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SOMMAIRE 

L'interpretation du contenu des sequences video est un des principaux domaines de 

recherche en vision artificielle. Dans le but d'enrichir l'information provenant des in

dices visuels qui sont propres a une seule image, on peut se servir d'indices decoulant 

du mouvement entre les images. Ce mouvement peut etre cause par un changement 

d'orientation ou de position du systeme d'acquisition, par un deplacement des objets 

dans la scene, et par bien d'autres facteurs. Je me suis interesse a deux phenomenes de

coulant du mouvement dans les sequences video. Premierement, le mouvement cause par 

la camera, et comment il est possible de l'interpreter par une combinaison du mouvement 

apparent entre les images, et du deplacement de points de fuite dans ces images. Puis, 

je me suis interesse a la detection et la classification du phenomene d'occultation, qui est 

cause par le mouvement dans une scene complexe, grace a un modele geometrique dans 

le volume spatio-temporel. Ces deux travaux sont presentes par le biais de deux articles 

soumis pour publication dans des revues scientifiques. 
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Introduction 

La vision artificielle est un domaine de recherche complexe qui s'interesse a la comprehen

sion par un systeme informatique du contenu d'une image ou d'une sequence d'images. 

L'importance des systemes de vision artificielle dans notre societe ne cesse d'augmenter. 

La vision artificielle comprend des applications tres diversifiees comme la reconstruction 

de scenes, le suivi d'objet ou la reconnaissance de visages. Elle peut ainsi etre exploitee 

dans des secteurs comme l'aerospatial, les transports, la sante, le controle de qualite et le 

divertissement. Plusieurs de ces applications dependent de l'analyse du contenu 3D des 

images, i.e. les relations entre les divers points et objets dans la scene 3D representee 

dans ces images. Pour ce faire, on peut se servir de differents indices visuels presents dans 

une image. Toutefois, lorsque le systeme de vision travaille avec une sequence video, il 

est aussi possible de se servir du mouvement afin non seulement d'augmenter les indices 

visuels mais aussi d'extraire une toute nouvelle gamme d'informations semantiques. 

Dans cette optique, je me suis interesse a l'importance du mouvement dans les sequences 

video. II est raisonnable de penser que la plupart des evenements notables presents dans 

ces sequences se deroulent sur une periode de temps excedant celle de la prise d'une seule 

image. Toutefois, la prise des sequences video digitalisees passe par une discretisation 

autant spatiale que temporelle qui presente des defis interessants pour la detection et 

l'analyse de ces evenements. II existe plusieurs causes, dans n'importe quelle scene, qui 
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peuvent creer du mouvement. Certaines causes sont kynetiques, comme le mouvement 

de la camera ou le deplacement du sujet. D'autres causes sont plus subtiles, comme le 

changement de certains parametres camera ou meme un changement d'illumination. Je 

me suis interesse tout d'abord au mouvement de la camera qui tend a creer un effet de 

mouvement global dans la sequence video. Cette information est d'un interet particulier 

dans le domaine de la cinematographic, car elle est fortement liee au jargon deja utilise 

pour decrire les sequences video [3]. Par la suite, je me suis interesse a un phenomene 

qui resulte a la fois du mouvement camera et objet, et de la projection d'une scene 

en trois dimensions sur un plan image en deux dimensions. II s'agit du phenomene 

d'occultation, lorsqu'un objet est occulte par un second objet. Comme nous le decrirons 

subsequemment, les occultations presentent a la fois un defi et un potentiel d'information 

semantique important dans le contexte de l'analyse de sequences video. 

Concernant le mouvement camera, mon apport se situe au niveau de la reconnaissance et 

de la categorisation de ce mouvement. En cinematographic, il existe 7 principaux types 

de mouvement camera : trois mouvements de translation, trois mouvements de rotation 

et un mouvement de zoom. Cependant, certains de ces mouvements presentent un effet 

similaire a Pecran, ce qui rend la reconnaissance de n'importe quels des sept mouvements 

difficile, surtout lorsqu'ils sont combines [13]. Mon apport fut de combiner le mouvement 

apparent avec les informations de perspective, sous la forme de points de fuites. Ceux-

ci sont presents dans quantites de scenes se deroulant dans un environnement humain 

forme d'angles droits, ce que certains appellent l'hypothese du monde de Manhattan 

[6]. Les caracteristiques intrinseques des points de fuites ainsi que leur deplacement 

dans la sequence video, lorsque combines avec le mouvement apparent, permettent a la 

methode proposee de discerner les mouvements camera enumeres ci-haut, incluant des 

combinaisons allant jusqu'a trois mouvements. 

Concernant le phenomene d'occultation, mon interet se situe au niveau de la detection de 
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l'evenement d'occultation: lorsqu'un objet disparait ou apparait derriere un autre objet, 

du au mouvement, ainsi qu'a 1'identincation de contours d'occultations. Ces evenements, 

consequence inevitable du mouvement et d'une scene complexe, presentent un interet 

particulier. Premierement, ils ont une valeur semantique intrinseque, pouvant etre utilisee 

directement pour decrire une scene. Deuxiemement, ils peuvent etre utilises pour decrire 

les relations entre les differents objets dans la scene [22], ainsi que pour definir les limites 

physiques des objets. Finalement, ils peuvent influencer positivement ou negativement 

certaines applications de vision artificielle telles que le suivi d'objet [11]. Mon travail fut 

d'examiner la geometrie de ces evenements dans le volume spatio-temporel afin de les 

detecter et de les discerner d'autres evenements. 

Dans un premier temps, nous presentons mes travaux sur la reconnaissance du mouvement 

de la camera. Par la suite, nous presentons mon travail concernant la detection et la 

classification des evenements d'occultations. 
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Chapitre 1 

Mouvement et Perspective 

1.1 Avant-Propos 

Dans le but d'enrichir les methodes d'interpretation de sequences video a partir du con-

tenu visuel, il est necessaire de pouvoir identifier et extraire des informations visuelles 

dont la presence dans les images peut etre associee aux relations 3D des objets presents 

dans la scene. En cinematographic, on reconnait que la scene comporte generalement 

trois composantes fondamentales [3]. Premierement, il y a le sujet. Ensuite, vient la 

distance ou cadrage du sujet. Notez que ce sont aussi des composantes qui se retrouvent 

en photographie, ce qui n'est pas le cas de la derniere composante: le deplacement de la 

camera. C'est a l'exploitation de cette derniere que s'interesse la methode decrite dans 

l'article qui suit, intitule «Combining Apparent Motion and Perspective as Visual Cues 

for Content-based Camera Motion Indexing», lequel fut accepte pour publication dans 

sa version finale en 2007 dans la revue Pattern Recognition. 

Cet article presente une nouvelle methode pour l'identification automatique des mouve-

ments de la camera dans une sequence video. II existe sept types de mouvement camera. 
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Les trois premiers sont des mouvements de translation: le «Tracking», un mouvement 

de translation vers les cotes de la camera, le «Booming», un mouvement de translation 

vers le haut ou le bas, et le «Dollying», une translation vers l'avant dans la direction 

de l'axe optique. Les trois mouvements suivants sont des mouvements de rotation : le 

«Panning», une rotation autour de l'axe vertical de la camera, le «Tilting», une rotation 

de haut en bas (similaire a un hochement de tete), et le «Rolling*, une rotation autour 

de l'axe optique de la camera. Ces six premiers mouvements sont causes par un mou

vement de l'ensemble de la camera. Le dernier mouvement, le zoom, n'est pas cree par 

un deplacement de la camera mais plutot par le mouvement de composantes physiques 

de la camera (e.g, la lentille). Toutefois, son effet a l'ecran se compare a celui d'un 

mouvement extrinseque, dans la perspective ou son effet est global et important visuelle-

ment. Le mouvement de la camera revet une importance semantique non-negligeable et, 

lorsque present, sert a la description du contenu d'une sequence video. Son identification 

passe generalement par l'analyse globale du mouvement entre chaque image consecu

tive (mouvement apparent) [7, 16, 20, 21]. Cependant, certaines paires de mouvement 

camera peuvent causer un mouvement apparent tres similaire: un «panning»peut forte-

ment ressembler a un «tracking»lorsque l'ouverture de la camera est faible. De la meme 

maniere, le mouvement apparent cause par un «booming»peut etre extremement simi

laire a celui cause par un «tilting». En particulier, le zoom se revele extremement difficile 

a differencier d'un «dollying»si nous ne considerons que le mouvement apparent (projec

tion en 2D du mouvement 3D). A notre connaissance, aucune methode d'identification 

des mouvements de la camera n'est capable de les distinguer. 

Ces constats nous ont amenes a combiner l'indice du mouvement apparent avec un autre 

indice: la perspective [5]. La geometrie perpendiculaire caracteristique des environ-

nements humains fait en sorte que les points de fuites y sont facilement detectables 

[6]. Ces points de fuites nous fournissent des informations essentielles sur l'orientation de 
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l'observateur dans la scene [5], ainsi que sur la distance focale de la camera [10]. En com-

binant cet indice avec le mouvement apparent, on obtient suffisamment d'informations 

pour pouvoir distinguer les sept mouvements camera, meme lorsqu'ils sont combines [13]. 

L'article qui suit presente une nouvelle methode qui combine le mouvement apparent 

avec l'information perspective des points de fuites pour la detection du mouvement de la 

camera. II s'agit, a notre connaissance, de la premiere methode qui arrive a distinguer 

tous les mouvements camera, et a distinguer le zoom du dolly en particulier, ainsi que la 

combinaison en sens oppose de ces deux mouvements, appele un «plan trombone». 

Cet article fut coredige par moi-meme ainsi que le professeur Frangois Deschenes et ma 

collegue Wei Pan. En tant que premier auteur, ma contribution a ce travail fut l'essentiel 

de la recherche sur l'etat de Fart, le developpement de la methode, l'execution des tests de 

performance et la redaction de Particle. Le professeur Francois Deschenes, second auteur, 

a fourni l'idee originale. II a aide a la recherche sur l'etat de l'art, au developpement de 

la methode ainsi qu'a la revision de l'article. Wei Pan, troisieme auteure, a contribue a 

la recherche sur l'etat de l'art ainsi qu'a l'execution des tests de performance. 
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Combining Apparent Motion and Perspective as Vi

sual Cues for Content-based Camera Motion Indexing 

Mathieu Marquis-Bolduc1, Frangois Deschenes1,2'*, Wei Pan1 
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Abstract: We propose a new method for a qualitative estimation of camera motion 

from a video sequence. The proposed method suggests to use the properties of vanishing 

point perspective to complete the information obtained from apparent motion, that is 

to use a cooperative estimation from several visual cues. Focal length and rotational 

parameters are first retrieved using perspective, then apparent motion is used to retrieve 

remaining parameters. The proposed method can retrieve all seven camera motions, 

including combination of motions. Experimental results confirm the usefulness of the 

additional information gained from perspective. 

Keywords: Camera motion parameters estimation, Apparent motion, Optical flow, Van

ishing points 
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1 Introduction 

Content-based indexing and retrieval of video sequences relies on automatic understand

ing of video content. According to cinematography literature, a scene content is com

monly described by three main components [3]. The first one is the subject, which rep

resent what is filmed. It can be anything: a person, an explosion, a building, etc. It is 

obvious that automatic detection of the subject is difficult. The second one is the dis

tance to the subject. It is divided into a finite number of categories: close shot, full shot, 

long shot and so forth. It has the advantage of being finite, but the disadvantage of being 

relative to the subject. Finally, there is the 3D motion of the filming camera, which has a 

finite number of motion categories. Tracking, booming and dollying respectively describe 

a translation of the camera (travelling) along its horizontal, vertical and optical (princi

pal) axis. Tilting, panning and rolling describe rotation around the same axis. Together 

they form the orientation information. A change in focal distance is noted by the term 

zooming. Camera motion conveys a lot of semantic information. Different camera mo

tions on identical scenes can convey a totally different meaning to the audience [3]. For 

example, a camera panning on a room can convey a sense of observation, while a camera 

travelling through the same room will convey a sense of exploration. Moreover, camera 

motion can be seen as independent of both of the previously mentioned components: a 

camera rotating on its vertical axis is always called panning, regardless of what is filmed. 

There are different nomenclatures to describe the various camera motions. Despite this 

importance, it is not always easy, even to the human eye, to identify the actual 3D motion 

in any given sequence. It is even more difficult if several motions are combined together, 

or if the camera intrinsic parameters are changing or unknown. 

One of the most intuitive ecue for camera motion recognition is the apparent motion. It 

corresponds to the projection of relative motion between the camera and the scene onto 

the image plane. It is also, to our knowledge, the most widely used. Several examples on 
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how to take advantage of apparent motion have been introduced in the last two decades 

(see section 2). However, automatic indexing and retrieval should rely on a system that 

can ideally distinguish between all of the seven basic camera motions in a video sequence, 

something that , to the authors' knowledge, has not been achieved yet. For example, al

most all of the apparent-motion based methods cannot differentiate zoom from dolly, 

since their apparent motion are almost identical. In addition, most of the time no in

formation is available about the video sequence's camera intrinsic parameters. In order 

to be suitable to an automatic indexing and retrieval system a camera motion detection 

scheme should not rely on knowledge of these parameters. Apparent motion by itself 

does not seems to contain sufficient information to allow full camera motion detection 

of video sequences with unknown intrinsic parameters. Additional cues or assumptions 

about the scene are needed to complete the information from apparent motion. 

In this paper, we propose a method to detect any single or combined camera motions 

in a video sequence from both the perspective information, and the apparent motion. 

The idea is to use perspective information to provide the additional camera and scene 

information that is needed to recognize all of the camera motions. Our approach is novel 

in many regards. First, as far as we know, we present the first method that combines 

the extraction of rotational and focal components from vanishing points and the extrac

tion of translational components from apparent motion of video sequences. Second, the 

combination of both the apparent motion and the perspective information allows us to 

identify a greater variety of camera motions. We can discriminate similar motions like 

pan and track or dolly and zoom, whenever it is possible. Thus, the proposed method 

improves the accuracy of indexing in an automated content-based indexing and retrieval 

system. Our approach relies on the common assumption of no object motion. However, 

experimental results show that in practical situations, this assumption can be broken up 

to a certain level. 

In the next section, we review existing methods to determine camera motion using ap-
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parent motion or vanishing points. In section 3, we expose how to combine orientation 

information from vanishing points with apparent motion information. We also deal with 

the special case of limited perspective information. In section 4, we present a summary 

of our camera motion detection algorithm. In section 5, we present a performance eval

uation that demonstrates both the usefulness and the efficiency of our method. Finally, 

we conclude in section 6. 

2 Overview of Existing Approaches 

Both the apparent motion and the perspective have been extensively used separately 

as visual cues to perform partial or complete camera motion detection. In this section, 

we focus on works that are most related to the method we propose, that is, unassisted 

methods that aim to retrieve camera motion from un-calibrated video sequences. There 

are two main categories of methods to detect camera motion in a video sequence. The 

first one includes methods that rely on apparent motion, and more especially on optical 

flow as an approximation of it. The second one includes methods that rely on perspective 

information. 

2.1 Identifying Camera Motion From Apparent Motion 

Apparent motion is the most common cue used to track camera motion information. 

Assuming that there is no object motion, the apparent motion (UX,YIVX,Y) is given by 

the following. Note that all symbols in lowercase "x" are in the camera's M3 coordinate 

system, with vector (0,0,1) being the camera's optical axis, while those in uppercase "X" 

are in the image's R2 coordinate system. All coordinates in the image use the optical 

center as origin. 
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Ux,Y =---tx + - - t z - ^ - • rx - (fx + ^-)-ry+ (1) 
% % Jx Jx 

Sfx -X 8fx-X 
Y-rz + — h z fo X 

f Y X Y Y2 

VX,Y = —A-ty + --tz — • ry - (/„ + -r)-rx + 
z z Jy Jy 

SfyY , SfyY X-rz + - ^ + 
fv 

where fx,fy are the focal distances in x and y pixel units, tx,ty,tz and 

respectively the translation and rotation of the camera along three orthogonal axes, 

with z as the camera's optical axis and y axis pointing upward. Finally, z is the scene 

depth for the image point (X,Y). Note that the image origin is at the optical center. 

This corresponds to the intersection of the camera optical axis, often termed principal 

axis, with the image plane. In this equation, the apparent motion caused by camera 

translation (track (tx), boom (ty) and dolly (tz)) correspond to: 

U%°pslation = -—-tx + — -tz (2) 
z z 

station 
' X,Y 

f Y 
i/-translation Jy J. , * + 
V x v — " I'v > " L z -z z 

while the one caused by rotation (pan (rx), tilt (ry) and roll (rz)) is: 

X-Y X}, 
r ' ^X \Jx I e 

Jx Jx 

UrotaUon = _ . ̂  _ ^ + } . ̂  + y . ̂  ( 3 ) 

Vr<*atim=_X^Y.ry _ {fy + Xl).rx + X-rz. 
Jy Jy 

Finally, the apparent motion due to zooming (Sf) is given by: 

Sfx-X , Sfx-X 
•X,Y z fx 

(4) 

zoom VyY , SfyY if zoom •> y i 
VX,Y — h 

IV 
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Equations (1) to (4) are easily obtained by differentiation of the perspective projection 

equations of a pin-hole camera [32, 22]. 

Common techniques use equation (1) with optical flow as an estimation of (U(X, Y), V(X, Y)) 

to extract camera motion information [12, 28, 32, 33]. However, certain classes of motion 

can yield very similar apparent motion. For example, let us compare the apparent motion 

of tracking and panning. 

jjtrack Jx ± (c\ 
UX,Y — ~~y ' lx \°) 
j/track r» 
VX,Y — U -

UP
x:Y=-(fx + ^-)-ry (6) 

Jx 

Jy 

As can be seen, the apparent motion for tracking is strictly horizontal. In the case of 

panning, if the focal distance is large(i.e. small field of view) compared to the magnitude 

of X and Y, then the magnitude of the vertical component of the estimated apparent 

motion if often negligible compared to the horizontal component. Thus, it can be difficult 

to distinguish panning from tracking using apparent motion of a scene of unknown shape. 

An identical conclusion can be drawn for booming and tilting: 

(7) T jboom 
UX,Y ' 

\rboom 
VX,Y ~ 

Tjiilt 
UX,Y ~ 

\rtilt 
VX,Y -

0 

Jy J. 
~ z ' t y , 

X-Y 

Jx 

••(fv + -r) 

(8) 

and for dollying and zooming: 
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jjdolly 

Trdolly 
VX,Y ~ 

r j zoom 
UX,Y ' 

~ z x 

tz 
= —-Y 

Z ' 

,5f , 8f, 

(9) 

)-X (10) 

The direction of the apparent motion of dollying and booming is strictly dependant on the 

relative position of the optical center. Other parameters (depth and focal distance) will 

only vary the magnitude of the apparent motion vector. This means that it is impossible 

to tell zoom apart from travelling using only apparent motion, unless some higher level 

assumptions are made about the scene depth or shape. Among all of the seven parameters, 

only roll can be distinguished from other types of motions without any ambiguities. This 

means that to recover all of the seven camera motions, we need additional information 

or constraints to distinguish rotation apart from translation, and dollying apart from 

zooming. 

Most of the methods try to identify camera motions that, combined together, yield 

an apparent motion field similar to the one computed from the video sequence. As we 

just demonstrated, the main difficulty of working solely with apparent motion is due to 

the fact that the projection of different camera motions may result in similar apparent 

motion. Another difficulty is that the apparent motion equations (see equation (1)) are 

non-linear when simultaneously taking into account every types of camera motions. To 

resolve these ambiguities in the case of uncalibrated camera, many of those methods 

separate motions in groups of visually similar motions [27, 33] or ignore certain motions 

[12, 28, 32], These simplifications remove the need for an additional cue, and allow 

detection of up to six parameters. Others use spatio-temporal information directly [26], 

that is they find patterns in temporal slices taken from the spatio-temporal volume of 

the video sequence that correspond to specific camera motions. Motion parallax methods 
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Fig. 1. The box on the left is under orthographic projection. The other boxes are under per

spective projection, with one, two and three non-infinite vanishing points. 

[16, 20] make assumptions about the presence of certain structures in the scene (e.g planes 

[16]), that they can register between frames to isolate translation. Methods based on 

tracking of invariants often assume a calibrated camera (e.g. [29]) to distinguish rotation 

from translation. Global motion approaches [11, 14, 34] usually aim to separate the 

apparent motion in 2D classes to predict future apparent motion, rather than identifying 

the actual 3D motion of the camera. For a more extensive review of apparent motion 

methods to extract camera motion, please refer to [27]. Based on this review, apparent 

motion is insufficient to allow unrestricted detection of all of the seven camera motions 

from a scene filmed with an unknown camera. 

2.2 Identifying Camera Motions from Perspective 

As previously mentioned, we are interested in using perspective as a visual cue to solve 

the ambiguities that arise while using apparent motion. When parallel lines in the scene 

are projected onto the image plane, they may be distorted by perspective and meet at a 

common image point called vanishing point. This imaginary point is situated at infinity 

in the 3D scene. If a set of lines is parallel to the image plane, their vanishing point 

will also be at infinity in the image plane. Assuming that there is a sufficient number 

of orthogonal and parallel lines in the scene, which is often the case in human made 

environments, three orthogonal sets of parallel lines can often be retrieved. Depending 

on camera orientation, such a scene projected using perspective projection will induce 1, 
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2 or 3 non-infinite vanishing points. These different situations are depicted in figure 1. 

Let us first recall what vanishing points are exactly. Given a line following a certain 

unitary direction (u,v,w) in the scene, passing through a point (xo,y0,zo). Any point 

on that line can be expressed in homogeneous coordinates as: 

/ \ 

x0 + t • u 

yo + t-v 

z0 + t-w 

1 
V 

(11) 

where t is a parametric factor. Using homogeneous coordinate properties we can re-write 

equation (11) and let t go toward infinity, which gives us: 

/ \ 
f + u 

f + v 

Si 
t w 

( \ 

—- t-»oo 

w 

\"/ 

(12) 

This is the intersection point, in the scene, of all parallel lines following direction D = 

(u,v,w), as they tend toward infinity. We can project this point onto the image plane 

using the 3x4 pin-hole projection matrix P to find the associated vanishing point VPUtVtW 
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(u, v, w, 0)T =(u- fx,v fy,w)J. (13) 

The resulting point is the vanishing point associated with the direction (u,v,w), in 

homogeneous coordinates. 

Many methods based on perspective, and more specifically those using a varying num

ber of vanishing points, have been proposed to retrieve shape and/or motion information 

from static and dynamic scenes. In the single-view case, Gallagher [13] uses the vertical 

vanishing point, which is usually near to infinity, to correct the effect of camera roll in 

pictures by aligning the horizon. Cipolla et al. [7] use vanishing points along with user 

interaction to perform calibration and 3D reconstruction of scenes, by recovering the 

projection matrices. While the aforementioned are dedicated to single-view images, the 

same concepts can be ported to video sequences. 

For the multiple images case, where the scene is captured from several points of view, 

most of the work is mainly concentrated around recovering the orientation. In that sense, 

Martins et al. [23] use a Bayesian probabilistic model to infere camera orientation, using 

the expected regularity of human environments that provides easily detectable vanishing 

points. Caprile et Torre [5] propose a method to retrieve camera rotation between two 

frames. Knowing each frame's orientation by projecting the vanishing points on the unit 

sphere, the rotation can be retrieved with a matrix inversion. They also propose a method 

to estimate camera translation if the length of an object in the scene is known, using a 

triangulation to recover the translation vector. Shigang et al. [31] propose a perspective 

method to retrieve the orientation of a robot moving on a horizontal plane. Since in their 

case rotation is around the vertical axis only, they use horizontal lines on the ground 
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and compute the rotation angle directly. Some methods based on omni-directional images 

recover the orientation of the cameras using vanishing points, then proceed to extract 

translation from image correspondences [1, 2]. Those methods are often designed to 

work best when the camera intrinsic parameters are known and unchanging, and motion 

parameters very large. 

Perspective can also be used to retrieve focal distance information. Daniilidis and Ernst 

[10] proposed an active method for camera calibration, where the camera is purposefully 

rotated while looking at a perspective scene to find the camera intrinsic parameters, in

cluding the focal distance whose change cause zooming. Several other methods [5, 6, 35] 

use vanishing points of calibration grids for the same purpose. Kanatani [17] uses two 

orthogonal vanishing points to retrieve the focal distance in pixel units, achieving partial 

calibration. 

Based on this short review, several methods use either apparent motion or perspective to 

retrieve camera motion information. It is however clear that they all have limitations that 

make them inappropriate or difficult to use for automatic indexing of video sequences. 

Especially, very few, if any, can retrieve all of the 7 basic camera motions. To achieve this 

goal and work around those limitations, we suggest in this paper to combine apparent 

motion with perspective information. 

3 Identifying Camera Motion From Both Apparent Motion And Vanishing 

Point Perspective 

In what follows, we propose a multi-step approach to estimate all of the seven camera 

motions. The idea behind our method is to first detect rotation and zoom parameters 

using perspective information only, and then to infer the remaining parameters from 

the apparent motion equations. This idea is based on vanishing point properties. In the 
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proposed method, we relies on the following assumptions: 

Single Shot For simplicity, we assume that the sequence is made of a single shot, that is 

from a single camera, with neither cuts nor transitions. If this is not the case, existing 

methods to segment camera shots can be used (e.g. [19, 30, 36]) 

Manhattan World We assume that three vanishing points can be detected, which 

correspond to three orthogonal directions in the scene. 

Optical Flow Computation We assume that optical flow can be computed for a sig

nificant part of the frames. 

Pixel Ratio We assume that the ratio between pixel's width and height (fy/fx)
 IS 

known or equal 1. 

No Object Motion We assume no object motion. If object motion is present, it will 

act as noise. 

Pin Hole Camera We used a pin-hole camera model. We do not take into account the 

effects of skew, radial distortions, etc. 

As can be seen from equation (13), if the direction associated to a given vanishing point 

is parallel to the image plane i.e. (w = 0) in equation (13), the vanishing point is at 

infinity on the image plane: 

VPu,v,o = (u-fx,vfy,0). (14) 

On the other hand, if this direction corresponds to the optical axis direction (i.e, u = 0 

and v = 0) in equation (13)), then the point is at the optical center (0, 0): 

VPOfitW = (0,0,w) = (0 ,0 ,1) . (15) 

Another important property that can be observed from these equations is that vanishing 

point positions on the image plane depend exclusively on both the orientation of the 3D 

scene lines in the camera's coordinate system, and the camera focal distance. Vanishing 
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points are thus not influenced by a translation of the camera, since this does not change 

the orientation of the lines with respect to the camera axis system. This confirms that 

vanishing points can give us additional information to resolve the ambiguities between 

equations (5) and (6), between equations (7) and (8), and between equations (9) and 

(10). 

3.1 Retrieving Camera Parameters from Vanishing Points 

Lets us take three (p = 1,2,3) vanishing points in homogeneous coordinates VPp>t = 

(Xp>t,Yptt,WPit) over two frames t\ and t2. From Eq. (13) we know that each vanishing 

point correspond to a certain scene direction ~DP. Inversely, using the coordinate system 

of the first frame as the reference system, we can express Dp in relation to VPP,\ as thus: 

VPP,I 

( \ 
XPii 

V%,iy 

/ \ 
uP- h 

Vp-fl 

\ WP J 

( \ 

\WPJ 

( \ 

h 

h 

xwpAj 

Dn (16) 

recalling that Dp is a direction and thus has no magnitude per se. For simplification, we 

assume ft = fx = fy Our experimental results show that this assumption has a negligible 

impact on parameters estimation. Using the projection matrix of the second frame, P 2 , 

and the rotation matrix between both frames, R, we can express these vanishing points in 

the coordinate system of the second frame, which gives us three independent constraints: 

VPh2 - P 2 R ( £ i ) 

VP2t2 = P2R02) 
yp3,2 = P 2 R 0 3 ) -

(17) 

where 
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There are five parameters to retrieve. First, the three rotational parameters from the 

rotation matrix R. Second, the two focal distances / i , /2 , which allows us to determine 

the matrix P2. As can be seen, the problem is ill-defined since there are 5 unknowns and 

only 3 constraints. This can be circumvent by assuming that all of the three vanishing 

points correspond to orthogonal directions. This constraint can be expressed using the 

dot product of the directions: 

3 p - 3 , =°>VP^9- (19) 

Kanatani [17] first proposed this constraint, sometimes called the "Manhattan World" 

assumption [9], to estimate the focal distance at each frame. Using the constraint in 

equation (19) with equation (16), we only have to find the value of ft that makes vanishing 

point's directions orthogonal to each other in frame t. As Kanatani shown, solving both 

equations for two vanishing points i and j yields the following equation: 

ft = y/(-(XittXjtt + YittYj,t)). (20) 

Further details on this technique can be found in [17]. 

Once the focal distance is known for each frame, the rotation parameters can be retrieved 

from the vanishing points, since we now have four equations (17) and (19), and only 

three rotational parameters (rotation matrix R) to recover. Since zoom is known and 

the vanishing points are expressed in the scene 3D coordinate system, as in equation 

(16), then the rotation parameters can be retrieved using a matrix inversion (Caprile 
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and Torre [5]): 

/ 

R 

\ / 

Vpi,2 Vp2,2 Vp3t2 

V 

Vp\,\ Vp2,i Vp3ti 

J\ 

(21) 

J 

Altough other techniques could also be used (cf. section 2), this technique has proven to 

be simple and efficient by our experiments. 

3.2 Retrieving the Translational Parameters from Apparent Motion 

Up until now, we retrieved the focal distance at each frame as well as the rotational 

parameters from the vanishing points. We then approximate the apparent motion using 

optical flow, and substract the zoom and rotational components (equations (3) and (4)) 

from equation (1) to obtain a residual flow. In other words, we obtain a simplified flow 

that is only affected by camera translation. Obviously, we rely on the assumption that 

the depth-related part of the zoom flow in equation (4), is negligible: 

Sf-X 

z 
~ 0 . (22) 

We make this assumption since we have a priori no knowledge about the scene yet. This 

introduces a small error in the residual flow. Since Z is generally large compared to fx, 

fy and X, we have experimentally confirmed that this error is negligible and does not 

influence the ability of the proposed algorithm to distinguish all of the seven camera 

motions. The residual flow is then: 

U XY 

v; residual 
XY 

fx X 

z x+ z z 

Z v Z z' 

(23) 
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This residual flow contains none of the ambiguities of the original flow: All of the three 

remaining components have very different apparent motion, and we can be retrieved 

from optical flow using a minimization scheme. 

Notice that dollying may however locally look like a mix of tracking and booming. In 

order to circumvent this problem and improve results, we use a technique similar to the 

one proposed by Srinivasan et al. [32]. They argue that if all flow is removed except the 

part caused by tracking and booming, the residual flow should be parallel in the image 

plane, and they attempt to find the camera rotation and zoom parameters that will 

make the residual flow parallel. Since we already removed the flow caused by rotation 

and zoom, we propose to find the translation parameters that will make the residual flow 

at each point go directly toward or away from the optical center, like the flow of dolly, 

or that will simply minimize the residual flow. This approach is especially convenient in 

our particular case since there is no need to estimate the flow alignment at each step 

of the minimization process (see [32]). The parameters to be estimated are the global 

translation parameters tx, ty and the scene depth z at all points that are considered. 

Given the following definitions: 

Tjmin jjresidual . Jx ± j[dolly lr)A\ 
UX,Y ~ UX,Y "I ' lx — UX,Y K^J 

\rmin \rresidual i J9 J. -irdolly 
VX,Y — VX,Y + — • ly — VXy . 

and 
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we attempt to minimize the total angular error. 9X Y is the orientation of the (X, Y) 

image point, relative to the optical center. 6XY
 1S the orientation of the minimized 

optical flow (U™Y, Vjfy1) relative to this point. It can be seen that if the minimized flow 

contains only dollying (c.f. equation (9)), then both orientations d be identical. Our cost 

function for the minimization is thus: 

Cost=J2(dxx-6xxf. (27) 
X,Y 

In some cases, an infinity of combination of tx and ty could minimize the angular error. 

This is due to the fact that we only considered the orientations of the vectors and not 

their magnitudes. To avoid this ambiguity, we include the X and Y translation magnitude 

in the minimization. In the case of an infinity of equivalent solutions having different 

norm, the minimization will thus settle for the one with the lowest magnitude. In most 

cases including dolly, experiments confirm that this additional part to the cost function 

do not influence the results, a and j3 are used to weight both parts of the final constraint 

equation: 

Cost = £ W^, r - 9XtYf + (3(tl + tj)). (28) 
X,Y 

We use two weighting constants instead of one to help avoid potention numerical prob

lems, however, a single one could be used. Notice that if there is significant tracking or 

booming, we also retrieve the scene depth z up to a scale factor. One parameter still 

need to be evaluated: dollying (tz). It can be computed directly using a least-square min

imization of equation (9). This also leads to a simultaneous estimation of both tz and 

z. Notice that if the scene depth (Z) was recovered at the previous step, it can be used 

to improve the estimation of dollying. In other words, the only unknown in that case is tz. 

We have shown how to retrieve all of the seven motion parameters, and also the scene 

depth when at least one of the translation parameters is significant. Recall that it was 
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based on the assumption that two or three of the orthogonal vanishing points are not 

located at infinity in the image plane. If this is not the case, then it might also be possible 

to estimate all of the camera motion parameters, as will be shown in the next section. 

3.3 Particular Case: Single Vanishing Point 

As can be seen from equation (13), if the direction associated to a given vanishing point 

is parallel to the image plane (w = 0), then the vanishing point is located at infinity in 

the image. If all of the frames contain only one vanishing point that is not at infinity, then 

it can be assumed that there is neither camera panning nor tilting, since any presence 

of pan or tilt would quickly switch the scene to the two or three-point vanishing point 

cases. In this case the remaining vanishing point will be located at the optical center 

(0,0), according to the vanishing point orthogonality assumption from Eq. (19). Notice 

that this situation is common in practice. For example, most of existing movies and 

numerous T.V. programs contain at least one shot of this type. We must also mention 

that when two vanishing points are at infinity and the remaining one is at the image 

plane origin, they do not convey any information about focal distance. Concerning roll, 

it can be easily estimated using the orientation of the two vanishing points at infinity, 

since a roll of rz degrees will affect the position of those vanishing points around the 

optical center by exactly the same amount (i.e. rz degrees). Note that unlike pan and 

tilt, estimating roll in this way is regardless of the focal distance. Given the position 

XPit,YPtt in the image of vanishing points (p = 1,2) located at infinity at frame t, we can 

express the orientation of those vanishing points using: 

6P, = arccos( f » ' ). (29) 
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The camera roll can then be estimated using the differences between 6ltl and 6*1,2 and/or 

6*2,1 and 6*2,2. For example, one can use the mean of those differences: 

rz = (gM - 0i,2) + (flu ~ 02,2) _ ( 3 0 ) 

As for the tracking and booming parameters, since zooming and dollying have the same 

orientation, they can be estimated using the minimization scheme proposed in the pre

vious section. In this case, the residual flow is given by: 

U™fual = -~tx + ^ k + ^ + % * (31) 
z Z z j x 

T/residual _ Jy . , ^ OJyY "Jy ' * 

^^ ~ Z" +TZ + ~Z~ + ~fy~-

We can obtain the residual flow by substraction Eq. (3) from the optical flow in input. 

Unfortunately, the residual optical flow equations do not yield linear constraints. We 

then suggest to use a non-linear minimization scheme using the apparent motion related 

to both zoom and dolly : 

U™f = ur
x
epdual + — tx (32) 

•\rmin2 T/residual , J j / i 
VX,Y — VX,Y T lV> 

Axy=Uff--tz-
5-^-5-^ (33) 

z z fx 
r> \/min2 * f "Jy^ "Jy ' * 
&X.Y — VXY l>z 7 • 

Z Z jy 

We attempt to minimize the sum of square differences between the flow produced by the 

estimated parameters and the actual residual flow: 

E2 = YJ{A2x,Y + B2
xy). (34) 

X.Y 
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Under our previous assumption that fx = fy, minimizing E2 lead to a simultaneous 

estimation of zoom (5f), dolly (tz). Scene depth (z) is also estimated if, and only if, dolly 

is present. Notice that the two U, V components for zoom and dolly are not independent. 

For a fixed point X, Y, the horizontal and vertical optical flow of these motions are 

dependent. Thus, for each point, we only have one equation, i.e. Eq. (34). If the depth 

is unknown (i.e. whenever the scene contains no dolly), then for N points we have 

N + 2 unknowns and only N equations, which makes the system underconstrained. 

Fortunately, we can use lines converging toward the existing vanishing point (vanishing 

lines) to circumvent this problem. From equation (11), we can assume that the depth of 

points on lines that converge toward the optical center (the only finite vanishing point in 

that case) will increase as the point is closer to the optical center. It is thus possible to 

build an approximate depth map, up to a scale factor, for the parts of the image along 

those lines. Our system is now solvable, and we can retrieve zoom, dolly and the focal 

distance, up to a scale factor. 

4 Summary of the Algorithm 

Let us now present the resulting algorithm based on previous developments. We will then 

present some details in order to facilitate the implementation. 

4-1 Overview of the Algorithm 

4-1.1 Underlying assumptions 

This work relies on common assumptions: 

Single Shot For simplicity, we assume that the sequence is made of a single shot, that is 

from a single camera, with neither cuts nor transitions. If this is not the case, existing 
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Fig. 2. Overview of the algorithm for camera motion extraction based on apparent motion and 

vanishing points. 

methods to segment camera shots can be used (e.g. [19, 30, 36]) 

M a n h a t t a n World We assume that three vanishing points can be detected, which 

correspond to three orthogonal directions in the scene. 

Optical Flow Computat ion We assume that optical flow can be computed for a sig

nificant part of the frames. 

Pixe l Rat io We assume that the ratio between pixel's width and height (fy/fx) is 
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known or equal 1. 

No Object Motion We assume no object motion. If object motion is present, it will 

act as noise. 

Pin Hole Camera We used a pin-hole camera model. We do not take into account the 

effects of skew, radial distortions, etc. 

Notice that, as will be shown in Section 5, violation of the last three assumptions do not 

degenerate the results 

4.1.2 Input 

Our method takes as input the optical flow field of a video sequence as an approximation 

of the apparent motion. To this end, we can use existing methods, either completely or 

partially dense, such as [15, 21]. We also take as input three orthogonal vanishing points 

for each frame. To this end, an existing technique such as [4, 8, 18, 24] can be used. The 

only parameters of our method are the weights of the minimization scheme (Eq.(28)). 

4-1.3 Outline of the Algorithm 

As shown in figure 2, the main steps of the algorithm are: 

(1) Estimate / for each frame using equation (20). 

(2) Estimate rx, ry and rz using equations (21) or (30), depending on the number of 

vanishing points that are not located at infinity. 

(3) Compute the residual flow by subtracting the rotation and zoom flow using equa

tions (3) and (4) from the estimated optical flow. 

(4) Estimate tx, ty and Z using equation (28). 

(5) Compute the second residual flow by subtracting the tracking and booming flow 
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using equations (5) and (7). 

(6) Compute tz using equation (9) or tz and 5f using equation (34). 

4-1-4 Output 

The output of the algorithm are the zooming parameter, as a change of the focal distance 

in pixel units (fx,fy), the three rotational parameters of the camera rotation matrix 

R, and the three translational components. Recall that the value of the translational 

parameters is not absolute, but relative to a scale factor with scene depth (see Eq. (2)). 

The particular case of two vanishing points at infinity, presented in section 3.3, is also 

taken into account. In this case, it is assumed that there is neither pan nor tilt. Zoom is 

retrieved but up to a scale factor with the translational parameters. 

4-2 Implementation Details 

4-2.1 One vs Several Vanishing Points Perspective 

To evaluate if a vanishing point can be considered at infinity, we use two maximum 

thresholds (ex, ey) related to the image width and height respectively. The closer a van

ishing point is to infinity, the less reliable its position are. The farther from the optical 

center the vanishing point is, the more parallel the lines converging to this point be

come, and the computation of their intersection is less reliable. Thus, every vanishing 

point (x, y) for which x > ex • Iwidth o r V > ey ' height is considered at infinity. These 

thresholds are applied in image space, and are thus independent of the scene's depth. 

4-2.2 Jittering and Vanishing Point Filtering 

A common problem occurring in vanishing point detection over a video sequence is 

jittering. In other words, the estimated vanishing point positions in time are distributed 
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all around the ground truth. This phenomenon can be caused by an unstable camera or 

by imprecision in the vanishing point detection. To overcome this problem, we suggest 

to optionally include a smoothing curve fitting, such as fitting the points on a bezier 

curve, to align the vanishing point positions before proceeding. This will ensure more 

consistent results when using noisy vanishing points. 

4-2.3 Optical Flow Computation and Temporal Sampling 

The optical flow can be computed using any technique the reader considers reliable. 

However notice that parts of the optical flow where the magnitude is close to zero should 

be ignored. Either the flow could not be resolved at those points, or the scene depth is 

too great (possibly at infinity) and this will cause problems for the estimation of both 

the translation and the depth. 

4-2.4 Minimization 

To perform the actual minimization of Eq (28) and (34), several techniques could be 

used. Since our goal was not to evaluate the pros and cons of those techniques we use 

an actual implementation of the Nelder-Mead's [25] method for experimental purpose. 

This method has proven to be efficient in prior work (e.g. Srinivasan et al [32]) and 

does not require the computation of the derivatives of the cost function. Notice that 

care should be taken to have a good initialization for the Nelder-Mead algorithm using 

a set of sufficiently large and diverse initial values. The initial values for depth can be 

set arbitrary without loss of generality, as well as the value of / for the case of a single 

vanishing point not at infinity, since we will obtain a result up to a scale factor. 
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Fig. 3. Frames from the three-motion synthetic sequence at time t = 0 and t = 14. 

5 Performance Evaluation 

In this section we present experimental results of camera motion estimation for a variety 

of real and synthetic video sequences of architectural scenes. For all of those results we 

used a = 1 and j3 = 0.01 as weight parameters (equation (28)), as well as thresholds ex 

= ey — 25 in order to determine if a vanishing point is to be considered at infinity. Recall 

that we use the estimated motion parameters to label frames of the video sequences in 

order to facilitate indexing and retrieval. 

5.1 Evaluation of the Usefulness of the Perspective Cue 

In order to evaluate how important is the perspective cue on the estimation of the 

motion parameters, we compare the results obtained using the proposed method to 

results obtained from running a similar method based only on apparent motion [32]. 

5.1.1 Results from Synthetic Sequences 

In this section, we present results obtained for a sample of 12 sequences with known 

ground truth. Each frame is made of 320x200 pixels. A subset of frames is presented in 

figure 3. This particular sequence is a combination of simultaneous panning, booming 

and zooming. Sequences contain 60 frames each. 
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Fig. 4. Correlation between the set of ground truth parameters (MGTP) and the set of estimated 

parameters (MEP) for all of the seven motions, a) Results from apparent motion only, b) Results 

from both apparent motion and perspective. Note that the darker dots indicate that several 

data points are situated at almost the same location on the graph. 

Figure 4 shows correlation graphs between absolute value of the estimated parameters 

(MEP) and the absolute value of ground truth parameters (MGTP) obtained both with

out and with perspective cue. The plot shows the absolute value of every individual 

ground truth parameters versus the absolute value of the corresponding individual es

timated parameters. Because each frame of each video sequence potentially contains 8 

parameters, each frame tested correspond to 8 points in the graph. A line has been fit on 

data using a least-square regression. Recall that for such graphs, a line with a slope close 

to 1.0 indicates a good correlation. This means that the estimated parameters are, on 

average, directly proportional to the ground truth. A very high or very low positive slope 

indicate a poor correlation, which means that the magnitude of the estimated parameters 

is unrelated to the magnitude of the ground truth. Finally, a correlation with a negative 

slope indicates that the estimated parameters magnitude is inversely proportional to the 

ground truth. Thus as shown in figure 4-a, the magnitude of the motion parameters 

evaluated by the method based on motion only is unrelated to the magnitude of the 

ground truth parameters since fitted line has a slope close to zero. In other words, that 

method fails to accurately identify motion parameters, most of the estimated values be

ing close to zero. This is not surprising as it is difficult, even to the human eye, to identify 

such a combination of motions, especially when all seven camera motions are present. 
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In particular, camera panning and camera tracking are indistinguishable. However, as 

shown in figure 4-b, the use of the vanishing points drastically improves the results. The 

estimated parameters are more accurate since they correlate with a slope of 0.90. This 

indicates that with the proposed method, the magnitude of the estimated parameters is, 

on average, proportional to the magnitude of the ground truth parameters, even when 

several types of motions occur at the same time. Similar results were obtained for all of 

the experiments made with sequences involving at least camera rotation or dolly. Notice 

that, in the results that are presented in Fig. 4, both methods performed well on the 

subset of sequences involving only camera track, boom or zoom. The computational time 

needed to extract motion parameters is approximately 1 second for each pair of frame on 

a 2.2 Ghz computer and depends mainly on the performance of the minimization scheme 

used. 

5.1.2 Results on Real Video Sequences 

We now present results of camera motion estimation for 19 real video sequences ex

tracted from movies. One of the movies is Alfred Hitchcock's 1958 Vertigo, which was 

the first to feature a "trombone shot" camera motion, a combination of zoom and dolly. 

In addition, notice that the camera motion of shots from this movie are usually rotation 

rather than translation. Another well-known movie we used is Stanley Kubrick's 1980 

The Shining. This movie was almost entirely shot using a stabilized shoulder-mounted 

travelling camera. Most of the shots include object motion. Test sequences contain 50 

frames in average. 

For all of those video sequences, the qualitative accuracy of the results was evaluated 

using two metrics : sensitivity and specificity. The sensitivity is defined as the average, 

for each pair of frames, of correctly identified camera motions divided by the number of 

motions present in the current pair of frames. The specificity is defined as the average, 

for each pair of frames, of correctly undetected motions divided by the total number of 
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motion types (7) minus the number of motions that are present in the current pair of 

frames. To determine if a motion is present, we compare the magnitude of the apparent 

motion it caused to the magnitude of the optical flow of the frame. Motions with a flow 

magnitude of at least 10% of the whole are considered present. Tables 1 and 2 summarize 

the results for all of the real sequences, sorted by the motion(s) present in the sequences. 

If a sequence contains several motions, it will be accounted in all appropriate categories. 

Detected Camera Motion 

Zoom 

Tracking 

Booming 

Dollying 

Panning 

Tilting 

Roll 

Sensitivity 

using 

our method 

100% 

85.63% 

94.25% 

0% 

2.33% 

7.23% 

3.84% 

Specificity 

using 

our method 

48.73% 

24.26% 

31.24% 

100% 

80.82% 

70.23% 

83.72% 

Sensitivity 

using 

other method 

100% 

96.64% 

97.74% 

92.84% 

92.57% 

90.37% 

94.82% 

Specificity 

using 

other method 

96.23% 

91.5% 

90.84% 

93.85% 

76.76% 

83.11% 

70.71% 

Table 1 

Individual camera motion detection results for real video sequences 

In section 2.1, we showed the ambiguities that arise when using only the apparent motion 

to determine camera motion. These ambiguities are well reflected in our experimental 

results. There is no doubt that the results using both perspective and apparent motion 

are globally better. Given the unknown aperture angle, the method based only on ap

parent motion struggles with sequences involving camera rotation. Also, its inability to 
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Detected Camera Motion 

Translation only 

Rotation only 

Translation and Rotation 

Translation and Zoom 

Sensitivity 

using 

our method 

100% 

4.55% 

4.55% 

50% 

Specificity 

using 

our method 

15.62% 

83.72% 

27.48% 

50% 

Sensitivity 

using 

other method 

98.31% 

91.48% 

93.75% 

100% 

Specificity 

using 

other method 

99.15% 

72.84% 

84.32% 

100% 

Table 2 

Combined camera motion detection results for real video sequences 

distinguish dollying from zooming affects the results in most sequences involving dolly. 

This flaw is responsible for its low score in the "Translation Combined with Rotation" 

category in table 2. This seems to be related to the fact that dollying is frequently com

bined with panning in movies [3]. By opposition, we see that the sensitivity rate of the 

method based on both perspective and apparent motion is very satisfying: the main mo

tions of every sequences were easily identified by our method, even when several type of 

motions are combined together. The specificity rate decreases in sequences with strong 

camera rotation, but results are still more satisfying than those obtained from appar

ent motion only. Please notice that the estimation of rotational parameters is sensitive 

to small numerical errors and noise that may affect the input. Experiments show that 

such errors can yield a significant error level in the estimation of rotation parameters. 

Moreover, error in estimating the rotation between two frames will most likely results in 

a false translation detection, as the algorithm compensate for the error in the following 

steps. Thus, accurate vanishing point detection and camera rotation estimation will most 

likely guarantee a lower false positive rate. 
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Overall, the experiments confirm that the additional information provided by perspective 

allows our algorithm to accurately detect all of the seven camera motions. It thus provides 

an efficient way for labelling video frames in the context of content-based video retrieval. 

5.2 Particular Results from a Trombone Shot 

Let us now emphasize on a specific example which illustrates the power of our algorithm. 

The example comes from the "trombone shot" of the stairway scene from the movie 

Vertigo. Figure 5 presents three frames of this shot (in which there is a combination of 

zoom and dolly), and Figure 6 presents the corresponding computed optical flow. This 

is a typical single vanishing point perspective case, with two vanishing points at infinity 

and the last one at the optical center. Note that there is no object motion. The algorithm 

does not detect any panning, tilting, rolling, tracking or booming, which is correct. A 

combination of zooming and dollying was correctly identified at each frame. We also 

note that, as expected, the zooming and dollying parameters signs are always the same 

and always opposed, e.g., dolly in and zoom out. Table 3 summarizes the results for this 

sequence. To the authors' knowledge, the proposed method is the first to successfully 

recognize trombone shots. 

6 Conclusion 

We presented an algorithm which extract all of the seven camera motions from a video 

sequence. Our approach successfully combines information from apparent motion with 

information from vanishing points. First, we use perspective to extract focal length and 

rotational parameters. These parameters are then used to facilitate the extraction of 

translational parameters from apparent motion. The performance of our method was 

evaluated on both synthetic and real sequences. The results are quite satisfying. They 
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Fig. 5. Frames from the stairway sequence at time t = 0, 10 and 20. 

Fig. 6. Example of optical flow obtained at £=10 from the stairway sequence, 

confirm that the estimation of the motion parameters is good enough to allow a robust 

qualitative detection of all of the camera motions. Moreover, the usefulness of perspective 

information for camera motion detection has been demonstrated by comparing results 

obtained with our approach to results obtained from a similar approach based on appar

ent motion only. 

Different motions and combinations of motions have different semantic meanings. In 

that regard, the detection of all of the seven different motions, including combinations 
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Motion 

Zooming 

Panning 

Tilting 

Rolling 

Tracking 

Booming 

Dollying 

Sensitivity 

100% 

N/A 

N/A 

N/A 

N/A 

N/A 

100% 

Specificity 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

Table 3 

Camera motion detection result for a trombone shot from the movie Vertigo. 

of motions, is very important to content-based indexing and retrieval. In that sense, we 

believe the proposed method has proven to be efficient for identifying most combinations 

of motions used in cinematography, including the trombone shot. 
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Chapitre 2 

Occultations dans le volume 

spatio-temporel 

2.1 Avant-Propos 

Dans une sequence video, lorsque le mouvement de la camera et/ou le mouvement des 

objets fait en sorte qu'un objet dans la scene en occulte un autre, on dit qu'il y a 

occultation. De meme, ces mouvements peuvent occasionner l'apparition graduelle d'un 

objet qui etait occulte. Le type d'evenements (occultation et «desoccultation») implique 

la presence de contours d'occultation, qui sont la projection dans l'image des limites 

physiques d'un objet dans la scene [9]. 

La detection des occultations, qu'il s'agisse des evenements eux-memes ou des contours 

particuliers qui leur sont associes, est d'un grand interet en vision artificielle. D'une 

part, les occultations presentent un obstacle a certaines methodes de vision artificielle, 

tel le calcul du not optique ou la reconstruction de scene basee sur plusieurs images [9]. 

D'autre part, elles fournissent aussi des indices importants sur la structure d'une scene 
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et le comportement des objets contenus dans la scene. Par exemple, les occultations 

permettent d'ordonner des surfaces ou des objets selon leur distance relative a la camera 

[22], aidant ainsi a la reconstruction de la scene [9], ou a la description semantique de la 

scene (l'homme passe derriere le mur), ce qui peut se reveler utile dans le domaine de 

l'indexation automatique par le contenu. 

La methode proposee pour repondre a ce probleme est basee sur l'analyse du volume 

spatio-temporel. Aussi appele videocube [18], le volume spatio-temporel est compose de 

l'agregation d'une sequence d'images continues en un volume compact 3D (x, y et t ; 

temps). Plusieurs methodes utilisent le volume spatio-temporel dans d'autres contextes 

[8, 12, 15, 17, 19] . Dans un tel volume, les contours 2D presents dans les images 

forment des surfaces, appelees surfaces spatio-temporelles. Ces surfaces peuvent etre 

localisees dans le volume, a l'aide d'un detecteur de contours base sur le gradient 3D par 

exemple [4]. L'orientation de ces surfaces depend a la fois de l'orientation du contour 

dans l'image ainsi que de la velocite de son deplacement, s'il y a lieu. Lorsque deux 

contours se rencontrent en un point donne, les surfaces spatio-temporelles correspondant 

a ces contours se rencontrent aussi, formant une arete dans le volume spatio-temporel, 

ce qui correspond a un phenomene d'occultations. II est possible de detecter les aretes 

dans le volume spatio-temporel en utilisant une analyse geometrique, en extrayant par 

exemple les maximums locaux de la courbure 3D [14]. Dans cette optique, la methode 

detaillee dans l'article qui suit propose d'identifier les occultations par la detection et 

le filtrage des aretes dans le volume spatio-temporel correspondant a l'intersection de 

surfaces spatio-temporelles. La methode decrite permet egalement d'identifier le contour 

passant devant l'autre. Ceci fournit une information semantique additionnelle, discernant 

l'objet qui est le plus proche de la camera de celui qui est plus loin. 

L'avantage d'une telle methode est qu'il s'agit d'un precede uniquement geometrique. La 

methode proposee ne necessite done au prealable aucune des informations sur la scene ou 
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la camera, et ne requiert pas le calcul du flot optique ni celui de la profondeur de scene, 

qui peuvent se reveler problematiques dans les zones de l'image situees pres des contours 

d'occultation. 

L'article qui suit, intitule «Occlusion Event Detection using Geometric Features in Spatio-

temporal Volumes», decrit cette methode. Cet article a ete soumis a la revue Machine 

Vision and Applications en aout 2007. Une version courte a ete presentee a la conference 

Canadian Conference on Computer and Robot Vision en 2005 [4]. II a ete coredige par 

moi-meme ainsi que le professeur Frangois Deschenes. Le professeur Deschenes a fourni 

l'idee originale et a contribue au developpement de la methode ainsi qu'a la revision de 

l'article. Ma contribution en tant que premier auteur fut la recherche et le developpement 

de la methode, les tests de performance ainsi que la redaction de Particle. 
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1 Introduction 

1.1 Context 

The detection of occluding contours and occlusion of ob

jects in an image sequence is a problem of importance. 

It provides essential clues on the structure and behav

ior of objects in a sequence. For example, if we can de

tect that a man is moving in front of a given object, we 

know that this man is closer to the camera than the ob

ject. Our goal is to identify occurrence of occlusion in 

a digital video sequence without prior knowledge on the 

scene structure, its lighting, camera movement or intrin

sic parameters. This type of semantic information may 

obviously be useful, for example, in the field of content-

based video indexing. The detection of occlusion also has 

many other applications, including improving scene re

construction [31] and object tracking [17]. 

In this paper, we propose a novel method to de

tect occlusions in a video sequence. More especially, we 

suggest to consider geometric features of the image se

quence in the space-time domain. We consider an image 
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Fig. 1 An occlusion event occurs as one object moves in front 

sequence as a videocube [27] and [16] or spatio-temporal 

volume [28] from which we want to extract the relevant 

3D features. This spatio-temporal volume has proven to 

be useful to detect various types of information [25] and 

[23] and [14] and [18] and [30], From this medium, we pro

pose to first identify 3D surfaces formed by edges in the 

spatio-temporal volume using a 3D gradient edge detec

tor (color or grayscale version). Second, we use the fact 

that, by extension, collisions of edges in an image should 

appear as intersections of surfaces in the spatio-temporal 

volume. We define such a collision of image edges as an 

occlusion event (see Fig. 1). Intersection of surfaces in 

a volume are expected to form 3D ridges. Those ridges 

can be located by extracting local maximum curvature, 

as suggested by Monga [22]. Finally, we use the orienta

tion of colliding surfaces to classify occlusion events as 

well as identifying the occluding edge. Approaches based 

on 3D curvature like the one we propose remain uncom

mon. This method provides extensive information about 

occlusion events in a video sequence, by neither comput

ing scene depth nor optical flow. 

2 Related Work 

Existing approaches to identify occlusion edges and oc

clusion events in a video sequence can be grouped in 

three classes. 

The first class of approaches is based on informa

tion extracted from a single image. For instance, "T-

Junctions" (junctions of image edges forming a T-like 

h h 

of the other 

structure) may be considered as a cue of occlusion, be

cause they likely appear when an object is partially oc

cluded (see [9]). Texture warpage [11], the deformation 

of texture caused by object shape, is also an important 

cue to identify occluding edges of regular, non-planar ob

jects. Finally, changes in object illumination near occlu

sion edges [15] can also be considered. However, meth

ods based on a single image can return unwanted re

sults in the context of a video sequence. For example, let 

us consider a scene containing a large poster on a wall. 

Such methods would identify occluding edges inside the 

poster, even if those occlusions do not exist in the scene. 

To distinguish such occurrences from real scene occlu

sions, motion information can be useful. 

The second class of approaches is based on image 

matching [6] and [5] and [7]. In these approaches, dense 

or sparse feature tracking are used to build a model of 

motion, and occlusion can be detected at motion bound

aries. However, without a priori knowledge, the compu

tation of image correspondence or optical flow are dif

ficult or unreliable in areas surrounding occluding con

tours [3]. The optical flow computation can also be af

fected by changes in the scene lighting. To address such 

issues, a priori knowledge of occluding edges is of great 

interest. For instance, it could greatly improve the ac

curacy of optical flow estimation by avoiding to match 

occluded regions. 

The third class of approaches is based on the study 

of 3D surfaces in spatio-temporal volumes. Zetsche et 
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al [8] suggest to use the gaussian curvature of points in 

the spatio-temporal volume to detect occlusions in zones 

of significant curvature in the XY plane (Image junc

tions) in the context of optical flow analysis. Konrad 

and Ristivojevic [18] introduce "object tunnels" that 2D 

objects of static shapes form in the spatio-temporal vol

ume. By finding the boundaries of spatio-temporal tun

nels that become aligned with the temporal axis, they 

attempt to detect occlusions with at least one static ob

ject. The authors mention that their method can how

ever only detect occlusions by static objects with straight 

line boundaries. Konrad and Ristivojevic also used the 

object-tunnel model for the segmentation of video se

quences and the detection of background occlusions [29]. 

In both works they attempted to track the tunnel fron

tiers using the level-set approach. In [1], Mitiche et al 

attempted to detect spatio-temporal surfaces formed by 

occlusion edges in order to track objects, using a level-

set approach that formulates the surfaces as a Bayesian 

image partitioning problem. As can be seen, most of the 

methods based on spatio-temporal surfaces work on in

dividual surfaces, and do not consider the interaction 

between such surfaces that happens at occlusion events. 

In that regard, some methods (e.g. [2]) aim to find occlu

sion events by detecting T-Junctions in epipolar planes 

images (EPI), i.e. slices of the spatio-temporal volumes 

taken in the epipolar direction. As shown in Fig. 2b, 

spatio-temporal surfaces form 3D ridges at occlusion events 

that can be seen as T-junctions if viewed from the appro

priate plane in the spatio-temporal volume. Laptev [19] 

argued that corner-like features, i.e. points that vary into 

3 orthogonal directions in the spatio-temporal volume, 

are a robust sign of significant local, temporal events. 

He uses a 3D version of the Harris corner detector to de

tect "local motion events", and shows occlusion events 

as an example of the features that are detected. 

a) Frame sample (t=0) 

b) EPI Image 

Fig. 2 An EPI image (b) of a video sequence (a) featuring 

several occlusion events. The EPI image only shows occlusion 

events that occur in X direction. 

Based on this short overview, it is obvious that inter

sections of spatio-temporal surfaces represent an impor

tant cue of occlusion and that their detection is a step 

further in understanding occlusion phenomenon, that is 

some occlusion edges identified using spatial (image-level) 

information can only be confirmed or rejected by also 

taking into account dynamic (temporal) information. 

Our contribution can be seen as a generalisation of 

Apostoloff and Fitzgibbon's work [2], since we general

ize the concept of T-Junctions in the EPI (see Fig. 2) to 

the broader concept of ridges in the spatio-temporal vol

ume. It can also be seen as a continuity of Laptev's [19] 

work, as from all significant local, temporal events we de

duce significant properties of the occlusion/dis-occlusion 

event. We provide a thorough analysis of this specific 

event, as well as means of discriminating it from other 

"local motion events". 
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In the next section, we present a definition of edge 

collisions occurring at occlusion events using 3D ridges. 

We then explain how ridges are located using 3D cur

vature information. Following this, we will discuss how 

to identify relevant ridges. Finally, we present an ap

plication that uses both the ridge and spatio-temporal 

surface information to distinguish occlusion from disoc-

clusion events and detect which object overlaps another 

one in a video sequence. -> x 

C gaussian 

3 Detecting occlusion events 

3.1 Analysis of occlusion events in the spatio-temporal 

volume 

As a given 2D point moves from image to image in a 

video sequence, it forms a curve called a spatio-temporal 

(ST) curve. In the same manner, curves in 2D images 

form spatio-temporal surfaces, and areas form spatio-

temporal volumes, sometimes called tunnels [18]. The 

tracking of spatio-temporal curves, surfaces or volumes 

is usually concentrated on pixels that are part of an edge 

in 2D images due to the aperture problem. By extension, 

we will only consider pixels that are part of 3D surfaces 

that edges form in the space-time domain. We detect 

those surfaces by applying a 3D gradient operator on the 

spatio-temporal volume. As will be seen, the use of the 

3D color gradient of the spatio-temporal volume allows 

to convert the input data (video sequence) into a form 

that makes spatio-temporal surfaces explicit, which we 

call the gradient volume. 

Spatio-temporal surfaces interacting together usually 

create regions of high 3D curvature in the spatio-temporal 

volume. It has been noted before that lines found in time 

slices intersect each other (e.g. T-Junctions) when oc

clusion occurs [23] and [34] and [2]. However, we would 

Fig. 3 Two rectangles move toward each other. As their sides 

collide, a ridge is formed (in the middle). Here, the left rect

angle occludes the right one by moving over it. 

have to take an infinity of slices to be able to detect 

all the different angles and speed at which those corners 

can appear. Taking a slice in the EPI allows to detect 

occlusion events that occur along the main motion di

rection, but several important motions can be present 

in a scene. Since those intersecting lines correspond to 

slices of spatio-temporal surfaces, related corners (or T-

Junctions) are in fact slices of a ridge in the spatio-

temporal volume, formed by the intersection of two sur

faces, (see Fig. 3). 

A critical observation at this point is that, for semi

rigid objects, at least one of the two surfaces corresponds 

to an occluding contour in the image sequence; both sur

faces cannot correspond to texture edges. In the later 

case, it is obvious that they will not meet, or one edge 

would have been occluded before the collision could oc

cur. Also note that in the presence of rotation, a texture 

edge may become an occlusion edge. 

As mentionned before, ridges are primarily points of 

high 3D curvature. The structure of ridges caused by col

liding edges can then be defined using 3 different 3D cur

vature directions Cmax, Cmin and CgauSsian [10] (see 
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Y-^ 
Fig. 4 The principal curvature direction of two objects mov

ing in the same direction but at different speeds 

Fig. 3): 

Principal curvature direction 

The principal curvature direction Cmax of any ridge 

is the direction in which the magnitude of the curvature 

is the highest. On occlusion event ridges, it is "across" 

the ridge, usually perpendicular to the occlusion edge. 

An important observation is that the temporal compo

nent of the normalized principal curvature direction vec

tor depends on the relative velocity of the objects. If both 

edges at the occlusion events are moving at the same 

speed toward each other in the video sequence, then the 

temporal component of the principal curvature direction 

will be null and the direction will lie on the image plane 

exclusively. As the sum of the relative speed of the ob

jects increase, so will the temporal component. Consider, 

for example, two objects moving in the same direction, 

one faster than the other (see Fig. 4). The temporal com

ponent of Cmax will then be large. However, the prin

cipal curvature direction cannot have an exclusive tem

poral component (i.e. Cmax = (0,0,1)), otherwise the 

colliding spatio-temporal surfaces would be confounded. 

This first direction, along with the curvature value, are 

the features we will principally focus on, since their com

putation are the most reliable (see section 3.2). 

Secondary curvature direction 

The next feature is the secondary curvature direction 

~Cmin, the direction in which the curvature magnitude 

is the lowest. For collision ridges, it is "along" the ridge, 

and depends on the orientation (in the image) of the 

surfaces that are colliding. In simpler terms, this direc

tion roughly corresponds to the orientation of the image 

edges as they collide at the occlusion event. Obviously, 

this direction should always lie in the XY image plane. 

Gaussian curvature direction 

Finally, there is the gaussian curvature direction Cgaussian, 

defined as the cross-product of the two previous ones. 

Due to the constraint on the principal and secondary cur

vature directions, the gaussian curvature direction never 

lies in the XY plane. Notice that we do not necessar

ily use this direction in our analysis since experiments 

confirmed that its computation is not reliable in some 

cases, such as when the magnitude of one or both of the 

previous curvature directions is close to zero. 

Based on this description of occlusion ridges, we ob

serve that the sharpness (magnitude of curvature) of a 

ridge should depend on the relative speed of objects. Col

lision of edges moving quickly toward each other will 

cause flat ridges with a low principal curvature. Colli

sions between spatio-temporal surfaces with a normal 

vector close to or on the XY plane will cause sharp ridges 

with a high principal curvature. At any rate, points on 

an occlusion ridge should locally have higher curvature 

value than points on spatio-temporal surfaces not in

volved in a collision at that time. Thus, according to our 

analysis, the first step for identifying occlusion events 

is to detect 3D ridges caused by collisions of surfaces by 

computing and then thresholding 3D curvature of spatio-
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temporal surfaces. Related orientation information can second (Eq. 2) fundamental forms of the hypersurface 

then be useful for discriminating and classifying those are computed: 

3D ridges. 

(1) 

•+Il 

J-x^-y 

Uz 

lxly 

l + I2 

lyh 

*xlz 

i-ylz 

l + - ^ i 

3.2 Detection of 3D Ridges 

Detection of 3D ridges is difficult because computation 

of reliable 3D curvature information is a complex mat

ter [13]. Most of the work in this area has been concen

trated on the use of triangular meshes or similar data 

(e.g. [24] and [33] and [21]) or height-function / range 

sensor data (e.g. [20]), and are not appropriate to use 

in dense, volumetric data. An interesting development is 

the emergence of methods that do not require computa

tion of partial derivatives, such as tensor voting schemes 

[32]. However, to the authors' knowledge, the only ex

isting methods that can be directly applied to compact 

volumetric data are based on partial derivatives of the 

volume. For this reason, we base our method to com

pute 3D curvature information at image edges location 

on a method first devised by Monga [22] to extract crest 

lines in medical volumetric data. This type of data is 

not too different from our own spatio-temporal data in 

term of density, representation and presence of noise. 

This method also provides all the necessary information 

about principal curvatures along with their directions. 

Let us review it briefly. 

This method uses the partial derivatives I of the 3D 

data to compute the principal curvature of the hypersur

face (in our case, the spatio-temporal volume) as a valid 

approximation of the principal curvature of the surface. 

First, the first and second order partial derivatives of the 

volume need to be computed. Then, the first (Eq. 1) and 

l + / 2 + 7 | + j 2 

1-xx *-xy *xz 

~*yx ~~lyy ~*yz 

~~±zx ~*zy ~±zz 

(2) 

Using the fundamental forms we then compute the 

Weingarten endomorphism: 

Wl = F2F{ (3) 

Finally, the endomorphism's eigenvalues and eigen

vectors are computed. To this end, several algorithms 

can be used (e.g. [26] and [4]). Note that since this ma

trix is generally not symmetric, there is no way to ensure 

that there will be more than one real eigenvalue. For this 

reason, ridges are located by only considering the princi

pal curvature of the hypersurface, that is the real eigen

value having the highest magnitude, and the correspond

ing eigenvector as direction: C = max(\\i\),i = 1,2,3 

and A, are the real eigenvalues of W*. If available, the 

second and gaussian curvatures are used to refine the lo

cation and also during the classification process (see sec

tions 3.3 and 4). Ridge (or crest line) points are defined 

as points having maximum curvature magnitude in the 

principal curvature direction. By applying this method 

to the 3D gradient of the spatio-temporal volume, we 

directly obtain ridge points of the spatio-temporal sur

faces. Before being able to classify occlusion (and "dis-

cocclusion" events), we now need to classify those ridge 

points to keep only those that represent collisions be

tween spatio-temporal surfaces at these events. 
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a b 

Fig. 5 Example of non-occlusion ridges caused by the motion 

of simple forms, (a): The corners of the triangle form ridges 

over the temporal sequence, (b): A sudden change of speed 

and direction can also cause a ridge in the spatio-temporal 

volume. 

3.3 Discriminating 3D Ridges 

The method briefly presented in previous sections com

putes all of the ridges of 3D surfaces. However, in prac

tice, not all of the ridges located by this technique origi

nate from edge collisions. This was also noted by Laptev 

's work on spatio-temporal events [19]. We must hence 

filter out the non-relevant ridges. 

Ridges due to noise and numerical imprecision 

Both noise and numerical imprecision can cause false 

positives. To circumvent this problem, we keep only ridges 

that have coherent curvature. We filter out ridges with 

aberrant curvature (so high or so low that we are not 

able to detect them). The value of the lowest threshold 

depends on the size of the support used to compute the 

derivatives. Objects that are moving too fast will not 

be inside the support in adjacent frame even if they are 

involved in a collision. A ridge that is too sharp, rep

resenting a collision that happens between objects that 

are moving slowly is also a degenerate case due to spatial 

sampling. According to the definition of curvature, it can 

be shown that the range of the curvature values expected 

is approximately [^?, 1], where W is the half-size of the 

image support in pixel units. 

Ridges due to 2D corners 

As seen in Fig. 5, 2D corners in images will also cre

ate ridges in the spatio-temporal volume, and they are 

expected to have principal curvatures in the same range 

as our collision ridges. Their principal curvature direc

tion Cmax should always lay close to the XY plane. Un

fortunately, some collision ridges, for example two edges 

moving directly toward each other at the same speed, 

are also expected to have a principal curvature direction 

that lies close to the XY plane. So the principal cur

vature directions cannot be used to discriminate them. 

They however do present a different secondary curva

ture direction. Ridges caused by occlusion events should 

have a secondary direction close to the XY plane, that 

is with a low temporal component, while corner ridges 

should have a high temporal component. Thus, theoreti

cally, the secondary curvature direction could be used to 

discriminate such ridges. Also, the orientation of corner 

ridges will make them appear in each frame as single iso

lated points or short broken lines, while collision ridges 

appear as long and continuous lines or curves at collision 

time. So the size of the event in each frame could also be 

used to discriminate them. 

Unfortunately, the secondary direction cannot always 

be reliably computed with the method presented in Sec

tion 3.2. However, experiments have confirmed that cor

ner ridges can be considered as noise in each frame since 

they are isolated and can be filtered out using standard 

noise reduction techniques. 

Ridges due to sudden changes of velocity 

Finally, we consider ridges caused by a sudden change 

of speed or direction (Fig. 5b), that can be rightfully con-
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sidered as significant spatio-temporal events [19]. In nat

ural image sequences with sufficient temporal sampling, 

the curvature of those ridges is usually quite low and they 

can thus be filtered out by applying temporal smoothing 

and lower curvature thresholding. Notice that the lack of 

a second spatio-temporal surface in the vicinity of those 

ridges is another cue to filter out false collisions. Thus 

it will also be possible to discriminate them using ad

ditional (non-curvature) information in the classification 

step. 

4 Classification of occlusion events 

We now show how ridges extracted using the method de

scribed in Sections 3.2 and 3.3 can be applied to event de

tection. We want to detect objects that move in front of 

or behind other objects, and possibly discriminate them 

from other events that yield a similar spatio-temporal 

ridge, including the previously mentioned sharp changes 

of velocity, and also moving objects which edges come 

into contact but without overlapping. Using occlusion 

event detection, we can detect not only when two im

age edges collide (or "discollide", in the case of a dis-

occlusion event), but also the orientation of this collision. 

This information allows us to develop a simple model for 

detecting overlapping objects. We know that in the case 

of an occlusion event, at least one of the implicated edges 

is an occlusion edge, that is the physical border of an ob

ject. We now need to detect which object, if any, moves 

over the other one. 

Occlusion planes 

Using the different curvature directions, we can de

scribe three planes passing by a ridge point that will be 

useful for describing occlusion events. These planes and 

their properties will be useful in our classification of oc

clusion events. We define the occlusion time plane as the 

plane with normal (0,0,1) that is located at the time of 

occlusion. This plane has the obvious characteristic that 

every edge points on one side of the plane is part of a 

spatio-temporal surface before the occlusion event, and 

every edge point on the other side of the plane is part of 

a spatio-temporal surface after the occlusion event. The 

second plane is the occlusion edge plane. This plane's 

normal is lying on the image (XY) plane and is per

pendicular to the secondary curvature direction of the 

ridge. This plane passes by the occlusion point and thus 

has the characteristic of separating two surfaces that in

tersect at an occlusion event. The last one, the occlusion 

ridge plane, is perpendicular to the first two. If we re

call spatio-temporal slices methods, this plane would be 

the ideal slice to use in order to observe its associated 

occlusion event. 

The surface orientation model 

By considering the previous definitions, we know that 

an important cue is the presence of one spatio-temporal 

surface on one side of the occlusion time plane, and of 

two (or more) on the other side. If we can identify to 

which object belongs the singular surface, then we will 

not only be able to classify the event as occlusion or dis-

occlusion, but we will also have identified a true occlusion 

edge. To this end, we have to consider what information 

is reliable about the spatio-temporal surfaces. Obviously, 

the "magnitude of the surface", that is the magnitude of 

the 3D gradient in the spatio-temporal volume, is going 

to vary significantly along any spatio-temporal surface. 

This not only makes its direct use difficult, it also makes 

the computation of the spatio-temporal surface area cor

respondingly problematic, which has been confirmed by 

our experiments. The next information about the spatio-

temporal surfaces surrounding the occlusion event that 

we can make use of is the orientation. The orientation 
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of the surfaces can be computed using derivative filters 

on the gradient volume. According to our model, on one 

side of the occlusion time plane we should find only the 

main class of orientation, while we may find two or more 

classes on the other side. Projecting the spatio-temporal 

orientation on the occlusion edge plane allows us to sim

plify the classification of occlusion events. Let us denote 

the surface normal at any given point as 9 . Remember 

to normalize all 6 such that the surface normals are 

always facing in the same temporal direction. The rel

ative orientation of a surface point with respect to the 

occlusion edge plane can be expressed as: 

6 = cos-1(t»'dmin). (4) 

where • is the standard dot-product. To identify on 

which side of the occlusion time plane the surface orien

tation vary the most, we compute within a given neigh

borhood both the mean and variance of 9: /J,(6) and 

a2 (6). We do so for two equally sized half-sphere neigh

borhoods before (t—) and after (t+) the occlusion time 

plane, that is: jj,(9t-),o
2(9t^), fi{8t+), a2(9t+). We then 

propose to define the following occlusion metric: 

A = a2(9t.)~a2(9t+). (5) 

With this metric, classifying the occlusion event is 

easy. For some positive threshold Am{n If A > Ami„, 

then the occlusion event is an occlusion. If A < —Ami„, 

then the occlusion event is a disocclusion. Otherwise, in 

cases where \A\ < Amin, there is no certitude of oc-

clusion/disocclusion despite the ridge. It could be noise, 

transparent occlusion (e.g. occlusion by a shadow) or two 

objects that hit together without overlapping. In cases 

where we do find occlusion or disocclusion, the relative 

orientation fi(8) corresponding to the lower a2{9) can be 

used to identify the occlusion edge. 

To identify reliable orientation information, some pre

cautions must be taken. First, surface points too close to 

the occlusion event must not be taken into account, be

cause their orientation are likely to be influenced by the 

event. To this end, we take only points in the neighbor

hood that are sufficiently far from it. If (Rx,Ry, Rt) is 

the position of the occlusion event under classification, 

then we take only surface points (x, y, z) where: 

R2max < (x - Rx,y - Rv,t - Rt)
2 < R2

min. (6) 

where Rmin is the minimum distance threshold from 

the occlusion point and Rmax is the maximum distance 

threshold from the occlusion point. Second, we only con

sider points for which the magnitude of the orientation 

vector is significant when compared to the gradient vol

ume value: 

\t\>k*IG(x,y,t).es (7) 

where k €]0,1[ and Ia(x,y,t) is the gradient vol

ume. A useful characteristic of using surface orientation 

for classification is that, even if "outsider" surfaces are 

present in the occlusion event neighborhood, they are 

likely to have an orientation similar to the one involved 

in the occlusion event, and thus are unlikely to influence 

results in a wrong direction. One can observe this effect 

in Fig. 6 (d). Both this characteristic, and the useful

ness of the classification method are confirmed by our 

experimental results. 

Overview of the algorithm for occlusion event 

detection and classification 

Before we present our results for detection and clas

sification of occlusion events in the spatio-temporal vol

ume, let us review the complete algorithm. 

Input: 

— Video sequence filmed in a single shot. 

Output: 

- Location of occlusion events 
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Fig. 6 Closeup view of an occlusion event as the hand pass 

over the white band a) The video sequence at t=0. b) The 

video sequence at t=50. c) A close-up view of the occlusion 

event in the spatio-temporal volume, taken from the occlusion 

ridge plane, d) The same view in the gradient volume. Spatio-

temporal surfaces can be clearly observed. 

— Type of occlusion for each event (i.e. occlusion or 

disocclusion) 

- Occlusion edge location 

1. Computation of principal curvature and related di

rections 

a— Compute 3D gradient volume of the spatio-

temporal volume (color or grayscale); 

6— Compute first and second order derivatives of 

the gradient volume; 

c— Compute principal curvatures and directions of 

the volume using equations (1), (2) and (3). 
2. Locate occlusion events 

d— Find and threshold the principal curvature 

maxima in the principal curvature direction 

e— Filter out false positives using principal 

curvature directions (cf. Section 3.3). 
3. Classify occlusion types 

/— For a neighborhood on one side of the occlusion 

time plane and another one on the other side, 

compute the mean and variance of the spatio-

temporal surface orientation relative to the 

occlusion edge plane; 

g— Classify events as an occlusion, disocclusion or 

non-occlusion using the orientation variances; 

h— Identify occluding edges using the mean surface 

orientation corresponding to the lowest variance. 

5 Performance evaluation 

5.1 Performance of occlusion event detection 

Parameters: 

— Size of the derivative filters 

— Temporal derivative threshold 

— Curvature magnitude thresholds 

— Principal curvature direction threshold 

— Size of the classification neighborhood 

— Surface orientation threshold 

— Gradient orientation threshold 

Main steps: 

In this section, we evaluate the performance of the pro

posed method for the detection of occlusion events. We 

also evaluate the influence of the parameters for the pro

posed method. The first set of 24 sequences used in our 

evaluation were filmed using a Sony hand camera. These 

sequences all feature events that can be labelled by hand, 

and cover all different situations in regard to occlusion 

events, e.g.: 

— occlusion vs disocclusion 

— stationary vs moving objects 
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— objects with irregular occlusion edges 

— strongly textured objects 

— changes of velocity 

— transparent objects 

— etc. 

An additional set of 5 sequences were extracted from 

existing movies to provide additional variety. Sequences 

are made of frames containing 320x200 pixels at 15 frames 

per second. We used gaussian derivative filters of scale 

a to compute the partial derivatives involved. This pa

rameter was tested with values ranging from 1.2 to 1.8. 

Fig. 8 shows an example of occlusion event detec

tion on a simple sequence. As can be seen, the occlusion 

between the two objects is correctly identified, and the 

detection signal covers almost the entire occlusion edge. 

Fig. 7-(c) shows a subset of the wide variety of occlusion 

events that can be detected at this step, including: (a)-

Occlusion between walls caused by camera movement, 

(b)-Repeated occlusion and disocclusion of the legs of a 

walking person, (c)-occlusion between a person's shadow 

and the carpet, (d)- dis-occlusion as a background object 

re-appear from behind a walking person, (e)-occlusion of 

a moving person by another. 

The results of all of the experiments are summarized 

in Table 1. The Detection Rate represents the propor

tion between the size of the detected occlusion events 

and the size of the actual events in the video frames. The 

False Detection Rate represent the proportion between 

the size of the error signal and the size of the correct 

signal. For example, if a particular occlusion event is 20 

pixels long in the occuring video frame, and we detect a 

total signal of 18 pixels, 15 of which are in the correct 

occlusion event location and 3 of them being noise. The 

Detection Rate would be 15/20 = 75%, while the False 

Detection Rate would be 3/15 = 20%. Ground truth was 

estimated visually. Overall, the performance of the pro-

Pig. 7 A complex video sequence featuring dozens of occlu

sion events. Only a subset of the events are shown, for visibil

ity purpose, a) The sequence at frame t = 0. b) The sequence 

at frame t = 49 c) The sequence at frame t = 22, showing 

examples of occlusion events detected in the sequence 

posed method was satisfactory, showing that the pro

posed method could detect occlusion events with suffi

cient accuracy, and can discriminate them from other sig

nificant spatio-temporal events. Note that further false 

positives may still be eliminated in the classification pro

cess. 

While occlusion events with a high relative object 

velocity can only be detected with a large filter (and a 

large smoothing value in our filters's case), the proposed 

method performs better when velocity is between 1 and 

5 pixels per frame, high velocity events tend to have un-

desired side-effects, as confirmed experimentally. For ex

ample, if the object displacement per frame is larger than 

the object themselves, self-occlusions will be consistently 
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Fig. 8 In this test sequences, both objects are moving toward each other, (a) The sequence at frame t = 0. (b) The sequence 

at frame t = 50 (c) The occlusion event detected at t = 22. 

Table 1 Occlusion events detection results for all video se

quences, with occlusion velocity ranging from 0.3 to 18 pixels 

/ frame. 

Mean Detection Rate Mean False 

a Detection Rate Standard Detection 

Deviation Rate 

1.2 

1.4 

1.6 

1.8 

0.75 

0.783 

0.82 

0.75 

0.167 

0.089 

0.127 

0.151 

0.15 

0.14 

0.17 

0.21 

Table 2 Occlusion events detection results for video se

quences with relative occlusion velocity ranging between 1 

and 5 pixels per frame. 

Mean Detection Rate Mean False 

a Detection Rate Standard Detection 

Deviation Rate 

1.2 

1.4 

1.6 

1.8 

0.875 

0.85 

0.875 

0.8 

0.075 

0.073 

0.078 

0.15 

0.12 

0.13 

0.17 

0.19 

detected for those objects. This is also true if a moving 

object reverse its direction in a very abrupt manner in se

quences with insufficient temporal sampling. This is con

firmed by Table 2. This table presents results obtained 

with a subset of video sequences containing objects that 

are moving from 1 to 5 pixels per frame. As can be seen, 

detection rate is higher while false detection rate is lower. 

In a different line of thoughts, from Tables 1 and 2, we 

observe that the algorithm performs well with a ranging 

from 1.2 to 1.6. As can be clearly seen from Table 2, 

the scale parameter influences the location of occlusion 

events. This leads to an increasing false detection rate as 

a increase. This effect is not a surprise as it is consistent 

with the proposed occlusion ridge model. Moreover, this 

effect related to the scale is well known in 2D corner 

detectors [12]. As expected, large a values also have the 

expected effect of lowering the primary curvature value 

of the detected events. 

In addition to this parameter, we used several others 

to discriminate events based on the principal curvature 

value, the temporal (t) element of the principal curva

ture direction, the temporal partial derivative (dz) on 

the original image sequence and finally the size of the 

events themselves. Principal curvatures values of occlu

sion events are usually in a range of [0.05,1.1], as ex

pected with the proposed model. However, we expected 

these values to correlate with the velocity of the colli

sion, but our tests show that this is not consistent. We 

can only conclude that some other factors have an effect 

on the principal curvature, such as the colliding spatio-

temporal surfaces individual magnitude and direction. 

The principal curvature direction proved to be the most 
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helpful factor to discriminate occlusion events from other 

points of local maximum curvature. The maximum mag

nitude of the temporal component of its normalized vec

tor was below 0.6 in all but one of our test. Thresholding 

this value to 0.6 eliminate most of the undesired events. 

After thresholding both the previous values in the indi

cated ranges, several events were still present, generally 

in areas of high 2D curvature in the image plane. Most 

of these were eliminated by keeping only events where 

the temporal partial derivative (dz) on the original im

age sequence is at least 20 (on a 8bit color resolution), 

and by keeping only events that are 10 pixels-wide in 

each frame. 

5.2 Performance of occlusion event classification 

We now present results of the occlusion event classifica

tion of all of the events that were detected above. Fig. 

9 shows the result of the event classification of the ex

ample presented in Fig. 8. As can be seen, most of the 

detected occlusion signal has been correctly confirmed 

as being an occlusion, rather than a dis-occlusion or a 

false positive. No part of it has been mis-labelled as a 

dis-occlusion. It can also be seen that the occluding ob

ject has been correctly identified. Results of occlusion 

even classification using the proposed method are sum

marized in Table 3. The correct type of occlusion event 

was identified with a success rate of 94-95%, and the oc

clusion edge was correctly identified in all cases. Fig. fO 

shows an example of a simple occlusion event viewed on 

the occlusion ridge plane in the gradient volume. It also 

shows the neigborhood used in the classification process. 

Fig. 11 shows the surfaces orientation variability for the 

same event. As you can see, the variability before and 

after the occlusion event is very distinct, and allows us 

to classify this event as an occlusion rather than a dis-

occlusion. We used a Amin threshold of 1.0 in order to 

classify our events. This also allowed a reduction of the 

noise in our result. 

Neighborhoods of a radius Rmax = 15 gave excel

lent results for all well-sampled events where the relative 

objects velocity was within acceptable values (between 

0.5 and 5 pixels per frame), with Rmin 

— 0.5 * Rmax-

Note that a significant amount of noise was eliminated 

in the classification process. For events where the veloc

ity is higher than 5 pixels per frame, Rmax must be low

ered accordingly. In such under-sampled video sequences, 

spatio-temporal surfaces orientation may change faster, 

and occlusion events are more likely to happen closer to 

each other, so a smaller neighborhood must be used to 

reduce noise. For our fastest event, with a relative ve

locity of 18 pixels per frame, simply lowering Rmax to 

12 gave optimal results. The classification process did 

not succeed for over-sampled video sequences where the 

velocity is lower than 0.5 pixel per frame, regardless of 

the size of the neighborhood. This is because the spatio-

temporal surfaces involved in the events stay too close 

to each other for their individual orientation to be re

liably computed, while increasing Rmax add too much 

noise in the neighborhood. Still, it is possible to use the 

proposed occlusion event classification method on those 

video sequences by simply re-sampling the video to a 

more adequate time interval. 

5.3 Influence of noise on occlusion event detection 

We tested the influence of noise on the detection of oc

clusion events. For this purpose we added Gaussian noise 

our set of sequences. We vary the standard deviation of 

the noise (anoise) from 0 to 30 on a 0-255 scale. Our re-
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Fig. 9 The spatio-temporal volume from the sequence shown 

in picture 8a-c, at frame t=22. a) Points confirmed as occlu

sion events (in red) in the classification step, b) The occlud

ing object has been correctly identified (as shown in yellow 

arrows). 

suits, shown in Fig. 12 demonst ra te tha t noise has very 

l i t t le effect on the effectiveness of the proposed method, 

with the detection ra te and false detection ra te remain

ing unchanged. This can be explained first since Gaus

sian noise, having no spatial or temporal cohesion, has 

very litt le effect on the s t ruc ture of the spatio-temporal 

volume. Also, the Gaussian derivative filters used in steps 

a and b of the proposed method also act has denoising 

filters. An example of comparat ive result with a noisy se

quence can be seen in Fig. 13. This figure clearly shows 

t h a t occlusion event detection can accurately be detec-

Table 3 Occlusion events classification results for all video 

sequences with relative event velocity between 0.5 and 18 

pixels per frame 

Velocity Neighbor- Correct Occlusion Residual 

Range hood Classifi- Edge Identi- False 

(pixels radius cation fication Positive 

/frame) used Rate Rate 

[0.5-5] 15 0.94 1.0 0.08 

]5-18] 12 0.95 1.0 0.09 

Fig. 10 A cross view of the classification of the collision 

event presented in Fig. 8a-c. Closer than Rmin (the smallest 

circle), it is difficult to make up a surface orientation. Be

tween Rmin and Rmax, we can observe two distinct surface 

orientations before the occlusion (<_) and only one surface 

orientation after the occlusion event (£+). The horizontal line 

(red) represent the occlusion time plane. 

t ion even with severe noise. 

Overall, all of the previous results confirm the accu

racy of the proposed method. 

6 C o n c l u s i o n s 

We have provided a detailed analysis of the spat io- temporal 

geometry of collisions between object contours, and how 

they can be modeled by a 3D ridge in the spat io- temporal 
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c d 

Fig. 13 This test sequence features a textured box moving over color stripes, (a) The sequence at frame t = 0. (b) The 

sequence at frame t = 24. (c) The original result of occlusion event detection at frame f = 10. (d) The result of occlusion 

event detection with severe Gaussian noise (IT = 20) added to the sequence. 

Spatlo-Temporal Surface Orientation Variability 

Before the Occlusion Event 
Attar the Occlusion Event 

6 11 16 2126 3136 41 46 St 56 61 66 71 76 818691 
Occlusion Event Range 

Fig. 11 Spatio-temporal surface orientation variability for 

the occlusion event presented in Fig. 8(a)-(c). 

Effect of Gaussian Noise on Occlusion Event Detection 

. j — Mean Detection Rale 
; i — .Kafce Oetecttoii Rate I 

Noise Signal standard Deviation 

Fig. 12 Effect of gaussian noise on occlusion events detection 

rate and false detection rate, with noise standard deviation 

varying from 0 to 30. 
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volume using curvature information. We then proposed 

a novel approach to detect such occlusion events. We 

have done so by neither tracking nor computing scene 

depth or optical flow. For this purpose, we consider the 

3D principal curvatures and the associated directions of 

the gradient spat io-temporal volume for the detection 

process. It hence allows us to detect collisions between 

occluding contours tha t can be straight, parallel, curved, 

etc. From this information, we then showed how the ad

dition of spat io-temporal surfaces orientation could be 

used to classify occlusion events as occlusion or disoc-

clusion, as well as to identify occlusion edges in video 

sequences. Finally, we presented experimental results on 

real image sequences. These results confirmed the accu

racy of the proposed technique. 

Acknowledgements The authors would like to thank Pro

fessor Djemel Ziou and Miss Wei Pan for their valuable com

ments, as well as Mr. Charles Perreault and Mr. Ian Bailey 

for their contribution with creating and managing the video 

data. This work is partially supported by the Natural Sciences 

and Engineering Research Council of Canada (NSERC) re

search funds and the Fond Quebecois de la Recherche sur la 

Nature et les Technologies (FQRNT). 

R e f e r e n c e s 

1. A. Mitiche, R.F., Mansouri, A.: Motion tracking as 

spatio-temporal motion boundary detection. Robot Au

tonomous Systems 43(1) , 39-50 (2003) 

2. Apostoloff, N., Fitzgibbon, A.: Learning spatiotempo-

ral t-junctions for occlusion detection. In: IEEE Com

puter Society Conference on Computer Vision and Pat

tern Recognition (CVPR05), vol. 2, pp. 553-559. San 

Diego, CA, USA (2005) 

3. Baker, H., Bolles, R., Woodfill, J.: Realtime stereo and 

motion integration for navigation. In: Proc. Image Un

derstanding Workshop, pp. 1295-1304 (1994) 

4. Bass, J.: Cours de mathematique, 5th edn. Paris : Masson 

(1977-1978) 

5. Black, M., Fleet, D.: Probabilistic detection and tracking 

of motion boundaries. International Journal of Computer 

Vision 38(3), 231-245 (2000) 

6. Bleyer, M., Gelautz, M.: A layered stereo matching algo

rithm using image segmentation andglobal visibility con

straints. In: Photogrammetry and Remote Sensing, 59, 

pp. 128-150 (2005) 

7. Bobick, A.F., Intille, S.S.: Large occlu

sion stereo. International Journal of Com

puter Vision 33(3), 181-200 (1999). DOI 

http://dx.doi.Org/10.1023/A:1008150329890 

8. C. Zetzche, E.B., Berkmann, J.: Spatiotemporal curva

ture measures for flow field analysis, pp. 337-350 (1991) 

9. Caselles, V., Coll, B., Morel, J.: A Kanizsa programme. 

Universit Paris-Dauphine (1995) 

10. Casey, J.: Exploring Curvature. Wiedbaden, Germany: 

Vieweg (1996) 

11. Clerc, M., Mallat, S.: The texture gradient equation for 

recovering shape from texture. In: IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 24, pp. 

536-549 (2002) 

12. Deriche, R., Giraudon, G.: Accurate corner detection: An 

analytical study. In: Proc. 3rd International Conference 

on Computer Vision, pp. 66-70 (1990) 

13. Flynn, P., Jain, A.: On reliable curvature estimation. In: 

IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, pp. 110-116. San Diego, Cali

fornia, USA (1989) 

14. H. Kawasaki, K.I., Sakauchi, M.: Spatio-temporal anal

ysis of omni image. In: Computer Vision and Pattern 

Recognition, pp. II: 577-584 (2000) 

15. Huggins, P., Chen, H., Belhumeur, P., Zucker, S.: Finding 

folds: On the appearance and identification of occlusion. 

In: IEEE Computer Society Conference on Computer Vi

sion and Pattern Recognition, vol. 2, p. 718. Hawaii, USA 

(2001) 

16. J. Woodring, C.W., Shen, H.: High dimensional 

direct rendering of time-varying volumetric data. 

Visualization pp. 414-417 (2003). URL cite-

seer.ist.psu.edu/woodring03high.html 

17. Jepson, A., Fleet, D., Maraghi, T.: Robust online appear

ance models for visual tracking. In: IEEE Computer Soci

ety Conference on Computer Vision and Pattern Recog

nition, vol. 1, pp. 415-422. Hawaii, USA (2001) 

62 

http://dx.doi.Org/10.1023/A:1008150329890
http://seer.ist.psu.edu/woodring03high.html


18. Konrad, J., Ristivojevic, M.: Video segmentation and 

occlusion detection over multiple frames. In: Image 

and Video Communications and Processing, pp. 377-388. 

Santa Clara, U.S.A (2003) 

19. Laptev, I.: Local Spatio-Temporal Image Features for 

Motion Interpretation. KTH Numerical Analysis and 

Computer Science (2004) 

20. Lindeberg, T.: Edge detection and ridge detection with 

automatic scale selection. International Journal of Com

puter Vision 30(2), 117-154 (1998) 

21. Ma, K.L., Interrante, V.: Extracting feature lines from 3d 

unstructured grids. In: IEEE Visualization, pp. 285-292 

(1997) 

22. Monga, O., Benayoun, S.: Using partial derivatives of 3d 

images to extract typical surface features. Computer Vi

sion and Image Understanding 61(2), 171-189 (1995). 

DOI http://dx.doi.org/10.1006/cviu.1995.1014 

23. Niyogi, S.A.: Detecting kinetic occlusion. In: Interna

tional Conference on Computer Vision, pp. 1044-1049. 

Cambridge, Massachusetts, USA (1995). URL cite-

seer.ist.psu.edu/niyogi95detecting.html 

24. Page, D., Koschan, A., Sun, Y., Paik, J., Abidi, M.: Ro

bust crease detection and curvature estimation of piece-

wise smooth surfaces from triangle mesh approximations 

using normal voting. In: IEEE Computer Society Con

ference on Computer Vision and Pattern Recognition, 

vol. 1, p. 162 (2001) 

25. Peng, S.L., Medioni, C : Spatio-temporal analysis of an 

image sequence with occlusion. In: Image Understand

ing Workshop, pp. 433-442. Boston, Massachusetts, USA 

(1988) 

26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan-

nery, B.P.: Numerical Recipes in C + + : The Art of Scien

tific Computing 2nd edition. Cambridge University Press 

(2002) 

27. R. Rodrigues A.R. Fernandes, K.v.O., Ernst, F.: Recon

structing depth from spatiotemporal curves. In: Vision 

Interface, pp. 252-260. Calgary, Canada (2002) 

28. R.C. Bolles, H.B., Marimont, D.: Epipolar-plane image 

analysis: An approach to determining structure from mo

tion. International Journal of Computer Vision 1(1), 7-

56 (1987) 

29. Ristivojevic, M., Konrad, J.: Joint space-time motion-

based video segmentation and occlusion detection using 

multiphase level sets. In: Visual Communications and 

Image Processing, vol. 5308, pp. 156-167 (2004) 

30. Sato, K., Aggarwal, J.: Temporal spatio-velocity trans

form and its application to tracking and interaction. 

Computer Vision and Image Understanding 96(2), 100-

128 (2004) 

31. Szeliski, R.: Shape from rotation. In: Proc. IEEE Com

puter Vision and Pattern Recognition, pp. 625-630. 

IEEE Computer Society Press (1991) 

32. Tang, C.K., Medioni, G.G.: Robust estimation of curva

ture information from noisy 3d data for shape descrip

tion. In: International Conference on Computer Vision 

(ICCV), vol. 1, pp. 426-433 (1999) 

33. Taubin, G.: Estimating the tensor of curvature of a sur

face from a polyhedral approximation. In: International 

Conference on Computer Vision (ICCV), pp. 902-907 

(1995) 

34. Zhou, G., Albertz, J., Gwinner, K.: Extracting 3d in

formation using spatio-temporal analysis or aerial image 

sequence. In: Object Recognition and Scene Classifica

tion from Multispectral and Multisensor Pixels, vol. 65, 

pp. 769-832. Columbus, Ohio, USA (1999) 

M. Marquis Bolduc, B.Sc, is currently a M.Sc. student in 

Computer science at the University de Sherbrooke (Canada). 

His research interests concerns video processing and more 

especially motion interpretation and 3D scene reconstruction. 

F. Deschenes received a Ph.D. degree in Computer sci

ence (2002) from both the Ecole Nationale Superieure des 

Mines de Paris (France) and the Universite de Sherbrooke 

(Canada). He is currently the Dean of research at the Uni

versite du Quebec en Outaouais (Canada). He is also Profes

sor at Departement of Computer science at the Universite de 

Sherbrooke since 2002. His research interests mainly concern 

computer vision and more specifically 3D scene understand

ing, depth cue extraction and video processing. 

63 

http://dx.doi.org/10.1006/cviu.1995.1014
http://seer.ist.psu.edu/niyogi95detecting.html




Conclusion 

Le premier article presente dans ce memoire, «Combining Apparent Motion and Perspec

tive as Visual Cues for Content-based Camera Motion Indexing*, expose une nouvelle 

methode pour l'identification des mouvements de la camera dans une sequence video. II 

demontre qu'il est possible d'identifier adequatement les sept mouvements possibles de 

la camera si la sequence contient suffisamment d'informations sur la perspective (via les 

points de fuites), ce qui n'avait jamais ete realise. II s'agit par ailleurs, a notre connais-

sance, de la premiere methode pouvant differencier le changement de la distance focale 

(zoom) de la translation dans la direction de l'axe optique. La methode proposee permet 

d'identifier des mouvements isoles, mais egalement les combinaisons de ces mouvements. 

Le deuxieme article, «Occlusion Event Detection using Geometric Features in Spatio-

temporal Volumes», decrit une nouvelle methode pour la detection et la classification 

des evenements d'occlusion. Cette methode analyse la structure des occlusions dans le 

volume spatio-temporel et propose d'exploiter cette structure par le bais de la courbure 

et l'orientation des surfaces spatio-temporelles. Cela permet de reconnaitre non seule-

ment les evenements d'occultation, mais aussi les contours d'occultation, lesquels sont 

caracteristiques de tels evenements. 

Ces deux nouvelles methodes demontrent le potentiel des indices visuels lies au mou-

vement dans le but d'interpreter le contenu des sequences video. En effet, ces indices 
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renseignent sur la maniere dont la sequence video a ete filmee. De cause a effet, cela peut 

renseigner sur l'intention et la situation de l'auteur de la sequence, puisque differents 

mouvements de la camera sont generalement exploites pour transmettre differentes emo

tions au spectateur. II s'agit ainsi d'informations pertinentes pour interpreter le contenu 

semantique de la video. Ces indices fournissent par ailleurs de nombreux renseignements 

sur le comportement et la position des objets dans une sequence video. Par exemple, la 

methode proposee peut etre utilisee avec une sequence video contenant des occultations, 

arm de determiner si un sujet pre-identifie se deplace en avant-plan ou en arriere-plan. 

La combinaison de ces informations ouvre egalement de nouvelles perspectives quant a 

^identification du sujet de la scene. En effet, le mouvement de la camera, lorsque present, 

suit generalement le sujet afin d'en faire son centre d'interet. II est en effet peu commun 

de voir le sujet principal d'une scene suivre un deplacement oppose a celui de la camera, 

ce qui desorienterait le spectateur. En supposant le sujet localise, 1'identification des 

contours d'occultation permettrait de determiner les limites physiques de l'objet dans la 

scene, et d'en ameliorer le suivi. 

L'efncacite des deux methodes proposees fut demontree a l'aide de sequences videos 

artirlcielles et reelles, dont certaines tirees du domaine cinematographique, ce qui est au-

dela des conditions de laboratoire ideales. Toutefois, il est a noter que les deux methodes 

dependent de la precision de certaines entrees en particulier, la localisation des points 

de fuites pour la premiere methode, et le calcul de la courbure dans un volume pour le 

second cas. Ces deux sujets, qui font l'objet de recherche[2, 1], permettent l'amelioration 

de la precision et la fiabilite des deux methodes proposees. 

66 



Bibliographie 

[1] Robust estimation of adaptive tensors of curvature by tensor voting. IEEE Trans

action on Pattern Analysis and Machine Intelligence, 27(3):434-449, 2005. W.-S. 

Tong and C.-K. Tang. 

[2] A. Almansa, A. Desolneux, and S. Vamech. Vanishing point detection without any a 

priori information. IEEE Transaction of Pattern Analysis and Machine Intelligence, 

25(4):502-507, 2003. 

[3] D. Arijon. Grammar of the Film Language. Silman-James Press, 1976. 

[4] M Marquis Bolduc and F Deschenes. Collision and event detection using geometric 

features in spatio-temporal volumes. In CRV '05: Proceedings of the 2nd Canadian 

conference on Computer and Robot Vision, pages 236-243, Washington, DC, USA, 

2005. IEEE Computer Society. 

[5] B. Caprile and V. Torre. Using vanishing points for camera calibration. International 

Journal of Computer Vision, 4(2): 127-140, 1990. 

[6] J. Coughlan and A. Yuille. The manhattan world assumption: Regularities in scene 

statistics which enable bayesian inference. In Neural Information Processing System 

(NIPS), pages 845-851, 2000. 

67 



[7] R. Ewerth, M. Schwalb, P. Tessmann, and B. Freisleben. Estimation of arbitrary 

camera motion in MPEG videos. In Proceedings of the 17th International Conference 

on Pattern Recognition (ICPR), volume 1, pages 512 - 515, August 23-26 2004. 

[8] K. Ikeuchi H. Kawasaki and M. Sakauchi. Spatio-temporal analysis of omni image. 

In Computer Vision and Pattern Recognition, pages II: 577-584, 2000. 

[9] P. S. Huggins, H.F. Chen, P. N. Belhumeur, and S. W. Zucker. Finding folds: On the 

appearance and identification of occlusion. In IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition (CVPR'01), volume 02, page 718, Los 

Alamitos, CA, USA, 2001. IEEE Computer Society. 

[10] K. Kanatani. Geometric computation for machine vision. Oxford University Press, 

Inc., New York, NY, USA, 1993. 

[11] D. Roller, J. Weber, and J. Malik. Robust multiple car tracking with occlusion 

reasoning. Technical report, Berkeley, CA, USA, 1993. 

[12] J. Konrad and M. Ristivojevic. Video segmentation and occlusion detection over 

multiple frames. In Image and Video Communications and Processing, pages 377-

388, Santa Clara, U.S.A, May 2003. 

[13] M. Marquis-Bolduc, F. Deschenes, and W. Pan. Combining apparent motion and 

perspective as visual cues for content-based camera motion indexing. Pattern Recog

nition, 41(2):445-457, 2008. 

[14] O. Monga and S. Benayoun. Using partial derivatives of 3d images to extract typical 

surface features. Computer Vision and Image Understanding, 61(2):171—189, 1995. 

[15] S. A. Niyogi. Detecting kinetic occlusion. In International Conference on Computer 

Vision, pages 1044-1049, Cambridge, Massachusetts, USA, 1995. 

68 



[16] S.C. Park, H.S. Lee, and S.W. Lee. Qualitative estimation of camera motion parame

ters from the linear composition of optical flow. Pattern Recognition, 37(4):767-779, 

April 2004. 

[17] S.-L. Peng and G. Medioni. Spatio-temporal analysis of an image sequence with oc

clusion. In Image Understanding Workshop, pages 433-442, Boston, Massachusetts, 

USA, April 1988. 

[18] K. van Overveld F. Ernst R. Rodrigues, A. Fernandes. Reconstructing depth 

from spatiotemporal curves. In Vision Interface, pages 252-260, Calgary, Alberta, 

Canada, 2002. 

[19] K. Sato and J.K. Aggarwal. Temporal spatio-velocity transform and its application 

to tracking and interaction. Computer Vision and Image Understanding, 96(2): 100-

128, November 2004. 

[20] M.V. Srinivasan, S. Venkatesh, and R. Hosie. Qualitative estimation of camera 

motion parameters from video sequences. Pattern Recognition, 30(4):593-606, April 

1997. 

[21] G. Sudhir and J.CM. Lee. Video annotation by motion interpretation using opti

cal flow streams. Visual Communication and Image Representation, 7(4):354-368, 

December 1996. 

[22] J. Y. A. Wang and E.H. Adelson. Representing moving images with layers. The 

IEEE Transactions on Image Processing Special Issue: Image Sequence Compres

sion, 3(5):625-638, September 1994. 

69 


