
Third-Order Nonlinear Optical Study
on

SubIimated/Langmuir-Blodgett Thin Films of
Lanthanide Porphyrin Phthalocyanine

Dimer/Heterodimer and Symmetric Trimer
Systems

by
Time-Resolved Non-Degenerate Four-Wave

Mixing

by

Mr. PAN, Ligang

Thesis Submitted in Partial Fullfillment of the Requirements
for

the Degree of Doctor of Science (Ph.D.)

Departement de physique, Faculte des sciences,
Universite de Sherbrooke,

Sherbrooke, Quebec, Canada.

October 1996

Members of Jury: Invited Member:
—Professor SergeJandl —Professor

Marguerite-Marie Denariez-Roberge
— Professor Denis Moris

Professor Daniel Houde (Director of the Thesis)
— Professor Laurent G. Caron (Directer of the Thesis )

l^tt



1*1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1AON4
Canada

Bibliotheque nationale
du Canada

Acquisitions et
services bibtiographiques
395, rue Wellington
Ottawa ON K1AON4
Canada

Your file Votre reference

Our file Notre r6f6rence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis m microform,
paper or electronic formats.

The author retains ownership of the
copyright m this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, prefer, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/fihn, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autonsation.

0-612-21858-9

Canada



TOjftit^r
M$^m^mmyw^^x ^m^w, a^Nrn

To My Wife SUN Zhaoxia,
Our Sons Yingzhou & Xiongfei,

and Our Parents and Grand-Parents!

A ma femme SUN Zhaoxia,
nos enfants Yingzhou & Xiongfei,

et nos parents et grand-parents!

Zu meiner Frau SUN Zhaoxia,
unseren Kindem Yingzhou & Xionfei,

und unseren Eltem und Gropeltem!

^<7)^^
.b^LO^AMSS^,

t)kLk60M^, m <):/?^& ^ z,
-b/^L kb<r>W^/^t,

hk L ^60.bL?^S^b(f^&^(;
& L ^ (f ^ t!

K Moefl Focno^ce Cyn UaomHa,
Ham™ /leTHM Iteuoy H mnoH$bi,

Ham™ PO^HJIHM,
n HamnM 4e?M H BaSymKaM!



Resume

Ce travail porte sur 1'etude par la technique de melange a quatre ondes resolu dans Ie
temps ("time-resolved four-wave mbdng" ou "TRFWM") de couches minces de
differents materiaux organiques d'interet pour 1'optique non-Uneaire. n s'agit de

couches sublimees du dimere neodymium porphyrme phthalocyanme Pc Nd Pc*, de

1'heterodimere cerium porphyrine phtfaalocyanine Pc2~Ce TPP2', des trimeres cerium

porphyrine phthalocyanine TPP Ce Pc Ce TPP et neodymium porphyrine
phthalocyanine Pc2'NdfflTPP Nd Pc , ainsi que de couches Langmuir-Blodgett du

dimere mixte cobalt porphyrme phthalocyanine CoPC22+4 /H^PcTS4'.

Cette these fait etat de plusieurs premieres: premiere etudepar TRFWM de couches
organiques sublimees, premiere observation et investigation de la contribution des
mecanismes de diffusion d I'attenuation du reseau de dif fraction transitoire genere
par TRFWM, premiere observation et investigation d'un effet photorefractif dans les
couches minces de multimeres organiques, et premiere etude et depistage d'un

nouveau phenomene de mutation de mode de vibration.

Les valeurs absolues de la susceptibilite opdque non-lmeaire de troisieme-ordre ^<3)

des couches ont pu etre determinees grace a une etude comparee avec une lame de verre

de quartz servant de reference.

Ce travail montre que la technique de TRFWM est non seulement utile mats surtout
tres sensible et fort puissante pour 1'etude des procedes optiques non-lineaires

dynamiques de troisieme ordre dans les materiaux organiques. EUe pennet entre autre

de mesurer des mecanismes mobservables par absorption transitoire ou par d'autres
methodes d'optique non-lineaire.

Les etudes des systemes dimere/heterodimere et trimere/heterodimere de terres rares

porphyrine phthalocyanine monti-ent enfin que ces materiaux sont tres interessants pour
leurs proprietes optiques non-lmeaires. Ce sont de nouvelles families de materiaux
organiques tres prometteurs pour les etudes et les applications de I'effet
photorefractif. Ils sont polyvalents et ont un grand potentiel comme materiaux optiques

non-lineaires.



Abstract

Time-resolved four-wave mixing (TRFWM) studies have been earned out on

sublimated fihns of the neodymium phthalocyanine dimer Pc Nd Pc , the cerium
porphyrin phthalocyanine sandwich mixed heterodimer Pc2'CeIVTPP2\ the cerium
porphyrin phthalocyanine symmetric trimer TPP2~CemPc2~CemTPP2~, the
neodymium porphyrin phthalocyanine trimer Pc2~Nd TPP2~Nd Pc2', and

Langmuir-Blodgett fihns of the cobalt porphyrin phthalocyanine mixed dimer

CoPC^z^/H^PcTS4-.

In this work, we have presented a number of novel results: the first non-degenerate

time-resolved four-wave mixing (NDTRFWM) experiment on a sublimated film, the

first observation and identification of the diffusion contribution to the degrating
process, the first observation and identification of photoreft active effect in an
organic multimer thin film, and the first observation and identification of a
correlated phonon mode shifting phenomenon.

The absolute values of the fhird-order nonlinear optical susceptibility ^ of the
samples have been determined by comparing the third-order nonLuiear optical

responses of the samples with those of a slide of reference fused quartz under tfae same

experimental conditions.

It is shown that TRFWM is a very useful, very sensitive and very powerful tool to
investigate the dynamics of the third-order nonlinear optical processes m a medium,
especially those that can not be detected by transient absoiption and other means of

probing nonlinear optical properties.

Through this work, it can be seen that lanthanide porphyrm phfhalocyamne dimer/

heterodimer trimer/heterotrimer systems could be a new family of organic materials

most promising for the investigation and the applications of photorefractive effect
They are very versatile and have a great potential as nonlinear optical materials.
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Introduction

The importance of nonlinear optical phenomena has been known for a long time.
Since the 1980s, materials research and development for nonlinear optical applications

have rapidly progressed so that several systems are available commercially. To date,
the systems have been utilized in information processing, optical switching, optical
frequency conversion, and telecommunications. The advancing development of

optotechnology has encouraged research on suitable nonlinear optical materials. A

wide variety of materials, including inorganic and organic crystals, polymers,
semiconductors, composites and metal-based systems, possess noticeable nonlinear
optical properties. In recent years, organometallic compounds, by their unique
characteristics, such as diversity of metals, oxidation states, ligaads, and geometries,
have achieved success in and brought a new dimension to the area ofnonlinear optics.

In last six years, investigations of organometallic systems have been greatly
intensified, because [1,3]:

1. Organometallic system can possess metal —> ligand or ligand —> metal charge
transfer ( MLCT, LMCT ) bands in the visible region of the spectrum, which are
usually associated with large second-order activity.

2. The compounds have great possibilities for redox changes, a property largely
associated with the metal center, which can be electron poor or rich depending on
the oxidation state and ligand enviromnent. Facile redox ability can lead to large

hyperpolarizability, with the metal center being an extremely strong donor/acceptor
in comparison to conventional organic systems.

3. Chromophores, such as phthalocyanines, containmg metal ions, are among the
most intensely coloured materials known. The strength of the optical absorption
band is also associated with large optical nonlinearities [4].

4. Many organometallic compounds have low-lying excited states with their dipole

moments significantly different from their respective ground state dipole moments.

Most of the excited states mvolve charge transfer between the central metal and
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one or more of the associated ligands and have a large osciUator strength. This will

provide a substantial contribution to the hyperpolarizability.

5. Organometallic compounds also have important advantages in the range and mix
of non-aromatic ligands that can be attached to the metals. These Ugands can shift
the occupied and unoccupied metal d orbitals that interact with the Ti-electron

orbitals of the conjugated systems. This provides a mechanism for fine-tunmg and

optimizmg the bulk susceptibility.

6. Furthermore, the metal centers in these molecules can constitute a chiral species
[5]. When dissolved, they will form materials that crystallize m non-

centrosymmetric space groups, essential for a non-zero %<2) value.

7. Incorporation of transition metal ions, such as lanthanide ions, can also be
expected m some cases to increase the solubility of a material m common organic
solvents, therefore enhancing its processability.

The crucial aspect in the progression of nonlinear optical studies has been the
development of experimental techniques for investigating and measuring a material's

non-linear optical properties. Over the years, several methods have been widely used
to make nonlinear optical studies, such as, Kurtz powder technique [6, 9], electric field

induced second harmonic generation ( EFISH ) [10 - 13], hyper-Raylejgh scattering

(HRS) [14, 15], third harmonic generation ( THG) [16, 17], and degenerate four-wave
mixing (DFWM) [18 - 22]. More surprisingly, though non-degenerate four-wave
mixing (NDFWM), both in resonant and non-resonant situations, is a powerful

technique to study dynamical properties of physical systems, very few reported
experimental mvesdgations of organometallics have used this important technique.

Commonly, a combination of techniques is necessary for a complete investigation of a
material's nonUnear optical behaviour.

The third-order nonlinear optical studies on organometallic materials can be divided

into six major classes[23]: metalhcenes, metallopolyyne polymers, polysilanes and-

germanes, metal dithiolene complexes, thwphenes, and phthalocyaninato metal

complexes.



The phthalocyamnes and porphyrins are two extremely interesting and useful
classes of compounds. Their extensively delocalized two-dimensional Ti-electron
systems have broken through some limitations of most other third-order non-linear

optical compounds featuring pseudo-one-dimensional Ti-electron conjugation systems.
This has led to considerable interest in the two dimensional Ti-conjugated

phthalocyanine systems and, in particular, the complexes containing a wide variety of
metals.

Phthalocyanine has a similar macrocycle to porphyrin and its absorption spectrum is
complementary to that of porphyrm. Therefore, the dimer formed by linking porphyrin
and phthalocyanine will absorb more efficiently the solar energy than the monomer of

porphyrm or phthalocyanine [24]. Nevertheless, until now, only Tran-Thi [25-27],

Gaspard [28, 29], and Xu [30, 32] have synthesized porphyrin phthalocyanine
dimer/heterodimer and made observations on energy transfer and charge separation
processes. Gaspard and Xu found that these are related to the molecular
configurations. Tran-Thi, through the research on Langmuir-Blodgett films of
porphyrm phthalocyanines, found that the dimer/heterodimer have a face-to-face

geometry, in which there is a strong excitonic coupling between the porphyrm and the
phthalocyamne. Compared with the studies on the other polymers of metallo organics

and on the metallo monomers ofporphyrm and phfhalocyanine, the research on metaUo
multimers ( dimer / heterodimer and trimer / heterotrimer ) of the porphyrm

phthalocyanine, is just at its beginning.

Though research on the optical nonlinearity of organometallic complex is very
active, the relationship between the structure and the nonlinear optical properties are
still unclear. Unlike the design of second-order nonlinear optical materials, which
follows some well defined guidelines, models for the synthesis of third-order species
are much less developed. Presently, research on the third-order nonlmearities of
porphyrm phthalocyanine is focused mainly on the monomers and on the effects of
replacing the central metal ion on the optical nonlinearities. A systematic research on
the third-order nonlinearities of porphyrm phthalocyanine dimer/heterodimer and

trimer/heterotrimer systems has not yet been undertaken.

In this work, we present a third-order nonlmear optical study of sublimated and

Langmuir-Blodgett thin fihns of lanthanide porphyrin phthalocyanine



dimer/heterodimer and trimer/heterotrimer systems using a non-degenerate time-

resolved four-wave mixing technique.

Chapter 1 introduces some important general consideration in the experiment:
(1.1.) ultrafast time-resolved spectroscopy, (1.2.) prototype model system used in the
experiment, (1.3.) two important experimental phenomena encountered, and (1.4.) the

outline of our research work. Chapter 2 presents the theoretical and experimental
basics for this work, especially of four-^ave interactions. Chapter 3 describes the

experimental system. Chapter 4 presents and discusses the experimental results.
Finally, Chapter 5 makes a conclusion on this research work.



Chapter 1

General Consideration

This is an experimental research work on nonlinear optical dynamic behaviours of
the sublimated and Langmuir-Blodgett thin fihns of lanthanide porphyrm

phthalocyanine multimers. Time-Resolved Non-Degenerated Four-Wave Mudng
(TRNDFWM) has been used as a major experimental technique in this work.
Nonlinear optical responses of the lanthanide porphyrin phthalocyamne dimers,
herodimers and trimers have been investigated by TRNDFWM.

This chapter will give some detailed aspects of the experiment techniques,
description of the materials used, and motivation oftfais research work.

1.1. Ultrafast Time-Resolved Spectroscopy

TRNDFWM is one of the most useful ultrafast coherent spectroscopy techniques.

Coherent spectroscopy implies investigations both in the time and frequency
domains, yielding infomiation on dynamic processes as well as Line widths and line

positions of the molecular systems under investigation.

Initially started in the mid-sixties, coherent spectroscopy is ultimately connected
with the development of intense coherent light sources which, as already mentioned,

are prerequisite to the study ofnonlinear optical effects.

Until about the mid-sixties, the performance of the time-resolved techniques was

limited to the microsecond region in the case of absoq)tion spectroscopy and to the
nanosecond region in the case of fluorescence. During the late sixties, the

appearance of giant pulse lasers brought the time resolution into the nanosecond

range. A major advance in the generation of ultrashort optical pulses happened after



the invention of mode-locking techniques [33, 34]. Passive mode-lockmg of the mby

laser by Mocker [35] opened a new era for ultrashort optical pulse generation.
Shortly thereafter, the generation of the first optical pulse in the picosecond range
with a Nd:glass laser was reported by De Maria [36]. Since that time, there followed
a number of dramatic advances in ultrashort laser pulse generation as shown m Fig.
1.1.0.1. . The shortest optical pulse width available at a given year fells at an
exponential rate. Each reduction in pulse width has always been accompanied by an

advance in technology [37].

Until now, using colliding pulse mode-locking (CPM) [38 - 40], pulse
compression [41 - 49], and other techniques, one has been able to reduce the optical
pulse width to six femtoseconds [50, 51]. This approaches the ultimate limit m the
visible region set by the uncertainty principle.
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The ability to generate ultrashort light pulses has extended coherent spectroscopy

to real-time measurements of rapid dynamic processes on picosecond and
femtosecond time scales. Most of the time-resolved spectroscopy investigations are

concerned with such processes in condensed phases. The progress in the



experimental capabilities has stimulated theoretical investigations and improved our
understanding of the interactions m liquids and solids.

1.1.1. Time-Resolved Spectroscopy

While different sub-Doppler techniques aim at higher spectral resolutions, time-
resolved spectroscopic techniques target on higher time resolutions.

The generation of extremely short and intense laser pulses has opened the door to
the study of fast transient phenomena. Picosecond and femtosecond light pulses
make it possible to investigate ultrafast processes occurring during the excitation and
the deactivation of molecular states in solvents and solids.

Optoelectronic detection systems, such as fast photodiodes and sampling
oscilloscopes, have reached a time resolution of 10-10 s, or 100 ps. This is stiU too

long to resolve many fast transient events on a picosecond and subpicosecond time
scale. Thus, in picosecond and sub-picosecond spectroscopy, one had to develop a

series of new techniques to measure the durations and the profiles of the light pulses,

and to probe the ultrafast relaxation processes.

Except for the streak camera which can reach time resolutions of a few

picoseconds, most of the methods used to measure pico- and subpico-second
phenomena are based on optical delay lines and on some nonlinear optical effects,
such as SHG. In optical delay line systems, as shown in Fig. 1.1.1.1., an ultrashort

laser pulse is divided by a beam splitter into two, or more if necessary, replica pulses
which travel different path lengths before they are recombined. Hence, the
measurement of a time interval At has been converted into that of a path difference

Ax = cAt, where c is the light velocity. For example, in our experiment, the
minimum spatial interval available for the delay line system made by KUNGER of A
x^yn = 0.2 micrometer, is equivalent to the time interval At = Ax /c = 0.2 mic x

3.3564095 fs/mic » 0.7 fs, which is still shorter than the pulse width of the shortest

light pulse presently available in the visible region, i.e. 6 fs. Therefore, the resolution



of most detecting systems is now only limited by the pulse duration of the laser
source that is used, rather than by the delay line.
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Figure 1.1.1.1. Optical Delay Line, White Continuum
Generation and Time-Resolved Spectroscopic Measurement

with Probe-Pump Technique in Transient Absorption.

1.1.2. Pump - Probe Technique

Most of molecular fast relaxation processes are between the nanosecond to

picosecond ranges, as shown in Fig. 1.1.2.1. [52]. Thus with ultrashort laser pulses,
the limiting factor for time resolution is no longer the pulse duration but the response

of the detection systems.

The limitation of the detection system can be overcome by a pump and probe
technique. A single ultrashort laser pulse is divided into a group of strong pump
beams and a weak probe beam, which can be monochromatic or white continuum.

The delay At between pump and probe can be controlled by varying the length of the
optical path difference between the probe and the pump beams. Strong pump beams
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create an excitation in a molecular system and the probe beam probes the relaxation
of the excitation as a function of the delay time At. Now, the time resolution is

limited only by the pump and the probe pulse duration. One of the applications of
pump-probe technique is the measurement of the decay times of short-lived excited

states, as shown in Fig. 1.1.2.2. (a). When the probe pulse has a path difference Xi

( < 0 ) with respect to pump pulse (Fig. 1.1.2.2. (a)), the probe pulse will spend less
time |ti = Xi/c| to arrive at the sample than the pump pulse does (Fig. 1.1.2.2. (b)), and
this corresponds to a negative delay time Ti (probe-to-pump) (Fig. 1.1.2.2. (c)). At
this moment, since when the probe pulse arrives there is no excitation in the sample,
the system will give no response at all. If the probe pulse arrives at the sample with a

longer light path X2 (> 0 ) with respect to the pump pulse, the probe pulse will spend
more time t^ = x^ 1c to reach the sample than the pump pulse does and this
corresponds to a positive delay time ^ ( probe-to-pump ). At this moment, the probe
pulse arrives at the sample in a time ^ after the excitation has been created (Fig.

1.1.2.2. (b)), the energy level 1 has been populated with a non-zero population N1, so
that the probe pulse will feel the decay of this population. Therefore, if delay time
scans from the negative delay (negative light path difference between probe and

pump) to the positive delay (positive light path difference between probe and pump)
in steps, then the detecting system will direcdy measure the response curve point by

point, shown as in Fig. 1.1.2.2. (c).

Although numerous techniques refer to pump-probe methods, the most powerful
one is based on white continuum generation.
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1.1.3. White Continuum Generation

White continuum generation is a particularly spectacular application of nonlinear

frequency mixing. When a strong laser beam is focused within a glass or within a
liquid such as CC^, water or phosphoric acid, there is an emission of a pulse of white

light whose duration is comparable to that of the pump pulse.

People now generally agree that this continuum originates from two superposed
phenomena. First, high intensity optical pulses propagating through a medium wiU
distort the atomic or electronic configurations and change the refractive index
appreciably. The refractive index becomes time-dependent so the phase of the
optical wave is altered. This generally leads to a broadening of the spectrum. This
process is called self-phase modulation [52, 53]. Second, in isotropic liquids, there is

a supplementary spectral broadening due to four photon parametric interactions [54 -

57].

In fact, white-continuum generation is one of the crucial techniques in ultrafast

spectroscopy. The spectrum of the continuum extends from the near ultraviolet to the
infrared and thus provides a versatile coherent light source for a huge range of
spectroscopic studies. Without it, many ultrafast spectroscopic applications would
not be available.

1.1.4. Basic research Opportunities
for Ultrashort Time-Resolved Spectroscopy

From various tune-resolved coherent techniques, we can obtain the following

information [58]:

1.whether a transition is homogeneously broadened or not;

2. the decaying times of homogeneously or inhomogeneously broadened spectral

features;

3. the dominant line broadening mechanisms;
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4. the pure dephasing times;

5. the energy relaxation times;

6. the mechanisms and paths of energy relaxation;

7. the collision times;

8. the nonresonant susceptibilities;

9. transition frequencies within conjugated spectra regions;

10. precise frequency differences ofvibrational modes separated by up to 10 x 1012
Hz = 10 THz ( 10 tera Hertz, At-Ao ~ 1 -> Ao-l/At, At > 100 fs = 10-13 s -^ Au

<1013Hz).

A particular technique gives only one or few of the above. A combination of

different techniques is usually necessary for obtaining more information.

1.1.5. Transient Grating Method

Among the time-resolved spectroscopic methods which pump-probe techniques,
we chose the transient grating method [59] to detect transient responses of our model

systems.

1.1.5.1. Formation of the Transient Grating

In this technique, two pump (excitation) pulses arrive simultaneously at tfae

sample. The two sychronized pump beams interfere with each other and produce a

spatially modulated field which is called an interference grating. When a material is
placed mto the interference region of the pump waves, some light-matter interaction,
such as absorption, creates a corresponding spatial modulation (grating) of some

material properties, such as.:

1. the population of excited electronic states,

2. the conduction electron density (in semiconductors),
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3. the space charge and the accompanying field (photorefractive materials),

4. the temperature,

5. the molecular orientation (fluids), and

6. the concentration (mixtures).

Thus a transient grating ( because it will disappear in a finite time after the
excitation) is formed due to population or phase redistribution which occurs under
strong light fields. Most of these changes can be described by the population of one,
several, or a whole continuum of excited (e.g. electronic, phonon) states of the

sample material. Therefore, the corresponding gratings are also termed as population

gratings in a general sense.

1.1.5.2. Detection of the Decay of the Transient Grating

In order to make time-resolved measurements of the dynamics of the transient
grating, a third beam called probe needs to be used. When arriving at the sample, the
probe beam is deflected by the light induced gratmg, producing a signal beam. The
intensity of the signal beam is measured as a function of the time delay between the

pump beams and the probe beam which contains information on the dynamics of the
system. This Bragg scattering from the light induced transient grating, in terms of

nonlinear optics, is viewed as afour-wave interaction (FWI) or four-\vave mixing

(FWM) process. This will be discussed in details in the following chapters.

The decay of the grating is commonly detected by diffraction of the probe light
beam. The diffracted light can either be recorded directly or heterodynedly with a
split-off beam from the probe light. The former is simple but requires higher pump
and probe power to get sufficiently strong signals. The latter is more sensitive but the

setup more complicated. la our experimental setup, we use only direct detection

scheme.

For ideal plane waves, the dif&action efficiency 77 for the first order diffracted
beam can be expressed [60]:
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(1.1.5.2.1.)

where An, An, AK are changes m the complex refractive index and its real and

imaginary parts in the sample due to transient grating, d is the thickness of the

Sample, and ^iffi-acte^ \robe arG the intensides of the diffi-acted beam and the probe

beam. This formula is valid for a grating with a sufficiently small \An\ = \An+iAKf1
and a low absorption material, i.e., Kd «1.

Very small refractive index changes An and optical path changes And can be

measured, typically, with a dif&action efficiency T| w 10-15, correspondiag to an
optical path change « K/1000. The phase shift in that extreme case has to be

measured with interferometric sensitivity.

Amplitude (An = 0) and phase (AK = 0) gratmgs can be differentiated by
illuminating the sample with a parallel beam and observing the self-image appearing
at different distances behind the grating [61], or alternatively by heterodyne

detection.

1.1.5.3. Comparison of the Transient Grating Method
with the Transient Absorption Technique

In this work, the post-excitation-dynamic processes of the porphyrm
phthalocyaniae dimer/heterodimer tiTmer/heterotrimer have been measured by tiine-
resolved four-wave mixing (TRFWM), or equivalently called time-resolved transient

grating (TRTG) method. The transient absorption (TA) results obtained on the same
samples provide reference data since they give us information about the energy levels
(bands) and their related lifetimes. It is therefore useful at this point to compare

some crucial aspects of these techniques.

Table 1.1.5.3.1. lists the major differences between the transient absorption and

the transient grating methods.
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Table 1.1.5.3.1. The Major Differences Between the
Transient Grating Method and the Transient Absorption

Technique

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Terms

Pump Beams

Probe Beams

Nonlinear Optical Process

Spatial Modulation

Coherence

Phase-Matching

Detection

Sensitivity
Transport Phenomena

Information Extracted

Response to Non-

Resonant Excitation

Response to Resonant
Excitation

Transient
Absorption

1
1

2nd-order

Homogenous

No
No

Transmission
oc zkx = 2^ozlA:

Non-Detectable

Bands, Life Time T

No.

Yes.

Transient Grating

2
1

Srd-order

Gratmg-Like

Siausoidal
Yes

Yes
Diffi-action

oc \An+iAK\2

Detectable

Life Time r. Diffusion
Time T^ ....... etc.

Yes.

Yes.

From the table it can be seen that there are only three beams involved in transient
absorption, while there are four in the transient grating. The former is a second-order
nonlinear optical (NLO) process and the latter is a third-order NLO process.

Technically speaking, the latter is more difficult to implement because it involves

more beams and needs higher pumping and probing powers. Furtheimore, transient
absorption measures the change in absorption coefificient, while transient grating
detects dif&action efficiency which is in proportion to the square of the change of the
complex refracdve index. Therefore TRTG is more sensitive than TA m probing

dynamic processes occurring after the excitation is produced.
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Due to the difference between the modes of excitation, any transport process with
charge transfer or and energy transfer occurring during the de-excitation can only be

picked up by the grating-like modulation of TRTG, and not by TA which has
homogeneous excitations. Hence, the diffusion processes are detectable only for
TRTGandnotforTA.

When the frequency of the pump light is not in an absorbing region of the material
(non-resonant excitation, NRE), TA systems will get no signal at all, but TRTG
systems will still give a response through the phase grating caused by virtual electron
excitations. The signal of the NRE contains infonnation about the pulse duradon of

the pump pules and the probe pulse.

In the resonant excitation case, TRTG systems can also feel the relaxation
processes that TA systems will feel for the same material. But the TRTG systems

may not yield exactly the same response as the TA systems do, because the response
of the TRTG system is sensitive to any de-activation process in contrary to the TA

system.

In short, TRTG is a more sensitive and more useful technique to probe the
dynamic processes of de-excitation than TA, although the former needs the important

information from the latter about the bands and the life times of the materials under
mvestigation.

Of course, suitable materials have to be available for research in nonlinear optics
and various kinds of applications.
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1.2. Prototype Model Systems Used in the
Experiment

1.2.1. Nonlinear Optical Materials

All materials, including all forms of matter, gases, liquids, and solids, have
nonlinear optical properties. But, the intensity of the optical field needed to make

these effects observable, varies over many orders of magnitude. This depends on the
detailed nature of the electronic structure, the dynamic behaviour, as well as the
symmetry and details of the geometric arrangement of the atomic and molecular
components of the medium. From the device point of view, the most important
nonlinear optical materials are m solid form and should meet a wide variety of
auxiliary material requirements, including extraordinary stability with respect to
ambient conditions and to high intensity light source, processability for pattern and

shape definition, and integratibility with additional different materials.

There are a lot of materials possessing nonlinear optical properties: inorganic and

organic crystals, polymers, semiconductors, composites and metal-based systems.

However, none of these has proven to be the "silicon" of nonlinear optics because

each material not only has properties that are advantageous for certain applications,
but it also has properties that are disadvantageous for others. Therefore, there is still
a need for the development of materials satisfying the critical requirements of devices

for information processing, optical frequency conversion, integrated optics, and
telecommunications.

We can roughly divide nonlinear optical materials into two major types:
molecular materials and bulk materials.

For the first type, the materials consist of chemically bonded units which interact

in bulk through weak Van der Waals forces. Many organic crystals and polymers
belong to this class of materials. Nonlmearities in this kind of materials originate

primarily from the molecular structure. The micro-nonlmearities in form of the
hyperpolarizabilities of constituent molecules can be related to macro-nonlinearities

in form of bulk nonlinear optical susceptibilities. The first step to optimize optical
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nonlinearity in this class of materials is at the molecular structure level. For this, one
needs to understand the relationship between the molecular electronic structure and
the induced molecular nonlinear polarization.

In the second class of materials, nonlinearities are regarded as arising from quasi-
free electrons like those in metals and semiconductors. The electronic characteristics

of the bulk medium determines the optical nonlinearities. The origin of the
nonlinearities for this type of materials needs a different theoretical framework.
Examples of this kind of materials are: quantum well stmctures derived from GaAs

and II-V[ semiconductors, e.g. CdSe, inorganic crystals in which no single molecular
unit in the ionic lattice can be identified, like KDP (potassium dihydrogen phosphate)
and KTP (potassium titanyl phosphate).

Compared to inorganic nonlinear optical matenals, the development of organic,

or, more generally, molecular nonlinear optical materials is quite recent. Organic and
other molecular materials are being more and more recognized as the promisiag
materials for the future. These materials are interesting because their various
molecular characteristics and their synthetic versatilities can be used to vary and
optimize molecular structures in order to maximize nonlinear response, or to optimize
the auxiliary properties like mechanical and thermal stability, and laser damage

threshold. Organic materials can be cast into thin crystalline films, layer by layer,

using the Langmuir-Blodgett technique and other deposition techniques, e.g.
sublimation. These fihns show highly oriented structures and optimized

nonlinearities. Some of the prominent advantages of many organic materials and
high-performance polymers are high mechanical strength as well as excellent
environmental and thermal stability, which can be many orders higher that those of
inorganic materials. The unique Tc-bonding chemical structure of organic molecular

materials leads to extremely large nonresonant ( non-absorptive ) optical
nonlinearides, in many cases much higher than those of their morganic counterparts.
Devices with nonresonant electronic optical non-linearities will have the fastest

response times limited only by the width of the drivmg laser pulse while also
eliminatmg heat dissipation, beam depletion, thennally induced nonlinearities and

other disadvantages ofmorganic nonlinear optical materials. The considerably lower

dielectric constant of organic materials yields a low RC time constant. Thus, the
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electrooptic modulatmg devices made from these materials can operate with band-
widths greater than 10 GHz ( G = 109).

Aside from its potential technological interest, research on nonlinear optical

materials also offers challengmg opportunities for a fundamental understanding of the
physics ofnonlinear optical interactions. Before one can firmly control the molecular
structure in order to enhance optical nonlinearities, there are still many things that
must be done to understand completely the relationship between molecular structures
and microscopic optical nonlinearities.

One of the most important type of organic nonlinear optical materials is porphyrin

phthalocyanine metal complex systems.

1.2.2. Porphyrm and Phthalocyanine

The prototype model systems used in our experiment is based on porphyrin and

phthalocyanine metal complexes. Porphyrins and the corresponding metal complexes
function as electron transfer agents in many biological systems and play a very
important role in many biochemical processes. Porphyrins contain a tetrapyrrolic
macrocycle which can be chelated with most metallic ions, even some non-metallic

ions, to form corresponding complexes.

The simplest porphyrm, called porphine, is shown in Fig. 1.2.2.1. .

The natural part ofporphyrins can be obtained when the positions P and P' = 2, 3,

7, 8, 12, 13, 17, 18 of the pyrrole cycles m Fig. 1.2.2.1. are replaced by substitutive
groups [62, 63]. There also exist a number of synthetic porphyrins which depend on
the nature of the substitutive groups and on the exact replaced positions in the
porphine frame. One of the complete artificially synthetic examples ofporphyrms is

phthalocyanine (Pc), shown in Fig. 1.2.2.2. .

Phthalocyanines have a similar structure to porphine, which consists in replacing

four carbon atoms at position a, ?, y, § in Fig. 1.2.2.1. by four nitrogen atoms, and

substituting y position (?' = 2, 3, 7, 8, 12, 13, 17, 18 in Fig. 1.2.2.1.) on pyrrole
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cycles by benzene cycles. This compound was discovered in 1907 by Braun et al.
[64], but was not identified until 1933 by Linstead et al [65, 66].

Other artificial synthetic examples of porphyrins are tetrapyrrole complexes of
mono-, bis-, tris- lanthanide porphyrins which were used in our work. These will be
discussed in detail in following sections.

3 o( 7

8

Figure 1.2.2.1. Molecular Structure of Porphin

24 2

)3

Figure 1.2.2.2. Molecular Structure of Phtalocyanines.

21



1.2.3. Lanthanide Porphyrin Phthalocyanine
Dimeric/Heterodimeric Trimeric/Heterotrimeric

Prototype Model Systems
In recent years, the research on optical nonlinearities of organic materials has

attracted much attention both in the fundamental aspects to clarify their origins and

mechanisms, and in their applications to develop optical devices being capable of

processing optical information [67 - 71], etc., using the different frequency -mixing
schemes offered by various orders ofnonlinearity. Organic materials offer a number of
advantages over mineral compounds. First, they are of superior flexibility m
processing and manipulation, which enables us to improve particular optical
characteristics by engineering the molecular properties. Moreover, they have large
nonlinear optical susceptibility, ultrafast response, thermal and chemical stability. In

order to increase the magnitude of the thu-d-order susceptibility ^ \ several methods

have been proposed: multilock conjugated polymerization based on organic

superlattices, donor-acceptor substitution on Tc-conjugated Imear chains and use of n-

conjugated molecules having symmetric sti^icture [72 - 79]. In particular, conjugated n
-electron systems have been known to have large optical nonlinearities and ultrafast
optical responses [80 - 86]. Their nonlinear optical properties can be studied using
various techniques such as, second harmonic generation (SHG), third harmonic

generation (THG), four-wave mixing (FWM) and transient absorption, etc. [86 - 100].

Many organic materials containing delocalized Ti-electrons have been observed to

have large optical nonlinearities and ultrafast responses [101, 102]. Most other third-

order nonlinear optical compounds feature Ti-electron conjugation along a backbone

and are pseudo-one dimensional systems. Those materials show limitations in their
optical nonlinearities. This had led to considerable interest in the two-dimensional n-

conjugated porphyrin [103] and phthalocyanine [104] systems, especially the
complexes with a wide variety of metals. Among these systems, stacked and highly
conjugated ones, such as lanthanide bis-/tris-porphyrins and bis-/tris-phthalocyanines,

are mterestmg in many respects. These share the common properties for most
porphyrins and phthalocyanines, i.e., chemical and thermal stability, versatile and

flexible to make modification in properties by changing the central metal ion or the side
groups at the edge of the macrocycle. They are of technological importance for the
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manufacture of pigments, exhibiting unique characteristics such as catalyst,
electrocatalysis, xerography and medical properties [105]. The delocalized Tc-electron

in these systems can ser^e as source of charge carriers and is the origin of photoelectnc
properties directly related to primitive charge separation processes in photosynfhesis

and optical nonlinearides. In this aspect, they provide a series of model systems to

study photoinduced electron transfer reactions occurring on ultrafast time scales in
photosynthetic reaction centers both in theory and in experiment [86 - 91, 106 - 117].

Their sharp absorption bands in the visible and in the near infrared can be used for

resonance enhancement of third-order susceptibility ^3). This makes them promising

materials for third-order optical nonlinearities. The compounds are receivmg increased
attention. However, very few studies have been done on electrostatic nuxed dimers

obtained by covalently bonding poqAyrm and phthalocyanme moieties bearing
oppositely charged substituents [118 - 121].

18
L̂

.7

Figure 1.2.3.1. Constitution of Octacoordinated Metal
Monotetrapyrroles M(P)L* and Configurations with
A: Monotetrapyrro B: Bistetrapyrroles M(P)2 and
C: Tristetrapyrroles M2(P)s, M = Lanthanide Metal Ion

We chose the lanthanide porphyrin dimer/heterodimer and trimer/heterotrimer as

prototype model systems in which to study dynamic processes such as electron

transfer, energy transfer, related nonlinear optical properties, and their relationship to

the molecular structure.
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Table 1.2.3.1. Specifications ofPorphyrins

No.

0

1

2

3

4

5

6

7

8

Pin
M( P )L.

p

Pc

TTP

OEP

TPP

TC1P

HBP

OMP

TAP

NameofthePmM(P)L,

a general porphyrin,
phthalocyanme

phthalocyanine

5,10,15,20-tetra(^-tolyl)porpliymi

2,3,7,8,12,13,17,18-

octaethylporphyrin
5,10,15,20-tetraphenylporphyrm

5,10,15,20-tetra(p-

chlorophenyl)porphyTm
1,2,3,4,8,9,10,11,15,15,17, lg,22J

3, 24,25,-hexadecahyrotetrabenzo

r^^/^lporphyrm
2,3,7,8,12,13,17,18-

octamethylporphyrin
5,10,15,20-tetra(p-

anisyl)porphyrm

R in position 2~20 in

Fig. 1.2.3.1.

N in 5, 10, 15, 20; QH^
in 2/3, 7/8, 12/13, 17/18
p CH^ C,H, m 5, 10, 15,

20
CA in 2, 3, 7, 8, 12, 13,

17, 18

C^Hs in 5, 10, 15, 20

pClC^ in 5, 10, 15, 20

( CH^ \ in 2/3, 7/8,
12/13, 17/18

CH3 in 2, 3, 7, 8, 12, 13,

17, 18

p CH30C6H4 in 5, 10,

15,20

A complete understanding of the photophysical behaviour of porphyrins and
related chromophores within the Van der Waals will provide us with a deep
insight into how the electron donor in photosynttoic reaction centers influences the
initial stages of charge separation processes [12Z 123]. Moreover this knowledge
will enable us to modify molecular systems m a controllable manner so as to
maximize their nonlinearities. This is needed by and various kinds of other

applications.

Lanfhanide porphyrm dimers/heterodimers md tamers/hetCTOtTuners represent a
series of ideal molecular systems which can be used to study the electronic structure

and dynamics of strongly interacting porphyrins. Jhese metallo>poq)hyTin complexes,

series
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consisting of a lanthanide ion sandwiched between two porphyrm maa-ocycles, are
distinguished by their rigid structure, ~ 3 A mter-rmg separation, unusual electronic

absorption spectrum, and a prominent near-infrared band for the oxidized species
[124-131].

The detailed synthetic processes for some of the lanthanide porphymi monomers,
dimers, heterodimers, trimers and heterotrimers, are explained in ref. [129]. The
molecular structures, the specifications of porphyrms, and related abbreviations of
these mono-, bis- and tns-porphyrmate and their unsymmetnc counteiparts, are

shown in Table 1.2.3.1. and Fig. 1.2.3.1. .

The electronic structure of porphyrins and phthalocyanines is basicaUy an
aromatic one with a system of eighteen conjugated n electrons. Therefore, the
macrocycles of pyrroles are very often planar, though there might be some distortion
if the size of the central metal ion can not be adapted to the central cavity detemiined

by the four nitrogen atoms [132,133].

When porphyrms and phthalocyanines are stacked and bridged by a covalent link
via lanthanide ions, a face to face geometry is favoured in these dimeric
/heterodimeric trimeric/heterotrimeric systems due to the coulombic attraction and

the strong TI-TC mteraction of the two highly conjugated tetrapyrrole macrocycles. As

a consequence, dramatic changes occur in the spectral and photophysical behaviour
of the dimers/heterodimers trimers/heterotrimers as opposed to the mixtures of the

corresponding unsubstituted monomers. In these fonner systems, ttiere is a spatial
face-to-face arrangement of the monomers which gives rise to the following

interesting features:

1. The extraction of an electron from the porphyrm 71 orbit is easier than from the

corresponding monomer, which means the devices with these systems will need

less driving power than those with corresponding monomers.

2. The fluorescence ofbis-tetrapyrroles is quenched contrary to the

monotetrapyrroles and thus there are smaller light losses.

3. The oxidized bis-tetrapyrroles show a strong near-mfrared absoiption band at
about 1300 nm.
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4. These double-deckers show analogies to the electron donor dimer in photo
synthetic systems in green plants and photosynthetic bacteria, in regard to
structure and electron configuration [126, 129, 134 - 136]. Thus, they provide a
series of structural and spectroscopic model systems [126, 128, 134, 136, 137]
for the original charge separation processes m the reaction center of

photosynthetic systems [138 - 140].

5. When one of the rings is oxidized mto a radical [141], these sandwich systems
may serve as molecular metals [142] or intrinsic semiconductors [143].

6. Porphyrins and phthalocyanines are two classes of very chemically versatile
compounds. By varying the central metal ion or peripheral substituents and
incorporating two different kinds of tetrapyrrole ligands, one can obtain a great
deal of different molecular systems having a wide range of different redox

properties, photophysical characteristics, and optical nonlmearities. This featire
gives us more freedom to select a suitable model system that will provide more

detailed information about how electrons and energy are transferred, about how
the processes are related to molecular and electronic structures. This will
ultimately enable us to control/govem and alter/modify the properties of a

molecular system precisely and arbitrarily.

7. The association of different tetrapyrrole macrocycles results in a wide range of
donor-acceptor complex systems. In these cofacial duners or heterodimers,

charge transfer can efficiently compete with the excitation transfer process [144].

Accordmgly, by a discreet and pmdent choice of the donor and acceptor, one can

direct the transfer process to be of energy or electron type.

8. They can serve as organic semiconductors. For example, one of these

complexes, lanthanide bis-phthalocyanines LnPc2, shows electrochromatic
properties: in solution or deposited as thin fihns, they exhibit different colours

according to the applied potential [145 -148]. This makes them promising
materials for visual displays.

9. Pc2Lu is reported as the first molecular semiconductor [149 - 151] and the first

stable free radical phthalocyanine [152].
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When two phfhalocyanine rings are linked by a single metal ion with valence of

+3 [153], a bis-phfhalocyanine is fanned, as in the case ofneodymium here, NdPc2,
and the three electrons are shared between the two phthalocyaaine rings to make
charge neutrality. These metallobis-phthalocyaaines belong to a class of mixed-
valance compounds with low-lying intervalence charge transfer transition [154 -
156]. D. Markovitsi and T. H. Tran-Thi et al. [157] interpreted the structure of the
compounds as Pc~2Nd+3Pc-l, such that the charge is localized on one rmg and the

inter^alence transition corresponds to electron hopping from one ring to the other.
Later analysis showed that the impaired electron is substantially delocalized over the

two phfhalocyanine rings. This is supported by a theoretical calculation [158] on a

completely delocalized structure model of bis-phthalocyanine (Pc2) . Therefore,

these molecules may be considered as a three-dimensional delocalized Tr-electron
system involving an intervalence charge transfer transition. The electron structure of
the trimer is Pc Nd TPP Nd3+Pc , where the six electrons are shared between

the phfhalocyanine rings at the two sides and porphyrin at the center.

All in all, these molecular cofacial complex systems are highly desirable for both
fundamental and applied studies of various kinds of electrical, optical, and
optoelectrical materials.

From the device point of view, the most important kind of nonlinear optical
material is solid. There are two sorts of techniques available to make highly ordered

solid molecular assemblies: the Langmuir-Blodgett technique and the sublimation
technique, which were both used in our research work. Theoretically speaking, the
former should be better than the latter as far as the uniformity of the'system is

concerned. But in our experiment, we have observed that it was not always so.

Sometimes the Langmuir-Blodgett samples gave us too intense diffused light to make
it impossible for us to extract the signal from the noise background.

Previous NLO studies of third-order susceptibilities on bis-phthalocyanine [106 -
117] involve the effects of substitution of metal atoms, most of them in solutions, few
on solid fihn, using fhird-harmonic generation and degenerate four-wave mixing in

the near-infrared or m a region near strong absorbing Q band in the visible. Recently,

efforts have been put on the effect of peripheral substituents [159], additional

27



conjugation such as naphthalocyanine [159, 160], central metal atom chelater [161] and
spin coated multilayer fihn by DFWM on ^<3) [162]. There have been a number of
reports on the third-order nonlinear optical properties of porphyrm denvadves [163,
164] and phthalocyanines [165]. However, most of these reports mvolve third-

harmonic generation and degenerate four-wave imxing measurements in solutions.

There are few experiments using materials in solid state, which is viable for optical

devices.

None of the above reported studies were performed by time-resolved non-
degenerate four-wave mixing, even though TRNDFWM is a more useful and more
sensitive technique to probe the dynamics of third-order nonlinearities. Coherent four-

wave mixing excludes many different types of nonlinear optical phenomena depending
on the phase-matching condition and on any encountered resonance . Its time-resolved

form provides one of the most versatile means of studying the microscopic and

macroscopic dynamics of a system. Depending on the time ordering, polarization,
frequencies and pulse duradon of the incident fields, one might detect the rotadonal
/librational vibrational, or electi-onic structure/dynamics of a chromophore/bath system
in the condensed phase. One of the most commonly seen forms of the time-resolved
four-nuxing uses two (or one) pump pulses to excite a system by the action of the two
fields on a relevant state. Following the excitadon, the third delayed probe pulse
interrogates the evolved system and generates the fourth wave exiting as a function of

the delay time. The forth diffracted signal contains abundant information about the
system.

Because we are interested in mvestigating the dynamics of electron transfer
processes in lanfhanide duner/heterodimer and trimer/heterotrimer systems, which are
accompanied by many ultrafast relaxation processes in the picosecond or
femtosecond range and many related nonlinear optical effects, the ultrafast time-
resolved spectroscopy technique seems one of the best tools. Some of the important
experimental phenomena we have encountered are Electron transfer and

photorefractivity.
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1.3. Two Important Experimental Phenomena
Encountered

1.3.1. Electron Transfer

There is a lot of studies [166, 167] showing that the electronic contribution to
optical nonlinearities dominates the frequency range from DC to optical ones. This

also appears to be a property common to optical nonlinear orgaiuc solids. In
lanthanide porphyrm phthalocyamne hetero-multimer systems, molecular relaxation

processes always accompany electron transfer process, which is also an important
sources of electronic contributions to optical nonlinearities.

Electron transfer (ET) is a term common to physics, chemistry and biochemistry,
which describes electron migration between electron donors and electron acceptors.
The electron transfer concept takes its origin in redox processes involving Ae transfer

of electrons: the removal of one or several electrons from a species is called
oxjdation, whereas any gain of electrons is called reduction. The electron transfer

process can be intennolecular or intramolecular. If the electron transfer is from one

primary bond to another, one calls it out-sphere electron transfer or non-bonded ET.
If it is within a single primary bond, one calls it inner-sphere electron transfer or

bonded ET [168-170]. A generalized ET step between donor (D) and acceptor (A)
can be expressed in the following schemes:

D+A<=> (DA) ->[ DA <-> D+'A- ] -> (D+*A-<) o D+* + A-,
precursor complex - - successor complex

(1.3.1.1.)
recombination _l_ _

D -h A =^ D + A

D +

(1.3.L.2.)
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where the symbols "+•" and "-•" denote positive and negative radicals, and "^"

indicates that the process is an indifferent equilibrium one.

Mb ligand distance

Figure 1.3.1.1. Potential Energy versus Metal-ligand Bond

Length for Binuclear Complexes Containing a Reducing Metal
Ion and an Oxidizing Metal Ion:

M[^ ... L ... M^x Jlv_» M^X --- L --- Mped

red: reductant

ox: oxidant

L: bridging ligand between Ma and Mp

In our case, we are interested in both intermolecular and intramolecular electron

transfers, especially m photomduced charge processes.

Conventionally, one often assimilates photon induced electronic transitions and

intramolecular transfers [171 - 173], as shown m Fig. 1.3.1.1. and Fig. 1.3.1.2. .

In Fig. 1.3.1.1., the dashed line shows the path taken by the electronic excitation
of the molecule, representing an electron that is transferred from one part of the
molecule to another. The dotted curve corresponds to a thermal intramolecular

electron transfer.
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Figure 1.3.1.2. Electronic Transitions in a Diatomic Molecule.

(a) LUMO
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+
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Forward Electron Transfer

(b)
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D
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Forward ET to an Excited Acceptor
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Backward Electron Transfer

LUMO
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+
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Figure 1.3.1.3. Simplified View of Forward and Backward

Electron Transfers Involving (a): an Excited Donor, and
(b): an Excited Acceptor.
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The major difference between these two cases is the value of A£'. The magnitude

of the value A£" in Fig. 1.3.1.2. precludes a thermal pathway except in those very
special cases where the fundamental state is very close to the electronically excited
one. One often refers to ligand-to-metal and metal-to-ligand charge transfers

(LMCT, MLCT) [174, 175], in Fig. 1.3.1.1. and to metal-to-Ugand charge transfer

(MLCT) [176, 177], in Fig. 1.3.1.2. .

Generally, the term photoinduced intramolecular electron transfer is used to
describe the transfer of an electron or a hole from an excited chromophore to the
lowest unoccupied molecular orbit (LUMO) or the highest occupied molecular orbit
(HOMO) of another chromophore in its fundamental state. If the donor and acceptor

chromophores are part of a structure that constantly holds them in strong interaction,
which may be a stable one (cyclophane) or a transitory one (electron donor-acceptor
complex), one can view the excitation as first inducing an electron transition in one
of the partners and then transferring the electron to the other partner; That is

specifically what is in the lanthanide porphyrin dimeric or heterodimeric prototype
model systems we are interested in, in photosynthetic systems in green plants and in
photosynthetic bacteria.

A simplified electron transfer scheme is shown in Fig. 1.3.1.3. [178].

1.3.2. Photorefractivity

A photorefractive (PR) material is a medium in which an external light beam
induces a change in the refractive index. It is perhaps the least well understood

mechanism in nonlinear optics. It represents one of the areas of greatest current
activity for physicists and chemists. There are very few materials known to be
photorefractive [179] as listed in Table 1.3.2.1.1. . There are only two families of
organic materials known: doped organic crystals [180] and doped organic polymers
[181 - 183]. There is no organic multimer ( dimers etc. ) photorefractive material

ever having been found and reported.
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Photorefractivity was first discovered [184] as an optical damage effect in LiNbOs.
The effect is similar to optical phase conjugation (in fact, it is sometimes caUed self-

pumped phase conjugation.). During the process, which occurs in crystaUiae materials,
patterns are developed in the index of refraction by interference of the light as it is

reflected internally throughout the crystal. A phenomenological description of the
photorefractive effect can be found in reference [185] and a theoretical one in reference

[179].

For the last thirty years since photorefractivity was discovered, it has been
associated with changes of the refracdve index caused by the followmg sequence of

phenomena: the photo-excitation, the transport and trapping of electric charge earners,
the establishment of an internal electric field originating from the trapped charge
distribution, and the existence of an electro-optic Pockels effect.

A general review of photorefractive materials was given in ref. [186]. The detailed
theory, physical characterization and practice of the use of known photorefractivities

can be seen in ref. [187], and most recently in ref. [179].

Three classes ofinorganic PR materials dominate, as shown in Table 1.3.2.1.1.:

1. ferroelectric oxides, such as LiNb03, BaTi03;

2. sillenite family of oxides, exemplified by Bij; SiOso (BSO), Bi^ TiO^o
(BTO) and Bi^ Ge02o (BGO); and

3. compound semiconductor, for instance, GaAs, InP.

The semiconductors are sensitive only in the infrared, while the other materials

work in the visible.

Functional organic photorefractive crystals are not actually known. The only

example of an organic PR material (OPRM) previously known is pyridinium yUde
[180] which experiences reversible photorefraction attnbuted to local polarization
caused by trapping of photoinduced charges at structural defects in tfae crystal. The
most recently discovered OPRMs are bisA-NPDA (bisphenol-^-diglycidylether 4-

nitro-l,2-phenylenediamme) [181], PVK-TNF (poly A^-vinylcarbazole 2,4,7,-trmitro-9-

fluorennone) [182], and PMMA:DTNBI:C6o (poly-methyhnethacrylate:l,2,-dimethyl-
2,2-teti'ame-thylene-5-mtrobenzimidazolme:ftillerene) [183], listed in Table 1.3.2.1.1. .
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Table 1.3.2.1.1. Photorefractive Materials

Materials

Ferroelectrics f 179]
BaTi03
KNb03
LiNb03, LiTa03
Sr,.,Ba,Nb,0. ( SBN )

KBN
Sillenites [1791

BSO (Bi^Si02o)
BGO ( BinGeO^o)
BTO (Bi^TiO^o)

Semiconductors [179]
GaAs
InP
CdTe

Organics

Pyridmium ylide [180]
bisA-NPDA[181]
PVK-TNF[182]
PMMA:DTNBI:C6o[183]

Birefringence

Intrinsic

Induced

Induced

Induced

Optical Activity

No

Yes

No

No

where, bisA-NPDA = bisphenol-^-diglycidylether 4-nitro-l,2-phenylenediamme;
PVK-TNF = poly T^-vmylcarbazole 2,4,7,-trinita'o-9-fluorennone;

PMMA:DTNBI:C6o = poly-methyhnethacrylate:l,2,-dimethyl-2,2-tetrame-
thylene-5-mtrobenzumdazolme:ftillerene.

Though ahnost every PR experiment has been explained either by the band model or

by the hopping model, a general comprehensive model of photorefractivity has not

been published in any literature.
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1.4. The Outline of Our Research Work

We have combined the ultrashort time-resolved spectroscopy method with the four-
wave mixing process to study the dynamic behaviour of the lanthanide porphyrin
dimeric/heterodimeric trimeric/heterotrimeric prototype model systems.

From the nonlinear optics point of view, our research is a fundamental experimental
one. We are specifically interested in the four-wave mixing process in order to get
important parameters and data, such as relaxation times for different processes and
third order nonlinear susceptibility ^<3), so as to characterize the nonlinearity of the

model systems.

From the nonlinear optical material point of view, we hope that the results of our
nonlinear optical research on the organic molecular model systems will be used to find
suitable organic molecular materials with which to build various kinds of nonlinear

optical devices for photonics.

Our choice of the materials is based on the facts that these dimer/heterodimer and

trimer/heterotrimer systems can be:

1. materials requiring low driving power,

2. materials with low power consumption,
3. potentially useful materials in the near inirared,

4. ideal structural and spectroscopic prototype systems ofphotosynthesis,

5. potentially useful materials of molecular metals or intrinsic semiconductors,

6. potentially useful materials for photonics,

7. suitable model systems for electron or energy transfer processes, and

8. potentially useful materials for visual display.

Our research work is just a first step to the systematic investigation of the

nonlinear optical properties of these multimer system.
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Chapter 2

Theoretical and Experimental Background

2.1. Basis for Macroscopic Electromagnetic Field
Theory ofNonlinear Optics

Generally speaking, all media are nonlinear. Each nonlmear optical process in the
media consists of two parts: first, the intense light ( power density > 2.5 kW/cm2 , or
field strength > 1 kV/cm ) induces a nonlinear response in the medium, which is

described by the constitutive equations ( 2.1.1. ), and then the reacting medium
nonlinearly modifies the optical fields, causing a different output with a change m
frequency, phase, polarization or path, which is described by Maxwell's equations

(2.1.2.) [188-190]:

D=8oE+P, P=P(E),

H=A_M, M=M(B); (2'L1-)
!J-o

v—iB.

VxB=^(^+VxM+J/), (2.1.2.)

V.D=/^,
V.B=0.

Equation ( 2.1.1. ) and Equation ( 2.1.2. ) constitute the foundations of

macroscopic electromagnetic field theory ofnonlinear optics.
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The optical response of a medium can be described by the interaction of the
electric dipole with the light field. At the microscopic level, this interaction results in
the induced dipole moment p and the Stark energy gg^ given as

p=po+a.E+P:EE+y:EEE+

£StaTk=-P»-E-^E.a.E-^E.P:EE-^E.Y:EEE-

(2.1.3.)

(2.1.4.)

where

Po=P
38Stok

E=0 3E (2.1.5.)
E=0

is the static dipole ( permanent dipole ) moment m the absence of an electric field,
and

a =
3p
BE

a E Stark

E=0 3E3E
E»0

is the linear polarizability, a second order tensor.

The terms

(2.1.6.)

p=
92P

3E5E
S Estark

E=0
3E9E3E

E=0

and

Y=
^p

^E^E^E
^ •Stark

E-0
^E^E^E^E

E=0

(2.1.7.)

(2.1.8.)

are called first and second hyperpolarizabilities. They are third and fourth order

tensors respectively, describing nonlinear optical interactions in the media.

At the macroscopic level, the bulk polarization and the Stark energy, similar to

( 2.1.3. ) and ( 2.1.4. ), can be expressed as:

P=P,+X(l)-E+X(2)=EE+x(3);EEE+ (2.1.9.)
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and

•Stark -

where

-P, •E-^-E-x(l) -E-^E.x(2) :EE-^-E.x(3) :EEE.

p.=p ^^Staric
E=0 BE

E==0

(2.1.10.)

(2.1.11.)

x(1) - ap
9E

a2c Stark

E=0 3E5E
E=0

(2.1.12.)

and

x<2)=
a2p

BE BE
a3s Stark

E=0
BE BE BE

E=0

x<3)=
a^p

BE BE BE
a4 8 Stark

E=0
BE BE BE BE

(2.1.13.)

(2.1.14.)
E=0

are the macroscopic analogues of pg, a, P, y. Po is the built-m static dipole of the
sample. %(1), a second order tensor, is the linear susceptibility which describes the
linear optical response. Third and fourth order tensors ^<2>, %(3\ are the second and
the third order nonlmear optical susceptibilities^ which are referred to as the first and

the second nonlinear susceptibilities.

The expansions ( 2.1.3. ), ( 2.1.4. ), ( 2.1.9. ) and ( 2.1.10. ) are valid in the

dipolar approximation where the wavelengfh of the optical field is large compared to
the dimensions of the polarizable unit The series expansions can break down for
increased field strengths. One proves that the description is no longer valid when the

electric field strength approaches the strength of atomic fields that bind electric
charges ( E ~ E^ = e2/(4nSoSi) » 108 ~ 109 V/cm ) [188]. Fortunately, most nonlinear
effects are observed at fields of 103 ~ 104 V/cm ( laser intensities in kW/cm2 ~

MW/cm2 range) when the series expansion expressions (2.1.3.),(2.1.4. ), (2.1.9. )
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and ( 2.1.10. ) are generally still applicable. These expressions are not appropriate at
or near a resonance frequency, which should be treated with care.

2.2. Macroscopic Expressions for Optical
Nonlinearities

For the macroscopic nonlmearides, one starts from MaxweU's equations ( 2.1.2. )

and constitutive equations ( 2.1.1. ).

In the general case, the induced polarization P = P( E ), can be expressed as [186

-188]:
P(r,t)=

+00

=e» E J xo)(r-ri,t-ti;-...;r-rj,t-tj):nE(r.,t.)dr.dt»=
j=l -oo aa=1

+00

=s, J x(l)(r-ri,t-ti).E(r,,ti)dr,dt,+
— 00

+00

+£o J X(2)(r-ri,t-ti;r-r2,t-t2):E(r,,t,)E(r2,t2)dr,dtidr2dt2+
— 00

+00

+£o J X(3)(r-ri,t-ti;r-r2,t-t2;r-r3,t-t3 ):E(ri,tJx
- 00

xE(r2 ,t2)E(r3,13)^1 dtidr2 dt^dr^ dt^ +.•..--=

=P(l)(r,t)+P<2)(r,t)+P(3)(r,t)+.......

(2.2.1.)

Let us define the following Fourier transforms:

P(k,co)=J(P(r,t))=J^-<(k'r-<ot)P(r,t)drdt=

=Zfe-'(k'r-<Dt)P°'>(r,t)drdt=£P(j>(k,<y), (2.2.2.)
^ j=l
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-hoc

X<j)(k,ffl)=?(xo)(r,t))= J e-'<k"-'Bt)x<j)(r,t)drdt=
— oo

=X")(ki,®i;--;kj,fflj)= (2.2.3.)

j +.°°

=n J e-'(km-sm-(omTm)d^dTn.x(i)^i^i;--;Sj.Tj).
— 00

If E(r, t) can be expressed as a superposition of a finite number of monochromatic

plane waves,

E(r,t)=££(k<,,ffljexp[;(k,.r-^t)], (2.2.4.)
a

then the different powers of electric field E(r,t) appearing in ( 2.2.1 ) can also be
Fourier transformed:

J(E(r,t))=jE(r,t)exp[-/(k.r-6yt)]drdt=

=j££'(k^,^i)expp((k-k^).r-(69-^i)t)]drdt= (2.2.5.)

=E-E'(kal^al)S(k-kal)S(^-^al).
al

J(E(r,t)E(r,t))=jE(r,t)E(r,t)exp[-J(k.r-<ot)]drdt=

Z^(k,i,^i)E(k^,^a2)x
al'a2 _ (2.2.6.)

x exp[-/((k - k,i - k^) - r - (<y -fi)ai - ^02 )t)] dr dt =

= S £'(k^,(»^)£:(k^,<»a2)5(k-k^-k^)§(fi)-^i-f9^),
al,a2
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3 (E(r,t) E(r,t) E(r,t)) = |E(r,t) E(r,t) E(r,t)exp[-»(k.r - <yt)] drdt =

= J ^ S ^ ^(kal, ^al ) E(k^ , fi)^ ) ^(ka2 ,®a2 ) x
al,a2,a3

xexp[-7((k-k^-k^-k^)-r-(<y-^ai-^a2-^a3)t)]<l*'<it=

£ ^(k^,©^)£(k^,ffl<^)£(k^, c^)x
al,a2,a3

X 5(k - k^ - k^) §((9-<9al-^a2-^a3 ).••••".

(2.2.7.)

Because they-order polarization Po) in t-r space is just a t-r convolution of the

corresponding fields and susceptibilities shown in ( 2.2.1. ), the convolution of the
Fourier transform in co-k space ofthey-order polarization Pa) should be the product

of the Fourier transforms of the corresponding fields and susceptibilides, i.e.,

P<n(A,ffl)=?(P("(r,t))=W(r,t)®E(r,t))=
=J(Z<"(r,t))?(E(r,t))=
=^"(A,®)££(k,,^,)<5(k-kJ<5(a)-<B,)= (2.2.8.)

=£^"(ft,<o)£(k.,,(y.,)<5(k-k,)5(ffl-^,)=

=^"(ft=k,,©=(U.,)£(k.,,^,),

Vm(k, o))=3 (Pw(r,t)) =? (^»(r,t)®E(r,t)E(r,t))=
=?Cf")(r,t))?(E(r,t)E(r,t))=
=Z<"(*,<o)£.£(k,,ffl,)£(k,,©,)x

al,a2

xS(k-k^)S(k-k^)S(6)-6)^)S(6) -Q)^)=

=£, ^)(*,®)£(k,,<yj£(k,,^)x
al,a2

x S(k - k^,) ^(k - k,,) 8(G) -G)^ ) 8(0 -Q)^ ) =

=^'(*=Z^.®=Z^)£(k»,,^,)£(k.,,^),
M y=i

(2.2.9. )
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P<3)(*, w)=3 (P<3)(r,t)) =3 (x<3)(r,t)®(E(r,t)E(r,t)E(r,t))) =

=W)(r,t))?(E(r.t)E(r,t)E(r,t))=
=X(3) (*,<") £ £(k<,i,^,)£(k^,^)£(k<,3,^3)x

al, a2, a3

x §(k - kai - ka2 - ka3 ) 5(<»- <»al - 6)a2 -®a3 )=

^Xw(*,o)£(ka,,o<,i)£(k^,^)£(k^,<0a3)x
al,ot2,a3

X§(k-k^-k^-k^)5((y-<yal-^a2-®a3)=

=X(3)(*=2:k^,®=Efflal)£(kaI,fflal)£(ka2,®a.)£(ka3.®a3)
J=l "' J=l

(2.2.10.)

Therefore, for they'-order nonlinear process, we have:

P">(k,(o)=eoXO)(k= £k^,fl)=£(o»,):n£(k.,o.) (2.2.11.)
m= 1 m= 1 m=l

where the ^0)

Xo)(k=£k, ,®=£^)=
m=l 1 m=l

/ +<»''.,.' . "" . ../ v (2.2.12.)

=n J e-'(k"-^-<^T'"^n.dTnXO)^l,Tl;--;^,T,j
m=l _ oo

are the linear (j' = 1 ) and nonlinear (j > 1 ) susceptibilities, which cban^texas the
optical properties of the medium. Proper evaluation of ^ can be done only in a faU

quantum-mechamcal calculation which will give the microscopic expressions for tfae
nonlinear polarisation P^-) and nonlinear susceptibilities j^- These give tfae

state nonlinear optical response of a medium and govern the nonlmear

propagation in the medium.

From Maxwell's equations ( 2.1.2. ) we have

Vx(Vx )+ 1 0
2 fff

1 0
E(r'?)=-77c^p(r'/)- ("-13-)
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using infinite plane wave (IPW) approximation:

|E(r,t)=^£(k,,^)exp[/(k/.r-<y/t)j,
/

|P(r,t)=P(u(r,t)+P?(r,t),
,o<1)

|P")(r,t)=2;P;"(k,,®,)=f.2:x (r,,®,):£(k,,ffl,),
/ /

]Pffi(r,t)=SP<j)(r,t)=SP,Nt(k'.<y')=ZplfL(k"<B')exP['(k'-r-ffl't)],
j^ 7 ' ^

(2.2.14.)

we get:

Vx(Vx)-a,-s (0
E(k,®)= ^u—3-PNI-(k,co), (2.2.15.)

e oc'

where

e=eo( l+X(l>(o) ). ey =e»( l+X(I>(<oy) )> (2.2.16.)

E(k,«,)=E^ '^•<-^\ E(k,,<»,)=E^ '(krr-'Byt),

(2.2.17.)

PNL(k,t»)=PoNL^<k-r-G)t)= ZPNLQ(k,(y),
j>2

PN^> (k, a>) = 80 x(/L (k = £ ^, ffl= £<yj: RE (k^ ,<»„).
m=l m=l

(2.2.18.)

Equation ( 2.2.15 ) is known as the coupled wave equation which is the starting

point for solving the problem ofnonlinear wave propagation in a medium.
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2.3. Jth-Order Nonlinear Optical Interaction
Processes in a Medium

Theoretically speaking, the solution for ayth-order nonliaear optical mteraction
in a medium can be obtained using the coupled wave approach. In practice only
second- and third-order nonlinear optical interactions are of interest In the following
discussion, we will omit the superscript "NL" in PNL(j) direcdy use die notations P(2),

PW, etc. .

Let us now look at the details. Let us define the foUowing abbreviations:

2
D=D(ffl)=[Vx(Vx)-^-E(o).],D^=D(ffly);

d=d(ffl)=^-, d,=d(o,)=-^-; (2.3.1.)
8g C SQ C

E=E(/T,(9), Ey=E(^.,fi)y);

P<m) =P(m)(k,6)), P^m) =P(m)(^-,^-).

For a three wave interaction process, the coupled wave equation (2.2.15.) can be

expressed, for nfour-wave interaction process, as

D,E,=diPW=di8oX(3)(ki=-k,-k,+k4, ®, =-©3-<y,+©<):E;E;E4,

D, E, =d,Pffl =d,SoX(3)(k,=-k,+k<-k,, a, =-a, +©, -®,):E;E,E;,

D,E,=d,P3<3>=d,8oX(3)(k,=k<-k,-k,, a, = ^ -^ -®i):E< E;E;,

D4E4=d4P^)=d4£oX(3)(k4= ki+k2+k3, 6)4= Q)^O)^+Q^}^^^.

(2.3.2.)
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where the nonlinear susceptibilities P(2) , j = 1,2, 3; P(3), j' = 1, 2,3,4; play the

roles of the coupling agents which determine the energy transfer rate between the
waves.

For the yfh order nonlinear optical interaction process in a medium, the energy
conservation condition

<y/+i=£^i (2.3.3.)
1=1

is needed. Nevertheless, m a finite medium, the momentum conservation condition

*,„=£*, (2.3.4.)
i=l

is not strictly required. But, it is preferred for maximization of the wave coupling.
This leads to one of the most important considerations in many NLO processes
known as the phase matching condition

A^=
L

k-j+l — 2Ln'i
i=l

=0, (2.3.5.)

where A AT is often called the (phase) mismatch.

Since the accurate solution of the coupled wave equations (2.2.15. ) is too difficult
to obtain, we have to resort to several simplified approximations among which are the

slowly varying amplitude approximation (SVA), the infinite plane -wave

approximation (IPW), and the constant pump intensity approximation (CPI) [189 -

191].

For a plane wave propagating along the ± z axis, we can write ( see ( 2.2. 14.))

E(z,t)=Eo(z) ei(k'^wt\ (2.3.6.)

Usmg coupled wave equations ( 2.2.15. ) and the SVA approximation, that is
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^2E(z)
"Tz^ « ffE(z)

"^r (2.3.7.)

m the steady state case, we get

a E,(z)=±^^PNL(z)e-'(*'ZT<Bt),
8z~u^ ~2ks,c1

for the slowly varying part. If the slowly varying part is time-dependent, we have

(2.3.8.)

^±_|L |Eo(z,t) =±/^-^pNL(z,t)e8z~v8ijm'°^^ ~1 2^£oC2* w
/( k-z^coi )

(2.3.9.)

>NL (z,t) was defined in ( 2.2.14. ).

We can see that equation ( 2.3.9 ) will reduce to equation (2.3.8. ), if the variation
of the amplitude E (z, t) is negligible compared with the time T that the light takes
to travel through the interaction distance / (for thin sample, / equal to the thickness of

the sample).

T=
/ _/.Vf,(<y)

Vg (co)
(2.3.10.)

where v (co), 8 r (co) and ^/8 r (co) are group velocity, relative dielectric constant

and refractive index of the wave.

Equation (2.3.8.) and Equation (2.3.9) will be used in section 4.5. to get the
expression to determme third-order nonlinear susceptibilities of the experimental

samples.
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2.4. Third-Order Nonlinear Optical Effects: Four-
Wave Interactions

Wave interaction in a nonlinear medium causes wave mixing which, in the second-

order case, leads to sum-frequency generation ( SFG ), second harmonic generation

( SHG ), and difference-frequency generation ( DFG ) [190 - 192]. The first and the
second processes are used to extend the laser tuneable range to shorter wavelengfhs,

the third one to longer wavelengfhs. The fhird-order process is generally called four-
•wave interaction ( FWI)[ 193].

The physical picture of wave interactions is like this: the input laser beams at co i,
G)2, ••••", coj, interact in the medium and generate a nonlinear polarization PNL(J) =

=p(j) = ^0) : EiE2--'Ej, (j >: 2), which, as a subsource in a collection of

oscillatmg dipoles, produces a new radiation output at Oj+i = S,^ i j co,.

Although, in general, the output radiation can appear in all directions, the
requirement of effective energy transformation m the yfh order nonlmear optical
process implies that both momentum conservation ( in form of phase matching

condition )

pj+l=±pl±p2±-"-±pj, (2.4.1.)

or

A^j+i =±^i ±^2 ±"--"±k^ ( 2.4.2. )

and energy conservation

(9j+l=±6?l±<92±"""±(yp (2.4.3.)

must be satisfied.

Using SVA, IPW, CPI approximations, and with the boundary condition on the

light intensity /Q(z)|^o,j=2,3==^ one can 8et the intensity of the output signal at

frequency coj+i = co i ±0)2 ••• ± o)j, in third order processes, as [33, 37]
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2
/0) = constant eg •^(3)(<y s=6)i±€t}2±6!) 3):eie2e3 x

(sinA4z)2 , ... (2.4.4.)
r2 -x~T~^r^~"z~>1^1^1^

~T~ >

where

A3k=|fts-(±fci±*2±*3)|, (2.4.5.)

are phase mismatches for the third-order nonlinear optical interaction.

From (2.4.4. ), ( 2.4.5. ), we can see that the output power will be at its maximum if
phase matching ( A3k = 0 ) is reached. This condition has been used in our experiment
to decide the propagation directions of three input beams and one output beam.

2.5. Nonlinear Optical Experiment Requirements

From the experimental point of view, in order to get high conversion efficiency,

the following conditions should preferably be satisfied:

( 1 ) the coupled waves are collinearly or near-collinearly phase matched (in this

way all the waves will add up instead of partially cancelling each other);

( 2 ) the medium is nearly lossless or has low absorption at the wavelengfh of the

pump and probe pulses (in some extreme cases, high absorption will leave too

little light powers to drive the nonlinear optical application or the nonlinear
effects);

( 3 ) the SVA is valid (because the energy transfer among the waves is usually
significant only after the waves travel over a distance much longer than their

wavelengths);

( 4 ) walk-off effect is minimized (otherwise, the beams will lose their phase-

matching because birefringence will affect the different polarization of the
light);
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( 5 ) the laser beam quality should be good ( best in TMoo mode for die optimal
coupling between the waves );

( 6 ) high quality nonlinear optical samples or crystals should be used m order to
get perfect phase matching throughout;

( 7 ) temperature should be as uniform as possible through the sample or crystal;

gradient will cause some extra unexpected effects, such as damage to die

sample.

These are the major consideration in our experiment, though in four-wave mixing
process, additional conditions, for example, phase matching and keeping mtensities
of three input beams under the damage threshold of the samples, etc., need to be
satisfied.

2.6. Four-Wave Interaction and
Four-Wave Mmng

Four-wave interactions ( FWI ) include four-wave up-conversion ( FWUC ) or

four-wave sum-frequency generation ( FWSFG ), in which 0)5= (Di+c[>2+ci>3. A special

case, co i = <o^= 003= 00^^ (<0s= 3 co ^ ) is called third harmonic generation ( THG ).

We can also have afour-wave difference-frequency generation ( FWDFG ), in which

G)s=(Dl+o)2-co3' The second case is often referred asfour-wave mbdng (FWM).

The wave vector diagrams for the three different situations of FWM are depicted

in Fig. 2.6.1. . Ifo)i^co2^G)3^o)s, FWM is called non-degenercste four-wave

mixing ( NDFWM ), otherwise, it is called degenerate four-wave mixing ( DFWM ).

In the fiilly degenerated case, G)g= co i = co^ = 0)3 (FDFWM). Obviously, there exists a
third possible case in which only two different frequencies are involved:

coi=co3,c0s=©2. This situation, referred to as partially degenerate four-wave

mixing ( PDFWM ) or often as non-degenernte four-wave mixing, is just the
situation covered by our TRFWM experiment and is sometimes termed scattering

from light-induced gratings.
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(D^CO^US

( 0)2=0)1 ; ^27^1 )

(a).NDFWM: (b). PDFWM: (c). FDFWM:
1. Co-Axis Geometry 1. One-Beam Geometry 1. Pairwise Counterpropagation

2. Off-Axis Geometry 2. Two-Beam Geometry 2. Co-Propagating Beams
3. Four-Beam Geometry 3. Four Beams with Phase-

Mismatching
Figure 2.6.1. Wavevector Diagrams of the Four-Wave

Interaction Processes.

In our spectroscopic investigation of dimeric/heterodimeric, faimeric/hetero-
trimeric model systems we chose:

COi=G)3=0)pp, 0)s=Cf)2=G)pb (2.6.1.)

where, pp = pump, pb = probe. For this case, equations ( 2.4.4. ) and ( 2.4.5. ) now
become

fw = constant esX '[K s ?0) s 1: PPi PP2epb

x
( sinA31z )2

A3k Z \2 Z '^PPl^PP27pb '

(2.6.2.)
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A,A;= ^s ~ (^ppi ~ ^ppl + ^pb )|» ( 2.6.3. )

CD, = fi?i - <»2 + <93. ( 2.6.4. )

In our experiment, we used two pump beams with the same frequency, therefore,
the output signal beam is of the frequency

^ = (^pumpl - (Opumpl + ^pr^)L^ = a,^ = ^^^ - ( 2.6.5.)

So far, we have discussed only steady-state FWM. Nevertheless, transient effects
may become important when using pulsed resonant excitatioiL

2.7. Transient Response of a Medium in Four-
Wave Mixing

As in the steady-state case, the source term in transient FWM is still the third-

order polarization P(3) . The only difference is that P() is now a time-dq)endent

function of the excitation and the relaxation of the medium. Though the response Iy
will be a transient one, the major conclusions are similar to those obtained from

equation (2.6.2.). A quantum mechanical calculation of the transient response of

four-wave mixing in a medium, has been given in Appendix 2. Here we only discuss
transient response of four-wave mixing in a medium in a classical field tfaeory view.
The results from the discussion have been direcdy used in (ND- experimental data

fitting.

2.7.1. A Classical Field Theory View

Through a quantum mechanical calculation of the optical nonlinearity in a medium,
one obtained the relation between the microscopic molecular structure and the

macroscopic %<i), e.g. for four-wave nuxing processes, the third-order nonlmear optical

polarizability ^(3). In order to verify the correctness of a tfaeorctical model, one has to
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compare the results or predictions made by the model with those of the experiment. To
do this, one needs to establish a link between the theoretical expressions and the

experimental observables. As discussed in the previous section, one can start from the

constitutive equation ( 2.3.1. ).

We shall restrict our discussion to the situation of interest, that is four-wave

mixing.

The polarization at the time t, which is induced by the pumping and probing fields
ippl, Epp2,

equation:

ppl ^^pp2 pb
E" , E" , E' , at the previous time T^, ^ and ^ is given by the constitutive

+00

Pind(t)= JdT,dT,dr3R(t-r,,t-r,,t-T3)Eppl(T,)EPP2 (T,)f(T,},
- 00

(2.7.1.1.)

where R(t -T^, t-T2,t-T3)isthe material's response to the external fields.

In our four-wave mixing system, the two pumping beams are synchronized so as to

generate a transient grating which difi&acts the probing beam and yields the FWM
signal. Thus, one get:

+oo
pbPind(t)= J dTidT3R(t-Ti,t-T3)

pp
E"(T,) Ep°(t,). (2.7.1.2.)

Because the probing beam feels only the change in the refractive index caused by

the excitation of the two pumping beams, one can write

R(t-Ti,t-T,) = R(t-T,)5(t-T,) , (2.7.1.3.)

and thus
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+00

Pind(t)= Epb(t)J dr,R(t-rJ Epp(r,) (2.7.1.4.)

By changing the integration variable from t - T^ to T:

T = t-Ti

one gets

(2.7.1.5.)

+00

Pind(t)=Ept'(t) J drR(r)
-oo

pp
E"(t-r) (2.7.1.6.)

If the probing beam is delayed by T(} with respect to T = 0, the instant when the

pumping beams arrived, then, changing (t-z) to (t- Td-T)' formula (2.7.1.6. ) becomes:

+00

.Pi^(t)=Pind(t-r<i)=Epb(t-rJ J drR(r)
pp

E"(t-Td-T)

(2.7.1.7.)

Defining the z axis along symmetric axis of the propagation direction of the beams,

and (p b as the angle between the polarizadon of the probe beam and the x axis, then the

two components of the induced polarization can be expressed as

+CX3

PmdJt)=Epb(t-rd) JdrRx»cx(!-)lpp(t-r<i-T) cos(ppb, (2.7.1.8.)
-oo

+00

Pi^(t)=Epb(t-Td) JdrR^(r)l"'(t-r<,-^) sin^pb. (2.7.1.9.)
- 00

In the general case, the response of the material to the induced external fields has
the form

RM=xSL»s(x)+2;xp)Ri(T), (2.7.1.10.)
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where X^ciron an^ Xi are third-order nonlinear susceptibilides corresponding to the

virtual electron transitions and to the rth relaxation component, respectively.

Therefore, one has

p^(t)=
+oo

electron iPP(t)+ JdT Zx^iR^T) Ipp (t-T )

p^(t)= electron T^P

-00 1

+00

Pb
Er (t-Td)cos(ppb ,

(2.7.1.11.)

ppIW(t)+JdT£xLuRiW(t-^)
-oo 1

pb
E' (t-Td)sin(ppb .

(2.7.1.12.)

Let us define

+00
RPx(t)=XelectronI"'(t)+JdTZXnuRi(z)I"'(t-T)=

-oo 1

+oo

=Xde<:tronIPP(t)+JdTR,(T)I"'(t-T),
(2.7.1.13.)

+00

RPy(t)=xelectTOnIpt(t)+ JdT£xMuRi(^)I"'(t-x)=
-00 1

+oo

^election !"'(()+ Jd, Ry(T)I?(t-T ).
-00

(2.7.1.14.)

When detecting the FWM signal, a Wollaston prism can be used to separate
different polarization components. If the polarization axis of the Wollaston prism

makes an angle (p^ in respect to the x axis, then the four-wave mixing signal parallel or

perpendicular to the polarization axis of the prism, S|| and S^, can be expressed as

(because the probe pulse has a limited duration around Tj):

54



+oo . ,i +oo

S|](Td)^ J <it|PM||(t)F = J dt |P^(t)cos^+P^(t)sm<p^
-00

(2.7.1.15.)

+00

S^(Td)^Jdt|P^(t)|'= Jdt
+00

, i nd •ind-P'^(t)sm(p»+P^(t)cos<p w
-00

(2.7.1.16.)

These can be written as

S||(Td) oc Jdt { I RP x(t) |2 COS2 (ppb cos2 (pw +1 RP x(t) |2 sin2 (ppb sin2 (p^ +
-00

[RP x(t)RP ^(t)+RP*Jt)RPy(t) ]cOS(ppb SUKppb COS<Pw SUl(p^} Ipb (t-Td),+

and

(2.7.1.17.)

Si (TB ) oc Jdt { |RP x(t) I cos2 (ppb sin2 (pw +| RP x(t) | sm2 (ppb cos2 (p^ +
-00

-[RPx(t)RP^(t)+RP*^(t)RPy(t)]cosq)pbSm(ppbCos(pn,sm(p,,}lpl'(t-Td) .

(2.7.1.18.)
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2.7.2. Coupling Phonons

In frequency space, the third-order nonliaear response has the following form [194]:

Xijkl Xijkl
R(co,q)= ^ ,2"L\J"\... ../-. = ^2 .^Z^^ „.-. /-' (2.7.2.1.)

(DZ - u^(q}-2iy u(q) G)Z - Dz(q)-2? P(q)/T

where co is the system response frequency and v(q) is the phonon frequency.

The corresponding form m time is either

Rijkl(t)=X^,e't/T' (2.7.2.2.)

for population relaxation, or

,^^(3) ^-t/Tsm(cot+(p)
^ijkl(t)=Xijkl^ "v—-®——' (2.7.2.3.

for the coupling to the phonons without dispersion, or

Ruk,(t)=JdqxG)k^-t/T(q)sia[^t+<p^-n(q-qa)2. (2.7.2.4.)

for the coupling to the phonons with dispersion, where m is a constant and the gaussian
form is introduced because of the existence of gaussian pump and probe pulse shapes

[193].

In our experiment, we are interested in investigating the transient response of a
system whose population is excited to a higher level and then goes through a cascade of
relaxations to intermediate levels.
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2.7.3. Population Relaxation

According to Appendix I, the analytical expression of the transient response caused
by the population relaxation of the four-level system is:

,(3)4-^/(3)^2 7172 ,^(3)^^13 ^12^23 7172 ^ Tl T3
v T. T. T- T. - T- / T. -r, T,-T,

+ -x?) gn T^
r, 7;-^

TI TI T2 TI-TS'TI-^

,(3) 8l2 823 ^1 ^2 ^2 ^3
X3

r, T, T,-7,73-73

+XV3(3) -( g\3 Sn gi3 T\TI ^ T^ , g^ ^23 ^^2 TI ^3-) +
TI TI TZ ri-7277i-73 Ti T2 ^-^272-73

.-t/71

-t/T,

-t/r^

+

(2.7.3.1.)

where, ^ is relative strength of different relaxation components, 7; is the relaxation

time of /-th level, T, • is the relaxation time of the system from ?-th level toy-fh level,

and g^ =T,^ -IT, is a statistical weight factor. All these parameter are adjustable in the

fitting of the experimental results.
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Chapter 3

Experiment

3.1. Experimental Set-up

Our experimental system is shown in the block diagram of Fig. 3.1.1. It can be
divided into six subsystems:

( 1) femtosecond laser generator;

(2 ) femtosecond laser amplifier;

( 3 ) four-wave mbdng system;

( 4 ) detection system;

( 5 ) data acquisition system;

( 6 ) synchronism control system.
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Femtosecond Laaer

Generator
A

Monitor

I
Femtoaecond

Laser

Amplifier

T
Four-Vave Mbdng

System

Detection

Sytcm

Data Acqulaltlon

Syatem

Synchronlam

Control

Figure 3.1.1.
Block Diagram of

the Experimental Syatcxn

A schemadc representation of each of these subsystems is shown in Fig. 3.1.2
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L „__ T LI ^ KDP1AT 514.5nm

I DC L I ^ L I DCLII . " I DC

^A I v ^ I

Nd:YAG 1.064^m/532nm

DCBS DC

DCM ^ ACPLSP/PH ""A L^^-\M
QD -^p -^650 ^

AMPLIRGER^
^SlL^L-^^~K^SniMr3/

"M\r 'H i [< L'f I ^/

Figure 3.1.2. Details of Experimental System.
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We have used the following abbreviations:

A:
AMP:

AT:
BD:
BS:
CL:
CP:

CPL:
DC:

DCBS:
DCM:

DL:
DPG:

F:
OR:
GS:

I:
JT:

L:

Absorber
Amplifier
Attenuator

Beam Dump
Beam Splitter
Cylindrical Lens
Computer
Calibrating Plate
Dye Cell
Dichroic Beam Splitter
Dichroic Mirror

Divergent Lens
Delay / Pulse Generator
Filter
Grating
Glass
Iris
Jet
Lens

M:
os:
OD:
PD:
PL:

PM:
PR:

PRM:
SG:
SP:

SP/PH:
TS:
TP:

TLP:
VD:
we:
WP:

WP,/,:

Mirror
Oscilloscope

Optical Density
Photodiode
Polarizer

Photomultiplier
Prism
Pyramid
Signal Generator

Speaker
Sample / Pinhole

Transparent Shuttle
Thompson Polarizer

Taylor Polarizer
Variable Delay
Water Cell
Wollaston Polarizer
Wave Piece ( halfwavelength)

3.2. Femtosecond Laser Generator and Monitor

As shown in Fig. 3.2.1, the femtosecond laser generator principally consists of a

collidmg pulse mode-locked dye laser (CPM), pumped by an Argon laser at 514.5 nm
to give an output at 620 mn with T « 60 fs, P = 1 nJ/pulse, f = 85 MHz [195 - 201].

In the center of the CPM cavity, there are a gain jet G with rhodamine 6G pumped by

an Argon laser and a saturating absorbing jet (A) with DODCI ( diethyloxa-
dicarbocyanine iodide ).

The cmcial idea behind the CPM is to utilize the interaction or "collision" of two
pulses in the laser cavity, propagating in opposite directions, to enhance the

effectiveness of the saturable absorber.

61



The absorber and the gain jet are placed at a relative distance of approximately
one quarter of the round trip around the ring. Thus, starting from the saturable

absorber, the two oppositely propagating pulses will profit from the gam jet and meet
again at the absorber with the same time delay correspondmg to a round trip time. In
this manner, both pulses acquire the same gain, the effective saturadon parameter is
increased by a factor of three over that for a conventional passive mode-locked dye

laser, and the formation of extra pulses m the cavity has been effectively reduced.

AT 514.5nm

To Four Stage Ampffier

Figure 3.2.1. Femtosecond Laser Generator & Monitor.

Since the optimum performance of a femtosecond dye laser is critically dependent

on the group velocity dispersion in the optical cavity, four prisms have been inserted

into the CPM cavity to compensate the group velocity dispersion. These negative

group velocity dispersion pieces make the dispersion adjustable by moving one of the
prisms along a normal to the prism base [201, 203]. This results in a shorter output

pulse from the CPM.

There are two beams that exit the CPM from a semi-reflecdve mirror with R =
98 %. One beam is directed to the four stage femtosecond laser amplification system
while the other is fed into a femtosecond laser monitor system so as to get real time

information about the pulse duration of the laser pulses.

Most of the ultrashort pulse duration measurements require measuring the second
or higher order autocorrelation function [204]:
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(l(!)I(t+T,)-I(t+T,^
Go)(r,,^,-,^,)=vv'"v'^(,))v'"/""/- (3-2-L)

In they = 2 case, one has

^)(^?C-)) (3.2.2.)
{KI)} '""'-

Experimentally, these functions can be obtained by the SHG effects. In our
monitor system, the beam coming from the CPM is divided into two by a beam
splitter. In the balance position of Ae microscopic displacement piece that is driven

by a speaker (SP), the two beams are adjusted to have the same time delay. Then, the
two beams are focused into a KDP crystal. By monitoring the SHG signal from the

KDP on an oscilloscope, when Ac speaker is on, one can observe the shape and pulse
duration, whose value can be pre-caUbrated and seen directly on the screen.

3.3. Femtosecond Laser Amplifier

The output laser pulse from the CPM, although being relatively short and having
typically the power of 1 nJ/pvlse^ is stfll too low for most ultrashort laser
spectroscopy investigations. It needs to be fiu-tfaer amplified. This is accomplished

by a four-stage femtosecond dye lass- amplifiCT, shown in Fig. 3.3.1. .

The amplifier is pumped by a KDP frequency doubled, Q-switched Nd+3:YAG
laser at 532 mn with repetition rate of 10 Hz. It yields an output pulse at 620 nm
wifh 100 fs pulse duration and 0.30 mJ/pulse in energy. The first three amplifying

dye-cells (DC) are pumped transvCTsely. Every cell is followed by a saturable dye
absorber jet A, to eliminate Ae spontaneous radiation which would be otherwise
added to the 620 nm beam to be amplified. After passing the previous three stages of

amplification, two grating pair systems have been introduced in order to compress the

laser entering the last stage amplifier. This amplifier has been perfected by
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Dr. Daniel Houde, who ingeniously designed it to generate two equivalent outputs

instead of just one as usually the case.

1 Dc L A I L 1 DC L I
M
A

\

A
v I

MV BSN

From CPM

^Nd:YAG 1.064/m/532Qm

I*—-•—-
DCBS DC

\v - —•

^BS
[/_

DCBS

L/_

DCM 'DC~ /DCM

Figure 3.3.1. Four-Stage Femtosecond Laser Amplifier.

As shown in Fig. 3.3.1., the crucial part of the last stage amplification consists of

a pair of dichroic beam splitters (DCBS) and a pair of dichroic mirrors (DCM). The
DCBSs divide the 532 nm pumping laser beams from the Nd+3:YAG into two equal
parts while letting the 620 mn laser from the previous three stage amplifier to pass

unchanged. The DCMs totally reflect the 532 nm pumping beams but let the 620 nm
laser to pass. In the last stage amplification, two 620 nm laser beams, that come out
as +1 and -1 order dif&action from the second compressing gratings, are pumped

longitudinally in the two Sulforhodamine 640 dye cells (DC). This ingenious design
allows one to make full use of the resources of the system. It outputs two equal 620
nm laser beams having a pulse duradon 100 fs, a repetition rate of 10 Hz and a

typical energy of 0.3 mJ/pulse.
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3.4. Four-Wave Mixing System

The time-resolved non-degenerated four-wave mixing (TRNDFWM) system used
in our experiment is shown in Fig. 3.4.0.1. .

From &e Femtosecond Laser System XM
I\
I/

SP/PH
,CPLLj|7'\M

^, GS GS
\'-^ 7~ Z.

To Detecting System PL650^ < •<:

f̂e
<^-

ToAmpUfier -yj)

DgpD^
^ PL 1̂/2

^-\M
WS^ u i^f . I't^^ ^.IB

k^iL!nTi'VMpit\^ILHlj"M\ t^| 'Li I M/

Figure 3.4.0.1. Four-Wave Mixing System.

The amplified laser beam, exiting from one of the amis of the femtosecond laser
amplifier, is divided into three by beam splitters (BS). Two of them serve as pump

pulses, whose polarisation directions are controlled by the half wave pieces (WP^)
and Thompson polarizer (TP or PL). The third 620 nm pulse is focused into a 60 ^un
ethaleneglucol jet (JT) to generate a wide-band subpicosecond white continuum, from
which a X = 650 nm, 8X = 10 nm pulse is selected by an interference filter (F^so)-
This 650 mn pulse serves as probe. Its polarization direction is also controlled by a

half-wave piece and a Thompson polarizer. The three beams are focused by a group
of lenses onto the sample with a spot size approximately 600 ^m in diameter. Pump

pulse and probe pulse are sampled by two glass pieces (GS). The sampled lights are
fed into two photodiodes (PD^, PD3) where they are converted into electric signals,
which are served as the reference for data acquisition system.

65



3.4.1. Spatial Arrangement ofFour-Wave Mixing

Beams.

The spatial arrangement of the beams mvolved in four-wave nuxing is given m

Fig.3.4.1.1.

signal

pump 1
ca

Figure 3.4.1.1. Spatial Arrangement of Four-Vave Mixing Beams

The propagation directions of the pumps, probe and signal pulses are pre-set and
controlled by the relative position between a calibrating plate (CPL, in Fig. 3.4.0.1.)
and a pinhole (PH, in Fig.3.4.0.1.). The CPL has four holes, two used by two pump
beams and one by the probe beam. The fourth is used to calibrate the signal beam

propagation direction. The spatial arrangement leads to angles of 1.21° and 2.4°
between the probe beam and the two pump beams. Once the calibration has been

done, the sample (SP, in Fig. 3.4.0.1.) or reference crystaVglass/quartz will be put
into exactly the same position that the pinhole held before. With this specific spatial
arrangement, the diffracted FWM signal will exit m the phase-matching direction ^ =

k^ - k^ + ^3, as shown in Fig. 3.4.1.2. .
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Z2

Y2
^—' ;^P^PJ

v^p'

)e—V is.pumpZ—A-pumpiy—

kpump1—

(^signal :=^probe+^ CJpumpl —C<Jpump2 ^=

=C<Jprobe

Figure 3.4.1.2. Wave Vector Diagram of Four-Wave Mixing Process,

3.4.2. Synchronization of the Two Pump Pulses

Before starting any TRFWM measurement, the two pump pulses must be
synchronized. This is done by observing the autogratmg effect in the reference
crystal, SrTi03. After carefully calibrating the wave propagation directions and
putting the reference crystal in place, one then adjusts the relative delay between the
two pump pulses by moving the variable delay Une (VD, in Fig. 3.4.0.1.). Putting a

screen in the xfty^ plane, shown in Fig. 3.4.1.1., when synchronism is achieved, an
autogratmg pattern, shown in Fig. 3.4.2.1., wiU appear. This pattern can be seen

easily if the pump power is sufficiently intense.

By scanning the probe variable delay Une (VD, in Fig. 3.4.0.1.) which is

controlled by a step motor and computer software, one can find a position where the
three pulses are properly synchronized. This occurs when the largest response is
observed on the screen of a monitoring oscilloscope that is connected to the channel
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0 or channel 1 output from the amplifier. Once the three beam synchronization
position has been found, one can start to scan the reference quartz or glass, and then
the sample to be measured.

0
autogratingl

signal

0

•
pump1

x2

probe

•

• 0
pump2 autogratir

y2

Figure 3.4.2.1. Relative Positions of Pumpl, Pump2,

Probe, Diffracied Signal, and Autograting Beams.

The maximum length of the probe delay line is 50 cm, which corresponds to a

delay time of 1.7 x 106 fs = 1.7 ns, and the minimum step is 0.2 ^m, which

corresponds to a time interval of 0.66 fs. Because the scanning generally needs to
start from a negative delay position, for which the probe pulse will arrive at the

sample or reference earlier than the two pump pulses and thus no FWM signal will be
available ( recording of the system base Une ), the longest delay time we can reach in
the experiment is about 1.3 ns.
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3.5. Four-Wave Mixing Signal Detection System

The four-wave mixing signal detection system is described m Fig. 3.5.1. . The

dif&acted FWM signal is first spatially selected by a group of iris ( I) and lens ( L),
then filtered in frequency by a low passing band filter starting at 650 mn (F^so), and
finally fed into a Wollaston prism (WP) which separates the two orthonormal
polarizations of the beam. The intensity in each path is detected via two photodiodes.

The above two step selection of FWM signals and the use of a 650 mn probe
beam have greatly increased the signal to noise ratio. The 620 nm pump beam

diffusion background from the samples is suppressed. The diffused light would
otherwise in some cases, e.g. for Langmuir-Blodgett thin films, give us a serious
problem and make it impossible to extract the signal from the noise background. We
have introduced special technique caUed transparent shuttle,which is made of a

piece of glass (Shown in Figure 3.4.0.1., symbolized by TS), to overcome this
obstacle. After the whole system is optimized and the two pump beams are
synchronized, when starting data acquisition, first put this shuttle into the light path

of one of the pump beams. At this moment, the pump beams has not been cut off
but been de-svnchronized since the transparent glass piece introduced an extra light
path for one of the pump beams, what is collected by the data acquisition system is

just the strong diffusion background B. Then, in second step, open the shutde, let the

two pump beams pass through and arrive at the sample simultaneously, recording the
intensity^, under this condition. FinaUy, the data acquisition system can get the real

signal S embedded in the strong diffusion noise background:

S-A-B. (3.5.1.)

PD

OD WP,- Difi&actedFWM Signal
ll>"onn ^ fi-on, FWM System

i—r~~^~
OD - 1 L l

Clnmell

chumeio ^_ To Amplifier

Figure 3.5.1. Four-Wave Mixing Signal Detection System.
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3.6. Four-Wave Mixing Data Acquisition System

The four-wave mixing data acquisition system is depicted m Fig. 3.6.1. There are
four channel signals: channel 0, perpendicular dif&acted FWM signal; channel 1,
horizontal diffracted FWM signal; channel 2, pump pulse reference; and channel 3,

probe pulse reference. These are first sent into an amplifier and then collected by a
software controlled A/D card. Before starting the acquisition, a programme called
"histogram", makes a measurement of the stadstical distribution of the number of

pulses versus the intensity of the pump pulse (channel 0) and the probe pulse
(channel 1). This procedure gives the ranges in intensity of the pump and the probe
and allows proper validation of the data: when the intensities of pump and probe are
inside the premeasured ranges, then the data collected is valid, otherwise the data
should be abandoned. Every experimental data point is statistically averaged,

typically 50 ~ 150 valid pulses per data point, depending on the stability of the total
system. When finishing acquisition of a data point, the computer gives an instruction
to the step motor of the delay line to advance a certam value. According to our
experience, a step-changing scheme has to be used during the data acquisition in
order to best compromise between the shortest response time (~ 100 fs) and the

longest detectable response time (~ 1.3 ns).

•From Vertical Channel Signal
CJD] i —<— -From Horizontal Channel Signal

COMPUTER chl
AMPLIFIER ^2|—1-<— .From Pump Reference

•From Probe Reference

Figure 3.6.1. Four-Wave Mixing Data Acquisition System.

3.7. Synchronism Control System

The synchronism control system is presented in Fig. 3.7.1. . In the CPM cavity, a
weak 620 nm femtosecond laser signal sample is reflected from the surface of one of

the prisms and collected by a photodiode (PD). The converted signal is preamplified
(AMP) and then sent into a delay pulse generator (DPG) which will m return send a
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series of trig pulses to all the subsystems that need to be synchronized, e.g. Nd3+:

YAG, A/D card, etc. . A proper adjustment of the delays allows the total system to
work in a more efficient way.

Sampling from CPM PD
AMP DP G

Figure 3.7.1. Synchronism Control System.

3.8. Experiment Approaches

For a successful TRNDFWM experiment, the following parameters or factors

should be adjusted or decided on, being careful to keep a proper balance between

some of them:

(1) the spot sizes and shapes of the two pump beams and the probe beam,

(2) the relative intensity of the pump and the probe beams,

(3) the polarizadon of the three input beams,

(4) the propagation directions of the FWM beams (three inputs and one output),

(5) the type of detectors,

(6) the dynamic ranges for the intensity of the two pump pulses and the probe
pulse,

(7) the wavelength of the probe and of the dif&acted light,

(8) the position of the sample, the reference crystal, the reference glass, or the

reference quartz,

(9) synchronization of the two pump pulses,

(10) overlapping distance of the three input beams,
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(11) the system's time resolution limit, pulse duration of the pump and the probe

pulses,

(12) the number of pulses per data point,

(13) the steps (in microns) and the number of steps of the delay line, in different
time scale regions,

(14) phase-matching type of the beams in the sample or the reference,

(15) phase matching angles for every possible cases,

(17) stability of the total system, and

(18) synchronism between all the subsystems.

Most of these parameters and factors have been described in previous sections.

The general procedure ofaTRFWM experiment is summarized as follows:

(1) pre-adjusting the whole system,

(2) setting each of the above parameters or factors,

(3) making an acquisition for a reference sample, e.g. crystal, glass, or quartz, to
get some information about the experimental system which will be used for
data fitting and making calculations of the third-order nonlmear optical

susceptibility %<3), etc.,

(4) doing a pre-scan for the sample to be measured to get the parameters
necessary for making the data acquisition,

(5) making sample data acquisition,

(6) fitting the temporal spectra of the reference,

(7) fitting the temporal spectral of sample,

(8) repeating the above procedures, if necessary.

If the results from the experiment are satisfactory one must then make a theoretical
calculation and analysis to extract the information contained in the data and attribute

them to suitable physical mechanisms.
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Chapter 4

Results and Discussion

In this chapter, we present the results of time-resolved four wave mixing
(TRFWM) studies on

1. sublimated films of cerium porphyrm phtfialocyanine sandwich mixed

heterodimer, Pc2~CeIVTPP2-,

2. sublimated fihns of cerium porphyrm phtfaalocyanine symmetnc trimer,
TPP2-CeIIIPc2-CemTPP2-,

3. Langmuir-Blodgett fihns of cobalt jwrphyrm phthalocyanine mbced dimer

CoPC^/H^PcTS4-,

4. sublimated fihns ofneodymium porphyTin phthalocyanine dimer

Pc2-NdmPc*, and

5. sublimated flhns of neodymium porphyrm phthalocyanme trimer
Pc2-NdmTPP2-NdfflPc2-.

The results have been compared with those from transient absorption experiments
on these samples so as to attribute the different relaxation components to the different
relaxation paths. It is found that, due to the existence of mtramolecular charge
transfer and intermolecular excitonic excitadon migration, degrating times of these

sample in FWM experiments are shorter than those having only population relaxation
from one excited state to the other. Third-order nonlinear optical responses of the
samples have been measured by TRFWM. The absolute values of the fhird-order

nonlinear optical susceptibility ^(3) of these samples are deteimined by comparing the
third-order nonlinear optical responses of the samples with those of a slide of fused

quartz under exactly the same experimental conditions, taking quartz ^(3) value as a

standard reference.
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We have performed the first TRFWM experiment on sublimated films ^ observed

and investigated the first two correlated phonon mode shifting phenomenon and the
first photoreft -active effect in an organic multimer thin film, and made the first
identification of diffusion contribution to the degrating process.

4.1. Time-Resolved Four-Wave Mixing Study on the
Sublimated Film of Cerium Porphyrin

2-^ rVr^^2-Phthalocyanine Heterodimer Pc" Ce^T TPP

4.1.1. Experimental Aspects

Details of the preparation of Pc2~CeIVTPP2' are given in [205, 206]. Sublimated

fihns of the compound were made in the laboratory of Prof. Le Dao, in INRS-Energie/

Materiaux de Varemies, Montreal, Quebec, Canada, as described in reference [207].

The ground state absorption spectra of Pcz~CelvTPPZ~ have been recorded by a
HITACHI U-2000 spectrometer. The time resolved transient response has been

detected by a four-wave mixing system, explained m Chapter 3, section 3.4., which is
similar to that used by Etchepare et al. in their transient grating experiment [207]. A
colliding pulse mode-locked (CPM) dye laser pumped by an Argon laser at 514.5 urn
and amplified by a four-stage amplifier gave rise to a 100 fs pulse centred at 620 nm
having a repetition rate of 10 Hz. The spatial arrangement of the four-wave mixing

beams is shown in Fig. 3.4.1.1. . Two pump pulses with the same wavelengtfa Xp =

620 nm and at an angle of 2.11° in respect to each other, and a third probe pulse, with a
wavelength at 650 mn and at the angles of 1.21° and 2.4° with respect to the two pump

pulses, impinge on the sublimated sample of Pc2~CeIVTPP2~ lying on quartz substrate
with a spot size being approximately 600 ^m. The fourth difi&acted four-wave mixing
signal was detected as a function of the probe pulse delay time with respect to the two

synchronized pump pulses. The two pump pulses and the probe pulse are polarized in
the same direction. The given FWM geometry gives a coherent signal that is seen in

the k^= k^ -k^ + ^3 du-ection as shown in Fig. 3.4.1.2. . The signal is spatially selected

by the given geometry, filtered at wavelength 650 mn by a low-pass band filter and
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then fed into a Wollaston prism Linked with two photodiodes which convert the signals

into electronic ones. This arrangement allows us to get rid of the strong diffusion
background coming from the 620 nm pump beams falling on the sample, which would

otherwise in some cases give us a serious problem. The temporal shapes of the pump
and probe pulses were determined by measuring TRFWM signal in a reference glass or
fused quartz slide, then fitting the experimental data according to an appropriate
theoretical model.

4.1.2. Results and Discussion

18
16^-1417 '"15 l-r 13

M(P)L4: Metalto-Porphyrin

PMPc M(Pc)L<: Metallo-Phthatocyanine

Figure 4.1.2.0.1. Constitution of Octacoordinated Metal Mono-
tetrapyrroles M(P)L* and Configurations irith A: Monotetrapyrroles,
B: Bistetrapyrroles PMPc, e.g., PcCeTPP, M = Lanfhanide Metal Ion.

The structure of the heterodimer is depicted in Fig. 4.1.2.0.1. . When R in position

5, 10, 15, 20 ofporphyrin are replaced by group CH3C<,H4, it gives rise to 5, 10, 15, 20-

tetra (p-tolyl) porphyrin, i.e., TPP.

The absorption spectra of the ground state of the film of Pc2~CeIVTPP2~ sublimated

on a quartz substrate is displayed in Fig. 4.1.2.0.2., which shows the Soret band of the

phthalocyanine and porphyrin moiedes centered at 342 nm and 423 nm [205, 206,
209]. The two visible and near-infi-ared absoqrtion bands in the regions 540 - 650 nm
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and 700 - 900 nm were attributed to the phthalocyanine Q bands in the dimer, thought

the first visible band probably contains a contribution of the poq)hyrin Q bands. These
last bands generally appear around 540 - 630 nm in the spectra of Ce(FV) bis-

porphyrins.
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Figure 4.1.2.0.2. Ground State Absorption Spectrum of the
Sublimated Film of the Heterodimer PcCeTPP on a Quartz Substrate.

4.1.2.1. Time-ResoIved Four-Wave Mixing Experimental
Results

TRFWM signals at the k^= k^- k^+ k^ phase matching direction are shown m Fig.
4.1.2.1.1. ~ Fig. 4.1.2.1.4. by downward triangles as a function of delay time T^

between the two synchronized pump pulses and the probe pulse. Different time scales

of 10 ps, 100 ps, 500 ps, up to 1.3 ns are plotted. From the diagram having the smallest
time scale one can see that the shortest relaxation component is still several times

bigger than the system's resolution, i.e., the pump/probe pulse duration ( « 100 fs ),

which is determined by fitting the TRFWM data of a reference glass. The diagram
with the longest time scale shows that the sublimated heterodimer system possesses
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a very long response time much above the detection limit of our TRFWM system, i.e.,
1.3 ns. In section 4.5., this will be proposed to be a photorefi-active effect. The
measured signals are free from coherent artifacts, which, coming from virtual electron
excitation, would have appeared as a sharp spike at zero delay. The most interesting
and the most conspicuous phenomenon that, to our best knowledge, has never been
seen and reported on a thin film sample, is the appearance of the two oscillating

components shown in Fig. 4.1.2.7.1. . Quite surprisingly, one can identify two
correlated phonon modes that shift from one to the other in a relatively short period of
time. This phenomenon will be studied in section 4.1.2.7. .

4.1.2.2. Transient Absorption Experimental Results

In order to attribute the different relaxation components of the data from the

TRFWM experiment to the appropriate physical mechanisms, it is essential to compare
the experimental results with those from transient absorption experiment. The

lanthanide bisphthalocyanine wiA a metal ion M , e.g., Ce , having an electi-on
configuration 4fl5d 6s2, is paramagaetic. In the transient absorption experiment

[210], 620 nm pump pulse generates a first excited state S^ with a population Pi(0.

This population has a longitudinal relaxation time Ti = T aAI)= ((T CT)-1 + (F Kc)-1)-1

= 1.2 ps. It relaxes with a time FCT towards a charge transfer state CT having a

population P 2(0 and with a time T^ towards an excited triplet state Ti having a

population P3 (t). Finally the charge transfer state relaxes towards the ground state So

with a time i^=T (^TA2) = 22 ps while the triplet excited state T^ does so with a time

i;3 =r(^TA3) = 130 ps. These three values give rise to the second line in Table

4.1.2.9.1. . The related processes are dqncted schematicaUy m Fig. 4.1.2.2.1. (a) and

summarized in the following schematic mechanisms:
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so[TPP2-CeIVPc2-]-!u^sl [TPP2-CeIVPc2-]',

-^—^CT[TPP2-CefflPc*]
sir^T»T>2-^»IVT»^2-1!<' Tl=ril[TPP2-CeIVPc2-]'

,*

i ' v lir-nan2->Ii[TPP2-CeIVPc2-]'

CT[TPP2-CefflPc-]* T2=71 ) su [TPP2-CeIVPc2-],

T" [TPP2-CeIVPc2-]* T3=rs ) so [TPP2-CeIVPc2-].

S^T^rr\^-Y ^^T[
=1.2ps

CTA1)

(CT)

(4.1.2.2.1.)

rfG1r=r?A1)-+T{D1)-1

^1,T1

(b)
T{:TG2r=7fA2)4-T(D2)

Figure 4.1.2.2.1. Schematic Presentation of the Relaxation Path of
the Sublimated Heterodimer Film of PcCeTPP in the Experiment of
(a): Transient Absorption (TA), and (b): Time-Resolved Four-Wave
Mixing (TRFWM) and Two Correlated Vibration Modes CJI,TI and U2,r2.
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4.1.2.3. Fitting of Time-ResoIved Four-Wave Mixing
Experimental Data

The information of the given molecular systems can be extracted from the

TRNDFWM experimental data using the theoretical calculation carried out in Chapter
2., section 2.7. . This gives the following expression which we used to fit the
experimental data:

Sv(Td)=J (lt|J d^Rcoupledphonon (T)+R3populationrelaxation (T)J Ipump(t-T) ] x

XIprobe(t-Td) =

3

î=l
=Jdt J^| Rcoupledphonon (T) + Zx^.rcl.,i pi(T) |Ipump(t-'c) Iprobe(t-Td)

(4.1.2.3.1.)

where X^omm an<^ ^TOD.rel..i are t^e thlr^~ol"(lel" nonlinear susceptibilities for the

correlated phonon and for the /th component of population relaxation, I pump and I probe

are the intensities of the pump light and probe light.

When treating the data without oscillation, only the response from a four-level
system which relaxes from one to the other, is needed:

<3) -I- V<3> i Jl1'12 -1- V^ (-1- A A ±\±1 ^ xl Jl3
<3pop.rel. \ ) I.AI A 2 rp rp rp A. 3

T.. T. -12 ^\ ~ ^1 T, T,,T,T,.T/T,-T,]

-t/Tie'l'tl + <3) 1 -ll-t2

r» T. - T.12 -II -l2

T. T. T. F<3) L 1 Al f"i 1"1 'l3

t3 T,, T,,T,-T,T,-T^

-t/r-;^'l'12 + ^+^' T. . T.T. 1 1 T. T. T.T.1 A2 \ Al -l3 , A A •11 -t2 -12 -l3+
-t/r,

7, T,T^T,-T/T,-T, • T,,T^T,-T,T,-T,^

(4.1.2.3.2.)

where, in our specific case here, 1, 2, 3 denote singlet excited state Si, charge transfer

state CT and low-lying state LS respectively; r; =T, is the relaxation time of the level
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i, and 7y is the relaxation time of the system from level itoj (i,j = 1, 2, 3). In

complicated cases, more relaxation terms and more response functions can be added
into ( 4.1.2.3.1 ). Nevertheless, this minimal four-level model is sufficient for our aim.

The routine procedure for data processing are: first fitting the experimental data of

the reference ( usually, using glass or fused quartz slide) to get the parameters about

pump and probe pulses ( FWHM, temporal shape, either gaussian, biexponential, or
sech), then using these parameters to fit the experimental data of the sample by

appropriate models.

The TRFWM signal was measured as a function of probe delay time with

respect to the pump pulses. The experimental results are shown in Fig. 4.1.2.1.1. ~

Fig. 4.1.2.1.4., symbolized by the downwards triangles, with the different time scales
of 10 ps, 100 ps, 500 ps and 1.3 ns. The full lines in Fig. 4.1.2.1.1. ~ Fig. 4.1.2.1.4.

and a long dash line in Fig. 4.1.2.7.1. ~ Fig.4.1.2.7.8. refer to the contribution of the

three excited state populations. The dotted lines m Fig. 4.1.2.1.1. ~ Fig. 4.1.2.1.4.

represent the three population relaxation components respectively. The temporal shape
of the pump-probe pulses, determined by measuring TRFWM signal on reference glass

(quartz), is also shown in Fig. 4.1.2.1.1. ~ Fig. 4.1.2.1.4. . This shows that the time

resolution of the TRFWM system is better than 100 fs.

The fit of the oscillating part of the experimental data will be treated in the next
section. For the non-oscillating part, three relaxation components with time constants
of 0.9 ps, 8.4 ps and 1.3 ns (beyond the limitation of OUT delay line) have been
determined (the solid lines shown in Fig. 4.1.2.1.1. ~ Fig. 4.1.2.1.4., and long dash

lines in Fig. 4.1.2.7.1. ~ Fig.4.1.2.7.8.). The three components, T;TG1) = 0.9 ps, Tfrc2)

= 8.4 ps and T(TG3) 1.3 ns, observed by fitting TRFWM experimental data, have been

listed in the third line of the Table 4.1.2.9.1..

From the table, we can see that the first two de-excitation components from time-
resolved four-wave experiment are shorter than those from transient absorption
experiment. The last one, however, is much longer. These findings reflect two

important effects: diffusion contribution to the degrating process and the
photoreft active effect in the sublimatedfilm.
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In order to interpret the fitted experimental results and attribute them to suitable

physical processes, in sections 4.1.2.4. - 4.1.2.6., we wiH propose and discuss three

possible physical models, which will be used in sections 4.1.2.7.-4.1.2.8. to explain
the experimental phenomena.

4.1.2.4. Singlet Migration by Coupling of the Charge
Transfer State between Neighbouring Molecules

We shall now discuss the various mechanisms by which these excitations can move

in the solid state. This motion is of the Davydov type [211].

One possible mechanism, for the migration of the excited singlet state involves the

charge transfer state. The strong electdc dipole associated with the latter favours a
strong intermolecular transfer coupling between the two species. In the TRFWM
experiment, ultrashort pump pulse creates a transient charge transfer state in the cerium

porphyrin phthalocyanine heterodimer Pc2~CeIVTPP2', as indicated by transient

absorption experiment. Because there exist microscopic ciystaUiae domains in the
sublimated film, as shown in Fig. 4.1.2.8.1., the molecules are expected to be arranged

more regularly in these domains. This favours mtersystem coupling among the
neighbouring molecules. Due to the similarity between tfae neighbouring molecules,

the excitation can be transferred quickly and effectively from one place to the other.

As depicted in Fig. 4.1.2.4.1. (A), at the begummg, molecule a? is in the ground
state So. When excited by the pump hv = hcfk I ^=520 •» rt goes mto the singlet excited

state Si, and its molecular configuration changed from a?: (Pc2~CeIVTPP2")so to

a^: (Pc2~CeIVTPP 2~)'<lsl. During the de-excitation, if the system makes a transition to

a charge transfer state (CT), the phthalocyanine moiety is oxidized from Pc2" into a

radical Pc , while the cerium ion is reduced from Cerv to Ceffl. This corresponding

to transfer an electron from phfhalocyaninePc2" to Cew through rmg-to-metal charge

transfer (RMCT). The molecule a? (Pc2~CeIVTPP2~)*sl has been transferred to

a;: (Pc7CemTPP2')*CT. The molecule looses an energy £"scr =J£Si ~ECT m thls

process. If during the transition, a neighbouring molecule is ah-eady in a charge
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transfer state a;: (Pc7Ce mTPP2~) CT, as a result of the ring to metal charge transfer

state coupling (RMCTSC) between the neighbouring molecules ai and a^, the molecule

a;: (Pc;CefflTPP2~) CT can effectively re-absorb this energy £scr = E^ --ECT. and

transfer an electron back from cerium Ceffl to phthalocyanine Pc7. After that, the

molecule a;: (Pc7CeIIITPP2~)+CT will get back to its excited smglet state

a 2: (Pc2~CeIVTPP2~) 1. The above process can be summarized in the foUowing

scheme:

ao:(Pc2-Cep/TPP2-)so—^ap(Pc2-CeIVTPP2-)*si

U RMCTSC > a;:(Pc'CefflTPP2-)'CT

a;:(Pc*CefflTPP2-)*CT U

a2:(Pc2-CeIVTPP2-)*si

y RMCTSC

(4.1.2.4.1.)

When the process is finished, the siaglet excited state has been transferred from

molecule a^ to its neighbouring molecule 83, and the molecule

a2: (Pc2~CeIVTPP2~)*sl is ready to start another similar cycle. In this way, the

singlet excited state will migrate from molecule a^ to molecule a^, from a^ to ••• , ••• to

a,, from aj to a,+i etc., i.e.:

CT/p
~)

^ RMCTSC ^ _ RMCTSC ^ RMCTSC, _ RMCTSC '_
01 —> 02 —>t ............ . ----- > QJ > Qj+i
!| S, t| S, f I s, tj s, H
1 'i '
I f. I

l_____________—_—______s1-——__——————i
(4.1.2.4.2.)
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Figure 4.1.2.4.1. Single! Excited State Migration by
the Ring to Metal Charge Transfer State Coupling (RMCTSC)
between the Neighbouring Molecules in the Sublimated
Film of the Heterodimer Pc2~CeIVTPP2~ .

or equivalently, a distant charge state/molecular dipole has been exchanged with a
singlet excited state. We will see in the following sections, how this will contribute to

the degratmg process and eventually to a photorefractive effect in the sublimed fihn of
the heterodimer Pc2~CeIVTPP2'.

Furthermore, the localized electron transfer during which electron moves between

phthalocyanine moiety Pcz~ and the central cerium ion Celv, will cause the system

configuration changing between a? (Pc2"CeIVTPP2') sl and

a;: (Pc7CefflTPP2~) . This is just the very origin of the two correlated phone

mode shifting phenomenon, which will be discussed thoroughly in section 4.1.2.7. .
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4.1.2.5. Charge Transfer State Migration by Spin-Orbit
Coupling between the Neighbouring Molecules
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\ CT/p-
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Figure 4.1.2.5.1. Charge Transfer State Migration by Spin-
Orbit Coupling between the Neighbouring Molecules
in the Sublimated Film of the Heterodimer fc Ce TE?P .

The charge transfer state of the heterodimer Pcz~CelvTPPZ~has a molecular

configuration a;: (Pc7CemTPP ^~)^1 compared with all other molecular excited state

configurations (Pc Ce TPP2") . The phthalocyanine molecule in the CT state is a

radical and the whole molecule is just equivalent to a dipole/?. CrystaUine arrangement

of the molecules makes it possible that the wave function overlap can occur between its
neighbouring molecules. This mixing with the neighbour's excited state results in a

strong coupling between them. As depicted in Fig. 4.1.2.5.1. (A), if a molecule bi in its

charge transfer state bp (Pc*CefflTPP2')*CT has a neighbouring molecule b2 in its

triplet state b2: (Pc2~CevITPP2~) Tl, then b^ can make a transition from its charge

transfer state CT to its triplet state Ti, by spm-orbit coupling (SOC) between the
neighbouring molecules, and molecule b^ can absorb the energy emitted by bj, change

its spm and molecular configuration to b2: (Pc^CefflTPP2~) . Now the molecule

b2 is ready to start another similar cycle. In this way, the charge transfer state or
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equivalently the molecular dipole p, will be transferred from its origin to a place far

away, as summarized in (4.1.2.5.1.).

soc^_ soc, soc. ^ soc
-9-D2 ——— ^...... ....... ---> bj ~ ~ ~ > bn

CT/p f| CT/p f | CT/p tf CT/p f*'
CT/p

(4.1.2.5.1.)

It is believed that this molecular dipole migration contributes to the photorefractive
effect observed in the sublimated fihn of the heterodimer.

4.1.2.6. Excitation Migration by Excitonic Coupling
between the Neighbouring Molecules

Even without charge-transfer-state coupling and spin-orbit coupling between
neighbouring molecules, the excitadon can still be transferred by excitonic coupling
between the molecules.

Analogous to singlet and triplet excitation migration, the excitonic excitation
migration process is shown in Fig. 4.1.2.6.1., the excitation /?u = hc/\ I ^=620 nm turns the

molecule c?: (Pc2~CeIVTPP2') ° in the ground state Sp into an excited one

Cp (Pc2~CeIVTPP2~) 1. Owing to the ordered arrangement of the molecules in the

microscopic crystalline domains, which favours intemiolecular interactions and the
excitonic coupling between the neighbouring molecules, this excitation can be
transferred to the neighbouring molecule, as shown m the following scheme:

Co:(Pc2-CeIVTPP2-)-''^c,:(Pc2-CeIVTPP2-)* -Ec^c,:(Pc2-CeIVTPP2-)'

(4.1.2.6.1.)

When the process is completed, a portion of the energy E^ has been transferred
from the molecule c^ to the neighbouring molecule c^. Now c^ is ready to start the next

similar process, if it is feasible. In this fashion, the excitadon will be transferred
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rapidly and efficiently from one molecule to the other and finally far away from its
original place, as summarized in Fig. 4.1.2.6.1. .

EKX

(Cl): PC V (C2): Pc ^. kY(c,): Pc \/(cj+i): pc ^1

TPP TPP TPP TPP

Figure 4.1.2.6.1. Excitation Migration by the Excitonic
Coupling between the Adjacent Molecules in the Sublimated
Film of the Heterodimer Pc2~CeIVTPP2;

This excitonic excitation migration will also confaibute to the degrating process and
cause a shorter response in TRFWM, as we will see in the following sections. It is also
important to the photorefracdve effect in the sublimed fihn of the heterodimer
Pc2-CeIVTPP2-.

4.1.2.7. Identification of Two-CorreIated-Phonon Mode-
Shifting Phenomenon

As mentioned in section 4.1.2.1., one of the most interesting phenomena observed in

OUT TRFWM results on the sublimated fihn of the heterodimer Pc2'CeIVTPP2~ is that

there is an oscillatoiy modulation supeq)osed on the decaying curves. This modulation
can not be fitted by any simple superposition of independent phonon modes, which
would be the natural way to treat the phonon modes in most situations.

The oscillatory behaviour we have recorded in the TRFWM experiment, is shown in

Fig. 4.1.2.7.1. . It is similar to what we have reported earlier in a crystal of conducting

polymer a-pEDT-TTFJA [212] and in a crystal of ferroelectric KTao93Nboo703 [213,

214]. In the both cases, we observed very strong oscillations which were attributed to



librational mode for the former and to soft-polariton mode for the latter. In this case,

we observed clearly two modulation periods, one with a lower frequency of about 30

cm-1 on left side of the curve (or a period of roughly 1.1 ps) and another with a higher

frequency around 40 cm-1 (or a period of approximately 0.8 ps) which are shorter than

a crossover time of 3 ps. The crossover time is in line with the decay time of the Si

population or the rise time of the CT population. The amplitude of tfae modulation is

also consistent with the 8.4 ps decay rate of the CT state. The oscilladon signal is

extremely difficult to be obtained in a sublimated thin heterodimer fihn compared with

those of the big crystals of the organic conductor and the ferroelectnc. Since a special

noise reduction technique, called Transparent Shuttle (Figure^^.4,0,1., and section

3.5.), has been used, and, to get the signal S^ the background noise B has been

substracted from the collected light A (eQuation (3.5.1A what^we_gotis defimtely a real

signal. Though oscillation signal of the heterodimer is not as perfect as those of the

previous two samples, it is good and strong enough to be distinguished from the

background. We confirmed this oscillation behaviour by having observed the same

phenomena reproduceably in the sublimated samples made in different time for the

same heterodimer compound.

In order to fit the results with a physically meanmgful model, we first use
independent phonon mode or any combination of them as we did before in references

212 - 214. According to ( 2.7.2.2. ), for a coupling phonon mode with a frequency o)

and a damping time T, the corresponding response of a molecular system is:

R(t)=X,j^-t/Tsm(^ (4.1.2.7.1.)

where (p is a phase factor.
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Then we suppose that the oscillating components, originate from the coupling of
the excited states. During the fitting of the oscillating data, the parameters of the non-

oscillating components are chosen to be fixed. Using (4.1.2.7.1.), for the independent
phonon mode choosing Ui = 30 cm-1, o^ = 40 cm-1 (seen from Fig. 4.1.2.7.1.), T^ = 0.90

ps, T^ = 8.4 ps, 13 = 1.3 ns (three fitted components for non-oscillatmg data, the reason

for such choosing will be explained later), the different combinations of these modes

give rise to the results shown in Fig. 4.1.2.7.2. for (oi,Ti), Fig. 4.1.2.7.3. for

(u2,Ti), Fig. 4.1.2.7.4. for (oi^), Fig. 4.1.2.7.5. for (02^2), Fig.4.1.2.7.6. for

(ui, 13), and Fig. 4.1.2.7.7. for (us, Ta). From these figures we can see that, for the

combination (oi,Ti) or^^i) only onG or two cycles of the experimental data can

be fitted. For the combination (^1,^2) or (°2>T2)> Just thl"ee cycles of the

experimental curve can be fitted, for the combination (01,13) or (o2>T3)» not more

than three cycles of the right side of the experimental curve can be fitted. Therefore, it
is clear that just one phonon mode is not enough for the fitting of the experimental

data.

For the superposition of the two independent phonon modes, the response of a

molecular system can be written as:

i=-vCT <,-t/TSin(®at+(»a) i^(3)^ ^-t/TSm(Obt+(i>b)
.ijkt.a ^ —^y~—-rAijkl,bc' ~^ >

nevertheless, the result of the fitting is proved still unsatisfymg. For example, for the

combination of (ui, 12) + (us' T2)» the fitted curve is shown in Fig. 4.1.2.7.8, is even

worse than those fitted with a single phonon mode. Obviously, neither a single mode
nor any combmation of independent modes is an appropriate model for the fitting of

the experimental data.

However, the facts that there exist microscopically ordered domains in the

sublimated film of the heterodimer Pc2~CeIVTPP2~ (see Fig. 4.1.2.8.1., section

4.1.2.8.) and that during the de-excitation, there is an intramolecular charge transfer

between phthalocyanine and central cerium ion in Pc Ce TPP and an

intermolecular energy transfer between the neighbouring molecules, which will change

the configuration of the system (as discussed in section 4.1.2.3. and section 4.1.2.4.),
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impel us to consider the possibility of existing of correlated vibration modes. The
previous observation of phonon modulation in TRFWM data on conducting polymer

[212] and on ferroelectrics [194, 213, 214] suggests that dipolar excitations are prone
to such effects. This shows that the CT state is definitely involved. This is not
surprising as there should be considerable distortion of the molecule in the CT state and

thus strong electron-phonon coupling. In fact, as show in Fig. 4.1.2.7.9. [210] (where

Pc
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Figure 4.1.2.7.9. Schematic Presentation of Biplan and Triplan Muc-
turers of Ce and Ln111 (Lanthanides) with Interplanar Distances In A.

"Ln" denoting lanthanide). Fig 4.1.2.2.1. (b) and Eq. (4.1.2.2.1.), the S^ state, Ae triplet

state TI and the low-lying state LS have the configuration Pcz~CeivTPPZ' with a ring-

to-ring (or interplane) distance of about 2.78 A while the CT state has the configuration
Pc'Ce TPP2" and the interplane distance m this configuration is increased to 3.08 A.

Therefore it is quite reasonable to think that the molecule of a configuration
Pc*CemTPP2~wifh bigger interplane distance could have lower vibration frequency

and that of a configuration Pc2~Ce TPP2" with smaller interplane distance could have

higher frequency. During the de-excitation, when the intramolecular electron transfer
happens, the molecule will take one of these two configurations, and die total
population density should be conserved. Moreover, of the many TRFWM experiments
that we have performed on various organic thin fihn samples, it is only on this one

compound that has a CT state that we have observed such modulation, reproducibly.
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We thus believe that the phonon modulation is tied to the CT state. Since the excited

singlet S^ state is only a short lived state and the fitting of tfae oscillation attributed to
this state has proved to be unsatisfied, the other possible state mvolving tfae oscilladon
could be the low-lying state LS. The major difference between the cases in polymer
conductor [212] and in ferroelectric [213, 214] and our case is that in the former cases

the electronic transition does not cause a change in the phonon mode, nevertheless m

our case the electronic transition can change molecular configuration and give rise to a

change in vibration mode even in a fixed temperature, which m the former cases can
happen only when temperature has been changed. Therefore, in OUT case here, the
phonon modes are no longer independent but related to the electronic transition and
correlated to each other. This correlated-phonon mode-shiftmg phenomena in a
sublimated thin fihn is, to the best of our knowledge, a brand-new observation that has

never been reported on any atomic or molecular system.

Based on the above discussion, we now propose two reasonable models which fit
the experimental data successfully. These tacitly assume that sizable molecular

vibrations are triggered by the pump pulses through a Franck-Condon effect (So -> Si).

To fit the two shifting vibration modes, instead of indqaendent phoDOn modes, a
correlated phonon mode model should be used. They also both shun any important
direct contribution to the modulation from the Si population as its characteristic decay

time is not evident in Fig. 4.1.2.7.1. or in the preliminary fits discussed above. The first
model assumes that it is mostly if not exclusively the CT state that contributes to the

modulation (short period) while the long period oscillations are associated with the Si
population. Even though the Si vibrations need not directly be seen, their effect is
transferred to the CT oscillations through the phase: the phase of the CT osciUadons is

inherited from the one of the Si oscillator at the time of its decay into Ac CT species.

This effectively stretches the modulation period below roughly 2 ps. One gets the
following:

^»(0 = %^dt'^-sm[^(t - /•) + (^,C+^,)^"o/r2 (4.1.2.7.3.)
0 Jl

where, ^| is the phonon third-order nonlmear susceptibility contrilxition of the

charge transfer state, CD „, and co ^ are the frequencies ofphonon mode 1 and mode 2,
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(p t is a phase constant. Note that in this modelling one has

t

p^) == fdfP^)e~(t~tyT2/T^T). The fits can also endure some amount of direct
0

phonon contribution from P of the form ^sm^CD^t +(p^)P^(t). This model is

simple but requires that the Pcz~CelvTPP^~ configuration, with the shorter interplane

distance, have the longer twisting period. The second model assigns the longer period
to the CT state vibrations and the shorter period to the slowly rismg third component,
the LS state:

) = y<3) fpL((')d('i>in[<onl(''(')+<!>nl]c-('-'')/Tn' +
OTel.phon.

IJO T'2 - . <ynl , (4.1.2.7.4.)

,(3) f ?2 C')^, Sin[ffln2 ('-'') + ^n2 ] ^-(,-Q/T^
-n2 J ~~T ut ^~^ "- .

0 ll3 Q)n2

where, ^ and ^ are the third-order nonlinear susceptibilities contributed by

phonon mode 1 and mode 2, P, and P^ are the populadons of the excited singlet state Sj

and charge transfer state CT, T^ = Ti(CT) and T^ = T^D2) are the relaxation times of the

system from the excited singlet state S, to charge transfer state CT and from charge

transfer state CT to low lying state LS, <o^, <o^, Tni,^n2 an(l ^ni» ^n2 are the

frequencies, damping times and phase constants of the phonon mode 1 and mode 2.
The two integrations reflect the observation that phonon mode 1 shifts to phonon mode
2 but the total population keeps in constant, which is just what correlated phonon

modes mean. Note that P2(/f)/Ti(D2) is the CT -> LS transfer rate. This model

presumes that the LS state contributes significantly to the modulation. This raises
questions about the nature of this state. If it is the CT state that is solely responsible

for the modulation, then the LS state has to involve metastable (deformed ?) CT
molecules having a shorter phonon period, at grain boundaries for instance. If not, the

long-lived LS state has a Pc2'CeIVTPP2" configuration and has a strong modulatmg

effect.
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Both models have their shortcomings. But what clearly stands out is that the two

phonon modes have to be correlated and gradually shift from one mode to the other.

During the fitting, the two frequencies are taken as v? = 30 cm-1 and v^ = 40 cm-1

at the begmning, and the two damping times as T^ = T^ = 8.4 ps and TJ" = ^3 = 1.3 ns.

v? and v^ are roughly estimated from the experimental curve in Fig. 1.4.3.5.1. . The

reason that the damping times are taken as the de-excitation time, is that the changing

of the molecular configuration between Pc CefflTPP2~and Pc2"CeIVTPP2~ happens

during the de-excitation. Since TI = 0.90 ps can not be used even to fit partially the

experimental curve by using single phonon mode, as shown in Fig. 4.1.2.7.2. and Fig.
4.1.2.7.3., the choice of the damping times should be made between the two de-

excitation dmes, T; = 8.4 ps, and T3 = 1.3 ns. Because x^ = 8.4 ps is attributed to the

charge transfer state with a configuration Pc*CemTPP2~ which may have a lower

vibration frequency and 13= 1.3 ns is attributed to the charge transfer state with a

configuration Pc2~Ce VTPP2' which may have a higher vibration frequency ( see

section 4.1.2.9. for the details of the attribution ), consequently, the possible

combination of the two correlated phonon modes should be (v? =" 30 cm-1 ,

TJm = T2 = 8.4 ps) and ( v^ = 40 cm-1, T^ = x^ = 1.3 ns).

Using the second two correlated phonon mode model, formulated in ( 4.1.2.7.4. ),

fitting the experimental data leads to a thorough confirmation of such prediction: best
fitted two correlated phonon modes with the frequencies and damping constants 32

cm"1 / 8.5 ps and 41 cm'1 / 1.3 ns were obtained. The fitted curve appears as a long

dashed line in Fig. 4.1.2.7.1. . According to their damping times, frequencies and
related molecular configurations, the first mode is attributed to the charge transfer state
CT configuration, and the second mode to a low lying state LS configuration. The
correlated phonon mode presentation is completely consistent with the picture of
charge and energy transfer, discussed in section 4.1.2.3. and section 4.1.2.4. . This

phenomenon can not be just a coincidence, because we have observed reproducibly the
same behaviour using the same compound samples sublimated at different times by
different apparatus, in the TRFWM experiments at different times. This phenomenon

in a sublimated thin fihn, to our best knowledge, is the first time to be observed,

studied and reported. One of the characteristics of intermolecular or mtramolecular
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electron transfer in the lanthanide heterodimer or heterotrimer systems is that these

processes are always accompanied with a changing in molecular configurations, which
may cause a vibration mode changes in such kind of systems. Therefore, the
correlated phonon mode shifting phenomena is only observable in a system relaxing
with a changing in molecular configuration.

One thing we should point out here is that the existence of two vibration modes 30
cm-1 and 40 cm-1 can be verified in principle by Raman spectroscopic techniques if the
symmetry of the modes allows to do that. But, these vibration modes originate from
the transient states created by the ultrashort laser pulse. Therefore, even if a high
resolution Raman sytem is available, the light source of the system will not be suitable

for such detection, because normal light source can not "create" a transient state in a

molecular system. To solve this problem, we need a combination of different

techniques.

4.1.2.8. Identification of Diffusion Contribution to the
Degrating Process in the Sublimated Film ofHeterodimer

P2'Ce TPP2

It is known that there are resonant energy transfers between excited molecules and
other excited or non-excited molecules in organic crystaUine samples which are
initiated by intermolecular interactions [211]. These are equivalent to an exchange of
identity between two molecules in different excited states and thus to an efifective
motion of excitations. This mechanism leads to the migration of the molecular dipoles

associated with the CT state and of other excitations from one place to the other, as
discussed in section 4.1.2.3 and section 4.1.2.4. m the sublimated film of the

heterodimer Pc Ce TPP . The diffusion caused by such migrations may give rise

to observable effects.

However, this migration is not detectable by all experimental techniques. In the
situation at hand, the transient absoq)tion and the four-wave mixing experiments

behave quite differently. As we have akeady pointed out in section 1.1.5.3. , in the
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TA experiment, since the sample is homogeneously illuminated and excited, the probe
light is totally insensitive to any motion of the excitations as the sample retains its

homogeneity. Nevertheless, in the FWM experiment the two pump beams create a

sinusoidal-like excited modulation. This spatial excited modulation results in a

population grating. If the excited species move, for example a half grating spacing, the
grating will be washed out and no diffracted signal will be detected. In fact, in some

case, even before movmg a half grating spacing, the "washing out" has already
happened, the excited species have lost their coherence somewhere and resulted in the
lost of the grating. In this way, diffusion will lead to degrating and to a smaller
effective relaxation rate.

In TRFWM experiment, optical pumping of an excited state leads to the formation

of a transient grating. The decay of the TRFWM signal is due to the decay of the
grating and is related to the relaxation of the excited states to the ground. There are

many mechanisms that can cause degratmg, for example intersystem relaxation (energy
transfer between excited states), long-rang electron transfer processes, such as

photorefractive effects, rotational and translational difEusion, librational motion, etc..

In the sublimated fihn of the heterodimer Pc2~CeIVTPP2', if charge transfer and

excitation migration can make a contribution to the degrating process, then, the related

temporal form of the ultrafast nonlinear optical response T\"J' in the

TRFWM/TRTG experiments should be:

71TGy)=(7(TLV7+^-1' J=l-2 (4.1.2.8.1.)
1 11

where j = 1, 2 denoting two different components.

Therefore, in addition to the longitidinal relaxation time T\ \ } , j = 1, 2 detectable

by transient absorption experiment, in time-resolved non-degenerate four-wave mixmg
experiment, charge transfer and excitadon migration contribution to the degrating
processes related to the de-excitation of the excited states, would give rise to a

diffusion decay times T\ j j), j=l, 2. in respect to grating decaying time

ri(TO», j=l, 2 [60]:
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where D, j = 1, 2 are the diffusion coefficients, A is a space period.

By (4.1.2.8.2.), the diffusion decay times can be calculated, consequently giving the
results in the forth line of Table 4.1.2.9.1. . If the diffusion really contributes to the

degrating process, then the diffusion coefficients should be m a right order of
magnitude.

The diffusion coefficients Dj, j = 1, 2 can be estimated as:

Dj=^'j=l'2 (4-L2-8-3-)

where A, in general case is interpreted as the grating spacing, which is given by:

A ^-pump (4.1.2.8.4.)

2nsample sin^

in which 9 is the angle between the two pump beams and ^sample ls Ae index of
refraction of the sample.

From the geometry of our TRFWM experiment, by (4.1.2.8.4.) A is estimated to be
11 ^m, from which the calculated diffusion coefficients D^ D^ would be much too

large. However, it is clearly seen in Fig. 4.1.2.8.1. [207] that the typical size of a
microdomam is about 0.2 pm. This is much smaller than the grating period.

Presumably, the diffusing species would get trapped or quenched at die grain
boundaries. Therefore, it is the averaged size of the microscopic crystalline domains

that should be used for A instead of the calculated grating spacing period. Using this
value, which is shown in the fourth entry of Table 4.1.2.9.1., in (4.1.2.8.3.) leads to the
estimated diffusion coefficients, D^ = 2.8 cm2/s and D^= 0.74 cm2/s. These are listed in
the fifth entry of Table 4.1.2.9.1. . Compared to typical values of diffusion
coefficients [215 - 226], DCT =10 cm2/s for the charge transfer process and D^ = 2

cm2/s for the energy transfer process, the values we have obtained are quite reasonable.
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This gives credibility to our hypothesis concerning the role of diffusion mechanisms in
the degrating process.

Figure 4.1.2.8.1. Electron Microscope Image of the Microstructure of

the Sublimated Film of the Heterodimer Pc^ CeATTPPA~.

4.1.2.9. Attribution of Different Components of the Time-
Resolved Four-Wave Mixing Experimental Data.

To attribute the experimental data to different relaxation mechanisms and paths,

comparing with the data from transient absorption for the sublimated fihn of the
heterodimer Pc2-CeIVTPP2-and identifying different de-excitation mechanisms are
essential.

According to the previous analyses, the three time components observed in the

TRFWM experiment on the sublimated film of the heterodimer Pc2~CeIVTPP2~
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Table 4.1.2.9.1.

Attribution of the Different Components from the Experiments of
Transient Absorption (TA) and Time-Resolved Four-Wave

Mixing (TRFWM) / Transient Grating fTG) for the Sublimated
Film of the Heterodimer PcCeTPP

Components
Data from transient absorption

experiment, T;TA)[210]
Data from TRFWM or transient

grating (TG) experiment, T[ )
Diffusion time

^=r;o)=(i/r;T°).i/r;TA))-'

Averaged microscopic period A
of the sublimated fihn
Diffusion coefficient

D=(A2/47i2)/Td

1

T°'AJ) = 1.2 ps

j-aoi) = o.9 ps

r;DO = 3.6 ps

0.2 nrn

2.8 cm2/s

2

TfrA) = 22 ps

Tfrc2) = 8.4 ps

T,(D2> = 14 ps

0.2 [im

0.74 cm2/s

3

TfrA3) = 130 ps

raG3>> 1.3ns

T[ \ rp^o2) ^^ T{ \ and their various subcomponents can now be given a proper

assignment. We summarize these findings (see Fig. 4.1.2.2.1. (b)). In the TRFWM

experiment, the 620 run pump pulses generate a singlet excited state Si with a

population Pi(0. This population has a total Datural relaxation time r(TAl) = 1.2 ps

which is composed of the relaxation time T (CT) into a CT state with a population

P 2(0 and of T(KC\ assumed to be much smaller than T(CT), into a tdplet excited

state T i. Because of the existence of singlet excitation migration and a diffusion time

T(iDl) to a low-lying state (LS) with long decay time, the net decay time T^Gl) is

shorter, as shown by (4.1.2.7.1. ), in Table 4.1.2.9.1. and in Fig. 4.1.2.2.1. (b). This

component thus contains some undefined element of T \ ) from the siaglet excited

state Si to the tnplet excited state Ti, Aerefore the element of TaA3) = 130 ps from
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the triplet excited state T^ to the ground state SQ, and the element of diffusion T(^D3)

from the triplet excited state T i to the low lying excited state LS, but the experimental

data from the transient experiment do not allow to make any such kind of confirmation

of the attribution. The population P 2 (0 then relaxes with T a back to the ground

state So and, through the CT migration process having diffusion time T(D ) to the LS

state, with a net decay time T (TC2). The longest component T(TC3), which is longer

than the limit of the TRFWM detecting system of 1.3 ns, is related to the decay of the

low lying excited state to the ground state. This long time response is, we believe, the
signature of a photorefractive effect occurring during the de-excitation of the grating

and, from the discussion on the diffusion mechanisms, involves the grain boundaries

(LS state).

4.1.3. Summary

In this section we have demonstrated the time-resolved four-wave mixing studies on

a sublimated flkn of the cerium poq)hyrin phthalocyanine sandwich mixed
heterodimer, Pc2"CeIVTPP2~. To the best of our knowledge, this is the first TRFWM

study on a sublimated film. Excited by an ultrashort laser pulse of about 100 fs

FWHM at 620 nm, three relaxation components with time constants of « 0.90 ps, » 8.4
ps, >: 1.3 ns, and two vibradon modes with frequencies and damping times 32 cm-1 ,8.4

ps, 41 cm-1 / > 1.3 ps were observed.

The existence of charge transfer in the heterodimer causes a change in the
configuration of the molecule which gives rise to a novel phenomenon of two
correlated phonon modes that shift from one to the other. This is the first time that a

mode frequency shifting phenomenon is observed and reported on a thin film.
Because the intermolecular or intramolecular electron transfer in the lanthanide

heterodimer or heterotrimer systems is always accompanied with a variation of the

molecular configurations, this may cause a vibration mode change in such kind of

systems. Thereby, the correlated phonon mode shifting phenomena may only be
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observable in a system relaxing with a molecular configuration changing, such as
lanthanide heterodimer or heterotrimer systems.

The diffusion effects caused by the iiriramolecular electron transfer and excitation

migration have been proved having an important contribution to the degratmg process,
giving rise to shorter response times m the TRFWM compared with the corresponding

processes in transient absorption. They can not be ignored m the analysis of the decay
process of a transient grating. Compared with the transient absoq)tion data on the
same sample, the relaxation processes were found to be due to the combination of
relaxation, intermolecular charge transfer, molecular dipole migration and excitonic
migration. The diffusion coefficients were estimated, taking the microscopic structure
of the sublimated heteroduner fihn into consideration, to be 2.8 cm2/s and 0.74 cm2/s

respectively. These values are consistent with the typical value of the coefficients for
the charge and the excitation transfer processes. The diffusion contribution to the
degrating process is identified for the first time.

Due to the stacked formation of the heterodimer which favours the delocalization of
the conjugated Tc-electrons, the third-order nonlinear optical susceptibilities have been

greatly increased, compared with those of the free phthalocyanine, tfae mono-
metallophthalocyanines, and bis- porphyrm phthalocyanines. The migration processes
have effectively shortened the transient grating response time in the heterodimer and

caused a relatively large third-order nonlinear optical susceptibility ^3), measured as

7.8 x 10-10 esu taking that offiised quartz as reference. The detailed calculation of the

value of the ^ ) will be given in section 4.5. .

Coupling of the charge transfer states and excitation migration by the excitonic
coupling between the neighbouring molecides in the sublimated film of the
heterodimer Pc Ce TPP , are two crucial mechamsms that make mtramolecular
charge transfer and intennolecular energy transfer feasible, which are normally
forbidden in organic crystals or compounds under nonnal conditions. The migration of
charge and excitation finally leads to a long time response which is considered to be
related to the photorefractive effect observed for the first time in an organic

multimer thin film. This will be discussed in section 4.6..
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4.2. Sublimated Film of Cerium Porphyrin
Phthalocyanine Symmetric Trimer

TPP2CefflPc2CemTPP2-

4.2.1. Experimental Aspects

The cerium-porphyrm-Phthalocyanme trimer, TPP 2~Ceffl Pc2~Ceffl TPP 2~was

synthesised by the procedures given elsewhere [227, 228]. The compound was

sublimated by vacuum evaporation under a pressure 2 ~ 5 x 10-5 torr and a temperature
about 450 °C, in the laboratory of Prof Le Dao, at FNRS-Energie/Materiaux de

Varennes, Montreal, Quebec, Canada [209].

The ground state absorption spectrum of the sublimated film was recorded by a
HITACHI U-2000 spectrometer. The sample was investigated using a time-resolved

four-wave mixing system. The whole system is the same as reported in ref. [211, 212].
The system setup, the experimental procedures are the same as discribed in section

4.1.1.

4.2.2. Results and Discussion

The molecular structure of porphyrin, TPP, phthalocyanine, and the cerium-

porphyrin-phthalocyanine trimer, TPP2~CemPc2'CefflTPP2" are depicted in Fig.

4.2.2.1. TPP, i.e., 5, 10, 15, 20 tetraphenylporphyrm, is formed by replacing C in the
positions 5, 10, 15, 20 on the general porphyrin structure by group CgH,, and Pc, i.e.,
phthalocyanine, in position 5, 10, 15, 20 by N, and in 2/3, 7/8, 12/13, 17/18 sides by
CgHg (benzene cycle). Because of a strong ring to ring coulombic mteraction, a face to
face stacked sandwich formation occurs in the trimer.

Fig. 4.2.2.2. gives the ground state absorption spectrum from the UV, to the near-

infrared of the trimer TPP2~Cem Pc2~Ceffl TPP2". The spectrum can be interpreted as
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two entities of(TPPCe Pc )', which share the central phthalocyanine that interacts

strongly with the two macrocycles [213]. Consequently, the Soret band and Q band of
the central chromophore, phthalocyanine, are less intense than those components in

heteroduner TPP2~CeIV Pc2", and red shifted.

The TRFWM experimental data of the sublimated film of the trimer

TPP2"Ceffl Pc2~CefflTPP2~, are illustrated with different time scales in Fig. 4.2.2.3. ~

Fig. 4.2.2.6. and symbolized by the downward triangles. The fit of the experimental
data was done using a three-excited-state population model This model is described in
ref [210], discussed in section 2.7., and given in Appendix I. This yields the full lines

in Fig. 4.2.2.3.-Fig. 4.2.2.6.

Three measured relaxation components, 7\(TG1) = 0.37 ps, T{TG2) = 15.3 ps and

J\(TG3) > 1.3 ns, are given in the third line of Table 4.2.2.1. A schematic representation

of the different relaxatin paths for both TA and TRFWM is given in Figure 4.2.2.7. In
the experiments, after the excitation hv = hc/^| ^=520 nm ' the system is in an excited

state (7i,7c*) which can couple with the impaired electrons from the Ceffl. Resulting
from the impaired electron on each of the two Cem, the excited states of the trimer can

be either triplets (3T) or quintuplets ( Q), and the ground state of the trimer is found

to be a triplet Tg. In the transient absorption experiment [214], the excitation from the

ground state To with the pump pulses at 620 nm populates a first excited state with a

population of Pi(0 in an excited triplet state 3T. This population relaxes with a

longitudinal relaxation time TI =TaAl) = 0.7 ps towards a second excited state, a

quintuplet 5Q having a population of P ^(t). Then the excited quintuplet Q

population relaxes with a longitudinal relaxation time TZ = TaA2) = 37 ps towards the

ground state To , as depicted m Fig. 4.2.2.7. (a). This gives rise to the values m the

second line of Table 4.2.2.1., and is summarized in the following:
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^
^ [TPP2-CemPc2-CefflTPP2-]-^m-^ ' [TPP2-CefflPc2-CefflTPP2-]\

3T[TPP2-CemPc2-CemTPP2-]*—tI->[TPP2-CeIIIPc2-CeIIITPP2-]*, (4.2.2.1.)

5Q[TPP2-CemPc2-CemTPP2-]* —^1°[TPP2-CemPc2-CemTPP2-] .

At first glance, as shown in Table 4.2.2.1., the differences between the results from
the transient absorption experiment and those from the time-resolved four-wave

mixing, seem incompatible. Nevertheless, as we have discussed in [229, 230] for the
heterodimer and for the symmetrical dimer and trimer m [23 I], in the symmetric trimer

TPP2~CeIIIPc2~CeIIITPP2' there exists energy transfer processes. Takmg this point

into consideration, the fact that the first and the second components in the tiurd line of

Table 4.2.2.1. are shorter than those in the second line of the table, is just an indication
of existence of excitation migration in this trimer. In addition to the TA relaxation

paths with decaying rate r['<TAP i= 1. 2 tlle excitation migration through excitonic

coupling between neighbouring molecules contributes to the de-populadon processes of

the excited states and gives rise to diffusion decay times T\ , j = 1,2 in ( 4.1.2.8.2. ),

yielding a total grating decaying time TaGi), j = 1, 2 in (4. 1.2.8.1.). From (4.1.2.8.1.)

and (4.1.2.8.2.), the diffusion decay times can be calculated, consequently giving the

results in the fourth line of Table 4.2.2.1. . The diffusion coef&cients D (A), j = 1, 2

can be estimated by using Equation (4.1.2.8.3.).

From the electronic scanning microscope image of the sublimated film of the trimer

TPP2~Cem Pc2'Ceffl TPP2', as shown in Fig. 4.2.2.8., it can be seen that the averaged

size of the microscopic crystalline domain is about 0.3 [im. This defines the value of A

used in (4.1.2.8.3.) and shown in the fifth line of Table 4.2.2.1. . The resulting
diffusion coefficients are given in the sixth line of Table 4.2.2.1.: Di = 30 cm2/s and D^
= 0.87 cm2/s. These values are quite typical for the diffusion coefficients [215 - 226].
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Table 4.2.2.1.

Attribution of the Different Components from the Experiments of
Transient Absorption (TA) and Time-ResoIved Four-Wave

Mixing (TRFWM) / Transient Grating (TG) of the Sublimated
Trimer Film Pc(CeTPP)2.

Components
Data from transient absorption

experiment, F;TA) [210]
Data from TRFWM or transient

grating (TG) experiment, T(TG)
Diffusion time

^=T^=(l/TaG)-l/TW)~l

Averaged microscopic period A
of the sublimated film
Diffusion coefficient

D = (A2/47i2)/Td

1

r;TAI> = 0,7 ps

7',<TG1) = 0.37 ps

T;D1) = 0.77 ps

0.3 urn

30 cm2/s

2

TaA2)=37ps

Tfrc2) = 15.3 ps

T;D2>=26.2ps

0.3 \im

0.87 cm2/s

3

r,<T03) > 1.3 ns

According to the above analysis, the three observed components m the TRFWM

experiment, T[^Gl\ T[TG2) and Ti(TG3) can be attributed as follows, as shown in

Fig.4.2.2.7. .

The two 620 nm pump pulses generate a tnplet excited state T with a population

P{(t). This population has two degrating channels, one with Ti=F(iTAl) = 0.7 ps

relaxes into a quintuplet state 5Q with a population P 2(0, the other, related to

excitation migration, with 1
(D 1) _= 0.77 ps relaxes towards a low lying state (LS) with a

population P 3(0. The population P 2(0 in 5Q state furthermore has two degratmg

paths, one with T^ = T \ T ) = 37 ps relaxes towards the ground state To, the other with

(D 2)T \" ^ = 26.2 ps relaxes towards the low lying state LS. Obviously, the degrating in the

second path is a little faster than the first one.
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Figure 4.2.2.7. Schematic Presentation of the Relaxation Paths of the
Sublimated Film of the Trimer TPP Ce Pc Cel'TPP in the Experiment
of (a): Transient Absorption, (b): Time-Resolved Four-ITave Mixing.

Figure 4.2.2.8. Electron Microscope Image of the Microstructure
of the Sublimated Film of the Symmetric Trimer

2- _ ffl 2- _ m___2-TPP Ce"Pc Ce ~TPP ,
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Finally, the low-lying state LS, populated by 5Q state, relaxes towards the ground

state To through excitation migration by means of excitonic coupling between

neighbouring molecules as discussed in section 4.1.2.3. ~ 4.1.2.5., with a very long

time of T{TG3) > 1.3 ns. This is directly related to tfae photorefi-active effect in the

sublimated fihn that will be discussed detailed in section 4.6. .

4.2.4. Summary

We have demonstrated that (TRFWM) is a very useful and very sensitive technique

with which one can detect various %<3) processes, especially, those that can not be
measured by TA experiment. The tfaird-order nonlinear optical properties of
sublimated films of the cerium-porphyTm-phthalocyanine trimer,
TPP2~CeInPc2~CemTPP2~, have been measured by four-wave mixing using 620 mn

pump pulses and a 650 nm probe pulse. The dynamics of the difEracted signal shows
that the trimer system possesses a subpicosecond response of 0.37 ps, an intermediate
response of 15.3 ps and a very long response > 1.3 us.

Compared to the data from the transient absorption experiment on tfae same
compound, it is found that the response times detected by time-resolved four-wave

mixing are shorter than those by transient absorption. This is due to the existence of

excitation migration. Taking the microscopic stmcture of the sublimated trimer film
into consideration, the diffusion coef&cients of the first two components have been
deduced to be 30 cm2/s and 0.87 cm2/s respectively, vahies compatible with diffusion

coefficients for energy transfer processes.

Taking the ^ ) value of fused quartz as reference, Ae tfaird-order nonlinear optical

susceptibility of the trimer is found to be 3.4 x 10 esu. This shows that this trimer is

among those compounds having the largest ^ vahies in the family of metaUo

porphyrins and/or phthalocyanines. The detailed calculation procedure of ^3) will be
discussed in section 4.5. .
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When grating spacing period is bigger than the averaged size of the microscopic
crystalline domain of the sublimated fihn, the latter, instead of the former, should be
used to make a correct estimation of the diffusion coefBcient. There still exists long-
time response in the experimental data of the symmetric trimer

TPP2~Ceffl Pc2~Ceffl TPP2" as we have observed in the heterodimer Pc2-CeIVTPP2-.

This indicates that the migration of the excited species is the origin of the
photorefractive effect observed in these systems. This effect will be discussed in

section 4.6. .
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4.3 Langmuir-Blodgett Film of mixed Dimer of
CoPC,/+/H2PcTS4-

4.3.1. Experimental Aspects

4.3.1.1. Preparation of Langmuir-Blodgett Films

The mixed dimer compound was synthesized and prepared by the group of Dr. T. H.
Tran-Thi. A multilayer LB film was made in CEA, Centre d'Etudes Atomiques,
Saclay, France on a 37.00 cm by 95.60 cm custom built Langmuir-Blodgett trough
system. The trough and moveable barrier were made from Teflon. The mbced dimer
was solved in 86 % CHC^ (chloroform) and 14 % DMSO (€2^80,
dimefhylsulfoxide) at the concentration about 6.6 x 10-5 M. The subphase was pure
water at room temperature purified through a Millipor MiUiQ System. After spreading
the prepared solution on the subphase, waiting for about 20 minutes to allow

chloroform to evaporate and the fihn to equilibrate, the monolayer was subsequently

compressed slowly up to the desired surface pressure. Force area isotherms were
established under the same conditions. Then the monolayer was aUowed to stabilize
under constant surface pressure until the surface area remained constant in time.

Typically, this stabilization process takes about 30 minutes to 1 hour.

The monolayer was deposited onto an optical quality glass slide which was
thoroughly cleaned. We first sonicated with 5 ~ 10 % detergent in water, then rinsed

with MilliQ water completely following by sonicatmg with 2 g /100 ml KOH in 50 % :
50 % (V:V) water/ethanol for about 30 minutes, then rinsmg by MilliQ water many
times and sonicatmg in MilliQ water 5 ~ 10 minutes, and finally, sonicated again in
ethanol for about 30 minutes to get rid of the extra water on the substrate. Having
finished the above procedure, the substrate had been made hydrophilic. This would be
sufficient for the deposition of certain types of LB fihn. To make the substrate

hydrophobic, further treatments need to be done. After the above procedure, we
sonicated the treated substrate in chloroform for about 5 ~ 10 minutes, then changed

the chloroform and repeated the same step. Next, we treated the substrate with

CH3(CH2)i7SiCl3 ( octadecyltri-chlorsilane ) 1 ml in 200 ml chloroform sonicating for
about 30 minutes. Finally, we rmsed the substrate m chloroform and sonicated about 5
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~10 minutes 3 times. The treated substrate was stored in ethanol in a closed bottle.
The substrate used for depositing layers were never older than one days.

The surface pressure was measured by a sprmg-coil column balance linked on its dp

with a small slide of filter paper which was partially dipped onto the surface to feel the
surface pressure. The balance was carefully calibrated under the condition of clean

water surface.

The LB fihn was transferred onto the substrate by the repeated vertical dipping of
the substrate into and lifting-offthe surface imtil 300 layers formed. This was done at

the constant surface pressure of 20 mN/cm and a steady deposition rate of 0.4 mm/min.

According to our experience, to get high quality samples, it is preferable to build a
sample continuously using the same monolayer until finished. Otherwise, the sample
would give us very large extra diffused light when measured by the TRFWM. This

would be a serious problem for a four-wave mixing detection system as it would prove
impossible to extract the signal from the noise background.

4.3.1.2. FWM Measurement on Langmuir-Blodgett Films

The dynamics of the third-order nonlinear susceptibility ^<3> of the LB fihn of the

mixed dimer CoPC^ / I-^PcTS was measured by the non-degenerate four-wave

mixing usmg two 620 mn pulses as pump and one 650 nm pulse as probe. The

experiment set-up, similar to that given in [208], has been described in details in
Chapter 3. The experimental procedure and conditions are the same as in the cases of
the heterodimer Pc2~CeIVTPP2- and the symmetric trimer TPP2-CefflPc2~CefflTPP2~.

The only difference is that for LB fihn has higher level of diffusion light, it is much
more difficult to extract the TRFWM signals. In order to extract TRFWM signals from
the intense background noise, a special technique called transparent shutter, described
in Chapter 3 section 3.5., has been used m the data acquisition.
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4.3.2. Results and Discussion

The structure of mixed dimer CoPC224+ /H2PcTS4' is shown in Fig. 4.3.2.1. Due

to strong ring to ring interaction, the two macrocycles keep a face to face position
which favours the charge transfer and energy transfer processes between the two
moieties. The long hydrophobic tails have been attached to the porphyrm side to make
the LB deposition possible. Fig. 4.3.2.2. is the UV and the visible ground state

absorption spectrum of the LB fihn of CoPC2/+ /H^PcTS4', and Fig. 4..3.2.3., Fig.

4.3.2.4. are the ground state absorption spectra of the unsubstituted monomers,

CoPC22 ,4Br , and F^PcTS ,Na . It can be seen that the coulombic attraction and

the 7C-7C interaction of the two conjugated macrocycles, porphyrm and phthalocyanme,
have caused a drastic change in the absoq)tion spectra from the unsubstituted
monomers to the mixed dimer. In the mixed dimer, the porphyrin Soret band and the

phthalocyanine Q band are severely flattened and red shifted compared with the
corresponding monomer salt absorption bands. A strong new band appears around
436.5 nm caused by a very strong interaction between the two macrocycles.

The mixed dimer of CoPC224+ /H2PcTS was measured by four-wave mixing

pumped at 620 nm and probed at 650 nm. These fall in the strong absorbing region of
the dimer and thus give rise to a resonant dynamic third-order nonlinear susceptibility %

(3) that contains abundant information about the dimer system. The observed diffiraction

signals as a function of probe delay time in respect to the two synchronized pump
pulses, are given Fig. 4.3.2.5. ~ Fig. 4.3.2.8. with different time scales from -1 ~ 10 ps,

-5 ~ 100 ps, -10 ~ 500 ps and -25 ps ~ 1.3 ns respectively. The fitting was similar to

that of given in reference [229, 231, 232]. But for the best fitting, especially for the
longest response component of the case here, a four excited state population model had

to be used. The detailed formulas are given in Appendbc I, Eq. ( A16. ) ~ Eq. ( A17. ).

A standardized fitting procedure has been used in the fitting experimental results,
which minimizes the squared function between the model and the experimental data

with the following temporal form:

S(rd)=|d([(JdrZz<3)P,(T)) Ip»»p(t- r)} Iprabe(t- rd). (4.3.2.1.)
/=1
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Figure 4.3.2.9. Four Excited State Populations in LB Film of the Mixed

Dimer CoPC22'7H2PcTS*- (a):Simplest &: (b):the Most Complicated Cases.

The fitted theoretical responses correspond to the full Imes in Fig. 4.3.2.5. ~ Fig.

4.3.2.8. with different time scales.

Fig. 4.3.2.9. (a) gives schematically the mechanism associated with the model. The

mixed dimer of porphyrin-phthalocyanine CoPC224+ / H^PcTS4' has four temporal

components. In the simplest case, the absoq)tion of 620 mn pump pulses generates a
first excited state with a population P^ ( t ). The population P^ (t) relaxes with a
longitudinal relaxation time T^ = 0.22 ps towards a charge transfer state CT with a

population P^ (t). Then the second population relaxes in time T/2) = 9.70 ps, which
results in the intermediate response of the %<3\ towards a triplet state T with a

population ?3 ( t). In turn, the population on the triplet state T, P^ ( t ), relaxes with a
time constant T^3) = 159.3 ps, which is associated with the long-time response of 5C<3),

towards a low lying state LS. Finally, the system relaxes from the low tying state LS
towards the ground state with T^4) > 1.3 ns. Because of the existence of excitation

migration as well as charge transfer processes, as commonly seen in the lanfhanide
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porphyrm phthalocyanine dimer [229], there might exist other channels of relaxation
and the resulting mechanisms could be more complicated. This is illustrated in Fig.
4.3.2.9. (b). Nevertheless, the experimental data did not allow to confirm which
scheme or relaxation paths are predominant.

Compared with transient absorption experimental results on the same family of

compounds, [ZnP(N+C22H4s)] /(CuPcTS)4-[205], [ZoP^C^H^ I

(AlClPcTS)4- [206], [Zn(TMPP)]4+ / [M(TSPc]4' , M = Cu, Aid [227], and

especially with the TRFWM experimental results on [ZnP(N+C22)j /(H^PcTS)4"

[228] which give three relaxation components Tj = 400 fs, T^ = 48 ps, 13 = 479 ps, our

results TI = 0.22 ps, ^^ = 9.70 ps, T3 = 158.3 ps, T4 > 1.3 ns, have the same order of

magnitude of the data for the same family of the compounds, except the longest
component relating to the photorefractive effect. Generally speaking [205, 206, 233 -
235], for this family of compounds, there are three observed relaxation components.
The first one with several hundred femstoseconds is attributed to the charge-transfer
reaction. The second one with several ten picoseconds is attributed to a delayed

charge-separation and reorganization of a certain population of tfae dimers prior to

charge separation. The third varying between several ten picoseconds and several
hundred picoseconds is attributed to the charge recombination process. In TRFWM

experiments, more complicated degratmg mechanisms could be involved. For example
the diffusion leads to a very long time response associated with the existence of a

photorefractive effect. Since there are no comparable transient experimental data cm

Langmuir-Blodgett films of the mixed dimer CoPC^ / H2PcTS , tfae exact

attribution of the different components in the TRFWM experimental data is impossible.

Nevertheless, from the above analysis, it is clear that the attributions of the TRFWM

experimental data the sample to fhe corresponding paths and mechanisms are quite
reasonable.
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4.3.3. Summary

We have performed a TRFWM study on the dynamics of third-order nonlinear

optical processes in a Langmuir-Blodgett fihn of the mixed dimer CoPC224+ /

H^PcTS using 100 fs FWHM 620 mn pump pulses and a 650 urn probe pulse.

The TRFWM experimental data shows that the Langmuir Blodgett film of the
electrostatic mixed dimer obtained by pairing porphyrin and phthalocyamne moieties

bearing oppositely charge substituents, CoPC22 / H2PcTS , has a very short response

time compared to the experimental data on the same family of compounds. It also
contains a very long time response of about 1.3 ns, which is believed to be related
photorefractive effect in this material ( see section 4.6. ).

This LB film has a relatively large third-order nonlinear optical susceptibility
^3) compared with those of natural phthalocyanine, mono-metallophfhalocyanmes and

bis-metallo-phthalocyanines ( see section 4.5. ). It is thus proved that time resolved
four-wave mixing is a sensitive and useful tool with which to probe tfae nonlinear
optical processes in LB fihns.

The absolute value of the third-order nonlinear optical susceptibility of tfae film is
estimated as 8.3 x 10-11 esu taking that of the fused quartz as reference. Its

determination will be explained in section 4.6..
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4.4. Neodymium Porphyrin Phthalothyanine
Symmetric Dimer NdPc, and Trimer (NdPc)2TPP

4.4.1, Experimental Aspects

The bis- and tris- neodymium-porphyrm-phAaloc>ramne, Pc Nd Pc" and

Pc2~NdmTPP2~NdmPc2~were synthesized at C£4, ti» Centre d'Etudes Aiomiqnes

de Saclay, France, by the group of Dr. T. H. Tran-Thi [141]. The thin films were
sublunated using a procedure similar to the ones in ref. [229, 230]. The evaporation
was performed at a pressure of 2.5 x 10-6 torr and a temperahire staiting from 243 °C ~
360 °C in 5 minutes to 490 °C for NdPc^.and a presure of 1.1 x 10-5 tocr and a
temperature of 460 °C ~ 468 °C for NdPc2TPP, m Ac laboratory of Prof Le Dao at
I'NRS-Energie/Materiaux de Varennes, Montreal, Quebec, Canada.

The ground state absorption spectra of the sublimated film of the dimer

Pc2-NdmPc- and the sublimated fihn of the trimer Pc2-Ndffl TPP2-Ndffl Pc2-,

deposited on quartz substrates, were recorded on HTTACHI U-2000 spectrometer.

The dynamics of the third-order nonlinear optical susceptibilities x(3) of tile samples

were measured by a time resolved non-degenerate four-wave mixing system same as in

ref. [122, 229, 230]. The experimental procedure and conditions arc the same as
metioned in the references. The calculation of the third-order nonlmear susce{rtibility
will be given in section 4.5.

4.4.2. Results and Discussion

The molecular structure of porphyrm, TPP, phtimlocyanine, the neodymium

phthalocyanine dimer Pc2~NdmPc* and the neodymium poiphyrm-phthaloc^^anme

trimer Pc2~Ndffl TPP2~Ndm Pc2', is given in Fig. 4.4.2.0. Because of a strong ring to

ring coulombic interaction, a face to face stacked sandwich fonnadon is produced in

126



the dimer and the trimer. This favours energy and charge transfer processes. In

Fig. 4.4.2.0. TPP, i.e., 5, 10, 15, 20 tetraphenylporphyrm is formed by replacing C in
the position 5, 10, 15, 20 in the general poq)hyrm by group CgH,, and Pc, i.e.,
phthalocyanine, in position 5, 10, 15, 20 by N and in 2/3, 7/8, 12/13, 17/18 sides by
CgHg (benzene cycle). As we have discussed in section 1.2.3., the electron structure of

the trimer is Pc Nd3+TPP2-Nd3+Pc , where the six electrons are shared between

the phfhalocyanine rings at the two sides and porphyrm at tfae center.

A: <
16^14T3
M(P)L4

.uB: M(P)2 j^M^

2- 3+
e.g.: Pc Nd Pc

C: M2(P)3
IAJ1?M^1^M^1me.g.: Pc2-Nd TPP Nd Pc2-

Figure 4.4.2.0. Molecular Structures of Octacoordinated Metal Mono—
tetrapyrroles and Configurations with A: Monotetrapyrroles, B: Bis—
ietrapyrrolea M(P)2 and C: Tristetrapyrroles M2(P)3. M = Lanthanide
Metal Ion to Form the Dimer: NdPcz and the Trimer: (NdPc)2TPP, etc.

Fig. 4.4.2.1. gives the ground state absorption spectrum from the UV to the near-

infrared of the sublimated film of the dimer Pc Nd Pc*. The bands in the spectrum

can be assigned by analogy to the spectrum of LuPc^ [158, 236]. The mtense bands in

the visible and UV are the Q and Soret band characteristic of the phfhalocyamne rings.
The intense band near 664 nm is the analogue of Q band of the monomer. The weaker

near-infrared absorption band around 1034 nm is due to the low lying intervalence

charge transfer transition, a characteristic of mixed valence compounds, in contrary to
the bis-metallophfhalocyanine anions, which have the electronic structure

Pc M Pc havmg no intervalence transition and for which the spectrum shows a

broad near-IR absorption.

127



0.60

^ 0.55

^ 0.50

cd 0.45

^^ 0.40 h

§ 0.35 [
^ 0.30
p^
s °-25
JS 0.20

0.15

0.10 |-

0.05 [-

0.00

No.
1
2
3
4

J_I_L

Peak

nm
316.0
476.0
664.0

1034.0

J_

abs
0.397
0.140
0.027
0.056

Valley

nm
258.0
455.0
537.0
1023.0

J_

abs
0.258
0.136
0.036
0.055

J_L200 300 400 500 600 700 800 900 1000 1100
Wave Length ( mn )

Figure 4.4.2.1. Ground State Absorption Spectrum of the
Sublimated Film of the Dimer NdP^; on a Quartz Substrate.

1.2

1.0

^
ctf 0.8

rt
.9 0.6

p^n0
w

'̂<!

0.4 I-

0.2 I-

0.0

No.
1
2
3
4
5
6

nm
226.
242.
418.
568.
623.
704.

Peak

0
0
0
0
0
0

abs
3.570
3.574
1.072
0.313
0.620
0.445

Valley

nm
236.0
392.0
536.0
574.0
693.0
883.0

abs
3.557
0.676
0.228
0.307
0.442
0.165

400 500 900 1000 1100600 700 800
Wave Length ( nm )

Figure 4.4.2.2. Ground State Absorption Spectrum of the
Sublimated Film of the Trimer Nd2Pc2TPP on a Quartz Substrate.

128



3500

3000

'2500

"2000

1500

1000

500

Reference

It
t\
I \
I \M( -1
I \
f \
/ i
i

1 Glass

FWHM • 100 fs

I
\.

^.....,......

r^ =0.19 ± 0.05 ps
r^= 1.98 ± 0.05 ps

2
To > 1.3 ns

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

delay ( ps )
0.6 0.8

1st, 2nd and 3rd relaxation components

fitted data of the film
experimental data of the film
fitted data of the reference glass
experimental data of the reference glass

-l.....«.».^t::::;:::::::::=l::::::±:::::::l::::;:-::::::::l::::

-1 3- . 4 , . 5 6.
Delay ( picosecond

10

Figure 4.4.2.3. Time—Resolved Non—Degenerate Four—Wave Mixing Signal as

a Function of the Probe—to—Pump Delay Time for the Sublimated Film of
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as a Function of Probe—to—Pump Delay Time for the Sublimated Film of
the Dimer NdPc2 on a Quartz Substrate with a Time Scale up to 100 ps.
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Figure 4.4.2.5 Time-Resolved Non-Degenerate Four-Wave Mixing Signal
as a Function of Probe-to—Pump Delay Time for the Sublimated Film of
the Dimer NdPca on a Quartz Substrate with a Time Scale up to 500 ps.
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Figure 4.4.2.7 Time-Resolved Non—Degenerate Four-Wave Mixing Signal as
a Function of Probe-to—Pump Delay Time for the Sublimated Film of the
Trimer (NdPc)2TPP on a Quartz Substrate, with a Time Scale up to 10 ps.
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Figure 4.4.2.8 Time-Resolved Non-Degenerate Four-Wave Mixing Signal as
a Function of Probe-to—Pump Delay Time for the Sublimated Film of the
Trimer (NdPc)2TPP on a Quartz Substrate, with a Time Scale up to 100 ps.
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a Function of Probe—to—Pump Delay Time for the Sublimated Film of the
Trimer (NdPc)2TPP on a Quartz Substrate, with a Time Scale up to 500 ps.
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Fig. 4.4.2.2, shows the ground state absorption spectrum from the UV to the near-

infrared of the trimer Pc2~Ndffl TPP2'Ndm Pc2". The spectrum, sumlar to that of the

trimer TPP2-CefflPc2~CefflTPP2~, can be interpreted as coming from two entities of

Pcz~Ndm, which share the central poqAyrin that interacts strongly with the two

macrocycles [237]. Consequently, the Soret band and Q band of the central

chromophore, porphyrin, are less intense than those components in the heterodimer

Pc2~NdmTPP~, and shifted to the red side.

Three components, TaGl) = 0.19 ps, T;TG2) = 1.98 ps and TaG3) > 1.3 ns for the

dimer Pc2-NdmPc', and those components Ti(TGl) = 0.15 ps, T{TG2) = 2.30 ps and

T;TG3) > 1.3 ns for the trimer Pc2-Ndm TPP2-Ndm Pc2-, have been deduced from the

fits of the TRNDFWM experimental data, which gives the third line of Table 4.4.2.1.

for the dimer Pc2~NdfflPc' and that of Table 4.4.2.2. for the trimer

Pc2~NdfflTPP2'NdIIIPc2~. In order to attribute the experimental data to different

relaxation mechanisms and paths, a comparison between the TRNDFWM results and

the data from transient absorption for the dimer and the trimer is essential. Because
these data are presently not available, we have used the data of compounds in the same

family of bis- lanthanide phfhalocyanine and tris- lanthanide porphyrm

phthalocyanine. From reference [229], we take the data of the dimer Pc Pr Pc* as

the reference for the dimer Pc2"Nd Pc", giving rise to the second line of Table

4.4.2.1., and take the data of the trimer TPP2-PrmPc2~PrfflTPP2~ as the reference for

the trimer Pc2~Ndffl TPP2'Ndffl Pc2', giving rise to the second line of Table 4.4.2.2. .

A lanthanide bisphthalocyanine with a metal ion Mm, e.g., Ndffl that has an

electron configuration 4f3, is paramagnedc and one of the cycles is a radical. The
singlet excited states (u, x*) and faiplet excited states (n, n*) of the biplane are coupled

with single the electron from the cycle, resulting in a ground state that is a doublet So

while the excited states are doublets 2S and quadruplets Q. In transient absorption

experiments, the excitation firom the ground state So with the pump pulses of 620 nm
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generates a first excited state with a population Pi(0 in an excited doublet S. This

population relaxes with a longitudinal relaxation time TI = TyAlJ' towards a second

excited state of quadruplet Q with a population P 2(0, then the excited quadruplet

4Q relaxes with a longitudinal relaxation time T2 = T^ towards the ground state

2 So. This is depicted in Fig. 4.4.2.11. (a), and shown in the following scheme:

2So

2S

2s»[pc2-NdfflPc-] -hu-> 2s[pc2-NdmPc-]',

s[pc2-NdfflPc-]'—c'-> 4Q[pc2-NdmPc-F, (4.4.2.1)

4Q[pc2-NdfflPc-]t-t^'s<)[pc2-NdfflPc-] .

For the trimer Pc2~NdmTPP2~NdfflPc2~, a symmetric tns- poqAyrin

phthalocyanine, intersystem conversion will be the predominant relaxation mechanism.

Taking the results of the symmetric lanthanide tris- phthalocyanine porphyrin as
reference [210], a schematic presentation is given in Fig. 4.4.2.12. In the experiments,
after the excitation hu = hc/^| ^= 620nm > the system is put into an excited state (n, n*)

which can couple with the impaired electrons in the system resulting in excited states

being either triplets (3T) or quintuplets ( Q). With the same principle, the ground

state of the trimer is found to be a triplet To. In transient absorption experiment, the

excitation fi-om the ground state Tg with the pump pulse of 620 nm, generates a first

excited state with a population PI (/) m an excited triplet T . This population relaxes

with a longitudinal relaxation time TI = T ^ ^ towards an excited state of quintuplet

5Q with a population P 2 (0, then the excited quintuplet Q relaxes with a longitudinal

relaxation time TZ = T(TA2) towards the ground state Tg. This is depicted in Fig.

4.4.2.12. (a), and shown in the following scheme:
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Table 4.4.2.1.
Attribution of the Different Components from Time-Resolved Non-

Degenerated Four-Wave Mixing (TRFWM) / Transient Grating (TG)
Experiment for the Sublimated Film oftheDimer Pc2-Ndu¥c*.

Components
Reference data from transient

absorption experiment, T^CTA) [a] of
the dimer in the same family

Data from TRNDFWM or transient
grating (TG) experiment, r,CTG)

Estimated Diffusion time
^=^(D) =(1/F,CTG) -1/T,CTA))-1

Estimated averaged microscopic
period A of the sublimated fihn [b]

Diffusion coefiicient D = (A/4n2)/i^

1
7^TAi)=Ups

^CToi)=o.l9ps

J^(DI) = o.23 ps

0.1 ^m

11 cm2/s

2
T^CTAI) = 67 ps

^cro2)= 1.98 ps

7^(D2) =2.04 ps

0.1 urn

1.2 cm2/s

3

FCTG3)

>1.3ns

[a]: ref. [210], p86. Pc2- Pr"1 Pc-.;

[b]: estimated by the heterodimer Pc2-CeIVTPP2-.

Table 4.4.2.2.
Attribution of the Different Components from Time-Resolved Non-

Degenerated Four-Wave Mixing fTRFWM) /Transient Grating (TG)
Experiment for the Sublimated Film of the Trimer Pc2-NdmTPP2-NdmPc2-

Components
Reference data from transient

absorption experiment, T^(TA) [c] of
the trimer m the same family

Data from TRNDFWM or transient
grating (TG) experiment, T^Gl)

Estimated Diffusion time
TH = T,(D) = (1/T,CTG)-1/T,CTA))-1

Estimated averaged microscopic
period A of the sublimated fihn [d]

Diffusion coefficient D = (A /47c2)/T^

1

7^TAi)=o.7ps

jyTGD=0.15ps

7^01)= o.l9 ps

0.1 urn

13 cm2/s

2

7^CTA2) = 7g.5 ps

T^fTGi) = 2.30 ps

7^(D2) = 2.40 ps

0.1 ^m

1.1 cm2/s

3

T^G3) >
1.3 ns

[c]: ref. [210], p.86, TPP2- Pr1" Pc2- Prffl TPP2-;

[d]: estimated by the trimer TPP2- Cem Pc2- Ceffl TPP2-
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'I<'[Pc2-NdfflTPP2-NdfflPc2-]-to-> [pc2-NdfflTPP2-NdmPc2-]*,

'T[pc2-NdmTPP2-NdIIIPc2-]*—c'->Q[pc2-NdmTPP2-NdfflPc2-]*, (4.4.2.2.)

5Q[pc2-NdfflTPP2-NdmPc2-]*—E2-^1<l[Pc2-NdmTPP2-NdmPc2-] . •

In a TRNDFWM experiment, optical pumping of an excited state leads to the
formation of an transient grating. The decay of the TRNDFWM signal is due to the
decay of the grating and is related to the relaxation of the excited states to the ground

state. There are many mechanisms that can cause degrating, for example, intersystem
relaxation (energy transfer between excited states), long-range electron transfer
processes, such as photorefractive effects, rotational and translational diffusion,
liberational motion, etc. In symmetric bis- phthalocyanine and tris-phfhalocyanine-

porphyrin the predominant process, rather than being electron transfer, is excitadon
migration which causes an ultrafast nonlinear optical response and gives a temporal

response time T(TG/) as given in (4.1.2.8.1.). In addition to the longitudinal relaxation

time T\ TA/), 7 = 1,2 detectable by transient absorption experiment, in time-resolved

non-degenerate four-wave mixing experiment, the excitation migration through the

excitonic coupling between the neighbouring molecules contributes likewise to the
depopulation processes of the excited states, which gives rise to diffusion decay times

T[Dj), y'=l, 2 as given in (4.1.2.8.2.), in respect to grating decaying time

T^Gj\ y=l, 2. By (4.1.2.8.6.), the diffusion decay times can be calculated,

consequently givmg the results in the fourth line of Table 4.4.2.1. for the dimer and

Table 4.4.2.2. for the trimer. The diffusion coefi&cients Dj, j = 1, 2 can be estimated by

(4.1.2.8.3.).

By the given geometry in our TRFWM experiment, the space period of the grating,

A can be estimated to be 11.28 urn, with which the obtained diffusion coef&cients D^
D^ would be unreasonably large. The exact data of the microcrystal domains of the

dimer Pc2"PrfflPc< and of the tiimer TPP2~PrfflPc2~PrfflTPP2" are not available
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presently, however we can estimate them by the given data of heterodimer
Pc2-CeIVTPP2- [122] and the trimer TPP2-CefflPc2-CemTPP2- [229]. Suppose the

diffusion coefficients of the dimer Pc Nd Pc* and die trimer

Pc2~NdfflTPP2~NdfflPc2~ are of the same order of magnitude of those of the

heterodimer Pc2-CeIVTPP2- and TPP2-CefflPc2-CefflTPP2-, Aen the size of the

mirocrystal domain of the dimer Pc2~Pr Pc* can be estimated as 0.05 pm / 0.077 ^m

by 2.8 cm2/s / 0.74 cm2/s of the heterodimer Pc2'CeIVTPP2", and that of Ae tdmer

TPP2TrmPc2-PrmTPP2- as 0.14 ^m / 0.09 urn by 30 cm2/s / 0.87 cm2/s of the

trimer TPP2~CeIIIPc2'CefflTPP2". For the reason of simplification and unification,

the two values are just taken as 0.1 ^m. Since this estimated averaged size of about
0.1 |4m, is smaller than that of the grating period, therefore, it is tfae averaged size of
the microscopic crystalline domains that should be used mstead of the calculated
grating spacing period. This estimated averaged value is put in tfae fifth line of the
Table 4.4.2.1. for the dimer and Table .4.4.2.2. for the trimer, and into ( 4.1.2.8.3. )

yielding the estimated diffusion coefficients given in the sixA line of the Tables: Di =
11 cm2/s and D^ = 1.2 cm2/s, for the dimer Pc2~NdIIIPc', and Di = 13 cm2/s and D^ =

1.1 cm2/s, for the trimer Pc2~NdIIITPP2"NdfflPc2". These values arc quite

reasonable because they are of the same order of magnitude as typical values of the

diffusion COefficient: ^charge Transfer = 10 cm2/s an(l z)Ena%y Tramfer = 2-0 cm2'/s t215 - 226]-

On the basis of the above analysis, the three observed components in our TRFWM

experiment, 7\(TGl),Ti(TC2)and T[TG3), for the dimer and the trimer can be attributed as

shown in the schematic presentations in Fig. 4.4.2.11. (b) and in Fig. 4.4.2.12. (b).

In the TRNDFWM experiments, two 620 nm pump pulses generate an excited state

with a population Pi(Q ( doublet 2S for the dimer Pc2~NdfflPc*. and triplet 3T for

the trimer Pc2-Ndffl TPP2-Ndm Pc2- ). This population, with TI = T^M) ( ^ 1.1 ps

for the dimer, » 0.7 ps for the trimer, estimated by ref. [210] ) relaxes into the next

excited state with a population P 2(0 (quadruplet Q for the dimer, and quintuplet
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•f"'^ 1.1 ps

P2(t)

r'^ 67 ps

7fs3w—+—L^~1' ~^W 'T~rW}
1

Pad)
> 1.3ns

(o) (b)
Figure 4.4.2.11. Schematic Presentation of the Relaxation Paths of the
Sublimated Film of the Dimer NdPcz in the Experiment of (a): Transient
Absorption and (b): Time-Resolved Four-Vave MJTJng.

(t)

(a)

T^> 1.3ns

(b)
Figure 4.4.2.12. Schematic Presentation of the Relaxation Paths of
the Sublimated Film of the Trimer (NdPc)2TPP in the Experiment of
(a): Transient Absorption (TA), (b):Time-Resolved Pour-ITave Mixing.
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5Q for the trimer ), then with 13 = TaA2)(» 67 ps for the dimer, » 78 ps for the

trimer, estimated by ref. [210]) relaxes towards the ground state (So for the dimer, and

To for the trimer). Because of the existence of excitation migration, the first two

transient grating decaying times r[rol) and TaG2) are much shorter than the

longitudinal life times of the excited states, as shown by (4.1.2.8.1.), in Table 4.4.2.1.,
in Table 4.4.2.2., in Fig.4.4.2.11. (b), and in Fig. 4.4.2.12. (b). The diffusion times

T{D1) and T{D2) are related to the excitation migration by excitonic coupling between

neighbouring molecules. The longest components, TaG3) in the dimer and in the

trimer, are related to tfae system retuming from the low lying excited states (LS) to the
ground states. They take longer times than the limit of the TRNDFWM detecting

system, i.e., 1.3 ns. These long times responses originate from the same effect
photorefractivity — as the other three samples discussed in section 4.1 ~ 4.3. . This
will be treated thoroughly in section 4.6. .

4.4.3. Summary

We have presented time-resolvexi non-degenerate four-wave mixing (TRNDFWM)
measurements on the third order nonlmear optical properties of sublimated fihns of the

neodymium phthalocyanine dimer Pc2'NdfflPc* and the neodymium porphyrin

phthalocyanine trimer, Pc2-NdmTPP2-NdfflPc2-.

The dynamics of the dif&acted signal show that the dimer system possesses a fast
subpicosecond relaxation time of 0.19 ps, an intermediate relaxation time of 1.98 ps
and a very long relaxation time of > 1.3 ns, while the trimer system possesses those of
0.15 ps, 2.30 ps and > 1.3 ns. The longest response times are supposed to be related to
photorefractive effect which will be discussed in detail in section 4.6..

The existence of the excitation migration has, however, effectively shortened the

response times. In the case of symmetdc duner Pc2~NdmPc< and the trimer,
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Pc2~Nd TPP2~Nd Pc , excitation migration is one of the predominant degratmg

processes. Comparing with the data from transient absorpdon experiments on the
samples of the same family of lanthanide bis- and tris-phthalocyanine-porphyrins, it is
found that the relaxation times detected by time-resolved non-degenerate four-wave

mixing are shorter than those by transient absoq)tion due to the existence of excitation
migration. TRNDFWM is a very effective and very sensitive technique for detecting

various ^<3) processes, especially, for those processes that cannot be detected by

transient absorption experiments.

When the grating spacing is bigger than the averaged size of the microscopic
crystalline domain of the sublimated film, the latter, instead of the former, should be
used to make a correct estimation of the diffusion coefflcient. Taking the microscopic
stmcture and diffusion coefficients of the sublimated filTn of the dimer
Pc2~CeIVTPP2~ and the trimer TPP2"CeIIIPc2'CemTPP2~ that we have investigated

in previous sections, as references to estimate the averaged sizes of the microscopic
crystal domains oftheduner and the trimer, the diffusion coefficients of the first two
components have been estimated to be 12 cm2/s and 1.2 cm2/s for the dimer, and 13

cm2/s and 1.1 cm2/s for the trimer, which are compatible to typical values of the

diffusion coef&cient for energy transfer processes.

Owing to the stacked formation of the dimer and the trimer which favours the
delocalization of the conjugated Ti-electrons, we will show in the next section that the
third-order optical nonlinear suscepdbUities have been greatly increased as compared
to those of the free phthalocyanine and the mono-metallophthalocyanines. The results
show that the third-order nonlinear optical susceptibility %(3\ measured to be 15 x 10-10

esu for the dimer and 8.8 x 10-10 esu for the trimer. Details about the %<3> calculation

will be given in section 4.5. .
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4.5. Determination of the Absolute Values of the

Third-Order Nonlinear Optical Susceptibilities ^

In this section, we will calculate and calibrate the absolute values of the tiurd-order
nonlinear optical susceptibility ^<3) for the sublimated thin films of the dimer

Pc2'NdmPc*, the heterodimer Pc2~CeIVTPP2~, the trimer
TPP2-CefflPc2-CenITPP2-, Pc2-NdmTPP2-NdmPc2", and the Langmuir-Blodgett

fihns ofmbced dimer CoPC224+ /HsPcTS , by comparing the TRFWM data of these
thin fihns with that of reference silica glass under the same experimental conditions,

using an analysis appropriate for thin absorbing materials [238, 239].

4.5.1. The Expression of the Third-Order Nonlinear

Optical Susceptibility %

If the spadal arrangement of the four-wave mixing beams is as shown in Fig.
3.4.1.1., which gives the wave vector diagram shown in Fig. 3.4.1.2., then tfae pump

lights, the probe light and the dif&acted signal light can be expressed as:

Ej (co j) = £'0 jei(kj 'r~a)j °, J = 1,2: pMmp, y = 3: probe, j = 4: ^gna/;

(4.5.1.1.)

where,

kj = kj - ko KJ = kj - i- aj , ( 4.5.1.2. )

k,=k^-k^+k,, (4.5.1.3.)

(04 = G>\ -<^2+(y3 ' (4.5.1.4.)

and
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^l4)(<»4)= X(3)(®4=<»1-<32+®3):£'(®1)£'*(®2)£'(®3) (4.5.1.5.)

Putting ( 4.5.1.5. ) into the coupled wave equation ( 2.3.15. ), with the

approximation ofSVA, ( Chapter 2, section 2.3. ~ 2.4. ), one get [188]:

SE±±^E, =±,^—pNL(z,t) e-'<kzTa't), (4.5.1.6.)
a z~ c2 2kcoc2

where, (+, +, -) is for forward propagating wave, (-, -, +) for backward propagating
wave. Under the approximation ofIPW, CPI, and with the boundary condition:

E,(0) =0, (4.5.1.7.)

by coupled wave approach, we can get the solution for the forward propagating wave
as:

EA, =
2^ _p-iAk^ ^~2a41z4' ={Ak^)k^(a>4):El^ E^-e"^ )e (4.5.1.8.)

In our case here,

ffl|=|ff2|, |^3l=lff4] »

and under phase-matching,

\k= k^-k^ +^3-^4 =0,

(4.5.1.9.)

(4.5.1.10.)

.1
iAk-z=-J(Ak-i^Aa)'z=-^z(a^,-a'ikz+^lz+^iiz)=-az,

(4.5.1.11.)

using the relation

Q
=—n,

c
(4.5.1.12.)
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finally, ( 4.5.1.8.) becomes:

EAJ = —
Ink \

4i~7arf^vkl^(^):E^E^E,,(i-e-az)e^
1

--^az
(4.5.1.13.)

If the signal travelling distances in a reference and a sample are l^ and /
respectively, by comparing the FWM signals of the sample with that of the reference

under the same experimental conditions, we get:

X0\^)=^r(^) IWJ

1
2 /,-e~ar^f'l(\-e~ar^) an1

\\-e-al) a^n2.>-a//2
-fnref

If the reference is nearly lossless, therefore,

(\-e~areflref)

and

aref^ref

-a,^//2 ^

1,

in this case, we have:

/ \

^3) ^ y(3)^ | j4
'.ref

4ref,

n

1"<J
fu)ref al

e-al/2(l-e-al))

(4.5.1.14.)

(4.5.1.15.)

(4.5.1.16.)

(4.5.1.17)

4.5.2. The Calculation of the Absolute Values of the
.0)Third-Order Nonlinear Optical Susceptibility ^ J) of

the Samples

To get the absolute values of the third-order nonlinear optical susceptibility ^<3) of
the samples, one needs to use the %<3) value of a given material whose ^<3) is ab-eady
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known as reference. Commonly used reference materials are CS^ and fused quartz.

Because using CS^ one needs to calibrate the FWM contribution from its container

(often a quartz cell), which would cause extra problems m some cases, we chose fused
quartz as a reference material, which at 620 mn and 650 nm is lossless.

In the FWM experiment, the pump power often needs to be adjusted to a suitable
level under the damage threshold of the samples, by changing the optical density of the
attenuators in the light path. Thereby, the actual formula used to calculate %^ values
of the samples should be:

<3) ^ <y(3)
•re}ref

/4//30

J^l^f,

2 ^ ^

n

n"f.

2f^
~T.

al
>-a//2 (l-e-")J

(4.5.2.1.)

In ( 4.5.2.1. ), ^ =^arte = 2-8 x 10~14 esu [240]> is the reference value of the

third-order nonlmear susceptibility ^<3) for quartz. /^ is the thickness of the silica glass

slide, n^ = ^^= 1.457399 [241], is the refractive index of the reference quartz. / is

the sample thickness which was measured by a TENCOR profilometor, model Alpha-
Step 200. In a small angle FWM geometry, the interaction distance /c of the beams is

generally big enough to make l^ > l^ and /^ > /. If not, / and /^ should be replaced by
/e. The measured values of the thickness of tfae samples are given in the sixth line of

Table 4.5.2.1. . n is the refractive index of the sample which was measured by an

Applied Material ellipsometer model IL The experimental data on the reflective index
of the samples are listed in the fifth line of Table 4.5.2.1. . a is the absorption
coefificient of the sample at the laser wavelength of 650 nm in cm-1 , which was

measured by routine transmission-absoqition measurement procedures. The a data of
the samples are expressed in terms of optical density OD and have been written into

the fourth line of the Table 4.5.1.1. . I^J^ref w the intensities of the TRFM signals

of the sample and the reference under the same experimental conditions, which appear

in the eleventh and the ninth lines of Table 4.5.1.1. . Jo>Jore/ arc dle signals

proportional to the source laser intensities used during the experiment. The subscnpt

re f refers to the reference material which is fused quartz. The reference was assumed
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to have no absorption at the pump and probe wave length 620 nm, 650 nm. Under our
given TRFWM geometry and focusing of the pump and probe pulses, the beam
overlapping distance is longer than the thickness of the reference silica glass and those
of the samples. This has been tested by recording the TRFWM signal while moving
the reference quartz slide along the symmetric axis of the four beams. Since the
thicknesses of the fihns are much smaller than the overlapping distance, the measured
actual thicknesses of the films in the sixth line of Table 4.5.1.1. are used to make the
calculation. The obtained peak values of the third-order nonlinear optical

susceptibilities of the samples, are listed in the sbcteenth line of Table 4.5.1.1.:

X^TT, = 7.8 x lO-io esu, y.^^.^^ = 3.4 x 10-'0 esu, ^ = 15 x lO-io

eSU, ^(3NdPc)2TPP = 8.9 X 10-i° esu, and ^ ^^ 4- = 8-3 x lo-n esu. These values

of Z(^xx (-a} signal ^pumpj.-^pump2^ probe). compared with those values of natural

phthalocyanine, mono-metallophthalocyanines, and bis-metallophthalocyanines [242 -

248], listed in Table 4.5.2.2. is among those with the largest ^3). This is presumably

because of the stacked sandwich formation which extensively increases the

delocalization of the Ti-conjugated electorons and thus increases the ^ ) response. On

the other hand, the excitation migration and charge transfer cause much shorter

response times than those without contribution of these processes. In Langmuir-
Blodgett films, orderly molecular assemblies may also give an orientational

contribution to the ^3) value. Since the 620 nm pumps fall in the strong absorption
band of these samples, the resonance enhancement effect wiU also effectively increase

the ^3) response of these samples.
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Table 4.5.2.1.

Peak Values of the Third-Order Nonlinear Optical
Susceptibilities ^3).

Name of the Sample:

A.
/

AOD=}s(Ij-)

nsample [a]

I sample (A) [b]

nsubstrate [c]
Substrate

Iref

OD,,f

sample

'sample

^ref

^ref

(3^ ( x 10-14 esu)
ref

X(3L^ ( x I0-10 esu) [d]
le

PcCeTPP

2.048

0.2100

2.278

1.807

2395
1.445702

quartz

12780

0.70

2418

0.70

1.45670

1.25mm

2.8

7.8

Pc(CeTPP)2

2.252

0.8040

1.030

1.838

1325
1.45702

quartz

12780

0.70

1149

0.70

1.45670

1.25mm

2.8

3.4

NdPc2

2.099

1.255

0.5143

1.762

305
1.45702

quartz

12780

0.70

3462

0.70

1.45670

1.25mm

2.8

15

TPP(NdPC)2

2.252

0.4990

1.507

1.754

1325
1.45702

qyartz

4319

0.70

1362

0.70

1.45670

1.25mm

2.8

8.8

COPC224+/
H^PcTS4-

2.203

0.4930

1.497

1.680

11690
1.51507

glass

10540

0.70

2721

0.70

1.45670

1.25mm

2.8

0.83

[a]: Measured by Ellipsometer IE, Applied Material Inc.
[b]: Measured by TENCOR profilometor, model Alpha-Step 200
[c]: firom Melles Griot, Optics Guide 5, ISSN 1051-4384, 1990.
[d]: Calculated by (4.5.2.1.)
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Table 4.5.2.2.

Third-Order Nonlinear Optical Susceptibility ^(3) of Some
Metallophthalocyanines

Compound [a]

H2PcCP4

PbPcCP4
PtPcCP4

RSiPc
PtPc

SC(PC)2
ClGaPc
FAlPc
CuPc

CUnPc
VOPc
TiOPc
CoPc
NiPc

CuPc(C4H9S)4

CuPc(CioH2iS)4

VOPc(C6Hi3S)4

VOPc

SnPc

CoPc

H2Pc

NiPc

Experimental
Technique

DFMW
DFMW
DFMW
DFMW
DFMW
DFMW

THG
THG
THG
THG
THG
THG
THG
THG
THG
THG
THG

THG

THG

THG

THG

THG

[-6)4,^,0)2,0)3)

(-©,(», Q),-0))

(-<y,(9,fy,-<y)

(-6),CO,G},-CD)

(-Q),0),CO,-CO)

(-(0,0), CO,-CO)

(-Q),0),0),-Q))

(-3<y,(0,<»,0)

(-3 <y, 6),(o,Ct))

( -3 CD, 0), 6),Q))

(-3 <y, fi), <y, fi?)

(-3®, <y, (9, <a)

(-3<y,(y,(»,(u)

(-3 CD, CD, 0), Q))

(-3 CD, 6), (0,0))

(-3 CO, 6), 0), (D)

(-3 (0,0), CO, 6))

(-3 CD, 0), 6), 0))

(-3a),Q),Q),(o)

A,=1.907tun

(-3 <y, fi), fi?, <y)

X= 1.907 ^m

(-3 (O,Q), (O^Q))

^= 1.907 nm

(-3 CD, 0), 6), 0))

K= 1.907 urn

(-3<o,(»,(y,(»)

^=1.907 urn

Z(3)(-6)4.®h®2,fi>3)

(x 10-12 esu)

4.0

20.0

200.0

1800.0

200.0

1700
25.0

50.0

4.0

130.0

18.5

27.0

0.76

0.80

3.7

26.0

9.8

93

40

7.5

3.0

2.3

Reference

[242]
[242]
[2421
[242]
F2421
[242]
[242]
[242]
[2421
[242]
F2421
[242]
[242]
[242]
[242]
[242]
[242]
[243]

[243]

[243]

[243]

[243]
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TBVOPc

TBH^Pc

TBNiPc

FAlPc

ClAlPc

VOPc

VO(t-BuPc)

H^Pc

H^t-BuPc)

Pc-R'

CuPc

Si-nPc

THG

THG

THG

THG

THG

THG

THG

THG

THG

THG

THG

THG

(-3 CO, 0), Q), CO)

\= 1.907 pm

(-3 CD, CD, fi), 6))

\= 1.907 tim

(-3 0, CD, G), CO)

X= 1.907 ^m

(-3o),a},6),6))
1064 (355) nm
(-3 (0,6), 0), 6))
1064 (355) mn
(-3 0), CO, £0,0))
1907 (636) nm
(-3<y,(», €O,Q))
1907(636)nm
(-3 0), CO, CD, CD)
1907 (636) mn
(-3Q),0),CD,€D)
1907 (636) nm
(-3<»,to,(y,(o)
1064 (355) nm
(-3 CO, 6), d), CO)
1064 (355) nm
1907 (636) nm
(-3 <y,f», co, co)
1907 (636) nm
1543 (514) mn

6.0

1.9

2.0

50

25

190

7.5

6

3

1-3

7.5
3.4

y=3xl0-33[b]

y=5xl0-35[b]

[243]

[243]

[243]

[244]

[244]

[245]

[245]

[245]

[245]

[246]

[247]
[2481

[248]
[248]

[a]: CP4 = Tetrakis(cumylphenoxy),
R=(OSiMe(Ph)OH)2,
VO = alkoxy derivatives ofvanadyl,
R' = Polysiloxane,
nPc = naphfhalocyanine

[b]: second hyperpolarizability, defined in Chapter!, ( 2.1.9 ).

148



4.6. Photorefractive Effect

Of the many nonlinear optical effects that TRFWM is sensitive to, photorefractivity,
is one of the most interesting ones. As described in section 1.3.2., the photorefractive
effect is a light-induced change in the index of refraction of a crystalline material. The

standard model goes as follows. It normally takes place in four steps: first strong pump
fields generate a large number of charge carriers, then these carriers are transported,
afterwards trapped, and fmally, by the Pockels effect, the refractive index is modulated.
Though referred to as "optical damage" when the effect was first discovered, it was
soon realized that refractive index gratmgs written and stored m such crystals could be
used for a wide range of optical applications. Photorefractive crystals can be used to
make up simple phase conjugators with appUcations in distortion correction, laser

power combining, remote sensing, and tracking systems. These materials may also
play an important role in various optical computing and signal processing devices such
as reconfigurable optical interconnectors, associadve memories, and passive limiters
for sensor protection.

The most widely studied photorefiractive materials can be divided into four classes,
as listed in Table 1.3.2.1., : ferroelectnc oxides and tungsten bronze-type crystals,

oxides of the sillenite family, semi-insulatmg compound semiconductors, and organics.

For the organics, there are two categories are known: doped organic crystals [180], for

example pyridmium ylide [180], and doped organic polymers, for examples bisA-
DPDA (bisphenol-^-diglycidylether 4-nitro-l, 2-phenylenediamine) [181] , PVK-TNF
(poly TV-vinylcarbazole 2, 4, 7, -trimtro-9-fluoremione) [182] and PMMA:DTNBI:C<,o

(poly-methyhnethacrylate: 1, 2, -dimethyl-2, 2-tetramethylene-5-niti-ob€nzmudazolme:
fullerene) [183]. Up to date, photorefractive effect in organic multimer (dimer,

heterodimer, trimer, or heterotrimer, etc.) films have never been observed and

reported

In our TRNDFWM investigation on organo-metallic systems, we have observed

long-time responses up to 1.3 ns, in all the five lanthanide porphyrin phthalocyanine

multimer thin film samples (Figure 4.1.2.1.4. for Pc2"CeIVTPP2-, Figure 4.2.2.6. for

TPP2-CemPc2-CemTPP2-, Figure 4.3.2.8. for CoPC^ /H^PcTS4-, 4.4.2.6. for

Pc2-NdmPc*, and 4.4.2.10. for Pc2'NdfflTPP2'NdfflPc2"). Because we have
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introduced a special noise reduction technique, called Transparent Shuttle (Figure
3.4.0.1., and section 3.5.), to get the signal S free from the background noise B by
substracting B from the collected Ught A (equation (3.5.1.), even these long-time
response signals are not very strong, but they are clear enough to be distinguished from
the background. What we got are definitely real signals. Since even the compounds
that we got the long-time responses, are different molecular systems (duner (DM) for

Pc2-NdfflPc\ heterodimer (HDN/f) for Pc2-CeIVTPP2-, trimer (TM) for
TPP2-CefflPc2-CemTPP2- and for Pc2-NdmTPP2-NdIIIPc2-, mixed dimer (MDM)

for CoPC22 / F^PcTS ), and are made mto differait tfain fihns (sublimated fihns for
the first four of the above five, Langmuir-Blodgett film of the last of the above five),

they possess the same long-time responses. Therefore, there should be something in
common which gives rise to the same phenomenoiL We find what in common for these

molecular systems are that there exist microscopically ordered domains, there exist
charge and energy migration processes, which we believe to be most probably related
to a well know phenomenon, photorefr 'activity.

The common elements we have found m these DM, HDM, TM, HTM, MDM

systems, as we have discussed in section 4.1.3.3., section 4.1.3.4. and section 4.1.3.5.,

is that, in these systems, there always exist either mtramolecular charge transfer or
intermolecular energy transfer, or both. These transport cause molecular dipoles or
excitonic excitations to migrate from one molecule to the others in the microcrystalline

domains. Any free charges, if they are produced, are thus expected to similarly diffuse.
If there exist some barriers or "trapping centers", these moving molecular dipoles or
excitations will be expected to be held down or trapped there.

In the sublimated fihns, as discussed in sections 4.1.3.8. and 4.2.3.8. and as shown

in Fig. 4.1.3.8.1. and Fig. 4.2.3.8.1., Ac grain boundaries are natural candidates. These

microscopic ciystalline domains averaged between 0.2 ^m and 0.3 ^un, will capture the
moving molecular dipoles or excitatiom and hold them there.

In Langmuir-Blodgett film, though theoreticaUy speaking, the molecules should be

arranged more regularly. Nevertheless, according to our experiments, this is not
always the case: even m some "high quality" Laagmuir Blodgett films, the diffiision

light could be so intense that the TRPiVM experiment was impossible to cany out.
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There are definitely local irregularities in these fihns. In fact, durmg die dqx>sition of
the Langmuir-Blodgett fihn, the molecules in the monolayer on tfae subphase, could be

clustered, crystallized, or polymerized. Therefore, in the resulting Langmuir-Blodgett
fihn, there exist some local irregularities is just a natural thing. We have observed such
kind of irregularities on the Langmuir-Blodgett fihn when measuring the sample
thickness. Thus, in Langmuir-Blodgett fihn, moving excited species wiH be also held

down or trapped on the boundary between two homogeneous regions.

Now it is clear that photorefractive effect can happen in tfae sublimated and
Langmuir-Blodgett fihns of lanthanide porphyrin phthalocyanme dimer/heteTodimer

and trimer/heterotrimer systems, and, it is really happening there. In these systems,
there are large number of electron donors, either poq)hyrm or phthalocyanine
dependmg on the cases, which will form molecular dipoles and excitonic excitadon

when excited by laser pump. When studied by TRFWM, two strong pump pulses
create a great quantity of excited species. Due to the similarity between the
neighbouring molecules, these molecular dipoles or excitadons will be quicldy and
effectively transported, migrated or diffused from one excited molecule to the other by

the coupling of the charge transfer states (section 4.1.3.3.), by the spm-ortital coupling
(section 4.1.3.4.) and by excitoninc coupling (section 4.1.3.5.) between the
neighbouring molecules. The boundary of the microscopic ciystalliue domains in

sublimated fihns, as shown m Fig. 4.1.3.8.1., and Fig. 4.2.3.8., and the boundary

between two homogeneous regions in Langmuu-Blodgett film, which p\sy the roles as
"trapping center" in semiconductor and other crystalline material, will trap and hold

down the moving charges or excitations. These trapping and holding down will
eventually created new mtemal space charge fields, which alter the local refractive

index of the material by the Pockels effect, and give us a long time response, as shown

m Fig. 4.1.3.1.4, Fig. 4.2.3.6., Fig. 4.3.3.8., Fig. 4.4.3.6., and Fig. 4.4.3.10. . If the

above mechanism is correct ( and it appears established for the materials known to the
date), then, we have actually observed the first photorefractive effect w an organic

multimer thin film.

The photo-production of free carriers is unfortunately hypothetical. We have no

direct evidence of such production other than the existence of the photorefractive
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effect. We are sure, however, that excitons are produced and also a CT state in the

HDM system. The size of the photorefractive effect is at least four times larger in the

HDM than in any other system. This suggests that the CT dipole may play a novel role

in photorefractivity. Are dipole layers generated at gram boundaries consistent with

the phonon modulation models and could they generate internal electrical fields? Do

the dipoles transfer their energy at the grain boundaries and generate metastable excited

states or even free earners in the bulk? Or peifaaps tfae CT state favours the creation of

bulk free charge carriers? These questions have not been answered yet.

A thorough investigation on the photorefractive effect of the lanthanide
dimer/heterodimer and symmetric trimer thin film needs complete identificatiou of
ionizing centers and charge species involved, knowing relative unportance of electrons
and holes, detailed structure of the microscopic crystalline domains, and the
establishment of an appropriate theoretical model, especially for the organic crystals
and thin fihns.

Photorefractive effect is caused by free electrons which are released from donors by
the incident light. The observation of this effect needs some spatial modulation of the

light intensity. Periodic grating-like excitation, for example, four-wave mixing scheme,
is particularly well suitable for experimental observation of the photorefractive effect
and is convenient for its theoretical descriptions.

The movement of the photoexcited free charge carriers can be affected by three

different mechanisms: diffusion, drift (when existing an external electrical field) and
the photovoltaic effect. In common cases, the free charge carriers are moving in the

lattice field of the crystal of the material. This kind of moving is generally forbidden in
organics even in crystals under normal conditions, and that is why organic

photorefractive materials are rarely seen. However, except mechanism of the free
charge carriers moving in latdce field, in lanthanide porphyrin plithalocyanine
dimer/heterodimer trimer/ heterotrimer systems, there exist the other two equivalent

mechanisms: molecular dipole migration by charge transfer state coupling, by spin-

orbital coupling and excitonic excitation migration by excitonic coupUng, between the

152



neighbouring molecules. These are probably one of the most efficient ways to create
photoreff 'active effect in organic materials.

To make organic photorefractive materials, people just followed the same thinking
as making semiconductors: doping, which gives rise to doped organic crystals and

doped organic polymers. Nevertheless, the growth of doped organic crystals is a very
difficult process because during the crystallization most dopants are expelled.
Polymers on the other hand, though relatively easier to be doped, but they need to be
doped with charge-generating and transporting agents [249, 250] to make them
photoconducting or with poling guest or attached nonlinear chromophores to make
them electrooptic [251, 252]. This will cause some extra problem as controlling the

ratio between the base, the charge-generating agents and the transporting agents, etc.

Contrary to these, lanthanide porphyrin phthalocyanine multimers (dimers,
heterodimers, trimers, heterotrimers, etc.) offer another simpler and entirely new
approach to photorefractrvity: they integrate donor, acceptor and charge transporting
mechanism into one unity. The multimers themselves are donors and acceptors, thus
need no further doping. The molecular dipole and excitation migration by intersystem
couplings between the molecules of lanthanide porphyrin phthalocyanine
dimer/heterodimer trimer/heterotrimer have opened new approaches to the
photorefractive effects. Furthermore, the common deficiencies in the photorefracdve

materials presently available, for examples, low sensitivity, mappropriate dimension,

etc., can be overcome by the molecular engineering. In this sense, lanthanide
porphyrm phthalocyanine dimer/heterodimer trimer/heterotrimer systems could be one

of the most promising new family of organic materials for the investigations and

applications of photorefr active effect

In order to fully evaluate this new family of organic photorefractive materials for
photorefractive applications, the following aspects need be considered for further

studies:

1. photorefractive sensitivity,

2. dynamic range (maximum refractive index change),
3. phase shift between refractive index and light intensity distribution,
4. photorefractive recording and erasure time,

5. spatial frequency dependence,
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6. electric field dependence,
7. laser wavelength for inducing refractive index change,

8. resolution,

9. signal-to-noise ratio, and

10. room temperature operation.

We have found photorefractivity in these materials. Contrary to other

photorefracdve materials, lanthanide porphyrin phthalocyanine multimers (dimers,

heterodimers, trimers, heterotrimers, etc. ) offer a simpler and entirely new approach

to photorefr activity: they integrate donor, acceptor and charge or molecular dipole

transporting mechanism into one unity. They also provide natural trapping centers: the

grain boundaries. The multimers themselves are donors and acceptors and there is

thus no need for doping. They may provide the free charge carriers usually associated

with the photorefractive effect. However, the molecular dipole and excitation

migration by intersystem couplings between the molecules of lanthanide porphyrm

phthalocyanine dimer/heteroduner trimer/heterotrimer opens new chaimels to the

photorefractive effect. It is hoped that the common deficiencies in the photorefractive

materials presently available, for examples, low sensitivity, inappropriate dimension,

etc., can be overcome by molecular engineering. In this sense, lanthanide porphyrin

phfhalocyanine dimer/heterodimer trimer/heterotrimer systems could be a most

promising new family of organic materials for the investigations and applications of the

photorefractive effect, though there is still a long way to go to make this new family of

photorefractive materials viable to the photorefractive applications.
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Chapter 5.

Conclusion

We have presented the results of time-resolved four-wave mismg (TRFWM) studies
on sublimated and Langmuir-Blodgett thm filTns of tfae lanthamdc poiph^Tm
phthalocyanine dimer/heterodimer and the symmetric systems. This is the first
non-degenerate time-resolved four-wave mbcing study on mblimaled films.

It has been shown that TRFWM is one of the mast sensitive, most useful and most
powerful techniques for probing the dynamics of the tturd-order noulmear optical

processes in materials, especially, those not detectabie by transient absorption and
other ultrashort time-resolved spectroscopic techmques.

The diffusion processes play an important role m Ac degratmg and can not be
neglected when considering the mechanisms related to nonlmear optical processes. In
the lanthanide porphyrin phthalocyanine dimer/heteTodimer and trimer^heterotrimer

systems, there exist mtramolecular charge transfer and inteimolecular energy transfer

processes which cause molecular dipole and excitomc exdtation migratmg firom one
place to the other. This diffusion finally gives rise to observable experimental effects,
for example shorter de-gratmg time.

The diffusion contribution to degrating processes is identified and investigated for

the first time. This was achieved by comparing the TRFWM results with ifaose from
the transient absorption experiments on the same samples and making an estimation of
the diffusion coefficients. The calculated diffusion coefficients are compatible with die

typical values of the diffusion coefficient for dipole transfer and for energy transfer
processes. This confirms the role of diffusion in the process.

Due to the stacked sandwich formation of tfae dimerAeterodimer trimer/

heterotrimer, which favours the delocalization of tfae conjugated x-electrcHis, the Aird-
order nonlinear optical susceptibilities in these systems have been greatly increased
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compared with those of the free phthalocyamne and the metallo-

phthalocyanines/porphyrins.

The phenomenon of two correlated-phonon mode-shlfting has been observed for
the first time. It is related to the charge transfer process in the heterodimer. One of the
characteristics of intramolecular electron transfer m the lanthanide heterodimer or

heterotrimer systems is that these processes are always accompanied with a change in
molecular configuration. This causes a vibration mode change. We conclude that, the
correlated-phonon mode-shifting phenomenon may anty be observable in a system
relaxing with changes in the molecular configuration.

The knowledge of the detailed structure of the microscopic crystallme domams in
sublimated fihns and the arrangement of the molecules in Langmuir-Blodgett fihns is
cmcial for the attribution of the third-order nonlmear optical processes to the different

physical mechanisms. When the grating spacing period is bigger than the averaged size
of the microscopic crystalline domains of a sublimated film, the latter, instead of the
former, should be used to make a correct estimation of the diffusion coefficient

The photorefi-active efifect is one of the most important nonlinear optical
phenomena, which exists m ferroelectncs, sillenites, compound semiconductors and

doped organics. The lanthanide porphyrin phthaloc\-aiune dimer/heterodimer and

trimer/heterotrimer systems have both electron donors and acceptors. In these systems,
there always exist either intramolecular charge transfer or intermolecular energy

transfer. These intramolecular and mtermolecular transport processes cause molecular
dipoles or excitonic excitations to migrate quickly and effectively from one molecule to

the others. The boundary of the microscopic crystalliae domains in the subUmated
fihns and the local irregularities in Langmuir-Blodgett film play an important role as
"trapping center" (as in semiconductors and other photorefractive crystals), at which

the moving molecular dipoles or excitations wiU be held down or trapped. This may
eventually create new internal space charge fields, which alter the local refractive index
of the material by the Pockels effect, and gave a long time response in all these
lanthanide porphyrin phthalocyanine dimer/heterodimer and trimer/heterotiTmer
systems. We have observed the first photorefractive effect in an organic muhimer

thin film.
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Aside from the motion of free carriers in conventional photorefractive materials,
there exist the other two equivalent mechanisms in sublimated and Langmuir-Blodgett
thin fihns of lanthanide porphyrin phthalocyanine dimer/heterodimer and symmetnc

trimer systems. The molecular dipole migradon by charge transfer state coupling or by
spia-orbital coupling and excitonic excitation migradon by excitonic coupling between
the neighbouring molecules, are possibly one of the most efficient ways to build up
photorefl active effect in organic materials. This photorefractive effect can be

enlianced and optimized by molecular engineering, which at the same time can
overcome the deficiencies in the existing non-orgaaic photorefractive materials.
Therefore, lanthanide porphyrm phthalocyanine dimer/heterodimer trimer/heterotrimer

systems offer an entirely new approach to photorefractivity and they could be a
promising new family of organic materials for the investigation and the application

of th e ph otor eft active effect.

From the above, we can see that, in lanthanide porphyrin phthalocyanine
dimer/heterodimer and trimer/heterotrimer systems, three seemingly non-related

phenomena, diffusion contribution to degrating process, correlated-phonon mode
shifting and photorefr active effect, have a common origin: intramolecular charge

transfer (ICT), molecular dipole migration (MDM) and excitonic excitation migration
(EEM) processes occur in theses systems.

From this work, it is clear that metallo porphyrin phthalocyanine dimer/heterodimer
and trimer/heterotrimer are very versatile and have very great potential as nonlinear
optical materials. The nonlinear optical research on these materials is just at its

beginning. An improved understandmg of the relationship between the molecular
structure and the microscopic nonlinearities, is essential for the development of new

molecular systems for nonlinear optics. A systematic investigation covering a diversity
of species and sequentially built structures will help to establish comprehensive
nonlinear optical theoretical models and computational methods to predict structural

requirements necessary for large optical nonlinearities.
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Appendix I

Transient Response of Population Relaxation

In order to extract the information from time-resolved four wave mixing
experimental data, we need to make a theoretical calculation to fit the data and

consequently decide the relate parameters. During this process, as we have developed
in Chapter 2, section 2.7., needs to use transient response of the population relaxation
of a system with a certain energy levels and relaxation paths. la the fitting, we need a

four-level system solution to treat the problem of three relaxation components, and a
five-level system solution to deal with the problem of four relaxation components.

Suppose we have a ten-level system, where, Ei > E^ > E3> £4 > Eg, and Ei to £4 are

the excited states and Eg is the ground state. We are going to give the transient
response for the system excited to the highest level and relaxing from one level to the

others.

The differential equations for the system can be written as

dp P \ Ij^l 1. ^, ^
9 ~T~=^~~sr X^—==^(SlO + ^6li)» (§10-1~ 2-<8li)= ^ (Al.

1 1 1 1 10 i=2 1 li -1 1 i=2 i=2

4 l 1 A
:L=_-<J--|.{r _LL=__^__|-_t_L_ _1_=_1_+V_L_ =_L.f^+Vpr..^

12 rp rr ' T> ' T' T ' / J rp rp \fi>20 ' ^(<"->2i/» V-Ilu*-'
2 1 1 ^2 J( 12 22^20 i=3^ 2i JI 2 i=3

^=-^,A^.A =_A+A+^13 T-i ' 6 2313T-i'&23>7-i T» • T ' T »

3 J- \ ^2 -13-IUA23

-+^— = ^—(^30 + ^34), (^30+^34) =1;
3 J- 30 A 34 A 3
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dP. _ P. , „ pi , „ P2 , „ -P, _ P., P, , P, , P,
14 m ' 0 24 rn ' C3 34 i-n rr< ' rri ' rri ' rri '

4 -i 1 -t2 -13 •L4 •i 14 -i24 -t 34

1 1 1 (A4.)
'40? <£>40 A»

4 -1 40 -1 4

where P, and 7} are the population and the relaxation tune of tfae 7th level respectively,

Tfj is the relaxation time of the system from the /th level to the yth level, and

T..

g,j = -^J-, j' = 0, /' +1, • • -, 4, is the statistical weight related to the rth level and the y'th
'i0

level, which could take the values between 0 and 1 depending on the specific cases.

Solvmg the equations under the initial conditions as

P,(0) = 1,P.(0) =0, n= 2, 3,4; (A5.)

we can get the following population evolution equations:

^(0=S^.e-'/r',n= 1,2,3,4;
»=1

i.e.

p,(0=4,e-l/r',

p,(t)=A,e-t/Tt+A^e-l/T\

P, (t) = A, e-^ + A,, e-l/Tl + A,, e-'/T3,

,-t/Ti -i/Ti »-t/T3 ,-X/T,^(0=^, e-"11 +A,, e""1 +A,,e'v"+A,,e-l"<,

(A6.)

where the parameter A\\ are:

(A7.)
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T. Z . . . . 2-,. . ^.. . . rr
L12- A -LL-l2- ^ =-^ /4 ==C613-^ | 623 ^ ^ -1! Jl3

Lll ~ ^ ^121 — ~T~-rln^r T.~> ^122 ~ ~^l21» ^13l - V.-^-^1H ~r-^~^121>''Ln rr rr > ^A22 -'*2l» -(A3l V ^ -(-ln ' rr •til\) rr rr »

1 J-l -l2 ^1 ^2 -1! - -I3

zr
^- A ^"i A3 J = -

l32 - ~T~-rirt~^ —^7» ^33 - ~\^\ ~I~^132^
•2 X2 - ^3

— ( Sl4 ^ | ^24 /( i ^34 ^ ^ 1\ 1*
l41 ~\~r~^lU ~r'-T—yl21 'T~T~^l}^r —^~»

1 -t2 ^3 -II - ^4

^42 = (^'^22 +'^?~^32)'L32 / T, rr, •>
2 -l3 -t2 - ^4

8^ J 1-^14 J == _,
L43 — —r—yl33-TT>^r'l ^44 ~ ~ \'rL4l ~r -^42 ~T~ ^W, )l

3 ^3 - A4

(A8.)

Therefore, the transient response to the relaxation of the system can be expressed

as:

R(t) = Z^3^(0 = Z Z ^)4,e-"^, (A9.)
i=l i = 1 J= 1

j.e.

R(<) -^"4, e-"TI +^(4, e-"rl +4, e-"rl) +^>(4, e-"r' +4, e-"rl +4, e-"rl) +

+^"(^, e-"Tt +A., e-"Tl +4, e-"Tl +A,, e-"T'),

( A10).

R(') =(^3>4, +z?)4, +^3)^. +^^-,) e-"TI +WA^ +^"^ +^'^,) e-"rl +
+WA^ +^A,,) e-"Tl +WA^ e-"TI .

(All.)

This flve-level system or four excited state population model have been used m

section 4.3.3. .

For the transient response of a four-level or three excited state system, the

population relaxation formula similar to (A9 ) - (A 10 ) are:
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R(t) = £xfflPi(t) = £ Z xr)4j e-tlT' (A12.)
i=l i= 1 j=l

and

R(t) =^"4, e-"r-+^>(4, e-"r- +4, e-"r2)+^)(^,, e-"n +^e-"r2 +^ e-"ri)

=(z;3>4, +;^,+z?4, )e-"r- +(^"4, +^'^,)e-"rl +(^^33 )e-"ri

(A13.)

where,

=J[12-J ! 2 - ^12 ! 2 J =_J -_^12—/1-/1-
41 '-> "A21 Ti '(All rr, rr, ~ rri rr, rr, » -IA22 -IA21 T-, T, ^r, »

1 •ll " ^2 •ll •tl ~ ±-t Al •il ~ J-l

13 A I Sv3 A \ 1 3 _/8l3 8n §73 ^\^1 \ -^1^3
L3l VT->-'-lH'>Ti-'A21/Ti T< ~ V T-- T-- T-'T' T' > T1 T1'

1 •t1 ^l~^3 J-\ -II -t2 'Il--t2 Jtl Jt3

'23 A J"i ^3 _ <5l2 <523 -i 1 -l 2 -t 2-1 3

L32 rj-i "A22 T'T-i T-iT-i<T7»7-i^T7T>?

2 J-2 ^3 •tl -l2-tl-l2^2-I3

T.L . T.T. s,. 2.. T, T. T. T.13 612 <523 -II -12 \ ^1 A3 i <*512 <&23 '11 -12 A2 ^3

-„ -^..^,- ^ ^ T,T,-T,'T,-T,'T, T,T,-T,T,-T,' ^14.)

Substituting these into ( A8. ) one gets the final analytical expression, used in tfae
fitting of experimental data in section 4.1, 4.2. and 4.4., as:

R(t)= [x(i3)+x(2(3) gn T^ ^ ^o) ^13 _ gl2 ^23 ^1 ^2 ^ TI T3
TI T,-T^ ' ^ V7; TI TS Ti-r/Ti-r3

+ -XCT gn T\TI
r, r,-7,

X3
(3) g\l ^23 T\ T2 T2 T3

T, T, T.-T^T^-T^

-t/Tie ""1 +

+x (3) -( gl3 gll gl3 ^ T^ ^ TI T3 . gi2 g23 ^1 ^2 ^2 ^3-) +
FI TI ^ TI-T^T^-T^ ' Fi Ts T^-T^T^-T^

-t/T2

-t/T3

+

(A15.)
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Appendix II. Transient Response of Four-Wave
Mixing in aMedium, a Quantum Mechanical View

In Appendix 2, we will examine how P(3)(z,t) can be obtained using the density

matrix description.

In quantum mechanics, a system's state is governed by the Schrodinger equation

^^^=H|<p(t)>, (A2.1.)
A A

where H is the Hamiltonian, |(p(t)> is a state of the system. The Hamiltonian H includes
/>. A

the unperturbed HamiltonianHo, and the interaction Hamiltonian Hi:

A A
H=HO+HI. (A2.2.)

The solution of equation ( A2.1. ) is

|(p(t)>=0(t,ti)|<p(ti)>, (A2.3.)

y\

where U(t,ti) is the time-development operator.

^<

In order to calculate the expectation value of a physical quantity 0, a projection
A.

operator P( \{/) has to be introduced:

P(y/)=|y<t)x^t)|, (A2.4.)

where | ^(t)> is an element of a complete orthonormal set of eigenvectors of H(t).

Putting the projection operator into the Schrodinger equation, one can get the equation
/\

of motion for the projection operator P( ^)

?^)=[H,P(4 (A2.5.)0i
A

The expectation value of the observable Q in the states yi,^2»""">^» can be

expressed as the trace of the projection operator
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Q} = tr[f( ^ )Q}, (A2.6.)

and the probable value of the operator Q when tfae system is in a mixture of the states

^^••••••. Misgiven by:

(s)=ZPj"'{P(y/j)e}=Z^{PjP(^)0}. (A2.7.)

By defining

p=2;pjp(^), (A2.8.)

( A2.7. ) can be written as:

{Q}=lr{pQ}. (A2.9.)

Equation ( A2.8. ) defines the density- operator of the system. Pj is the probability of

finding the system in the state vpj at time t = - oo, when H^ = 0.

The probability Pj is independent of time, and thus:

..^_..^n CP^J)'^='7iZPj-
ct

(A2.9.)

Using the equation of motion of the projection operator ( A2.5. ), the equation (A2.10.)
becomes:

'•^2:Pj[H,P(^j)]= H-Zpjp(^j) -[^]. (A2.11.)

This is the Liouville equation for the density operator p.

Putting the Hamiltonian of the system H = H^ + Hi into (A2.11.), one can get

^pift^ = [H, + Hi, p] = [H,. p] + [H,, p\ (A2.12.)
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where p can be expanded as a series:

p(t) =^ +^<" +p(2) +^3>+......^>+......= ^^n>
m=0

(A2.13.)

Therefore, we have:

a^ww-j=0
Ho, ZWO

j=0
H,,2:p(i)(t)

j=o
(A2.14.)

By comparing the same orders of the powers in both sides of (A2.14. ), we can get the

differential equations sadsfled by the different orders of the perturbation series as:

.<.^o>(t).^w=[H^°>(t)],

^a^(t)=[H,.^>(t)]+[H,.^(t)],

rt9^(t)=[Ho,^(t)]+[H,,^>(t)],

rt8^0)=[H0^3)(t)]+[H-^<t)]-

^j)(t)in°^=[Ho,^)(t)]+[H,,^l>(t)],

(A2.15.)

Using the time evolution unitary operator L?o(t)=U(t, t^ = -oo), multiplying

(A2.15.) from the left by U^(t) = Uo(-t) and from tfae right by Uo(t), and making use
A -A, A ^

of the relation U^ (t)Uo(t) = Uo(-t)Uo(t) = 1, one can get thejA-order density operator
as:
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t ti t2 tj-1

^)(t)=^JdtJdt/Jdt3...Jdt,X
[in)- -oo -oo -oo -oo (A2.16.)

x H'i(ti),[Hi(t,),[H;(t3),[...[H'i(t,),p<°>(t,)]...]]] r+U;(t),

where

H;(tJ =Oo+(tJHi(0)Oo(t,J, m=l,2,3,...,j. (A2.17.)

For j = 3, one has

P(3)(t)=-^)Jdt/jdt/|dt3[H;(t,),[H;(t,),[Hi(t3),^o>(t3)]]]Uo+(t) (A2.18.)
m} -oo -on -<

Once the expressions of the density operator are available tfarough a quantum

mechanical calculation, theyth-order nonlinear optical polarization Pu) can be deduced

as follows.

The external field exerted on a medium introduces a polarization wfaich we write as

P(t)=P(l)(t)+P<2)(t)+P(3)(t)+......+P^(t)+....... (A2.19.)

If the volume of the medium V is small enough, and for a total electric dipole

momentum of the system D, then the different orders ofAe polarization can be expressed

as

P<u (t) = ^tr[y (t)D}, P"> (t) = ^ (r{^> WD],
v ^ '"~J_" " v ", "_'" _ (A2.20.)

P<3)(t)=^(r{^3)(t)0},....... V(»(t)=^lr{y\t)D}, .......

In the general case, the term nonlinear polarization means

P<j)(t)=PNLa)(t), j>2. (A2.21.)

P(j)(t) can be expressed in another form using subscripts n, a^, (x^ ... , Op etc. to

denote one of the components of the cartesian coordinates x, y, z:
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.00 -oo -oo -oo

J

P(^)(0=£o Jd®l Jd®2 Jd(03... JdcO^X^ia; -..aj(®l'(D2, •••••-, ®j)x

(A2.22.)

xE^(^)E^(w,)-E^(w,)e "" .

Fourier transforming ( 2.8.1.22. ) while using ( 2.8.1.18. ) and Hi(t)=-^(t)-E(t),

one gets for j =3

^)aftr(c0^ Q)^ (03)=
^ +QO +co +QO r rr.

jA,jA,Jd(,^[|[A<,D^(t,)],^,(tJ|,D,(t,)]}x (A2.23.)
-^

"00 "00 "00

X^-'(<01/1 +(y2/2 +®3r3)

^
where 5' is a symmetnc operator [33, 213 - 216].

We have now obtained the expression for the third-order nonlinear optical

polarizability ^ \ with which the third-order nonlinear polarization can be expressed as

f^=^:EEE. (A2.24.)

This is the source term in third-order coupled wave equation, from which the problem

of the third-order nonlmear optical wave propagation in a medium can be solved.
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