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SOMMAIRE

Cette thése, présente ’ensemble de nos contributions relatives a la recherche d’images
par le contenu & 'aide de 'analyse multirésolution ainsi qu’a la classification linéaire
et nonlinéaire. Dans la premiére partie, nous proposons une méthode simple et ra-
pide de recherche d’images par le contenu. Pour représenter les images couleurs, nous
introduisons de nouveaux descripteurs de caractéristiques qui sont des histogrammes
pondérés par le gradient multispectral. Afin de mesurer le degré de similarité entre
deux images d’une facon rapide et efficace, nous utilisons une pseudo-métrique pon-
dérée qui utilise la décomposition en ondelettes et la compression des histogrammes
extraits des images. Les poids de la pseudo-métrique sont ajustés a ’aide du modéle
classique de régression logistique afin d’améliorer sa capacité a discriminer et la pré-
cision de la recherche. Dans la deuxiéme partie, nous proposons un nouveau modéle
bayésien de régression logistique fondé sur une méthode variationnelle. Une compa-
raison de ce nouveau modéle au modéle classique de régression logistique est effectuée
dans le cadre de la recherche d’images. Nous illustrons par la suite que le modéle bayé-
sien permet par rapport au modéle classique une amélioration notoire de la capacité
a discriminer de la pseudo-métrique et de la précision de recherche. Dans la troisiéme
partie, nous détaillons la dérivation du nouveau modéle bayésien de régression logis-
tique fondé sur une méthode variationnelle et nous comparons ce modéle au modéle

classique de régression logistique ainsi qu’a d’autres classificateurs linéaires présents
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dans la littérature. Nous comparons par la suite, notre méthode de recherche, utilisant
le modéle bayésien de régression logistique, & d’autres méthodes de recherches déja
publiées. Dans la quatriéme partie, nous introduisons la sélection des caractéristiques
pour améliorer notre méthode de recherche utilisant le modéle introduit ci-dessus.
En effet, la sélection des caractéristiques permet de donner automatiquement plus
d’importance aux caractéristiques qui discriminent le plus et moins d’importance aux
caractéristiques qui discriminent le moins. Finalement, dans la cinquiéme partie, nous
proposons un nouveau modeéle bayésien d’analyse discriminante logistique construit a

I'aide de noyaux permettant ainsi une classification nonlinéaire flexible.
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INTRODUCTION

Avec le développement réalisé récemment dans les techniques de production, de trans-
mission, et de traitement des données, il y a eu une explosion dans la quantité et la
complexité des données générées chaque jour. Ces données prennent différents formats
incluant le texte, les images, le son, la vidéo et le multimédia. Elles peuvent étre trou-
vées sous forme de bases de données, de collections non organisées, ou encore sur le
World Wide Web. A titre d’exemple, le nombre de pages Web référencées par Google
s’éléve a plus de 4 milliards en ce moment. Par contre, cette abondance d’information
n’a pas que des impacts positifs. Le grand paradoxe auquel sont confrontés les gens
actuellement est qu’il y a de plus en plus de données disponibles & propos d’un sujet
spécifique, et qu’il est de plus en plus difficile de localiser 'information pertinente
dans des délais raisonnables. Ceci a donné naissance & un nouveau besoin qui est ce-
lui d’inventer des outils qui aident les gens & localiser I'information voulue, ces outils
sont les moteurs de recherche d’information. Nous pouvons donc définir un moteur
de recherche comme étant un outil auquel 'utilisateur soumet une requéte, textuelle
ou autre, et qui se charge de chercher dans une collection de données tous les articles
qui lui correspondent. Les premiers moteurs de recherche & avoir vu le jour et & avoir
suscité beaucoup d’intérét & la fois parmi les chercheurs et parmi les utilisateurs sont
les moteurs de recherche de texte. Le fait que les pages Web telles que celles de Google

ou de Yahoo! figurent parmi les pages les plus visitées sur Internet illustre bien 'im-



portance et l'utilité de tels outils. Cependant, en dépit de la quantité d’information
visuelle dans les bases de données et le Web, peu de gens se sont intéressés au pro-
bléme de la recherche d’images, et la plupart des moteurs existants sont primitifs et
leur performance reste assez limitée.

En recherche d’images, la premiére approche a avoir vu le jour trouve ses origines
dans les algorithmes de recherche de texte. Pour pouvoir rechercher les images, on
commence par les annoter avec du texte et ensuite les techniques de recherche de
texte sont appliquées pour retrouver des images. Cette approche, connue sous le nom
de "recherche d’images basée sur le texte", date des années 70 et est due a la com-
munauté de gestion des bases de données. Méme si quelques systémes commerciaux
tels que Google image search et AltaVista photo finder ont adoptée, cette technique
souffre de plusieurs limitations. Premiérement, plusieurs collections d’images ne sont
pas annotées avec du texte et leur annotation manuelle peut s’avérer fastidieuse et trés
coliteuse. Deuxiémement, méme quand une collection est annotée, son annotation est
généralement faite par des humains et peut par conséquent étre subjective : deux per-
sonnes différentes peuvent utiliser des termes différents pour annoter la méme image.
En plus de cela, se baser exclusivement sur le texte est souvent insuffisant surtout
quand les usagers sont intéressés par les composantes visuelles de I'image qui péuvent
difficilement étre décrites par des mots. En effet, une image peut contenir plusieurs
objets et chaque objet peut posséder une longue liste d’attributs, ce qui défie la des-
cription avec les mots.

Ces limitations ont poussé les gens a réfléchir a une autre solution consistant a "lais-
ser les images se décrire par elles-mémes". Ceci a donné naissance & une seconde
approche basée sur les caractéristiques visuelles des images telles que la couleur et
la texture. Cette approche, connue sous le nom de "recherche d’images basée sur le
contenu" (CBIR), a été proposée au début des années 90 et vient de la communauté

de vision par ordinateur. Plusieurs moteurs de recherche récents l’ont adoptée tels que



QBIC, SIMPLIcity et Cires. Les premiers moteurs de recherche basés sur le contenu
exigeaient de 1'usager de sélectionner les caractéristiques visuelles qui I'intéressent et
de fournir des valeurs numériques & chacune de ces caractéristiques. Cependant pour
différentes raisons, il est généralement difficile pour 'usager de spécifier explicitement
les valeurs des caractéristiques visuelles. Tout d’abord, un usager peut ignorer les dé-
tails de I'imagerie et son jargon. Pour s’en convaincre, imaginons un usager auquel
on demande de choisir entre le "filtre de Gabor" et les "Ondelettes" par exemple!
Ensuite, il est difficile, méme pour un spécialiste en imagerie, de traduire les images
qu’il a en téte en une combinaison de caractéristiques et de valeurs numériques. Dés
lors, les gens se sont mis & réfléchir a une autre alternative, et la solution qu’ils ont
adoptée consiste & permettre & 'usager de spécifier implicitement les caractéristiques
qui l'intéressent & travers un paradigme connu sous le nom de "requéte par ’exemple”
(QBE). En utilisant 'interface que le moteur lui offre, I'usager choisit une image re-
quéte et ensuite le moteur parcourt la collection de données en extrayant toutes les
images qui ressemblent & cette requéte. Précisément, la requéte choisie par 'usager
et les images de la base de données sont initialement représentées par des vecteurs
de caractéristiques. Ensuite, la similarité entre I'image requéte et une image cible est
mesurée par une métrique qui est calculée entre leurs vecteurs de caractéristiques.
Enfin, les images cibles les plus proches de 'image requéte, au sens de la métrique,
sont retournées & l'usager. La métrique doit étre assez flexible, pour tenir compte des
distorsions de la requéte par rapport a la cible, et aussi assez rapide d’exécution, pour
pouvoir étre utilisée sur de grandes bases de données.

Dans cette these, notre objectif est de développer une méthode de recherche d’images
basée sur le contenu qui soit & la fois efficace et rapide. Pour ce faire, nous avons
utilisé plusieurs outils comme les ondelettes, de nouveaux descripteurs ou vecteurs
des caractéristiques, une structure de données spécifique et la classification linéaire et

nonlinéaire. Par conséquent, nous avons fait des contributions relatives a la recherche



d’image par le contenu, la description des caractéristique et aussi la classification li-
néaire et nonlinéaire. Dans le Chapitre 1 de la thése, nous proposons une méthode
simple et rapide de recherche d’images par le contenu. Pour représenter les images
couleurs, nous introduisons de nouveaux descripteurs de caractéristiques qui sont des
histogrammes pondérés par le gradient multispectral. Afin de mesurer le degré de
similarité entre deux images d’une fagon rapide et efficace, nous utilisons une pseudo-
métrique pondérée qui utilise la décomposition en ondelettes et la compression des
histogrammes extraits des images. Les poids de la pseudo-métrique sont ajustés a
I’aide du modéle classique de régression logistique afin d’améliorer sa capacité a dis-
criminer et la précision de la recherche. Dans le Chapitre 2, nous proposons un nouveau
modéle bayésien de régression logistique fondé sur une méthode variationnelle. Une
comparaison de ce nouveau modéle au modéle classique de régression logistique est
effectuée dans le cadre de la recherche d’images. Nous illustrons par la suite que le
modéle bayésien permet par rapport au modéle classique une amélioration notoire de
la capacité & discriminer de la pseudo-métrique et de la précision de recherche. Dans
le Chapitre 3, nous détaillons la dérivation du nouveau modéle bayésien de régres-
sion logistique fondé sur une méthode variationnelle et nous comparons ce modéle au
modéle classique de régression logistique ainsi qu’a d’autres classificateurs linéaires
présents dans la littérature. Nous comparons par la suite, notre méthode de recherche,
utilisant le modéle bayésien de régression logistique, & d’autres méthodes de recherches
déja publiées. Dans le Chapitre 4, nous introduisons la sélection des caractéristiques
pour améliorer notre méthode de recherche utilisant le modéle introduit ci-dessus.
En effet, la sélection des caractéristiques permet de donner automatiquement plus
d’importance aux caractéristiques qui discriminent le plus et moins d’importance aux
caractéristiques qui discriminent le moins. Finalement, dans le Chapitre 5, nous propo-
sons un nouveau modéle bayésien d’analyse discriminante logistique construit a I’aide

de noyaux permettant ainsi une classification nonlinéaire flexible.



Dans ’ensemble des articles qui suivent, la mise en oeuvre des contributions omni-
présentes a été faite par Pauteur principal Riadh Ksantini avec I'aide précieuse des

professeurs Francois Dubeau, Djemel Ziou et Bernard Colin.



CHAPITRE 1

Recherche d’images fondée sur la
séparation des régions et ’analyse

multirésolution

Dans ce chapitre, nous proposons une méthode simple et rapide de recherche d’images
par le contenu. En utilisant le gradient multispectral, une image couleur est coupée en
deux parties disjointes : les régions homogénes de couleur et les régions de contours.
Les régions homogeénes sont représentées par les histogrammes traditionnels de couleur
et les régions de contours sont représentées par les histogrammes des moyennes des
modules du gradient multispectral calculées sur chaque pixel de I'image couleur. Afin
de mesurer le degré de similarité entre deux images couleurs rapidement et efficace-
ment, nous utilisons une pseudo-métrique pondérée qui se sert de la décomposition en
ondelettes Daubechies-8 et de la compression des histogrammes extraits. Les poids de
la pseudo-métrique sont ajustés par le modeéle classique de régression logistique pour
améliorer sa capacité a discriminer et la précision de la recherche. Notre méthode de

recherche est invariante aux translations des objets et aux intensités de couleur dans



les images. Les expérimentations ont été effectuées sur une collection de 10000 images
couleurs.

Nous présentons dans les pages qui suivent, un article intitulé Image Retrieval Ba-
sed on Region Separation and Multiresolution Analysis qui a été publié dans
le numéro de mars 2006 du International Journal of Wavelets, Multiresolution
and Information Processing (IJWMIP). Une version préliminaire de l'article a été
présentée dans la Conférence Internationale en Recherche Opérationnelle (CIRO’05),

Marrakech, Maroc, 2005.
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Abstract

In this paper, a simple and fast querying method for content-based image retrieval is presented. Using the
multispectral gradient, a color image is split into two disjoint parts which are the homogeneous color regions
and the edge regions. The homogeneous regions are represented by the traditional color histograms, and the edge
regions are represented by multispectral gradient module mean histograms. In order to measure the similarity
degree between two color images both quickly and effectively, we use a one-dimensional pseudo-metric, which
makes use of the one-dimensional Daubechies decomposition and compression of the extracted histograms. Our
querying method is invariant to the query color image object translations and color intensities. The experimental

results are reported on a collection of 10000 LAB color images.
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1 Introduction

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the field
of medecine, weather prediction, communications, commerce and academia, increased the need for both effi-
cient image database creation and retrieval procedures. For this reason, content-based image retrieval (CBIR)
approach was proposed [19], [2]. In this approach, the first step is to compute for each database image a feature
vector capturing certain visual features of the image such as color, texture and shape. This feature vector is
stored in a featurebase, and then given a query image chosen by a user, its feature vector is computed, compared
to the featurebase feature vectors by a distance metric or a similarity measure, and finally the most similar
database images to the query image are returned to the user. In order to have effective characterization of local
image properties, and to increase the data storage efficiency and the querying execution speed in the CBIR field,
a wavelet based indexing approach was introduced. The wavelet transforms are proven to have the advantage of
allowing better resolution in time and frequency. Consequently, they have received much attention as a tool for
developing CBIR systems. In the following we review some of the CBIR systems based on the wavelet domain
feature extractions.

Related work:

Jacob et al. [5] proposed a fast image querying algorithm in databases ranging in size from 1093 to 20, 558 color
images. RGB, HSV, and YIQ color spaces are chosen separately to represent the database color images before
the querying. Each database color image component is Haar wavelets decomposed. Dominant coeflicients of
this decomposition are retained to represent the spatial information and color visual features of the color image.
The similarity degree between a query and potential targets is measured by a weighted metric which compares
how many significant wavelet coefficients they have in common.

Wang et al. [14] have proposed the WBIIS querying system in a database of 10,000 RGB color images. All
database color images are four stage Daubechies-8 wavelets decomposed. The lower frequency bands in each
database color image wavelet transform, represent the object configurations in the image and the higher fre-
quency bands represent the texture and local color variations. The similarity degree between a query and
potential targets is measured by a comparison between the variances of their lowpass band coefficients. Then,
these latters are compared using an euclidean distance. Finally, a weighted euclidean distance is used to perform
a comparison between the query and the remaining color images lowest resolution subimages representing the
lowpass bands, horizontal bands, vertical bands, and diagonal bands. For database color images, this procedure

is repeated on all three color channels.



Kuo et al. [15] have proposed the WaveGuide querying system in a database of 2127 YUYV color images. Each
database color image is wavelet packet decomposed and wavelet pyramid decomposed to extract texture, shape
and color features, respectively. Both wavelet transforms are followed by a successive approximation quantiza-
tion (SAQ) which uses a sequence of thresholds in order to indentify relevant and irrelevant wavelet coeflicients
and their locations in each wavelet transformed color image subbands. Texture descriptor is extracted from
the significant coefficients in wavelet packet transformed image Y-component subbands. Color descriptor is
extracted from the three color image components with respect to the (SAQ) twelve thresholds of the wavelet
pyramid transformed image. Shape descriptor is extracted from the significant coefficients of the first three
scale vertical, horizontal and diagonal subbands of the wavelet pyramid transformed color image Y-component.
The texture, color and shape similarities between a query color image and the database color images are defined
using the L, distance.

N. Khelil and A. Benazza-Benyahia [17] have suggested a method for image retrieval in a database of 2815 mul-
tispectral SPOT3 images and in a database of 2815 multispectral SPOT4 images. Each database color image
components are decomposed separately according to the lifting scheme (second generation of wavelet transform)
[1] through the 5/3 transform. The wavelet coefficients of a 5/3 transformed database color image, represent
the salient features of the image. The wavelet coefficients related to all components at a given resolution level
of each database 5/3 transformed color image, are merged into a common subband whatever the transform
orientations, and then this subband is modelized by a zero-mean Generalized Gaussian Distribution (GGD).
The similarity degree between the query image and the database color images is measured by a weighted metric
which is a combination of the symmetrical Kullback-Leibler distance which is used to evaluate how different are

two GGDs, and by a second order distance computed between their scaling coefficient variances.

Our approach is based on the use of the multispectral gradient in order to separate between the homoge-
neous regions and the edge regions of each database color image, and to represent each region by feature vectors
which are weighted histograms. The weighted histograms representing the homogeneous regions are color his-
tograms constructed after edge regions elimination, and the weighted histograms representing the edge regions
are multispectral gradient module mean histograms. In the querying, just very few dominant coeflicients of the
wavelet decomposed versions of these weighted histograms are considered to have an effective querying, despite
a lower querying computational complexity. Among all kinds of wavelets, Daubechies-8 wavelets are proven to

have good frequency properties and to be good for 1-D signal synthesis [14]. Therefore, Daubechies-8 wavelets
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are chosen in our approach. In order to measure the similarity degree between two color images we use the
one-dimensional version of the weighted metric proposed by Jacob et al. [5], which makes use of the compressed
and quantized versions of the Daubechies-8 wavelet decomposed histograms. In order to discriminate most
effectively, the metric weights are adjusted using the standard logistic regression model. Our querying method
does not suffer from the query image object translation variance, and the querying is invariant to the color
intensities of the query image, thanks to a modification of the multispectral gradient module mean histograms.
We apply our retrieval method by representing our database color images in the LAB color space, because it’s

a perceptually uniform color space that describes color by just two coordinates.

The difference between the related work approaches and the approach developed in this paper, is that in
order to reduce the computational complexity and to increase the data storage efficiency our approach is based
on the wavelet decomposition and compression of the feature vectors themselves, instead of the database color
images. A variety of heuristic histogram similarity measures has been proposed in literature in the context of
image retrieval [18]. However, these similarity measures do not handle wavelet decomposed and compressed
histograms. In fact, they are computed over the totality of the histogram pixels. Consequently, they are more
expensive to compute, especially, when we have a large database. For these reasons, in our application we use

the one-dimensional version of the weighted metric proposed by Jacob et al. [5].

In the next section, we explain how we construct homogeneous and edge region histograms. In the third
section, we briefly explain the Daubechies-8 wavelet decomposition and the compression of a one-dimensional
image. In section 4, we define the one-dimensional version of the metric proposed by [5], we explain the one-
dimensional image or feature vector querying algorithm and we describe the logistic regression model and the
training performed to adjust the metric weights. In section 5, we present the color image querying method.
Finally, in section 6 we perform some experiments to evaluate our querying method and to show the querying

improvement.

2 Color images and histogram decomposition

In this section, we present the LAB color space advantages and we explain how to represent our database
color images in this space. Also, we explain the separation between the homogeneous color regions and edge

regions, using the multispectral gradient. Then, we define the two feature vectors which are the traditional

11



color histograms constructed without considering the edge regions, and the multispectral gradient module mean

histogram.

2.1 Color images and color space

In order to extract color features from a color image, we need to choose a color space in which to represent
it. We decided to use the LAB color space. In fact, LAB color space is approximately perceptually uniform
[11], [7], [3], that maps equally distinct color differences into approximately equal euclidean distances in space.
Also, it allows a good separation between the luminance and the colors. In this space, L defines the luminance
with values from 0 for black to 100 for a perfectly white body, A denotes the red/green chrominance, with
values from —200 for green to 200 for red, and B denotes the yellow/blue chrominance, with values from —200
for blue to 200 for yellow. In the LAB color space, each color image pixel is represented by a vector (L, a,b),
where L is the luminance, a is the red/green and b is the yellow/blue. In our application, each LAB color image
is numerically represented by three matrices I, I, and Ip, containing the pixel intensities of the luminance,
red/green and yellow/blue, respectively. To simplify, we use a linear interpolation to represent each LAB color

image component intensities between 0 and 255.

2.2  Weighted histograms

The luminance histogram and the color histogram represent how pixels of some images are distributed in the
LAB channels. Given any LAB color image, its luminance histogram h; contains the number of pixels of the
luminance L, and its color histograms h, and h; contain the number of pixels of the chrominances a red/green
and b yellow /blue, respectively. Therefore, the three histograms of an M x N pixel LAB color image, can be

written as follows

R
L
z
L

5(IL(21]) - C)

=
~
—
&
”M
=1

£
L
i

8(I,(i,5) —¢)  for each c € {0, ...,255} (1)

&
&

Il
i
N

£
L
g

hb(C) = : 5(]1,(1,]) - C),

1
=]
.
il
=]
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where § is the Kroeneicker symbol at 0, defined by

0 otherwise.

6(m——c)={1 ifz=c 2)

LAB histograms have been used widely in many content-based image retrieval systems with some success [16].
They provide only the distribution of the luminance and the color. That’s why histogram-based color retrieval

techniques suffer from a lack of important spatial knowledge.

In order to overcome these drawbacks, spatial information should be integrated. Several recently proposed ap-
proaches augment the color histogram with some spatial information. Examples include the laplacian weighted
histogram proposed by [6], the color coherent vector (CCV) proposed by [9] and enhanced by [10], and the
color correlogram proposed by [13]. In our case we will use the multispectral gradient module mean histogram.
The multispectral gradient changes from a color image to another having different edge shapes, which increases
the discriminative power of the querying. The multispectral gradient module mean histogram is inspired from
the laplacian weighted histogram which is proposed by [6]. This latter is a good tool to distinguish the pixels
located at the neighbourhoods of a color image edges. However, it’s noised because it’s based on the color
image component second derivatives, also it can represent a false feature when the color image contains several

staircase edges [12].

In a color image, the number of the pixels belonging to the homogeneous regions is widely greater than the
number of the edge pixels. Therefore, these latters have negligible influence on the color histogram shape,
and then their statistical importance becomes insignificant, thus rendering their effect on the querying very
negligible. A solution to this problem is to separate between the homogeneous regions and the edge regions. In
our application, this separation will be only performed on the chrominance images. That’s why we will preserve
the luminance histogram and we will introduce weighted color histograms which combine the color distribution

with its spatial properties.

Once we have identified the homogeneous and edge regions for a given color image, we consider two weighted
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color histograms for each region

M-1N-1
hi(c) = Z Z §(In(3,5) — )Wi(i, 5) for each ¢ € {0,...,255} and k = a, b, (3)

where W} is the weight and

h  for homogeneous regions,
[ = ) (4)
e for edge regions.

In [6], the weight Wi (i, j) = Alx(i,5)? for each k = a,b, where AI(i,5) is the laplacian of the image Iy at the

pixel (4, 7).

2.3 Separation of homogeneous and edge regions

According to [4], a color edge detection is based on finding local maxima in the first directional derivative of the
vector-valued color image. The magnitude of the strongest change of the vector-valued image which represents
the multispectral gradient module, coincides with the largest eigenvalue of the matrix J7J, denoted by Ao,
where J is the Jacobian matrix of the vector-valued image. In our case, the Jacobian matrix of the chrominance

images at each pixel (z,y), is given by

Olu(z,y) Ola(zyy)
o)
J = ( oLlew)  OLiew) >’ (5)
oz oy

BIa(z,y) 81«1(17'.‘/) aIb(zvy
oz oy ! Ox

where ), and %(%’JQ are the first partial derivatives of @ and b images, respectively.

Consequently, the matrix J'J at each pixel (z,y), is defined by

_ ain(z,y) aiz(z,y)
JTT = ( | ) (6)

a21(fl77y) azz(fl?»y

where

_ aIa(m,y) aIa(wvy) aIb(x’y) 8Ib<$ay)
(112(5”7 y) - 817 ay + ax ay ]

a21<may) = a12($,y)-
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Therefore, the largest eigenvalue Apqq of J7J, which represents the strongest change of the vector-valued image

at each pixel (z,y), is given by

Amaz (T, y) = % ((011(-’137 y) +azn(z,y)) + \/(011(93, y) — az2(z,y))? + daf,(z, ?J))~ (7)

A pixel is considered in an edge region if the A ., computed over it is greater than a given threshold %, and
is considered in homogeneous region elsewhere. In our application, we simply use a threshold defined by the

mean of the largest eigenvalues computed over all pixels. Explicitly

1 M-
= m - )\maw 1 ])a (8)

2

<.
Il
=}

where M and N are respectively the length and the width of the color image. Let us remark that other strategies

for thresholding are also possible.

2.4 Homogeneous regions : separation of modes

For these regions the weight W}(4, ) in the formula (3) is given by Wp(i,7) = X(0,7] (z\maz(i,j)>, for each

k = a,b. Therefore, the weighted histograms are
M—1N-1
B© = X 3 8(0(13) = o) (Amaali) ), ©)
i=0 j=0

for each ¢ € {0,...,255} and & = a,b, and where xg is the characteristic function of the set E, defined by

1 ifze€ekE,

0 otherwise. (10)

xe(z) = {

In some images, edge pixels can cause overlappings or noises between the color histogram populations. A con-
sequence of not considering edge pixels in the formula (10) is the avoidance of these overlappings or noises. The

following figure gives an example of the separation between two modes of a histogram.
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(a) (b) (c)
Figure 1: Separation between two histogram modes: a) Color image, b) The a component histogram before

edge region elimination and c¢) The @ component weighted histogram.

2.5 Edge regions

For these regions the weight W£(3, §) in the formula (3) is given by W£(i, ) = X]n,+oo{()\maz(i,j)> Amaz (8, 7),
for each k = a,b. Therefore, the weighted color histograms are the multispectral gradient module weighted

histograms which are given by

TCED I SRR x],,,m[(xmu,j))Am(w(i,j), (11)

for each ¢ € {0, ...,255} and k = a,b. Thanks to the term X}, oo ()\maz(i,j)>, the weighted histogram h(c)
takes into account the high values of the multispectral gradient modules. Thus, it provides information about

the overall contrast in chrominances.

According to the formula (11), two color images having same colors and object shapes, but different object
sizes, can have different multispectral gradient module weighted histograms. To overcome this drawback, we
can consider the means of the multispectral gradient modules. In fact, the means represent the gradient module
global values of a chrominance. For each chrominance, the multispectral gradient module mean histogram is

given by
N 10
Np,i(c)’

for each ¢ € {0,...,255} and k = a, b, (12)

where NV, ;(c) is the number of the edge region pixels and is defined as

M-1N-1
prk(c) = Z 6(116 (11.7) - C)X]n,+oo[ <)‘maz(i7j))’ (13)

=0 j=0

.
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for k = a,b.

3 Wavelet decomposition, compression and quantization of an his-

togram

3.1 Histogram and multiresolution analysis

An histogram is a (1D) image or signal supported by 27 pixels (J € N) and represented by a sequence of coef-
ficients {1/ }fi(; ', In order to analyse the histogram we use the Daubechies-8 wavelets. In fact, Daubechies-8
wavelets are continuous functions which can analyse continuous (1D) signals more efficiently. Also, Daubechies-8
wavelets are a good compromise between computational time and performances, since they have eight coefli-
cient overlapping filters. Furthermore, they have four vanishing moments which produce as marked a contrast

in wavelet coefficient sizes between smooth and non-smooth sections of the (1D) signal.

The Daubechies-8 scaling function is compactly supported by the interval [0,7] and its values can be calcu-

lated thanks to a given initial value and to a recurrence relation which is given by

Il
-3

$(x) = ) _ hi(2z — 1), (14)

k3

It
=

where (ho = —0.014, h; = 0.046, hy = 0.043, hg = —0.264, hy = —0.039, hs = 0.890, hg = 1.009, A7 = 0.325) is

the lowpass filter.

The Daubechies-8 scaling function ¢ serves as the basic building block for its associated Daubechies-8 wavelet

function, denoted by 1, and defined by the following recursion

i=1

Y@)= Y (=1)'hi-ig(2z — i), (15)

i=—6

In order to ensure that ¢ and v are compactly supported by the same interval [0,7] and are equal zero out-
side it, we shift the Daubechies-8 wavelet function ¥ from z to z — 3. The scaled, translated and normalized
versions of ¢ and the shifted version of ¢ are denoted by é{(z) = V2-U=-3¢(2-U=Dg — i) and 15{ (z—3) =

V2-U=Dp(2-U=Ng — 3 — 1), respectively, where 2~ (/=7 is the dilatation factor and j € {J,J —1,...,0}.
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For the finest resolution level, we introduce a vector space V¥ which is the set of all possible linear combi-
nations of the Daubechies-8 scaling function shifted versions, With implicit periodicity considerations, we can

write

vJ = Lin{¢] :1=0,..,27 —1}. (16)

By supposing that the (1D) signal I € VY, we can approximate it as follows

I@)~ Y L —1i) (17)

We define the vector subspace W7/~ = Lin{y)/ ™' : i = 0,...,2771 — 1} to be the orthogonal complement of
V71 in V7. Explicitly

v/i=v/Tlgow/-L (18)

The Daubechies-8 wavelet transform decomposes the 27 pixel (1D) signal into its components for J different

scales. It consists of passing successively from the space V' to the space V°, while generating through this

decomposition the spaces {WJ ‘0 - S0 we obtain
J-1
v =vio pwk (19)
k=0

Consequently, we can rewrite the 27 pixel (1D) signal in the Daubechies-8 basis as follows

I(z) ~ I34%(x ZZ [ (z - 3), (20)

7=0 k==0

where I3 is the overall average of the (1D) signal, called the scaling factor. The Daubechies-8 wavelets transform
decomposes an histogram having 256 pixels into its components for 8 different scales. Consequently, the smooth
components and the detailed components of the histogram are readily seperated. The resulted scaling factor
represents the average of the histogram Y-coordinate magnitudes. Therefore, the scaling factor of a Daubechies-
8 wavelet decomposed histogram of a LAB color image component, represents the average of the overall intensity

of this latter.
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3.2 Signal compression and quantization

The compression is carried out on the number of the retained coefficients representing the decomposed (1D)
image. The wavelet coeflicients represent the local intensity variations in the image. Their magnitudes represent
the importance of the variations, but their signs express the type of these variations. If we keep only the
coefficients with largest magnitudes, we can obtain a good approximation of the decomposed image. Only the
absolute values of the wavelet coefficients are taken into account during the compression. In the compression

method we rewrite the decomposed (1D) image (20) as follows
271

I(z) = I[0]gg(z) + ) Il]as(2), (21)
=1

where I[i] = I} and 4;(z) = ¢l(z - 3) for (i = 29 + k,k = 0,...,2/ = 1,5 = 0,...,J — 1). By summing these

coeflicients in order of decreasing magnitude and by using a permutation o, we obtain

27 -1
I(z) ~ [0|g5(x) + Y T[o(8)]itos (=), (22)
=1
where
| Ilo(i)] |2 Ilo(i2)} | forall 0 <4y <ig. (23)

Consequently, when we keep the m largest coefficients, we obtain an approximation I¢(z) representing the

compressed version of the decomposed (1D) image I(x), defined by

271
I°(z) ~ F0]¢g(z) + D I°[li(e), (24)
i=1
where
. Fre . _1 .
Il = { o i—sl((;) 2(17)n< " (25)

This approximation introduces an error called the L?-error given by

27 -1 2

I =1 2= Z(f[o(i)])2 : (26)

The retained coeflicients after the compression, have the largest magnitudes and the most relevant data in the

decomposed (1D) image. However, the storage of these coefficients requires a large space. For this reason, we
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use a quantization of our (1D) images which reduces the storage space. Every significant non-zero coefficient
is quantified to just two levels: +1 represents the largest positive coefficients, and —1 represents the largest

negative coefficients. Therefore, the quantified version I of the compressed (1D) image I° is given by

I(z) = I[0]45 () + > I¢filiis(x), (27)
=1
where _
+1 if Iefi] > 0,
It =< o if I°fi] = 0, i=1,..,27 —1. (28)
-1 if I[d] < 0.

4 The metric and the querying algorithm

4.1 The metric or pseudo-metric

In the last section, we showed that the compression gives us a good approximation of the Daubechies-8 decom-
posed (1D) image and the quantization reduces its storage space. According to {5], if we consider only the signs
of the retained and quantified coefficients after the compression in the querying, we can reduce the comparison

algorithm execution time.

Let us consider @ and T as the query and the target (1D) images, respectively. The (1D) version of the

metric, proposed by [5] is obtained from the following expression
_ 27-1
QT lI= wolQlo] = TIO]| + ) wilQg i) - Ty1dll, (29)

i=1

where w; are the metric weights, Q[0] and T'[0] are the scaling function coefficients of the 1D images Q and T,
and QS [¢] and ch [¢] represent the i-th decomposed, compressed and quantified coefficients of these latters. Since

the possible values of a coefficient are +1 or —1, the term
@l -7l e {o.1.2). (30)

In the following case

Q51 - T5lil = 2, (31)
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@ and 7" preserved their coefficients at the i-th position despite the decomposition and compression, but the
two coefficient signs don’t match. They have opposite variations. With respect to the distance between two
different images, two opposite variations having the same positions don’t represent more proximity than when
one of them is equal to zero after the compression. Also, since we assume the vast majority of database images
not to match to the query (1D) well at all, the number of mismatches is larger than the number of matches.

That’s why we write our metric as follows

271

1 QT (1= wol Q0] — 0] + 3 ws (@zm 4 T;m), (32)
=1
where
(a0 - {3 10270 @

In order to make the metric faster, we only consider terms in which the query has a non-zero wavelet coefficient.
A disadvantage of this approach is that we technically disqualify our metric from being a metric because of its

asymmetry. Because of this modification our metric becomes

1T I=wol@lo) - T+ Y w500 £ 5500, (34)
1@ [i]#0
To compute the metric over a database of (1D) images, it’s generally quicker to count the number of matching

coefficients of Qg and ch than mismatching coefficients. For this reason, we rewrite

> (@5l £ 75t ) Z v Y wi(c“z;{i]zfgm), (35)
#Qg[i]#0 [s]s£0 Q¢ [i]#0
where

0 otherwise.

(s =gzm) = { o o2l =10 (36)

So our metric becomes

QT =l - T+ Y wie 3 wi(éz[ihf;m)- (37)

1:Qg[i]#0 :Q5 4] £0
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Since the sum of the terms w; is independant of every target ch, we can discard it. Consequently, we obtain

Q.7 = wol@0] - 70l - 3 wi(QH =750l ). (38)

:Q¢[i]£0
To simplify, we suppose that the weights associated to the coefficients belonging to the same scale, are identical.
Thus, we group the weights according to the resolution levels, by using a simple bucketing function bin() such

as bin(i) represents the floor of loga(i) for i € {1,...,27 — 1}

bin(i) = |log2(i)]  with  i=1,..,27 —1. (39)

J-1

Consequently, we use a set of weights g and {wj}j=0 and define the wy and w;’s by

wo = 17)0
w; = w; for i € 29 +{0,...,29 — 1} and j = 0,...,J — 1(j = bin(3)),

where J is the maximum number of resolution levels. Finally, it suffices to compute the expression

Q. T ||=wolQ0] = Tl = D whin(ey(Q5li] = T¢lil)- (40)
Q¢ [i]#0

4.2 One-dimensional image querying algorithm

In order to optimize the metric computation process, we introduce two arrays called search arrays. Let ©,
for the coefficients quantified to +1 and ©_ for those which are quantified to —1. Each array contains 27/ — 1
elements and each element contains a list. For example, the element © [i] points on the list of all the database
(1D) images having a large positive wavelet coefficient at the i-th position, after compression. With the same
way, the element ©_[i] points on the list of all the database (1D) images having a large negative wavelet
coefficient at the i-th position. Thanks to these \arrays and to the compression, during the querying process we
have just to go through the m lists associated to the query m retained coefficients instead of 27 — 1 coefficients.
After the creation of the search arrays and weights @y and {w; {;01 computation, the retrieval procedure of a
query @ in the database of (1D) images Ty (k = 1,...,|DB|), where |DB| denotes the database size, is defined

as follows

Procedure Retrieval(Q: array [1..27] of reals, m : integer,©_,0,)
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Q « FastDaubechiesWaveletsDecomposition(Q)
Initialize Score[k] = 0, for each & € {1,...,|DB|}
For each k € {1,...,|DB|} do

Score[position of T}, in the (DB)] = 1 * |Q[0] — Tx[0]]
end for
Q° — Compress(@,m)
¢ — Quantify(Q°)
For each Q; [i] # 0 do

If QS[i] > 0 then

List «— ©.[i]
Else

List « ©_]i]
End if

for each [ of List do

Score[position of [ in the (DB)] = Score[position of [ in the (DB)] - Wyin(s)
End for

End for

Return Score
End procedure

This procedure returns an array Score such that Score[k] =|| Q,Ty || for each k € {1,...,]DB|}. The array
Score elements which are the similarity degrees between the query @ and the database (1D) images Ty (k €
{1, ...,|DB{}), can be negative or positive. The most negative similarity degree corresponds to the closest target

to the query Q.

4.3 Weights adjustment and logistic regression

The logistic regression is one of the most popular data mining tools. In content-based image retrieval field
logistic regression was used to model the relevance feedback [8]. In our application, the logistic regression can
be used to tune the weights of our metric. A weight wy, represents the corresponding relative importance of
a query k-th resolution level coefficients, retained after the compression, to a target coefficients belonging to
the same resolution level and having the same positions and signs. Note that if we set the weights @y and

{w; }]J.z‘ol equal to 1, where J is the maximum number of resolution levels, then the target coefficients belonging
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to different resolution levels have the same corresponding relative importance to the query different resolution
level coefficients. We devide our target set into two classes: a matching class and a mismatching class. Each
class contains a set of observations extracted from the database. The logistic regression method introduces a

binary target variable and a set of explanatory variables to represent the class of a given observation. Specifically

Y : Target variable
yr = 1 case of mismatch with the target T
= 0 case of match with the target T

tr = (for,tor,....ti—1,7) : Explanatory variables,

where fo r is the absolute value of the difference between the scaling factors of the query and the target T,
{tr,r}iZL are the numbers of mismatches between the k-th resolution level coefficients of the query and the
target T, J is the maximum number of the resolution levels and yr is the binary target variable, it’s either 0
or 1, depending on whether or not the query and the target T' are intended to match. We assume a posterior
probability of the mismatching with the target T', given the explanatory variables is pr, i.e., pr = P(yr|tr). In

our logistic regression model we assume that posterior probability is given by

J-1

pr = P(Z/T = lit_T) = F(dofor + »_ wktk1), (41)
k=0
and
J-1
pr = l-pr= P(Z/T = 0|?_:Q> = F(—woto,r - Z Wktk,T), (42)
k=0
where @y and {wy};{Z¢ are the weights to compute and
e.’l?
F(z)= . 43
(@)= (43)

In order to tune the weights, we perform a maximum likelihood estimation. The likelihood function measures
the likelihood that different ¢z have given rise to the observed yr. Provided observed target variables have

independent Bernoulli distribution with the probabilities pr for each target T', the form of the likelihood is
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given by

L(if)o,lﬂo,...,lﬂj_l) = Hpg-,T(]_ —pT)l_yT (44)
T=1
= [[a-po) []pr (45)
T=1 T=1

where n is the number of all observations and ng and ny are the numbers of cases with target variable value 0
and 1, respectively. We want to choose g and {wk}i__fé s0 as to maximize the natural logarithm of the above
likelihood. This can be done by using the software SAS 6.12 or the Fisher-scoring algorithm. The training is

an important step in the logistic regression method to extract the observations from the database.

4.4 Training (for the logistic regression method)

Let us consider a color image database which consists of several color image sets such that each set contains
color images which are perceptually close to each other in terms of object shapes and colors. In order to compute
the metric weights @} and {w}}l_, (I € {1,..., N}) by the logistic regression, we have to create the matching
classes (3% = 0) (! € {1,..., N}) and the mismatching classes (v = 1) (I € {1,..., N}). To create a single
matching class (y4 = 0), we draw all possible pairs of histograms or feature vectors representing color images
belonging to the same database color image sets, and for each pair we compute the values of ff)yT and {tLT i
Similarly, to create a single mismatching class (v} = 1), we draw all possible pairs of histograms or feature

vectors representing color images belonging to different database color image sets, and then for each pair we

compute the values of t70,T and {tﬁc,T},{;é.

5 Color image retrieval method

The querying method is in two phases. The first phase is a pretreatment phase done once for the entire database

containing |DB| color images. The second phase is the querying phase.

5.1 Preprocessing (of the LAB color image database)

We detail the preprocessing phase done once for all the database color images before the querying in a general

case by the following steps.

1. Choose N feature histograms for comparison.

25



2. Compute the N feature histograrhs Ty (Il € {1,...,N}) for each i-th LAB color image of the database,

where i € {1, ...,|DB|}.

3. The feature histograms representing the database color images are Daubechies-8 wavelets decomposed,

compressed to m coeflicients each and quantified.

4. Organize the decomposed, compressed and quantified feature vectors into search arrays @l+ and ©L

(I=1,..,N).

5. Adjustment of the metric weights w§ and {w}}]_, for each set of feature histograms T}; (i = 1,...,|DB])

representing the database color images, where [ € {1,..., N}.

5.2 The querying algorithm
We detail the querying algorithm in a general case by the following steps.

1. Given query LAB color image. We denote the feature vectors representing the query image by @, (l =
1,...,N).

2. The feature vectors representing the query image are Daubechies-8 wavelets decomposed, compressed to

m coeflicients each and quantified.

3. The similarity degrees between @ (l =1,.,N ) and the database color image feature histograms Tj;
(I=1,..,N) (i =1,...,|DBJ) are represented by the arrays Score; (I = 1,...,N) such that Scorei[i] =||
Qi,Ti; || for each i € {1,...,|DB|}. These arrays are returned by the procedures Retrieval(Q;, m, 0%,

©Y) (I=1,..,N), respectively.

4. The similarity degrees between the query color image and the database color images are represented by
a resulted array TotalScore, such as, T'otalScore[i] = 211\;1 yScorey(i] for each ¢ € {1,...,|DB|}, where

{7}, are weightfactors used to fine-tune the influence of each individual feature.

5. Organize the database color images in order of increasing resulted similarity degrees of the array T'otalScore.
The most negative resulted similarity degrees correspond to the closest target images to the query image.
Finally, return to the user the closest target color images to the query color image and whose number is

denoted by RI and chosen by the user.
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5.3 The querying method dataflow diagram

For simplicity, we describe the querying method steps by the following diagram:.

Preprocessing

Querying

Ewviraction of N festure histograms from

Extraction of N feeture histograms from
each datebase LAB color image.

the LAS query color image.
Ex ot i ] The guery color image W feature
wiracted feature bistograms are histograms are Daubechies-8 wavelets
{4 T ELTE Ly e i
Daubechies-§ wavelsts uem\;ﬂm;}omem\, decomposed, compressed and
compreseed and quanified.

quantified.

Construction of the search arrays for
each set of feature histograms.

The similarity degrees between the
eery codor image N feature histograms
mnd the database oolor image feature
histograms are compuiad using the
opyocedure Relrieval and then are
i representad by the arreye

Scorey {(f=1,.., N}

Acjustmsnt of the metric weights for
ench st of featire histograms.

The shmilasity degrees betweern the
guery color image and the database
cofor images are represented by the
resulted srray TolalScore, such us,
N
TotisScoref]= Z ¥ Scorayfi]

d=1

for gach je {L,...,IDB' }

!

The most negative resulted sinvitarity
degrees sorrgspond fo the closest
tmrget imeges ta the gquery invage.

Figure 2: Block diagram of the querying method.
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6 Experimental results and evaluation

In this section we perform some experiments to validate and evaluate our querying method in a database of
|DB| = 10000 animal, landscape, art, bridge and building LAB color images. It consists of several color image
sets such that each set contains color images which are perceptually close to each other in terms of object shapes

and colors.

The first evaluation will be based on a comparison between the querying after using classical color histograms
hr, hq and hy given by (1), and the querying after using hy, h?, kP, h¢ and h§ given by (1), (9) and (12),
respectively, to represent the database color images. The second evaluation will be based on a comparison
between the querying results when the metric weights are equal to 1 and the querying results when the metric
weights are computed by the logistic regression. In this evaluation each database color image is represented by
its hr,, h’a‘, h;}, Bg and l—zg. The third evaluation will be based on a comparison between the querying after using
hr, h, k¥ given by (1) and (9), respectively, and the laplacian weighted histograms proposed by [6], and the
querying after using hz, h?, h, hS and h§, to represent the database color images. In the fourth evaluation we
will show the importance of considering the metric term |Q[0] — T [0]] or the scaling factors in the querying.
Finally, the fifth evaluation is carried out to show the improvement of the querying results thanks to the query
color image h¢ and Hg transformation used to make the querying invariant to the color intensities of the query

color image.

Generally, to carry out an evaluation in the image retrieval field, two principal issues are required: the ac-
quisition of ground truth and the definition of performance criteria. For ground truth, we introduce human
observations. In fact, two external persons participate in the all below evaluations. Concerning performance
criteria, we represent each evaluation results by the precision-scope curve Pr = f(RI), where the scope RI is the
number of images returned to the user. In each querying performed in an evaluation experiment, each human
subject is asked to give a goodness score to each retrieved image. The goodness scores are 2 if the retrieved
image is almost similar to the query, 1 if the retrieved image is fairly similar to the query and 0 if there is no
similarity between the retrieved image and the query. Consequently, we can compute the precision as follows:
Pr = the sum of goodness scores for retrieved images/RI. Therefore, the curve Pr = f(RI) gives the precision
for different values of RI which lie between 1 and 10 in our evaluation experiments. When the human subjects

perform different queryings in the same evaluation experiment, we compute an average precision for each value
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of RI, and then we construct the precision-scope curve.

The following experiments will be carried out to extract the curve Pr = f(RI) for each evaluation men-
tioned above.

First experiment

This experiment is carried out to show the advantage of using our weighted histograms instead of classical color
histograms to represent the query color image before the querying. Each human subject is asked to formulate
a query from the database and to execute a querying using N = 3 feature histograms which are hy, h, and hy
given by (1), to represent the query color image, while computing the metric weights by the logistic regression
and keeping the weightfactors {fn}?zl equal to 1, and to give a goodness score to each retrieved image, then
to reformulate a query from the database and to execute a querying using N = 5 feature histograms which are
hr, h%, h;‘, ﬁ; and ﬁg, to represent the query color image, while computing the metric weights by the logistic
regression and keeping the weightfactors {v;};_, equal to % and 4 and 75 equal to 1 to give more importance
to the edge region features, and to give a goodness score to each retrieved image. Each querying is repeated
twenty times by choosing a new query from the database each time. We repeat this experiment for different

orders of compression m € {30,20,10}. The resulted precision-scope curves are

Weighted histograms.
""""" Classical color histograms.
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Figure 3: Evaluation: precision-scope curves for retrieval when the database LAB color images are represented
by hr, h, and hy each, and when the database LAB color images are represented by hp, h;‘, h;‘, h¢ and h§
each, for the compression orders m € {30, 20, 10}.

The following three Figures give three examples of the improvements of our querying results thanks to the
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separation between the modes of the color histograms representing the database LAB color images and to the
use of the multispectral gradient module mean histogram to consider the database color image edge regions in
the querying. We choose the same query for the three examples. For each example the query is located at the
top-left of the dialog box.
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Figure 4: Comparison (m = 30): a) first 7 color images retrieved after being represented by their hy, h, and
hs, b) second 7 color images retrieved after being represented by their hy, h, and hy, a’) first 7 color images
retrieved after being represented by their hp, A%, k2, A2 and hY and b’) second 7 color images retrieved after
being represented by their Az, k%, hl, h and k.
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Figure 5: Comparison (m = 20): a) first 7 color images retrieved after being represented by their Ay, h, and
hs, b) second 7 color images retrieved after being represented by their hr, hy and hs, a’) first 7 color images
retrieved after being represented by their hp, hfl‘, h,’,‘, Eg and ﬁf, and b’) second 7 color images retrieved after
being represented by their Ar, A%, A, hS and h{.
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and hg.
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Second experiment

This experiment is carried out to show how the weights computed by the logistic regression can optimize our
querying results. Each database color image is represented by hy, k%, h%, h¢ and h¢. Each human subject is
asked to formulate a query from the database and to execute a querying, using weights computed by the logistic
regression, and to give a goodness score to each retrieved image, then to reformulate a query from the database
and to execute the querying, using weights equal to 1, and to give a goodness score to each retrieved image.
Each querying is repeated twenty times by choosing a new query from the database each time. We repeat this
experiment for different orders of compression m € {30, 20,10} and we keep the weightfactors {’71}13=1 equal to
% and y4 and 5 equal to 1 to give more importance to the edge region features. The following table contains

the weights computed by the logistic regression, for order m = 30 of the compression.

wh | Wy | owh ] owh [ owh | owh | wl wk wh
hr(l=1) 1331 |7231534|685|8511837]|624]| 7.25 | 10.14
hZ(l =2)|3.59 | 465|628 | 826|438 637|721 | 1041 | 3.91
hl};(l =3) | 514|829 3.51 440|859 | 590|872 | 7.83 | 6.93
hé(l=4) | 578 | 5.67 | 852 { 7.04 | 6.85 [ 801 | 7.09 [ 6.82 | 6.62
hi(l=>5) | 5.63 | 8.08 | 6.18 | 9.37 | 9.47 | 5.05 | 7.57 | 843 | 7.94

Table 1: Weights computed by the logistic regression for m = 30.

The resulted precision-scope curves for each compression order are

Weights computed by the logistic regression.
---------- ‘Weights equal to 1.
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Figure 7: Evaluation: precision-scope curves for retrieval using weights equal to 1 and weights computed by the
logistic regression, for the compression orders m € {30, 20, 10}.
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The following three Figures give three examples of the improvements of our querying results when we use
weights computed by the logistic regression instead of weights equal to 1, to tune the metric. We choose the

same query for the three examples. For each example the query is located at the top-left of the dialog box
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Figure 8: Comparison (m = 30): a) first 7 color images retrieved after using weights equal to 1, b) second
7 color images retrieved after using weights equal to 1, a’) first 7 color images retrieved after using weights

computed by the logistic regression and b’) second 7 color images retrieved after using weights computed by
the logistic regression.
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Figure 9: Comparison (m = 20): a) first 7 color images retrieved after using weights equal to 1, b) second
7 color images retrieved after using weights equal to 1, a’) first 7 color images retrieved after using weights
computed by the logistic regression and b’) second 7 color images retrieved after using weights computed by
the logistic regression.
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Figure 10: Comparison (m = 10): a) first 7 color images retrieved after using weights equal to 1, b) second
7 color images retrieved after using weights equal to 1, a’) first 7 color images retrieved after using weights
computed by the logistic regression and b’) second 7 color images retrieved after using weights computed by
the logistic regression.
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Third experiment

This experiment is carried out to show the advantage of using h¢ and h{ instead of the laplacian weighted
histograms to represent the query color image before the querying. Each human subject is asked to formulate
a query from the database and to execute a querying using N = 5 feature histograms which are hr, h?, h? and
the laplacian weighted histograms, to represent the query color image, and to give a goodness score to each
retrieved image, then to reformulate a query from the database and to execute a querying using N = 5 feature
histograms which are hy,, h?, h{}, h¢ and i_zg, to represent the query color image, and to give a goodness score to
each retrieved image. Each querying is repeated twenty times by choosing a new query from the database each
time. We repeat this experiment for different orders of compression m € {30, 20, 10}, we compute the metric
weights @} and {wh}]_, by the logistic regression for each [ € {1,2,3,4,5}, and we keep the weightfactors
{1}}_, equal to % and 4 and 75 equal to 1 to give more importance to the edge region features. The resulted

precision-scope curves are

Multispectral gradient module mean histogram.

---------- Laplacian waighted histogram.

Precision

Scape

Figure 11: Evaluation: precision-scope curves for retrieval in database of LAB color images represented by hp,
hh, h{,’ and the laplacian weighted histograms each, and for retrieval in the same database LAB color images
represented by hy, kY, h{}, h¢ and h§ each, for different compression orders m € {30, 20, 10}.

The following three Figures give three examples of improvement of our querying results when we represent each
query image by A¢ and A instead of the laplacian weighted histograms. We choose the same query for the three

examples. For each example the query is located at the top-left of the dialog box.
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Figure 12: Comparison (m = 30): a) first 7 color images retrieved after being represented by their laplacian
weighted histograms each, b) second 7 color images retrieved after being represented by their laplacian weighted
histograms each, a’) first 7 color images retrieved after being represented by their AS and Bg each and b’) second
7 color images retrieved after being represented by their A¢ and A§ each.
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Figure 13: Comparison (m = 20): a) first 7 color images retrieved after being represented by their laplacian
weighted histograms each, b) second 7 color images retrieved after being represented by their laplacian weighted
histograms each, &’) first 7 color images retrieved after being represented by their A and l_zg each and b’) second
7 color images retrieved after being represented by their A and h§ each.
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Figure 14: Comparison (m = 10): a) first 7 color images retrieved after being represented by their laplacian
weighted histograms each, b) second 7 color images retrieved after being represented by their laplacian weighted
histograms each, a’) first 7 color images retrieved after being represented by their hS and h§ each and b’) second
7 color images retrieved after being represented by their A% and Bg each.
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Fourth experiment

This experiment is carried out to show the importance of considering the scaling factors of the Daubechies-8
decomposed versions of the histograms h¢ and Eg in the querying. Each human subject is asked to formulate a
query from the database and to execute a querying using N = 5 feature histograms which are hz,, h?, R, 4
and h¢ to represént the query color image, while computing the metric weights @}, and {w}}!_, by the logistic
regression for each | € {1,2,3,4,5}, and to give a goodness score to each retrieved image, then to reformulate
a query from the database and to execute a querying using the same feature histograms, while keeping the
metric terms | Q4[0] — Ty [0]] and 19|@5[0] — T5[0]| equal to zero by affecting a zero to @§ and g, and to give
a goodness score to each retrieved image. Each querying is repeated twenty times by choosing a new query
from the database each time. We repeat this experiment for different orders of compression m € {30, 20,10} we
keep the weightfactors {v;};_; equal to % and v4 and s equal to 1 to give more importance to the edge region

features. The resulted precision-scope curves for each compression order are

With scaling factor consideration.
-------- ‘Without scaling factor consideration.
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Figure 15: Evaluation: precision-scope curves for retrieval after considering the scaling factors and after ne-
glecting these latters , for the compression orders m € {30, 20, 10}.

Thanks to the above precision-scope curves we can notice the degradation of the querying when we neglect
the scaling factors. In fact, because of the quantization if we keep the metric terms @o|Q4[0] — T4[0]| and
Wo|@s[0] — T5[0]] equal to zero by affecting a zero to wi and @j, the metric will not distinguish two color
component multispectral gradient module mean histograms ¢4 and Ty or Q)5 and 75 having the same curvature
variations at the same X-coordinates, but these curvatures have different magnitudes. Consequently, the metric
can not distinguish two LAB color images having almost similar colors and luminances, but different object
shapes. For this reason, it’s very important to consider the scaling factor of each decomposed multispectral
gradient module mean histogram of a LAB color image component in the querying. In fact, this scaling factor

represents the average of the overall gradient module values of each LAB color image component, and changes
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from image to other having different edge shapes. The following three Figures give three examples of the
degradation of our querying results when we don’t consider the scaling factors of the Daubechies-8 decomposed
versions of the histograms k¢ and fzg. We choose the same query for the three examples. For each example the

query is located at the top-left of the dialog box.
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Figure 16: Comparison (m = 30): a) first 7 color images retrieved after considering the scaling factors, b) second

7 color images retrieved after considering the scaling factors, a’) first 7 color images retrieved after neglecting
the scaling factors and b’) second 7 color images retrieved after neglecting the scaling factors.
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Figure 17: Comparison (m = 20): a) first 7 color images retrieved after considering the scaling factors, b) second
7 color images retrieved after considering the scaling factors, a’) first 7 color images retrieved after neglecting
the scaling factors and b’) second 7 color images retrieved after neglecting the scaling factors.
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Figure 18: Comparison (m = 10): a) first 7 color images retrieved after considering the scaling factors, b) second

7 color images retrieved after considering the scaling factors, a’) first 7 color images retrieved after neglecting
the scaling factors and b’) second 7 color images retrieved after neglecting the scaling factors.
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Fifth experiment

The metric is very sensitive to the translation. Therefore, it can not distinguish two color images having similar
objects, but different background and object colors, which is a big constraint for the querying. In fact, we
assume that these two color image multispectral gradient module mean histograms have similar mode shapes and
magnitudes, but these modes are translated to each other because of the color difference. In order to solve this
problem, we compute the mean of each database color image multispectral gradient module mean histograms,
and then we shift these latters until that their mean pixels match to their center pixels which correspond to
the X-coordinates 128 in our case. However, because of this shift, the multispectral gradient module mean
histograms can exceed their supports, which affects their scaling factor values after their Daubechies-8 wavelet
decompositions, and then affects the querying results. Consequently, in order to preserve the same scaling factor
values, we double the resolution of each histogram to 512 pixels, we perform the shift, and then we reconstruct
periodically each histogram for the 256 remaining pixels. The mean of a LAB color image multispectral gradient

module mean histogram h¢ having 27 pixels is given by

271
Mpg = “%2 0_11;; ((;)) (46)
for each LAB color component & = a,b. We denote the transformed versions of the multispectral gradient
module mean histograms h¢ and Bg are denoted by h¢._ and hb‘r’ respectively. This last experiment is carried
out to show how the h¢ and i_zﬁ transformation used to make the querying invariant to the color intensities of
the query color image, improve the querying results. Each human subject is asked to formulate a query from
the database and to execute a querying, using N = 5 feature histograms which are A, hg, h hf” and }—Lg‘,r, to
represent the query color images, and to give a goodness score to each retrieved image, then to reformulate a
query from the database and to execute a querying, using N = 5 feature histograms which are hp, hZ, ht, Bg
and TLZ, to represent the query color image, and to give a goodness score to each retrieved image. Each querying
is repeated twenty times by choosing a new query each time. We repeat this experiment for different orders
of compression m € {30,20,10}, we compute the metric weights by the logistic regression and we keep the
weightfactors {v;};_; equal to % and 74 and 5 equal to 1 to give more importance to the edge region features.

The resulted precision-scope curves for each compression order are
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Multispectral gradient module mean histogram.
---------- Transformed multispectra! gradient module mean histogram.

Precision

Figure 19: Evaluation: precision-scope curves for retrieval in database of LAB color images represented by Ar,,
he, hit, he and h¢ each, and for retrieval in the same database of LAB color images represented by hz, hf?, hf,
hi, and h{_.

The following three Figures give three examples of the improvement of our querying results when we rep-

resent each database LAB color image by hp, h?, h{;, EgT and EgT. We choose the same query for the three

examples. For each example the query is located at the top-left of the dialog box
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Figure 20: Comparison (m = 30): a) first 7 color images retrieved after being represented by their Az, h%, A,
h¢ and h§ each, b) second 7 color images retrieved after being represented by their hy, A%, kP, A% and h§ each,
a’) first 7 color images retrieved after being represented by their Ay, h%, A, k¢ and A each and b’) second 7
color images retrieved after being represented by their hr, A%, A}, RS and 71;’;,_ each.
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Figure 21: Comparison (m = 20): a) first 7 color images retrieved after being represented by their Ay, A%, k!,
R¢ and Eg each, b) second 7 color images retrieved after being represented by their hyp, h?, h{,‘, }_Lfi and Eg each,
a’) first 7 color images retrieved after being represented by their hy, A%, A, AS. and h¢_ each and b’) second 7
color images retrieved after being represented by their hp, hff, h{}, Bir and Bgr each.
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Figure 22: Comparison (m = 10): a) first 7 color images retrieved after being represented by their hy, h?, h,’,‘,
he and Eg each, b) second 7 color images retrieved after being represented by their hy, h?, h{,’, 713 and 715 each,
a’) first 7 color images retrieved after being represented by their hy,, A%, A, kS, and h¢, each and b’) second 7
color images retrieved after being represented by their Az, hﬁ, h{}, BZT and 71§T each.
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7 Conclusion

We presented a simple, fast and effective querying method. In this method we improved the spatial information
combination with the colors given by the laplacian weighted histogram by introducing a multispectral gradient
module mean histogram. Also, we showed that through the use of the one-dimensional metric proposed by [5]
and through a one-dimensional Daubechies-8 decomposition and compression of color image feature vectors, we
could make a good compromise between the querying computational complexity and effectiveness. In order to
represent our color images we used the LAB color space, because it’s perceptually uniform and it allows a good
separation between the colors and the luminance. Thanks to this separation the color is represented by just two
components and then each color image feature is represented by two histograms instead of three, which is the
case for other color spaces, like the RGB color space. The standard logistic regression is a good tool to compute
the metric weights and to improve the querying results. However, it can provide inaccurate weights when the
number of observations is very large. For this reason, in the future work we will try an other statistical method

in order to improve the discriminatory capacity of the metric when we have larger color image databases.
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CHAPITRE 2

Pseudo-métrique pondérée pour une
méthode rapide de recherche d’images

par le contenu

Dans ce chapitre, nous proposons un nouveau modéle bayésien de régression logistique
basé sur une méthode variationnelle. Une comparaison de ce nouveau modéle avec le
modéle classique de régression logistique est effectuée dans le cadre de la recherche
d’images. Nous avons illustré que le modéle bayésien permet une meilleure amélioration
de la capacité a discriminer de la pseudo-métrique et de la précision de recherche que le
modéle classique. Une évaluation comparative a été effectuée sur les bases de données
d’images couleurs connues WANG et ZuBud.

Nous présentons dans les pages qui suivent, un article intitulé Weighted Pseudo-
Metric for a Fast CBIR Method qui est. accepté pour publication dans le journal
Machine Graphics and Vision (MGV). Une version préliminaire de l'article a
été présentée a I'International Conference on Computer Vision and Graphics

(ICCVG'06), Varsovie, Pologne, 2006.
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Abstract

In this paper, a simple and fast querying method for content-based image retrieval is presented. In order to
measure the similarity degree between two color images both quickly and effectively, we use a weighted pseudo-
metric which makes use of the one-dimensional Daubechies decomposition and compression of the extracted
feature vectors. In order to improve the discriminatory capacity of the pseudo-metric, we compute its weights
using a classical logistic regression model and a Bayesian logistic regression model, separately. The Bayesian
logistic regression model was shown to be a significantly better tool than the classical logistic regression model
to improve the retrieval performance. Experimental results are reported on the WANG and ZuBuD color image

databases proposed by [11].
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1 Introduction

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the field
of medecine, security, communications, commerce and academia, increased the need for both efficient image
database creation and retrieval procedures. For this reason, content-based image retrieval (CBIR) approach
was proposed [6]. In this approach, each image from the database is associated with a feature vector capturing
certain visual features of the image such as color, texture and shape. Then, a similarity measure is used to
compare these feature vectors and to find similarities between images with the assumption that images that are
close to each other in the feature space are also visually similar. Distance measures like the Euclidean distance
have been the most widely used to measure similarities between feature vectors in the content-based image
retrieval (CBIR) systems. However, similarity measures make no assumption about the probability distributions
and the local relevances of the feature vectors, thereby irrelevant features might hurt retrieval performance.
Probabilistic approaches are a promising solution to this CBIR problem [13], that when compared to the
standard CBIR methods based on the distance measures, can lead to a significant gain in retrieval accuracy. In
fact, these approaches are capable of generating probabilistic similarity measures and highly customized metrics
for computing image similarity. As to previous works based on these probabilistic approaches, J. Peng et al.
[4] used a binary classification to classify the database color image feature vectors as relevant or irrelevant,
G. Caenen and E. J. Pauwels [10] used the classical quadratic logistic regression model, in order to classify
database image feature vectors as relevant or irrelevant and S. Aksoy and R. M. Haralick [8] measure the
similarity degree between a query image and a database image using a likelihood ratio derived from a Bayesian
classifier. In this paper, we propose a simple and fast querying method for content-based image retrieval. In
order to measure the similarity degree between two color images, we use a weighted pseudo-metric used in [14],
which makes use of the compressed and quantized versions of the Daubechies-8 wavelet decomposed histograms.
In order to discriminate most effectively, the pseudo-metric weights are adjusted using separately a classical
logistic regression model and a Bayesian logistic regression model based on a variational method. The Bayesian
logistic regression model was shown to be a significantly better tool than the classical logistic regression model
to improve the retrieval performance. Evaluation and comparison of both models were conducted on the WANG
and ZuBuD color image databases proposed by [11].

This paper is organized as follows. In the next section, we briefly redefine the pseudo-metric. In section 3, we
will present the pseudo-metric weight adjustment using the classical and Bayesian logistic regression models.

Then, we will describe the data training performed for both models. The color image retrieval method and
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the feature vectors that we use to represent the database color images are presented in section 4. Finally, in
section 5, we will perform some experiments to validate the Bayesian logistic regression model and we will use
the precision and scope {16}, in order to show the advantage of the Bayesian logistic regression model over the

classical logistic regression one, in terms of querying results.

2 The pseudo-metric

Given a query feature vector @ and a featurebase of |DB| feature vectors Ty (k = 1,...,|DB|) having 27
components each, our aim is to retrieve in the featurebase the most similar feature vectors to ¢. To achieve this,
@ and the |DB| feature vectors are Daubechies-8 wavelet decomposed, compressed to m coefficients each and
quantized. Then, to measure the similarity degree between @ and a target feature vector Ty of the featurebase,

we use the pseudo-metric used in [14] and given by the following expression

1 QT 1= 2lQ0] = Tuloll = > woingy (5] = T i), 1)
#:Qg[il#0
where
(w =) - { S0 o

Q0] and T'[0] are the scaling function coefficients; Q; [¢] and T; [¢] represent the i-th coefficients of their wavelet
decomposed versions, compressed and quantized; Wy and the wy,(;) are the weights to compute; and the

bucketing function bin() groups these weights according to the J resolution levels, such that
bin(i) = |loga(1)]  with  i=1,..,27 -1 (3)

Since the pseudo-metric makes use of the one-dimensional Daubechies-8 decomposition and compression of the
extracted feature vectors, the retrieval will be done quickly and effectively.
3 Pseudo-metric weight adjustment

In order to improve the discriminatory power of the pseudo-metric, we compute its weights Wy and {wy}{Zq
using a classical logistic regression model and a Bayesian logistic regression model, separately. We define two

classes, the relevance class denoted by Qy and the irrelevance class denoted by €, in order to classify the feature
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vector pairs as similar or dissimilar. The basic principle of using the Bayesian logistic regression model and the
classical logistic regression one is to perform a good linear separation between {2y and €2, and then to compute

the weights which represent the local relevances of the pseudo-metric components.

3.1 The classical logistic regression model

In this model, each feature vector pair is represented by an explanatory vector and a binary target variable.
Specifically, for the i-th pair of feature vectors which are Daubechies-8 wavelet decomposed, compressed and
quantized, we associate an explanatory vector X; = (Xg;, X0.4,--, XJ-1,i;1) € R x {1} and a binary target
S; which is either 0 or 1, depending on whether or not the two feature vectors are intended to be similar.
Xo,; is the absolute value of the difference between the scaling factors of feature vectors and { Xk, Hzy are
the numbers of mismatches between their J resolution level coefficients. We suppose that we have ng pairs of
similar feature vectors and n; pairs of dissimilar ones. Thus, the class € contains ny explanatory vectors and

no
i=

their associated binary target variables {X[,S] = 0};2; to represent the pairs of the similar feature vectors,
and the class €; contains nj explanatory vectors and their associated binary target variables {X j”, S;T =1},
to represent the pairs of the dissimilar feature vectors. According to [14], the pseudo-metric weights Wy and
{wk},{;(} and an intercept v are chosen to optimize a conditional log-likelihood. For this reason, standard
optimization algorithms such as the Fisher scoring and gradient ascent algorithms [3], can be invoked. However,
according to [12] and [5], in several cases, especially because of the exponential in the likelihood function or
because of the existence of many zero explanatory vectors, the maximum likelihood can fail and estimates of the
parameters of interest (weights and intercept) may not be optimal or may not exist or may be on the boundary
of the parameter space. This problem can be solved by smoothing the parameter of interest estimates, assuming

a certain prior distribution for the parameters. This motivates the adoption of a Bayesian logistic regression

model with gaussian prior over the parameters.

3.2 The Bayesian logistic regression model

In the Bayesian logistic regression framework, there are three main components which are a chosen prior dis-
tribution over the parameters of interest, the likelihood function and the posterior distribution. These three
components are formally combined by Bayes’ rule. The posterior distribution mean components are the parame-
ter of interest estimates. However, when the posterior distribution has no tractable form, its mean computation

involves high-dimensional integration which has high computational cost. According to [7], it’s possible to use
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accurate variational transformations in order to approximate the likelihood function with a simpler tractable
exponential form. In this case, thanks to the conjugacy, with a gaussian prior distribution over the parame-
ters of interest combined with the likelihood approximation, the posterior distribution is approximated with a
closed gaussian form. However, in this model, to each explanatory vector a variational parameter is associated.
Therefore, if the number of observations is large, the number of variational parameters updated to optimize the
posterior distribution approximation is also large, thereby the computational cost is high. In the model that we
propose, we Use variational transformations and the Jensen’s inequality in order to approximate the likelihood
function with tractable exponential form. The explanatory vectors are not observed but instead are distributed
according to two specific distributions. The posterior distribution is also approximated with a gaussian which
depends only on two variational parameters. The computation of the posterior distribution approximation mean

is fast and has low computational complexity. In this model, we denote the random vectors whose realizations

o
=1

represent the explanatory vectors { X[ of the relevance class Qy and the explanatory vectors {X J"};l; , of
the irrelevance class O, by X, = (Xo,mXo,o» v Xjo10,1) and X; = (Xo,l,&),l, wyX 1,1, 1), respectively. We
suppose that X, ~ qo(Xg) and X; ~ ¢1(X; ), where ¢ and ¢; are two chosen distributions. For X, we associate
a binary random variable S, whose realizations are the target variables {S] = 0};2;, and for X; we associate

a binary random variable S; whose realizations are the target variables { ;T = 1}71,. We set S, equal to 0

for similarity and we set S; equal to 1 for dissimilarity. Parameters of interest (weights and intercept) are
considered as random variables and are denoted by the random vector W = (g, wg, ..., wy_1,¥). We assume
that W ~ w(W), where 7 is a gaussian prior with prior mean y and covariance matrix X. Using Bayes’ rule,
the posterior distribution over W is given by

(S socaozren, Lizo P8 = ilX; = 2, W)qs(X, = z:)] (W)
P(§0=0,§1=1) ,

P(W|Sy =0,8, =1) = (4)

where P(S; = i|X; = z;, W) = F((2i — 1)W'z;) for each i € {0,1} and F(z) = ﬁ_fe—,— Using a variational
approximation [7] and the Jensen’s inequality, the posterior distribution is approximated as follows

P(W|Sp =0,8; =1, {e:};_g (i} 1) 7(W)
P(_S_0=0,_S_1:1) ’

x .E.(_W_|§0 = 0)5.1 = 1a {Ei};l=07 {Qi};zo)ﬂ(ﬂ), (6)

PW|Sy =0,8, =1) 2
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where

P(W|Sy =0,8; = 1, {ei}, g {ai} 1)

o [Pl ] st e (Bq, (H2)-€2) ]

_ hj) F(ei)] e[ - :

where Eg, and E,, are the expectations with respect to the distributions go and g1, respectively, ¢(e;) = %
and {ei};o are the variational parameters. Therefore, the approximation of the posterior distribution is

considered as an adjustable lower bound and as a proper Gaussian distribution with a posterior mean o5 and

covariance matrix ¥p,s¢ which are estimated by the following Bayesian update equations

1

(Zpost) ™ = (E)71 42 [0(e) By [zi(z:)']],
i=0

1
MHpost = Z]post [(Z)_IH + Z [(7’ - %)E% [xl]]] .
1=0

The weight and intercept computation algorithm is in two phases. The first phase is the initialization of go, ¢1
and the gaussian prior 7(W), and the second phase is iterative and allows the computation of Epos and ppost
through the above Bayesian update equations, while using an EM type algorithm [1}, [15], in order to find fhe
variational parameters {ei};o at each iteration to have an optimal approximation to the posterior distribution.
In the initialization phase, go and g; are chosen to model 0y and ;, respectively, and because of the absence
of prior knowledge about the weights and the intercept, 7(W) is chosen univariate with zero mean and large
variances [9]. The values of up.s components are the desired estimates of the pseudo-metric weights wo and

{wi}]Z5 and the intercept v.

3.3 Training

Let us consider a color image database which consists of several color image sets such that each set contains color
images which are perceptually close to each other in terms of object shapes and colors. In order to compute the
pseudo-metric weights and the intercept by the classical logistic regression model, we have to create the relevance
class Qg and the irrelevance class ;. To create €y, we draw all possible pairs of feature vectors representing
color images belonging to the same set in the database, and for each pair we compute an explanatory vector
and associate a binary target variable equal to 0. Similarly, to create 2, we draw all possible pairs of feature

vectors representing color images belonging to different sets in the database, and for each pair we compute an
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explanatory vector and associate a binary target variable equal to 1. For the Bayesian logistic regression model,
we create the Qp and 2 with the same way, but instead of associating a binary target variable value for each
explanatory vector of £y and £, we associate a binary target variable S, equal to 0 for all p explanatory

vectors and a binary target variable S, equal to 1 for all ; explanatory vectors.

4 Color image retrieval method

4.1 Color image database preprocessing and the querying algorithm

The retrieval method is in two phases. The first phase is a preprocessing phase done once for the entire database

containing |DB] color images. The second phase is the querying phase.

Preprocessing:
1. Choose N feature vectors for comparison.

2. Compute the N feature vectors Ty; (I € {1,...,IN}) for each i-th color image of the database, where

ie{1,..,|DBI|}.

3. The feature vectors representing the database color images are Daubechies-8 wavelets decomposed, com-

pressed to m coefficients each and quantized.

4. Organize the decomposed, compressed and quantized feature vectors into search arrays @l+ and ©% (l =

1,..,N ) which are used to optimize the pseud-metric computation process [14].

5. Adjustment of the metric weights @) and {wi},{;é for each featurebase Tj; (¢ = 1,...,|DB]) representing

the database color images, where [ € {1,..., N}.

Querying algorithm:
1. Given a query color image, we denote the feature vectors representing the query image by @, (l =1,..,.N )

2. The feature vectors representing the query image are Daubechies-8 wavelets decomposed, compressed to

m coeflicients each and quantized.

3. The similarity degrees between @; (I = 1,...,N) and the database color image feature vectors Ty; (I =

1,.,N) (i = 1,..,|DBY|) are represented by the arrays Score; (I = 1,...,N) such that Scorei] =||
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Qi,Ty; || for each i € {1,...,|DB]}. These arrays are returned by the procedure Retrieval(Q;, m, G)l+, eL)

(l =1.,N ), respectively. The procedure Retrieval is used to optimize the querying process [14].

4. The similarity degrees between the query color image and the database color images are represented by
a resulted array TotalScore, such as, TotalScoreli] = Zﬁ__l ~vScoreli] for each ¢ € {1,...,|DB|}, where

{7}, are weightfactors used to fine-tune the influence of each individual feature.

5. Organize the database color images in order of increasing resulted similarity degrees of the array TotalScore.
The most negative resulted similarity degrees correspond to the closest target images to the query image.
Finally, return to the user the closest target color images to the query color image and whose number is

denoted by RI and chosen by the user.

4.2 Used feature vectors

Before feature vector extraction, a color image is represented in the perceptually uniform LAB color space. In
order to describe the luminance, colors and edges of the color image, we use luminance histogram and weighted
histograms proposed by [14]. The weighted histograms are the color histograms constructed after edge region
elimination and the multispectral gradient module mean histograms. We denote the luminance histogram by
hr, the multispectral gradient module mean histograms by h¢ and FLI‘;, and the color histograms constructed
after edge region elimination by A" and h{,‘. The image texture description is performed by kurtosis and skewness
histograms [2]. Kurtosis histograms are denoted by A%, h% and Ay, and skewness histograms are denoted by A7,
hi and h{. They are obtained by local computations of the kurtosis and skewness values at the luminance and
chrominance image pixels. Then, a linear interpolation is used to represent the kurtosis and skewness values
between 0 and 255. Since each used feature vector is a histogram having 256 components, we set J equal to 8

in the following section.

5 Experimental results

The choices of the distributions go and ¢; and the querying evaluation will be conducted on the WANG and
ZuBuD color image databases described in [11]. Since from each color image of the ZuBuD and WANG data-
bases we extract N = 11 histograms which are hr, h?*, Rl RS, hg, h%, h%, hE, h%, kS and h{, each database is
represented by eleven featurebases. The choices of gy and ¢; will be separately performed for each of those. For

each featurebase, we assume that Xo,o and (X g, ;X s_1,0) are independent. We make the same assumption
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for X0,1 and (X4 1,...,X;_11). Moreover, we suppose that the random vector (X4 g, .-, X ;_1 ) random variables
are independent and each one of them follows a poisson distribution. Analogously, we make the same choice for
(Xo,15+1X7-1,1)- Also, we assume that the random variable Xo,o follows a gaussian mixture distribution, which
is the same choice for Xo,r Generally, to carry out an evaluation in the image retrieval field, two principal issues
are required: the acquisition of ground truth and the definition of performance criteria. For ground truth, three
external persons participate in the evaluation. Concerning performance criteria, we represent the evaluation
results by the precision-scope curve Pr = f(RI) [16]. In each querying performed in the evaluation experiment,
each human subject is asked to give a goodness score to each retrieved image. The goodness score is 2 if the
retrieved image is almost similar to the query, 1 if the retrieved image is fairly similar to the query and 0 if
there is no similarity between the retrieved image and the query. The precision is computed as follows: Pr =
the sum of goodness scores for retrieved images/RI. Therefore, the curve Pr = f(RI) gives the precision for
different values of RI which lie between 1 and 20 when we perform the evaluation on the WANG database, and
between 1 and 5 when we perform the evaluation on the ZuBuD database. When the human subjects perform
different queries in the evaluation experiment, we compute an average precision for each value of RI, and then
we construct the precision-scope curve. In order to evaluate the querying procedure on the WANG database,
each human subject is asked to formulate a query from the database, execute the querying procedure using
weights computed by the classical logistic regression model, and assign goodness score to each retrieved image;
and then to reformulate a query from the database, execute the querying procedure using weights computed by
the Bayesian logistic regression model, and assign goodness score to each retrieved image. Each human subject
repeats the querying process twenty times, choosing a new query from the database each time. We repeat this
experience for different orders of compression m € {30, 20, 10}, keeping the weightfactors {v;};_; equal to % and
{m}}, equal to 1 to give more importance to the edge region and texture features. To evaluate the querying in
the ZuBuD database, each human subject is asked to follow the preceding steps, while formulating the queries
from the database query part. For the ZuBuD and WANG databases, the resulting precision-scope curves for

each compression order m € {30, 20,10} are given in Figure 1.
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Figure 1: Evaluation ((a) ZuBud database and (b)YWANG database): precision-scope curves for retrieval using
weights computed by the classical logistic regression model and weights computed by the Bayesian logistic
regression model.

6 Conclusion

We presented a simple, fast and effective color image querying method. In order to measure the similarity degree
between two color images both quickly and effectively, we used a weighted pseudo-metric which makes use of
the one-dimensional Daubechies decomposition and compression of the extracted feature vectors. A Bayesian
logistic regression model and a classical logistic regression one were used to improve the discriminatory capacity
of the pseudo-metric. Evaluations of the querying method showed that the Bayesian logistic regression model
is a better tool than the classical logistic regression one to compute the pseudo-metric weights and to improve
the querying results. Thanks to the effectiveness and flexibility of the Bayesian logistic regression model, the
use of the pseudo-metric for comparison and its weight computation, can be customized to other featurebases
representing other image databases. Precisely, a user can compute the pseudo-metric weights after choosing gg
and ¢; according to his data, and then can perform effective and fast querying by using the pseudo-metric for

comparison.
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CHAPITRE 3

Amélioration de la capacité a
discriminer d’une pseudo-métrique en
utilisant un modéle bayésien de
régression logistique fondé sur une

méthode variationnelle

Dans ce chapitre, nous détaillons la dérivation du nouveau modéle bayésien de ré-
gression logistique basé sur une méthode variationnelle introduite au chapitre 2. Nous
effectuons une comparison exhaustive entre ce modéle et le modéle classique de régres-
sion logistique dans le cadre de la recherche d’images et dans un cadre général. Plus
spécifiquement, dans ce cadre général, nous comparons le modéle bayésien & d’autres
classificateurs linéaires apparaissant dans la littérature. Ensuite, nous comparons notre
méthode de recherche utilisant le modéle bayésien de régression logistique a d’autres

méthodes de recherches déja publiées. Les expérimentations et comparaisons ont été
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effectuées sur les bases de données d’images couleurs connues WANG, ZuBud, UW et
CalTech et sur plusieurs ensembles de données réelles et synthétiques.

Nous présentons dans les pages qui suivent, un article intitulé Weighted Pseudo-
Metric Discriminatory Power Improvement Using a Bayesian Logistic Re-
gression Model Based on a Variational Method qui est accepté pour publica-
tion dans 'TEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI).
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Abstract

In this paper, we investigate the effectiveness of a Bayesian logistic regression model to compute the weights of
a pseudo-metric, in order to improve its discriminatory capacity and thereby increase image retrieval accuracy.
In the proposed Bayesian model, the prior knowledge of the observations is incorporated and the posterior
distribution is approximated by a tractable Gaussian form using variational transformation and Jensen’s in-
equality, which allow a fast and straightforward computation of the weights. The pseudo-metric makes use of
the compressed and quantized versions of wavelet decomposed feature vectors, and in our previous work, the
weights were adjusted by classical logistic regression model. A comparative evaluation of the Bayesian and clas-
sical logistic regression models is performed for content-based image retrieval as well as for other classification
tasks, in a decontextualized evaluation framework. In this same framework, we compare the Bayesian logistic
regression model to some relevant state-of-the-art classification algorithms. Experimental results show that the
Bayesian logistic regression model outperforms these linear classification algorithms, and is a significantly better
tool than the classical logistic regression model to compute the pseudo-metric weights and improve retrieval and

classification performance. Finally, we perform a comparison with results obtained by other retrieval methods.
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1 Introduction

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the
fields of medicine, weather prediction, communications, commerce and academic research has increased the
need for efficient image database creation and retrieval procedures. The content-based image retrieval (CBIR)
approach was proposed to meet this need [1], [2]. In this approach, the first step is to compute, for each
database image, ai feature vector that captures certain visual features of the image such as color, texture and
shape. This feature vector is stored in a featurebase, and then, given a query image chosen by a user, its
feature vector is computed, compared to the featurebase feature vectors by a similarity measure, and finally
the database images most similar to the query image are returned to the user. Distance measures like the
nearest neighbor rule distance and the Euclidean distance have been widely used for feature vector comparison
in CBIR systems. However, these similarity measures are based only on the distances between feature vectors
in the feature space, and they blindly assume that features have the same relevance by giving them the same
weight. Moreover, they do not capitalize on any statistical regularities in the data that might be estimated from
a large training set of relevance and irrelevance classes. Therefore, distance measures can fail and irrelevant
features may hurt retrieval performance. Statistical approaches are a promising solution to this CBIR problem
[3], [27], and they can lead to a significant gain in retrieval accuracy. In fact, these approaches are capable
of generating probabilistic similarity measures and highly customized metrics (learned metrics) for computing
image similarity based on consideration of and distinction among feature relevances. This literature is too wide
to survey here, but in this section we review some relevant work based on these statistical approaches. For
work using probabilistic similarity measures, we review these relevant examples: G. Caenen and E. J. Pauwels
[6] use the classical quadratic logistic regression model, in order to classify database image feature vectors as
relevant or irrelevant. Based on this classification, a total relevance probability is generated for each image in
the database. This total relevance probability is a linear combination of weights used to fine-tune the influence
of each individual feature, with the natural logarithms of the logistic relevance probabilities of the feature vector
components. Database images are ranked according to their total relevance probabilities. S. Aksoy and R. M.
Haralick [5] investigate the effectiveness of five different normalization methods in combination with two different
likelihood-based similarity measures that compute the likelihood of two images being similar or dissimilar, one
being the query image and the other one being an image in the database. First, two classes are defined, the
relevance class and the irrelevance class, and then the likelihood values are derived from the Bayesian classifier.

Two different methods are used to estimate the conditional probabilities used in the classifier. The first method
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uses multivariate normal agsumption and the second one uses independently fitted distributions for each feature.
The degree of similarity between a query image and a database image is measured by the likelihood ratio. N.
Vasconcelos [22] adopts the minimum probability of error (MPE) as the optimality criterion, and formulates
retrieval as a problem of statistical classification. He shows that the Bayesian classifier is the optimal similarity
function for MPE retrieval systems, as it minimizes the probability of retrieval error. Also, he proposes a new
algorithm for MPE feature design that scales to problems containing a large number of classes. T. Westerveld
and A. P. de Vries [23] present the use of generative probabilistic models for image retrieval. They estimate
Gaussian mixture models to describe the visual content of images and explore two different approaches for
using them for retrieval. These two approaches are called query generation (How likely is the query given the
document (image) model?) and document generation (How likely is the document given the query model?), and
are fitted in a common probabilistic framework. In each approach a variant is computed using the Gaussian
mixture models, and then used for image ranking. The query generation variant is shown to be more appropriate
for ranking than the document generation variant. V. Lavrenko et al. [24] apply a continuous relevance model
(CRM) to the problem of directly retrieving the visual content of videos using text queries. The approach
computes a joint probability model for image features and words using a training set of annotated images. This
joint probability allows the computation of the conditional probability of words given image vector features.
Once the annotation and feature components of the joint probability are modelled, respectively, by multinomial
distribution and Gaussian kernels, images are ranked according to the conditional probability. S. Ghebreab et
al. [25] conceive of a concept as an incremental and interactive formalization of the user’s conception of an
object in an image. They describe an object in terms of multiple-continuous boundary features and represent an
object concept by the stochastic characteristics of an object population. The probability that a database object
is an instance of a given object concept is computed on the basis of a Mahalanobis distance model. Objects
that are an instance of the concept the user has in mind have high probability.

Several authors have used learned metrics to improve CBIR methods and classification algorithms which can
be used for CBIR purposes. We will now review some relevant examples of this work. J. Peng et al. [4]
use a binary classification to classify the database color image feature vectors as relevant or irrelevant. The
classified feature vectors and the query image feature vectors constitute training data, from which relevance
weights for different features are computed. The components of the weight vector represent the local relevance
of each feature. They are adjusted to the location of the query image feature vector in the feature space.

After the feature relevance has been determined, a weighted similarity metric is selected using reinforcement
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learning, which is based on classical logistic regression. Three different metrics are chosen: a weighted Euclidean
metric, a weighted city-block metric and a weighted dominance metric. S. Aksoy et al. [7] use weighted L,
and Lo distances to measure the degree of similarity between two images, where the weights are the ratios of
the standard deviations of the feature values both for the whole database and among the images selected as
relevant. Each component of the weight vector represents the local relevance of a specific feature, and more
importance is assigned to features that are relevant. T. Hastie and R. Tibshirani [29] propose an algorithm
that starts with the Euclidean distance and, for each test object, iteratively changes the weights of attributes.
At each iteration it selects a neighborhood of a test object and applies local discriminant analysis to shrink
the distance in the direction parallel to the boundary between decision classes. Finally, it selects the & nearest
neighbors according to the locally transformed metric. C. Domeniconi et al. [30] pursue the idea presented in
[29], but use support vector machine (SVM) instead of local discriminant analysis to determine class boundaries
using margin maximization, and to shrink the distance. Support vectors can be computed during the learning
phase, which makes this approach much more efficient in comparison to local discriminant analysis. S. Chopra
et al. [32] recently proposed a framework for similarity metric learning in which the metrics are parameterized
by pairs of identical convolutional neural nets. Their cost function penalizes large distances between similarly
labeled inputs and small distances between differently labeled inputs, with penalties that incorporate the idea
of a margin.

Much work on metric learning has indeed focused on Mahalanobis distance learning. In these studies, the
classification setting is based on a natural equivalence relation, namely whether two points are in the same class
or not. One classical statistical method which uses this Mahalanobis distance idea is Fisher’s Linear Discriminant
Analysis (LDA) (see e.g. [26]). Other recent methods seek to minimize various separation criteria between the
classes by posing Mahalanobis distance learning as an optimization problem. One relevant example of these
recent studies is that of E. P. Xing et al. {21], who use semidefinite programming to learn the Mahalanobis metric
for clustering. Their algorithm aims to minimize the sum of squared distances between similarly labeled inputs,
while maintaining a lower bound on the sum of distances between differently labeled inputs. J. Goldberger et al.
[27] propose neighborhood component analysis (NCA), a novel algorithm for learning a Mahalanobis distance,
designed to improve the KNN classification algorithm. The algorithm maximizes a non-convex stochastic variant
of the leave-one-out KNN score on the training set using gradient descent. It can also learn a low-dimensional
linear embedding of labeled data that can be used for data visualization and fast classification. Other examples

are K. Q. Weinberger [28] and A. Globerson and S. Roweis [31], who pursue essentially the same goals as NCA,
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but differ in their construction of convex objective functions.

Our retrieval approach consists of learning a weighted pseudo-metric using a Bayesian logistic regression model
based on a variational method, and it has several advantages. First, the pseudo-metric is constructed in such a
way that it can handle decomposed and compressed feature vectors via any kind of wavelet transform. Wavelet
decomposition and compression allow a very good feature vector approximation with just few coefficients. This
has the advantage of accelerating the search for a query feature vector and reducing storage for the featurebase.
Second, the pseudo-metric is low rank as it considers only the resolution levels of the decomposed feature
vectors instead of the totality of their coefficients, using a bucketing function. Therefore, the dimensionality of
the transformed feature space is significantly reduced. Third, the adopted Bayesian logistic regression model is
based on a variational method which allows the training to have low computational complexity, while preserving a
good classification performance. In our previous work [8], the pseudo-metric was learned using classical logistic
regression. We will show that the Bayesian logistic regression model is a significantly better tool than the
classical logistic regression model for learning the pseudo-metric and improving the classification performance
and query results. The classification performance of both models is evaluated and compared for CBIR and
other classification tasks, in a decontextualized evaluation framework. In this same framework, we compare the
Bayesian logistic regression model to some relevant state-of-the-art linear classification algorithms. Experiments
show that the Bayesian logistic regression model outperforms these linear classification algorithms, and is a
significantly better tool than the classical logistic regression model for improving retrieval and classification
performance. Finally, we perform a comparison with results for other retrieval methods.

In the next section, we briefly define the pseudo-metric and explain the fast feature vector querying algorithm. In
Section 3, we explain the data training process and describe the adjustment of the pseudo-metric weights using
the classical logistic regression model, while showing its limitations and demonstrating that the Bayesian logistic
regression model based on a variational method is more appropriate for the pseudo-metric weight computation.
Then, we give a detailed description of the Bayesian logistic regression model based on a variational method and
present the weight computation algorithm. The color image retrieval method is briefly presented in Section 4. In
Section 5, a decontextualized evaluation is performed to compare the Bayesian logistic regression model with the
classical version and some relevant state-of-the-art linear classification algorithms. Then, the feature vectors
that we use to represent the database color images are summarized. Finally, a contextualized comparative
evaluation of the Bayesian and classical logistic regression models is performed for CBIR, and a comparison

with results for different retrieval methods is provided.
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2 The pseudo-metric and the fast feature vector querying algorithm

2.1 The pseudo-metric

Let us consider Q and T as the query and the target feature vectors, respectively, with 27 components each.
The vectors @) and T are mapped from the feature space to a wavelet space using any kind of wavelet transform.
Then, they are compressed to m coefficients each. Finally, each of their largest positive and negative wavelet

coeflicients are quantized to +1 and -1, respectively. The pseudo-metric is given by the following expression:

1Q.T 1= dolQO - T+ 3 wneno (0500 #7500, W
:Qg[d]#0
where

Q[0] and T'[0] are the scaling function coefficients; Qg [i] and ch [i] represent the i-th coeflicients of their wavelet
decomposed versions, compressed and quantized; @y and the wy;,(;) are the positive weights to compute; and

the bucketing function bin() groups these weights according to the J resolution levels, such that
bin(i) = |loga(1)]  with  i=1,..,27 —1. (3)

To compute the pseudo-metric over a database of feature vectors, it is generally quicker to count the number

of matching coeflicients of Qg and ch than the mismatching coefficients. For this reason, we rewrite

> wbmu)(QE[i]#TﬂiD = > Whinw — Y wbz’n(i)@«ﬂi]:f’«?[i])v (4)

Qg [¢]#£0 Qg [5]#0 Qg i]#£0

where

(@ =7510) = { 5 Sicwe. " ®
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Since the term Ei:@g[i} £0 Whin(i) is independent of the vectors ch and Qg, we can discard it. Therefore, our

pseudo-metric becomes

I QT [l=@o|Q0) = T = Y weingey (@[] = T5[4))- (6)
Q¢ [i]#0

2.2 The fast feature vector querying algorithm

In order to optimize the metric computation process, we introduce two arrays called search arrays: ©4 for the
coefficients quantized to +1 and ©_ for those which are quantized to —1. Each array contains 2/ — 1 elements
and each element contains a list. For example, the element ©,[i] points to the list of all database feature
vectors with a large positive wavelet coefficient at the i-th position, after compression. In the same way, the
element ©_[i] points to the list of all database feature vectors with a large negative wavelet coefficient at the
i-th position. Thanks to these arrays and the compression, during the querying process we need only go through

the m lists associated to the m coefficients retained for the query, instead of 2/ —1 coefficients. Given the search

J—-1

=0 the retrieval procedure for a query feature vector () in the featurebase

arrays and the weights 10 and {w;}

of feature vectors T, (k = 1,...,|DB|), where |DB)| denotes the featurebase size, is defined as follows:

Procedure Retrieval(Q: array [1..2”] of reals, m : integer,©_,04)

Q ~ WawveletsDecomposition(Q)
Initialize Score(k] = 0, for each k € {1,...,|DB|}
For each k € {1,...,|DB|} do

Score[position of T in the (DB)] = @o * |Q[0] — T3[0]|
end for
Q¢ — Compress(Q,m)
Q¢ — Quantify(Q°)
For each Q¢[i] # 0 do

If Qcli] > 0 then

List « © ]3]
Else

List — ©_[i]
End if
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for each ! of List do

Score[position of | in the (DB)] = Score[position of [ in the (DB)] - wpin(s)
End for

End for

Return Score
End procedure

This procedure returns an array Score such that Score[k] =|| Q,T% || for each k € {1,...,|DB|}. The elements
of Score, which are the degrees of similarity between the query @ and the feature vectors Ty (k € {1,...,|DB|}),

can be negative or positive. The most negative similarity degree corresponds to the closest target to the query

Q.

3 Pseudo-metric weight adjustment

The weights @y and {wk}i;é are adjusted in such a way that the pseudo-metric should be effective enough to
match similar feature vectors as well as discriminate dissimilar ones. We define two classes, a relevance class £
and an irrelevance class 1, in order to classify the feature vector pairs as similar or dissimilar. We suppose that
Qo contains ng explanatory vectors {X]}7°, to represent the pairs of similar feature vectors, and Q; contains
n1 explanatory vectors {X;’" ?;1 to represent the pairs of dissimilar feature vectors. Given an explanatory
vector X = (Xg,i,Xg,,., vy X514 1) € Qo representing a pair of similar feature vectors which are wavelet
decomposed, compressed and quantized, Xgﬂ. is the absolute value of the difference between their scaling factors
and {X,:,i}i;é are the numbers of mismatches between their J resolution level coefficients. The components of
an explanatory vector X}" = (f(af‘j, X500 X541 ;1) € Q1 are computed for a pair of dissimilar feature vectors
in the same way. The basic aim of using the Bayesian and classical logistic regression models is to allow a good
separation between 2y and €2; by hyperplane, and to compute the weights which represent the local relevances
of the pseudo-metric components. The classes Qg and Q; are experimentally created in the data training phase

explained below.

3.1 Data training

Let us consider a color image database in which the images are clustered beforehand in a number of semantic

clusters. Each cluster contains color images which are perceptually close to each other in terms of visual features

75



such as color, texture and shape. The purpose of weighting the pseudo-metric is to make it efficient enough
to match images which belong to the same cluster and discriminate between images which belong to different
clusters. For this reason, to create 0y, we draw all possible pairs of feature vectors representing color images
belonging to the same cluster in the database, and for each pair we compute an explanatory vector. Similarly, to
create (11, we draw all possible pairs of feature vectors representing color images belonging to different clusters

in the database, and for each pair we compute an explanatory vector.

3.2 The classical logistic regression model

In this model, each explanatory vector X of )y is associated with a binary target variable S} = 0 for similarity,
and each explanatory vector X }r of £y is associated with a binary target variable S]i-’ = 1 for dissimilarity. Given
two explanatory vectors X and X }T, we model their associated binary target variables ST and S}’, respectively,

by a relevance probability p] and an irrelevance probability p;'.r, defined as follows:

J—1

p?" = p(g;‘,r - 1|X]1jr> - F(@O)Zé’:j + Z ka,i’:j + v) (7)
k=0
. J-1
k=0

where F(z) = is the logistic function and v is an unknown intercept which will be computed with the

pseudo-metric weights, but will not be considered when using the pseudo-metric for feature vector comparison,
as it is a constant for all query-target pairs and F(—z) is a decreasing function. The weights and the intercept
are determined using maximum likelihood estimation; i.e., such that they optimize the probability of the actual
configuration occurring. More precisely, if we look up the relevance and irrelevance class explanatory vectors
i

and their associated binary variable values and use equations (7) and (8) to compute the probabilities p]'.’" and

DY, then the weights and the intercept are chosen to maximize the following conditional log-likelihood:

log(L(W = (o, wo, .., wy—1,v))) = > _ log(p}) + > _ log(p). (9)
i=1 =1

The log-likelihood function is globally concave (there is only one solution, which is the maximum) [34]). Many
numerical methods can be used to estimate the weights and the intercept. The methods most often used are the

Gradient ascent and Fisher scoring algorithms [33]. The Fisher Scoring method has the advantage of adding
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a direction matrix that assesses how quickly the log-likelihood function is changing [33]. This direction matrix
is the Hessian matrix of the log-likelihood function. The Fisher Scoring algorithm proceeds according to the

equation
1 Olog(L)
ow

Whew = Woig —aH™

where H and a—lggﬁ(,i) are, respectively, the Hessian matrix and the gradient of log(L), and « is a step-size

parameter optimized via a line-search to give the largest downbhill step subject to wo > 0 and w; > 0 Vj €
{0,...,J — 1} [40]. Once the Fisher scoring and line-search algorithms have been used to compute positive
weights, an active set algorithm is applied to correct the false zero weight solutions [41], when converging with
o = 0. The inverse of the Hessian matrix approximates the variance-covariance matrix of the maximum log-
likelihood estimators [35]. Therefore, the flatter the log-likelihood function, the smaller the Hessian matrix
coeflicients and the larger the variances of the estimators. This corresponds to the intuition that the flatter
the log-likelihood function, the harder it will be to find the maximum of the function despite its concavity
[33]. Also, when there are too many observations or explanatory vectors, the Fisher scoring algorithm has high
computational complexity and takes a long time to converge; sometimes it diverges because of the exponential
term in the log-likelihood function [36]. Moreover, according to R. Weiss et al. [11], in the case where there
are many zero explanatory vectors, maximum likelihood can fail and estimates of the parameters of interest
(weights and intercept) may not exist or may be on the boundary of the parameter space. The most severe
problems that can occur when fitting a logistic regression model are multicollinearity among the explanatory
variables and cases where the data is completely or quasicompletely separable. Multicollinearity in the logistic
regression model is a result of strong correlations between some or all of the explanatory variables. It generally
occurs when the logistic regression model is large (contains many explanatory variables) and it greatly inflates
the variances of the maximum log-likelihood estimators and can cause wrong signs and magnitudes of these
estimators [37]. In the case of completely and quasicompletely separable data, the log-likelihood function is
strictly monotonic, almost completely flat in the region of the parameter estimators, and reaches its maximum
at infinity (maximum log-likelihood does not exist) [38]. Since the classes € and €; are intended to be large
(training performed over all database images), high-dimensional (large J in case of feature vectors having a
great number of components), and composed of real data, all of the problems mentioned above must be faced
when fitting our classical logistic regression model. The problems related to the inflation and nonexistence of the

log-likelihood estimators can be solved by regularizing the likelihood function by a prior distribution over the
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weights and intercept which smooths their estimates and reduces their space. The problems related to the high
complexity caused by large and high-dimensional data sets can be solved by using variational transformations
which simplify the computation of the weight and intercept estimates [9]. This motivates the adoption of a

Bayesian logistic regression model based on a variational method.

3.3 The Bayesian logistic regression model

In the Bayesian logistic regression framework, there are three main components: a chosen prior distribution
over the parameters of interest, the likelihood function and the posterior distribution. These three components
are formally combined by Bayes’ rule. The posterior distribution contains all the available knowledge about
the parameters of interest in the model. In the literature, many priors with different distributional forms
have been chosen for different applications based on the Bayesian logistic regression. Examples include the
Dirichlet prior, Jeffrey’s prior and the Gaussian prior. The Dirichlet prior was chosen for the log-linear analysis
of sparse frequency tables in [12]. In fact, in this application the likelihood function is a multinomial density
function which is a conjugate of the Dirichlet prior and therefore the posterior distribution has an analytically
tractable Dirichlet form. This has the effect of smoothing the estimates to a specific model [10]. Jeffrey’s prior
is based on a structural rule and has a good theoretical justification [12]. However, in larger problems where
the number of explanatory variables is large, it is difficult to apply because of its computational complexity.
The Gaussian prior has become popular in logit modelling [12], [13], [11], [14], [15]. It has the advantage of
having low computational complexity and of smoothing the estimates toward a fixed mean and away from
unreasonable extremes, However, when the likelihood function is not a conjugate of the Gaussian prior, the
posterior distribution has no tractable form, and its mode and mean computations are usually performed,
respectively, by the MAP approach and high-dimensional integration algorithms [12], which have very high
computational cost [9], [12], especially when the data set is large and high-dimensional, as in our case. To avoid
this sizable computational cost, some authors have used Laplace approximation to approximate the posterior
distributions with a tractable Gaussian form [11}, [39]. However, Laplace approximation suffers from a lack of
flexibility and is inaccurate [11]. According to [9], variational transformations have been shown to have much
more flexibility, which translates into improved accuracy of the approximation. In this approach, variational
transformations are used in order to approximate the likelihood function with a simpler tractable exponential
form. In this case, thanks to the conjugacy, by combining a Gaussian prior distribution over the parameters of

interest with the likelihood approximation, we obtain a closed Gaussian form approximation to the posterior
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distribution. However, as the number of observations is large, the number of variational parameters that must
be updated to optimize the posterior distribution approximation is also large; hence the computational cost
is high. In the Bayesian logistic regression model that we propose, we use variational transformations [9)]
and Jensen’s inequality in order to approximate the likelihood function with a tractable exponential form. The
explanatory vectors are not observed but instead are distributed according to two specific distributions. This has
the advantage of incorporating their prior knowledge in the weight computation. The posterior distribution is
also accurately approximated with a Gaussian which depends only on two variational parameters. Computation
of the mean of the posterior distribution approximation is fast and has low computational complexity. Let us

denote the random vectors whose realizations represent the explanatory vectors {X] }72; of the relevance class

n1
j=1

Q0 and the explanatory vectors {X}" of the irrelevance class €4, by X, = (Xo,o,&),o,---’z J-1,0,1) and
X, = (XOJ,LO’I,...,LJ_Ll,l), respectively. We suppose that X, ~ qo(X,) and X; ~ ¢1(X;), where go and
g1 are two chosen distributions. With X, we associate a binary random variable 3, whose realizations are the
target variables {S7 = 0}7°;, and with X; we associate a binary random variable S, whose realizations are the
target variables {S;-r = 1}?;1. We set 8, equal to 0 for similarity and we set 8; equal to 1 for dissimilarity.
The parameters of interest (weights and intercept) are considered as random variables and are denoted by the

random vector W = (W, wy, ..., w;_1,2). We assume that W ~ (W), where 7 is a Gaussian prior with prior

mean p and prior covariance matrix . Using Bayes’ rule, the posterior distribution over W is given by

=, (10)

PW|Sy =0,8, =1) = —

PS.O Oa.S_l 1)
where
1
P(8, =08, =1W) = []PG;=dW),
5=0
-y [lio PGS =i, X, = 2:, W)
(m(W))2 ’

To€QRD,T1EQ

1
P(S; =i,X; =i, W)
= Z H 7—-_—1 — f)(_VV__,XZ = _'1;1;).
To€Q,T1€Q 1=0 [ P(w’ Xi - zl)W(W)

Since in the Bayesian approach we generally suppose that the space of unknown parameters is independent from

the space of observations, we assume that W and X, are independent for each ¢ € {0,1}, and thus the joint
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probability P(W, X, = z;) = #(W)¢;(X; = z;) for each ¢ € {0,1}. So we obtain

1 X =
P(So = 0,8 = 11W) > IR e wx, ~ .

20ERg,x1ER; i=0

I

1
Z Hp@i =1iX; = 2, W)g:i(X; = z3),
xo €S, x1 €82 1=0

where P(S, = i|X; = z;, W) = F((2i — 1)W'’z;) for each i € {0,1} represent logistic modelings of S, and S,

given the realizations of X, and X, respectively. Therefore

_ [Zzoeno,zlenl Hj:o P(_S..i = Z[X¢ = -’h‘aﬂ)(h(ﬁi = fz)]W(W)
P(Sy =0,8,=1) ’

where

1
P(S,=0,8; =1) = / [ Y PG =ilX, = 2:, Wei(X, = )] n(W)dW. (12)
xoE€ENo,r1 €8 =0

The computation of the posterior distribution P(W|S, = 0,8, = 1) is intractable. However, we can approximate
it by a variational posterior approximation with a Gaussian form, whose mean and covariance matrix computa-
tion is feasible. To obtain this variational posterior approximation, we perform two successive approximations
to the posterior distribution nominator term [, cou zieq; Ilimo PSi = i1X; = z:, W)g:(X; = z;)] in the
equation (11), in order to bound it by an exponential form which is a conjugate of the Gaussian prior 7(W).
First approximation:

This first approximation is based on a variational transformation of the sigmoid function F(z) of the logistic
regression. According to [9], the variational approximation of the sigmoid function in H; = (2i — DNWz; V

i € {0,1} is given by

P =ilX; =z, W) = F(H), (13)

Uired —p(e;) (H2-2)

F(Ei)e = P(§1 = Z|Xz = Iivw_a Ei)v

\Y
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where €¢; > 0 is the variational parameter, o(e;) = 3‘%712, and tanh(%) = e::;e:zz. So the posterior
* e e
distribution nominator in the formula (11) can be approximated as follows:
1
[I1PE: = iX, = 2 Wa:(X, = ) m(W) (19

0 €y, x1 €821 t=0

Z I__[P(_S_i =iX; =i, W, €)@ (X; = zi) m(W).

zo€fo,x1 € 1=0

Y,

Second approximation:
The first approximation is insufficient to approximate the term [ZzoEﬂomEm H;=0 P, =X, =z;, W)g;(X; =
xz)] by an exponential form. We therefore perform a second approximation, based on Jensen’s inequality, which

uses the convexity of the function e®. Using Jensen’s inequality, we obtain

> IPG =il =20 W, e)ai(X, = 22)]

To€So,z1 €021 =0

(H—¢;)

fIF@i)} > [e[ o [—%—um(H?—é)]}ﬁqi(xizxi)},

20 €Q0,x1 €M

v
g — —
—
3
o

} [ L, [Butmia] e [wei)(Eq,.[Hm-ez)J]
; [

where Fg, and E,, are the expectations with respect to the distributions ¢g and ¢, respectively.

Finally, thanks to the two above approximations, the posterior distribution numerator in the formula (11) can

be approximated as follows:

1
[ Y JIP6 =i =2, Wai(X; = z:)]n(W)

€N,z €Ny =0

> P(WISy=0,8; = 1,{ei};_g {ai},_o)T(W).

Thus, the variational posterior approximation is given by

B(.W_|§0 = 07.8_1 =1, {fi}:=07 {qi}jzo)ﬂ'<W) )

P(_S_O = 0>§1 = 1)

P(_W_|.S_0 =0,5, =1, {fi};o’ {qi};'l=0) =
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Since P(S; = 0,8, = 1) is a constant which doesn’t affect the form of the variational posterior approximation,

we can ignore it. We thus obtain
1 1 1 1
P(W|§O = O?Sl = 17 {ei}i=07 {ql}zzo) X .P_(_W_|_S_O = 0751 = 17 {ei}i=07 {ql}zzo)ﬂ-(W.)
Finally, the posterior distribution is approximated as follows:

P(W|S,=0,8,=1) > P(W|Sy=0,8 =1 {&},_0: {4 }iz0)- (15)

X B(_W_|§0 = Oa§1 = 17 {61'};'[:07 {Qz}zl___.o)ﬂ-(_w.) (16)

Since 7(W) is a Gaussian which is a conjugate of E_(_W_[_SO =0,3, =1, {ei};o’ {qi};o), which has an expo-
nential form, the variational posterior approximation is a Gaussian with a posterior mean pp,s; and a posterior

covariance matrix 3p,.:. Substituting 7(W) and P(wlﬁo =0,5, =1, {ei}:zo, {qi};o) by their Gaussian forms

in equation (16), we obtain

e_%(-W——“”"“)tzz:olst(W_“”‘”i) x B(w@o =0,8, =1, {fi};o’ {(Iz‘}z‘lzo)e*%('w_u)tz_l(w_u)-

Thus, omitting the algebra, Y05 and ppes: are given by the following Bayesian update equations:

(Cpow)™ = ()7 +23° [leo) Bu ez, (17)
=0
ot = Spon| (D74 3 1l ) Eulod]| (1)
1=0

According to equation (17), p.s: depends on the variational parameters {ei};o, so we must specify these.
We have to find the values of {ei};o that yield a tight lower bound in equation (15), and then an optimal
approximation to the posterior distribution. This can be done by an EM algorithm which is derived in Appendix

A. The variational parameters are given by

C T P08 (e ) fa ) e O "

i=0

= Eqi [(xi)tzpostxi] + (/J'post)t [Eqi [{Bz(l'z)t]j] Hpost, Vi S {07 1}»
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where P(W|S, = 0,8, = 1, ({ei};o)ow, {Qz’};o) is the variational posterior approximation based on the
previous values of {fi};o' The weight and intercept computation algorithm has two phases. The first phase is
the initialization; the second is iterative and allows the computation of ¥y and pipost through the Bayesian
update equations (17) and (18), respectively, while using equation (19) to find the variational parameters at
each iteration. In the second phase, we use a line-search algorithm to optimize a step-size parameter 6 to give
the largest downhill step, subject to fipest,i = 0V i € {0,...,J}. The values of the ppost components are the

desired estimates of the pseudo-metric weights 0y and {wk},f;é and the intercept v.

Initialization:

1. Compute the parameters of the distributions ¢y and ¢; which model the relevance class {25 and irrelevance

class Q; explanatory vectors, respectively.

2. Initialize the covariance matrix £°¢ to the identity matrix and the mean ¢ to a vector with components

equal to 1.

3. Initialize the variational parameters as follows

For each i € {0,1} do
(7 o Byl(wE ) + ) | By oo

End for
Computation of X,,5: and fipos::

1. Do

1

(Spos) ™ = (D)7 42 [0 By [wi(:)]]
=0

1
T r oldy—1 o .1
e = T Y (- B
i=0
For each i € {0,1} do

(€M) By () Sihi] + (Wr,)° [E [m(mi)tl] Wy,
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End for

old

. “Hpost,j tr id
f — min poshd 1/ (e,  — 2, ) <0
B | (Hpose,j = Hpost,s) [Utpong = o) < 0}

new old try old

:u’post :u‘post 'u’post :u‘post
new ):old ):try ):old
post post 2] post . post
new - old + try old

60 € 60 CO
new old tr old

€1 €1 ey €1

While(|55%, — $7¢%| > threshold or [ughd, — ure| > threshold)

Return ppcs%

2. Apply an active set algorithm to correct the false zero solutions of fipest,; (i € {0, ..., J}) [41], when exiting

the iterative phase with 8 = 0.
3. Assign the pi,05; component values to the pseudo-metric weights gy and {wk}i;& and the intercept v.

The iterative phase of the above algorithm scales with the dimension of W. In fact, it is dominated by the

inversion of the variance-covariance matrix which requires O((J + 2)3) operations at each iteration.

4 Color image retrieval method

The querying method has two phases. The first is a preprocessing phase, executed once for the entire database

containing |DB| color images. The second is the querying phase.

4.1 Color image database preprocessing

In the general case, the preprocessing phase (executed once for all the database color images before the querying

phase) can be broken down into the following steps:
1. Choose N feature vectors for comparison.

2. Compute the N feature vectors Tj; (I € {1,...,N}) for each i-th color image of the database, where

ie{l,..,|DB}.

3. The feature vectors representing the database color images are wavelet decomposed, compressed to m

coeflicients each and quantized.
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4. Organize the decomposed, compressed and quantized feature vectors into search arrays @ﬂ_ and ©% (l =

1,..,N).

5. Adjust the metric weights @} and {w}}]Z, for each featurebase Tj; (i = 1,...,|DB|) representing the

database color images, where [ € {1,..., N}.

4.2 The querying algorithm
We describe the querying algorithm in the general case by the following steps:
1. Given a query color image, denote the feature vectors representing the query image by @, (l =1,...,.N )

2. Wavelet decompose the feature vectors representing the query image, compress them to m coefficients

each and quantize them.

3. Represent the degrees of similarity between (l =1,...N ) and the database color image feature vectors
Ti; (Il =1,..,N) (i = 1,...,|DBJ|) by the arrays Score; (I = 1,...,N), such that Score,[s] =|| Qi, Ty |
for each i € {1,..,|DB|}. These arrays are returned by the procedures Retrieval(Q;, m, ©%, ©.)

(I=1,...,N), respectively.

4. Represent the degrees of similarity between the query color image and the database color images by a
resultant array TotalScore, such that TotalScorelt] = Zl]il yiScore |3} for each i € {1,...,|DB|}, where

{7}, are weightfactors used to fine-tune the influence of each individual feature.

5. Organize the database color images in order of increasing resultant similarity degrees in the array TotalScore.
The most negative resultant similarity degrees correspond to the closest target images to the query image.
Finally, return to the RI target color images closest to the query color image, where RI is the number of

images returned, chosen by the user.

5 Experimental results

In this section, we will present a decontextualized comparison of the Bayesian logistic regression model (BLRM)
to the classical logistic regression model (CLRM) and some relevant state-of-the-art linear classification algo-
rithms which learn classifiers that are constructed as weighted linear combinations of features. Then, we will

perform an evaluation and comparison of the BLRM and the CLRM in the image retrieval context.
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5.1 Decontextualized evaluation and comparison

In this subsection, we use synthetic data and a collection of benchmark real data sets to evaluate the BLRM and
to compare it to the CLRM, the Support Vector Machine (SVM) [42], the Relevance Vector Machine (RVM)
[43], and the Informative Vector Machine (IVM) [44] in terms of classification performance and training run-
ning time. Since the aim of the decontextualized evaluation is to tease out the performance of the BLRM in a
general context, the chosen data sets are not related to wavelet representation. The classification performance
evaluations and comparisons are performed on the synthetic data using the following error measures: classifier
error, bias, and variance, proposed and described in [46]. For the real data, these evaluations and comparisons
are performed using the following error measures: classification accuracy [18] and the B index measure of pre-
dictive accuracy (its values are on the interval [0,1], where 1 indicates perfect prediction) [47]. Because we
are especially interested in two-class linear classification problems with large numbers of features or training
samples, the synthetic and real data sets were selected to vary widely in training set size and number of features.
We implemented our own C++ code for the BLRM, CLRM, RVM (based on the block-wise algorithm of [43]),
and IVM, but for the SVM we adopted the widely used SVM-light program which uses a highly optimized C
code {45]. The synthetic data is a collection of three ten-dimensional (M = 10) data sets. Each set has two
clusters with a total of N = 40,000 points and is generated from two Gaussians, 20,000 points per Gaussian.
The two clusters in the first set are slightly overlapped, those in the second set are overlapped and those in the
third set are highly overlapped. The overlap between two clusters is measured using the overlap rate (OLR)
(it lies between 0 and 1, where 1 indicates perfect overlap) [48], and controlled by moving a cluster towards
the other after translating its mean. For ease of representation, the synthetic data is reduced from its original

dimensionality to two dimensions, and then shown in Figure 1. Table 1 describes the eight real data sets chosen.

(a)

Figure 1: Synthetic data : (a) slightly overlapped clusters (OLR = 0.1), (b) overlapped clusters (OLR = 0.3)
and (c) highly overlapped clusters (OLR = 0.5).
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Data set name Number of training samples N | Number of test samples | Number of classes | Number of features (dimension M)
Image 1300 1010 2 18
Waveform 400 4600 2 21
German 700 300 2 20
Breast Cancer 200 77 2 9
0—6 (MNIST) 11841 1938 2 256
7 =9 (MNIST) 19214 3037 3 256
d—t (TIMIT) 6380 300 2 118
5y — ik (TIMIT) 8874 446 2 118

Table 1: Description of the real data sets.

Image, Waveform, German and Breast Cancer were extracted from the famous UCI collection. More de-
tails concerning the original source of these data sets are available in a highly comprehensive online repository
[49]. A total of 100 training/test splits are provided by those authors: our results show averages over the first 10
of those. The 0—6 and 7— 9 data sets were extracted from the M NIST data set of handwritten digits, and the
d—t and iy —ih data sets were extracted from the TIMIT speech data set. More details concerning the original
source of these data sets are available in [50]. For each synthetic and real data set, we did 10 independent SVM
runs with regularization parameters C' € {1, ..., 10}, respectively, then we initialized the active set size for IVM
with the average number (over 10 runs) of support vectors [42]. When fitting the BLRM and the CLRM on
the synthetic and real data sets, we did not use the line-search algorithm to restrict the weights to be positive.
Moreover, for each data set of the synthetic data, the distributions ¢p and g; of the BLRM were chosen as
ten-dimensional Gaussians whose parameters were computed directly from the cluster points, and for each real
data set, go and g; were chosen as empirical distributions, since we do not have prior knowledge about the
classes of the real data set. Table 2 illustrates the computed training classifier errors, biases and variances and
the training running times for the various classifiers on the synthetic data sets. Table 3 illustrates the computed
test classification accuracies and test B index measures and the training running times for the various classifiers

on the real data sets.

BLRM SVM RVM VM CLRM

Slightly overlapped clusters

1.7/7.5/19.5/38

1.8/7.6/19.7/1510

2.1/7.8/20.2/380

3.37/8.3720.9/710

3.1/10.2/23.6/340

Overlapped clusters

3.2/10.1/33.8/42

3.3/10.3/34.1/1480

3.5/10.7/34.7/362

37/10.8/34.9/740

1.9/12.5/37.9/310

Highly overlapped clusters

5.3/12.8/56.2/35

5.4/13.1/56.6/1540

6.3/13.2/57.6/325

6.5/13.6/58.2/680

8.1/16.2/62.4/285

Table 2: Evaluation and comparison on the synthetic data. The four entries (left to right) are training bias
(%), variance (%), classifier error (%) and training running time (seconds). Note that classifier error = bias +
variance 4+ Bayes error, where the Bayes error is the misclassification rate [46].

87




BLRM SVM RVM TVM CLRM

Tmage 93.7/0.95/51 | 03.2/0.04/180 | 91.270.09/82 | 90.8/0.9/106 | 82.2/0.88/91
Waveform 80.2/0.87/57 | 79.0/0.85/110 | 78.5/0.82/65 | 76.8/0.79/856 | 69.5/0.75/76
German 70.2/0.72/54 | 69.4/0.68/130 | 69.8/0.71/63 | 69.7/0.69/81 | ©58.5/0.61/69
Breast Cancer 64.8/0.66/39 64/0.65/83 62.3/0.63/50 | 63.2/0.61/62 | 54.7/0.51/55

0— 6 (MNIST) | 96.3/0.08/212 | 96/0.97/1080 | 03.7/0.95/350 | 92/0.94/510 | 75.3/0.72/323
7 — 0 (MNIST) | 95.2/0.06/267 | 95/0.05/1123 | 94.3/0.03/380 | 94.6/0.94/540 | 74.2/0.68/410
d =T (TIMIT) 77.5/0.76/142 | 76.970.74/830 | 76.7/0.73/280 | 74/0.71/523 5170.48/250
T — ik (TIMIT) | 91.2/0.89/125 | 90/0.88/910 87/0.85/310 | 88.8/0.86/415 | ©65/0.62/273

Table 3: Evaluation and comparison on the eight real data sets. The three entries (left to right) are test
classification accuracy (%), test B index measure (€ [0,1]) and training running time (seconds).

In terms of classification performance and training running time, we can see that the BLRM outperforms
the other four classifiers on the synthetic data sets and on all eight real data sets. From tables 2 and 3, it can be
seen that the BLRM slightly outperforms the SVM, while achieving significantly lower training running time.
Generally speaking, in terms of classification performance (except for German), there is a greater difference
between the BLRM and the RVM and IVM than there is between these two and the SVM, but in terms of
training running time the RVM and IVM are closer to the BLRM than to the SVM., We also notice that the
BLRM significantly outperforms the CLRM in terms of classification performance and training running time,
especially on the largest and most high-dimensional data sets 0 — 6, 7 — 9, d — ¢ and iy — th. In fact, the
high dimensionality makes the CLRM suffer from various side effects of multicollinearity which strongly affect
the precision of the maximum likelihood estimates. The BLRM outperforms the other classifiers in terms of
classification performance thanks to its incorporation of the prior knowledge of the data set clusters and its
robust approximation of the posterior distribution. The variational approximation adopted here was shown
to be more flexible and accurate than the Laplace quadratic approximation adopted in the RVM [43] and the
approximate method adopted in the IVM [44]. In terms of time complexity, the BLRM training time scales
with only O(M3) (dominated by the inversion of the posterior covariance matrix), while for SVM and IVM
it scales with O(N?) and O(NN2) [50], respectively, where N is the number of support vectors. As for the
RVM and CLRM, their training times both scale with O(M3) + O(NM?), where O(M?3) is the complexity of
the Hessian inversion for the CLRM and the inversion of the posterior covariance matrix for the RVM, apart
from the computations of these matrices which require O(NM?) each. We can notice that as N >> M and
N >> M which is the case of the used data sets, the BLRM has much lower computational complexity than
the other classifiers. Note that the computed training running times given in tables 2 and 3 above are also
dominated by the number of iterations of each classifier. We noticed in our experiments that for all data sets
the BLRM requires fewer iterations to converge than do the other classifiers. This is thanks to the simple EM

algorithm adopted which iterates over only two variational parameters.
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5.2 Contextualized evaluation and comparison

In this subsection, we briefly present the feature vectors used for color image representation. Then, we discuss
the choices of the distributions gg and ¢;, in order to validate the BLRM in the image retrieval context. Finally,
we evaluate the querying method using the CLRM and BLRM, separately, and we perform a comparison with
results for different retrieval methods. The choices of the distributions g and ¢; and the querying evaluation
were conducted on the WANG, ZuBuD, UW and CalTech color image databases proposed by {17]. The WANG
database contains |DB| = 1000 color images which were selected manually to form 10 sets (e.g. Africa, beach,
ruins, food) of 100 images each. The Zurich Building Image Database (ZuBuD) contains |DB| = 1005 color
images of buildings selected to form 201 image classes, where each class contains 5 color images of the same
building taken from different positions. The UW database contains |[DB{ = 1109 color images. No class
information is available for the images, but they are annotated. We clustered the images in different classes
according to their annotations (e.g. barcelona, springflowers, swissmountains): i.e., two images belong to the
same class iff their annotations contain identical words. The CalTech database contains |DB| = 2000 color
images that we selected from the CalTech collection categories (e.g., motorbikes, airplanes, faces) to form 100
classes of 20 images each. Before feature vector extraction, we represented the WANG, ZuBuD, UW and

CalTech database color images in the perceptually uniform LAB color space.

5.2.1 Feature vectors used

The luminance histogram and the weighted histograms described in detail by [8] are used for image color
and contrast description in this paper; image texture description is performed using kurtosis and skewness
histograms [19]. Given an M x N pixel LAB color image, its luminance histogram is denoted by Ay, and plots
the number of pixels of luminance L. The weighted histograms are the color histogram constructed after edge
region elimination and the multispectral gradient module mean histogram. The former is denoted by h’k1 and the
latter is denoted by h$ (k = a,b), where a and b are the chrominances red/green and yellow/blue, respectively.

The LAB color image kurtosis and skewness histograms are given by
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and

M-1N-1

(o) =Y D 6I(5) o), (21)
i=0 j=0

respectively, for each ¢ € {0,...,255} and k = L,a,b, where I}, I and I} are the kurtosis images of the
luminance L and the chrominances a and b, respectively, and I}, I and I} are their skewness images. They are
obtained by local computation of the kurtosis and skewness values at the luminance and chrominance image
pixels. Thus, each color image of the WANG, ZuBuD, UW and CalTech databases is represented by N = 11
feature vectors which are the histograms Ay, hZ, h’b‘, ﬁ;, ’g, h%, hy, hg, hy, hi and h{. Then, all of these
histograms are Daubechies-8 wavelet decomposed, compressed to m coefficients each and quantized. Therefore,
each database is represented by eleven featurebases of transformed histograms. We chose Daubechies-8 wavelets
as they have been proven to have good frequency properties and to be good for 1-D signal synthesis. Moreover,
they are a good compromise between computational time and performance [51]. Since we discretized each

histogram extracted into 256 components, we set J equal to 8 in the following subsections.

5.2.2 The choice of ¢y and ¢,

The choice of gy and ¢; are performed separately for each of the featurebases representing the WANG, ZuBuD,
UW and CalTech databases. For simplicity, we assume that Xo,o and (Xg ¢, .-,Xj_1,0) are independent. Anal-
ogously, for the same reason, we made the same assumption for X.o,1 and (X 1,...,Xs_1,1). For each histogram
featurebase, we suppose that the random vector (Xg ¢, ...,X ;-1 0) random variables whose realizations are pos-
itive integers, are independent and each one of them follows a poisson distribution. Analogously, we made the
same choice for (X 1,...,X;_;,1). We are aware that these modelings are approximations, especially when the
realizations of the random variables are very small integers, but we claim that they have very negligible effect on
the querying results. For each histogram featurebase, the realizations of the random variable Xo,o are positive
real numbers. We modelled them by a Gaussian mixture distribution whose parameters were estimated by the
EM algorithm, and whose component number was selected using the minimum message length validity function
(MML), as it has been shown to give good results in [16]. Similarly, the realizations Xo,l were modelled by a
Gaussian mixture distribution. Note that we also chose the distributions gy and ¢; as empirical distributions
to validate the BLRM, but in adopting this choice we noticed that the querying results differ slightly from the

ones found after choosing ¢y and ¢; as joint distributions of Gaussian mixtures and Poisson distributions. More-
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over, this latter choice remains better as the Poisson distribution parameters are obtained by computing simple
arithmetic means of the integer realizations, while, since g and ¢, are empirical distributions, a higher compu-
tational complexity is involved in precomputing the expectations in the equations of the variational parameter

initialization and Bayesian update, before the iterative phase of the BLRM.

5.2.3 Comparative evaluation of the querying procedure

In order to evaluate our querying method, two principal issues are required: a ground truth and an objective
performance evaluation of the adopted classification method. These two issues are represented by precision-
scope curves Pr = f(RI) [20], where the scope RI is the number of images returned to the user. For ground
truth, we use human observations and judgments. In fact, eight external persons participated in the evaluation
described below. In the objective evaluation of the adopted classification method, the querying results are
presented with reference to the prior labelling of images into classes. In each query performed in the evaluation
experiment, each human subject is asked to assign a goodness score and a labelling score to each retrieved
image. The goodness score is 2 if the retrieved image is almost the same as the query, 1 if the retrieved
image is fairly similar to the query and 0 if there is no similarity between the retrieved image and the query.
The labelling score is 1 if the query image and the retrieved image belong to the same class and 0 otherwise.
Therefore, the ground truth and classification precisions are thus computed as follows: Pr9 = the sum of
goodness scores for retrieved images/RI and Pr¢ = the sum of labelling scores for retrieved images/RI. The
curves Pr9¢ = f(RI) and Pr® = f(RI) give the precisions for different values of RI, which lie between 1 and
20 when we perform the querying evaluation on the WANG, UW and CalTech databases, and between 1 and 5
when we perform the querying evaluation on the ZuBuD database. When the human subjects perform different
queries in the evaluation experiment, we average the computed Pr9 values and the computed Pr¢ values for
each value of RI, and then we construct the classification and ground truth precision-scope curves. In order
to evaluate the querying procedure on the WANG database, each human subject is asked to formulate a query
from the database, execute the querying procedure using weights computed by the CLRM, and assign goodness
and labelling scores to each retrieved image; and then to reformulate a query from the database, execute the
querying procedure using weights computed by the BLRM, and assign goodness and labelling scores to each
retrieved image. Each human subject repeats the querying process fifty times, choosing a new query from the
database each time. We repeat this experiment for different orders of compression m € {30, 20, 10}, keeping the

weightfactors {y;}3_; equal to 1 and {v,}}1, equal to 1 to give more importance to the edge region and texture
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features. Similarly, to evaluate the querying procedure on the ZuBuD, UW and CalTech databases, each human
subject is asked to follow the preceding steps. The resulting ground truth and classification precision-scope

curves for each compression order are shown in the figures below for the ZuBud, WANG, UW and CalTech

databases.
|ZuBud database |ZuBud database

Waights compuied by the Bayesian logitic regrassion modsl,

Weights computed by the Bayesian logistic regression model,

.............. Waights compuled by the classical lagisiic regrassion modsi, sevmssessasnes Waights compuied by the classicallogistc regression wodel,

26

Precision
Precision #>

=

3
Seope

(a) (b)

Figure 2: Evaluation (ZuBud database): (a) ground truth precision-scope curves and (b) classification precision-

scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, for the
compression orders m € {30, 20, 10}.

[WARG database [WANG daabsss

‘Wights computed by the Bayesian fagistc regression mogsi,

Weights computed by the Bayesian logisiic regression mods),
- Weights computad by the classical logistc regression modei,

Wights computed by the classical tagisic regrassian madel,
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Figure 3: Evaluation (WANG database): (a) ground truth precision-scope curves and (b) classification precision-

scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, for the
compression orders m € {30, 20, 10}.
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Figure 4: Evaluation (UW database): (a) ground truth precision-scope curves and (b) classification precision-
scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM, for the
compression orders m & {30, 20, 10}.
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Figure 5: Evaluation (CalTech database): (a) ground truth precision-scope curves and (b) classification
precision-scope curves for retrieval using weights computed by the CLRM and weights computed by the BLRM,
for the compression orders m € {30, 20, 10}.

Thanks to the above precision-scope curves, we can notice that the BLRM is a significantly better tool than the
CLRM to improve retrieval ground truth and classification precisions. This is because of the problems related
to the CLRM and mentioned in the subsection (3.2). In order to compare our image retrieval method, when
using the BLRM, to others proposed by {17], [53} and [52], we chose the error rate ER as retrieval performance
measure, as it has been shown in [17] to be well established for classification tasks and strongly correlated to
several state-of-the-art measures. The ER is given as 1 — Pr¢(1), where Pr¢(1) is the classification precision
of the first image retrieved. If Pr¢(1) is averaged over a set of queries, ER is equivalent to the percentage of
incorrect images retrieved in the first rank. In [17] the four image databases were used, while in [53] and [52]
CalTech and ZuBud were used, respectively. To enable comparison with the results obtained in these works, we

set the weightfactors {7, }}1, equal to 1 to give all features same importance, and we selected the query images as
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follows: for the WANG, UW and CalTech databases, no separate train/test corpus is available, thereby queries
were selected in a leaving-one-out manner. All images of WANG and UW were selected as queries, while for
CalTech, only images of the categories motorbikes, airplanes and faces were selected as queries. For the ZuBud
database, a separate test set of 115 query images is provided [17]. Table 4 illustrates the computed ER averages

for our retrieval method and retrieval methods of {17}, [53] and [52].

Tmage collection T. Deselaers et al. [17] | R. Fergus ef al. [63] | H. Shao et al. [52] | our retrieval method (m = 20)
WANG 127 % - - 8 %

UwW 122 % - - 8.29 %

ZuBud 15.7 % - 139 % 6.9 %

CalTech airplanes 0.8 % 9.8 % - 1,25 %

CalTech faces 1.6 % 3.6 % - - 1.3 %

CalTech motorbikes 7.4 % 7.5 % B 5.5 %

Table 4: Comparison: ER [%] averages for our retrieval method, when using the BLRM, and other retrieval
methods.

6 Conclusion

We have proposed an effective Bayesian logistic regression model with a Gaussian prior distribution over the
parameters of interest. This model is based on a variational approximation and on the Jensen’s inequality.
Thanks to these two approximations, computation of the parameters of interest is straightforward and fast.
Incorporation of the prior knowledge of the explanatory vectors in the model also optimizes computation of
the parameters of interest. Moreover, the consideration of a Gaussian prior distribution over these parameters
smooths their estimates toward a fixed mean and away from the unreasonable extremes caused by the maximum
likelihood routine used in the classical logistic regression model. We performed a decontextualized comparison of
the Bayesian logistic regression model to the classical logistic regression model and to some relevant state-of-the-
art linear classification algorithms. Experiments showed that the Bayesian logistic regression model outperforms
these algorithms and the classical logistic regression model in terms of classification performance and training
running time. Also, we performed an evaluation and comparison of the Bayesian and classical logistic regression
models in the image retrieval context. Experiments showed that the Bayesian logistic regression model is a
significantly better tool than the classical one for improving retrieval performance. Finally, we showed that our

retrieval method turns out to be competitive with other retrieval methods which use same image databases.
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CHAPITRE 4

Modéeles de régression logistique pour
une méthode rapide de recherche
d’images par le contenu fondée sur la

sélection des caractéristiques

Dans ce chapitre, nous introduisons la sélection des caractéristiques pour améliorer la
méthode de recherche présentée dans les chapitres précédents. La sélection des carac-
téristiques est effectuée en utilisant séparément les modéles Bayésien et classique de
régression logistique. Elle permet de donner automatiquement plus d’importance aux
caractéristiques qui discriminent le plus et moins d’importance aux caractéristiques
qui discriminent le moins. Une comparaison des deux modéles est effectuée dans le
cadre de la recherche d’images basée sur la sélection des caractéristiques. Les expé-
rimentations ont été effectuées sur les bases de données d’images couleurs connues
WANG et ZuBud.

Nous présentons dans les pages qui suivent, un article intitulé Logistic Regression
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Models for a Fast CBIR Method Based on Feature Selection qui a été pu-
blié¢ dans les actes du Twentieth International Joint Conference on Artificial

Intelligence (IJCAI’07) qui a eu lieu & Hyderabad (Inde) en 2007.
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Abstract

Distance measures like the Euclidean distance have been the most widely used to measure similarities between
feature vectors in the content-based image retrieval (CBIR) systems. However, in these similarity measures
no assumption is made about the probability distributions and the local relevances of the feature vectors.
Therefore, irrelevant features might hurt retrieval performance. Probabilistic approaches have proven to be
an effective solution to this CBIR problem. In this paper, we use a Bayesian logistic regression model, in
order to compute the weights of a pseudo-metric to improve its discriminatory capacity and then to increase
image retrieval accuracy. The pseudo-metric weights were adjusted by the classical logistic regression model in
[Ksantini et al., 2006]. The Bayesian logistic regression model was shown to be a significantly better tool than
the classical logistic regression one to improve the retrieval performance. The retrieval method is fast and is
based on feature selection. Experimental results are reported on the Zubud and WANG color image databases

proposed by [Deselaers et al., 2004].

1 Introduction

The rapid expansion of the Internet and the wide use of digital data in many real world applications in the field

of medecine, security, communications, commerce and academia, increased the need for both efficient image
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database creation and retrieval procedures. For this reason, content-based image retrieval (CBIR) approach
was proposed. In this approach, each image from the database is associated with a feature vector capturing
certain visual features of the image such as color, texture and shape. Then, a similarity measure is used to
compare these feature vectors and to find similarities between images with the assumption that images that are
close to each other in the feature space are also visually similar. Distance measures like the Euclidean distance
have been the most widely used for feature vector comparison in the CBIR systems. However, these similarity
measures are only based on the distances between feature vectors in the feature space. Therefore, because of the
lack of information about the relative relevances of the featurebase feature vectors and because of the noise in
these vectors, distance measures can fail and irrelevant features might hurt retrieval performance. Probabilistic
approaches are a promising solution to this CBIR problem, that when compared to the standard CBIR methods
based on the distance measures, can lead to a significant gain in retrieval accuracy. In fact, these approaches
are capable of generating probabilistic similarity measures and highly customized metrics for computing image
similarity based on the consideration and distinction of the relative feature vector relevances. As to previous
works based on these probabilistic approaches, [Peng et al., 2004] used a binary classification to classify the
database color image feature vectors as relevant or irrelevant, [Caenen and Pauwels, 2002] used the classical
quadratic logistic regression model, in order to classify database image feature vectors as relevant or irrelevant,
[Aksoy et al., 2000] used weighted L; and L. distances, in order to measure the similarity degree between two
images and [Aksoy and Haralick, 2001] measure the similarity degree between a query image and a database
image using a likelihood ratio derived from a Bayesian classifier.

In this paper, we investigate the effectiveness of a Bayesian logistic regression model based on a variational
method, in order to adjust the weights of a pseudo-metric used in [Ksantini et al., 2006], and then to improve
its discriminatory capacity and to increase image retrieval accuracy. This pseudo-metric makes use of the
compressed and quantized versions of the Daubechies-8 wavelet decomposed feature vectors, and its weights
were adjusted by the classical logistic regression. We will show that thanks to the variational method, the
used Bayesian logistic regression model is a significantly better tool than the classical logistic regression model
to compute the pseudo-metric weights and to improve the querying results. The retrieval method is fast,
efficient and based on feature selection. The evaluation of the retrieval method using both models, separately,
is performed using precision and scope curves as defined in [Kherfi and Ziou, 2006].

In the next section, we briefly define the pseudo-metric. In section 3, we briefly describe the pseudo-metric

weight computation using the classical logistic regression model, while showing the limitations of this latter
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and that the Bayesian logistic regression model is more appropriate for the pseudo-metric weight computation.
Then, we detail the Bayesian logistic regression model. Moreover, we will describe the data training performed
for both models. The feature selection based image retrieval method and the feature vectors used to represent
the database images are presented in section 4. Finally, in section 5, we will perform some experiments to
validate the Bayesian logistic regression model and we will use the precision and scope, in order to show the
advantage of the Bayesian logistic regression model over the classical logistic regression one, in terms of querying

results.

2 The pseudo-metric

Given a query feature vector Q and a featurebase of |DB| feature vectors T} (k = 1,...,|DB|) having 27
components each, our aim is to retrieve in the featurebase the most similar feature vectors to . To achieve
this, Q and the |DB)| feature vectors are Daubechies-8 wavelets decomposed, compressed to m coeflicients
each and quantized. Then, to measure the similarity degree between @ and a target feature vector T} of the
featurebase, we use the one-dimensional version of the pseudo-metric used in [Ksantini et al., 2006] and given

by the following expression

Q. = @lQ00] = Tufol = 3 wanco (@51 = 75 1), )
:Qg[il#0
where
<Q‘C’M - ng[i]) - { (1) ftligr@is:e,r[gq{i] @)

Q[0] and T[0] are the scaling factors of @ and Tk, Q%[] and ~,fq[i] represent the i-th coefficients of their
Daubechies-8 wavelets decomposed, compressed to m coefficients and quantized versions, @y and the wpi,y’s
are the weights to compute, and the bucketing function bin() groups these latters according to the J resolution

levels, such as

bin(i) = |loga(i)]  with  §=1,..,27 -1 (3)
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3 The weight computation

In order to improve the discriminatory power of the pseudo-metric, we compute its weights wp and {wk},f;(}
using a classical logistic regression model and a Bayesian logistic regression model, separately. We define two
classes, the relevance class denoted by Qg and the irrelevance class denoted by 4, in order to classify the feature
vector pairs as similar or dissimilar. The basic principle of using the Bayesian logistic regression model and the
classical logistic regression one is to allow a good linear separation between Qg and £, and then to compute

the weights which represent the local relevances of the pseudo-metric components.

3.1 The classical logistic regression model

In this model, each feature vector pair is represented by an explanatory vector and a binary target variable.
Specifically, for the i-th feature vector pair, we associate an explanatory vector X; = (Xo,u Xo,iy - Xs-1,01) €
R’ x {1} and a binary target S; which is either 0 or 1, depending on whether or not the two feature vectors are
intended to be similar. X(),i is the absolute value of the difference between the scaling factors of the Daubechies-
8 wavelets decomposed, compressed and quantized versions of the two feature vectors and {Xk,i};i;g are the
numbers of mismatches between the J resolution level coefficients of these latter. We suppose that we have ng
pairs of similar feature vectors and n, pairs of dissimilar ones. Thus, the class Qg contains ng explanatory vectors
and their associated binary target variables {X7, ST = 0}}, to represent the pairs of the similar feature vectors,
and the class ; contains n; explanatory vectors and their associated binary target variables {X }T, S"T = 1}?;1
to represent the pairs of the dissimilar feature vectors. The pseudo-metric weights Wy and {wk}J ! and an

intercept v are chosen to optimize the following conditional log-likelihood.
0 ni .
L(’LDO,wO,-n,’LUJ__l,U) = ZlOg(p:) +ZlOg(p;T)’ (4)

where p; and p?r are the relevance and irrelevance probabilities, respectively, and given by

J—=1

P = F(—woXj, - Y wiX[,;—v),
k=0

p;'.r — on —{—ZkakJ+U
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where F(z) = is the logistic function. For this reason, standard optimization algorithms such as Fisher

scoring and gradient ascent algorithms [Clogg et al., 1991], can be invoked. However, in several cases, especially
because of the exponential in the likelihood function or because of the existence of many zero explanatory vectors,
the maximum likelihood can fail and estimates of the parameters of interest (weights and intercept) may not
be optimal or may not exist or may be on the boundary of the parameter space. Also, as there is complete or
quasicomplete separation between 2y and €1, the function L is made arbitrarily large and standard optimization
algorithms diverge [Krishnapuram et al., 2005]. Moreover, as £}y and §2; are large and high-dimensional, these
standard optimization algorithms have high computational complexity and take long time to converge. The
first two problems can be solved by smoothing the parameter of interest estimates, assuming a certain prior
distribution for the parameters, thereby reducing the parameter space, and the third problem can be solved
by using variational transformations which simplify the computation of the parameter of interest estimates
[Jaakkola and Jordan, 2000]. This motivates the adoption of a Bayesian logistic regression model based on

variational methods.

3.2 The Bayesian logistic regression model

In the Bayesian logistic regression framework, there are three main components which are a chosen prior distrib-
ution over the parameters of interest, the likelihood function and the posterior distribution. These three compo-
nents are formally combined by Bayes’ rule. The posterior distribution contains all the available knowledge about
the parameters of interest in the model. Among many priors having different distributional forms, gaussian
prior has the advantage of having low computational intensity and of smoothing the parameter estimates toward
a fixed mean and away from unreasonable extremes. However, when the likelihood function is not conjugate
of the gaussian prior, the posterior distribution has no tractable form and its mean computation involves high-
dimensional integration which has high computational cost. According to [Jaakkola and Jordan, 2000], it’s
possible to use accurate variational transformations in order to approximate the likelihood function with a
simpler tractable exponential form. In this case, thanks to the conjugacy, with a gaussian prior distribution
over the parameters of interest combined with the likelihood approximation, we obtain a closed gaussian form
approximation to the posterior distribution. However, as the number of observations is large, the number of
variational parameters updated to optimize the posterior distribution approximation is also large, thereby the
computational cost is high. In the Bayesian logistic regression model that we propose, we use variational trans-

formations and the Jensen’s inequality in order to approximate the likelihood function with tractable exponential
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form. The explanatory vectors are not observed but instead are distributed according to two specific distribu-
tions. The posterior distribution is also approximated with a gaussian which depends only on two variational
parameters. The computation of the posterior distribution approximation mean is fast and has low computa-
tional complexity. In this model, we denote the random vectors whose realizations represent the explanatory
vectors {X7};0; of the relevance class Qg and the explanatory vectors {X;"}72, of the irrelevance class 1, by
Xo = (Xo,o’_Xo,m e X100 1) and X; = (X_o,pXo,l’ e Xy 11 1), respectively. We suppose that X ~ go(X;)
and X, ~ ¢1(X;), where gy and ¢; are two chosen distributions. For X, we associate a binary random variable
8o whose realizations are the target variables {57 = 0}7%,, and for X; we associate a binary random variable
S, whose realizations are the target variables {S}" = 1}72,. We set Sy equal to O for similarity and we set S,
equal to 1 for dissimilarity. Parameters of interest (weights and intercept) are considered as random variables
and are denoted by the random vector W = (uy, wg, ..., ws_1,2). We assume that W ~ 7(W), where 7 is a
gaussian prior with prior mean p and covariance matrix ¥. Using Bayes’ rule, the posterior distribution over

W is given by

_ [Zzoeno,zlem H%:o P(S; =iX; =z, W)ai(X; = mz)]ﬂ(_vy.)
P(8y=0,8, =1) ’

where P(S; = i|X; = 7, W) = F((2i — 1)W'z;) for each i € {0,1}. Using a variational approximation
[Jaakkola and Jordan, 2000] and the Jensen’s inequality, the posterior distribution is approximated as follows
1 1
P(W|S; =0,8; =1,{€}. o, 1Gi}, W
PO, = 0,5, =1) > =0 =lia)ig o Jr0D)
P(Sy=0,8,=1)

o« P(W|Sy=0,8; =1,{ei};_g {a}ig)m(W)

where

R P e I I CH))
P(WS, = 0,5, = 1{e}qs o) = [T 0o 2

where E,, and E,, are the expectations with respect to the distributions g and qy, respectively, ¢(e;) = MZ%-_ZL—)
and {fi};o are the variational parameters. Therefore, the approximation of the posterior distribution is

considered as an adjustable lower bound and as a proper Gaussian distribution with a posterior mean pipqs; and
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covariance matrix Yp,s Which are estimated by the following Bayesian update equations

1

(Epost)_l = (2)~1 +2 Z [()D(fi)EQi [‘Tz (mz)t”’ (5)
i=0
=, 1
Hpost = Epoat [(2) B+ Z [('L - §)E¢h [xl]]} . (6)
i=0

The weight and intercept computation algorithm is in two phases. The first phase is the initialization of gg,
g1 and the gaussian prior 7(W), and the second phase is iterative and allows the computation of ¥p0s and
Hpost through the Bayesian update equations (5) and (6), respectively, while using an EM type algorithm
[Jaakkola and Jordan, 2000}, in order to find the variational parameters {6"}::0 at each iteration to have an
optimal approximation to the posterior distribution. In the initialization phase, g and ¢; are chosen to model 24
and {1y, respectively, and because of the absence of prior knowledge about the weights and the intercept, m(W)
is chosen univariate with zero mean and large variances [Congdon, 2001]. The values of fi,0s: components are
the desired estimates of the pseudo-metric weights @y and {wk}i:_é and the intercept v. Once the parameters
of the posterior distribution approximation are computed, its magnitude is given by the term H;:O F(e;). This
latter becomes very close to 1 as {3y and Q; are linearly separated or quasi separated and tends towards 0 as
@ and §; become more and more overlapped. Analogically, in the classical logistic regression model, the term

e?* has almost the same characteristics as Hi1=0 F(e;) [Caenen and Pauwels, 2002]. These two terms will be

used to perform feature selection in the retrieval method.

3.3 Training

Let us consider a color image database which consists of several color image sets such that each set contains
color images which are perceptually close to each other in terms of object shapes and colors. In order to compute
the pseudo-metric weights and the intercept by the classical logistic regression model, we have to construct the
relevance class 2y and the irrelevance class €;. To construct (g, we draw all possible pairs of feature vectors
representing color images belonging to the same database color image sets, and for each pair we compute an
explanatory vector and we associate to this latter a binary target variable equal to 0. Similarly, to construct
1, we draw all possible pairs of feature vectors representing color images belonging to different database color
image sets, and for each pair we compute an explanatory vector and we associate to this latter a binary target

variable equal to 1. For the Bayesian logistic regression model, we construct the g and ©; with the same way,

108



but instead of associating a binary target variable value to each explanatory vector of 0 and 2;, we associate
a binary target variable §, equal to 0 to all Qy explanatory vectors and we associate a binary target variable

S; equal to 1 to all {21 explanatory vectors.

4 Color image retrieval method

The querying method is in two phases. The first phase is a preprocessing phase done once for the entire database

containing |DB| color images. The second phase is the querying phase.

4.1 Color image database preprocessing

We detail the preprocessing phase done once for all the database color images before the querying in a general

case by the following steps.
1. Choose N feature vectors for comparison.

2. Compute the N feature vectors T3; (I € {1,...,N}) for each i-th color image of the database, where

ie{1,..,|DB|}.

3. The feature vectors representing the database color images are Daubechies-8 wavelets decomposed, com-

pressed to m coefficients each and quantized.

4. Organize the decomposed, compressed and quantized feature vectors into search arrays @l_l_ and ©% (l =

1,..,N ) which are used to optimize the pseud-metric computation process [Ksantini et al., 2006].

5. Adjustment of the metric weights @} and {w!}]=] for each featurebase Tj; (i = 1,...,|DB|) representing

the database color images, where [ € {1,..., N}.

4.2 'The querying algorithm
We detail the querying algorithm in a general case by the following steps.

1. Given a query color image, we denote the feature vectors representing the query image by Q; (l =1,..,N )

2. The feature vectors representing the query image are Daubechies-8 wavelets decomposed, compressed to

m coefficients each and quantized.
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3. The similarity degrees between (@, (l = 1,...,N) and the database color image feature vectors 7j;
(l=1,..,N) (i=1,..,|DB]) are represented by the arrays Score; (I = 1,...,N) such that Score;[i] =|
Qu, Ty || for each ¢ € {1,...,|DB|}. These arrays are returned by the procedure Retrieval(Q;, m, 6%,
el) (l =1,..,N ), respectively. The procedure Retrieval is used to optimize the querying process

[Ksantini et al., 2006).

4. The similarity degrees between the query color image and the database color images are represented by
a resulted array TotalScore, such as, TotalScore[i] = Zl}il v Scorey[i] for each i € {1, ...,{DB[}, where
{v}I¥, are weightfactors used to down-weight the feature which has low discriminatory power. v, = e2™

when the weights are computed by the classical logistic regression model, and v; = Hilzo FP(é!) when the

weights are computed by the Bayesian logistic regression model.

5. Organize the database color images in order of increasing resulted similarity degrees of the array TotalScore.
The most negative resulted similarity degrees correspond to the closest target images to the query image.
Finally, return to the user the closest target color images to the query color image and whose number is

denoted by RI and chosen by the user.

4.3 Used feature vectors

In order to describe the luminance, colors and the edges of a color image, we use luminance histogram and
weighted histograms. The image texture description is performed by kurtosis and skewness histograms. Given
an M x N pixel LAB color image, its luminance histogram h;, contains the number of pixels of the luminance

L, and can be written as follows
M—1N-

hL(C) = Z

=

6(IL(1,5) — c), (7)

<
I
o

M

for each ¢ € {0, ..., 255}, where I;, is the luminance image and ¢ is the Kronecker symbol at 0. The weighted
histograms are the color histogram constructed after edge region elimination and the multispectral gradient

module mean histogram. The former is given by
h‘Z(C) = 5(110(7/7.7) h C)X[O,n] ()\maa:(ia.j)> s (8)

and the latter is given by



where N, (c) is the number of the edge region pixels and is defined as

M-1N-1
Noble) = 3 3 600k(6.9) = Mttt (Imac(i) ). (10

1=0 j=

and
hi(c) =

M—1N—-1

S S 646 ) — )Amasin) x]n,mi(Am(i,j)), (1)

=0 j=0
foreach c € {0, ...,255} and k = a, b, where A4, represents the multispectral gradient module [Ksantini et al., 2006],
7 is a threshold defined by the mean of the multispectral gradient modules computed over all image pixels, I,
and Ip are the images of the chrominances a red/green and b yellow/blue, respectively, and x is the characteristic
function. The multispectral gradient module mean histogram provides information about the overall contrast
in the chrominance and the edge region elimination allows the avoidance of overlappings or noises between the
color histogram populations caused by the edge pixels. The LAB color image kurtosis and skewness histograms

are given by

M-1N-1
He)= > > 8(IEG,5) — o), (12)
i=0 j=0
and
M-1N-1
p(c) = 6(13(i,5) — o), (13)
i=0 §=0

respectively, for each ¢ € {0,...,255} and k = L,a,b, where I}, I¥ and I} are the kurtosis images of the
luminance L and the chrominances a and b, respectively, and I}, I? and If are the skewness images of these
latter. They are obtained by local computations of the kurtosis and skewness values at the luminance and
chrominance image pixels. Then, a linear interpolation is used to represent the kurtosis and skewness values
between 0 and 255. Since each used feature vector is a histogram having 256 components, we set J equal to 8

in the following section.
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5 Experimental results

In this section, we will discuss the choices of the distributions ¢y and ¢, in order to validate the Bayesian
logistic regression model in the image retrieval context. Finally, we will use the precision and scope as defined
in [Kherfi and Ziou, 2006], to evaluate the querying method using both models separately. The choices of the
distributions ¢y and ¢; and the querying evaluation will be conducted on the WANG and Zubud color image
databases proposed by [Deselaers et al., 2004]. The WANG database contains | DB| = 1000 color images which
were selected manually to form 10 sets (e.g. Africa, beach, ruins, food) of 100 images each. The Zurich Building
Image Database (ZuBuD) contains a training part of |[DB| = 1005 color images and query part of 115 color
images. The training part consists of 201 building image sets, where each set contains 5 color images of the
same building taken from different positions. Before the feature vector extractions, we represent the WANG
and Zubud database color images in the perceptually uniform LAB color space. Since from each color image of
the Zubud and WANG databases we extract N = 11 histograms which are given by (7), (8), (9), (12) and (13)
respectively, each database is represented by eleven featurebases. The choices of gy and ¢; will be separately
performed for each featurebase. For each featurebase, we assume that _X.o,o and (Xgg, ..y Xj_1,0) are indepen-
dent. We make the same assumption for XO,I and (X 1,...,X _1,1). Moreover, we suppose that the random
vector (_X.0,0) v X ‘,_1’0) random variables whose realizations are positive integers, are independent and each one
of them follows a truncated poisson distribution at its greatest realization, to have a best fit. Analogically, we
make the same choice for (X ;,...,X;_1,1). Also, we assume that the random variable Xo,o whose realizations
are positive reals, follows a gaussian mixture distribution, which is the same choice for XO,I' Generally, to carry
out an evaluation in the image retrieval field, two principal issues are required: the acquisition of ground truth
and the definition of performance criteria. For ground truth, we use human observations. In fact, three exter-
nal persons participate in the below evaluation. Concerning performance criteria, we represent the evaluation
results by the precision-scope curve Pr = f(RI), where the scope RI is the number of images returned to the
user. In each querying performed in the evaluation experiment, each human subject is asked to give a goodness
score to each retrieved image. The goodness score is 2 if the retrieved image is almost similar to the query, 1
if the retrieved image is fairly similar to the query and 0 if there is no similarity between the retrieved image
and the query. The precision is computed as follows: Pr = the sum of goodness scores for retrieved images/RI.
Therefore, the curve Pr = f(RI) gives the precision for different values of RI which lie between 1 and 20
when we perform the querying evaluation on the WANG database, and lie between 1 and 5 when we perform

the querying evaluation on the ZuBuD database. When the human subjects perform different queryings in
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the evaluation experiment, we compute an average precision for each value of RI, and then we construct the
precision-scope curve. In our evaluation experiment, each color image of the WANG and Zubud databases is
represented by N = 11 histograms which are hr, b, b, hE, k¢, by, b, hf, h%, kS and hi. In order to evaluate
the querying in the WANG database, each human subject is asked to formulate a query from the database and
to execute a querying, using weights computed by the classical logistic regression model, and to give a goodness
score to each retrieved image, then to reformulate a query from the database and to execute the querying, using
weights computed by the Bayesian logistic regression model, and to give a goodness score to each retrieved
image. Fach human subject performs the querying fifty times by choosing a new query from the database each
time. We repeat this experience for different orders of compression m € {30,20,10}. To evaluate the querying
in the ZuBuD database, each human subject is asked to follow the preceding steps, while formulating the queries
from the database query part. For the WANG and Zubud databases, the resulted precision-scope curves are
given in Figure 1 for compression orders m € {30,20,10}. The Figure 2 illustrates two retrieval examples in the
Zubud database comparing the performances of the regression models for m = 30. In each example the query

is located at the top-left of the dialog box.
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Figure 1: Evaluation ((a) ZuBud database and (b) WANG database): precision-scope curves for retrieval using
weights computed by the classical logistic regression model and weights computed by the Bayesian logistic
regression model.
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Figure 2: Comparison (ZuBud database): a) first 8 color images retrieved using weights computed by the
classical logistic regression model, b) first 8 color images retrieved using weights computed by the Bayesian
logistic regression model.
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6 Conclusion

We presented a simple, fast and effective color image querying method based on feature selection. In order to
measure the similarity degree between two color images both quickly and effectively, we used a weighted pseudo-
metric which makes use of the one-dimensional Daubechies decomposition and compression of the extracted
feature vectors. A Bayesian logistic regression model and a classical logistic regression one were used to improve
the discriminatory capacity of the pseudo-metric and to allow feature selection. Evaluations of the querying
method showed that the Bayesian logistic regression model is a better tool than the classical logistic regression

one to compute the pseudo-metric weights and to improve the querying results.
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CHAPITRE 5

Modéle bayésien d’analyse

discriminante logistique fondé sur les
noyaux : une ameélioration a 'analyse
discriminante de Fisher fondée sur les

noyaux

L’analyse discriminante de Fisher basée sur les noyaux (KFD) est un classificateur
nonlinéaire qui s’est avéré puissant et se comparant avantageusement & plusieurs clas-
sificateurs existants. Elle est équivalente & ’analyse discriminante linéaire de Fisher
appliquée efficacement dans I’espace des noyaux. Cependant, elle suppose que les ma-
trices de covariance des classes transformées dans ’espace des noyaux soient identiques,
ce qui n’est pas pas le cas dans de nombreuses applications. Dans ce chapitre, nous
proposons un modéle bayésien d’analyse discriminante logistique basé sur les noyaux

(BKLD) qui représente chaque classe transformée par sa propre matrice de covariance.
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Ceci peut mener & plus de flexibilité et & de meilleures performances de classification
que la KFD. Une comparaison extensive du BKLD & la KFD et a d’autres classifi-
cateurs nonlinéaire présents dans a littérature est effectuée. De plus, 'analyse de la
complexité de ’algorithme et les performances numériques du BKLD sont détaillées.
Nous présentons dans les pages qui suivent, un article intitulée A Bayesian Kernel
Logistic Discriminant Model : An Improvement to the Kernel Fisher’s Dis-
criminant Model. Ce travail sera enrichi d’une application de recherche d’images
ou de détection d’objets (peau, feux, ombre, etc) et sera soumis au journal IEEE

Transactions on Knowledge and Data Engineering (TKDE).
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Abstract

The Kernel Fisher’s Discriminant (KFD) is a non-linear classifier which has proven to be powerful and com-
petitive to several state-of-the-art classifiers. Its main ingredient is the kernel trick which allows the efficient
computation of Fisher’s Linear Discriminant in feature space. However, it is assuming equal covariance structure
for all transformed classes, which is not true in many applications. In this paper, we propose a novel Bayesian
Kernel Logistic Discriminant model (BKLD) which goes one step further by representing each transformed
class by its own covariance matrix. This can allow more flexibility and better classification performances than
the KFD. The posterior distribution of the BKLLD model is elegantly approximated by a tractable Gaussian
form using variational transformation and Jensen’s inequality, which allow a straightforward computation of the
weights. An extensive comparison of the BKLD to the KFD and to other state-of-the-art non-linear classifiers

is performed. Also, analysis of algorithm complexity and numerical accuracy is provided.
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1 Introduction

In supervised learning we are given a training set of input vectors {X;}~ ,, where X; € RF(k > 1) Vi €
{1,2,..., N}, along with corresponding tags {t;};, where t; € NVi € {1,2,..., N}, the latter of which might be
class labels in classification. From this training set, we wish to learn a model of the dependency of the targets on
the inputs with the objective of making accurate predictions of ¢ for unseen values of X. In real-world data, the
presence of class overlap in classification implies that the principal modelling challenge is to avoid over-fitting
of the training set. Typically, we base our predictions upon some function y(X) defined over the input space
(or training space)} X, and learning is the process of inferring the parameters or weights of this function. In
order to learn non-linear relations with a linear classifier, we need to select a set of non-linear features and to
rewrite the data in the new representation. This is equivalent to applying a fixed non-linear mapping of the
data to a feature space F, in which the linear classifier can be used. Hence, the set of hypothesis we consider
will be functions of the type l

y(X;w) =Y wigi(X) +wo = wi'd(X), (1)

i=1

where ®(X) = (1, ¢1(X), p2(X), ..., (X)) : X — F is a non-linear map from the input space to some feature
space [1]. This means that we will build non-linear classifiers in two steps: first a fixed non-linear mapping
transforms the data into a feature space F, and then a linear classifier is used to classify them in the feature
space. Analysis of functions of the type (1) is facilitated since the adjustable parameters or weights w =
(wo, w1, Wy, ..., w;) appear linearly, and the objective is to estimate good values for those parameters. While the
range of functions of the type (1) that we can address is extremely broad, we concentrate here on functions of
the type corresponding to those implemented by some relevant state-of-the-art linearly-parameterized models,
the Support Vector Machine (SVM) [3] and the Kernel Fisher’s Discriminant (KFD) [2], [4]. The SVM and

KFD make predictions based on the function

N
y(X;w) =D wik(X, X:) + wo, (2)

i=1
where ¢;(X) = K(X, X;) is a kernel function, effectively defining one basis function for each observation in
the training set. The use of kernel trick impacts linear decision boundary in the feature space, while implicitly
yielding a flexible non-linear separation in the input space. The KFD was firstly proposed by Mika et al. [2]
and its main idea is to perform the traditional Fisher’s linear discriminant in the feature space. Moreover, it

has proven to be powerful and competitive to several non-linear classifiers [2]. Subsequently, a number of KFD
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algorithms [9], (10], [11], [12], [13], [14], [15], [16], [17], (18], have been developed. However, these KFD-based
algorithms suffer from the small sample size problem since the kernel-induced feature space is typically of very
high dimensionality. Furthermore, they are incapable of dealing with heteroscedastic data (classes with different
covariance matrices) that are commonly found in real-world applications. Many methods have been proposed to
address the small sample size problem. Mika et al. [2] proposed adding a small multiple of the identity matrix to
make the inner product matrix invertible. Baudat and Anouar [11] and Xiong et al. [12] used QR decomposition
to avoid the singularity of the inner product matrix. Park et al. [13] proposed the KFD/GSVD algorithm by
employing generalized singular value decomposition (GSVD). Yang [14] adopted the technique introduced in
Fisherfaces [20], i.e., kernel Fisherfaces. Lu et al. [15] proposed the kernel direct discriminant analysis (KDDA)
algorithm based on generalization of the LDA algorithm in [{21]. Recently, Dai and Qian [16], {17] presented
a further enhanced method called the kernel generalized nonlinear discriminant analysis (KGNDA) algorithm
which is based on the theoretical foundation established in [18]. More specifically, it attempts to exploit the
crucial discriminatory information in the null space of the within-class scatter matrix in the feature space F.
In order to address the heteroscedasticity problem, Dai et al. proposed recently a novel KFD algorithm called
heteroscedastic kernel weighted discriminant analysis (HKWDA) which is based on the idea of weighted pairwise
Chernoft criterion proposed in [22].

In this paper, we propose a Bayesian Kernel Logistic Discriminant model (BKLD) which is capable of dealing
with heteroscedastic data by representing each transformed class by its own covariance matrix. This can allow
more flexibility and better classification performances than the KFD. The objective likelihood function of our
model has no tractable form. For this reason, we used variational transformation and the Jensen’s inequality to
approximate it with a tractable exponential form which depends only on two variational parameters. In order
to avoid small sample size problem and to speed up the computation of the model parameters (or weights), we
introduce a sparsity-promoting Gaussian prior over them governed by a set of prior parameters, one associated
with each weight, whose most values are iteratively estimated using an expectation-maximization (EM) type
algorithm. Due to the conjugacy, by combining a Gaussian prior with the likelihood approximation, we obtain

a closed Gaussian form approximation to the posterior distribution of the model.

In the next section, we detail the derivation of the BKLD, and define the procedure for obtaining variational
parameters and parameter values, and from them, the weights. In section 3, a comparative evaluation is per-

formed to compare the BKLD to the KFD as well as other state-of-the-art non-linear classifiers on a collection
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of benchmark data sets. Furthermore, an analysis of algorithm complexity and numerical accuracy is provided.

Finally, we present our conclusions.

2 The Bayesian Kernel Logistic Discriminant Model

Let X = {X;}, and & = {X;}L N,+1 be two different classes constituting an input space of N samples or
vectors. Applying the kernel trick, we use a function ® to map the classes X7 and A5 to two feature classes F; =
{®(X)}2, and Fp = {®(X;)}L N, 41, Tespectively, wherein ®(X;) = (1, K(X;, X1), K(Xs, X2), ., K(X4, X))
v ie{l,2,..,N}. Let us denote by ®; and &, two random vectors whose realizations represent the vectors of
]-'1‘ and the vectors of Fz, respectively. We suppose that ®; ~ g;(®;) and &, ~ g2(P,), where g1 and g are
two Gaussian distributions whose means and covariance matrices are empirically computed from F; and Fa.
With @, we associate a tag t; = 0, and with &, we associate a tag to = 1. The unknown parameters (weights)
are considered as random variables and are denoted by the random vector w = (wq, w1, ..., wn). We define a

‘likelihood’ function as:

2
Pty =0ty =1jw)= > {H P(t; =i —1]|®;, w)g:(®,) |, (3)

®,€F1,2,€F; -i=1

where, given F(z) = P(t; =i-1|®;,w) = F((2i — 3)w¥®,) V i € {1,2} represent logistic modelings

=,
of t; and t, given the realizations of ®; and &,, respectively. The maximization of the likelihood function
P(t; = 0,t; = 1|w) with respect to the weights w = (wg, wy, ..., wy) makes our model equivalent to the optimal
linear Bayes classifier modelling F; and F3 by g; and gs, respectively. However, with as many parameters or
weights in the model as training examples, we would expect the maximum-likelihood estimation of w from (3)
to lead to severe over-fitting. To avoid this, a common approach is to impose some additional constraint on the
parameters, for example, through the addition of a ’complexity’ penalty term to the likelihood or error function.
This is implicitly effected by the inclusion of the 'margin’ term in the SVM [3] and the regularization matrix
in the KFD [2]. Here, though, we adopt a Bayesian perspective, and ’constrain’ the parameters by defining an
explicit prior probability distribution over them. We encode a preference for smoother (less complex) functions

by making the popular choice of a zero-mean Gaussian prior distribution over w:
N

n(w|B) = [V (wil0, 87, 4)

=0
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with 8 = (B, B, ---, Bn) a vector of N +1 prior parameters. Importantly, there is an individual prior parameter
associated independently with every weight, moderating the strength of the prior thereon. This has the advan-
tage of promoting the sparsity of the model and thereby speeding up the computation of the weight estimates.
Having defined the prior, Bayesian inference proceeds by computing, from the Bayes’ rule, the posterior over

the unknown weights:

Egle}‘l,gze}‘z [H?=1 P(ti =1-1[2,, W)gl(@z)} m(w|B)
P(t1 =0,ta =1) ’

P(wlt; =0ty =1) = (5)

where

2
Pty =0,t, = 1) = / > [HP(ti=z‘—1|s¢zi,w>gi@i)]7r<w|ﬁ>dw, (6)

®,€F,,8,6F, i=1
is the normalizing term. The computation of the posterior distribution is intractable. However, we can approx-
imate it by a variational posterior approximation with a Gaussian form, whose mean and covariance matrix
computation is feasible. To obtain this variational posterior approximation, we perform two successive approx-
imations to the likelihood function, in order to bound it by an exponential form which is a conjugate of the

Gaussian prior.

First approximation:
This first approximation is based on a variational transformation of the sigmoid function F(z) of the logistic
regression. According to [5], the variational approximation of the sigmoid function in H; = (25 — 3)w’®, V

i € {1,2} is given by

P(t;=1i-1®;,,w) = F(H;), (7)
UL (e (HE-€F) ,
2 F(e’i)e :P(ti =2-1|j{3i,w,ei),
. . L. _ tanh(5t) &N e%—e—fﬁi R
where ¢; > 0 is the variational parameter, ¢(¢;) = —r ==, and tanh(F) = et v i€ {1,2}. So the
* e2 4e 2

likelihood function can be approximated as follows:

> [IEI Pty =i- 1I§i,w)g¢(s{zi)} (8)

B, €F1,B,€F, Li=1

2
S SH ) | CORTE EReel

216-7:17226-7:2 i=1
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Second approximation:
The first approximation is insufficient to approximate the likelihood function by an exponential form. We
therefore perform a second approximation, based on Jensen’s inequality, which uses the convexity of the function

e*. Using Jensen’s inequality, we obtain

2
> [H P(ti=1i- 1|§¢,W,6¢)gi(§i)} (9)

®,€F1,2,€F2 ~i=1

| [ (s (-] 2
€

[zle [Ealt=) e [oten(s [Hs]-cs)]}

v

where Ky, and Ey, are the expectations with respect to the distributions g, and g2, respectively.
Finally, thanks to the two above approximations, the posterior distribution numerator in the formula (5) can

be approximated as follows:

2
) [HP(ti — i~ 110, w)gs(@;) | m(w|B) (10)

@, €F1, 2,65, ti=l

2 B(tl = 0,t2 = 1|W, {Ei}?zl)ﬂ'(WLB).

Thus, the variational posterior approximation denoted by P(wlt; = 0,t5 = 1, {ei}le , B) is given by normalizing
the lower bound of the inequality (10). Note that although P(¢; = 0,t; = 1|w, {ei}le) is a lower bound on
the true likelihood function, our variational posterior approximation is a proper density and thus no longer a
bound. Given that m(w|83) is a Gaussian which is a conjugate of the exponential variational form P(t; = 0,3 =
1w, {ei}le), the variational posterior approximation is a Gaussian with a posterior mean pip0s¢ and a posterior

covariance matrix Lpos¢. Thus, omitting the algebra, Ypos: and ppost are given by the following Bayesian update

equations:
2
(E:uost)—l = A7'42 Z [‘P(Ei)Egi [ngl;‘r]], (11)
i=1
2
Hpost — E;uoat|: : [(Z - g‘)Egi [gz]]]a (12)

=1
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with A = diag(8y L Br 1o, ﬂ;,l). Since for each feature class the dimensionality is greater than the number of
vectors, we expect that the term 2 Z?zl l(e:) By, [gigf]} of equation (11) to be singular. However, this sin-
gularity is avoided after adding the regularization matrix A~!, thereby making (£,,s:) ! invertible. According
to equation (11), ¥p05; depends on the variational parameters {ei}le and the prior parameters {ﬂi}io’ S0 we
must specify these. We have to find the values of {ei}le and { ﬂi}j\;o that yield a tight lower bound in equation
(10). This can be done by an EM type algorithm. More precisely, we want to find {ei}?zl and { ﬂi}i\;o that

maximize the following lower bound of the log marginal likelihood

log(/ﬁ(tl —0,t5 = 1jw, {ei}f=1)7r(w|ﬁ)dw). (13)

In the EM formalism, this can be achieved by iteratively maximizing the following expectation

/log <E_(t1 =0,ty = 1w, {ei}?zl)ﬂ'(w[ﬂ)>P(w{t1 =0,ty =1, ({ei}il)om,ﬂozd)dw
= Q{e) i ()™ p),

with respect to {q}f:l and {ﬂi}io’ where P(wlt; = 0,t2 = 1, ({q}f:l)dd,,@ozd) is the variational posterior
approximation based on the previous values of {ei}le and { ﬁi}i]i()' Taking the partial derivatives of Q with

respect to {ei};o and { ﬂi}ﬁvzo, then equalizing to zero leads to

€

Il

2 = By (@7 Sp0ndy] + 4L, [E mﬂ] pou Vi € {1,2), (14)

1
3 = Vi€ {0,1,..,N}. (15)
’ EPOSW]' + tu‘gost,j

Owing to the EM formulation, each update for {ei}le and { 51'}?[:0 corresponds to a monotone improvement to
the variational posterior approximation [6]. The weight computation algorithm has two phases. The first phase
is the initialization; the second is iterative and allows the computation of ¥, and ppes: through the Bayesian
update equations (11) and (12), respectively, while using equations (14) and (15) to find the variational para-
meters and prior parameters at each iteration. The values of the pp05: components are the desired estimates of

the weights {wz}f\;o

Initialization:
1. Compute the means and the covariance-variance matrices of the Gaussians g; and g» empirically from F;
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and Fy, respectively.

2. Initialize the variational parameters {ei}le and the prior parameters { ﬁi}io.
Computation of X,.s and ppese:

1. Do
2
(Spe)™ = (AT 2 [o(ed) By, 2,27 ]
i=1
2 3
Mot = Tpew {Z [(i ~ 5)Eq, @in}
i=1

For each i € {1,2} do

()7 — B 0TS0 + (ugss)” | B (.97

End for

For each j € {0,1,..,N} do

/67:746’11) — 1

J new new \2
Epo:at,jj + (Mpost,j)

End for

While(|X9, — 3ew|  threshold or |u24 new! > threshold)

post post post — Hpost

new

Return ppes

2. Assign the ppoe component values to the weights {wi}fio.

The iterative phase of the above algorithm scales with the size of the training set. In fact, it is dominated
by the inversion of the posterior covariance matrix which requires O((N + 1)3) operations at each iteration.
Since the BLRM is formulated for binary or two-class problems, the ”1-versus-all” approach can be used for

polychotomous classification, where the number of classes is greater than two. However, in the following we will
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focus on two-class problems.

3 Experimental Results

3.1 Comparative Evaluation

To evaluate the performance of our new approach, we performed an extensive comparison to other state-of-
the-art classifiers. The experimental setup was chosen in analogy to [7] and we compared the BKLD to the
KFD, the single RBF classifier [7], the regularized AdaBoost (ABg) and the SVM (with Gaussian RBF kernel
KX, X;) = e_”X_X"”z/"), where ¢ is the positive "width’ parameter. For the BKLD we used Gaussian RBF
t00 as it has proven flexible and useful in SVM. We used 13 artificial and real word data sets from the UCI,
DELVE and STATLOG benchmark repositories (except for Banana).! Some of the problems are originally
not binary, hence a random partition into two classes was used. Then, 100 partitions into test and training
set (about 60%:40%) were generated. On each of these data sets we trained and tested all classifiers (see [7]
for details). The results in table 1 show the average test error over these 100 runs. The optimization of the
necessary parameters (regularization parameter C for ABpg, (C, ) for SVM, ¢ for the BKLD and (o, T') for the
KFD, where T is a threshold computed by the SVM [7]), were performed on the first five realizations of each
data set. On each of these realizations, a 5-fold cross validation procedure gives a good model. Finally, the
model parameters are computed as the median of the five estimations and used throughout the training on all
100 realizations of that data set. This way of estimating the parameters is computationally highly expensive,

but makes the comparison more robust and the results more reliable [7].

I The data sets can be obtained via http://www.first.gmd.de/ ~raetsch/
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Table 1: Comparison among the five methods: Single RBF classifier, regularized AdaBoost, Support Vector
Machine, Kernel Fisher’s Discriminant and the Bayesian Kernel Logistic Discriminant: Estimation of the av-
erages of test classification errors in % on 13 data sets (best method in bold face, second best emphasized)

RBF | ABr | SVM | KFD | BKLD
Banana 10.8 | 10.9 11.5 10.8 10.2
B. Cancer | 27.6 | 26.5 | 26,0 | 25.8 25.1
Diabetes 24.3 | 23.8 | 235 | 23.2 22.7
German 24.7 | 24.3 | 23.6 | 23.7 23.3
Heart 176 | 16.5 | 16.0 16.1 15.7
Image 3.3 2.7 3.0 4.8 3.7
Ringnorm | 1.7 1.6 1.7 1.5 0.8
F. Solar 344 | 34.2 | 32.4 33.2 30.9
Splice 10.0 | 9.5 10.9 | 10.5 10.0
Thyroid 4.5 4.6 4.8 4.2 4.0
Titanic 23.3 | 22.6 | 22.4 | 23.2 22.7
Twonorm 2.9 2.7 3.0 2.6 1.5
Waveform | 10.7 9.8 9.9 9.9 8.7

The experiments show that the BKLD is competitive or even superior to the other classifiers on almost all
data sets (an exception being Image). Also, we can notice that the BKLD outperforms the KFD on all data
sets as it represents each class in the feature space by its own variance-covariance matrix, which is not the case

for the KFD.

3.2 Numerical Accuracy and Algorithmic Complexity

The inverse of posterior covariance matrix E;olst which, although positive definite in theory, may become numer-
ically singular in practice (see the update equations (11) and (12)). To solve this problem, we used the Singular
Value Decomposition (SVD) [8]. Generally speaking, in the Bayesian treatment, the Gaussian approximation
is considered as weakness of the method as the single mode of the Gaussian at the weight estimates can often
be unrepresentative of the overall posterior mass, particularly when there are multiple such modes (as is often
the case). However, in our method we used variational transformations which have been shown to have much
more flexibility than other approximation methods [5]. This flexibility translates into improved accuracy of
the approximation. Moreover, our variational posterior distribution P(wlt; = 0,23 = 1, {ei}?ﬂ,ﬁ) depends

only on two variational parameters. Hence, an optimal solution can be easily obtained through re-starts with

2

random initializations of {Gi}i=1'

As optimization of the prior parameters progresses, the range of 8-values typically becomes highly extended
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as many tend towards very large values. Indeed, many §’s typically would tend to infinity if machine preci-
sion permitted. In fact, ill-conditioning of’ the inverse of posterior covariance matrix becomes a problem when,
approximately, the ratio of the smallest to largest G-values is in the order of the machine precision. Consider
the case of a single 8, — 0o, where for convenience of presentation we choose k = 1, the first prior parameter.

Using the expression for the inverse of a partitioned matrix, it can be shown that:

-1 0 0
post < 0 A:]lc + M, )’ (16)

—1%

where the matrix M = 2 E?:l [cp(ei)Egi [®, Q?]] and the subscript '—&’ denotes the matrix with the appropriate
k-th row and/or column removed. The term A~ ,lc + M_;, is of course the inverse of posterior covariance matrix
computed with basis function & pruned. Furthermore, it follows from equations (12) and (16) that ppest,x — O
and as a consequence of §; — 00, the model intuitively becomes exactly equivalent to one with basis function
K(X, Xi) excluded. We may thus choose to avoid ill-conditioning by pruning the corresponding basis function
from the model at that point. This sparsification of the model during optimization implies that we typically
experience a very considerable and advantageous acceleration of the learning algorithm. The disadvantage is
that if we believed that the log marginal likelihood might be increased by reintroducing those deleted basis
functions (i.e. reducing B from 0o) at a later stage, then their permanent removal would be suboptimal. So

far, no such case has been found for the used data sets.

Although, typically, the pruning discussed above rapidly reduces N to a manageable size in most problems,
the BKLD scales with O((N + 1)%) at initialization, and N may be very large. This of course leads to ex-
tended training times, although the disadvantage of this is significantly offset by the lack of necessity to perform
cross-validation over regularization parameters, such as for C' in the SVM and the threshold T" in the KFD.
So, for example, with the exception of the larger data sets (e.g. roughly N > 600) the benchmark results in
table 1 were obtained more quickly for the BKLD than the SVM and KFD (this observation depends on the
exact implementations and cross-validation schedules of course). Even so, for large data sets, with computation
scaling approximately in O((N + 1)3), the full BKLD algorithm becomes prohibitively expensive to run. We
have therefore developed an alternative algorithm to maximize the marginal likelihood which is constructive. It
starts with a single basis function, the bias or intercept wg, and both adds in further basis functions, or deletes
current ones, as appropriate, rather than starting with all possible candidates and pruning. This is a much

more efficient approach, as the number of basis functions included at any step in the algorithm tends to remain
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low. It is, however, a more greedy optimization strategy, although our preliminary results show little, if any,
loss of accuracy compared to the standard algorithm. This appears a very promising mechanism for ensuring

the BKLD remains practical even for very large basis function sets.

4 Conclusion

We have proposed an effective Bayesian Kernel Logistic Discriminant Model with prior Gaussian over the
weights. The model is based on a variational approximation and on the Jensen’s inequality. Thanks to these
two approximations, computation of the weights has become trivial and straightforward. Our experiments
showed that the Bayesian Kernel Logistic Discriminant model is competitive to other state-of-the-art non-linear
classifiers, and specifically outperforms the Kernel Fisher’s Discriminant on all used data sets. In fact, the
advantage of the Bayesian Kernel Logistic Discriminant model over the Kernel Fisher’s Discriminant is that it
estimates a covariance matrix separately for each transformed class in the feature space, instead of a common
matrix for all transformed classes. However, like the Kernel Fisher’s Discriminant, the Bayesian Kernel Logistic
Discriminant Model has always the drawback of assuming that the transformed classes in the feature space are
normally distributed. This can make it ineffective if the transformed class densities are multi-model. According
to the likelihood function (see equation (3)), the Bayesian Kernel Logistic Discriminant model is adaptive to any
kind of distributions modelling the transformed classes. However, fitting these distributions on these classes can
lead to highly biased modelisations, since in the feature space obtained using the kernel trick, the dimension
exceeds the number of samples of each class. For this reason, future work will be dedicated to reduce the

dimensionality of the feature space using appropriate and effective methods.
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CONCLUSION

Dans cette thése, nous nous sommes intéressés aux problémes de la recherche d’images
par le contenu, extraction des caractéristiques, ’analyse multirésolution et la classifi-
cation linéaire et nonlinéaire. Nos réalisations et contributions peuvent étre résumées
comme Suit.

Dans le premier chapitre, nous avons proposé une méthode simple et rapide de re-
cherche d’images par le contenu. Pour représenter les images couleurs, nous avons
introduit de nouveaux descripteurs de caractéristiques qui sont des histogrammes pon-
dérés par le gradient multispectral. Afin de mesurer le degré de similarité entre deux
images d’une fagon rapide et efficace, nous avons utilisé une pseudo-métrique pondérée
qui se sert de la décomposition en ondelettes Daubechies-8 et de la compression des
histogrammes extraits des images. Les poids de la pseudo-métrique ont été ajustés
par le modéle classique de régression logistique pour améliorer sa capacité de discri-
mination et la précision de la recherche. Ce travail a été présenté dans la Conférence
Internationale en Recherche Opérationnelle (CIRO’05), Marrakech, Maroc, 2005, et a
été publié dans le numéro de mars 2006 du journal international International Jour-

nal of Wavelets, Multiresolution and Information Processing (IJWMIP).

Dans le deuxiéme chapitre, nous avons proposé un nouveau modéle bayésien de régres-

sion logistique basé sur une méthode variationnelle. Une comparaison de ce nouveau
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modéle au modéle classique de régression logistique a été effectuée dans le cadre de la
recherche d’images. Nous avons illustré que le modéle bayésien permet une meilleure
amélioration de la capacité & discriminer de la pseudo-métrique et de la précision
de recherche que le modéle classique. Ce travail a été présenté dans la Conférence
internationale International Conference on Computer Vision and Graphics
(ICCVG'06), Varsovie, Pologne, 2006, et sera publié¢ dans le journal international
Machine Graphics and Vision (MGV).

Dans le troisiéme chapitre, nous avons détaillé la dérivation du nouveau modéle bayé-
sien de régression logistique basé sur une méthode variationnelle introduite au chapitre
2 et nous avons effectué une comparison exhaustive de ce modéle au modéle classique
de régression logistique dans le cadre de la recherche d’images et dans un cadre géné-
ral. Plus spécifiquement, dans ce cadre général, nous avons comparé le modéle Bayé-
sien & d’autres classificateurs linéaires apparaissant dans la littérature. Ensuite, nous
avons comparé notre méthode de recherche utilisant le modéle Bayésien de régression
logistique & d’autres méthodes de recherches déja publiées. Les expérimentations et
comparaisons ont été effectuées sur les bases de données d’images couleurs connues
WANG, ZuBud, UW et CalTech et sur plusieurs ensembles de données réelles et syn-
thétiques. Ce travail sera publié dans le journal international IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI).

Dans le quatriéme chapitre, nous avons introduit la sélection des caractéristiques pour
améliorer la méthode de recherche présentée dans les chapitres précédents. La séléc-
tion des caractéristiques a été effectuée en utilisant séparément les modeles Bayésien
et classique de régression logistique. Elle permet de donner automatiquement plus
d’importance aux caractéristiques qui discriminent le plus et moins d’importance aux

caractéristiques qui discriminent le moins. Une comparison des deux modéles a été
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effectuée dans le cadre de la recherche d’images basée sur la sélection des caracté-
ristiques. Les expérimentations ont été effectuées sur les bases de données d’images
couleurs connues WANG et ZuBud. Ce travail a été publié dans les actes de Twen-
tieth International Joint Conference on Artificial Intelligence (IJCAI’0T7),
Hyderabad, Inde, 2007.

Dans le cinquiéme chapitre, nous avons proposé un nouveau modéle Bayésien d’ana-~
lyse discriminante logistique basé sur 'usage de noyaux, qui permet une classification
nonlinéaire flexible. Ce nouveau modéle a été comparé a ’analyse discriminante de Fi-
sher basée sur des noyaux et & d’autres classificateurs nonlinéaires déja publiés. Nous
comptons enrichir ce travail avec une application de recherche d’images ou de détec-
tion d’objets (peau, feux, ombre, etc) et le soumettre au journal international IEEE

Transactions on Knowledge and Data Engineering (TKDE).
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