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SUMMARY

The renormalization-group (RG) method is applied to study interacting

fermions at finite temperature. A model based on the '04-Grassmann effective

action with 5'[/(A^)-invariant short-range interaction and a rotationally invariant

Fermi surface in spatial dimensions d = 2,3 is studied. We show how the

key results of the Landau Fermi liquid theory can be recovered by this

finite-temperature RG technique. Applying the RG to response functions, we

find the compressibility and the spin susceptibility as solutions of the RG flow

equations.

We discuss subtleties associated with the symmetry properties of the

four-point vertex (the implications of the Pauli principle). We point out

distinctions between three quantities: the bare interaction of the low-energy

effective action, the Landau function and the forward scattering vertex. The

bare interaction of the effective action is not a RG fixed point, but a common

starting point of the flow trajectories of two limiting forms of the four-point

vertex. We have derived RG equations for the Landau channel that take

into account both contributions of the direct (ZS) and the exchange (ZS )

particle-hole graphs at one-loop level. The basic quantities of Fermi Liquid

theory, the Landau interaction function and the forward scattering vertex, are

calculated as fixed points of these flows in terms of the effective action's

interaction function.

The classic derivations of Fermi Liquid theory applying the Bethe-Salpeter

equation and other analogous approaches, tantamount to some sort of RPA-type

(decoupled) approximation, neglect the zero-angle singularity in the ZS' graph.

As a consequence, the antisymmetry of the forward scattering vertex is not

guaranteed in the final result, and the RPA sum rule must be imposed by

hand on the components of the Landau function to satisfy the Pauli principle.

This sum rule, not indispensable in the original phenomenological formulation of

the Landau FLT, is equivalent, from the RG point of view, to a fine tuning of

the effective interaction.

Our results show that the strong interference of the direct and exchange

processes of the particle-hole scattering near zero angle invalidates the R.PA
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(decoupled) approximation in this region, resulting in temperature-dependent

narrow-angle anomalies in the Landau function and scattering vertex, revealed

by the RG analysis. In the present RG approach the Pauli principle is

automatically satisfied. As follows from the RG solution, the amplitude sum

rule, being an artefact of the RPA approximation, is not needed to respect

statistics and, moreover, is not valid.
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CHAPTER I

Introduction

In 1956-1957 L.D. Landau formulated his theory of Fermi liquids.1 Let

us first recall briefly the crucial premises of Landau's phenomenology It is

assumed that the ground state of the interacting fermion system at T = 0 is in

one-to-one correspondence with that of the ideal Fermi gas, i.e., the Fermi sea

is filled up to the Fermi momentum kp, which is related to the fermion density

in the same fashion as for non-interacting fermions (d = 3):

^=2/no(k)^=^. (1.1)
Here N is the number of fermions and V is the volume of the system. We will

set from now on kp = h = 1. The ground-state distribution function no W at

T = 0 is just the Heaviside step function:

no(k) =Q(kF-k) . (1.2)

The excitations of this system are created when particles from the filled Fermi

sphere pass to the available states with k > kp- Landau's idea was to describe

the low-lying excitations in the interacting system (i.e., the excitations into the

states with k such that \k — kp\ <^ kp) in terms of fermion quasiparticles

which have a spectrum like that of free particles, but renormalized because of

interactions. The invariance of the Fermi sphere's volume under switching on

the interaction, expressed by Eq. (1.1), can be interpreted as the following

statement: the number of quasiparticles equals the number of real fermions

constituting the system, i.e., Nqp = N. Notice that the total energy of the

interacting fermion system (the Fermi Liquid) is not an additive quantity of the

quasiparticle energies e(k), contrary to the ideal Fermi gas

E _ f /_ /_ d3k£=^2yn(k)e(k).'w '
Instead, Landau proposed the following expansion for the total energy

£[<^(k)]=£o+ />£o(k)<5n(k)+^ / /(k,k')(5n(k)($n(k/) (1.3)
'k ^ Jk,k'
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Introduction

in terms of the variations 6n of the quasiparticle's distribution function n(k)

over the ground-state distribution no (k)

6n(k) = n(k) - no(k) . (1.4)

£o stands for the ground-state energy at zero temperature and the following

short-hand notations are used:

d3k
L =J (^ • (L5)

Unless necessary, we will not write down explicitly the spin dependence of the

parameters, indicating it by hats only, e.g., n(k) ^-> na^(k), -etc. The energy of

the quasiparticle is given by

e(k) = ^ = eo(k) + j f(k, k')5n(k') , (1.6)

wherein £o(k) gives the equilibrium energy of the quasiparticle at

zero temperature. The /-function, accounting for the interactions between

quasiparticles in the Fermi Liquid (the Landau interaction function), is defined

as follows:

/(k,k')=^^^^ . (1.7)mfk/'

Being the second derivative of the energy, which is invariant under the exchange

<!m(k) <-^ ((m(k ), the Landau function satisfies the symmetry properties

/^(k,k/)=/^(k/,k) . (1.8)

The Landau picture of quasiparticles is limited to the close vicinity of

the Fermi sphere when the quasiparticle's momenta satisfy the condition

\k — kp\ <€ kp, and to the low temperatures T <; Ep^ when the equilibrium

quasiparticle's distribution function differs from the step function (1.2)

only in a narrow neighborhood of width T around the Fermi energy.

Then the quasiparticle energy £o(k), measured from the zero-temperature

value of the chemical potential p,(T = 0) = Ep = A^/2m*, can be written

as £o(lc) ^ ^(k — kp) wherein m* is the quasiparticle effective mass. The

quasiparticle at low temperature is a well-defined excitation, since its life-time r

2



Introduction

increases as r oc T when T —> 0. Since <5n(k) is appreciable only in the

immediate proximity of the Fermi surface, the quasiparticle momenta k and k/

entering the Landau function / can be put at the Fermi surface, so / will

depend on the directions of those vectors only. If the system is spin-rotationally

invariant (e.g., there is no external magnetic field), the Landau function

simplified in such manner depends only on the relative angle 6 between the

vectors k and k , where |k| = |k | = kp- In such case the Landau function can

be represented by two dimensionless angular functions F and G as follows:

^F • /a/3,75(k, k/) = Vp • fa(3,^sW = ^(0)8^6^ + G(0)cr^ • 0-^5 , (1.9)

wherein vp ls ^he density of electron states on the Fermi .level and cr are the

Pauli matrices. It is convenient to use the coefficients {Fi,Gi} of the Legendre

polynomial expansion of {F(0),G(6)} (cf. definition of this expansion (3.39)
below). To emphasize the significance of the Landau function, characterizing

quantitatively the Fermi Liquid state, we recall some exact results of the Fermi

Liquid Theory (FLT). The components of the /-function enter into formulas for

the physical observables, resulting in a renormalization of the free Fermi gas

results, due to the interaction effects. The interaction coefficient F\ provides the

exact relationship between the quasiparticle effective mass and the (bare) mass

of the real interacting particles:

^-=l+Fl . (1.10)
m

The above relationship is exact since it follows from Galilean invariance.

In turn, the renormalized effective mass enters the Fermi-gas-type linear

temperature dependence of the specific heat C = ^m^kpT. The interaction

effects in the Fermi Liquid result in renormalization factors (1 4- -Fo) and

(1 + Go) in the Fermi-gas formulas for the compressibility (K) and the spin

susceptibility (x)i respectively:
1 ~U-p 1 2 1<F

1 A. — 7Jn21 +FQ ' ^ - 4y 1 + C?o '

wherein n is the particle density and g is the gyromagnetic ratio. For the

thermodynamic stability of the energy functional (1.3) Pomerandiuk derived the

conditions for the components of the Landau interaction function:2

{Ft,Gt}> -1, V; . (1.11)

3



Introduction

Shortly after the appearance of the Fermi Liquid phenomenology, much effort

has been dedicated, including by Landau himself, to vindicate some intuitive

assumptions of Landau and elucidate the foundations of the phenomenological

theory. The original phenomenological formulation of this theory is formulated

in terms of bosonic variables [variations of the distribution function n(k)].

The field-theoretic interpretation of the Landau FLT has reformulated the key

notions and basic results of the phenomenological theory entirely in terms of the

fermionic Green functions technique. 3'4'5'6 The demonstration of the equivalence

of the field-theoretic results obtained from the solution of the Bethe-Salpeter

equation with the results obtained from the functional expansion (1.3) and from

the Boltzmann transport equation describing the collective modes, has become a

textbook topic. 5'6'7'8'9 The field-theoretic approach provided not only a solid

basis to phenomenology but also a potentially efficient method to calculate

the phenomenological parameters of FLT from first principles. Silin's extension

of the FLT, which incorporates the long-range Coulomb interaction between

particles, made this theory applicable to charged Fermi liquids as well.10

The conditions under which the FLT breaks down have also been well

known for a long time. If the Pomerandiuk stability conditions (1.11) or the

Landau theorem for the stability of Fermi Liquid against Cooper pairing at

arbitrary angular momentum are not satisfied, then a phase transition towards

a phase different from the Fermi Liquid could occur. (This theorem demands,

roughly speaking, the absence of effective attraction for all components of the

interaction function. For the exact conditions of this theorem see Eqs (3.27)

below.) For instance, the attraction between fermions violates the conditions

of Landau's theorem, and the superconductive phase transition takes place.

Another classical example is provided by interacting fermions in one spatial

dimension, wherein the FLT never works, even without spontaneously broken

symmetry (phase transition). Instead, the operational notion in ID is what

was called by Haldane the Luttinger Liquid.11 (For a recent review on ID

systems see, e.g., the paper by Voit.12) However, the discovery of the fractional

quantum Hall effect13'14 and of high-Tc super conductors15 revealed the existence

in Nature of completely new phases of fermion systems in d > 1 with unbroken
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symmetry, which do not fit in the description provided by the FLT. Those two

extraordinary discoveries engendered a new branch of condensed matter physics,

the physics of strongly correlated fermion systems. For reviews on the recent

developments in this rapidly advancing field see, for example, Refs. 16,17] and

more references therein.]

Current interest in the physics of strongly correlated fermions [non-Fermi

Liquids in d > 1] inspired a new wave of efforts aimed at clarifying the

foundations of the Landau FLT and possible mechanisms of its breakdown.

Let us mention only two approaches, which can be seen as sophisticated

modern counterparts of the two classic formulations of the Landau FLT.

Developing Luther's earlier ideas,18 Haldane put forward the method of

higher-dimensional bosonization19 in order to treat the Fermi Liquid. Followed

by other studies, bosonization approaches to various fermionic liquids have

recently been developed.20'21'22'23 At about the same time, the Renormalization

Group (RG) technique has been applied to interacting fermions in d > 1 with

models based on fermionic field effective actions (see Refs. [24-34] and references

therein). In both approaches it has been established, for models with reasonable

fermion-fermion effective interactions, that the Fermi liquid phase is stable,

whereas adding gauge-field interactions may drive the system towards a

Non-Fermi-Liquid regime, or may result in a Marginal Fermi Liquid phase, like

for composite fermions at the half-filled Landau level.

This work is devoted to the development of the RG approach to

interacting fermions. However, we feel obliged to mention our reservations about

the first method mentioned above, namely, bosonization in d > 1. Our concerns

are, basically, two-fold. Firstly, for the simplest case of the effective action for

short-range interacting fermions, the higher-dimensional bosonization approach

allowed to recover most of the known results of Landau's phenomenology But

this method does not give even a conceptual clue as to what the parameters of

the Fermi Liquid should be (i.e., do the coefficients of the Landau function

satisfy the Pomerandiuk stability conditions?) and how they can be traced over

from a microscopic Hamiltonian. Secondly, in cases of more complicated effective

5
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actions which include, e.g., additional gauge and/or other fields and which

are less well understood, the results provided by the bosonization may be

controversial, since the simplifications done in order to get the approximated

(Kac-Moody) algebra for the boson variables are hard to control. For instance,

the authors of Ref. [36], who applied field-theoretic methods to treat interacting

fermions coupled to a gauge field, claim that the bosonization results20 for

that problem are valid only in the unphysical limit N —> 0, wherein N is

the number of fermion species. For a more detailed discussion of the generic

bosonization algebra, its approximations and related issues, see, e.g., Ref. [22].

Until recently, the most successful applications of RG methods to

interacting fermions have been achieved in the one-dimensional case, where

it was known from exact solutions that non FL phases exist (e.g., the

Luttinger liquid). For earlier reviews on ID systems see Refs. [37,38]. Later,

Bourbonnais and Caron made an extensive RG study of one-dimensional and

quasi-one-dimensional fermion systems at finite temperature. The necessity for

theorists to understand the occurence of Non-Fermi-Liquid phases (or regimes)

of interacting fermions in "isotropic"^ systems of dimensions greater than one,

explains naturally the interest in the development of a RG theory for such

systems. The RG is known to be a powerful method, well-established in

other fields of physics,40'41'42'43 systematic in the sense of a control over

approximations done in practical calculations, and capable of giving results far

beyond the reach of perturbational approaches. As discussed by Shankar in

a very pedagogical paper,28 the RG treatment of fermions in the context

of condensed matter problems is a much more complicated issue than the

analogous procedure for critical phenomena or quantum field theories, because

of two crucial points: Firstly, the existence of a Fermi surface: the low-energy

modes lie in the vicinity of a continuous geometrical object (the Fermi surface)

and not only around isolated points, like the origin of phase space in the

bosonic case. Technically, this introduces additional phase space constraints on

^ In the sense that the system cannot be treated as a set of weakly coupled one-

dimensional chains.

6
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the modes to be integrated out, quite a problem for an arbitrary Fermi surface.

Moreover, the Fermi surface itself is a relevant parameter of theory, and its

shape should renormalize under the RG procedure, except in the rotationally

symmetric case. Secondly, instead of studying the flow of one or a few coupling

constants like in other familiar physical problems, one has to treat RG flow

equations for coupling functions, defined on the Fermi surface. Notice that the

purely ID interacting fermion system can be considered as a degenerate special

case where the Fermi surface is reduced to a set of two points, with a finite

number of coupling constants. It is therefore closer to the usual applications of

the renormalization group. (However, in the quasi-one-dimensional approach of

Ref. [39], one already witnesses the appearance of new coupling constants

related to interchain hopping and one may follow the change in shape of the

(open) Fermi surface under RG flow.)

Let us now more specifically discuss the RG studies of the Fermi Liquid

phase. It will allow us to place our results in the context of other workers's

contributions to the field, and to explain the motivation and goals of our work.

The RG studies of interacting fermions cited above24'25'27'28'29'30 contain

general statements on the stability of the Fermi Liquid phase in d = 2,3 in the

case of short-range repulsion. However, the standard formulas and relationships

of the Landau FLT were not recovered in those papers. To the best of our

knowledge, only in the paper of Shankar were those questions addressed28

and he was closer than others to the right treatment of the FLT from

the RG standpoint. Shankar correctly treated the Bardeen-Cooper-SchriefFer

(BCS) interaction channel of scattering quasiparticles with opposite incoming

(outgoing) momenta and recovered the Landau theorem for the stability of the

Fermi Liquid against Cooper pairing. Treating then the Landau interaction

channel of nearly forward scattering quasiparticles, Shankar recovered some

of the FLT results, combining the tree-level RG analysis with perturbation

theory. He also tried to clarify the relationship between the parameters of

the interaction appearing in the fermionic effective action and the Landau

interaction function of the conventional FLT. Nonetheless, working at zero

7
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temperature, Shankar erroneously concluded that there is no RG flow of the

coupling functions (vertices) in the Landau interaction channel. (We will show

below that working in the framework of the finite-temperature RG technique

allows us to find results for the Landau channel that were missed by Shankar.

The reason is that the /3- function (i.e., the r.h.s. of the RG flow equation) for

the running couplings in that channel becomes singular at T = 0, and it is easy

to get the wrong result in the zero-temperature limit.) As a consequence,

Shankar was not able to distinguish between the forward scattering amplitudes

(scattering vertex) and the Landau interaction function, known from the

field-theoretic version of the FLT to be two different zero-transfer limits of

the non-analytic four-point vertex.5'6'7 Notice that the mistake of neglecting

the RG flow for the forward scattering vertex was partially circumvented in

Shankar's paper by applying perturbation theory (or, more exactly, by summing

an infinite series of particle-hole ladder diagrams) for the calculation of the

physical observables involving that vertex, e.g., the compressibility. Eventually it

gave the standard RPA-type result which could have been directly provided by

the RG at the one (particle-hole) loop level. 3 However, Shankar's neglect of

the RG flow in the Landau channel also resulted in another problem, since by

doing so he mistakenly identified the (bare) coupling function of the effective

interaction with the Landau interaction function. Indeed, the latter has to be

identified with a fixed point of the RG equations, but when the corresponding

RG flow given by the /3-function of those equations is found to be identically

zero (Shankar's case), then the bare value (initial point of the flow) and the

fixed-point value of the coupling function are the same.

Let us give two arguments showing, even without explicit calculation of

the RG flow equation whose solution gives the Landau interaction function, why

this flow is non-zero and, consequently, why the bare interaction function of

the low-energy fermion effective action cannot be identified with the Landau

interaction function. First, identifying the Landau function with the effective

action's bare interaction is inconsistent with other standard FLT results,

because of the role of Fermi statistics (the Pauli principle). Let us consider

for simplicity two-dimensional spinless fermions. Then the Landau interaction
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function defined as in Eq. (1.9) is totally determined by a single function F(0)

or, equivalently, by the set of its Fourier components FI. The forward scattering

vertex constructed and decomposed in the same fashion as the /-function in

Eq. (1.9), is given for the case in hand by a single "charge" component, which

we will denote T(0). The Pauli principle for the scattering vertex demands that

T(0 = 0) = 0. Then the statement is that in a stable Fermi liquid, the standard

relationship between Fourier components of the scattering amplitude (fi) and of

the Landau interaction function (Fi), i.e., TI = FI/(I + -^), cannot satisfy the

Pauli principle for the amplitude (the amplitude sum rule)

FtST-1+F,
=0 (1.12)

if F has the symmetry properties of the action's bare interaction i.e., if

F{0 = 0) = ^ ^ = 0. (For the explanation and rigorous proof of this point

see Sec. 4.2 below). Second, identifying the Landau function with the bare

interaction is inconsistent with the premise of low-energy effective action

method itself, in the way it is applied to condensed matter problems. Namely,

at the starting point of the analysis, the bare parameters of the effective

action, including the interaction, are regular functions of their variables.27'28

It is known, however, that this is not the case even for parameters of a

normal Fermi liquid. The scattering amplitude and the Landau function are two

distinct limits of the four-point vertex when energy-momenfcum transfer goes

to zero. This non-analyticity of the vertex appears in its dependence both

on the small energy-momenfcum transfer and, due to the crossing symmetry,

on the small angles between incoming (outgoing) particles lying near the

Fermi surface. This contradiction between the analytical properties of the two

functions in question (i.e., the bare interaction and the Landau function)

becomes flagrant in the case of more exotic fermion systems. For instance, the

Landau function of the marginal Fermi Liquid of composite fermions at the

half-filled Landau level (interacting fermions coupled with gauge field) is shown

by other (non-RG) methods44 to develop a ^-function singularity in the forward

direction (6=0). Such behavior of the Landau function is related to the

divergence of the quasiparticle's effective mass, according to the theory of

9
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Halperin, Lee and Read for the half-filled Landau level45 (see also Ref. [46]).

So, our two arguments show that the Landau function cannot be a regular

interaction in the effective action at the starting point of the RG analysis.

The preceding comments on the earlier RG approaches to Fermi Liquids

show that they are insufficienfc on many points. Let us now give a general

outlook of the key components of our study which presents the quantitative RG

theory of the Fermi-Liquid fixed point.

The first part of our RG results for the FLT, presented in Chapter 3, like

other such analyses already published, are obtained from a low-energy effective

action27'28'29 with a marginal (in the RG sense) short-range interaction at the

starting point of the RG procedure. However, contrary to other works on

the subject, our finite-temperature RG approach reveals that, in the Landau

channel of nearly forward scattering quasiparticles, the effective action's coupling

functions flow with successive mode eliminations towards the Fermi surface,

even in the absence of singular or gauge interactions. In other words, the

coupling functions do not stay purely marginal under the RG transformation,

since their /5-functions are not identically zero. From the RG flow equations

which explicitly take into account the direct particle-hole loop (ZS) only^ the

standard FLT formulas for the susceptibilities and the relationships between the

scattering amplitudes and the components of the Landau function are recovered.

The formulas of the conventional FLT, obtained at that stage of the study, are

strictly equivalent to the results of the classic diagrammatic approach to Fermi

Liquid.

The aim of the next stage, presented in Chapter 4, is twofold. Once the

classic FLT results have been recovered by the RG approach in the form of

relationships between fixed-point values of different coupling functions (running

vertices), the approach itself would loose its appeal if it did not provide

a constructiw method for calculating the Fermi liquid s parameters. This is

especially important goal in the long-term perspective of applying this powerful

method to more complex (strongly correlated) fermion systems. In order to

10
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provide that kind of quantitative RG theory, we explicitly calculate the Landau

function and the forward scattering vertex, starting from the short-range

effective bare interaction. We do it in a one-loop RG approximation which takes

into account contributions of the direct (ZS) and exchange (ZS) particle-hole

graphs. In particular, this enables us to reveal singular temperature-dependent

features of the Landau function and scattering vertex in the forward direction

(e = o).

An equally important goal of that second part of the RG analysis is to

resolve the old problem of FLT with the Pauli principle. In its treatment of

FLT, the field-theoretic approach encountered a very subtle problem caused by

Fermi statistics and by the necessity to provide both stability for the Fermi

liquid and a solution for the two-particle vertex (scattering amplitude) that

meets the Pauli principle.47'7 (We remind, that according to the requiremenfcs of

Fermi statistics, the two-particle vertex is antisymmetric under exchange of

the incoming (outgoing) particles.) The problem was "settled" by imposing

(practically by hand) the amplitude sum rule on the components of the Landau

quasiparticle's interaction function. [Cf. the example of such sum rule for the

case of fermions without spin given above by Eq. (1.12).] It is worth noting

that the phenomenological FLT is spared from this problem partially because it

is formulated in terms of bosonic variables see, e.g., Eqs. (1.3-1.7)], partially

because it says nothing about the two-(quasi)particle fermion vertex. Landau's

phenomenology only provides us with the condition (1.8) for the symmetry

properties of the /-function. As we can easily see from Eq. (1.9), in the absence

of SU(2) symmetry breaking fields (interactions) any function of the relative

angle between quasiparticle momenta meets the requirement; (1.8). In the

phenomenological theory no more constraints (sum rules) on the functions F, G

are implied. Seen from the RG standpoint, the same problem of constraints

manifests itself in the form of a "naturalness problem"2 of the effective

action: the low-energy effective action has to be fine tuned" in order for the

scattering amplitude to meet the Pauli principle. More detailed discussion of

this problem is postponed until Sec. 4.2, where it will be put in contact with

the present RG approach. It will be shown in Chapter 4 that if quantum

11



Introduction

interference of the direct and exchange processes is taken into account in the

RG equations, this problem is eliminated in a natural manner.

The' thesis is organized as follows. In Chapter 2 we give a short

description of the RG method, we define the model to be studied and the

quantities to be calculated by the present RG technique. In Chapter 3 we

develop the (decoupled) one-loop RG approach to the model based on the

fermionic low-energy effective action. We demonstrate that such an approach is

equivalent to the classic field-theoretic treatment of the Fermi liquid. In Chapter

4 we derive and solve the RG equations which explicitly preserve the exchange

symmetry of the four-point vertex. From a more physical point of view, the

novelty of those equations is the handling of the interference between the direct

and exchange particle-hole processes in the Landau channel of the (nearly)

forward scattering particles. The consequences of the RG corrections on FLT

results are discussed.

In the beginning of each chapter we give a short description of its

content. The main results of this thesis have been presented in Refs. [33,34,35]

12



CHAPTER II

RG Preliminaries

This chapter is mostly introductory. It contains auxiliary information and

the results of a scaling analysis, necessary in order to venture beyond tree-level

in the RG calculations. In Sec. 2.1 we give a short summary of the RG

method. In Sections 2.2 we define the effective action of the model. At the

technical level, the model is a straightforward extension of that considered

earlier by Shankar for spinless fermions at zero temperature. The extension

incorporates spin and a finite temperature. For the sake of generality, we

study a model of A^-component fermions with an SU{N)-mva,na,Tit short-range

interaction. We study the effective action defined for a circular Fermi surface in

spatial dimension two, spherical in dimension three. The scaling analysis of

Sec. 2.3 allows us to single out two interaction channels (Landau and BCS)

wherein the coupling functions of the effective action s interaction are marginal

at tree level. The Landau interaction channel corresponds to the (nearly)

forward scattering processes of (quasi)particles in the vicinity of the Fermi

surface. The Bardeen-Cooper-SchriefFer (BCS) interactions channel corresponds

to the scattering of the (quasi) particles with opposite incoming (outgoing)

momenta near the Fermi surface. In Sec. 2.4 we define the coupling functions

(running vertices) to be calculated in the RG framework in both channels.

2.1 The RG method

In many fundamental domains of physics it is necessary to handle a

problem of interacting (coupled) fields, i.e., a problem containing a very large

number of interacting degrees of freedom (infinite in the continuum limit).

This is the usual situation in Quantum Field Physics and in Condensed

Matter Physics. What particularly complicates the analysis in most cases is that

interactions between fields cannot be considered as weak, nor can a problem be

satisfactorily solved by singling out some characteristic mode from the ensemble

13
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of interacting fields. The latter means that if, say, we have fields (p(k) wherein

k is wavenumber, then we cannot obtain a good approximation by separately

treating a single degree of freedom y?(/co) specified by the wavenumber ko.

The scale ko can be usually chosen on physical grounds. In many situations

such kind of treatment, which is tantamount to some sort of mean-field

approximation, fails.

Unfortunately, there are only very few physically interesting exactly

solvable models in field theory or statistical physics and, moreover, their

exact solutions can be found only in low spatial dimensions48'49 (Examples

of such exactly solvable problems are provided by the Tomonaga-Luttinger

model of interacting fermions in d = 1, the Ising model in d =1,2.) However

oversimplified those models might appear, much can be learned from their

solutions. The complexity of the problem with interacting fields, classical or

quantum, which precludes the use of a naive perturbation calculation around

the non-interacting or mean-field solution, is due not only to - and in some

cases not necessarily to - the strength of interactions, but also to the large

number of degrees of freedom involved in the relevant physics and correlations

between them. For instance, for ID fermions, it is known that any interaction,

however weak, destroys the Fermi liquid phase. The latter is the mean-field

approximation for interacting fermions. Prom a technical point of view, the

absence of a single momentum (energy) scale and, instead, the involvement of a,

continuum of modes below some characteristic scale (~ Ep)^ is signalled in

perturbation (diagrammatic) calculations by appearance of the logarithmically

divergent terms (a \TI(EF/E), E -> 0).

The problem of phase transitions provides another well-known example of

physics essentially involving a continuum of degrees of freedom. For the sake of

simplicity, let us consider the transition at the Curie temperature (Tc) from a

paramagnetic state to a uniaxial ferromagnet. This type of transition can be

described by studying a one-component classical fluctuating field ^p(k). It is

known that the Landau mean-field theory, which is formulated in terms of

the average of this field only (i.e., the magnetization m = (y?(0)) for the

14
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example chosen), gives wrong predictions for the temperature behavior of

thermodynamic parameters (e.g., magnetization, specific heat, susceptibility)

near Tc in spatial dimensions d <: 3. In the parlance of the theory of critical

phenomena, the mean-field theory predicts wrong values of critical exponents

in d ^ 3. (For reviews on this subject see, e.g., Ref. [40,50], as well as

Ref. [51] for the original pedagogical formulation of Landau's theory of phase

transitions. Interestingly enough, the non-mean-field critical exponents near Tc

are found not only from various experimental data, but the theoretical proof of

their existence is also provided by the available exact solution of the 2D

Ising model.49'51) Efforts aimed at obtaining the correct critical exponents by

plunging into staightforward perturbation calculations are fruitless, since one

obtains divergent (as Tc —> 0) corrections invalidating the perturbation approach

itself. To understand the main reason of the failure of the mean-field theory

near Tc, it was important to realize the role of fluctuations. As pointed out by

Wilson, taking into account interacting fluctuations of the field (p(k) occuring

in the whole range of scales k < A (wherein A ~ a and a is atomic or lattice

spacing) is crucial for the correct description of physics near the critical point.

The renormalization group (RG) approach, in its most general and

enlightening formulation due to Wilson,'!' is the theory designed to handle

fields (quantum or classical) fluctuating over range of momentum (energy)

scales. Let us consider as an example the (effective) Hamiltonian ^K(y?) with a

one-component classical field y(k). This example is taken from the context of

critical phenomena. The specific form of the Hamiltonian is not important for

t There exist several versions of RG developped in Quantum Field Theory and in

Condensed Matter Physics. For reviews and textbooks on the RG in different contexts

and its history, see Refs. [40,53,54,55]. We will present a conception of the RG which

was put forward by Wilson. For reviews on this approach see Refs. [40,52,56]. The

references on Wilson's original papers are in there. A very pedagogical review on

the Wilson RG can be found in Ref. [50]. Since the Wilson RG theory was strongly

motivated by Kadanoff's more intuitive approach of successive averaging of the spin

Hamiltonian in real space,57 it is often called the KadanofF-WilsonRG.
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what follows. Without loss of generality it can be written as the following

expansion in the disordered phase (T > Tc):

oo ., p / 2n \ 2n

^=ET^/ . U2»(ki,...,k2n) tff^k.jn^fc,) (2.1)
,'^i ^7^:Jki'-'k2" ^i^r ^ 1=7

For instance, the particular form of rK with only the first two terms retained

on the r.h.s. of (2.1) with

u^(k) = 7-0 + A;2 [7-0 oc (T- Tc)] , U4(ki,k2,k3) = u = const , (2.2)

(i.e., the Ginzburg-Landau effective Hamiltonian) can be interpreted as the

continuous (soft) spin limit of the ri-dimensional Ising model. (For discussion on

the soft model see Refs. [40,50].) The soft model, which is also called ^?4-model,

serves, e.g., to describe the aforementioned uniaxial ferromagnetic transition.

As is known from statistical mechanics,51 to solve the problem with a

given Hamiltonian is to calculate the partition function {Z). The latter can be

written as the following functional integral:58

Z= / 1)y e~rK^ . (2.3)
'0<k<A

Following the tradition in the theory of critical phenomena, we absorbed the

temperature factor (1/T) in the exponential of Eq. (2.3) into the definition of
the Hamiltonian. The subscripts in the path integral and the Hamiltonian

indicate that the fields to be integrated out have their momenta in the range

[0,A].:1: Only if the Hamiltonian corresponds to noninteracting fields (i.e., only

the first term on the r.h.s. of (2.1) is present), does the calculation of the

partition function reduce to performing Gaussian integrations and thus, can be

done exactly.

^ Notice that in the case of quantum fields as, e.g., the fermionic fields considered

in the following sections, one must add an extra coordinate (i.e., time for the system

at zero temperature, or the "imaginary time" at T > 0). Also, one has to work with

the effective action rather than the effective Hamiltonian (cf. next section). However,

these technical particularities are not important in explaining the basic ideas of the

RG theory.
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The strategy underlying the RG calculation of the partition function, is to

divide the range of momenta from zero up to the ultraviolet cutoff A, into a

set of subranges, and to integrate fields inside each subrange successively. More

precisely, we integrate out the fields (p(k) with their momenta lying in the

range [A—(!)A,A]. Afterwards, the partition function can be written again in the

form of Eq. (2.3), but with the new Hamiltonian r^-A-6A.((p)i wherein

^A-AA(V) - / T»/, ^-3<A(<^)^A-KAW = / ^ g-^AW ^ (2.4)
'A-(5A<fc<A

and the fields in the new Hamiltonian ^<A-<5A(y)) have momena k e [O,A—($A].

By doing so infinitesimally, i.e., 6A —> 0, calculating the partition function (2.3)

for the ensemble of fields (p(k) (A; € [0, A]) can be seen as a smooth thinning of

the momentum scale of the fields to be integrated out (smooth lowering of the

cutoff A). After each (infinitesimal) step is done, the effective Hamiltonian

changes ^KA ^~> ^A-<5A- Thus, RG is an approach that maps the problem (2.3)

of calculating the partition function to the problem of studying the evolution of

the effective Hamiltonian rK^ while lowering the cutoff A. The evolution of the

Hamiltonian is determined by the RG equation:

A^ = ^{^} , (2.5)

wherein ?H{^KA} ls a functional of ^KA- In such a formulation, the RG, as a

mapping of the problem (2.3) to the functional differential equation (2.5), is

exact. The explicit form of the exact RG equation (2.5), i.e., the explicit

expression of the functional ?H{^KA} for the Hamiltonian with the classical field,

was derived by Wilson, and, in a slightly different RG scheme, by Wegner

and Houghton. The particular form of the functional y\{rK\} depends on

the concrete realization of the (infimtesimal) RG transformation resulting in

Eq. (2.5). In more formal terms, this transformation preserving invariance of

the partition function (2.3), is given by its generator 7{ which acts on the

Hamiltonian as defined by the r.h.s. of Eq. (2.5):

^ rHA=fH{^A} . (2.6)

Formal aspects of RG transformations and their possible realizations were

thoroughly discussed by Wegner.60'61 The Wilson RG transformation40'52 consists
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A

not only in the elimination of modes (9clei), but it is also accompanied by

the following rescaling of momenta back to the initial value of the cutoff

(A — <$A ^ A), and of the remaining fields (y ^ y?/C). This element of the RG

transformation (?Hresc), i'e., rescaling, is done, roughly speaking, in order to

make the Hamiltonian after the complete RG transformation look more like the

Hamiltonian before.^ Then the operator of the Wilson RG transformation can

be formally written as:

^=SHel+^resc (2.7)

In the case of noninteracting (Gaussian) fields, the Wilson RG transformation is

chosen to leave the Hamiltonian invariant at the critical point (T = Tc), up to

constant (field-independent) terms .^

A general RG transformation (?H) preserving the partition function, may

contain what was called by Wegner redundant operators. The contribution

of those operators to the flow of the Hamiltonian i.e., to the r.h.s. of

Eq. (2.5)] generates "superfluous" flows between points of the Hamiltonian

manifold^ corresponding to equivalent physics. (For a more rigorous discussion of

redundant operators see Refs. [61,62].) The rescaling of variables as a component

of the Wilson RG transformation, is an effective way to remove the redundant

^ A concrete example of such (three-step) RG transformation is given in Sec. 2.3

for the fermionic effective action.
^ These constant terms are always generated by RG, even if at the beginning they

are absent, as in Eq. (2.1). They are important for calculation of the free energy, but

not for the correlation functions (vertices), and they are not specifically discussed in

this study. For interacting (non-Gaussian) fields, the sequence of RG transformations

[or the RG flow, according to Eq. (2.5)] generates an infinite series of interaction

terms (as in the r.h.s. of Eq. (2.1), even if at the beginning the Hamiltonian had only

few of them, or even one, e.g., u(p4-.

tl For example, the Hamiltonian (2.1) can be specified by the set of couplings

{^2? ^4i •••}• The latter can be thought as a point in the manifold (space) of couplings.

Thus, the evolution of the Hamiltonian according to Eq. (2.5) is represented as a

trajectory on this manifold.
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flows between the Hamiltonians, distinct only by a change of the normalization

of the fields y? and thus, describing the same physics. This invariance of

physics under arbitrarily change (C) of the field normalization ip i—> y?/C is
called reparametrization invananoe. In the Wilson RG transformation, in order

to supress the redundant (reparametrization) flows and to obtain well-defined

critical exponents, the rescaling of the field ^ t-> y?/C accompaiying each step

of the mode elimination is chosen to keep constant the coefficient ^k2 in the

Gaussian term of the Hamiltonian [cf. Eqs (2.1,2.2)].

However, the exact RG equation based on the RG transformation (2.7)

combining the mode elimination and rescaling, is not the only possible way to

do RG. In the context of quantum field theory, Polchinski derived the (exact)

RG equation of the type (2.5) for the effective action (*S'A).63 The Polchinski

equation defines the evolution of S^ under a lowering of the cutoff A, i.e.,

under the elimination of fields. In other words, Polchinski's RG transformation

contains only the element 9ctei- (For the further development of this approach

and its relation to the Wilson RG theory, see Refs. [64,65] and more

references therein. In the RG approach based on the Polchinski equation, the

reparametrization invariance is handled diflferently65, but we will not discuss

those questions here, since it would take us too far afield.)

Once the RG equation is derived, instead of the initial problem (2.3) one

has to solve (2.5). The complete integration of fields y(k) in the range k € [0,A]
is equivalent to finding the fixed point of the effective Hamiltonian (IX*), which
we define following Wegner61 as

!K*=Um^A«) , (2.8)
t—>00

wherein ^KA(<) ls a solution of Eq. (2.5). We parametrize the lowering cutoflf as

A(t) = Ae~ , where t = 0 corresponds to the initial cutoff before the RG

procedure is applied, and t = oo corresponds to fields completely integrated out

of the partition function (2.3).^

^ In critical phenomena, a fixed point of the RG equation is more often defined

as fH{^K*} = 0, but the definition (2.8) is more general, and this is the one we will

use in the following sections.
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There are different ways to represent the exact RG equation (2.5), as,

e.g., the functional differential equation for the Hamiltonian in terms of its

variational derivatives on the r.h.s., or in terms of operators and scaling fields

(see Refs. [61,62]). Whatever the representation of the RG equation, in practice,

one can handle it by doing some sort of approximation. Following Wilson,40'52

one can recast the RG equation (2.5) into an infinite set of ordinary differential

equations for the couplings Un. (As we said above, the set of couplings uniquely

defines the Hamiltonian.) In this approach, which we will use in the following

with some modifications for the fermionic action, the partial elimination of

modes, as a first step of the RG transformation, can be translated into

diagrammatic language (i.e., Feynman graphs). For details on the diagrammatic

calculations see Ref. [40]. By combining use of the small parameter e (e = 4 — d,

wherein d is spatial dimension) and discarding the irrelevant couplings (defined

below), the infinite set of the RG equations for the momentum-dependent

couplings can be reduced to the two-parameter equations for the couplings

r and u of the uyA (Ginzburg-Landau) Hamiltonian (2.2). Those equations

solve the problem of the phase transition, providing non-classical critical

exponents, unattainable by previous perturbational approaches. The accuracy of

the diagrammatic solution of the RG equations is controlled by the number of

loops taken into account in the calculation of (3- functions (i.e., the r.h.s. of the

flow equations for couplings, cf. Eq. (2.9) below).

To conclude this review on RG, we will also recall the important notions

of relevance, irrelevance and marginality, which will be often invoked in what

follows. Those notions are more often defined in terms of operators61, but we

will introduce them by carrying out the linear analysis near the fixed point of

the RG equations for the couplings, following Weinberg. This presentation is

closer to the way we derive the RG equations in the next sections. Suppose we

have a set of RG equations

^=/3n("), (2.9)

wherein the beta-function of the n-th coupling depends on the set of all

couplings, denoted as a vector in coupling space, i.e., u = (^2,^4,...). [In
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general, this space is of infinite dimension. See the footnote after Eq. (2.7).]

Let u* =. (u^u\,...) be a fixed-point of the RG flow equations (2.9), which

defines uniquely the fixed-point Hamiltonian (<K*). We want to check how a

Hamiltonian CK 4=> u) lying sufficiently close^ to the fixed-point Hamiltonian

CK* ^ u*) behaves as t —> oo, i.e., whether it approaches the fbced point

CK* <^> u*) or runs away. Writing the couplings of the Hamiltonian u as

Un = U^ + An , wherein An = Un - u^ , (2.10)

we obtain from Eqs (2.9) the following RG equations in the linear

approximation
9«+ An) .,,/..., , y-a/3n|

^u^+,a—"a;Al(u")+^9^L.Afc • (2-11)
lu*

From the above equations we have

9A»
at

wherein

=^M^Afc, (2.12)
k

9 (3n \Mnk = ^1 (2.13)
9uk \^

Using compact notations for operators and vectors, Eqs (2.12) can be rewritten

as follows:

8^t) = MA(t) . (2.14)

Let us denote by {Vs} a set of eigenvectors of the operator M with eigenvalues

<s, i.e.,

MVS = \sVS , (2.15)

and suppose that this set is complete, so the vector A can be expanded over

the eigenvectors V :

A(t)=^c,(t)VS . (2.16)
s

Introducing the above expansion into both sides of Eq. (2.14) and using

Eq. (2.15), we obtain the following equations for the coefficients Cs(t):

9C^ = ^cs(t) , (2.17)

^ Close enough to apply a linear analysis near the fixed point.
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which give us the solutions

cs(t)=csexst . (2.18)

Thus for the vector A(^) we have

A(t)=^csexstys . (2.19)
s

Coming back to the notations for the couplings of the Hamiltinian rK{t), we

obtain:

"n(t)=<+EC'eA"<y"5 (2-20)
s

We can classify, according to the eigenvalues of the matrix 'Mnk (2.13), how the

flow of Hamiltonians p<^)] (understood as vectors u^(^) in the couplings

space) behaves as t —> oo regarding the point u*. The latter is a known

fixed point of some given Hamiltonian pK(iQ], i.e. rK* = lim^oo ^C(t). If the

Hamiltonian <KA contains couplings in the "direction" of the eigenvector(s) Vs

with the eigenvalue(s) \s < 0, then, according to Eq. (2.20), such a Hamiltonian

('KA ^ VLA) flows towards the fbced-point (^K* <^> u*), i.e.,

Urn rKA(t) = Urn <K(t) = ^ , (2.21)
t—>00 -- ' ' t—>00

and those eigevectors in the coupling space are called irrelevant If \s > 0, then

the Hamiltonian "KA flows away from the fixed point (rK* <^> u*), and the

corresponding eigenvectors are called relevant The situation when As = 0 is

called marginal, and (at least) a second-order analysis is nedeed in order to

describe the flow of the Hamiltonian 'K^-

2.2 The model

We treat the problem of interacting fermions at finite temperature in the

standard path integral formalism58 using Grassmann variables for Fermi fields.

The partition function is given by the path integral

Z = / Tl^T>il} es()+smt , (2.22)
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wherein the free part of the action is

6o=/ ^(l)[^i+/2-6o(Ki)]^(l) . (2.23)
/(1)

We introduced the following notation:

1 f dK,i)= y^?- (2'24a)
(i) = (K^uji) , (2.246)

where /3 is the inverse temperature, [i the chemical potential, Ui the fermion

Matsubara frequencies and ^a(i) an A^-component Grassmann field with a

"flavor" index a. Summation over repeated flavor indices is implicit throughout

this paper. We set ,05 = 1 and ?i = 1. The more physically interesting case of

spin-^ fermions (electrons) corresponds to N = 2, but the generalization to

N ^ 2 is straightforward, and it incorporates automatically the simpler case of

spinless fermions {N = 1).

The general 5'[/(A/')-invariant quartic interaction may be written as follows:

Si,,t=-1 / •0<,(l)^(2)^(3)^(4)^f (1,2; 3,4^"+1) (1+2-3-4) .
f(l,2,3,4)

(2.25)
Here the conservation of energy and momentum is enforced by the symbolic

delta function

^+l)(l+2-3-4)=^(27r)^(Ki+K2-K3-K4)A(cJi+a;2-^3-^4) , (2.26)

where the discrete delta function A is equal to 1 if its argument is zero, and

equal to zero otherwise. We presume that the density of particles in the system

is kept fixed.

It can be shown in group theory (see, for instance, Refs. [66,67]) that a

representation of the potential as

7V2-1

V^ = W^ + Vz ^ X^X^ (2.27)
a=l
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supplies us with the most general SU ^(A^)-invariant form with two independent

scalar functions U\ and [,2. The N — 1 Hermitian traceless matrices \a are the

generators of SU(N). We need not write down explicit expressions of the

commutations or other relations for those matrices. The only identity used in

the following is

^1 _ _ / 1
^ x^f3xaf6 = 2 [ 8a86^ - -^6al3^6 j • (2.28)
a=l

In the SU(2) case, the three generators \a are the usual Pauli matrices and

the identity (2.28) reduces to a well-known relation involving these matrices.

The decomposition (2.27) then has the same form as Eq. (1.9) used in the

Landau theory for the /-function. Using the relation (2.28), one readily checks

that the form (2.27) of the interaction is indeed SU(N) invariant. The fact that

Eq. (2.27) is the most general SU(N) invariant may be verified by counting the

number of singlets in the tensor product N 0 N 0 N <^) TV, wherein N stands for

the fundamental representation of SU(N) (acting on the A7-component field '0)

and N for its conjugate. This number is indeed two, meaning that only two

SU(N)-mvaiiant scalars may be constructed in this way.

One should bear in mind the difference between the 5'?7(Ar)-invariant

interaction considered here and a rotation-invariant interaction for particles

of spin 5: In the absence of symmetry-breaking interactions (e.g. spin-orbit,

dipole-dipole, or external fields) there will be rotational invariance in spin

space, but the corresponding symmetry operations are still obtained from the

three generators of SU(2), although in a (2s-I-l)-dimensional representation.

The 5'£/(7V)-mvariance imposed here is more stringent. The particular form of

Eqs (2.27,2.28), and consequenfcly of Eq. (2.32), for any N, is the artefact of

such a symmetry enlargement. A generic, 5'£/(2)-mvariant interaction with spin-s

fermions would contain a greater variety of terms. Accordingly, the different

components of '0 are called "flavors" if N = 2s + 1 > 2, in order to avoid

misunderstandings.
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The flavor dependence of the potential (2.27) may be factorized and

expressed via two independent flavor operators. It is convenient to introduce two

operators I and T, respectively symmetric and antisymmetric, as follows:

1^ = 6 a6 6 ^ + 6a^6/3g , (2.29a)

T^ = 6^ - 6^8^ . (2.29&)

These operators satisfy the properties

Ta? == Tf3a = Jal3
S<5 ~ Jl7<5 — 't<57 ' ^•t

^ = _T^a — _T_a!^
-7<5 - ~-L^6 ~ ~J-6-y ' ^•t

and the convolution relations

^v = ^ ' (2-31a)
rpOL^rpV[i _ ^rpOcft
-L[IV -L^6 ~ ^7<$ ' ^-l

T^T = 0 , (2.31c)
Tv/3 = N+3ra^ 7V+1-

L^li^s = —2—l-yS ~ —2—1^8 ' ^•t

^ = 7V-1 ^^ ^ J?V+1T"/?
l^1^ = -—2—1^6 + —2—17S ' lz"1

^— -tv — 1 ra/3 J-i~_orp0tf3
L7^ -L^6 ~ —2—1^6 ~ —2—J~^8 ' ^'l

Instead of Eq. (2.27), we may decompose the potential as follows:

U^ = UAI^ + Us^ , (2.32)

where the functions Us and U have the symmetry properties

UA(1, 2; 3,4) = -UA(2,1; 3,4) = -£/A(1, 2; 4, 3) , (2.33a)

?75(1,2;3,4)= £/5(2,1;3,4)= £/5(1,2;4,3) . (2.336)

The general form (2.25) of the interaction allows us to easily recover various

special cases. Spinless fermions correspond to N = 1: matrices have only one

component and I = 2, T = 0. Thus there is only one interaction function.

For instance, in the spinless Hubbard model with nearest-neighbor interaction

constant ?7nn, the function U is expressed in terms of Ulm and some

25



RG Preliminaries

combination of trigonometric functions, depending on the spatial dimension.28 In

the electron Hubbard model with on-site interaction constant £/os, the functions

are UA = 0 and Us oc Uos. Switching on a constant interaction C/nn between

nearest neighbors, we come up with two independent functions Vs and UA in

the Hamiltonian. [Cf. Eq. (3.25) below].

The expressions (2.23) and (2.25) for the action are adequate for a

microscopic, "exact" formulation of the problem. The functions UA and Us may

incorporate the microscopic interaction of our choice: Coulomb, on-site repulsion,

and so on. The integration in Eq. (2.24) is then carried over all available phase

space (the Brillouin zone), with the constraint; of momentum conservation.

In principle, working with the microscopic Hamiltonian allows a description

of physical processes at all energy scales, up to atomic energies. Here we

will consider the action defined in Eqs(2.23,2.25) as an appropriate form to

construct a low-energy effective action2 7'28'29 which serves to describe the

physical processes occurring at energy scales below some scale provided by the

cutoff Ao.

The bare momentum cutoff AQ of the action is defined such that each

vector Ki in the effective action lies in a shell of thickness 2Ao around the

Fermi surface. We denote this shell, i.e., the support of the effective action in

the d-dimensional momentum space, as C^ . In principle, such a low-energy

effective action could be obtained from the microscopic action by integrating out

(in the functional sense) the degrees of freedom associated with the momenta

lying out of a band of width 2Ao around the Fermi surface. Taking as an

example the partition function (2.22), this can be formally expressed as follows:

Z= /rD^D^ ^>^^+^^^= / ^<<D^< es^^<^+s?<^ , (2.34)
1<l
/AO

wherein the index under the functional integration symbol indicates that

Grassmann fields {^(i);'^^1)} ^° be integrated out have their momenta inside

the support C^ . Generally speaking, the fields {fip<,ip<} may differ from the

"original" fields {'^,'0} by some renormalization factor, which can be absorbed
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in their definition. To shorten notations we will drop the superscript "<" in the

following.

In general, the effective action 5fgff + Sf^ can be written as an expansion

in a set of Grassmann fields, with the requirements that the symmetries of the

microscopic action be satisfied (for details, see, e.g., Refs.[27,28]). Considerable

simplification of the problem with such complicated effective action comes from

the following physical observation. As we already discussed in the introduction,

the relevant physical information in studing an interacting fermion system at

low temperature (i.e., the system being slightly excited near its ground state

at T = 0) can be obtained by considering excitations at low-energy scales

comparatiwly to the scale provided, say, by the Fermi energy Ep. So, in order

to study low-energy processes occuring at low temperatures T <^ Ep, it suffices

to study the low-eneryy effective action as in Eq. (2.34) with a cutoff

Ao < Kp . (2.35)

By making use of the small parameter AQ/KF <^ 1 in the scaling analysis

[notice that A./KF -^ 0 under succesive mode elimination inside C^( ]' we can

start from the effective action in the form given by Eqs (2.23) and (2.25),

except that the momentum integration is restricted to the vicinity of the Fermi

surface Cf,,. The parameters of this action, such as the one-particle energy

e(K) and the interaction function, do not coincide with those of microscopic

action (i.e., eo(K), UA'S). In this work we will restrict ourselves to the study

of low-density electron systems, so we assume that the Fermi surfaces

have rotational symmetry (i.e., they are circular or spherical). The low-lying

one-particle excitations can then be linearized near the Fermi energy in a

simple fashion:

e(K) - ^ ^ vp(K - Kp) = vpk , (2.36)

wherein the terms of order k2 in this expansion are irrelevant in the RG sense.

We write the momentum K^ lying inside the support C^ as

K,eC^,: K,=K^+k, , (2.37)
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where K^. lies on the Fermi surface and k^ (|k^[ <, Ao) is normal to the Fermi

surface at the point Kp- ^n ^e ^-dimensional integration measure we also can

keep the relevant term only:

dK = II (Kp + k)d~ldkd^d ^ KJ-1 / " / dkd^ ' (2.38)
r-Ao^n,/ J-A() ^n,/

After all those simplifications the *S'[/(A^)-invarian.t low-energy effective action

reads^
-o!—l _ /•A()

5§ff + %ff = 7& E / 7 /. ^d^l) ^°(1) [^ - ^Ai] ^(1)
-^ J-A() Jfl,l

-^ f ^ ^(l)^(2)^(3)^(4)rA»(l,2;3,4)5(d+l)(l+2-3-4) ,
'(1,2,3,4)(8)€()

(2.39)
wherein €o stands for the condition

Co : {V z = 1...4 : K, € Ci,} , (2.40)

and F has the same form as (2.32)

FA" (1,2; 3,4) = r<A"'A(i, 2; 3,4)^f + r<A»)s(i, 2; 3,4)r^ . (2.41)

The function r(AO)A [r(A<>)5] is antisymmetric [symmetric] under the exchange

(1 ^-> 2) and (3 ^ 4). [Cf. Eq. (2.33)]. We discarded interaction terms involving

higher-order derivatives, or more powers of -0, because such terms are irrelevant

at tree-level (see next Section 2.3). The constraint CQ indicates that momentum

integrations carried out along normals and solid angles are not independent.

Along with the standard condition to conserve the total momentum (imposed

by the momentum delta-function), the four vectors K^ must also lie in the

support C^,, of the effective action in momentum space. To treat the constraint

€o in a more formal way, we can introduce an extra factor

4
ne(Ao-||K,[-^|) (2.42)
i=l

^ For practical calculations of diagrams, etc, it is more convenient to preserve in

Eq. (2.39) the symmetric form of interaction in notations (2.24), (2.26), and to use

(2.37) and (2.38) after the removal of all superfluous integration variables by use of

the conservation laws.
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in the integration measure of the interaction term in (2.39). The Matsubara

frequencies in (2.39) are allowed to run over all available values. The

temperature T is restricted by the condition

T<^Ao , (2.43)

demanding the initial cutoff (arbitrarily chosen scale) to be much larger than

the (physical) temperature scale. Heuristically, this condition can be understood

as the one allowing to probe relevant physics by applying the RG for the

effective action, without intervention of transient model-related details into the

final results. The bare one-particle Green's function for the free part of action

SQ is

<^(l)^(2))o = G'o(Ki,^)<5(d+l)(l - 2)5^ , (2.44a)

Go (Ki,a;i) = %a;i 4-,^-e(Ki) ^ i^i-vj?/i;i . (2.446)

According to Shankar's RG analysis28 of the effective action (2.39) at

N = 1, performed at zero temperature, the action describes the Fermi liquid

phase of repelling spinless fermions and the BCS superconducting phase of

attracting spinless fermions. We will study here the RG fixed points of the

6>L/'(A^)-invariant effective action (2.39), extending the RG technique to the

finite temperature case.

2.3 Tree-level RG analysis

In this section we present the tree-level RG analysis of the low-energy

effective action (2.39). We will follow quite closely the ideas put forward in the

papers by Polchinski and Shankar.27'28

The standard (Wilson) RG transformation includes the following steps.

(i) Firstly we integrate out modes with momenta lying between A and A/s

(S>1).
(n) Then we rescale the variables

^ = SUJn 4===^ ^/ = S~l(3 ,

,
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(Hi) and the fields

<(K^/c/,^)=s-3/2^(K^,^) ,

~^(KF,k',^) = s-3'2^(KF,k,u,n) .

At tree level, this procedure reduces to a simple scaling analysis, since after the

partial mode elimination (step i), the "new" action has the same form (2.39) as

before, with the only difference that its cutoff is now A/s, and it has fewer

"underintegrated" degrees of freedom ('0-fields). Notice, that no matter how the

step (%) is carried out in practical calculations (tree-level, one-loop, etc), the

rescaling of the variables (n) does not change the fact that after the partial

mode integration (%), the action has fewer degrees of freedom left.

It is easy to see the invariance of the free part of the action (2.39)

under transformations (i)-(ni). To analyze the interaction term, let us start

by considering in detail the phase space constraint (^o (2.40). Using the

decomposition (2.37) for three vectors K^ (i = 1,2,3) we get, from momentum

conservation,

Id = Kp^i + n2 - ns) + /cini + A;2n2 - ^ns , (2.45)

wherein n^ is a unit vector in the direction of K^ As is readily seen from the

expression (2.45), the conservation law itself does not provide automatically

K4 € Cc[ even if K^: G (7^ V i = 1...3, since for a general choice of the

directions of K,: (z = I...3), the vector K4 may lie far outside of C^ , e.g.,

|K4| ~ 3Kp- That is why the constraint (2.40) [of. also (2.42)] is less innocuous

than it might appear. For the vector K4 to lie inside C^, the following

equation must be satisfied in the limit K/Kp —^ 0 [cf. (2.37) and (2.45)] ^

|ni+n2-n3| =1 . (2.46)

^ Notice that for the action defined on a crystal, the momentum delta function

in (2.26) conserves momenta up to the reciprocal lattice momentum allowing in gen-

eral the Umklapp scattering processes. However for the considered case of circular

(spherical) Fermi surfaces those processes are inoperative, which justifies the simple

form KI +KZ =Kg + K4 of the conservation law.
^ At any finite cutoff A, Eq. (2.46) gives a condition more stringent than constraint

(2.40) itself. They are equivalent only when A —> 0.
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In the rest of this section we will restrict the analysis to the two-dimensional

case with a circular Fermi surface, while the three-dimensional case will be

considered in a separate section. (We will, however, preserve ri-dimensional

notations wherever it is possible, in order to facilitate the generalization for 3D

case later.) In 2D, Eq. (2.46) has only two types of solutions.

Case 1. If ni ^ —112, then the possible solutions are:

ni = ns , (2.47a)

n2 = ns . (2.47b)

Case 2. If the momenta of ingoing particles are opposite, then we have

ni = —n2 (ns unrestricted) . (2.48)

Let us analyse the action's interaction term in Eq. (2.39) at a finite cutoff for

the special momenta configumtions satisfying Eq. (2.46). In order to preserve in

the interaction only those configurations, we introduce in the interaction term

(2.39) the one-dimensional delta function as an extra factor:

<5(|m+n2-n3|-l) . (2.49)

The fourth momentum and frequency can be removed from integration due to

the total momentum-energy conservation, i.e., K4 is given by Eq. (2.45) and

^4 = UJ\ +C^2 — ^3. Let us start with the momenta configuration provided by the

solution (2.47). We will consider the case (a), since the solution (b) does not

result in any new independent functions because of the antisymmetry of the

interaction (2.41) under the exchange of ingoing (outcoming) momenta. We can

arbitrarily choose two integration vectors, say KI and Kg, running freely in C'f^

and decompose them as in Eq. (2.37). The delta function (2.49) removes the

angular integration over the direction of the third (independent) vector Ks,

forcing it to lie along KI. This gives us

Ks=K^+k3 , (2.50)
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wherein ks is normal to the Fermi surface. Accordingly, for K4 we obtain

K4=K],+ki+k2-k3 . (2.51)

This vector also lies within the phase space during the mode elimination [up to

some irrelevant terms 0(A/Kp)]-

Summing all this up, we write the interacting part of the effective action

in the sector" governing the low-enegry processes of nearly forward scattering

(quasi)particW

Kl(d~l) ^ f ,-r />A" .. r ._^i /•A<>
L^ v. {n / -" dk. I cKlw [ I "" dks

•IPS- 4 (2^)3^3 ^^H^_A,,'"'^ ""•'' JJ_A,,"'" (2.52)

x rA"(K^K^;K^K^,^). [^]2 .
By following the same steps of the RG transformation (i)-(in) as above, we

readily see that at the tree level the interacting part of the action resumes its

form under this transformation in terms of new (primed) variables, with the

new renormalized F/ given by

f"(K5.,K^K^,K^^,^^)=r'A"(Ky,K^K^K^^/s,^/s) . (2.53)

Using the Taylor expansion

f(l4, Kj,; K^, Kj,|^,^) = r(K^ K^; K^ K^|0,0) + 0(kn^n) (2.54)

in Eq. (2.53), we see that the first term in that expansion is marginal at tree

level, i.e.,

r'(KlF, 14; K^, K^|O, o) = rAO(K^ 14; K],, K^[O, 0) , (2.55)

while the rest is irrelevant, i.e., it disappears in the limit s —^ oo.

To analyze then Case 2 with the solution given by Eq. (2.48), we proceed

in the same manner as for Case 1. After removing the delta function according

to the solution (2.48), we use the following decomposition for the momenta :

Ki=K].+ki , K3=l4+k3 ,
(2.56)

F + k2 , K:4 = -K.FK2 = -K], +k2 , K4 = -K3p +ki +k2 - kg .

^ To shorten notations we will use a hat (") for operators in flavor space in the

sense of Eq. (2.41).
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The low-energy action's interaction governing the scattering processes of

(quasi)particles with nearly opposite incoming (outgoing) momenta can be

written analogously to Eq. (2.52) with some minor changes:

?eff
?int| (i = 1,2) <-> (i = 1,3) and A;3 <-> hlees v" ''~/ v" ''"/ ^^ "/0 • '"'; (2.57)

x r^(K^-K^K^-K3F\kn^n) . [V^]2 .

The same steps which lead to Eq. (2.55) allow us to conclude that the

interaction function

rAti(K^-K^K^-K^|0,0) • (2.58)

is marginal at tree level, while its dependence on (kn^n) is irrelevant.

It is a straightforward exercise in scaling to check the irrelevance of the

terms neglected in (2.36) and (2.38), as well as of higher orders of the

low-energy action's expansion over Grassmann fields, e.g., ['0'0]3, etc. This

justifies the simple form (2.39).

To summarize this section. The tree-level scaling analysis of the effective

action (2.39) shows that the relevant physical information can be obtained by

studying interactions of particles scattering with small momentum and energy

transfer (we will call it the Landau (interaction) channel), and those with

nearly opposite incoming (outgoing) momenta (the BCS (interaction) channel),

Use of the condition (2.35) allows us, instead of calculating the general function

F(l, 2; 3,4), to keep track of the evolution under the mode elimination of the

marginal coupling functions [cf. (2.55, 2.58)], wherein the momenta in the

set (1,2; 3,4) are chosen at special kinematic configurations and irrelevant

dependences are discarded.
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2.4 Coupling functions and vertices

Let us clarify the meaning of the quantities entering the effective action in

terms famuliar from the quantum field theory. (See, e.g., Refs. [5,42,43,58,68]).

Consider the vertex function F(l, 2; 3,4), constructed from the connected

two-particle Green's function ^(1,2; 3,4) = -{'0a(l)^(2)^7(3)'0<$(4))c by

amputation of the external legs. Here (...) means an average with the

effective action (2.39) which contains only "slow" modes, lying in the

support C^. Once auxiliary source fields (with momenta inside the shell C^ )

coupled to the action's Grassmann fields {^, ^} have. been introduced,

such connected n-particle Green's functions can be defined as functional

derivatives of the source-dependent generating functional68 At tree-level,

F(l,2;3,4)|tree =rA"(l,2;3,4). The bare vertex rAO of the effective action

(2.39) can be defined in the same fashion as f\ with the difference that rA() is

the result of averaging over the "fast" modes (those outside C^) with the

microscopic action (2.23, 2.25). Contrary to f\ the vertex t ° is not a physical

observable, since it is not the result of an integration over all degrees of

freedom.

In order to calculate physical quantities, we must perform an average with

the effective action (2.39), i.e., we must integrate out the "slow" modes, which

lie inside C^ , in the corresponding path integrals. This is done in Wilson's RG

approach by successively integrating the high-energy modes in C^ , i.e., by

progressively reducing the momentum cutoff from AQ to zero. We define a RG

flow parameter t such that the cutoff at an intermediate step is A(t) = Aoe-*.

Integrating over the modes located between the cutoffs A(t) and A(^+^), a

recursion relation (in the form of a differential equation) can be found for the

various parameters of the action.^ This equation (or set of equations) is then

solved from t = 0 to t —> oo and this yields the fixed-point value of the

^ An example of such recursion formula in the tree-level approximation is given by

Eq. (2.55). ThedifiFerentialformofthisequationisarA(K^,K^;K^KJ,|0,0|^)/^ =
0, wherein the parameter t (instead of s) keeps track of the mode elimination.
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parameters of the action. The physical quantities are then obtained from these

parameters.

A considerable simplification of this problem comes from the scaling

analysis presented in the previous section. A tree-level analysis indicates that

due to the smallness of the scale A Kpi we need to treat the vertices at two

special choices of the kinematic configurations only, and we also can discard

irrelevant variables. Let us consider separately two interacting channels of the

low-energy effective action.^

Landau Interaction Channel: Taking into account momentum and

frequency conservation, we use the following (more standard) notation for the

nearly forward scattering vertex:

F(l, 2; 1 + Q, 2 - Q) = F(l, 2; Q) , (2.59)

with the transfer vector

Q=3-1=(Q,^) (2.60)

such that Q <^ Kp (n is a bosonic Matsubara frequency). When the initial

cutoff AQ satisfies condition (2.43), we can unambiguously define a bare coupling

function which depends only on the angle between the incoming (or outgoing)

momenta. This bare coupling function is given by the vertex rA(l(l,2;Q) in the

zero transfer limit (Q, = 0) where the two external momenta are put on the

Fermi surface and the external frequencies are ^min = ^T (the latter will be

dropped from now on).

U(K)., K%) = |^rA" (K),, K%; 0) , (2.61)

^ We find the term "channel" more conventional for the condensed matter prob-

lem under consideration, rather than the term "sector" borrowed from high-energy

physics. However, in some papers the term "channel is applied in the sense of select-

ing particular diagrams, while here we singled out two specific scattering (interacting)

configurations, and accordinly, the low-energy action's total interaction is a sum over

two channels (sectors), i.e., %ff = S^\_ + S^\
FS BCS
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where vp = 2Sc[K^~1 / (2n) vp is the density of electron states at the Fermi level

and Sd is the area of the c^-dimensional unit sphere. In 2D each vector K(p may

be specified by a plane polar angle Qa\ because of rotation invariance, the

function U may only depend on the relative angle 9\ — 0^ between Klp and K^i:

u(@i-02) = uA(ei-@2)^ + us(0i - e^ (2.62)

It should be pointed out that the function UA(0) is not an antisymmetric

function of its argument.28 It follows from the symmetry properties of the

interaction [cf. Eqs (2.30,2.41)] that

UAfs(0i - 62) = UA)5(6»2 - 6>i) (2.63)

The only remnant of the antisymmetry of rA() (the Pauli principle) is the

condition:

UA(0)=0 . (2.64)

As it will be shown below, the tree-level picture [cf. Eqs (2.53,2.55)] becomes

more complicated when we carry out the mode elimination inside C^. It turns

out that simply discarding the frequency dependence of FA and identifying the

momenta K1? ^ K3p^ K.^ ^ K^i is an ill-defined procedure when the running

cutoff A becomes of the order of the temperature (v^A ~ T). The ambiguity

arises when calculating the one loop-contribution from, say, the ZS graph (see

Fig. 1), since this contribution is not an analytic function of the transfer Q, at

Q = O.5' ' To describe correctly the parameters of the Fermi liquid, one

should retain the dependence of the coupling function FA(K^,K^;Q) on the

energy-momenfcum transfer Q.^ Retaining this Q-dependence allows, e.g., to

carry out the calculation of response functions for small Q, or collective modes

of the Fermi liquid (see Ref. [69]). The expression for the effective action in the

^ Expansion (2.54) is based on the assumption of the analyticity of F near Q = 0

at any 5 (t). Appearance of the non-analytic contributions to the renormalized T

from the one-loop diagrams shows that this assumption, generally speaking, is not

true.
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Landau channel with the coupling function FA(K^,K^;Q), which allows us to
venture calculations beyond the tree-level, can be readily written as

^-lw^{nf^/^}/^^.^
X -0a(Ki,CJi)^g(K2,CJ2)'07(Kl + Q'^l + Ws(K2 - Q,CJ2 - ^) .

(2.65)
For purposes of the present study we define two limiting forms of the coupling

function (FQ and F"), depending on the order in which the limits of zero

momentum- (Q) and energy-transfer ($7) are taken:

tQ(e,t)=Vim\r(6;Q,,t)
Q-^Ol

r" (<»,()= urn [r(<?;Q,t)
n=o

(2.66a)

(2.666)
IQ=OJ

We use dimensionless vertices, by including in their definition the factor ^z^?,

like in Eq. (2.61). In order to unclutter notations for superscripts, we indicate

the function's dependence on the running cutoff A(t) by adding the parameter t

to the set of variables, and even the latter will not be indicated explicitly,

unless necessary. The four functions r^(A'5)(^) and rn(A's')((9) [understood in

the sense of decomposition (2.62)] are even functions of the angle 0. We will

indiscriminately call these functions (running) vertices.

In the rotationally invariant 2D case it is convenient to expand the

coupling functions in Fourier series:
00

X(0) = ^ e-i(9X( , (2.67a)
1==—oo

r27r de
xi = I E x(e)e'"' ' (2.67fc)

'0
where X stands for the set of all functions

x={uA,u5,r^A),rQ(5),rn(A),r^5)} . (2.68)

In terms of Fourier components, the symmetry property X(^) = X(—0) becomes

X^ = X_^. Another consequence of the Pauli principle, namely, Eq. (2.64)

becomes
00

E UA =° • (2-69)
l=—00
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BCS Interaction Channel: The two incoming (outgoing) momenta

are opposite. We introduce another pair of dimensionless marginal coupling

functions:

V(K^ Ksp) = i^rA« (K^, -K^; K^, -K3^)

=vA(B^l+vs(e^ ,
wherein ^13 =Q\ —Os- From the symmetry properties of the coupling function

FAO under exchange of momenta, we find

VA(0±7T)=-VA(0) , (2.71a)

VS(0±7T)= Vs (6) . (2.716)

In terms of Fourier components these equations become

ViA = 0 (I even) ,
(2.72)

Vis = 0 (I odd) .

Contrary to the coupling function F(K^,K^; Q,^), the function V(K^,K^,^)

stays singe-valued after the irrelevant parameters are discarded. The only

exception is the special case 'Klp = K^ when there is an overlap in the

definitions of the coupling functions in two different channels. In terms of angles

we have

r(6>12 =7T;Q = 0,*) = V (013 = 0,t) . (2.73)

In the following we disregard this zero-transfer ambiguity of the V-function,

since it occurs in the domain of zero measure of its variable 6\^.

Let us summarize: The low-energy effective (Wilsonian) action (2.39) with

the ultraviolet momentum cutoff Ao is defined on the support C^ in

momentum space. From a field-theoretic point of view, the effective action's

interaction rA()(l, 2; 3,4) is the four-point 1PI vertex calculated from a

"microscopic" ("exact") action with the infrared cutoff Ao. From the tree-level

analysis of the effective action one can identify two interaction channels wherein

coupling functions are marginal. The tree-level (bare) coupling functions are

presumably analytic functions of their variables. These couplings are functions of

less variables than the vertex rA()(l, 2; 3,4) since their irrelevant dependences
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can be discarded. The bare couplings are constructed from the vertex FAO by a

suitable choice of its variables (see how the coupling functions U and V are

defined by Eqs (2.61,2.70), respectively). While performing the RG calculations

in the phase space C^ beyond tree level, we need to find the fixed points of

the running vertices (renormalized couplings) in two interaction channels.

Landau channel. There are two limiting forms of the vertex f^ and F" in

this channel. The bare coupling U has an unambiguous meaning only as the

common initial point of the RG flow trajectories of T^ and Fn. The fixed point

values ?Q* =. TQ(t = oo) and Fn* s Fn(^ = oo) are physical observables: the first

one is the Q-limit of the vertex F (as defined at the beginning of this section)

and is the scattering amplitude of quasiparticles with all four external momenta

lying on the Fermi surface. The second one is the unphysical limit (fMimit) of

the vertex T and is identified with the Landau function.3

B CS channel The fixed point of the coupling function V* = V(t = co) gives the

total vertex (scattering amplitude) of quasiparticles with opposite momenta

lying on the Fermi surface. The behavior of this fixed point in the BCS

interaction channel controls the stability of the interacting fermion system

against Cooper pairing.
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RG without interference

In this chapter we present the results of the RG treatment of

the Landau and Bardeen-Cooper-SchriefFer (BCS) interactions channels. The

finite-temperature RG technique allows us to recover the standard results of the

FLT by going one step beyond the tree-level approximation, i.e., by carrying

out calculations at the one-loop RG level. This chapter is organized as follows.

In Sec. 3.1 we consider the Landau interaction channel. By explicitly taking

into account the direct particle-hole loop (ZS) contribution to the RG flow

equations, we recover the classic relationship between the Landau function and

the forward scattering amplitude. We show that such a RG treatment of the

interacting fermions is tantamount to the field-theoretic approach to FLT, which

applies the Bethe-Salpeter equation to the four-point vertex. In Sec. 3.2 we

solve the RG equations for the marginal vertex in the BCS interaction channel.

This vertex is marginally irrelevant if the bare value of the vertex satisfies

Landau's theorem for the stability of the Fermi liquid against Cooper pairing at

arbitrary momentum. Otherwise a BCS instability occurs at finite temperature.

In Sec. 3.3 the results of the previous sections, explicitly derived for spatial

dimension two, are generalized for the three-dimensional case. In Sec. 3.4 we

calculate the compressibility and the spin susceptibility in the RG framework.

3.1 The Landau channel

There are three Feynman diagrams contributing to the RG flow at the

one-loop level (see Fig. 1), denoted ZS (zero sound), ZS (Peierls), and BCS.

The formal analytic expression of the ZS graph is

ZS = - / riJ(l,5;l+Q,5-Q)r|J(5-Q,2;5,2-Q)G(5)G(5-Q) , (3.1)
/(5)
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zs +

zs'

Figure 1: The three diagrams contributing to the
RG flow at one-loop.

wherein the transfer vector Q, is given by (2.60) and for brevity the flavor

Greek indices, e.g., 0:1, are shown by their numbers i only. The momentum and

energy conservation is already taken into account in (3.1). To calculate the

contribution of this graph to the RG flow of F^ and Fn, we only need to keep

the dependence on the momenta K^i and on the transfer Q in the vertices on

the r.h.s. of (3.1). Summations over flavor indices and Matsubara frequencies can

be done easily using Eq. (2.31) and standard techniques5'58 for working with

temperature Green's functions. In this and the next sections we will carry out

explicit calculations for the 2D case, and the 3D case will be considered

separately in Sec. 3.3. The phase space restrictions are satisfied automatically

for any K5 G C^ in the limit Q, —^ 0. When KI and KS lie on the Fermi

surface and Q, —^ 0, the r.h.s. of (3.1) contains both vertices of type (2.66) with

K.bp running freely around the Fermi surface during the angular integration.

Thus, for this graph, all the phase space is available for integration. The
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summation over u)^ of the Green's functions product on the r.h.s. of (3.1) gives

^G(5)G(5-Q)=
^5

ltanh|U(e(K5)-/2)|-tanh|j(€(K5-Q)-^)|
2 -zH + c(K5) - 6(K5 - Q)

lsinh(/?VFK5 • Q/2Kp) ___^_i
2 i^l - vpK^ • Q/Kp

cosh" •^vph cash-1 PVF
2Kp K^.(k5+q)

(3.2)
This expression (3.2) gives zero in the n-limit of Q. —> 0 [cf. definition (2.66)],

and thus
c»r"((?i-(?2)|

9t =0 .
zs

(3.3)

The Q-limit of the same product gives a factor ^(3cosh~2(/3vFkQ/<2), and

accordingly

Qt^^-e^)
Qt

PR
zs cosh2(/^) J-

•7T

^(e, - e)t'S(8- e,) , (3.4)

where we introduced a dimensionless temperature flow parameter:

wt) = |^/?A(t). (3.5)

We now turn our attention to the ZS' graph. Its analytic form is

ZS' = I r^(l,5;l+S',5-Q')r|(5-Q',2;5,2-Q')(?(5)G(5-Q') , (3.6)
,(5)

wherein

Q' =2-1-0, (3.7)

can be thought of as an "effective" transfer vector for this graph. For

|K2—Ki|^0 the limit Q, -^ 0 of the r.h.s. of (3.6) is single-valued and

equivalent to the Q-limit.47 The Green's functions contribution to this graph is

^G(5)G(5-Q')
,3

ltanh[|J(6(K5) - ,2)] - tanh[j(e(K5 - K2 - Ki) - ^)]

Q=0 6(K5)-e(K5-K2-Ki)

(3.8)
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where if \6\ - 02\ < T/vpKp then the r.h.s. of Eq. (3.8) is approximately

—/3cosh-2(/^FA;5/2) . (3.9)

Thus, contrary to Eqs (3.3,3.4), for the ZS contribution to the RG flow we

have:
<9r"(^-6>2)

9t
QfQ (0i -02)

zs/ Qt (3.10)
zs'

The explicit calculation of the ZS' contribution to the RG flow is more subtle

than that for the ZS graph, since even in the zero-transfer limit Q —> 0 (in

any order), the vector Q|Q_»o=K2—Ki is free to take any modulus in the

interval [0,2Kp] as the angle 6\ — Q^ varies. A large Q/ kicks the vertex

momenta on the r.h.s. of (3.6) outside of C^ even if KS C (7j|. In such cases

the contribution of the ZS' graph is cut ofF,^ except for special positions of the

vector Ks. Only for angles \0\ — 02\ ^K/Kp is all the phase space available for

integration. If the cutoff of the low-energy effective action is chosen according to

the condition (2.35), then those angles satisfy \0\ — 02\ ^ ^-/Kp <^ 1. Thus, in

terms of the Fourier components (2.67), the ZS contribution to the RG flow of

the vertices has the extra factor K/Kp <^ 1 and is inferior to the leading

contribution (3.4). The same kind of analysis shows that the BCS graph also

gives subleading contribution to the RG flow in the Landau interaction channel.

The analysis of the contributions of each of the three one-loop diagrams

from the RG viewpoint (i.e., relevance vs irrelevance) is only one side of the

problem. Another question is the symmetry properties of those contributions.

Note that among the three one-loop contributions to RG flow of the vertex F

with arbitrary incoming and outgoing external momenta and frequencies, only

the BCS graph possesses the total antisymmetry of the vertex under exchange

(1 <-> 2) and (3 <-> 4), while those of the ZS and ZS' graphs separately

^ As for the reason for the elimination of the ZS' contribution, we refer the reader

to the sharp cutoff functions (2.42). That extra factor of 6-functions, attached to

the vertex FA, was introduced in order to keep track of the condition € for each

momentum. When Ao i—> A we denote the change in the constraint by €o ^-> € [cf.

(2.40)].
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do not: only their combined contribution (ZS + ZS ) is antisymmetric under

exchange of incoming (or outgoing) particles. To respect the Pauli principle, it

is therefore necessary to take into account both the ZS and ZS contributions

to the RG flow. Neglecting the symmetry-preserving contribution of the BCS

diagram, the RG equations for T^^ which take into account the graphs ZS

and ZS on the same footing, can be written in the implicit form:

QfQ gfQ
Qt 9t
ar^ 9r^
Qt 9t

+•
9tQ

zs

zs/

Qt
QfQ

zs/

9t

(3.11a)

(3.116)
zs/

As is known from the field-theoretic approach to FLT3'5, the two limits r((5'n)

of the four-point vertex function with all four momenta lying on the Fermi

surface have distinct symmetry properties. One of these limits (F ), which does

not satisfy the Pauli principle in the form FA(0 = 0) = 0 [cf. (2.64)], yields the

Landau function. The other one (F^), which preserves the antisymmetry of the

vertex, gives the total forward scattering amplitude. For details see, for instance,

the especially elucidative paper by Mermin.47 According to the analysis

following Eqs (3.10), the ZS contribution to the flows (3.11) of the functions

i^^(0,t) is localized in the narrow vicinity of 6 = 0 when A./KK <^ 1. In

particular, the ZS' graph generates the flow for tfl(6,t) at ^=0, breaking the

condition Fn(A)*(0 = 0) = 0 for the fixed-point value of the running vertex

(the Landau function). The same ZS' contribution to the flow of F^ cancels

9rQ^A\6,t)/9t at 6>=0, according to Eq. (3.4) and Eqs (3.6,3.9,3.lla).

We pospone until the next chapter the solution of the RG equations

(3.11) which explicitly take into account the subleading (irrelevant) corrections

from the ZS graph and leads to results beyond those of the standard FLT.

We will concentrate now on the approximation leading to the familiar results

for the Landau Fermi Liquid.

The approximation consists in retaining in the RG equations the

contribution of the ZS graph only. After a summation over flavor indices and
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a Fourier transformation, we end up with the following equations for the

components (A, S):

^?n(A,5) ^(A,5)

Qi ~ 9t

Q^Q{A,S) QyQ^S)

=0 , (3.12a)
zs

Qt 9t l^g cosh2
PR p(A,5)P^) , (3.126)

t-"- ?)
Here we introduced the following notation:

p^ N^^W^(N-l)r^T^+N—[T^\ (3.13a)
p^-N^l[T^\(N+l)T^T^-N-^[T^]2 . (3.136)

As follows from Eq. (3.12a), the functions T^A^(0,t) are approximate RG

invariants, i.e.,

p^(A,5) ^ ^ ^ pQ(A,5)* ^ ^^

The effect of the narrow-angular contribution to the RG flow from the ZS

diagram is not included in Eq. (3.12a), so we have to relax the symmetry

condition (2.64), valid only for the initial point t = 0 where 1^(0,t = 0) = U(0),

and consequently
00

r"(A)*(^=o)= ^ r"(A)*^o . (3.15)
^=—00

It is convenient to express the components F^(A) and rn(5) in terms of

"charge" (F) and "flavor" (G) functions, defined as follows:

F=(7V-l)r"^-(A^+l)r"(A) , (3.16a)

G = -TQ(5) - r"(A) . (3.16&)

The physical meaning of these functions becomes clear in the case of real

electron spin (N = 2), when at the fixed point they coincide with the

components of the Landau /-function as it was defined above in Eq. (1.9) (We

use the standard Russian notations of Ref. [7].)
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In order to decouple Eqs (3.12b) we introduce new components of the

running vertex T^:

A=(N- i)r^5) - (N + 1)FQ(A) , (3.17a)

B = -rQW _ ^A) (3 ^

Their RG fixed points in the case N = 2 coincide with the components of the

total scattering amplitude in the accepted notations of FLT.7 (The components

Ts and —FA are respectively called singlet and triplet amplitudes in Ref. [9]).

Notice also the symmetries AI = A_/ and B\ = B-i. To simplify the system of

Eqs (3.12b) and (3.12c) we use an auxiliary RG parameter

r=tanh^ , r€ [0, To] , (3.18)

wherein

TO = tanh/3o ^ 1 , 0o = ^vpPAo . (3.19)

Expressed in terms of these new variables, the RG equations become much

simpler:

^ = A] , (3.20a)
Or

=B? . (3.20&)9Bl _ o2
QT

From Eqs (3.20) we easily obtain the analytic solutions:

A(o)
A'M = :—^T—: • <3-21a)

I+AW(TO-T)

Bw
B'(T) = —^T—; • (3-21&)

1+BW(TO-T)

wherein zeros denote bare values of functions at r = 0 (t = 0).^ Notice that,

because of the condition T < VF^O imposed on the low-energy effective action,

^ Throughout the manuscript asterisks and zeros respectively denote fixed points

(i.e. solutions at t = oo) and bare values at the initial point of the RG flow.
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we can set TO = 1 for all practical purposes. Eq. (3.14) gives us A\ ' = F^ and

B^ ! = G^. Thus, for the fixed points we obtain:

A? = TT^ ' (3'22a)

B! = ^ . (3.22b)

From Eqs (3.21,3.22) it follows that if the parameters {i^*, G^] satisfy the

Pomerandiuk conditions (1.11) then the system will remain stable in the

Landau channel at any temperature. The fixed point (3.22) gives the same

solution for the forward scattering vertex as the Bethe-Salpeter equation in the

zero-temperature technique.5'

To preserve the Pauli principle for the scattering vertex, the condition

00

r^A)*(0=0)= ^ [A^* +(A^- l)Bf] = 0
l=—tX)

should be fulfilled. In the standard FLT7 it implies that a sum constructed from

the components of the Landau function related to the scattering amplitudes by

Eqs (3.22), and which has the form

00 ,. J71* /^*

Ejlf^-^] (3.23)
l=-00

must be equal to zero. This specific form of the condition is usually called the

amplitude sum rule in FLT for electrons (N = 2). (See, e.g., Ref. [7,9].) However,

we will not impose the amplitude sum rule, since, as will be shown in the next

chapter, this sum rule is a mere artefact of the approximation (whether in the

form of the RG equations (3.20), or of the Bethe-Salpeter equation) which

explicitly takes into account the ZS loop contribution only.
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3.2 RG equations in the BCS channel

Let us now analyze, at the one-loop RG level, the behavior of the

coupling function V defined by (2.70) above. We recall that there are three

one-loop graphs contributing to the RG flow. (Cf. Fig. 1.) Proceeding in the

same fashion as above while analyzing the Landau channel, we now find that

the only contribution with all the phase space available for integration at

arbitrary angle between vectors Klp and K^, comes from the BCS graph. Since

the BCS diagram preserves by itself the symmetry (2.71) of the function
-^

V (the consequence of the Pauli principle), it makes life simpler. The RG

equations are derived easily:

TA

^ = tanh/?/; (ViA)2 (I odd) , (3.24a)

QyS
^ = -tanh^ (^5)2 (Z even) . (3.246)

At zero temperature, Eq. (3.24a) coincides with Shankar's result28 for spinless

fermions.

The reader might be slightly confused by the sign of the r.h.s. of

Eq. (3.24a) when comparing our result with that of Shankar for the spinless

Hubbard model. In fact, this sign is just a consequence of the way we define

the coupling function U in this work. Indeed, let us consider the Hubbard

Hamiltonian on a ri-dimensional hypercubic lattice (with lattice constant a) at

low filling, with on-site (Uos) and nearest-neigbbor (£/nn) interactions. Both

constants are positive for a repulsive interaction, and negative for attraction.

Fourier-transforming and antisymmetrizing the interaction, we end up with the

following coupling functions of the microscopic Hamiltonian:

C/^(Ki,K2;K3,K4) ^ -^a2C/nn.(Ki-K2).(K3-K4) , (3.25a)

^(Ki,K2;Ks,K4) ^ £/os+£/nn. (3.25&)

Here, only the lowest order terms in the expansion of trigonometric functions

were kept. We can use this result as the lowest-order approximation for the

bare coupling functions of S^ in the definitions (2.61) and (2.70).
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The RG equations (3.24) may be solved easily, and their fixed points are:

,A(0)
VIAW = —__,,n, 2"... —— - (3.26a)
vl -l-^A(o);oootanh(/?oe-^ '

,5(0)
vsw = _,^ ^ ".,. —— • (3-266)

l+vf(o) f^° tanh(f3oe-t)dt

The system remains stable in the V channel at any temperature if, for all

harmonies, the following conditions are fulfilled:

Vm < 0 , (3.27a)

VS{0) > 0 . (3.276)

At low temperature (i.e., when the low-energy action approach is supposed to

work well), /?o ^ 1 and the integrals of Eqs (3.26) can be evaluated exactly as

in the theory of superconductivity (cf. section 33.3 of Ref. [5]):

^A(O)
VAW = —77— —— , (3.28a)

1 - V^) ln(2wAo/7rT)
,S(0)

Vtsw = — _^vt.^ • (3.286)
l+V;^ln(27VFAo/7TT)

wherein In'7 = 7 ^ 0.577 is Euler's constant. If the conditions (3.27) are

violated, the V- interaction becomes marginally relevant, and a pole appears at

temperature

^=^AoexP(-^-) • (3-29)
7T ^

Here Zi = max{V^ {i, IYJ |}, in which only the harmonies violating the

condition (3.27) are included. If phonons provide the underlying mechanism

of attraction, we may identify the characteristic energy scale vpAo of the

low-energy action with the Debye energy UD- In the present context, the

BCS theory of super conductivity corresponds to the special case of a contact

attractive interaction,

not vanish.

attractive interaction, for which only the zeroth harmonic VQ ^ ' oc UQ < 0 does
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3.3 RG equations in three dimensions

In order to obtain the tree-level marginal coupling functions for a spherical

Fermi surface in 3D, we follow the same procedure as in Sec. 2.3. Eq. (2.46)

enforcing the momenta of the coupling function both to satisfy the conservation

law and to lie on the Fermi surface in the limit A/Kp —> 0, now allows more

freedom for the vectors than the corresponding Case 1 in 2D [cf. Eq. (2.47)]. At

A/KF=O and for the pair of incoming momenta (K^,K^), Eq. (2.46) allows

the pair of outgoing momenta (K^,K^) to lie on the cone swept by a rotation

of (K^,K^) around the vector Klp + K^. [We remind that in Eq. (2.46) n^

denotes the unit vector in the direction of K^.] The 3D solution of Eq. (2.46)

for Case 1 is illustrated in Fig. 2.

KF+K^

KpN

fc^
-'~y?3^-

K^
\.o:

- - -\12-^

-i

~t
Kp

- I- -J—

/K^

Figure 2: Conic configuration of the four momenta
lying on the Fermi sphere and satisfying the
momentum conservation law K^ + Kj^ = K^ + K^i
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Case 1. ni -^ -112. In order to find the tree-level marginal coupling

function for this configuration, it is convenient to use the rotational symmetry

of the problem. In general, in the action s effective interaction, we have

three independent integrations over solid angles [cf. Eq. (2.39)]. Because of

the symmetry of the problem, one of the axes of the spherical coordinate

system can be chosen, e.g., along vector ni, and then the other two angular

integrations can be carried out relatively to the axial direction ni, while the

remaining integral over d^} (or, in another conventional notation, over dni)

gives the overall solid angle, i.e., 4?r. In order to treat the geometric constraint

imposed by the delta function (2.49) in the simplest way, it is convenient to

choose the polar axis along vector ni + 112. Let us denote the unit vector in

this direction as ei2, i.e.,
ni +n2

ei2 = —?£7 . (3.30)
|ni +n2|

Suppose that the angle between vectors ni and 112 is ^12. After choosing the

polar axis along ei2, we will specify one of the independent vectors left, say,

ni, by a pair of angular variables (0/=-^12, y?), wherein the polar angle

6' € [0,7T/2] and the azimuthal angle ip C [0,2?r]. The condition (2.46) imposed
by the delta function can be written, using Eq. (3.30) as

|2ei2cos0/-n3| =1 . (3.31)

The vector 113 can be decomposed as follows:

n3 = ei2 cos (9s + ei sm6>3 , (3.32)

wherein e_L = (cos (^3, sin (ps) is the unit vector lying in the azimuthal plane and

specified by the angle (^3. As can easily be checked, Eq. (3.31) is satisfied for

any vector 113 : ^3=0, V ips € [0,27r]. Thus, the delta function (2.49) removes

the integration over 63. So, the angular integrations in the effective interaction

(2.39) are done as follows:

rfni / dn-2 I dii3 ^(|ni + 112 - ns] - 1) • {...}

•i . . r27T />7r /'27F

dei2 I ^smefd01 I d^ / sin ^3 d6^ / d^s <5(|2cos^ . ei2 - ngl - 1) •{...}
'o Jo Jo ^o

li ... /-27r /-27r
= STT / ~ sin2 e'd0' I d^ I dips . {...} .

'0 JO JQ
(3.33)
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Accordinly, for the interaction of the low-energy effective action describing the

processes of the quasi-particles scattering in the vicinity of the special ("conic")

momentum configuration shown in Fig. 2, we obtain [cf. Eqs (2.24,2.39)]:

K^ ^ (^-r />A<> ..1 ft . o... ^27r . /-27r>efF
int

-F
•t

dki\ I" sm20fd6' / d^ / ^13
/-A() J JO JO JO(W3^l,^-A""

x rAO(K^K^,KJ,,K^|A;n,^). W]2 .
(3.34)

In the above formula we shifted the azimutal angle y?3 i—> (p^ in the integration,

in order to measure it relatively to angle y?i. Vectors |K^| = Kp are

parametrized by unit vectors n,, and the "conic" configuration of the latter is

specified by their polar and azimuthal angles:

m ^ (e', (pi) , 113 ^ (6>/, ^i + y?i3) ,

n2 >-> (<9 , y>i + ?r) , n4 h-» (<9/, yi + y?i3 + TT) .

By following the same steps as in the tree-level scaling analysis of Sec. 2.3, we

find that the function rAn(K^,K^;K]p,K^|0,0) is marginal for the momentum

configuration (3.35), while the dependence of this function on kn and Un is

irrelevant. So, at tree-level, we can define the dimensionless coupling function

$=J^rA»(K^,K^;K^,K^O,0) , (3.36)

which, due to rotational symmetry, depends only on relative the angles

6' = \Q\i and y?i3. It can be decomposed as

<S> = ^(012, Vl3)^f + $s(0l2, Vl3)^f . (3.37)

The functions ^Afs have the symmetry properties:

^4(0l2,^i3±7r)=-^4((9i2^i3) , (3.38a)

$5 (^2,^13 ±7T) = ^s (012^13) , (3.385)

which follow from the Pauli principle. The minimal domain of definition allowing

to recover all values of these functions is 6^ € [0,7r].

Case 2. ni = —112. This case of opposite ingoing (outcoming) momenta

can be treated exactly as in Sec. 2.3 for the 2D case, providing us with the
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marginal coupling function defined by Eq. (2.70), with the symmetry properties

(2.71).

The one-loop analysis of the RG flow for the four-point vertex with

momenta in the configuration (3.35) shows that contributions from one-loop

diagrams are severely cut off by phase space restrictions, rendering the

one-loop corrections irrelevant, and so preserving the tree-level marginality of

the coupling function (3.37). The only exception is a special ("degenerate")

case of the conic configuration (3.35) when 9913 —> 0. From a more physical

standpoint the case y?i3 —> 0 corresponds to a vanishing momentum transfer

Q —> 0 [cf. definition (2.59)].^ For small transfer Q, all the phase space of the

ZS diagram in 3D is available for integration, as in 2D, and the Green

function's contribution is sensitive to the order of taking the limit Q, —>• 0 [cf.

Eqs (3.1,3.2)]. In order to treat this scattering geometry, i.e., the Landau

channel of (nearly) forward scattering quasiparticles, we will use the action's

effective interaction in the Landau channel as is defined by Eqs (2.65), d = 3.

Such physical quantities of the Fermi Liquid as the forward scattering vertex

and the Landau interaction function are identified with the fixed points of

.the running couplings T^ and f^, respectively [cf. Eqs (2.66)]. The functions

pQ ^ p^ depend on the relative angle ^12. The bare coupling in the Landau

channel defined by Eq. (2.61) is just a value of the coupling <E> [cf. Eq. (3.37)]

at (^3=0, i.e, U(0i2)=^?2,0).

The technical particularity of dimension three is that, for a spherical

Fermi surface, we expand the coupling functions into Legendre polynomials.

t Notice that the four-point vertex (2.59) with all four momenta taken on the

Fermi surface in the conic configuration (3.35) has the momentum transfer Q =

K3F — KIF lying in the azimutal plane. It is easy to find from Fig. 2 that |Q| =

2Kp • sin(i(9i2) • sin(^i3), so the momentum transfer in this configuration can be as

large as 2Kp-
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Using again the short-hand notation X for the set of coupling functions [cf

Eq. (2.67)], this expansion is

00

X(0)=J^ (2^+1) X^ PKcos^) , (3.39a)
(=0

1 r1
Xi = ^ / d(cos^) X(0) Pz(cos0) . (3.396)

<-1

The rest of the calculations for the Landau channel is conducted in the same

way as in Sec. 3.1, resulting in the Fermi Liquid results (3.22) with the

Pomerandiuk stability conditions (1.11). The treatment of the BCS interacting

channel made for the 2D case in Sec. 3.2 may be repeated step by step in the

3D case, resulting in the same formulas and conclusions.

3.4 Response functions

In this section we apply our RG technique to the study of response

functions. (For the definitions of these functions and their relationship with

physical observables, see, for instance, Ref. [58].) All the results presented below

are valid for spatial dimensions d = 2,3. In order to calculate the compressibility,

we consider the density response function ^((2), defined as follows:

S(d+l\0)K(Q)=(p(Q)-p^Q)} , (3.40)

wherein the density operator p(Q) is

P(Q) = I ^(l)^a(l + Q) (3.41)
/(1)

and p(Q) = p(Q) — (p(Q.)) stands for the density fluctuation. Here Q, = (q,f2,^),

and Un is the bosonic Matsubara frequency. The zeroth component of this

function /^(<2), taken in the physical limit, gives us the derivative of the

particle concentration n with respect to the chemical potential, i.e.

K, ^ Urn
1^0

K(Q)
n,,=o

9n
Q^JL

(3.42)
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The RG flow equations are simplest when obtained in a scheme analogous

to the standard field-theory renormalization technique, with a finite cutoff,41'42'43

i.e., momentum integrations are taken over the interval k € [—A, A], instead

of the (infinitesimal) Wilson-Kadanoff (WK) integration scheme. In this

"field-theoretic" scheme the RG parameter r [cf. Eq. (3.18)] runs from r = 0 to

r== TO ^ 1 (the fixed point), and the r.h.s. of Eqs (3.20) changes its sign. The

first two terms of the perturbative expansion for K give us [cf. notations (3.17)]

K^KQ-KQTAW , (3.43)

wherein KQ = ^-vpr is the contribution from the free part of the effective

action. Introducing the auxiliary function R(r) = K/KQ, and using Eqs (3.20), we

get the RG equation:
[T\

:^- = -Ao(r) , (3.44)

which yields Qn/Q^i as its solution at r = 0 (t = oo):

N VF
Kt = 7lf^ • (3-45)

From the thermodynamic formula for the compressibility

1 9V 1 Qn
VQP~ n28fi

(see, for instance, Ref. [9]), we easily recover the result for the electron Fermi

liquid:

K=^^- (3-46)

To find the spin susceptibility in our SU(N) formalism, we consider the

flavor response function ^(Q), defined as follows

SatS(d+l)(0)x(Q)=j^—^{Sa(Q)sl(Q)) , (3.47)

wherein the flavor density operator is

Sa(Q) = g /., AS^a(l)^(l + Q) , (3.48)
27(i)
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and g is the gyromagnetic ratio. The uniform susceptibility ^ is given by the

physical limit ^(Q -> 0) [cf. Eq. (3.42)]. Defining ^(Q) in the fashion (3.47), we

used the fact that in the paramagnetic state the response is the same along all

of the (N2 — 1) directions a. The rest of the calculations is carried out in the

same way as above. For the auxiliary function %(r) ^ X/Xo (xo = \92VF'T is the

contribution in the absence of interaction) we obtain the RG equation:

9}y=-B,(r). (3.49)

Again, we recover the FL theory result:9

xt=iff2T^s- (3-50)

Notice, that the stability conditions for the solutions (3.45) and (3.50) are just

a special case (/ = 0) of the Pomerandiuk conditions (1.11).

It is interesting to show how the results (3.45) and (3.50) can be obtained

in the Wilson-KadanoflF scheme with source fields.^ Below we specialize to the

electron (N = 2) spin susceptibility, but the compressibility may be computed in

the same fashion. We add to the effective action a source field h(Q,), conjugated

to the ^-component of the spin density (3.48). For details on this approach,

see, for instance, Ref. [39]. The successive integration over momentum modes

generates a vertex correction z(t) to the source term along with higher order

terms in the external field h. The effective action, at some intermediate value of

t (the flow parameter), takes the form

6f[^M=5f[^,(V]+ / z(t,Q)[h(Q.)S3(Q,t)+h.c.]+
/(Q)

x(t,Q)h'(Q)h(-Q) + 0(h3) .
(e> ^ ' (3.51)

+
/(Q)

In linear response theory it is sufficient to keep track of terms up to second

order in h. The recursion relations for the vertex z(t) and the susceptibility ^(^)

^ I am indebted in great part to N. Dupuis for the calculation of response functions

using this technique.
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+

Figure 3: Diagrammatic form of the recursion
relations for the susceptibility %(t) (circle) and the
vertex z(t) (triangle). The hatched symbols stand for
the functions at t + dt, whereas light ones stand for
functions at t. The black square stands for the vertex
T(t). Integration over loop momenta is carried out in
an infinitesimal shell dA(t).

are illustrated in Fig. 3. In the physical limit Q —> 0, we obtain the following

pair of RG equations:

^ = -^gW(r) , ^ = z(r)Bo(r) (3.52)

with the initial conditions z(ro) = 1 and ~)((To) = 0- Using the solution (3.21b)

for BQ (r), we can easily solve this system. The uniform susceptibility is again

given by Eq. (3.50).
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CHAPTER IV

Role of the interference in the Landau channel

In this chapter we present the quantitative RG theory which provides the

constructivs calculation of the parameters of the Fermi Liquid (the Landau

function and the forward scattering vertex) in terms of the parameters of the

effective action. The derived RG equations explicitly preserve the (anti)symmetry

of the scattering vertex (i.e., they preserve the Pauli principle) on the whole

trajectory of the RG flow. This is achieved by accounting for the interference

between the direct and exchange processes of the particle-hole scattering. This

chapter is organized as follows. In Section 4.1, which is rather technical, coupled

RG equations that take into account both the direct (ZS) and exchange (ZS )

particle-hole one-loop diagrams are derived for the two-dimensional case. Section

4.2 explains some of the weak points of the standard FLT results and argues

for their partial revision. In Section 4.3 we give a numerical and approximate

analytical solution of the coupled RG equations for spinless fermions. In Section

4.4 we present and discuss our results for the Landau function and the

scattering vertex calculated at different temperatures. In Section 4.5 we relate

this study to the standard treatment of Fermi Liquid Theory. The consequences

of the RG corrections on FLT results are discussed.

4.1 Coupled RG equations in the Landau channel

As already discussed in Sec. 3.1, in order to respect the Pauli principle

it is necessary to take into account in the equations both the ZS and

ZS' contributions to the RG flow, since only their combined contribution

(ZS-}-ZSf) is antisymmetric under exchange of incoming (or outgoing) particles.

We discard the symmetry-preserving contribution of the BCS graph to the RG

flow of the vertices in the Landau channel. Thus, we leave out the interference

near 6 = TT of the Landau channel with the BCS channel [cf. Eq. (2.73)], which

leads to the Kohn-Luttinger effect.28

58



Role of the interference in the Landau channel

The implicit form of the RG flow equations in the Landau channel

wherein both (ZS and ZS) contributions are taken into account, is given by

Eqs (3.11). Let us now explicitly derive the analytic form of the contribution

coming from the exchange graph ZS . We recall that the analytic expression of

that graph is given by Eq. (3.6), and the Green's function's contribution at

zero transfer Q by Eq. (3.8). The calculation of the ZS contribution to the RG

equations is complicated by the fact that, at arbitrary angle between vectors

KI and Ks, not all the phase space is available for integration. [Cf. discussion

in the beginning of Sec. 3.1, especially after Eq. (3.10).] Thus, we have to keep

track of the phase space constraints (2.40) for the momenta entering the r.h.s.

of Eq. (3.6).

Let us consider the ZS' graph (see Fig. 1) when all external momenta

satisfy momentum conservation and lie in C^. It suffices then to check whether

the internal momenta Ks and K5 - Q/ [Q/ is defined by Eq. (3.7)] lie in C\

when KJ^ runs around the Fermi surface during the integration. From Fig. 4A

we see that if |Q/| > 2A, the loop momenta lie both in C^ only at special

values of K^. (the shaded regions), i.e., only small fragments of phase space are

available for integration. At smaller Q (cf. Fig. 4B) these intersections form a

connected region and K.^ is free to run around the Fermi surface. If we

completely neglect the ZS graph when the intersection is disconnected (in

Fig. 4A), the contribution of this graph to the RG flow at |Q | < 2A is

calculated in the same way as that of the ZS graph. Since |Ki| = [Ksl = Kp

and Q/|g_»o = K2 — Ki, the condition |Q|<2A is equivalent to the condition

sin((0i — ^2)/2) | < A/Kp for the angle between KI and Kz.

After taking care of the phase space constraints, the rest of the

calculations of the term coming from the ZS contribution is straightforward.

The explicit form of the ZS terms (3.10) is found to be:

ar^ (2^) | ar^(2^)|
Qt zs/ Qt zs/

=-W(ec-W) f ^w^-e)Tllm(e+^)Y(<t>,0^R).
1-7T

(4.1)
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Figure 4: If |Q/| > 2A, the intersection (shaded) of
the supports of Ks and KB - Q are disconnected
(A). If | Q | < 2A, this intersection forms a connected
area (B). Note that the RG flow is governed by the
boundaries of this intersection, not by their interior
directly.

To simplify the formulas we parametrize the angular dependence of the vertices

by the angle (f) between K}, and (K},+K^), \(f)\ € [0,7r/2j. The small ZS'

contribution coming from |sin<^| > A(t)/Kp (Fig. 2A) was neglected, and this is

accounted for by the Heaviside step function 6, wherein

6>c = aicsm(A(t)/KF) . (4.2)

We also defined the function

Y^,e;i3R)^
1 sinh(2/?Q/)

(4.3)
Aycosh(2/^)+cosh(2A3/) '

)/ = /^sm^sm^, ftp ^ pvpKp -

which arises in the calculation of the ZS contribution (3.8).

Now we have the analytic expressions (3.4,4.1) for the contributions of

both graphs (ZS and ZS) entering the implicit form (3.11) of the flow
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equations. Summing up all formulas, we obtain the following system of RG

equations:

9rlw)W) ^ OR f M^m^ _ ^w),, ^ ^ ^ 9rl,2mwia~~= ^ih% L ^r36w;(^- eKrl(o + <t>} + " "at v~y/ ' (4'4a)

als^) = -/^ -101) fs ^\<t> - e)r^Q\e + w^;W^b)

wherein we explicitly indicated the flavor indices in order to avoid any

confusion. Notice that

^Y^e;^)=-^ . (4.5)
PQ^O " ' " "' cosh^ /3p

From Eqs (4.4a,4.3,4.5) one can see that at small angles (|<^| ^ T/vpKp) there
is a strong interference between the ZS and ZS contributions. This interference

depletes the RG flow of rA^(<^) at small angles. Moreover, using the

convolution relationships (2.31) one can check that at (f) = 0 the flow is exactly

zero, for the two contributions have the same thermal factor /3^cosh~ (Pp)'.^

^(0)^M.O,V<. (4.6)

The initial conditions for the flow equations (4.4) are:

r^^t=0)=^(^t=0)=UW . (4.7)

Recall that the fixed points TQ* and Fn* of the vertices FQ and Fn are the

forward scattering vertex and the Landau interaction function, respectively. From

Eqs (4.6,4.7,2.64) we conclude that the RG equations for the forward scattering

vertex preserve the Pauli principle at any point of the RG flow trajectory

rA(^)(^= o^)=o , v t , (4.8)

while the "uncompensated" RG flow generated by the ZS' graph drives the

vertex T to a fixed point value (the Landau function), which does not satisfy

the Pauli principle, i.e., r"*(^ = 0) + 0.

^ Both the ZS contribution and the zero-angular part of the ZS' contribution

become singular in the limit T —> 0 since lim^ooW^) cosh- (/3x/2) = 6(x).
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In order to make the discussion as clear as possible, we concentrate from

now on in this chapter on 2D spinless (N = 1) fermions. This simple model

has nevertheless all the necessary qualities to illustrate our key points and to

demonstrate the impact on the FLT results, caused by the the interference

in the Landau channel. In the spinless case the RG equations (4.4) take

their simplest form, since only the antisymmetric over momentum-frequency

exchange components of the interaction and vertices are present [they are

labeled by A in our notations (2.62,2.41)]. Then, according to the representation

(3.16,3.17) for the components of the "charge" and "flavor" components, we

introduce for N = 1 the running vertex F =. —2F^A\ whose fixed point gives

the Landau function (for the case N = 1 the Landau function has only one

component), and the running vertex F= —2F^^A\ whose fixed point gives the

single component of the forward scattering vertex.^

Let us explicitly write the RG equations (4.4) for the special case N = 1,

using the new notations:

Ti=-^W-:l^-^+8Ti ^
aF^) = ^e(e, -10|) ( d^T(4> - e)r(e + ^Y^, e; pn) . (4.96)

r-7T

These equations have the initial conditions cf. Eqs (4.7)]:

r((f),t = 0) = F((f),t = 0) = ?7(^>) . (4.10)

and the vertex satisfies the Pauli principle [cf. Eqs (4.6,4.8)]:

sr(^°'t)=o. r(^=o,t)=o, Vt, (4,n)

while the Landau function does not, and F*(4> = 0) 7^ O.

^ We appologize for some abuse of notation. Normally, according to (3.17),

we should have called this running vertex A, but we will reserve A for the

"charge" component of the vertex in the general SU(N) case, N > 1, and we will

keep calling T the single component of the vertex in the spinless case.
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4.2 Deficiencies of the decoupled
approximations in the Landau channel

Before finding a solution (exact or approximate) to the flow equations

(4.9) which fully takes into account the coupling of F and F, we will comment

on approximate solutions in which this coupling is neglected. The Landau

channel, as we defined it, includes, at one-loop RG, both the direct (ZS) and

exchange (ZSf) quasiparticle-quasihole loops with a small transfer Q,. We will

call decoupled any treatment of the Landau channel which does not explicitly

take into account both the direct and exchange contributions. It is shown

below that solutions for the forward scattering vertex provided by decoupled

methods fail to meet the requiremenfcs of the Fermi statistics. Tackling the Pauli

principle by imposing additional constraints on the solutions (sum rules) leads

to conceptual difficulties discussed below.

Let us first solve the RG equations in the decoupled approximation. If we

neglect completely the ZS contribution in Eqs (4.9) and perform a Fourier

transformation, we recover a familiar system of equations i.e., simplified for the

N = 1 version of Eqs (3.20)], with its RPA-like solution in which all harmonies

are decoupled:

^ = r? ^ rf^) ^ ^ ^r'(To)^ ^_ ^ ^ (4 ^a)~Q^-±l —r ^ v/;- l+(TQ-T)^(To) '

w = 0 ===^ FRPA(r) = const . (4.12&)
<9r

We recall that since the temperature in the effective action is restricted by the

condition (2.43), we can set TO = 1 [cf. notations (3.19)].

With the initial conditions ^(ro) = Fi(ro) = Ui [cf. Eq. (4.10)], the

solutions of the flow equations (4.12) at r = 0 (t = oo) are

(a) F? = ^ (b) F,* = C7, , (4.13)

with the following stability conditions:

Ui > -1 , V I , (4.14)
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which are the Stoner criteria, well known from the RPA approach. The bare

interaction satisfies the Pauli principle [cf. Eq. (2.64)]
00

Y^Ut=0. (4.15)
l.=—00

If the vertex F is to satisfy the Pauli principle, the condition

UiST•+Ut
',=-00

=0 (4.16)

must be imposed on the r.h.s. of (4.13a). However, it has been known for a long

time that conditions (4.16) and (4.15) are incompatible, unless the stability

conditions (4.14) are broken.47 Indeed, subtracting (4.15) from (4.16), we find
00

,_Smr°. (4-17)
l=-00

which cannot be satisfied without violation of (4.14).

This proves that the antisymmetric bare interaction U cannot be at the

same time a fixed point of the RG flow and the Landau function, unless the

classic FLT formulas are unapplicable. The accepted cure to this paradox

is to give up the Pauli principle on the Landau function, because of the

neglected ZS' contribution.47 In the RG approach this is accomplished (in

the decoupled approximation) by letting the ZS contribution drive the bare

interaction U towards 'the Landau function F* [e.g., during an earlier stage of

mode elimination], and then by solving the RG equations (4.12) with F* as a

new renormalized "bare" interaction. This leads to the standard relationship

between the scattering vertex and the Landau function

r?=^. (4.i8)

The above equation is just a special case (N = 1) of Eqs (3.22). Because of the

ZS' contribution, the Pauli principle does not apply to F* (a), while it is

enforced on the vertex F* through a sum rule (b):^
00 00 7-,^

(a) ^Ff^O (b) ^ Tfff=o- (4'19)
l=—00 l==—00

f The l.h.s. of Eq. (4.19b) is the sum (3.23) in case N = 1.
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In doing so, the stability conditions (4.14) are modified as follows

Ff > -1 , V I , (4.20)

i.e., they become Pomeranchuk's stability conditions for the Fermi liquid,

originally obtained on thermodynamic grounds.2 Such a decoupled RG

treatment of the direct and exchange loops makes Eqs (4.19) compatible with

the conditions (4.20).

However, the sum rule (4.19b) is "unnatural", in the following sense. The

bare interaction can in principle be traced from a microscopic Hamiltonian. For

instance, let us consider the spinless extended Hubbard Hamiltonian on a square

lattice (with lattice spacing a) at low filling, with nearest-neigbbor repulsive

interaction (?7nn). The coupling function of such microscopic Hamiltonian is

given by Eq. (3.25a). Let us choose this interaction (3.25a) as a trial bare

dimensionless coupling function of the effective action:

u(e, -e,)=u sin2 (0Lye2) , (4.21)

wherein all parameters are hidden within a single coefficient U. The only

nonzero Fourier components Ui of the interaction are:

Uo = ^U , C/±i = -^U . (4.22)

The interaction (4.21) satisfies the Pauli principle (2.64,4.15). The RPA sum

rule (4.16) imposes an additional constraint, which the interaction (4.21) does

not satisfy. If we suppose that the "improved" results (4.18,4.19b) are always

true, then, starting from any kind of microscopic interaction [e.g., the bare

interaction (4.21)] and integrating "fast modes" outside the immediate vicinity

of the Fermi surface, we have to end up with a "fine tuned" interaction, for

any interaction has to be "fine tuned" in order to satisfy (4.19b). The integral

of the flow (4.11) (or, equivalently the sum rule (4.32) below) is not a fine

tuning, since firstly, the bare interaction at the initial point can be always

antisymmetrized, and, secondly, we have an exact cancellation of the RG flow

for the vertex T at zero angle due to direct and exchange contributions, thus
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preserving (4.11). On the contrary, there is no reason for any bare interaction

to satisfy (4.16) at the beginning, nor is there a mechanism to provide the fine

tuning (4.19b) on other parts of the RG trajectory.

These difficulties are not specific to the decoupled RG approximation,

since the latter is strictly equivalent to the diagrammatic microscopic derivation

of FLT3'5'7 leading to the same results (4.18,4.19,4.20). The decoupled RG

treatment is equivalent to applying the Bethe-Salpeter equation with the

particle-hole ZS loop singled out, F being the vertex irreducible in this loop.

There are no a priori reasons in that approach to demand this vertex to

satisfy the Pauli principle. The rearrangmenfc of diagram summations in the

Bethe-Salpeter equation leading to (4.18) is based on the assumption that the

vertex irreducible in the direct particle-hole loop (ZS) is a regular function of

its variables, neglecting the zero-angle singularity (at T = 0; see footnote on

p. 61) in the ZS loop. As a consequence, the Pauli principle for the scattering

vertex F* is not guaranteed in the final result and "the amplitude sum rule"

(4.19b) must be imposed by hand. The solution (4.18) of the Bethe-Salpeter

equation is tantamount to the summation of the ladder diagrams built up from

the ZS loops, wherein the Landau function stands as the bare interaction. For

this reason, the solution (4.18) we will call the "the ZS-ladder approximatwrV

in the following. We refer the reader to a paper of A. Hewson31 wherein a

"generalized" Bethe-Salpeter equation for Fermi liquids, which explicitly takes

into account both the ZS and ZS loops, is derived. For further discussion on

this issue, see also Ref. [47].

4.3 Solution of the coupled RG equations

4.3.1 Exact numerical solution

The coupled integro-differential flow equations (4.9) may be solved

numerically. The functions T(0) and F(6) are then defined on a discrete grid of

angles, and simple linear interpolation is used to represent them between the
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grid points. The grid spacing is not uniform: it has to be very small near 6 = 0,

where the flow is singular, but may be larger elsewhere. The RG equations then

reduce to a large number of coupled nonlinear differential equations, which

are solved by a, fourth-order Runge-Kutta method with adaptive step-size.

Typically, a grid of a few hundred points is sufficient (we take advantage of the

symmetry of the functions). Of course, the numerical solution was checked to be

indistinguishable from the (exact) RPA solution when the ZS' contribution is

discarded.

An example of solution for the spinless case with the interaction function

(4.21) is shown on Fig. 5(A), at various temperatures. The interaction function

U(0) and the RPA solution FRPA(0) are also shown. This solution will be

discussed in Sec. 4.4.

4.3.2 Approximate analytical solution

The flow equations (4.9) may also be solved analytically, albeit only

approximately. In this section we give the approximate solution for the fixed

points F* and F* both in terms of Fourier components and in terms of angular

variables. (See Eqs (4.31,4.33) below.)

The Four ier transform of Eqs (4.9) is

9Tn - \ n 19Fn
WR = ^si?^ +^ ' (4'2
Qp ^

yn-m,2l-2m(PR)^l^l-2m » (4.236)
^77-1=— 00

Vn'^'^R) ^ -^ ( ^ / d0cosWn')cos(0m')Q(0c - H)y(<M;/^)(4.23c)
^ Jo Jo

On the plane (^,6f), the function Y((f),0\Pn) has a maximum on the line

0 = 7T/2, which moves from the position (7T/2,7r/2) at the beginning of

renormalization procedure (when /3p ~ ,3?) towards the position (0,7r/2) when

approaching the fixed point (/SR —> 0). Elsewhere, Y((f),0;ftR) is either quite
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00
\-^

z^
m=—oo

00

E
m=—oo

_Lcosh2.

Yn-m^R

'nm

±m '

•^-m(^)]r^ , (4.24a)

(4.24&)
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flat, or its contribution is eliminated by the cutoff factor Q(0c ~ W) during

the renormalization flow. Therefore, we approximated the function V^,^;/?^)

on the plane (<^,^) by its value on the line ((^,7T/2). This approximation,

simplifying considerably our equations, allows an analytical treatment and a

qualitative insight harder to find in purely numerical results. The approximate

analytical solution of the RG equations given below justifies that simplification

a posteriori^ when compared with the direct numerical solution of Eqs (4.9).

The approximate RG equations are:

orn
9?R

9Fn
9PR

wherein
-wcsm{2/3p/f3F)

Yn(PR) = ^ I ^ Y(^^ftR) cos(2n^) . (4.25)
7r Jo

The key difference between Eqs (4.12) and (4.24) is that the former do not

generate new harmonies since all harmonies are decoupled, whereas the latter

couple all harmonies (because of the ZS' contribution) in such a way that an

infinite number of new harmonies are generated by the RG flow, even if only

a finite number of harmonies are nonzero at the start. For instance, the

trial interaction (4.22) has only three nonzero components, but according to

Eqs (4.24) the fixed points F* and F* will possess an infinite number of them.

The generation of new harmonies is not an artefact of the approximation which

was used to go from Eqs (4.9) to Eqs (4.24), but is a generic consequence of

the interference in the Landau channel (cf. Eqs (4.23)).

Let us start the analysis of Eqs (4.24) with a heuristic observation.

Whereas the component YQ^R) is a nonnegative function of /?R, the others

WT,(PR)^ n ^ 1) are increasingly oscillating functions of ,3^ when n increases.

These oscillations along the whole RG trajectory [0,/?o] will effectively decrease

the contributions from the harmonies Tm (m ^ n) ^° the flow of Fn. Because
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of this, we expect the diagonal terms (m = n) of Eqs (4.24) to be more

important, and this justifies a perturbative approach, in which the nondiagonal

terms are ignored at zeroth order. Let 7n(A?) be the zeroth order solution:

<97n 1
9?R Lcosh2/^

The solution is

7n??) =

-YoW\^ .

Un

1 + [tanhA) - tanh^ - Jo(/3o) + WR)] Un

(4.26)

(4.27)

with

r0n
InW ^ I dft'R Yn(^)

'0

7T/

r0n

arcsin (2/3,?//3p) cosh(/3R + ftp sin (^) cosh(|/3j? sm ^)'] cos(2n^))
[ cosh(f3R - ftp sin 4>) cosh( ^ /3^ sin ^) J sin (^

The fixed point 7^ is

7:=
Un

(4.28)

(4.29)
i+|i-Jo(A))|^

The integrals In(/3o) can be evaluated analytically, since (/?F,A)) ^ 1 according
to condition (2.43). In the following we shall need the first two components

only:

~ Ao 1Wo) ^ -^
7̂T

ln2+ln
1 + ^/l - Ag/(2^)2

1 + ^/l - A§/^
1 ^ ..^ Ao _ __ AQ_^ ^ T (ln2)(ln3)

+ - ( 2 arcsin ^7— - arcsin -,— ) +
7T V '2K? Kj?^ V^KF 7T

hW

7T

Ao 1
Kp 7T

(4.30a)

ln2+ln
1 + ^/l - A§/(2^)2

1 + ^/l - Ag/^

+ ^1-A§/^ - ^/l - Ag/(2^)2 + r (ln2)(ln3)
vpKp 7T

(4.305)

[The next term in the temperature dependence, omitted in Eqs (4.30), is of the

order (T/vpKp)2]. Treating the off-diagonal terms (n 7^ m) on the r.h.s. of
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(4.24a) as perturbations, we obtain the following approximate solution at first

order:

rnW ^ 7n?0 + ^ /, d^ Yn-m^WmW , (4.31a)
m^njf3n

r-A) . V^(flL
Fn(/3R)=Fn(l3R)+ I d^-2^-. (4.316)

lf3p " COStl"^

It is straightforward to check that the solution (4.31a) satisfies the sum rule

(i.e., the Pauli principle (4.11)):

]^Fn?0=0 , V/3^ . (4.32)
n

The solution (4.31) can be converted back in terms of the relative angle

6 € [-7r,7r] with a little help from Eq. (4.26):

'A) /7/^ °°

r(e) = u(e) - \_ —^- ^ cos(ne)^w
/o cosh^R ^^

r/3° ,. ^,e pr
+e(0o- W) /,7 ..,..d/3fi r(^^;^) S cos(n^(/3fl) , (4.33a)

ll,f3p\sm{6/2)\ ^ ^ • ^^

'A) r^a^. °°

Ft(e)=Tt(ff)+ I —^— Y^ cos(n0)r2,(/3fl) . (4.336)
'0

n=—oo

wherein OQ = 2arcsin(2/?o/^F). A comparison of Eqs (4.33a) and (4.9a) shows

that - with the aforementioned approximation of the angular dependence of the

function Y - the approximate solution (4.3 la) may be obtained by replacing

the vertex components Fn on the r.h.s. of Eq. (4.9a) by the "renormalized"

RPA ansatz (4.27). It would be a mistake, however, to conclude that the ZS

diagram contributes only to the third term on the r.h.s. of Eq. (4.33a) since the

77z-s partially include its contribution. It is worth noting that Eqs (4.31b,4.33b)

are not approximations in the sense of Eqs (4.31a) or (4.33a), but they are

exact relations for F, derived from the basic RG equations (4.24).
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4.3.3 Extension of the effective action

In the numerical and analytical results presented in the following

sections the initial cutoff Ao of the effective action is extended to Kp, i.e.,

f3o = /?F/2. [Cf. notations (3.19,4.3)]. This point should be clarified. Notice first

that the ZS contribution is not sensitive to the bandwidth cutoff AQ -

provided condition (2.43) is satisfied - since tanh/?o is unity with exponential

accuracy. On the other hand, the angular cutoff of the ZS contribution [cf.

Eqs (4.9,4.23,4.25,4.28)] comes from a cutoff imposed on the momentum transfer

in this graph [cf. Eq. (3.6)]. It is 6c = arcsin(2/3^//^) (with. 2/3^,,^ = A/Kp) if
AO ^ Kp, and 0c = 7T/2 otherwise. The specific choice /?o = /3p/2 (AQ = -F^p)

means that at the initial point of the RG flow the angle (f) is allowed to take

all values (i.e., the momentum transfer Q is not cut off), while the bandwidth

is extended to the full depth of the Fermi sea. It can be checked that the

results are not sensitive to the choice of a bigger cutoff AQ ^ Kp^ since then

not only is the ZS contribution to the flow is exponentially small, but that of

ZS as well, until the cutoff decreases to A ~ Kp (this was also confirmed by

direct numerical tests). The formulas for the approximate analytic solution are

derived for AQ ^ 7^^.

Such an extension of the low-energy cutoff to large values is analogous to

what is routinely done in ID models (e.g., the Tomonaga-Luttinger model1 ). In

that context, deviations of the real excitation spectrum from linearity and the

approximated integration measure are expected to affect only the numerical

values of the renormalized physical parameters.

Choosing AQ ~ Kp renders the RG fixed points (observables) sensitive

only to the two independent physical scales present in the model: T and

VF.KF = 2Ep, and not to the arbitrary scale AQ, which divides fast and slow

modes. Lowering the running cutoff until it reaches some intermediate scale

A^ (such that A^ < Kp and ITA^ > T) provides us with A^-dependent

parameters for the action. We regard AX as the scale of the low-energy effective
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action. However, the observable quantities (the fixed points) do not depend on a

particular choice of A^.

4.4 Analysis and discussion of the RG results

We will now discuss the main novelties brought by quantum interference in

the Landau channel and compare with the results of decoupled approximations.

The solutions F*(0) and F*(0) at different temperatures and for the interaction

(4.22) are shown on Fig.5 [A: direct numerical solution of Eqs (4.9); B: solution

(4.33)]. For this interaction the sum in the second and third terms on the r.h.s.

of Eq. (4.33a) is ^(ftp) + 27^ (/3^) cos 6. The curves were calculated for U = 1

[cf. Eq. (4.21)], which is four times smaller than the critical value ^ = 4 at

which the instability appears in the RPA solution (4.12a) for F^. Comparison of

the approximate solutions (4.31,4.33) with the direct numerical solution shows

good agreement.

In Fig. 5 the differences between the RG solution and the RPA solution

(4.12a) are minor at large angles, but they become especially striking at

small angles 0, where the interference between the ZS and ZS contributions

is very strong. The RG solution gives F*(6 = 0) =0 (the Pauli principle),

while TRPA(0 = 0) = —1/3 for this interaction strength. The Landau interaction

function F*(6>) differs from the bare interaction U(0), and F*(0 = 0) 7^ O. If the

ZS' contribution is neglected (the RPA solution (4.12b)), these two quantities

coincide.

An interesting feature of the RG result is the temperature dependence of

the vertices F*(^) and F*((9). As T decreases, the "beak" of r*(6) in the region

of strong interference becomes narrower. The characteristic angular width of this

"beak" is \6 ~ T/vpKp- A similar narrowing is noticeable in the temperature

dependence of F*(0). One can also see from the figures a weakening of the

interference effect at lower temperatures, for then the RG solutions lie closer to
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\^/
^/pRPA

-3 -2 -1 2 3
9 (radians)

Figure 5: (A) Results of the numerical solution of
the coupled RG equations. The curves labeled T and
F* are the forward scattering vertex and the Landau
function, respectively, at temperatures T/vpKp =
0.1, 0.025, and 0.01. The narrowest central peak
corresponds to the smallest temperature, and vice
versa. (B) Approximate analytical solution of the
coupled RG equations, for the same parameters as in
(A), calculated numerically from Eq. (4.33). In both
cases the initial cutoff was Ao = Kp-

the RPA curves, but the distinctions between them do not disappear as T

and the RG never reproduces the RPA result^

0,

^ At exactly zero temperature the angular features of the vertices reduce to finite

discontinuities at zero angle, accompanied by finite-angle deviations from the RPA
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In terms of Fourier components this behavior manifests itself in a

linear temperature dependence of F^ and F^. This linearity is found both

in the direct numerical solution of Eqs (4.9), and from the solution

of Eqs (4.25,4.27,4.28,4.31). This temperature dependence can be revealed

analytically. Integrating by parts and using Eq. (4.26), we can rewrite

Eq. (4.3 la) at the fixed point as

1
.cosh ft R

-YoW 7^) .
^0

r: = 7; + E In-^WUl - 2 /. ^fi ^ /n-m?) |
m^n ~ m^n

(4.34)
The leading term on the r.h.s. of Eq. (4.34) is 7^. Using then Eqs (4.29,4.30a),

we obtain for n = 0,1:

F;(T) » <(T) " ^(0) + rz^^n21?n3)[^(0)]2 , ("=0,1), (4.35)
VFI\.JP 7T

wherein

7;(0) = — -, — U2—— . (4.36)
1+ [i - W) Un

IT=0-

For the interaction (4.22) Un = 0 and so 7^ = 0 for n > 1. Thus, the higher

harmonies F^>i, are entirely generated by the RG flow. To leading order, we

obtain from Eq. (4.34):

r^h((3o)U? . (4.37)

This component also has a linear temperature dependence, according to

Eqs (4.30). To estimate the components of the Landau function, we first rewrite

Eq. (4.31b) in another, equivalent form (cf. Eqs (4.24)):

^ ^Q
Fn(0R) = Un + ^ ^ d^ y»_^(^)^(^) . (4.38)

'0R

curve depending on the parameters of the effective action, e.g., the radius of Fermi

surface, the strength of the interaction, etc. The zero-temperature limit is, however,

mostly an academic question since the effect of interference between the Landau

and the BCS channels, neglected in this study, would result in a Kohn-Luttinger

instability in the V-interaction function28 and destroy the regime of Fermi liquid

before the system attains T = 0. Due to this second interference our results are not

reliable near 0 = TT, since r(7r) = V(0). Cf. Eq. (2.73).
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Proceeding in the same fashion as above, we obtain the linear

temperature-dependent components F^:

, F; ^ C/n + JoCW2 + (\n - 1| + I)JI(A))^_I|, (^ = 0,1) (4.39a)

F^Wo)U^ . (4.396)

We should emphasize that simple formulas like (4.35,4.37,4.39) serve only to

illustrate how the temperature dependence comes about, and give only the

order of magnitude of the higher harmonies (n > 2). The latter should

rather be calculated numerically. The temperature dependence of the lowest

harmonies (e.g., F^ and F^) does not seem to be a relevant issue in the

calculation of quantities such as the compressibility, effective mass and heat

capacity, since, in the total ZS' contribution, the temperature corrections,

of the order of T/vpKp, are very small in comparison with the main

corrections of order AQ/KF- As a consequence, the actual values of the lowest

harmonies vary within a few percent at most, even in the entire temperature

interval 0 <: T vpKp ^0.1 (the maximum temperature studied is really high:

T=0.2EF).

The temperature dependence is more pertinent as a "collective" effect of

the higher harmonies generated by the RG flow. Let us explain this point with

the example of the interaction (4.22). The "improved" RPA ansatz (4.27)

renormalizes the bare components Un into 7^ (n=0,±l). The latter form

almost perfectly the function F*(^), except at small angles. For those three

components 7n the sum rule (4.32) is less violated than for the "pure" RPA

components (4.13a). The generation of the new harmonies by the second term

on the r.h.s. of Eq. (4.31a) gives "a final touch" to the curve r*(^), resulting

mostly in the formation of a temperature-dependent feature near 6 = 0. The

actual calculation of the components F^ showed that, in order to obtain with

acceptable accuracy the right form of F*(0) provided by Eq. (4.33a) via the

Fourier transformation of Eq. (4.31a), at least A^max ~ vpKplT components are

necessary. So, the lower the temperature is, the more harmonies are needed for

the formation of the vertex T*(0). The same conclusion can be drawn from a
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numerical solution of the equations, but since it is carried out in terms of

angles on a discrete grid, a reliable calculation of higher harmonies is difficult.

Another physical consequence of the quantum interference in the Landau

channel is the increased robustness of the system against instabilities induced

by strong interactions. Even from the approximate solution (4.31), we see that

the maximum interaction strength allowed is now larger than the one provided

by the RPA solution [cf. (4.13,4.14)]. From Eq. (4.29) we obtain the stability

conditions for the approximate solution (4.31): Ui > —[l—Jo(A))]-l? V I with.

0 < 7o(A)) < 1 according to (4.30a). Since Io(/3o) grows with temperature, larger

values of \Ui\ are allowed as T increases: the higher the temperature, the more

stable the system is, as it should be from physical grounds. At the optimal

choice of the initial cutoff (AQ = Kp), Jro(A)) grows from 0.255 at T = 0 to 0.27

at T/vpKp =0.1. This value of temperature is the largest we can try without

violating the condition of applicability of our model (2.43). Thus, within this

approximate solution, the effect of interference increases the critical coupling by

40% compared the the RPA critical value (4.14). Since we are retaining only

two one-loop diagrams, linearized excitation spectrum and integration measure,

we cannot be more conclusive on the role of the modes deep into the Fermi sea

in screening a microscopic interaction of arbitrary strength, and in stabilizing

the Fermi liquid phase.

4.5 Contact with the Landau FLT and discussion

In this section we explain how the present RG theory, which takes into

account the interference in the Landau channel, is related to the standard

results of the Landau FLT.113 This will also allow us to relate the results of

this chapter to the decoupled RG approach to the Fermi liquid presented in

Chapter 3.

It is important to notice that the two contributions to the RG flow,

coming from the ZS and ZS' graphs, behave quite differently as the flow

76



Role of the interference in the Landau channel

parameter f3p runs from /?o > 1 towards /3^ = 0. At large /?R the ZS

contribution to the flow, which gives the term proportional to cosh-2/3^ on the

r.h.s. of Eq. (4.23), is virtually negligible, up to /^ ~ 1. On this part of the RG

trajectory, the main contribution to the renormalization of F and F comes from

the ZS graph. On the other hand, closer to the fixed point (,3^ ^1), the ZS

contribution grows since cosh- ftp ~ 1 for all harmonies, while Yn(/3R) decreases

for the lower-order harmonies. At /?p <^ 1:

1
YnW^sm^ . (4.40)

7T7Z

Using the approximated form (4.25) is justified here, since at PR <$: 1 there

is no difference between the exact form of the RG equations (4.23) and

Eqs (4.24). Indeed, when /?^ < 1, the largest allowed (f) is roughly 2/3^,,^, so

in Eq. (4.3) max|/?Q/| ^ 2/3^ < 1 and the limit (4.5) of the function Y can be

taken. The Kronecker delta appearing after the integration over 6 removes one

summation, and we recover exactly Eqs (4.24) with Vn(/3^) given by (4.40). It

should be also kept in mind that the ZS flow is localized within the angle

W ~ 20R/0F.

Such different behavior of the two contributions (ZS and ZS') to the

total RG flow explains why approximations based on the decoupling of these

two contributions (RPA, Z5'-ladder5'7'33'34) are reasonable. To clarify to what

extent the standard results of FLT (4.18,4.19) can be corroborated by RG, we

will make a two-step approximation of our RG equations. In doing so we

will follow exactly the "recipe" of the Z6'-ladder approximation discussed in

Sec. 4.2, but now we can check each step by direct comparison with the RG

solution of Eqs (4.9).

In the first step we neglect the contribution of the ZS graph above an

intermediate flow parameter (3x. As one can see from the RG equations (4.23),

this removes the exponentially small difference between Fn(/5^) and Fn(/3R) at

> 13x- This approximation is asymptotically exact as T —^ 0 (see footnote on

p. 61). Neglecting, in the second stage of this approximation, the ZS flow

for /3fi < f3x^ localized by that time within the angle Ox = 2arcsin(2/3^//3^),
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we recover the exactly solvable equations (4.12) with the new initial point

/3p= /3x, instead of /3p = /3o. Then according to Eqs (4.12), F^ = Fn((3x) is

the (approximate) fixed point value of the Landau function, while Fn(^)

flows towards the (approximate) fixed point F^ from the new bare value

F^f = Fn(Px) = -^n- r^^ls second step of approximation violates the Pauli

principle, no matter how close we are to the Fermi surface [cf. Eq. (4.11) and

footnote on p. 61]. Afterwards the theory says nothing about the values of the

functions T(0) and F(6) inside the interval 29x and, of course, there are no

more correlations between these functions.

To preserve the correct zero-temperature limit and to minimize the angle

within which the approximation gives completely wrong results for F* and F*,

the intermediate cutoff AX corresponding to f3x = vpAx/^T should be chosen

such that tanhfe ^ 1 [cf. Eqs (4.12,4.13)] and 2f3x/^F = ^x/Kp < 1. Summing

up what is said above, we obtain:

rx FX
rph = \n _ = JL"_
L" - 1 + tanh(^)^ - TTF^ ' ^

_^. rf3o
^ = Ff =Un+ ^ / d^ ;H>-m,2i-2m(?09fi)ri-2m(^) .(4.416)

i,m=—oo

In Fig. 6 we illustrated all this by the direct numerical calculation of Fx, F^

from Eqs (4.9) for the interaction (4.21), followed by a calculation of Fph

from Eqs (4.41). The RG solutions for F* and F* are also presented. The

function Fx (0) follows almost perfectly the Landau function (the real fixed

point F*(0)), except within 20 ^ of 6 = 0. In the part of the RG trajectory

^ f^R ^ fto (PO = 100, ftx = 5, T/vpKp = 0.005), not only is the ZS flow

exponentially weak, but the central part of the ZS flow as well [cf. Eq. (4.5)].

So, the evolution of both vertices is due mostly to the "tail" 6 > QX of the

function Y at /3p ^ 1. That is why Fz(^) and Fx (0) are virtually identical.

Only the slowing down of the ZS flow almost everywhere at (3^ ^ 1 - except

on the central part (cf. Eq. (4.40)) wherein it is always as strong as the other

one (ZS) - results in the drastic differences between the two limits of the

four-point vertex at the fixed point. The function Fph(0) is featureless and looks
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-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
6 (radians)

Figure 6: Comparison between the exact numerical
solution of the coupled RG equations for
T/vpKp = 0.005 (F* and F*), the intermediate
values of Fx, Fx obtained from the initial value
U by stopping the flow at ,3^ = 5, and the
phenomenological vertex Fp (the result of the
standard FLT derivations) obtained by applying the
RPA solution to F (Fx) considered as a new
initial point of the flow. Fp practically coincides
with F*, except in the central region.

like a corrected RPA solution. The differences between F^ and T^ (F^ and

F^) are negligible, i.e. less than 1%, only for the components n= 0,1.

As it should be clear by now, there is no real incompatibility of the

stability conditions with the Pauli principle, since this is a mere artefact of the

ZS-ladder approximation. It is pointless to impose the sum rule either to F^" in

the form (4.32), or to F^ in the form (4.19b). Both sums would give the value
of the "uncorrelated" function Tph(0) at 0 = 0. This function goes smoothly

from the right patch [QX-,^} towards ^=0 (cf. Fig. 6) - or, equivalently, from

the left, because of parity. Actually, it can be proved exactly, turning the

arguments of Sec. 4.2 around, that in a stable Fermi liquid, it is impossible to

obtain Tph(0 =0) =0, even by chance. Thus, there is no need for the Landau
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function F* to be "fine tuned" in the sense of the sum rule (4.19b), since only

the relation (4.41) - between the approximate vertex Fph and Fx - is an exact

relationship (more precisely, asymptotically exact when T —> 0), not (4.18),

which relates the physical quantities F* and F*.

Jn the context of our discussion at the end of Sec. 4.3, notice that the

cutoff A^ (vpA.x/T > 1, KX/KF < 1) corresponds to the initial cutoff of

the low-energy effective action wherein Tx is the bare interaction function

(coupling) of that action. The equality of the functions Fx and Fx illustrates

the point of Sec. 2.4 that, at the beginning, the action's coupling function can

be defined independently of the order in which the zero-transfer limit is taken.

When the RG flow reaches the scale A^, the contribution of the ZS

graph to the flow of Tn and Fn is strictly irrelevant in the RG sense, and

could have been neglected in a model with a finite number of couplings (e.g.,

the y?4-theory, ID g-ology models, and so on), keeping only marginal terms [cf.

Eqs (4.12)]. But, as pointed out by Shankar,28 in the vicinity of the Fermi

surface we are dealing with coupling functions, i.e., with an infinite set of

couplings. Our RG solution provides a curious example of a finite deviation of

the RG trajectory at the fixed point due to an infinite number of irrelevant

terms. The right fixed point (F* (6 = Q) =0) cannot be reached if those terms

are neglected, since FPh(^ —> 0) ^F*(6 = 0) (even at T = 0; see footnote on

p. 73) and we would return to the problems caused by the solution FP11 (the

Z.S'-ladder approximation) discussed in Sec. 4.2. To put it differently, neglecting

those irrelevant terms at some part of the flow (solution (4.41)) violates the

invariance of the RG trajectory at the point 0=0, expressed by Eqs (4.10,4.11).

The Z5f-ladder approximation seems acceptable in the normal Fermi liquid

regime with moderate interaction (Fn ^ 10), when the narrow-angle features of

vertices revealed by the RG theory are not too large (see footnote of p. 73)

because the forward (9 = 0) singularity has little effect on the first components

(r^ w r^, F^ w F,X for n = 0,1 and, in the case of a weak interaction, for

n = 2). This singularity affects mostly the higher Fourier components. So, the
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relationship (4.18) is valid only for small n. It should not be used for F^

(n ^ 2) neither directly, nor via the sum rule from the scattering vertex

provided experimentally. For the physical vertex F^ the sum rule (4.32) is

always valid, but our results indicate that its angular shape may require a large

number of harmonies to adequately represent it. The existence of a finite

solution for Tph(0) under conditions

F^ > -1, Vn (4.42)

guarantees not only finite RG solutions for F* and F*, but also the fulfillment

of the thermodynamic Pomeranchuk conditions (4.20) by F*.. .

The major consequence of the interference in the Landau channel on the

standard results of the FLT is reducing the relationship (4.18) between the

components of the scattering vertex and the Landau function to the rank of

approximation and invalidating of the sum rule (4.19). The rest of results for

normal Fermi liquids would not be affected seriously by the RG corrections.

For example, the temperature dependence of the vertices would give a weak

correction to the leading terms. These conclusions are neither related to the

specific choice of the model considered, nor to the spatial dimension. Including

spin doubles the number of vertices involved, changing nothing essentially.

[Coming back to the general RG equations (4.4) for the SU(N) case and

introducing the components {F,G} and {A,B} according to (3.16,3.17), one

can easily obtain the RG equations in terms of those variables. Contrary to the

case (3.20), the variables are coupled. The equations preserve the Pauli principle

for the scattering vertex [cf. Eq. (4.8)] in the form

00
\-^A^ = O^t) + (TV - 1)B(^ = (V) = > ; [Ai(t) + (TV - 1)B^)] =0, V t . (4.43)

However, the components of the scattering vertex and of the Landau function

are not related by the simple RPA-type relationships (3.22)]. The differences for

the case d = 3 are only quantitative (e.g., the type of temperature dependence)

because of different angular functions and solid angle integrations.
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The finite-temperature renormalization-group (RG) method was developped

to study interacting fermions in spatial dimensions d = 2,3. A model with a

^4-Grassmann effective action with SU(N)-mv&na,nt short-range interaction and

rotationally invariant Fermi surface is adopted as a starting point of the RG

analysis. Applying a decoupled (RPA-type) approximation at the one-loop RG

level, we showed how the key results of the Landau Fermi liquid theory (FLT)

can be recovered by the finite-temperature RG technique. In particular, this RG

approximation allows us to obtain the relationship between the components

of the forward scattering vertex and of the Landau interaction function of

quasiparticles. In the standard diagrammatic FLT this relationship is provided

by the solution of the Bethe-Salpeter equation. Using the decoupled RG

approximation for calculation of response functions, we find the FLT results for

the compressibility and the spin susceptibility as solutions of the RG flow

equations.

We discussed subtleties stemming from the crossing-symmetry properties of

the four-point vertex (the implications of the Pauli principle). We pointed out

symmetry-related distinctions between three quantities: the bare interaction of

the low-energy effective action, the Landau function and the forward scattering

vertex.

Our results show that the bare interaction of the effective action is not a

RG fixed point, as was concluded in earlier RG studies of the Fermi Liquid,

but a common starting point of the flow trajectories of two limiting forms of

the four-point vertex. In order to explicitly preserve the (anti)symmetry of

the four-point vertex (crossing symmetry) in RG calculations for the Landau

channel of (nearly) forward scattering quasiparticles, we have derived RG

equations that take into account both the contributions of the direct (ZS) and

exchange (ZS ) particle-hole graphs at the one-loop level. From those RG flow

equations, the basic quantities of Fermi Liquid theory, the Landau interaction
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function and the forward scattering vertex, are calculated in terms of the

effective action's interaction function.

The classic derivations of Fermi Liquid theory applying the Bethe-Salpeter

equation for the four-point vertex at T = 0 is based on the approximation that

the vertex, irreducible in the direct particle-hole loop (ZS) is a regular function

of its variables, neglecting the zero-angle singularity in the exchange loop (ZSf).

This approach, and other analogous (decoupled) ones, including the decoupled

RG approximation, are tantamount to a summation of the direct particle-hole

ladder diagrams, wherein the Landau function stands as the bare interaction.

One of the major deficiencies of the decoupled approximation is that the

antisymmetry of the forward scattering vertex related by the RPA-type formula

to the Landau interaction function, is not guaranteed in the final result, and

the amplitude sum rule must be imposed by hand on the components of the

Landau function to satisfy the Pauli principle. This sum rule, which is not

indispensable in the original phenomenological formulation of the Landau FLT,

is equivalent, from the RG point of view, to a fine tuning of the effective

interaction.

We demonstrated that the strong interference of the direct and exchange

processes in particle-hole scattering near zero angle invalidates the RPA

(decoupled) approximation in this region, resulting in temperature-dependent

narrow-angle anomalies in the Landau function and forward scattering vertex,

revealed by the RG analysis. In the RG approach, which explicitly takes

into account the interference in the Landau channel, the Pauli principle is

automatically satisfied. As follows from the RG solution, the amplitude sum

rule, being an artefact of the RPA approximation, is not needed to respect the

Pauli principle and, moreover, is not valid.

In perspective, the RG approach developped here, which takes into

account the interference of different processes at one-loop level, opens the

possibility to generalize this technique in order to calculate vertices and

83



response functions at non-zero energy and momentum transfer, starting from

different kinds of effective actions. In particular, a straightforward extension of

the present technique for the case of nonzero momentum-energy transfers with

the same effective action as considered in this study, would allow to find

(presumably) subleading RG corrections to the standard results for normal

Fermi liquids, e.g., for susceptibilities and collective modes.
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