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S0IT1IT1aire 

Le processus de Clustering permet de construire une collection d'objets ( clusters) 

similaires au sein d'un même groupe, et dissimilaires quand ils appartiennent à des 

groupes différents. Dans cette thèse, on s'intérésse à deux problèmes majeurs d'analyse 

de données: 1) la détermination automatique du nombre de clusters dans un ensem-

ble de données dont on a aucune information sur les structures qui le composent; 2) le 

phénomène de recouvrement entre les clusters. 

La plupart des algorithmes de clustering souffrent du problème de la détermination 

du nombre de clusters qui est souvent laissé à l'utilisateur. L'approche classique pour 

déterminer le nombre de clusters est basée sur un processus itératif qui minimise une 

fonction objectif appelé indice de validité. Notre but est de: 1) développer un nouvel 

indice de validité pour mesurer la qualité d'une partition, qui est le résultat d'un algo-

rithme de clustering; 2) proposer un nouvel algorithme de clustering flou pour déterminer 

automatiquement le nombre de clusters. Une application de notre nouvel algorithme est 

présentée. Elle consiste à la sélection des caractéristiques dans une base de données. 

Le phénomène de recouvrement entre les clusters est un des problèmes difficile dans 

la reconnaissance de formes statistiques. La plupart des algorithmes de clustering ont des 

difficultés à distinguer les clusters qui se chevauchent. Dans cette thèse, on a développé 
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une théorie qui caractérise le phénomène de recouvrement entre les clusters dans un 

modèle de mélange Gaussien d'une manière formelle. A partir de cette théorie, on a 

développé un nouvel algorithme qui calcule le degré de recouvrement entre les clusters 

dans le cas multidimensionnel. Dans ce cadre précis, on a étudié les facteurs qui affectent 

la valeur théorique du degré de recouvrement. On a démontré comment cette théorie 

peut être utilisée pour la génération des données de test valides et concrètes pour une 

évaluation objective des indices de validité par rapport à leurs capacités à distinguer les 

clusters qui se chevauchent. Finalement, notre théorie est utilisable dans une application 

de segmentation des images couleur en utilisant un algorithme de clustering hiérarchique. 
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Abstract 

Data clustering is the process of grouping the data into clusters so that the abjects 

within a cluster are highly similar and the abjects in different clusters are highly dis-

similar. The main focus of this thesis is to investigate into two important problems 

in clustering: determining the number of clusters in a given data set and studying the 

phenomenon of overlapping between clusters. 

Determining the number of clusters is one of the most important topics in cluster 

analysis. A common approach for determining the number of clusters is an iterative 

trial-and-error process based on a cluster validity index. One of the main goal of this 

thesis is to develop a new validity index for measuring the "goodness" of trial-clustering 

and an effective fuzzy algorithm for automatically determining the number of clusters. 

An application of the new algorithm in subset feature selection is proposed also. 

The phenomenon of cluster overlap is present in real applications. Many algorithms 

fail to distinguish overlapping clusters. In this thesis, we establish a theory on the 

overlap phenomenon in the case of the Gaussian mixture, a fundamental data distribution 

model for many clustering algorithms. Based on this theory, we develop an algorithm for 

calculating the overlap rate between two clusters and investigate factors that affect the 

value of the overlap rate. We show how the theory can be used to generate truthed data 

sets for evaluating the ability of a validity index for distinguishing overlapping clusters. 

Another application of the theory to be shown is a hierarchical clustering algorithm for 

color image segmentation. 
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Introduction 

The main focus of this thesis is to investigate into two important problems inclus-

tering: determining the optimal number of clusters and studying the phenomenon of 

overlapping between the clusters. 

Clustering is an important research subject that has practical applications in many 

fields. It has been demonstrated that fuzzy clustering, using algorithms such as the Fuzzy 

C-Means (FCM), has clear advantages ( more information for describing the relationship 

between objects and clusters, insensitive to initialization of cluster centers) over crisp and 

probabilistic clustering methods [1]. Like most clustering algorithms, however, FCM and 

its derivatives need the number of clusters in the given data set as one of their initializing 

parameters. The main goal of this thesis is to develop an effective fuzzy algorithm 

for automatically determining the number of clusters. We present a new algorithm for 

determining the number of clusters in a given data set and a new validity index for 

measuring the "goodness" of clustering. Experimental results and comparisons are given 

to illustrate the performance of the new algorithm. 

The ability of a clustering algorithm to distinguish between overlapping clusters 

is one of the major criteria for evaluating its efliciency. However, the phenomenon of 

cluster overlap is still not mathematically well characterized, especially in multivariate 
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cases. In this thesis, we study the overlapping phenomenon in the case of the Gaussian 

mixture, a fundamental data distribution model for many clustering algorithms. We 

introduce a novel concept of the ridge curve and establish a theory on the degree of 

overlap between two components. Based on this theory, we develop an algorithm for 

calculating the overlap rate. As an example, we use this algorithm to calculate the 

overlap rates between the classes in the IRIS data set and clear up some of the confusion 

as to the true number of classes in the data set. We investigate factors that affect the 

value of the overlap rate, and show how the theory can be used to generate truthed data 

as well as to measure the overlap rate of a given data set. 

Finally, we give some applications of the new algorithm and the new theory. 1) We 

deal with a wrapper approach to the problem of feature selection for classification. Based 

on fuzzy clustering, we develop a new algorithm that operates by testing the error between 

the cluster structure of the subspace data set and the class structure of the original data 

set. The true number of clusters in the subspace data set introduces accurate cluster 

structure information. The classification error rate provides a fair evaluation on how well 

the subset of features represents the original feature set. 2) We propose a new approach 

for the objective evaluation on validity indices and clustering algorithms. We have carried 

out experimental studies using data sets containing clusters with various overlap rates in 

order to show how validity indices behave when clusters become less and less separable. 

3) Based on the theory on overlapping clusters, we developed a new hierarchical algorithm 

for image segmentation that partially solves the problem of determining the best number 

of clusters. Experimental results demonstrate the effectiveness of the new algorithm. 

This thesis is organized as follows: 

• Introduction: summary of our research work and the organization of this thesis. 
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• In Chapter 1, we outline the problem of cluster analysis and the main clustering 

techniques, and outline the main premises of this thesis. 

• In Chapter 2, the new validity index function for FCM and two new FCM-based 

model selection algorithms are described. 

• In Chapter 3, a theory on the overlapping phenomenon is established and an algo-

rithm for calculating the overlap rate is designed. An application of the theory to 

generate "truthed" data sets for evaluating validity indices is given. 

• In Chapter 4, a new feature selection algorithm for classification is proposed, based 

on the model selection clustering algorithm in Chapter 2. On the other hand, a 

hierarchical algorithm, based on the overlap theory established in Chapter 3, is 

proposed. The performance of the hierarchical algorithm is demonstrated in an 

automatic color image segmentation application. 

• Conclusion: we conclude this thesis and indicate future work. 
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Chapter 1 

Major Issues in Cluster Analysis 

Data analysis is the foundation of many computing applications. One key element' 

of data analysis procedures is clustering, or the classification of measurements based on 

either (i) goodness:..of-fit to a postulated model, or (ii) geometrical grouping revealed 

through analysis. 

1.1 Data Clustering 

Intuitively, clustering is the process of grouping the data into classes or clusters so 

that the abjects within a cluster are highly similar and the abjects in different clusters 

are highly dissimilar. Cluster analysis aims to organize a collection of patterns into 

clusters based on similarity. Clustering has its root in many fields, such as mathematics, 

computer science, statistics, biology, and economics. In different application domains, a 

variety of clustering techniques have been developed, depending on the methods used to 

represent data, the measures of similarity between data abjects, and the techniques for 
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grouping data abjects into clusters. 

The following are some examples of applications of cluster analysis: 

• In business, cluster analysis is useful in discovering distinct groups in customer 

bases and characterizing customer groups based on purchasing patterns [2]. 

• In biology, cluster analysis is used to derive plant and animal taxonomies, catego-

rize genes with similar functionality, and gain insight into structures inherent in 

populations [3]. 

• In geography, clustering helps in the identification of areas of similar land in an 

earth observation database [4, 5]. 

•· In insurance, cluster analysis is used to identify groups of automobile insurance 

policy holders with a high average daim cost, as well as to identify grnups of 

houses in a city according to house type, value, and geographical location [6]. 

• In internet applications, cluster analysis helps grouping documents on the Web for 

information retrieval [7]. 

Cluster analysis can also be used as a stand-alone tool to gain insight into the distri-

bution of data, to observe the characteristics of each cluster, and focus on a particular set 

of clusters for further analysis [8]. In addition, it may serve as a pre-processing step for 

other algorithms, such as characterization and classification, which would then operate 

on the detected clusters [9]. 

In applications, the clustering process consists of a series of data analysis steps. A 

typical clustering activity involves the following steps [10]: 
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1. data pre-processing (including feature extraction and selection); 

2. definition of a distance fonction for measuring the similarity between data points; 

3. clustering or grouping; 

4. assessment of the output 

Data pre-processing involves choosing the number, type and scale of the features, 

which often depends on feature selection and feature extraction. Feature selection chooses 

important features. Feature extraction transforms input features into new salient fea-

tures. They are often used in obtaining an appropriate set of features to use in clustering 

for avoiding the curse of dimensionality in high dimension case [11]. Another data pre-

processing is removing the outliers from data. Outliers are data objects that do not 

comply with the general behavior or model of the data. Because outliers often lead to 

biased clustering results, this data must be filtered out to obtain the true clusters. 

Since similarity is fondamental to the definition of a cluster, a measure of the simi-

larity between two data objects drawn from the same feature space is essential to most · 

clustering procedures. Because of the variety of feature types and scales, the distance 

measure ( or measures) must be chosen carefolly. It often depends on the application. 

It is most common to calculate the dissimilarity between two objects using a distance 

measure defined on the feature space. A variety of distance measures are in use in dif-

ferent fields [2, 10, 12]. A simple distance measure like Euclidean distance can often be 

used to reflect dissimilarity between two data abjects. Sorne similarity measures, such 

as product-moment correlation and simple matching coefficients [13], can be used to 

characterize the conceptual similarity between data abjects. In graph clustering, error-

correcting subgraph isomorphism can be used to measure the similarity between two 
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graphs [14]. 

Grouping the data abjects into clusters is the main step. The data abjects are 

grouped into clusters based on a number of different approaches. Partition-based cluster-

ing and hierarchical clustering are two of the main techniques. Partition-based clustering 

often starts from an initial partition and optimizes ( usually locally) a clustering criterion. 

Hard clustering, in which each data object belongs to a single cluster, and fuzzy cluster-

ing, in which each object is assigned a degree of membership in ever cluster, are the two 

main partition-based techniques. Hierarchical clustering techniques generate a nested 

series of partitions based on a criterion, which measures the similarity between clusters 

or the separability of a cluster, for merging or splitting clusters. Other techniques in-

clude density-based clustering, model-based clustering and grid-based· clustering. These 

techniques are described in detail in the next section. 

Evaluating the quality of the clustering results is another important issue. Clustering 

is an unsupervised procedure. There is no objective criterion for evaluating the clustering 

results; they are assessed using a cluster validity index. In general, geometric properties, 

including the separation between clusters and compactness within a cluster, are often 

used to measure the quality. The cluster validity index also plays an important role in 

determining the number of clusters. It is expected that the optimal value of the cluster 

validity index should be obtained at the true number of clusters. A general approach 

for determining the number of clusters is to select the optimal value of a certain cluster 

validity index. Whether a cluster validity index yields the true number of clusters is a 

criterion for the validity index. Most existing criteria give good results for data sets with 

well separated clusters, but usually fail for complex data sets, for example, data sets with 

overlapping clusters. 
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1.2 Definitions and Notation 

The following tenns and notations are used throughout this thesis. 

1. A pattern ( or data ob ject) x is a single data item used by the clustering algorithm. 

It typically consists of a vector of d features: x = (x1, ... , xd). 

2. dis the dimensionality of the pattern or the feature space. · 

3. The individual scalar components xi of a pattern x are called features ( or at-

tributes). 

4. A pattern set (or data set) is denoted by X= {x1 , ... , xn}. The ith pattern in Xis 

denoted by Xi = ( x}, ... , xfr 

5. A cluster ( or class) can be viewed as a source of patterns whose distribution in 

feature space is governed by a probability density specific to the cluster. Clustering 

techniques attempt to group patterns ( data) so that the clusters thereby obtained 

reflect the different pattern generation processes represented in the pattern set 

(data set). 

6. The set of centers of clusters (or classes) is denoted by V= {v1 , ... ,vc} 

7. A clustering technique assigns a cluster label lk to each pattern xk, identifying its 

cluster. A cluster in a data set is represented by the set of all labels for the pattern 

set L ={li, ... , ln}, with li E {1, ... , c}, where c is the number of clusters. 

8. Fuzzy clustering procedures assign to each input pattern xk a degree of membership 

uki in each output cluster ith· 
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Figure 1.1: Categories of clustering techniques 

1.3 Clustering Techniques 

In this section, we review some of the major existing clustering techniques, focusing 

on the hierarchical and the partition-based approaches. Fig.1.1 describes these tech-

mques. 

9 



1.3.1 Partition-based Clustering 

For a given data set with n data abjects, a partition-based clustering algorithm clas-

sifies the data into k ( k < n) groups ( clusters), which satisfy the following requirements: 

1) each group ( cluster) must contain at least one abject; and, 2) each abject must be-

long to exactly one group ( cluster) (in fozzy partitioning techniques, this requirement 

can be relaxed). The basic hypothesis of the approach is that the data fit a mixture of 

probability distributions of a certain type, such as Gaussian. Formally, these approaches 

optimize a criterion fonction which measures the "quality" of the clusters (including the 

similarity within the same cluster and dissimilarity between different clusters), defined 

either locally ( on a subset of the partitions) or globally ( over all of the partitions). In 

general, a partition-based clustering algorithm starts by assigning the n data abjects to 

the k clusters. After that, it uses an iterative re-allocation technique to .improve. the 

partitioning by moving abjects from one cluster to another. There are two major crite-

rion fonctions that are widely used to design partition-based algorithms. One is for crisp 

clustering, the other is for fozzy clustering. 

1.3.1.1 The squared error criterion 

The squared error criterion is one of the most intuitive and frequently used crite-

rion fonction in crisp partition-based clustering techniques. For a pattern set X and a 

clustering L with C clusters, it is defined as follows: 

C ni 

e2(X,L) = L L llxii) -vill2, (1.1) 
i=l k=l 

where xii) is the kth data object belonging to the i th cluster, ni is the number of data 

abjects in the ith cluster and Vi is the centroid of the ith cluster. The major algorithms 
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based on the criterion are the K-Means ( centroid-based approach) and the K-Medoids 

(representative object-based approach). 

The K-Means is a classic partition-based clustering algorithm [15]. It is the most 

popular clustering algorithm. It starts from an initial partition (often random), reassigns 

the patterns to clusters based on the similarity between patterns and cluster centers, 

which are the means of the data objects in particular clusters, and recalculates the 

new cluster centers. The iteration continues until the squared error ceases to decrease 

significantly (or a certain convergence criterion is met, e.g., there is no more reassignment 

of any pattern from one cluster to another [12]). The K-Means algorithm is widely used 

because it is easy to implement, and its time complexity is 0( tkn), where n is the 

number of patterns, k is the number of clusters and t is the number of iterations. A 

major problem with this algorithm is that it is sensitive to the initial partition and may 

converge to a local minimum of the criterion function value if the initial partition is not 

properly chosen. 

The K-Medoids (16] is another important partitioning clustering algorithm. Instead 

of using the mean of the objects in a cluster, the K-Medoids uses the most centrally lo-

cated object in the cluster as the cluster center. It uses the same strategy as the K-means: 

initializing K cluster medoids, reassigning the remaining data objects to clusters based 

on the similarity between patterns and cluster medoids, and choosing the new medoids 

to decrease the squared error, until the squared error ceases to decrease significantly 

after some number of iterations (or no data objects are reassigned). The K-Medoids is 

more robust than the K-Means in the presence of noise and outliers, because a medoid is 

less influenced by outliers or other extreme values than a mean. However, its time cost 

is higher than that of the K-Means because of the time used in determining the new 
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medoids [16]. Both kinds of methods work well with isolated, compact clusters. 

There are quite a few variants of the K-Means method. These may differ in the 

selection of the initial k centers, the calculation of dissimilarity (particularly for data sets 

with categorical values, or K-Models) and the strategies for calculating cluster means 

(for special kind of data clustering, such as graph clustering) [14, 17, 18, 19]. Recently, 

some new variants have been developed focusing on global convergence and efficiency for 

large data sets. For example, in [20], Likas et al. present a global K-Means algorithm 

whose main idea is that an optimal solution for a clustering problem with K clusters 

can be obtained using a series of local searches (using the K-Means algorithm). In [21], 

Kanungo et al give an efficient K-Means algorithm based on the use of a kd-tree [22] to 

struct11re the data objects. The idea is to restructure "bad" structured clusters, which 

have multiple candidate centers, and maintain the "good" structured. clusters, which 

have few candidate centers in each iteration. The efficiency of the algorithm is related to 

the degree of separation between clusters. The EM (Expectation Maximization) [23, 24] 

algorithm extends the K-Means paradigm in a different way. Instead of assigning each 

abject to a dedicated cluster, it assigns each abject to a cluster according to a weight 

representing the probability of membership. 

1.3.1.2 The fuzzy squared error criterion 

Hard clustering approaches generate partitions; in a partition, each data object 

belongs to one and only one cluster. So, the clusters in a hard clustering are crisp. Fuzzy 

clustering extends this relationship to each data object and every cluster by introducing 

the concept of membership [25]. The output of such an algorithm is a "fuzzy" partition. 

Below, we will review a fuzzy squared error criterion fonction and some partition-based 
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fozzy clustering algorithms based on the criterion. 

For a given data set X with n data objects and c clusters, a fozzy partition is 

defined by an n x C matrix U = (uki), where uki represents the degree of membership 

of data object xk in cluster Ki, uki E [ü, 1]. The fozzy squared error criterion fonction is 

described as follows: 
n C 

E2(X, U) = L L ukiJlxii) - viJl2, (1.2) 
k=l i=l 

where mis the fozzifier, which is a control parameter of fozziness. 

The Fuzzy c-Means (FCM) is the most popular fozzy clustering algorithm based on 

the fozzy squared error criterion fonction [26, 27]. In general, it starts with an initial fozzy 

partition ( membership matrix U, often random). Calculating the center of each cluster 

and recalculating the membership matrix U are the main steps of the iteration procedure. 

The algorithm stops w hen U ceases to change significantly ( controlled by a threshold). In 

fozzy clustering, each cluster is a fozzy set of all the patterns. This character lets us obtain 

more information about the data distribution and the cluster structure. If necessary, we 

can obtain a hard clustering from a fozzy clustering by crispening the membership value. 

Even though it is better than the hard K-Means algorithm at avoiding local minima, 

FCM can still converge to local minima of the fozzy squared error criterion [28]. FCM's 

major problem is its high time cost. 

Sorne significant variants of FCM focus on modifying the criterion fonction. In 

[29], Krishnapuram and Keller presented a possibilistic approach to clustering (PCM) 

designed to handle the noisy environments and "thin shell" clusters, such as curves and 

surfaces. This approach modifies the criterion fonction by adding a term that forces the 

membership values to be as large as possible, thus avoiding trivial solutions. Moreover, 

PCM loosens the membership constrain of FCM, in which the sum of a given data 
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object's in all clusters is 1, replacing it by a soft one: the sum is less than 1. Noise 

thus can be easily identified because of it is assigned low membership values in every 

cluster, totalling less than 1. In [1], Menard and Eboueya introduced an extra physical 

information into fuzzy criterion function. Their resulting formulae have a clearer physical 

meaning than those of the classical algorithms. These improvements are obtained at the 

cost of increased time complexity. In [30], another variant of FCM is given by Hoppner 

and Llawonn. The algorithm enhances the bound between clusters by restricting the 

memberships to O and 1. In [31], Romdhane et al gave a method for determining the 

fuzzifier by a heuristic scheme. 

There are some other variants improving FCM by eliminating some of the clustering 

parameters, such as the number of clusters. In [32], C. W. Tao proposes an algorithm 

without a priori infor_mation about the number of clusters. In his algorithm, multiple 

centers are used to represent the non-spherical shape of clusters. Thus, it can handle 

non-traditional curved clusters. The high time cost is the main problem of this algorithm. 

In [33], A. Devilleza et al. present a clustering method able to di vide a set of points into 

nonconvex classes without a priori information about their number. The two main steps 

of the algorithm are 1) establishing multiple sub-clusters by FCM; and 2) combining these 

sub-clusters into suitable clusters using a hierarchical technique. However, the method 

presents several limitations when clusters are overlapping. Moreover, the algorithm does 

not succeed in computing the number of clusters. 

Another fuzzy clustering is Fuzzy J-Means (F-JM) [34], designed by Hansen et al. 

It moves the objects what belong to the neighborhood of the current solution defined by 

all possible centroid-to-pattern relocations. This crisp solution found is then transformed 

into a fuzzy one by an alternate step, i.e., by finding centroids and membership degrees 
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for all patterns and clusters. Like the FCM method, the F-JM heuristic may be stuck 

in local minima. The F-JM heuristic is embedded into the variable neighborhood search 

(VNS) metaheuristic framework. 

In most partitioning clustering algorithms, the number of clusters is an important 

parameter. Although there are many algorithms proposed to determine the values of this 

parameter. However, they are often false when the data sets with overlapping clusters and 

non-sphere clusters. It is still an open question in applications of this kind of clustering 

algorithm, especially in unsupervised application practices. Later in the chapter, we will 

discuss the problem determining the number of clusters, specifically for the FCM-based 

clustering algorithm. 

1.3.2 Hierarchical Clustering 

A hierarchical clustering algorithm creates a hierarchical decomposition of the given 

set of data abjects. Depending on the decomposition approach, hierarchical algorithms 

are classified as agglomerative ( merging) or divisive ( splitting). The agglomerative ap-

proach starts with each data point in a separate cluster or with a certain large number 

of clusters. Each step of this approach merges the two clusters that are the most similar. 

Thus after each step, the total number of clusters decreases. This is repeated until the 

desired number of clusters is obtained or only one cluster remains. By contrast, the di-

visive approach starts with all data abjects in the same cluster. In each step, one cluster 

is split into smaller clusters, until a termination condition holds. Because of the diffi-

culty of splitting a cluster into smaller clusters (this is essentially the clustering problem 

itself), the agglomerative approaéh is more pervasive than the divisive approach. Here, 

we introduce some basic agglomerative and divisive algorithms. 
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1.3.2.1 The agglomerative approach 

This is a bottom-up strategy. It often starts with a large number of clusters and 

stops with only one or a desire number of clusters remaining. Most hierarchical clustering 

methods belong to this category. The core of the agglomerative approach is determining 

the most similar clusters and merging them to yield a single cluster. These methods 

differ only in the technique used for measuring the similarity between clusters. Sorne 

widely used measures are as follows: 

• Minimum distance (Single-link) [35] def:ines the similarity between clusters as the 

minimum of the distance between all pairs of data objects drawn from the two 

clusters (one data object from the first cluster and the other from the second). It 

suffers from a chaining effect, but it tends to give elongated clusters and is sensitive 

to noise [36]. 

• Maximum distance (Complete-link) [37] defines the similarity between clusters as 

the maximum of the distance between all pairs of data object drawn from the 

two clusters. Different from the single-link approach, it produces tightly bound or 

compact clusters, and is more computationally expensive [38]. It shows the same 

property as the single-link approach when dealing with noisy data sets. 

• Average distance (Average-link) defines the similarity between clusters as the av-

erage distance of all pairs of data objects drawn from the two clusters. It alleviates 

the problems of the single- and complete- link approaches to some extent. 
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1.3.2.2 The divisive approach 

This is a top-clown strategy. It starts with all the objects in the same cluster. In each 

step, a cluster is split into smaller clusters according to some measure until a termination 

condition is satisfied. For example, in the bisecting k-means [39], the whole data set is first 

partitioned into two groups using the 2-Me ans algorithm. Then the 2-Means is applied 

to further split the larger of the two groups, and so on until an appropriate number of 

clusters are obtained. Divisive methods are less popular, even though algorithms such as 

the bisecting k-means are quite efficient when the number of clusters required is small, 

and often give on good results as well. 

1.3.2.3 Sorne recent algorithms 

Sorne recent algorithms are combinations of hierarchical and other techniques. 

In [40], Zhang et al. present the BIRCH (Balanced Iterative Reducing and Clustering 

using Hierarches) algorithm. This algorithm is designed for very large data sets. It makes 

a large clustering problem tractable by concentrating on densely occupied portions, and 

using a compact summary. It utilizes measurements that capture the natural closeness 

of data. These measurements are stored and updated incrementally in a height-balanced 

tree. The initialization of the parameter seriously affects the efficiency of the algorithm. 

In [41], Guha et al describe their CURE (Clustering Using REpresentatives) algo-

rithm. It adopts a middle ground between centroid-based and representative object-based 

approaches. Instead of using a single center to represent a cluster, a certain number of 

representative points are used. The representative points of a cluster are generated by 

first selecting well-scattered for the cluster and then "shrinking" or move them toward 
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the cluster center by a specified fraction "shrinking factor". At each step of the algo-

rithm, two clusters with the closest pair of representative points are merged. Because 

there is more than one representative point in a cluster, CURE can find non-spherical 

and variable-size clusters. The shrinking of clusters reduce the effect of outliers. 

In [42], Karypis et al. discuss the Chameleon algorithm. This algorithm uses dynamic 

modelling in cluster aggregation. It uses the connectivity graph corresponding to the K-

nearest neighbor model sparsity of the connectivity matrix: the edges of the K most 

similar points to any given point are preserved, the rest are pruned. The algorithm has 

two stages. The first generates a large number of small tight sub-clusters using a graph 

partitioning. The second agglomerates these small sub-clusters based on measures of both 

the relative interconnectivity and the relative closeness of any pair of clusters. Thus the 

algorithm does not depend on a static, user-supplied model. Howeyer, the processing 

time cost for high-dimensional data may be 0( n2 ) time for n abjects .in the worst case. 

Hierarchical algorithms are more versatile than partitioning algorithms. For exam-

ple, the single-link clustering algorithm works well on data sets containing non-isotropie 

clusters including well-separated, chain-like, and concentric clusters, whereas a typical 

partitioning algorithm such as the k-means algorithm works well only on data sets having 

isotropie clusters [36]. 

The time and space complexities of hierarchical algorithms are typically higher than 

those of partition-based algorithms [43]. As mentioned previously, measuring the simi-

larity between clusters is the key of hierarchical algorithms. Any algorithm that uses the 

distance between each pair of abjects to measure similarity will result in O(n2 ) computa-

tion and memory complexity. This is the main reason why hierarchical algorithms have 

higher time and space complexities. To reduce time and space complexity, the Chameleon 
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algorithm gives a good approximation by generating sub-clusters. A useful strategy is 

measuring the distance between clusters based on a certain distribution model. Our work 

using such an approach is published [44]. 

1.3.3 Other Techniques 

In addition to the general partition-based and hierarchical approaches, there are 

various approaches designed for clustering applications in specific fields. Below, we will 

introduce some clustering techniques for spatial data and data with arbitrarily shaped 

clusters. 

Density-based clustering: Most partitioning methods cluster objects based on the· 

distance between·objects. These methods can find spherical-shaped clusters, and possibly 

elliptical (FCM), but they encounter difficulties in discovering clusters of arbitrary shape. 

Other clustering methods have been developed based on the notion of density. Their 

general idea is to continue growing the given cluster as long as the density (number of data 

objects) in a "neighborhood" exceeds some threshold: that is, for each data object within 

a given cluster, a neighborhood of a given radius contains at least a minimum number of 

objects. Such methods are useful for filtering out noise ( outliers) and discovering clusters 

of arbitrary shape. Sorne of the major density-based methods are described below. 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [45] is a 

typical density-based method that proceeds by growing cluster according to a density 

threshold. OPTICS ( Ordering Points to Identify the Clustering Structure) [46] is a 

density-based method that computes an augmented clustering ordering for automatic 

and interactive cluster analysis. DENCLUE (Density clustering) [47] is another density 
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clustering algorithm, which is based on a set of density distribution fonctions. 

Grid-based clustering: Grid-based methods <livide the object space into a finite 

number of cells that form a grid structure. All of the clustering operations are performed 

on the grid structure (i.e. on the quantized space). The main advantage of this approach 

is its fast processing time, which is independent of the number of data objects and 

dependent on the number of cells in each dimension in the quantized space. 

STRING (STatistical Information Grid) [48], a grid-based multi-resolution approach, 

collects statistical information in grid cells. WaveCluster(Clustering using Wavelet Trans-

formation) [49], another multi-resolution approach, transforms the original data space in 

to a frequency space by a wavelet transform. CLIQUE (CLuster In QUEst) [5] is an inte-

grated, density-based and grid-based clustering method for clustering high-dimensional 

data. 

Model-based clustering: The underlying assumption of this approach is that the 

data objects in a cluster corne from one of several distributions, which is often viewed 

as the cluster model. The goal is to estimate the parameters of each distribution and 

(perhaps) determine their number. Most of the work on this method has assumed that 

the individual components of the mixture of density are Gaussian, and in this case the 

parameters of the individual Gaussians are to be estimated by the procedure. Traditional 

approaches to this problem involve obtaining (iteratively) a maximum likelihood estimate 

of the parameter vectors of the component densities [10, 50, 51]. More recently, the Ex-

pectation Maximization (EM) algorithm [23, 24] (a general-purpose maximum likelihood 

algorithm for missing-data problems) has been applied to the problem of parameter esti-

mation. In the EM framework, the parameters of the component densities are unknown, 

20 



as are the mixing parameters, and these are estimated from the patterns. The EM proce-

dure begins with an initial estimate of the parameter vector and iteratively rescores the 

objects against the mixture of density produced by these parameters. The rescored ob-

jects are then used to update the parameter estimates. In a clustering context, the scores 

of the objects (which essentially measure their likelihood of being drawn from particular 

components of the mixture) can be viewed as hints at the class of the pattern. Those 

objects placed (by their scores) in a particular component would therefore be viewed as 

belonging to the same cluster. 

Sorne recent clustering algorithms integrate ideas from several clustering methods. 

It is sometimes difficult to classify a given algorithm as uniquely belonging to one clus-

tering method. For example, Zhou provides a hybrid approach [52], which works on a 

hierarchical framework and takes a hybrid criterion based on both distance between clus-

ters and density within each cluster. This hybrid method can easily identify arbitrarily 

shaped clusters and can be scaled up to handle very large data sets efficiently. 

In summary, there are two types of clustering approaches: assignment and hierar-

chical. The first type assigns data objects to clusters based on a certain approach, such 

as partition-based clustering, density-based clustering, model-based clustering. These 

methods often require the number of clusters as an input parameter and have lower com-

putational complexity. The second type creates a hierarchical cluster structure, as in 

hierarchical clustering and grid-based clustering. The methods in this group often have 

higher computational and memory complexity. The choice of clustering algorithm de-

pends both on the type of data and on the particular purpose and application. If cluster 

analysis is being used as a descriptive or exploratory tool, it is possible to try several 

algorithms on the same data to see what the data may disclose. 
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1.4 Important Issues Related to Cluster Analysis 

In this section, we discuss some important topics about cluster analysis and briefly 

introduce how this thesis addresses the underlying issues. 

1.4.1 Evaluating the Clustering Results 

Evaluating the results of clustering ( or pre-clustering) is another important topic. 

Because clustering is an unsupervised procedure, clustering results Iieed- be judged by an 

external crite~ion. For low dimensional data sets ( 1-, 2- or 3-dimensional), hùmans can 

also evaluate the clustering results by visual observation. In general, the evaluation is 

often based on a clustering validity index. Depending on the type of clustering approach 

( crisp or fuzzy), there are various validity indices designed for evaluating the clustering 

results [53]. Most of them are based on intuitive knowledge about the geometric proper-

ties of clusters, which includes the separation between clusters and compactness within 

a cluster. Many of these validity indices work well in cases where the clusters are well 

separated. However, because they disregard lack of considering the theoretical charac-

terization of the overlapping phenomenon, they often yield questionable results for cases 

involving overlapping clusters [54]. A theoretical understanding of the phenomenon of 

overlapping will help us in distinguishing overlapping clusters, and hence, in correctly 

determining the number of clusters and understanding the cluster structure of a given 

data set. 
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1.4.2 Determining the Number of Clusters 

The number of clusters is the most important parameter in many algorithms ( e.g. 

partition-based and model-based clustering methods). These algorithms require the user 

to input parameters (for example, the number of clusters and the initializing cluster 

centers). The clustering results can be quite sensitive to the input parameters. A lot of 

work has been done on determining the optimal number of clusters [10, 4, 50, 55] and 

success in many applications. However, there are no completely satisfactory methods for 

determining the number of population clusters for any type of cluster analysis [8, 53, 56]. 

An intuitive method for determining the number of clusters is to pre-cluster the data 

set into k clusters, where k is a possible value of the number, and evaluate the result 

using a cluster validity index. The pre-clustering often uses a basic clustering algorithm, 

such as the K-Means or FCM. The cluster validity index provides a numeric criterion 

for the possible number of clusters, k, by evaluating the clustering result. The optimal 

value of the index should be obtained at the true number of clusters. 

1.4.3 Cluster Overlapping 

The next important topic is cluster overlapping. The phenomenon of cluster over-

lapping is present in real applications. Many algorithms fail to distinguish overlapping 

clusters. One relative study is to measure the distance between clusters. Based on cer-

tain models, the distance describes the characteristic of separation between distributions 

( components). However, when the components in a mixture are overlapped, the inbeing 

of these components will deviate. For example, the configuration of the probabilistic 

density fonction of the mixture will exchange. The level of the variation is based on 
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the degree of overlapping between the components. How to describe the properties of 

component overlapping is the goal of the topic. Recently, quite a few researchers have 

obtained significant results on the overlapping phenomenon in lower-dimensional cases 

[57, 58), based on Gaussian mixture models. More investigation is needed for the multi 

dimensional case. 

1.4.4 Feature Selection 

Feature selection is a very important step in a classification system or data mining 

system. Many clustering algorithms work well on data sets that contain low-dimensional 

data objects. However, a large data set may contain millions of high-dimensional ob-

jects. Clustering a large data set may lead to biased results. One simple reason is that 

high-dimensional data tend.to be more separated than low-dimensional data; The cluster 

structure of these types of data sets is not clear. In practice, features are often interde-

pendent and relative. Finding the subset of features in which features are non-correlated 

each other and have a clear cluster structure is the important for understanding inherent 

relation between variables in the data set and/ or for characterizing different classes of 

objects involved. 

1.5 Contribution of This Thesis 

In view of the above discussion, in this thesis, we focus on two issues in cluster 

analysis: determining the optimal number of clusters and distinguishing overlapping 

clusters. 
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1.5.1 Determining the Number of Clusters in a Given Data Set 

A common approach for determining the number of clusters is an iterative trial-

and-error process, which performs the model selection according to the terms used by 

J ain [10]. The approach involves running the clustering algorithm with different initial 

values for the number of clusters and comparing results in order to determine the most 

appropriate number of clusters. The two main steps in this "trial-and-error" method are 

pre-clustering, which pre-groups the data objects into k clusters (here, k is a possible value 

for the real number of clusters), and judging, which exams the pre-clustering results. For 

the first step, we use the Fuzzy C-Means (FCM) as the basic algorithm for pre-clustering. 

As mentioned above, FCM is able to perform membership grading, which gives more 

helpfol information for taking advantage of the relationship between data objects and 

dusters. This property is important for comparing the clustering results obtained with 

different initial numbers of clusters. 

The step of judging the pre-clustering results is carried out based on a validity 

fonction (index) that measures the interna! cohesion within each cluster and the external 

separation between clusters. It judges not only the clustering results, but also the quality 

of some fondamental parameters of the clustering algorithm (for example, the number of 

clusters and the initialization for prototypes in partitioning methods). A good validity 

index should perform in such a way that its optimal value is reached only when the correct 

(true) values of the fondamental parameters are used and true clusters are obtained. 

This thesis makes two contributions to the determination of the number of clusters. 

First, we propose a new validity index, based on measuring both the compactness within 
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each cluster ( or actually, its inverse, scatter) and the separation between clusters ( dis-

tance). The experiments demonstrate the advantage of the new index in differentiating 

overlapped clusters. Second, based on the new validity index and the FCM algorithm, we 

propose a new algorithm for automatically determining the number of clusters. The new 

algorithm improves the conventional model selection process by reducing the randomness 

in the initialization of each pre-clustering phase. The experiments show the superiority 

of the new algorithm in both computational complexity and stability. 

1.5.2 Theory Regarding Component Overlap in Mixture Madel 

Distinguishing overlapped clusters is an important and difficult task in clustering. 

Sorne authors have focused on this topic ai1d have obtained significant results in lower 

dimensional cases. Qu et al. [57] have conducted simulations in order to reveal the 

relationship between overlapping components and the distance between two adjacent 

components in a Gaussian mixture. Aitnouri et al. [58] have given a formal definition 

of the overlap rate and proposed two algorithms for generating data sets with controlled 

overlap rate. Both studies apply to the 1-D case. Indeed, due to its complexity the 

overlapping phenomenon in the multidimensional case requires minute investigation. 

This thesis reports our study on the overlapping phenomenon in the multivariate 

case, based on a Gaussian mixture model. First, we establish a theory on measuring 

the rate of overlap between two components in a mixture model based on a series of 

theorems. Second, we investigate the overlap rate of some published data sets with 

overlapping classes. Third, we investigate the factors that affect the value of the overlap 

rate. 
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1.5.3 Applications of Our New Algorithms 

This thesis also report some applications of our new algorithms for determining 

the number of clusters in feature selection and hierarchical clustering in color image 

segmentation. First, we propose a wrapper approach to feature selection using the new 

clustering technique mentioned above. The approach is based on the fact that the selected 

feature subset is "structurally similar" to the original feature set. Based on the efficient 

clustering algorithm, we design a novel algorithm for feature selection by focusing on 

the structural similarity in the selection process. We define a classification error rate 

for evaluating the subset of features. Extensive test results derived by applying the new 

algorithm to two artificial data sets and a series of real-world data sets are reported. 

Second, we develop a new hierarchical algorithm for image segmentation .that focuses 

on measuring the similarity between pairs of abjects and merging the closest two.. The 

mixture of Gaussian is taken as the basic hypothesis about the distribution -of the RGB 

values in a color image. The overlap rate is used to measure the similarity between two 

abjects ( Gaussian components). The experimental results show the effectiveness of the 

new method. 
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Chapter 2 

FCM-Based Model Selection 

Algorithrns for Deterrnining the 

Nurnber of Clusters 

Because of the important place of determining the number of clusters in cluster 

analysis, there have been many methods had been designed for estimating the number of 

clusters: a good summary is given by Gordon [59]. The "trial-and-error" [10] process is 

the most widely used approach for the model selection problem. The approach is often 

based on a basic clustering algorithm and a validity index for evaluating the clustering 

results. The basic clustering algorithm is used to pre-clustering data set for a supposed 

number of clusters. The validity index is used for evaluating the pre-clustering results. 

The idea is to maximize or minimize a validity index over the number of clusters. Here, we 

use the Fuzzy C-Means (FCM) as the basic algorithm, because the fuzzy membership can 

provide more information to be used. In this chapter, we report our work on determining 
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the number of clusters: a new validity index and a new algorithm for the model selection 

based on the "trial-and-error" approach. 

2.1 Madel Selection Algorithm 

In this section, we briefly introduce the basic FCM algorithm and the general model 

selection algorithm for determining the number of clusters in a data set. 

2.1.1 FCM. Algorithm 

,The ~CM algorithm dates back to 1973 [26]. FCM-based algorithms are the most 

widely used fuzzy clustering algorithms in practice. The basic FCM algorithm can be 

formulated as follows 

n C 

Minimize lm(U, V)= L L ukillxk - vill 2
, (2.1) 

k=l i=l 

where n is the total number of data vectors in a given data set and c is the number 

of clusters; X = { x1, x2, · · ·, xn} C Rd and V = { v1, v2, · · ·, vc} C Rd are the feature 

data and cluster centers; and U = ( Uki)nxc is a fuzzy partition matrix composed of 

the membership of each feature vector Xk in each cluster i, where Uki should satisfy 

I::f=1 uki = l for k = l, 2, ... , n, uki 2:: 0 for all i = 1, 2, ... , c and k = l, 2, ... , n. The 

exponent m > 1 in lm(U, V) (Equation 2.1) is a parameter, usually called a fuzzifier. 

To minimize Jm(U, V), the cluster centers (prototypes) vi and the membership matrix U 

need to be computed according to the following iterative formula: 
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c~I ( //~::::;/\) m'cl )-I if llxk Vj Il > o, Vj. 

l if llxk - vi Il = 0 
k = l, ... ,n 

i = 1, ... ,c 
(2.2) 

0 

(2.3) 

The basic FCM algorithm is as follows. 

Algol: Basic FCM algorithm 

1. Input the number of clusters c, the fuzzifier m and the distance fonction Il,· Il-

2. Randomly initialize the cluster centers vf (i = 1, 2, ... , c). 

3. Calculate uki(k = l, 2, ... , n; i = l, 2, ... , c) using Eq.(2.2) . 

4. Calculate vf(i = 1, 2, ... , c) using Eq.(2.3) . 

5. If ~ri (llv? - vf 11/llvf Il) :::; é then go to Step 6; else let vf = vf(i = 1, 2, ... , c) 
and go to Step 3. 

6. Output the clustering results: cluster centers vf(i = 1, 2, ... , c), membership matrix 

U and, in some applications, the elements of each cluster i, i.e., all the xk such that 

7. Stop. 
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2.1.2 Determination of the Number of Clusters 

The following model selection algorithm applies the basic FCM clustering algorithm 

to the data set for c = Cmin, ... , Cmax and chooses the best value of c based on a ( cluster) 

validity criterion. Here, Cmin and Cmax are predefined values that represent, respectively, 

the minimal and maximal numbers of clusters between which an optimal number is 

sought. 

Algo2: FCM-based model selection algorithm 

1. Cho ose Cmin and Cmax. 

2. For c = Cmin to Cmax: 

2.1. Initialize cluster centers (V). 

2.2. Apply the basic FCM algorithm to update the membership matrix (U) and 

the cluster centers (V). 

2.3. Test for convergence; if no, go to 2.2. 

2.4. Compute a validity value ¼(c). 

3. Compute copt such that the cluster validity fonction ¼( copt) is optimal. 

Several techniques exist for initializing cluster centers (Step 2.1). Random initial-

ization is often used because of its simplicity. Other initialization methods could be used 

in many cases. Recently, an empirical comparison of four initialization methods for the 

K-Means algorithm was reported in [60]. According to this study, random initialization 

is one of the best methods as it makes the K-Means algorithm more effective and less 

dependent on initial clustering and order of instances. Although it is not clear if these 
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results can be generalized to the case of FCM, it is still reasonable to assume that random 

initialization is a good choice for Algo2. 

2.2 Validity Indices for Fuzzy Clustering 

The index ¼( copt) in Algo2 measures the goodness of the results of a clustering 

algorithm. A partition is considered good if it optimizes two conflicting criteria. One 

of these is related to within-class scattering, which needs to be minimized; the other to 

between-class scattering, which needs to be maximized. The major validity indices for 

fuzzy clustering found in the literature are reviewed in the following section. Then, the 

new index is introduced and the performance of the various indices is compared. 

2.2.1 Existing Validity Indices 

There are a number of cluster validity indices available. Sorne of them use only the 

membership values of a fuzzy partition of the data (membership matrix), others use the 

original data and computed cluster centers as well as the membership matrix. Here are 

some of the indices most frequently referred to in the literature. 

• Partition coefficient Vpc: 
l n c 

Vpc(U, c) = - L I.>t 
n k=l i=l 

(2.4) 

• Partition entropy VpE: 
l n c 

VPE(U, c) = -- L L uki log(uki) 
n k=l i=l 

(2.5) 
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Vpc and Vp E [53] are two simple indices that are computed using only the elements 

of the membership matrix. For Vpc, a larger value means better clustering, since in this 

case uki tends to be doser to one or zero, so the data set is well divided. For VPE, a 

smaller value means better clustering because of lower entropy. Both indices are easy to 

compute. They are useful when the data contains only a small number of well-separated 

clusters. However, there is a lack of direct connection to the geometrical properties of the 

data. Both of them seem to not handle the data well when there is overlapping clusters 

in it. 

The indices below are some more used indices that make explicit use of data and 

cluster centers. Fakuyama and Sugeno proposed another validity index, which measures 

the discrepancy between the compactness and separation of clusters [61]. Xie and Beni 

defined a well-known validity index, which measures the overall average compactness 

against separation of the c-partition [62]. 

• Fakuyama-Sugeno validity Vp s: 

C n 
VFs(U, V, c) = L L u,J(llxk - vill 2 

- llvi -vll 2
) 

• Xie-Beni validity Vxie: 

n 
where v = 1. I: Xi. 

n i=l 

i=l k=l 

n C 

I: I: uki llvi - Xk 11
2 

Vxie(U, V, c) = k=l i=l . Il Il nxmm v·-v· i-=/=j i J 

(2.6) 

(2.7) 

Vps(U, V, c) measures the discrepancy between compactness and separation. The 
C n 

first term in brackets, I: I: ukillxk-vkll 2 , measures the compactness of the clusters while i=l k=l 
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C n 
the second one, I: I: uiJllvi -vll 2

, measures the distances of the clusters representatives. 
i=l k=l 

It is clear that for compact and well-separated clusters we expect small values for VFs • 

On the other hand, Vxie(U, V, c) is the ratio of within-cluster compactness and between-
n C 

cluster separation. The fonction J = l I: I: u;J llvi - Xk 11 2 measures the within-cluster 
n k=l i=l 

compactness; its value will be small if the clusters are compact. lmin = 1aj~1 llvi - Vj Il 
i,J 

measures the separation between clusters; its value tends to be large if the clusters are 

well separated. Vxie(U, V, c) is a trade-off between compactness and separation. To 

obtain good clustering results, Vxie(U, V, c) needs to be minimized. 

Recently, several other validity indices have been proposed, using different definitions 

of compactness and separation. Rhee and Ho (1996) proposed two indices intheir paper 

[63], VRH (Eq. 2.8. Both of their indices give better results in terms .of the accuracy of 

the final number of dusters. However, the computational complexity forcalculating each 

value of each of these indices is O(n2c), where n is the number of data vectors and c is 

the number of clusters. Zahid, et al. [64] proposed an index VzLE, which considers the 

geometrical properties, the degree of fuzzy membership and the structure of the data. 

Rezaee, et al. [65] proposed a validity index, VRLR (Eq. 2.9) which depends on a linear 

combination of the average scattering (compactness) of clusters and distance (separation) 

between clusters: a x Scattering+ {3 x Distance. Our new index was based on the index. 

• Rhee-Ho validity VRH: 

(2.8) 

2 
n-1 n c 

where w1(i,j,k) = min{uij,uik} and E = -( -l) I: I: I: d2 (xj,xk)w1(i,j,k) is an 
n n j=l k=j+l i=l 

average intra-class distance used as a measure of the compactness of the fuzzy c-partition. 
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n-l n 
w2(j,k) = min{n1:axui12 ,~a?(Ui2k} and D = n\ I: I: d2(xj,xk)w2(j,k) is an average 

i1 i2-/-i1 j=l k=j+l 
inter-class distance for measuring the separation of the fuzzy c-partition. The maximum 

of VRH(U, V, c) corresponds to the best clustering. 

• Rezaee-Letlieveldt-Reiber validity VRLR: 

VRLR(U, V, c) = a x Scat(c) + Dis(c) (2.9) 

where a = Dis( Cmax) and c, the number of clusters, must be between Cmin and Cmax 

(2 ::; Cmin < Cmax < n), Cmin and Cmax being the minimum number of clusters 

and the maximum number of clusters, respectively. The average scattering is defined 
C 

¼ I: llo-(vi)II T n 
as Scat(c) = ir:(X)II , where a(X) = { a(X)1, a(X)2, · · ·, a(X)d} , X = ¾ k~l Xk, 

n , l . T n 
a2(X? = 1 I: (xf-xP)2, a(vi) = {a(vi) , a(vY, · · ·, a(vi)8} , and cr(vi)P = 1 I: uki(xf-n k=l n k=l 

vf)2 , for p = 1, 2, · · ·, d. The distance fonction is defined as Dis(c) = ~:;: ,t, Ct, llv, - vJII) _,, 
where Dmin = :qi.i~llvi-vjll(i,j E [1,c]), Dmax = ~8:xllvi-vjll(i,j E [1,c]). Scat(c) indi-

i-/-J i,J 

cates the compactness of the partition. A small value of Scat(c) means that, on average, 

the clusters are compact relative to the variance of the data set. Dis(c) indicates the 

total scattering (separation) between the clusters. The weighting factor Œ = Dis( Cmax) 

is introduced to compensate for differences in the scales of Dis(c) and Scat(c). The 

minimum value of VRLR is believed to correspond to the best clustering. 

2.2.2 A New Validity Index 

In our experiments, we found that the currently used validity indices behave poorly 

when clusters overlap each other. This motivated our search for an efficient validity 
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fonction. The validity index we propose VwsJ(U, V, c) has the following form: 

Sep(c) 
VwsJ(U, V, c) = Scat(c) + S (C ) ep max 

(2.10) 

Here Scat(c) is d~fined in the same way as in the Rezaee-Letlieveldt-Reiber index. It 

represents the compactness of the obtained clusters. The value of Scat(c) generally 

decreases when c increases because the clusters become more compact. The range of 

Scat(c) is between O and 1. The term representing the separation between clusters 
D2 e ( e 2)-l is defined as Sep(c) = D-p~x I: I: llvi - vJII , where Dmin = rp.i~ llvi - vJII and 

min i=l j=l if.J 

To gain some insight into this definition of separation, Sep( c) can be written ap-

proximately as Sep(~)~ ~1 ~W~"' E[J2 ] (E[X] means the expectation of X), where de is 
, , e min c 

. ' ' ' the average distance from a cluster center to all the other cluster centers. Both n'P~x and 
min 

E[J2 ] in Sep( c) are influenced by the geometry of the cluster centers. Both factors tend to 
C 

be small when the cluster centers are well separated. For example, when the cluster cen-

ters forma tetrahedron, reaches its minimum, which is 1; while E[J2 ] also reaches 
min c 

its minimum, D} , whose value depends only on the absolute distance (which is a scale 
max 

factor) between any two centers. When the distribution of cluster centers is irregular, 

both ~W~"' and E[J2 ] become larger. However, their values tend to evolve in different 
min c 

ways when the number of clusters c in the clustering algorithm increases. In fact, ~W~"' 
min 

will likely increase as more ( calculated) cluster centers tend to result in increased Dmax 

and decreased Dmin at the same time. On the other hand, E [12 ] will likely become more 
C 

stable as the estimate of the average distance de becomes more accurate. This is also 

why is important, since it is the main factor that penalizes model structures with 
min 

too many clusters. 
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A trade-off needs to be made between cluster scattering and cluster separation in 

the index. Since the value of Sep(c) depends on the absolute distances between cluster 

centers, or in other words, it depends on a scale factor from the input data, the term 

8 s(~(c) ) is utilized to scale clown the value of Sep(c) into the same range as Scat(c). ep max 

A coefficient could be used to modulate the contribution of each of the two terms in 

VwsJ(U, V, c). Our experience indicates that this is not necessary. In fact, for the various 

data sets tested, the expression for VwsJ(U, V, c) given in Equation (2.10) has proved 

to yield more accurate results than any other index tested (see the next section). A 

cluster number which minimizes VwsJ(U, V, c) is considered to be the optimal value for 

the number of clusters present in the data. 

2.3 A New FCM-based Clustering Algorithm 

In Algo2, we use random initialization at the beginning of each clustering phase. 

By doing so, we try to ensure that the selection process is carried out under relatively 

general conditions and the results are as replicable as possible. However, it is easy to 

imagine that re-initialization at each phase could lead to computational inefficiency. Use 

of the clustering results obtained in previous phases may lead to a better initialization. 

In this section, we propose strategies that yield a new FCM-based clustering algorithm. 

First we explain the major steps of the algorithm in detail. Experimental results and 

discussions follow in subsequent sections 

The FCM-Based Splitting Algorithm (FBSA) described below is called a split-

ting algorithm because it operates by splitting the "worst" cluster at each stage in testing 
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the number of clusters c from Cmin to Cmax· The major differences between this algo-

rithm and Algo2 in the previous section lie in the initialization of cluster centers, the 

validity fonction used and the process for splitting "bad" clusters. The general strategy 

adopted for the new algorithm is as follows: at each step of the new algorithm (FBSA), 

we identify the "worst" cluster and split it into two clusters while keeping the other c - 1 

clusters. 

Algorithm FBSA: 

1. Cho ose Cmin and Cmax. 

2. Initialize Cmin cluster centers (V). 

3. For c = Cmin to Cmax: 

3.1. Apply the basic FCM algorithm to update the membership matrix (U) and 

the cluster centers (V). 

3.2. Test for convergence of V; if no, go to 3.1. 

3.3. Compute a validity value ¼(c). 

3.4. Compute a score S(i) for each cluster; split the worst cluster. 

4. Compute copt such that the result of cluster validity fonction ½(copt) is optimal. 

The general idea in the splitting algorithm FBSA is to identify the "worst" cluster 

and split it, thus increasing the value of c by one. Our major contribution lies in the 

definition of the criterion for identifying the "worst" cluster. In this thesis, we propose 

a "score" fonction S(i) associated with each cluster i, as follows: 
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Figure 2.1: Cluster before the split. The center of the cluster is marked by "+". 

where n i is the number data objects in ith cluster. 

In general, when S( i) is small, cluster i tends to contain a large number of data 

vectors with low membership values. The lower the membership value, the farther the 

object is from its cluster center. Therefore, a small S(i) means that cluster i is large 

in volume and sparse in distribution. This is the reason why we choose the cluster 

corresponding to the minimum of S ( i) as the candidate to split when the value of c is 

increased. On the other hand, a larger S( i) tends to mean that cluster i has a smaller 

number of elements and exerts a strong "attraction" on them. 

In order to split the cluster at Step 3.4 of FBSA, we have adapted the "Greedy" 

technique [66]. The "Greedy" technique aims to initialize the cluster centers as far apart 

from each other as possible. In an iterative manner, the "Greedy" technique selects as a 

new cluster center the data vector which has the largest total distance from the existing 

cluster centers. Adaptation of the technique for cluster splitting yields the following 

algorithm: 

39 



1. Identify the cluster to be split (first part of 3.4). Supposing that the cluster number 

is i0 , its center and the set of all the data in the cluster are denoted by ¾0 and E. 

2. Search in E for the data vector not labelled "tested" which has the maximal total 

distance from all of the remaining c-1 cluster centers. This data vector is denoted 

by ¾1• 

3. Partition E into E0 and E 1 based on the distance of each data vector from ¾0 and 

¾1 . If IE1I/IEI > 10%, then ¾1 is taken as the eth cluster center; else label ¾1 

"tested" and go to Step 2. 

4. Search E for the data vector not labelled "tested" which has the maximal total 

distance from all of the c cluster centers. This data vector is denoted by ¾2 • 

5. Partition E into E1 and E2 based çm the distance of the data vector from ¾1 and 

¾2 :. If IE2I/IEI > 10%, then ¾2 is taken as the (c + l) th cluster center1 else label 

¾2 . "tested" and go to Step 4. 

This algorithm ensures that the t'Yo new centers ¾1 and ¾2 are as far apart as possible 

from each other and from the c - 1 centers ( of the unsplit clusters). In addition, a 

significant number of data vectors (10% of E) are required to be in the neighborhood of 

each center so as to minimize the possibility of picking up an outlier. Figures 2.1 and 2.2 

illustrate a typical result of the splitting algorithm. 

2.4 Experimental Results 

In this section, we present the performance of the proposed algorithm using validity 

index in Eq. 2.10. We report the experimental results for four data sets, the first one from 
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Figure 2.2: Cluster after the split. The small circles here mark the initial centers of new 
clusters. 

the public domain, the next tw6 generated using mixtures of Gaussian distributions and 

the fourth one f~OJ:l a real survey data .set. For each of the first three data sets, we eval11ate 

the algorithm and i,ndex using three criterions: accuracy of clustering results, · stability 

across different runs and time cost. The fourth data set is used only for evaluating the 

time efficiency of the proposed algorithm. 

In all experiments, the fuzzifier m in the algorithm was set to 2, the test for con-

vergence in the basic FCM algorithm (Algol) was performed using E = 0.001, and the 

distance fonction li· li was defined as Euclidean distance. Choosing the best range of the 

number of clusters is a difficult problem. Here we adopted Bezdek's suggestion: Cmin = 2 

and Cmax = fa [53]. For determination of the number of clusters, the validity indices 

Vpc, VPE, Vxie, VFs, VRH, VzLE and VRLR were compared with VwsJ• The initialization 

of cluster centers in FBSA (step 2) and Algo2 (step2.1) used the random procedure. 
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Clusterl Cluster2 Cluster3 Cluster4 Cluster5 
X 1.0 1.0 -0.5 -0.5 -0.5 
y 0.3 -0.3 0 -0.3 0.3 
z 0.0 0.0 0.5 0.0 0.0 

Table 2.1: Means of DataSet2 

2.4.1 Data Sets 

The first data set, DataSetl, is IRIS data set [67], widely used for testing clustering 

algorithms. This is a biometric data set consisting of 150 measurements belonging to three 

flower varieties. The data are represented as vectors in a 4-dimensional measurement 

space, in which four variables are length and width of both petal and sepal. The set 

consists of three classes, each of which contains 50 observations. In fact, of the three 

class~s, .two are overlapping. Halgamuge and Glesner [68] have shownt·liat-a very good 

classification can be obtained using only two features (petal length and petal width). In 

[65], Rezaee et al. indicate that for their index VRLR, only one feature (petal length) is 

used to obtain the best number of classes, which is 3. 

DataSet2 was generated using a mixture of Gaussian distributions. This data set is 

3-dimensional and contains 5 Gaussian components ( clusters). There are 50 data vectors 

in each of the five clusters. For each component, the three variables are independent of 

each other and their variance is 0.2. The means of the five clusters (components) are given 

in Table 2.1. Figure 2.3 shows the 3D picture. In the data set, Clusterl and Cluster2 

strongly overlap each other and Cluster3, Cluster4 and Cluster5 strongly overlap each 

other. 

DataSet3 was also generated using a mixture of Gaussian distributions too. This 

example contains 500 2-dimensional data vectors. It consists of 10 Gaussian components 
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Figure 2.3: DataSet2 is a 3D data set and has 5 clusters 

Figure 2.4: DataSet3 is a 2D data set and has 10 clusters 

( clusters). For each component, the two variables are independent. There are 50 data 

vectors in each of the ten clusters. The means and variances of the 10 clusters ( compo-

nents) are given in Table 2.2. This data set has been generated so that Clusterl and 

Cluster2 overlap, and Cluster3 and Cluster4 also overlap. Figure 2.4 illustrates the data 

set. 
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Cl C2 C3 C4 C5 C6 C7 C8 C9 ClO 
mean 0.0 4.5 4.5 1.5 -2.0 -5.5 -3.5 -2.5 2.0 

X variance 1.0 1.5 2.0 1.0 1.0 1.0 0.5 0.5 0.5 
mean 0.0 3.0 0.0 3.0 -3.0 -1.0 2.0 4.5 -3.5 y variance 0.5 0.5 0.5 0.5 1.5 0.5 1.0 1.0 1.0 

Table 2.2: Means and variances of DataSet3 

2.4.2 Comparison of Accuracy of Clustering Results 

The main objective of this subsection is to compare the performance of different 

validity indices in determining the true number of clusters. There are two parts in this 

comparison: the optimal number of clusters( copt) and the errors between cluster centers 

and component means. Normally, each run of the algorithm Algo2 or the.algorithrn ·, 

FBSA involves only ·orie validity index. However, random initializatïon in these algo-, 

rithms may have some effect on their (average) performance given that the number of 

runs of each algorithm is always limited ( to 20 in our experiments). In order to eliminate 

the disparities in performance induced by random initialization, we simply need to com-

pute all the validity indices on the same set of the clusters, yielded by Algo2 or FBSA 

for c = Cmin to Cmax, and record and compare the optimal cluster number corresponding 

to each validity index. For this reason, all the experiments in this section were performed 

with all the tested validity indices implemented within Algo2 and FBSA. With these 

settings, if two validity indices yield the same optimal number of clusters in a run, they 

yield exactly the same clusters too. This point is particularly important for understand-

ing the results discussed in later of this subsection, where two validity indices can yield 

exactly the same average position error for cluster centers even with a significant number 

of random initializations in the clustering algorithms. 
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2.4.2.1 Accuracy of the optimal number of clusters( copt) 

Finding the true number of clusters is a fondamental goal of the clustering algorithm. 

The validity fonction often plays a key role in model selection approaches. Here we have 

tested the existing well-known validity indices Vpc, VPE, Vxie, VFs, V RH, V ZLE , VRLR 

and our new validity index VwsJ in Algo2 and FBSA. Each algorithm was run 20 times 

with different initial centers in order to evaluate the stability of the algorithm and the 

validity index used. 

Tables 2.3, 2.4 and 2.5 give the results for the optimal number of clusters (20 runs) 

when all validity indices are applied to Algo2 for the three data sets. In these tables, 

Copt(m) means that the optimal value copt was obtained m times in 20 runs. For the IRIS 

data set, VwsJ yields an optimal number of clusters of 3 (the best number of clusters) in 

19 out of 20 runs. However, few of the existing validity indices result in the true cluster 

number. 

Vpc VPE Vxie VFs VRH VzLE VRLR VwsJ 

runl- 3(1),4(3), 4(1),5(4), 
2(20) 2(20) 2(20) 2(20) 2(14),3(6) 3(19),5(1) 

run20 5(8) ,6(6) ,8(2) 6(10),7( 4),8(1) 

accuracy 
0/20 0/20 0/20 1/20 0/20 0/20 6/20 19/20 

rate 

Table 2.3: The optimal number of clusters of Algo2 for DataSetl 

For DataSet2, the very strong overlapping of clusters and the random initialization pro-

cedure result in a very serious consequence: no validity indices often yield the true cluster 

number. Nevertheless, VwsJ produces the correct number of clusters in 8 runs out of 20. 
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Most of the validity indices <livide the data set into two clusters, one of which results 

from the merging of two Gaussian components and the other from the merging of three 

Gaussian components. We notice that VwsJ and Vps sometime produce 4 clusters. In 

this case, two clusters are merged and the other three are kept. Compared with others, 

the results produced by these two validity indices are acceptable. 

Vpc VPE Vxie Vps VRH VzLE VRLR VwsJ 

runl~ 3(9),4(8), 2(8), 
2(20) 2(20) 2(20) 2(17),3(3) 2(20) 2(20) 

run20 5(2),6(1) 4( 4),5(8) 

accuracy 
0/20 0/20 0/20 2/20 0/20 0/20 0/20 8/20 

rate 

Table 2.4: The ôptirnal number of clusters of Algo2 for DataSet2. 

For DataSet3, it contains 10 clusters and the degree of spread within clusters is different. 

There are four components tending to merge into two. This type of data set is difficult to 

identify. Vxie, Vps and VwsJ show the best identification ability for the data, reaching 

a 90% accuracy rate. 

Vpc VPE Vxie VFs VRH VzLE VRLR VwsJ 

7(1),9(1), 10(18), 
10(8),11(1) 

5(19) 7(1),9(1), runi~ 
2(20) 2(20) 13(2),19(2) 2(20) 

run20 10(18) 11(1),14(1) 7(1) 10(18) 
21(5),23(2) 

accuracy 
0/20 0/20 18/20 18/20 8/20 0/20 0/20 18/20 

rate 

Table 2.5: The optimal number of clusters of Algo2 for DataSet3 
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Vpc VPE Vxie VFs VRH VzLE VRLR VwsJ 
runl ~run20 2 2 2 6 7 2 2 3 
correct rate 0/20 0/20 0/20 0/20 0/20 0/20 0/20 20/20 

Table 2.6: The optimal number of clusters of FBSA for DataSetl 

Vpc VPE Vxie VFs VRH VzLE VRLR VwsJ 
runl~run20 2 2 2 4 2 2 2 5 
correct rate 0/20 0/20 0/20 0/20 0/20 0/20 0/20 20/20 

Table 2.7: The optimal number of clusters of FBSA for DataSet2 

Tables 2.6, 2. 7 and 2.8 give the results for the number of clusters all validity indices 

are applied to FBSA for the three data sets. Because the results are the same for each 

run, we list the first and the last values. For DataSetl and DataSet2, applying VwsJ to 

FBSA, we get the optimal number of clusters is the true number of clusters in all 20 

runs. However, applying the existing validity indices to FBSA, none obtain the true 

cluster number. For DataSet3, Vxie, VFs, VRH and ½vsJ lead to the correct result, 10 

clusters. The other v8'.lidity indices fail to produce the correct number. 

2.4.2.2 Error between cluster prototype and component mean 

The other criterion we used here was the error between cluster center and compo-

nent mean. One of the important goals of a clustering algorithm is to find the cluster 

prototypes that represent the component means. For this reason, and since the compo-

nent means are known for the data sets used, we use the error between cluster prototype 

Vpc VPE Vxie VFs VRH VzLE VRLR VwsJ 
runl~run20 2 2 10 10 10 2 5 10 
correct rate 0/20 0/20 20/20 20/20 2/20 0/20 0/20 20/20 

Table 2.8: The optimal number of clusters of FBSA for DataSet3 
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and component mean as a criterion. The error E( Copt) is defined as follows: suppose 

{vi}(i = 1,2, ... ,copt) are the cluster centers and {mj}(j = 1,2, ... K) the component 

means ( K is the number of components). Then 

(2.11) 

We calculated the average values of E( copt) yielded by Algo2 and FBSA with 

different validity indices for the three data sets over 20 runs. Table 2.9 lists the results 

for Algo2 and Table 2 .10 lists the results for FBSA. According to the explanations of the 

experimental setting given at the beginning of Section 5.2, if two validity indices always 

yield the same optimal number of clusters, theh they always yield the same clusters. This 

explains why severa1 validity indices yîeld the same average value of E( copt) for a data 

set. 

From the two tables, we note that the results for FBSA and Algo2 are quite similar. 

FBSA is slightly better than Algo2 for DataSet3 and slightly worse for DataSetl. Both 

algorithms perform very well when the validity index VwsJ is used. At least for these three 

data sets, FBSA combined with VwsJ seems to be the best combination. The reason 

for the good performance displayed by both algorithms when combined with VwsJ is 

the accurate estimation of the number of clusters. This corroborates the results of the 

previous subsection. The most important conclusion suggested by these experiments 

is that the accuracy of the new · algorithm FBSA does not suffer from the restricted 

initialization scheme, while it is much more time-efficient, as we will show in section 

2.4.4. 
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Data Vpc VPE Vxie VFs VRH VzLE VRLR ½vsJ 
DataSetl 0.8016 0.8016 0.8016 2.6661 2.9495 0.8016 0.6732 0.4721 
DataSet2 0.5738 0.5738 0.5738 0.5447 0.5528 0.5738 0.5738 0.3990 
DataSet3 2.1378 2.1378 1.6892 1.9969 9.1726 2.1378 5.0926 1.6892 

Table 2.9: The error between cluster prototype and component mean for Algo2, for 3 
data sets 

Data Vpc VPE Vxie VFs VRH VzLE VRLR VwsJ 
DataSetl 0.8019 0.8019 0.8019 3.2158 3.9313 0.8014 0.8019 0.3853 
DataSet2 0.5738 0.5738 0.5738 0.4567 0.5738 0.5738 0.5738 0.2313 
DataSet3 2.1356 2.1356 1.6355 1.6355 1.6355 2.1356 5.2356 1.6355 

Table 2.10: The error between cluster prototype and component mean for FBSA, for 3 
data sets 

2.4.3 Stability Across Different Runs 

An interesting property of FBSA is its stability across different runs, which can. be 

observed frorp. the tests on the three data sets. The output of these experiments· (Tables 

2.6-2.8) is independent of the initial cluster centers, whereas when Algo2 is applied to 

each of these data sets, the output varies quite significantly depending on the validity 

fonction used (Tables 2.3-2.5). The way in which new cluster centers are initialized at 

each phase of FBSA is certainly the reason for its stability. Since FBSA performs 

at least as well as Algo2 in computing the number of clusters and the cluster centers, 

this property of stability could make it a more interesting choice than Algo2 in many 

practical applications. 

2.4.4 Comparison of FBSA to Algo2 in Terms of Time Cost 

Here we will show the performance of the new algorithms by comparing their numbers 

of iterations and the real run time needed for convergence. Algo2 and FBSA both 
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Figure 2.5: Comparison of the number of iterations and running time on DataSetl for 
Algo2 and FBSA 
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Figure 2.6: Comparison of the number of iterations and running time on DataSet2 for 
Algo2 and FBSA 

use the same validity index, VwsJ. In comparing FBSA with Algo2, we are interested 

in both the reduction in the number of iterations for each subsequent value of c tested 

and the run time. We ran this experiment on a PC with Pentium III 450MHz CPU and 

320MB RAM. 

2.4.4.1 Test on DataSetl, DataSet2 and DataSet3 

Figures 2.5, 2.6 and 2.7 show the numbers of iterations that Algo2 and FBSA need 

for each value of c and their run times. In all cases, the new algorithm requires less 
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Figure 2. 7: Comparison of the number of iterations and running time on DataSet3 for 
Algo2 and FBSA 

running time to converge than Algo2. The improvement in the running times is clear. 

Although there are some variations in the number of iterations for some c, we can see 

that the reduction in the numbër of iterations relative to Algo2 is significant for all data 
. . . 

sets, especially when cis 13,,rge. 

2.4.4.2 Test on DataSet4 

In addition to the data sets described above, we also tested a larger data set with 

60,000 data vectors in order to get a better idea about the improvement of FBSA in 

speed. For statistical purposes, we ran each algorithm 10 times and recorded the average 

number of iterations for each c and the CPU time. We ran this experiment on a PC 

computer with a 2.40GHz CPU and 1Gb RAM. 

DataSet4 originated from a file provided by Statistics Canada under its Data Liber-

alization Initiative Program (http://www.lib.unb.ca/gddm/data/ Ftp_famex.html). The 

FAMEX file from StatsCan is a survey on household expenditures and budgets for the 
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Figure 2.8: Comparison of the number of iterations and run time on DataSet4 for Algo2 
and FBSA 

year 1996. It includes expenditures, income, and changes in assets and debts. The vari-

ables include composition of household, characteristics of dwelling, shelter expenses, food 

: and alcohol, clothing, medical and health care, travel and transportation, recreation and 

education and tobacco. After a simple preproc_essing (removing noTI:-numeric variables 

and items with missing values), we obtained a data set with 22 variables and 600,000 

data vectors. DataSet4 is a randomly selected subset of 60,000 items. 

The main objective of testing DataSet4 was to further illustrate the computational 

efficiency of the proposed algorithm. For a real data set, the actual number of clusters is 

often unknown. Subjective evaluation of the clustering results is beyond the scope of this 

thesis. We will restrict ourselves to the evaluation of time effi.ciency. Figure 2.8 shows 

the number of FCM iterations needed as a fonction of c, the number of clusters tested. 

In the same figure, we also show the comparison of the real CPU time. For the number 

of iterations, we obtained a similar profile as in the experiments conducted on the three 

previous data sets. Also, in tenns of gain in CPU time, FBSA is 48.15% faster than 

Algo2, which is similar to the gain obtained in the previous examples. Thus FBSA 

seems to scale well to a large data set. 
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2.5 Discussion 

From these results and from the results we obtained on similar data sets, we can 

draw the following conclusions: 

1. The new validity index proposed here significantly improves the performance in 

determining the number of clusters and the accuracy of cluster centers. In fact, 

based on the three sets of experimental results, only our new validity index is able 

to yield the correct number of clusters consistently, whatever Algo2 and FBSA is 

used. The comparison of the cluster centers and the component means shows that 

FBSA combined with VwsJ gives accurate prototypes. 

2. The cluster centers yielded by FBSA are accurate for small data sets containing 

fewer than several hundred data ( which is the case for most public domain data-

sets), even when there are overlapping clusters. We also obtained similar results on 

large data sets generated from a mixture of Gaussians. However, it is difficult to 

carry out these comparisons on large real-world data sets because the information 

required for the comparison, such as the true number of clusters and the true cluster 

centers, is often not available. 

3. In terms of computational efficiency, FBSA generally needs less run time than 

Algo2. For some c, however, the number of iterations for FBSA is significantly 

larger than for Algo2. This situation corresponds usually to the cases where the 

algorithm is forced to partition a data set into more clusters than it really has. 

4. It is easy to understand that the number of iterations for each value of c tends to 

be small when c is close to the true number of clusters. When the value of c moves 
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away from the true number of clusters, the algorithm FBSA tends to exhibit a 

more abrupt increase in the number of iterations. Another interesting property of 

FBSA is that the number of iterations for different runs is very stable for each 

value of c. This is illustrated in Tables 2.6, 2.7 and 2.8. These properties can be 

useful for developing a strategy to further limit the search range of c. 

2.6 Conclusion 

The major contributions of this chapter are: 1) a new index for validating clustering 

results; 2) an improved FCM-based algorithm for determining the number of clusters. 

The new validity index, VwsJ, is a fonction of the original data, cluster centers and 

membership. 'Experimental results have shown that the new index is able to:yiéld àccurate 

numbers of clusters even for data sets with overlapping clusters, where existing indices 

often display unpredictable behavior. The new improved clustering algorithm has shown· 

advantages in terms of computation time and stability, compared with the basic trial-

and-error FCM-based algorithms. All experiments show that the combination of FBSA 

and VwsJ gets the best results. 
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Chapter 3 

A Theory on Distinguishing 

Overlapping Cornponents in Mixture 

Models 

In this chapter, we study the overlapping phenomenon in the case of the Gaussian 

mixture, a fondamental data distribution model for many clustering algorithms. We 

introduce a novel concept of the ridge curve and establish a theory on the degree of 

overlap between two components. Based on this theory, we develop an algorithm for 

calculating the overlap rate. As an example, we use this algorithm to calculate the 

overlap rates between the classes in the IRIS data set and clarify some of the confusion 

as to the true number of classes in the data set. We investigate factors that affect the 

value of the overlap rate, and show how the theory can be used to generate truthed data 

as well as to measure the overlap rate of a given data set. 
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3.1 Introduction 

The Gaussian mixture model plays an important role in cluster analysis. Many 

widely used clustering algorithms such as the K-means and the Fuzzy C-means [27] are 

the most suit on the Gaussian mixture model. These clustering algorithms are widely 

used in various applications [50, 69, 70, 71, 72, 73]. Their performance often depends 

on whether the data set contains well separated clusters, or in other words, whether and 

how the components of the underlined Gaussian mixture overlap to each other. The 

results of clustering are evaluated on some objective criteria. Examples of such criteria 

are those based on information theory such AIC, MML and MDL [74][75] and those based 

on the explicit trade-off between within-cluster variances and between-clustervariances, 

such as the Xie, Fukuyama and Fisher's discriminant [62][61][76]. Due to the lack of 

understanding of component overlapping in a mixture, a few researchers evaluate their 

algorithms with respect to the very fondamental hypothesis, the mixture of Gaussians, 

based on which the clustering algorithms are designed. 

Given a data set satisfying the distribution of a mixture of Gaussians, the degree 

of overlap between components affects the number of clusters "perceived" by a human 

operator or detected by a clustering algorithm. In other words, there may be a significant 

difference between intuitively defined clusters and the true clusters corresponding to the 

components in the mixture. The component overlapping phenomenon is illustrated in 

Figure 3.1. Fig. 3.1-a to 3.1-c, show the 1-D case, with two components that are (almost) 

non-overlapping, partially overlapping and totally overlapping. Fig.3.1-d to 3.1-f show 

their counterparts in the 2-D case. Clearly, when two components are (almost) non-

overlapping or partially overlapping, we expect a clustering algorithm to be able to find 
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Figure 3.1: Two components that are non-, partially and totally overlapping, in the 1-D 
and 2-D cases 

the two components. On the other hand, when the two components overlap totally, we 

usually do not expect a basic partition-based clustering algorithm to distinguish between 

them. It is thus necessary to be able to precisely characterize the degree of overlap in 

order to measure the "diffi.culty" of a given set or to generate test sets with a given degree 

of overlap (diffi.culty) so that the performance evaluation of a clustering algorithm can 

be performed on a solid mathematical basis. 

Cluster overlap impacts on another important issue of clustering, which is determin-

ing the number of clusters. Existing methods, often based on measuring the validity of 

each possible number of clusters, yield good estimates when the clusters are well sep-

arated (non-overlapping). However, for data sets with overlapping clusters, the results 

are often unpredictable. Examples of such results are reported in our recent paper on 

determining the number of clusters using Fuzzy C-means based algorithm [77]. One of 

the main reasons for this problem is that many algorithms fail to distinguish between 

partially overlapped clusters. 
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There are some related work to overlapping phenomenon. These work can be cata-

loged to statistic approach and geometric approach. In statistic approach, which consid-

ers the statistic property of the data set, classification error rate is an close concept to 

overlapping phenomenon [78]. It indicates the probability that an object is assigned to 

wrong cluster. When cluster strong or total overlapping, it inefficacy. Sorne distances, 

for example, Bhattacharyya and Mahalanobis distance, are the ramifications of classifica-

tion error rate [78, 79]. In geometric approach, which consider the geometric property of 

the probability density fonction of the mixture model. Qu and Feng [57] has conducted 

simulations in order to reveal the relationship between overlapping components and the 

distance between two adjacent components, for Normal, Poisson and Bi-normal distribu-

tions. In a previous study carried out by members of our research group, Aitnouri et al .. 

[58] gaye a formal definition of the overlap rate and proposed algorithmg, for generating 

data sets with controlled overlap rate. All of these studies apply to the univariate case. 

In particular, the overlap rate defined in [58] relies on a concept of "apparent width" that 

does not have an obvious counterpart in the multivariate case. Indeed due to the covari-

ance structure of multivariate components, the phenomenon of component overlapping 

becomes more complex and need to be investigated in a more general way. We are inter-

ested in establishing analytically the relationship between the degree of overlap and the 

parameters of each component. This relationship will have an important impact in many 

real applications. For example, generating truthed data sets with prescribed degree of 

overlap between clusters provides a way of evaluating the capacity of existing clustering 

algorithms to identify overlapping clusters. In image processing, the degree of overlap 

between two objects ( clusters) in a color image can be used to measure the similarity of 

the objects [80]. The scale of the overlap rate may hance provide an important argument 
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for merging the two abjects. 

The main contribution of this chapter is developing a theoretical framework for 

component overlap in a mixture and a practical algorithm for measuring the degree of 

overlap between two components. We focus on two components in the 2-D data space. 

Our investigation is limited to two components for several reasons. First, in most practical 

cases, one can only interpret the meaning of overlap precisely between two components. 

For a multi-component mixture, one would need to measure the degree of overlap between 

one (any) pair of components. Second, establishing the mathematical framework for 

two overlapped components is a necessary step towards a framework that can account 

for more than two overlapped components. Finally, determining the components of a 

mixture containing more than two overlapped components would rnost likely involve 

the decidability problem. Since one of the main objectives of this study is :to generate 

truthed data sets with overlapped components, the two-component framework is already· 

a significant leap forward compared to all the current practices, because of the analytical 

relationship between the overlap rate and the component parameter values [78]. We 

do not make any special hypothesis regarding the covariance structure. The theory 

is introduced in the 2-D case and its extension to the multidimensional case will be 

discussed. The theory is based on a novel concept, that of the "ridge curve". A series of 

theorems will be established to show the main characteristics of component overlapping. 

This allows us to give a feasible definition of the overlap rate, as well as developing 

algorithms for measuring it and generating truthed data sets. 

This chapter is organized as follows. In the next section, we prove a series of theo-

rems to establish the theoretical framework to describing the phenomenon of overlapping 

components. In Section 3, we define the overlap rate between components in a mixture 
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and design a algorithm for calculating this overlap rate. After that, we investigate the 

IRIS data set. In Section 4, we consider the factors affecting the value of the overlap 

rate in order to generate truthed data sets with prescribed overlap rates. We conclude 

our report with a discussion of some extensions of the research. 

3.2 Theoretical Framework 

In this section, we establish a theoretical framework for describing the overlapping 

phenomenon between two components in a Gaussian mixture model. The framework is 

based on the proofs of a series of theorems, which depict the properties of ridge curve. 

3.2.1 Mixture Models 

Mixture models satisfy some intuitive definitions of cluster structure. Two key prop-

erties of a cluster are internal cohesion, which requires that entities within the same dus-

ter should be similar to each other, and external isolation, which requires that entities in 

one cluster should be separated from entities in another cluster by fairly empty areas of 

space [81]. Internal cohesion is an inherent property of mixture models, since for a given 

cluster, data are generated from the same distribution. External isolation concerns the 

degree of overlap between the components of the mixture model [58]. 

A set of n entities forming a k-mode two-way array can be presented as X = 

{X1 , ... , Xn}, where Xi ia a vector of dimension d. In the finite mixture models dealt 

with here, each Xi can be viewed as arising from a mixture of k Gaussian distributions 

and the probabilistic density fonction (pdf) is given (in the d-dimensional data space) 
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by: 

lp(X) = l;l ŒiGi(X, µi, ~i) 

X= (x1, x2, ... , xdf E Rd 
(3.1) 

k 
with the restrictions Œi > 0 for i = 1, ... , k and I:: Œi = 1. (µi, ~i) denote respectively 

i=l 

the mean and the covariance matrix for the ith distribution Gi. Gi is the ith component, 

given by: 

To study the overlapping phenomenon, we consider the case in which k ::::;:·_2, If the two 

components are ( almost) non-overlapping or only partially overlapping, then· the pdf of 

the mixture has two divided local peaks. In this case, the data arising from the mixture 

model is viewed as two clusters (see Fig.3.1 a, b, d, e). On the other hand, if the pdf 

has only one peak, then it is viewed as two completely (totally) overlapping components. 

In other words, the two clusters of the data set merge to form one cluster (see Fig.3.1-c 

and 3.1-f). In what follows, we try to characterize this phenomenon as a fonction of the 

parameters of the mixture. In particular, we derive an efficient procedure for verifying 

whether the two components completely overlap and to compute an overlap rate when 

they partially overlap. 

In what follows, for simplicity reason, we limited our discussion to d = 2. In higher 

dimensional case (d > 2), the results can be obtained based on the same argument. In 

Section 3.3.3, we list the relative formulas in higher dimension. 
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3.2.2 Ridge Curve and Peaks of the pdf 

In this subsection, we will prove that the peaks of the pdf in R2 can be found by a 

search procedure that follows a curve linking the centers of the two components. 

As we know, the peaks of the pdf satisfy the following system of stationary equations: 

where 
1 

:~ = Ax1 Œ1 G1 + Bx1 Œ2G2 = Ü 

:~ = Ax2 Œ1 G1 + Bx2 Œ2G2 = Ü 

8~
1 
(-½(X - µ1f~11(X - µ1)) 

8~
2 
(-½ (X - µ1f ~11 (X - µ1)) 

8~
1 
(-½(X - µ2f~21(X - µ2)) 

8~
2 
(-½(X - µ2f~21(X - µ2)) 

(J) 

(II) 
(3.3) 

(3.4) 

Because of the involvement of G1 and G2 in Eq.3.3, this system does not have a closed-

form solution. A naive numerical solution would imply scanning a region of R2 directly. 

The following theorems illustrate that the scanning procedure can be restricted to a 

curve. 

Theorem 1. A general mixture model of two Gaussian distributions, given by Eq.3.1, 

can be converted to a special form by implementing an affine transformation to X. The 

special form is given by: 

µ1 = (µL µif = (o, of, µ2 = (µt µ~f 

(
a

2 

o l (7/
2 

0 l ~1 = 
1 

and ~2 = 
1 

0 a 2 0 rri
2 

2 '/2 

(3.5) 

In other words, the two covariance matrices are diagonal and one component is centered 

at the origin. The proof of this theorem is based on simultaneous diagonalization [82]. 
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Pro of of Theorem 1: Based on Cholesky decomposition for symmetric positive 

definite matrix, ~ 11 can be decomposed to ~ 11 = U1U'{, where U1 is a 11011-singular 

matrix, and Y= U1(X - µ1). Then Eq.3.1 can be written as: 

where A1, B1 are constants, µy = U1(µ2 - µ1) and ~Y = U1~2 U'{. Based on singular 

value decomposition for symmetric positive definite matrix, ~1} can be decomposed to 

~1} = ur DU, where D is a diagonal matrix and U is a normal orthogonal matrix 

( ur U = I), and Z = UY. Then the pdf of Z can be written as: 

l T l T ) p(Z) = A1 exp(-2z Z) + A2 exp(-2(Z µz) D(Z µz ) (3.7) 

where µz = U µy. This form is the special case declared. • 

Inference 1. A general mixture model of two Gaussian distrfüutions, given by 

Eq.3.1, can be converted to a special form by implementing an affine transformation to 

X. The special form is given by: 

(3.8) 

N ow we introduce the important concept of the ridge curve ( RC) of a mixture model 

of two Gaussian distributions as follows. 

Definition 1. Given a mixture model of two Gaussians (Eq.3.1), the quadratic curve: 

(3.9) 

is called the ridge curve (RC) of the mixture model. Here, Axu Bx2 , Bx1 and Ax2 are 

defined by Eq.3.4. 
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Figure 3.2: The ridge curve of the mixture in which the parameters given by Eq.3.20. 
Here, the peaks of pdf and the means of the mixture are almost superposition. 

Fig.3.2 shows the ridge curve of the Gaussian mixture defined by following parame-

ters: 

(
4.26) (5.55) Œ1 = 0.5, Œ2 = 0.5, µ1 = . , µ2 = 

. . . 1.33 . . 2.03 

(
0.22 0.07) (0.29 0.05) I:1 = and I:2 = 
0.07 0.04 0.05 0.07 

(3.10) 

The mixture cornes from IRIS data set. Feature 3 and 4 are selected to be 2 dimensions 

and class 2 and 3 are two components. In the figure, the mean of two components and 

the points with the peaks of pdf are superposition. The point with the saddle of the pdf 

is on the middle of the two means. 

Theo rem 2. The means of the two components and the stationary points (peak 

points and saddle points) of the pdf, p(X, µ1, µ2, I:1, I:2, Œ1, Œ2), are on the ridge curve. 

Pro of: The first part of this theorem can be easily proved by considering that both 

Ax1 Bx2 and Bx1 Ax2 contain the factors ( X - µ1) and ( X - µ2). 

For the second part, we mentioned above that any stationary point (x1, x2) of the 
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pdf should satisfy Eq. 3.3. The stationary equation can be written as: 

(3.11) 

Based on Theorem 2, we conclude that it is suffi.dent to search the ridge curve to 

find the stationary points of the pdf. However, due to the quadratic nature of the curve,. 

the search procedure. must '.solve the double-choice problem, in addition to_ restraining. 

the search int~~val. Indeed,' the f;llowing theorem will indicate that all of the stationary 

points of the pdf and the means of the components fall on the same segment of the ridge 

curve. 

Theorem 3. The stationary points of the pdf described by Eq. 3.1 fall on the segment 

between the two n1eans of the components of the ridge curve. 

For the proof of this theorem, we need to introduce some lemmas necessary for the 

special case mentioned in Theorem 1. 

We notice the following fact: let xy = a denote a hyperbola in R 2 , and (x1 , x2 ) 

and (y1 , y2 ) be two points on the hyperbola. The two points are on the same branch iff 

X1Y1 > 0 or X2Y2 > O. See Fig. 3.3 

Lemma 1. Based on the special case mentioned in Theorem 1, the ridge curve, 
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Figure 3.3: The two points are on the same branch iff X1Y1 > 0 or x2y2 > 0 

Proof: Let b = i 2 > 0 and c = ----J--.z < O. The curve Ax1Bx2 - Bx1Ax2 = 0 can 
al 772 0"2771 

be written as (b + c)x1x2 - bµ~x1 - cµ~x2 = O. 

H b + c = 0 or if µ~µ~ = 0, then the ab ove equation degenerates to a line. If b + c #- 0 

· ,and µ~µ~ #- 0, implementing the following affine transformation to X:= (x1 , x2 ), 

(3.12) 

1 , bcµ2µ2 
we get the normalized hyperbolic curve: x1x2 = b~c 2 • • 

Lemma 2. U nder the same conditions as for Lemma 1, the stationary points of 

Eq.3.1 are inside the rectangle defined by following two diagonal points: ((0, 0), (µ½, µ~)). 

Proof: Suppose that a stationary point X 0 = (x~, xg) is outside the rectangle. 

Without loss of generality, we suppose that µ~ > 0 and X 0 is to the right of the rectangle, 

i.e. x~ > µ~. Consider the radial: 

(3.13) 
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Both (X -µ1f~11(X -µ1)) = xr~11X and (X-µ2f~21(X-µ2)) are monotonically 

increasing. Thus the value of p(X) is monotonically decreasing on the radial. This means 

that X 0 is not a stationary point of the pdf. • 

Combining Theorem 2 and Lemmas 1 and 2, we obtain the proof of Theorem 

3 as follows. 

Proof of Theorem 3: According to Theorem 1, an affine transformation X = 

mZ + N ( m is a 2 x 2 affine matrix and N is 2-D vector), Z = (z1 , z2 ) E R 2 , transforms the 

mixture to the special case mentioned in Theorem 1. The ridge curve Ax1 Bx2 - Bx1 Ax2 = 

0 is transformed to Az1 Bz2 - Bz1 Az2 = 0 and the stationary points of pdf about X are 

translated to the stationary points about Z, because the transform is linear. Based on 

Lemmas 1 and 2, the stationary points of the pdf about Z fall on the segment between 

the two means, of the c9mponents of the curve, Az1 Bz2 - Bz1 Az2 = O. Thus the stationary 

points of the pdf described by Eq. 3.1 fall on the segment between the two means of the 

components of the curve, Ax1 Bx2 Bx1 Ax2 = O. • 

Based on the result of Theorern 3, for determining the stationary points of Eq.3.1, 

we need only search the segment of the RC, Ax1 Bx2 - Bx1 Ax2 = 0, between the two 

means. So that the procedure of searching the stationary points of a Gaussian mixture 

is restricted on a linear searching procedure. 

3.3 Degree of Overlap 

In this section, we will give the definition of the overlap rate between two components 

of a mixture, design an algorithm to compute it and test the new concept on the IRIS 

data set. 
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3.3.1 Definition of the Overlap Rate 

In general, a definition for the overlap rate implements the following principle: 1) the 

overlap rate tends to decrease (-+ 0) as the two components become more separated, 2)the 

overlap rate increases (-+ 1) as the two components become more strongly overlapped. 

An intuitive definition of the overlap rate was given in [58] as a ratio of the minimum 

between the two component center (if such a minimum exists) and the lower maximum 

also situated between the component centers. This definition does not have a natural 

extension to the multi-dimensional case since there is no local minimum between the two 

component centers. The following definition relies on the ridge curve concept developed 

in the previous section. 

by: 

Definition 2. The overlap rate of two Gaussian components in a mixture ·is defined 

OLR(G1, G2) = l 1 if p(X) has one peak in RC 

p(XLocal Min)if p(X) has two peaks in RC 
p(XsuLMax) 

(3.14) 

where XLacaLMin = arg(LocaLMinxEC p(X)) is the local minimum point of p(X) on the 

ridge curve and Xsuuviax = arg(Sub_MaxxEC p(X)) is the lower peak point of p(X) on 

the ridge curve. It is not difficult to show that this satisfies the intuitive principle for the 

overlap rate. 

The value of O LR describes the level of overlapping between two components ( clus-

ters). It does not the value of percent of data points locating the "overlapping region". 

And it is not linear to the value of the percent. Depending our experiments, if the value 

of OLR is less than 0.6 then the two components (clusters) can believed well separated, 

if the OLR belongs to (0.6, 0.8] then they are partial overlapping and the OLR is larger 

than 0.8 then they are strong overlapping (see Fig 3.10-3.14. 
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3.3.2 Algorithm for Calculating OLR 

To compute OLR, the stationary points of p(X) need to be determined. Indeed, 

considering the special case of the conditions in Theorem 1, these points are the solution 

of the following equations: 

l Ax1 0!1 G1 + Bx1 0!2~2 = Ü 

Ax1 Bx2 + Ax2 Bx1 - 0 

(I) 
(II) 

(3.15) 

Expressing x2 in terms of x1 from (II) and substituting x2 in (I), we obtain a complex 

equation: M1(x1)eNi(xi) + NI2(x1)eN2 (xi) = 0 , where M1(x1), M2(x1), N1(x1) and N2(x1) 

are rational functions of x1 . This equation does not have a closed-form solution. For this 

reason, we have designed a numerical algorithm for calculating the stationary points of . · 

p(X) based on Theorem 3. The main idea of the algorithm is to search the segment 

of the curve Ax1 Bx2 - Bx1 Ax2 = 0 between the means of the two components. A local 

maximum point is a peak of the pdf, and the minimum point is a saddle point. Algo-

rithm COLR below computes the overlap rate of two mixture components. Using this 

algorithm, we can estimate the overlap rate of any two clusters in a given set of data by 

first estimating the mean, covariance matrix and prior probability of each cluster. 

Algorithm COLR (for computing OLR of the mixture in Eq.3.1) 

1. Input the parameters of two distributions (µ1, µ2, :E1, :E2, Œ1, Œ2). 

3. Move from µ1 to µ2 on RC, finding the maximum and minimum points of p(X). 

4. Compute OLR of the two components by Eq. 3.14. 
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3.3.3 Extension to high Dimensional Data 

The theory on overlap presented previously can naturally be extended to high di-

mensional case. In real applications, high dimensional data (3 or more than 3 dimensions) 

are more popular than low dimensional ( one or two dimensions) data. In d-dimensional 

case ( d > 2), the two main concepts of the theory, ridge curve and overlap rate, can be 

described as follows. 

The stationary points of the pdf fonction 3.1 satisfy 

8
8

P = A1a1G1 + B1a2G2 = 0 
x1 

(3.16) 

where, Axi and Bxi (i = 1, 2, ... d) are defined by: 

Ai= 8~. (-½(X - µ1f~11(x - µ1)) = -½(v7IIX-,- µii1~-1)i = (-~11(x - µ1))i 
i L.Jl 

Bi= 8~. (-½(X - µ2f~;:1(x - µ2)) = -½(v7IIX µ2ll~-1)i = (-~;:1(x - µ2)\ 
i L.,2 

The ridge curve of Gaussian mixture 3.2 is defined by following d - 1 equations: 

A1B2 - B1A2 = 0 

A2Bs - B2As = 0 

(3.17) 

(3.18) 

Based on the concept of ridge curve in d-dimensional case (Eq. 3.18), the overlap 

rate between G1 and G2, OLR(G1 , G2), has the same formula as in the 2-dimensional 

case. The computation of the O LR can be carried out in the same way to Algorithm 

COLR. 
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3.3.4 Measuring the Ov~rlap of Clusters in the IRIS Data Set 

The aim of this experiment is to show how our algorithm can be used to measure 

degrees of overlap between user-defined clusters. We have chosen the IRIS data set 

because it is the most commonly used benchmark set in cluster analysis. The IRIS data 

set is a biometric data set consisting of 150 measurements belonging to three flower 

varieties. Each class contains 50 observations, in which four variables, the length and 

width of both petal and sepal, are measured. The data are represented as points in a 4-

dimensional measurement space. Pal and Bezdek [67] suggest that since two of the three 

classes overlap substantially, one can argue in favor of either 2 or 3 classes. Halgamuge 

and Glesner [68] have shown that a very good classification can be obtained by using 

only two features ( feature 3 and 4). There are various degrees of overlap on the pairs 

of variables (features) chosen. For pur:r;)Oses of illustration, we will provide a precise 

measurement of the overlap rates between different classes as they are projected onto 

subspaces generated by each pair of feature components. We will also give a precise 

measurement of the overlap rates between different classes taken in R4 . 

We tested all combinations of two features. Fig.3.4 illustrates IRIS data projected 

onto each two-feature subspace. We used the following Maximum Likelihood formula to 

estimate the parameters of each component ( class): 

~. = _1_ "7:~1(X· - µ·)T(X· - µ·) 
i ni -1 6 J- J i J i (3.19) 

i=l,2,3 

Fig.3.5 shows the pdf of the mixture models based on Formula 3.19. The overlap 
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Figure 3.4: Projected IRIS data for each pair of features: a-features (1,2), b-features 
(1,3), c-features (1,4), d-features (2,3), e-features (2,4) and f-features (3,4) 
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phenomena shown in Figure 3.4 are naturally illustrated in the figures of the correspond-

ing pdf s in Figure 3.5. For instance, classes 2 and 3 strongly overlap if feature 1 and 2 

are chosen (Fig.3.4-a). The pdfs of these two classes merge to a (large) one-mode dis-

tribution in Fig.3.5-a. These two classes exhibit partially overlapped distributions when 

any other pair of feature is chosen. It should also be mentioned that class 1 is always 

well separated from the other classes, whichever pair of features is chosen. 

Algorithm COLR was used to compute the O LR for each pair of classes. Table 

3.1 lists the OLRs of each pair of classes for each group of features. From this table, one 

can easily see that classes 2 and 3 are quite strongly overlapped for any pair of features. 

In particular, they are totally overlapped if feature group (1,2) is chosen (the overlap 

rate. ·between classes 2 and 3 reaches 1). The IRIS data also overlap strongly if group 

(2,3). is chosen. On the other hand, feature group (2,4) seems to give the best overall 

between-class ·separation. Using feature group (3, 4), the OLR of class 2 and 3 is a not 

high. This accords with the result of [68]. An important asset of Algorithm COLR is 

thus that it can be used to solve the subset feature selection problem, especially if the 

selection aims to improve classification accuracy. 

Table 3.2 shows the results of all of 4 features used. It is interesting to note that 

the overlap rate for any pair of classes is much lower than when subsets of features are 

used. In fact, the 3 classes are well separated in the original 4-dimensional space. In the 

cluster analysis literature, many authors claim, erroneously, that the IRIS data could be 

considered as a 2-cluster data set as well as a 3-cluster data set, based solely on visual 

observation of the 2-D projection of the data set. However, any persan who has built a 

Bayes classifier with a Gaussian pdf for each class should have noticed that the classifier 

performs very well with any reasonable partition of the original data set into a training 
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Figure 3.5: pdf for each pair of features: a-features (1,2), b-features (1,3), c-features 
(1,4), d-features (2,3), e-features (2,4) and f-features (3,4) 

74 



Features (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) 
Glass 1, 2 0.115 0.0001 0.004 0.0001 0.0001 0.0001 
Glass 1, 3 0.111 0 0 0 0 0 
Class 2, 3 1 0.683 0.778 0.895 0.567 0.776 

Number of Classes 2 3 3 3 3 3 

Table 3.1: The OLR for each group of features and each pair of classes 

Glass 1, 2 Class 1, 3 Glass 2, 3 
OLR 3.39 X 10-5 1.66 X 10-11 0.524 

Table 3.2: The OLR for each pair of classes when all feature are used 

set and a test set. The overlap rate concept proposed in this paper allows for a better 

explanation of these results. 

3.4 Gen~rating Tuuthed Data Sets with prescrihed 

OLRs 

In this section, we propose a general framework for generating truthed data sets. 

We restrict our discussion to the case in which there are two components in a mixture. 

The mixture with multiple overlapped components can be made up of various separate 

pairs of components. 

3.4.1 The Factors Affecting the OLR 

It is difficult to give a closed-form solution to generating parameters of the mixture 

models with partially overlapped components. The difficulty arises from the complexity 

of creating an analytic expression to describe the relationship between the degree of 

overlap and the parameters of the components. In the 1-dimensional case, E. Aitnouri el 
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al [58] give an approximate solution to the problem based on a linear approximation to 

the Gaussian components. However, in the multidimensional case, creating an effective 

approximation to the multivariate Gaussian components and solving an equation like 

Eq. 3.15 is a hard task. In this section, we try to solve this problem by a numerical 

method: adjusting one parameter, while keeping the others fixed, to match the prescribed 

overlap rate between components in a mixture. For this reason, we consider the factors 

that affect the OLR. The aim of the following subsections is to show the influence of 

different parameters of the mixture on the OLR. It is very important to understand 

the relationships between the mixture parameters and the overlap rates if one wants to 

generate test data with controlled overlap rates. 

Based on the discussion in the Section 3.2, we restricted our investigation to the 

special case defined in Inference 1. Let G1 and G2 be two Gaussian components of a 

mixture model. Without loss of generality, we suppose that the parameters of the two 

components are given by: 

G1: Œ1 = 0.5, µ1 = (0,0), ~1 = 

G2 : Œ2 = 0.5, µ2 = (3, 0), ~2 = 

:) 
2.1751 

1.825 
1.825 l 
2.1751 

(3.20) 

In what follows, we will show the evolution of the O LR when one of the parameters is 

varied. 

3.4.1.1 Effects of Varying the Mixing Coefficient 

Fig.3.6 shows the effects of varying the mixing coefficient o:1 : 0 --+ 1. The OLR is 

a piecewise continua! fonction of o:1 . Experimental results show that the O LR reaches 
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Figure 3.6: The effects of varying the mixing coefficient on the OLR 

its minimum (represented by Tmin) when a 1 = 0.46. The fact that the OLR reaches 1 at 

both ends means that thetwo components overlap completely when the coefficient _crosses 

a thresho1d. The differeùce between the two covariance matrices is the main reason for . , , , , 
• ,·. 1 

the asymmetry of the OLR curve. We conclude that, for a given OLR (2:: Tmin and:::; 1, · 

we can find a pair of coefficients to match the O LR. 

3.4.1.2 Effects of Varying the Distance Between the Two Means 

Fig.3.7 shows the relationship between the OLR and the distance between the two 

means. For this experiment, we varied µ2 from (0, 0) to (8, 0). When the two means are 

very close to each other (distance < 2.16), the OLR is 1. The OLR decreases rapidly 

to zero once it falls below 1 ( once two partially overlapped components appear). We 

notice that modifying the distance between of the two means leads to values of the O LR 

covering [O, 1]. So we conclude that, for a given OLR (0 :::; OLR :::; 1), we can find a 

value of the distance between two means to match the O LR. The distance between the 

two means is a key parameter to control the overlap rate. 
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Figure 3.7: The effects of varying the distance between the two means on the OLR 

3.4.1.3 Effects of Varying the Covariance Matrix 

Describing the relationship between the O LR and the diff~re1i.ce between the two 

c_oyariance structures is more complex. Under the above simplified assumption, the iso-

hypse of the pdf of G1 is a circle, while the isohypse of the pdf of G2 is an ellipse. The 

difference between the two covariance structures can be characterized by three factors: 

The first is the angle between the two main axes of the isohypses ( the main axis of the 

circle is the x-axis). The second is the ratio between the principal and secondary axes of 

the ellipse. The third is the scale of the main and secondary axes. Fig.3.8 shows the two 

isohypses, main axis and secondary axis. Because the first isohypse of G1 is a circle, the 

angle between the two main axes is equal to the angle between the x-axis and the main 

axis of G2 's isohypse, 02 , as shown in Fig.3.8, and only the main and secondary axes of 

G2 's isopypse are considered. We keep the mixing coefficients and means of the mixture 

unchanged in the following experiments. 

At first, we consider the effects of varying the angle between the main axes of the 

two isohypses. For this factor (see Fig.3.9-a), the angle 02 varies from -n-/2 to 7r /2. It 
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is easily understood that OLR reaches its maximum (not necessarily 1 and represented 

by r max) around 02 = 0 and reaches its minimum ( not necessarily 0 and represented by 

r min) around 02 = ±1r /2 , since the principal axis of the ellipse is ( almost) aligned with 

the center of the circle (or vertical). If the given OLR is in [rmin, TmaxJ, we can find out 

two values (positive or negative) for matching the O LR. 

Next, the effects of changing the ratio between the principal and secondary axes are 

shown in Fig.3.9-b. The curve shows the change in the overlap rate as the secondary axis 

of one isohypse increases to equal the main axis. We keep the angle 02 = 1r / 4 and the 

"main axis" of G2 =2.0. The "secondary axis" varies from 0.02 to 2.0. The curve shows 

that the overlap rate starts from its minimum, r min, and increases rapidly to 1. 0 as the 

secondary axis increases. This means we can find a value of the secondary axis of G2 to 

match the given O LR (~ r min and :S; 1). 

Finally, the effects of the scale of the principal and secondary axes has effects cor-

responding to the second (see Fig.3.9-c). However, in this term, the curve indicates the 

change in the overlap rate as the "main component" (the component with higher peak) 

changes to "secondary component" ( the component with lower peak). The junction be-

tween the two arc segments is the point at which the main component translates to the 

secondary component. In this curve, the value of the OLR covers [0, 1]. Thus we can 

choose a scale of the principal and secondary axes to match any given OLR ( E [0, l]). 

3.4.2 Examples of Generating Truthed Data Sets 

In this subsection, we show some truthed data sets generated to match certain 

overlap rates by modifying the different parameters mentioned above. 
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Figure 3.10: Generated data sets based on the coefficients: a) OLR is 0.99, coefficients 
are 0.67 and 0.33; b) OLR is 0.8, coefficients are 0.54 and 0.46; c) OLR is 0.67, coefficients 
are 0.46 and 0.54 

Figure 3.11: Generated data sets based on the distance between the two means: a) OLR 
is 0.99, distance is 2.16; b) OLR is 0.8, distance is 2.84; c) OLR is 0.60, the distance 
between two means is 3.28; d) OLR is 0.40, distance is 3.76. 

We chose 0.99, 0.80, 0.60 and 0.40 as four prescribed OLRs. The initial components 

are given by Eq.3.20. The first example involves choosing the coefficients of the mixture 

described in Section 4.1 to match the certain OLRs. Fig.3.10 shows three data sets. 

Their OLR are 0.99, 0.80 and 0.67. There are no coefficients that yield the OLRs of 0.6 

and 0.4. We replace 0.60 by 0.67 to generate a similar data set. 

Fig.3.11, 3.12, 3.13 and 3.14 show the data sets generated based on adjusting each 

of the other parameters. 

3.4.3 Evaluating Objectively Validity Indices 

As mentioned in Chapter and 1, determination of the number of clusters is still 

a open problem in cluster analysis. Many "validity indices" have been proposed for 
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Figure 3.12: Generated data sets based on the angle between two main axes: a) OLR 
is 0.99, angle is 14.9°; b) OLR is 0.80, angle is 40.7°; c) OLR is 0.60, angle is 52.1 °; d) 
OLR is 0.40, angle is 73.3°. 

Figure 3.13: Generated data sets based on the ratio between the axes of G2 : a) OLR is 
0.99, ratio is 0.23; b) OLR is 0.80, ratio is 0.115; c) OLR is 0.60, ratio is 0.065; d) OLR 
is 0.40, ratio is 0.018 

Figure 3.14: Generated data sets based on the scale of the principle axis of G2 : a) OLR 
is 0.99, axes is 2.4; b) OLR is 0.80, axes is 2.08; c) OLR is 0.60, axes is 1.75; d) OLR is 
0.40, scale is 1.06 

82 



1 1 

' . 
' ' 1 ... 

' l .'t" l 
-..:.c..,. ...... , .. t .... ~h .. 

t, f l 

· .. . t 1 

'"'r ' ,,...,,,~~ 0 i 1. • • ,: .. r ' ....... 
a 

Figure 3.15: Generated data sets : a) OLR is 0.07 in X 1,1 , b) OLR is 0.50 in X 1,2 , and 
c) OLR is 0.80 in X1,s-

this purpose. The performance of a validity index depends, however, on how clusters 

overlap each other. We are therefore interested in evaluating the ability of existing 

validity indices to identify overlapping clusters. The theory on overlap between clusters 

provides a physical measure of the complexity of a data set and lays clown a foundation 

, for generating truthed overlapped data sets with prescribed degrees of overlap between 

clusters, thus making it possible to rate the performance of a validity index. 

We generated 5 groups of data sets ( each group having three data sets containing 

three clusters) with controlled OLR, based on the theory discussed above. Each data 

set is represented by Xg,s, with g (the number of group) varying from 1 to 5 and s (the 

number of set) from 1 to 3. Due to space limitations, our discussion focuses on the results 

for these individual data sets only (instead of full statistics). The first four groups of 

data sets are similar in that the data sets in each are 3-dimensional, the first cluster 

is well separated from the two others, and the OLR between cluster 2 and cluster 3 is 

respectively 0.07, 0.50 and 0.80 for the different sets in each group. 

Each set in group X 1 has 800 points. X 1,1 is a mixture of ellipsoidal and spherical 

clusters with different number of data points in each cluster (Fig.3.15). The OLR between 

clusters 2 and 3 in X 1,1 is 0.07. By varying the angle between the main axis of cluster 3 
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and the x-axis, we generate the two other data sets X 1,2 , and X 1,3 with different OLR 

between clusters 2 and 3 (Fig. 3.15(b) and (c)). For X 2,1 of the second group, X 2 , the 

first cluster has the form of a sphere with 200 data vectors. The second one is large and 

has the form of a hyper-ellipsoid with 450 data vectors. The last one is dense and has 

the form of an ellipsoid with 250 data vectors. X 2,2 and X2,3 are generated based on X 2,1 

by moving the center of cluster 3 doser to the center of cluster 2. The third group, X 3 , 

is very similar to X 2 in the way X 3,2 and X 3,3 are generated. The major difference is in 

the first data set X 3,1 , in which there are only spherical clusters. The numbers of data 

points in the clusters are respectively 300, 500, and 200. The fourth group, X 4 , has 600 

data vectors. The first and second clusters of X 4,1 are spherical, with 150 and 200 data 

vectors respectively'.. The last one has the form of an ellipsoid with 250 data vectors. 

The main axi~ of ~he third clust~r (the ellipsoid) forms an angle of 30 with th~ x-:axis. 

X 4,2 and X 4,3 are generated by scaling the secondary axis of cluster 3 (while keeping the 

principal axis fixed). The last group, X 5 , contains three 2-dimensional data sets (X5,1 , 

X5,2 , X5,3). Each contains two spherical clusters and one ellipsoidal cluster. Each cluster 

has 500 data vectors. The significant overlap is between one spherical cluster and the 

ellipsoidal cluster. Contrary to X 4 , both axes of the ellipsoidal cluster are changed to 

obtain the three overlap rates. 

Table 3.3 summarizes the results of the main validity indices introduced in Section 

2.2 in conjunction with the FCM algorithm for the five groups of data sets. 

The results in the preceding table invite several comments. 

1. The behavior of Vpc in all our experiments is almost the same. It fails even when 

OLR is low. In general we can say that Vpc is very sensitive to overlapping clusters. 

It performs well only with well-separated clusters. 
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data sets OLR Validity Indices 
Vpc VFs Vxie VzLE VRH VRLR VwsJ 

X1,1 0.07 2 _Q _Q _Q _Q _Q _Q 

X1,2 0.50 2 9 9 9 _Q _Q _Q 

X1,s 0.80 2 4 2 2 2 4 4 
X2,1 0.07 _Q 4 _Q _Q _Q _Q _Q 

X2,2 0.50 2 5 _Q 2 2 _Q _Q 

X2,s 0.80 2 6 2 2 2 4 _Q 

Xs,1 0.07 2 4 2 _Q _Q _Q _Q 

Xs,2 0.50 2 7 2 2 _Q _Q _Q 

Xs,s 0.80 2 4 2 2 2 2 _Q 

x4,1 0.07 2 4 2 2 _Q _Q _Q 

x4,2 0.50 2 9 2 2 _Q _Q _Q 

x4,3 0.80 2 10 _Q _Q _Q _Q _Q 

Xs,1 0.07 2 4 2 2 _Q _Q _Q 

Xs,2 0.50 2 _Q 2 2 _Q _Q _Q 

Xs,s 0.80 2 _Q 2 2 2 _Q _Q 

Table 3.3: The optimal number of clusters 

2. We also note thàt the validity indices VzLE and VxIE are very vulnerable to change 

in the OLR. They yield acceptable results when OLR is low. When OLR increases, 

they tend to favor smaller numbers of clusters. On the other hand, the results given 

by VzLE and VxIE for X4,1 and X 5,1 show that these indices fail even when O LR 

is low (0.07). We believe that elongated cluster shape and loose density have a 

stronger negative impact on the results yielded by VzLE and VxIE• 

3. The behavior of VFs is special in that it reacts differently from all the other tested 

validity functions with respect to increasing O LR. It tends to favor a larger number 

of smaller clusters. Although it performs well with X 5 , the experiments reported 

here seem to suggest that VFs is also very sensitive to cluster shape and density. 

4. The validity indices that yield consistently accurate and stable results are VwsJ 
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and VRH· 

3.5 Discussion and Conclusion 

The main contribution of this chapter is the introduction of the ridge curve concept, 

which allows us to establish a theory of overlap in mixtures of Gaussians. The signif-

icance of this theory is that it provides a mathematically rigorous way to explain the 

overlapping phenomenon and a computationally feasible way to calculate the degrees of 

overlap between the components of a mixture. It also provides a foundation for generating 

overlapped data sets for use in validating clustering and classification algorithms. 

Comparing the overlap rate described in this thesis with conventional concepts of 

the distance of two Gaussian distributions such as Mahalanobis distance [83, 78], ((µ1 -

µ2f"E,-1(µ1 - µ2))1!2, and Bhattacharyya distance [78], ½(µ1 - µ2f(E1!E2 )-
1(µ1 - µ2) + 

½ ln ~, we can make the following comments, All of these notions are related to 
2 JE1JIE2I 

the separability of two components. However, there are two major differences between 

the OLR and, say, the Bhattacharyya distance. One is that the OLR takes the a priori 

probability of each component into account instead of assuming that the two components 

have the same a priori probability. Although further studies are necessary, we believe 

that this property could potentially make the O LR a better measure of separability 

in various situations. Another more important difference is that not only is the OLR 

computed, but also the point in the space at which the OLR is reached is located. Apart 

from providing a "visual" interpretation and a better understanding of separability, this 

property is a key element for enabling the inverse operation, i.e., generating truthed data 

with a prescribed degree of overlap. 
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Chapter 4 

Applications 

In this chapter, we introduce two applications of the algorithmsi developed in- pre-

vious chapters. First, we propose a new method for feature selection in classification 

based on the new model selection clustering algorithm: FBSA. Second, we .make our 

theory of cluster overlap to develop a hierarchical clustering algorithm for color image 

segmentation. 

4.1 A Fuzzy Clustering Based Algorithm for Subset 

Feature Selection 

The problem of subset feature selection for classification is defined as follows: Given 

a set of features, select the subset that performs the best under some classification sys-

tem. Feature selection not only can reduce the cost of recognition by reducing the number 

of features that need to be collected, but in many cases can also provide better classi-

fication accuracy due to the finite sample size effect [9]. U sing a subset of features can 
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increase the understandability of the acquired knowledge. Feature selection can help data 

visualization by reducing the number of dimensions. 

4.1.1 Introduction 

Many methods are used for feature selection. Dash and Liu summarized these meth-

ods [84]. Feature selection involve: generating the subset of features and evaluating them. 

Three major strategies can be adopted in generating the subset of features: 1. Complete 

strategy involves examining all possible combinations of features, which becomes too ex-

pensive if the feature set is large; 2. Heuristic strategy uses certain guideline to control 

the selection processing; it is simple to implement and produces rapid results [85, 86]; 3. 

Random strategy selects features randomly (probability approach). Five types of func-. 

tion are often used to ~valuate features subsets: 1. distance measures; 2. information 

measures; 3. dependence measures; 4. consistency measures; and 5. classification error 

rate measure. 

Considering all of these methods and evaluation fonctions, the goal of feature selec-

tion can also be stated as finding the subset of features which is the most "structurally 

similar" to the original feature set. The "structural similarity" of two feature sets can 

be described by the cluster structure of two data sets. Dy and Brodley examined feature 

selection wrapped around expectation maximization (EM) clustering with order identi-

fication [87]. They introduced the clustering algorithm (EM) into the feature selection 

problem for unsupervised learning. For the classification problem, however, little atten-

tion has been paid to the role of clustering methods in feature selection. The difficulty 

stems from the complexity and inaccuracy of clustering algorithms when the number of 

clusters is not known. 
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Here, we propose a wrapper approach to feature selection using the efficient clus-

tering technology, FBSA. The approach is based on the fact that the selected feature 

subset is "structurally similar" to the original feature set. Based on FBSA, we propose 

a novel algorithm for focusing on the structural similarity in feature selection process. 

We define a classification error rate for evaluating the subset of features. Extensive test 

results derived by applying the new algorithm to two artificial data sets and a real-world 

data sets are reported. 

4.1.2 Feature Selection Procedure 

We adopted the heuristic strategy for generating a feature subset. The goal of the 

procedùre is to· wtap the feature subset based on the clustering algorithm.· Unlikethë°:' 
. . . 

filter approach, whicfr 'âttempts to assess the merit of features froni -the data alone, th~. 

wrapper approach conducts a search for a good subset using an induction algorithm 

as part of the evaluation fonction [88]. The main idea of our algorithm is to evaluate 

each subset by a criterion, which defined by the classification error rate. The Greedy 

technique will be used in the search procedure. As we know, searching the entire feature 

subset space will lead to an 0(2d) (dis the the number of entire features) computational 

problem. In order to by-pass the combinatorial explosion problem, we use a multi-step 

search process [84]. Each step tests remaining features and chooses the best one to add 

to the selected subset. The newly selected feature is the most "combinable" with those 

already selected. In other words, combining the new feature with the existing selected 

subset should lead to a lower classification error rate and this error should be the lowest 

among all the errors resulting from combining one non selected feature with the selected 

subset. The search process stops when adding any of the remaining feature to the selected 
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subset would yield an increase in the classification error rate. 

FSBC (Feature Selection Based Clustering) Algorithm: 

1. Set selected subset SS to empty, and cr = 1. 

2. For any feature li, which is not in SS 

2.1 Let Ti= SS U {Ji}, and create a new subspace data set SPi using the features 

of~-

2.2 Call FBSA on SPi to determine the number of clusters and produce clustering 

results. 

2.3 Compute the classification error rate R( i) based on the subspace S ( defined 

3. R(j) = minfü!ss{ R( i)} with the lowest classification error rate. 

4. if R(j) < cr then cr= R(j); SS= Tj; goto step 2; else output SS, stop. 

The classification error rate in the feature selection algorithm is defined as follows: 

Suppose C is the number of classes in the original data set, S is a subset of features, 

SP(S) is the subspace data set formed by S, K(S) is the number of clusters in SP(S), 

and P(S, k, i) is the number of objects in cluster k of SP(S) belonging to the class 

labelled i in the original data set. According to the majority rule, 

CP(S,k) = {jjP(S,k,j) = max{P(S,k,i)} 
1:S;i:S;C 

( 4.1) 

indicates that cluster k is related to class j or the main class label of cluster k is class j. 

Consequently 
n 

EC(S,k) = I: P(S, k, i) (4.2) 
i=l,i=f.CP(S,k) 
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indicates the discrepancy between cluster k and its main class label. The classification 

error rate of S is defined as 

K(S) 

R(S) = L EC(S, k)/N (4.3) 
k=l 

where N is the number of objects in the data set. 

The value of R(S) shows the accuracy of the representation of the original class 

information using the data set corresponding to the subset of features. The lower the 

value of R(S), the better the representation is. This means that the cluster structure of 

the subspace data set is "similar" to the class structure of the original data set. 

This structural similarity can be interpreted in a more intuitive way. Since the goal 

of feature selection is to better represent class information, we expect that the selected 

subset of features leads to a cluster structure with each cluster corresponding as closely as 

possible to a single class in the original data set. More than one cluster may correspond 

to a single class. However, the case where one cluster corresponds to multiple classes 

should be avoided. The classification error rate defined above allows us to grade each 

subset and distinguish the different cases. Obviously, this evaluation relies on accurate 

assessment of the structure of the data set corresponding to the subset of features. The 

use of an efficient clustering algorithm distinguishes our feature selection algorithm from 

existing ones. 

4.1.3 Experimental Results 

In this section, we will report experimental results on three data sets, of which one 

cornes from the public domain, one is generated using a mixture of Gaussian distributions, 
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subset(SS) (fi) R(s) 
stepl Bi 5/32 
step2 {Bi} Bo 5/32 
step3 {Bi, Bo} Ai 3/32 
step4 {Bi,Bo,Ai} C 5/32 

Table 4.1: Selection results for DataSetl 

and one is a real world data set. The first data set is CorrA1[89]. This data set has 32 

instances. It contains two classes and six boolean features (A0 , Ai, B0 , Bi, I, C), of which 

feature I is irrelevant, feature C is correlated to the class label 75% of the tirne, and the 

other four features are relevant to the boolean target concept: (Ao /\ Ai) V (Bo/\ Bi). 

In [84], Dash and Liu tested the data using eight different feature selection algorithms. 

A few of them correctly select the actual subset (A0 , Ai, B0 , Bi), while most produce a 

subset including C or I. Although the data has not clear class structure, :our algorithm 

results in a·final selected feature subset including {Bi,Bo,Ai}. This result shows that 

all of the features selected are important, although one important feature is bypassed. 

Table 4.1 shows results at each selection step. 

The second data set is generated using a mixture of Gaussian distributions. It 

contains 250 data points and has ten features { xi, x2 , ... , x10}. The first three features are 

significant. The subspace data set corresponding to the first three features { xi, x2 , x3 } 

is a mixture of five Gaussian components. The other features are as follows. x 6 = 

2 x xi, x 7 = 4 x x2 , x8 = 5 X X3 are three relevant features. X4 and x 5 are white-noise 

uniformly distributed variables. x 9 and x 10 are "Gaussian noise". They are normal 

distributions and independent from each other. The class label is based on the first 

three features. There are 50 data points in each class. Due to the noise and excrescence 

features, classifying the data set using all features would result in a classification error 
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subset(SS) (fi) R(s) 
stepl X2 138/250 
step2 {x2} X3 111/250 
step3 {x2, xs} X1 17/250 
step4 {x2, xs, x1} X7 90/250 

Table 4.2: Selection results for DataSet2 

rate of 178/250. Furthermore, this result does not indicate the class property of the data. 

By applying our new feature selection algorithm to the data set, the classification error 

rate is decreased remarkably, reaching 17 /250. Table 4.2 shows the selection results. The 

selected feature subset is { x2, x3, x1}, 

The third experiment was clone on feature sets extracted from an MSTAR small 

vehicle target/shadow image database. These features include moment, surface, shape, 

perimeter, Fourier descriptor, complexity, etc. We calculated a total of 20 features for . · 

each target and 20 features for the shadow. The feature vectors were previously grouped 

according to the orientations of the target. (Details about the image segmentation al-

gorithm was presented in [58].) There are 3 classes of targets. The aim of the feature 

selection algorithm is to find appropriate features to aid in solving the target classifica-

tion problem. Here we test 11 data sets, each of which contains the observation data 

from an orientation. 

In this problem, we do not know which features are the best for targets. The features 

may play different roles in different target/ orientation combinations, so different target/ 

orientation combinations may need different features. Using all features in classification 

lead to inaccurate classification (average classification error rate is 44.6%) and high time 

cost. 

Table 4.3 compares the time cost (seconds) and classification error using selected 
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All Feature Selected Feature 
time cost error rate (%) selected feature time cost error rate (%) 

datal 21 37 {!16, f4, fi} 1.5 15 
data2 144 39 {!16, !18, f40, 126} 14 25 
data3 103 47 {!35, fis, !16, h1, h9} 15 24 
data4 36 47 {!16, h6, f19, fis} 3.6 18 
data5 7 48 {!15, fi, ho, ho, h} 0.9 25 
data6 4 34 {f19, f15, h1} 0.3 21 
data7 6 41 {!15, h5} 0.3 24 
data8 16 55 {!16, h5, fi} 1.3 34 
data9 22 40 {ho, !11, h9, h3, f5} 5 19 

datalO 53 56 {!16, fi, hs, f40, h4} 5.2 29 
datall 34 47 {!19, f5, fi, h5} 3.5 22 
average - 446 - - 23 

Table 4.3: Comparison of results for third experiment 

feature subsets and using all features. Here, we use the nearest neighbor classifier as the 

l~asic classificatio:o. ~Jgorithm and the same computer as mentioned in chapter 2. Using. 

our new feature selection algorithm results in efficient feature subsets for classification 

in all data sets. The numher· of sel~cted features is between 3 and 6 ·of the 40 features. 

This leads to reduced cost in terms of thne and memory (85% lower using the selected 

features than when all features are used). The classification accuracy rises observably. 

The average classification error rate is clown to 23% from 44.6%. Furthermore, the results 

shows that some features are important in practice. For example, f 16 is selected in most 

data sets, fi and f 18 are also often selected. This means they are relevant for the targets. 

4.1.4 Concluding Remarks on the Feature Selection Algorithm 

We have presented a wrapper approach to feature selection using fuzzy clustering, 

and proposed a new feature selection algorithm(FSBC) based on a clustering method. 
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The particularity of this algorithm can be summarized as follows: 1. the true number 

of clusters in the subspace data set, for use in determining the cluster structure of the 

subset of features; 2. the classification error rate when the subspace data set and the 

original data set contain different numbers of clusters (classes), for use in comparing the 

cluster structure information of a subspace data set and the class structure information of 

the original data set. We are currently carrying out an evaluation of the new algorithm, 

including comparison with existing algorithms and testing on different types of data sets. 

4.2 Measuring Overlai) 'Rate· for· Cluster Merging in 

a Hierarchical Approach to Color Image Seg-

mentation 

In color image segmentation, it is appropriate to study the cluster overlapping phe-

nomenon with the hypothesis that cluster distributions can be described by mixtures 

of Gaussians. In this section, we present a new theory regarding cluster overlap, which 

allows for the computation of a cluster overlap rate that turns out to be a very good 

measure of similarity between clusters. Using this measure, we develop a new hierarchi-

cal algorithm for image segmentation that partially solves the problem of determining 

the best number of clusters. Experimental results demonstrate the effectiveness of the 

new algorithm. 
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4.2.1 Introduction 

Image segmentation is an important first step towards image understanding. Clustering-

based segmentation methods involve separating pixel features into clusters that corre-

spond to homogeneous regions. Algorithms such as the k-means, the Fuzzy C-Means 

[27], EM [23] and many hierarchical algorithms [38] based on cluster merging are often 

used in image segmentation [90, 91, 92]. These algorithms are popular because they can 

be used to build robust and autonomous segmentation systems for dealing with large 

numbers of images in applications such as content-based image retrieval. 

Many of these clustering algorithms assume implicitly that the data distribution . 

model is a: mixture of d-b,üssians. This offers a good trade-off betweenthe modePs corn-· 

plexity and its capacity to approxima te the probability density fonction (pdf) • of the · 

image pixels (feature vectors). In image segmentation, the smoothing operation (prepro-

cessing) often applied before the clustering operation makes the mixture of Gaussians 

hypothesis even more realistic. Then{ is a close relationship between the components in 

the mixture model and the clusters in the feature space. Cluster analysis contributes 

to image segmentation by identifying clusters in the input data in order to accurately 

estimate the parameters of the mixture including the number of components, the param-

eters of each component ( mean and covariance matrix) and the mixing parameters (prior 

probability of each component). 

Hierarchical clustering techniques are also frequently used in image segmentation. 

They generate a nested series of partitions by merging clusters ( agglomerative approach) 

or splitting them ( divisive approach), based on a measure of similarity. Measuring the 
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similarity between clusters is the key to hierarchical algorithms. Typical similarity mea-

sures include minimum distance (single-link), maximum distance ( complete-link) and 

average distance ( average-link) [37]. All of these distances are based on direct compari-

son between points in two clusters and do not take into account the distribution model of 

each cluster. The time and space complexity of a hierarchical algorithm is typically higher 

than for a partition-based algorithm. However, hierarchical algorithms are more versa-

tile than partitioning algorithms. They often work well on data sets with non-isotropie 

clusters. Like many partition-based algorithms, hierarchical algorithms also require that 

the number of clusters be given in advance. 

The problems of dealing with overlapping clusters and estimating the number of clus-

ters share a common root. Both require a mathematically sound criterion for deciding 

whether overlapping clusters are distinguishable from each other. Current understanding 

of the overlapping phenomenon in the multi-dimensional case is very intuitive. There is 

no simple measur'e that characterizes the degree of overlap between components as a 

fonction of the mixture parameters. This is why work on the design and evaluation of 

clustering algorithms is often carried out on an empirical basis. The similarity measures 

used in hierarchical clustering, as mentioned in the previous paragraph, are an example. 

Evaluation of clustering algorithms is another example. Few authors evaluate their algo-

rithms in a formal way, according to the basic mixture of Gaussians hypothesis regarding 

data distribution, which is fondamental to the design of their clustering algorithms. 

Here, we propose a hierarchical approach for color image segmentation. The ap-

proach is based on the measurement of the similarity between two clusters. The theory 

of cluster overlapping, which we presented in previous chapter, provides a natural way 

to merge two clusters. The new algorithm starts from a initial number of clusters and 
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Figure 4.1: Generated clusters for comparing average-distance-based and OLR-based 
similarity measures 

merges the clusters with higher overlap rate for decreasing the number of clusters toits 

true value. 

4.2.2 Overlap Rate and Distance between Two Clusters 

The overlap rate proposed in the previous section can be used directly as the simi-

larity measure in a hierarchical clustering algorithm. In fact, the conventional similarity 

measures based on the minimum distance or the maximum distance are clearly not ap-

propriate under the hypothesis that each cluster follows a Gaussian distribution (has an 

ellipsoidal shape). The following example shows why OLR is also a better similarity 

measure than the average distance. 

Figures 4.1-a and 4.1-b both contain artificially generated clusters. The cluster 

centered at the origin is the same in both figures. The other cluster in each of the two 

figures has the same center, orientation and length on the principal axis. They differ only 
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in the width on the secondary axis. The overlap rates between the two clusters in each 

figure are very different (OLR=0.811 in Figure 4.1-a vs. OLR=0.388 in Figure 4.1-b ), 

while the average distance is very similar in the two figures (3.578 vs. 3.541). Thus, 

according to the average distance, we obtain the strange conclusion that the two clusters 

in Figure 4.1-b are more similar than the clusters in Figure 4.1-a. 

Another advantage of using the overlap rate as a similarity measure, compared to 

distance measures, is that the value of OLR is normalized between O and 1. This makes 

the values of similarity between clusters more comparable. More importantly, by ex-

amining the maximal OLR, we can obtain an idea of the minimum separation between 

clusters at each phase of iteration of a clustering procedure. This could be used, in turn, 

as a condition to stop the clustering process and to determine the .number. of clusters. 

There is, however, a problem with using the overlap rate as the similarity- measure. · 

Since it requires estim,ation of the mean and covariance matrix, each cluster must ·have at. 

least a minimum number of data points. Therefore, a hierarchical algorithm using OLR 

as a similarity measure cannot start with one data point for one cluster, as is the case in a 

conventional approach. A solution to this problem could be to start with a conventional 

approach using the average distance as the similarity measure, and then switch from the 

distance measure to OLR when the number of data points in each cluster is sufficient. 

We have chosen another approach to this problem. It is known that running the k-means 

algorithm, using a large number of clusters and a random procedure to initialize the 

cluster centers, can yield a set of clusters that provides good coverage of the data set. 

The hierarchical clustering techniques can then be applied to the results of the K-Means 

algorithm. 
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4.2.3 OLR-based Merging Strategy in Hierarchical Clustering 

Algorithm 

In designing of the new algorithm, the issues of determining the number of clusters 

and of merging efficiency received most of our attention. In general, we could control 

the number of clusters by setting a minimum threshold value for OLR and running an 

iterative procedure for cluster merging, each time choosing the cluster pair having the 

maximum O LR value exceeding the threshold. In image segmentation, one usually wants 

to set the maximal number of clusters ( number of regions with different characteristics), 

Cmax, and hope that the algorithm can find the best number between 1 and Cmax. It is 

difficult for a user to set the threshold so that the merging process runs until the number 

of remaining clusters falls below Cmax. On· the other hand, nor is it a good idea to use 

the maximal number alone as the controlling parameter for merging process, since the 

merging would always stop at Cmax - l clusters. The efficiency problem is related to the 

number of pairs of clusters that are merged in a single iteration phase. 

Algorithm COLRM (Clustering using OLR-based merging) 

1. Input a data set 

2. Enter values for the parameter Cinit, Cmax and 8 (a parameter to control the OLR 

level). 

3. Set C = k = Cinit and cluster the data set by the K-Means algorithm ( C is used 

to keep track of the number of clusters at each phase). 

4. Calculate the overlap rate: Oij, between each pair of clusters (1 <= i < j <= C) 
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using Algorithm COLR and calculate the maximum overlap rate 

Curr M axO LR = max { OiJ} 
l~i~j~C 

5. Select and merge all the possible candidates of cluster pairs: 

(a) A pair of clusters (i, j) is a candidate if its OiJ satisfies: 

Curr ]\Il axO LR - ô < OiJ :::; Curr M axO LR 

(b) A candidate is selected for merging is if its OiJ satisfies: 

(4.4) 

(4.5) 

(4.6) 

( c) Merging two clusters is performed by grouping all the data points of the clus-

ters in one subset and recalculating the mean, covariance matrix and the 

mixing parameter according to Eq.3.19. 

6. Update the current number of clusters C. 

7. Decide whether the current OLR threshold should be further reduced: 

(a) If ( C > Cmax), then goto Step4. 

(b) - Otherwise, goto Step8. 

8. Calculate the overlap rate OiJ between each pair of clusters (1 <= i < j <= C), 

and then goto Step5 if the expression Eq.4.5 holds at least for one pair of clusters, 

otherwise, output the clusters. 
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The algorithm contains three input parameters that can be easily set by the user. 

• Cinit: the initial number of clusters for the run of k-means algorithm. Any number 

smaller than n/ d could possible be used for Cinit· In image segmentation, n/ d can 

be a very large number. U sing a number that is too large could significantly increase 

the runtime of the k-means algorithm. In our experience, any value between 30 and 

100 is a good choice for images whose size ranges from 128 x 128 to 512 x 512. 

• Cmax: the maximum number of clusters in the final segmented image. U sually, the 

condition, Cmax < Cinit, holds. 

• /5: a parameter for controlling the merging process. The merging procedure selects 

all pairs whose OLR value falls within the interval ( Curi' ]\Il axOLR-15, Curr M axOLR) 

as candidates for merging. /5 is a more sensitive parameter than the two previous 

ones. It has some impact on the time efficiency and on the number of final clusters 

obtained. According to our experience, any value between 0.05 and 0.15 is a good 

choice. In this paper, we have used /5 = 0.1 in all tests of the proposed algorithm. 

4.2.4 Application to Color Image Segmentation 

Next, we report several preliminary results of applying the proposed algorithm to 

color image segmentation. Both synthetic and real images were used. In order to show the 

effectiveness of the algorithm, the pre-processing of each image was limited to minimum. 

In fact, no pre-processing was applied to synthetic images. The transformation to the 

CIE (L, u, v) color coordinate system is applied to real images in order to unify the color 

space. Only color features, i.e. (R, G, B) from synthetic images and (L, u, v) from real 
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Figure 4.2: Comparison between the k-means algorithm and the new algorithm. ( a) is 
the original image; (b) is the image obtained by applying the k-means algorithm with 
k=4 ( which is the known number of classes in this case); ( c) is the image obtained by 
the new algorithm (the number of clusters, which is 4, is obtained by the algorithm). 

images are used as input to the clustering algorithm. Throughout the · experiments the 

three input parameters are set as follows: Cinit = 30; Cmax = 6 and 15 == Q;l. 

4.2.4.1 Experiments with Synthetic Images 

The Fig.4.2 and Fig.4.3 show experiments with two synthetic images. Fig.4.2-a 

shows the original image generated using a mixture of four Gaussian components. The 

main difficulty with this image is with the "circle" and its "background" in the upper 

left part of the image. The Gaussian components corresponding to these two "abjects" 

are quite close to each other. The shape of each component is elongated. They are 

parallel along the principal axis. However, the two components are well separated from 

each other (OLR is very small). Partition-based algorithms such as the k-means cannot 

distinguish between the two clusters because of their proximity if the number of clusters 

is initialized to be the true number of components. U sing the proposed algorithm, the 

two abjects are well separated because the two components are well "covered" by small 
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Figure 4.3: Comparison between the k-means algorithm and the new algorithm. ( a) is 
the original image; (b) is the image obtained by applying the k-means algorithm with 
k=4 (which is the known number of classes in this case); (c) is the image obtained by 
the new algorithm (the number of clusters, which is 6, is obtained by the algorithm). 

Component Center Covariance Matrix of the Component 
100 1 0 0 
150 0 400 0 
150 0 0 25 

Table 4.4: Component parameters of the "circle" abject in Fig.4.2-a. 

clusters after the first step of the K-Means, and then, the merging process takes place 

only between clusters covering the same object. Fig.4.2-b and -c, respectively, show the 

segmentation results using only the k-means algorithm (with k=4) and using the new 

algorithm. Detailed information regarding the two abjects in the three images is given 

in Tables 4.4-4.8. 

Finally, Fig.4.3 depicts another difficulty in image segmentation that is overcome by 

Component Center Covariance Matrix of the Component 
40 1 0 0 
150 0 400 0 
150 0 0 25 

Table 4.5: Component parameters of the upper-left "background" object in Fig.4.2-a. 
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Component Center Covariance Matrix of the Component 
51.50 577.11 1.42 0.41 
149.29 1.42 398.82 -0.24 
149.51 0.41 -0.24 9.93 

Table 4.6: Cluster parameters of the upper-left object in Fig.4.2-b, obtained by the 
K-means algorithm . 

Componer1t Center Covariance Matrix of the Component 
99.50 1.04 0.56 0.17 
149.40 0.56 394.35 -1.49 
149.55 0.17 -1.49 24.54 

Table 4. 7: Cluster parameters of the" circle" object in Fig.4.2-c, obtained by the proposed 
algorithm. 

Component Center Covariance Matrix of the Component 
39.50 1.06 -0.30 0.003 
149.26 -0.30 400.22 0 
149.50 0.003 0 6.29 

Table 4.8: Cluster parameters of the upper-left object in Fig.4.2-c, obtained by the 
proposed algorithm . 
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the new algorithm. The component "34" lies between component "12" and component 

"ABC". All three are small components compared to the "background" component. In 

fact, some noise in the "background" abject forms clusters that are as big as components 

"34" and "12". Depending on the initialization, the k-means algorithm (with k=4) either 

groups "34" with "12" ( case shown in Fig.4.3-b) or with "ABC". The proposed algorithm 

has no problem in distinguishing between these clusters although it does create two more 

clusters from the "background" objects. 

4.2.4.2 Experiments with Real Images 

For the Lena image, the k-means algorithm is initialized using the number of clusters 
. , . . ' 

obta~ned by thé new algorithm. The results are shown in Fig.4.4. By èx~rniriing the 

results,in FigA.4-b and -c, we clearly see that the new·algorithm performs-well"in merging 

gradually changi11g pixels within each region and in preserving the natural boundaries ·:=: 

between regions. These properties are also reflected in the results with the three images 

shown in Fig.4.5. 

4.2.5 Results and Discussion 

In this section, we report a study of hierarchical clustering based on a new concept 

of the overlap rate between clusters. Computation of OLR is facilitated by using the 

theory of cluster overlapping we developed recently. We have presented several argu-

ments on why the overlap rate may be a better similarity measure for comparing clusters 

than distance-based measures. The overlap rate allows us to design a novel hierarchi-

cal algorithm that is capable of automatically determining the number of clusters. The 
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Figure 4.4: Comparison between the k-means algorithm and the new algorithm. (a) is 
the original image; (b) is the image obtained by applying the k-means algorithm with 
k=5 ( which is the known number of classes in this case); ( c) is the image obtained by 
the new algorithm (the number of clusters, which is 5, is obtained by the algorithm). 

a b C 

d e f 

Figure 4.5: Examples showing the performance of the proposed algorithm. (a), (b) and 
( c) are original images and ( d) ( 6 cl usters), ( e) ( 4 cl usters), and ( f) ( 3 cl usters) are the 
corresponding segmented images yielded by the proposed algorithm. 
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preliminary experiments demonstrate the effectiveness of the new algorithm. Severa! 

additional comments are worth mentioning: 

• One might want to compare the overlap rate with the Bhattacharyya distance, 

which is also related to the distance between ( or separability of) two components. 

There are two major differences between the overlap rate and the Bhattacharyya 

distance. The overlap rate takes into account the prior probability of each com-

ponent instead of assuming they are equal for the two components. Moreover, it 

is a geometrical concept. The point where the maximal overlap rate is reached is 

located. The information can be further explored for better segmentation of the 

data set. 

• The hew algorithm is quite time-efficient. In fact, the time required to run this 

algorithm 'is equivalent to running the k-means algorithm in the first step., The · 

time for the following steps related to cluster merging is negligible. 

• The new algorithm can be adapted to deal with cluster models other than mixtures 

of Gaussians. For instance, chain-like or ring-like clusters can be obtained by 

allowing representation of each cluster by multiple centers and covariance matrices 

and by using more restrictive conditions for cluster merging. 

• As an algorithm for image segmentation, it can be used with different features 

including color and texture jointly or separately in order to obtain better segmen-

tation results. 
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Conclusion 

In this thesis, we have proposed efficient model selection algorithm for determining 

the number of clusters. We established a theory on overlapping phenomenon between 

clusters. The new model selection algorithm improves both the accuracy of the number of 

clusters and time cost. The theory of overlapping allows to characterize the phenomenon 

of overlapping between clusters. Both have important impact in real applications. We 

summarize our achievements before discussing future research directions. 

1. Achievements 

1.1 Determining the Number of Clusters 

We have developed a new validity index for measuring the results of a clustering and 

a new model selection algorithm for determining the number of clusters for a given data 

set. The algorithm has been used to develop a feature selection algorithm and an image 

segmentation system 1 . Our major contributions are as follows: 

1 The clustering algorithm of in Chapter 2. has been used straight forwarding in developing an image 
segmentation system. Details have not been mentioned in this thesis. 
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• Yielding accurate numbers of clusters. There are a lot of validity indices 

designed for determining the number of cluster. However, for the data sets with 

overlapped clusters, they often fail to yield the true number of clusters. In Chapter 

2, we have presented a new cluster validity, which is a fonction of the original 

data, cluster centers and membership. A paper titled "A New Validation Index 

for Determining the Number of Clusters in a Data Set", describing this 

work in addressing the number of clusters problem, was published in Proceeding of 

IJCNN'2001 [54]. 

• Efficient model selection algorithm. Determining the number of cluster is often 

based on "trial and error" approach. The "trial and error" approach is affected 

randomly by initialization in the "trial" procedure. We investigated into the effect · 

of random initializELtion. . A paper titled "New FCM-based Algorithms for 

Finding the Number of Clusters", describing our achievements· in addressing 

the time efficiency and stability of model selection algorithm, was published in 

Proceeding of Proceedings of ICONIP2001 [93]. 

A full paper, titled "FCM-based Mo del Select ion Algorithm for Determining 

the Number of Clusters", integrating the new validity index and the model selection 

algorithm, was published in international journal "Pattern Recognition" [6]. 

1.2 Feature Selection Based on Fuzzy Clustering 

We deals with a wrapper approach to the problem of feature selection for classifi-

cation. Based on fuzzy clustering, we develop a new algorithm that operates by testing 
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the error between the cluster structure of the subspace data set and the class structure 

of the original data set. A paper titled "A Fuzzy Clustering Based Algorithm for 

Feature Selection has been published in IEEE: The First International Conference on 

Machine Learning and Cybernetics (ICMLC), Nov., 2002 (94]. 

1.3 Investigating the Phenomenon of Overlap between Clusters 

We have established a theory on the phenomenon of overlap between components 

. ( clusters) in a mixture model. The novel concept of ridge curve and its properties is the 

. ', foundation of the new theory. A short paper, titled "Distinguishing Between Over-

lapping Components in Mixture Models", has been published in The 2nd. IASTED 

International Conference on NEURAL NETWORKS AND COMPUTATIONAL INTEL-

LIGENCE, Feb., 2004, Switzerland [44]. A research report, titled "A Theory on Dis-

tinguishing Overlapping Components in Mixture Models", containing a detailed 

description of the theory and its application in generating truthed data sets, was made 

[77]. This report was recently extended and a complete version was submitted to IEEE 

trans. Systems, Man and Cybernetics. 

1.4 Hierarchical Approach to Color Image Segmentation Based 

on the Overlap Theory 
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Based on the theory on the overlapping phenomenon, we have designed a novel hier-

archical approach to color image segmentation. Merging the similar "objects" ( clusters 

or components) is the main idea of the approach. The overlap rate between two "objects" 

is the main evidence for merging them. A paper, titled "Measuring Overlap-Rate for 

Cluster Merging in a Hierarchical Approach To Color Image Segmentation" 

has been accepted by International Journal Fuzzy System [80]. 

1.5 Validation of Validity Index 

Based on a series ci generatéd truthed data sets, which contains certain. ovèrlapped. 

clusters, we present a new approach for the objective evaluation of validity indices and 

clustering algorithms. A paper, titled "An Objective Approach to Cluster Valida-

tion" has been submitted to Pattern Recognition Letters [95]. 

2. Future Research 

Future work will focus on the applicability of our new validity index and new theory 

on cluster overlapping and the extension of the new theory to other distribution models. 

• Sensitivity to cluster overlapping of new validity. An extensive evaluation 

of the new index and existing indices in terms of sensitivity to cluster overlapping 

is needed for data-mining applications. Such an evaluation can only be carried out 
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with generated data sets, since they allow us to test clustering algorithms in a more 

controlled way. In Chapter 3, we have proposed a formal definition of the overlap 

rate between clusters and have developed methods for automatically generating 

data sets. It will be used to evaluate existing indices and algorithms ( a simple 

result is reported in Section 3.4.3). 

• Application of the new theory to cluster data with non-spherical clusters. 

The study on the cluster structure of a given data set is very important for designing 

efficient clustering algorithm. The cluster structure of a data set includes the shape 

of clusters and the relationship between clusters. In a general clustering algorithm, a 

spherical cluster is represented by one cluster center. For the complex clusters, such 

as line-cluster, ring-cluster and other non-spherical clusters, these algorithms often 

. failed .. An intuitive way for solving the problem is to combine multiple· small sub-

clusters and presenting the cluster by multi-centers. In [32], C. W. Tao proposes 

an algorithm fo; · handling complex clusters. In the algorithm, multiple· ~enters 

are used to represent the non-spherical shape of clusters. In [42], Karypis et al. 

design an algorithm that uses dynamic modelling in cluster aggregation. This is a 

hierarchical approach by merging small sub-clusters. These methods ignore a fact 

that some sub-clusters could corne from a same distribution so that they should 

be merged to one. How to judge these sub-clusters is the key to understand the 

"cluster structure". We propose to investigate into the cluster structure. Based on 

the theory on cluster overlapping, the research on the parameters of the model will 

help determining the condition for merging multi sub-clusters to one. By further 

investigating the covariance matrix of a component in the Gaussian mixture, we can 

determine the orientation of the component. We will investigate into the conditions 
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under which multiple clusters can be merged or combined in order to form cluster 

of complex shapes. We will also investigate how such an approach can be combined 

with projected cluster so that we can deal with high dimension data more efficiently. 
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