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SUMMARY 

Dans ce memoire, nous presentons d'abord une introduction a la theorie classique de 

la topologie digitale en utilisant une approche de "graphe d'adjacence". Les concepts 

de cette theorie sont examines en detail et ensuite, rtous discutons des desavantages 

inherents a cette approche, dus essentiellement au manque de rigueur axiomatique dans 

son elaboration. 

Par la suite, nous etudions une nouvelle approche a la theorie de topologie digitale telle 

que developpee par V. Kovalevsky. Cette theorie, basee sur une approche axiomatique, 

permet de contourner la plupart des problemes rencontres dans la theorie classique. 

Elle presente des axiomes pour bien definir une topologie digitale. Apres avoir presente 

les axiomes, nous construisons un contre exemple qui demontre une inconsistance dans 

l'approche de Kovalevsky. Afin de pallier a cette difficulte, un nouvel axiome est rajoute 

a cet efFet. 

Au lieu de se consacrer a 1' etude des complexes cellulaires abstraits, nous faisons appel 

a la theorie des CW-complexes, telle que developpee par J.H.C Whitehead, et aux com­

plexes cubiques, tels que formalises par T. Kaczynski et al. pour etablir des liens entre la 

toplogie digitale axiomatique et la topologie algebrique dont le formalisme puissant per­

met d'elargir les champs d'application de la topologie digitale. Finalement des exemples 

concrets sont donnes pour demontrer l'utilite de cette theorie pour l'analyse d'images 

in 



digitales. 
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INTRODUCTION 

Digital topology is of great interest to computer science, particularly to the domain of 

imagery. The data structures of computer science are enumerable by definition. Thus, 

only discrete objects can be represented on computers. Since many problems in image 

analysis are related to topological notions such as connectivity and boundaries of subsets, 

it becomes necessary to find ways of implementing these basic topological concepts in 

the context of digitized images. 

The main purpose of digital topology is the study of the topological properties of given 

image data. A number of important image processing operations such as image thinning, 

border following, contour filling, and object counting are based on topological concepts, 

such as the ones of connectedness of regions, boundaries, holes, etc. The term "digital" 

refers to the discrete nature of the elements that make up an image. Mathematicians have 

been aware of the importance of topology in discrete and finite spaces for a long time, 

and some early contributions have been made by Alexandroff [Ale37] and some other 

authors. However, these contributions were weakly represented in topological textbooks, 

and they were generally considered of little interest before the advent of computers and 

thus little work was done with them. As a result when computer scientists began working 

with images they were forced to develop their own theory to image analysis and did so 

without knowledge of the concepts of finite and discrete topology. Their approach was 
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based on adjacency rather then open sets, as in topology, and while being intuitive and 

well suited for human perception, it brought along certain paradoxes that have plagued 

the field since. 

In Chapter 1 of this memoir we shall explore what we call the classical approach to 

digital topology, developed with direct computer implementation in mind. Digital images 

are represented using adjacency graphs that encode neighborhood relationships between 

pixels, while paying no attention to the edges and corners that make up these pixels. 

Topological concepts such as connectedness of regions, borders, etc. are defined from the 

concept of adjacency, instead of the axioms which mathematically define topology. Much 

of the theories and concepts of classical digital topology will be pulled from the works of 

A. Rosenfeld and T.Y. Kong, who have published multiple papers in this domain. 

Of interest to this memoir and to my advisors, M. Allili and T. Kaczynski, is the rel­

atively new approach to digital topology which attempts to represent digital images as 

abstract cellular complexes, a rather abstract concept. Chapter 2 explores the field of 

axiomatic digital topology, which has been developed recently by Vladimir Kovalevsky 

[Kov06j. Kovalevsky has published several articles motivating an intuitive axiomatic ap­

proach to digital topology that leads to the introduction of cellular complexes as the only 

topologically consistent tools to represent digital images. We investigate the axioms of 

digital topology introduced by Kovalevsky and outline some problems and inconsisten­

cies in the axioms for which a counter example is provided. We also suggest a modified 

version of the axioms that solves the inconsistencies. 

The main goal of this chapter is to promote the advantages of axiomatic digital topology 

in place of the classical theory by exploring the mathematical consistency of the former 

over the latter. We also,examine in the subsequent chapters the ways in which the ax­

iomatic approach can be used in conjunction with homology theory to provide alternative 

solutions to problems in imagery. 
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Chapter 3 is devoted to the introduction of certain theories that are useful in the under­

standing of the axiomatic approach. We review CW-complexes, as developed by J.H.C. 

Whitehead. CW-complexes are a generalization of the simplicial and cubical complex 

representations, where cells of different dimensions and shapes are used to represent ge­

ometric structures. The basic theory of homology is also introduced here. Homology is 

used to extract global topological information from a complex representation of an object 

using local calculations. 

Chapter 4 is completely devoted to the applications of axiomatic digital topology. We 

survey a few algorithms concerned with border tracing, component labeling etc. and 

discuss the possibility of using homology as a tool to create alternative ways to analyze 

images. 

3 



CHAPTER 1 

Classical Digital Topology 

The classical approach to analyzing digital images uses a non-mathematical approach. 

The ideas are intuitive, but give no regard to classical topological ideas or axioms. How­

ever, the approach has the advantage of being easy to understand and to implement. 

In this section we give an overview of the classical theory of digital topology with some 

illustrations and examples. For a more complete study we refer you the reader to [KR89]. 

1.1 Adjacency Relations and Connectedness 

Definition 1.1. An n—grid array, is a framework of regularly spaced lines parallel to 

each of the coordinate axes, resulting in the division of Euclidean space into n-cubical 

sections. 

Figure 1.1 shows a 6 x 6 zoom of a grid array in the plane. We use the arrays to represent 

the pixels (in two-dimensions) and voxels (in three-dimensions) that make up the images 

studied. In this work we shall consider binary arrays of values either 0 or 1. For purposes 
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Figure 1.1: A 6x6 segment of a standard grid array in 2-dimensions 

of clarity, we adopt the convention that the value zero represents a white pixel while one 

will represent a black pixel. While it is possible to study gray-scale images using fuzzy 

digital topology[KR89], any gray-scale image can be thresholded to give a binary image, 

as such we limit ourselves to consider only binary images. 

Each square of the grid array is assigned to represent a single pixel of a given image. 

Note that unlike a complex representation no care is taken here to represent the edges 

and vertices which make up a pixel, only the open squares are considered here. Since 

the grid array is of infinite size, (unbounded in all directions), we take on the convention 

that all squares not shown take the value zero and hence, represent white points. 

By convention when displaying images, instead of drawing in shaded an unshaded square, 

a time consuming task, a dual lattice representation of the grid array is created in which 

the lattice points represent the squares of the grid array and are colored accordingly. For 

clarity these lattices are joined by horizontal and vertical lines. These line perform no 

other function beyond esthetics. From now on we shall study images using their lattice 

representation, see Figure 1.2. 
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Figure 1.2: A 6x6 pixel binary image where the black pixels are represented by the shaded 
regions. The dotted grid is the array, note that the solid circles on the lattice points 
correspond to the black pixels of the image. 

In order to study the lattice structures we must first implement the concept of a neigh­

borhood. 

Definition 1.2. An n-neighborhood of a lattice point, x, to be the n+1 lattice points 

geometrically closest to x under the Euclidean norm1, ||-||2. 

There are many types of neighborhoods which can be defined. On the plane there 

are two neighborhoods that are commonly used, namely the A-neighborhood and the 

8-neighborhood. These neighborhoods are defined by associating each lattice point a co­

ordinate in the two dimensional discrete plane N2. The standard convention is to write 

Nm(p) when referring to the set consisting of the lattice point p and its m-neighbors. 

Using this fact the ^.-neighborhood (Figure 1.3) of a lattice point x = (#i,X2) is the set 

of lattice points; 

N4(x) - {(yi,y2)| \\(yi,y2) - (xux2)\\ < 1}. 
1 Although here the Euclidean norm is used it is just as simple to use other norms more common to 

imagery such as the chessboard and Manhattan norms. 
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Similarly, the ^-neighborhood (Figure 1.4) of a lattice point x = (xi,x2) is the set of 

lattice points; 

Ns(x-) = {(yuy2)\ || (2/1^2) - (xi,x2)|| < 2}. 

In three dimensions some of the possible neighborhoods of a lattice point are the 6, 18, 

and 26-neighborhoods. Each of these neighborhoods are described mathematically as; 

Ne(x) = {(2/1,2/2,2/3)! IK2/1,2/2,2/3) - {xi,x2,x3)\\ < 1} 

Ni8(x) = {(yi, 2/2,2/3)1 11(2/1,2/2,2/3) - (a;i,x2,a;3)|| < V2} 

N26(x) = {(2/1,2/2,2/3)1 IK2/1,2/2,2/3) - (zi,x2,x3)\\ < 2}. 

Figures 1.5, 1.6 arid 1.7 show the 6, 18, and 26-neighborhoods of a lattice point p. 

V 

Figure 1.3: The 4-neighborhood of the lattice point p. 

Using the concept of neighborhoods we can define a relation between lattice points. 

Definition 1.3. Two lattice points, x and y, are said to be n-adjacent to each other if 

and only if x is part of the n-neighborhood of y or y is part of the n-neighborhood of x. 

7 
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Figure 1.4: The 8-neighborhood of the lattice point p. 

/ Zi-7 

Figure 1.5: The 6-neighborhood of the lattice point p. 

Adjacency is a relationship between pixels which gives us the ability to determine the 

structure of images. Knowing the concept of neighborhoods, and adjacency allows us to 

define a digital topology version of the topological concept of connectedness. From the 

concept of connectedness we will attempt to build a theory of "digital topology". 

Definition 1.4. We define a sequence, P, of lattice points on an array, starting at a 

point p and ending at a separate point q, as an n-path iff each lattice point is n- adjacent 

to exactly two other lattice points in P with the exception of p, and q who are each 

n- adjacent to only one other lattice point in P. The case where p = q is defined as the 
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Figure 1.6: The 18-neighborhood of the lattice point p. 
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Figure 1.7: The 26-neighborhood of the lattice point p. 

one point simple path. 

Definition 1.5. A set 5 of lattice points of an array is called n-connected iff for every 

pair of lattice points, p,q G S there exists an n-path completely contained in S that starts 

at p and ends at q. 

Figure 1.8 illustrates the effects of using different adjacency relations when analyzing an 

image. If ^adjacency is used there are four connected regions while there is only one 

connected region when 8-adjacency is concerned. 
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Figure 1.8: An 8-connected set with four ^components. 

1.2 Digital Pictures 

The most important concept in digital topology and the starting point for all research in 

the field are digital pictures (Definition 1.8). Digital pictures take the notions of digital 

topology, seen above, and combine them in a way that allows us to analyze digital images 

using classical topology. The first thing to keep in mind when wanting to analyze digital 

images is that they exist in a discrete space. Thus it is important that we construct digital 

images such that we are able to translate most of the concepts known in Euclidean spaces. 

The most fundamental concept in topology that one needs to translate to digital topology 

is the well-known Jordan Curve Theorem. 

Theorem 1.6. Any simple closed curve separates the plane into two domains, each 

having the curve as its boundary. One of these domains, called the interior, is bounded; 

the other, called the exterior, is unbounded [SS03]. • 

The simplest example of a closed curve in a discrete space such as that of digital pictures 

would consist of four 8-adjacent points that are not 4-adjacent (Figure 1.9). If we were to 
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consider both the foreground and background with 4-connectivity, the black points would 

be totally disconnected but the plane would be separated into two domains. Alternatively, 

if we consider both the foreground and background using 8-connectedness the black points 

would be considered a simple closed curve, however the plane would not be separated into 

two separate domains. It would seem that we have no ideal way of analyzing this most 

simple of digital curves without running into some immediate problems. Hence, digital 

pictures were introduced to solve this fundamental problem by means of restructuring 

the way we look at a digital image. 

— © ©—-—© o © — 
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Figure 1.9: The Jordan Curve Paradox for discrete spaces. 

Definition 1.7. A digital picture space (DPS) is a triple (V,P,u), where V — 1? or 

V = Z3 determines the dimension of the array, and (3 (UJ) is the set determining the 

neighborhood relation of the black (white) foreground points usually [GDR04]. 

Definition 1.8. A digital picture is a quadruple / = (V,/3,u>,B) where (V,/3,UJ) is a 

DPS and B is a finite set of black (or foreground) lattice points [GDR04]. 

The main feature of digital pictures is the association of "compatible" different adjacency 

relations to the foreground and background components of the image. This automatically 
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solves the Jordan Curve problem but brings about different ways of analyzing an image. 

Consider the image presented back in figure. 1.8. If we were to embed it in a (4,8) DPS 

we would see it as having four different foreground regions and one background region. 

However, if we were to use an (8,4) connectivity pair we would see one foreground regions 

and two isolated background regions. Therefore, it becomes important to describe the 

specifics of digital pictures. First of all a digital picture V = (V,(3,UJ, B), is considered 

two-dimensional or three-dimensional depending on whether V — Z2 or V = Z3. The 

adjacency of points in a digital picture depends on the choice of adjacency relations used, 

typically (/?, u) = (4,8) or (8,4) if V = Z2 and (/?, u) = (6, 26), (26,6), (6,18) or (18,6) if 

V = Z3. Two black points are adjacent if they are /? adjacent, likewise two white points 

are considered adjacent if they are u> adjacent, when considering a (f3,u>) digital picture. 

When determining the adjacency between black and white points, the two are said to be 

adjacent if they are u> adjacent. Figures. 1.10 & 1.11 illustrate the adjacencies of the two 

most typical two-dimensional digital pictures. 

© e e e o 

Figure 1.10: The adjacencies in a typical (8,4) digital picture. 
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Figure 1.11: The adjacencies in a typical (4,8) digital picture. Note that the black point 
set is the same as in Fig. 1.10. 

1.3 On Simple Closed Paths, Holes, Borders, and Cav­

ities 

As simple closed paths are important when analyzing digital pictures we take the time 

to summarize a few of their important properties. These properties will be useful when 

discussing border following algorithms later on. We begin by defining a few terms that 

will be used throughout this section. 

Definition 1.9. Let A = (x0, • • • ,xn) be a set of black points satisfying the following 

conditions; 

1. n > 4; 

2. xr = xs if and only if r = s; 

3. xr € Ni(xs) if and only if r = s ± 1 or {r, s} — {0, n}. 

Such an A will be known as a simple closed i-path. 

Clarifying the above conditions, condition 2 insures that A never crosses itself while 

13 



condition 3 tells us that A never brushes past itself, and that A is indeed a closed 4-path 

where xo is a 4-neighbor of xn. Condition 1 is there to eliminate the pathological cases 

where A is a singleton, 2 neighboring points or the 2 x 2 square. 

Definition 1.10. Let x = (a,b) be any element of the complement of A, denoted A. 

Define the horizontal right half-line emanating from x as: 

«x = {(a + A:, 6)|fc = 0,1,2, . . .} . 

Thus, Hx n A will be the elements of A along the right half line Hx whose terms are 

a + ki + 1,... ,a + hi + ri;a + k2 + I,... ,a + k2 + r2\- •• such that 0 < k\ + 1 < 

k\ + 7*1 < k2 + 1 < k2 + r2 .... This notation is used such that each ki is the starting 

point of a run of elements in A on Hx of length rt. In figure 1.12 we have selected 

a point x = (a, b) to the left of a closed curve. The right half line emanating from 

x intersects the closed curve 4 times and as such the set A D Hx contains elements 

{(a + h + 1, b), (a + k2 + 1,6), (a + k3 + 1, b), (a + k3 + 2,6), (a + fc3 + 3,6), (a + k4 + 1, &)}. 

As such ki = 0, k2 — 2, fc3 = 4, k4 — 9; also, since there is only one "run" of length 

greater then 1, r\ = r2 = r4 — 1 and r3 = 3. 

If we investigate the behavior around a set of points {xu+x = (a + k + 1, 6),..., Xk+r — 

(a + k + r, b)} (subscripts are modulo n + 1) of a run along Hx knowing that consecutive 

elements are 4-neighbors allows us to say that the points Xk and xk+r cannot be located 

on the bth row. Knowing this we can conclude that xk = (a + k + 1, b ± 1) and Xk+r = 

(a+k + r, 6±1). We say that Hx touches A along the run {x^+i = (a+fc + 1,6), ...,Xk+r = 

(a + k + r, b)} if both ±'s are positive, or negative, and that Hx crosses A along the run if 

one is positive and the other negative. Keeping track of the number of times in which Hx 

crosses A we can say that x is in the inside of A if we have an odd number or that x is 

in the outside of A if we have an even number. Now that the notation has been clarified 

we quote the following propositions, which were initially described by A. Rosenfeld in 

14 
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Figure 1.12: A possible simple closed 4-path in gray and purple with right horizontal 
half-line Hx outlined in red. The elements of AC\HX are drawn in purple. 

[Ros70]. 

Proposition 1.11. The inside and outside of any simple closed 4-path are both nonempty. 

Proof. Gall A a set of black points satisfying definition 1.9. Because A is a subset of a 

digital picture space, P of infinite size (in both the vertical and horizontal directions) 

we can always find an element x € P \ A which is further right than any element in A. 

Since x is to the right of any element in A, the right half line emanating from x will 

never contain an element of A, so by definition 1.9 x is outside A, hence the outside of 

A is non-empty. To show that the inside of A is never empty take the set of uppermost 

elements of A from them take the farthest right element. That is, Xh = (u, v) € A such 

that the corresponding elements (u + l,v),(u,v + l) are in P\A. The elements (u — l,v) 

and (u,v — 1), must be in A, since they are the only possibilities of xh-i, and Xh+i- By 

condition 3, we know that (u — 1, v — 1) cannot belong to A, if it did it would mean that 

Xh is allowed to neighbor more then two elements in A. Since A must be a closed path, 

we must have (u — l,v — 1) surrounded with elements of A in order to close the path. 
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We conclude that (u — l,v — l) must belong to the inside of A and as such, the inside of 

A is nonempty. • 

Definition 1.12. Given two sets X and Y in a digital picture V — (V, ft, to, B) where X 

is a connected set, we say that X surrounds Y if each point of Y is contained in a finite 

component of V\X [KR89]. 

The concept of surrounds has several important properties in a digital picture V = 

(V,(3,u>, B). It is easy to demonstrate that X surrounds Y is an antisymmetric (that is, 

aRb =S> bj$a if a ^ b for a given relation R), non-reflexive, transitive relation and thus, is 

a partial order on the connected subsets of K[KR89]. 

Theorem 1.13. In a connected digital picture, if a connected set of points X surrounds 

a connected set of points Y, then Y does not surround X. 

Proof. Y is finite and connected, and since we work in a digital space, Y has a finite 

number of finite components and one infinite connected component. To visualize intu­

itively, one can draw a simple closed path,P, such that Y and the finite components of Y 

are located inside P, while the infinite component of Y is outside P. If we assume that 

Y surrounds X, then X must be contained in a finite component of Y, call it A. Thus, 

X is inside P. Since X is inside P, and Y must be contained in a finite component of 

X, call it B, B must be adjacent to the infinite component of X. If B is adjacent to the 

infinite component of X it is an infinite component, this contradicts the property that 

X surrounds Y. • 

Definition 1.14. In a digital picture V , a white component that is adjacent and sur­

rounded by a black component C is called a hole in C if V is two dimensional and a 

cavity in C if V is three dimensional [TKR92]. 
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Figure 1.13: A black component with two holes in an (8,4) "picture and one hole in a 
(4, 8) picture 

Definition 1.15. In a digital picture V = (V,(3,u>,B) a black point p is said to be 

isolated if there exist no black points in B that are adjacent to p [KR89]. 

Definition 1.16. Given a digital picture V — (V,P,u,B) with a connected black com­

ponent C C B, any point p 6 C that is adjacent to a white point is called a border point 

(recall that in this case adjacent means w-adjacent). The collection of points p G C that 

are adjacent to white points is called the border of C in V . Given a white component 

D € (V \B) the border of C with respect to D is the collection of all points in C that 

are adjacent to D [KR89]. 

As a side note any black point which is neither a border point nor an isolated point is 

called an interior point. Figure 1.15 illustrates the three different types of black points. 
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Figure 1.14: In a (4,8) digital picture, both p and q are isolated points while only p would 
be isolated in an (8.4) picture 

Simple Points, Thinning and Shrinking 

Often some tasks in image processing are simplified when using fewer points. However, 

we must be careful to make sure that while reducing the image one does not make the 

mistake of changing it on a topological level. Thus, we must formulate rules that will 

allow us to remove or "delete" black points without changing what is important about the 

image on a topological level. In order to clarify the notation it is a good idea to define 

the following concepts. 

Definition 1.17. Given a black point p from a digital picture V = (V,/3,UJ,B), we say 

that the point p is deleted from V when p is removed from the set B. In other words p 

is changed from a black point to a white point when it is deleted. In contrast, a white 

point q is said to be added to V if q is added to the set B. 
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encased 
only. 

.15: Borders points of the (8,4) digital picture are indicated by the black points 
in squares and circles, whereas the (4,8) border points are incased in squares 

Definition 1.18. Given V = (V,/3,LO,B) and Vl = {V,0,u,B - D) two related digital 

pictures, such that D C B. Then Vl is obtained from V by deleting the points in D. 

Conversely, V is obtained from Vl by adding the points in D [KR89]. 

There may be some confusion when talking about keeping an image unchanged in the 

topological sense when deleting or adding points, the following criterion clarifies this 

concept. 

Criterion 1.19. Given V = (V,@,UJ,B) a two dimensional digital picture. Then the 

deletion of any point p in the subset D of B preserves topology if and only if: 

1. each black component of V contains exactly one black component of Vl, 

2. each white component of Vl contains exactly one white component of V, 

where V' is the digital picture (Z2, (3,u,B - £>)[KR89]. 
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It is important to note that the above criterion ensures that the image remains unchanged 

at the topological level. However, it is not enough to ensure that the reduced image will 

hold all the important information found in the original. Although we are making sure 

that no holes are created or eliminated, criterion 1.19 is not complete. For example 

given a digital picture consisting of a simple black arc, as in Fig. 1.16, and proceeding to 

eliminate all black pixels such that criterion. 1.19 is satisfied we could possibly reduce 

the arc to a single point. 

- o — < & • 

(a) Before Shrinking (b) After Shrinking 

Figure 1.16: A simple black arc in an (8,4) DPS can be reduced to the single point p 
while maintaining the conditions of Criterion 1.19. 

Any feature that is not preserved according to criterion 1.19 is said to be a non-topological 

requirement. Any algorithm which only considers the requirements of criterion 1.19 is 

known as a shrinking algorithm since if carried to the end the algorithm would shrink an 

image down to the smallest number of black points which would maintain the topological 

structure, (this was proved by Rosenfeld in [Ros70]). When the main goal is to keep 

non-topological requirements such as arc length, is accomplished by what are known as 

thinning algorithms. 

Identifying simple points when shrinking an image can be done quickly and at a local 
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level. The requirement for a simple point is that it satisfies criterion 1.19 such that 

when a simple point p is deleted, the number of black and white components remains 

unchanged. Rosenfeld [[Ros70], section 3] presented a characterization of simple points 

which we now state. 

Theorem 1.20. Let p be a non-isolated border point in an (8,4) or (4,8) digital picture. 

Let B be the set of black points of the digital picture and let B' = B — {p}. Then the 

following are equivalent: 

1. p is a simple point. 

2. p is adjacent to just one component of N(p) fl B'. 

3. p is adjacent to just one component of N(p) — B. 

Where N(p) represents the neighborhood of the point p. 

As it may be unclear from the theorem, when we refer to the point p as adjacent to 

a component in an (m, n) picture, we mean m-adjacent to a black component and n-

adjacent to a white component as outlined in the definition of adjacency. This theorem 

implicitly shows that only the immediate 3 x 3 neighborhood, N(p), of a point is required 

to determine whether a point p is simple or not. Another curiosity of this theorem is 

that a point p is a simple point of a digital picture (Z2,(3,OJ,B) if and only if it is a 

simple point of the complement digital picture (Z2, j3, u>, (Z2 — B) U {p}). The latter can 

be realized by swapping the black and white point sets of the former digital picture while 

keeping p a black point, as demonstrated in Fig. 1.17. 

Edge Tracking Algorithms 

Identifying the border of a digital picture is important in object detection and image 

thinning. The concept of a border here does not directly correspond to the border in 
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Figure 1.17: On the left the digital picture (Z2,8,4, B) with p as a simple point. While 
on the right we have the complement digital picture (Z2,8,4, (Z2 — B) U {p}) where p is 
still a simple point. 

Euclidean space. We recall the classical definition of the boundary of a subset of a 

topological space. 

Definition 1.21. The boundary of a subset A of the topological space T is the set, 

cl(A) n (T — A), where cl(A) is the closure of A, and A is the complement. If T has a 

metric the boundary of A is the set of all points at zero distance from both A and A 

[Lef49]. 

Since we have not defined any of the concepts such as closure, complement and metric 

in digital pictures, this definition lacks the description required here. If we were to try 

and force the use of this definition by embedding our digital picture into a Euclidean 

space we would not obtain our desired result either. The problem is that the topological 

boundary of a set S is of dimension one less then the set itself. Thus for a digital picture 

we would classically consider its edge as its boundary which is a problem since a digital 

picture is simply a collection of pixels all of which are of the same dimension. Figure 

1.18 demonstrates the difference between an edge and the boundary which we want for 

a digital picture. 
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Figure 1.18: Under (4,8) adjacency the boundary of the black point set S are the circled 
and squared points, if we consider a (8,4) adjacency only the circled points make up the 
boundary. The edge of S is the green curve surrounding the set, which cannot be encoded 
by the lattice points. 

In [Ros70] Rosenfeld declared a way of representing an edge using the pair of 4-adjacent 

pixels which shared it, obviously one of the pixels must belong to S while the other 

must belong to S. Thus, this notation allows for the use of an edge following algorithm. 

It is now possible to find the edge of a connected set S by using the "left hand on 

wall"technique, and S will be outlined in a counterclockwise manner. If the. set S is 

4-connected then the algorithm begins with an edge e^ = (xk,yk), and without loss of 

generality we can say that Xk = 1 is to the left of yk = 0 thus we have the configuration 

, where a and b are the two pixels directly above. The process of "keeping one's 

left hand on wall" is accomplished by the proper choice of the the edge ek+i = (xk+i,yk+i)-

In order to choose e^+i, we consider the following table. 
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a 
0 
1. 
1 

b 

0 
1 

%k+i 

xk 

a 
b 

Vk+i 
a 
b 

Vk 

Columns a and b outline the possible values that the pixels directly above the edge can 

have, while the next two columns tell us which of the four pixels in the configuration 

Xk = 1 and yk = 0 should be. Rosenfeld also proved in [Ros70] that by reiterating this 

table until we arrive -back at the original edge efc gives us the complete set of edges to 

the set S. It is also possible to use the "left hand of wall" technique for an 8-connected 

set S if we use substitute with the following analogous table. 

a 
0 
1 

b 
0 
0 
1 

Xk+l 

Xk 

a 
b 

Vk+i 
a 
b 

Vk 

Border Tracking Algorithms 

It is also possible to create an algorithm that tracks the border of a connected set S 

instead of its edge. This has the advantage of taking fewer steps; for example when 

tracking the edges of an endpoint the 3 edges of the pixel must be visited, while in 

border tracking the end point is visited only once. On the other hand, as we shall see, 

border tracking algorithms are more complicated. Border tracking algorithms, like edge 

tracking, begin with the assumption that one border pixel has already been found. The 

algorithm itself then finds another border point by examining the neighborhood around 

the original pixel. The following section will describe a possible border tracking algorithm 

developed by Rosenfeld in [Ros70]. 

24 



We begin with the initially known border pixel x0. To find the next border pixel x-y we 

examine N^xo), for an element, 2/1 G Ni(xo) D S. Since x0 is a border point evidently 

N4(XQ) n S will be non-empty. Number the pixels in N&(XQ) as j / i , . . . ,yg in a counter­

clockwise fashion, (figure 1.19). If none of 2/3,2/5,2/7 G {jto+i} belong to S then £0 is the 

only border point. 

— © © -© © e © 
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XQ 

- $ 7 

0 0 

2/8 

2/7 

2/6 

© © © © © © 6 

Figure 1.19: An example of the labeling of pixels surrounding the known border point a;0 

of a i-connected set S. 

Now we can choose xi to be either one of two cases. If y2i G S then Xi = j/2i+i; or if 

2/2i G S then £1 = y^i- Both cases ensure that x\ will have a white point in N^xi). It is 

important to note that there may be multiple choices for x\ depending on our choice of 

2/i. Referring back to figure 1.19 if the algorithm started with 2/5, then x\ would have been 

chosen as 2/6 • Rosenfeld points out that using this algorithm will visit in the same order 

each element of S that the edge following algorithm from the previous section would. 

Using the similarity the following theorem becomes self evident. 

Theorem 1.22. Let XQ be any 4-border element of the finite, simply connected set S, 

and let the sequence Xi,x2 ) . . . be defined from the above border following algorithm. 
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Then there exists a smallest positive integer m such that xm = XQ and x + m + 1; and 

every border element of S occurs either once or twice in the set {xo, • •• , xm — 1} with 

the latter holding if and only if the element has just two nonconsecutive 4-neighbors in 

S. 

Another type of border following algorithm discussed in [Ros70], uses a "helical scan" to 

find border elements. This is a simpler algorithm to the previous but has other drawbacks 

as we shall see. The algorithm proceeds as follows. Given any border element x0 and the 

choice of whether to proceed vertically or horizontally to the next element X\, the choice 

of xi+i goes as follows: 

1. if Xi e S turn right; 

2. if Xi 6 S turn left; 

3. If this is the third time in a row that the same direction has been taken, take the 

other. 

Border elements can be read of the sequence of elements {x0, X\,..., xm} from the algo­

rithm. A border element Xi € S can be identified from the sequence if one of either xt-i 

or xi+i in an element of S. Figure 1.20 illustrates the implementation of this algorithm 

on a simple set. 

The outcome of this procedure gives us a sequence of points, (XQ, 2/1, 2/2, 2/3, %o, £5, 2/6, 2/7, 

x&, 2/9,2/10, £11, 2/12, 2/13, ^14, Z15, 2/16, 2/i7, 2/i8, ^15 after which it repeats itself). We use the 

notation that an x represents a black point and a y represents a white point. Although 

trivial in this case, the border point can be extracted from the sequence anytime that an 

x is adjacent to a y, and obviously here we end up with the border points (x0, x5, xs, 

Xn, xu, and x15). This is not the most efficient algorithm for finding border points, and 

the situation is even worse if the initial direction is poorly chosen, see Figure 1.21. 
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Figure 1.20: An example of the implementation of the "helical" algorithm starting at the 
point XQ and initially moving vertically upward. 

There is also a problem in having the algorithm consistently identifying either a 4 or 

8-connected component. In the simple case of a point set S made of 5 points that are 

8 connected but not 4 connected, the algorithm does not stay on any single point as it 

should in a (4,8) picture, neither does it visit all points as it should in an (8,4) picture. 

Figure 1.22 illustrates this example but, instead of labeling the points arrows are used 

to follow the progress of the algorithm. Keep in mind that the algorithm ends when it 

reaches the initial point such that the next turn is a duplicate of the initial direction. 

Not only does the algorithm not visit every border point if initialized at the center point, 

but if any other initial border point is chosen the algorithm, will fail to identify all points 

of the connected component, no matter the initial direction chosen. Figure 1.23 shows 

the behavior of the algorithm if one of the corner border points is chosen as the starting 

point instead. 
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Figure 1.21: The helical method on the same set as above but with a poor choice of initial 
direction. 

1.4 Euler Characteristics and Continuous Analogs 

The Euler Characteristic of a polyhedral set,S, is a topological invariant in mathematics, 

and as such it would be nice to apply it to the construct of digital pictures. We begin 

by defining the Euler characteristic of a polyhedral set using a set of consistent axioms. 

By a polyhedral set we mean a set consisting of a finite union of points, closed straight 

lines, closed triangles, and closed tetrahedra. 
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Figure 1.22: On the left side the algorithm starts at x0 and initially moves vertically 
the result is that the top right and bottom left points are not visited. On the right the 
algorithm again starts with x0 and initially moves horizontally and as a result the top left 
and bottom right are not visited. 

Definition 1.23. The Euler characteristic denoted x{S), of a polyhedral set S is an 

integer satisfying the following axioms, 

1. X(0) = 0; 

2. x(S) — 1 if S is non-empty and convex; 

3. for all polyhedral X and Y, x{X U Y) = x{X) + x(Y) - x(X n Y). 

Explicitly, x(S) is equal to the following alternating sum for an arbitrary triangulation 

of S: 

(* of points) — (* of edges) + (# of triangles) - (# of tetrahedra) [KR89]. 

In fact if S is a planar (2D) polyhedral set then x{S) is simply equal to the number of 

connected components of 5 minus the number of holes in S. Take for example a 3 holed 

donut, it has 1 connected component, and 3 holes. Therefore, the Euler characteristic 

would be 1 — 3 = —2. In 3D, x(S) is equal to the number of components of S plus 

29 



H j * -

< * H 

-$*-

fx0 
• * $ • • • • 

- *&- -

-$*-

I—4*r^ .TO 

- » * -

-A«- - • $ - - e s> 

-»$- -A A- $ -

Figure 1.23: On the left side the algorithm starts at x0 and initially moves horizontally 
the result is that the top left and bottom right points are not visited. On the right the 
algorithm again starts with .x'0 and initially moves vertically and as a result only the 
border point x0 is visited. Due to symmetry the choice of any other corner as a starting 
point will result in similar results. 

the number of cavities of S minus the number of "tunnels" of 5. Figure 1.24 illustrates 

a cube missing to opposing faces, which would have 1 connected component, 0 cavities, 

and 1 tunnel. Hence, x(5) = 1 + 0 - 1 = 0. 

The concept of Euler characteristics is well known in the field of algebraic topology. In 

order to apply it to the digital topology we introduce the idea of a "continuous analog" 

to a digital picture. 

Definition 1.24. Let v be an (m, n) digital picture, where (m,n) — (4,8) or (8,4), we 
define the continuous analog of v , denoted C(v ), as follows. Let Co be the set of black 
points of v , let C\ be the union of all straight line segments whose endpoints are adjacent 
black points of v , and let C2 be the union of all unit squares and, if (m, n) = (8,4), all 
(1,1, \/2) triangles, whose sides are contained in C\. Then C{v ) = C0UC1 UC2 [KR89]. 

Figures 1.25 and 1.26 illustrate the continuous analogs of a digital picture in an (8,4) 
and a (4,8) framework. The continuous analog C{v ), has three important properties 
[KR89]. 

1. All lattice points in a connected set of C(v ) correspond to a black connected set 
of v . 
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Figure 1.24: A simple cube with two opposing faces missing, of Euler characteristic 0. 

2. All lattice points in a connected set of the complement of C{v ) correspond to a 
white connected set of the complement of v . 

3. A black component D of v should be adjacent to a white component E of v if and 
only if the boundaries of the components of C{v ) and its complement that contain 
D and E meet. 

From these properties it can be established that if v is a 2 dimensional digital picture 
then 

X{v) = x{C{v)) 
— (#of components of C(v )) — (# of holes in C{v )) 

= (* of black components of v ) — (# of holes in v ). 

Aside from using the continuous analog, the Euler characteristic of a digital picture can 
be computed using methods more accommodating to computer algorithms. For two-
dimensional (4,8) and (8,4) digital pictures, a formula was provided by Gray [Gra71] to 
compute the Euler characteristic of a continuous analog of a digital image using 2 by 2 
blocks of lattice points: 
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Figure 1.25: The continuous analog of a (4,8) digital picture. 

4W = n(Q1)-n(Q3)-2n(QD) 
4Z = n(Q1)-n{Q3) + 2n(QD). 

The notation used applies to "unit cells" of the form a . Thus, n(Qi) denotes the 
c d 

number of unit cells with exactly i black points, while n(Qo) represents the number of 

units cells of the diagonal type, , or 

A general way to derive a formula for computing Euler characteristics was outlined in 
[TKR92]. Beginning with any two or three-dimensional unit cell K, let K° be the set of 
vertices of K, Kl be the union of edges of K, and if K is three-dimensional, let K2 be 
the union of the six faces of K. Then for all plane polyhedra, P we can define; 

x{P\K) = x{.PnK)-x{PnKl)l2-x{PnK°)H, 

and in the three dimensional case we define; 

X(P; K) = X(P r\K) - X(P n K2)/2 - X(P n Kl)/4 - X(P n K°)/8. 

32 



© 

© 

© 

0 

0 

0 

© 

© 

© 

C 

i=; 

• 

(=. 

m 

e 

© 

0 

s 

© 

© 

T 

• 

• 

• 

* 

© 

© 

• 

• 

• 

A 

0 

© 

•=> 

• 

• 

• 

• ) 

9 

0 

0 

• 

0 

© 

0 

• 

© 

© 

0 

0 

© 

© 

© 

© 

© 

© 

Figure 1.26: The continuous analog of an (8,4) digital picture. The black points are the 
same as those in figure 1.25 

From the Inclusion-Exclusion principle it is easy to show that, for any two, (three)-
dimensional polyhedral set P, x{P) IS simply the sum of x(P; K) over all unit cells 
K. 
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CHAPTER 2 

Axiomatic Digital Topology 

In the previous chapter we discussed what is referred to as the graph based approach 

to digital topology. This highly intuitive approach led to many advancements in digital 

topology, (image subsets, boundaries, e tc . ) . Despite these advancements the approach 

has led to certain inconsistencies in the theory most notably with subset boundaries and 

the like. The idea of axiomatic digital topology was proposed by V. Kovalevsky [Kov88], 

in the late eighties. The approach suggests encoding images as complexes instead of as 

simple graphs. Although less intuitive, the complex approach, as we shall see, eliminates 

the paradoxes which arise using the graph approach. 

2.1 Inconsistencies in the Classical Approach 

In section 1.2 we discussed the problems with using the graph based approach and satis­

fying the Jordan Curve Theorem. The problem was resolved using digital picture spaces 

where different adjacency relations where given to foreground and background pixels. 

This solution does not lead to valid topological structure of the digital space, as the 
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space structure must not depend on the definition of the variable subsets of the space 

[Kov92]. Furthermore, such a binary adjacency relation does not solve the problem in 

non-binary images. 

There is another inconsistency which arises when considering the border of a subset of 

a digital image using the graph based approach. Since the only elements encoded into 

the graph are the pixels (the 3-D case poses a similar problem), a border must be defined 

using elements of the same dimension as the subset itself. As was seen in section 1.16 the 

border becomes a strip two pixels wide which, conflicts with the idea that the boundary 

should be a thin curve. Trying to shrink the border to only one pixel in width produces 

two different ideas of a border that of the inner and outer borders, Fig. 2.1. Another 

important property of the border to a set is that, the border of the set must equal the 

border of the set's complement, being forced to use borders as defined in the graph 

approach makes this property an impossibility. 

H 

(a) (b) (c) 

Figure 2.1: (a) A subset of a digital image, (b) Its inner border in green and outer 
border in blue under (4,8) adjacency, (c) Its inner border in green and outer border in 
blue under (8,4) adjacency. 
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Figure 2.1 gives an inner and outer border both of which are only 1 pixel wide but 

it still has a non-zero area. There is an immediate problem since the inner and outer 

borders do not coincide. In addition, the (4,8) border has the disadvantage that it is 

not connected in either the inner or outer case (recall that we must consider 4 adjacency 

for objects here), whereas the (8,4) border is not simply connected (again this would be 

under 8 adjacency) in either case [Kov92j. These paradoxes lead to the conclusion that 

the current idea must be changed. In section 1.3 we saw the treatment of borders using 

"cracks", or 1 dimensional elements, and encoding each via the binary pair of pixels which 

where incident to each crack. The purpose in the next section will be to improve upon 

the idea of using elements of different dimension to analyze a digital image using finite 

topological spaces [Kov05]. 

2.2 The Axioms of Digital Topology 

To begin defining axioms for a digital topology it is important to decide what basic 

properties are required as a structure for the topological space. From studying the graph 

based approach we have learned that analyzing the pixels alone leads to an inconsistent 

theory. A natural addition to the graph approach is to add elements other then pixels 

to the analysis. A complex is a mathematical structure which can be used to represent 

elements of differing geometric properties. This would allow the edges and corners of 

pixels to be analyzed. Before defining the complex structure we begin by building a 

proper topology on a digital image. 

Definition 2.1 (Digital Space). A digital space is a set S together with a collection H(e) 

of subsets of S called neighborhoods of e, assigned to each element e g S . Such a space 

is denoted as (5, {N(e)}e<Es). 
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Definition 2.2. N(e) is the collection of elements called neighborhoods of e with the 

following properties: 

1. V N Gtt(e), eeN. 

2 . V e e S , S G N(e). 

3. If Nj G N(e)Vj G J then; 

4. UNi...Nk€ H(e) then; 
fc 

p|^GK(e). 

Definition 2.3. A space (S, {N(e)}e6s) is called locally finite if and only if for all e € 5 

there exists N G H(e) such that iV = card(iV) < oo. 

Proposition 2.4. In a locally finite space, for all e G S there exists a unique smallest 

neighborhood SN(e) G H(e) that is such that SN(e) < TV for all N G N(e). 

Proof. For all neighborhoods TVj of e G S that are finite we can define nj = Nj. Since 

{rij} C IN (the naturals) there exists n0 a minimum of {rij}. Let iV0 be a neighborhood 

such that No = no. TO show that N0 is unique, we proceed by contradiction. Assume 

that NQ and N({ are neighborhoods such that: 

l.JV{,JV;6N(e); 

2. ^ jL NH; 
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By the properties of neighborhoods we know that NQ n NQ G H(e) and moreover that 

(NQ fl Ng) < n0 which contradicts are assumption that no is minimal. Therefore we can 

conclude that N0 exists and is unique. 

• 

Definition 2.5 (frontier). The border, also called the frontier, of a non-empty subset T 

of the space S, denoted FR(T, S), is the set of all elements e of S, such that the smallest 

neighborhood of e contains elements of both T and its complement S\T. 

Definition 2.6 (incidence). If b G SN(a) or a G SN(6) we say that the elements a and b 

are incident to each other. 

Definition 2.7 (incident path). Let T be a subset of the space S. A sequence (a\, a2, • • •, a^), 

a* G T, i — 1, 2 , . . . , k; in which each two subsequent elements(ai_i, a,), are incident to 

each other, is called an incident path in T from Oi to afc. 

Definition 2.8 (connectedness). Incident elements are directly connected. A subset T of 

the space S is connected if and only if for any two elements of T there exists an incident 

path containing these two elements, which completely lies in T. 

Definition 2.9 (neighborhood relation). We define the binary neighborhood relation N 

on the space {S, K(e)eeS} as aNb ^ a e SN(6). 

Definition 2.10 (opponents). A pair (a, b) of elements of the frontier FR(T,S) of a 

subset T C S are opponents of each other, if a belongs to SN(b), b belongs to SN(a), 

one of them belongs to T and the other to S — T. 

Definition 2.11 (thin frontier). The frontier FR(T, 5) of a subset T of a space S is 

called thin if it contains no opponent pairs. Otherwise the frontier is called thick. 

Example 2.12. Figure 2.2 is used to illustrate the difference between what will be 

referred to as thick and thin borders. On the left side of Fig. 2.2 we have an image 
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represented using the techniques found in Chapter 1, as such, the entire space S is 

simply the collection of all 2-faces or pixel faces while the set of gray 2-faces represent 

the image itself. Since the edges and vertices are not considered, the only way to define a 

border is to do so by stating the pair of pixels which properly encompass the set of gray 

points. As seen below the resulting border is a collection of opposing 2-face pairs which 

are represented as a line joining a black 2-face to its paired white 2-face. From def.2.11 

we can see that Fig. 2.2a represents a thick frontier. 

In contrast, Fig. 2.2b is the same basic image, but we have given each pixel neighborhoods 

that consist of more then just pixels. As such, the 2-faces are encoded along with their 

corresponding edges and vertices. Using such a structure the set of elements defining the 

image are the gray pixels, and the edges and vertices which are part of the boundary 

of any of said pixels. The resulting border simply becomes the black edges and vertices 

seen in Fig. 2.2b. By Def. 2.9 we see that there are no opponent pairs in the border of 

figure 2.2b, and it is a good example of a thin border. 

si Wh-O —U-J 
1 

(a) (b) 

Figure 2.2: The thick frontier, (a), and a thin frontier, (b). 
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Definition 2.13. We call a locally finite space {S, tt(e)e6S}, an ALF space if it satisfies 

the following 3 axioms. 

1. Axiom Dl. 

3 e £ S such that SN(e) > 1. In other words, {S, H(e)eeS} is not the discrete space. 

2. Axiom D2. 

The border FR(T, S) of any subset T c 5 i s thin. 

3. Axiom D2>. 

The border of FR(T, S) is the same as FR(T, S) i.e FR(FR(T, S), S)=FR(T, S). 

2.3 Relationship to Classical Topology 

We remind the reader of the classic axioms of topology. Given a topological space S 

there exists a collection of subsets of S, called open sets, satisfying the following axioms 

[Kov06]: 

Axiom CI. The entire set S and the empty subset 0 are open. 

Axiom C2. The union of any number of open subsets is open. 

Axiom C3. The intersection of a finite number of open subsets is open. 

Finally, a last axiom is sometimes imposed known as the separation axiom. 

Axiom CA. The space has the separation property. 

The separation property normally takes the form of one of the following three types. 

Axiom TQ. For any distinct points x and y there is an open subset containing exactly 

one of the points. 
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Axiom T\. For any two distinct points x and y there is an open subset containing x but 

not y and another open subset, containing y but not x. 

Axiom T2. For any two distinct points x and y there are two non-intersecting open 

subsets one containing x the other y. 

Due to the definition of neighborhoods, ALF spaces automatically satisfy the first three 

axioms of topology. We shall see later how to go about defining open sets in an ALF space. 

The separation axiom of topology is not immediately deduced from the construction of 

an ALF space. However we shall prove that an ALF space does satisfy the T0 separation 

axiom. 

Theorem 2.14. A locally finite space, {£, N(e)eeS} satisfies the thin frontier axiom if 

and only if the neighborhood relation is antisymmetric that is, for all a,b £ S where 

a ±b: 

aNb^bXa. (2.1) 

Proof. If the space satisfies the thin border property then by definition of border there 

are no opponent pairs in the border of any subset, T, of S. Thus we can conclude that 

for each pair of elements a,b & S; 

a e SN(6) =>• 6^SN(o). 

As such the neighborhood relation is antisymmetric. 

We shall prove the second part by contradiction. Assume the neighborhood relation is 

not antisymmetric and that there are no opponent pairs. Since the neighborhood relation 

is not antisymmetric, there must exist a pair of elements a,b G S such that a ^ b, aNb 

and bNa. In such a case, a is part of the frontier FR({a},5') since SN(a) contains an 

element in {a}, namely a itself, and an element not in {a}, b. By a similar argument, b is 
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also in the frontier FR({a}, S). Therefore, a and b are an opponent pair and the frontier 

FR({a}, S) is not thin, which is a contradiction. • 

In order to relate to classical topology it is convenient to define the concept of an open 

set in an ALF space. 

Definition 2.15. A subset O C S is called open in S if it contains no elements of its 

frontier FR(0, S). A subset C C S is called closed in S if it contains all elements of 

FR(C,S). 

Lemma 2.16. A subset T c S is open in S according to Definition 2.15 iff it contains 

together with each element a € T also its smallest neighborhood SN(a) [Kov06]. 

Proof. If the subset T C S is open then it contains no elements of FR(T, S). Suppose 

that a € T and there exists b e SN(a), such that b G S\T. Then by definition 2.5 a £ 

FR(T, S) which contradicts T open. Therefore in order that T be open, T must contain 

the smallest neighborhood of all its elements. 

On the other hand suppose that T contains the smallest neighborhood of all its elements. 

Then for every a G T, SN(a) C T, and thus there can be no element b € S \T that is 

also in SN(a). Therefore no element of T can be in FR(T, S), thus T must be open. • 

2.4 Properties of Axiomatic Locally Finite Spaces 

This section outlines certain general properties of ALF spaces, which were defined above. 

Definition 2.17. Consider the relation a ^ b and a € SN(fe) for a,b € S. This relation is 

called the border relation, denoted < and can be read as "6 borders a" or "a is bordered 

by 6" if a < 6. 
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Lemma 2.18. If S is an ALF space and the border relation < is transitive, then S 

contains elements, which are bordered by no other elements (maximum elements). 

Proof. Now consider three elements a, b and c such that a < b and b < c. Since B is 

assumed to be transitive, the conclusion a < c holds, and thus, c € SN(a) and SN(6) C 

SN(c) since c is any element of SN(6). Since a is bordered by b, o^SN(6), and we can 

conclude that SN(a) contains at least one more element then SN(6). 

We now consider the following sequence of elements where each element bounds the one 

to the right of it: 

... < a<b < c< d < e... , (2.2) 

Without loss of generality, if we begin with the element b from the sequence we know 

from the definition of a locally finite space that the cardinality of SN(6) must be finite. 

We also know from above that in this sequence, 

SN(6) >WHd. 

We can continue moving towards the right in the sequence knowing that the cardinality 

of the smallest neighborhoods are strictly decreasing. Since S is a locally finite space 

we can be assured that the sequence must stop at a rightmost element whose smallest 

neighborhood will contain a single element namely itself. • 

We have proven the existence of maximal elements in ALF spaces. Another useful type 

of element to have when we will get to Chapter 3 are minimal element or those elements 

which border no other elements. However, unlike their maximal counterparts, the exis­

tence of minimal elements is not guaranteed by the construction of locally finite digital 

43 



spaces. The example below shows a locally finite digital space where there exists no 

minimal element. 

Example 2.19. We consider a subset S of the Hilbert cube power set P([0,if0), defined 

as the collection of faces of [0, l]No, of the form; 

i-times 

d =[0] x [0] x [0] x [0] x • • • x [0] x[0, if0. 

This set can be seen as all faces of the Hilbert cube that are co-faces of the origin. We 

notice that e, is a face of any element ej so long as i > j > 0. As such we wish to define 

a border relation < such that; 

e; > ej <=> i > j > 0 

In order to obtain this border relation we must define the smallest neighborhood to any 

element ea EV as: 

SN(ea) = {et £ V\i < a} 

Before we continue we shall show that S is an ALF space according to the three axioms 

defined previously. By construction of SN(e»), the space is locally finite since SN(ej) = 

i + 1. This construction also satisfies axiom 1 of an ALF space. Axiom 2 of an ALF space 

requires that the border of any subspace of S be thin, more concretely that there exists 

no opponent pairs. However, in order for there to exist opponent pairs, two elements, 

ea, eb of S must be such that ea 6 SN(efc) and e^ € SN(e„). By construction of the space 

there can be no such elements thus axiom 2 of an ALF space is also satisfied. The final 

axiom defining an ALF space states that for any subset T of S; 

FR(FR(T, 5), S) = FR(T, S). 

Any proper subspace T G S will be a collection of elements: 

T = {e0 ,e1 . . . , /^Tv , • • •} , n* € IN, 

44 



Where e, ^ T is the first element of S not in T. If e* ^ eo we see from the definition 

of border above, that the border of any proper subspace of S will be: 

FR(T,S) = {ejeS\j>i}. 

If e, = e0 then the border becomes: 

FR(T,S) = {ejeS\j>i}. 

We now investigate the set FR(FR(T, S), S). By definition the border of the border 

must contain all elements whose smallest neighborhoods intersect both FR(T, S) and its 

complement. In the first case, where e* ^ eo, FR(FR(T, S), S) will be: 

FR(FR(T, S),S) = {e, e S\j >i} = FR(T, 5). 

While if ei ^ e0, then 

FR(FR(T, S), S) = {tj e S\j >i} = FR(T, S). 

So we see that in all cases, FR(FR(T, S), S) = FR(T, S), and thus the third axiom is 

satisfied and we can conclude that S defines an ALF space. 

We can now create a sequence similar to that of equation 2.2 for the space S we get: 

. . . < e2 < ei < e0. (2.3) 

By the nature of construction of S we see that the sequence 2.3 has a maximal element 

e0 but no minimal element. Although the SN(ej) grow unbounded as i increases, for no 

i does SN(e,) actually contain an infinite number of elements. 

In order to avoid such pathological cases, we impose a last axiom to locally finite digital 

spaces. 
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Definition 2.20. An ALF space is called an ALF space with minimal element,(ALFM) 

if it satisfies the following axiom: 

Axiom D\. 

For any locally finite digital space, given any bordering chain C, there must exist a 

minimal element to C, i.e. an element for which has no other elements bordering it. 

Lemma 2.21. Let T be a subset of S, if the border relation B is transitive, then FR(T, S) 

contains no maximum elements of S and for any element a of S the subset SN(a) contains 

at least one maximum element. 

Proof. Assume that a is maximal in S and that a G FR(T, S), then SN(o) must intersect 

both T and S \T. This implies that SN(a) must contain at least two elements, one 

belonging to T and the other belonging to S \ T. Let b ̂  a and b G SN(a). Then a < b, 

and therefore a is no maximum element. 

We now prove the second assertion. Let 6 G SN(a) where b ̂  a, then a < b and suppose 

that b is not maximal in S. Then there must exist an element c G S, such that b < c, 

and therefore c G SN(6). Since S is locally finite, the sequence a < b < c < ... must 

finish at a maximum element of S. Since B is transitive, all elements of the sequence are 

in SN(a). Therefore, the maximum element of the sequence belongs to SN(a). • 

Theorem 2.22. A locally finite space satisfies Axiom 3 iff the bounding relation is 

transitive [Kov06]. 

Proof. Let F <Z S and F =FR(T, S), to prove the theorem we must show; 

1. if the neighborhood relation N is transitive, then FR(F, S) — F for all T C S and, 

2. if FR(F, S) = F is fulfilled for all T c S, then the neighborhood relation is transi­

tive. 
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Given assertion 1 let a G F. Since a G SN(a) it follows that SN(a) n F ^ 0. According 

to lemma 2.18 the set SN(a) must contain a maximum element of 5, which can never 

be a border element. Thus, SN(a) D (S - F) ^ 0 and the conditions for a G FR(F,S) 

are fulfilled so that any element of F belongs to FR(F, S). Now let b G FR(F, S) which 

means SN(6) n F ± 0 and SN(6) D (5 - F) ^ 0. We can deduce from the second condition 

that there always exists an element of SN(6), namely c such that c G F. Transitivity of 

TV tells us that any element d G SN(c) belongs to SN(6). Thus, SN(c) C SN(6). SN(c) 

intersects both T and S — T, and thus so does SN(6). We conclude that each element 

of FR(F,S) belongs to F confirming assertion 1. To prove assertion 2 let N be non-

transitive. Then, there exists distinct elements a,b,c G S such that b GSN(a), c GSN(fe), 

but, c^SN(a). If we consider the element c, it follows from q£SN(a) that a^FR({c}, 5), 

since SN(a) n {c} = 0. On the other hand, a eFR(FR({c}, S), S), since 6 bounds c 

and thus 6 eFR({c},5). It follows from b eSN(a) that SN(a)n FR({c},5) ^ 0. Also, 

SN(a) n (S1- FR({c},5)) is not empty since a£ FR({c},5). Thus, the neighborhood 

relation must be transitive. • 

Corollary 2.23. The border relation <, being irreflexive, antisymmetric, and transitive, 

is an irreflexive half-order. 

Corollary 2.24. The smallest neighborhood of any element a of an ALFM space is open 

both according to definition 2.15 and in the classical sense. It is the smallest open subset 

containing a. 

Proof. Let a be an element of 5 with smallest neighborhood SN(o). Proceeding by 

contradiction we assume SN(a) not open, according to definition 2.15. Therefore, SN(a) 

must contain at least one element b G FR(SN(a),<S) which by extension implies that 

SN(6) contains one element c^SN(a). Given a < b,b < c, and the fact that the border 

relation is transitive, we must conclude a < c and thus c GSN(a). Thus by contradiction 
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we conclude that SN(a) is open according to definition 2.15. By the construction of 

neighborhoods in definition 2.4 we are insured that SN(a) is also open according to the 

classical sense. Finally, in order to prove that SN(a) is the smallest open neighborhood 

containing a, let us remove an element b € SN(a) such that b ̂  a, this is no longer the 

smallest neighborhood of a and according the Lemma 2.16 it can no longer be considered 

an open set. Therefore SN(a) is the smallest open neighborhood containing a. • 

Corollary 2.25. An ALFM space satisfies the classical Axiom To. 

Proof. Consider two space elements a and b. If they are not incident to each other then 

a£SN(6) and b0)N(a), and since the neighborhoods are open according to definition 2.15, 

they satisfy the condition of Axiom To. If, a and b are incident to each other, then either 

a eSN(6) or b eSN(a). Since the neighborhood relation is antisymmetric, the condition 

b eSN(a) implies, ajgfSN(6). In this case the open subset SN(6) satisfies the condition of 

Axiom T0. • • 

An ALF space is actually a particular case of the classical T0 space. As a matter of fact 

we can treat an ALF space as a particular kind of locally finite space known as abstract 

cell complex (AC complex). For a full review of AC complexes, I refer you to [Kov06]. 

Definition 2.26. A space element a is called a face of the element b if b G SN(a, S). 

If a ^ b, then a is a proper face of 6. The face relation is reflexive, antisymmetric and 

transitive. Thus, it is a reflexive partial order in S and can be denoted using <. 

AC complexes, which will be further investigated in the next chapter, are characterized by 

a half order relation between the elements of the space (here the bounding relation a < b), 

and an additional feature: the dimension function. Dimensions of cells represent the half-

order corresponding to the bounding relation. We define a sequence; a < b < • • • < k 

of cells of a complex C, in which each cell bounds the cell to its right, a bounding path 
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from a to A; in C. The length of the bounding path is the number of cells in the sequence 

minus one. 

Definition 2.27. The dimension dim(c) of a cell c in a complex C is the length of the 

longest bounding path from any element of C to c. 

The validity of definition 2.27 is only held for spaces that satisfy Axiom D4. The locally 

finite space of example 2.19 is of infinite dimension and hence it is impossible to use def 

2.27 to define dimension on it. 

Example 2.28. Consider the AC complex of figure 2.3, which illustrates some of the 

possible bounding paths found in a cube. The elements p, e, / , v are respectively a point, 

edge, face, and interior of the cube. The arrows represent the different bounding paths 

that are possible. The arrow points from an element a to an element of higher dimension 

6 if a bounds b. Using definition 2.27 we are able to say that the dimension of this AC 

complex is 4, since we can see that longest bounding paths possible are of length 4, i.e. 

p —> e —>/—>?; is such a path. We point out the importance of axiom DA in the 

determination of dimension. As a general rule, the longest bounding path of an ALFM 

complex always begins at a minimal element and ends at a maximal element. As we saw 

in example 2.19 any complex which does not satisfy axiom DA will not have a minimal 

element from which to start a longest bounding chain and as a result we are unable to 

properly define a dimension to such complexes. 

We present a short example illustrating the smallest neighborhoods of elements of a 2D 

digital picture. 

Example 2.29. If we consider an AC complex with cubical elements as shown in Figure 

2.4, we can see the proper smallest neighborhoods of elements in each dimension. In 

such a complex, the smallest neighborhood of any element x must include all the co-faces 
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Figure 2.3: An AC complex with bounding relation represented by an arrow pointing 
from a to b if a bounds /; 

of x. Therefore, we see that when considering a 2 dimensional complex, the smallest 

neighborhood to a vertex p consists of itself, the four incident edges and four incident 

faces of p. While the smallest neighborhood to an edge e would be itself, the two incident 

faces. Finally, the smallest neighborhood to a face would be the face itself. 

p 

Figure 2.4: The smallest neighborhoods for an element of each dimension in a two di­
mension digital image. As a general rule the smallest neighborhood of an element, is the 
set of all its co-faces. 
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The theory presented here is based on the classical notions of topology, and has led to 

a consistent definition of connectedness and boundaries. Kovalevsky has shown, [Kov88] 

that any finite topological space with the separation property, as is the case here, is 

isomorphic to an abstract cell complex. 

Now that we have shown the need for a complex structure, in Chapter 3 we will introduce 

the theory of CW and cubical complexes. One advantage of these complexes is the ability 

to apply homology theory which can be used to give alternative analysis techniques for 

digital spaces. 
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CHAPTER 3 

Preliminaries 

A very abstract complex with homology structure is the CW-complex. We shall present 

the basic notions of CW-complexes here. However, for the purposes of digital images 

there is no need to use such a general approach. Therefore, once the structure of CW-

complexes is introduced, we shall switch our focus to the theory of cubical complexes, 

which is better suited to digital images, when we introduce homology theory. 

3.1 CW and Cubical Complexes 

Algebraic topology supplies crucial tools for the mathematical analysis of images. In this 

chapter we give a brief overview of CW-complexes, cubical complexes and homology, in 

order to familiarize the reader with the basic notions of these domains. For a complete 

introduction to these domains we refer the reader to [LW69], [TKM04] and [Mun84j. In 

order to introduce CW-complexes a brief introduction to cellular structures is required. 

Definition 3.1. A space a is called a cell of dimension m if it is homeomorphic to the 

closed euclidian unit m-ball Bm = { i £ Mm|||a;|| < 1}. where || • || is the Euclidean norm. 
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If a is homeomorphic to Int(Sm) it is called an open cell of dimension m. 

A cell ap is a face of the cell em if ap C em. The notation for the face relation is given as 

ap -< em. In the case where ap -< em and av ^ em, we say that op is a proper face of em. 

Definition 3.2. Let ap be a p-cell with a homeomorphism /i mapping CTP to Bp, the 

boundary of ap, noted <9(crp), is a subset of ap corresponding to h~1(Sp~1), where Sp~l — 

{"x € M|| |^| | = 1} is the boundary of Bp. 

The operation at the heart of CW-complexes is cell attachment. 

Definition 3.3. Let X be a topological space, ap a cell, and / : d(crp) —> X a continuous 

function. The attachment of <JP to X by / is the operation which consists of building a 

new topological space X U/ CTP which is the disjoint union of X and ap quotiented using 

the equivalence relation identifying each point x € d(ap) with f(x) G X. The function / 

is then called the attachment function. 

Figure 3.1: Attachment of a 1-cell to a disc. 

Definition 3.4. Let X be a set. A cell structure on X is a pair (X, <£), where $ is a 

collection of maps of closed Euclidean balls into X satisfying the following conditions. 
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Figure 3.2: Improper attachment of a 1-cell to a disc since one of the boundaries of the 
I-cell is not identified with the disc. 

1. If tp G $ has domain Bn, then ip is injective on lnt(Bn). 

2. The images {ip(Int(Bn))\(p £ <£} partition X, i.e., they are disjoint and have union 

X. 

3. If <p £ $ has domain Bn, then <p(dBn) C |J {ip(lnt{Bk))\ip £ $ has domain Bk and 

/c < n - l } . 

We call an an n-cell or closed n-cell of (X, <£), if ip £ $, <p has domain B n and the image 

set <p(Bn) — a", and we say ip is a characteristic map for the cell an. Therefore, $ is 

the set of characteristic maps for the cells of (X, $). For notation purposes we shall call 

ip(d(Bn)) = dan the boundary of a and (p(Int(Bn)) is called the interior of an. If n > 1, 

tp(Int(Bn)) is called an open n-cell. 

Definition 3.5. The (n — 1) skeleton of a cell structure (X, <£>) is given by: 

U{ip(lnt{Bn))\ip £ $ has domain Bn and k < n - 1} = Xn~\ 

Thus, for each n, CT" = y?(Int(Z?")) C Xn~\ 
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Knowing the definitions of a cell structure we can now introduce the notion of a CW-

complex. The basic operation of CW-complexes is the attachment of cells. Let X be a 

topological space, ap a cell and / : d(ap) - ^ X a continuous function such that the disjoint 

union X U/ ap of X and ap quotiented by the equivalence relation which identifies each 

point x €E d(ap) with f(x) 6 X, then the function / is called the attachment function. 

Definition 3.6. A space X is a CW-complex if there is a sequence of closed subspaces 

X o C l i C - C l 

such that X = UnXn and: 

1. the set XQ is discrete; 

2. for each n, Xn is obtained from Xn_i by attaching n-cells; 

3. the space X has the weak topology with respect to the closed sets Xn. 

Such a sequence is called a cellular decomposition of X. The weak topology is the topology 

on X such that the closed sets are the subcomplexes of (X, <£). 

The dimension of a CW-complex X is the largest dimension of a cell of X, if such exists, 

otherwise it is said to be infinite. 

Definition 3.7. Let X be a CW-complex, ap -< ap+1 two cells of X, and h a characteristic 

function of ap+1. We say that ap is a regular face of ap+1 if 

• h : /i_1(Int(<rp)) —> Int(crp) is a homeomorphism, 

• and h'x(ap) is homeomorphic to the closed p-ball, (Ep). 

A CW-complex is regular if it contains no irregular faces, otherwise it is irregular. Re­

lating to Chapter 2, we can also say that a CW-complex is a special case of an ALFM 

space. 
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3.2 Cubical Complexes 

A more natural complex for digital images is that of cubical complexes, as developed by 

[TKM04]. Whereas, in CW-complexes the cells can take on any shape, in cubical com­

plexes all cells are created by a finite product of intervals, defined below. We introduce 

the notions of cubical complexes in this section and refer the reader to [TKM04] for a 

full development. 

Definition 3.8. An elementary interval is ,a closed interval 7 C R of the form, 

I = [1,1 + 1] o r I = [l,l], (3.1) 

for some Z £ R. To simplify the notation, we write 

[l] = [l,l]. (3.2) 

for an interval that contains only one point. Elementary intervals that consist of a single 

point are degenerate, while those of length 1 are nondegenerate. 

There is no loss of generality from defining intervals as having length either 0 or 1, since 

through rescaling we can accommodate for any grid structure. 

Definition 3.9. An elementary cube Q is a finite product of elementary intervals, that 

is, 

Q = h x h x • • • x Id c Rd, (3.3) 

where each 7, is an elementary interval. The set of all elementary cubes in Rd is denoted 

by JCd. The set of all elementary cubes is denoted by /C namely 

oo 

K = (J Kd. (3.4) 
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Definition 3.10. Given Q — .I\ x 72 x • • • x h C Rd an elementary cube, the embedding 

number of Q is defined to be d since Q C Rd. The interval /j is referred to as the ith 

component of Q and is written as h{Q). The dimension of <5 is defined to be the number 

of non-degenerate components in Q and is denoted dim Q. 

Definition 3.11. Let Q , P € /C. If Q C P, then Q is a face of P. This is denoted by 

Q •< P- If Q d: P and Q ^ P, then Q is a proper face of P, which is written as Q -< P. 

Q is a primary face of P if Q is a face of P and dim Q = dim P — 1. 

Definition 3.12. A set X C Rd is cubical if X can be written as a finite union of 

elementary cubes. 

Definition 3.13. Let / be an elementary interval. The associated elementary cell is 

; _ / (U + i) if/ = [U + i], 
1 \ [i] i f / = [i,i]. 

We extend this definition to a general cube; 

Q = h x h x • • • x Id c Rd, 

by defining the associated elementary cell as: 

° o o o 

Q=h x J2 x . . . x ld . 

3.3 Homology 

Homology is a powerful tool of algebraic topology which allows us to determine global 

properties of spaces and functions, from local calculations. It can be used amongst other 

things to quickly determine information about the connectivity of a space, such as the 

number of connected components, holes, cavities and so on. In this section we shall 

introduce homology, although the theory can be applied to a variety of different complex 
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structures, such as simplicial, cubical and singular, we shall be limiting this introduction 

to the previously studied case of cubical complexes. For a complete guide to cubical 

homology we refer you to [TKM04], 

We begin with the definition of a chain structure. 

Definition 3.14. With each elementary k-cube Q G ICf, we associate an algebraic object 

Q called an elementary k-chain of Rrf. The set of all elementary fc-chains of Rd is denoted 

by 

K.dk:={Q\QeICi}, 

and the set of all elementary chains of Rd is given by 

oo 

td := | J Kd
k. 

K=0 

Given any finite collection {Qi, Q2, • • •, Qm} C ICf. of fc-dimensional elementary chains, 

we consider sums of the form, 

c = aiQi + CX2Q2 + ••• + amQm, 

where en C IN, as k-chains, denoted by Cf.. The addition of fc-chains is naturally defined 

as 

^ciiQi + ^f3lQi:=^{ai + (3i)Qi. 

Definition 3.15. The group Cd of A;-dimensional chains (A;-chains) of Rrf is the free 

abelian group generated by the elemental chains of ICf. Thus the elements of C% are 
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functions c : Kk —> Z such that c(Q) = 0 for all but a finite number of Q G Kf. In 

particular, /Cf is the basis for Ck. Thus the group of A;-dimensional chains is defined as 

Ct := Z(/C£), 

where Z(/Cf) is the free abelian group generated by the possibly infinite set JCf. 

Definition 3.16. Let c £ Ck. The support of the chain c is the cubical set 

\c\:=\J{Qe!Cd
k\c(Q)^0}. 

Support has the following geometric features: 

1. \c\ — 0 if and only if c = 0. 

2. Let a E Z and c e C^; then 

[ \c\ it a f= 0. 

3. If Q E K, then |Q| = Q. 

4. If ci, c2 € Cjt, then |ci + c2| C |ci| U |c2|. 

Definition 3.17. Consider ci,C2 6 Cjjf, where ci = X)Hi a i 0 i a n d ci = YllLi&Qi- The 

scalar product of the chains ci an c2 is defined as 

771 

(ci,c2) := ^a*/?* . 
i = l 

Proposition 3.18. The scalar product defines a mapping 

(;-):Cd
kxCd

k -+ Z 

(ci,c2) i-> (ci,c2), 

which is bilinear. 
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Definition 3.19. Given two elementary cubes P G Kf and Q G Kf,, set 

PoQ:=P^<~Q. 

This definition extends to arbitrary chains ci G Cjf and c2 G C$' by 

c i « c 2 : = ^ (c i ,P)<c 2 ,Q)p7g . 

The chain Ci o c2 G Cj^S is called the cubical product of C\ and c2. 

Definition 3.20. Let X C Rd be a cubical set. Let £k{X) := {Q\Q G /Cfc(X)}. Ck(X) 

is the subgroup of Cf. generated by the elements of K.k{X) and is referred to as the set 

of k-chains of X. It is can easily be seen that: 

Cfc(X) - {c G Cd
k\ \c\ C X}. (3.6) 

The superscript d is hereon omitted in K,k(X) and Ck(X) since X C Rd. 

Proposition 3.21. For any c G Cfc(X), 

c = ^ (c,Q)Q. 
Qleick(X) 

We can now specify the definition of a boundary operator in cubical sets. 

Definition 3.22. Given k G Z, the cubical boundary operator or cubical boundary map 

9k • Ck - • C ^ 

is a homomorphism of free abelian groups, which is defined for and elementary chain 

Q G ICsf by induction on the embedding number d as follows. Consider first the case 

d = 1. Then Q is an elementary interval and hence Q = [Z] G /CQ or Q — [1,1 + 1] & K\ 

for some I G Z. Define 
0 HQ = [l], 

dkQ:'-^ \c\ if Q = [1,1 + 1]. 
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Now assume that d > 1. Let I = h(Q) and P = 72(Q) x • • • x /<*(Q). Then Q = IoP 

Define 

dkQ:=dkJoP + (-l)dimIodk2P, 

where k± — dim/ and k2 — dim P. Finally, we extend the definition to all chains by 

linearity; that is, if c — a\Qi + a2Q2 + • • • + amQm, then 

dkc := atidkQi + a2dkQ2 ^ h ctmdkQm. 

Proposition 3.23. Let c and c' be cubical chains; then 

d(coc') = dcoc' + (-l)'i[mccodc'. 

Proof. Refer to [TKM04]. • 

By induction on the previous proposition we quickly obtain the following corollary 

Corollary 3.24. If Qi,Q2, • • •, Qm are elementary cubes, then 

m 

d{Qi o Q 2 o • ••oQm) = J2(-l)Ei~1=ldimQiQi o • • -oQj-iodQjoQj+i. o • • • oQm. 

Proposition 3.25. Let Q e Rd be an n-dimensional elementary cube with decompo­

sition into elementary intervals given by Q — I\ x I2 x • • • x Id e Rd and let the one 

dimensional intervals in this decomposition be Iix, Ii2,..., Iin, with Iij = [kj, kj + 1]. For 

j ~ 1,2,..., n let 

Qj" := ii x • • • x 7i._1 x [fcj] x Iij+1 x • • • x Id, 

Q+ := h x • • • x 7^_1 x [fcj + 1] x Iij+1 x • • • x Id 

denote the primary faces of Q. Then 

dQ = j^i-ir1 (Q; - $7) • 
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We know demonstrate the most important property of the boundary operator. 

Proposition 3.26. 

do ,9 = 0. 

Proof. Refer to [TKM04]. • 

Proposition 3.27. For any chain c e Ck, 

\dc\ C \c\. 

More generally, \dc\ is contained in the (k — l)-dimensional skeleton of \c\. 

Proof. Consider first the case when c — Q, where Q € K,k. It follows that \dQ\ C 

\JfCk-i(Q) C Q = |Q|. For an arbitrary c = Y^iaiQi f°r some a* ^ 0 and 

|<9c| = ^ T a ^ C \J \dQi\ C (J |Qi| = |c|. 
I I 2 

• 

Proposition 3.28. Let X c Rd be a cubical set. Then 

dk(Ck(X)) c Cfc_x(X). 

Proof. Let c € C fcP0. Then by definition 3.6, \c\ C X, and by Proposition 3.27,|dfc(c)| C 

\c\ C X. Therefore, dk{c) e Ck-i(X). • 

From the above proposition the restriction of the operator d to chains in X, d* : Ck(X) —> 

Cfc-i(A'), given by • . 

Sf(c) := dk(c) 

is properly justified. As a result we have the following definition. 
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Definition 3.29. The boundary operator for the cubical set X is defined to be 

d? : Ck(X)-> C^X) 

obtained by restricting dk : Ck —> Ck_l to Ck{X). 

From this point on the subscript X in dk will be omitted whenever X is clear from the 

context. 

Definition 3.30. The cubical chain complex for the cubical set X G Rd is 

C(*):= {<*(*), #} fcez> 

where Ck(X) are the groups of cubical A:-chains generated by K-k(X) and d* is the cubical 

boundary operator restricted to X. 

We now have enough structure defined to give the definition of homology. 

Definition 3.31. A fc-chain z G Ck(X) is called a cycle in X if dz — 0. Thus, the set of 

all A;-cycles in X, which is denoted by Zk(X), is kerd* and forms a subgroup of Ck{X). 

The subgroup of cycles is explicitly summarized via the following set of relations: 

Zk(X) := kerd,f = Ck(X) n ker dk C Ck(X). 

Definition 3.32. A fc-chain z G Ck(X) is called a boundary in X if there exists c G 

Ck+i(X) such that 9c — z. The set of boundary elements in Ck(X), which is denoted 

by Bk(X), consists of the image of d*^. Since dk+l is a homomorphism, Bk(X) is a 

subgroup of Ck(X). These comments can be summarized by the following set relations: 

Bk(X) := im 9fe
x
+1 = dk+1(Ck+1(X)) C Ck(X). 

Since every element c G Bk(X) is of the form c — dz with z G Ck+i, by Proposition 3.26, 

9c = 0 for all elements of the boundary group. Thus we can conclude that Bk(X) C 
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Zk{X). We are interested in cycles that are not boundaries, as such we wish to treat 

all boundary cycles as trivial. In order to give an algebraic structure to non-boundary 

cycles, we build an equivalence relation. We shall say that two cycles, Z\,z2 € Zk(X) are 

homologous and we will write z\ z2 if z\ — z2 is a boundary in X, (i.e. z\ — z2 G Bk{X). 

These equivalence classes are elements of the quotient group Zk{X)/Bk{X). 

Definition 3.33. The fcth cubical homology group of X, is the quotient group 

Hk(X) := Zk(X)/Bk(X). 

The homology of X is the collection of all homology groups of X. We shall use the short 

notation 

H* := {Hk(X)}ke% 

for this. 

Below we give a simple example to clarify homology. 

Example 3.34. Let X — {x0} C Rd be a cubical set consisting of a single point. Then 

x0 = [h] x [l2] x ••• x [ld]. Thus 

r z iffc = o, 
^ f c ^ l - I 0 o therwise. 

Furthermore, Z0(X) = c0{X) = Z. Since Ci(X) = 0, B0(X) = 0 and consequently, 

H0(X) - Z. Since Ck{X) - 0 for all k > 1, Hk{X) = 0 for all k > 1. Therefore, 

Z if Jfe = 0, 
h^ ' 1 0 otherwise. 

As evident from the above example calculating homology is an exhausting task. The best 

way to visualize the boundary operator is to put it in the form of a matrix. 

Example 3.35. The cubical set 

r 1 = [o] x [o, l] u [l] x [o, l] u [o, l] x [o] u [o, i] x [i], 
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represents the elementary cubes 

M r 1 ) = {[0]x[0],[0]x[l] ,[ l]x[0],[l]x[l]} 

M r 1 ) = {[o] x [o, i], [I] x [o, i], [o, i] x [o], [o, i] x [i]}. 

Therefore, the bases for the sets of chains are 

M r 1 ) = {[olTroiJoT^ilJiTMoiJiTMi]} , 

= {[6]o[6],[6]o[i],[i]o[6],[i]o[i]} 

M r 1 ) = {[o]Tjo;i]ji]Tio;i]jo)iiT[o],[o)'inr[i]} 
•= {[6]<>[o;i],[i]o[o;i],[o;i]o[o],[o;i]o[i]}. 

In order to present the boundary operator in matrix form we must compute the boundary 

of the basis elements. 

3([0]o.[0,l]) = 

3([l]o[(U]) = 

a([0;i]o[6]) = 

3([<U]o[i]) = 

-[0]o[0] + [0]o[l]. 

-[i]o[6] + [i]o[i]. 

-[6]o[6] + [i]o[6]. 

-[6]o[i] + [i]o[i]. 

Finally, representing the boundary in matrix form gives: 

di 

- 1 0 - 1 0 
1 0 0 - 1 
0 - 1 1 . 0 
0 1 0 1 

Algorithms exist to simplify the structure of a cubical set expressed in matrix form, the 

most famous of which is the well known Smith Normal form. The algorithm produces 

a diagonal matrix with the property that the ith diagonal entry divides the (i + l)th 
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diagonal entry. The Smith normal algorithm is of high complexity due mainly in part to 

the requirement that matrix reductions must be done over integer coefficients, as such 

extra steps must be carried out to complete the reduction. Since the algorithm is so 

complex we provide a quick example showing the process. 

Example 3.36. Consider the matrix 

" 3 2 3 
0 2 0 
2 2 2 

The goal will be to diagonahze A. In order to keep track of both column and row 

operations we work with the following augmented matrix. 

A 

' I 
0 

A ' 
I 

The upper left block will keep track of row operations while we diagonahze A, while the 

lower right block will keep track of column operations. At the end we will end up with 

a matrix of the form. 

" p 
0 

B ' 
R 

where B is the diagonal form of A, R is the matrix of column operations, and P is a 

matrix of row operations. For efficiency, the final forms of B, R, and P, are presented 

below. 

B = 
" 1 

0 
0 

0 
2 
0 

0 " 
0 
0 

R = 
1 - 2 - 1 

- 1 3 0 
0 0 1 

3 2 3 
0 2 0 
2 2 2 

Notice that in matrix B the first diagonal entry does in fact divide the second as promised. 
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3.3.1 Elementary Collapse 

In order to simplify homology calculations, one can often reduce the number of elements 

' in a cubical set without changing the overall homology. Such a technique is referred to 

as elementary collapsing. 

Definition 3.37. Let X be a cubical set and let Q € K,(X). If Q is not a proper face of 

some P G K{X), then it is a maximal face in X. (K)max(X) is the set of maximal faces 

in X. A face that is a proper face of exactly one elementary cube in X is a free face in 

X. 

Lemma 3.38. Let X be a cubical set. Let Q € K.{X) be a free face in X and assume 

Q -<Pe K{X). Then P (E K,max{X) and dimQ = dimP - 1. 

Proof. Assume P < R. Then Q -< R, contradicting the uniqueness of P. Assume 

dimQ < dimP — 1. Then there exists R e K.(X) different from Q and P such that 

Q-<R<P. • 

Definition 3.39. Let Q be a free face in X and let P be the unique cube in K.{X) such 

that Q is a proper face of P. Let K'{X) := JC{X) \ {Q,P}. Define 

X':= [J R. 
ReK.'(X) 

Then X' is a cubical space obtained from X via elementary collapse of P by Q. 

Proposition 3.40. If X' is a cubical set obtained from X via elementary collapse of P 

by Q, then 

K(X') = K!{X). 

Proof. The inclusion K-(X') C IC'(X) is obvious. To prove the opposite inclusion assume 

that there exists an elementary cube S e IC(X') \ K'{X). It follows that S £ {P, Q}. 

67 



Let x eSC S C X'. Then x G R for some R € K'{X) and Rf\ SD {x} ^ 0. By the 

properties of elementary cells (proposition 2.15 of[TKM04]), 5 C .ft. Since S $K'{X), S 

is a proper face of R G JC'(X). But neither S — Q nor S — P ca be a proper face of such 

an R, a contradiction. • 

Theorem 3.41. Assume X is a cubical set and X' is obtained from X via an elementary 

collapse of P0 e Kk(X) by QQ e /Cfc_i(X). Then 

i/,(X') ^ H.(X). 

The proof to this theorem can be found in [TKM04]. 

Example 3.42. Let X = [0,1] x [0,1] C R2. Then 

K2{X) = {[0,l]x[0,l]}, 

ld(X) = {[0]x[0, l ] , [ l ]x[0, l ] , [0 , l ]x[0] , [0, l ]x[ l ]} , 

£o(X) = {[0]x[0],[0]x[l] ,[ l]x[0],[l]x[l]}. 

There are four free faces in X, namely each of the elements of K\{X). Let Q = [0,1] x [1], 

then Q -< P = [0,1] x [0,1]. Let X' be the cubical space obtained from X via the 

elementary collapse of P by Q, then X' = [0] x [0,1] U [1] x [0,1] U [0,1] x [0] and 

/Ci(X') - {[OjxtO.lUllxlO.lUO.lJxlO]} 

/Co(X') = {[0]x[0],[0]x[l] ,[ l]x[0],[ l]x[l]}. 

The free faces of X' are [0] x [1] and [1] x [1] with [0] x [1] -< [0] x [0,1] and [1] x [1] -< 

[1] x [0,1]. Let X" be the space obtained by collapsing [0] x [0,1] by [0] x [1]. Then 

/d(X") = {[l]x[0,l] ,[0, l]x[0]} 

K0{X") = {[0]x[0],[l]x[0]}. 
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On X" we can perform an elementary collapse of [1] x [0,1] by [1] x [1] to obtain X'", 

where 

/Ci = {[0,1] x[0]}, 

/C0 = {[0]x[0],[l]x[0]}. 

A final collapse of [0,1] x [0] by [1] x [0] results in the single point X"" = [0] x [0]. Thus, we 

have reduced a 2—cube to a single point through successive elementary chain collapses. 

In Chapter 1 we put forth the motivation for a more consistent theory of digital topology, 

and in Chapter 2 we showed that this need leads to abstract cell complexes. In order 

to fully take advantage of a complex structure we introduced both CW and cubical 

complexes in Chapter 3. Complexes equipped with homology allow the use of homology 

theory to provide alternative algorithms for image analysis tasks as will be seen in Chapter 

4. 
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CHAPTER 4 

Applications of Axiomatic Digital 

Topology 

In this section we shall explore the implementation and possible applications of axiomatic 

digital topology seen in Chapter 2. We shall also see how the paradoxes of classical digital 

topology seen in Chapters 1 and 2, are solved. 

4.1 Digital Images in AC complexes 

The large difference between encoding a digital picture using the methods of Chapter 

1 in contrast to Chapter 2 is that with AC complexes we can no longer use a graph 

based approach, since we are now considering elements of different dimensions. A two 

dimensional image must be considered as a set with elements of dimension 0,1, and 2. 

We saw in Chapter 2 that not only did an AC complex have different kinds of elements 

of differing dimensions, but that each element of a given dimension had neighborhoods 

corresponding to it. 
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4.1.1 Data Structures 

We quickly realize, from Figure 4.1, that encoding an AC complex of a digital image 

is not as simple as it was using classical digital topology. Two- and three-dimensional 

images are stored in a computer in arrays of corresponding size. However, these arrays are 

not designed to accommodate topological properties. It is possible to perform topological 

calculations on arrays without changing the data structure. This can be accomplished by 

explicitly encoding the 2-cells only, while the 0 and 1-cells are only presented implicitly 

using a coordinate assignment rule [KovOl]. Each pixel or 2-cell, F, is assigned one 0-cell 

to it as its "own" cells. This is the 0-cell of F with the closest proximity to the origin of 

the coordinate system, (Pi in Figure 4.1). In addition the two 1-cells which are incident 

to both the 2-cell and the 0-cell (E\ and E2 in Figure 4.1) are declared own cells of 

F. Thus each pixel is assigned 3 own-cells of lower dimension that are given the same 

coordinates as F itself. 

•/,
3 = (2,2) 

•F = ( l , l ) 

PA = (2,1) 

E2 = (1,1) 
0 1 2 3 

Figure 4.1: Using the standard raster to encode a. image. 

There are some cells that remain without an "owner" while using this coordinate rule. 

However, by enlarging the raster this drawback is of no importance. 

In contrast to the standard raster, it is possible to use a data structure that explicitly 

represents cells of all dimensions. One such way is to use the topological raster as defined 
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in [KovOl]. 

Definition 4.1. A connected one dimensional complex where each cell, except the first 

and last cell, is incident to exactly two other cells, is called a topological line. We can 

assign integer numbers to each of the cells in such a way that the cell of number k has 

incident cells number k — 1 and k + 1. These numbers are the topological coordinates of 

the cells. 

In the topological raster each coordinate axis is a topological line. The 0-cells of the 

axis have even coordinates while the 1-cells are given odd coordinates. The dimension 

and orientation of a cell under the topological raster is determined by the topological 

coordinates of the cell, which correspond to the indices of the corresponding array ele­

ment. Specifically the dimension of a cell is the number of its odd coordinates whereas 

the orientation can be determined by specifying which coordinates are odd. For example 

the cell E2 from Figure 4.2 has one odd coordinate, namely the x-coordinate, thus it is 

parallel to the x-axis. The cell F, has topological coordinates (3,3), thus we conclude 

that it is of dimension 2, and the cell Pi has two even coordinates (2, 2) hence it's of 

dimension 0. 

•P3 = (4,4) 

.F = (3,3) 

•P4 = (4,2) 

E2 = (3,2) 

Figure 4.2: Using the topological raster to encode a image. The number of odd coordinates 
determines the dimension of each cell. 

P2 = ( 2 , 4 ) < 

£ i = (2,3) 

A = (2, 2) 
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Another way the image plane can be represented as a cubical complex is to use a diag­

onal line representing each element. In this diagonal representation, the standard is to 

represent an element c G Rd by the minimal (closest to the origin) and maximal (furthest 

from origin) vertices that are contained in the boundary of c. To clarify below is a list of 

cubical elements written in the form of elementary products, followed by their diagonal 

representations. 

Qo = [o] ; Qodiag = (o),(0) 

0 i = [l]x.[l-2] ; S i* . , = ( M ) , (1,2) 

Q2 = [0,1] x [0,1] ; Q3dittg = (0,0),(l,l) 

Q3 = [0 , l ]x [0 , l ]x [ l ,2 ] ; Q ^ , = (0,0,1), (1,1, 2) 

Given the diagonal representation of a cubical element c — p\,p2, where Pi,p2 are of the 

form pi — (e'igje^,... ,eid) 6 Rd, we are able to determine all properties of the element. 

The embedding number is determined by the dimension of either pi or p2, while the 

dimension of the element itself is determined by the following sum 

d 

dim(c) =^2\eu - e 2 J . 
i=0 

4.2 Practical Algorithms for Axiomatic Digital Topol­

ogy Using the Cell Complex Structure 

In this section we present some algorithms that can be used for 2-dimensional image anal­

ysis, that could not have been applied without the implementation of cellular complexes. 
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The purpose of the presentation of these algorithms is to motivate the use of homology 

theory as an alternative method for image analysis and to show the power of this theory. 

4.2.1 Boundary Tracing 

Unlike in the classical theory that was studied in Chapter 1, boundary tracing is relatively 

easy when dealing with 2D images as 2D complexes. Once a boundary point (0-cell) 

is found, the algorithm simply finds a boundary crack (1-cell), follows it to the next 

boundary point and repeats the process. The algorithm runs until the starting point is 

reached again. The following algorithm was presented in [KovOl], and is called each time 

a non-visited boundary point is found. The algorithm must be used in conjunction with a 

database listing all vertical cracks (1-cells) that have already been "visited". The pseudo 

code for the boundary tracing (Trace) algorithm is given below, the algorithm takes as an 

input a colored or gray scale image (Image [NX, NY]) defined using the standard raster 

and an initial boundary point (x,y). The.variables R, P, L and the elements of the 

arrays r ight [4] , l e f t [4] and step [4] are structures representing a 2D vector with 

integer coordinates, e.g P.X and P.Y, the symbol "+" represents vector addition. 

The pseudo-code of Trace() 

void Trace(int x, int y, char image[]) 

{ P.X=x; P.Y=y; direction=l; 

do 

i 
R=P+right[direction]; //the "right" pixel 

L=P+left[direction]; //the "left" pixel 

if (image[R]==foreground) 

direction=(direction+l) MOD 4; //right turn 
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else 

if (image[L]==background) 

direction=(direction+3) MOD 4; //left turn 

P=P+step[direction] ;//a move in the new direction 

}while( P.X!=x I P.Y!=y); 

} //end Trace 

In order to clarify the code, we shall consider the following example. 

Example 4.2. Consider the following image, Fig. 4.3, with know initial border point 

6o = ( l , l ) 

67 

61^ 

60 

" 

69 

6i(j 

61 

66 

> 

62 

64 

b3 

Figure 4.3: Implementing the TraceQ algorithm. 

The algorithm TraceQ begins at initial point P = (P.X, P.Y) — (1,1) with initial direc­

tion equal to 1. Entering the do loop for the first time we set the coordinates of the right 

and left pixels as a function of the initial point. Therefore, R — (1,1) and L = (0,1). 

We then decide the direction to take in order to "step" to the new border point. In this 

case, because the right pixel (1, 0) is part of the background, and the left pixel (1,1) is 

part of the foreground the direction is kept at 1 which corresponds to a move in the right 
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direction (the directions are encoded by numbers from 0 to 3 with a clockwise orienta­

tion). The algorithm now sets the pixel P — (1,2). Since, P.X ^ 1 and P.Y ^ 1 the 

algorithm goes back to the start of the do loop. Figure 4.3 numbers the vertices of the 

boundary of the image in the order they are visited by Trace(). Notice that the points 

62 = 610 and 65 =• bg are visited twice but the algorithm continued since the initial point 

was 60 = 612. Thus, if we had started the algorithm on either b2 or 65 it would have ended 

prematurely. This problem can be corrected by also changing the stop conditions of the 

do loop so that along with having P.X — x and P.Y = y, the direction is equal to the 

direction of the first turn. This would be simple to implement if we save the value of the 

initial direction choice. 

4.2.2 Filling of Interiors 

In Chapter 1 we discussed the classical approach to identifying the interior of a set in a 

digital image. The idea of a scanning line was used to determine whether a pixel lies in the 

interior of a set (Figure 1.12). However, classically it was difficult to distinguish between 

intersection and tangency. Using the same method of scanning when the boundary is 

given as a collection of 0 and 1-cells the problem disappears entirely (Figure 4.4). In a 2D 

image intersection occurs at vertical 1-cells and tangency occurs on horizontal 1-cells. So 

we only consider pixels of the scanning line in the interior of a set if we have intersected 

an odd number of vertical boundary 1-cells. 

The pseudo code for use in the standard raster is described below. It works under the 

standard raster, the own 1-cells of a pixel F that are perpendicular to the x-axis are 

denoted by C (F). All vertical 1-cells of the boundary of the set are also "labeled". 

The pseudo-code of fill 
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Figure 4.4: There is no confusion between intersection and tangency when using a thin 
boundary. 

for each row R parallel to A do 

{ BOOLEAN fill= FALSE; 

for each 2-cell F in the row R do 

{ if C(F) is labeled then fill=l-fill; //inverting fill 

if fill is TRUE then F=foreground; 

else F=background; 

} 

As a third alternative, the use of the coboundary to a cycle can be used to fill the interior 

of a given boundary set. The procedure was introduced in [AK01] for use in cubical 

homology, but is easily adapted for use in cellular homology as well. In fact, cubical 

homology lends itself just as well to implementations in digital images due in part to 

their structure. For a complete review of cubical homology see [TKM04]. The approach 

depends on the ability to solve the following problem: 

Given a g-dimensional cycle, or boundary, z supported in a rectangular set 

A, construct a (q + l)-dimensional chain c, also supported in A, such that 

dc = z. 
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We shall delve into any general theories of this approach, but an example will be used 

to illustrate the theory. Although the procedure does not guarantee a unique interior in 

dimensions 3 and above, in the 2D case uniqueness is guaranteed. 

Example 4.3. Consider the oriented cycle 

z — e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 - ew - en - e i2 + e i3 

- e n - eis - e16 - e i7 + e18 + ew + e20 - e2i - e22 - e23 - e24 - ex 

in R2, where z is presented in Figure 4.5. Then 

2 £ d(i?(z)) where R{z) = [0,2] x [0,4]. 
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Figure 4.5: The cycle z from example 4-3. The origin is located at the bottom right corner 
of Fi, only the essential 1 and 2-cells are labeled. 
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Define iri as the projection map onto the y-axis, and let R\{z) = {0} x [0,4] be the 

image of R(z) under this projection. For each interval that is not projected to itself or 

a point, define [ ^ ( e ^ e ; ] , as the formal sum of the unit squares (or pixels), in which e* 

is projected along to 7Ti(e;), otherwise define [7Ti(ej),ej] = 0. It therefore follows from 

definition that: 

M e 4 ) , a] = 0 for all i € {1, 2, 3,4, 5,6, 7,8, 9,12,14,18, 20,23,24}, 

M e i o ) , eio] = F15 + Fu + F13 , 

M e n ) , en] = F12 + Fn + Fm, 

[7Ti(ei3),ei3] = F n + Fio, 

[7Ti(ei5),ei5] = Fio, 

[7ri(ei6),ei6] = Fj, 

[7ri(ei7),ei7] = F4, 

[7ri(ei9),e19] = F5 + F4, 

[7Ti(e2i),e2i] =F6 + F5 + F4, 

[vri (e22), e22] = F3 + F2 + Fv 

We now define a 2-chain COB(z) by replacing each e* in the formula of z by [7Ti(ej),ej] 

and keeping the same coefficients, i.e. 

COB(z) = - ( F 1 5 + Fu + F13) - (F12 + F u + F10) + ( F n + F 1 0 > - (F10) 

- ( F 7 ) - (F4) + (F5 + F4) - (F6 + F5 + F4) - (F3 + F2 + Fi) 

= - ( F x +_F2 + F3 + FA + F6 + F7 + F10 + F1 2 + F 1 3 + F H + F15) 

Clearly z is a boundary to COB(z). 
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4.2.3 Component Labeling 

Given a 2D binary image array under the standard raster, Image [] , and the functions 

NumberNeighb(color) and Neighb(i.k): the first one returns the number of adjacent 

similarly colored pixels of a given pixel; the second returns the index of the kth neighbor 

of the ith pixel. We are able to label components using the following pseudo-code. 

The Pseudo-code for Label()[Kov01] The array Label [N] is created to the same size 

as Image [N] where N is the number of elements in Image. In the first loop each element 

of Label gets its own index as its value. 

for ( i= l ; i<N; i++) Label[ i ]=i ; 

for (i=l;i<N; i++) 

{ color=Image[i]; 

for (j=0; j<NumberNeighb(color); j++) 

{ k=Neighb(i, j ) ; / / the index of the j t h neighbor of i 

if (Image[k]==color) SetEquivalent( i ,k,Label) ; 

> 

} / / end of the f i r s t run 

SecondRun(Label,N); / / end of the algorithm 

The subroutine SetEquivalentO prepares the pixels having the indices i and k of the 

same component for labeling. For the purpose of labeling one pixel gets the index of 

the "root" of the other pixel. The function RootO returns the last value in the sequence 

of indices where the first index k is that of the given pixel, the next one is the value 

of Label[k] etc. until Label[k] equals k. The subroutine SecondRunO replaces the 

value of Label [k] by the value of a component counter or by the root of k depending on 

whether Label [k] is equal to k or not. 
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The pseudo-codes of the subroutines 

subroutine SetEquivalent (i,k,Label) 

{if (Root(i,Label)<Root(k,Label)) 

Label[Root(k,Label)}=Root(i,Label); 

else Label [Root(i,Label)]=Root(k,Label); 

} // end of SetEquivalent 

int Root(k, Label) 

{ do 

{ if (Label[k])==k return k; 

k=Label [k]; 

}while(l); 

} //end Root 

subroutine SecondRun (Label, N) 

{ count=l; 

for (i=0; i<N; i++) 

{ value=Label [ i ] ; 

if (value==i) 

-[ Label [i]=count; 

count=count+l; 

} 

else Label[i] = Label [value] ; 

} 

} // end SecondRun 
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As another approach, one could utilize the ideas of homology for component labeling. 

The second homology group of an image gives the generating cycles for each "hole" of the 

image. Although the generating cycles are not uniquely defined, for each generating cycle 

z of a hole A the coboundary of z contains A in its entirety. An alternative approach 

to component labeling could be constructed by finding the coboundaries for each hole in 

the dual or inverse of an image. This subject is left as a future research project in this 

domain. 

4.2.4 Skeletons of a Set in 2D 

The last application that we will examine is that of the skeleton of a digital image. 

Classically, finding the skeleton involved identifying simple and end points in order to 

begin the image shrinking process discussed in Chapter 1. Here we present the skeleton 

algorithm presented by Kovalevsky in [KovOl], and discuss the possible ways to implement 

homology in order to construct alternative algorithms. 

Definition 4.4. The skeleton of a given set T in a two-dimensional image / is a subset 

S C T with the properties: 

1. S has the same number of connected components as T. 

2. The number of connected components of / — S is the same as that of / — T. 

3. Certain singularities of T are retained in S. 

Singularities may be defined as the "end points" in a 2D image that must be retained to 

keep line segments from being "thinned" to a point as we saw in Chapter 1. 

Representing the image in as a complex C has the advantage of calculating the skeleton 

from an algorithm that can be carried out either sequentially or in parallel. The pro-

82 



cedure is done by alternating the removal of a simple non-singular cell of T from the 

border FR(T, C) and from the open border Of{T, C). A cell c of FR(T, C), respectively 

Of(T, C), is simple if the intersection of SN(c) — {c}, respectively Cl(c) — {c}, with both 

T and its complement C — T is connected. 

The skeleton algorithm 

We denote C[NX, NY] as a 2D array with topological coordinates. The subset T is 

given by labeling the cells of all dimensions of T : C[x, y] > 0 iff the cell (x, y) £ T. We 

shall represent the deletion of a cell by setting its label, C[x,y], equal to zero. A 0 or 

2-cell is defined as singular iff it is incident with exactly one non-zero labeled cell other 

then itself. To calculate the skeleton of T the following loop is implemented (Figure 4.6 

illustrates the algorithm): 

do { Scan C and delete all simple and non-singular cell of T D Fr(T, C); 

CountClose = number of cells deleted during this scan; 

Scan C and delete all simple and non-singular cells of T D Of(T, C); 

CountOpen — number of cells deleted during this scan; 

} whi\e(CountOpen+ CountClose> 0); 

/ / end Algorithm. 

The implementation of homology to determine an image skeleton can lead to great alter­

natives to current procedures. The definition of a simple point of a set X could be read 

as: any point whose removal does not change the value of the homology group Hn(X) 

for all n < dim(X). As for the identification of singular points further work would need 

to be done since homology is mostly concerned with global topological properties at first 

glance it cannot recognize such elements as "end points". 
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Figure 4.6: a) a given 2D subcomplex T; b) its border Fr(T); c) the simple cells of the 
border deleted; d) the open border Of of the set T — Fr(t); e) the set T-Fr(T)-Of: the 
simple cells of the open border deleted; f) the skeleton of T. 
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CONCLUSION 

We began with an exhaustive survey of the classical theory of digital topology. We saw 

the paradoxes that arose from the adjacency-graph based approach and that even after 

many attempts to resolve them the theory still left certain inconsistences. This brought 

us to the conclusion that a new approach needed to be taken. 

Afterwards we investigated and defined the axiomatic approach to digital topology as 

developed by V. Kovalevsky in [Kov06]. We presented a modified version of the axioms 

of digital topology eliminating the need to show the equivalence between them and the 

classical axioms of topology. We went on to show, through a counter example, the need 

for an additional axiom requiring the existence of a' minimal element in an ALF space 

after providing a counterexample which showed that the existence is not automatically 

guaranteed from the original axioms. We showed how the modified axiomatic theory was 

able to resolve many of the issues of graph based digital topology. 

Chapter 3 was devoted to the introduction of CW-complexes, cubical complexes and 

homology theory. This introduction led us to the possible applications of axiomatic 

digital topology in imagery. Finally, we surveyed the different encoding procedures for 

digital images into image arrays by means of data rasters, and discussed their individual 

advantages. Using these data rasters we surveyed a few different algorithms related to 

image analysis and attempted to show how homology could be implemented into these 
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algorithms to create alternative approaches. It is the hope that future work be carried 

out that will take advantage of homology theory in image analysis. Although not studied 

in this work, many attempts at three-dimensional image analysis have been met with 

difficulty due to incomplete structure. The use of homology theory in higher dimensions 

could bring many new insights to the field. 
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