX,X′−qy�2Gα,n;σ,n′ (X,X ′, τ) . (3.22)

When τ → 0−, we have

Gα,n;σ,n′
(
q,τ = 0−

)
= 〈ρσ,n′;α,n (q)〉 . (3.23)

Following the procedure for calculating the Green’s function explained in Sec. 1.3, we

obtain the equation of motion of the Green’s function[
�iωn −

(
Ẽα,n − μ

)]
Gα,n;σ,n′ (q, ωn) = �δq,0δn,n′δα,σ (3.24)

+
e2

κ�

∑
γ

∑
n1,n2,n4

∑
q′

Hγ,α (n1, n2, n, n4;q
′ − q) 〈ργ,n1;γ,n2 (q− q′)〉 e−iq×q′�2/2Gα,n4;σ,n′ (q′, ωn)

− e2

κ�

∑
γ

∑
n1,n2,n4

∑
q′

Xγ,α (n1, n4, n, n2;q
′ − q) 〈ργ,n1;α,n2 (q− q′)〉 e−iq×q′�2/2Gγ,n4;σ,n′ (q′, ωn) .
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The matrix form of Eq. (3.24) can be also written in the form of Eq. (1.59),

(i�ωnI − F )G = B. (3.25)

Notice that we need to combine the valley and orbital indices together in the subscript

of the Green’s function: (K, 0) → 1; (K, 1) → 2; (K ′, 0) → 3; (K ′, 1) → 4. Consequently,

the F matrix, in this case, can be written in details:

F11 (q,q
′) =

(
Ẽ1 − μ

)
δq,q′ − e2

κ�

∑
n1,n2

XK,K (n1, 0, 0, n2;q
′ − q) 〈ρK,n1;K,n2 (q− q′)〉

+
e2

κ�

∑
γ,n1,n2

e−iq×q
′�2/2 〈ργ,n1;γ,n2 (q− q′)〉Hγ,K (n1, n2, 0, 0;q

′ − q) (1− δq,q′) , (3.26)

F12 (q,q
′) =

e2

κ�

∑
γ,n1,n2

e−iq×q
′�2/2 〈ργ,n1;γ,n2 (q− q′)〉Hγ,K (n1, n2, 0, 1;q

′ − q) (1− δq,q′)

− e2

κ�

∑
n1,n2

XK,K (n1, 1, 0, n2;q
′ − q) 〈ρK,n1;K,n2 (q− q′)〉 e−iq×q′�2/2, (3.27)

F13 (q,q
′) = − e2

κ�

∑
n1,n2

XK′,K (n1, 0, 0, n2;q
′ − q) 〈ρK′,n1;K,n2 (q− q′)〉 e−iq×q′�2/2, (3.28)

F14 (q,q
′) = − e2

κ�

∑
n1,n2

XK′,K (n1, 1, 0, n2;q
′ − q) 〈ρK′,n1;K,n2 (q− q′)〉 e−iq×q′�2/2, (3.29)

F22 (q,q
′) =

(
Ẽ2 − μ

)
δq,q′ (3.30)

− e2

κ�

∑
n1,n2

XK,K (n1, 1, 1, n2;q
′ − q) 〈ρK,n1;K,n2 (q− q′)〉 e−iq×q′�2/2

+
e2

κ�

∑
γ,n1,n2

e−iq×q
′�2/2 〈ργ,n1;γ,n2 (q− q′)〉Hγ,K (n1, n2, 1, 1;q

′ − q) (1− δq,q′) ,

F23 (q,q
′) = − e2

κ�

∑
n1,n2

XK′,K (n1, 0, 1, n2;q
′ − q) 〈ρK′,n1;K,n2 (q− q′)〉 e−iq×q′�2/2, (3.31)

F24 (q,q
′) = − e2

κ�

∑
n1,n2

XK′,K (n1, 1, 1, n2;q
′ − q) 〈ρK′,n1;K,n2 (q− q′)〉 e−iq×q′�2/2, (3.32)
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F33 (q,q
′) =

(
Ẽ3 − μ

)
δq,q′ (3.33)

− e2

κ�

∑
n1,n2

XK′,K′ (n1, 0, 0, n2;q
′ − q) 〈ρK′,n1;K′,n2 (q− q′)〉 e−iq×q′�2/2

+

(
e2

κ�

)∑
γ

∑
n1,n2

〈ργ,n1;γ,n2 (q− q′)〉 e−iq×q′�2/2Hγ,K′ (n1, n2, 0, 0;q
′ − q) (1− δq,q′) ,

F34 (q,q
′) =

e2

κ�

∑
γ

∑
n1,n2

〈ργ,n1;γ,n2 (q− q′)〉 e−iq×q′�2/2Hγ,K′ (n1, n2, 0, 1;q
′ − q) (1− δq,q′)

− e2

κ�

∑
n1,n2

XK′,K′ (n1, 1, 0, n2;q
′ − q) 〈ρK′,n1;K′,n2 (q− q′)〉 e−iq×q′�2/2, (3.34)

F44 (q,q
′) =

(
Ẽ4 − μ

)
δq,q′ (3.35)

− e2

κ�

∑
n1,n2

XK′,K′ (n1, 1, 1, n2;q
′ − q) 〈ρK′,n1;K′,n2 (q− q′)〉 e−iq×q′�2/2

+
e2

κ�

∑
γ

∑
n1,n2

〈ργ,n1;γ,n2 (q− q′)〉 e−iq×q′�2/2Hγ,K′ (n1, n2, 1, 1;q
′ − q) (1− δq,q′) ,

where γ is the valley index. Since the F matrix is a Hermitian matrix, the other elements

which have not been listed here obey the relations, Fji(q
′,q) = [Fij(q,q

′)]∗.

At last, the sum rules for 〈ρ〉 are given by

〈ρα,n;α,n(0)〉 = να,n, (3.36)∑
n

〈ρα,n;α,n(0)〉 =
∑
n

να,n = να, (3.37)∑
α′,n′

∑
q

|〈ρα,n;α′,n′ (q)〉|2 = 〈ρα,n;α,n(0)〉 = να,n, (3.38)

where να is the filling factor in the valley α, and να,n is the filling factor in the orbital n

in the α valley.
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3.1.2 Order parameters and pseudo-spin language

Following the algorithm introduced in Sec. 1.3, we can calculate the 16 components

of the Green’s function which give the set of order parameters 〈ρα,n;σ,n′ (q) 〉. These order
parameters characterize the system completely. In a uniform ground state, which mostly

happens at integer filling factors, 〈ρα,n;σ,n′(q �= 0)〉 = 0. The state is called a liquid state

because of its uniform density. However, at non-integer filling factors, the ground state is

not necessarily uniform. In this chapter, we study crystal states occurring at non-integer

filling factor ν where we expect a finite fraction of the electrons, usually Nφ(ν − �ν�), to
crystallize. �x� is the floor function which is the largest integer not greater than x. In the

crystal phases, 〈ρα,n;σ,n′(q)〉 �= 0 only at some discrete q = G, where G is the reciprocal

lattice vector of the crystal lattice. Notice that the lattice constant of the electron crystal

is much larger than the lattice constant of graphene, so that we are justified to use the

continuum approximation explained in Chapter 1.

A combination of order parameters 〈ρ〉 can be used to construct the pseudo-spin

language. We associate the two valleys (or two orbitals) with the two components of

valley pseudo-spin, according to |K〉 → |↑〉 and |K ′〉 → |↓〉. In the momentum space, the

density is defined by

nα (q) = Nφ

1∑
n,n′=0

Fn,n′ (−q) 〈ρα,n;α,n′ (q)〉 . (3.39)

The density in real space nα (r) is just the Fourier transform of nα (q). We also define

another expression for the density,

ñα (q) =
1∑

n=0

〈ρα,n;α,n (q)〉 , (3.40)

which is called the guiding-center density. By definition, ñα (q = 0) = να is just the

filling factor in the α valley. Notice that the guiding center density is not the real density

of electrons, because of the form factor Fn,n′ (−q) in Eq. (3.39).

If we take the mapping orbital 0 as orbital pseudo-spin up, and orbital 1 as orbital
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pseudo-spin down, then in the orbital pseudo-spin language:

sα,z =
1

2
(〈ρα,0;α,0〉 − 〈ρα,1;α,1〉) , (3.41a)

sα,x = Re 〈ρα,0;α,1〉 , (3.41b)

sα,y = Im 〈ρα,0;α,1〉 . (3.41c)

For the valley pseudo-spin,

pn,z =
1

2
(〈ρK,n;K,n〉 − 〈ρK′,n;K′,n〉) , (3.42a)

pn,x = Re 〈ρK,n;K′,n〉 , (3.42b)

pn,y = Im 〈ρK,n;K′,n〉 . (3.42c)

All the pseudo-spin fields (sα and pn) are defined in the guiding center representation

(GCR). If we want to get the pseudo-spin fields in real space, we only need to multiply

all the density matrix elements 〈ρα,n;σ,n′(q)〉 by Fn,n′(q) and sum over q i.e.

〈ρα,n;σ,n′ (r)〉 = 1

S

∑
q

eiq·rFn,n′ (−q) 〈ρα,n;σ,n′ (q)〉 . (3.43)

Even though the real density nα (r) is the observable quantity, the guiding center defini-

tion is useful, since it does not contain the form factor Fn,n′ that reflects the character

of the different orbitals. In fact, plots of the guiding-center density are often easier to

understand physically.

The two fields defined in Eqs. (3.41)-(3.42) only provide simple physical pictures of

the system, but can not describe the four-level system completely. If we want to describe

the full system, we need to use a 4-component field which is called CP3 spinor [55].

However, in our system, the fields s and p are sufficient to understand the physics.

3.2 Crystal phases at non-integer filling factors

Skyrmion crystals with intervalley or interlayer pseudo-spin textures have been stud-

ied extensively in semiconductor 2DEG in double quantum well systems as well as in

graphene monolayer [38, 56, 57]. In the LL N = 0 in bilayer graphene, there is the

additional possibility of orbital pseudo-spin texture as we describe above. This orbital
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pseudo-spin field, sα, is particularly interesting because it gives rise to textures of electric

dipoles in the plane of the layer [13, 53, 58, 59]. The orientation of the electric dipole

in space is given by the orientation of the orbital pseudo-spin vector. It follows that

the crystals with orbital pseudo-spin texture also have electric dipole textures. Orbital

skyrmion crystals are the electric analog of spin skyrmions crystals where it is the magne-

tization that varies in space. Electrons can change their orbital indices by the Coulomb

interaction, so that the orientation of electric dipoles which are related to the orbital co-

herence can be tuned by the Coulomb interaction and bias ΔB, as well as by an in-plane

electric field [13].

For graphene, we have studied the energy of an isolated skyrmion in the last chapter.

In the BLG, isolated skyrmion can also be written in a way similar to Eqs. (2.23) and

(2.24) in the symmetric gauge. An antiskyrmion is given by

|ASK〉 =
∏

m=−1

(
umc

†
0,m+2 + vmc

†
1,m

)
|0〉 , (3.44)

where c†n,m is a creation operator of an electron in orbital n and real angular momenta

m. The electric charge of the excitation |ASK〉 in Eq. (3.44) is q = e (e > 0) and the

topological charge is Q = −2, because the lowest angular momenta state in orbital n = 1

is −1. For topological charge Q = 2, there are three possible states for the skyrmion:

|SK〉 = c†1,i
∏
m=0

(
umc

†
0,m + vmc

†
1,m+2

)
|0〉 , i = −1, 0, 1. (3.45)

In this case, the relation between topological charge and electric charge is q = Qe/2 which

is different from a spin skyrmion. In such a skyrmion or antiskyrmion, the orbital pseudo-

spin rotates by 4π along a path that circles the origin once, because its topological charge

is ±2. We remark that skyrmions with topological charge |Q| > 1 have been studied in a

semiconductor 2DEG [61,62]. It was found that inter-LL skyrmion between the LL n = 0

with spin down and n = 1 with spin up was not the lowest-energy excitation. Because

the Coulomb interaction is different in LL N = 0 in BLG, orbital skyrmions may be

the lowest-energy charged excitations in the system. We have studied such skyrmion

before [41], but in the valley K ′ where orbital n = 0 is always below orbital n = 1. In

valley K, when EK,0 > EK,1, not all the electrons are occupied in n = 0 in the ground

state and the study of such skyrmion is more difficult.

In this thesis, we decide for these reasons to study orbital skyrmion crystal instead
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βΔB

ΔB

-βΔB

K’,0

K,1

K,0

K’,1

Figure 3.2: The occupation of the levels at ν̃ = 1.2 is shown schematically. The spin
is frozen so that the four levels are only associated with valley and orbital states. The
black lines are empty levels, while the red line indicates the occupied level. The state
|K ′, 1〉 is only partially occupied.

of isolated skyrmion. This work can be found in Ref. [59] where, however, the density

profiles and pseudo-spin textures of the triangular crystals are incorrect. The corrected

ones are shown in this thesis.

3.2.1 Orbital skyrmion crystal at large bias

In this chapter, we set the magnetic field at 10T, and dielectric constant κ = 5 for SiO2

substrate. For the validation of the effective two-component model, the bias required is

ΔB � γ1 = 0.39eV≈ 10e2/κ�.

The simplest crystalline structure occurs at large bias near filling factor ν = −3, where

there is only one level fully filled. We define the effective filling factor as ν̃ = ν + 4 = 1,

which indicates that only one level is filled and all the other 7 levels in the LL N = 0 are

empty. In this case, the valley pseudo-spin is polarized by the large ΔB. All the charge

is in the K ′ valley. The occupation of the levels is shown in Fig. 3.2.

The ground state at ν̃ = 1 is a liquid with electrons in |K ′, 0〉. At ν̃ > 1, the filling

factor of the |K ′, 1〉 level is ν̃−1. The electrons in this level crystallize in a triangle lattice,

flipping the orbital pseudo-spin in the process to create an orbital pseudo-spin texture.

The crystal lattice is shown in Fig. 3.3 for ν̃ = 1.2 and ΔB = 1.28e2/κ�. Note that

only the pseudo-spin texture of the orbital skyrmion crystal represented in the guiding
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Figure 3.3: The crystal phase at ν̃ = 1.2 and ΔB = 1.28e2/κ� in the real space rep-
resentation. (a) Space density profile, and (b) orbital pseudo-spin field in real space
representation.

center density is similar to the spin texture of a spin skyrmion crystal in a conventional

2DEG [24,64]. In the real space representation, the orbital pseudo-spin texture looks like

that of a Wigner crystal, i.e. there is no rotation of the pseudo-spin. The ground state

is an orbital quantum Hall ferromagnet, so that the pseudo-spin field of the electrons in

the inter-site regions points in the same direction as the field in the ground state. The

field points in the opposite direction at the center of each crystal site. The ring structure

at the crystal site is induced by the added electrons in the orbital n = 1 with angular

momenta m = −1. In the symmetric gauge, the density profile of wave functions h1,m

given in Eq. (1.24) at m = −1, 0, 1 is shown in Fig. 3.4. The wave function at m = −1

has a ring structure, which is similar to the rings in Fig. 3.3.

The lattice constant of electron crystal is defined by al which is much larger than the

lattice constant of graphene. In fact, from the Fig. 3.3a, the density is from 0.576 to 1.4

(in units of 1/(2π�2)). The minimum of the density is smaller than 1. This is because the

total density is not equal to the sum of the density in oribtal 0 and the density in orbital

1, according to Eq. (3.39). If we look at the density profile and pseudo-spin texture in

the guiding center representation in Fig. 3.5, then the skyrmion-like texture is very clear.

It is also clear in Fig. 3.5a that there is one skyrmion per site of the crystal.

The existence region of the skyrmion crystal is about ΔB/(e
2/κ�) ∈ [0.96, 30]. We

note the lower critical bias as ΔC2
B = 0.96e2/κ�. Below this value the crystal phases will
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Figure 3.4: The density profile of the wave functions in orbital n = 1, h1,m, m = −1, 0, 1
[59].
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Figure 3.5: The crystal phase at ν̃ = 1.2 and ΔB = 1.28e2/κ� in the guiding center
representation. (a) Density profile, and (b) orbital pseudo-spin field.



Chapter 3 : Pseudo-spin textured phases in bilayer graphene in LL N = 0 81

ΔB
0

ΔB
c2ΔB

c1

nc=2
triangular
orbital skyrmion
crystal
in two valleys

nc=1
triangular
orbital skyrmion
crystal in Kʼ valley

nc=2
triangular
orbital skyrmion
crystal in Kʼ valley

Figure 3.6: The crystal phase diagram at ν̃ = 1.2. The Δc1
B = 0.0013e3/κ� and Δc2

B =
0.96e2/κ� are the critical biases of the two phase transitions.

be discussed in the next section. The Wigner crystal solution i.e., no orbital pseudo-spin

texture in both real space and guiding center representation can be found if the bias is

taken to be extremely large, i.e., on the order of ΔB ≈ 30e2/κ� which is well beyond the

limit of validity of the effective two-component model. Just as for spin skyrmions, the

orbital texture is gradually lost when the bias is increased.

3.2.2 Orbital skyrmion crystal at small bias

In this section, we discuss the orbital crystal phases at zero and small bias at ν̃ = 1.2.

Including the nc = 1 orbital skyrmion crystal that we discussed in the last section, the

phase diagram is shown in Fig. 3.6. The red region in Fig. 3.6 has been discussed in the

last section. It occurs for ΔB > Δc2
B . In the green region, the orbital skyrmion crystal

phase is almost the same as the one in the red region, except that there are two electrons

per site, i.e. nc = 2. At extremely small bias (in the blue region), the orbital skyrmion

crystal distributes itself in both two valleys.

We have mentioned that above a critical bias Δc0
B ≈ 0.0011e2/κ� which is of the

same order as Δc1
B , the ground state at ν̃ = 1 is the valley polarized state, which means

|K ′, 0〉 = 1 and all other three levels are empty. Below Δc0
B , valley coherence sets in, so

that electrons are partly in the K valley and partly in the K ′ valley. When the filling

factor increases to ν̃ = 1.2, the electrons that crystallize have both valley and orbital

coherences at small bias. Because the orbital coherence sets in, the critical bias Δc1
B to
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Figure 3.7: The crystal phase at ν̃ = 1.2 and ΔB = 0.002e2/κ�. All charge is in the K ′

valley. We show that (a)the density profile, and (b)the orbital pseudo-spin field in real
space representation.

polarize the valley pseudo-spin is increased a little to 0.0013e2/κ�.

If the bias is between Δc1
B = 0.0013e2/κ� and Δc2

B = 0.96e2/κ�, the phase of electron

state falls into the green region in Fig. 3.6. In Fig. 3.7, we show the crystal phase at

ΔB = 0.002e2/κ� in real space. Notice that there is an extra peak at each site of the

electron crystal in Fig. 3.7. This peak comes from an electron with angular momenta

m = 0 (see the density profile of h1,0 in Fig. 3.4), while the ring comes from electron with

angular momenta m = −1. The two electrons are superimposed at the same site. Hence,

the electron number per site nc is 2. In Fig. 3.8, we show the orbital skyrmion texture.

Intuitively, an isolated skyrmion with charge q = 2e can be written in the symmetric

gauge as

|sk2e〉 = c†1,−1c
†
1,0

∏
m=0

(umc
†
0,m + vmc

†
1,m+1)|0〉. (3.46)

The rotation of the orbital pseudo-spin is still 2π around the center of the skyrmion.

Skyrmions with charge q = −2e were also studied in Ref. [63]. At small density, there

is an attractive force, which is from the Fock interaction, between two skyrmions that

goes like 1/R, where R is the separation between the two skyrmions. So the crystal is

constructed by the balance between this attractive force and the Coulomb repulsion. Also,

in previous studies of spin and pseudo-spin skyrmions in conventional semiconductor’s

2DEG, it was found that lattices with skyrmion pairs occurred for small value of the
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Figure 3.8: The crystal phase at ν̃ = 1.2 and ΔB = 0.002e2/κ�. All charge is in the
K ′ valley. We show that (a)the density profile, and (b)the orbital pseudo-spin field in
guiding center representation.

Zeeman or bias (effective Zeeman) couplings [56]. Our work shows that the same physics

seems to occur in BLG.

However, the orbital skyrmion crystal in Figs. 3.7 and 3.8 is not the same as this

skyrmion-pair crystal. Instead, it is analogous to the bubble crystal that occurs in higher

Landau levels in semiconductor’s 2DEG [65]. The bubble crystals were studied in the

Hartree-Fock approximation in Ref. [66]. In this approximation, if we increase the filling

factor ν in Landau level N , the ground state of the 2DEG evolves from a Wigner crystal

at small filling factor into a succession of bubble crystals with increasing number of

electrons per bubble (site), M with M = 1, 2, . . . , N + 1. The wave functions of the

electrons in the higher Landau levels have a ring structure in the symmetric gauge if the

angular momenta m �= 0. The Coulomb interaction between these rings has a special

feature: for r > 2R0, where R0 is the ring radius, it decreases as 1/R, where R is the

separation between the ring centers. When R ≤ 2R0, however, the Coulomb interaction

has a sort of plateau. As the filling factor increases, the density of electrons increases,

then the density of electron rings increases and the rings start to touch each another, it

becomes energetically preferable to make a crystal of clusters (or bubbles) of electrons.

For example, in Landau level 1, the bubble crystal can haveM = 2. The two electrons per

site occupy the angular momenta m = −1, 0 respectively. So that the isolated bubble

state can be written as |2e〉 = c†1,−1,↑c
†
1,0,↑

∏
m=−1 c

†
1,m,↓|0〉. The density profile can be
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found in Fig. 2 of Ref. [66], which can be compared with the bubble skyrmion crystal of

Fig. 3.7a.

In our orbital system, the filling factor and the density of electrons are fixed. However,

if we decrease the bias between |K ′, 0〉 and |K ′, 1〉, the size of the skyrmion increases and

the number of flipped orbital pseudo-spins increases. When the skyrmion becomes too

large, it becomes more favorable to increase the distance between them and so the number

of skyrmions per site is increased. The bubble orbital skyrmion crystal with M = 1 is

transformed to a bubble orbital skyrmion crystal with M = 2 when the bias is decreased.

The transition is of first-order.

The crystal phase at extremely small bias ΔB < Δc1
B = 0.0013e2/κ� at ν̃ = 1.2 is

more interesting since it contains both the valley and orbital coherence. The phase is

shown in the blue region in the phase diagram of Fig. 3.6. The four states with Coulomb

interaction in order of increasing energy are symmetric state |S, 0〉 in orbital 0, symmetric

state |S, 1〉 in orbital 1, anti-symmetric state |AS, 0〉 in orbital 0, and anti-symmetric state

|S, 1〉 in orbital 1:

|S, 0〉 =
1√
2
(|K, 0〉+ |K ′, 0〉) (3.47a)

|S, 1〉 =
1√
2
(|K, 1〉+ |K ′, 1〉) (3.47b)

|AS, 0〉 =
1√
2
(|K, 0〉 − |K ′, 0〉) (3.47c)

|AS, 1〉 =
1√
2
(|K, 1〉 − |K ′, 1〉) (3.47d)

So the ground state at ν̃ = 1 has |S, 0〉 fully occupied and the three other levels are empty.

When the filling factor increases to 1.2, the extra electrons are added to |S, 1〉. Hence,

the crystal phase contains the coherences between the valleys |K〉 and |K ′〉, and between

the orbitals |0〉 and |1〉. Indeed, our numerical calculations show that the crystal contains

orbital skyrmion texture in both valleys. In each valley, the orbital skyrmion texture is

similar to that of Fig. 3.7 in real space and Fig. 3.8 in guiding center representation.

The valley pseudo-spin textures are shown in Figs. 3.9 and 3.10. The valley pseudo-spin

texture in orbital 0 is almost uniform. On the other hand, the valley pseudo-spin texture

in orbital 1 indicates a Wigner crystal.

We also need to mention that there is a similar phase as the blue region of Fig. 3.6 at

ν̃ = 3.2 when the bias is very small. In the region where ΔB ∈ [0, 0.0021]e2/κ�, however,
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Figure 3.9: The crystal phase at ν̃ = 1.2 and ΔB = 0 is shown in real space. The
electron density in orbital 0 is shown in (a), and the valley pseudo-spin texture in orbital
0 is shown in (b).
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Figure 3.10: The crystal phase at ν̃ = 1.2 and ΔB = 0 is shown in real space. The
electron density in orbital 1 is shown in (a), and the valley pseudo-spin texture in orbital
1 is shown in (b).



Chapter 3 : Pseudo-spin textured phases in bilayer graphene in LL N = 0 86

the coherence is between the states |AS, 0〉 and |AS, 1〉. The orbital skyrmion textures

which exists in both two valleys are similar to those in Fig. 3.7 in real space and Fig.

3.8 in the guiding center representation, while the valley pseudo-spin texture is like that

in Figs. 3.9 and 3.10. When the bias increases from zero, the gap −βΔB between |K, 0〉
and |K, 1〉 is negative (see Fig. 3.1). However, the valley coherence disappear completely

when ΔB > 0.0021e/κ�. When ΔB � 0.0021e2/κ�, we still get a triangular crystal of

orbital skyrmion with charge q = −2e per site, where electrons are in majority in orbital

n = 0 and there is not much difference with the ν̃ = 1.2 case. The orbital texture is

similar to that in Fig. 3.7 in real space and Fig. 3.8 in the guiding center representation.

The only difference with ν̃ = 1.2 is that the orbital texture occurs in the K valley. When

the bias is sufficiently strong, the crystal phase is much more complex since the majority

electrons are flipped into the n = 1 orbital. However, the orbital pseudo-spin texture

still persists. We do not discuss this limit further in this chapter, because the bias is

beyond the limit of the effective two-component model, and it is also difficult to achieve

experimentally.

3.2.3 Valley skrymion crystal near ν̃ = 2

At ν̃ = 2, the uniform ground state at zero bias has inter-layer (or say inter-valley)

coherence in both orbitals n = 0 and n = 1 [14,61]. In this case, according to Eq. (3.47),

the occupied states are |S, 0〉 and |S, 1〉. The other two states are empty. Above a critical

bias Δ
(c)
B = 0.003e2/κ�, all charge are transferred to the K ′ valley, the valley pseudo-spin

is polarized, i.e. the states |K ′, n = 0〉 and |K ′, n = 1〉 are fully occupied, and states in

K valley are empty. Inter-layer as well as orbital coherences vanish. Coherence between

two states can only occur if they are both partially filled.

The 2-electron charge excitation at ν̃ = 2 and ΔB < Δ
(c)
B is predicted to be skyrmions

with superposition of n = 0 and n = 1 inter-layer pseudo-spin textures, i.e. the combina-

tion of a valley skyrmion in n = 0 and another valley skyrmion in n = 1 in Ref. [14] (the

small contribution βΔB between orbitals was neglected in that paper). The authors have

concluded that such a q = −2e skyrmion would have lower energy than the quasi-particle

states at filling factor ν̃ = 2.

If the filling factor increases a little from 2, for example at ν̃ = 2.2, the charge

excitation can crystallize at T = 0K. At zero or very small bias, the gap between |K, 0〉
and |K ′, 0〉 is very small or even zero. In this case, the skyrmion crystal should be replaced
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Figure 3.11: (a) The valley pseudo-spin texture in orbital n = 0; (b) the valley pseudo-
spin texture in orbital n = 1; (c) the total density profile of the checkerboard meron
crystal phase. All three pictures are represented in real space.

by a meron crystal (see below for its definition) [33,67]. Our numerical calculations show

the layer pseudo-spin meron crystals with each meron carrying charge q = −e/2 at zero

bias in Fig. 3.11. We find that at each site of the crystal, there is charge −e associated

with vortex-like texture on each blue and red dots. Hence, there are 4 electrons per unit

cell of the crystal. If we separate the two orbitals, we obtain that the density profile for

each orbital is similar to that in Fig. 3.11c. It means that the crystal in either orbital

0 or 1 is a square lattice with charge q = −e/2 per site. The total crystal is thus a

superposition of the square lattice in orbital 0 and 1, so that there is charge q = −e per

site and 4 electrons per unit cell in Fig. 3.11c.

The valley pseudo-spin field is defined by Eq. (3.42). In Fig. 3.11, each red dot

is a meron with positive pz, while blue dots are anti-merons with negative pz. If we

look at a path that circles counterclockwise around the center of the charge (each red

or blue dot), a meron’s (at red dot) pseudo-spin texture winds around the charge with

a 2π counterclockwise rotation and an anti-meron’s (at blue dot) pseudo-spin texture

winds around the charge with a 2π clockwise rotation. A meron (or an anti-meron) is

similar to a half-charge skyrmion (or anti-skyrmion). There is a phase difference of π

between the two nearest merons, i.e. the two nearest red dots in Fig. 3.11 (or two nearest

anti-meron, i.e. two nearest blue dots). This phase difference decreases the energy of

the crystal because the gradient of the pseudo-spin texture between two adjacent sites is

minimized in this configuration. The orbital coherence also exists, however, there is no
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Figure 3.12: (a) The valley pseudo-spin texture in orbital n = 0; (b) the valley pseudo-
spin texture in orbital n = 1; (c) the total density profile of the valley skyrmion cyrstal
phase; (d) the density in orbital 0, 2π�2n0; (e) the density in orbital 1, 2π�2n1. All the
three pictures are represented in real space.

orbital pseudo-spin texture.

When the bias increase, the gaps between valleys also increase. The gap between

|K ′, 0〉 and |K, 0〉 is Δ0 = ΔB, and the gap between |K ′, 1〉 and |K, 1〉 is Δ1 = ΔB−2βΔB.

Due to the finite gaps, the valley meron crystal evolves to the real skyrmion crystal. In

our numerical calculations, the charge is transformed from the blue dots to the red

dots. At finite bias, the perfect valley meron crystal in Fig. 3.11 evolves to a unperfect

checkerboard meron crystal where the red dot is larger than the blue dot in density

profile as well as the valley pseudo-spin texture is slightly changed. After a critical bias

of about Δc0
B,ν̃=2.2 = 0.02e2/κ�, the meron crystal evolves to a skyrmion crystal. This

phase transition is smooth. It is a second order phase transition. We show the valley

skyrmion crystal in Fig. 3.2.3. All the charge concentrate on red dots. There is charge

q = −e in each red dot and still 4 electrons per unit cell in the crystal of Fig.3.2.3c.

However, in our numerical calculation, we find that the crystal phase turns into
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Figure 3.13: Comparison of the Hartree-Fock energy per electron at ν̃ = 2.2 of the
valley meron crystal (black squares) and orbital skyrmion crystal (blue triangles). There
is a first order phase transition between the valley meron crystal and orbital skyrmion
crystal at Δc1

B,ν̃=2.2 = 0.007e2/κ� [59].

an orbital skyrmion phase before the valley meron crystal could evolve to the valley

skyrmion crystal. The phase transition is at Δc1
B,ν̃=2.2 ≈ 0.007e2/κ�. The energies of

these two crystals are plotted in Fig. 3.2.3. There is only one skyrmion per site in the

ortibal skyrmion crystal. It contains no valley coherence. The states |K ′, 0〉 and |K ′, 1〉
are full. The rest 0.2Nφ electrons all crystallize in the K valley with orbital texture. The

orbital texture is induced by a Dzyaloshinskii-Moriya interaction between the different

orbital pseudo-spin [70]. This type of crystal will be discussed in details in Sec. 3.3.

We conclude that the phase diagram at ν = 2.2 is as follows: a checkerboard valley

meron crystal when ΔB ∈ [0, 0.007]e2/κ�; then an orbital skyrmion crystal in K valley

when ΔB > 0.007e2/κ�. If the bias is extremely large, there is a Wigner crystal in

level |K, 1〉. Note that, however, our numerical calculations do not cover all the possible

crystal phases. The real phase diagram may be different from what we have shown.

3.2.4 Density of states

The crystal phases could be detected in principle by using a scanning tunneling mi-

croscope (STM). To link with the experimental observation, we study the local and total

density of states (DOS) of the crystal phases in this section. For example, skyrmion

lattices with charge q = −2e per site can be distinguished from skyrmion lattices with
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charge q = −e per site by their DOS.

The total DOS (TDOS) of the system g(ω) is given by

g (ω) = − 1

π

∑
α,n

∫
dr Im

[
GR

α,n;α,n (r, r, ω)
]

(3.48)

= − 1

π

∑
α,n

∑
X,X′

Im
[
GR

α,n;α,n (X,X ′, ω)
] ∫

drΨα,n,X (r)Ψ∗α,n,X′ (r)

= − 1

π

∑
α,n

∑
X

Im
[
GR

α,n;α,n (X,X, ω)
]
= −Nφ

π

∑
α,n

Im
[
GR

α,n;α,n (q = 0, ω)
]
,

where the wave function Ψ is defined in Eqs. (3.8) and (3.9). The Green’s function in

real space is defined by associating the Green’s function in guiding center in Eq. (3.22)

with the wave functions,

Gα,n;α,n (r, r, τ) = −
∑
X,X′

Ψα,n,X (r)Ψ∗α,n,X′ (r)
〈
Tτcα,n,X (τ) c†α,n,X (0)

〉
=

∑
X,X′

Ψ∗α,n,X′ (r)Ψα,n,X (r)Gα,n;α,n (X,X ′, τ) , (3.49)

and the retarded Green’s function GR
α,n;α,n (r, r, ω) is obtained from Gα,n;α,n (r, r, iωn)

which is the Fourier transform of Gα,n;α,n (r, r, τ) by the analytical continuation,

GR
μ,μ (r, r, ω) = lim

iωn→ω+i0+
Gμ,μ (r, r, iωn) . (3.50)

We observe that the number of peaks near the Fermi level in the TDOS is equal to the

number of electrons per site in a skyrmion crystal. The curves of TDOS of the skyrmion

crystals with q = −e and q = −2e are displayed in Fig (3.14). A similar result was also

found for bubble crystals in semiconductor’s 2DEG [66].

It was shown by Poplavskyy et al. [68] that the density pattern in the bubble crystal

can also be seen in STM. This measure is related to the local DOS (LDOS) which is

defined by

gL (r, ω) = − 1

π

∑
α,n

Im
[
GR

α,n;α,n (r, r, ω)
]

(3.51)

= −Nφ

π
Im

∑
α,n

∑
q

∑
X,X′

e
i
2
qx(X+X′)δX,X′−qyl2⊥φm,X (r)φ∗m,X′ (r)GR

α,n;α,n (q,ω) ,
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Figure 3.14: Total density of states for orbital skyrmion crystals at ν̃ = 1.2. Only the
low energy part is shown in the figure. εF is the Fermi energy. (a) Skyrmion crystal
with one electron per site at ΔB = 1.28e2/κ�, which is discussed in Sec. 3.2.1; (b)
ΔB = 0.002e2/κ�, the TDOS of skyrmion crystal which is shown in Fig. 3.7, and where
there are two electrons per site.

where we use

GR
α,n;α,n (X,X ′, ω) = Nφ

∑
q

e
i
2
qx(X+X′)δX,X′−qy�2G

R
α,n;α,n (q,ω) , (3.52)

so that we obtain

gL (r, ω) = − 1

π

1

2π�2

∑
α,n

Im
∑
q

GR
α,n;α,n (q,ω)Fn,n (−q) eiq·r, (3.53)

and the function Fn,n defined in Eq. (2.56).

We show the LDOS in Fig. 3.15 in valley K ′ and at the energies of the highest peak

in Fig. 3.14a and of the two highest peaks in Fig. 3.14b. The LDOS is almost the same

for both peaks in the case of the skyrmion crystal with charge q = −2e. The LDOS for

the skyrmion crystal with charge q = −e in Fig. 3.15c also looks similar to that in Figs.

3.15a and 3.15b. Following Ref. [68], we can also sum the LDOS evaluated at all the
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Figure 3.15: Local density of states for orbital skyrmion crystals at ν̃ = 1.2. (a) The
LDOS for skyrmion crystal in Fig. 3.14a at the energy of the highest peak. Pictures
(b) and (c) are the LDOS corresponding to the highest two peaks in Fig. 3.14b. The
energies where the LDOS are calculated are listed above the LDOS figures.

peaks below the Fermi energy εF . The summation gives∫ εF

−∞
gL (r, ω) dω = Np (r) , (3.54)

where Np (r) is the density defined in Eq. (3.40) in guiding center representation. It

follows that the LDOS is not directly related to the orbital coherence.

We should mention that, however, the lattice constant al of the crystals in this section

is related to the filling factor. For example, for a triangular crystal shown in Sec. 3.2.1,

the lattice constant is given by al =
√

4π
(ν̃−1)√3

� ≈ 6�, which is much larger than the

lattice constant of graphene. It follows that observing the crystal by STM may not be

an easy work.

At the end of this section, we would like to comment on the effect of ζ1. At B = 10T,

ζ1 = 0.113e2/κ�, which is not small. The parameter ζ1 has the possibility to change

the phase diagram, especially at small or zero bias. Furthermore, the orbital coherence

depends on the gap between the two orbital states. If ζ1 �= 0, the state |K, 1〉 is below

|K, 0〉 in the K valley when ΔB > 1.27e2/κ�. Fortunately, our numerical calculations

show that the orbital skyrmions crystal does survive even with a finite ζ1. At filling

factor ν̃ = 1.2, finite ζ1 eliminates the q = −2e orbital skyrmion crystal in the phase

diagram. However the q = −e orbital skyrmion crystal still exists. This is consistent

with our conclusion that skyrmion crystal with q = −2e exists at small gap only. At
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ν̃ = 3.2, due to the positive ζ1, state |K, 1〉 has a chance to be above |K, 0〉 at small bias,

i.e. ζ1 − βΔB > 0. Hence, if the gap ζ1 − βΔB is tuned from positive to negative, both

of the orbital skyrmion crystals can be found.

3.3 Charge-density-wave states at integer filling fac-

tors

As we mentioned in Sec. 3.2.3, the phase diagram at ν̃ = 2.2 includes a valley skyrmion

crystal which we have not analyzed yet. This crystal phase is special, since it exists even

at some integer filling factors. At ν̃ = 2.2 and sufficient large bias (ΔB > 0.007e2/κ�),

the K ′ valley is full, so that there are 2Nφ electrons in the K ′ valley while 0.2Nφ electrons

have crystallized in the K valley. In fact, not only at ν̃ = 2.2, but also when ν̃ ∈ [2.2, 3],

this orbital skyrmion crystal phase exists in the K valley at sufficient large bias.

At ν = −3, 1, the ground state has all the charge in one layer (or valley) at a sufficient

large bias. The ground state is uniform and contains an orbital pseudospin mode that

can be viewed as an inter-orbital excitation or a cyclotron resonance [51,60]. This mode

is gapped due to the finite bias and should be detectable in microwave absorption experi-

ments because it involves the fluctuations of electric dipoles [70]. At integer filling factor

ν = −1 (ν̃ = 3), we suppose that the 2DEG is spin polarized. Usually, the liquid phase

which has a uniform density and polarized (pseudo-)spin texture is the ground state of

the system. The liquid phase diagram at ν̃ = 3 is studied in details in Ref. [13,51,53]. It

was shown that the liquid phase has an instability in the collective modes [13,70] at finite

wavevector above a critical bias. This implies that the ground state above this critical

bias may be a charge-density-wave state.

We find that at ν̃ = 3 a crystal phase has lower energy than the liquid phase when

the bias is finite. The orbital texture crystal is similar to the orbital skyrmion crystal

discussed in Sec. 3.2.3 at ν̃ = 2.2. The only difference is that the crystalline filling νc = 1

for ν̃ = 3, while νc = 0.2 for ν̃ = 2.2. For convenience and without loss of generality, we

study the system at ν̃ = 3 in a four-level system

With the same method we used to study the crystal phase in Sec. 3.2, we write

the Hartree-Fock Hamiltonian. Then we use the Green’s function method, which is

introduced in Sec. 1.3 and is utilized in Sec. 3.2, to calculate the charge-density-wave

phases.
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In order to be consistent with the first part of this chapter, we still set ζ1 = 0 in this

section. For simplicity and without loss of generality, we simplify the four-level system

to a two-orbital system. We neglect the K ′ valley and keep the two orbitals in the K

valley since the K ′ valley is full and there is no valley coherence at large bias. So the

density matrix ρK,i;K,j (i, j = 0, 1) can be simplified to ρi,j.

3.3.1 Dzyaloshinskii-Moriya interaction in pseudo-spin language

Usually, the uniform liquid state is the ground state in the 2DEG since the Coulomb

interaction at q = 0 gives the lowest energy. At integer filling factor ν̃ = 3, ones obtain

that there is an instability in the collective mode for the uniform liquid phase (ULP) at

some bias, see the Fig. 5 in Ref. [70]. This occurs because effective interaction between

electrons has a minimum at finite momenta q �= 0 instead of q = 0. The order parameters

〈ρ (q �= 0)〉 would be nonzero to minimize the total energy of the system and the ground

state is non-uniform.

It was shown recently [53] that there is a Dzyaloshinskii-Moriya (DM) interaction [71]

between the orbital pseudo-spins that causes this instability of ULP. Because of the DM

interaction, the ground state at integer filling factors ν = −1, 3 may contain helical

phases similar to those observed in other magnetic systems [72–74]. Following Ref. [70],

we give the DM Hamiltonian and then discuss the phase diagram in the next section. If

we define a set of orbital pseudo-spin field

Sx = Reρ0,1 =
ρ0,1 + ρ1,0

2
, (3.55a)

Sy = Imρ0,1 =
ρ0,1 − ρ1,0

2i
, (3.55b)

Sz =
ρ0,0 − ρ1,1

2
, (3.55c)

then the total energy functional is similar to a Heisenberg term S (−q) ·S (q) plus a DM

term S (−q)×S (q),∑
{fS (−q) · S (q) + j · [S (−q)×S (q)]}

=
∑
i

∑
q

fSi (−q) · Si (q) +
∑
k,l,m

∑
q

εklmjkSl (−q)Sm (q) , (3.56)

where f and jk are all from the Hartree and Fock interactions.
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The exchange interactions tend to polarize the pseudo-spins, while the DM term fa-

vors the rotation of the pseudo-spins in the guiding center representation. This rotation is

associated with charge density wave in real space. The competition between the Heisen-

berg and DM interactions actually makes the ULP instable. This type of competition also

exists in helical magnets such as MnSi and Fe1−xCoxSi. For example, the Hamiltonian in

Eq. (3.56) is very similar to that of Fe0.5Co0.5Si. Indeed, our numerical calculations give

a phase diagram that is similar to what has been found recently in the helical magnet

Fe0.5Co0.5Si where skyrmion crystal and a helical phase have been observed by Lorentz

transmission electron microscopy [72].

It is important to notice that the DM interaction in our model has nothing to do with

spin-orbit coupling. In a magnet system, the DM interaction is due to the spin-orbit

coupling of each ion in the crystal lattice. However, it comes entirely from the exchange

interaction and the fact that the orbital pseudo-spin involves the coupling between two

different orbitals (n = 0 and n = 1) in graphene bilayer.

3.3.2 Phase diagram in a two-orbital system

When we study the phase diagram at ν̃ = 3 at finite bias, we assume that the filled

states in valley K ′ are inert. The inter valley coherence is consequently neglected. If we

use a finite ζ1, then the phase diagram we present in Eq. (3.57) is still valid, but we

need to shift all biases by 1.28e2/κ�. A bias ΔB = 1.28e2/κ� is able to make the kinetic

energy of |K, 1〉 identical to |K, 0, 〉. Using our Green’s function method, we obtain the

following phase diagram:

0 < ΔB < 0.1 e2

κ�
, Uniformliquidphase

0.1 e2

κ�
< ΔB < 0.52 e2

κ�
, Orbitalskyrmioncrystal

0.52 e2

κ�
< ΔB < 3.02 e2

κ�
, Helicalphase

3.02 e2

κ�
< ΔB < 3.44 e2

κ�
, Orbitalskyrmioncrystal

3.44 e2

κ�
< ΔB. Uniformliquidphase

(3.57)

The ULP requires that 〈ρi,j(q �= 0)〉 = 0. The helical phase (HP) and the orbital

skyrmion crystal (OSC) phase are symmetric with respect to the middle of the HP

at Δcenter
B = 1.75e2/κ�. The HP is also called the spiral phase and contains a charge

density wave in real space and a spiral orbital pseudo-spin texture in the guiding center

representation. An example of HP is shown in Fig. 3.17. The density profile shows
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Figure 3.16: The phase diagram sketch. Blue represents the ULP, green region is the
OSC phase, and red region is the HP. The middle of the HP is Δcenter
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Figure 3.17: The ULP at bias ΔB = 0.6e2/κ�. (a) The real density profile. (b) The
density in guiding center representation, and the color is the density in real space. The
orbital pseudo-spin texture in guiding center is also indicated. (c) The combination of
density in real space and the guiding center pseudo-spin texture.

a stripe in the y direction and a sine-like wave in x direction, while the density in the

guiding center representation is uniform. Details of the HP can be found in Ref. [70].

The orbital skyrmion crystal phase, as we mentioned in Sec. 3.2.3, also exists at

ν̃ = 2.2. Both the helical phase and orbital skyrmion crystal phase are observed in the

helical magnet Fe0.5Co0.5Si [72], where the Hamiltonian also contains a DM term similar

to that of Eq. (3.56). Therefore, the orbital skyrmion crystal is basically induced by the

DM interaction. In this system, however, the DM interaction originates from a spin-orbit

coupling.

There is one electron per site in a triangular lattice in the orbital skyrmion crystal

phase. So the density is given by 2/(a2l
√
3), where al is the lattice constant of the electron
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Figure 3.18: The OSC phase at bias ΔB = 0.2e2/κ�. (a) The density n(r) in real
space, n(r) > 0.5 1

2π�2
. (b) The orbital pseudo-spin texture pattern in the guiding center

representation.

crystal. On the other hand, in our system, the filling factor of the crystallized electrons

is 1. So the density is also given by 1/(2π�2). Then we obtain al =
√

4π/
√
3�. The

electron wave function of neighboring sites overlaps strongly (the minimum of n(r) is

about 0.5 1
2π�2

) and the density in real space is shown in Fig. 3.18a, where the true

density n(r) defined by Eq. (3.39) is plotted. In Fig. 3.18b, the orbital pseudo-spin

around each site (each red dot) displays a typical skyrmion texture.

A crystal structure at integer filling factor ν = 1 is unusual. It occurs in our system

because the real density involves the coherence between two different orbitals. If we look

at the density in guiding center which is defined in Eq. (3.40), it is a uniform state. With

two levels of the same wave function (for example, n = 0 and different spins), exchange

interaction favors a uniform polarized state, a modulated structure is impossible.

Notice that in the phase diagram in Fig. 3.16, the electron crystal phase occurs on

both sides of the helical state in the phase diagram, and is symmetric with respect to

Δcenter
B . So we have

n(r, 2Δcenter
B −ΔB) =

2

2π�2
− n(r,ΔB), (3.58)

Sz(r, 2Δ
center
B −ΔB) = −Sz(r,ΔB). (3.59)

The pseudospin vorticity in the x-y plane is the same for both 2Δcenter
B − ΔB and ΔB,

since the coherence ρ0,1 does not change.
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Figure 3.19: The total density of states of OSC at bias ΔB = 0.2e2/κ� [59].

The total density of states can be also calculated in the same way as in Sec. 3.2.4. It

is shown in Fig. 3.19.

3.3.3 Collective modes

The collective modes of a given phase are given by the poles of the imaginary part

of the retarded response functions. According to the formalism in Sec. 1.3, the poles of

the response functions can be obtained by diagonalizing the matrix (iΩnI − F ) in the

equation of motion of two-particle Green’s function in Eq. (1.81). However, in the case

considered in this section, the system does not involve the valley index. Hence, in such a

two-level system, the equation of motion of the two-particle Green’s function is obtained

by omitting the indices a, b, c, d, e, f, g in Eqs. (1.79) and (1.80). In our system, the

Hartree and Fock interactions in Eqs. (1.79) and (1.80) are defined by Eqs. (3.19) and

(3.20), respectively.

Using the pseudo-spin field defined in Eq. (3.55), the response functions χR
a,b(q,q

′, τ)

(a, b = Sx, Sy, Sz, Sn) are defined by the combinations of the two particle Green’s func-

tions, as shown in Eq. (1.74). The collective modes can be obtained from the poles of

the imaginary part of the full GRPA response functions χR
a,a(k,k, ω). The retarded cor-

relation function can be obtained by the analytic continuation iΩn → ω + iδ in χ(iΩn),

i.e.

χR
a,b (q,q

′, ω) = lim
iΩn→ω+i0+

χa,b (q,q
′, iΩn) . (3.60)
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Figure 3.20: The imaginary parts of (a) the retarded response function χR
a,a(q, ω) −

χ0,R
a,a (q, ω) and (b) the single bubble response function χ0,R

a,a (q, ω) (a = Sn) when the
momenta q = (0.1/�, 0). The electron-hole continuum is mainly from χ0,R

a,a (q, ω).

Note that the poles of the single bubble response function χ0,R
Sn,Sn

(q,q, ω) contains the

electron-hole continuum only, and does not capture the collective modes which are ob-

tained from the GRPA for the response function.

To get the full dispersion relation, we need to sum over all the reciprocal lattice

vectors G of the electron crystal,

χR
a,a (q, ω) =

∑
G

χR
a,a (q+G,q+G, ω) . (3.61)

χR
a,a (q, ω) does not only contain the collective modes (if a = Sn then the modes corre-

spond to density collective modes; if a = Sx then the modes correspond to pseudo-spin

waves), but also the electron-hole continuum. Notice that all response functions are cou-

pled in the GRPA equations in Eqs. (1.79) and (1.80). Consequently, they all share the

same poles. However, the weight of a certain pole depends on the nature of the under-

lying mode (basically the Hartree-Fock Hamiltonian and the ground state) and is not

the same in all response functions. Fig. 3.20 shows the imaginary part of the response

functions at qx = 0.1/�, qy = 0. Electron-hole excitations which are provided mostly by

the single bubble response function χ0,R
Sn,Sn

(q, ω) appear as very localized excitations and

are captured in the response functions at finite G.

We follow the frequencies of the low-energy peaks in Fig. 3.20 as the wave vector is
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Figure 3.21: The low-energy collective modes of the OSC phase at ΔB = 0.2e2/κ�. The
x axis is along the path Γ → J → X → Γ in the first Brillouin zone.

varied in the first Brillouin zone of the electron crystal. Fig. 3.21 shows the low-energy

collective modes of the OSC phase at bias ΔB = 0.2e2/κ�. The modes become more

and more dense at higher energy until the electron-hole continuum appears. From the

DOS in Fig. 3.19, the continuum is in the range Eeh ∈ [0.47, 0.90] . The dispersion for

2Δcenter
B −ΔB is not shown, but is exactly the same as that for ΔB, as expected.

Since our calculation does not include disorder, the lowest energy mode is a gapless

magnetophonon mode. At ΔB = 0.2e2/κ�, the dispersion relation goes as ω ∼ k1.5, which

is like the magnetophonon mode in Wigner crystal [26].

In the second lowest mode, there are substantial weights in χR
Sx,Sx

and χR
Sy ,Sy

, which

means the mode has a pseudo-spin wave character. It seems that this mode is the pseudo-

spin x−y mode gapped by the DM Hamiltonian. This mode is gapless in a spin skyrmion

crystal [75], since there is no DM interaction in this case.

When disorder is considered, the crystal is pinned by the impurities and magne-

tophonon mode is gapped. The resulting “pinning” mode is detectable in microwave

absorption experiments.

3.3.4 Electromagnetic absorption

The collective modes of the HP and OSC phase can be detected in an electromagnetic

absorption experiment. Theoretically, the absorption can be related to the current-
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current correlation functions [53], so that we define the current operator as,

jαi = −c
δHα

δAi

∣∣∣∣
Ai=0

, (3.62)

where α is the valley index, i = x, y, and Ai is the i direction component of the vector

potential. In the first quantization, the current operators are 2 × 2 matrices. In second

quantization, we have

Jα
i =

∑
n,n′

∑
X,X′

∫
drΨ∗α,n,X (r) jαi Ψα,n′,X′ (r) c†α,n,Xcα,n′,X′ , (3.63)

where the wave function Ψ is defined in Eq. (3.9). Then we obtain in our two-orbital

system, in the K valley, that

JK
i =

√
2�e

�
NφΔBβS

K
i
, (3.64)

where the bar over i represents that x = y, y = x. Following the definition of correlation

function in Eq. (1.74), we write the current-current two-particle Green’s function,

χJiJj (q, τ) = − 1

S

〈
TτJ

K
i (q, τ) JK

j (−q, 0)
〉
=

e2Δ2
Bβ

2

π�
χSiSj

(q, τ) ,

where S is the area of the sample and i, j = x, y, and we define

χSiSj
(q, τ) = −Nφ

�

〈
TτS

K
i
(q, τ)SK

j
(−q, 0)

〉
. (3.65)

The electromagnetic absorption is given by

Pi(ω) = −Im

[
χR
JiJi

(q = 0, ω)

� (ω + iη)

]
E2

0 = −1

�

e2Δ2
Bβ

2

π�
E2

0Im

[
χR
SiSi

(0, ω)

ω + iη

]
,

where E0 is the electric field E (r, t) = E0̂ie
i(q·r−ωt) with polarization î and the retarded

response functions are obtained by using the analytic continuation iΩn → ω + iη in

χJiJi (iΩn). Pi(ω) is the absorption power per unit area.

The absorptions are shown in Fig. 3.22 at ΔB = 0.07e2/κ�, 0.2e2/κ�, 0.51e2/κ� for

different phases. In these case, all the modes (except the gapless phonon mode) are

active in the absorptions. The low energy absorption peaks, actually, correspond to
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Figure 3.22: The electromagnetic absorptions Pα(ω) of the OSC phase at different bias.
The absorption for the polarization of the electromagnetic field in the x direction is
identical to that in the y direction.
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the gap of the low energy gapped modes at zero momentum. All the absorption peaks

are slightly shifted when the bias increases. If we suppose the substrate is SiO2, the

dielectric constant κ = 5, then the basic frequency ν0 = e2/(�κ�) = 0.43
√
BTHz. For

the absorption peaks of the OSC phase, the frequency should be ν ∈ [0.14, 0.54]THz at

B = 10T.

It seems that the absorption is isotropic, i.e. Px = Py. There are qualitative differ-

ences between the absorptions in the HP and OSC phase, which may help to observe the

transition between these two phases [70]. Notice that, in the ULP, the orbital pseudospin

mode is gapless and does not lead to absorption at finite frequency.

In this chapter, we consider a series of crystal phases near or at integer filling factors

in LL N = 0 in graphene bilayer. We note that the DM interaction which is induced

by the orbital exchange interaction crystalize the electron gas even at integer fillings.

We also propose a STM and electromagnetic absorption measurements to observe those

crystal phases.



Chapter 4

Ground state and excitations in LL

|N | > 0 of bilayer graphene

In analogy to monolayer graphene, higher Landau levels in bilayer graphene (even

chiral stacking multi-layer graphene) also have four-fold degeneracy in the absense of

Zeeman coupling. The valley degeneracy, however, can now be lifted by an electric field

perpendicular to the sample. The possibility to control the valley degree of freedom

makes the phase diagram of the C2DEG in bilayer graphene very rich. As was the case

with monolayer graphene, we are interested by the nature of the ground state and by the

single-particle excitations in such a four-level system. It is interesting to compare these

excitations with those in monolayer graphene.

In higher Landau levels in graphene bilayer, the effective two-component model de-

rived in Sec. 1.2.2 is not accurate. Côté and Barrette [76] have shown that both the

eigenenergies and eigenstates of higher Landau levels in the two-component model differ

substantially from the four-band model given in Sec. 1.2.1. This is why we will use the

four-band model in this chapter. By “four-band” model, we mean the full non-interacting

Hamiltonian given in Eq. (1.25) where the warping term γ3 is set to zero.

4.1 Validity of the four-band model

In order to verify the validity of the four-band model approximation, we diagonalize

the full Hamiltonian including the warping γ3 in basis of the eigenvectors of the four-

band model, and compare the exact energies with those of the four-band model [76]. Each

104
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element of the new matrix of the full Hamiltonian Ci,i′ can be written as, for example in

the K valley,

C(b,N),(b,N ′) =
〈
φb
N

∣∣HK

∣∣φb
N ′
〉

=
(

y∗1,Nh
∗
N y∗2,Nh

∗
N+1 y∗3,Nh

∗
N−1 y∗4,Nh

∗
N

)
HK

⎛⎜⎜⎜⎜⎝
y1,N ′hN ′

y2,N ′hN ′+1

y3,N ′hN ′−1
y4,N ′hN ′ ,

⎞⎟⎟⎟⎟⎠(4.1)

where we suppose N is the absolute value of the LL index, HK given in Eq. (1.29) is the

tight-binding Hamiltonian in the valley K, and
∣∣φb

N ′
〉
is the eigenstate of the four-band

model in LL N and band b. The full Hamiltonian gives an infinity large matrix that we

need to truncate to a finite one for numerical calculation. For small LL index |N |, it
was shown in Ref. [76] that an accurate result for the energy was obtained by keeping a

relatively small number of matrix elements C(b,N),(b,N ′).

The energies in Landau levels N = 1, 2, 3 in the band 2 in the four-band model have a

less than 1% difference from the corresponding exact eigenergies of the full Hamiltonian.

Furthermore, the projection of the eigenvector of the four-band model in Landau level 1∣∣φb
N

〉
to the corresponding eigenvector of the full Hamiltonian

∣∣ψb
N

〉
is given numerically

by
〈
φb
N=1

∣∣ψb
N=1〉 = 0.994, which is close to 1. Moreover,

〈
φb
N=2

∣∣ψb
N=2〉 = 0.988 and〈

φb
N=3

∣∣ψb
N=3〉 = 0.985. (The projections are given at magnetic field B = 10T, dielectric

constant κ = 2.5, and zero bias.) It means that not only the eigenenergies but also the

eigenstates are well approximated by the four-band model.

In Fig. 4.1 [25], we show the kinetic energies of Landau levels with different bias ΔB

between the two layers of graphene bilayer. It is shown that the Landau levels N = 1, 2, 3

separate from each other very well when ΔB < 0.05eV.

4.2 Hartree-Fock Hamiltonian

In the approximation where the Hilbert space is restricted to one LL (valid at high

magnetic field and low temperature), the kinetic energy is effectively frozen. In this case,

the Coulomb interaction plays a dominant role and determines the phase diagram of the

2DEG.

When B = 10T, κ = 2.5, and zero bias, we obtain that the kinetic energies of Landau
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Figure 4.1: The energies of Landau levels in the four-band model. The black curves
represent the energies of LLs in the K valley, and the blue curves represent the energies
of LLs in the K ′ valley. The four states with linear dispersion belong to the two orbitals
in LL N = 0. Spin is not taken into account here.

levels N = 0, 1, 2, 3 in band 2 are Ek,b=2
N=0 = 0.039(e2/κ�), Ek,b=2

N=1 = 0.67(e2/κ�), Ek,b=2
N=2 =

1.095(e2/κ�), Ek,b=2
N=3 = 1.465(e2/κ�), respectively, if the Zeeman coupling is ignored. The

Zeeman coupling is usually of the order of 0.01(e2/κ�). Note that we also neglect Landau

level mixing in this chapter when we discuss the ground states and excitations, since the

Landau gap is much larger than the Zeeman coupling and we consider small bias only.

Although the Zeeman energy is weak, it breaks the SU(2) symmetry of spin. So that we

need to take it into account when we consider the ground state phase diagram.

In the four-band model, we define the field operator as

Ψα,s (u) =
∑
X

e−iα·r

⎛⎜⎜⎜⎜⎝
yα1,NhN,X (r) |A1〉 δ

(
z + d

2

)
yα2,NhN+α,X (r) |B1〉 δ

(
z + d

2

)
yα3,NhN−α,X (r) |A2〉 δ

(
z − d

2

)
yα4,NhN,X (r) |B2〉 δ

(
z − d

2

)

⎞⎟⎟⎟⎟⎠ cα,s,X , (4.2)

where α is the valley index and α = ±1 forK andK ′ valley respectively. The 3D vector u

contains the in-plane component r and the z direction component. The bilayer graphene

is in the xOy plane, and the two layers are at z = ±d/2 respectively. This accounts for
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the factor δ(z ± d/2) in each element of the spinor. Notice that we drop the band index

in Ψ and c, since we neglect Landau level mixing so that all electrons are in the same

band and the same Landau level.

4.2.1 The effects of positive background

In Chapter 3, we have discussed the effect of a positive background on the bilayer

graphene. An important term in Hamiltonian, the capacitive energy comes from this

effect. In this section, the same background as we discuss in Chapter 3 and Appendix

1 is applied. The positive charge is distributed uniformly on the two sides of bilayer

graphene. So the Hamiltonian of background is given by Eq. (B.21),

H+ = n0Nφ

[
πe2d

κ
− V (q = 0)

]∑
k,s

ρ(k,s);(k,s) (q = 0) +
1

2
Sn2

0V (q = 0) , (4.3)

where k, s are valley and spin index respectively. All the parameters have the same

definitions as in Appendix B.

4.2.2 Electron-electron interaction

The Coulomb interaction between electrons can be written, in terms of field operators

as,

U =
1

2

∑
α,β

∑
s,t

∫
du

∫
du′Ψ†α,s (u)Ψ

†
β,t (u

′)V (u− u′)Ψβ,t (u
′)Ψα,s (u) , (4.4)

where α and β are valley indices and s and t are spin indices. The valley and spin are

conserved as usual.

With Ψ given by Eq. (4.2), we get,

U =
1

2
Nφ

∑
α,β

∑
s,t

∑
q

[
UH
α,β (q) ρα,s;α,s (−q) ρβ,t;β,t (q)

−UF
α,β (q) ρα,s;β,t (−q) ρβ,t;α,s (q)

]
. (4.5)
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where we have defined the density operator

ρα,s;β,t (q) ≡ 1

Nφ

∑
X1,X2

e−
i
2
qx(X1+X2)δX1,X2+qy�2c

†
α,X1,s

cβ,X2,t. (4.6)

The two important functions UH
α,β and UF

α,β, which we call the Hartree and the Fock

factors respectively, define the Hartree and Fock interactions. They are given in LL N

by

UH
α,β (q) =

4∑
i,j=1

∣∣yαi,N ∣∣2 ∣∣∣yβj,N ∣∣∣2 e2

κ�

1

q�
e−Δijqde−q

2�2/2LN+αi

(
q2�2

2

)
LN+βj

(
q2�2

2

)
,(4.7)

UF
α,β (q) =

4∑
i,j=1

∣∣yαi,N ∣∣2 ∣∣∣yβj,N ∣∣∣2 e2

κ�

×
∫

dp�e−Δijpde−p
2�2/2LN+αi

(
p2�2

2

)
LN+βj

(
p2�2

2

)
J0
(
pq�2

)
, (4.8)

where we define the function Δij to distinguish the inter or intra layer interaction,

Δij =

{
0

1

i ∈ {1, 2} , j ∈ {1, 2} , or, i ∈ {3, 4} , j ∈ {3, 4}
i ∈ {1, 2} , j ∈ {3, 4} , or, i ∈ {3, 4} , j ∈ {1, 2} , (4.9)

and J0 is a Bessel function.

In the Hartree-Fock approximation, the Hamiltonian of electron-electron interaction

can be written as

U = Nφ

∑
α,β

∑
s,t

∑
q

UH
α,β (q) 〈ρα,s;α,s (−q)〉 ρβ,t;β,t (q)

−Nφ

∑
α,β

∑
s,t

∑
q

UF
α,β (q) 〈ρα,s;β,t (−q)〉 ρβ,t;α,s (q) , (4.10)

where we have used the symmetry properties of the Hartree and Fock factors

UH
β,α (q) = UH

α,β (q) = UH
α,β (−q) , (4.11)

UF
β,α (q) = UF

α,β (q) = UF
α,β (−q) . (4.12)

In order to add the contribution of the background in Eq. (B.19), we need to consider
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the Hartree term, HH (q = 0) = Nφ

∑
α,β

∑
s,t U

H
α,β (0) 〈ρα,s;α,s (0)〉 ρβ,t;β,t (0) , in which

UH
α,β (0) =

e2

κ�

4∑
i,j=1

∣∣yαi,N ∣∣2 ∣∣∣yβj,N ∣∣∣2(1−Δijqd

q�

)
q=0

×
[
e−q

2�2/2LN+αi

(
q2�2

2

)
LN+βj

(
q2�2

2

)]
q=0

=
V (q = 0)

2π�2
− e2

κ�

4∑
i=1

∣∣yαi,N ∣∣2 4∑
j=1

∣∣∣yβj,N ∣∣∣2Δij
d

�
. (4.13)

Summing the term HH (0) and the background term H+, we obtain

HH (0) +H+ = Nφ

∑
β,t

(
e2

κ�

ν

2

d

�
−
∑
α,s

U0
α,β

d

�
〈ρα,s;α,s (0)〉

)
ρβ,t;β,t (0) , (4.14)

which gives the capacitive energy of the system. Here we have defined a new coefficient

U0
α,β =

e2

κ�

4∑
i,j=1

∣∣yαi,N ∣∣2 ∣∣∣yβj,N ∣∣∣2Δij. (4.15)

This term U0
α,β has units of energy and is related to the coefficients of wave function

spinors. In fact, not only U0
α,β, but also the Hartree factor UH

α,β and Fock factor UF
α,β

contain the coefficients of wave function spinors, yαi,N . Moreover, yαi,N not only depends

on the structure of graphene bilayer, but also depends on the bias ΔB. In another words,

all the interactions depend on an external electric field ΔB. This means that a tunable

variable ΔB can change the eigenvectors, eigenenergies and interactions of the system.

Hence, it is reasonable to consider that ΔB significantly influences the properties of the

ground states as well as of the excited states.

We combine all the interactions together, and obtain the full Hamiltonian in the HFA
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including the background,

H = Nφ

∑
α,s

[
Eα,s

n +
e2

κ�

ν

2

d

�
− d

�

∑
β,t

U0
β,α 〈ρβ,t;β,t (0)〉

]
ρα,s,α,s (0)

+Nφ

∑
α,β

∑
s,t

∑
q

UH
α,β (q) 〈ρα,s;α,s (−q)〉 ρβ,t;β,t (q)

−Nφ

∑
α,β

∑
s,t

∑
q

UF
α,β (q) 〈ρα,s;β,t (−q)〉 ρβ,t;α,s (q) , (4.16)

where Eα,s
n calculated numerically is the eigenenergy of LL n in valley α with spin s (the

band index b = 2 is assumed here), and the bar over the summation sign means that the

summation excludes the contribution at q = 0. Note that, although we do not indicate

the Landau level N in the interaction terms in Eq. (4.16), the coefficients yαi,N contained

in U0
β,α, U

H
α,β, and UF

α,β include the Landau level index n.

4.3 Ground states at integer filling factors of Landau

levels N = 1, 2, 3

In order to study the ground states of the C2DEG, we define the Matsubara single

particle Green’s function, and use the method discussed in Sec. 1.3 to compute the

order parameters 〈ρα,s;β,t〉. The Green’s function can also be defined by Eq. (3.21). The

relation between the Green’s function and the order parameter is given by

Gα,s;β,s′
(
q,τ = 0−

)
= 〈ρβ,s′;α,s (q)〉 . (4.17)

The equation of motion for the Green’s function in the Matsubara formalism is obtained

by using Eq.(1.59)

�
∂

∂τ
G = [H − μN,G] , (4.18)
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where μ is the chemical potential and H is the Hartree-Fock Hamiltonian of Eq. (4.16).

Then we obtain the equation of motion of the Green’s function,

−iωnGσ,s;σ′,s′ (q,iωn)

= −δσ,σ′δs,s′δq,0 −
[
Eα,s′′

n − μ−
∑
α,s′′

U0
α,σ 〈ρα,s′′;α,s′′ (0)〉

]
Gσ,s;σ′,s′ (q,iωn)

−
∑
p 	=q

∑
α,s′′

UH
α,σ (p− q) 〈ρα,s′′;α,s′′ (q− p)〉Gσ,s;σ′,s′ (p,iωn) e

− i
2
q×p

+
∑
p

∑
α,s′′

UF
α,σ (p− q) 〈ρα,s′′;σ,s (q− p)〉Gα,s′′;σ′,s′ (p,iωn) e

− i
2
q×p, (4.19)

where G (q,iωn) is the Fourier transform of the time-dependent Green’s funtion in Eq.

(??),

G(iωn) =

∫ β�

0

eiωnτG(τ)dτ, (4.20)

iωn =
(2n+ 1)π

β�
, (4.21)

where ωn are the Matsubara frequency for Fermions, and β = 1/kBT , where kB is the

Boltzman constant and T is the temperature.

We can write the equation of motion in a matrix form as,

(i�ωnI − F )G = B. (4.22)

If we assume a uniform ground state, then only the component 〈ρi;j (0)〉 �= 0 and the F

matrix can be written as:

F11 = E1
n − μ+

ν

2

d

�
− d

�

∑
α,s′′

U0
α,0 〈ρα,s′′;α,s′′ (0)〉 − UF

0,0 (0) 〈ρ1;1 (0)〉 , (4.23)

F12 = −UF
0,0 (0) 〈ρ2;1 (0)〉 , (4.24)

F13 = −UF
1,0 (0) 〈ρ3;1 (0)〉 , (4.25)

F14 = −UF
1,0 (0) 〈ρ4;1 (0)〉 , (4.26)
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Figure 4.2: The sketch of the four levels in a LL (N > 0) in graphene bilayer. The
valley and spin indices are combined together for convenience.

F22 = E2
n − μ+

ν

2

d

�
− d

�

∑
α,s′′

U0
α,0 〈ρα,s′′;α,s′′ (0)〉 − UF

0,0 (0) 〈ρ2;2 (0)〉 , (4.27)

F23 = −UF
1,0 (0) 〈ρ3;2 (0)〉 , (4.28)

F24 = −UF
1,0 (0) 〈ρ4;2 (0)〉 , (4.29)

F33 = E3
n − μ+

ν

2

d

�
− d

�

∑
α,s′′

U0
α,1 〈ρα,s′′;α,s′′ (0)〉 − UF

1,1 (0) 〈ρ3;3 (0)〉 , (4.30)

F34 = −UF
1,1 (0) 〈ρ4;3 (0)〉 , (4.31)

and

F44 = E4
n − μ+

ν

2

d

�
− d

�

∑
α,s′′

U0
α,1 〈ρα,s′′;α,s′′ (0)〉 − UF

1,1 (0) 〈ρ4;4 (0)〉 . (4.32)

For the indices i and j of matrix elements Fij and of density matrix elements 〈ρi;j (0)〉,
we combine the valley and spin together as:

i, j = 1 ≡ (K, ↑) , (4.33a)

i, j = 2 ≡ (K, ↓) , (4.33b)

i, j = 3 ≡ (K ′, ↑) , (4.33c)

i, j = 4 ≡ (K ′, ↓) . (4.33d)

The index of the combination of valley and spin can be found in Fig. 4.2

The iteration process in Ref. [26] is used to solve the equation of motion in Eq. (4.19)

numerically. By solving the equation of motion of the Green’s function, we obtain the
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Figure 4.3: Valley pseudo-spin polarization of the ground state at ν = 1: (a) in Landau
level N = 1; and (b) in Landau level N ≥ 2. The magnetic field B = 9T, and the
dielectric constant κ = 2.5.

order parameters of the density matrix 〈ρβ,s′;α,s(q = 0)〉 in the ground state.

4.3.1 Phase diagram at filling factors ν = 1 and 3

We suppose that the graphene sheet is put in a magnetic field pointing up. So the

four degenerated states in one Landau level can be described by |K, ↑〉 = |1〉, |K, ↓〉 =

|2〉, |K ′, ↑〉 = |3〉, |K ′, ↓〉 = |4〉. The | ↑〉 states have Zeeman energy −1
2
gμBB, while the

| ↓〉 states have Zeeman energy 1
2
gμBB. Fig. 4.3 displays the phase diagram at filling

factor ν = 1 in Landau levels N ≥ 1. Here we define the filling factor in a single Landau

level. If we take the zero LL into account, then the total filling factor in Landau level N

is νt = ν + 4N .

The ground state is always spin polarized since the exchange interaction of the same

spin minimizes the energy. We find that the valley pseudo-spin is also polarized at any

bias. This is different from what is found in the LL N = 0. In the zero LL, there is always

a finite valley coherence at zero bias [13]. But not in higher Landau levels where there is

always no valley coherence at any bias at filling factor 1. At zero bias, the ground state

has a Z2 valley symmetry, while there is a SU(2) valley symmetry in the ground state in

the LLN = 0. The reason for this difference is the distance between the two layers. In the

LL N = 0, the valley pseudo-spin is equivalent to layer pseudo-spin, and the capacitive

energy must balance the charge in two layers (valleys). So at zero or small bias, the
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Figure 4.4: The ground state at filling factor ν = 1 at zero bias. The red line represents
a fully filled level and the black lines are empty levels in a Landau level. The ground
state has Z2 symmetry, so that the two candidates are completely equivalent.

two layers (valleys) must be filled partially to reduce the capacitive energy. However, in

higher Landau levels, electrons in one valley can stay in both layers. This can be clearly

seen in the wave function spinors in Eq. (1.33). In the numerical calculations, we can see

that the capacitive energy is two magnitudes lower than the Fock energy and is too weak

to balance the charge in two valleys. Although the kinetic energies in two valleys are

identical, the exchange interaction polarizes the valley pseudo-spin automatically, i.e. the

exchange energy between valleys is always higher than the intra-valley exchange energy.

So the electrons prefer to occupy one valley to minimize the exchange energy. If we set

the distance d = 0 and ΔB = 0, the inter-valley interaction is identical to the intra-valley

interaction, then the system recovers the SU(2) valley symmetry.

At zero bias, see in Fig. 4.4, state (a) is equivalent to state (b), since the ground

state has the Z2 valley symmetry. At finite bias, the valley pseudo-spin is polarized

by the bias. This is shown in the phase diagrams in Fig. 4.3a for the Landau level

N = 1 and in Fig. 4.3b for Landau levels n ≥ 2. Interestingly, in the ground state

of N = 1, the electrons occupy the valley with the higher non-interacting energy when

0 < |ΔB| < 3.89(e2/κ�). But for N ≥ 2, in the ground states, electrons always occupy

the lowest kinetic energy levels in the corresponding LL. Note that the phase diagrams

in Fig. 4.3 are obtained when B = 9T and κ = 2.5. If these parameters change, the

phase diagram also changes [78].

The calculations in Ref. [78] indicate that no crystal phase (or say density-modulation

state) has lower energy than that of the liquid phase. If we suppose the system is spin

polarized, then we can simplify the energy functional in the pseudo-spin language [25] at

zero bias to,
E

Nφ

= −UK,K
F (0)P

2

z,↑ − UK,K′
F (0)P⊥,↑ ·P⊥,↑, (4.34)



Chapter 4 : Ground state and excitations in LL |N | > 0 of bilayer graphene 115

ΔB (eV)

In
te

ra
ct

io
ns

(e
V

)

0 0.05 0.1 0.15 0.2
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

UF
K,K

UF
Kʼ,Kʼ

UF
K,Kʼ

n=1

(a)

ΔB (eV)

In
te

ra
ct

io
n

s
(e

V
)

0 0.05 0.1 0.15 0.2
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

UF
K,K

UF
Kʼ,Kʼ

UF
K,Kʼ

n=2

(b)

Figure 4.5: The Fock interaction functions UK,K
F , UK′,K′

F , and UK,K′
F as functions of bias

ΔB. The functions are calculated at B = 10T, κ = 2.5, and (a) in n = 1 and (b) in
n = 2.

where Nφ is the degeneracy of one level, and we neglect the constant term and the

capacitive energy which is very small. The valley pseudo-spin field is defined by

Px,↑ =
1

2
(〈ρ1,3 (0)〉+ 〈ρ3,1 (0)〉) , (4.35a)

Py,↑ =
1

2i
(〈ρ1,3 (0)〉 − 〈ρ3,1 (0)〉) , (4.35b)

Pz,↑ =
1

2
(〈ρ1,1 (0)〉 − 〈ρ3,3 (0)〉) , (4.35c)

P⊥,↑ = (Px,↑, Py,↑) . (4.35d)

Fig. 4.5 shows that the −UK,K
F is lower than −UK,K′

F at q = 0, so that the system

prefer the lower energy state with Pz,↑ = ±1
2
and P⊥,↑ = (0, 0). In the same way, the

energy of the system can be written as

E

Nφ

= C + ΛPz − JzP
2
z − J⊥P 2

⊥ (4.36)

at finite bias. Here, C is a constant,

C =
1

2

(
EK,↑

N=1 + EK′,↑
N=1

)
− 1

4

d

�

(
e2

κ�

)
n1n2 − 1

8

[
UK,K
F (0) + UK′,K′

F (0)
]
, (4.37)
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and the effective “Zeeman” term for the valleys is

Λ =

(
EK,↑

N=1 −
1

2
UK,K
F (0)− d

�

e2

κ�
n1,Kn2,K

)
−
(
EK′,↑

N=1 −
1

2
UK′,K′
F (0)− d

�

e2

κ�
n1,K′n2,K′

)
, (4.38)

where ni,α is the electron density in the layer i and valley α,

n1,α =
∣∣yα1,N ∣∣2 + ∣∣yα2,N ∣∣2 , (4.39)

n2,α =
∣∣yα3,N ∣∣2 + ∣∣yα4,N ∣∣2 , (4.40)

and ni is the electron density in the layer i, ni = ni,K + ni,K′ . The effective pseudo-spin

exchange interaction is given by

Jz =
d

�

(
e2

κ�

)
(n1,K′ − n1,K) (n2,K′ − n2,K) +

1

2

[
UK,K
F (0) + UK′,K′

F (0)
]
, (4.41)

J⊥ = UK,K′
F . (4.42)

Note that all the phase transitions at ν = 1, 3 are first-order and there is no valley or

spin coherence in the system. This is because J⊥ < JZ , the valley pseudo-spin prefers to

be aligned along the z direction. The sign of the effective “Zeeman” Λ determines which

valley is occupied in the ground state. For Λ > 0, Pz must be −1/2 to minimize the

energy, so valley K ′ is occupied. For Λ > 0, Pz = 1/2 and valley K is occupied. At zero

bias, Λ = 0, so the ground state has a Z2 symmetry for valley pseudo-spin. In Fig. 4.6,

we find that the behavior of Λ(N = 1) is different from that of Λ(N = 2, 3). Each zero

point of function Λ corresponds to a phase transition in Fig. 4.3.

At filling factor ν = 3, where three of the four levels in a Landau level are filled, the

phase diagrams in Fig. 4.3 are still valid. The only difference is that the levels |1〉 and
|3〉 are full filled, and the valley polarization of the system only depends on if |2〉 or |4〉
is filled or not.

4.3.2 Phase diagram at ν = 2

At filling factor ν = 2, the phase diagram is even richer since there are more possibil-

ities of occupying levels. When we solve the equation of motion of the Green’s function
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Figure 4.6: Function Λ as a function of bias in Landau levels N = 1, 2, 3.

in Eq. (4.22), we could not find any coherence between valleys or between spins. The

four levels in a LL are either occupied or empty.

By analogy with ν = 1, 3, we find that the phase diagram in N = 1 is also richer than

that in n > 1 when B = 10T and κ = 2.5. The phase diagram of LL N = 1 is shown in

Fig. 4.7.

The evolution of the phases from ΔB = 0 to 0.3eV is displayed in Fig. 4.8. Note

that the position of the levels in this diagram does not reflect their real kinetic energies.

Phases (I), (II) and (III) are also indicated in Fig. 4.7.

At small bias −Δ1
B < ΔB < Δ1

B = 0.015eV, phase (I) has levels |1〉 and |3〉 full

while the other two levels are empty. At the critical bias Δ1
B, there is a first-order phase

transition converting the system from spin polarized to valley polarized. When the bias

increases, Δ1
B < ΔB < Δ2

B = 0.22eV, the occupied states are all in the higher energy

valley since this decreases more the exchange energy than the increase of the kinetic

energy. Phase (II) has levels |3〉 and |4〉 full, while the other two levels are empty. When

Δ2
B < ΔB < Δ3

B = 0.265eV, the ground state returns to the spin polarized phase (I).

When ΔB > Δ3
B, the lower energy valley is fully filled. In this case, phase (III) indicates

that |1〉 and |2〉 are full and the other two levels are empty.

In experiment [77], the highest bias is achieved at about 0.2eV. So the critical biases
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Figure 4.7: The phase diagram at ν = 2 in N = 1.
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Figure 4.8: The phase evolution at ν = 2 in N = 1 is shown from (a) to (e) as the bias
ΔB is increased from 0 to 0.3eV. Red lines represent fully occupied levels and black lines
represent empty levels.
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Figure 4.9: The phase diagram at ν = 2 in LL N ≥ 2.

Δ2
B and Δ3

B are too high to observe experimentally. Moreover, the LL mixing must be

considered at these critical biases. For negative bias −ΔB, the phase is obtained by

exchanging the K and K ′ valleys in the phase at ΔB.

In LL N ≥ 2, the phase diagram is simpler. The ground state is spin polarized

at small bias ΔB < ΔC
B(n). At large bias ΔB > ΔC

B(n), a phase transition occurs to

convert the ground state from spin polarized to valley polarized, and the lower energy

valley is fully occupied. The phase diagram for n ≥ 2 is shown in Fig. 4.9. The critical

biases calculated in B = 10T and κ = 2.5 are given by ΔC
B(n = 2) = 0.056eV and

ΔC
B(n = 3) = 0.03eV . The phases (I), (II) and (III) have the same definitions as in Fig.

4.8.

In (pseudo-)spin language, we rewrite the energy per electron as

E

2Nφ

= D +
1

2
ΛPz − JzP

2
z − 1

2
ΔZSz − JK′S2

z,K′ − JKS
2
z,K , (4.43)

where JK = 1
2
UK,K
F (0) , JK′ = 1

2
UK′,K′
F (0), and we have set valley and spin coherence to

zero. The constant D is given by,

D =
1

2

(
EK,↑

N + EK′,↑
N

)
+ΔZ − 1

2

d

�

(
e2

κ�

)
n1n2 − 1

8

[
UK,K
F (0) + UK′,K′

F (0)
]
, (4.44)

and Λ and Jz are given by Eqs. (4.38) and (4.42), respectively. The spin field is defined
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Figure 4.10: The coupling functions determine the phase transitions. The crossing
points correspond to phase transitions in (a) N = 1 and (b) N = 2. The functions are
calculated for B = 10T and κ = 2.5. Phases (I), (II) and (III) are also given in Fig. 4.8.

by

Sx,K =
1

2
(〈ρ1,2 (0)〉+ 〈ρ2,1 (0)〉) , (4.45a)

Sy,K =
1

2i
(〈ρ1,2 (0)〉 − 〈ρ2,1 (0)〉) , (4.45b)

Sz,K =
1

2
(〈ρ1,1 (0)〉 − 〈ρ2,2 (0)〉) , (4.45c)

Sx,K′ =
1

2
(〈ρ3,4 (0)〉+ 〈ρ4,3 (0)〉) , (4.45d)

Sy,K′ =
1

2i
(〈ρ3,4 (0)〉 − 〈ρ4,3 (0)〉) , (4.45e)

Sz,K′ =
1

2
(〈ρ3,3 (0)〉 − 〈ρ4,4 (0)〉) , (4.45f)

and Si = Si,K +Si,K′ , (i = x, y, z) . Although there is a SU(2) symmetry for the spin, the

Zeeman coupling breaks this symmetry. So the spin coherence does not exist.

The phase diagrams in Figs. 4.7 and 4.9 can be also explained by the competition

between the bias energy Λ and the Zeeman coupling. Fig. 4.10 clearly shows that how

the competition changes the phases of the ground state.
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4.4 Ising quantum Hall ferromagnet in chiral multi-

layer graphene

The quantum Hall ferromagnet with Z2 symmetry discussed in Sec. 4.3 is the so-

called easy-axis (or Ising) quantum Hall ferromagnet. In such a system, there might

exist domain walls that induce a resistivity (Rxx) spike in a transport experiment at

finite temperature [80]. The domain walls increase the Coulomb energy of the system.

There is no domain wall at zero temperature, so the conductivity Rxx is still zero at

integer filling factor at zero temperature. At finite temperature, the domain wall could

lower the free energy of the system, when we consider the wall entropy. Below a critical

temperature Tc, domain walls provide 1D channels carrying extra charges. These charge

dissipate the transport charge of the 2DEG, so that the resistance spike appears [81,82].

Above the critical temperature, the domain wall will be infinity long and expand to

the sample perimeter. The charge in the domain wall can not dissipate the transport

electrons any more, so the resistance spike disappears.

A recent experiment [77] has indeed observed the conductivity spikes at ν = 1 in

higher Landau levels at temperature T = 1.4K. The experimental evidence also supports

the fact that there is an Ising quantum Hall ferromagnet in graphene bilayer at ν = 1.

We can derive a criteria that determines if the ground state of the system has a SU(2)

symmetry or a Z2 symmetry. The criteria is obtained by comparing the energy of a SU(2)

state ESU(2) with that of an Ising quantum Hall ferromagnet EI ,

EI < ESU(2). (4.46)

If this equation is true, the ground state is an Ising quantum Hall ferromagnet, otherwise

the ground state is an x − y spin ferromagnet as in monolayer graphene. In graphene

bilayer, in the higher Landau levels, the criteria can be written as,

D (d) = UF
K,K (0)− UF

K,K′ (0)− e2

κ�

d

�
(n1,K − n2,K)

2 > 0, (4.47)

where the Fock interaction UF
σ,σ′ between valleys σ and σ′ is defined in Eq. (4.8). If

we set D as a function of the distance between the two layers d, Fig. 4.11 shows that

D (d > 0) > 0 and D (d = 0) = 0, which means that if the separation between the two

layers is zero, then the ground state recovers SU(2) symmetry.
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Figure 4.11: The Ising quantum Hall ferromagnet discriminant function D(d) ≥ 0,
which means the ground state is an Ising ferromagnet when the two layers of graphene
bilayer are separated.

If we apply the effective two-component model to the criteria in Eq. (4.47), we can

still obtain that the ground state at ν = 1 is the Ising quantum Hall ferromagnet. Hence,

the two-component model may be able to determine this property of the ground state

qualitatively in higher Landau levels.

The chiral multi-layer graphene is stacked, in the z direction, by the layers periodically

as A − B − C − A − B − C . . .. In Fig. 4.12, we show the ABC stacking. In the first

Brillouin zone, there are also two inequivalent valleys K and K ′ in a chirally stacked

multi-layer graphene. In such a system, the Hamiltonian can be also simplified to a

two-component model [83]. It seems reasonable to assume that all the chirally-stacked

multi-layer graphene are Ising quantum Hall ferromagnets at ν = 1 in higher Landau

levels.

First, we verify this assumption in the two-component model of an ABC trilayer

graphene. The Hamiltonian, in the basis of {A1, B3}, is written as [69],

HK′ =

(
Δ0 − (β2Δ0 + 2βα4) aa

† β2α0a
3

β2α0

(
a†
)3

Δ0 − (β2Δ0 + 2βα4) a
†a

)
, (4.48)

and

HK =

(
Δ0 − (β2Δ0 + 2βα4) a

†a −β2α0

(
a†
)3

−β2α0a
3 Δ0 − (β2Δ0 + 2βα4) aa

†

)
, (4.49)
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Figure 4.12: The top view of a ABC trilayer graphene. A red hexagons represent the
first layer, black ones represent the second layer, and blue ones represent the third layer.
The vectors a1 and a2 are the basis vectors of the lattice. The inset shows the first
Brillouin zone which is the same as in monolayer and bilayer graphene. K− and K+ are
the K and K ′ valleys, respectively.

when the bias ΔB = 0. The Landau level ladder operator a is defined in Eq. (1.32), and

αi =
√

3
2
a0
�
γi, β = α0

γ1
. In the ABC trilayer graphene, γ0 = 3.16eV is the nearest neighbor

coupling in each layer, γ1 = 0.502eV couples A1 and B2, γ4 = −0.099eV couples B1 and

B2, and Δ0 = −0.0014eV is the on-site energy. So we obtain that, in the LL n = 1,

B = 10T, the wave functions in the two valleys are given by

φK =

(
yK1 h3

yK2 h0

)
=

(
0.746 19h3

−i0.665 73h0

)
, (4.50)

φK′ =

(
yK

′
1 h0

yK
′

2 h3

)
=

(
i0.665 73h0

0.746 19h3

)
, (4.51)

where hi is defined in Eq. (1.21). In this case, the discriminant function D (d3) becomes

D (d3) = UF
K,K (0)− UF

K,K′ (0)− e2

κ�

d3
�
(n1,K − n2,K)

2 , (4.52)

where d3 = 2d = 6.6374Å is the distance between the two outermost layers, ni,σ = |yσi |2
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and the Fock interaction is given by

UF
σ,σ′ (q) =

2∑
i,j=1

|yσi |2
∣∣∣yσ′

j

∣∣∣2 e2

κ�

∫
dpe−Δijpd3/�e−p

2/2Ln+σi

(
p2

2

)
Ln+σ′

j

(
p2

2

)
J0 (pq�) ,

(4.53)

with K1 = K ′
2 = 2, K2 = K ′

1 = −1 in σi, and

Δij =

{
0

1

i = j

i �= j
. (4.54)

Note that n2 here represents the charge density in the third layer. Numerically, we get

D
(
d3 = 6.6374Å

)
= 0.0365 e2

κ�
> 0. Hence, we conclude that the ground states of the

ABC trilayer graphene at ν = 1 in higher LLs are Ising ferromagnets.

Second, the Hamiltonian of the minimum two-component model in a chiral stacked

m-layer graphene [83] can be written in general as:

Hm
ξ =

(
0 ξβm−1α0a

m

ξβm−1α0

(
a†
)m

0

)
, (4.55)

in the basis of {Bm, A1} in the K valley and in the basis of {A1, Bm} in the K ′ valley,

where ξ = −1 for K valley and ξ = 1 for K ′ valley. So the wave functions of this system

in Landau level n, in the basis of {A1, Bm}, are given by,

φK,n =

(
y
K(m)
1,n hn+m−1
y
K(m)
2,n hn−1

)
, (4.56)

φK′,n =

(
y
K′(m)
1,n hn−1

y
K′(m)
2,n hn+m−1

)
, (4.57)

where
∣∣∣yσ(m)

i,n

∣∣∣ = 1√
2
. Then the discriminant function in the nth Landau level becomes

D(m)
n (dm) = U

F (m)
K,K (n,0)− U

F (m)
K,K′ (n,0)− e2

κ�

dm
�

(
n
(m)
1,K − n

(m)
2,K

)2

= U
F (m)
K,K (n,0)− U

F (m)
K,K′ (n,0) , (4.58)
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where

U
F (m)
σ,σ′ (n,q) =

2∑
i,j=1

∣∣∣yσ(m)
i,n

∣∣∣2 ∣∣∣yσ′(m)
j,n

∣∣∣2 e2

κ�

∫
dpe−(m−1)Δijpd/�e−p

2/2

×Ln+σi

(
p2

2

)
Ln+σ′

j

(
p2

2

)
J0 (pq�) , (4.59)

with K1 = K ′
2 = m − 1, K2 = K ′

1 = −1 in σi. The parameter dm = (m− 1) d is the

distance between the two outermost layers of the multi-layer graphene. So we obtain

that

D(m)
n (dm) =

1

4

∫
dpe−p

2/2
[
1− e−pdm/�

] [
Ln−m+1

(
p2

2

)
− Ln−1

(
p2

2

)]2
> 0, (4.60)

which proves that the ground states are Ising quantum Hall ferromagnets in a chirally

stacked multi-layer graphene in higher Landau levels. Note that D
(0)
n (d0 = 0) = 0, which

implies that the ground state of monolayer graphene in any Landau level always has the

SU(2) valley symmetry.

4.5 Charged excitations at zero bias

Once we understand the ground state of the system, it is natural to question how

the excitations look like. We have studied the excitation problems in details in Ref. [78].

For simplicity, we concentrate on the single-particle excitations at zero bias only. The

charged excitation, as what we have shown in the Chapter 2, is related to the transport

gap. At 1/4 or 3/4 filling of a Landau level (N > 0), the ground state is studied in

Sec. 4.3. In this section, the charged excitations around these two filling factors in a few

Landau levels will be studied.

4.5.1 Quasi-particle states

We consider the simplest single-particle excitations, quasi-electron and quasi-hole

states. They are similar to the quasi-particle studied in Chapter 2, which were represented

in Fig. 2.2.
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If we work in the Landau gauge, the quasi-particle states can be written as

|e〉 = c†n,K′,↑,X |GS〉 , (4.61)

|h〉 = cn,K,↑,X |GS〉 , (4.62)

where |GS〉 is the ground state at ν = 1. The ground state could be in either the K or

the K ′ valley, due to the Z2 valley symmetry. Without loss of generality, we choose the

ground state in the K valley here, which is defined by

|GS〉 =
∏
X′

c†N,K,↑,X′ |0〉 , (4.63)

We insert Eqs. (4.61) and (4.62) into the Hamiltonian in Eq. (4.16), and then obtain

the excitation energies of a quasi-electron and a quasi-hole states respectively. Since the

capacitive energy is usually very small (of order of 10−5e2/κ�), we can neglect it. So if

one removes one electron from the ground state, one obtains the excitation energy of

quasi-hole state,

Δh =
1

2
ΔZ + UF

α,α (0) 〈ρα,s;α,s (0)〉 〈ρα,s;α,s (0)〉 , (4.64)

where α and s are the valley and the spin indices, respectively. If we set the ground state

to be in K valley, then α = K ′ for the quasi-electron state. If one adds one electron

in the |K ′, ↑〉 state, the extra Hartree interaction (with the exception of the capacitive

energy) is cancelled by the background. Also, there is no exchange interaction between

different valleys. So the excitation energy of quasi-electron is given by

Δe = −1

2
ΔZ . (4.65)

We remark that the excitation energy of a quasi-particle pair, which is composed

by a quasi-electron and a quasi-hole, can be measured in a transport experiment. The

resistivity Rxx ∼ e−ΔT /kBT is related to the transport gap ΔT at low temeprature, where

kB is the Boltzman constant and T is the temperature. Theoretically, this transport

gap corresponds to the excitation of a quasi-electron quasi-hole pair with no interaction

between them (infinite separation). The total excitation energy is simply the sum of the

two quasi-particles energies, Δeh = Δe +Δh.

There are other possibilities for the quasi-electron state. For example, the extra
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electron can be put in the opposite spin state |K, ↓〉 or |K ′, ↓〉. However, the energies of

these states are higher than the state in Eq. (4.61). Hence, we choose the state in Eq.

(4.61), which has the same spin as the lowest quasi-electron state, but is in the opposite

valley to the ground state.

The excitation energy of a quasi-particle pair is given by

Δα
eh = UF

α,α (0) (4.66)

=
e2

κ�

4∑
i,j=1

∣∣yαi,N ∣∣2 ∣∣yαj,N ∣∣2 ∫ dp�e−Δijpde−p
2�2/2LN+αi

(
p2�2

2

)
LN+αj

(
p2�2

2

)
,

where α = 1,−1 corresponds to valley K or K ′ respectively, and

α1 = α4 = 0, (4.67)

α2 = α, (4.68)

α3 = −α, (4.69)

according to the wave function spinor in Eq. (1.33). Because of the Z2 valley symmetry

of the ground state at zero bias, we have ΔK
eh = ΔK′

eh . We use Eq. (4.66) to calculate the

excitation energies of quasi-particle pairs and we then compare the quasi-particle energy

with the energy of a spin textured excitation.

4.5.2 Nonlinear σ model and spin skyrmion excitations

In a conventional 2DEG in a semiconductor quantum well and in the chiral 2DEG of

monolayer graphene, skyrmion excitations exist that reduces the excitation energy. We

have shown that the valley skyrmion is the lowest energy excitation in LL |n| = 1, 2, 3

in graphene, since the ground state has the SU(2) symmetry in the two-valley system.

However, in graphene bilayer (or multi-layer), the ground states in LL N ≥ 1 are Ising

quantum Hall ferromagnets at 1/4 and 3/4 fillings of a LL. So that we can not apply the

NLσM in the two lowest kinetic energy levels, which are |K, ↑〉 and |K, ↓〉.
If we consider spin excitation, the situation is different. Since the ground state has Z2

symmetry in the valley pseudo-spin at zero bias, we arbitrarily choose the ground state

as |K, ↑〉. In the limit of slowly varying spin texture and if we set ΔZ=0, the Coulomb

interaction can be described by the NLσM in Eq. (1) where m is a unitary spin field,

m = 4π�2Sα. The spin field Sα is defined in Eq. (4.45).The spin stiffness ρs is calculated
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Landau level Skyrmion Quasi-particle

1 0.33136 0.721175
2 0.396278 0.608707
3 0.433813 0.548021
4 0.46233 0.506872
5 0.4869 0.476078

Table 4.1: Excitation energies for spin SK-ASK and e-h pairs in Landau levels N =1
to 4. All the energies are in units of e2/κ�. The system is at magnetic field B = 9T,
dielectric constant κ = 2.5.

by the method of Sec. 1.5, and is given by

ρs = ρKs = ρK
′

s − 1

16π�2
∇2

q

∑
α

UF
K,K (q) |q=0 (4.70)

=
e2

κ�

1

32π

∑
α

4∑
i,j=1

∣∣yKi,N ∣∣2 ∣∣yKj,N ∣∣2 ∫ dpp2e−Δijp
d
� e−p

2

LN+αi

(
p2

2

)
LN+αj

(
p2

2

)
.

Note that the spin stiffnesses ρKs = ρK
′

s at zero bias since UF
K,K (q) = UF

K′,K′ (q).

Once we know the spin stiffness, the excitation energy of a skyrmion anti-skyrmion

pair is given by

ΔSK−ASK = 8πρs. (4.71)

As in the monolayer graphene, the skyrmion can be shrinked to a quasi-particle state if

the Zeeman coupling increases. If we consider the case of zero Zeeman coupling, then

only the NLσM is able to describe the excitation states.

We need to compare ΔSK−ASK with Δeh to determine which excitation is preferred

for a different value of LL N . In the Table 4.5.2, we compare the excitation energies of a

SK-ASK (skyrmion-antiskyrmion) and an e-h (quasi-electron-hole) pairs at zero Zeeman

coupling. We see that the spin skyrmion energy is lower than the energy of quasi-particle

up to Landau level 4. In a normal 2DEG in a quantum well, the skyrmion state only

exists in the lowest Landau level. The spin skyrmion state exists up to Landau level 3

in monolayer graphene [9].
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4.5.3 Skyrmions in microscopic Hamiltonian language

So far, we have neglected the possibility of the valley coherence in our study of spin

skyrmion. The complete excitation states should involve the four levels, i.e. spin and

valley texture may be intertwined. If we suppose |K, ↑〉 = |1〉 is the ground state and

do not consider LL mixing, the anti-skyrmion state should be written in the symmetric

gauge as [27]:

|ASK〉 =
∞∏

m=1

(
u1,mc

†
1,m + u2,m−1c

†
2,m−1 + u3,m−1c

†
3,m−1 + u4,m−1c

†
4,m−1

)
|0〉 , (4.72)

where the index i in c†i,m combines the valley and spin indices together, and is also

defined as: i = 1 = (K, ↑); 2 = (K, ↓); 3 = (K ′, ↑); 4 = (K ′, ↓). c†i,m represents the

creation operator of an electron in the level |i〉 at generalized angular momenta m.

For the skyrmion states, there are three possibilities,

|SK〉2 = c†2,0

∞∏
m=0

(
u1,mc

†
1,m + u2,m+1c

†
2,m+1 + u3,mc

†
3,m + u4,mc

†
4,m

)
|0〉 , (4.73)

|SK〉3 = c†3,0

∞∏
m=0

(
u1,mc

†
1,m + u2,mc

†
2,m + u3,m+1c

†
3,m+1 + u4,mc

†
4,m

)
|0〉 , (4.74)

|SK〉4 = c†4,0

∞∏
m=0

(
u1,mc

†
1,m + u2,mc

†
2,m + u3,mc

†
3,m + u4,m+1c

†
4,m+1

)
|0〉 , (4.75)

because there are three possible levels (|2〉, |3〉 and |4〉) that can accept the extra electron.

To calculate the skyrmions at finite Zeeman coupling and finite bias ΔB, we need to

numerically calculate the energies of states in Eqs. (4.72), (4.73), (4.74), and (4.75) with

the method that we have used in Chapter 2. From a calculation shown in Fig. 4.13 in

the condition that B = 10T and κ = 2.5, we find that at small Zeeman coupling, the spin

skyrmion can exist without valley coherence. It supports our assumption of neglecting

the valley coherence in the NLσM. The spin anti-skyrmion (SASK) can be written as

|SASK〉 =
∞∏

m=1

(
u1,mc

†
1,m + u2,m−1c

†
2,m−1

)
|0〉 , (4.76)

which is obtained by simplifying the state |ASK〉. The spin skyrmion (SSK) can also be
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Figure 4.13: (a) The excitation energies of the quasi-hole, spin anti-skyrmion |SASK〉,
valley anti-skyrmion |V ASK〉 and general state |ASK〉 in N = 1. (b) The number
of flipped electrons in the lowest-energy anti-skyrmion state in N = 1. The step at
ΔZ = 0.012e2/κ� represents the transition from a SASK to a VASK.

obtained by simplifying |SK〉2:

|SSK〉 = c†2,0

∞∏
m=0

(
u1,mc

†
1,m + u2,m+1c

†
2,m+1

)
|0〉 . (4.77)

Fig. 4.13a shows the excitation energies of an anti-skyrmion described by Eq. (4.72)

and a quasi-hole at zero bias. At small Zeeman coupling, ΔZ < 0.012e2/κ�, |ASK〉 =

|SASK〉. When ΔZ > 0.012e2/κ�, |ASK〉 evolves to the valley anti-skyrmion (VASK)

|V ASK〉 directly. Unlike a double quantum well system [56], there is no CP 3 anti-

skyrmion state between SASK and VASK. We can also find the first-order transition by

the number of electron flipped of the anti-skyrmion states in Fig. 4.13b.

The excitation energies of the skyrmion excitations |SK〉i, i = 2, 3, 4 where i repre-

sents that an extra electron is added into level |i〉 are shown in Fig. 4.14. The state

|SK〉4 always has the highest energy. At small Zeeman coupling, the |SK〉2 is degener-

ated to |SSK〉 with no valley coherence. This also supports our assumption of neglecting

the valley coherence in the NLσM. When ΔZ > 0.0084e2/κ�, the skyrmion state |SK〉3
evolves to a valley skyrmion (VSK) and has the lowest energy in the three skyrmion

states. There is also a first-order transition between |SK〉2 and |SK〉3, which can be

verified by calculating the number of flipped electrons in Fig. 4.14b.
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Figure 4.14: (a) The excitation energies of the quasi-electron, and |SK〉i(i = 1, 2, 3).
(b) The number of flipped electrons in the lowest-energy skyrmion state. The step at
ΔZ = 0.0084e2/κ� represents the transition from a SSK to a VSK.

Since the level |4〉 has an energy greater than the ground state |1〉 by an amount ΔZ ,

the preferred VSK should be |SK〉2. So the VASK and VSK states can be written in the

symmetric gauge as

|V ASK〉 =
∞∏

m=1

(
u1,mc

†
1,m + u3,m−1c

†
3,m−1

)
|0〉 , (4.78)

|V SK〉 = c†3,0

∞∏
m=0

(
u1,mc

†
1,m + u3,m+1c

†
3,m+1

)
|0〉 . (4.79)

The VASK (VSK) never be degenerated to the hole (electron) state at zero bias when

the Zeeman energy increases. This is because that the valley gap and the Coulomb

interaction are not changed by the Zeeman coupling.

Interestingly, the skyrmion-antiskyrmion pair is composed by a SSK and a SASK when

0 < ΔZ < 0.0084e2/κ�; by a VSK and a SASK when 0.0084e2/κ� < ΔZ < 0.012e2/κ�;

and by a VSK and a VASK when ΔZ > 0.012e2/κ�. The existence region of a VSK

is not the same as a VASK. The reason is that the energy of a VSK increases with

Zeeman coupling while the energy of a VASK decreases with Zeeman coupling. The total

excitation energies of a skyrmion pair and a quasi-particle pair is shown in Fig. 4.15.

Note that, for the SSK and SASK (for both graphene bilayer and monolayer graphene

studied in Chapter 2), the existence regions are the same. Also, the numbers of flipped
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Figure 4.15: The excitation energies of a skyrmion pair and a quasi-particle pair at zero
ΔB.

electrons for a SSK and a SASK at the same Zeeman coupling are identical. This is

because the two spin levels have the SU(2) symmetry. At zero bias, the flipped electron

of a VSK is identical to that of a VASK due to the electron hole symmetry.

To study the VSK and VASK in detail, we calculate the valley (anti-)skyrmion as a

function of ΔB at a large Zeeman coupling ΔZ = 0.03e2/κ�. As we show in Figs. 4.13

and 4.14, the spin coherence does not exist at so high Zeeman coupling, so that we can

concentrate on the VSK and VASK only. Figs. 4.16a and 4.16b show the excitation

energies of a VASK and a VSK, respectively. Note that, at positive ΔB the ground state

is |3〉 while the ground state is |1〉 at negative bias. The existence region of a VASK is

(−0.06, 0.06)e2/κ�, and the existence region of a VSK is (−0.09, 0.09)e2/κ�. The energy

of a VASK-VSK pair is shown in Fig. 4.16c. When the bias is nonzero, the Z2 symmetry

of the two valleys is broken, and the electron hole symmetry is also broken. The electron

flipping number of a VSK is larger than that of a VASK at finite bias, which leads the

existence region of the VSK larger. In addition, the VSK and VASK are also found in

N = −1.

The spin textures of a SASK and a SSK are similar to those in monolayer graphene

shown in Fig. 2.8. The density profiles are also associated with the spin textures, which

are similar to Fig. 2.7. Although the density profiles of a VASK (or a VSK) are similar

to a SASK (or a SSK), the spin textures of a VASK and a VSK are very different from

any (anti-)skyrmion that we have studied before. Fig. 4.17 shows the valley pseudo-spin

textures of a VASK and a VSK.
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Figure 4.16: (a) The excitation energies of a VASK and a quasi-hole as functions of the
bias ΔB. (b) The excitation energies of a VSK and a quasi-electron. (c) The excitation
energies of a VASK-VSK pair and a quasi-particle pair. The calculations are for B = 10T
and κ = 2.5 in N = 1.
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Figure 4.17: (a) The valley pseudo-spin texture of a VASK. (b) The valley pseudo-spin
texture of a VSK. The colors represent the density profile which is similar to a SASK or
SSK.
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The reason why the valley pseudo-spin textures of a VASK and a VSK are so com-

plicated is that the orbital indices in elements with |B1〉 and |A2〉 are not the same in

different valleys. In the symmetric gauge, the wave function spinors are written as

ψK,M (u) =

⎛⎜⎜⎜⎜⎝
yK1,NhN,M (r) |A1〉 δ

(
z + d

2

)
yK2,NhN+1,M−1 (r) |B1〉 δ

(
z + d

2

)
yK3,NhN−1,M+1 (r) |A2〉 δ

(
z − d

2

)
yK4,NhN,M (r) |B2〉 δ

(
z − d

2

)

⎞⎟⎟⎟⎟⎠ , (4.80)

ψK′,M (u) =

⎛⎜⎜⎜⎜⎝
yK

′
1,NhN,M (r) |A1〉 δ

(
z + d

2

)
yK

′
2,NhN−1,M+1 (r) |B1〉 δ

(
z + d

2

)
yK

′
3,NhN+1,M−1 (r) |A2〉 δ

(
z − d

2

)
yK

′
4,NhN,M (r) |B2〉 δ

(
z − d

2

)

⎞⎟⎟⎟⎟⎠ , (4.81)

where M is the real angular momenta. In a SASK or a SSK, the spin field is defined by

S+ =
∑

M ψ∗K,M+δψK,Mc†K,↑,M+δcK,↓,M . So there is always a δ factor difference between the

angular momenta in ψ∗K,M+δ and ψK,M . However, in a VASK or VSK, the valley pseudo-

spin field is defined by P+ =
∑

M ψ∗K,M+δψK′,Mc†K,↑,M+δcK′,↑,M . The angular momenta

difference between ψ∗K,M+δ and ψK′,M is not always δ. The complexity of ψ∗K,M+δψK′,M

leads to the extraordinary valley pseudo-spin texture.

There is another type of Ising quantum Hall ferromagnet in a two-level system with

different Landau level orbitals. In a quantum well, such as ZnO or AlAs, the LL gap

can be small and the Zeeman coupling can be tuned widely. For example, the |n = 0, ↓〉
can be higher than |n = 1, ↑〉 when the Zeeman coupling is tuned to be larger than the

LL gap between n = 0 and n = 1. If the filling factor ν = 2, the 2DEG in the two

levels |n = 0, ↓〉 and |n = 1, ↑〉 is an Ising quantum Hall ferromagnet. When the Zeeman

coupling is sufficiently large, all the electrons in |n = 0, ↓〉 are flipped to |n = 1, ↑〉 as

shown in Fig. 4.18. In this case, Lilliehook [62] has proved that there is no skyrmion

between the two levels. The charged excitations are only quasi-particles. The VASK and

VSK in graphene bilayer are very special since the ground state is also an Ising quantum

Hall ferromagnet. The reason why the VASK and VSK exist might be that the two

corresponding levels are all in the same Landau level, although the LL orbital indices in

the wave function spinors of the two levels are not exactly the same.

We now comment on the single particle excitations at half filling of a Landau level.

In this case, the ground state at zero bias has the two states |K, ↑〉 and |K ′, ↑〉 fully filled
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Figure 4.18: The Zeeman coupling is tuned to be larger than the LL gap, and the
ground state is changed to an Ising quantum Hall ferromagnet.

and the other two states are empty [78]. According to Table (4.5.2), the spin skyrmion,

which could occur in any one of the two valleys, has lower energy than a quasi-particle

at zero Zeeman coupling up to LL N = 4.

4.6 Screening effect

As in Chapter 2, we can also take the screening effect into consideration in our study

of quasi-particle and skyrmion excitations. However, the screening is more complicated

in a bilayer system, since the dielectric function should be replaced by a dielectric ma-

trix. Misumi and Shizuya [84] discussed the screening effect and calculated the dielectric

matrix for bilayer graphene. Gorbar et al. even discussed the dynamic screening effect

in graphene bilayer [46]. However, these authors just use the effective two-component

model which is not accurate in higher Landau levels. Although the eigen-wavefunctions

of the four-band model (with γ3 = 0) are not reliable in very high Landau levels, the high

Landau levels affect the screening only weakly since they are far away from the partially

filled Landau level. In addition, the Landau level gaps in graphene bilayer is smaller than

monolayer graphene, so that the screening effect may also be stronger. In this section,

we work in the four-band model.

In a bilayer system, the inter-layer and intra-layer Coulomb interactions are screened

differently. We use 1 and 2 to denote the two layers in graphene bilayer. A1, B1 are on

the layer 1, while A2, B2 are located on layer 2. The screened Coulomb potential is given

by (
V11,s V12,s

V21,s V22,s

)
=

(
V11 V12

V12 V11

)[
I +

(
Π11 Π12

Π12 Π22

)(
V11 V12

V12 V11

)]−1
, (4.82)
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where the index s denotes the screened Coulomb potential. Vij,s is the screened Coulomb

potential between layer i and layer j. Πij is the polarization function between layer i and

layer j. It is related to density-density correlation function χninj
by Πij = −χninj

. The

Coulomb potential in Eq. (4.82) is a matrix, while the Coulomb potential in a monolayer

system is only a function.

We need to calculate four polarization functions to obtain the screened Coulomb

potential matrix in Eq. (4.82). Then, the excitation energies of skyrmion and of quasi-

particle can be calculated using these screening corrections.

The density-density correlation function in the simplest (RPA) approximation is given

by

χnn (q) =
1

2π�2�

∑
ni

∑
σi

Θσ1,σ2
n1,n2

(−q)Θσ3,σ4
n3,n4

(q)χ0,σ1,σ2,σ3,σ4
n1,n2,n3,n4

(q) ,(4.83)

χ0,σ1,σ2,σ3,σ4
n1,n2,n3,n4

(q, iΩn) = δk1,k2δk3,k4δs1,s2δs3,s4

×δσ2,σ3δn2,n3

〈
ρσ1,σ4
n1,n4

(0)
〉− δσ1,σ4δn1,n4

〈
ρσ3,σ2
n3,n2

(0)
〉

iΩn +
(
Ẽn1,σ1 − Ẽn2,σ2

)
/�

, (4.84)

where ni is the Landau level index, and σ is the index combined band b, valley k and spin

s. Here we neglect Landau level mixing coherence, so that the density matrix elements〈
ρσ,σ

′
n,n′ (0)

〉
are zero when n �= n′ or σ �= σ′. The form factor Θ is defined by

Θσ1,σ2
n1,n2

(−q) =
(

yk1,b1∗1,n1
h∗|n1| yk1,b1∗2,n1

h∗|n1|+f2,σ1
yk1,b1∗3,n1

h∗|n1|+f3,σ1
yk1,b1∗4,n1

h∗|n1|
)

×

⎛⎜⎜⎜⎜⎝
yk2,b21,n2

h|n2| {1}
yk2,b22,n2

h|n2|+f2,σ2
{1}

yk2,b23,n2
h|n2|+f3,σ2

{2}
yk2,b24,n2

h|n2| {2}

⎞⎟⎟⎟⎟⎠ , (4.85)

where

f2,σ = (−1)k − δn,0δk,Kδb,3, (4.86)

f3,σ = − (−1)k − δn,0δk,K′δb,3. (4.87)

The symbol {i} means that the term involves layer i. So, there are four terms in the
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density factor Θ ·Θ,

Θσ1,σ2
n1,n2

(−q)Θσ3,σ4
n3,n4

(q) = (4.88){[
yk1,b1∗1,n1

yk2,b21,n2
F|n1|,|n2| (−q) + yk1,b1∗2,n1

yk2,b22,n2
F|n1|+f2,σ1 ,|n2|+f2,σ2

(−q)
]

×
[
yk3,b3∗1,n3

yk4,b41,n4
F|n3|,|n4| (q) + yk3,b3∗2,n3

yk4,b42,n4
F|n3|+f2,σ3 ,|n4|+f2,σ4

(q)
]
{11}

+
[
yk1,b1∗1,n1

yk2,b21,n2
F|n1|,|n2| (−q) + yk1,b1∗2,n1

yk2,b22,n2
F|n1|+f2,σ1 ,|n2|+f2,σ2

(−q)
]

×
[
yk3,b3∗3,n3

yk4,b43,n4
F|n3|+f3,σ3 ,|n4|+f3,σ4

(q) + yk3,b3∗4,n3
yk4,b44,n4

F|n3|,|n4| (q)
]
{12}

+
[
yk1,b1∗3,n1

yk2,b23,n2
F|n1|+f3,σ1 ,|n2|+f3,σ2

(−q) + yk1,b1∗4,n1
yk2,b24,n2

F|n1|,|n2| (−q)
]

×
[
yk3,b3∗1,n3

yk4,b41,n4
F|n3|,|n4| (q) + yk3,b3∗2,n3

yk4,b42,n4
F|n3|+f2,σ3 ,|n4|+f2,σ4

(q)
]
{21}

+
[
yk1,b1∗3,n1

yk2,b23,n2
F|n1|+f3,σ1 ,|n2|+f3,σ2

(−q) + yk1,b1∗4,n1
yk2,b24,n2

F|n1|,|n2| (−q)
]

×
[
yk3,b3∗3,n3

yk4,b43,n4
F|n3|+f3,σ3 ,|n4|+f3,σ4

(q) + yk3,b3∗4,n3
yk4,b44,n4

F|n3|,|n4| (q)
]
{22}

}
,

where each {ij} corresponds to the density-density correlation function χninj
respectively.

The F function is given by Eq. (2.56).

Now we can define the screened dielectric function,

εij(q) =
Vij(q)

Vij,s(q)
, (4.89)

where εij is used to calculate the screened Coulomb interaction between layer i and layer

j. Notice that in Eq. (4.88), the {12} part is identical to the {21} part. Consequently,

we find that χn1n2 = χn2n1 ∈ R in the system. So we obtain the property of the screened

Coulomb potential,

V12,s = V21,s, ε12 = ε21, (4.90)

which means the inter-layer Coulomb potentials are always identical with or without

screening correction. Note that without screening, V11 = V22, while V11,s is not necessary

the same as V22,s at ν = 1, 3. This is because the charge is not balanced in the two

layers at ν = 1, 3. However, at zero bias, the electron charge is balanced in two layers

at ν = 2, 4. So, we find that V11 = V22 and V11,s = V22,s in this case. In Fig. 4.19, we

show the dielectric functions as a function of momentum at ν = 1 in Landau level N = 1

(νt = 5). The magnetic field is 10T, and the sample is suspended, the dielectric constant

for the substrate κ = 1. Moreover, we are able to find similar results as in monolayer
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Figure 4.19: The screening effect and dielectric functions at νt = 5, in Landau level
N = 1.

graphene in Fig. 2.9. For example, screening is stronger and the dielectric functions

(ε11, ε12, ε22) increase when the total filling factor increases.

4.6.1 Phase transitions at integer filling factors with screening

corrections in Landau levels N �= 0

To study the ground state with screening correction, we need to modify the interaction

functions UH and UF in the equation of motion of the Green’s function in Eq. (4.19).

Note that U0 does not have to be screened, because U0 is from UH (q = 0), and ε(q =

0) = 1. If we only consider the liquid phase, the Hartree interaction can be neglected. It

follows that the screened Fock interaction function U
F (s)
α,β is given by

U
F (s)
α,β (q) =

e2

κ�

4∑
i,j=1

∣∣yαi,N ∣∣2 ∣∣∣yβj,N ∣∣∣2
×

∫
dp

εμν (p)
e−Δijpd/�e−p

2/2LN+αi

(
p2

2

)
LN+βj

(
p2

2

)
J0 (pq�) , (4.91)
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where μ, ν are the layer indices and are defined by

μ = 1 if i = 1, 2, (4.92)

μ = 2 if i = 3, 4, (4.93)

ν = 1 if j = 1, 2, (4.94)

ν = 2 if j = 1, 2. (4.95)

Note that εμν contains the density matrix elements 〈ρ〉 , so the calculation of εμν must

be included in the self-consistent iterations of solution of the equation of motion of the

Green’s function.

Our numerical calculations indicate that the Ising behavior of the ground states at

ν = 1 in LLs |N | = 1, 2, 3 is not changed by screening. However, there is no other phase

transition in N = 1 except at ΔB = 0. So the phase diagrams with screening at ν = 1

in N = 1, 2, 3 are similar to those that have been shown in Fig. 4.3b. Since the ground

state is still an Ising quantum Hall ferromanget, the resistance spike of Rxx still exists

at zero bias. The experiment also supports our calculations. In Fig. 4.20 (from Fig. 3a

in Ref. [77]), it is clear that there are resistance spikes at zero bias at νt = −5,−9,−13

which correspond to ν = 1 in LL N = −1,−2,−3. The black square and circle are

spin-polarized to valley-polarized phase transitions at ν = 2 in N = −1,−2.

At ν = 2, the phase diagram in Fig. 4.7 for N = 1 is also changed to that sim-

ilar to Fig. 4.9. There are only three phases and two phase transitions in the whole

diagram of N = 1, 2, 3. All the phase transitions are from a spin polarized state to a

valley pseudo-spin polarized state in which the lower-energy valley is occupied. The crit-

ical biases of phase transitions Δ
C(s)
B (n) for different LL N also changed. We calculate

Δ
C(s)
B (N = 1, 2, 3) (only the positive ones are calculated since the negative critical bias

−ΔC
B has the same absolute value as ΔC

B) and compare them with the unscreened ones:

Δ1
B (for N = 1) and ΔC

B (N = 2, 3) in Fig. 4.21. If we do not consider screening, the

critical bias in N = 1 is always higher than those in N = 2, 3. And the critical biases

decrease when the magnetic field increases.

In Ref. [77], which is shown in Fig. 4.22 (Fig. 3d in Ref. [77]), the authors mea-

sured the critical biases in LLs N = −1,−2,−3. In each of these negative LLs (they

all belong to the band b = 3) with or without screening, there are two critical biases

(|ΔC
B(N)| and −ΔC

B(N)) in the phase diagram similar to that of LL N = 2. All the

two phase transitions are corresponding to the transition between the spin-polarized
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Figure 4.20: The experimental picture extracted in Ref. [77]. The white dashed line
for E is the axis of electric field E = ΔB/(ed). The dots along this line represent an
increment of 0.1V/nm of E. The black square and circle are the phase transitions at
ν = 2.
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Figure 4.21: (a) The critical biases Δ1
B (for n = 1) and ΔC

B (N = 2, 3). (b) The crit-

ical bias with screening correction, Δ
C(s)
B (N = 1, 2, 3). The dielectric constant of the

substrate κ = 3 is given by experimental parameter.



Chapter 4 : Ground state and excitations in LL |N | > 0 of bilayer graphene 141

Figure 4.22: The critical biases of phase transitions at ν = 2 in LL n = 0, 1, 2, 3
measured in Ref. [77]. The LL indices here N = 0, 1 belong to the two orbitals of LL
N = 0, and “N = 2, 3, 4” in the picture actually belong to LL −1,−2,−3, respectively.

and valley-polarized states. In Fig. 4.23, we indicate our numerical calculations of

these critical biases at different magnetic fields in N = −1,−2,−3 with and with-

out screening. We find that the critical biases increase with the magnetic field and

ΔC
B (N = −1) < ΔC

B (N = −2) < ΔC
B (N = −3), which agrees with the experiment quali-

tatively. The screening effect helps the numerical results closer to the experiment. How-

ever, the experimental results are still three to four times larger than the numerical results

with screening. Note that, in N = 0, the experimental critical biases are also three to

four times larger than the numerical results [13].

4.6.2 Skyrmions in Nonlinear σ model with screening correction

In the following, we use a symbol (s) in the upper index of variables to represent

the screened excitation energies. Hence, we obtain the screened excitation energy of a

quasi-electron quasi-hole pair,

Δ
(s)N,α
eh =

e2

κ�

∫
dqe

−q2

2 ξNα,α (q) , (4.96)
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Figure 4.23: The critical electric fields EC = ΔC
B/d of phase transitions at ν = 2 in

LL N = −1,−2,−3 with and without screening at κ = 2.5. In comparison, we add the
numerical results calculated in the non-interacting (NI) model. All the phase transitions
are from a spin-polarized state to a valley-polarized state in the K valley.

where we define the function of ξ,

ξNα,α′ (q) =
1

ε11 (q)

2∑
i,j=1

∣∣yαi,N ∣∣2 LN+αi

(
q2

2

) ∣∣∣yα′
j,N

∣∣∣2 LN+α′
j

(
q2

2

)

+
1

ε12 (q)

2∑
i=1

∣∣yαi,N ∣∣2 LN+αi

(
q2

2

) 4∑
j=3

∣∣∣yα′
j,N

∣∣∣2 LN+α′
j

(
q2

2

)
e−q

d
�

+
1

ε12 (q)

4∑
i=3

∣∣yαi,N ∣∣2 LN+αi

(
q2

2

) 2∑
j=1

∣∣∣yα′
j,N

∣∣∣2 LN+α′
j

(
q2

2

)
e−q

d
�

+
1

ε22 (q)

4∑
i,j=3

∣∣yαi,N ∣∣2 LN+αi

(
q2

2

) ∣∣∣yα′
j,N

∣∣∣2 LN+α′
j

(
q2

2

)
. (4.97)

Note that Δ
(s)N,K
eh = Δ

(s)n,K′
eh at zero bias. For the spin stiffness in the NLσM,

ρ(s)ns =
1

16π

e2

κ�

∑
α

∫
dqq2e

−q2

2 ξnα,α (q) , (4.98)

where α is the an arbitrary valley at zero bias.
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Figure 4.24: Excitation energies of the SSK pair and the quasi-particle pairs at B = 9T.
The electrons are at 1/4 and 3/4 fillings in LLs N = 1, 2, 3. (a) The comparison of a SSK
pair and a quasi-particle pairs when the dielectric constant of the substrate is fixed to
κ = 2.5. (b) The excitation energies are changed as functions of the dielectric constant.

We can compare the excitation energy of the quasi-particle with that of the spin

skyrmion by computing Eqs. (4.96) and (4.98). The screening strength is dependent on

many parameters, such as magnetic field, filling factor, bias, and dielectric constant of

the substrate.

Since the four-band model is not reliable in very high Landau levels, we concentrate

on the screening effect in Landau levels N = 1, 2, 3. The 1/4 and 3/4 fillings in Landau

level N = 1 correspond to the total filling factor νt = 5, 7, respectively. The 1/4 and

3/4 fillings in n = 2 correspond to νt = 9, 11, and the 1/4 and 3/4 fillings correspond to

νt = 13, 15 in n = 3.

From Fig. 4.24, it is clear that the excitation energy of the spin skyrmion anti-

skyrmion pair is lower than that of a quasi-particle pair in Landau levels N = 1, 2. In

contrast with the unscreened case, the skyrmion does not exist in N = 3, 4. In the

same Landau level, the energy at 1/4 filling is always higher than that at 3/4 filling. If

the screening is neglected, these two energies should be identical because of the electron

hole symmetry. This symmetry is broken by the screening. The same effect was seen in

monolayer graphene in Chapter 2. In addition, we find that the ratio of the energy at

1/4 to the energy at 3/4 is much different from that of the quasi-particles. We list the
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Figure 4.25: The excitation energies of the spin skyrmion and quasi-particle are changed
by the magnetic field. (a) The dielectric constant is fixed at κ = 2.5. The excitation
energies at filling factor ν = 1, 3 (νt = 5, 7) in LL 1 are plotted. (b) The filling factor is
fixed at ν = 1 in LL N = 1, and the dielectric constant changes the excitation energies.

ratios of skyrmion pairs and quasi-particles:

Δ
(s)N=1,ν=1
S−AS

Δ
(s)N=1,ν=3
S−AS

= 1.05,
Δ

(s)N=1,ν=1
eh

Δ
(s)N=1,ν=3
eh

= 1.26, (4.99a)

Δ
(s)N=2,ν=1
S−AS

Δ
(s)N=2,ν=3
S−AS

= 1.01,
Δ

(s)N=2,ν=1
eh

Δ
(s)N=2,ν=3
eh

= 1.15, (4.99b)

where we take B = 10T and κ = 2.5. The excitation energies of the spin skyrmions are

strongly reduced by the screening. Note that the energies of skyrmion pairs at 1/4 and

3/4 fillings are very close (Δ
(s)ν=1
S−AS ≈ Δ

(s)ν=3
S−AS ), while the energies of quasi-particle pairs at

1/4 and 3/4 fillings are very different. In contrast, the ratios are about 1.3 for both the

skyrmion pair and the quasi-particle pair in monolayer graphene (see Eq. (2.59)). The

excitation energies at different filling factors can be measured in a transport experiment.

Based on Eq. (4.99), we predict that the difference of the energies between 1/4 and 3/4

fillings might be used to distinguish between skyrmion and quasi-particle excitations.

Next, we study how the magnetic field affects the screening and changes the energy

of a single particle excitation. We see from Fig. 4.25 that the excitation energy increases

almost linearly with the magnetic field. If we do not consider screening, the Coulomb

energy in a excitation state E ∝ √
B since the energy scale e2/κ� ∝ √

B. However, we
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see in Fig. 4.25, the curve of excitation energy is not proportional to
√
B, but is almost

linear to B. In fact, the screening effect flattens the energy curve to make it proportional

to B approximately. The fact that the excitation energy is linear with the magnetic field

was observed in Ref. [85]. And the screening effect is indeed one of the explanations of

this experimental results.

We extend our research to the higher LLs in graphene bilayer (even multi-layer

graphene). The ground states indicate Ising behavior with a Z2 symmetry of the val-

ley pseudo-spin. We study this interesting Ising property of the material and compare

with other LL Ising QHF. We also study a valley skyrmion with an extraordinary valley

pseudo-spin texturein the Ising quantum Hall ferromagnetism bilayer graphene .



Conclusion

The main objective of this thesis is to study the topological solitons in monolayer and

bilayer graphene. The topological solitons, especially skyrmions, associated with both

density profile and (pseudo-)spin texture, were studied in the quantum Hall regions.

In graphene, the ground state at half filling in a Landau level n > 0 is a spin ferromag-

net in the presence of a magnetic field. The excitation energies of the charged excitations

are related to the resistivity Rxx which can be measured in transport experiments. The

charged excitations in this case could be quasi-particle states or skyrmions. It is known

that the skyrmion has lower energy than quasi-particle at zero Zeeman coupling up to

n = 3 [9] in the nonlinear σ model. However, the nonlinear σ model is not valid when

the Zeeman coupling is finite. Instead, we developed a microscopic Hamiltonian in the

symmetric gauge to calculate the excitation energies of skyrmions and quasi-particles.

At half filling in Landau level n = 1, 2, we compared the energy of a skyrmion with a

quasi-particle at finite Zeeman coupling, and obtained the Zeeman coupling region where

the spin skyrmion exists. However, in n = 3, the region is too small for a calculation to

be valid.

Our numerical results can be compared with experimental results [12] qualitatively.

However, the transport gap of skyrmions is about one order of magnitude higher than the

experimental measurements, if we do not consider disorder and screening effects. In fact,

the screening may be important in graphene, since the Landau gaps are much smaller

than the gap between valence and conduction bands in a conventional insulator. Virtual

transitions between Landau levels are strong enough to screen the Coulomb interaction

effectively. We considered this Landau level screening, by calculating the static dielec-

tric function. Then we first obtained that the transport gap is decreased significantly.

Although the numerical results with screening still do not agree with the experimental

results exactly, the screening effect is able to make the numerical calculations much closer

146



Conclusion 147

to the experiments. If disorder is included, the transport gap may decrease more. Sec-

ondly, the Zeeman coupling region where skyrmions exist is also decreased a lot, about

one order magnitude lower than without screening.

At 1/4 and 3/4 fillings in a Landau level, the single-particle excitation is called valley

skyrmion up to n = 3. We studied the valley skyrmion in the Nonlinear σ model, since the

effective “Zeeman” gap between two valleys is zero. The spin coherence is thus neglected

since the real Zeeman coupling is large. Because of the electron-hole symmetry, it is

clear that the transport gaps at the two fillings are identical, Δ1/4 = Δ3/4. However the

screening effect is stronger at 3/4 than that at 1/4, so that the electron-hole symmetry

is broken by the screening. The proof of this broken symmetry is that Δ
(s)
1/4 > Δ

(s)
3/4. If

we consider that the disorder correction Γ in the total excitation energy is weak and is

screened at the same strength as the skyrmion energy, then the numerical transport gap

ratio Δ
(s)
1/4/Δ

(s)
3/4 = 1.3 in Landau level n = 1, which is the same as the experimental

results.

In Chapter 3, we study the orbital pseudo-spin textured states in graphene bilayer

in an effective two-component model in which we assume γ3 = γ4 = 0. This model is

particularly good for the Landau level N = 0 of graphene bilayer. Moreover, we discuss

how γ4 changes the phase transition of crystal phases.

A few crystal phases with valley and/or orbital pseudospin textures that can occur

near the integer filling factors were presented in the Hartree-Fock approximation. The

orbital skyrmion crystal can be associated with one electron per site at large bias and

two electrons per site at small bias at ν̃ = 1.2. The q = −2e skyrmion crystal is also

analogous to the bubble Wigner crystal phase which is found in higher Landau levels in

a conventional 2DEG. The orbital skyrmion crystals have a Wigner-crystal-like orbital

pseudo-spin texture in real space representation and a skyrmion-like orbital pseudo-spin

texture in the guiding-center representation.

At ν̃ = 2.2, we explore the checkerboard valley meron crystal at zero and small

bias and another orbital skyrmion crystal at large bias. A meron is essentially half a

skyrmion. At larger bias, the valley meron crystal is able to evolve to the valley skyrmion

crystal. However, the electron gas is crystallized into the orbital skyrmion crystal by the

orbital Dzyaloshinskii-Moriya interaction before the valley skyrmion crystal is formed.

We propose a STM experiment to observe these crystal phases, which leads us to study

the density of states of the crystal phases.

The orbital skyrmion crystal induced by the Dzyaloshinskii-Moriya interaction is par-
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ticular interesting, since it can be an analogy of other magnetic materials [72]. Moreover,

it exists even at integer filling factors. The electron gas favors a uniform state due to

the exchange interaction if the two orbitals are the same. At ν = −1, 3, we simplified

the system as a two-level toy model to study the transport properties of the electron gas.

The phase diagram contains uniform phase, orbital skyrmion crystal phase and spiral

phase at different biases. We concentrate on the density of states, collective modes and

absorptions of the crystal phase. There is a gapless phonon mode corresponding to the

density wave. The dispersion is isotropic, which is similar to a Wigner crystal. It also

contains a pseudo-spin x − y mode gapped by the Dzyaloshinskii-Moriya term, which

is gapless in a spin skyrmion crystal. The frequency of electromagnetic absorption is

calculated in the microwave region.

In the last chapter, we considered the ground state and the single-particle excitations

in higher Landau levels of graphene bilayer. We studied the system in the four-band

model in which we take γ3 = 0, since the effective two-band model is not exact in higher

Landau levels. Moreover, the eigen-energies and eigenvectors of the four-band model are

verified to be very good approximations when the Landau level is not very high.

The ground states at 1/4 and 3/4 fillings in Landau levels n = 1, 2, 3 were first

studied. We obtained a Z2 symmetry of valley pseudo-spin in the ground states at 1/4

filling. In this case, the ground state is an Ising quantum Hall ferromagnet. Furthermore,

we notice that the Ising ferromagnet does not only exist in graphene bilayer, but also

generally in higher LLs in chiral stacking multi-layer graphene. At finite temperature,

the domain walls in the system lead to a conductivity spike [80], which has been observed

in experiment [77].

We extract the nonlinear σ model for the two-spin system in an arbitrary valley. In

contrast with monolayer graphene, the spin skyrmions exist up to Landau level n = 4

in graphene bilayer, if the screening is not considered. We also study the general CP3

skyrmion in the symmetric gauge. We find that: at small Zeeman coupling, the CP3

skyrmion degenerates to a SSK without valley coherence, which supports our assump-

tion in studying the nonlinear σ model. At large Zeeman coupling, the CP3 skyrmion

degenerate to a VSK without spin coherence. The valley skyrmion has a very special

valley pseudo-spin texture that is different from any other skyrmion we have known. The

reason of the extraordinary texture is that the orbital indices are different in the wave

function spinors in the two valleys.

The Landau level screening in graphene bilayer is stronger than that in monolayer
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graphene. In Landau levels |N | = 1, 2, 3, we considered the phase transitions at different

bias with screening correction. Our numerical results agree with the experiment [77]

qualitatively. Then we added the screening corrections in the nonlinear σ model. We

found that the screening is able to decrease the existence Landau level for the spin

skyrmion, while the existence Landau level for the spin skyrmion in monolayer graphene

is not changed by the screening. Furthermore, the screening effect not only decreases the

transport gap significantly, but also flattens the excitation energy curve to be approxi-

mately linear to the magnetic field.

Our calculations were based on Hartree-Fock plus generalized random phase ap-

proximation approach. This method is well controlled and conserves all the conser-

vations laws. This technique has been used widely to study the collective modes and

absorptions in a variety of nonuniform phases both in theoretical and experimental as-

pects [10, 26, 64, 66, 75, 86, 87]. However, this approach provides the qualitative, if not

quantitative, results, since the lattice quantum fluctuations are not considered. It is

possible that some phases will become unstable when the fluctuations are considered. It

may also be possible to find other states lower energy than what we have obtained. This

consideration which is beyond my thesis could be the object of future work.



Appendix A

Program difficulties for the Laguerre

polynomial

For a generalized Laguerre polynomial, La
n (x) , the value sometimes goes beyond the

limit of the double precision (La
n (x) > 10304), when n or x is large. Essentially, La

n (x)

is a polynomial with the highest order xn, so La
n (x) diverges at infinity. Nevertheless

the Coulomb interaction elements never diverge, since the exponential decay inhibits

the divergence. But when we calculate La
n (x) at very large n with the GNU Scientific

Library (GSL) special function, the value of La
n (x) usually goes very large. And the

function gsl sf laguerre n in GSL is only defined as a double precision. So we have the

program difficulty in calculating a large angular momentum system.

Fortunatly, we find another special function, which can reach a very large number

in GSL, to replace the Laguerre polynomial. Use the confluent hypergeometric function

of the second type U , or say Tricomi confluent hypergeometric function, which can be

found in GSL with a very high precision format (gsl sf result e10),

La
n (x) =

(−1)n

n!
U (−n, a+ 1, x) . (A.1)

The confluent hypergeometric function of the second type can be found, in GSL, as

the function gsl sf hyperg U int e10 e. And its value is given by two parameters, the

mantissa u and the exponent b, i.e. U = u × 10b. The Coulomb interaction elements in
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Eq. (2.9) can be converted to

V n1,n2,n3,n4

M1,M2,M3,M4
=

e2

κ�
δM1−M2+M3−M4

∫
dke−k

2

(
k√
2

)|n1−n2|+|n3−n4|+|m1−m2|+|m3−m4|

L
|n1−n2|
min(n1,n2)

(
k2

2

)
L
|n3−n4|
min(n3,n4)

(
k2

2

)
(−1)min(m1,m2)+min(m3,m4)

U
(
−min(m1,m2), |m1 −m2|+ 1, k

2

2

)
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min(m1,m2)!max(m1,m2)!

U
(
−min(m3,m4), |m3 −m4|+ 1, k

2

2

)
√
min(m3,m4)!max(m3,m4)!

, (A.2)

where mi = Mi+ni. The two terms L
|n1−n2|
min(n1,n2)

(
k2

2

)
, L

|n3−n4|
min(n3,n4)

(
k2

2

)
are not necessary to

be replaced by the confluent hypergeometric function, since the LL indices n1, n2, n3, n4

in our systems are small. Also, for the factorial, 169! > 10304. So we need to program

the factorial as

n! = exp

[
n∑

i=1

ln (i)

]
. (A.3)

So the integrand in Eq. (A.2) should be programmed as

L
|n1−n2|
min(n1,n2)

(
k2

2

)
L
|n3−n4|
min(n3,n4)

(
k2

2

)
(−1)min(m1,m2)+min(m3,m4) u (m1,m2, k) u (m3,m4, k)

× exp

{
−k2 + (|n1 − n2|+ |n3 − n4|+ |m1 −m2|+ |m3 −m4|) ln

(
k√
2

)
+ [b (m1,m2, k) + b (m3,m4, k)] ln 10

−1

2

⎡⎣min(m1,m2)∑
i=1

ln (i) +

max(m1,m2)∑
i=1

ln (i) +

min(m3,m4)∑
i=1

ln (i) +

max(m3,m4)∑
i=1

ln (i)

⎤⎦⎫⎬⎭ , (A.4)

where we define

U

(
−min(m1,m2), |m1 −m2|+ 1,

k2

2

)
= u (m1,m2, k)× 10b(m1,m2,k), (A.5)

U

(
−min(m3,m4), |m3 −m4|+ 1,

k2

2

)
= u (m3,m4, k)× 10b(m3,m4,k). (A.6)



Appendix B

Positive background of bilayer

graphene

When we derive the Hamiltonian in bilayer graphene, we should figure out the back-

ground effects. Usually, in a bilayer system, the capacity energy arises from the interac-

tion with the background. And the capacity energy, sometimes, plays an important role

in the phase diagram of the system. We suppose that the positive charge is distributed on

the background homogeneously on the planes z = ±d/2. Suppose the density of positive

charge on each plane is n0/2, and the area of the sample is S, so the neutral condition

gives

n0S = νNφ, (B.1)

where ν is the filling factor and Nφ is the degeneracy of the Landau level. Here we do

not consider Landau level mixing, and only the highest Landau level which is fully or

partly filled is taken into account. We write the Hamiltonian related to the background

as

H+ = H+,+ +He,+, (B.2)

whereH+,+ remarks the background-background interaction andHe,+ remarks the electron-

background interaction.

H+,+ term contains the intra-layer and inter-layer interactions, Uintra and Uinter re-
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spectively. For the intra-layer term,

Uintra =
1

2

∫
drdr′

n2
0

4
e2V (r− r′)

=
1

4

1

S

∑
q

∫
drdr′n2

0

2πe2

κq
eiq·(r−r

′)

=
1

4
Sn2

0V (q = 0) , (B.3)

where the Coulomb potential, in this system is given by

V (u− u′) =
1

S

∑
q

2πe2

κq
eiq·(r−r

′)e−q|z−z
′|. (B.4)

and the Coulomb potential in momentum space is defiend by

V (q) =
2πe2

κq
, (B.5)

where κ is the dielectric constant. And for the inter-layer term,

Uinter =

∫
drdr′

n2
0

4

1

S

∑
q

eiq·(r−r
′)e−qd

=
Sn2

0

4

∑
q

2πe2

κq
e−qdδq,0

=
Sn2

0

4

[
V (q = 0)− 2πe2d

κ

]
, (B.6)

where d is the distance between two layers. Hence the background-background interaction

is given by

H+,+ = 2Uintra + Uinter =
1

4
Sn2

0

[
2V (q = 0)− 2πe2d

κ

]
. (B.7)

The electron-background interaction is given by

He,+ = − (heR,+R + heR,+L + heL,+L + heL,+R) , (B.8)

where we suppose the index R to represent the right layer associated with χR(z) =
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δ(z−d/2) and the index L to represent the left layer associated with χL(z) = δ(z+d/2),

respectively. In Eq. (B.8) we consider the interaction between electrons (right layer) and

background (right layer) heR,+R, between electrons (right layer) and background (left

layer) heR,+L, between electrons (left layer) and background (right layer) heL,+R, and

between electrons (left layer) and background (left layer) heL,+L. Then we calculate one

by one.

heR,+R =
∑
i

∫
dudu′

n0

2
Ψ†i,R (u)Ψi,R (u) e2V (u− u′) (B.9)

=
n0

2

∑
i

c†ici

∫
dzdz′χ∗R (z)χR (z)

∫
drdr′Φ∗i,R (r) Φi,R (r)

1

S

∑
q

2πe2

κq
eiq·(r−r

′)e−q|z−z
′|,

where i here is the valley-spin-guiding-center combination index i = (k, s,X), and Φ is

the wave function spinor in the layer R. If we define the density function for electrons,

niR,iR (r) = Φ∗i,R (r) Φi,R (r) , (B.10)

niR,iR (q) =

∫
drΦ∗i,R (r) e−iq·rΦi,R (r) , (B.11)

and use ∫
dzχ∗R (z)χR (z)

∣∣∣∣z − d

2

∣∣∣∣ = 0, (B.12)

then we obtain

heR,+R =
n0

2

∑
i

c†iciV (q = 0)niR,iR (q = 0) . (B.13)

In the same way,

heL,+L =
n0

2

∑
i

c†iciV (q = 0)niL,iL (q = 0) . (B.14)

For the inter-layer electron-background interaction, we have

heR,+L =
n0

2

∑
i

c†ici

∫
dzχ∗R (z)χR (z)

∫
drdr′Φ∗i,R (r) Φi,R (r)

1

S

∑
q

2πe2

κq
eiq·(r−r

′)e−q|z+ d
2 |

=
n0

2

∑
i

c†iciV (q = 0)niR,iR (q = 0)− n0

2

2πe2d

κ

∑
i

c†iciniR,iR (q = 0) , (B.15)

where we use ∫
dzχR (z) |z + d/2|χR (z) = d. (B.16)
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In the same manner,

heL,+R =
n0

2

∑
i

c†iciV (q = 0)niL,iL (q = 0)− n0

2

2πe2d

κ

∑
i

c†iciniL,iL (q = 0) . (B.17)

Combine them together, we obtain the electron-background interaction

He,+ = n0

[
πe2d

κ
− V (q = 0)

]∑
i

[niR,iR (q = 0) + niL,iL (q = 0)] c†ici. (B.18)

So the positive back ground brings an extra term in the Coulomb interaction Hamiltonian,

H+ = H+,+ +He,+ = n0

[
πe2d

κ
− V (q = 0)

]∑
i

∑
j=R,L

nij,ij (q = 0) c†ici

+
1

2
Sn2

0

[
V (q = 0)− πe2d

κ

]
. (B.19)

Based on the normalization condition of the wave function, we get

∑
i

∑
j=R,L

nij,ij (q = 0) c†ici =
∑
i

c†ici
∑
j=R,L

∫
drΦ∗i,j (r) Φi,j (r)

=
∑
i

c†ici

= Nφ

∑
k,s

ρ(k,s);(k,s) (q = 0) , (B.20)

where ρ is the density operator defined in Eq. (4.6). Drop the constant term, we finally

obtain the background effect,

H+ = n0Nφ

[
πe2d

κ
− V (q = 0)

]∑
k,s

ρ(k,s);(k,s) (q = 0) +
1

2
Sn2

0V (q = 0) . (B.21)

This term, actually, should cancel the Hartree term at q = 0 partly, which means the

divergency in both two terms should cancel each other, and the left part is the so-called

capacitive energy.



Bibliography

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon
Films. Sience 306, 666 (2004).

[2] N. D. Mermin, H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in
One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17, 1133-
1136 (1966).

[3] M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Chiral tunnelling and the Klein
paradox in graphene. Nature Phys. 2, 620 (2006).

[4] Kentaro Nomura and Allan H. MacDonald, Quantum Hall Ferromagnetism in
Graphene. Phys. Rev. Lett. 96, 256602 (2006).

[5] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D.
Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Landau-Level Splitting in
Graphene in High Magnetic Fields. Phys. Rev. Lett. 96, 136806 (2006).

[6] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J.
C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-Temperature Quantum
Hall Effect in Graphene. Science 315, 1379 (2007).

[7] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determi-
nation of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys.
Rev. Lett. 45, 494-497 (1980).

[8] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

[9] Kun Yang, S. Das Sarma, A. H. MacDonald, Collective modes and skyrmion ex-
citations in graphene SU(4) quantum Hall ferromagnets. Phys. Rev. B 74, 075423
(2006).

[10] S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R. Tycko, Optically
Pumped NMR Evidence for Finite-Size Skyrmions in GaAs Quantum Wells near
Landau Level Filling ν = 1. Phys. Rev. Lett. 74, 5112 (1995).

156



Bibliography 157

[11] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. de Poortere, and M. Shayegan,
Observation of Quantum Hall “Valley Skyrmions”. Phys. Rev. Lett. 95, 066809
(2005).

[12] A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, K. Watanabe,
T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim, Spin and valley quantum Hall
ferromagnetism in graphene. Nat. Phys. 8, 550 (2012).
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[39] B. Douçot, M. O. Goerbig, P. Lederer, and R.Moessner, Saturation of spin-polarized
current in nanometer scale aluminum grains. Phys. Rev. B 78, 195327 (2008).
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[61] D. Lilliehöök, K. Lejnell, A. Karlhede, and L. Sondhi, Quantum Hall Skyrmion with
Higher Topologicla Charge. arXiv:cond-mat/9704121v1 (1997).



Bibliography 161
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