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SOMMAIRE 

Cette these, presente l'ensemble de nos contributions relatives a la recherche d'images 

par le contenu a l'aide de Panalyse multiresolution ainsi qu'a la classification lineaire 

et nonlineaire. Dans la premiere partie, nous proposons une methode simple et ra-

pide de recherche d'images par le contenu. Pour representer les images couleurs, nous 

introduisons de nouveaux descripteurs de caracteristiques qui sont des histogrammes 

ponderes par le gradient multispectral. Afin de mesurer le degre de similarite entre 

deux images d'une fagon rapide et efficace, nous utilisons une pseudo-metrique pon-

deree qui utilise la decomposition en ondelettes et la compression des histogrammes 

extraits des images. Les poids de la pseudo-metrique sont ajustes a l'aide du modele 

classique de regression logistique afin d'ameliorer sa capacite a discriminer et la pre

cision de la recherche. Dans la deuxieme partie, nous proposons un nouveau modele 

bayesien de regression logistique fonde sur une methode variationnelle. Une compa-

raison de ce nouveau modele au modele classique de regression logistique est effectuee 

dans le cadre de la recherche d'images. Nous illustrons par la suite que le modele baye

sien permet par rapport au modele classique une amelioration notoire de la capacite 

a discriminer de la pseudo-metrique et de la precision de recherche. Dans la troisieme 

partie, nous detaillons la derivation du nouveau modele bayesien de regression logis

tique fonde sur une methode variationnelle et nous comparons ce modele au modele 

classique de regression logistique ainsi qu'a d'autres classificateurs lineaires presents 
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dans la litterature. Nous comparons par la suite, notre methode de recherche, utilisant 

le modele bayesien de regression logistique, a d'autres methodes de recherches deja 

publiees. Dans la quatrieme partie, nous introduisons la selection des caracteristiques 

pour ameliorer notre methode de recherche utilisant le modele introduit ci-dessus. 

En effet, la selection des caracteristiques permet de donner automatiquement plus 

d'importance aux caracteristiques qui discriminent le plus et moins d'importance aux 

caracteristiques qui discriminent le moins. Finalement, dans la cinquieme partie, nous 

proposons un nouveau modele bayesien d'analyse discriminante logistique construit a 

l'aide de noyaux permettant ainsi une classification nonlineaire flexible. 
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INTRODUCTION 

Avec le developpement realise recemment dans les techniques de production, de trans

mission, et de traitement des donnees, il y a eu une explosion dans la quantite et la 

complexity des donnees generees chaque jour. Ces donnees prennent differents formats 

incluant le texte, les images, le son, la video et le multimedia. Elles peuvent etre trou-

vees sous forme de bases de donnees, de collections non organisees, ou encore sur le 

World Wide Web. A titre d'exemple, le nombre de pages Web referencees par Google 

s'eleve a plus de 4 milliards en ce moment. Par contre, cette abondance d'information 

n'a pas que des impacts positifs. Le grand paradoxe auquel sont confrontes les gens 

actuellement est qu'il y a de plus en plus de donnees disponibles a propos d'un sujet 

specifique, et qu'il est de plus en plus difficile de localiser l'information pertinente 

dans des delais raisonnables. Ceci a donne naissance a un nouveau besoin qui est ce-

lui d'inventer des outils qui aident les gens a localiser l'information voulue, ces outils 

sont les moteurs de recherche d'information. Nous pouvons done definir un moteur 

de recherche comme etant un outil auquel l'utilisateur soumet une requete, textuelle 

ou autre, et qui se charge de chercher dans une collection de donnees tous les articles 

qui lui correspondent. Les premiers moteurs de recherche a avoir vu le jour et a avoir 

suscite beaucoup d'interet a la fois parmi les chercheurs et parmi les utilisateurs sont 

les moteurs de recherche de texte. Le fait que les pages Web telles que celles de Google 

ou de Yahoo! figurent parmi les pages les plus visitees sur Internet illustre bien l'im-
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portance et l'utilite de tels outils. Cependant, en depit de la quantite d'information 

visuelle dans les bases de donnees et le Web, peu de gens se sont interesses au pro-

bleme de la recherche d'images, et la plupart des moteurs existants sont primitifs et 

leur performance reste assez limitee. 

En recherche d'images, la premiere approche a avoir vu le jour trouve ses origines 

dans les algorithmes de recherche de texte. Pour pouvoir rechercher les images, on 

commence par les annoter avec du texte et ensuite les techniques de recherche de 

texte sont appliquees pour retrouver des images. Cette approche, connue sous le nom 

de "recherche d'images basee sur le texte", date des annees 70 et est due a la com-

munaute de gestion des bases de donnees. Meme si quelques systemes commerciaux 

tels que Google image search et AltaVista photo finder l'ont adoptee, cette technique 

souffre de plusieurs limitations. Premierement, plusieurs collections d'images ne sont 

pas annotees avec du texte et leur annotation manuelle peut s'averer fastidieuse et tres 

couteuse. Deuxiemement, meme quand une collection est annotee, son annotation est 

generalement faite par des humains et peut par consequent etre subjective : deux per-

sonnes differentes peuvent utiliser des termes differents pour annoter la meme image. 

En plus de cela, se baser exclusivement sur le texte est souvent insuffisant surtout 

quand les usagers sont interesses par les composantes visuelles de l'image qui peuvent 

difficilement etre decrites par des mots. En effet, une image peut contenir plusieurs 

objets et chaque objet peut posseder une longue liste d'attributs, ce qui defie la des

cription avec les mots. 

Ces limitations ont pousse les gens a reflechir a une autre solution consistant a "lais-

ser les images se decrire par elles-memes". Ceci a donne naissance a une seconde 

approche basee sur les caracteristiques visuelles des images telles que la couleur et 

la texture. Cette approche, connue sous le nom de "recherche d'images basee sur le 

contenu" (CBIR), a ete proposee au debut des annees 90 et vient de la communaute 

de vision par ordinateur. Plusieurs moteurs de recherche recents l'ont adoptee tels que 
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QBIC, SIMPLIcity et Cires. Les premiers moteurs de recherche bases sur le contenu 

exigeaient de l'usager de selectionner les caracteristiques visuelles qui l'interessent et 

de fournir des valeurs numeriques a chacune de ces caracteristiques. Cependant pour 

differentes raisons, il est generalement difficile pour l'usager de specifier explicitement 

les valeurs des caracteristiques visuelles. Tout d'abord, un usager peut ignorer les de

tails de l'imagerie et son jargon. Pour s'en convaincre, imaginons un usager auquel 

on demande de choisir entre le "nitre de Gabor" et les "Ondelettes" par exemple! 

Ensuite, il est difficile, meme pour un specialiste en imagerie, de traduire les images 

qu'il a en tete en une combinaison de caracteristiques et de valeurs numeriques. Des 

lors, les gens se sont mis a reflechir a une autre alternative, et la solution qu'ils ont 

adoptee consiste a permettre a l'usager de specifier implicitement les caracteristiques 

qui l'interessent a travers un paradigme connu sous le nom de "requete par l'exemple" 

(QBE). En utilisant l'interface que le moteur lui offre, l'usager choisit une image re

quete et ensuite le moteur parcourt la collection de donnees en extrayant toutes les 

images qui ressemblent a cette requete. Precisement, la requete choisie par l'usager 

et les images de la base de donnees sont initialement representees par des vecteurs 

de caracteristiques. Ensuite, la similarite entre l'image requete et une image cible est 

mesuree par une metrique qui est calculee entre leurs vecteurs de caracteristiques. 

Enfin, les images cibles les plus proches de l'image requete, au sens de la metrique, 

sont retournees a l'usager. La metrique doit 6tre assez flexible, pour tenir compte des 

distorsions de la requete par rapport a la cible, et aussi assez rapide d'execution, pour 

pouvoir etre utilisee sur de grandes bases de donnees. 

Dans cette these, notre objectif est de developper une methode de recherche d'images 

basee sur le contenu qui soit a la fois efficace et rapide. Pour ce faire, nous avons 

utilise plusieurs outils comme les ondelettes, de nouveaux descripteurs ou vecteurs 

des caracteristiques, une structure de donnees specifique et la classification lineaire et 

nonlineaire. Par consequent, nous avons fait des contributions relatives a la recherche 
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d'image par le contenu, la description des caracteristique et aussi la classification li-

neaire et nonlineaire. Dans le Chapitre 1 de la these, nous proposons une methode 

simple et rapide de recherche d'images par le contenu. Pour representer les images 

couleurs, nous introduisons de nouveaux descripteurs de caracteristiques qui sont des 

histogrammes ponderes par le gradient multispectral. Afin de mesurer le degre de 

similarite entre deux images d'une fagon rapide et efficace, nous utilisons une pseudo-

metrique ponderee qui utilise la decomposition en ondelettes et la compression des 

histogrammes extraits des images. Les poids de la pseudo-metrique sont ajustes a 

l'aide du modele classique de regression logistique afin d'ameliorer sa capacite a dis-

criminer et la precision de la recherche. Dans le Chapitre 2, nous proposons un nouveau 

modele bayesien de regression logistique fonde sur une methode variationnelle. Une 

comparaison de ce nouveau modele au modele classique de regression logistique est 

effectuee dans le cadre de la recherche d'images. Nous illustrons par la suite que le 

modele bayesien permet par rapport au modele classique une amelioration notoire de 

la capacite a discriminer de la pseudo-metrique et de la precision de recherche. Dans 

le Chapitre 3, nous detaillons la derivation du nouveau modele bayesien de regres

sion logistique fonde sur une methode variationnelle et nous comparons ce modele au 

modele classique de regression logistique ainsi qu'a d'autres classificateurs lineaires 

presents dans la litterature. Nous comparons par la suite, notre methode de recherche, 

utilisant le modele bayesien de regression logistique, a d'autres methodes de recherches 

deja publiees. Dans le Chapitre 4, nous introduisons la selection des caracteristiques 

pour ameliorer notre methode de recherche utilisant le modele introduit ci-dessus. 

En effet, la selection des caracteristiques permet de donner automatiquement plus 

d'importance aux caracteristiques qui discriminent le plus et moins d'importance aux 

caracteristiques qui discriminent le moins. Finalement, dans le Chapitre 5, nous propo

sons un nouveau modele bayesien d'analyse discriminante logistique construit a l'aide 

de noyaux permettant ainsi une classification nonlineaire flexible. 
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Dans l'ensemble des articles qui suivent, la mise en oeuvre des contributions omni-

presentes a ete faite par l'auteur principal Riadh Ksantini avec l'aide precieuse des 

professeurs Frangois Dubeau, Djemel Ziou et Bernard Colin. 
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CHAPITRE 1 

Recherche d'images fondee sur la 

separation des regions et l'analyse 

multiresolution 

Dans ce chapitre, nous proposons une methode simple et rapide de recherche d'images 

par le contenu. En utilisant le gradient multispectral, une image couleur est coupee en 

deux parties disjointes : les regions homogenes de couleur et les regions de contours. 

Les regions homogenes sont representees par les histogrammes traditionnels de couleur 

et les regions de contours sont representees par les histogrammes des moyennes des 

modules du gradient multispectral calculees sur chaque pixel de l'image couleur. Afin 

de mesurer le degre de similarity entre deux images couleurs rapidement et efficace-

ment, nous utilisons une pseudo-metrique ponderee qui se sert de la decomposition en 

ondelettes Daubechies-8 et de la compression des histogrammes extraits. Les poids de 

la pseudo-metrique sont ajustes par le modele classique de regression logistique pour 

ameliorer sa capacite a discriminer et la precision de la recherche. Notre methode de 

recherche est invariante aux translations des objets et aux intensites de couleur dans 
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les images. Les experimentations ont ete effectuees sur une collection de 10000 images 

couleurs. 

Nous presentons dans les pages qui suivent, un article intitule Image Retrieval Ba

sed on Region Separation and Multiresolution Analysis qui a ete publie dans 

le numero de mars 2006 du International Journal of Wavelets, Multiresolution 

and Information Processing (IJWMIP). Une version preliminaire de l'article a ete 

presentee dans la Conference Internationale en Recherche Operationnelle (CIRO'05), 

Marrakech, Maroc, 2005. 
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Abstract 

In this paper, a simple and fast querying method for content-based image retrieval is presented. Using the 

multispectral gradient, a color image is split into two disjoint parts which are the homogeneous color regions 

and the edge regions. The homogeneous regions are represented by the traditional color histograms, and the edge 

regions are represented by multispectral gradient module mean histograms. In order to measure the similarity 

degree between two color images both quickly and effectively, we use a one-dimensional pseudo-metric, which 

makes use of the one-dimensional Daubechies decomposition and compression of the extracted histograms. Our 

querying method is invariant to the query color image object translations and color intensities. The experimental 

results are reported on a collection of 10000 LAB color images. 
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1 Introduction 

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the field 

of medecine, weather prediction, communications, commerce and academia, increased the need for both effi

cient image database creation and retrieval procedures. For this reason, content-based image retrieval (CBIR) 

approach was proposed [19], [2]. In this approach, the first step is to compute for each database image a feature 

vector capturing certain visual features of the image such as color, texture and shape. This feature vector is 

stored in a featurebase, and then given a query image chosen by a user, its feature vector is computed, compared 

to the featurebase feature vectors by a distance metric or a similarity measure, and finally the most similar 

database images to the query image are returned to the user. In order to have effective characterization of local 

image properties, and to increase the data storage efficiency and the querying execution speed in the CBIR field, 

a wavelet based indexing approach was introduced. The wavelet transforms are proven to have the advantage of 

allowing better resolution in time and frequency. Consequently, they have received much attention as a tool for 

developing CBIR systems. In the following we review some of the CBIR systems based on the wavelet domain 

feature extractions. 

Related work: 

Jacob et al. [5] proposed a fast image querying algorithm in databases ranging in size from 1093 to 20,558 color 

images. RGB, HSV, and YIQ color spaces are chosen separately to represent the database color images before 

the querying. Each database color image component is Haar wavelets decomposed. Dominant coefficients of 

this decomposition are retained to represent the spatial information and color visual features of the color image. 

The similarity degree between a query and potential targets is measured by a weighted metric which compares 

how many significant wavelet coefficients they have in common. 

Wang et al. [14] have proposed the WBIIS querying system in a database of 10,000 RGB color images. All 

database color images are four stage Daubechies-8 wavelets decomposed. The lower frequency bands in each 

database color image wavelet transform, represent the object configurations in the image and the higher fre

quency bands represent the texture and local color variations. The similarity degree between a query and 

potential targets is measured by a comparison between the variances of their lowpass band coefficients. Then, 

these latters are compared using an euclidean distance. Finally, a weighted euclidean distance is used to perform 

a comparison between the query and the remaining color images lowest resolution subimages representing the 

lowpass bands, horizontal bands, vertical bands, and diagonal bands. For database color images, this procedure 

is repeated on all three color channels. 
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Kuo et al. [15] have proposed the WaveGuide querying system in a database of 2127 YUV color images. Each 

database color image is wavelet packet decomposed and wavelet pyramid decomposed to extract texture, shape 

and color features, respectively. Both wavelet transforms are followed by a successive approximation quantiza

tion (SAQ) which uses a sequence of thresholds in order to indentify relevant and irrelevant wavelet coefficients 

and their locations in each wavelet transformed color image subbands. Texture descriptor is extracted from 

the significant coefficients in wavelet packet transformed image Y-component subbands. Color descriptor is 

extracted from the three color image components with respect to the (SAQ) twelve thresholds of the wavelet 

pyramid transformed image. Shape descriptor is extracted from the significant coefficients of the first three 

scale vertical, horizontal and diagonal subbands of the wavelet pyramid transformed color image Y-component. 

The texture, color and shape similarities between a query color image and the database color images are defined 

using the L\ distance. 

N. Khelil and A. Benazza-Benyahia [17] have suggested a method for image retrieval in a database of 2815 mul-

tispectral SP0T3 images and in a database of 2815 multispectral SPOT4 images. Each database color image 

components are decomposed separately according to the lifting scheme (second generation of wavelet transform) 

[1] through the 5/3 transform. The wavelet coefficients of a 5/3 transformed database color image, represent 

the salient features of the image. The wavelet coefficients related to all components at a given resolution level 

of each database 5/3 transformed color image, are merged into a common subband whatever the transform 

orientations, and then this subband is modelized by a zero-mean Generalized Gaussian Distribution (GGD). 

The similarity degree between the query image and the database color images is measured by a weighted metric 

which is a combination of the symmetrical Kullback-Leibler distance which is used to evaluate how different are 

two GGDs, and by a second order distance computed between their scaling coefficient variances. 

Our approach is based on the use of the multispectral gradient in order to separate between the homoge

neous regions and the edge regions of each database color image, and to represent each region by feature vectors 

which are weighted histograms. The weighted histograms representing the homogeneous regions are color his

tograms constructed after edge regions elimination, and the weighted histograms representing the edge regions 

are multispectral gradient module mean histograms. In the querying, just very few dominant coefficients of the 

wavelet decomposed versions of these weighted histograms are considered to have an effective querying, despite 

a lower querying computational complexity. Among all kinds of wavelets, Daubechies-8 wavelets are proven to 

have good frequency properties and to be good for 1-D signal synthesis [14]. Therefore, Daubechies-8 wavelets 
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are chosen in our approach. In order to measure the similarity degree between two color images we use the 

one-dimensional version of the weighted metric proposed by Jacob et al. [5], which makes use of the compressed 

and quantized versions of the Daubechies-8 wavelet decomposed histograms. In order to discriminate most 

effectively, the metric weights are adjusted using the standard logistic regression model. Our querying method 

does not suffer from the query image object translation variance, and the querying is invariant to the color 

intensities of the query image, thanks to a modification of the multispectral gradient module mean histograms. 

We apply our retrieval method by representing our database color images in the LAB color space, because it's 

a perceptually uniform color space that describes color by just two coordinates. 

The difference between the related work approaches and the approach developed in this paper, is that in 

order to reduce the computational complexity and to increase the data storage efficiency our approach is based 

on the wavelet decomposition and compression of the feature vectors themselves, instead of the database color 

images. A variety of heuristic histogram similarity measures has been proposed in literature in the context of 

image retrieval [18]. However, these similarity measures do not handle wavelet decomposed and compressed 

histograms. In fact, they are computed over the totality of the histogram pixels. Consequently, they are more 

expensive to compute, especially, when we have a large database. For these reasons, in our application we use 

the one-dimensional version of the weighted metric proposed by Jacob et al. [5]. 

In the next section, we explain how we construct homogeneous and edge region histograms. In the third 

section, we briefly explain the Daubechies-8 wavelet decomposition and the compression of a one-dimensional 

image. In section 4, we define the one-dimensional version of the metric proposed by [5], we explain the one-

dimensional image or feature vector querying algorithm and we describe the logistic regression model and the 

training performed to adjust the metric weights. In section 5, we present the color image querying method. 

Finally, in section 6 we perform some experiments to evaluate our querying method and to show the querying 

improvement. 

2 Color images and histogram decomposition 

In this section, we present the LAB color space advantages and we explain how to represent our database 

color images in this space. Also, we explain the separation between the homogeneous color regions and edge 

regions, using the multispectral gradient. Then, we define the two feature vectors which are the traditional 
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color histograms constructed without considering the edge regions, and the multispectral gradient module mean 

histogram. 

2.1 Color images and color space 

In order to extract color features from a color image, we need to choose a color space in which to represent 

it. We decided to use the LAB color space. In fact, LAB color space is approximately perceptually uniform 

[11], [7], [3], that maps equally distinct color differences into approximately equal euclidean distances in space. 

Also, it allows a good separation between the luminance and the colors. In this space, L defines the luminance 

with values from 0 for black to 100 for a perfectly white body, A denotes the red/green chrominance, with 

values from -200 for green to 200 for red, and B denotes the yellow/blue chrominance, with values from -200 

for blue to 200 for yellow. In the LAB color space, each color image pixel is represented by a vector (L, a, b), 

where L is the luminance, a is the red/green and b is the yellow/blue. In our application, each LAB color image 

is numerically represented by three matrices II, Ia and I&, containing the pixel intensities of the luminance, 

red/green and yellow/blue, respectively. To simplify, we use a linear interpolation to represent each LAB color 

image component intensities between 0 and 255. 

2.2 Weighted histograms 

The luminance histogram and the color histogram represent how pixels of some images are distributed in the 

LAB channels. Given any LAB color image, its luminance histogram hi, contains the number of pixels of the 

luminance L, and its color histograms ha and hb contain the number of pixels of the chrominances a red/green 

and b yellow/blue, respectively. Therefore, the three histograms of an M x N pixel LAB color image, can be 

written as follows 

M-1N-1 

M<0 = £ £ * ( / L ( M ) - C ) 
j = 0 j=0 

M-1N-1 
h*{c) = £ £<*(/«(*, j ) - c ) for each c e { 0 , . . . , 255} (1) 

i = 0 j=Q 

M-1N-1 

j=0 j=0 
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where S is the Kroeneicker symbol at 0, defined by 

6(x-c) = \l l\l = C (2) 
v ' y (J otherwise. 

LAB histograms have been used widely in many content-based image retrieval systems with some success [16]. 

They provide only the distribution of the luminance and the color. That's why histogram-based color retrieval 

techniques suffer from a lack of important spatial knowledge. 

In order to overcome these drawbacks, spatial information should be integrated. Several recently proposed ap

proaches augment the color histogram with some spatial information. Examples include the laplacian weighted 

histogram proposed by [6], the color coherent vector (CCV) proposed by [9] and enhanced by [10], and the 

color correlogram proposed by [13]. In our case we will use the multispectral gradient module mean histogram. 

The multispectral gradient changes from a color image to another having different edge shapes, which increases 

the discriminative power of the querying. The multispectral gradient module mean histogram is inspired from 

the laplacian weighted histogram which is proposed by [6]. This latter is a good tool to distinguish the pixels 

located at the neighbourhoods of a color image edges. However, it's noised because it's based on the color 

image component second derivatives, also it can represent a false feature when the color image contains several 

staircase edges [12]. 

In a color image, the number of the pixels belonging to the homogeneous regions is widely greater than the 

number of the edge pixels. Therefore, these latters have negligible influence on the color histogram shape, 

and then their statistical importance becomes insignificant, thus rendering their effect on the querying very 

negligible. A solution to this problem is to separate between the homogeneous regions and the edge regions. In 

our application, this separation will be only performed on the chrominance images. That's why we will preserve 

the luminance histogram and we will introduce weighted color histograms which combine the color distribution 

with its spatial properties. 

Once we have identified the homogeneous and edge regions for a given color image, we consider two weighted 
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color histograms for each region 

M - 1 J V - 1 
hl

k(c)=^2 ^26{Ik(i,j)-c)Wl
k(i,j) f o r eachce {0,...,255} and k = a,b, (3) 

i=0 j=0 

_ J h for homogeneous regions, ,.-. 
I J O T / - 4 V S~tl-\ I-V/-A V / M T I A n t ? ^ ' 

where Wj, is the weight and 

, - J 
e for edge regions. 

In [6], the weight Wl
k(i,j) = AIk(i,j)

2 for each h = a,b, where AI(i,j) is the laplacian of the image Ik at the 

pixel (i,j). 

2.3 Separation of homogeneous and edge regions 

According to [4], a color edge detection is based on finding local maxima in the first directional derivative of the 

vector-valued color image. The magnitude of the strongest change of the vector-valued image which represents 

the multispectral gradient module, coincides with the largest eigenvalue of the matrix JTJ, denoted by Xmax, 

where J is the Jacobian matrix of the vector-valued image. In our case, the Jacobian matrix of the chrominance 

images at each pixel (x, y), is given by 

/ dla{x,y) dla(x,y) \ 
J = ( dib(%,y) dib(x,y) I > (5) 

\ dx dy J 

where aJa
9

(*'^, dIa^'y), 9hQX
x'

v), and aib^'v) are the first partial derivatives of a and b images, respectively. 

Consequently, the matrix JTJ at each pixel {x,y), is defined by 

J T J = ( an(x,y) a12(x,y) \ ( 6 ) 
V 02i{x,y) a22{x,y) J 

where 

fdla(x,y)\2 fdlb(x,yy 2 

a ^ v ) = {-dx—) +{-dx— 

fdla{x,y)\2 (dlb(x,yy
2 

a22(x,y) = ( v — 9 ^ J + V dy 

dla(x,y)dla{x,y) dlb{x,y) dlb(x,y) 

a>2i(x,y) = 012(2;, y)-
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Therefore, the largest eigenvalue Xmax of JTJ, which represents the strongest change of the vector-valued image 

at each pixel (x,y), is given by 

^max(x,y) = - f (an(x,y) + a22(x,y)) + y(an(x,y) - a22{x,y))2 + Aa\2{x,y) J. (7) 

A pixel is considered in an edge region if the \max computed over it is greater than a given threshold rj, and 

is considered in homogeneous region elsewhere. In our application, we simply use a threshold defined by the 

mean of the largest eigenvalues computed over all pixels. Explicitly 

M - 1 J V - 1 

i=0 j = 0 

where M and N are respectively the length and the width of the color image. Let us remark that other strategies 

for thresholding are also possible. 

2.4 Homogeneous regions : separation of modes 

For these regions the weight Wfc(i,j) in the formula (3) is given by W[}(i,j) = X[O,TJ] I Xmax(i,j) )> f° r e a c n 

k = a,b. Therefore, the weighted histograms are 

M - 1 J V - 1 , s 
hk(C) = Y^ YS(Ik(i:J)-c)X{0,V}(Xmax(.i,j)), (9) 

j=0 j=0 ^ ' 

for each c e {0,..., 255} and k = a,b, and where XE is the characteristic function of the set E, defined by 

, , f 1 if x e E, Mrt. 
*E{X) = { 0 otherwise. ( 1 0 ) 

In some images, edge pixels can cause overlappings or noises between the color histogram populations. A con

sequence of not considering edge pixels in the formula (10) is the avoidance of these overlappings or noises. The 

following figure gives an example of the separation between two modes of a histogram. 
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Figure 1: Separation between two histogram modes: a) Color image, b) The a component histogram before 
edge region elimination and c) The a component weighted histogram. 

2.5 Edge regions 

For these regions the weight Wfc
e(i, j) in the formula (3) is given by W%(i,j) = X]v,+°o[( ><max{i, j) U m a x ( i , j), 

for each k = a,b. Therefore, the weighted color histograms are the multispectral gradient module weighted 

histograms which are given by 

M-1N-1 
hUc) = ^2 ] L 5(Ik(i'J) - c) X]r,,+oo[( >>max(hj) )*>max(i,j), 

i = 0 j=0 

(11) 

for each c € {0, ...,255} and k = a,b. Thanks to the term X]?7,+oo[( ^max{i,j) ), the weighted histogram h%(c) 

takes into account the high values of the multispectral gradient modules. Thus, it provides information about 

the overall contrast in chrominances. 

According to the formula (11), two color images having same colors and object shapes, but different object 

sizes, can have different multispectral gradient module weighted histograms. To overcome this drawback, we 

can consider the means of the multispectral gradient modules. In fact, the means represent the gradient module 

global values of a chrominance. For each chrominance, the multispectral gradient module mean histogram is 

given by 
he/A 

for each c € {0,...,255} and k = a,b, (12) m = #(c) 
NP,k{c) 

where NPtk(c) is the number of the edge region pixels and is defined as 

M-1N-1 , v 

NP,k(c) = J ! 5 Z ^ ( / f c ( * ' j ) - c ) X ] » 7 , + o o [ f ^max(i,j)J, 
i—n ->—n \ / 

(13) 
i=0 j=0 
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for k = a,b. 

3 Wavelet decomposition, compression and quantization of an his

togram 

3.1 Histogram and multiresolution analysis 

An histogram is a (ID) image or signal supported by 2J pixels (J G N) and represented by a sequence of coef

ficients {if} -_0 • In order to analyse the histogram we use the Daubechies-8 wavelets. In fact, Daubechies-8 

wavelets are continuous functions which can analyse continuous (ID) signals more efficiently. Also, Daubechies-8 

wavelets are a good compromise between computational time and performances, since they have eight coeffi

cient overlapping filters. Furthermore, they have four vanishing moments which produce as marked a contrast 

in wavelet coefficient sizes between smooth and non-smooth sections of the (ID) signal. 

The Daubechies-8 scaling function is compactly supported by the interval [0, 7] and its values can be calcu

lated thanks to a given initial value and to a recurrence relation which is given by 

t=7 

0 ( x ) = ^ M ( 2 x - i ) , (14) 
i=0 

where (h0 = -0.014, hi = 0.046, h2 = 0.043, h3 = -0.264, h4 = -0.039, h5 = 0.890, h6 = 1.009, h7 = 0.325) is 

the lowpass filter. 

The Daubechies-8 scaling function <f> serves as the basic building block for its associated Daubechies-8 wavelet 

function, denoted by ip, and defined by the following recursion 

i=l 

1>(x) = E (-l)%-itf(2z - i). (15) 
t = - 6 

In order to ensure that </> and i/> are compactly supported by the same interval [0,7] and are equal zero out

side it, we shift the Daubechies-8 wavelet function ip from x to x — 3. The scaled, translated and normalized 

versions of <\> and the shifted version of ip are denoted by (j>\(x) = V2~(J~^(f>(2~^J^^x — i) and i>\{x — 3) = 

\f2~^J~^il){2~^J~^x — 3 — i), respectively, where 2~(J~^ is the dilatation factor and j € {J, J — 1,..., 0}. 
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For the finest resolution level, we introduce a vector space VJ which is the set of all possible linear combi

nations of the Daubechies-8 scaling function shifted versions. With implicit periodicity considerations, we can 

write 

VJ=IAn{4>i : i = 0 , . . . , 2 J - l } . (16) 

By supposing that the (ID) signal I £VJ,we can approximate it as follows 

2 J - 1 

I(x) ~ £ If fa - i). (17) 
i=0 

We define the vector subspace W3^1 = Lin{ij)f~x : i — 0,...,2J~1 - 1} to be the orthogonal complement of 

yj-l i n yJ_ Explicitly 

VJ = VJ-1@WJ-1. (18) 

The Daubechies-8 wavelet transform decomposes the 2 J pixel (ID) signal into its components for J different 

scales. It consists of passing successively from the space VJ to the space V°, while generating through this 

decomposition the spaces {W^}J~Q. So we obtain 

J - I 

VJ = V°®($)Wk. (19) 
fc=o 

Consequently, we can rewrite the 2J pixel (ID) signal in the Daubechies-8 basis as follows 

j-\V-\ 

I{x) ~ i^lix) + E E !ittfr - 3)> (20) 
j=0 fc=0 

where IQ is the overall average of the (ID) signal, called the scaling factor. The Daubechies-8 wavelets transform 

decomposes an histogram having 256 pixels into its components for 8 different scales. Consequently, the smooth 

components and the detailed components of the histogram are readily seperated. The resulted scaling factor 

represents the average of the histogram Y-coordinate magnitudes. Therefore, the scaling factor of a Daubechies-

8 wavelet decomposed histogram of a LAB color image component, represents the average of the overall intensity 

of this latter. 
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3.2 Signal compression and quantization 

The compression is carried out on the number of the retained coefficients representing the decomposed (ID) 

image. The wavelet coefficients represent the local intensity variations in the image. Their magnitudes represent 

the importance of the variations, but their signs express the type of these variations. If we keep only the 

coefficients with largest magnitudes, we can obtain a good approximation of the decomposed image. Only the 

absolute values of the wavelet coefficients are taken into account during the compression. In the compression 

method we rewrite the decomposed (ID) image (20) as follows 

2 J - 1 

I(x) * I[0]4>°0(x) + ^ / [ ^ ( x ) , (21) 
i = l 

where I[i] = Pk and iii(x) = ip3
k{x — 3) for (i = 2j + k, k = 0, ...,2j — \,j = 0,..., J - 1). By summing these 

coefficients in order of decreasing magnitude and by using a permutation a, we obtain 

2 J - 1 

I{x) ~ 7[0]$(x) + Y, lHi)]ua{i)(x), (22) 

where 

! I\cr(ii)} \>\ I[(T(i2)} | for all 0 < h < i2. (23) 

Consequently, when we keep the m largest coefficients, we obtain an approximation Ic(x) representing the 

compressed version of the decomposed (ID) image I{x), defined by 

2 J - 1 

Ic(x) ~ i[0]$(a:) + J2 ~IC[^i{x), (24) 
j = i 

where 

fcr.-i _ / I[*\ i f l <o- 1(i)<m, / „ -

This approximation introduces an error called the L2-error given by 

i- r 
2 - 1 

E (J>«])2 (26) 

The retained coefficients after the compression, have the largest magnitudes and the most relevant data in the 

decomposed (ID) image. However, the storage of these coefficients requires a large space. For this reason, we 

19 



use a quantization of our (ID) images which reduces the storage space. Every significant non-zero coefficient 

is quantified to just two levels: +1 represents the largest positive coefficients, and —1 represents the largest 

negative coefficients. Therefore, the quantified version Iq of the compressed (ID) image Ic is given by 

2 J - 1 

/«(*) ~ J[0]$(s) + £ 3[t]fi,(a:), (27) 

where 
C +1 if P[i] > 0, 

Ic
q\i] = < 0 if Jc[i] = 0 , i = 1,..., 2 J - 1. (28) 

[ - 1 if Ic{{\ < 0. 

4 The metric and the querying algorithm 

4.1 The metric or pseudo-metric 

In the last section, we showed that the compression gives us a good approximation of the Daubechies-8 decom

posed (ID) image and the quantization reduces its storage space. According to [5], if we consider only the signs 

of the retained and quantified coefficients after the compression in the querying, we can reduce the comparison 

algorithm execution time. 

Let us consider Q and T as the query and the target (ID) images, respectively. The (ID) version of the 

metric, proposed by [5] is obtained from the following expression 

2 J - 1 

| | Q , T | | = a ; o | Q [ 0 ] - r [ 0 ] | + £ w«|QS[»]-T,c[i]|, (29) 
»=i 

where o>$ are the metric weights, Q[0] and T[0] are the scaling function coefficients of the ID images Q and T, 

and Qg[i] and Tj:[i] represent the i-th decomposed, compressed and quantified coefficients of these latters. Since 

the possible values of a coefficient are +1 or — 1, the term 

| $ [ i ] - T , c [ t ] | e j o , l , 2 } . (30) 

In the following case 

\QcM-fc\i}\ = 2, (31) 

20 



Q and T preserved their coefficients at the i-th position despite the decomposition and compression, but the 

two coefficient signs don't match. They have opposite variations. With respect to the distance between two 

different images, two opposite variations having the same positions don't represent more proximity than when 

one of them is equal to zero after the compression. Also, since we assume the vast majority of database images 

not to match to the query (ID) well at all, the number of mismatches is larger than the number of matches. 

That's why we write our metric as follows 

|| Q,T ||= W0|Q[0] -f[0}\ + £ W i f e ] 7 ^ [ A (32) 

where 

In order to make the metric faster, we only consider terms in which the query has a non-zero wavelet coefficient. 

A disadvantage of this approach is that we technically disqualify our metric from being a metric because of its 

asymmetry. Because of this modification our metric becomes 

|| Q,T ||= o;0|Q[0]-f'[0]|+ ] T wA Qg[i\ * fc
q\i] J. (34) 

To compute the metric over a database of (ID) images, it's generally quicker to count the number of matching 

coefficients of Qq and Tq than mismatching coefficients. For this reason, we rewrite 

]T Wife]^T£[i]) = J2 " i- E "ife]=^])> (35) 

where 

So our metric becomes 

Q)T||=Wo|0[o]-r[o]|+ £ m- E «i(QcS = fc
q^)- (37) 

?§[*]#« i:Q°[i]#0 
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Since the sum of the terms Wi is independant of every target T9
C, we can discard it. Consequently, we obtain 

|| Q,T ||= u>0\Q[o]-f[o}\- Yl ^ f e ] = f
9

c w)- (38) 

To simplify, we suppose that the weights associated to the coefficients belonging to the same scale, are identical. 

Thus, we group the weights according to the resolution levels, by using a simple bucketing function bin{) such 

as bin(i) represents the floor of log2(i) for i € {1,. . . , 2J — 1} 

bin(i) = [log2{i)\ with i = 1,..., 2J - 1. (39) 

Consequently, we use a set of weights wo and {WJ},~Q and define the UJQ and uVs by 

\ u>i = Wj for J G 2 ^ + {0,..., 2j - 1} and j = 0,..., J - l ( j — bin(i)), 

where J is the maximum number of resolution levels. Finally, it suffices to compute the expression 

|| Q,T ||= «)o|g[0]-:f[0]|- Yl Wbin(i)(Qc
g[i\^Tg

c[i\). (40) 

4.2 One-dimensional image querying algorithm 

In order to optimize the metric computation process, we introduce two arrays called search arrays. Let 6 + 

for the coefficients quantified to +1 and 0_ for those which are quantified to —1. Each array contains 2J — 1 

elements and each element contains a list. For example, the element 9+[i] points on the list of all the database 

(ID) images having a large positive wavelet coefficient at the i-th position, after compression. With the same 

way, the element 0_[i] points on the list of all the database (ID) images having a large negative wavelet 

coefficient at the i-th position. Thanks to these arrays and to the compression, during the querying process we 

have just to go through the m lists associated to the query m retained coefficients instead of 2J — 1 coefficients. 

After the creation of the search arrays and weights WQ and {wi}^ computation, the retrieval procedure of a 

query Q in the database of (ID) images Tfc (k = 1,..., |.DJB|), where |.D.B| denotes the database size, is defined 

as follows 

P rocedure Retrieval(Q: array [1..2J] of reals, m : integer,6_,6+) 
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Q <— FastDaubechiesWaveletsDecomposition(Q) 

Initialize Score[k] = 0, for each k e {1,.. . , |Z)Z?|} 

For each k e {1,.. . , \DB\) do 

Score[position of Tk in the (DB)] = w0 * |Q[0] - Tfc[0]| 

end for 

Qc <— Compress(Q,m) 

Qc
q <- Quantify(Qc) 

For each Q£[i] ^ 0 do 

If Q£[i] > 0 t hen 

List *-@+[i] 
Else 

List <- 6_[z] 
End if 
for each 2 of List do 

Score [position of I in the (DB)] = S'corelposition of I in the (DB)] - Wun(i) 

End for 

End for 

Return Score 

End procedure 

This procedure returns an array Score such that Score[k] =|| Q,Tfe || for each k e {1,.. . , |JDB|}. The array 

Score elements which are the similarity degrees between the query Q and the database (ID) images Tk {k e 

{1,. . . , |D-B|}), can be negative or positive. The most negative similarity degree corresponds to the closest target 

to the query Q. 

4.3 Weights adjustment and logistic regression 

The logistic regression is one of the most popular data mining tools. In content-based image retrieval field 

logistic regression was used to model the relevance feedback [8]. In our application, the logistic regression can 

be used to tune the weights of our metric. A weight w^ represents the corresponding relative importance of 

a query fc-th resolution level coefficients, retained after the compression, to a target coefficients belonging to 

the same resolution level and having the same positions and signs. Note that if we set the weights WQ and 

{WJYJZQ equal to 1, where J is the maximum number of resolution levels, then the target coefficients belonging 
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to different resolution levels have the same corresponding relative importance to the query different resolution 

level coefficients. We devide our target set into two classes: a matching class and a mismatching class. Each 

class contains a set of observations extracted from the database. The logistic regression method introduces a 

binary target variable and a set of explanatory variables to represent the class of a given observation. Specifically 

Y : Target variable 

yr — 1 case of mismatch with the target T 

= 0 case of match with the target T 

tr_ = {io,T,to,r, —,tj-i,T) '• Explanatory variables, 

where io,T is the absolute value of the difference between the scaling factors of the query and the target T, 

{£fc,r}fc=o a r e the numbers of mismatches between the fc-th resolution level coefficients of the query and the 

target T, J is the maximum number of the resolution levels and JJT is the binary target variable, it's either 0 

or 1, depending on whether or not the query and the target T are intended to match. We assume a posterior 

probability of the mismatching with the target T, given the explanatory variables is p?, i.e., pr = P(yT\tr)- In 

our logistic regression model we assume that posterior probability is given by 

PT = P\VT = l\tr_) = F(w0i0,T + 5^Wfc*fc,r)> (41) 
fc=0 

and 

J - I 

PT = ! ~PT = P[yr =0\tr) = F{-w0i0)T - ^ k i v ) , (42) 
^ ' fc=o 

where WQ and {wk}J
kZl are the weights to compute and 

*"(*) = TT*- (43) 

In order to tune the weights, we perform a maximum likelihood estimation. The likelihood function measures 

the likelihood that different tr_ have given rise to the observed yr- Provided observed target variables have 

independent Bernoulli distribution with the probabilities PT for each target T, the form of the likelihood is 
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given by 

n 

L(w0,w0,...,Wj^) = \[py
T

T{l-PT)l-yT (44) 
T=l 

na n i 

= Y[(1-PT)Y[PT, (45) 
T=l T = l 

where n is the number of all observations and UQ and n\ are the numbers of cases with target variable value 0 

and 1, respectively. We want to choose VOQ and {wk}kZ,Q so as to maximize the natural logarithm of the above 

likelihood. This can be done by using the software SAS 6.12 or the Fisher-scoring algorithm. The training is 

an important step in the logistic regression method to extract the observations from the database. 

4.4 Training (for the logistic regression method) 

Let us consider a color image database which consists of several color image sets such that each set contains 

color images which are perceptually close to each other in terms of object shapes and colors. In order to compute 

the metric weights wl
0 and {wl

k}
r
k=0 (I e {1, ...,N}) by the logistic regression, we have to create the matching 

classes (yl
T = 0) (I € {1,...,N}) and the mismatching classes (yl

T — 1) (I e {l,...,iV}). To create a single 

matching class (yl
T = 0), we draw all possible pairs of histograms or feature vectors representing color images 

belonging to the same database color image sets, and for each pair we compute the values of il
0 T and {tl

k T}kZ0 • 

Similarly, to create a single mismatching class (yl
T = 1), we draw all possible pairs of histograms or feature 

vectors representing color images belonging to different database color image sets, and then for each pair we 

compute the values of i^ T and {tl
k T}fc=o-

5 Color image retrieval method 

The querying method is in two phases. The first phase is a pretreatment phase done once for the entire database 

containing \DB\ color images. The second phase is the querying phase. 

5.1 Preprocessing (of the LAB color image database) 

We detail the preprocessing phase done once for all the database color images before the querying in a general 

case by the following steps. 

1. Choose N feature histograms for comparison. 
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2. Compute the N feature histograms Tu (I G {l,...,iV}) for each i-th LAB color image of the database, 

where i e {1,. . . , \DB\}. 

3. The feature histograms representing the database color images are Daubechies-8 wavelets decomposed, 

compressed to m coefficients each and quantified. 

4. Organize the decomposed, compressed and quantified feature vectors into search arrays 0 + and 6;_ 

(Z = l,...,iV). 

5. Adjustment of the metric weights wl
0 and {wl

k}
7

k=0 for each set of feature histograms Tu (i — 1,..., \DB\) 

representing the database color images, where I € {1,..., N}. 

5.2 The querying algorithm 

We detail the querying algorithm in a general case by the following steps. 

1. Given query LAB color image. We denote the feature vectors representing the query image by Qi (I = 

l,...,iV). 

2. The feature vectors representing the query image are Daubechies-8 wavelets decomposed, compressed to 

m coefficients each and quantified. 

3. The similarity degrees between Qi (Z = 1,.,.,N) and the database color image feature histograms Tu 

(Z = 1, ...,JV) (i = 1,..., \DB\) are represented by the arrays Scorei (Z = l,...,iV) such that Scorei[i] =|| 

Qi,Tu || for each i 6 {1,.. . , |J9B|}. These arrays are returned by the procedures Retrieval(Q;, m, 6 ;
+ , 

@i.) (I = 1,..., N), respectively. 

4. The similarity degrees between the query color image and the database color images are represented by 

a resulted array TotalScore, such as, TotalScore[i] = J2i=iliScarei[i] for each % e {1,.. . , |-D-B|}, where 

{7(}i^i a r e weightfactors used to fine-tune the influence of each individual feature. 

5. Organize the database color images in order of increasing resulted similarity degrees of the array TotalScore. 

The most negative resulted similarity degrees correspond to the closest target images to the query image. 

Finally, return to the user the closest target color images to the query color image and whose number is 

denoted by RI and chosen by the user. 
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5.3 The querying method dataflow diagram 

For simplicity, we describe the querying method steps by the following diagram. 

Preprocessing Querying 

[Extraction of N feature histograms from 
each database LAB color image. 

Extracted feature histograms are 
Daubechies-8 wavelets, decomposed 

compressed and quantified. 

I 
Construction of'the search arrays for 

each set of feature histograms. 

T 
Adjustment of the metric weights, for 

each set of feature histograms. 

Extraction of N feature histograms from 
the LfiB query color image. 

I 
The query color image N feature 

histograms are Daubechies-8 wavelet* 
decomposed, compressed and 

quantified. 

T 
The strnilarity degrees .between the 

query color1 image N feature histograms 
and the database color image feature 
histograms are computed using the 
procedure Retrieve! and then are 

represented by the arrays 

Scorsg (1 = 1., ,N). 

T 
The similarity degrees between the 
query eotor image and the database 
color images are represented by the 
resulted array TotafScore, such us, 

A' 

TotalScortfi] = y y, Scorej[/] 
1=1 

for each ; ' e { l , \D3\\ 

T 
The most negative resulted similarity 

degrees correspond to the closest 
target images to the query image. 

Figure 2: Block diagram of the querying method. 
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6 Experimental results and evaluation 

In this section we perform some experiments to validate and evaluate our querying method in a database of 

\DB\ = 10000 animal, landscape, art, bridge and building LAB color images. It consists of several color image 

sets such that each set contains color images which are perceptually close to each other in terms of object shapes 

and colors. 

The first evaluation will be based on a comparison between the querying after using classical color histograms 

h,L, ha and h(, given by (1), and the querying after using hi, h\, h^, he
a and h^ given by (1), (9) and (12), 

respectively, to represent the database color images. The second evaluation will be based on a comparison 

between the querying results when the metric weights are equal to 1 and the querying results when the metric 

weights are computed by the logistic regression. In this evaluation each database color image is represented by 

its hi,, h%, 11%, hi and hi. The third evaluation will be based on a comparison between the querying after using 

hi, fto, h% given by (1) and (9), respectively, and the laplacian weighted histograms proposed by [6], and the 

querying after using hi, h%, h%, hi and hi, to represent the database color images. In the fourth evaluation we 

will show the importance of considering the metric term ifto|<2[0] — T[0]\ or the scaling factors in the querying. 

Finally, the fifth evaluation is carried out to show the improvement of the querying results thanks to the query 

color image h\ and hi transformation used to make the querying invariant to the color intensities of the query 

color image. 

Generally, to carry out an evaluation in the image retrieval field, two principal issues are required: the ac

quisition of ground truth and the definition of performance criteria. For ground truth, we introduce human 

observations. In fact, two external persons participate in the all below evaluations. Concerning performance 

criteria, we represent each evaluation results by the precision-scope curve Pr = f(RI), where the scope RI is the 

number of images returned to the user. In each querying performed in an evaluation experiment, each human 

subject is asked to give a goodness score to each retrieved image. The goodness scores are 2 if the retrieved 

image is almost similar to the query, 1 if the retrieved image is fairly similar to the query and 0 if there is no 

similarity between the retrieved image and the query. Consequently, we can compute the precision as follows: 

Pr = the sum of goodness scores for retrieved images/i?I. Therefore, the curve Pr = f(RI) gives the precision 

for different values of RI which lie between 1 and 10 in our evaluation experiments. When the human subjects 

perform different queryings in the same evaluation experiment, we compute an average precision for each value 
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of RI, and then we construct the precision-scope curve. 

The following experiments will be carried out to extract the curve Pr = f(RI) for each evaluation men

tioned above. 

Firs t exper iment 

This experiment is carried out to show the advantage of using our weighted histograms instead of classical color 

histograms to represent the query color image before the querying. Each human subject is asked to formulate 

a query from the database and to execute a querying using N = 3 feature histograms which are fiL, ha and hb 

given by (1), to represent the query color image, while computing the metric weights by the logistic regression 

and keeping the weightfactors {7/}?=i equal to 1, and to give a goodness score to each retrieved image, then 

to reformulate a query from the database and to execute a querying using N — 5 feature histograms which are 

h>L, h-a, h1^, he
a and h\, to represent the query color image, while computing the metric weights by the logistic 

regression and keeping the weightfactors {7;}f=1 equal to \ and 74 and 75 equal to 1 to give more importance 

to the edge region features, and to give a goodness score to each retrieved image. Each querying is repeated 

twenty times by choosing a new query from the database each time. We repeat this experiment for different 

orders of compression m e {30,20,10}. The resulted precision-scope curves are 
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Figure 3: Evaluation: precision-scope curves for retrieval when the database LAB color images are represented 
by /i£, ha and hb each, and when the database LAB color images are represented by tiL, h%, hft, he

a and h\ 
each, for the compression orders m e {30,20,10}. 

The following three Figures give three examples of the improvements of our querying results thanks to the 

29 



separation between the modes of the color histograms representing the database LAB color images and to the 

use of the multispectral gradient module mean histogram to consider the database color image edge regions in 

the querying. We choose the same query for the three examples. For each example the query is located at the 

top-left of the dialog box. 

;S;M;KW.«W*VAM i • . - . , . * Bmwn—H—WKHKKK0smmmmsmMn 

(a) (b) 

E3! 'SsSs Q3 : SS3 H ' 3 
(a') (b') 

Figure 4: Comparison (m = 30): a) first 7 color images retrieved after being represented by their hi, ha and 
hb, b) second 7 color images retrieved after being represented by their hi, ha and hi,, a') first 7 color images 
retrieved after being represented by their hL, ft£, /i£, he

a and hi and b') second 7 color images retrieved after 
being represented by their hi, h%, h%, h% and h\. 
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Figure 5: Comparison (m = 20): a) first 7 color images retrieved after being represented by their hi, ha and 
hb, b) second 7 color images retrieved after being represented by their hi, ha and hb, a') first 7 color images 
retrieved after being represented by their hi, /i£, h\, he

a and h\ and b') second 7 color images retrieved after 
being represented by their hi, h\, h\, he

a and h\. 
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Figure 6: Comparison (m = 10): a) first 7 color images retrieved after being represented by their hi, ha and 
fit,, b) second 7 color images retrieved after being represented by their hL, ha and ht,, a') first 7 color images 
retrieved after being represented by their hi, ftj, ft£, ft® and ft| and b') second 7 color images retrieved after 
being represented by their ft/,, ftjj, ftj, ft£ and ftjj. 
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Second exper iment 

This experiment is carried out to show how the weights computed by the logistic regression can optimize our 

querying results. Each database color image is represented by UL, h*l, h%, he
a and h^ Each human subject is 

asked to formulate a query from the database and to execute a querying, using weights computed by the logistic 

regression, and to give a goodness score to each retrieved image, then to reformulate a query from the database 

and to execute the querying, using weights equal to 1, and to give a goodness score to each retrieved image. 

Each querying is repeated twenty times by choosing a new query from the database each time. We repeat this 

experiment for different orders of compression m e {30,20,10} and we keep the weightfactors {7/}f=1 equal to 

\ and 74 and 75 equal to 1 to give more importance to the edge region features. The following table contains 

the weights computed by the logistic regression, for order m = 30 of the compression. 

hL(l = 1) 
K(l = 2) 
KQ = 3) 
>£(* = 4) 
K(i = 5) 

w>o 
3.31 
3.59 
5.14 
5.78 
5.63 

wl
0 

7.23 
4.65 
8.29 
5.67 
8.08 

w[ 
5.34 
6.28 
3.51 
8.52 
6.18 

wl
2 

6.85 
8.26 
4.40 
7.04 
9.37 

wl
3 

8.51 
4.38 
8.59 
6.85 
9.47 

U>4 

8.37 
6.37 
5.90 
8.01 
5.05 

wl
5 

6.24 
7.21 
8.72 
7.09 
7.57 

wl
6 

7.25 
10.41 
7.83 
6.82 
8.43 

wl
7 

10.14 
3.91 
6.93 
6.62 
7.94 

Table 1: Weights computed by the logistic regression for TO = 30. 

The resulted precision-scope curves for each compression order are 
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Figure 7: Evaluation: precision-scope curves for retrieval using weights equal to 1 and weights computed by the 
logistic regression, for the compression orders m 6 {30,20,10}. 
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The following three Figures give three examples of the improvements of our querying results when we use 

weights computed by the logistic regression instead of weights equal to 1, to tune the metric. We choose the 

same query for the three examples. For each example the query is located at the top-left of the dialog box. 
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Figure 8: Comparison (m = 30): a) first 7 color images retrieved after using weights equal to 1, b) second 
7 color images retrieved after using weights equal to 1, a') first 7 color images retrieved after using weights 
computed by the logistic regression and b') second 7 color images retrieved after using weights computed by 
the logistic regression. 
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Figure 9: Comparison (m = 20): a) first 7 color images retrieved after using weights equal to 1, b) second 
7 color images retrieved after using weights equal to 1, a') first 7 color images retrieved after using weights 
computed by the logistic regression and b') second 7 color images retrieved after using weights computed by 
the logistic regression. 
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Figure 10: Comparison (m = 10): a) first 7 color images retrieved after using weights equal to 1, b) second 
7 color images retrieved after using weights equal to 1, a') first 7 color images retrieved after using weights 
computed by the logistic regression and b') second 7 color images retrieved after using weights computed by 
the logistic regression. 
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Third experiment 

This experiment is carried out to show the advantage of using he
a and h\ instead of the laplacian weighted 

histograms to represent the query color image before the querying. Each human subject is asked to formulate 

a query from the database and to execute a querying using N = 5 feature histograms which are hi, h\, h^ and 

the laplacian weighted histograms, to represent the query color image, and to give a goodness score to each 

retrieved image, then to reformulate a query from the database and to execute a querying using N = 5 feature 

histograms which are hi, h\, h^, he
a and h\, to represent the query color image, and to give a goodness score to 

each retrieved image. Each querying is repeated twenty times by choosing a new query from the database each 

time. We repeat this experiment for different orders of compression m 6 {30, 20,10}, we compute the metric 

weights wl
0 and {wl

k}
7

k=0 by the logistic regression for each / € {1,2,3,4,5}, and we keep the weightfactors 

{ll}f=i equal to ^ and 74 and 75 equal to 1 to give more importance to the edge region features. The resulted 

precision-scope curves are 

Multispectral gradienl module mean histogram. 
Laplacian waighled histogram. 
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Figure 11: Evaluation: precision-scope curves for retrieval in database of LAB color images represented by hi, 
h%, h% and the laplacian weighted histograms each, and for retrieval in the same database LAB color images 
represented by hi, h%, h%, he

a and ft| each, for different compression orders m e {30,20,10}. 

The following three Figures give three examples of improvement of our querying results when we represent each 

query image by he
a and h\ instead of the laplacian weighted histograms. We choose the same query for the three 

examples. For each example the query is located at the top-left of the dialog box. 
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Figure 12: Comparison (m = 30): a) first 7 color images retrieved after being represented by their laplacian 
weighted histograms each, b) second 7 color images retrieved after being represented by their laplacian weighted 
histograms each, a') first 7 color images retrieved after being represented by their hi and hjj each and b') second 
7 color images retrieved after being represented by their he

a and h% each. 
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Figure 13: Comparison (m = 20): a) first 7 color images retrieved after being represented by their laplacian 
weighted histograms each, b) second 7 color images retrieved after being represented by their laplacian weighted 
histograms each, a') first 7 color images retrieved after being represented by their h^ and h^ each and b') second 
7 color images retrieved after being represented by their he

a and hf each. 
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Figure 14: Comparison (m = 10): a) first 7 color images retrieved after being represented by their laplacian 
weighted histograms each, b) second 7 color images retrieved after being represented by their laplacian weighted 
histograms each, a') first 7 color images retrieved after being represented by their ~he

a and Ti\ each and b') second 
7 color images retrieved after being represented by their h^ and h\ each. 
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Fourth experiment 

This experiment is carried out to show the importance of considering the scaling factors of the Daubechies-8 

decomposed versions of the histograms he
a and h\ in the querying. Each human subject is asked to formulate a 

query from the database and to execute a querying using N = 5 feature histograms which are h^, h^, h%, he
a 

and h\ to represent the query color image, while computing the metric weights wl
0 and {wl

k}
7

k=0 by the logistic 

regression for each I € {1,2,3,4,5}, and to give a goodness score to each retrieved image, then to reformulate 

a query from the database and to execute a querying using the same feature histograms, while keeping the 

metric terms wo|04[0] — T4 [0] | and u)o|<5s[0] — T5 [0] | equal to zero by affecting a zero to WQ and WQ, and to give 

a goodness score to each retrieved image. Each querying is repeated twenty times by choosing a new query 

from the database each time. We repeat this experiment for different orders of compression m e {30, 20,10} we 

keep the weightfactors {7/}f=1 equal to | and 74 and 75 equal to 1 to give more importance to the edge region 

features. The resulted precision-scope curves for each compression order are 

With scaling factor consideration. 
Without scaling factor consideration. 
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Figure 15: Evaluation: precision-scope curves for retrieval after considering the scaling factors and after ne
glecting these latters , for the compression orders m G {30,20,10}. 

Thanks to the above precision-scope curves we can notice the degradation of the querying when we neglect 

the scaling factors. In fact, because of the quantization if we keep the metric terms w)o|Q4[0] - T4[0] | and 

^o|<3s[0] - T5 [0] I equal to zero by affecting a zero to WQ and WQ, the metric will not distinguish two color 

component multispectral gradient module mean histograms Q4 and T4 or Q5 and T5 having the same curvature 

variations at the same X-coordinates, but these curvatures have different magnitudes. Consequently, the metric 

can not distinguish two LAB color images having almost similar colors and luminances, but different object 

shapes. For this reason, it's very important to consider the scaling factor of each decomposed multispectral 

gradient module mean histogram of a LAB color image component in the querying. In fact, this scaling factor 

represents the average of the overall gradient module values of each LAB color image component, and changes 
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from image to other having different edge shapes. The following three Figures give three examples of the 

degradation of our querying results when we don't consider the scaling factors of the Daubechies-8 decomposed 

versions of the histograms he
a and h\. We choose the same query for the three examples. For each example the 

query is located at the top-left of the dialog box. 
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Figure 16: Comparison (m = 30): a) first 7 color images retrieved after considering the scaling factors, b) second 
7 color images retrieved after considering the scaling factors, a') first 7 color images retrieved after neglecting 
the scaling factors and b') second 7 color images retrieved after neglecting the scaling factors. 
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Figure 17: Compai'ison (m = 20): a) first 7 color images retrieved after considering the scaling factors, b) second 
7 color images retrieved after considering the scaling factors, a') first 7 color images retrieved after neglecting 
the scaling factors and b') second 7 color images retrieved after neglecting the scaling factors. 
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Figure 18: Comparison (m = 10): a) first 7 color images retrieved after considering the scaling factors, b) second 
7 color images retrieved after considering the scaling factors, a') first 7 color images retrieved after neglecting 
the scaling factors and b') second 7 color images retrieved after neglecting the scaling factors. 
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Fifth experiment 

The metric is very sensitive to the translation. Therefore, it can not distinguish two color images having similar 

objects, but different background and object colors, which is a big constraint for the querying. In fact, we 

assume that these two color image multispectral gradient module mean histograms have similar mode shapes and 

magnitudes, but these modes are translated to each other because of the color difference. In order to solve this 

problem, we compute the mean of each database color image multispectral gradient module mean histograms, 

and then we shift these latters until that their mean pixels match to their center pixels which correspond to 

the X-coordinates 128 in our case. However, because of this shift, the multispectral gradient module mean 

histograms can exceed their supports, which affects their scaling factor values after their Daubechies-8 wavelet 

decompositions, and then affects the querying results. Consequently, in order to preserve the same scaling factor 

values, we double the resolution of each histogram to 512 pixels, we perform the shift, and then we reconstruct 

periodically each histogram for the 256 remaining pixels. The mean of a LAB color image multispectral gradient 

module mean histogram he
k having 2 J pixels is given by 

* S " E £ „ - ' S ^ (46) 

for each LAB color component k = a,b. We denote the transformed versions of the multispectral gradient 

module mean histograms he
a and h\ are denoted by he

aT and h\T, respectively. This last experiment is carried 

out to show how the he
a and hi transformation used to make the querying invariant to the color intensities of 

the query color image, improve the querying results. Each human subject is asked to formulate a query from 

the database and to execute a querying, using N = 5 feature histograms which are hi,, h%, h%, he
aT and h^., to 

represent the query color images, and to give a goodness score to each retrieved image, then to reformulate a 

query from the database and to execute a querying, using iV = 5 feature histograms which are hi, h\, h\, he
a 

and hi, to represent the query color image, and to give a goodness score to each retrieved image. Each querying 

is repeated twenty times by choosing a new query each time. We repeat this experiment for different orders 

of compression m G {30,20,10}, we compute the metric weights by the logistic regression and we keep the 

weightfactors {7;}f=1 equal to \ and 74 and 75 equal to 1 to give more importance to the edge region features. 

The resulted precision-scope curves for each compression order are 
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Figure 19: Evaluation: precision-scope curves for retrieval in database of LAB color images represented by h^, 
h%, h%, he

a and hi each, and for retrieval in the same database of LAB color images represented by HL, h%, h^, 
KT

 a n d hfT. 

The following three Figures give three examples of the improvement of our querying results when we rep

resent each database LAB color image by hf,, h%, h%, he
aT and h\T. We choose the same query for the three 

examples. For each example the query is located at the top-left of the dialog box 
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Figure 20: Comparison (m = 30): a) first 7 color images retrieved after being represented by their hi, h\, h%, 
he

a and hi each, b) second 7 color images retrieved after being represented by their hi, h%, h%, he
a and hi each, 

a') first 7 color images retrieved after being represented by their hi, /ijj, h^, he
aT and ftfT each and b') second 7 

color images retrieved after being represented by their hi, /ijj, h%, he
aT and h\T each. 
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Figure 21: Comparison (m = 20): a) first 7 color images retrieved after being represented by their tiL, h%, h1^, 
he

a and hi each, b) second 7 color images retrieved after being represented by their h-L, h^, h%, he
a and hf each, 

a') first 7 color images retrieved after being represented by their HLA h*, h\,]faT and he
br each and b') second 7 

color images retrieved after being represented by their h^, /ijj, hft, h\T and h\T each. 
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Figure 22: Comparison (m = 10): a) first 7 color images retrieved after being represented by their hi, h\, h%, 
he

a and hi each, b) second 7 color images retrieved after being represented by their hi, h\, h\, h^ and 7ijj each, 
a') first 7 color images retrieved after being represented by their hi, /i£, h1^, h\ 
color images retrieved after being represented by their hi, hJ, h%, h\ 

b '_' *a.T 

and /i|L each 
and h\T each and b') second 7 
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7 Conclusion 

We presented a simple, fast and effective querying method. In this method we improved the spatial information 

combination with the colors given by the laplacian weighted histogram by introducing a multispectral gradient 

module mean histogram. Also, we showed that through the use of the one-dimensional metric proposed by [5] 

and through a one-dimensional Daubechies-8 decomposition and compression of color image feature vectors, we 

could make a good compromise between the querying computational complexity and effectiveness. In order to 

represent our color images we used the LAB color space, because it's perceptually uniform and it allows a good 

separation between the colors and the luminance. Thanks to this separation the color is represented by just two 

components and then each color image feature is represented by two histograms instead of three, which is the 

case for other color spaces, like the RGB color space. The standard logistic regression is a good tool to compute 

the metric weights and to improve the querying results. However, it can provide inaccurate weights when the 

number of observations is very large. For this reason, in the future work we will try an other statistical method 

in order to improve the discriminatory capacity of the metric when we have larger color image databases. 
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CHAPITRE 2 

Pseudo-metrique ponderee pour une 

methode rapide de recherche d'images 

par le contenu 

Dans ce chapitre, nous proposons un nouveau modele bayesien de regression logistique 

base sur une methode variationnelle. Une comparaison de ce nouveau modele avec le 

modele classique de regression logistique est effectuee dans le cadre de la recherche 

d'images. Nous avons illustre que le modele bayesien permet une meilleure amelioration 

de la capacite a discriminer de la pseudo-metrique et de la precision de recherche que le 

modele classique. Une evaluation comparative a ete effectuee sur les bases de donnees 

d'images couleurs connues WANG et ZuBud. 

Nous presentons dans les pages qui suivent, un article intitule Weighted Pseudo-

Metric for a Fast CBIR Method qui est accepte pour publication dans le journal 

Machine Graphics and Vision (MGV). Une version preliminaire de Particle a 

ete presentee a l'lnternational Conference on Computer Vision and Graphics 

(ICCVG'06), Varsovie, Pologne, 2006. 
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Abstract 

In this paper, a simple and fast querying method for content-based image retrieval is presented. In order to 

measure the similarity degree between two color images both quickly and effectively, we use a weighted pseudo-

metric which makes use of the one-dimensional Daubechies decomposition and compression of the extracted 

feature vectors. In order to improve the discriminatory capacity of the pseudo-metric, we compute its weights 

using a classical logistic regression model and a Bayesian logistic regression model, separately. The Bayesian 

logistic regression model was shown to be a significantly better tool than the classical logistic regression model 

to improve the retrieval performance. Experimental results are reported on the WANG and ZuBuD color image 

databases proposed by [11]. 
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1 Introduction 

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the field 

of medecine, security, communications, commerce and academia, increased the need for both efficient image 

database creation and retrieval procedures. For this reason, content-based image retrieval (CBIR) approach 

was proposed [6]. In this approach, each image from the database is associated with a feature vector capturing 

certain visual features of the image such as color, texture and shape. Then, a similarity measure is used to 

compare these feature vectors and to find similarities between images with the assumption that images that are 

close to each other in the feature space are also visually similar. Distance measures like the Euclidean distance 

have been the most widely used to measure similarities between feature vectors in the content-based image 

retrieval (CBIR) systems. However, similarity measures make no assumption about the probability distributions 

and the local relevances of the feature vectors, thereby irrelevant features might hurt retrieval performance. 

Probabilistic approaches are a promising solution to this CBIR problem [13], that when compared to the 

standard CBIR methods based on the distance measures, can lead to a significant gain in retrieval accuracy. In 

fact, these approaches are capable of generating probabilistic similarity measures and highly customized metrics 

for computing image similarity. As to previous works based on these probabilistic approaches, J. Peng et al. 

[4] used a binary classification to classify the database color image feature vectors as relevant or irrelevant, 

G. Caenen and E. J. Pauwels [10] used the classical quadratic logistic regression model, in order to classify 

database image feature vectors as relevant or irrelevant and S. Aksoy and R. M. Haralick [8] measure the 

similarity degree between a query image and a database image using a likelihood ratio derived from a Bayesian 

classifier. In this paper, we propose a simple and fast querying method for content-based image retrieval. In 

order to measure the similarity degree between two color images, we use a weighted pseudo-metric used in [14], 

which makes use of the compressed and quantized versions of the Daubechies-8 wavelet decomposed histograms. 

In order to discriminate most effectively, the pseudo-metric weights are adjusted using separately a classical 

logistic regression model and a Bayesian logistic regression model based on a variational method. The Bayesian 

logistic regression model was shown to be a significantly better tool than the classical logistic regression model 

to improve the retrieval performance. Evaluation and comparison of both models were conducted on the WANG 

and ZuBuD color image databases proposed by [11]. 

This paper is organized as follows. In the next section, we briefly redefine the pseudo-metric. In section 3, we 

will present the pseudo-metric weight adjustment using the classical and Bayesian logistic regression models. 

Then, we will describe the data training performed for both models. The color image retrieval method and 
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the feature vectors that we use to represent the database color images are presented in section 4. Finally, in 

section 5, we will perform some experiments to validate the Bayesian logistic regression model and we will use 

the precision and scope [16], in order to show the advantage of the Bayesian logistic regression model over the 

classical logistic regression one, in terms of querying results. 

2 The pseudo-metric 

Given a query feature vector Q and a featurebase of \DB\ feature vectors Tk (k = 1,..., \DB\) having 2J 

components each, our aim is to retrieve in the featurebase the most similar feature vectors to Q. To achieve this, 

Q and the \DB\ feature vectors are Daubechies-8 wavelet decomposed, compressed to m coefficients each and 

quantized. Then, to measure the similarity degree between Q and a target feature vector Tk of the featurebase, 

we use the pseudo-metric used in [14] and given by the following expression 

\\Q,Tk\\=w0\Q[0]-fk[0]\- J2 Wbin(i){Qc
q[i]=nqm, (1) 

i:Qc
q[i\¥=0 

where 

(flSH - *S.W) - { i *Jj®£*® W 
<5[0] and T[0] are the scaling function coefficients; Qc

q[i] and Tg[i] represent the i-th coefficients of their wavelet 

decomposed versions, compressed and quantized; wo and the Wbin^) are the weights to compute; and the 

bucketing function bin() groups these weights according to the J resolution levels, such that 

bin(i) = [log2{i)\ with % = 1,..., 2J - 1. (3) 

Since the pseudo-metric makes use of the one-dimensional Daubechies-8 decomposition and compression of the 

extracted feature vectors, the retrieval will be done quickly and effectively. 

3 Pseudo-metric weight adjustment 

In order to improve the discriminatory power of the pseudo-metric, we compute its weights w$ and {wkYkZl 

using a classical logistic regression model and a Bayesian logistic regression model, separately. We define two 

classes, the relevance class denoted by fio and the irrelevance class denoted by fii, in order to classify the feature 
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vector pairs as similar or dissimilar. The basic principle of using the Bayesian logistic regression model and the 

classical logistic regression one is to perform a good linear separation between fio and Qi, and then to compute 

the weights which represent the local relevances of the pseudo-metric components. 

3.1 The classical logistic regression model 

In this model, each feature vector pair is represented by an explanatory vector and a binary target variable. 

Specifically, for the i-th pair of feature vectors which are Daubechies-8 wavelet decomposed, compressed and 

quantized, we associate an explanatory vector Xi = (Xoj,Xoti,...,Xj-ij,l) € K J x {1} and a binary target 

Si which is either 0 or 1, depending on whether or not the two feature vectors are intended to be similar. 

-X"o,« is the absolute value of the difference between the scaling factors of feature vectors and {-Xfc,i}fc=o are 

the numbers of mismatches between their J resolution level coefficients. We suppose that we have no pairs of 

similar feature vectors and n\ pairs of dissimilar ones. Thus, the class fio contains no explanatory vectors and 

their associated binary target variables {XI, S^ = 0}™^ to represent the pairs of the similar feature vectors, 

and the class fii contains n\ explanatory vectors and their associated binary target variables {Xf', SJ — 1}™II 

to represent the pairs of the dissimilar feature vectors. According to [14], the pseudo-metric weights u>o and 

{wkYk=o a n a l a n intercept v are chosen to optimize a conditional log-likelihood. For this reason, standard 

optimization algorithms such as the Fisher scoring and gradient ascent algorithms [3], can be invoked. However, 

according to [12] and [5], in several cases, especially because of the exponential in the likelihood function or 

because of the existence of many zero explanatory vectors, the maximum likelihood can fail and estimates of the 

parameters of interest (weights and intercept) may not be optimal or may not exist or may be on the boundary 

of the parameter space. This problem can be solved by smoothing the parameter of interest estimates, assuming 

a certain prior distribution for the parameters. This motivates the adoption of a Bayesian logistic regression 

model with gaussian prior over the parameters. 

3.2 The Bayesian logistic regression model 

In the Bayesian logistic regression framework, there are three main components which are a chosen prior dis

tribution over the parameters of interest, the likelihood function and the posterior distribution. These three 

components are formally combined by Bayes' rule. The posterior distribution mean components are the parame

ter of interest estimates. However, when the posterior distribution has no tractable form, its mean computation 

involves high-dimensional integration which has high computational cost. According to [7], it's possible to use 
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accurate variational transformations in order to approximate the likelihood function with a simpler tractable 

exponential form. In this case, thanks to the conjugacy, with a gaussian prior distribution over the parame

ters of interest combined with the likelihood approximation, the posterior distribution is approximated with a 

closed gaussian form. However, in this model, to each explanatory vector a variational parameter is associated. 

Therefore, if the number of observations is large, the number of variational parameters updated to optimize the 

posterior distribution approximation is also large, thereby the computational cost is high. In the model that we 

propose, we use variational transformations and the Jensen's inequality in order to approximate the likelihood 

function with tractable exponential form. The explanatory vectors are not observed but instead are distributed 

according to two specific distributions. The posterior distribution is also approximated with a gaussian which 

depends only on two variational parameters. The computation of the posterior distribution approximation mean 

is fast and has low computational complexity. In this model, we denote the random vectors whose realizations 

represent the explanatory vectors {X[}"^1 of the relevance class Q0 and the explanatory vectors {X^}™^ of 

the irrelevance class _ i , by X0 = (X0,o_o,o> ...,Xj_i,o> 1) and Xx = (X01,Xo,i> • • • J X J _ 1 ? 1 , 1), respectively. We 

suppose that X0 ~ <Zo(Xo) and Xx ~ <?i(Xi)> where qo and q\ are two chosen distributions. For X0 we associate 

a binary random variable S0 whose realizations are the target variables {5[ = 0}"^1 , and for Xj we associate 

a binary random variable Sj whose realizations are the target variables {SJ — l}"i i - We set S0 equal to 0 

for similarity and we set S : equal to 1 for dissimilarity. Parameters of interest (weights and intercept) are 

considered as random variables and are denoted by the random vector W = («J0, w0, — iW.j_x,v). We assume 

that W ~ 7r(W), where it is a gaussian prior with prior mean \x and covariance matrix _ . Using Bayes' rule, 

the posterior distribution over W is given by 

p , w l q _ n q „ [Ex, e n , , , i e n i n!=0 PCS. = iXU = *«,2Qg«& - »«)]*qaO 
P(W|b0 - 0, bx - 1) - _ _ _ _ _ _ _ , ( 4) 

where P(S; - i|X^ = x»,W) = F((2i - l)W*Xj) for each i e {0,1} and F{x) = j ~ . Using a variational 

approximation [7] and the Jensen's inequality, the posterior distribution is approximated as follows 

P ( W | _ o - 0 , S 1 - l ) > _ _ _ _ _ _ _ , ( 5) 

oc P(W|S0 = 0 ,S 1 _ l , {e i } ; = 0 , { % } ; = 0 ) 7 r (W) , (6) 
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where 

P(W|So = 0,S1 = l,{e4};= 0 ,{g<};= 0) 

Ipte) 
L i = 0 

eL 

where J5go and Eqi are the expectations with respect to the distributions qo and q\, respectively, ip(ei) = °"4 .* 

and {ej}._ are the variational parameters. Therefore, the approximation of the posterior distribution is 

considered as an adjustable lower bound and as a proper Gaussian distribution with a posterior mean fipoat and 

covariance matrix T,post which are estimated by the following Bayesian update equations 

l 

impost)-1 = CE)-1+2^2[(p(ei)Egi[xi(xi)% 

Impost — ^ post (srv+E^-^N] 
t = 0 

The weight and intercept computation algorithm is in two phases. The first phase is the initialization of qo, q\ 

and the gaussian prior 7r(W), and the second phase is iterative and allows the computation of Tipoat and fipost 

through the above Bayesian update equations, while using an EM type algorithm [1], [15], in order to find the 

variational parameters {e,}. at each iteration to have an optimal approximation to the posterior distribution. 

In the initialization phase, q0 and q% are chosen to model Q0 and Oi, respectively, and because of the absence 

of prior knowledge about the weights and the intercept, 7r(W) is chosen univariate with zero mean and large 

variances [9]. The values of fipost components are the desired estimates of the pseudo-metric weights u>o and 

iwk}kZo a n d the intercept v. 

3.3 Training 

Let us consider a color image database which consists of several color image sets such that each set contains color 

images which are perceptually close to each other in terms of object shapes and colors. In order to compute the 

pseudo-metric weights and the intercept by the classical logistic regression model, we have to create the relevance 

class Qo and the irrelevance class fix. To create Qo, we draw all possible pairs of feature vectors representing 

color images belonging to the same set in the database, and for each pair we compute an explanatory vector 

and associate a binary target variable equal to 0. Similarly, to create fii, we draw all possible pairs of feature 

vectors representing color images belonging to different sets in the database, and for each pair we compute an 
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explanatory vector and associate a binary target variable equal to 1. For the Bayesian logistic regression model, 

we create the fto and fii with the same way, but instead of associating a binary target variable value for each 

explanatory vector of QQ and fli, we associate a binary target variable S0 equal to 0 for all fio explanatory 

vectors and a binary target variable Sx equal to 1 for all fii explanatory vectors. 

4 Co lo r i m a g e r e t r i eva l m e t h o d 

4.1 Color image database preprocessing and the querying algorithm 

The retrieval method is in two phases. The first phase is a preprocessing phase done once for the entire database 

containing \DB\ color images. The second phase is the querying phase. 

Preprocessing: 

1. Choose N feature vectors for comparison. 

2. Compute the N feature vectors Tu (I E {1,...,N}) for each i-th color image of the database, where 

i e{ l , . . . , | £>B |} . 

3. The feature vectors representing the database color images are Daubechies-8 wavelets decomposed, com

pressed to m coefficients each and quantized. 

4. Organize the decomposed, compressed and quantized feature vectors into search arrays 6'+ and 9i_ (l = 

1,..., JV) which are used to optimize the pseud-metric computation process [14]. 

5. Adjustment of the metric weights wl
0 and {wl

k}k~Q for each featurebase Tu (i = 1,..., \DB\) representing 

the database color images, where I € {1, ...,N}. 

Querying algorithm: 

1. Given a query color image, we denote the feature vectors representing the query image by Qi (l = 1,..., N). 

2. The feature vectors representing the query image are Daubechies-8 wavelets decomposed, compressed to 

m coefficients each and quantized. 

3. The similarity degrees between Qi [l = 1,...,JV) and the database color image feature vectors Tu (/ = 

1,...,JV) (i = 1,...,\DB\) are represented by the arrays Scorei (l = 1,...,JV) such that Scorei[i] =|| 
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Ql,Tu || for each i e {1,.. . , |£>-B|}. These arrays are returned by the procedure Retrieval(Q(, m, 9 '+ , 6'_) 

(l — 1,..., N), respectively. The procedure Retrieval is used to optimize the querying process [14]. 

4. The similarity degrees between the query color image and the database color images are represented by 

a resulted array TotalScore, such as, TotalScore[i] = 53(=iT^c o r e ' [*] f° r e a c n * e {!>•••> |-D^|}, where 

{li}iLi a r e weightfactors used to fine-tune the influence of each individual feature. 

5. Organize the database color images in order of increasing resulted similarity degrees of the array TotalScore. 

The most negative resulted similarity degrees correspond to the closest target images to the query image. 

Finally, return to the user the closest target color images to the query color image and whose number is 

denoted by RI and chosen by the user. 

4.2 Used feature vectors 

Before feature vector extraction, a color image is represented in the perceptually uniform LAB color space. In 

order to describe the luminance, colors and edges of the color image, we use luminance histogram and weighted 

histograms proposed by [14]. The weighted histograms are the color histograms constructed after edge region 

elimination and the multispectral gradient module mean histograms. We denote the luminance histogram by 

tiL, the multispectral gradient module mean histograms by he
a and h%, and the color histograms constructed 

after edge region elimination by h% and h\. The image texture description is performed by kurtosis and skewness 

histograms [2]. Kurtosis histograms are denoted by hi, hi and h%, and skewness histograms are denoted by h"L, 

hs
a and hs

b. They are obtained by local computations of the kurtosis and skewness values at the luminance and 

chrominance image pixels. Then, a linear interpolation is used to represent the kurtosis and skewness values 

between 0 and 255. Since each used feature vector is a histogram having 256 components, we set J equal to 8 

in the following section. 

5 Experimental results 

The choices of the distributions go and qi and the querying evaluation will be conducted on the WANG and 

ZuBuD color image databases described in [11]. Since from each color image of the ZuBuD and WANG data

bases we extract N = 11 histograms which are h^, h%, h\, he
a, hi, hi, h%, h%, hs

L, hs
a and hs

b, each database is 

represented by eleven featurebases. The choices of qo and q\ will be separately performed for each of those. For 

each featurebase, we assume that X0 0 and (X0 o> •••>Xj-i o) a r e independent. We make the same assumption 
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for X 0 1 and (X0 1 , •••)2£j-i,i)- Moreover, we suppose that the random vector (X0)0, •••>Xj-i,o) random variables 

are independent and each one of them follows a poisson distribution. Analogously, we make the same choice for 

(X0 1 , . . . ,Xj_ 1 1 ) . Also, we assume that the random variable X 0 0 follows a gaussian mixture distribution, which 

is the same choice for X0 1. Generally, to carry out an evaluation in the image retrieval field, two principal issues 

are required: the acquisition of ground truth and the definition of performance criteria. For ground truth, three 

external persons participate in the evaluation. Concerning performance criteria, we represent the evaluation 

results by the precision-scope curve Pr = f(RI) [16]. In each querying performed in the evaluation experiment, 

each human subject is asked to give a goodness score to each retrieved image. The goodness score is 2 if the 

retrieved image is almost similar to the query, 1 if the retrieved image is fairly similar to the query and 0 if 

there is no similarity between the retrieved image and the query. The precision is computed as follows: Pr — 

the sum of goodness scores for retrieved images/i?/. Therefore, the curve Pr — f(RI) gives the precision for 

different values of RI which lie between 1 and 20 when we perform the evaluation on the WANG database, and 

between 1 and 5 when we perform the evaluation on the ZuBuD database. When the human subjects perform 

different queries in the evaluation experiment, we compute an average precision for each value of RI, and then 

we construct the precision-scope curve. In order to evaluate the querying procedure on the WANG database, 

each human subject is asked to formulate a query from the database, execute the querying procedure using 

weights computed by the classical logistic regression model, and assign goodness score to each retrieved image; 

and then to reformulate a query from the database, execute the querying procedure using weights computed by 

the Bayesian logistic regression model, and assign goodness score to each retrieved image. Each human subject 

repeats the querying process twenty times, choosing a new query from the database each time. We repeat this 

experience for different orders of compression m G {30,20,10}, keeping the weightfactors {7(}f=1 equal to \ and 

ill }}=4 equal to 1 to give more importance to the edge region and texture features. To evaluate the querying in 

the ZuBuD database, each human subject is asked to follow the preceding steps, while formulating the queries 

from the database query part. For the ZuBuD and WANG databases, the resulting precision-scope curves for 

each compression order m G {30, 20,10} are given in Figure 1. 
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Figure 1: Evaluation ((a) ZuBud database and (b)WANG database): precision-scope curves for retrieval using 
weights computed by the classical logistic regression model and weights computed by the Bayesian logistic 
regression model. 

6 Conclusion 

We presented a simple, fast and effective color image querying method. In order to measure the similarity degree 

between two color images both quickly and effectively, we used a weighted pseudo-metric which makes use of 

the one-dimensional Daubechies decomposition and compression of the extracted feature vectors. A Bayesian 

logistic regression model and a classical logistic regression one were used to improve the discriminatory capacity 

of the pseudo-metric. Evaluations of the querying method showed that the Bayesian logistic regression model 

is a better tool than the classical logistic regression one to compute the pseudo-metric weights and to improve 

the querying results. Thanks to the effectiveness and flexibility of the Bayesian logistic regression model, the 

use of the pseudo-metric for comparison and its weight computation, can be customized to other featurebases 

representing other image databases. Precisely, a user can compute the pseudo-metric weights after choosing go 

and qi according to his data, and then can perform effective and fast querying by using the pseudo-metric for 

comparison. 
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CHAPITRE 3 

Amelioration de la capacite a 

discriminer d'une pseudo-metrique en 

utilisant un modele bayesien de 

regression logistique fonde sur une 

methode variationnelle 

Dans ce chapitre, nous detaillons la derivation du nouveau modele bayesien de re

gression logistique base sur une methode variationnelle introduite au chapitre 2. Nous 

effectuons une comparison exhaustive entre ce modele et le modele classique de regres

sion logistique dans le cadre de la recherche d'images et dans un cadre general. Plus 

specifiquement, dans ce cadre general, nous comparons le modele bayesien a d'autres 

classificateurs lineaires apparaissant dans la litterature. Ensuite, nous comparons notre 

methode de recherche utilisant le modele bayesien de regression logistique a d'autres 

methodes de recherches deja publiees. Les experimentations et comparaisons ont ete 
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effectuees sur les bases de donnees d'images couleurs connues WANG, ZuBud, UW et 

CalTech et sur plusieurs ensembles de donnees reelles et synthetiques. 

Nous presentons dans les pages qui suivent, un article intitule Weighted Pseudo-

Metric Discriminatory Power Improvement Using a Bayesian Logistic Re

gression Model Based on a Variational Method qui est accepte pour publica

tion dans 1'IEEE Transactions on Pattern Analysis and Machine Intelligence 

(TPAMI). 
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Abstract 

In this paper, we investigate the effectiveness of a Bayesian logistic regression model to compute the weights of 

a pseudo-metric, in order to improve its discriminatory capacity and thereby increase image retrieval accuracy. 

In the proposed Bayesian model, the prior knowledge of the observations is incorporated and the posterior 

distribution is approximated by a tractable Gaussian form using variational transformation and Jensen's in

equality, which allow a fast and straightforward computation of the weights. The pseudo-metric makes use of 

the compressed and quantized versions of wavelet decomposed feature vectors, and in our previous work, the 

weights were adjusted by classical logistic regression model. A comparative evaluation of the Bayesian and clas

sical logistic regression models is performed for content-based image retrieval as well as for other classification 

tasks, in a decontextualized evaluation framework. In this same framework, we compare the Bayesian logistic 

regression model to some relevant state-of-the-art classification algorithms. Experimental results show that the 

Bayesian logistic regression model outperforms these linear classification algorithms, and is a significantly better 

tool than the classical logistic regression model to compute the pseudo-metric weights and improve retrieval and 

classification performance. Finally, we perform a comparison with results obtained by other retrieval methods. 
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1 Introduction 

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the 

fields of medicine, weather prediction, communications, commerce and academic research has increased the 

need for efficient image database creation and retrieval procedures. The content-based image retrieval (CBIR) 

approach was proposed to meet this need [1], [2]. In this approach, the first step is to compute, for each 

database image, a feature vector that captures certain visual features of the image such as color, texture and 

shape. This feature vector is stored in a featurebase, and then, given a query image chosen by a user, its 

feature vector is computed, compared to the featurebase feature vectors by a similarity measure, and finally 

the database images most similar to the query image are returned to the user. Distance measures like the 

nearest neighbor rule distance and the Euclidean distance have been widely used for feature vector comparison 

in CBIR systems. However, these similarity measures are based only on the distances between feature vectors 

in the feature space, and they blindly assume that features have the same relevance by giving them the same 

weight. Moreover, they do not capitalize on any statistical regularities in the data that might be estimated from 

a large training set of relevance and irrelevance classes. Therefore, distance measures can fail and irrelevant 

features may hurt retrieval performance. Statistical approaches are a promising solution to this CBIR problem 

[3], [27], and they can lead to a significant gain in retrieval accuracy. In fact, these approaches are capable 

of generating probabilistic similarity measures and highly customized metrics (learned metrics) for computing 

image similarity based on consideration of and distinction among feature relevances. This literature is too wide 

to survey here, but in this section we review some relevant work based on these statistical approaches. For 

work using probabilistic similarity measures, we review these relevant examples: G. Caenen and E. J. Pauwels 

[6] use the classical quadratic logistic regression model, in order to classify database image feature vectors as 

relevant or irrelevant. Based on this classification, a total relevance probability is generated for each image in 

the database. This total relevance probability is a linear combination of weights used to fine-tune the influence 

of each individual feature, with the natural logarithms of the logistic relevance probabilities of the feature vector 

components. Database images are ranked according to their total relevance probabilities. S. Aksoy and R. M. 

Haralick [5] investigate the effectiveness of five different normalization methods in combination with two different 

likelihood-based similarity measures that compute the likelihood of two images being similar or dissimilar, one 

being the query image and the other one being an image in the database. First, two classes are defined, the 

relevance class and the irrelevance class, and then the likelihood values are derived from the Bayesian classifier. 

Two different methods are used to estimate the conditional probabilities used in the classifier. The first method 
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uses multivariate normal assumption and the second one uses independently fitted distributions for each feature. 

The degree of similarity between a query image and a database image is measured by the likelihood ratio. N. 

Vasconcelos [22] adopts the minimum probability of error (MPE) as the optimality criterion, and formulates 

retrieval as a problem of statistical classification. He shows that the Bayesian classifier is the optimal similarity 

function for MPE retrieval systems, as it minimizes the probability of retrieval error. Also, he proposes a new 

algorithm for MPE feature design that scales to problems containing a large number of classes. T. Westerveld 

and A. P. de Vries [23] present the use of generative probabilistic models for image retrieval. They estimate 

Gaussian mixture models to describe the visual content of images and explore two different approaches for 

using them for retrieval. These two approaches are called query generation (How likely is the query given the 

document (image) model?) and document generation (How likely is the document given the query model?), and 

are fitted in a common probabilistic framework. In each approach a variant is computed using the Gaussian 

mixture models, and then used for image ranking. The query generation variant is shown to be more appropriate 

for ranking than the document generation variant. V. Lavrenko et al. [24] apply a continuous relevance model 

(CRM) to the problem of directly retrieving the visual content of videos using text queries. The approach 

computes a joint probability model for image features and words using a training set of annotated images. This 

joint probability allows the computation of the conditional probability of words given image vector features. 

Once the annotation and feature components of the joint probability are modelled, respectively, by multinomial 

distribution and Gaussian kernels, images are ranked according to the conditional probability. S. Ghebreab et 

al. [25] conceive of a concept as an incremental and interactive formalization of the user's conception of an 

object in an image. They describe an object in terms of multiple-continuous boundary features and represent an 

object concept by the stochastic characteristics of an object population. The probability that a database object 

is an instance of a given object concept is computed on the basis of a Mahalanobis distance model. Objects 

that are an instance of the concept the user has in mind have high probability. 

Several authors have used learned metrics to improve CBIR methods and classification algorithms which can 

be used for CBIR purposes. We will now review some relevant examples of this work. J. Peng et al. [4] 

use a binary classification to classify the database color image feature vectors as relevant or irrelevant. The 

classified feature vectors and the query image feature vectors constitute training data, from which relevance 

weights for different features are computed. The components of the weight vector represent the local relevance 

of each feature. They are adjusted to the location of the query image feature vector in the feature space. 

After the feature relevance has been determined, a weighted similarity metric is selected using reinforcement 
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learning, which is based on classical logistic regression. Three different metrics are chosen: a weighted Euclidean 

metric, a weighted city-block metric and a weighted dominance metric. S. Aksoy et al. [7] use weighted L\ 

and L2 distances to measure the degree of similarity between two images, where the weights are the ratios of 

the standard deviations of the feature values both for the whole database and among the images selected as 

relevant. Each component of the weight vector represents the local relevance of a specific feature, and more 

importance is assigned to features that are relevant. T. Hastie and R. Tibshirani [29] propose an algorithm 

that starts with the Euclidean distance and, for each test object, iteratively changes the weights of attributes. 

At each iteration it selects a neighborhood of a test object and applies local discriminant analysis to shrink 

the distance in the direction parallel to the boundary between decision classes. Finally, it selects the k nearest 

neighbors according to the locally transformed metric. C. Domeniconi et al. [30] pursue the idea presented in 

[29], but use support vector machine (S VM) instead of local discriminant analysis to determine class boundaries 

using margin maximization, and to shrink the distance. Support vectors can be computed during the learning 

phase, which makes this approach much more efficient in comparison to local discriminant analysis. S. Chopra 

et al. [32] recently proposed a framework for similarity metric learning in which the metrics are parameterized 

by pairs of identical convolutional neural nets. Their cost function penalizes large distances between similarly 

labeled inputs and small distances between differently labeled inputs, with penalties that incorporate the idea 

of a margin. 

Much work on metric learning has indeed focused on Mahalanobis distance learning. In these studies, the 

classification setting is based on a natural equivalence relation, namely whether two points are in the same class 

or not. One classical statistical method which uses this Mahalanobis distance idea is Fisher's Linear Discriminant 

Analysis (LDA) (see e.g. [26]). Other recent methods seek to minimize various separation criteria between the 

classes by posing Mahalanobis distance learning as an optimization problem. One relevant example of these 

recent studies is that of E. P. Xing et al. [21], who use semidefinite programming to learn the Mahalanobis metric 

for clustering. Their algorithm aims to minimize the sum of squared distances between similarly labeled inputs, 

while maintaining a lower bound on the sum of distances between differently labeled inputs. J. Goldberger et al. 

[27] propose neighborhood component analysis (NCA), a novel algorithm for learning a Mahalanobis distance, 

designed to improve the KNN classification algorithm. The algorithm maximizes a non-convex stochastic variant 

of the leave-one-out KNN score on the training set using gradient descent. It can also learn a low-dimensional 

linear embedding of labeled data that can be used for data visualization and fast classification. Other examples 

are K. Q. Weinberger [28] and A. Globerson and S. Roweis [31], who pursue essentially the same goals as NCA, 
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but differ in their construction of convex objective functions. 

Our retrieval approach consists of learning a weighted pseudo-metric using a Bayesian logistic regression model 

based on a variational method, and it has several advantages. First, the pseudo-metric is constructed in such a 

way that it can handle decomposed and compressed feature vectors via any kind of wavelet transform. Wavelet 

decomposition and compression allow a very good feature vector approximation with just few coefficients. This 

has the advantage of accelerating the search for a query feature vector and reducing storage for the featurebase. 

Second, the pseudo-metric is low rank as it considers only the resolution levels of the decomposed feature 

vectors instead of the totality of their coefficients, using a bucketing function. Therefore, the dimensionality of 

the transformed feature space is significantly reduced. Third, the adopted Bayesian logistic regression model is 

based on a variational method which allows the training to have low computational complexity, while preserving a 

good classification performance. In our previous work [8], the pseudo-metric was learned using classical logistic 

regression. We will show that the Bayesian logistic regression model is a significantly better tool than the 

classical logistic regression model for learning the pseudo-metric and improving the classification performance 

and query results. The classification performance of both models is evaluated and compared for CBIR and 

other classification tasks, in a decontextualized evaluation framework. In this same framework, we compare the 

Bayesian logistic regression model to some relevant state-of-the-art linear classification algorithms. Experiments 

show that the Bayesian logistic regression model outperforms these linear classification algorithms, and is a 

significantly better tool than the classical logistic regression model for improving retrieval and classification 

performance. Finally, we perform a comparison with results for other retrieval methods. 

In the next section, we briefly define the pseudo-metric and explain the fast feature vector querying algorithm. In 

Section 3, we explain the data training process and describe the adjustment of the pseudo-metric weights using 

the classical logistic regression model, while showing its limitations and demonstrating that the Bayesian logistic 

regression model based on a variational method is more appropriate for the pseudo-metric weight computation. 

Then, we give a detailed description of the Bayesian logistic regression model based on a variational method and 

present the weight computation algorithm. The color image retrieval method is briefly presented in Section 4. In 

Section 5, a decontextualized evaluation is performed to compare the Bayesian logistic regression model with the 

classical version and some relevant state-of-the-art linear classification algorithms. Then, the feature vectors 

that we use to represent the database color images are summarized. Finally, a contextualized comparative 

evaluation of the Bayesian and classical logistic regression models is performed for CBIR, and a comparison 

with results for different retrieval methods is provided. 
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2 T h e pseudo-metr ic and the fast feature vector querying a lgor i thm 

2.1 The pseudo-metric 

Let us consider Q and T as the query and the target feature vectors, respectively, with 2J components each. 

The vectors Q and T are mapped from the feature space to a wavelet space using any kind of wavelet transform. 

Then, they are compressed to m coefficients each. Finally, each of their largest positive and negative wavelet 

coefficients are quantized to +1 and — 1, respectively. The pseudo-metric is given by the following expression: 

| |Q,r | |=tSo|Q[0]-f[0] |+ J2 w>>in(i)(Qc
qli]^fq

c[i}\ (1) 
i:&q{i\y£0 

where 

Q[0] and T[0] are the scaling function coefficients; Qq[i} and T£[i] represent the i-th. coefficients of their wavelet 

decomposed versions, compressed and quantized; WQ and the Wf,in^ are the positive weights to compute; and 

the bucketing function bin() groups these weights according to the J resolution levels, such that 

bin(i) = [log2(i)\ with i = 1,..., 2J - 1. (3) 

To compute the pseudo-metric over a database of feature vectors, it is generally quicker to count the number 

of matching coefficients of Qq and T£ than the mismatching coefficients. For this reason, we rewrite 

J2 Wbin(i)[QC
q[i] ^TC{l\J = J2 wbin(i)- J2 *°Wn(i) f Q£[»] = 2£[*] J» (4) 

where 

yjg[l\ lq[l\j <y Q o t h e r w i g e W 
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Since the term Yli-QcH]*ow<>in(i) ls independent of the vectors Tg
c and Qq, we can discard it. Therefore, our 

pseudo-metric becomes 

|| Q,T ||= w o | Q [ 0 ] - f [ 0 ] | - Y, wbin(i)(Qc
q\i}=fq

c[i}). (6) 

2.2 The fast feature vector querying algorithm 

In order to optimize the metric computation process, we introduce two arrays called search arrays: 0+ for the 

coefficients quantized to +1 and 0_ for those which are quantized to —1. Each array contains 2 J — 1 elements 

and each element contains a list. For example, the element Q+[i] points to the list of all database feature 

vectors with a large positive wavelet coefficient at the i-th position, after compression. In the same way, the 

element Q-[i] points to the list of all database feature vectors with a large negative wavelet coefficient at the 

i-th position. Thanks to these arrays and the compression, during the querying process we need only go through 

the m lists associated to the m coefficients retained for the query, instead of 2J — 1 coefficients. Given the search 

arrays and the weights u>o and {WJ}^ZQ, the retrieval procedure for a query feature vector Q in the featurebase 

of feature vectors Tk (k = 1,..., |-D-B|), where |-Di?| denotes the featurebase size, is defined as follows: 

P rocedure Retrieval(Q: array [1..2"7] of reals, m : integer,0_,0+) 

Q <— WaveletsDecomposition(Q) 

Initialize Score[k] = 0, for each k € {1,.. . , |-D-B|} 

For each k G {1,.. . , |.DB|} do 

Score [position of Tk in the (DB)] = w0 * \Q[0] - fk[0]\ 

end for 

Qc *— Compress(Q,m) 

Q% *- Quantify(Qc) 

For each Qc
q[i] ^ 0 do 

If Q°[i] > 0 t h e n 

List <— Q+\i] 
Else 

List <- 0_[i] 

End if 
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for each I of List do 

Score [position of I in the (DB)] = Score [position of I in the (DB)] - Wbin^ 

End for 

End for 

Return Score 

End p rocedure 

This procedure returns an array Score such that Score[k] =|| Q,Tk || for each k £ {1,.. . , |-D5|}. The elements 

of Score, which are the degrees of similarity between the query Q and the feature vectors Tk (A; € {1,. . . , |£>.B|}), 

can be negative or positive. The most negative similarity degree corresponds to the closest target to the query 

Q. 

3 Pseudo-metric weight adjustment 

The weights u>o and {wf;}kZ0 are adjusted in such a way that the pseudo-metric should be effective enough to 

match similar feature vectors as well as discriminate dissimilar ones. We define two classes, a relevance class flo 

and an irrelevance class fli, in order to classify the feature vector pairs as similar or dissimilar. We suppose that 

Qo contains no explanatory vectors {-XJ}"=i to represent the pairs of similar feature vectors, and Ct\ contains 

n\ explanatory vectors {X-r}"=L1 to represent the pairs of dissimilar feature vectors. Given an explanatory 

vector X\ — {X§i,X§i,...,X
rj_Xi,X) G flo representing a pair of similar feature vectors which are wavelet 

decomposed, compressed and quantized, XQ i is the absolute value of the difference between their scaling factors 

and {XJ. J}^ZQ are the numbers of mismatches between their J resolution level coefficients. The components of 

an explanatory vector XJ = (X^j, X^,..., XJ_1j, 1) e Sli are computed for a pair of dissimilar feature vectors 

in the same way. The basic aim of using the Bayesian and classical logistic regression models is to allow a good 

separation between fio and fix by hyperplane, and to compute the weights which represent the local relevances 

of the pseudo-metric components. The classes f2o and f2i are experimentally created in the data training phase 

explained below. 

3.1 Data training 

Let us consider a color image database in which the images are clustered beforehand in a number of semantic 

clusters. Each cluster contains color images which are perceptually close to each other in terms of visual features 
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such as color, texture and shape. The purpose of weighting the pseudo-metric is to make it efficient enough 

to match images which belong to the same cluster and discriminate between images which belong to different 

clusters. For this reason, to create ft0) we draw all possible pairs of feature vectors representing color images 

belonging to the same cluster in the database, and for each pair we compute an explanatory vector. Similarly, to 

create Qi, we draw all possible pairs of feature vectors representing color images belonging to different clusters 

in the database, and for each pair we compute an explanatory vector. 

3.2 The classical logistic regression model 

In this model, each explanatory vector X\ of Q,Q is associated with a binary target variable S\ = 0 for similarity, 

and each explanatory vector X] r of fli is associated with a binary target variable Sy = 1 for dissimilarity. Given 

two explanatory vectors X\ and XJ', we model their associated binary target variables 5[ and Sj r , respectively, 

by a relevance probability p[ and an irrelevance probability pj, defined as follows: 

pf = P fSy = l\Xf) = F(w0Xir
tj + £ wkX^ + v) (7) 

pl = p(sr = o\x;)=F(-w0xzii-Y;wkx*kii-v), (8) 

where F(x) = JT^ is the logistic function and v is an unknown intercept which will be computed with the 

pseudo-metric weights, but will not be considered when using the pseudo-metric for feature vector comparison, 

as it is a constant for all query-target pairs and F(—x) is a decreasing function. The weights and the intercept 

are determined using maximum likelihood estimation; i.e., such that they optimize the probability of the actual 

configuration occurring. More precisely, if we look up the relevance and irrelevance class explanatory vectors 

and their associated binary variable values and use equations (7) and (8) to compute the probabilities pj and 

p\, then the weights and the intercept are chosen to maximize the following conditional log-likelihood: 

no n i 

log(L(W = (w0,wo, ...,wj-uv))) = 5 > $ ( P D + X><?(pf )• (9) 
i = l j = l 

The log-likelihood function is globally concave (there is only one solution, which is the maximum) [34]. Many 

numerical methods can be used to estimate the weights and the intercept. The methods most often used are the 

Gradient ascent and Fisher scoring algorithms [33]. The Fisher Scoring method has the advantage of adding 
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a direction matrix that assesses how quickly the log-likelihood function is changing [33]. This direction matrix 

is the Hessian matrix of the log-likelihood function. The Fisher Scoring algorithm proceeds according to the 

equation 

Wnew = Wold-aH^d-^l, 

where H and ^ ' are, respectively, the Hessian matrix and the gradient of log(L), and a is a step-size 

parameter optimized via a line-search to give the largest downhill step subject to u>o > 0 and Wj > 0 Vj G 

{0,..., J — 1} [40]. Once the Fisher scoring and line-search algorithms have been used to compute positive 

weights, an active set algorithm is applied to correct the false zero weight solutions [41], when converging with 

a = 0. The inverse of the Hessian matrix approximates the variance-covariance matrix of the maximum log-

likelihood estimators [35]. Therefore, the flatter the log-likelihood function, the smaller the Hessian matrix 

coefficients and the larger the variances of the estimators. This corresponds to the intuition that the flatter 

the log-likelihood function, the harder it will be to find the maximum of the function despite its concavity 

[33]. Also, when there are too many observations or explanatory vectors, the Fisher scoring algorithm has high 

computational complexity and takes a long time to converge; sometimes it diverges because of the exponential 

term in the log-likelihood function [36]. Moreover, according to R. Weiss et al. [11], in the case where there 

are many zero explanatory vectors, maximum likelihood can fail and estimates of the parameters of interest 

(weights and intercept) may not exist or may be on the boundary of the parameter space. The most severe 

problems that can occur when fitting a logistic regression model are multicollinearity among the explanatory 

variables and cases where the data is completely or quasicompletely separable. Multicollinearity in the logistic 

regression model is a result of strong correlations between some or all of the explanatory variables. It generally 

occurs when the logistic regression model is large (contains many explanatory variables) and it greatly inflates 

the variances of the maximum log-likelihood estimators and can cause wrong signs and magnitudes of these 

estimators [37]. In the case of completely and quasicompletely separable data, the log-likelihood function is 

strictly monotonic, almost completely flat in the region of the parameter estimators, and reaches its maximum 

at infinity (maximum log-likelihood does not exist) [38]. Since the classes Qo and ^ i are intended to be large 

(training performed over all database images), high-dimensional (large J in case of feature vectors having a 

great number of components), and composed of real data, all of the problems mentioned above must be faced 

when fitting our classical logistic regression model. The problems related to the inflation and nonexistence of the 

log-likelihood estimators can be solved by regularizing the likelihood function by a prior distribution over the 
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weights and intercept which smooths their estimates and reduces their space. The problems related to the high 

complexity caused by large and high-dimensional data sets can be solved by using variational transformations 

which simplify the computation of the weight and intercept estimates [9]. This motivates the adoption of a 

Bayesian logistic regression model based on a variational method. 

3.3 The Bayesian logistic regression model 

In the Bayesian logistic regression framework, there are three main components: a chosen prior distribution 

over the parameters of interest, the likelihood function and the posterior distribution. These three components 

are formally combined by Bayes' rule. The posterior distribution contains all the available knowledge about 

the parameters of interest in the model. In the literature, many priors with different distributional forms 

have been chosen for different applications based on the Bayesian logistic regression. Examples include the 

Dirichlet prior, Jeffrey's prior and the Gaussian prior. The Dirichlet prior was chosen for the log-linear analysis 

of sparse frequency tables in [12]. In fact, in this application the likelihood function is a multinomial density 

function which is a conjugate of the Dirichlet prior and therefore the posterior distribution has an analytically 

tractable Dirichlet form. This has the effect of smoothing the estimates to a specific model [10]. Jeffrey's prior 

is based on a structural rule and has a good theoretical justification [12]. However, in larger problems where 

the number of explanatory variables is large, it is difficult to apply because of its computational complexity. 

The Gaussian prior has become popular in logit modelling [12], [13], [11], [14], [15]. It has the advantage of 

having low computational complexity and of smoothing the estimates toward a fixed mean and away from 

unreasonable extremes. However, when the likelihood function is not a conjugate of the Gaussian prior, the 

posterior distribution has no tractable form, and its mode and mean computations are usually performed, 

respectively, by the MAP approach and high-dimensional integration algorithms [12], which have very high 

computational cost [9], [12], especially when the data set is large and high-dimensional, as in our case. To avoid 

this sizable computational cost, some authors have used Laplace approximation to approximate the posterior 

distributions with a tractable Gaussian form [11], [39]. However, Laplace approximation suffers from a lack of 

flexibility and is inaccurate [11]. According to [9], variational transformations have been shown to have much 

more flexibility, which translates into improved accuracy of the approximation. In this approach, variational 

transformations are used in order to approximate the likelihood function with a simpler tractable exponential 

form. In this case, thanks to the conjugacy, by combining a Gaussian prior distribution over the parameters of 

interest with the likelihood approximation, we obtain a closed Gaussian form approximation to the posterior 
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distribution. However, as the number of observations is large, the number of variational parameters that must 

be updated to optimize the posterior distribution approximation is also large; hence the computational cost 

is high. In the Bayesian logistic regression model that we propose, we use variational transformations [9] 

and Jensen's inequality in order to approximate the likelihood function with a tractable exponential form. The 

explanatory vectors are not observed but instead are distributed according to two specific distributions. This has 

the advantage of incorporating their prior knowledge in the weight computation. The posterior distribution is 

also accurately approximated with a Gaussian which depends only on two variational parameters. Computation 

of the mean of the posterior distribution approximation is fast and has low computational complexity. Let us 

denote the random vectors whose realizations represent the explanatory vectors {^J}"=i of the relevance class 

fto and the explanatory vectors {Xj r}"li of the irrelevance class Q,\, by X0 — (Xo,o>2£o,o>-->X../-i,o> 1) a n d 

2£i = ( X 0 i , X 0 1 , ...,Xj_i i, 1), respectively. We suppose that X0 ~ #o(Xo) and X_i ~ qiQLi), where qo and 

qi are two chosen distributions. With Xo w e associate a binary random variable S0 whose realizations are the 

target variables {<S[ = 0}™!̂ , and with Xx we associate a binary random variable Sx whose realizations are the 

target variables {SJ = l } ? ^ . We set S0 equal to 0 for similarity and we set S : equal to 1 for dissimilarity. 

The parameters of interest (weights and intercept) are considered as random variables and are denoted by the 

random vector W = (uJ0, w0, ••-,wJ_1, v). We assume that W ~ 7r(W), where IT is a Gaussian prior with prior 

mean ji and prior covariance matrix E. Using Bayes' rule, the posterior distribution over W is given by 

P H & = ,,s, = 1) = *HMiws, (10) 

where 

l 

P(So = 0,S1 = l|W) = n F & = i|W), 
i=0 

^ o WW)) 2 

Since in the Bayesian approach we generally suppose that the space of unknown parameters is independent from 

the space of observations, we assume that W and X, are independent for each % £ {0,1}, and thus the joint 
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probability P(W,Xj = xi) = 7r(W)q,:(Xj — Xi) for each % e {0,1}. So we obtain 

1 

p(&>=o,81=i\w = E n 
1 

(7r(W))2gi(X, = Xi) 
*mQi(£i=xi), 

E n p & = ^ = ^ > w ) ^ ^ ^ x,), 

where P(Si = i|Xj = x,, W) = F((2i - l)W*Xj) for each i e {0,1} represent logistic modelings of S0 and Sx 

given the realizations of X0
 a n d 2£i> respectively. Therefore 

P(W|So = 0 , S i : = l ) 
[E,o €n0 ,x1en1 l l l o P f o = Ui = xu W)q,(X, = XQ]TT(W) 

P(S0 = 0,S1 = 1) (11) 

where 

F(S .o = 0,SX = 1) = f { E f[P& = i\Xt = Xi, WJftQLi = Xi)]^(W)dW. (12) 

The computation of the posterior distribution P(W|S0 = 0, Sx = 1) is intractable. However, we can approximate 

it by a variational posterior approximation with a Gaussian form, whose mean and covariance matrix computa

tion is feasible. To obtain this variational posterior approximation, we perform two successive approximations 

to the posterior distribution nominator term [J2x0en0,xietoi Yli=o^(^-i = * l ^ » = xi>^)<Z»GLj = xi)] m t n e 

equation (11), in order to bound it by an exponential form which is a conjugate of the Gaussian prior 7r(W). 

Firs t approximat ion: 

This first approximation is based on a variational transformation of the sigmoid function F(x) of the logistic 

regression. According to [9], the variational approximation of the sigmoid function in Hi = (2i — 1)W Xj V 

i G {0,1} is given by 

PiSi^Ui^xuYL) = F(Hi), (13) 

> F(6i)el 
UUj<il-v(ei)(H;-e>) 

= P{Si=i\Xi=xi,W,ei 
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tanh(^f-) where e, > 0 is the variational parameter, vK6*) = —A \ a n d tanh(^) = -̂57—e_u • So the posterior 

distribution nominator in the formula (11) can be approximated as follows: 

E UP& = *!£« = ^.W) f t(X, = xt) TT(W) (14) 

^ E I l ^ t S * = «|2^ = a;*,W.eOffiQLi = a:*) TT(W). 
XQ£&O,XI£CII i=0 

Second approximation: 

The first approximation is insufficient to approximate the term [ X*x0efi0,ziefi 

ajj)j by an exponential form. We therefore perform a second approximation, based on Jensen's inequality, which 

uses the convexity of the function ex. Using Jensen's inequality, we obtain 

:EoGno,cciefii i=0 

IP(«) E 
i=0 J xoGn0,o;i£ni 

Eiol^^-^fe)^?-;)] n*(& 
i = 0 

> 
2^t=o 

r B ^ l f f i l - e i -

P(W|S0=0,S1 = l,{ei};=0,{gi};=0) 

EUkoKif l? ] - . ! ) ] 

where Eqo and £7g, are the expectations with respect to the distributions qo and qi, respectively. 

Finally, thanks to the two above approximations, the posterior distribution numerator in the formula (11) can 

be approximated as follows: 

1 

[ E n p& = *& = *i. w)?i&i = ^ m 

> P(WIS 0 =o, Si = 1, {ei};=0, {ft};=0Mw). 

Thus, the variational posterior approximation is given by 

pOKB.-o.a-i.MUMLj = £ ( m ^-^^ ; f e t } "° ' ' < g ) 
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Since P(S0 = 0, Sj = 1) is a constant which doesn't affect the form of the variational posterior approximation, 

we can ignore it. We thus obtain 

P(W|S 0 = C S , = 1, {£ i};= 0 , {qi}l0) ex P(W|S0 = 0, S, = 1, {et}l0, {ft};=0)7T(W). 

Finally, the posterior distribution is approximated as follows: 

P(W|S0 = 0,S1 = 1) > P(W|S o = 0,S1 = l,{e<}<
1

=0,{g i} i
1

=o)) 

oc P(W|S0 = 0, S, = 1, {e ,} ; = 0 , {f t};=0)7r(W). 

(15) 

(16) 

Since 7r(W) is a Gaussian which is a conjugate of P(W|S_0 = 0,S1 = 1, {£»}._„, {%} ._„), which has an expo

nential form, the variational posterior approximation is a Gaussian with a posterior mean /J,post and a posterior 

covariance matrix T,post. Substituting 7r(W) and P(W|S 0 = 0, Ŝ  = 1, {^i}i=0, {li}i=0) by their Gaussian forms 

in equation (16), we obtain 

e-i(W-Mp..0'£p-o
l. t(S£-/w) a P(W|S0 = 0,^ = 1, {e ,}^ , { ^ ^ ( W - ^ ^ Q V - M ) . 

Thus, omitting the algebra, T,post and ^post
 a r e given by the following Bayesian update equations: 

O W r 1 = {^)-l+2YJ[p{ei)Eqi[xi{xi)
t]\, 

»=o 

(S)-V + ^ [ ( i - J ) ^ N f-^post = E post 

(17) 

(18) 

According to equation (17), S p o s t depends on the variational parameters {ej} i = 0 , so we must specify these. 

We have to find the values of { e i } = 0 that yield a tight lower bound in equation (15), and then an optimal 

approximation to the posterior distribution. This can be done by an EM algorithm which is derived in Appendix 

A. The variational parameters are given by 

= E t„ \2i 

'p{y^^^MMLT^)]J[E9,imtXi) (19) 

Eqi[\Xi) ^postxi\ ~r Kaposi) E^XiixiY Impost, Vi G {0 ,1} , 
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where f ( W | S 0 = 0,Sj = l j ({e»}= 0 ) :{li}i=0)
 ls the variational posterior approximation based on the 

previous values of {e ;} i = 0 . The weight and intercept computation algorithm has two phases. The first phase is 

the initialization; the second is iterative and allows the computation of T,post and npost through the Bayesian 

update equations (17) and (18), respectively, while using equation (19) to find the variational parameters at 

each iteration. In the second phase, we use a line-search algorithm to optimize a step-size parameter 9 to give 

the largest downhill step, subject to fipost,i > 0 V i 6 {0,..., J } . The values of the [ipost components are the 

desired estimates of the pseudo-metric weights wo and {wk}J
kZl anc^ the intercept v. 

Initialization: 

1. Compute the parameters of the distributions q$ and q\ which model the relevance class Q.Q and irrelevance 

class Qi explanatory vectors, respectively. 

2. Initialize the covariance matrix SoW to the identity matrix and the mean fi°ld to a vector with components 

equal to 1. 

3. Initialize the variational parameters as follows 

For each i e {0,1} do 

(etdy^Egi[(xi)
tHoldxi] + (^ ,old\t Eg^XiiXiY ,old 

End for 

Computation of Ep o s t and fipoati 

1. Do 

( S & - 1 - {H°ld)-1 + 2Y,[^ld)EqM{xif 

try 
f^post 

t = 0 

^try 
-'post (E^rv^+E^-^^N 

i = 0 

For each i G {0,1} do 

(e^r^E.Mx^iZt^+iCstr Eg^X^XiY try 
r-post 
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End for 

.old 

0<- rain { . ^post'j^ >±/\tJ'post,j fJ'postj) < 0 ) 

^post 
^new 

' Impost 
•yold 
^post 

t-old 
e 0 

^ efd J 

+ 0 
' Impost ' 

ytry 
^post 

try 
e 0 v #» ) 

' Impost ' 

^post 
,-old 
e 0 

V cfd ) 

W h i l e ( | E ^ t - X%Z\ > threshold or \u°J0
d
st - »™t\ > threshold) 

Return (j.%% 

2. Apply an active set algorithm to correct the false zero solutions of npost,i (i G {0,..., J}) [41], when exiting 

the iterative phase with 9 = 0. 

3. Assign the npost component values to the pseudo-metric weights u>o and {wk}^~Q and the intercept v. 

The iterative phase of the above algorithm scales with the dimension of W. In fact, it is dominated by the 

inversion of the variance-covariance matrix which requires C(( J + 2)3) operations at each iteration. 

4 Color image retrieval method 

The querying method has two phases. The first is a preprocessing phase, executed once for the entire database 

containing \DB\ color images. The second is the querying phase. 

4.1 Color image database preprocessing 

In the general case, the preprocessing phase (executed once for all the database color images before the querying 

phase) can be broken down into the following steps: 

1. Choose N feature vectors for comparison. 

2. Compute the N feature vectors Tn (I e {l,...,iV}) for each i-th color image of the database, where 

i€{l,...,\DB\}. 

3. The feature vectors representing the database color images are wavelet decomposed, compressed to m 

coefficients each and quantized. 
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4. Organize the decomposed, compressed and quantized feature vectors into search arrays 0 + and Ql_ (i = 

1,...,JV). 

5. Adjust the metric weights wl
0 and {wl

k}
J
kzl for each featurebase Tu (i — 1,...,\DB\) representing the 

database color images, where I e {1,.. . , N}. 

4.2 The querying algorithm 

We describe the querying algorithm in the general case by the following steps: 

1. Given a query color image, denote the feature vectors representing the query image by Qi [I = 1,..., N). 

2. Wavelet decompose the feature vectors representing the query image, compress them to m coefficients 

each and quantize them. 

3. Represent the degrees of similarity between Qi {1 = 1,,.., iV) and the database color image feature vectors 

Tu (I = 1,...,N) (i = 1,...,\DB\) by the arrays Scorei (l = l,...,iV), such that Scorei\i] =|| Qi,TH || 

for each i G {1,.. . , \DB\}. These arrays are returned by the procedures Retrieval(Q;, m, Ql
+, &{_) 

(l = 1,...,N), respectively. 

4. Represent the degrees of similarity between the query color image and the database color images by a 

resultant array TotalScore, such that TotalScore[i] = ^i=i^iScorei{i} for each i G {l,...,\DB\}, where 

{7 ;}^ 1 are weightfactors used to fine-tune the influence of each individual feature. 

5. Organize the database color images in order of increasing resultant similarity degrees in the array TotalScore. 

The most negative resultant similarity degrees correspond to the closest target images to the query image. 

Finally, return to the RI target color images closest to the query color image, where RI is the number of 

images returned, chosen by the user. 

5 Experimental results 

In this section, we will present a decontextualized comparison of the Bayesian logistic regression model (BLRM) 

to the classical logistic regression model (CLRM) and some relevant state-of-the-art linear classification algo

rithms which learn classifiers that are constructed as weighted linear combinations of features. Then, we will 

perform an evaluation and comparison of the BLRM and the CLRM in the image retrieval context. 
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5.1 Decontextualized evaluation and comparison 

In this subsection, we use synthetic da ta and a collection of benchmark real da ta sets to evaluate the BLRM and 

to compare it to the CLRM, the Support Vector Machine (SVM) [42], the Relevance Vector Machine (RVM) 

[43], and the Informative Vector Machine (IVM) [44] in terms of classification performance and training run

ning time. Since the aim of the decontextualized evaluation is to tease out the performance of the BLRM in a 

general context, the chosen data sets are not related to wavelet representation. The classification performance 

evaluations and comparisons are performed on the synthetic data using the following error measures: classifier 

error, bias, and variance, proposed and described in [46]. For the real data, these evaluations and comparisons 

are performed using the following error measures: classification accuracy [18] and the B index measure of pre

dictive accuracy (its values are on the interval [0,1], where 1 indicates perfect prediction) [47]. Because we 

are especially interested in two-class linear classification problems with large numbers of features or training 

samples, the synthetic and real data sets were selected to vary widely in training set size and number of features. 

We implemented our own C + + code for the BLRM, CLRM, RVM (based on the block-wise algorithm of [43]), 

and IVM, but for the SVM we adopted the widely used SVM-light program which uses a highly optimized C 

code [45]. The synthetic data is a collection of three ten-dimensional (M = 10) data sets. Each set has two 

clusters with a total oi N — 40,000 points and is generated from two Gaussians, 20,000 points per Gaussian. 

The two clusters in the first set are slightly overlapped, those in the second set are overlapped and those in the 

third set are highly overlapped. The overlap between two clusters is measured using the overlap rate (OLR) 

(it lies between 0 and 1, where 1 indicates perfect overlap) [48], and controlled by moving a cluster towards 

the other after translating its mean. For ease of representation, the synthetic data is reduced from its original 

dimensionality to two dimensions, and then shown in Figure 1. Table 1 describes the eight real data sets chosen. 

(a) (b) (c) 

Figure 1: Synthetic data : (a) slightly overlapped clusters (OLR = 0.1), (b) overlapped clusters (OLR = 0.3) 
and (c) highly overlapped clusters (OLR = 0.5). 
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Data set name 
Image 

Waveform 
German 

Breast Cancer 
0 - 6 (MNIST) 
7 - 9 (MNIST) 
d- t (TIMIT) 

iy-ih {TIMIT) 

Number of training samples N 
1300 
400 
700 
200 

11841 
12214 
6380 
8874 

Number of test samples 
1010 
4600 
300 
77 

1938 
2037 
300 
446 

Number of classes 
2 
2 
2 
2 
2 
2 
2 
2 

Number of features (dimension M) 
18 
21 

20 
9 

256 
256 
118 
118 

Table 1: Description of the real data sets. 

Image, Waveform, German and Breast Cancer were extracted from the famous UCI collection. More de

tails concerning the original source of these data sets are available in a highly comprehensive online repository 

[49]. A total of 100 training/test splits are provided by those authors: our results show averages over the first 10 

of those. The 0 — 6 and 7 — 9 data sets were extracted from the MNIST data set of handwritten digits, and the 

d — t and iy — ih data sets were extracted from the TIMIT speech data set. More details concerning the original 

source of these data sets are available in [50]. For each synthetic and real data set, we did 10 independent SVM 

runs with regularization parameters C € {1,.. . , 10}, respectively, then we initialized the active set size for IVM 

with the average number (over 10 runs) of support vectors [42]. When fitting the BLRM and the CLRM on 

the synthetic and real data sets, we did not use the line-search algorithm to restrict the weights to be positive. 

Moreover, for each data set of the synthetic data, the distributions go and q\ of the BLRM were chosen as 

ten-dimensional Gaussians whose parameters were computed directly from the cluster points, and for each real 

data set, go and q\ were chosen as empirical distributions, since we do not have prior knowledge about the 

classes of the real data set. Table 2 illustrates the computed training classifier errors, biases and variances and 

the training running times for the various classifiers on the synthetic data sets. Table 3 illustrates the computed 

test classification accuracies and test B index measures and the training running times for the various classifiers 

Slightly overlapped clusters 
Overlapped clusters 
Highly overlapped clusters 

BLRM 
1.7/7.5/19.5/38 

3.2/10.1/33.8/42 
5.3/12.8/56.2/35 

SVM 
1.8/7.6/19.7/1510 

3.3/10.3/34.1/1480 
5.4/13.1/56.6/1540 

RVM 
2.1/7.8/20.2/380 

3.5/10.7/34.7/362 
6.3/13.2/57.6/325 

IVM 
2.3/8.3/20.9/710 

3.7/10.8/34.9/740 
6.5/13.6/58.2/680 

CLRM 
3.1/10.2/23.6/340 
4.9/12.5/37.9/310 
8.1/16.2/62.4/285 

Table 2: Evaluation and comparison on the synthetic data. The four entries (left to right) are training bias 
(%), variance (%), classifier error (%) and training running time (seconds). Note that classifier error = bias + 
variance + Bayes error, where the Bayes error is the misclassification rate [46]. 
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Image 
Waveform 
German 
Breast Cancer 
0 - 6 (MNIST) 
7 - 9 (MNIST) 
d-t (TIMIT) 
iy-ih (TIMIT) 

HLkU 
93.7/0.95/51 
80.2/0.87/57 
70.2/0.72/54 
64.8/0.66/39 

96.3/0.98/212 
95.2/0.96/267 
77.5/0.76/142 
91.2/0.89/125 

53VM 
93.2/0.94/180 
79.9/0.85/110 
69.4/0.68/130 

64/0.65/83 
96/0.97/1080 
95/0.95/1123 
76.9/0.74/830 
90/0.88/910 

RVM 
91.2/0.92/82 
78.5/0.82/65 
69.8/0.71/63 
62.3/0.63/50 

93.7/0.95/350 
94.3/0.93/389 
75.7/0.73/280 
87/0.85/310 

IVM 
90.8/0.9/106 
76.8/0.79/85 
69.7/0.69/81 
63.2/0.61/62 
92/0.94/510 

94.6/0.94/540 
74/0.71/523 

88.8/0.86/415 

CLRM 
82.2/0.88/91 
69.5/0.75/76 
58.5/0.61/69 
54.7/0.51/55 
75.3/0.72/323 
74.2/0.68/410 
51/0.48/250 
65/0.62/273 

Table 3: Evaluation and comparison on the eight real data sets. The three entries (left to right) are test 
classification accuracy (%), test B index measure (e [0,1]) and training running time (seconds). 

In terms of classification performance and training running time, we can see that the BLRM outperforms 

the other four classifiers on the synthetic data sets and on all eight real data sets. Prom tables 2 and 3, it can be 

seen that the BLRM slightly outperforms the SVM, while achieving significantly lower training running time. 

Generally speaking, in terms of classification performance (except for German), there is a greater difference 

between the BLRM and the RVM and IVM than there is between these two and the SVM, but in terms of 

training running time the RVM and IVM are closer to the BLRM than to the SVM. We also notice that the 

BLRM significantly outperforms the CLRM in terms of classification performance and training running time, 

especially on the largest and most high-dimensional data sets 0 — 6, 7 — 9, d — t and iy — ih. In fact, the 

high dimensionality makes the CLRM suffer from various side effects of multicollinearity which strongly affect 

the precision of the maximum likelihood estimates. The BLRM outperforms the other classifiers in terms of 

classification performance thanks to its incorporation of the prior knowledge of the data set clusters and its 

robust approximation of the posterior distribution. The variational approximation adopted here was shown 

to be more flexible and accurate than the Laplace quadratic approximation adopted in the RVM [43] and the 

approximate method adopted in the IVM [44]. In terms of time complexity, the BLRM training time scales 

with only 0(M3) (dominated by the inversion of the posterior covariance matrix), while for SVM and IVM 

it scales with <D(N2) and O(NN^) [50], respectively, where Ns is the number of support vectors. As for the 

RVM and CLRM, their training times both scale with £>(M3) + (D(NM2), where G(M3) is the complexity of 

the Hessian inversion for the CLRM and the inversion of the posterior covariance matrix for the RVM, apart 

from the computations of these matrices which require 0(NM2) each. We can notice that as N >> M and 

Ns > > M which is the case of the used data sets, the BLRM has much lower computational complexity than 

the other classifiers. Note that the computed training running times given in tables 2 and 3 above are also 

dominated by the number of iterations of each classifier. We noticed in our experiments that for all data sets 

the BLRM requires fewer iterations to converge than do the other classifiers. This is thanks to the simple EM 

algorithm adopted which iterates over only two variational parameters. 
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5.2 Contextualized evaluation and comparison 

In this subsection, we briefly present the feature vectors used for color image representation. Then, we discuss 

the choices of the distributions q0 and qit in order to validate the BLRM in the image retrieval context. Finally, 

we evaluate the querying method using the CLRM and BLRM, separately, and we perform a comparison with 

results for different retrieval methods. The choices of the distributions go and qi and the querying evaluation 

were conducted on the WANG, ZuBuD, UW and CalTech color image databases proposed by [17]. The WANG 

database contains \DB\ = 1000 color images which were selected manually to form 10 sets (e.g. Africa, beach, 

ruins, food) of 100 images each. The Zurich Building Image Database (ZuBuD) contains \DB\ = 1005 color 

images of buildings selected to form 201 image classes, where each class contains 5 color images of the same 

building taken from different positions. The UW database contains \DB\ = 1109 color images. No class 

information is available for the images, but they are annotated. We clustered the images in different classes 

according to their annotations (e.g. barcelona, springflowers, swissmountains): i.e., two images belong to the 

same class iff their annotations contain identical words. The CalTech database contains \DB\ = 2000 color 

images that we selected from the CalTech collection categories (e.g., motorbikes, airplanes, faces) to form 100 

classes of 20 images each. Before feature vector extraction, we represented the WANG, ZuBuD, UW and 

CalTech database color images in the perceptually uniform LAB color space. 

5.2.1 Feature vectors used 

The luminance histogram and the weighted histograms described in detail by [8] are used for image color 

and contrast description in this paper; image texture description is performed using kurtosis and skewness 

histograms [19]. Given a n M x J V pixel LAB color image, its luminance histogram is denoted by hi and plots 

the number of pixels of luminance L. The weighted histograms are the color histogram constructed after edge 

region elimination and the multispectral gradient module mean histogram. The former is denoted by h% and the 

latter is denoted by he
k {k = a,b), where a and b are the chrominances red/green and yellow/blue, respectively. 

The LAB color image kurtosis and skewness histograms are given by 

M - l J V - 1 
hk(c)= £ £ 5 ( J £ ( M ) - C ) , (20) 

i = 0 j=Q 
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and 

M-lN-l 

K{c)= £ £ * ( J i S ( M ) - c ) , (21) 
»=o j=o 

respectively, for each c € {0, ...,255} and k = L,a,b, where J£, /£ and /£ are the kurtosis images of the 

luminance L and the chrominances a and b, respectively, and /£ , /„ and /£ a r e their skewness images. They are 

obtained by local computation of the kurtosis and skewness values at the luminance and chrominance image 

pixels. Thus, each color image of the WANG, ZuBuD, UW and CalTech databases is represented by N = 11 

feature vectors which are the histograms hi,-, ftj, fo£, h%, h%, h%, h%, h%, hs
L, hs

a and h\. Then, all of these 

histograms are Daubechies-8 wavelet decomposed, compressed to m coefficients each and quantized. Therefore, 

each database is represented by eleven featurebases of transformed histograms. We chose Daubechies-8 wavelets 

as they have been proven to have good frequency properties and to be good for 1-D signal synthesis. Moreover, 

they are a good compromise between computational time and performance [51]. Since we discretized each 

histogram extracted into 256 components, we set J equal to 8 in the following subsections. 

5.2.2 The choice of go and q\ 

The choice of go and gi are performed separately for each of the featurebases representing the WANG, ZuBuD, 

UW and CalTech databases. For simplicity, we assume that X 0 0 and (Xo,o> •••>2£j-i,o) a r e independent. Anal

ogously, for the same reason, we made the same assumption for X0 x and (X0 i, ...,XJ_11). F° r e ach histogram 

featurebase, we suppose that the random vector (X0 o> •••>2£j_i o) random variables whose realizations are pos

itive integers, are independent and each one of them follows a poisson distribution. Analogously, we made the 

same choice for (X0 1, ...,XJ_1 j). We are aware that these modelings are approximations, especially when the 

realizations of the random variables are very small integers, but we claim that they have very negligible effect on 

the querying results. For each histogram featurebase, the realizations of the random variable X0 0 are positive 

real numbers. We modelled them by a Gaussian mixture distribution whose parameters were estimated by the 

EM algorithm, and whose component number was selected using the minimum message length validity function 

(MML), as it has been shown to give good results in [16]. Similarly, the realizations X0 l were modelled by a 

Gaussian mixture distribution. Note that we also chose the distributions go and gi as empirical distributions 

to validate the BLRM, but in adopting this choice we noticed that the querying results differ slightly from the 

ones found after choosing go and gi as joint distributions of Gaussian mixtures and Poisson distributions. More-
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over, this latter choice remains better as the Poisson distribution parameters are obtained by computing simple 

arithmetic means of the integer realizations, while, since qo and q\ are empirical distributions, a higher compu

tational complexity is involved in precomputing the expectations in the equations of the variational parameter 

initialization and Bayesian update, before the iterative phase of the BLRM. 

5.2.3 Comparative evaluation of the querying procedure 

In order to evaluate our querying method, two principal issues are required: a ground truth and an objective 

performance evaluation of the adopted classification method. These two issues are represented by precision-

scope curves Pr — f(RI) [20], where the scope RI is the number of images returned to the user. For ground 

truth, we use human observations and judgments. In fact, eight external persons participated in the evaluation 

described below. In the objective evaluation of the adopted classification method, the querying results are 

presented with reference to the prior labelling of images into classes. In each query performed in the evaluation 

experiment, each human subject is asked to assign a goodness score and a labelling score to each retrieved 

image. The goodness score is 2 if the retrieved image is almost the same as the query, 1 if the retrieved 

image is fairly similar to the query and 0 if there is no similarity between the retrieved image and the query. 

The labelling score is 1 if the query image and the retrieved image belong to the same class and 0 otherwise. 

Therefore, the ground truth and classification precisions are thus computed as follows: Pr9t = the sum of 

goodness scores for retrieved images/RI and Prc = the sum of labelling scores for retrieved images/i?/. The 

curves Prgt = f(RI) and Prc = f(RI) give the precisions for different values of RI, which lie between 1 and 

20 when we perform the querying evaluation on the WANG, UW and CalTech databases, and between 1 and 5 

when we perform the querying evaluation on the ZuBuD database. When the human subjects perform different 

queries in the evaluation experiment, we average the computed Prgt values and the computed Prc values for 

each value of RI, and then we construct the classification and ground truth precision-scope curves. In order 

to evaluate the querying procedure on the WANG database, each human subject is asked to formulate a query 

from the database, execute the querying procedure using weights computed by the CLRM, and assign goodness 

and labelling scores to each retrieved image; and then to reformulate a query from the database, execute the 

querying procedure using weights computed by the BLRM, and assign goodness and labelling scores to each 

retrieved image. Each human subject repeats the querying process fifty times, choosing a new query from the 

database each time. We repeat this experiment for different orders of compression m e {30,20,10}, keeping the 

weightfactors {7;}?=i equal to \ and {~li\\L± equal to 1 to give more importance to the edge region and texture 
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features. Similarly, to evaluate the querying procedure on the ZuBuD, UW and CalTech databases, each human 

subject is asked to follow the preceding steps. The resulting ground truth and classification precision-scope 

curves for each compression order are shown in the figures below for the ZuBud, WANG, UW and CalTech 

databases. 

Wsighis computed by Ihe Bsyeei 

Waighls computed by ths classic 

Weights computed by the Bayssian logistic regitssion model, 

Weight! computed by the classical logistic regression model, 

(a) (b) 

Figure 2: Evaluation (ZuBud database): (a) ground truth precision-scope curves and (b) classification precision-
scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, for the 
compression orders m e {30,20,10}. 

1 3 4 S B 7 

. Weights computed by the Bay esian logistic regressi 

' Weights computed by the classical logistic regies si 

15 IB 17 1G 19 20 

(a) 

2 3 1 5 

. Weights computed by the Bayesian logistic regret 

' Weights computed by the classical logistic regrts 

10 11 13 13 14 15 18 17 10 19 iO 

(b) 

Figure 3: Evaluation (WANG database): (a) ground truth precision-scope curves and (b) classification precision-
scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, for the 
compression orders m e {30,20,10}. 
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l i gh t s computed b j the Bayesian logistic legiesei 

Veighis computed by the classics! logistic regress! 

1 2 3 A 5 B 7 

(a) 

Figure 4: Evaluation (UW database): (a) ground truth precision-scope curves and (b) classification precision-
scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, for the 
compression orders m € {30,20,10}. 

sd by tha Bayeaian logistic regies 

ssical logistic regression model, 

2 3 4 5 6 7 

(a) 

. Weight! computed by Ihs Bayesian logistic rsgrasiion model, 

Wsighls compuled by the classical logistic regression model. 

2 3 1 5 6 7 B 9 

(b) 

Figure 5: Evaluation (CalTech database): (a) ground truth precision-scope curves and (b) classification 
precision-scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, 
for the compression orders m e {30,20,10}. 

Thanks to the above precision-scope curves, we can notice that the BLRM is a significantly better tool than the 

CLRM to improve retrieval ground truth and classification precisions. This is because of the problems related 

to the CLRM and mentioned in the subsection (3.2). In order to compare our image retrieval method, when 

using the BLRM, to others proposed by [17], [53] and [52], we chose the error rate ER as retrieval performance 

measure, as it has been shown in [17] to be well established for classification tasks and strongly correlated to 

several state-of-the-art measures. The ER is given as 1 — Pr°( l ) , where Prc(l) is the classification precision 

of the first image retrieved. If Prc(l) is averaged over a set of queries, ER is equivalent to the percentage of 

incorrect images retrieved in the first rank. In [17] the four image databases were used, while in [53] and [52] 

CalTech and ZuBud were used, respectively. To enable comparison with the results obtained in these works, we 

set the weightfactors {'yi}}^ equal to 1 to give all features same importance, and we selected the query images as 
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follows: for the WANG, UW and CalTech databases, no separate train/test corpus is available, thereby queries 

were selected in a leaving-one-out manner. All images of WANG and UW were selected as queries, while for 

CalTech, only images of the categories motorbikes, airplanes and faces were selected as queries. For the ZuBud 

database, a separate test set of 115 query images is provided [17]. Table 4 illustrates the computed ER averages 

for our retrieval method and retrieval methods of [17], [53] and [52]. 

Image collection 
WANG 
UW 
ZuBud 
CalTech airplanes 
CalTech faces 
CalTech motorbikes 

T. Deselaers et al. [17J 
12.7 % 
12.2 % 
15.7 % 
0.8 % 
1.6% 
7.4 % 

R. Fergus et al. [53| 

-
-
-

9.8 % 
3.6 % 
7 . 5 % 

H. Shao et al. [52] 

-
-

13.9 % 

-
-
-

our retrieval method (m = 20) 
8 % 

8.29 % 
6 . 9 % 
1.25 % 
1 .3% 
5.5 % 

Table 4: Comparison: ER [%] averages for our retrieval method, when using the BLRM, and other retrieval 
methods. 

6 Conclusion 

We have proposed an effective Bayesian logistic regression model with a Gaussian prior distribution over the 

parameters of interest. This model is based on a variational approximation and on the Jensen's inequality. 

Thanks to these two approximations, computation of the parameters of interest is straightforward and fast. 

Incorporation of the prior knowledge of the explanatory vectors in the model also optimizes computation of 

the parameters of interest. Moreover, the consideration of a Gaussian prior distribution over these parameters 

smooths their estimates toward a fixed mean and away from the unreasonable extremes caused by the maximum 

likelihood routine used in the classical logistic regression model. We performed a decontextualized comparison of 

the Bayesian logistic regression model to the classical logistic regression model and to some relevant state-of-the-

art linear classification algorithms. Experiments showed that the Bayesian logistic regression model outperforms 

these algorithms and the classical logistic regression model in terms of classification performance and training 

running time. Also, we performed an evaluation and comparison of the Bayesian and classical logistic regression 

models in the image retrieval context. Experiments showed that the Bayesian logistic regression model is a 

significantly better tool than the classical one for improving retrieval performance. Finally, we showed that our 

retrieval method turns out to be competitive with other retrieval methods which use same image databases. 
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CHAPITRE 4 

Modeles de regression logistique pour 

une methode rapide de recherche 

d'images par le contenu fondee sur la 

selection des caracteristiques 

Dans ce chapitre, nous introduisons la selection des caracteristiques pour ameliorer la 

methode de recherche presentee dans les chapitres precedents. La selection des carac

teristiques est effectuee en utilisant separement les modeles Bayesien et classique de 

regression logistique. Elle permet de donner automatiquement plus d'importance aux 

caracteristiques qui discriminent le plus et moins d'importance aux caracteristiques 

qui discriminent le moins. Une comparaison des deux modeles est effectuee dans le 

cadre de la recherche d'images basee sur la selection des caracteristiques. Les expe

rimentations ont ete effectuees sur les bases de donnees d'images couleurs connues 

WANG et ZuBud. 

Nous presentons dans les pages qui suivent, un article intitule Logistic Regression 
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Models for a Fast CBIR Method Based on Feature Selection qui a ete pu-

blie dans les actes du Twentieth International Joint Conference on Artificial 

Intelligence (IJCAI'07) qui a eu lieu a Hyderabad (Inde) en 2007. 
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Abstract 

Distance measures like the Euclidean distance have been the most widely used to measure similarities between 

feature vectors in the content-based image retrieval (CBIR) systems. However, in these similarity measures 

no assumption is made about the probability distributions and the local relevances of the feature vectors. 

Therefore, irrelevant features might hurt retrieval performance. Probabilistic approaches have proven to be 

an effective solution to this CBIR problem. In this paper, we use a Bayesian logistic regression model, in 

order to compute the weights of a pseudo-metric to improve its discriminatory capacity and then to increase 

image retrieval accuracy. The pseudo-metric weights were adjusted by the classical logistic regression model in 

[Ksantini et al., 2006]. The Bayesian logistic regression model was shown to be a significantly better tool than 

the classical logistic regression one to improve the retrieval performance. The retrieval method is fast and is 

based on feature selection. Experimental results are reported on the Zubud and WANG color image databases 

proposed by [Deselaers et al., 2004]. 

1 Introduction 

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the field 

of medecine, security, communications, commerce and academia, increased the need for both efficient image 
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database creation and retrieval procedures. For this reason, content-based image retrieval (CBIR) approach 

was proposed. In this approach, each image from the database is associated with a feature vector capturing 

certain visual features of the image such as color, texture and shape. Then, a similarity measure is used to 

compare these feature vectors and to find similarities between images with the assumption that images that are 

close to each other in the feature space are also visually similar. Distance measures like the Euclidean distance 

have been the most widely used for feature vector comparison in the CBIR systems. However, these similarity 

measures are only based on the distances between feature vectors in the feature space. Therefore, because of the 

lack of information about the relative relevances of the featurebase feature vectors and because of the noise in 

these vectors, distance measures can fail and irrelevant features might hurt retrieval performance. Probabilistic 

approaches are a promising solution to this CBIR problem, that when compared to the standard CBIR methods 

based on the distance measures, can lead to a significant gain in retrieval accuracy. In fact, these approaches 

are capable of generating probabilistic similarity measures and highly customized metrics for computing image 

similarity based on the consideration and distinction of the relative feature vector relevances. As to previous 

works based on these probabilistic approaches, [Peng et al., 2004] used a binary classification to classify the 

database color image feature vectors as relevant or irrelevant, [Caenen and Pauwels, 2002] used the classical 

quadratic logistic regression model, in order to classify database image feature vectors as relevant or irrelevant, 

[Aksoy et al., 2000] used weighted L\ and L<i distances, in order to measure the similarity degree between two 

images and [Aksoy and Haralick, 2001] measure the similarity degree between a query image and a database 

image using a likelihood ratio derived from a Bayesian classifier. 

In this paper, we investigate the effectiveness of a Bayesian logistic regression model based on a variational 

method, in order to adjust the weights of a pseudo-metric used in [Ksantini et al., 2006], and then to improve 

its discriminatory capacity and to increase image retrieval accuracy. This pseudo-metric makes use of the 

compressed and quantized versions of the Daubechies-8 wavelet decomposed feature vectors, and its weights 

were adjusted by the classical logistic regression. We will show that thanks to the variational method, the 

used Bayesian logistic regression model is a significantly better tool than the classical logistic regression model 

to compute the pseudo-metric weights and to improve the querying results. The retrieval method is fast, 

efficient and based on feature selection. The evaluation of the retrieval method using both models, separately, 

is performed using precision and scope curves as defined in [Kherfi and Ziou, 2006]. 

In the next section, we briefly define the pseudo-metric. In section 3, we briefly describe the pseudo-metric 

weight computation using the classical logistic regression model, while showing the limitations of this latter 
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and that the Bayesian logistic regression model is more appropriate for the pseudo-metric weight computation. 

Then, we detail the Bayesian logistic regression model. Moreover, we will describe the data training performed 

for both models. The feature selection based image retrieval method and the feature vectors used to represent 

the database images are presented in section 4. Finally, in section 5, we will perform some experiments to 

validate the Bayesian logistic regression model and we will use the precision and scope, in order to show the 

advantage of the Bayesian logistic regression model over the classical logistic regression one, in terms of querying 

results. 

2 The pseudo-metric 

Given a query feature vector Q and a featurebase of \DB\ feature vectors Tfc (k = 1,...,\DB\) having 2J 

components each, our aim is to retrieve in the featurebase the most similar feature vectors to Q. To achieve 

this, Q and the \DB\ feature vectors are Daubechies-8 wavelets decomposed, compressed to m coefficients 

each and quantized. Then, to measure the similarity degree between Q and a target feature vector Tfc of the 

featurebase, we use the one-dimensional version of the pseudo-metric used in [Ksantini et al., 2006] and given 

by the following expression 

| |g,r f c | |=*0 |Q[o]-f f c[o]|- £ wbin{i)(Q
c
g{i} = nq[i\), (i) 

where 

Q[0] and Tk[0] are the scaling factors of Q and Tk, Qg[i] and T£q[i] represent the i-th coefficients of their 

Daubechies-8 wavelets decomposed, compressed to m coefficients and quantized versions, WQ and the Wf,jn(j)'s 

are the weights to compute, and the bucketing function bin() groups these latters according to the J resolution 

levels, such as 

bin{i) = [log2(i)\ with i = 1,..., 2 J - 1. (3) 
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3 The weight computation 

In order to improve the discriminatory power of the pseudo-metric, we compute its weights «io and {wk}^Z0 

using a classical logistic regression model and a Bayesian logistic regression model, separately. We define two 

classes, the relevance class denoted by fio and the irrelevance class denoted by Q\, in order to classify the feature 

vector pairs as similar or dissimilar. The basic principle of using the Bayesian logistic regression model and the 

classical logistic regression one is to allow a good linear separation between S7Q a n d ^i) and then to compute 

the weights which represent the local relevances of the pseudo-metric components. 

3.1 T h e classical logistic regression model 

In this model, each feature vector pair is represented by an explanatory vector and a binary target variable. 

Specifically, for the i-th feature vector pair, we associate an explanatory vector Xi = (Xo,i, -X"o,ii •••> -Xv-i,»> 1) € 

RJ x {1} and a binary target Si which is either 0 or 1, depending on whether or not the two feature vectors are 

intended to be similar. Xo,» is the absolute value of the difference between the scaling factors of the Daubechies-

8 wavelets decomposed, compressed and quantized versions of the two feature vectors and {-Xfc,j}fc=d a r e the 

numbers of mismatches between the J resolution level coefficients of these latter. We suppose that we have no 

pairs of similar feature vectors and n\ pairs of dissimilar ones. Thus, the class fio contains no explanatory vectors 

and their associated binary target variables {X[, S[ = 0}™!̂  to represent the pairs of the similar feature vectors, 

and the class fl\ contains n\ explanatory vectors and their associated binary target variables {X] r , SJ = I}?!} 

to represent the pairs of the dissimilar feature vectors. The pseudo-metric weights WQ and {iffc}^~Q and an 

intercept v are chosen to optimize the following conditional log-likelihood. 

L(w0,w0,...,wj-.i,v) = Y^log(pri) + ^Tl°g(pT), (4) 

where p\ and p^ are the relevance and irrelevance probabilities, respectively, and given by 

J - I 

p\ = Fi-woX^ - Y, wkXr
k4 - v), 

fc=0 

J - I 
pj = FiwoX^ + ^kX^+v), 

fe=0 
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where F(x) = j ^ is the logistic function. For this reason, standard optimization algorithms such as Fisher 

scoring and gradient ascent algorithms [Clogg et al, 1991], can be invoked. However, in several cases, especially 

because of the exponential in the likelihood function or because of the existence of many zero explanatory vectors, 

the maximum likelihood can fail and estimates of the parameters of interest (weights and intercept) may not 

be optimal or may not exist or may be on the boundary of the parameter space. Also, as there is complete or 

quasicomplete separation between fio and Oi, the function L is made arbitrarily large and standard optimization 

algorithms diverge [Krishnapuram et al., 2005]. Moreover, as fi0 and fii are large and high-dimensional, these 

standard optimization algorithms have high computational complexity and take long time to converge. The 

first two problems can be solved by smoothing the parameter of interest estimates, assuming a certain prior 

distribution for the parameters, thereby reducing the parameter space, and the third problem can be solved 

by using variational transformations which simplify the computation of the parameter of interest estimates 

[Jaakkola and Jordan, 2000]. This motivates the adoption of a Bayesian logistic regression model based on 

variational methods. 

3.2 The Bayesian logistic regression model 

In the Bayesian logistic regression framework, there are three main components which are a chosen prior distrib

ution over the parameters of interest, the likelihood function and the posterior distribution. These three compo

nents are formally combined by Bayes' rule. The posterior distribution contains all the available knowledge about 

the parameters of interest in the model. Among many priors having different distributional forms, gaussian 

prior has the advantage of having low computational intensity and of smoothing the parameter estimates toward 

a fixed mean and away from unreasonable extremes. However, when the likelihood function is not conjugate 

of the gaussian prior, the posterior distribution has no tractable form and its mean computation involves high-

dimensional integration which has high computational cost. According to [Jaakkola and Jordan, 2000], it's 

possible to use accurate variational transformations in order to approximate the likelihood function with a 

simpler tractable exponential form. In this case, thanks to the conjugacy, with a gaussian prior distribution 

over the parameters of interest combined with the likelihood approximation, we obtain a closed gaussian form 

approximation to the posterior distribution. However, as the number of observations is large, the number of 

variational parameters updated to optimize the posterior distribution approximation is also large, thereby the 

computational cost is high. In the Bayesian logistic regression model that we propose, we use variational trans

formations and the Jensen's inequality in order to approximate the likelihood function with tractable exponential 
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form. The explanatory vectors are not observed but instead are distributed according to two specific distribu

tions. The posterior distribution is also approximated with a gaussian which depends only on two variational 

parameters. The computation of the posterior distribution approximation mean is fast and has low computa

tional complexity. In this model, we denote the random vectors whose realizations represent the explanatory 

vectors {XJ}™^ of the relevance class QQ and the explanatory vectors {Xjr}!?i1 of the irrelevance class Qi, by 

X0 = (Xo.o.Xo.o.-.Xj-i.o,!) and Xi = (X0 1 )X0 , i . •••-Xj-i,i, 1), respectively. We suppose that XQ ~ g0(X0) 

and X_i ~ gi(Xi), where go and <Zi are two chosen distributions. For X0
 w e associate a binary random variable 

S0 whose realizations are the target variables {SJ" = 0 } " ^ , and for Xi w e associate a binary random variable 

St whose realizations are the target variables {5] r = l}?ii- We set S0 equal to 0 for similarity and we set Sj 

equal to 1 for dissimilarity. Parameters of interest (weights and intercept) are considered as random variables 

and are denoted by the random vector W = (tu0,«;0,..., Wj_i,w). We assume that W ~ 7r(W), where IT is a 

gaussian prior with prior mean ji and covariance matrix S. Using Bayes' rule, the posterior distribution over 

W is given by 

P ,wm - n s • - ^ - [ ^ o e n o ^ e n ! n L o i ? ( & = i |&= a ; < ,W)gi(X4=x<)]7rCB0 
P m - ° - ° 'Si - 1) - P(S0 = 0,S1 = 1) ' 

where P(Si — i|Xj = £j,W) — F({2i — 1)W*:EJ) for each i e {0,1}. Using a variational approximation 

[Jaakkola and Jordan, 2000] and the Jensen's inequality, the posterior distribution is approximated as follows 

P ( W | S 0 - O . S i - 1 ) > P(S0 = 0,S1 = 1) ' 

« P(W|S0 = 0, S, = 1, {£ i};= 0 , {qi}l0)n(W) 

where 

E(W|So =0 ,S X = M ^ U ^ L o ) = UF&) 
i = 0 

ei 
ELo [E'HlH

a
il~'i]-i:Uo [*(««>K [*?]-«?)] 

where Eqo and Eqi are the expectations with respect to the distributions go and gi, respectively, (p(ei) = °"4e
 2 

and {e»}._. are the variational parameters. Therefore, the approximation of the posterior distribution is 

considered as an adjustable lower bound and as a proper Gaussian distribution with a posterior mean ^post and 
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covariance matrix Spost which are estimated by the following Bayesian update equations 

impost)-1 = (^)~1+2j2['P^i)Egi[xi(xi)t}], (5) 

Impost — -^ post 

i=0 
1 

( S J - V + E ^ - ^ N ] 
j = 0 

(6) 

The weight and intercept computation algorithm is in two phases. The first phase is the initialization of go, 

qi and the gaussian prior 7r(W), and the second phase is iterative and allows the computation of Epos* and 

Impost through the Bayesian update equations (5) and (6), respectively, while using an EM type algorithm 

[Jaakkola and Jordan, 2000], in order to find the variational parameters {eA . „ at each iteration to have an 

optimal approximation to the posterior distribution. In the initialization phase, qo and <?i are chosen to model fi0 

and fix, respectively, and because of the absence of prior knowledge about the weights and the intercept, 7r(W) 

is chosen univariate with zero mean and large variances [Congdon, 2001]. The values of /j,post components are 

the desired estimates of the pseudo-metric weights WQ and {wk}^!^ and the intercept v. Once the parameters 

of the posterior distribution approximation are computed, its magnitude is given by the term Y\i=0 F(ei). This 

latter becomes very close to 1 as Clo and fii are linearly separated or quasi separated and tends towards 0 as 

Qo and Q,\ become more and more overlapped. Analogically, in the classical logistic regression model, the term 

e2L has almost the same characteristics as Yli=0F(ei) [Caenen and Pauwels, 2002]. These two terms will be 

used to perform feature selection in the retrieval method. 

3.3 Training 

Let us consider a color image database which consists of several color image sets such that each set contains 

color images which are perceptually close to each other in terms of object shapes and colors. In order to compute 

the pseudo-metric weights and the intercept by the classical logistic regression model, we have to construct the 

relevance class f2o and the irrelevance class fli. To construct fio, we draw all possible pairs of feature vectors 

representing color images belonging to the same database color image sets, and for each pair we compute an 

explanatory vector and we associate to this latter a binary target variable equal to 0. Similarly, to construct 

fii, we draw all possible pairs of feature vectors representing color images belonging to different database color 

image sets, and for each pair we compute an explanatory vector and we associate to this latter a binary target 

variable equal to 1. For the Bayesian logistic regression model, we construct the fio and fix with the same way, 
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but instead of associating a binary target variable value to each explanatory vector of QQ and fii, we associate 

a binary target variable S0 equal to 0 to all fio explanatory vectors and we associate a binary target variable 

Sx equal to 1 to all fii explanatory vectors. 

4 Color image retrieval method 

The querying method is in two phases. The first phase is a preprocessing phase done once for the entire database 

containing \DB\ color images. The second phase is the querying phase. 

4.1 Color image database preprocessing 

We detail the preprocessing phase done once for all the database color images before the querying in a general 

case by the following steps. 

1. Choose N feature vectors for comparison. 

2. Compute the TV feature vectors Tu (I e {1,...,JV}) for each i-th color image of the database, where 

ie{l,...,\DB\}. 

3. The feature vectors representing the database color images are Daubechies-8 wavelets decomposed, com

pressed to TO coefficients each and quantized. 

4. Organize the decomposed, compressed and quantized feature vectors into search arrays Ql
+ and 0(_ [l = 

1,..., N) which are used to optimize the pseud-metric computation process [Ksantini et al., 2006]. 

5. Adjustment of the metric weights wl
0 and {wl

k}~lzl for each featurebase Tu (i = 1,..., \DB\) representing 

the database color images, where I e {1, ...,N}. 

4.2 The querying algorithm 

We detail the querying algorithm in a general case by the following steps. 

1. Given a query color image, we denote the feature vectors representing the query image by Qi (l = 1,..., N). 

2. The feature vectors representing the query image are Daubechies-8 wavelets decomposed, compressed to 

TO coefficients each and quantized. 
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3. The similarity degrees between Qi (l = l,...,iV) and the database color image feature vectors Tu 

(l — 1,..., AT) (i — 1,...,\DB\) are represented by the arrays Scorei (l = l,...,N) such that Scorei[i] =|| 

Qi,Tn || for each i £ {1,.. . , |D5 |} . These arrays are returned by the procedure Retrieval(Q;, m, 0 '+ , 

@L) (l = 1, ...,iV), respectively. The procedure Retrieval is used to optimize the querying process 

[Ksantini et al, 2006]. 

4. The similarity degrees between the query color image and the database color images are represented by 

a resulted array TotalScore, such as, TotalScore[i] = Yli^ill^corei{^\ f° r e a c n * e {!) •••> |-D-B|}> where 

{li}lLi a r e weightfactors used to down-weight the feature which has low discriminatory power. 7/ = e2Ll 

when the weights are computed by the classical logistic regression model, and 7/ = n»=o -^(4) when the 

weights are computed by the Bayesian logistic regression model. 

5. Organize the database color images in order of increasing resulted similarity degrees of the array TotalScore. 

The most negative resulted similarity degrees correspond to the closest target images to the query image. 

Finally, return to the user the closest target color images to the query color image and whose number is 

denoted by RI and chosen by the user. 

4.3 Used feature vectors 

In order to describe the luminance, colors and the edges of a color image, we use luminance histogram and 

weighted histograms. The image texture description is performed by kurtosis and skewness histograms. Given 

an M x N pixel LAB color image, its luminance histogram hi contains the number of pixels of the luminance 

L, and can be written as follows 
M - l iV-l 

M C ) = E £<5(/L(U)-C), (7) 
i=0 j'=0 

for each c e {0,..., 255}, where Ii is the luminance image and 5 is the Kronecker symbol at 0. The weighted 

histograms are the color histogram constructed after edge region elimination and the multispectral gradient 

module mean histogram. The former is given by 

A f - l J V - l , , 
hk(°) = XI X^7^'^ -^^^™^'.?')) , (8) 

j=0 j=0 ^ ' 

and the latter is given by 

^(C) = #Tv (9) 
NP,k{C) 
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where NPtk (c) is the number of the edge region pixels and is defined as 

M-1N-1 , x 

and 

h%{c) = 

M-IN-X , s 

\Xmax(i,j) , (11) 
i=0 j=0 \ ' 

for each c e {0,..., 255} and k = a,b, where \max represents the multispectral gradient module [Ksantini et al., 2006], 

T] is a threshold defined by the mean of the multispectral gradient modules computed over all image pixels, 70 

and lb are the images of the chrominances a red/green and b yellow/blue, respectively, and x ls the characteristic 

function. The multispectral gradient module mean histogram provides information about the overall contrast 

in the chrominance and the edge region elimination allows the avoidance of overlappings or noises between the 

color histogram populations caused by the edge pixels. The LAB color image kurtosis and skewness histograms 

are given by 

M-1N-1 

fcfc(c)=£ £<5(4K(*,j)-c), (12) 

and 

M-1N-1 

K(c)=Y, E<HJfc(^)-c), (13) 

respectively, for each c € {0,...,255} and k = L,a,b, where 7£, 7£ and 7£ are the kurtosis images of the 

luminance L and the chrominances a and b, respectively, and 7£, 7* and 7^ are the skewness images of these 

latter. They are obtained by local computations of the kurtosis and skewness values at the luminance and 

chrominance image pixels. Then, a linear interpolation is used to represent the kurtosis and skewness values 

between 0 and 255. Since each used feature vector is a histogram having 256 components, we set J equal to 8 

in the following section. 
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5 Experimental results 

In this section, we will discuss the choices of the distributions qo and qi, in order to validate the Bayesian 

logistic regression model in the image retrieval context. Finally, we will use the precision and scope as defined 

in [Kherfi and Ziou, 2006], to evaluate the querying method using both models separately. The choices of the 

distributions qo and q\ and the querying evaluation will be conducted on the WANG and Zubud color image 

databases proposed by [Deselaers et al, 2004]. The WANG database contains \DB\ = 1000 color images which 

were selected manually to form 10 sets (e.g. Africa, beach, ruins, food) of 100 images each. The Zurich Building 

Image Database (ZuBuD) contains a training part of \DB\ = 1005 color images and query part of 115 color 

images. The training part consists of 201 building image sets, where each set contains 5 color images of the 

same building taken from different positions. Before the feature vector extractions, we represent the WANG 

and Zubud database color images in the perceptually uniform LAB color space. Since from each color image of 

the Zubud and WANG databases we extract N = 11 histograms which are given by (7), (8), (9), (12) and (13) 

respectively, each database is represented by eleven featurebases. The choices of qo and q\ will be separately 

performed for each featurebase. For each featurebase, we assume that X0 0 and (XQ 0, . . . , X J _ I 0) are indepen

dent. We make the same assumption for X 0 1 and (Xo,i> . . . ,X J _ 1 1 ) . Moreover, we suppose that the random 

vector (XQ 0,..., X j - i o) random variables whose realizations are positive integers, are independent and each one 

of them follows a truncated poisson distribution at its greatest realization, to have a best fit. Analogically, we 

make the same choice for (X0 x, ...,XJ_1 x). Also, we assume that the random variable X0 0 whose realizations 

are positive reals, follows a gaussian mixture distribution, which is the same choice for X0 : . Generally, to carry 

out an evaluation in the image retrieval field, two principal issues are required: the acquisition of ground truth 

and the definition of performance criteria. For ground truth, we use human observations. In fact, three exter

nal persons participate in the below evaluation. Concerning performance criteria, we represent the evaluation 

results by the precision-scope curve Pr = f{RI), where the scope RI is the number of images returned to the 

user. In each querying performed in the evaluation experiment, each human subject is asked to give a goodness 

score to each retrieved image. The goodness score is 2 if the retrieved image is almost similar to the query, 1 

if the retrieved image is fairly similar to the query and 0 if there is no similarity between the retrieved image 

and the query. The precision is computed as follows: Pr = the sum of goodness scores for retrieved images/RI. 

Therefore, the curve Pr = f(RI) gives the precision for different values of RI which lie between 1 and 20 

when we perform the querying evaluation on the WANG database, and lie between 1 and 5 when we perform 

the querying evaluation on the ZuBuD database. When the human subjects perform different queryings in 
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the evaluation experiment, we compute an average precision for each value of RI, and then we construct the 

precision-scope curve. In our evaluation experiment, each color image of the WANG and Zubud databases is 

represented by N = 11 histograms which are /i£, h%, h%, he
a, h%, hi, h%, h%, hs

L, hs
a and hs

b. In order to evaluate 

the querying in the WANG database, each human subject is asked to formulate a query from the database and 

to execute a querying, using weights computed by the classical logistic regression model, and to give a goodness 

score to each retrieved image, then to reformulate a query from the database and to execute the querying, using 

weights computed by the Bayesian logistic regression model, and to give a goodness score to each retrieved 

image. Each human subject performs the querying fifty times by choosing a new query from the database each 

time. We repeat this experience for different orders of compression m £ {30,20,10}. To evaluate the querying 

in the ZuBuD database, each human subject is asked to follow the preceding steps, while formulating the queries 

from the database query part. For the WANG and Zubud databases, the resulted precision-scope curves are 

given in Figure 1 for compression orders m € {30,20,10}. The Figure 2 illustrates two retrieval examples in the 

Zubud database comparing the performances of the regression models for m = 30. In each example the query 

is located at the top-left of the dialog box. 
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Figure 1: Evaluation ((a) ZuBud database and (b) WANG database): precision-scope curves for retrieval using 
weights computed by the classical logistic regression model and weights computed by the Bayesian logistic 
regression model. 
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Figure 2: Comparison (ZuBud database): a) first 8 color images retrieved using weights computed by the 
classical logistic regression model, b) first 8 color images retrieved using weights computed by the Bayesian 
logistic regression model. 
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6 Conclusion 

We presented a simple, fast and effective color image querying method based on feature selection. In order to 

measure the similarity degree between two color images both quickly and effectively, we used a weighted pseudo-

metric which makes use of the one-dimensional Daubechies decomposition and compression of the extracted 

feature vectors. A Bayesian logistic regression model and a classical logistic regression one were used to improve 

the discriminatory capacity of the pseudo-metric and to allow feature selection. Evaluations of the querying 

method showed that the Bayesian logistic regression model is a better tool than the classical logistic regression 

one to compute the pseudo-metric weights and to improve the querying results. 
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CHAPITRE 5 

Modele bayesien d'analyse 

discriminante logistique fonde sur les 

noyaux : une amelioration a l'analyse 

discriminante de Fisher fondee sur les 

noyaux 

L'analyse discriminante de Fisher basee sur les noyaux (KFD) est un classificateur 

nonlineaire qui s'est avere puissant et se comparant avantageusement a plusieurs clas-

sificateurs existants. Elle est equivalente a l'analyse discriminante lineaire de Fisher 

appliquee efficacement dans l'espace des noyaux. Cependant, elle suppose que les ma

trices de covariance des classes transformers dans l'espace des noyaux soient identiques, 

ce qui n'est pas pas le cas dans de nombreuses applications. Dans ce chapitre, nous 

proposons un modele bayesien d'analyse discriminante logistique base sur les noyaux 

(BKLD) qui represente chaque classe transformee par sa propre matrice de covariance. 
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Ceci peut mener a plus de flexibility et a de meilleures performances de classification 

que la KFD. Une comparaison extensive du BKLD a la KFD et a d'autres classifi-

cateurs nonlineaire presents dans a litterature est effectuee. De plus, l'analyse de la 

complexity de l'algorithme et les performances numeriques du BKLD sont detaillees. 

Nous presentons dans les pages qui suivent, un article intitule A Bayesian Kernel 

Logistic Discriminant Model : An Improvement to the Kernel Fisher's Dis

criminant Model. Ce travail sera enrichi d'une application de recherche d'images 

ou de detection d'objets (peau, feux, ombre, etc) et sera soumis au journal IEEE 

Transactions on Knowledge and Data Engineering (TKDE). 
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Abstract 

The Kernel Fisher's Discriminant (KFD) is a non-linear classifier which has proven to be powerful and com

petitive to several state-of-the-art classifiers. Its main ingredient is the kernel trick which allows the efficient 

computation of Fisher's Linear Discriminant in feature space. However, it is assuming equal covariance structure 

for all transformed classes, which is not true in many applications. In this paper, we propose a novel Bayesian 

Kernel Logistic Discriminant model (BKLD) which goes one step further by representing each transformed 

class by its own covariance matrix. This can allow more flexibility and better classification performances than 

the KFD. The posterior distribution of the BKLD model is elegantly approximated by a tractable Gaussian 

form using variational transformation and Jensen's inequality, which allow a straightforward computation of the 

weights. An extensive comparison of the BKLD to the KFD and to other state-of-the-art non-linear classifiers 

is performed. Also, analysis of algorithm complexity and numerical accuracy is provided. 

119 

mailto:riadh.ksantini@usherbrooke.ca
mailto:djemel.ziou@usherbrooke.ca
mailto:bernard.colin@usherbrooke.ca
mailto:francois.dubeau@usherbrooke.ca


1 Introduction 

In supervised learning we are given a training set of input vectors {Xi}f=1, where Xi e Rfc(fc > 1) Vi e 

{1,2,..., N}, along with corresponding tags {U}^, where U G N Vi e {1,2,..., iV}, the latter of which might be 

class labels in classification. From this training set, we wish to learn a model of the dependency of the targets on 

the inputs with the objective of making accurate predictions of t for unseen values of X. In real-world data, the 

presence of class overlap in classification implies that the principal modelling challenge is to avoid over-fitting 

of the training set. Typically, we base our predictions upon some function y{X) defined over the input space 

(or training space) X, and learning is the process of inferring the parameters or weights of this function. In 

order to learn non-linear relations with a linear classifier, we need to select a set of non-linear features and to 

rewrite the data in the new representation. This is equivalent to applying a fixed non-linear mapping of the 

data to a feature space J7, in which the linear classifier can be used. Hence, the set of hypothesis we consider 

will be functions of the type 
i 

y(X;w) = J2m4>i(X)+w0=wT^(X), (1) 

where $(X) = (1, <p\(X), faiX),..., <fti{X)) : X —> T is a non-linear map from the input space to some feature 

space [1]. This means that we will build non-linear classifiers in two steps: first a fixed non-linear mapping 

transforms the data into a feature space J7, and then a linear classifier is used to classify them in the feature 

space. Analysis of functions of the type (1) is facilitated since the adjustable parameters or weights w = 

(wo,wx,W2, ...,wi) appear linearly, and the objective is to estimate good values for those parameters. While the 

range of functions of the type (1) that we can address is extremely broad, we concentrate here on functions of 

the type corresponding to those implemented by some relevant state-of-the-art linearly-parameterized models, 

the Support Vector Machine (SVM) [3] and the Kernel Fisher's Discriminant (KFD) [2], [4]. The SVM and 

KFD make predictions based on the function 

N 

y(X;w) = YiwilC{X,Xi)+wo, (2) 

where <j>i{X) = K{X,Xi) is a kernel function, effectively defining one basis function for each observation in 

the training set. The use of kernel trick impacts linear decision boundary in the feature space, while implicitly 

yielding a flexible non-linear separation in the input space. The KFD was firstly proposed by Mika et al. [2] 

and its main idea is to perform the traditional Fisher's linear discriminant in the feature space. Moreover, it 

has proven to be powerful and competitive to several non-linear classifiers [2]. Subsequently, a number of KFD 
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algorithms [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], have been developed. However, these KFD-based 

algorithms suffer from the small sample size problem since the kernel-induced feature space is typically of very 

high dimensionality. Furthermore, they are incapable of dealing with heteroscedastic data (classes with different 

covariance matrices) that are commonly found in real-world applications. Many methods have been proposed to 

address the small sample size problem. Mika et al. [2] proposed adding a small multiple of the identity matrix to 

make the inner product matrix invertible. Baudat and Anouar [11] and Xiong et al. [12] used QR decomposition 

to avoid the singularity of the inner product matrix. Park et al. [13] proposed the KFD/GSVD algorithm by 

employing generalized singular value decomposition (GSVD). Yang [14] adopted the technique introduced in 

Fisherfaces [20], i.e., kernel Fisherfaces. Lu et al. [15] proposed the kernel direct discriminant analysis (KDDA) 

algorithm based on generalization of the LDA algorithm in [21], Recently, Dai and Qian [16], [17] presented 

a further enhanced method called the kernel generalized nonlinear discriminant analysis (KGNDA) algorithm 

which is based on the theoretical foundation established in [18]. More specifically, it attempts to exploit the 

crucial discriminatory information in the null space of the within-class scatter matrix in the feature space T. 

In order to address the heteroscedasticity problem, Dai et al. proposed recently a novel KFD algorithm called 

heteroscedastic kernel weighted discriminant analysis (HKWDA) which is based on the idea of weighted pairwise 

Chernoff criterion proposed in [22]. 

In this paper, we propose a Bayesian Kernel Logistic Discriminant model (BKLD) which is capable of dealing 

with heteroscedastic data by representing each transformed class by its own covariance matrix. This can allow 

more flexibility and better classification performances than the KFD. The objective likelihood function of our 

model has no tractable form. For this reason, we used variational transformation and the Jensen's inequality to 

approximate it with a tractable exponential form which depends only on two variational parameters. In order 

to avoid small sample size problem and to speed up the computation of the model parameters (or weights), we 

introduce a sparsity-promoting Gaussian prior over them governed by a set of prior parameters, one associated 

with each weight, whose most values are iteratively estimated using an expectation-maximization (EM) type 

algorithm. Due to the conjugacy, by combining a Gaussian prior with the likelihood approximation, we obtain 

a closed Gaussian form approximation to the posterior distribution of the model. 

In the next section, we detail the derivation of the BKLD, and define the procedure for obtaining variational 

parameters and parameter values, and from them, the weights. In section 3, a comparative evaluation is per

formed to compare the BKLD to the KFD as well as other state-of-the-art non-linear classifiers on a collection 
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of benchmark data sets. Furthermore, an analysis of algorithm complexity and numerical accuracy is provided. 

Finally, we present our conclusions. 

2 The Bayesian Kernel Logistic Discriminant Model 

Let X\ — {Xi}^ and X2 — {Xi}fLNl+1 be two different classes constituting an input space of N samples or 

vectors. Applying the kernel trick, we use a function <E> to map the classes X\ and X2 to two feature classes T\ = 

WXi)}^ and T2 = MXi)}f=Ni+1, respectively, wherein $pQ) = (l,IC(Xi,X1),}C(Xi,X2),...,IC(Xi,XN)) 

V i e {1,2, ...,N}. Let us denote by $x and $ 2 * w 0 random vectors whose realizations represent the vectors of 

T\ and the vectors of .F2, respectively. We suppose that $ x ~ <?i($i) and $ 2 ~ 52 ($2) , where g\ and 52 are 

two Gaussian distributions whose means and covariance matrices are empirically computed from T\ and !F2. 

With $ j we associate a tag t\ = 0, and with J?2 we associate a tag t2 = 1- The unknown parameters (weights) 

are considered as random variables and are denoted by the random vector w = (wo,Wi, ...,WN). We define a 

'likelihood' function as: 

2 

(3) 
L t = i 

where, given F(x) = -ff^, P{U = i - l |$ j ,w) = F((2i - 3)w T $ i ) V i € {1,2} represent logistic modelings 

of t\ and t2 given the realizations of $ t and J>2> respectively. The maximization of the likelihood function 

P{t\ = 0,i2 = l |w) with respect to the weights w = (ty0, Wi, •••, W]y) makes our model equivalent to the optimal 

linear Bayes classifier modelling T\ and T2 by g\ and g2, respectively. However, with as many parameters or 

weights in the model as training examples, we would expect the maximum-likelihood estimation of w from (3) 

to lead to severe over-fitting. To avoid this, a common approach is to impose some additional constraint on the 

parameters, for example, through the addition of a 'complexity' penalty term to the likelihood or error function. 

This is implicitly effected by the inclusion of the 'margin' term in the SVM [3] and the regularization matrix 

in the KFD [2]. Here, though, we adopt a Bayesian perspective, and 'constrain' the parameters by defining an 

explicit prior probability distribution over them. We encode a preference for smoother (less complex) functions 

by making the popular choice of a zero-mean Gaussian prior distribution over w: 

N 

7r(w|/3) = n ^ K | 0 , / 3 - 1 ) , (4) 
i=0 

122 



with (3 = (Po, pi,..., /3N) a vector of N +1 prior parameters. Importantly, there is an individual prior parameter 

associated independently with every weight, moderating the strength of the prior thereon. This has the advan

tage of promoting the sparsity of the model and thereby speeding up the computation of the weight estimates. 

Having defined the prior, Bayesian inference proceeds by computing, from the Bayes' rule, the posterior over 

the unknown weights: 

£ 
P(w|ti = 0,t2 = 1) = 

!ti&^l,^.2^^2 nUiPiti^i-ilSu^gM TT(W|/3) 

P(h = o , t 2 = i) 
(5) 

where 
r r 2 

P(*i = 0,t2 = 1) = / J2 H^P(ti = * - l|*„w)Pi(<&,) 7r(w|/3)rfw, (6) 

is the normalizing term. The computation of the posterior distribution is intractable. However, we can approx

imate it by a variational posterior approximation with a Gaussian form, whose mean and covariance matrix 

computation is feasible. To obtain this variational posterior approximation, we perform two successive approx

imations to the likelihood function, in order to bound it by an exponential form which is a conjugate of the 

Gaussian prior. 

First approximation: 

This first approximation is based on a variational transformation of the sigmoid function F(x) of the logistic 

regression. According to [5], the variational approximation of the sigmoid function in Hi = (2i — 3 ) w T ^ V 

% G {1,2} is given by 

P(U = i - l\^,w) = F{Hi), 

> F(€i)e 

(7) 

(E±=Jj±-viei)(H?-e2) 
= P(ti = i - l | * i , w , q ) , 

where e; > 0 is the variational parameter, (/?(e;) = an, * , and tanh(^) = V ~ e ^ V i e {1,2}. So the ^-e-'-i 
sT+e~"2-

likelihood function can be approximated as follows: 

(8) 

r 2 
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Second approximat ion: 

The first approximation is insufficient to approximate the likelihood function by an exponential form. We 

therefore perform a second approximation, based on Jensen's inequality, which uses the convexity of the function 

ex. Using Jensen's inequality, we obtain 

r 2 

Yl T[P(U=i-l\*i,v,ei)gi(*i) (9) 

> 

n^ eL i[9i(su) 

= P ( t i = 0 , t 2 = l |w,{e<}J=1) ) 

where Egi and Eg2 are the expectations with respect to the distributions g\ and g%, respectively. 

Finally, thanks to the two above approximations, the posterior distribution numerator in the formula (5) can 

be approximated as follows: 

£ [ J P(U = i - 1 & , w) f t (&) 7r(w|/3) 

> P ( * i = 0 , t 2 = l|w,{e i}J=1)7r(w|/3). 

(10) 

Thus, the variational posterior approximation denoted by P(w|<i = 0, t% = 1, {ti} =1,0) is given by normalizing 

the lower bound of the inequality (10). Note that although P_(ti = 0, ti = l |w, {ej}-=1) is a lower bound on 

the true likelihood function, our variational posterior approximation is a proper density and thus no longer a 

bound. Given that 7r(w|/3) is a Gaussian which is a conjugate of the exponential variational form P_(ti = 0, t% = 

l |w, (ej} i = 1) , the variational posterior approximation is a Gaussian with a posterior mean /j,post and a posterior 

covariance matrix £p0s*- Thus, omitting the algebra, Epo«t and npost are given by the following Bayesian update 

equations: 

(SW)-1 = A-1+2J2[<p(ei)EgMM}} 
j = i 

fJ'pOSt -'post ^[(i-hE^m] 

( i i ) 

(12) 
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with A = diag(/30
 1,P1

 1, ...,(3^). Since for each feature class the dimensionality is greater than the number of 

vectors, we expect that the term 2 ^ = i [^(e,)^Si[$j$f]] of equation (11) to be singular. However, this sin

gularity is avoided after adding the regularization matrix A~l, thereby making ( S p o s t )
_ 1 invertible. According 

to equation (11), Spost depends on the variational parameters { e ^ } . , and the prior parameters {/3»}._0, so we 

must specify these. We have to find the values of {e,}._ and {Pi}-_0 that yield a tight lower bound in equation 

(10). This can be done by an EM type algorithm. More precisely, we want to find {&i}= 1 and {/3i}i=0 that 

maximize the following lower bound of the log marginal likelihood 

i o 5 r y P ( t i = 0 , t 2 = l|w,{Ci}f=1)7r(w|)9)dw). (13) 

In the EM formalism, this can be achieved by iteratively maximizing the following expectation 

Jlog(p(h = 0,*2 = l |w, {c j}J=1)7r(w| i9)^P(w|t1 = 0,t2 = 1, ({et}
2.=1)°

ld,^M)dw 

with respect to {e«} i=1 and {/3j}=0) where P(wji1 = 0,^2 = 1, ({ei}i=i) ifi° ) is the variational posterior 

approximation based on the previous values of {e«}.=1 and {/%] 

respect to { e j } = 0 and {Pi}=0, then equalizing to zero leads to 

9 AT 

approximation based on the previous values of {e«} i=1 and {Pi}i=0- Taking the partial derivatives of Q with 

ej = EgMi^PoSt^i}+^post 

1 

2->post,jj + Impost,, 

E9.MM A W , V i e { l , 2 } , (14) 

Pi = , .,2 ,Vje{0 , l , . . . , iV} . (15) 

Owing to the EM formulation, each update for {e i} i = 1 and {0i}i=o corresponds to a monotone improvement to 

the variational posterior approximation [6]. The weight computation algorithm has two phases. The first phase 

is the initialization; the second is iterative and allows the computation of T,post and fj,post through the Bayesian 

update equations (11) and (12), respectively, while using equations (14) and (15) to find the variational para

meters and prior parameters at each iteration. The values of the fj,post components are the desired estimates of 

the weights {^i j i = : 0 -

Initialization: 

1. Compute the means and the covariance-variance matrices of the Gaussians g\ and g2 empirically from T\ 
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and .7-2 > respectively. 

N 
2. Initialize the variational parameters {e^} = 1 and the prior parameters { A } i = 0 

Computation of T,post and np0st-

1. Do 

fipnew\ — 1 (A-i + 2j2[<P(cfd)E9iimJ}} 
»=1 

f^post 
-ynew 

post j2[(i-6,)Egim] 
i = l 

For each i e {1>2} do 

(err - £Si &
j nn

Pt:M + ( « Egi[%m new 
Impost 

End for 

For each j G {0,1,.. . , N} do 

<onew _ 
^j ynew _i_ / ..new \2 

End for 

WhiIe(|EJgi t - E»SS| > threshold or ^ - / i ^ l > threshold) 

Return p™ 

2. Assign the /up0st component values to the weights {wi} N 
j=0 ' 

The iterative phase of the above algorithm scales with the size of the training set. In fact, it is dominated 

by the inversion of the posterior covariance matrix which requires 0((N + l)3) operations at each iteration. 

Since the BLRM is formulated for binary or two-class problems, the " 1-versus-all" approach can be used for 

polychotomous classification, where the number of classes is greater than two. However, in the following we will 
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focus on two-class problems. 

3 Experimental Results 

3.1 Comparative Evaluation 

To evaluate the performance of our new approach, we performed an extensive comparison to other state-of-

the-art classifiers. The experimental setup was chosen in analogy to [7] and we compared the BKLD to the 

KFD, the single RBF classifier [7], the regularized AdaBoost (ABR) and the SVM (with Gaussian RBF kernel 

fC(X,Xi) = e - l l ^ -^ l l 2 / - ) , Where <7 is the positive 'width' parameter. For the BKLD we used Gaussian RBF 

too as it has proven flexible and useful in SVM. We used 13 artificial and real word data sets from the UCI, 

DELVE and STATLOG benchmark repositories (except for Banana).1 Some of the problems are originally 

not binary, hence a random partition into two classes was used. Then, 100 partitions into test and training 

set (about 60%:40%) were generated. On each of these data sets we trained and tested all classifiers (see [7] 

for details). The results in table 1 show the average test error over these 100 runs. The optimization of the 

necessary parameters (regularization parameter C for ABR, (C,a) for SVM, a for the BKLD and [a, T) for the 

KFD, where T is a threshold computed by the SVM [7]), were performed on the first five realizations of each 

data set. On each of these realizations, a 5-fold cross validation procedure gives a good model. Finally, the 

model parameters are computed as the median of the five estimations and used throughout the training on all 

100 realizations of that data set. This way of estimating the parameters is computationally highly expensive, 

but makes the comparison more robust and the results more reliable [7]. 

1The data sets can be obtained via http:/ /www.flrst .gmd.de/~raetsch/ 
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Table 1: Comparison among the five methods: Single RBF classifier, regularized AdaBoost, Support Vector 
Machine, Kernel Fisher's Discriminant and the Bayesian Kernel Logistic Discriminant: Estimation of the av
erages of test classification errors in % on 13 data sets (best method in bold face, second best emphasized) 

Banana 
B. Cancer 
Diabetes 
German 
Heart 
Image 
Ringnorm 
F. Solar 
Splice 
Thyroid 
Titanic 
Twonorm 
Waveform 

RBF 
10.8 
27.6 
24.3 
24.7 
17.6 
3.3 
1.7 

34.4 
10.0 
4.5 

23.3 
2.9 
10.7 

ABf l 

10.9 
26.5 
23.8 
24.3 
16.5 
2.7 
1.6 

34.2 
9.5 
4.6 

22.6 
2.7 
9.8 

SVM 
11.5 
26.0 
23.5 
23.6 
16.0 
3.0 
1.7 

324 
10.9 
4.8 

22.4 
3.0 
9.9 

KFD 
10.8 
25.8 
23.2 
23.7 
16.1 
4.8 
1.5 
33.2 
10.5 

4.2 
23.2 
2.6 
9.9 

BKLD 
10.2 
25.1 
22.7 
23.3 
15.7 
3.7 
0.8 

30.9 
10.0 
4.0 
22.7 
1.5 
8.7 

The experiments show that the BKLD is competitive or even superior to the other classifiers on almost all 

data sets (an exception being Image). Also, we can notice that the BKLD outperforms the KFD on all data 

sets as it represents each class in the feature space by its own variance-covariance matrix, which is not the case 

for the KFD. 

3.2 Numerical Accuracy and Algorithmic Complexity 

The inverse of posterior covariance matrix S~ gt which, although positive definite in theory, may become numer

ically singular in practice (see the update equations (11) and (12)). To solve this problem, we used the Singular 

Value Decomposition (SVD) [8], Generally speaking, in the Bayesian treatment, the Gaussian approximation 

is considered as weakness of the method as the single mode of the Gaussian at the weight estimates can often 

be unrepresentative of the overall posterior mass, particularly when there are multiple such modes (as is often 

the case). However, in our method we used variational transformations which have been shown to have much 

more flexibility than other approximation methods [5]. This flexibility translates into improved accuracy of 

the approximation. Moreover, our variational posterior distribution P(w| t j = 0,^2 = l>{e«}-=1>0) depends 

only on two variational parameters. Hence, an optimal solution can be easily obtained through re-starts with 

random initializations of { e j } = 1 . 

As optimization of the prior parameters progresses, the range of /3-values typically becomes highly extended 
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as many tend towards very large values. Indeed, many /3's typically would tend to infinity if machine preci

sion permitted. In fact, ill-conditioning of the inverse of posterior covariance matrix becomes a problem when, 

approximately, the ratio of the smallest to largest /3-values is in the order of the machine precision. Consider 

the case of a single fa —> oo, where for convenience of presentation we choose ft = 1, the first prior parameter. 

Using the expression for the inverse of a partitioned matrix, it can be shown that: 

•a-(!oj<J' <16) 

where the matrix M = 2 YA=I [vi^Egi [$»$f ]] a n d the subscript '-ft' denotes the matrix with the appropriate 

ft-th row and/or column removed. The term Az\ + M_fc is of course the inverse of posterior covariance matrix 

computed with basis function ft pruned. Furthermore, it follows from equations (12) and (16) that ^p0st,k —* 0 

and as a consequence of fa —> oo, the model intuitively becomes exactly equivalent to one with basis function 

K.(X,Xk) excluded. We may thus choose to avoid ill-conditioning by pruning the corresponding basis function 

from the model at that point. This sparsification of the model during optimization implies that we typically 

experience a very considerable and advantageous acceleration of the learning algorithm. The disadvantage is 

that if we believed that the log marginal likelihood might be increased by reintroducing those deleted basis 

functions (i.e. reducing fa from oo) at a later stage, then their permanent removal would be suboptimal. So 

far, no such case has been found for the used data sets. 

Although, typically, the pruning discussed above rapidly reduces N to a manageable size in most problems, 

the BKLD scales with 0((N + l)3) at initialization, and N may be very large. This of course leads to ex

tended training times, although the disadvantage of this is significantly offset by the lack of necessity to perform 

cross-validation over regularization parameters, such as for C in the SVM and the threshold T in the KFD. 

So, for example, with the exception of the larger data sets (e.g. roughly N > 600) the benchmark results in 

table 1 were obtained more quickly for the BKLD than the SVM and KFD (this observation depends on the 

exact implementations and cross-validation schedules of course). Even so, for large data sets, with computation 

scaling approximately in 0((N + l)3) , the full BKLD algorithm becomes prohibitively expensive to run. We 

have therefore developed an alternative algorithm to maximize the marginal likelihood which is constructive. It 

starts with a single basis function, the bias or intercept wo, and both adds in further basis functions, or deletes 

current ones, as appropriate, rather than starting with all possible candidates and pruning. This is a much 

more efficient approach, as the number of basis functions included at any step in the algorithm tends to remain 
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low. It is, however, a more greedy optimization strategy, although our preliminary results show little, if any, 

loss of accuracy compared to the standard algorithm. This appears a very promising mechanism for ensuring 

the BKLD remains practical even for very large basis function sets. 

4 Conclusion 

We have proposed an effective Bayesian Kernel Logistic Discriminant Model with prior Gaussian over the 

weights. The model is based on a variational approximation and on the Jensen's inequality. Thanks to these 

two approximations, computation of the weights has become trivial and straightforward. Our experiments 

showed that the Bayesian Kernel Logistic Discriminant model is competitive to other state-of-the-art non-linear 

classifiers, and specifically outperforms the Kernel Fisher's Discriminant on all used data sets. In fact, the 

advantage of the Bayesian Kernel Logistic Discriminant model over the Kernel Fisher's Discriminant is that it 

estimates a covariance matrix separately for each transformed class in the feature space, instead of a common 

matrix for all transformed classes. However, like the Kernel Fisher's Discriminant, the Bayesian Kernel Logistic 

Discriminant Model has always the drawback of assuming that the transformed classes in the feature space are 

normally distributed. This can make it ineffective if the transformed class densities are multi-model. According 

to the likelihood function (see equation (3)), the Bayesian Kernel Logistic Discriminant model is adaptive to any 

kind of distributions modelling the transformed classes. However, fitting these distributions on these classes can 

lead to highly biased modelisations, since in the feature space obtained using the kernel trick, the dimension 

exceeds the number of samples of each class. For this reason, future work will be dedicated to reduce the 

dimensionality of the feature space using appropriate and effective methods. 

References 

[1] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and other kernel-based 

learning methods, Cambridge University Press 2000. 

[2] S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K. Muller, "Fisher Discriminant Analysis with Kernels," 

Neural Networks for Signal Processing Systems, pp. 41-48, 1999. 

[3] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons 1998. 

130 



[4] G. Baudat and F. Anouar, "Generalized Discriminant Analysis Using Kernel Approach," Neural Compu

tation, vol. 12, pp. 2385-2404, 2000. 

[5] T. S. Jaakkola and M. I. Jordan, "Bayesian parameter estimation via variational methods," Statistics and 

Computing, vol. 10, no. 1, pp. 25-37, 2000. 

[6] A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum Likelihood from Incomplete Data Via the EM 

Algorithm," J. Royal Statistical Society, Series B, vol. 39, no. 1, pp. 1-38, 1977. 

[7] G. Ratsch, T. Onoda and K. -R. Muller, "Soft Margins for Adaboost," Machine Learning, vol. 42, no. 3, 

pp. 287-320, 2000. 

[8] A. H. Roger and R. J. Charles, Topics in Matrix Analysis, Cambridge University Press 1991. 

[9] G. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons 1992. 

[10] J. W. Lu, K. N. Plataniotis and A. N. Venetsanopoulos, "Boosting linear discriminant analysis for face 

recognition," In Proceedings of the IEEE International Conference on Image Processing, pp. 657-660, 2003. 

[11] G. Baudat and F. Anouar, "Generalized discriminant analysis using a kernel approach," Neural Computa

tion, vol. 12, pp. 2385-2404, 2000. 

[12] T. Xiong, J.P. Ye, Q. Li, V. Cherkassky, and R. Janardan, "Efficient kernel discriminant analysis via QR 

decomposition," In Advances in Neural Information Processing Systems 11, 2005. 

[13] C.H. Park and H. Park, "Nonlinear discriminant analysis using kernel functions and the generalized sin

gular value decomposition," SIAM Journal on Matrix Analysis and Application, to appear (http://www-

users.cs.umn.edu/ hpark/pub.html). 

[14] M.H. Yang, "Kernel eigenfaces vs. kernel Fisherfaces: face recognition using kernel methods," In Proceedings 

of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 215-220, May 

2002. 

[15] J.W. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "Face recognition using kernel direct discriminant 

analysis algorithms," IEEE Transactions on Neural Networks, vol. 12, pp. 117-126, 2003. 

[16] G. Dai and Y.T. Qian, "Modified kernel-based nonlinear feature extraction," In Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing, pp. 17-21, 2004. 

131 

http://www-
http://users.cs.umn.edu/


[17] G. Dai and Y.T. Qian, "Kernel generalized nonlinear discriminant analysis algorithm for pattern recogni

tion," In Proceedings of the IEEE International Conference on Image Processing, pp. 2697-2700, 2004. 

[18] J. Yang, A.F. Frangi, J.Y. Yang, D. Zhang, and Z. Jin, "KPCA plus LDA: a complete kernel Fisher 

discriminant framework for feature extraction and recognition," IEEE Transactions on Pattern Analysis 

and Machine Intelligence, vol. 27, no. 2, pp. 230-244, 2005. 

[19] G. Dai, D.Y. Yeung, H. Chang, "Extending kernel Fisher discriminant analysis with the weighted pairwise 

Chernoff criterion," Proceedings of the Ninth European Conference on Computer Vision (ECCV), pp. 308-

320, Graz, Austria, May 2006. 

[20] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, "Eigenfaces vs. Fisherfaces: recognition using class 

specific linear projection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 

711-720, 1997. 

[21] H. Yu and J. Yang, "A direct LDA algorithm for high-dimensional data with application to face recogni

tion," Pattern Recognition, vol. 34, pp. 2067-2070, 2001. 

[22] A.K. Qin, P.N. Suganthan, and M. Loog, "Uncorrelated heteroscedastic LDA based on the weighted pair-

wise Chernoff criterion," Pattern Recognition, vol. 38, no. 4, pp. 613-616, 2005. 

132 



CONCLUSION 

Dans cette these, nous nous sommes interesses aux problemes de la recherche d'images 

par le contenu, l'extraction des caracteristiques, l'analyse multiresolution et la classifi

cation lineaire et nonlineaire. Nos realisations et contributions peuvent etre resumees 

comme suit. 

Dans le premier chapitre, nous avons propose une methode simple et rapide de re

cherche d'images par le contenu. Pour representer les images couleurs, nous avons 

introduit de nouveaux descripteurs de caracteristiques qui sont des histogrammes pon-

deres par le gradient multispectral. Afin de mesurer le degre de similarity entre deux 

images d'une fagon rapide et efficace, nous avons utilise une pseudo-metrique ponderee 

qui se sert de la decomposition en ondelettes Daubechies-8 et de la compression des 

histogrammes extraits des images. Les poids de la pseudo-metrique ont ete ajustes 

par le modele classique de regression logistique pour ameliorer sa capacite de discri

mination et la precision de la recherche. Ce travail a ete presente dans la Conference 

Internationale en Recherche Operationnelle (CIRO'05), Marrakech, Maroc, 2005, et a 

ete publie dans le numero de mars 2006 du journal international International Jour

nal of Wavelets, Multiresolution and Information Processing (IJWMIP). 

Dans le deuxieme chapitre, nous avons propose un nouveau modele bayesien de regres

sion logistique base sur une methode variationnelle. Une comparaison de ce nouveau 
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modele au modele classique de regression logistique a ete effectuee dans le cadre de la 

recherche d'images. Nous avons illustre que le modele bayesien permet une meilleure 

amelioration de la capacite a discriminer de la pseudo-metrique et de la precision 

de recherche que le modele classique. Ce travail a ete presente dans la Conference 

internationale International Conference on Computer Vision and Graphics 

(ICCVG'06), Varsovie, Pologne, 2006, et sera publie dans le journal international 

Machine Graphics and Vision (MGV). 

Dans le troisieme chapitre, nous avons detaille la derivation du nouveau modele baye

sien de regression logistique base sur une methode variationnelle introduite au chapitre 

2 et nous avons effectue une comparison exhaustive de ce modele au modele classique 

de regression logistique dans le cadre de la recherche d'images et dans un cadre gene

ral. Plus specifiquement, dans ce cadre general, nous avons compare le modele Baye

sien a d'autres classificateurs lineaires apparaissant dans la litterature. Ensuite, nous 

avons compare notre methode de recherche utilisant le modele Bayesien de regression 

logistique a d'autres methodes de recherches deja publiees. Les experimentations et 

comparaisons ont ete effectuees sur les bases de donnees d'images couleurs connues 

WANG, ZuBud, UW et CalTech et sur plusieurs ensembles de donnees reelles et syn-

thetiques. Ce travail sera publie dans le journal international IEEE Transactions 

on Pattern Analysis and Machine Intelligence (TPAMI). 

Dans le quatrieme chapitre, nous avons introduit la selection des caracteristiques pour 

ameliorer la methode de recherche presentee dans les chapitres precedents. La selec

tion des caracteristiques a ete effectuee en utilisant separement les modeles Bayesien 

et classique de regression logistique. Elle permet de donner automatiquement plus 

d'importance aux caracteristiques qui discriminent le plus et moins d'importance aux 

caracteristiques qui discriminent le moins. Une comparison des deux modeles a ete 
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effectuee dans le cadre de la recherche d'images basee sur la selection des caracte-

ristiques. Les experimentations ont ete effectuees sur les bases de donnees d'images 

couleurs connues WANG et ZuBud. Ce travail a ete publie dans les actes de Twen

tieth International Joint Conference on Artificial Intelligence (IJCAI'07), 

Hyderabad, Inde, 2007. 

Dans le cinquieme chapitre, nous avons propose un nouveau modele Bayesien d'ana-

lyse discriminante logistique base sur l'usage de noyaux, qui permet une classification 

nonlineaire flexible. Ce nouveau modele a ete compare a l'analyse discriminante de Fi

sher basee sur des noyaux et a d'autres classificateurs nonlineaires deja publies. Nous 

comptons enrichir ce travail avec une application de recherche d'images ou de detec

tion d'objets (peau, feux, ombre, etc) et le soumettre au journal international IEEE 

Transactions on Knowledge and Data Engineering (TKDE). 
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