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SOMMAIRE 

Durant la derniere decennie, des quantities enormes de documents visuels (images et 

videos) sont produites chaque jour par les scientifiques, les journalistes, les amateurs, etc. 

Cette quantite a vite demontre la limite des systemes de recherche d'images par mots 

cles, d'ou la naissance du paradigme qu'on nomme Systeme de Recherche d'Images par le 

Contenu, en anglais Content-Based Image Retrieval (CBIR). Ces systemes visent a loca-

liser les images similaires a une requete constitute d'une ou plusieurs images, a l'aide des 

caracteristiques visuelles telles que la couleur, la forme et la texture. Ces caracteristiques 

sont dites de bas-niveau car elles ne refletent pas la semantique de l'image. En d'autres 

termes deux images semantiquement differentes peuvent produire des caracteristiques 

bas-niveau similaires. Un des principaux defis de cette nouvelle vision des systemes est 

I'organisation de la collection d'images pour avoir un temps de recherche acceptable. Pour 

faire face a ce defi, les techniques developpees pour l'indexation des bases de donnees tex-

tuelles telles que les arbres sont massivement utilisees. Ces arbres ne sont pas adaptes aux 

donnees de grandes dimensions, comme c'est le cas des caracteristiques de bas-niveau des 

images. Dans ce memoire, nous nous interessons a ce defi. Nous introduisons une nouvelle 

approche probabiliste hybride pour I'organisation des collections d'images. Sur une col

lection d'images organisee hierarchiquement en noeuds selon la semantique des images, 

nous utilisons une approche generative pour l'estimation des melanges de probabilites 

qui representent l'apparence visuelle de chaque noeud dans la collection. Ensuite nous 

appliquons une approche discriminative pour l'estimation des poids des caracteristiques 

visuelles. L'idee dans notre travail, est de limiter la recherche seulement aux noeuds qui 

representent mieux la semantique de la requete, ce qui donne une propriete semantique a 

la recherche et diminue le fosse semantique cause par les caracteristiques de bas-niveau. 
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Introduction 

La Recherche d'Images par le Contenu ou Content-Based Image Retrieval (CBIR), 

est une technique qui localise, dans une collection, des images similaires a une requete 

en utilisant les caracteristiques visuelles telles que la couleur, la texture et la forme. Ces 

dernieres annees beaucoup de systemes CBIR ont ete developpes [6] [15]. lis sont motives 

par les multiples inconvenients des systemes de recherche par mots cles. Ces derniers, 

pour pouvoir retrouver une image, etiquettent toutes les images de la collection avec des 

mots cles, puis les techniques standards de recherche de texte sont appliquees pour re-

tracer les images qui ont les memes etiquettes que la requete. Les systemes de recherche 

d'images par mots cles souffrent de la capacite limitee des mots a decrire le contenu 

d'une image. En plus, l'enorme quantite d'images disponibles dans les bases de donnees 

et Internet rend le processus d'annotation tres couteux. Ces inconvenients ont donne nais-

sance au nouveau paradigme CBIR, dans lequel la similarity entre images est determined 

par leurs contenus visuels. Plusieurs descripteurs globaux et locaux decrivant le contenu 

(couleur, texture et la forme) ont ete utilises dans la litterature [12] [4] [11] [13] [7] [8], 

un descripteur global decrit l'image complete, le local decrit une region dans l'image. Ces 

descripteurs de contenu sont qualifies de bas-niveau car ils ne refletent pas la semantique 

des images. Deux images totalement differentes peuvent avoir les memes descripteurs. Ce 

fosse semantique constitue le premier defi pour la recherche d'images par le contenu. Une 

solution possible consiste a introduire la semantique grace au retour de la pertinence [10] 

[7] [3] [13]. Les utilisateurs sont amenes a faire des jugements sur la pertinence par rap

port a leurs besoins et les images retournees par le systeme. Le jugement obtenu permet 

de modifier des parametres du processus de recherche. Un autre defi pour les systemes de 

recherche d'images par le contenu est d'etre des systemes temps reel, en d'autres termes 
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avoir un temps de recherche acceptable independamment du nombre d'images dans la 

collection. L'organisation de la collection d'images s'impose alors, actuellement la plu-

part des systemes utilisent les structures de donnees [1] telles que les arbres. [9] compare 

differentes structures d'arbres utilisees par des CBIRs, il constate que leur performance 

d'indexation diminue rapidement quand la dimension des descripteurs visuels augmente. 

Ces structures de donnees ne sont pas adaptees a gerer et indexer des donnees a grandes 

dimensions ce qui est le cas de la plupart des descripteurs visuels. Les approches alter

natives qui semblent prometteuses sont basees sur des modeles probabilistes [2] [5] [14]. 

L'utilisation de ces modeles pour l'organisation des collections d'images diminue aussi 

le fosse semantique produit par les descripteurs visuels de bas-niveau. Dans ce memoire, 

nous developpons une approche probabiliste hybride (generative/ discriminative) pour 

l'organisation et la recherche d'images par le contenu. Sur une collection d'images orga-

nisee hierarchiquement en noeuds selon la semantique des images, nous appliquons une 

approche generative pour l'estimation des melanges de probabilites qui representent l'ap-

parence visuelle de chaque noeud dans la collection. Ensuite nous utilisons une approche 

discriminative pour l'estimation des poids des caracteristiques visuelles pour maximiser 

la separation entre les noeuds. L'idee de base dans notre travail est l'utilisation de notre 

approche pour identifier les noeuds qui representent mieux la semantique de la requete, 

apres la recherche d'images est limitee a ces noeuds. Cette utilisation nous permet de 

diminuer le fosse semantique cause par les caracteristiques visuelles de bas-niveau. Nous 

proposons un algorithme d'extraction de descripteurs visuels locaux de couleur, de tex

ture et de forme qu'on nomme puzzle, qu'on compare au descripteur SIFT identifie dans 

la litterature parmi les meilleurs descripteurs visuels locaux proposes [11]. Dans le reste 

du memoire nous detaillons notre modele pour la recherche d'images par le contenu via 

un article, et une conclusion resume le travail et propose quelques perspectives. 
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Approche probabiliste hybride pour 

la recherche d'images par le contenu 

avec ponderation des 

caracteristiques 

Dans ce chapitre, nous exposons le travail intitule "A Hybrid Probabilistic Fra

mework for Content-Based Image Retrieval with Feature Weighting". Dans 

ce travail nous developpons un modele probabiliste hybride pour l'organisation des col

lections d'images. Les methodes existantes sont basees essentiellement sur les structures 

de donnees telles que les arbres. Ces structures de donnees ne sont pas adaptees a des 

donnees a grande dimension tels que les descripteurs visuels des images. Les modeles pro-

babilistes semblent mieux adaptes pour l'organisation des collections d'images a cause 

de leur capacite a representer efficacement les donnees a grande dimension. Kherfi et 

Ziou [5] ont propose un modele probabiliste hierarchique pour la recherche d'images par 

le contenu. lis ont montre la capacite d'une telle approche a gerer et organiser les col

lections d'images. Dans la meme vision, nous proposons un nouveau modele probabiliste 

hybride. La collection est decrite a travers une ontologie hierarchique decrite par un arbre. 

Nous utilisons une approche generative pour la representation des noeuds d'images par 

des melanges de probabilites. Les approches generatives sont connues pour leur flexibi-

lite vis-a-vis l'estimation et la mise a jour des parametres des melanges de probabilites. 

Le modele generatif est consolide par une analyse discriminative pour renforcer davan-

tage les caracteristiques visuelles pertinentes. Dans ce travail, nous avons aussi developpe 
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notre propre algorithme pour l'extraction des descripteurs visuels de couleur, texture et 

forme. Notre approche a ete validee sur une collection de 4300 images. Dans ce qui suit, 

nous detaillons le modele probabiliste dans un rapport de recherche a soumettre a un 

journal international. Cet article constitue l'aboutissement de mes travaux de maitrise 

en informatique sous la direction du professeur Djemel Ziou. 
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A Hybrid Probabilistic Framework for Content-Based 

Image Retrieval with Feature Weighting 

Touati Hamri and Djemel Ziou 

Departement d'informatique, Universite de Sherbrooke, Quebec, Canada. 

Emails:{touati .hamri, djemel.ziou}@usherbrooke.ca 

Abstract 

In this paper, a hybrid probabilistic framework for CBIR modeling is proposed. 

To build a retrieval system that runs on a collection of thousands of images, the 

collection is indexed. The indexing techniques currently used are based on the clas

sical multidimensional access methods, for example, trees. The performance of such 

techniques decreases rapidly with the increase of data dimensionality. Since data 

types such as images are generally represented by high-dimension low-level features, 

these data structures are not suitable. Here, we develop a probabilistic framework 

for image collections organization, which is better suited to high-dimension data, 

and brings a semantic property to the retrieval process, narrowing the gap between 

human perception and the low-level features. To make our framework more flexible 

than existing ones, we use a generative approach to estimate the model parameters. 

We develop a discriminative approach for feature weighting to improve the cluster

ing performance of the generative model. Furthermore, we propose an algorithm to 

extract local color, shape, and texture features. Our local shape feature performs 

better than the well-known SIFT in our model. 

Keywords: Content-Based Image Retrieval, collection organization, feature 

weighting, generative model, discriminative model. 
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1 Introduction 

In the last ten years a number of Content-Based Image Retrieval (CBIR) systems have 

been proposed[18][36]. These systems are motivated by several drawbacks of keyword-

based image retrieval systems, including the limited capacity of keywords to describe 

image content and the rapid expansion of multimedia technology which increases the 

number of images in databases and Internet, making the annotation process very expen

sive. CBIR systems retrieve relevant images in a database using visual content of the 

images, colors, textures and shapes. In general, such systems differ from each other in 

five ways: what visual features they use, how they evaluate the similarity of the images, 

how they index their collection to increase the efficiency of the retrieval process, how 

they express their query, and the manner in which they employ user feedback to improve 

retrieval. 

For the features, several describing color, texture and shape have been used in litera

ture. Color features include the color histogram [9] [8], the color coherence vector [30], the 

color co-occurrence matrix [37] [7] [21] [15] and color moments [9] [19] [33] [8] [24]. Under 

texture features we find values derived from the gray-level co-occurrence matrix[19], the 

Tamura feature[37], wavelet coefficients[9] [33], Gabor filter-based features [8] and local 

binary patterns [34]. More details on texture can be found in [26]. Some shape features 

are the normalized inertia [9], the directional fragment histogram [38], Zernike moments 

[8], the histogram of edge direction [33] and the edge map [2] [40] [20]. A feature descrip

tor can be dense or discrete. A dense feature is computed on all pixels, while discrete 

ones are computed on a subset of pixels. To extract discrete features two techniques 

are commonly used. The first applies a segmentation algorithm to divide the image into 

homogeneous regions, after which a feature descriptor is extracted from each region [17] 

[9]. The second technique is to detect salient points (called also interest points or regions 

of interest, ROI), after which we calculate a feature vector around each of them. Several 

salient point detectors and descriptors have been proposed in the literature, including 

the Scale Invariant Feature Transform (SIFT) [23] and the Harris-Laplace regions [27]. 

For more details, see [28], where Mikolajczyk and Schmid compare several salient point 

detectors and descriptors. 
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Once image features are extracted, another problem is how we can measure the sim

ilarity between them. Rubner et al [32] give a good summary of the various similar

ity measurements. They classify them into heuristic distances like the Minkowski-form 

distance Lp, non-parametric test statistics such as the X2-statistic, information-theory 

divergences such as the Kullback-Leibler divergence, and ground distances such as the 

quadratic form. Note that when we deal with ROI we need a matching strategy in addi

tion to the similarity measurement, because of the fact that one image region can match 

several regions in another image. The study described in [28] compares three strategies: 

threshold-based matching, nearest-neighbor matching, and nearest-neighbor distance ratio 

matching. Generally, authors use similarity measurements suited to their features and 

query model. For example, in [17], a probabilistic metric based on likelihood estimation 

is used. 

CBIR systems use low-level features to represent images. However, these features 

don't necessary represent the human perception of these images. To overcome this gap 

between low-level features and image semantics, authors have introduced the user need 

as a dimension in the system. This intervention is known in the literature as Rele

vance Feedback (RF): the user is asked to give a judgment on the retrieved images by 

selecting those which are relevant and irrelevant to his query. The system will use this 

judgment to improve retrieval. Two main approaches exist in the literature, the optimal 

query technique and feature weighting. In the optimal query technique (see [25]) the 

system updates the query according to user feedback by finding the query value that 

minimizes the distance from the user-relevant images, and maximizes that from the ir

relevant images. In feature weighting (see [19] [10] [33]) systems increase weights for 

the features that discriminate between relevant and irrelevant images, and reduce them 

for non-discriminating features. When measuring the similarity between the query and 

images, the features with high weights thus make a greater contribution. 

Another important thing in CBIR systems is the indexing of the image database. To 

build a retrieval system that runs on a collection of thousands of images, the collection 

must be indexed. Compared to the body of literature on retrieval approaches, little 

work has been done on visual content-based indexing. The currently used indexing 

practice seems to be based on the well-known multidimensional access methods (R-tree, 
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R+-tree,R*-tree, KD2B-tree). A good summary of these methods can be found in [1]. 

In a comparative study of the existing structures used in CBIR, [22] Ling et al report 

that their performance decreases rapidly as the data dimension increases. So these data 

structures are not useful when dealing with high-dimension data, which is the case for 

data such as images and video. Alternative approaches that seem promising are based 

on probabilistic and neural network models such as those reported in [3] [16] [35]. Such 

frameworks are commonly used in the object recognition field for example [14] [39] [12]. 

These frameworks have an important property: they incorporate a semantic meaning 

for clusters. Using them to index databases for CBIR will help to improve retrieval 

performance by eliminating semantically irrelevant clusters, giving a semantic property 

to the retrieval process and bringing it closer to human perception. This kind of approach 

is in its infancy and more effort is needed in this direction. 

This work is related to the research done by Kherfi et al [16]. They develop a prob

abilistic approach for modeling image collections, applied to a hierarchical collection of 

images. Their approach offers several interesting characteristics. It is applicable for differ

ent purposes: indexing, retrieval, browsing and summarizing. It combines image content 

with keywords, narrowing the semantic gap; it is hierarchical and thus suitable for index

ing. The advantages of the hierarchical model have been demonstrated by several studies 

like [3] and [35]. However, the maximization of their model parameters is done for the 

whole collection at the same time, so that the optimal parameters for a given class in 

the collection depend on the parameters of all classes at the same level. This fact makes 

updating the collection (adding/removing classes or images) very heavy, and requires the 

model to be refit at each significant update. By significant, we mean an update that re

quires a model parameter update, for example adding a class. To better understand this 

problem, let us recall the concept of a generative/discriminative probabilistic framework. 

In general, we can divide the probabilistic models existing in the literature into two ap

proaches: generative and discriminative. In generative models like those described in [11] 

[5], the model for each class is learned separately by using only its data set. With this 

paradigm, the aim is to be able to reproduce the class. Using probabilistic terminology, 

let's call the data o and the class m. With generative models we aim to estimate the 

probability density function p(o \ 6m) where 0m are the PDF parameters that represent 
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m. In the discriminative approach [35] [13] [39], the borders between classes are learned 

using all classes in the data set at the same time. So p(9m \ o) is learned instead of 

p(o | 6m) in the generative approach. In the literature, discriminative approaches have 

proven their superiority to generative ones in classification performance [29]. However 

unlike generative approaches, they do not handle the problem of missing data and adding 

or removing a class means performing a new learning process for all the data, which is 

very time-consuming. Generative and discriminative models can be combined, as in [14], 

to produce what we call a hybrid model. Such models aim to combine the flexibility of 

the generative and the performance of the discriminative approach. In our work we aim 

to produce a probabilistic approach that is flexible and discriminative. Using the same 

paradigm proposed by Kherfi et al., we develop a hybrid model. First we use a generative 

approach to represent our image classes with different features, producing a PDF for each 

class and feature separately; then we apply a discriminative approach, to estimate the 

feature weights to be used to combine features that maximize the separation between 

classes. We have applied this hybrid approach to a hierarchical collection, where each 

class in the hierarchy will have its own feature weights that maximize the discrimination 

between it and its neighbors. 

Section 2 presents our approach. We explain the technique used to model the collec

tion and the feature weighting schema, followed by a detailed description of our cluster

ing and retrieval process. Section 3 presents our feature extraction algorithm, that we 

call puzzle-feature, which gives us local color, shape and texture features. We go onto 

demonstrate that in our model, it performs better then the well-known SIFT. Section 4 

presents the details and results of our experimental tests. Section 5 gives our conclusion 

and directions for future work. 

2 Collection modeling 

A collection is a set of visual documents, an ontology, and a global description of the 

collection. A visual document is the representation of a concept formed by one or more 

objects, the relationship between them, and any kind of associated metadata. It can be 

an image or regions of interest that are structured on a local ontology, and represented 
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by radiometric vectors. Each radiometric feature is represented by local and/or global 

vectors. For example, color may be represented by a global histogram of color and/or 

by color vectors representing key regions of the visual document. A prior; knowledge 

describing the semantic content (such as object name) is associated with each node in 

the collection, for example the "animals" node or airplanes node. 

For our purposes, an ontology is a hierarchical (tree) data structure containing all 

the relevant objects related to a specific domain, their relationships and the rules within 

that domain. The choice of a hierarchical structure will help us in the feature weighting 

process, where the idea is to define, for each level in the hierarchy, its proper feature 

weights. For example for cars and apples, shape features will be helpful to separate them 

while in the case of red apples and green apples, color features will be more helpful than 

shape. So a hierarchical structure has a very interesting property that we will exploit 

in our model. Figure 1 gives an example of a hierarchical structure, where the root is 

the node "animal". In "animal", we find "air", "land", and "water" animals. These are 

intermediate nodes, and each of them has its daughters which are the leaves. In such 

a collection, the images belonging to an intermediate or root node are all its daughters 

images. 

Figure 1: Hierarchical data structure 

6 



2.1 The model 

Modeling the collection makes it possible to understand the data, extract missed infor

mation, and increase the accuracy of the management system. It makes the management 

straightforward in the sense that any management operation is directly deduced from 

the way the collection is modeled. In our model, the management of visual documents is 

based on their features. The definition and the computation of these features are based 

on the radiometrical content of the visual document, such as color, texture, shape, and 

regions of interest. Our collection is organized into several node levels, where each node 

is an abstraction of an object or set of objects and their relationship, providing semantic 

information on visual documents. Due to the uncertainty in visual data, the main idea 

underlying our collection modeling approach is to estimate, for each node in the collec

tion, its probability density function (PDF) representing the appearance models of its 

associated visual documents. 

Mathematically, consider m — (l,c) a collection node, where I indexes the levels and 

c the node at level /. The appearance model of m is a PDF mixture of o defined by: 

Kic 

p(o | om) = Y1P™P(° I Q™i) (i) 

p(° I 8m) is a mixture of K\c clusters with a parameter vector 9m that indicates how the 

visual document o can be generated by the node m, where pmi is a mixing parameter and 

p(o | 0mi) a PDF with parameters 9mi. Modeling the collection requires the estimation 

of all parameters maximizing the likelihood for each node. The likelihood formulation 

is given as follows. Each visual document is represented by Nr regions of interest, each 

of which has Nf specific features. Such region may be homogenous parts of an object, 

inhomogeneous regions (e.g., regions containing a point of interest). It should be noted 

that one of these regions is the visual document itself, allowing a global representation. 

For example, let us assume that the visual document represents a face. The face is 

described by regions of interest obtained by a detector such as SIFT or Harris-Laplace. 

A vector of features provided by the detector is associated with each region, allowing the 

face to be described by a set of vectors. Furthermore, the node is formed by N0 visual 
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documents o. The global generative likelihood for a given node m is expressed by: 

Nf • N0 Nr Kmf 

^ = n i l H(J2 PmfiP(^onrf I 0mfi)) (2) 
/=1 n=l r= l %=\ 

where a0„ r/ is the vector feature / describing the region r in the document on. Kherfl et 

al. [16] use the same idea, but they define their likelihood for a given level I, which leads 

to a costly maximization schema. Our likelihood is defined for each node separately, 

which makes it more flexible when processing an update. We maximize the likelihood 

of each PDF mixture separately using an EM algorithm. The accuracy of the collection 

modeling depends on the choice of PDFs to be used and the optimization algorithm. The 

PDFs must fulfill the following requirements: 1) accurately reproducing the shape of the 

data space; 2) allowing statistical interpretation of the data; and 3) allowing modeling 

in high-dimensional space. To fulfill the above requirements, we chose a Dirichlet of 

the second kind. This PDF has nice properties such as a flexible shape (asymmetric, 

symmetric) and allowing the modeling of high-dimensional data [4]. If a random vector 

X = (Xi,X<2, ...,Xd) follows a generalized Dirichlet distribution, the PDF is given by: 

** x'HMmxt"1(1-tx'r" (3> 

where £f=1 Xt < 1, 0 < X, < 1 for i = l,...,d, 7, = A - ai+x - 0i+i for i = l,...,d- 1, 

and 7d = (3d - 1. 

The mixture parameter estimation is done by the EM algorithm proposed in [4], where 

a d-dimension generalized Dirichlet mixture parameter estimation problem is reduced to 

the estimation of d Beta mixtures. Details on this EM are given in Appendix B. Note 

that in the definition of the generalized Dirichlet distribution, we have two conditions on 

the data: YA=I XJ < 1 and 0 < Xi < 1 for i = 1, ...,d. Since we can't be sure that the 

data we are using satisfy these conditions, we must apply a transformation to the data. 

Details on this transformation are given in Appendix C. 
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2.2 Feature weighting 

For a given node, the relevance of different features is not the same. For example, the 

texture feature will be relevant in the case of textured images and irrelevant in non-

textured images. Consequently, features cannot contribute to the retrieval process in 

the same manner and a weighting process must be applied. The model in Equation 1 

is well known in the literature as the least semantic probabilistic model. We will make 

significant improvements to this model by increasing its data-clustering capabilities by 

using feature weighting. 

The definition of p(o | 9m) requires particular attention. Let us consider two features. 

The first feature is shared by all nodes and p{p | 9m) for all I is high. For the second, 

p(o | 6m) is high for node m and low for the other nodes. The second feature allows us 

to discriminate between nodes and its contribution in the clustering process is desirable, 

while that of the first feature is not. More generally, a feature is relevant if p[p \ 6m) is 

high and this is not the case for nodes at the same level of abstraction. Otherwise it is 

irrelevant. The introduction of the relevance of features reduces the confusion between 

nodes, thus leading to more accurate clustering. We define the relevance of a feature / 

for a node m as: 
No Nr r>(a f I 9 ) 

Pmf - I I I I ^ -Tn TFT W 
„=lr= l l^kenV{a0nrf \ #fcj 

where Q is a list of nodes at the same abstraction level. 

At a given abstraction level, the weighting process consists in defining feature weights. 

These weights enhance r-̂ P /r/ ,a N in the clustering processes for relevant features 

and attenuate it for irrelevant features. Consequently, the weights for a relevant feature 

should be high, meaning that its participation will be greater than other features, and 

low for an irrelevant feature, meaning that its participation will be less than that of 

other features. Once all node parameters are estimated for all features, these weights (a) 

should maximize the following discriminative likelihood which is denned for a given list 

of nodes fl: 
Na N0 Nr N, v(a ,\0 ) i n = n n n n ( / y ' z//amf ^ 

m = l n = l r = l / = l l^keQ. P\uonrf I Vk) 
where NQ is the number of nodes in O, and amf the weight of feature / . 
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Since ^ n,r/ m]fl ̂  € [0,1], then when o w is close to 0, l/<7m/ is high and the 

feature relevance is attenuated, while when amf is high, l/<rm/ is low and the relevance 

of the feature is increased. For convenience, we maximize the log of equation (5). For 

two given features, it is sufficient to compare the relative attenuation of the irrelevance. 

That is, if one of these two features is more relevant then its weight should be greater. 

Consequently amf can be chosen between zero and one. We need to estimate amf by 

maximizing equation (5) under the constraint Z)/=i °W = 1- We obtain (see Appendix 

A): 

l-TN° TNr loa(^p{a°nrt^m) } 
amf — . (o) 

Based on the above analysis, the schema in Figure 2 summarizes our model. 

2.3 Retrieval 

Let us recall that retrieval is a ranking of the visual documents available in the collection 

according to the user query Since in our collection, each node is an abstraction of a 

given semantic meaning (object name), the idea behind our model is to identify the k 

best nodes in the collection that most closely represent the semantic meaning of the user 

query, after which, the retrieval is limited to these k best nodes. We have chosen to select 

k nodes, because the user query can match several nodes if it contains several objects, k 

can be set to a given value or determined by thresholding the score. In our experiments, 

we set k to a given value. So our retrieval process involves two steps: 1. identifying the 

k best nodes in the collection and 2. performing a retrieval from these k nodes. 

Note that our collection is organized hierarchically, so the node ranking process will 

also be hierarchical. Starting with the root's daughters, we rank the nodes and keep the 

k best ones. Then for each chosen node, we rank its daughters and again keep the k best 

ones. The process is repeated until all the chosen nodes are leaves. Finally, we rank the 

leaves retained. The images belonging to the k best leaves will participate in the image 

ranking to determine the best images. We will now detail the node ranking process for 

a given level of abstraction, which is used hierarchically to identify the k best leaves, as 

explain before. We also give the image ranking process used to identify the images most 
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Figure 2: Our model 
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similar to the query. 

Consider that we have a query Q = qx A ... Ag„ where A is the "and" operator and 

qi is an image. This query form which is the same used in [16] and [3], enables us to 

combine positive images. Note that query forms combining negative and positive images 

have been used in the literature: for more details see [19]. For a given level of abstraction 

/, the node ranking can be defined as a ranking of the probabilities that each node at I 

generates the query Q. These probabilities are calculated using a Bayesian rule where 

we combine all features using their weights. The node ranking is done by the equation: 

N, 

argmaxm€i{ J ] p(0mf | Q)l/c7mt} (7) 

/ = i 

where amj is the weight of feature / calculated as described in section 2.2 and p(9mf | Q) 

indicates how probable the query is to be generated by the node m using the feature / . 

According to Bayes' rule, we have: 

Ptfmf I Q) 
p{Q 1 Omf) 

EkeiPiQ I 0kf) 

Assuming that all <& and aqij are independent, we have: 

n Nir 

P{Q | Omf) = I I I I P(aQdf I Omf) 
i = l j=l 

where n is the number of images in query Q, Nir the number of regions of interest in 

image qi, aqijf is the descriptor of feature / in region j in qi and p(aqijf | 0mj) is the score 

given by the PDF representing the node m using feature / . 

For image ranking, let ip be the list of images o belonging to the k best nodes chosen 

according to Equation 7. When performing retrieval in ijj, the image ranking will be 

done using all features by combining two similarities: semantic similarity and low-level 

similarity. Semantic similarity indicates the semantic resemblance between query Q and 

the node of image o, which is the probability that the node generates the query. The 

low-level similarity indicates the resemblance between the query and the image o using 

low-level features (color, shape and texture). The following equation gives the image 

ranking: 

argmaxoeil{J] (p(0mf | Q)l/a^pf{Q \ o))} (8) 
/ = i 
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where p(6mf \ Q) (the semantic similarity) is defined as before and P/(Q \ o) (the low-

level similarity) is the similarity score between image o and query Q according to feature 

/ . Since, in the proposed model, an image is characterized by regions of interest as seen 

in section 2.1, the low-level similarity measurement should be adapted to these regions 

of interest. Pf(Q | o) can be used both for similarity and matching. For matching, 

Mikolajczyk et al [28] perform a good evaluation of different regions of interest and 

compare three strategies of matching. We chose to use the Nearest Neighbor Matching 

(NNM) strategy, where two regions of interest A and B are matched if the descriptor of 

B is the nearest one to the descriptor of A, and the distance between them is below a 

given threshold. Let 4>qu0 = ((agiif,a0ij),..., ( a ^ / , a06i/)) be the list of the bi matched 

regions between images qt and o according to the NNM strategy using feature / . We 

define Pf{Q \ o) by: 

n n 1 bi 

Pf(Q I 0) = lipj(Qi I °) = I I ^ r ( 6 » _ J2d(aQdf>aojf)) 

where d(aqijf, a0jf) is the distance between matched regions aQijf and a0jf using feature 

/ . As a measure of similarity, we can use the Kullback-Leibler divergence [32] defined 

by: 

p(Q\of) = l/KL(p(Q\9Qf),p(of\eof)) 

where 90f and QQJ are the PDF mixture parameters representing all regions of interest 

using feature / in the image o and the query Q respectively. We use the same EM 

algorithm [4] used in model estimation to estimate 80f and QQJ. KL is a Monte Carlo 

approximation of the Kullback-Leibler divergence given by: 

KmX\8i)Mx\ej))^\t\og^^ 
b m=l P\xm I uj) 

where sample drawn according to p(x | 8i). Finally, note that in our 

experiments we use matching. 
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3 Visual features 

In our CBIR system, we use several features describing color, shape and texture. We 

use the well-known feature SIFT, and we investigate a new feature that we call puzzle-

feature, which can be applied to obtain local color, texture and shape. We will now 

details. 

3.1 Puzz le - f ea ture : a n e w feature 

Our aim is to build a feature which will enable us to find even a part of an image. The 

idea is inspired by the familiar notion of "jigsaw puzzle" (see Figure 3 for an example). 

We build a picture puzzle by carving a given picture into small fragments, nearly the 

same shape, and then mixing them. People with inductive reasoning aptitude can resolve 

the puzzle (put all the pieces back together). The interesting thing about this puzzle, 

is that all of the pieces we can reassemble the full picture but also other pictures (see 

Figure 4). 

i: (•'• '-' h 

& - >"&*- _ l ' l -

Figure 3: Puzzle example 

I i • i 
1 C * X.) ,0 

Figure 4: Picture built from the same puzzle 

The content of the puzzle pieces determines the nature of the features. If one uses 

pieces which describe the color, it will be a color-puzzle; shape content will make it 
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shape-puzzle; texture content, a texture-puzzle. We chose a square pieces shape because 

it is simple to handle, as shown in Figure 5. 

i i 

i t ; •: • ;• 

Figure 5: Square-based puzzle 

The main question is what width of square to use. The answer to this question is the 

solution for the scale invariance feature problem. From an image we produce a series of 

puzzles, starting with a given width and doubling it until obtaining minimum 9 pieces 

for the puzzle as shown in Figure 6. Using this puzzle series, the puzzle feature will 

be composed by all the pieces of different width which preserve the image at different 

resolutions. 

1 } 1 1 > 1 ' ' 

I'M, : ,T i : "• •>: 

1 Littl-lLiLJ «§^+| 
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^ - - * J ^ 
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U * j 3 " r - • 
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1 1 * 

i i , n 
1 . - • ! « ? 

ft . . 
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' - I 
i ' ' 

1 
1 
1 

V*! 

ar 
Figure 6: Square-based puzzle series with different square widths 
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Now, we need to maintain the neighbor relation between puzzle pieces. This rela

tion preserves spatial information and decreases the interference between puzzle pieces. 

For example, pieces 1 and 2 (see Figure 7) resemble each other in color. We propose 

I I " I 
L*s?h- i i 
tare i m i 

I *. 
SJ 

«£ 
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',' i 

', r,y, 

! 
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•J 
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; 
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^ 
i ^ 

« V i 

j * 

ijtj 
ifEX PI 

Figure 7: Interference between pieces 

to use the following neighbor relation. Let Xp : (xpi,Xp2,...,xpn) be an n-dimension 

vector which defines the content (color, shape, or texture) of the puzzle piece p. Let 

Xi,X2,X$,X^,X$,XQ,XT,X$ be the vectors corresponding to p's neighbors. We define 

the difference vector DPti between p and the neighbor X, by: 

Up,i = v%>il> O'pili • ••> Q"pin) 

\XpO %iOi Xpl Xil i — ) •Epn %in) 

The neighboring relation between piece p and its neighbors is captured by the mean and 

variance of all JDP]1, DPi2,..., DP{n dimensions: 

1 8 j 8 

Mean(Dp) = (Mpl,Mp2,..., Mpn) = ( - ] T G ^ I , , o X X i n ) 

and 

1 8 1 8 

Var(Dp) = (Vpl, Vp2,..., V^) = (-^(M
Pi ~ dPn?, , « E ( M p n - dpinf) 

So finally, each puzzle piece will be characterized by three vectors Xp, Mean(Dp), 

Var(Dp). We note here that we use several widths to produce a puzzle series which 
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makes the feature robust to scale. So to make the full feature robust to scale and rota

tion, we should choose an Xp vector that is also rotation robust. Now we will explain 

the vectors (Xp) selected to build color, texture and shape puzzles. 

3.1.1 Color-puzzle feature 

We use the first and second moments (mean and variance) of each band in the CIE L*a*b 

color space. We have chosen the L*a*b space because it is a color-uniform representation. 

So our Xp for the color puzzle will be the 6-dimension vector Xp = (mean(l), var(l), 

mean(a), var(a), mean(b), var(b)), which produces a puzzle piece vector totalling 18 

dimensions after addition of the Means(Dp) and Vars(Dp) vectors. 

3.1.2 Texture-puzzle feature 

For texture we use gray-level images. The features derived from the co-occurrence matrix 

have been widely used in CBIR [19]. This matrix is indexed by a single displacement (8x, 

8y), where as usually this matrix is calculated for several displacements. In our texture-

puzzle, we propose to use a feature derived from the co-occurrence matrix [15] indexed by 

a distance d instead of (8x,5y). So when estimating it, we check all pixels at distance d 

which make it invariant to rotation. We first transform our image into gray-level image. 

For each puzzle piece we calculate the gray-level co-occurrence using distance d=lpixel 

and derive from it the following values: Mean, Variance, Energy, Entropy, Contrast and 

Homogeneity. So our Xp for the texture puzzle will be the 6-dimension vector Xp = 

(Mean(p), Var(p), Ener(p), entr(p), Contr(p), Homo(p)), which again produces a 18-

dimension puzzle piece vector. 

3.1.3 Shape-puzzle feature 

We introduce pixel type as a novel manner to characterize shape. We start by extracting 

the image edge map (see Figure 8). The edge map contains shape information; we will 

use it to build the shape-puzzle instead of using the original image. A standard shape 

representation that has been often used in the literature is the edge orientation histogram 

[17]. However, this representation is rotation-variant, as a result of the global rotation 
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Figure 8: Image edge map 

applied to produce a normalized histogram. A small error in estimating this global 

orientation shifts all the edge orientations. As our shape feature, we use a differential 

orientation histogram. The idea is is to characterize the edge pixel by an invariant 

rotation measurement. This measurement is the mean and variance of the difference in 

orientation between its edge pixel neighbors. Figure 9 gives a simple example of these 

mean and variance calculation. We use 3 bins for the mean and 3 for the variance, which 

results in 9 bins or edge pixel types. We use a pixel-type histogram of 9 bins as a vector 

90= j 

135-

Mean=(135c+9Qc+135c)'3=120c 

Var=t'f!350-i20J):+(90=-120cy+(135c-i20:):J 3=450 

Figure 9: Example of orientation difference mean and variance estimation 

* 
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X to characterize the shape in puzzle pieces. In addition to this histogram, we use the 

percentage of edge pixels in the puzzle piece. So our Xp for the shape puzzle will be a 

10-dimension vector. 

3.2 Other features used 

For comparison purposes, in addition to color, texture, and shape puzzles, we also use 

the well-known SIFT 1 feature [23] which is identified in [28] as one of the best local 

features existing in the literature. 

4 Experiments 

To evaluate our CBIR, we used the Microsoft Research Cambridge Image Database 2 

(retrieval, classification), which contains 4323 images (Figure 10 gives image examples). 

It is organized hierarchically, and has 33 leaves, as shown in Figure 11. 4158 images will 

Figure 10: Examples of images from the collection 

be used in the model learning phase, and the remaining 165 images (5 images per leaf) will 

1http://www.cs.ubc.ca/~lowe/keypoints/ 
2http://www.research.microsoft.com/vision/cambridge/recogrution/default.htm 
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CcollKtion°^ 

Figure 11: The hierarchical structure of the collection 

be used as described below. We carried out three experiments, each intended to measure 

a specific aspect of our system. The first measures the clustering performance and the 

improvement achieved by using feature weights. The aim of the second experiment is 

to evaluate the system retrieval performance. The third test is intended to evaluate the 

retrieval performance using external images (the 165 images); we make this test more 

challenging by applying several transformations to the images. 

First Experiment: Each image in the learning database will be a query. This test 

will be done for each feature alone, and after that, all features are used. Table 1 gives the 

precision results for all collection leaves using color-puzzle, shape-puzzle, texture-puzzle, 

and SFIT. Table 2 gives the precision results of combining features without weighting, 

and using our weighting schema. A substantial improvement in classification rate is 

achieved with our feature weighting schema. 

Second Experiment: We randomly choose 15 images for each leaf, and use them as 

queries. Each time, we check the number of similar images in the 10 top ranked images 

and the 20 top ranked images. We do a sequential retrieval by traversing the whole 

collection, and a retrieval using our model. Table 3 gives the precision results for all 

collection nodes using all features. We find that our model improves semantic retrieval 

performance, relative to sequential retrieval. 

Third Experiment: Using only our model, we do the same test as in the second 

experiment with the remaining images (the 165 images). Six transformations are applied 

to each images, giving us a total of 1155 images. The transformations are: zoom, rotation, 

zoom+rotation, deformation, image blur, and light change, as shown in Figure 12. Tables 
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Node name 
General-airplanes 
Single-airplanes 
General-cows 
Single-cows 
General-sheep 
Single-sheep 
Benches 
General-bicycles 
Side view-bicycles 
General-birds 
Single-birds 
Buildings 
Front view-cars 
General-cars 
Rear view-cars 
Side view-cars 
Chimneys 
Clouds 
Doors 
General-flowers 
Single-flowers 
Forks 
Knives 
Spoons 
Leaves 
Miscellaneous 
Countryside-scenes 
Office-scenes 
Urban-scenes 
Signs 
General-trees 
Single-trees 
Windows 
Global 

Color-puzzle 
87% 
80% 
93% 
87% 
80% 
87% 
80% 
80% 
73% 
84% 
80% 
63% 
87% 
67% 
80% 
8 0 % 
93% 
100% 
80% 
70% 
80% 

| _ 6 0% 
80% 
87% 
90% 
67% 
90% 
87% 
80% 
8% 

73% 
87% 
74% 
80% 

Shape-puzzle 
98% 
67% 
80% 
67% 
67% 
93% 
60% 
93% 
93% 
57% 
27% 
47% 
100% 
56% 
100% 
100% 
87% 
80% 
87% 
40% 
80% 
33% 
93% 
100% 
94% 
40% 
47% 
100% 
87% 
93% 
87% 
100% 
60% 
76% 

Texture-puzzle 
53% 
100% 
13% 
7% 

73% 
7% 

40% 
0% 

93% 
71% 
0% 
13% 
60% 
0% 

47% 
7 3 % 
27% 
100% 
33% 
33% 
67% 
20% 
47% 
67% 
13% 
7% 

20% 
47% 
53% 
27% 
13% 
47% 
27% 
40% 

SIFT 
40% 
27% 
20% 
13% 
67% 
33% 
40% 
67% 
53% 
14% 
47% 
27% 
60% 
22% 
47% 
6 7 % 
27% 
33% 
67% 
47% 
67% 
47% 
60% 
73% 
47% 
27% 
27% 
33% 
13% 
8% 

3 3 % 
40% 
53% 
43% 

Table 1: Classification rate for the first experiment using features separately 

4 and 5 give the global result for all transformations. On the average, we achieve a 

retrieval rate of 53% similar images in the 10 top ranked images, and 47.3% in the 20 top 

ranked images for all transformations. This proves the robustness of our system relative 

to the transformations used. 
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Node name 
General-airplanes 
Single-airplanes 
General-cows 
Single-cows 
General-sheep 
Single-sheep 
Benches 
General-bicycles 
Side view-bicycles 
General-birds 
Single-birds 
Buildings 
Front view-cars 
General-cars 
Rear view-cars 
Side view-cars 
Chimneys 
Clouds 
Doors 
General-flowers 
Single-flowers 
Porks 
Knives 
Spoons 
Leaves 
Miscellaneou 
Countryside-scenes 
Office-scenes 
Urban-scenes 
Signs 
General-trees 
Single-trees 
Windows 
Global 

Without weights 
80% 
87% 
73% 
80% 
67% 
87% 
80% 
50% 
93% 
67% 
54% 
63% 
70% 
40% 
67% 
87% 
80% 
93% 
67% 
74% 
87% 
44% 
80% 
87% 
93% 
53% 
77% 
80% 
87% 
67% 
80% 
87% 
74% 

74.4% 

Feature weighting 
87% 
100% 
87% 
100% 
100% 
87% 
100% 
93% 
100% 
80% 
80% 
100% 
78% 
100% 
100% 
100% 
93% 
100% 
87% 
100% 
100% 
60% 
93% 
100% 
93% 
60% 
93% 
93% 
93% 
87% 
93% 
93% 
80% 
91% 

Table 2: Classification rate for the first experiment using all features, with weights and 
without 
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Node n a m e 

General-airplanes 
Single-airplanes 
General-cows 
Single-cows 
General-sheep 
Single-sheep 
Benches 
General-bicycles 
side view-bicycles 
General-birds 
Single-birds 
Buildings 
Front view-cars 
General-cars 
Rear view-cars 
Side view-cars 
Chimneys 
Clouds 
Doors 
General-flowers 
Single-flowers 
Forks 
Knives 
Spoons 
Leaves 
Miscellaneous 
Countryside-scenes 
Office-scenes 
Urban-scenes 
Signs 
General- trees 
Single-trees 
Windows 
Global 

10 t op 
ranked images 

Our 
model 

87% 
100% 
87% 
100% 
100% 
87% 
100% 
9 3 % 
100% 
56% 
80% 
100% 
87% 
90% 
100% 
100% 
9 3 % 
100% 
87% 
100% 
100% 
60% 
9 3 % 
100% 
93% 
60% 
9 3 % 
9 3 % 
9 3 % 
87% 
9 3 % 
9 3 % 
80% 

90.4% 

Sequential 
retrieval 

37% 
57% 
36% 
32% 
56% 
53% 
46% 
52% 
4 1 % 
14% 
29% 
25% 
29% 
7% 

77% 
65% 
55% 
9 1 % 
5 1 % 
30% 
35% 
22% 
50% 
49% 
4 1 % 
13% 
44% 
56% 
58% 
30% 
50% 
35% 
45% 

42.8% 

20 top 
ranked images 

Our 
model 

87% 
100% 
87% 
100% 
100% 
87% 
100% 
9 3 % 
100% 
28% 
80% 
100% 
4 3 % 
45% 
100% 
100% 
9 3 % 
100% 
87% 
100% 
100% 
60% 
93% 
100% 
9 3 % 
60% 
93% 
93% 
93% 
87% 
9 3 % 

9 3 % 
80% 

86.9% 

Sequential 
retrieval 

35% 
50% 
34% 
34% 

50% 
49% 
44% 
50% 
36% 
10% 
24% 
28% 
26% 
9% 

70% 
50% 
60% 
85% 
42% 
27% 

30% 
2 1 % 
49% 
50% 
40% 

1 1 % 
42% 
50% 
50% 
27% 
4 8 % 
33% 
45% 

39.7% 

Table 3: Retrieval rate for all queries in the second experiment 
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Figure 12: Image transformations: (a) original image, (b) rotation, (c) zoom, 
(d)rotation+zoom, (e) deformation, (f) blur, (g) light change 
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Node name 

General-airplanes 
Single-airplanes 
General-cows 
Single-cows 
General-sheep 
Single-sheep 
Benches 
General-bicycles 
Side view-bicycles 
General-birds 
Single-birds 
Buildings 
Front view-cars 
General-cars 
Rear view-cars 
Side view-cars 
Chimneys 
Clouds 
Doors 
General-flowers 
Single-flowers 
Forks 
Knives 
Spoons 
Leaves 
Miscellaneous 
Countryside-scenes 
Office-scenes 
Urban-scenes 
Signs 
General-trees 
Single-trees 
Windows 
Global 

Transformation 
Original image 

10 top 
ranked 
images 

50% 
64% 
72% 
40% 
44% 
38% 
68% 
84% 
52% 
20% 
34% 
76% 
54% 
60% 
56% 
76% 
70% 

100% 
94% 
48% 
34% 
50% 
60% 
66% 
68% 
56% 
66% 
55% 
4 8 % 
72% 
50% 
55% 
94% 
60% 

20 top 
ranked 
images 

44% 
55% 
65% 
55% 
50% 
4 5 % 
65% 
85% 
55% 
27% 
30% 
80% 
50% 
5 3 % 
46% 
70% 

80% 
94% 

90% 
50% 
44% 
40% 
6 3 % 
68% 
55% 
55% 
50% 
47% 
2 8 % 
70% 
47% 
42% 
90% 
57% 

Rotation 
10 top 
ranked 
images 

47% 
63% 
65% 
40% 
46% 
33% 
64% 
79% 
55% 
18% 
30% 
77% 
50% 
60% 
50% 
70% 
72% 

100% 
87% 
48% 
40% 
47% 
56% 
59% 
70% 
54% 
63% 
52% 

4 3 % 
69% 
55% 
49% 
92% 

57.7% 

20 top 
ranked 
images 

4 3 % 
58% 
60% 
44% 
45% 
44% 
55% 
75% 
65% 
14% 
19% 
75% 
55% 

49% 
44% 
60% 
75% 
90% 
95% 
50% 
4 3 % 
35% 
54% 
6 3 % 
65% 
50% 
55% 
44% 
35% 
66% 
45% 
48% 

9 1 % 
54.8% 

Zoom 
10 top 
ranked 
images 

44% 
54% 
48% 
32% 
30% 
36% 
48% 
76% 
4 3 % 
20% 
34% 
50% 
68% 
56% 
82% 
70% 
84% 

100% 
88% 
46% 
62% 
44% 
64% 
60% 
58% 
66% 
44% 

40% 
42% 
72% 
28% 
30% 
74% 

54.3% 

20 top 
ranked 
images 

40% 
50% 
32% 
30% 
20% 
35% 
4 3 % 
70% 
30% 
15% 
2 1 % 
33% 
60% 
44% 
80% 
60% 
85% 
90% 

65% 
36% 
50% 
30% 
4 1 % 
40% 
55% 
60% 
40% 
4 3 % 
3 8 % 
70% 
3 1 % 
27% 
70% 

46.5% 

Table 4: Retrieval rate for original image, rotation, and zoom in the third experiment, 
using weighting features. 
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Node n a m e 

General-airplanes 
Single- airplanes 
General-cows 
Single-cows 
General-sheep 
single-sheep 

Benches 
General-bicycles 
Side view-bicycles 
General-birds 
Single-birds 
Buildings 
Front view-cars 
General-cars 
Rear view-cars 
Side view-cars 
Chimneys 
Clouds 
Doors 
General-flowers 
Single-flowers 
Forks 

Knives 
Spoons 
Leaves 
Miscellaneous 
Countryside-scenes 
Office-scenes 
Urban-scenes 
Signs 
General- trees 
Single-trees 
Windows 
Global 

Transformat ion 
R o t a t i o n + z o o m 
10 top 
ranked 
images 

44% 
42% 
35% 
56% 
40% 
42% 

44% 
72% 
64% 
18% 
20% 
45% 
64% 
34% 
82% 
70% 
80% 
95% 
62% 
54% 
44% 
29% 
54% 
47% 
74% 
56% 
40% 
38% 
47% 
58% 
24% 
35% 
58% 

50.5% 

20 top 
ranked 
images 

36% 
28% 
33% 
4 8 % 
3 1 % 
29% 

82% 
70% 
60% 
17% 
10% 
42% 
60% 
24% 
85% 
60% 
66% 
84% 
60% 
50% 

39% 
20% 

4 8 % 
44% 
65% 
60% 
4 1 % 

30% 
4 1 % 
60% 
23% 
30% 
50% 

46.3% 

Deformation 
10 top 
ranked 
images 

56% 
46% 
40% 
72% 
48% 
44% 

58% 
76% 
4 6 % 
20% 
2 3 % 
52% 
66% 
40% 
78% 
66% 
76% 

96% 
80% 
35% 
40% 
44% 

50% 
48% 
64% 
54% 
44% 
32% 
4 3 % 
52% 
4 8 % 
50% 
90% 

53.9% 

20 t o p 
ranked 
images 

48% 
38% 
50% 
60% 
30% 
34% 

55% 
70% 
4 1 % 
13% 
18% 
50% 
55% 
34% 
50% 
60% 
70% 
80% 
75% 
25% 

36% 
3 1 % 
27% 
3 3 % 
49% 
55% 

• 4 5 % 
2 8 % 
36% 
49% 
37% 

47% 
85% 

45.9% 

Blur 
10 top 
ranked 
images 

36% 
40% 
48% 

36% 
44% 
50% 

66% 
60% 
52% 
15% 
32% 
88% 
48% 
40% 
64% 
72% 
72% 
100% 
92% 
44% 
3 1 % 
44% 
64% 
60% 
54% 
56% 
66% 
36% 
30% 
74% 
19% 
40% 
94% 

53.5% 

20 top 
ranked 
images 

34% 
40% 
46% 
37% 
34% 
40% 

60% 
48% 
40% 
13% 
23% 
75% 
37% 
38% 
30% 
38% 
70% 
90% 
85% 
36% 
28% 
39% 
40% 
4 3 % 
48% 
52% 

55% 
3 1 % 
2 3 % 
75% 
25% 
32% 
90% 

45.3% 

Light change 
10 top 
ranked 
images 

30% 
48% 
22% 
26% 
46% 
32% 

30% 
90% 
84% 
18% 
2 3 % 
42% 
32% 
36% 
44% 
32% 
74% 
52% 
52% 
56% 
68% 
3 1 % 
44% 
39% 

36% 
28% 
48% 
3 8 % 
40% 
32% 
20% 
26% 
25% 

40.7% 

20 t o p 
ranked 
images 

28% 
38% 
14% 
20% 
39% 
2 3 % 

22% 
90% 
8 5 % 

1 1 % 
12% 
32% 
22% 
18% 
3 3 % 
32% 
70% 
50% 
40% 
50% 
65% 
19% 
3 3 % 

3 1 % 
35% 

35% 
55% 
39% 

36% 
35% 
14% 
20% 
2 3 % 

35.4% 

Table 5: Retrieval rate for rotation+zoom, deformation, and light change in the third 
experiment using weighting features. 
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5 Conclusion 

In this paper, we have presented a hybrid probabilistic framework for CBIR modeling, 

using a generative approach for node parameter estimation, and a discriminative approach 

for feature weighting. We proved that defining feature weights for each node increases 

the systems clustering performance. We found also that processing retrieval with our 

model improves the semantic retrieval result, compared to sequential retrieval. So using 

a probabilistic framework for CBIR gives a semantic property to retrieval, narrowing 

the gap between human perception and low-level features. Furthermore, we proposed an 

algorithm to extract local color, shape, and texture features. Our experiments showed 

that our local shape feature performs better than the SIFT descriptor. In future work, 

we should apply our probabilistic framework to larger collections, and use more features. 

Indeed, increasing the number of images and features will give better assessment to the 

validity of our model. 
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Appendices 

A Feature weights 
NU N0 Nr Nf , | n \ 

^ - n n n ^ T it 7W ' (9) 
m=l ra=l r= l /=1 ^keQ. P{uonr/ | Vk) 

where NQ is the number of nodes in Q, N0 the number of visual documents of node 

m, Nr the number of regions of interest in visual document o, Nf the number of features 

used, and amf the weight of feature / for the node m. In order to maximize the log of LQ 

under the constraints J2fii amf = 1 for 1 < m < NQ, we introduce a Lagrange multiplier 

\m for each constraint. We obtain: 

Na N0 Nr Nf 1 p(a0nrf | 9m) N(l Nf 

LiPmfiXmjlKmKN^lKfKNf = Y; J2Y.J2 ~ 1°9{^ ZJ~n T 7 T T ) + 2 ^ ^ m (1 - ]T Cm/) 
m=l n=l r=l /=1 ° m / l^keU P\ao„rf \ uk) m=\ f-\ 

To simplify notation, let us set Amf = En=i Hr=\ M v ^ H H r r ) - We obtain: 

Nn Nf 1 Nfi Nf 

L(crmf, ^m)l<m<Nn,l<f<Nf = /_J / ^ A n / + 2 ^ A m ( l — 2 ^ amf) 
m=l /=1 °Vf m=l /=1 

We have: 
dL(amf ,\m) — Ajj X. = f) 

Aij 

. A, 

We have also: 
dL{amf,\m) _ 1 ^Nf _ „ ~Nf , ^iV/ J_Ail _ 

9A^ - x ^ / = i °V - u => 2^/=i o-j/ - i => 2v/=i V Ai -

(10) 

/ = 1 

10 and 11 
A j 

^ ^ V ^ 
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Since —k>m/' = —r1 < 0, then Equation 12 is a maximum for Equation 9. We 

obtain: 

Ljn=\ Z^r=l l ° y l v »(a „-l0tW 

X^Nf I V-JVo yiVr / „„ / P(°onr/|fl») " 
2 . / = ! A/ ^ = 1 2.r=l / 0 ^ £ f c e n p ( a O n r / | ^ 

(13) 

B EM algorithm 

Our likelihood for each collection node is defined by: 

JV/ N0 Nr Kmf L™=n n n d z Pm/iP(a0„r/1 omfi)) 
f—1 n=l r=l i=l 

We maximize its log under the constraint SiJi^ Pm.fi = 1 f° r each feature f, using a La

grange multiplier A/ for each constraint we obtain the following log likelihood lagrangian: 

Nf N0 Nr * W Nf Kmf 

LLm = £ £ £ l0g( £ PmfiP{a0nrf I Omfi)) + £ A/(1 - £ pro/i) 
/=ln=lr=l i=l /=1 i=l 

The derivative of this log likelihood with respect to the mixture parameters for each 

feature is independent of the other features, so we can maximize the likelihood for each 

feature separately. We define the log likelihood lagrangian for a node m and a feature / 

by: 
N0 Nr Kmf Kmf 

LLmJ = E E l Qg( E VmfiP{0>onrf \ 0mfi)) + A / ( l - £ pmfi) (14) 
n=lr=\ i=l i=l 

B . l Ca lcu la t ion of pmfj 

We have 
<9LLm J = ^ ^ G> l Q g ( E ^ 1

/ PmfiP{a0nrf I flm/i)) A 

=> 
<9LL N° Nr 1 
«„ ? . " E E 7 ^ : 7Z ~P(aonrf I #m/j) - A/ 
y™/j n=l r=l 2^=1 PmfiP\flonrf \ vmfi) 

We have p(9mfj \ a0nrf) = * w K ^ l ^ ) 
2_,j=l PmfiP(fio„rfWmfi) 
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dLLmJ = Q 
aPmfj 

We also have 

dLL N° Nr 1 
-QZ~ = E E ^ m / i I aonrf)-—_ ~ A/ 

2 N0 Wr 

P m / i = T - E JlP{°mfj | a 0 „ r / ) ( 1 5 ) 
A / n = l r = l 

-1 - E JW* <9A / i = i 

aAf K, mf 

E Pm/i = 1 (16) 
i = l 

Equation (15) and (16) => 

* W -̂  N° Nr 

E T- E E ? ( ^ I a<w)= * 
j=l A / n = l r = l 

A /= E E E A / i I QOnrf) 
j = l n = l r= l 

No Nr Kmf 
Xf = E E E P(^/i I a0nrf) 

n=\r=l i = l 

AT0 Nr 

n=\r=l 

Replacing Xf value in equation 15, we obtain: 

J2n=l I- /r=l P\"mfj \ ao„rfj ,-.7\ 
Pmfj = NjTR

 ( 1 ? ) 

B . 2 Ca lcu la t ion of 9mfj 

We have chosen to use the generalized Dirichlet distribution, whose PDF is given by: 
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where Ef=i^» < 1, 0 < X{ < 1 for i = 1, ...,d, ii = Pi ~ «i+i - A+i for i = 1, ...,d- 1, 

and 7d = & - 1. 

So 6>m/i is defined by {{amfjl,f3mfji), ...,(amfjd,f3mfjd)}. If a random vector X = 

(Xi, Xi, •••,Xd) follows a generalized Dirichlet distribution, then we can construct a vector 

W = (Wi,W2,..., Wd) using the following transformation Wt = T(Xi): 

T ™ = 1 x, 
I l-Xi-...-Xi-i 

Xi if i = 1 

for i — 2,3, ...,d 

where each Wi, i — l,..,d follows a Beta distribution with parameter aj and /%, and 

{oti,f3i, i = l,..,d} defines the generalized Dirichlet distribution which characterizes X. 

Bouguila and Ziou [4] use this transformation to reduce the problem of estimating a d-

dimension generalized Dirichlet mixtures parameters to the estimation of d Beta mixtures. 

The PDF of the Beta distribution is given by: 

PWW) = U^Mwr\i - wo*-1 

r (a j ) r (A) 
We obtain: 

P(x1,...,xd) = fiPB^iWi) = n r ^ r ( f c ' ' ( i - wi)*-1 

Using the EM algorithm proposed by Bouguila and Ziou, to maximize Equation 14, we 

must maximize the log likelihood for every dimension h (for h — 1,2,..., d): 

N0 Nr KmJ 

LLmjtWh = Y, J2 l0S( Y, Pmfi Pbeta(Wnrfh \ 6mfih)) (18) 
n = l r = l i=l 

where 9mfih = (amfih 

We need to calculate the partial derivatives. Since 8mfjh is independent from n and 

r, we can replace £^=i E ^ i by £^=i where JVU = N0Nr. We obtain: 

Nu Kmf 

LLmJtWh = ] T log( 5 Z Pmfi Pbeta{Wufh | 6>m/i / l)) (19) 
u=\ i=\ 

The likelihood in equation (19) is the same developed by Bouguila and Ziou. We refer 

the reader to reference [4] for further details on the calculation of these derivatives and 

the Fisher's scoring method used to maximize the likelihood. 
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C Data normalization 

In the definition of the generalized Dirichlet distribution, we have two conditions on the 

data: £f=1 Xi < 1 and 0 < Xi < 1 for i — 1,..., d. Since we can't be sure that the data 

we are using satisfy these conditions, we must apply a transformation to the data. The 

simplest transformation that we can use is normalization. Consider X = (Xi, ...,Xd), 

where m < Xt < M for i — 1, ...,d. To satisfy the two conditions of the generalized 

Dirichlet, we normalize Xi by the transformation: 

Yi = 7Y71 \—j for i = \,...,d 
(M — m) * a 

We obtain Yi €]0, l/d[, so the value interval of Yf depends on the data dimension. Ac

cording to the EM proposed by [4], Yi will also be transformed by: 

, x f Yi if z = 1 
Wi = T(Yi) = { 

{ l-Yl-!.-Yl^ fori = 2,3,...,d 

Since Yi e]0, l/d[, applying T, we find that 

W* G]°' A r n t for i = 2'3' -'d 

d — (i — 1) 

If we deal with data of high dimension, Y, will belong to a small interval. For example, 

the SIFT vector is of dimension 128, so Yi €]0,0.0078125[. Applying the transformation 

T, we obtain Wx e]0,0.0078125[, W2 e]0,0.007874[, ..., WUS e]0,l[. Since Wt follows a 

Beta distribution, which has only 0 < Wi < 1 for i = 1,..., d as a condition, and to avoid 

working on small intervals like ]0,0.0078125[, we use a second transformation that still 

assumes the Beta condition and makes Wi e]0,1[ for all dimensions: 

T2{Wi) = W% * (d - (i - 1)) for i = 1,2,3,..., d 
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Conclusion 

Dans ce memoire, nous avons presente une approche probabiliste hybride (generative/ 

discriminative) pour la modelisation et la recherche d'images par le contenu. Sur une col

lection d'images organisee hierarchiquement en noeuds selon la semantique des images, 

nous avons utilise une approche generative pour l'estimation des melanges de probabi-

lites qui representent l'apparence visuelle de chaque noeud dans la collection. Ensuite 

nous avons applique une approche discriminative pour l'estimation des poids des ca

racteristiques visuelles pour ameliorer la performance de la partie generative. Nous avons 

montre la capacite de notre approche pour la modelisation des collections d'images, 

et la diminution du fosse semantique cause par les caracteristiques visuelles de bas-

niveau. Nous avons montre l'importance de definir des poids pour les descripteurs visuels 

dependamment de la semantique des images et la robustesse de notre approche aux 

differentes transformations qu'une image peut subir tels que le zoom, le changement de 

lumiere, la rotation. Nous avons propose un algorithme d'extraction de descripteurs vi

suels locaux de couleur, de texture et de forme. Nous avons utilise ces descripteurs pour 

valider notre modele. Selon les tests effectues, ces caracteristiques performent mieux que 

le descripteur SIFT identifie dans la litterature parmi les meilleurs descripteurs visuels 

locaux proposes. En perspective, il reste a valider le modele sur de grandes collections 

d'images et a l'etendre a la video. 
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