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Sommaire 

L'attention est une habilité cognitive qui joue un rôle primordial dans le contrôle 

des actions. L'attention réfère à l'allocation des ressources pour réaliser une action. 

L'interférence survient quand plusieurs événements réclament de l'attention. L'objet 
de ce mémoire est de modéliser l'attention, ce qui permettra de modéliser comment 

l'attention contrôle les actions humaines. En psychologie, Norman et Shallice ont con-

stnùt un modèle cl' organisation et de contrôle de l'attention. Ce modèle est basé sur 
deux composants responsables du contrôle de l'action, le "Contention Scheduling" et 

le "Supervisory Attentional System". Nous présentons dans ce mémoire le modèle au 

complet mais l'en1phase est portée sur le lien entre les deux composants. Des activités 

de la vie quotidienne sont simulées pour démontrer comment le modèle interagit en cas 

d'interruption d'une tâche routinière par une nouvelle tâche. Le temps où l'interruption 

survient est choisi aléatoirement. Le modèle cl' attention est alors capable cl' ajuster son 

comportement n'importe quand pendant l'action de la tâche routinière. 
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Introduction 

Historically, technologies were created mainly to help people with physical limita-

tions. Therefore, human lives have benefited from such technological productions as 

reading glasses, hearing aids, wheelchairs and so forth. 

But cognitively impaired diseases, e.g. Alzheimer's disease, are becoming one of the 

major health problems facing the western world. Patients with Alzheimer's disease are 

seldom able to live safely and independently. Usually they require at least part-tirne 

caregivers, whether they live in medical care centers or in their own homes. Because 

of growing population of the cognitively impaired population, their families and society 

are burdened more and more with the demands of care giving. Therefore, techniques 

emerge for helping this confluence of people, as the tirnes reqlùre. To develop such kinds 

of techniques, fundamentally, one needs to know how human cognitive processes work. 

The evolution of related fields of study like artificial intelligence and computer science, 

offer approaches to dab ble in the complex area of cognition. Health Smart Home has 

developed a smart residence for the main purpose of allowing disabled people to stay 

home with security through connection with a remote health care center [1]. Cognitive 

assistances are technological ways to make up for the patients' irnpaired memories or 

some disabilities. By doing so, cognitive assistants aim to the autonorny of cognitively 

impaired patients as well as a safe life. Cognitive models are computer rnodels that 

represent cognitive processes, and can be used to predict some human behaviors through 

many simulations. 
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Among human cognitive processes, attention plays a very important role. In psy-

chological literature, attention refers to the allocation of processing resources. It is the 

ability to focus on a behavior and is responsible for action control. In daily life, people 

carry out lots of actions to fulfill expectecl goals. Sorne actions require attention: novel 

actions, <langerons ones or actions that need deliberate plans. But routine actions, also 

called antomatic actions, which are well-learned in some environments, require mnch less 

attention or can sometimes be execnted without awareness. Action, so called behavior, 

is the act of purpose to accomplish a goal in stages, usnally over a period of tirne. An 

action is often snspended and resumed later because of interruptions. An interruption 

is an nnanticipated change in the environment while a main action is being performed. 

Depencling on how urgent the interruption is, one may react in three clifferent ways ( that 

will be discussed later) to deal with the interruption. But however the interruption is 

dealt with, it is under the control of attention. Withont attention, it 's impossible to 

switch from one action to another. 

The theme of this master's thesis is a model of attention, which gives a view of 

how attention controls hnman actions. The model is based on Norman and Shallice's 

model, a psychological theory, which provides a framework of two-levels of control over 

actions [2]. The model of attention is implemented in CO GENT [3], which provides a 

visnal design environment for cognitive modelling. This thesis is organized as follows: 

it first introcluces an overview of the background; then it reviews the relatecl literature, 

which inclndes three parts: 1) the Norman and Shallice's model, on which the model of 

attention is based; 2) the COGENT programming environment, under which the rnodel 

of attention is implemented and 3) the works on implementation of Norman and Shallice 

model; it thirdly presents the model of attention with its objectives, implementation, 

experimental resnlts and discussions. Finally the paper ends with a brief conclusion. 
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Chapter 1 

Background 

1.1 Cognitively Impaired Population 

The rising number of cognitively impaired people is one of the greatest health prob-

lems in the occidental world. The growth of the Alzheimer's disease is an example: in 

1950 in the United States, there were 200,000 cases at most. Within less than 25 years, 

this number doubled. By 2050 the number of Alzheimer's patients in the world is ex-

pected to reach 80 millions [4]. Consequently, the cost of caring for such kind of patients 

is steadily increasing. The economic spending for care of a patient with cognitive disease 

is striking. For example, for a single person with Alzheimer's disease, whether at home 

or in a nursing home, it costs more than $47,000 a year [l]. 

I\/loreover, patients with Alzheimer's disease or similar cognitive disorders are not 

able to live autonomously and safely. They need at least part-time help and care from 

proxies. However, elcler care responsibility increases the physical and financial burdens 

as well as emotional strains among the caregivers. 

To lessen the burdens on the caregivers and to increase quality of care and quality of 

life for the patients, it is necessary to assist people with cognitive disease in a technological 

way. 
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1.2 Health Smart Home 

According to the patients' preference, most of them would choose to live an indepen-

dent way of life in a residential setting with minimum intervention from the caregiver. 

The second reason for keeping the patients at home is that it is cost diminishing [1]. 

Thus, the recent establishment of Health Smart Home (HSH), which aims at allowing 

people with special needs to remain independently in their own homes as well as pro-

viding health care services [5]. It is a combination of three research domains: medicine, 

home networks and information systems. HSH provicles an efficient way to develop 

patient-centred telemedicine and telecare services. Typical clienteles include: disabled 

and elderly people living alone, people with loss of autonomy, people who need a precise 

daily medical follow-up and patients with chronic health disease. 

1.2.1 Definition 

A HSH is such a home that has [5]: 

• A number of automatic devices and smart sensors used to ensure patients' safety; 

• A local intelligence unit responsible to analyze the data collected by sensors and 

detect the critical or <langerons situations; 

• A connection with a remote control center, which responds to emergency cases and 

offers an interface between patients and hospital staff or health care centers. 

The HSH projects have two objectives: a patient-centered objective and a public 

health-centered objective. The former aims to improve and enhance the quality, and 

especially the security of patients' lives by utilizing new technologies. These technologies 

help them to be more independent in their own environment. The latter aims at the 

efficiency of public health care services. The patients at home coulcl receive information, 

advice and supervision from health care services of the hospital through phone calls or 

net communications. 
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1.2.2 An Example of HSH 

SmartBo is an example of HSH designed for autonomous elderly people who feel 

insecure living alone at home [6]. The SmartBo project focuses on information and com-

munication technology and computer based solutions for mobility-impaired people, visu-

ally and/ or hearing impaired people and people with light cognitive disabilities. From its 

startup, the SmartBo project has continued to develop an ideal smart home for disabled 

people to live an independent and rich life regardless of their disability. 

The project is implemented in a two-room grouncl-floor apartment inclucling ldtchen 

with dining area and a large bathroom. With no steps or stairs, the entry is easy for the 

disabled. The entrance door can be opened by remote control. 

The installations in the room are divided into two categories: one common to all 

users, and one adapted for each group or even for each disabled individual. A cable 

connects all sensors and all devices in the apartment. Sensors are input devices to the 

cable snch as switches, motion detectors, magnetic switches, pressure sensitive switches, 

current sensing devices, water flow sensing clevices etc. Actors are output devices, i.e. 

relays for switching power, door automation, or controlling lamp dimmers. 

Recently, new client/server-based SmartBo control programs are customized npon 

the clients' need [7]. A great advantage of this client/server-solution is that the client 

can be chosen for or aclapted for maximum benefit of the user. For example, clepencling 

on the user's need, a palm computer, or a normal computer is available to the user for 

his convenience. All computers in SmartBo are linked together in a wireless network. 

An alarm is set off in case of water running longer than clesired, doorbell or phone 
ringing, overheated appliances and so on. The alert could be displayed on the computer 

monitor and even with a voice announcement sometimes. 

In addition, some complex fonctions of the system contribute to the safety of older 

people. For example, when a person leaves his bed at night, dimmed lamps light the 

way from bedroom to bathroom. If he doesn't return to bed after a pre-set tirne, helpers 

could then be alerted. 
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1.2.3 Constraints of HSH 

While HSH aims for better life for people as well as diminishing family and social 

burdens, some factors restrict the use of HSH [5]: 

• Ethical: their use must take place under the strict control of medicine and ethics; 

• Economical: they must be cost effective from the viewpoint of both the patients 

and society; 

• Technological: the equipment used in the homes must be perfectly suitable to the 

patients' needs, and ensure their safety and privacy; 

• Psycho-social: the new technology must be accepted and easily used by all the HSH 

actors. 

1.3 Cognitive Assistance 

As mentioned above, the HSH is mainly directed to physical needs. In this sec-

tion, another new concept is introduced, called cognitive assistance, which implies some 

contrived ways to help people with cognitive limitations. For people with physical limita-

tions, autonomy depends on the equilibrium between the individual and his environment. 

In the same way, one's cognitive ability could be improved through environmental con-

text, useful information in the environment and useful ability-supporting technologies. 

Cognitive assistance, which is defined below, is such an ability-supporting system. 

Unlike HSH, cognitive assistance airns rnainly to help cognitively irnpaired people 

such as Alzheirner's patients, brain injury patients, schizophrenic patients and rnernory 

irnpaired patients. 
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1.3 .1 Definition 

Cognitive assistance could be provided both indoors and outdoors. This assistance 

makes up the patients' cleficit to ensure their autonomy as well as their safety. Thus, 

the action of the system can range from ''doing nothing" to drastic operations such as 

shutting clown electricity [8, 9). In their intelligent habitats, Pigot et al. explained a 

three-layered infrastructure that cognitive assistance usually comprises. 

The infrastructure is divided into three layers: 

• Hardware layer: the hardware layer is concerned with many kinds of sensors, devices 

and effectors, which record the patient's positions, activities and environmental 

states, offer some advice or provicle help directly in some cases; 

• IVIiddleware layer: the middleware layer links all the agents of the system in a 

wireless network, through which these agents can communicate with each other; 

• Application layer: the application layer contains two integrated services, one for 

tele-rnonitoring, and the other for decision of proper cognitive assistance. 

1v1ost people can be in need of cognitive assistance. But here, the objective of 

cognitive assistance is to develop new systems, mostly computer systems, to enhance the 

quality of life of cognitively impaired people such as patients with Alzheimer's disease or 

similar cognitive disorders. 

1.3.2 Examples 

The Activity Compass is a cognitive assistant that guides disoriented people toward 

their destination both indoor and outdoor [10]. For example, the compass can guide the 

patient toward his kitchen when mealtime is overdue. It is developed on the basis of 

a layered client/server architecture [10], shown as Figure 1.1. In the architecture, the 

client is a hand held device that handles interaction with user, and the server stores the 

sensor's readings, constructed models and background information. 
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Figure 1.1: The architecture of the activity compass. 

The architecture includes several layers to link sensor data to behavior, behavior to 

plans, and plans to potential interventions: 

• Sensor Layer: the layer has a variety of sensors which are installecl for clifferent 

users; 

• Data Fusion Layer: the layer extracts information from a continuons stream of data 

collectecl by the sensors . Bayes filters are appliecl in this layer; 

• Behavior Recognition Layer: in this layer the user's behavior is estimated based on 

the output of the Data Fusion Layer; 

• Plan and Intention Recognition Layer: this layer performs the task of identifying 

the user's plans or goals by given a partial view of the user's behavior; 

• Intervention Layer: in this layer, the system decides under which circumstances it 

should initiate an interaction with the user. 

The activity compass has to be initializecl before it can work effectively. Firstly, the 

compass needs to construct a high-level model of the patient's activities by recording the 

person's habitual activities coupled with background information and sensor readings. 

Secondly, plan recognition is essential for the compass to make sense of the patient's cur-

rent actions. Finally, the compass needs to detect alternative pattern under uncertainty 

cases requiring appropriate reasoning. 

8 
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1.4 Cognitive Modelling 

1.4.1 Outset of the Issue 

Describes 

Cognitive 
processes 

Describes 

Generate 

Simulate 

Theory 

Generates 

(a) 

Theory 

Gives an 
explanation 

Behavior 

Gives an 
explanation 

Implement 

Model 
Generates 

(b) 

Figure 1.2: (a) The classical relations between a behavior, underlying cognitive pro-
cesses and a theory of those processes; (b) The relation between a cognitive model and a 
behavior, a theory, and cognitive processes. 

As its name implies, cognitive modelling is the development of computer models, 

which represent cognitive processes, and use of such models to simulate or predict hu-

man behavior. A model is a representation of a real object, for example, a model in 

architecture may be a small paper-house to show the real house's appearance or to evalu-

ate its structure. Similarly, a computer model is also a representation but using specifiecl 

computer language. This study concerns two issues: 1) the contents of the model and 2) 

the way the model is clesigned. The first issue is discussed here, the second one will be 

discussed section 1. 5. 
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1.4.2 The Role of Cognitive Modelling 

Cognitive modelling is based on a concern of three entities: behaviors, cognitive 

processes underlying them and theories of these cognitive processes. Behaviors are the 

actions done by the subject with some purposes. Cognitive processes of the subject, 

such as long terrn memory, generates behaviors. A well suited theory describes the 

cognitive processes and consequently gives an explanation for the behavior generated 

by those cognitive processes. Figure 1.2( a) shows their relations. Computer simulation 

techniques allow cognitive models to be built, thus, an extra entity is added to the 

Figure 2.1, demonstrated as Figure l .2(b). A rnodel plays the role of generating behaviors, 

implementing a theory and simulating a cognitive process. 

1.5 Cognitive Architecture 

1.5.1 An overview 

A cognitive architecture refers to a particnlar set of conceptnal structures, tools, 

techniques and methods that support the design and the construction of cognitive mod-

els. A cognitive architecture embodies the more general structures and mechanisrns out 

of which could be made a model of individnal cognition in a certain situation [11]. A 

cognitive architecture is an integrated system capable of intelligence supporting, which 

may comprise a short-term memory, a long-term memory, perceptual and rnotor snbsys-

tems, some learning rnechanisms, and so on. Shown as Figure 1.3, a cognitive model is 

an instance of a cognitive architecture in a specified domain. 

Cognitive architecture, such as Soar [12,13], ACT-R [14,15], CAP [16] and EPIC [17], 

models human behaviors via clifferent approaches. Soar and EPIC are symbolic architec-

tures, CAP is a connectionist architecture and ACT-R is a hybrid architecture. Among 

these architectures, ACT-Ris currently the most influential one because it offers whole 

mechanisms in generalization which is domain independent, and because it approaches 
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Generalization 1-----.i Specification 

Cognitive architecture Cognitive model 

Figure 1.3: A cognitive n1odel is an instance of a cognitive architecture in a specified 
dornain. 

both frorn syrnbolic and frorn connectionist. 

1.5.2 ACT-R 

1.5.2.1 Introduction 

ACT-R is a production-rule based cognitive architecture, which is irnplernented in 

Cornrnon LISP language. It intends to sirnulate the hurnan behavior in a generalized 

vvay. It sümùates the acquisition of knowledge and hlm1an actions influenced by the 

environrnent. 

Since ACT-R is a cognitive architecture, it covers a wide range of hurnan cognitive 

tasks, focusing on problern solving, learning and rnernory. It has been previously applied 

to rnodeling such tasks as solving the standard Tower of Hanoi problern, rnemory for 

text or for lists of words, language comprehension, communication, task switching and 

aircraft controlling. 

In ACT-R, knowledge is represented by two types of mernory: declarative memory 

and procedural mernory. Chunks are the atomic components of declarative rnemory. The 

basic unit of procedural memory is production nùe. A chunk is defined by its type ( e.g., 

birds) and its slots ( e.g., color or size). A production rule is a condition-action pair. 

The production rule specifies an action to be executed when a condition is satisfied. The 

condition consists of a specified goal and a set of chunks while the action usually creates 

or modifies some chunks. Thus procedural memories manipula te chlmks to produce 
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cognition. Two buffers are defined in ACT-R: the goal buffer ( to specify the actual 

state of a goal) and the retrieval buffer (to store information retrieved from declarative 

memory). Four other buffers are defined in perceptual motor, the addition of ACT-R. 

These buffers are the visual buffer, the manual buffer, the aural buffer and the vocal 

buffer. They ail correlate to the human perception and will be discussed la ter. 

1. 5. 2. 2 Mechanisms 

In this section, main mechanisms in ACT-R are discussed. Through these mecha-

nisms, ACT-R manipulates chunks and production rules, sub-goals, perceptual motor, 
and learning ability. 

Activation and Latency 

Each chunk of the declarative memory is associated with an activation value. This 

value is evaluated at each cycle of processing. It depends on the basic activation, the 
strength of association with other chunks, the similarity between each part of the chunk 

and each part of the retrieval condition. Therefore, the activation value of the chunk i is 

expressed by the formula below: 

Ai =Bi+ :z= wjsji + :z= Q~Mki + c1 + c2. (1.1) 
j k 

It is computed as following: 

The base-level activation Bi reflects the recency and frequency of practice of the 

chunk. It is influenced by two parameters: 

l. ni, the number of tirnes that the chunk i is practiced; 

2. L, the real time elapsed in seconds. 

Bi= log(nd L - d) - dlog(L), (1.2) 

w here d is a parameter set by the user at the beginning of the simulation. Thus Bi 
increases with practice and decreases with tirne. 
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The sources of Activation: computed as the summation below (Sum. (1.3)): 

(1.3) 

The elements j being summed over are the chunks which are in the slots of the chnnk 

i. ~- is the amount of activation from source j. Sji is the strength of association from 

source j to chunk i. It is set using this equation (Eq. (1.4)) when chunk j is in a slot of 

chunk i: 

Sji = S - ln(f anj ), (1.4) 

where S is a parameter to be set with the maximum associative strength; f anj is the 

number of chunks in which j is the value of a slot plus one for chunk j being associated 

with itself. 

The final term that influences the retrieval of the chunk i is the partial matching 

component. Expressed as the following surnrnation (Surn. (1.5)): 

LQA1ki· 
k 

(1.5) 

Specification elernents k: the rnatching summation is cornputed over the slot values of 

the retrieval specification; match scale Q: this reflects the amolmt of weighting given to 

the sirnilarity in slot k. By default this is a constant across all slots with the value of 1; 

match sirnilarities, A1ki: the sirnilarity between the value k in the retrieval specification 

and the value in the corresponding slot of chunk i. 

To sirnulate the chunk retrieval in a more realistic way, it should not be cornpletely 

deterrninistic. Therefore, two types of noise have been introduced. The permanent noise 

c1 , which is given by equation is set at the creation of each chunk, while c2 , the transient 

noise, is set each tirne the chunk is retrieved. Both noise values are generated according 

to a logistic distribution characterized by a parameter s. 

Probability of Recall 

A chunk is recalled only if its activation value is over a threshold, which is narned 

utility threshold. Among the chunks whose activation value is over the utility threshold, 
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the probability of choosing a chunk 1: is given by the equation: 

(1.6) 

where A is the activation value of chunk i, Ac is the activation value of any competing 

chunk c. 8 is the parameter s of the noise. 

ACT-R also simulates the retrieval time for each chunk. The rule is quite simple: 

the higher the activation, the faster the chunk will be retrieved. The retrieval time Ti is 

given by the following equation (1. 7). Where F is another parameter to be estimated, 

called the latency scale. 

T - F -Ai i - e . (1.7) 

U tili ty Learning 

The utility learning is used to determine which production rule will be chosen to 

fire if several of them satisfy the same conditions. Each production is associated with 

an utility. It reflects how much the production is expected to contribute to achieve the 

system's goal. The one that has the highest utility Ui will be chosen. 

This utility is an estimation based on experience. It increases with success and 

decreases when the cost increases. 

The success is evaluated through the estimation of the probability of success Pi. It 

is computed as following: 

Pi= successes/totaluse, 

where totaluse is the total number of tirnes the production rule has been tried during 

the experiment and success is the number of successes of this production along its total 

use. 

The value of the cost Ci represents the average amount of time, counted in seconds, 

spent to execute the production rule i, then: 

Ci = totaltime/totaluse, 
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where the totaltime is the cumulative tirne over each time the production rule is used 

( total use). 

As the cost is counted in seconds, the value of the objective G is also counted in 

seconds. It has a default value of 20 seconds, which can be changed by the user. This 

value of the goal times the probability of success represent an estimation of success of 

the production rule i. So, the utility Ui for the production rule 1: is: 

(1.8) 

Because it is more realistic to maintain a level of uncertainty, a noise é is always 

added to simulate randornness. It follows the same logistic fonction as either é 1 or E2 in 

the computation of the level of activation A. 

Like the choice of a chunk, the choice of a production rule is performed in a prob-

abilistic way, called the probability of recall of the production rule. It is given by the 

equation: 
eui/,/2,s 

Probability( i) = /,/2 , I: eUj 2s 
(1.9) 

j 

where the summation is over every competing production rule, including utility threshold 

as if it were a production rule. s is the parameter s of the noise. 

Production Rule Learning 

A new production rule can be built from two old production rules by applying 

succession into a single rule. This process of acquiring new production rules is called 

production composition. The basic idea is to combine the tests in two conditions and 

combine the two actions into one that has both effects. The composition is based on 

buffers, because usually the conditions involve buffer tests and the actions involve buffer 

transformations. The complications of production composition can be divided into three 

cases according to whether the old production rules request a new goal. Many technical 

details are needed to make sure that the proper references are built to variables and 
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constants in the composed productions. If the reader is interested, please check them at: 

act.psy.cmu.edu/ACT-R$_-$5.0/unit9.doc 

Conflict Resolution 

After a new production (called New) is composed from two old productions (Oldl 

and Old2), a fact is that whenever New could apply Oldl could also apply, other-

wise, it does not mean that whenever Oldl could apply New could also apply, because 

New might be specialized. The choice among the New, the Oldl, and whatever other 

productions might apply will be determined by their utilities. As discussed before, if 

New could apply, Oldl could apply also, that means New and Oldl have the same 

probability. Moreover, since New is created by merging Oldl and Old2, it is more 

specifiecl than O ldl. Therefore, New will have less chance to be successful than O ldl 

will. A parameter a has been introclucecl ( callecl initial experience) to reflect the setting 

of the successes or failures for new production, whose value is ranged from O to 1. This 

expresses the fact that New is more specific than O ldl. 

The new production rule is supposed to be better than the old one. The problem 

is that because of the lower initial utility than the older production rule (scaled clown 

by a), there is less probability for ACT-R to choose them. This problem is overcome by 

the noise parameter, which introduces some irregularities into the computation of utility 

fonctions. Sometimes the new merged production rules will be chosen. Because they 

usually execute a complex task faster, their utility will increase and they will tend to be 

used more and more. 

Subgoals 

ACT-R offers a mechanism of subgoals. With it, ACT-R enables the subgoal hi-

erarchical processing. The main idea of subgoals is the division of a complex goal into 

several different subgoals, each of which is consiclerecl as a chilcl of the original goal ( called 

parent). 

Each subgoal is set by using the command "+goal> expression". This expression 
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assigns a certain task to the subgoal. After the subgoal finishes its task, it rnay go 

back up to its parent. To retrieve the original goal, use the cornmand "+ goal>" and 

set "parent = goal". Let us pay more attention to the latter command. By setting a 

goal to the ''parent", it enables ACT-R to create a hierarchy of subgoals. That rneans 

whenever considering of a subgoal, its situation must be taken into account, because this 

subgoal rnay also be a parent of other sub-subgoals. 

Following is a simple tree to show the generations of goal and subgoals: 

subgoalB 

subgoalBl 

Figure 1.4: A farnily tree of a goal and its subgoals. 

In the tree structure, subgoalA and subgoalB are two subgoals of goal, and at 

the sarne tirne, they are also parents. SubgoalA has two sub-subgoals: subgoalAl and 

subgoalA2; and subgoalB also has subgoalBl as its subgoals. 

Perceptual Motor 

Overview 

Around 1997, Perceptual lvfotor was added. Together with ACT-R, it is ACT-

R/Pl'v1. Perceptual J\/Iotor, in fact, plays an important role since its appearance, because 
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Figure 1.5: Perceptual motor includes four buffers: Visual, Manual, Aural and Vocal 
buffers. 

it mediates the communication between cognition and the external environment. Shown 

as Figure 1.6, is an overview of the ACT-R/Pîv1 system [18]. As we discussed before, 

production rules manipulate chunks through buffers. Four of these buffers belong to 

the perceptual motor. They are respectively: the visual buffer, the manual buffer, the 

aural buffer and the vocal buffer (see Figure 1.5). Stimuli corne from these four different 

sources , and correspondingly there are different modules in Perceptual-Motor layer to 

handle some certain aspects of perception and action. 

Attention 

In ACT-R, attention and focus are two different actions . It means in order to focus 

on another location, the model has to take two steps: :first move attention and then focus 

on the new target. For example, it is easy for a person to notice a motion, like a mouse 

running on the floor, while focusing elsewhere at the same time, on the TV for example. 

Despite the fact that the attention is on the TV, the vision area is wider than the screen 

only. That's why it is possible to notice what happens around. This illustrates the fact 

that seeing something is different from focusing on it. In ACT-R, this aspect is taken 

into accolmt: in order to focus on a location, the model has to look at this location first. 
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Chapter 2 

Revie-w of literature 

2.1 Introduction 

This chapter is dividecl into four parts. The first section gives the definitions of 

some important concepts in the current research. Then the second section introduces 

the Norman and Shallice model, on which the model of attention in the current research 

is based. The model consists of two mechanisms, the Contention Scheduling and the 

Supervisory Attentional System, which together explain how attention can control human 

actions. Next, the third section introduces the COGENT, an implemental environment 

for cognitive abjects, under which the model is built currently. Finally, the fourth section 

reviews some previous works that have been done by others on implementation of the 

Norman and Shallice model. 

2.2 Concepts 

2.2.1 Action 

Action, so called behavior, is defined as the act of purpose to accomplish a goal in 
some stages, usually over a period of tirne. Two kinds of action are considered: automatic 
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behaviors and willed behaviors. The former, also called well-learned actions, refers to the 

activities that can be carried out with dirninished awareness; the later is the performances 

based on will or attention. Whether the purpose is conscious or not, the action is directed 

by a goal that is satisfied at the end of the completed action. Sorne goals are simple and 

do not need to be broken into sub-goals. In contrast, cornplex goals are divided to create 

simpler ones, each of them representing an action to be performed. Accordingly, the 

action to achieve a complex goal should be decomposed into several sub-actions, each of 

which fulfills a sub-goal. This hierarchical structure could be presented by a tree where 
the action and the goal levels alternate [19]. 

2.2.2 Attention 

Attention refers to the allocation of processing resources. It is the ability to focus 

on a behavior. Sorne actions require attention: navel actions, dangerous ones or actions 

that need deliberate plans. But routine actions, called autornatic actions, which have 

been performed several times in the same conditions, require rnuch less attention. In 
some cases when unanticipated interruptions or unexpected environment changes occur, 

the attention rises to cope with the new situation. Therefore, the same action may 

belong to the automatic or to the willed action depending on the environment in which 

it is perforrned. For example, driving a car is considered as an autornatic action. Every 

day, one drives from home to office and back. vVhile clriving his well-lmown route, the 

driver can talk or listen to the radio without much concentration on his action. But if 

a hazardous situation takes place on the route, like a traffic jam or a child crossing the 

road, the driver stops his conversation and turns his attention to the road. In addition, 

if the journey is new, the driver needs to pay attention to the road situation, the traffic 

lights, the road signs and so forth. In these cases, the action of driving is considered a 
willed action. 
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2.3 Norman and Shallice Madel 

2.3.1 An Overview 

Norman and Shallice provided a framework that comprises two mechanisms to con-

trol the two kinds of actions defined above, the Contention Schedtùing (CS) and the 

Supervisory Attentional System (SAS) [2]. CS is responsible for well-learned actions, 

and SAS is required when the action is new, or when the action itself is <langerons, or 

when the plan must be rnodified according to an unanticipated environrnental change. 

Actions are represented as some schemas in memory. CS controls actions directly by 

selecting from among competing schernas. While SAS controls actions via biasing the 

selection process. Figure 2.1 is an overview of the architecture of these two levels of 

control. 

Supervisory Attentional System 
(SAS) 

Contention Scheduling (CS) 

Schema hierarchy 

Atomic actions 

Figure 2.1: The architecture of the two controlling levels: CS and SAS. 

I'vfost of the time, CS makes the selection alone. SAS oversees the processing of CS 
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and interferes when necessary. Since a complex action is usually divided into a set of sub-

actions, the schemas for these sub-actions are organized hierarchically in CS according 

to different levels of actions. Selections among these schemas are mainly based on their 

activation value. Each schema is assigned to an activation value. This value varies over 

time during procedure of an action's performance. When a schema's activation value is 

higher than a threshold, it is selected. A selected schema will lead to either an internai 

action or an external action in the world. 

In addition, the model contacts with its environment. Sorne events in the environ-

ment can trigger appropriate schemas. Consider a simple action as "picking up a pen". 

This action can be represented by a set of component schemas like reaching the pen, 

holding it and picking it up. Triggered by the perception of the pen on a table, the 

source schema of "picking up a pen" is set up by an activation, which in turn activates 

the component schemas in a sequence and results in choosing the proper arm, hand, and 

finger movements to get the pen. Such a sequence is called a horizontal thread. A simple 

horizontal thread is shown as Figure 2.2. Selection of component schemas is determined 

mainly by how well its trigger condition matches the contents of the trigger database. 

Sensory 
information Sensory 

Perceptual 
Structures 

Trigger 
Data 
Base 

Extemal and -----------. 
Component schemas 

Source schema 

Figure 2.2: A horizontal thread for an automatic, well-learned behavior. 

In many situations, several actions can be performed synchronously, each of them 

is specifiecl by its own horizontal thread. Different component schemas may all access a 

common memory database, or need use the same sources (i.e., the same hand). Sorne 

means may become necessary to provide resolutions for conflict tmder these situations. 

As a result, the different threads may internet with one another. Shawn in Figure 2.3, the 

lines. between different schemas represent their interactions. It is similar to the concept 

of multi-thread process in computer science. 

23 



Sensory 
information Sensory 

Perceptual 
Structures 

Trigger 
Data 
Base 

schemas 

Figure 2.3: Three horizontal threads rnay take place at the sarne tirne. 

In sorne cases, attention is required for a particular action either because some 

critical or <langerons situations are involved or because the action itself is not well-

learned or because sorne unexpected issues interrupt the action. In these cases, the 

relevant horizontal threacls are not sufficient for controlling the action. Therefore, the 

vertical threads, shown as Figure 2.4, take over. In fact, these vertical threads take 

control over an action only by providing additional activations, as adding activation for 

the desired schernas and decreasing that of the undesired ones. 

Sensory 
information 

Vertical Tlu-eads 

Sensory 
Perceptual 
Structures 

Trigger 
Data 
Base 

Attentional Resources 
add or decrease Activation 

Component schemas 

Source schema 

External and 
internal actions 

Horizontal Thread 

Figure 2.4: Vertical threads provide additional activations when attention to particular 
action is required. 
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2.3.2 Contention Scheduling 

The CS mainly comprises two parts: the schema hierarchy, within which schemas 

are competing and the schema selection mechanism, which is dedicated to the selection 

between these schemas. The following describes them in details. 

2.3.2.1 Scherna Hierarchy 

The core of CS is the schema hierarchy and within which a set of schemas are 

competing. Shown in Figure 2.1, actions are represented by a number of memory schemas. 

When an action is complex, it may be broken clown into a sequence of sub-actions. 

Schemas are organized into a hierarchy according to different levels of actions, within 
which the source schema represents the action and the component schemas represent its 

sub-actions. A schema controls an action, either an internal processing or an external 

movement of effectors. The source schema is serving as the highest order control and its 

component schemas can be activated via the source schema. 

There are three states of a schema: dormant, activated and selected. A schema is 

dormant when it rests in the memory, playing no role in current processing. For example, 

the schemas of cooking are usually dormant during the individual's sleep. A schema is 

activatecl when it is set up with an activation value. vVhenever this value is sufficiently 

high, it is selectecl. A schema's activation is influenced by several factors: 

• A top-clown influence, also called internal influence, which is from the source schema 

or directly set by the SAS; 

• An external influence, also called environmental influence, which is an input from 

the environment. For example, a reachable spoon can excite a schema that repre-

sents an action like "pick up a spoon"; 

• A lateral influence, which cornes from interactions with other schemas; 

• A self influence, which is opposite to the lateral influence. 
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2.3.2.2 Schema Selection Mechanism 

The schema selection mechanism is in charge of selection among relevant schemas 

in order to carry out an action properly. The selection of a schema is according to its 

activation value and a pre-assigned threshold. Whenever a schema's activation value 

exceeds the threshold and is higher than that of any other competitor schemas, it is 

selected. Under some situations, several schemas may have an activation value which is 

higher than the threshold at the same time. In this case, these schemas compete with each 

other and the one which suits the situation most can get more activation and finally be 
selected. This procedure, therefore, is similar to the retrieval of chunks in ACT-R [14]. 

As mentioned in Chapter 1, when ACT-R processes knowledge, it has to determinate 

which chunk is to be retrieved. Once the activation of each chunk is computed, every 

chunk can be potentially chosen with a probability which depends on their activation. 

First, if the activation is below a value, which called the utility threshold, the chunk has 

no chance to be chosen at all. In case it is over this threshold, it provides a chance of 

that chunk to be retrieved. But only the chunk which most accurately fits the conditions 

will have the highest activation level and will be retrieved. 

The selection depends upon three effects: horizontal threads, vertical threads and 

current environmental conditions. The horizontal threads determine the organization of 

a particular action sequence. For example, to make a coffee, one can add sugar before 

adding coffee powder or vice versa. The vertical threads determine the biases acting on 
the selection process. Usually sugar could be taken from a sugar bowl or from packets in 

the same example. But if the sugar in the bowl is dirty, the vertical threads will inhibit 

it and therefore give more chance for the sugar in packets to be selected. The trigger 

conditions determine the appropriate timing for schemas. For example, an opening milk 

carton may trigger the action of adding milk to the coffee or the action of closing the 

carton. 
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2.3.3 Supervisory Attentional System 

The SAS controls actions under non-routine situations. Norman and Shallice sug-

gested that SAS oversees the performance of action and participates in control by creating 

schema or by modifying activation values when needed [2]. When an action is novel, or 

some <langerons situations are involved, or some unexpected interruptions shows up, at-

tention is required. Attention is put in from SAS to CS through the vertical threads, 

which controls over schemas by modifying the schemas' activation values, either increas-

ing the values of desired schemas or inhibiting the values of improper schemas according 

to the clifferent situations. Shallice and Burgess addressed three stages of SAS to respond 

to uncommon situations [20]: 

• The construction of a temporary new schema; 

• The implementation of this temporary new schema; 

• And the monitoring of the schema execution. 

Coping with a novel situation involves a variety of different types of processes oper-
ating over these three stages. The key element is the construction and implementation of 

a temporary new schema, which takes the place of the source schema, and which in turn 

can control the lower-level schemas to provide a plausible procedure for action control 

over the novel situation. The 8 processes involved in these three stages are displayed 

below. Numbers in parentheses are speci:fied by Shallice and Burgess [20]. 

Stage 1 ( the construction of a temporary new schema) 

• The process ( 4) generates strategies for coping with the current situation automat-

ically by jnst following a sense of the preceding method of tackling the situation; 

• The process (5) generates strategies by using problem solving, which include a series 

of phases like problem formation or orientation, the phase of attempting to :fincl a 

solution, the assessment of a solution and the phase of checking; 
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• The process (6) leads to goal setting, which is required in the phase of problem 

formation to provide the criteria for later a..c:;sessment of the solution attempt; 

• The process (7) prepares a strategy and plan for a later tirne; 

• The process ( 8) provides raw material of related experiences for confronting a new 

situation via episodic memories retrieval. 

Stage 2 ( the implementation of this temporary new schema) 

• The process (1) implements the temporary new schema, which ha..c:; been constructed 

in the stage 1. 

Since in a new situation, a schema may not be triggered automatically, a special 

working memory, which is used to hold the temporally active schema, is required to 

implement the operations of the temporary new schema. 

Stage 3 ( the monitoring of the schema execution) 

• The process (2) monitors how well the processes in stage 1 work in a new situation; 

• The process (3) rejects or alternates the temporary new schema. 

2.4 COGENT: the Cognitive Modelling Environment 

COGENT stands for Cognitive Objects within a Graphical EnviroNmenT. It is a 

graphical environment for computational modeling of cognitive processes [3]. 

Typically, cognitive modeling is performed either in a cognitive architecture a..c:; ACT-

R [14], or directly in AI programming language as Prolog [21]. COGENT is designed 

to allow psychologists with little or no computational expertise to develop their own 

computational models. It provides an integrated set of tools to simplify the process 

of developing and evaluating computational models of high-level cognitive processes. 
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The ba..sic system provides the modeler with a sketch pad on which the model can be 

drawn a..s a box and arrow diagram. This box and arrow notation builds upon the 

concepts of functional modularity (frorn cognitive psychology) and object-oriented design 

( from computer science). Different types of box are used to represent different types of 

component. Each box represents an object. Different types of arrows are used to indicate 

different types of communications between boxes. COGENT is not an architecture like 

ACT-R [14] or SOAR [12, 13]. It does not embody any specific assumption about control 

processes and it does not contain any pre-specified learning mechanisms. COGENT is 

rnost appropriate for the developrnent of cognitive rnodels which are not clearly rooted in 

any specific architecture. However, as an enviromnent, COGENT provides facilities for 

irnplernenting cornplete architectures or learning rnechanisms within rnodels of varying 

cornplexity. 

COGENT is not clomain specified, it is intend to be as flexible and domain general 

as possible. By now, COGENT has been used to develop rnodels in the domains of 

problern solving, memory, rea..soning decision-making, categorization, mental rotation, 

routine action control and executive process control. 

COGENT is a powerful computational modeling system, which is designed to sim-

plify rigorous development and testing of cognitive models, and to aid data analysis and 

reporting. It provides: 

• Memory buffers to store information; 

• Rule-based processes to operate on the information stored in the memory buffers; 

• Connectionist networks to represent connectionist object types; 

• Inter-module communication links to relate compound boxes by means of arrows; 

• I/O devices to send or collect data and objects during model execution. 

COGENT also has a good testing environment which allows the users to test their 

model step by step or in a whole. During the execution of a model, the traffic between 
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components could be viewed through messages of each component's window. Following, 

some special components of COGENT will be highlighted in details. 

2.4.1 The Visual Programming Environment 

COGENT offers a visual programming environment out of which models may be 

developed, edited, executed and tested. Especially, the programming environment allows 

users to create models in a box-arrow notation. Figure 2.5, from the COGENT tuto-

rial [22], shows a box-arrow diagram of a production system. In the diagram, the rounded 

rectangle represents a buffer, the square rectangle is compound box, the hexagonal box 

represents a process, the solid-end arrow and the bare-end arrow are representing the 

read arrow and write arrow respectively. 

Figure 2.5: A box-arrow diagram of a production system. 

The graphical model editor offers a number of standard types of component, such 

as kinds of buffers, rule-based processes, networks, compound boxes and so forth, which 

will be described in details in section 2.4.3. The model shown in Figure 2.5 uses two 

propositional buffers (Production Memory and \i\Torking Memory), a rule-based process 
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(Execute Action), an analogue buffer (paper), and a generic compound box (Production 

System Interpreter). These components communicate via reading from and writing to 

one another. 

2.4.2 Standard Functional Cornponents 

2.4.2.1 Memory Buffers 

A memory buffer is a general information storage device, which is appropriate for 

both short-term memory (i.e. as in modeling working memory) and long-terrn memory 

(i.e. as in knowledge bases). Five types of buffer box are available: 

• Propositional buffer: it is the most basic type of buffer supported by COGENT. 
No restriction is set on the types of items stored in a propositional buffer; 

• Stack buffer: a stack is a data structure that allows last-in, first-out (LIFO) access. 

Stack buffers are more often used to maintain a sequence of goals and sub-goals. 

Only the top-most sub-goal could be operated until it is achieved and be popped 

off the stack, and then the next sub-goal is revealed. These operations will continue 

till the stack is empty, that means the final goal is achieved; 

• Analogue buffer: this type of bu:ffer is specified in COGENT to contain and ma-
nipulate graphical representations, such as points, lines, circles, boxes, and so on; 

• Table buffer: in a table buffer, data are represented in a two-dimensional table, 

thus, the messages are formed like data (row, column, value); 

• Graph buffer: in a graph buffer, data are represented in several graphical formats 
like histogram, line-graphs or scatter-plots. 
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2.4.2.2 Networks 

Three types networks are available in COGENT, the feed forward network, the 

interactive activation network and the associative network. 

• Feed forward network: it provides a general two-layer feed-forward network capa-

bility. It is an object which consists of a set of input nodes and a set of output 

nodes, together with a set of weighted connections between the nodes. This kind 

of network is able to map input vectors ( of the specified width) to output vectors, 

and to learn input/output correspondences; 

• Interactive activation networks: it contains nodes with associated activation values, 

which should be real numbers. Interactive activation networks normally co-exist 

with a process which sends appropriate excite messages to control the node activa-

tions: 

send excite(NodeName, Excitation) to MyNet. 

In such a message, Excitation should be a numeric quantity which specifies the 

level of excitation to apply to the node. Another operation available on networks 

is matching. The activation value of a node may be queried by matching against 

the node's name: 

node(Name, Activation) is in MyNet. 

The above code segment may occur in the conditions of any rule or condition def-

inition that can read J\/IyNet. Nodes within an interactive activation network may 

be created or deleted. A nodes can be excited ( with a positive number) or inhibited 

(with a negative number). COGENT offers a special purpose dynamically updated 

viewer, so called Activation Graph View, allows activations to be monitored during 

model execution; 

• Associative network: it consists of a set of nodes joined by weighted connections. 

Nodes may be fully connected, as in interactive activation networks. And weights 
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between nodes may be learnt as in feed-forward networks in response to training 

signals. Associative networks may be con:figured by setting the network's size, 

learning rule, learning rate, activation fonction, etc. Associative networks may be 

sent two types of messages: 

send learn(Vector) to TVIyNet, messages are used to train the network; send ex-

cite(Vector) to I'v1yNet, messages are used to activate nodes within the network. 

2.4.2.3 Compound Boxes 

Compound box is a box that contains a set of sub boxes. The behaviors of the set 

of sub boxes and their interactions determine the entire behavior of the compound box. 

The system de:fines tvvo kinds of compound box. One is the General compound box and 

the other is the Subject compound box. As the name implied, the former is general, it 

may contain any types of boxes and has no restriction on those boxes; the latter, has 

some constraint on its sub boxes, that is they must make sense themselves. Therefore, a 

subject compound box can not have a sub box as general compound box or some other 

data boxes, meanwhile have another subject compound box as its content. 

2.4.3 The Rule-Based Modeling Language 

In COGENT, processes are speci:fied in tenns of a powerful but complex rule-based 

modeling language. Each rule is a condition-action pair. The condition includes logical 

operations, which typically involved matching elements in buffers and whose outcome 

may be true or false. Action passes a list of messages to their destinations when the 

rule's condition is true. Following is an example of a rule in COGENT. This rule :fires 

when there is a word in the short-tenn storage. And by fi.ring, it adds the word into the 

long-term storage: 

IF Word in STS 
TREN add Word in LTS 
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COGENT's representation language is borrowed from Prolog [21], a programming 

language developed for AI applications. The representational units include: 

1. Atoms: which are sequences of letters or other characters with a number of occur-

rence limitations; 

2. Numbers: which are integers or real numbers; 

3. Lists: which are sequences of information; 

4. Compound terms: which are used to represent information with internal structure, 

i.e., "Salt is a seasoning" could be represented as seasoning (salt); 

5. Variables: which are unknown or non-fixed information. 

COGENT also permits users to clefine their own conditions using Prolog. 

2.5 Implementation of Norman and Shallice Madel 

2.5.1 Contention Scheduling Implementation 

Cooper and Shallice have implemented a detailed computational model of CS [19]. 

It comprises three functional networks: Schema Network, Object Network and Resource 

Network. The heart of CS is the Schema Network. The other two networks serve to model 

object representations and resource representations. In addition, a selection process 

oversees the scherna network and interfaces with the object, resource, and motor system. 

2.5.1.1 Schema Hierarchy 

In the Schema Network, nocles are organized hierarchically according to different 

level of actions. Since an action is an act of will, each schema is also associated with a 

goal. Thus an action is represented in a hierarchy within which schema levels alternate 
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with goal levels. Figure 2.6 shows an example of such hierarchies, which represents an 

action and its schema/ goal organization. 

Prepare-coffee 

l 
Prepare-coffee 

Add-sugar Add-milk Add-coffee 

l 
Sugar-frm-pack Sugar}rm-bowl Milk}rm-cartoll Coffee-frm-jar Co.ffee}rm-pack 

Pick-up Open Pour Put-down 

l l l l 
Pick-up Open Pour Put-down 

Fig-ure 2.6: Schema/goal organizecl for the action of coffee preparation. Goals are printecl 
in bold type and schema in italic type. 

To fulfill a goal, at least one schema is proposecl. This schema, in turn, may be 

associated with a set of subgoals. For example, in Figure 2.6 the goal prepare-coffee 

is fulfillecl by one schema prepœre-coffee. While to execute the schema prepare-coffee, 
three goals are to be achieved: add-sugar, add-milk and add-coffee. In addition, 

the goal add-coffee coulcl be fulfillecl either by the schema coffee-frrn-pack or by the 

schema coffee-frm-jar. Therefore, within the schema/ goal hierarchy the components of 

goal nodes are disjunctive while the cornponents of schema nodes are conjunctive. Thus 

if the parent is a goal, one ( and only one) of the children has to be executed. If the 

parent is a schema, all the chilclren have to be fulfilled. 

2.5.1.2 Activation Value 

Each schema is also associated with an activation value which varies over tirne. At 

any time, the net influence on schema activation is given by a weightecl slm1 of fours 

sources [19r 

35 



• Environmental influence: schema activation may be affectecl by the presence or 

absence of appropriate triggering situation in the environment; 

• Internal influence : also called top-clown influence, which is from SAS or high-level 

schemas; 

• Lateral influence: this influence ensure that competitive schemas inhibit each other; 

• Self influence: a self influence generally works to excite schemas; 

In addition, nodes in Object Network and Resource Network are also associated with 

activation values. Cooper and Shallice report the detailed calculations of activations of all 

networks and how the four influences contribute to the activations in their implementation 

of CS [19]. 

2.5.1.3 Selection Mechanism 

The Selection Process connects the Schema N etwork with Motor System and oversees 

their status. A schema is selected when its activation exceeds a threshold. This selected 

schema in turn excites its children schemas. Selection of a lowest-level schema will lead 

to an action in the motor system. 

2.5.2 Supervisory Attentional System Implementation 

2.5.2.1 Internai Processes of SAS 

Shallice and Burgess [20] have divided the internal processes of SAS into three stages: 

1) the construction of a temporary new schema; 2) the implementation of this ternpo-

rary new schema; and 3) the monitoring of the schema execution. Shallice and Burgess 

specifiecl 8 processes in these three stages [20]. These internal processes of SAS are 

similar to the usual ones that are always aclclressecl in artificial intelligence. Therefore, 

Glasspool [23] proposecl to use an artificial intelligence agent, Domino, as an approach 

for implementing SAS into a computer model. 
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2.5.2.2 Domino Agent 

Domino is an artificial intelligence (AI) agent (24]. An AI agent is defined as an 

autonomous entity which can set its goals and act on the world to pursue these goals. 

Domino, therefore, addresses the types of cognitive processes like setting goals, generating 

strategies to fulfill these goals, carrying out actions to implement the strategies and 

reacting to environmental changes. 

Domino agent provides a framework with seven types of processes operating on six 

types of information: 

• Goal generation: based on some beliefs about its environment and current state, 

this process sets up a goal for the agent; 

• Solution generation: this process treats the goal as a problem to be solved and finds 

possible strategies to fulfill the goal; 

• Solution evaluation: this process compares all proposed solutions and chooses the 

proper one; 

• Belief update: this process updates its beliefs according to the new solution; 

• Plan adoption: this process determines a new plan of actions for the selected solu-

tion; 

• Plan execution: this process decomposes the new adopted plan of action into atomic 

actions that are executed by the agent; 

• Monitoring: this process monitors the e:ffects of these actions on the world and 

checks how well the intended goals are achieved. 

2.5.2.3 Implementation SAS in COGENT 

U sing bu:ffers to store the information and rule-based processes to hanclle the pro-

cesses, the Domino agent is ready to be implemented in CO GENT. Actually, Glasspool (23] 
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Figure 2.7: IVIapping of internal processes in SAS onto Domino. 

has mapped the outline of SAS [20] directly onto the Domino outline, see Figure 2. 7. In 

Figure 2. 7, the numbers in parentheses refer to the processes decomposition in the three 

stages mentioned in Chapter 2.3. The processes addressed in Domino are printed in 

boldface. 

Based on this mapping, a model of SAS has been implemented in COGENT accord-

ing to the Domino processes explained above [23, 25], shown as Figure 2.8. Processes 

are implemented in rule-based processes shown as the hexagons. Information are stored 

in buffers shown as the round rectangles. Arrows iinply the communications between 

processes and buffers. CS is implemented in a compound box shown as a rectangle, in 

which the schema hierarchy is implernented in an interactive network. 

2.6 Conclusion 

This chapter reviews the literature of the current research. The therne of this re-

search is to build a rnodel of attention and to view how attention switches frorn one 

action to another during interruptions. Therefore, attention and two kinds of actions are 
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Figure 2.8: Implementation of SAS in COG ENT based on Domino agent. 

first explain in the chapter. vVith these concepts , Norman and Shallice model presents 

two mechanisms, the CS and SAS, which control automatic actions and willed actions 

respectively. The model proposes that each action is represented by a memory schema 

which is associated with an activation value. At any tirne, only the action with the 

highest activation is executed. The primary role of attention is in the control of action. 

Attention affects actions ' execution by acljusting the activations of schemas. 

COGENT provides a box-arrow modelling environment for cognitive objects. Dif-

ferent types of boxes are usecl to represent clifferent components like memory buffers, 

cognitive processes, networks and compound boxes. Two types of arrows are used to 

indicate two types of communications ( either read or write) between boxes. The pro-

cesses are rule-basecl. Each rule is a if-then clause which defines a pair of condition and 
operation. 
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Under the environment of COGENT, CS has been implemented as a network inter-

acted with object and resource. Schemas are organized hierarchically as a tree. Each 

schema has an activation value which is influenced by four facts: a self influence from 

the schema itself, a lateral influence from competitor schemas, an internal influence from 

high level schemas and an environmental influence from the abject network and the re-

source network. Whenever a schema's activation value is exceed a threshold, it is selected. 

When a lowest-level schema is selected, it excites the proper abject and resource in order 

to execute an action. The implementation of SAS proposes an AI agent as its approach. 

It specifies six processes which is implementecl clirectly in COGENT. 

But by now, there has no report about implementation of the entire Norman and 

Shallice model or works on the interaction between the CS and SAS. Therefore, it causes 

our interest on the current research. In next chapter, we will explain details about the 

research. 
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Chapter 3 

Attention ÎII1plen1entation 

3.1 Introduction 

This chapter presents most details of our current research. The first section is a 

preliminary, which includes a brief review of the theoretical and empirical background, 

the definition of interruption and its three cases, the objectives of the research and the 
methodology and its constraints. The second section concentrates on the implementing 

interruption in Norman and Shallice model. This part explains action representation, 

activation compute, interruption implementation, processes in SAS and their main fonc-

tions and uses an example to describe the procedure of an interruption and the interac-

tions between CS and SAS during the interruption. Then, the third section prints out 

the results of the research from two experiments, discusses the experimental results in 

accordance with the real world and compares the model of attention with task switching 

and reactive planning. 
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3. 2 Preliminary 

As discussed before, it's tirne to help cognitively impaired people in a technological 

way. To clevelop such technologies, first of all, we need to understand how human cog-

nitive processes vvork and what factors affect these processes. Attention is one of such 

factors because human actions are under control of attention. Attention is what enables 

us to process information about the world around us. We can only be aware of things 

around us if we pay attention to them. Attention :filters and feeds information about the 

world around us into our mind. This thesis aims to implement a model of attention. The 

model gives a view of how attention controls human actions during interruptions. 

The delay of action performance leads to the goal concurrence. Goals management 

is necessary because two actions could not always be performed at the same time. The 

interruptions, which are presented later, are an example of such conflict. In our everyday 

lives, interruptions occur very often. For example, the phone rings as one is deeply 

engaged in preparing meals, or somebody knocks the door unexpectedly as one is writing 

a letter, or an urgent message arrives from the supervisor as one is planning a document. 

Each case easily creates a situation in which one 's attention switches from one action to 

another. 

3.2.1 Interruption 

An interruption is definecl as an unanticipatecl issue rising up from the environment 

while a main action is being performed. Facing an interruption issue, individuals mainly 

react in three different manners clepencling on the urgency. 

• Case 1: if the interruption is more urgent than the current action, one switches his 

attention from the current action to perform the interruption action and completes 

the main action afterward. 

• Case 2: the interruption is urgent, but the main action is currently <langerons, 

one still executes a part of the current action in order to keep it safe and then 
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accomplishes the interruption. For example, somebody knocks at the door when 

one is frying eggs, usually people turn off the stove then go and open the door. 

• Case 3: the interruption is less urgent than the main action and will be processed 

later after the completion of the current action. 

To deal with interruptions during action completion implies to deal with attention. 

An intelligent system attended to model interruptions needs to represent the action in 

process, the changes in the environment leading to an interruption and the decisions 

controlling the actions or der. 

3.2.2 Attention Model Implementations 

Norman and Shallice, as we mentioned before, provide a psychological model com-

posed of two mechanisms of action control, Contention Scheduling mechanism ( CS) re-

sponsible for well-learned actions, and Supervisory Attentional System (SAS) required 

when the sequence of actions is new, when the action itself is dangerous, or when the 

plan must be moclified accorcling to an unanticipated environmental change [2]. Cooper 

and Shallice have implemented a detailed computational model of CS [19]. Shallice and 

Burgess proposed an outline of the processes and their interactions involved in SAS [20]. 

As an intelligent agent, SAS is able to plan, generate strategies and solve problems. 

Therefore, Glasspool used an artificial intelligence ( AI) agent theory to implement the 

SAS [23]. But still no implementation resumes the SAS role neither the interactions 

between the SAS and CS, which are essential to explain how 'to deal with interruptions. 

3.2.3 Objectives 

The objectives of this thesis are to implement the entire theory of SAS and CS and 

the interactions between these two mechanisms regarding interruption control. Therefore, 

the objectives of this thesis are threefold: 
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• Implementing a scenario of the SAS; 

• Implementing the attention switching from the SAS to the CS; 

• Implementing the interruption management in the first case (see 3.2.1). 

3.2.4 Methodology and Constraints 

Cooper fleshed out the internal processes of SAS-CS model by using COGENT [25]. 

Based on this structure, the model of attention is implemented in COGENT. In this 

implementation, modifications are made as few as necessary for the current purpose. 

As stated above, the main purpose of this thesis is to treat the Norman and Shallice's 

model as an entire entity and to focus on how attention switches between two control 

levels during an interruption. To give a simple and typical view of how attention handles 

an interruption, only the first case is implemented in current research. This means 
that the interruption management inclndes three steps: performing the main action; 

performing the interruption action as soon as it occurs; and completing the main action 

afterwards. Here, only one level of interruption is implemented, althongh sometimes new 

further interruptions conld happen. 

Regarding of the environment under which the model performs, Cooper and Shal-

lice [19] bnilt vivid environment for their model of CS. In their environment, resources 

and objects are taken into acconnt to let the model arrange the proper resources and 

objects when it execntes an action. For example, to pick np a spoon, the right hand 

(resource) and the spoon on the table (object) are reqnired. Meanwhile, the environ-

ment can influence the schema select.ion of CS to some extent ( depencling on the amount 

of environmental influence). However, this research is not interested either in how the 

model interacts with its environment or in how much the environment could influence 

the action selection. Therefore, the environment here is implemented withont the repre-

sentation of resources and objects. By doing so, it is assnmed that whenever the model 

needs a certain resource or object to complete an action, it is available and could be nsed 
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correctly. Moreover, since the resource is ignored here, the model of attention cannot 

simulate two actions synchronously and cannot be used to simulate process errors caused 

by interference of requests of a resource or an object. It performs actions separately. In 

addition, in current implmnentation, the environmental influence is ignored as the result 

of simplification of the environment implementation. 

3.3 lmplementation of Interruption in Norman and 

Shallice Model 

In this chapter, the interactions between CS and SAS are implemented to show 

how attention switches from one action to another during an interruption. Section 3.3.1 

describes two actions representation in the current implementation. The following two 

sections 3.3.2 and 3.3.3 talk about the implementation of the two mechanisms of action 

control, CS and SAS. Section 3.3.5 discusses the interactions between CS and SAS during 

an interruption. And the last section (3.3.6) presents how interruption is implemented 

for the current purpose. 

3.3.1 Action Representation 

3.3.1.1 Hierarchy Representation 

Proposed by Cooper and Shallice in their model of CS [19), schemas are goal di-

rected. Thus an action is represented in a hierarchy within which schema levels alternate 

with goal levels. In the current implementation two actions are taken into account: the 

prepare-coffee action and the answer-phone action. Figure 3.1 presents their schema/goal 

organizations respectively. The leaves of the schema/ goal representation correspond to 

the atomic actions which could be executed directly in the world. 

Each schema is associated with an activation value. The activation value is a real 

number and varies over time. Section 3.3.6 discusses the details about how a schema's 
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Prepare-coffee 
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Pick-up Open Pour Put-down 

l l l l 
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( a) Schema/ goal organized for the action of coffee preparation. 
Answer-phone 

l 
An.nver-phone 

Pick-up-receiver Talking Hang-up 

l l l 
Pick-up Talking Hang-up 

(b) Schema/ goal organized for the action of answer phone. 

Figure 3.1: The trees relate to schemas and goals. Goals are printed in bold type and 
schema in italic type. 

activation value updates during the model's performance. 

3.3.1.2 Urgent Priority Value 

As emphasized before, the theme of this research is to model attention controlling 

actions during interruption. Therefore an additional parameter is specified in our imple-

mentation. It is called urgent priority value. This value identifies how urgently an action 
ha.ci to be executed. Thus, an action is represented a.ci a pair of its name with its priority 

value like Action (N ame, Priority). N ame identifies the action's schema hierarchy as 

any one of the trees in Figure 3.1. Priority is the action's urgent priority value. At any 
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time, if an action's urgent priority value is higher than any others, it should be executed 

first. 

During the simulation of the model of attention the prepare-coffee action is initialized 

as the main action which is interrupted by the interruption: answer-phone action. There-

fore, the prepare-coffee action is assigned a lower priority value than that of answer-phone 

action for cnrrent purpose. Section 3.3.6 will give more details on this aspect. 

3.3.2 CS Implementation 

As mentioned before, our objective is to implement interruption in Norman and 

Shallice model and by doing so to give a view of how attention switches between actions 

during an interruption. Therefore, in current implementation, we remove the Object 

Network and Resource Network from the former implementation of CS [19]. We assume 

that at any time when the subject needs allocate some objects or resources to take out an 

action, they are available and can be used properly. Thus, the current implementation 

of CS is composed of the schema hierarchy and the selection mechanism. 

3.3.2.1 Schema Hierarchy 

The core of the CS is the schema hierarchy, within which each schema represents 

an action [26]. Two sub-nets, named coffee and phone respectively, are defined in the 

Scherna Hierarchy to refer to the two actions in the current implementation. Each schema 

must be identified by its description and the sub-net it belongs to. This is because an 

action is often involvecl to contribute to different goals. For example, the schema rnilk-
frorn-carton coulcl be used for a preparing coffee goal, or for a baldng cookies goal, or 

even for a frying eggs goal. 

Two processes, the tr-igger schernas and the select &J act, operate on the schema 

hierarchy. First, the tn:gger schernas updates each schema's activation value. Then, the 

select €__~ act works as the schema selection mechanism to select the proper schema and 

leads an action in the world when a lowest-level schema is selected. 
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3.3.2.2 Activation Value 

Methodology 

COGENT provides a set of parameters to contribute the activation value calcula-

tion. These parameters are binding on the Schema Hierarchy network. The Min Act 

parameter and the Max Act parameterare set to ensure schema activation varies 

over tirne within a range of [0.0, 1.0]. The Lateral parameter and Self parameter 

are set through some trials according to the following criterions: 1) each schema, even 

the lowest-level schema, has to get an activation value which allows it to be selected; 2) 

both the lateral influence and the self influence should belong in a comparable rang. 

Schema Activation Updating 

Schema activation value is updated on each cycle during the model's performance [26]. 

The process trigger schenias calculates each schema's activation value on each cycle. The 

activation update fonction is expressed as equation (3.1) [19]: 

(3.1) 

where P is the network's persistence parameter which could be any real nurnber. It 
describes the degree to which activation values persist in the absence of excitation. For 

example, a persistence of 1.0 will lead to nodes maintaining their current activation in 

the absence of forther excitation. While a persistence of 0.0 will lead to nodes reverting 

immediately to rest activation in the absence of excitation. Al, which belongs to the 

interval O and 1, is node i's activation on cycle t; Ni is the net input to node i; and a' is 

the standard sigmoid activation fonction ( Œ) shifted and scaled such that: 

a'(oo) = 1.0 
a'(O) = 0.1 

a'(-oo) = 0.0 

The net input Ni of a scherna is deterrnined by four factors: internal influence, 

environmental influence, self influence and lateral influence. 
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Internai Influence 

The internal influence, also called the top-clown influence which cornes from the 

parent schema or from SAS directly, is calculated as follows ( equation ( 3. 2)). 

Let Ji be the internal influence on a schema i, let Ap be the activation value of its 

parent and let Np be the number of the children of that parent p, 

(3.2) 

When the schema is directly triggered by SAS, the internal influence from SAS on 

that schema is set to 1. 0. 

Environmental Influence 

The environmental influence cornes from the abject and the resource with which the 

model interacts during action performances [19]. For example, a bowl of sugar and a free 

hand could give an excitation on the schema sugar-frmn-bowl. In current implementation, 

the environment is implemented without resource network and object network. The 

object network and resource network are removed from CS by assurning that at any time 

when the subject needs allocate some objects or resources to take out an action, they 

are available and can be used properly. Therefore, the environmental influence is ignored 

here. 

Lateral Influence 

Cornpetitive schemas inhibit each other. This inhibition is called a lateral influence. 

Cornpetitive schemas are defined as those sharing either the same goal or one or more 

subgoals in cornmon. For exarnple, in Figure 3.l(a), schema sugar-from-bowl is a corn-

petitor of the scherna sugar-from,-pack, because they share the same goal Add-sugar. 

At any cycle t, the lateral influence on a schema is the sum of the influences from all its 

cornpetitors, which is expressed as equation (3.3): 
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Li = L Lp(At - Lb) (3.3) 
k 

where A% is the current activation of any cornpetitor of that scherna; and two pararneters, 

Lp and Lb, both of which could be any real numbers, control how lateral influences from 

cornpetitor schemas are calculated. 

Self Influence 

A schema is influencing on its own activation. It is called self influence, which is 

proportional to the schema's activation value. Equation (3.4) explains how self influence 

on a schema 1: is calculated: 

(3.4) 

where Af is the schema's activation on current cycle i; and two parameters Sp and Sb, 

both of which could be any real nurnbers, control how the schema's activation contributes 

to its self influence. 

Finally the net input to schema i, Ni is calculated as equation (3.5): 

(3.5) 

where Ji is the internal influence on that schema; C is a parameter, which represents the 

total competitive input to the schema and is scaled by the schema's self influence and 

lateral influence, shown as equation (3.6): 

(3.6) 

where Si and L.i are respectively the self influence and lateral influence on the schema i. 

3.3.2.3 Selection Mechanism 

The process Select E.,4 Act in CS wor ks as the select ion mechanisrn. It is in charge 

of selection of the rnost proper schema and carries out an action when a lowest-level 

scherna is selected. Whenever a schema's activation value exceeds a threshold, which is 
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Table 3.1: The main processes and their fonctions in SAS. 

SAS Component Process Function 
Perception Senses any environmental change 

and transfer usefol information 
to the subject. 

l\fonitoring & Monitors action execution and sets 
Goal Generation goals if necessary. 
Strategy Generation Generates different strategies to 

achieve the set goal. 
Evaluation Evaluates the strategies and selects 

the most suitable one currently. 
Schemas Construction Constructs a temporary new schema 

for the select strategy. 
Beliefs U pdate Updates beliefs about the environment. 

set to 0.60, and is higher than any of its competitor's activation values, it is selected. 

A competitor of a schema is a schema that may share the same goal or share one or 

more subgoals in common. For example, in Figure 3.1, the schema sugar-from-bowl is a 

competitor of the schema sugar-froni-pack, because they share the same goal Add-sugar. 

A selected source schema in turn excites its component schemas. After achieving its goal, 

a schema should be inhibited (sending a negative exciting value) and be deselected. 

3.3.3 SAS Implementation 

vVe continue to use the structure fleshed out by Cooper [23, 25]. Modifications are 

made for the current purpose. Table 3.1 lists the processes involved in the structure and 

their major fonctions during action control. Among these processes, we highlight two in 

the following example: Perception and Monitoring B Goal Generation. These play the 

most important role during the response to interruptions. 

As mentioned above, all processes are implemented in rule-base processes in CO-

GENT. That implies that each of the processes is based on rules. A rule usually is a 

if-then pair. Operations coulcl be any COGENT defined or user defined fonctions. The 
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basic rules of each process in the· current implementation are described as below. 

Perception 

This rule detects a new action from the world and adds it into Working I'v1emory. 

{If action (T, U) in the World 

not do-action (T, U) in Working Memory 
Then add do-action (T, U) in Working Memory.} 

Monitoring & Goal Generation 

Rule 1 initials an action and sets a goal for it. 

{If do-action (T, U) in working memory 

not current-strategy (T, S) in Working Memory 
Then add strategy-generate (T) in Goals} 

Rule 2 monitors the interruption while the subject is doing the main action. It makes 

decision of attention switching by calling a fonction, which is discussed in next section. 

{If do-action (Ti, Ui) in working memory 

not current-strategy (Ti, Si) in Working Memory 

is-doing (Tc, Uc) in Working Memory 
Then 

call Compare (Ui, Uc) } 

Strategy Generation 

This rule is used to generate strategies for a new goal. 

{If strategy-generate (T) in Goals 

Then add (Strategy-T) in Candidate Strategy} 
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Evaluation 

This rule evaluates candidate strategies. In the current irnplernentation, we only 

irnplernented one strategy for both of the actions' goal. Therefore, the strategy is selected 

directly. 

{If (Candidate) in Candidate Strategy 

Then add selected(Candidate) in Evaluated Strategies} 

Schemas Construction 

This rule constructs a new ternporary scherna for the action that the subject is going 

to do next. It also deletes all the outdated ternporary schernas. 

{If selected(S) in Evaluated Strategies 

not schema(s) in Temporary Schema 

Then delete all schema(X) from Temporary Schema 

add schema(s) in Temporary Schema} 

Beliefs Update 

This rule updates the belief about the current strategy. 

{If selected(S) in Evaluated Strategies 

do-task(T) in Working Memory 

not current-strategy (T, S) in Working Memory 

Then delete all current-strategy (X,Y) from Working Memory 

add current-strategy (T, S) in Working Memory} 

3.3.4 Example 

Initiation 
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In this implementation, it is a..ssumed that at the initial tirne, the subject wants 

to prepare a coffee. The first process in SAS, Perception, aclcls a request of the coffee 

preparation action in the working memory. Then Monitoring ëJ Goal Generation sets 

up the goal of coffee preparation. The Strategy Generation in turn generates a possible 

approach to achieve the goal. Currently, to make a coffee by using instant coffee is the 

one and only strategy for the goal. Therefore, after evaluation, this strategy then is 

selectecl to construct a temporary new schema for coffee preparation. The temporary 

new schema triggers the source schema of coffee preparation action in the CS. So far, 

SAS delegates control of action to CS. 

Perception of Interruption 

N ow the coffee preparation action is controllecl by the CS unless an interruption 

occurs. At this time Perception acts as an "advisor" to indicate the change in the 

environment. When Perception perceives the phone ringing, it feeds the request to answer 

the phone. 

Attention Switching Determination 

Then a central fonction Compare (Ui, Uc) in Monitoring ëJ Goal Generation is 

responding to the determination of attention switching during interruptions. Let Ac-

tion (C, Uc) and Action (I, Ui) represent the current action and the action for the 

interruption respectively, the fonction is described as following: 

{If Ui > Uc 

Then set a goal for I in Goals; 

marker (stop(C)) in working memory; 

{If finished (I) 
Then resume (C)} 

Else {If finished(C) 
Then set a goal for I in Goals}} 

54 



The fonction in Monitoring 81 Goal Genemtion first will compare the new interrup-

tion action's urgent priority with that of the current action. If it is higher, another rule 

in the process will be firecl to raise a goal for the new action and pause the current action 

at the same time. This goal will lead to another flow of processes in SAS and reconfig-

ures CS to adopt another schema hierarchy for the action of answering the phone. After 

finishing the phone call, the eue of an unfinished action of coffee preparation remincls the 

subject to resume it. Here, the unsatisfied goal is retrieved from the worldng memory. 

A goal then should be set again to continue the former coffee preparation action. The 

processes flow of SAS will finally reconfigure CS to handle it until completion unless 

another interruption occurs. Cues in the world help the subject to determine where to 

continue the former action. 

3.3.5 Interactions between CS and SAS 

In Chapter 2, it is described that SAS takes over control of actions through vertical 

threads. In the current implementation, SAS interacts on CS in three main spots. That 

means three vertical threads are involved in the implementation. 

First, at the initial stage, SAS initializes a routine action and delegates it to CS to 

be completed automatically if no interruption occurs. 

Second, when an interruption takes place during the routine action performance, 

SAS switches attention from the routine action to the interruption by constructing and 

implementing a new temporary schema for the interruption action as well as pausing the 

initial routine action. 

Third, when the action of interruption is clone, SAS updates beliefs about its situa-

tion and reconfigures CS to continue the unfinishecl former routine action until completion 

if no other interruptions occur. 
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3.3.6 Interruption Implementation 

Only the first case of interruptions is implemented in this research. Therefore, when-

ever the subject perceives that the phone is ringing (through the Perception process), it 

switches its attention from the current coffee preparation to answering the phone. For 
this purpose, the answer phone action is assigned to an urgent priority of 30 while the 

coffee preparation to 10. 

The model interacts with its world, which is called E:rperimental Worlrl. The phone 

call interruption occurs randomly from the world. In &cperimental Hlorlrl, a process 

Manipulate VVorlrl responds to the interruptions' random. As in many other computer 

programming language, the rule-based language of COGENT offers the random number 

to contribute to this issue. In this implementation, a random number R is introduced. 

Whenever R is numerically equal to 5, a request of answer phone is added in the State 

of the worlrl. 

3.4 Results and Discussions 

In this Chapter, the results of two experiments are reported to explain how the 

model of attention works. Results of these two simulations are presented in groups of 

cycles. Then the experimental results are explained through their accordance with the 

real world. Afterwards discussions are divided into three parts: 1) the model of attention 

is reviewed and some ongoing works are proposed; 2) the model of attention is compared 

with another task switching model built by Sohn and Anderson in ACT-R [27]; and 3) a 

parallel is drawn between the model of attention and AI concepts. 

3.4.1 Results 

In this section, results of the simulation are reported based on two experiments, 

both done in COGENT. As mentioned before, the tirne when the phone call interruption 
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occurs is set randomly. In the following two experiments, the interruption feeds in the 

model on different cycles. Results are presented in groups of cycles to show how atten-

tion controls actions. Sorne representational cycles are listed and explained afterwards. 

On each cycle, the information transference can be obtained from the message page of 

any activated windows. 1/fore visually, COGENT provides the Activation Graph of the 

Schema Hierarchy to give a dynamic view of nodes' activation value, which updates over 

tirne. Figure 3.2 provides a view of the schemas' activations when the subject is answer-

ing the phone. As mentioned previously, while answering the phone, the initial' action 

of coffee preparation is paused. Therefore, in Figure 3.2, the schemas belonging to the 

sub-net of coffee are inhibited. 
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Figure 3.2: The Activation Graph histogram. 

3.4.1.1 Experiment 1 

In the first experiment, the answer-phone action feeds in at cycle 33. As we stated 

earlier, during the execution of the model, the traffic between components could be viewed 
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through messages of each component's window. Through these message views, we get 

the information of each cycle. Sorne of them are highlighted below. 

• Frorn cycle 1 to cycle 16, preparing the action of coffee preparation. During this 

time duration, SAS initializes the main action; 

• Frorn cycle 16 on, SAS delegates control of action to CS. The current action is 

coffee preparation and schemas' activations are updating in CS; 

• Frorn cycle 33 to cycle 50, preparing to answer the phone. During this time dura-

tion, information flows within SAS to switch attention to the action of answering 

phone call, while CS continues with the main action of coffee preparation; 

• At cycle 41, scherna a.cld-coffee-from-packet/coffee is selected; 

• At cycle 49, scherna aclcl-s·ugar-from-packet/coffee is selected; 

• Frorn cycle 50 to cycle 123, executing the action of answering the phone. Now 

schernas betonging to answer phone are excited enough by SAS and are executed 

by CS automatically; 

• From cycle 124 to cycle 139, resuming the former action of coffee preparation. Dur-

ing this tirne, SAS returns attention to the interrupted action of coffee preparation; 

• Frorn cycle 139 to the end of the model, executing and finishing the action of coffee 

preparation. 

3.4.1.2 Experirnent 2 

In the second experirnent, the answer phone action feeds in at cycle 24. Messages of 

this experirnent are listed below. 

• Frorn cycle 1 to cycle 22, SAS initializes the action of coffee preparation; 

58 



• From cycle 22 on, SAS delegates control of action to CS. The current action is 

coffee preparation; 

• From cycle 24 to cycle 36, SAS is preparing to answer the phone. l'v1eanwhile the 

coffee preparation is pausecl; 

• From cycle 37 to cycle 123, SAS delegates control of action to CS to execnte and 

complete the action of answering phone; 

• From cycle 124 to cycle 135, SAS is restm1ing the former action of coffee preparation; 

• From cycle 135 on, SAS delegates control of action to CS, in which the schemas' 

activation is excited again; 

• At cycle 157, the schema aclcl-sugar-frorn-bowljcoffee is selected; 

• At cycle 163, the schema aclcl-coffee-from-packet/coffee is selected; 

• At cycle 182, the schema aclcl-milk-from-carton/coffee is selected; 

• From cycle 183 to the end of the model, the action of coffee preparation is completed 

with no further interruption. 

Whenever attention is reqnired, SAS interferes in the performance of actions. As 

discnssed before, SAS put attention to an action throngh modifying its corresponding 

schema's activation. Therefore, if a schema is triggered directly by SAS, it gets an 

excitation of the amonnt of 1.0 from SAS. 

The CS, as its name implies, is in charge of two facets of schemas' mechanism: 

contention and scheduling. Firstly, competitor schemas compete with each other. For 

example, from the two experiments, we see that the schema selected to achieve a certain 

goal is not always the same. In Experiment 1, the schema aclcl-S'ugar-from-packet/coffee 
is selected to achieve the goal of add sugar; while in Experiment 2, the schema selected 

for this goal is the schema aclcl-s·ugar-from-bowljcoffee. 
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Secondly, as discussed in section 5.1.1, schemas are goal directed. In addition, a goal 

could be decomposed into a set of subgoals. These subgoals are either equally ordered 

or scheclulecl in a sequence. For example, the order of the schema's selection is clifferent 

in the two experiments. In Experiment 1, the schema aclcl-coffee-from-packet/coffee is 

selected before the schema aclcl-sv.gar-from-packet/coffee. In Experiment 2, the schema 

aclcl-sugar-from-bowljcoffee is selected before schema the aclcl-coffee-from-packet/coffee. 
Because these two schemas are equally ordered, the order of their selection is a result of 

competition. 

Notice that in Experiment 1, the phone call feeds in on cycle 33 and the action of 

answering the phone begins at cycle 50. In this duration of its excitement, the activations 

of some schemas in coffee preparation are still increasing. This could be explained in the 

real world: when the phone rings while we are executing another routine action, most 

times, we need a period of tirne to respond to the ringing phone. Until we pick up the 

receiver, we continue our performance of the former action, though it may be inhibited 

unintentionally at the very second that the phone rings. 

In the implementation, SAS interacts with CS on several stages. First of all, SAS 

initializes a routine action ( e.g., coffee preparation) and delegates it to CS to complete 
by executing a set of actions. Second, when an interruption ( e.g., phone ringing) occurs 

during the routine action performance, SAS switches attention from the former action 

to the interruption by constructing and implementing a new ternporary scherna for the 

interruption action, as well as pausing the former action. Third, when the action of 

interruption is clone, SAS updates beliefs about its situation and reconfigures CS to 
continue the former routine action to completion if no other interruptions occur. 

3.4.2 Discussions 

3.4.2.1 Review of the model 

The rnodel of attention gives a view of the role of attention in action controlling 

through coping with interruptions. With the introduced parameter of the urgent priority, 
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the model could recognize an interruption and make a decision about the direction to 

which the attention should be driven. SAS oversees the execution of action and the state 

of the environment. ·whenever necessary, it interferes with the action control and finally 

delegates control of action to CS. Schemas in CS are organized hierarchically, which 

incarnate the integrality and conciseness of the model. Because the model here treats 

the CS and SAS as a whole, it did not put more ink on either of the two. Parameters are 

settled on through several experiments until the model performs properly. Interruptions 

are simulated randomly like most situations in the real world. The model can react and 

handle these random interruptions successfully as expected. However, considering the 

model in accordance with the real world, it could be improved, at lea..c:;t in some aspects. 

First, in current implementation, the urgent priority is assigned to be a constant. 

But in the real worlcl, depending on its different processing stages, how urgent an action 

is may vary over time. For example, the coffee preparation action is less urgent at the 

very beginning. But while the stove is turned on to boil the water, its degree of urgency 

shmùd increase according to the current danger of fire. Therefore, a more mature analysis 

should take into account the variation of this parameter according to time and to the 
hazardous status of the action. 

Second, to simplify the routine actions execution, the experimental world is imple-

mented without the representation of objects and resources. Therefore in our simulations, 

the model performs actions separately. That means, for example, when a phone call 

cornes during the coffee preparation procedures, it pauses the coffee preparation action 

to answer the phone call, then goes back to preparing coffee after conversation. However, 
in many situations, people can do these two actions together at the same tirne. In fact, 

in daily life, people often do more than one things simultaneously. Processing resources 

should be taken into account to let the model simulate synchronous performance of two 

actions. On the other hand, because of the ignored objects and resource implementation, 

the model here did not simulate process errors caused by interference of requests of a 

resource or an object. 

Another issue that takes place often in our daily life is that people's actions are not 
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always interrupted by a single interruption. That means a complex action, because of 

its relatively long time duration and deep decomposition of stages, may be disturbed by 

a series of interruptions. For example, while a clerk is preparing his weekly work plan, 

the phone rings; then while he is answering the phone, his manager asks him to attend 

an emergency 1neeting. The moclel can simulate human cognition more effectively if this 

aspect is taken into account. 

3.4.2.2 Comparison with Task Switching in ACT-R 

As discussed before, switching from one action to another is under the control of 

attention. The model we implemented focus on the role of two mechanisms, CS and SAS, 

during attention switching from one action to another. To carry out any action could be 

treated as a task. Therefore, attention switching between actions is often referred using 

the term of "task switching". Many studies are dedicated to task switching. An example 

is provided by M. H. Sohn and J. R. Anderson with their model of task switching in 

ACT-R [27]. 

As discussed in 1.5.2, the ACT-R system is a general system for modeling higher level 

cognition. It could be characterized as both symbolic and subsymbolic. At the symbolic 

level, information processing in ACT-R involves a sequence of production rule fi.rings. 

Each production rule involves some chunks' retrieval to transform the goal status [14, 27]. 

At the subsymbolic level, ACT-R assumes that multiple production rules compete to 

determine the schedule of information processing. In addition, the retrieval of a chunk 

depends on its activation value. This idea is similar to the CS mechanism. Therefore, 

ACT-R rnodel could be used to sirnulate executive and antornatic actions. In fact, in their 

rnodel, Sohn and Anderson investigated how executive and autornatic control mechanisms 

have their effects when people rapiclly switch from one task to another [27]. 

But there was no SAS in the ACT-R rnodel. In ACT-R, the calls for shift of atten-

tion are controllecl by explicit fi.ring of production rules [28]. However, changes in the 

environrnent could be transferred into declarative chunks which can then be processed 
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by the ACT-R system. When its goal is changed (which means its task is switched to an-

other), the model retrieves some other chunks according to the new goal and determines 

the next task. Therefore, attenti.on switches automatically from one task to another. 

In a worcl, the key clifference between the two moclels is: in the SAS-CS moclel, 

attention is directed by SAS while in Sohn and Anderson's model, switching of attention 

is controlled by production rules. In addition, Sohn and Anderson's model is focused on 

how executive and automatic control mechanisms have their effects when people rapiclly 

switch from one task to another. In contrast, the model here focuses on how attention 

could control actions through interaction of the SAS and CS. 

3.4.2.3 Comparison with Reactive Planning 

In this research, the model interacts with an experimental world, from where an 

interruption takes place. Dealing with context changes is often referred to as another AI 

concept: reactive planning. Planning is a key ability for intelligent systems, increasing 

their autonomy and flexibility through the construction of sequences of actions to achieve 
their goals. More precisely, reactive planning extends the traditional planning by adding 

the current context influences in the action selection [29]. Action selection is supportecl 

by reactive plans, which are stored structures specifying the next act according to both 

current internal and environmental contexts. However, reactive planning chooses only 

the immediate next action. A deliberate planning may inform or create new plans or 

behaviors. Therefore a complete intelligent agent combines three-layers [30): 

1. Behavior-based AI, the decomposition of intelligence into simple, robust, reliable 

modules·; 

2. Reactive planning, the orclering of expressecl actions via carefully specifiecl program 

structures; 

3. Deliberative planning, which may inform or create new plans or behaviors. 
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The SAS-CS model presented here are parallel to such an agent. The first layer is 

at the motor level and is part of the CS; the second layer is the CS itself; and the third 

layer is the deliberate level and corresponds to the SAS. 

In psychology, attention is responsible for context awareness. In the rnodel of atten-

tion, one of the SAS' roles is to detect environmental changes. The rnodel of attention 

in this paper presents SAS directing attention onto a specified individual schema in CS 

to control action. Therefore, the automatic process is then isolated frorn the decisions 

requiring much more elaborations. It could be compared with the Basic Reactive Plan, 

which is explained by Bryson and Stein [29]. Both of the rnodels select actions based 

on priority levels and hierarchical plans. But, the choice of the next action is embodied 

in the action representation in the Basic Reactive Plan. In the carrent model, action 

selections are divided into two cases: for automatic actions, action selection is clone by 

CS based on schemas' activation value; for novel actions, the next action is chosen by 

other SAS processes [26]. Two SAS processes which are involved in case of interruption 

are: the Percept·ion and Monitoring E.1 Goal Generation. These two processes respectively 

respond to the interruption identification and the action selection based on the priority 

of urgency. 

The model presented in this paper is not intended to present the whole mechanism of 

the Norman & Shallice model. It focuses on how attention switches and handles actions 

when confronting an interruption. First, it shows how an environmental change leads to 

an interruption in the CS process and second, how the SAS gives back the control to the 

CS when the chosen action becomes automatic. 

3.5 Conclusion 

This chapter describes the model of attention, which is the theme of this thesis. The 

rnodel is based on the Norman and Shallice rnodel, therefore, during the implementation 

we continue using the approach discussed in section 2.5 for current purpose. An interrup-

tion is defined as an unexpected action that need to be hanclled immediately while one is 
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doing another action. To identify the two actions, an additional parameter called urgent 

priority is bound to each action. The interruption always has a higher priority than the 

main action does in order to sirrmlate the interruption. Activation compute is explained 

with a set of parameters offered by COGENT. The implementation of SAS focuses on 

two important processes: Perception and J\fonitoring & Goal generation. The fonction 

of each process is described through a set of rules. The logics of the main rules of each 

process are presented. Next, results from two simulations of interruption are listed with 

prograrn executing cycles. Finally, the whole rnodel is discussed through comparisons 

with two other researches: Task Switching in ACT-Rand Reactive Planning. 
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Conclusion 

In this thesis, a cognitive model is presented to examine how attention switches in 

order to control actions during interruptions. Concepts of action, attention and interrup-

tion are described with examples. Everyday, people perform many actions. These actions 

are driven by particular goals even if these goals are not always conscious. Actions requir-

ing less awareness are called well-learned behaviors or automatic actions. Other kinds of 

actions need much mol;'e attentions to be executed successfully. These actions are called 

willed behavior. Responding to these two kinds of actions, Norman and Shallice's model 

addressed two distinct mechanisms of control, CS and SAS. They work together as an 

intelligent agent that is able to raise its goal according to beliefs about its current envi-

ronment, to generate possible strategies for problem solving, to evaluate these strategies 

and to select the most proper one, allocate relative resources to carry out actions, and 

update its beliefs about the environment as well. 

Taking both CS and SAS into account, the model is implemented in COGENT. The 

SAS-CS models the way humans perform actions under attention control. The simulation 

presented here highlights the interactions between these two agents and how interruption 

stops a current action. It sketches the link between the two components of the model, 

SAS and CS. SAS plays a referee role between the current action and the interruption 

action. Then, SAS gives back the control to CS when action schemas become automatic. 

The model proposed successfully simulates the real world. Sorne adjustments are to be 

made to take into account other cases of interruption, a series of interruptions and the 

evolution of the urgent priority. 
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Appendix 

World State 

Glass: Box/Buffer /Propositional 

Access: Random 

Initial Contents: 

Element: Initial task 
task(prepare_coffee, 10) 

Current Contents ( of World State): 

0 : task(prepare_coffee, 10) 

Manipulate World 

Glass: Box/Process 
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Rules & Condition Definitions: 

Rule 1 ( refracted): Randoni Interruption 

IF: not is_doing(answer_phone) is in TVorld State 

Ris a random integer drawn from 0 to 100 inclusive 

R is numerically equal to 5 

TREN: add task(answer_phone, 30) to World State 

Rule 2 (refracted): Delete a task after its completion 

IF: task (T, U) is in TVorld State 

finish_action(T) is in Mlorld State 

TREN: delete task(T, U) from TiVorld State 

Rule 3 (refracted): Stop the moclel after all tasks are finishecl 
IF: not task(T, U) is in VVorld State 

TREN: send stop to Attention during an interruption 

Perception 

Class: Box/Process 

Rules & Condition Definitions: 

Rule 1 (refracted): Add a new task into Working Memory 

IF: task(T, U) is in Experimental World:World State 

not do_task(T, U) is in TiVorking Memory 

TREN: add do_task(T, U) to TJlork-ing Mernory 
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Rule 2 (unrefracted): Delete an old belief about a task 
IF: do_task(T, U) is in VVorking Mernory 

not task (T, U) is in Experirnental VVorld: World State 
TREN: delete do_task(T, U) from TVorking Mernory 

Rule 3 (refracted): Add current action into Tiflorking Mernory 
IF: is_doing(Action) is in Experim,ental TVorld: World State 

not is_doing(Action) is in VVorking Memory 
TREN: add is_doing(Action) to VVorking Meniory 

Rule 4 (refracted): Add a completed action into FVorking Mernory 
IF: finish_action(T) is in Experirnental TVorld: World State 

not finish_action(T) is in îiVorking Memory 
TREN: add finish_action(T) to VVorking Mernory 

Rule 5 (refracted): Cont'in,ue coffee task after finishing interrv:ption 
IF: f inish_action(answer _phone) is in E.rr;per-irnental World: VVorld State 

task(prepare_coffee, 10) is in Experimental World:î!\forld State 
pause (prepare_coff ee) is in Working Mernory 

TREN: add continue_task(prepare_coffee, 10) to Working Memory 

Monitoring & Goal Generation 

Class: Box/Process 
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Rules & Condition Definitions: 

Rule 1 (refracted): Trigger generation of a new strategy ta handle a request 
IF: do_task(T, U) is in Working Memory 

not current_strategy(T, Strategy) is in VVorking Menwry 

TREN: add generate_strategy(T) to Goals 

Rule 2 (refracted): Trigger generation of a new strategy ta handle a request 
IF: continue_task(T, U) is in TiVorking Mem,ory 

not current_strategy(T, Strategy) is in Working Memory 
TREN: add generate_strategy (T) to Goals 

Rule 3 (refracted): Interruption decision 
IF: do_task(Ti, Ui) is in VVork-ing Memory 

is_doing (Ti) is in Working Menwry 
do_task(T2, U2) is in l;f/ork-ing Memory 

U2 is greater than Ui 

TREN: add pause (Ti) to Tif/ork-ing Memory 
delete all selected (T) from Evaluated Strategies 

Strategy Generation 

Class: Box/Process 

Rules & Condition Definitions: 

Rule 1 (unrefracted): 
IF: generate_strategy(prepare_coffee) is in Goals 
TREN: add prepare_coffee to Candidate Strategies 
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Rule 2 (unrefracted): 

IF: generate_strategy(answer_phone) is in Goals 

TREN: add answer _phone to Candidate Strategies 

Evaluation 

Class: Box/Process 

Rules & Condition Definitions: 

Rule 1 ( unrefracted): Rule 

IF: Candidate is in Candùlate Strateg1:es 

TREN: delete all selected(S) frorn Eval·uated Strategies 

add selected ( Candidate) to Evaluated Strategies 

Schema Construction 

Class: Box/Process 

Rules & Condition Definitions: 

Rule 1 ( unrefracted): Create a ternporary scherna for the selected strategy 

IF: selected(S) is in Evaluated Strategies 

not schema(S) is in Ternporary Scherna 

TREN: delete all schema(X) frorn Ternporary Scherna 

add schema(S) to Ternporary Scherna 
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Rule 2 (unrefracted): Delete temporary schem,as for non-selected strategies 
IF: schema(S) is in Tem,porary Schema 

not selected(S) is in Evaluated Strategies 

TREN: delete schema(S) from Ternporary Schem,a 

Belief Update 

Class: Box/Process 

Rules & Condition Definitions: 

Rule 1 ( unrefracted): Update beliefs with new strategy 

IF: selected (T) is in Evaluated Strategies 

do_task(T, U) is in VVorking Memory 
not current_strategy(T, T) is in VVork-ing Memory 

TREN: delete all current_strategyC, _) from îiVorking Memory 
add current_strategy(T, T) to VVork-ing Menwry 

Rule 2 (unrefracted): Rule 

IF: not do_task(T, U) is in îiVorking Memory 

current_strategy(T, Strategy) is in VVorking Memory 

TREN: delete current_strategy(T, Strategy) from VVorking Menwry 

Schema Hierarchy 

Class: Box/Network/Interactive 

72 



Properties (free): 
Initialise: 'Each Trial' Min Act: 0.00 Max Act: 1.00 

Rest Act: 0.10 Update 

'CS' 
Function: Persistence: O. 90 

Noïse: 0.00 Initial Acts: uniform Act Parameter A: 

Act Parameter B: Lateral 

0.05 

Influence: Lateral 

'8nm' 

Function: 

0.15 

Lateral 

'Rest Act' 

'Sub Net' 

Baseline: Lateral Parameter: Self Influence: 1 

0.15 

Self Baseline: 'Rest Self Parameter: 0.50 

Act' 
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Initial nodes and Activation Graph at cycle 0: 

Input Nodes Min Act 

[0.00] 
prepare_coffee / coffee: -
sugar _frorr1-pack / coffee: -
sugar _from_bow 1 / coffee: -
coffee_from_pack / coffee: -
coffee_frorr1-jar / coffee: -
milk_frorr1-carton / coffee: -
open / coffee: -
pour / coffee: -pick_up / coffee: -
put_down / coffee: -
answer _phone / phone: -
pick_up / phone: -
hold_on / phone: -
hang_up / phone: -

Schema States 

Class: Box/Buffer /Propositional 

Access: Random 

Description ( of Scherna States): 

Hold schema-goal relation 
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Max Act 

[1.00] 
[0.06] 
[0.06] 
[0.08] 
[0.12] 
[0.06] 
[0.06] 
[0.08] 
[0.12] 
[0.13] 
[0.06] 
[0.07] 
[0.12] 
[0.10] 
[0.11] 



Initial Contents: 

Comment: for coffee preparation 

Comment: Le·uel 3: -----------------------

Element: The coffee_8cherna)8 goal: 

schema_goal(prepare_coffee / coffee, prepare_coffee) 

Element: The coffee_8chenia)8 8ubgoal8: 

schema_subgoals(prepare_coffee / coffee, [add_sugar, add_coffee, add_milk]) 

Element: The co ff ee_8 chenia) 8 order con8traint: 

ordering_constraint(prepare_coffee / coffee, add_coffee < add_milk) 

Element: The coffee_8chenw/8 order con8traint: 
ordering_constraint(prepare_coffee / coffee, add_sugar < add_milk) 

Element: The coffee_8cherna)8 initial 8election 8tatu8: 
schema_status(prepare_coffee / coffee, unselected) 

Comment: Level 2: -----------------------

Element: The 8ugar_from,_pack 8chenw )8 goal: 

schema_goal(sugar_from_pack / coffee, add_sugar) 

Element: N othing 

schema_subgoals(sugar_from_pack / coffee, []) 

Element: The 8Ugar_from_pack 8chem,a )8 initial 8election 8tat-u8: 
schema_status(sugar_from_pack / coffee, unselected) 

Element: The 8ugar_from,_bowl 8cherna )8 goal: 

schema_goal(sugar_from_bowl / coffee, add_sugar) 

Element: Nothing 
schema_subgoals(sugar_from_bowl / coffee, []) 

Element: The 8ugar_from,_bowl 8chem,a)8 initial 8election 8tatu8: 
schema_status(sugar_from_bowl / coffee, unselected) 
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Element: The coffee_from,_pack schema-'s goal: 

scherna_goal(coffee_frorn_pack / coffee, add_coffee) 

Element: Nothing 
scherna_subgoals(coffee_frorn_pack / coffee, []) 

Element: The coffee_froni_pack schenia)s initial selection statv,s: 

scherna_status ( coff e·e_frorn_pack / coff ee, unselected) 

Element: The coffee_froni_jar schema )s goal: 

scherna_goal(coffee_frorn_jar / coffee, add_coffee) 

Element: The coffee_from,_jar schema 's ù1:itial selection stafos: 
scherna_status(coffee_frorn_jar / coffee, unselected) 

Element: N othing 
scherna_subgoals(coffee_frorn_jar / coffee, []) 

Element: The milk_froni_carton schema 's goal: 
scherna_goal(rnilk_frorn_carton / coffee, add_milk) 

Element: The milk_from,_carton schema -'s subgoals: 
scherna_subgoals(rnilk_frorn_carton / coffee, [pick_up, open, pour, put_down]) 

Element: The milk_from,_carton schema 's order constrœint: 
ordering_constraint(rnilk_frorn_carton / coffee, open< pour) 

Element: The milk_from,_carton schema 's order constraint: 
ordering_constraint(rnilk_frorn_carton / coffee, pour< put_down) 

Element: The milk_from_carton schema )s initial selection status: 

scherna_status(rnilk_frorn_carton / coffee, unselected) 

Comment: Level 1: -----------------------

Element: The p-ick_up_schema's goal: 
scherna_goal(pick_up / coffee, pick_up) 

Element: N othing 
scherna_subgoals(pick_up / coffee, []) 
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Element: The pick_up_schem,a-'s initùû selection status: 

schema_status(pick_up / coffee, unselected) 

Element: The p·nLdowrLCJchenw's goal: 

schema_goal(put_down / coffee, put_down) 

Element: Nothing 

schema_subgoals(put_down / coffee, []) 

Element: The pvLdown_schema 's in:itial selection status: 

schema_status(put_down / coffee, unselected) 

Element: The pour_schem,a's goal: 

schema_goal(pour / coffee, pour) 

Element: Nothing 

schema_subgoals(pour / coffee, []) 

Element: The pour_schem,a 's infüal selection status: 

schema_status(pour / coffee, unselected) 

Element: The open_schema's goal: 

schema_goal(open / coffee, open) 

Element: N othing 

schema_subgoals(open / coffee, []) 

Element: The open_scherna 's infüal selection status: 

schema_status(open / coffee, unselected) 

Comment: for phone answering 

Comment: Level 2:-------------------

Element: answer_phone 's goal 

schema_goal(answer_phone / phone, answer_phone) 

Element: anser_phone 's sv,bgoals 

schema_subgoals(answer_phone / phone, [pick_up_receiver, talking, hang_up]) 

Element: The answer_phone 's order constraint: 
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ordering_constraint(answer_phone / phone, pick_up_receiver < talking) 

Element: The answer_phone \s order constraint: 

ordering_constraint(answer_phone / phone, talking < hang_up) 

Element: The answer_phone )s indial selection status: 

schema_status(answer_phone / phone, unselected) 

Comment: Level 1:-------------------

Element: N othing 

schema_goal(pick_up / phone, pick_up_receiver) 

Element: N othing 
schema_subgoals(pick_up / phone, []) 

Element: Nothing 
schema_status(pick_up / phone, unselected) 

Element: N othing 

schema_goal(hold_on / phone, talking) 

Element: N othing 
schema_subgoals(hold_on / phone, []) 

Element: N othing 
schema_status(hold_on / phone, unselected) 

Element: N othing 
schema_goal (hang_up / phone, hang_up) 

Element: N othing 
schema_subgoals(hang_up / phone, []) 

Element: N othing 
schema_status(hang_up / phone, unselected) 
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Current Contents ( of Schema States): 

0 : schema_status(hang_up / phone, unselected) 

0 : schema_subgoals(hang_up / phone, []) 

0 : schema_goal(hang_up / phone, hang_up) 

0 : schema_statns(holcLon / phone, unselected) 

0 : schema_subgoals(hold_on / phone, []) 

0 : schema_goal(hold_on / phone, talking) 

0 : schema_status(pick_up / phone, unselected) 

0 : schema_subgoals(pick_up / phone, []) 

0 : schema_goal(pick_up / phone, pick_up_receiver) 

0 : schema_status( answer _phone / phone, unselected) 

0 : ordering_constraint( answer_phone / phone, talking < hang_up) 

0 : ordering_constraint( answer_phone / phone, pick_up_receiver < talking) 

0 : schema_subgoals(answer_phone / phone, [pick_up_receiver, talking, hang_up]) 

0 : schema_goal( answer_phone / phone, answer _phone) 

0 : schema_status( open / coffee, unselected) 

0 : schema_subgoals( open / coffee, []) 

0 : schema_goal( open/ coffee, open) 

0 : schema_status(pour / coffee, unselected) 

0 : schema_subgoals(pour / coffee, []) 

0 : schema_goal(pour / coffee, pour) 

0 : schema_status(put_dovm / coffee, unselected) 

0 : schema_subgoals(put_down / coffee, []) 

0 : schema_goal(put_down / coffee, put_down) 

0 : schema_status(pick_up / coffee, unselectecl) 

0 : schema_subgoals(pick_up / coffee, []) 

0 : schema_goal(pick_up / coffee, piclcup) 

0 : schema_status(milk_frorr1-carton / coffee, lmselected) 

0 : ordering_constraint(milk_from_carton / coffee, pour < put_down) 
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0 : ordering_constraint(rnilk_frorn_carton / coffee, open < pour) 

0 : scherna_subgoals(rnilk_frorr1-carton / coffee, [piclcup, open, pour, put_down]) 

0 : scherna_goal(rnilk_frorn_carton / coffee, adcLrnilk) 

0 : scherna_subgoals( coffee_frorrLjar / coffee, []) 

0 : scherna_status( coffee_frorr1-jar / coffee, unselected) 

0 : scherna_goal( coffee_frorn_jar / coffee, adcLcoffee) 

0 : scherna_status( coffee_frorrLpack / coffee, unselectecl) 

0 : scherna_subgoals( coffee_frorr1-pack / coffee, []) 

0 : scherna_goal( coffee_frorr1-pack / coffee, aclcLcoffee) 

0 : scherna_status(sugar_frorn_bowl / coffee, unselected) 

0 : scherna_subgoals(sugar_frorn_bowl / coffee, []) 

0 : scherna_goal(sugar_frorn_bowl / coffee, adcLsugar) 

0 : scherna_status(sugar_frorr1-pack / coffee, unselectecl) 

0 : scherna_subgoals(sugar_frorrLpack / coffee, []) 

0 : scherna_goal(sugar_frorr1-pack / coffee, acld_sugar) 

0 : scherna_status(prepare_coffee / coffee, unselectecl) 

0 : ordering_constraint(prepare_coffee / coffee, aclcLsugar < add_rnilk) 

0 : ordering_constraint(prepare_coffee / coffee, adcLcoffee < add_rnilk) 

0 : scherna_subgoals(prepare_coffee / coffee, [adcLsugar, add_coffee, aclcLrnilk]) 

0 : scherna_goal(prepare_coffee / coffee, prepare_coffee) 

Box N ame: Trigger Schemas 

Updates schernas activation values at each cycle. 

Class: Box/Process 
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Rules & Condition Definitions: 

Rule 1 (unrefracted): füûel excites schenia triggered by SAS 

IF: task (prepare_coffee, 10) is in &i;perirnental Hlorld: World State 

schema(prepare_coffee) is in Ternporary Schenw 

TREN: send excite(prepare_coffee / coffee, 1) to Schem,a Hierarchy 

Rule 2 (unrefracted): Rulel e.rcites schenw triggered by SAS 

IF: task(answer_phone, 30) is in Experimental TVorld: TVorld State 

schema(answer_phone) is in Ternporary Schema 

TREN: send excite (answer_phone / phone, 1) to Schema Hierarchy 

Rule 3 (unrefracted): Activation fiow from, parent 

IF: selected_parent_of(S, P) 

ordering_constraints_satisfied(S, P) 

node (P, V) is in Schema Hierarchy 

number_of_children(P, N) 

Value is (V) / (N) 

TREN: send excite(S, Value) to Schem,a Hierarchy 

Rule 4 (unrefracted): Inh:ibit a sch.em,a after its goal 1:s achieved 

IF: node (Schema, Value) is in Schem,a Hierarchy 

goal_of_schema_is_achieved(Schema) 

TREN: send excite (Schema, -1) to Schema Hierarchy 

Rule 5 (unrefracted): Inh:ibit the former schenia dv,ring interrupt-ions 

IF: task(T, U) is in Exper-im,ental TVorlrl: VVorld State 

schema_goal (Name, T) is in Schenia States 

not schema(T) is in Teniporary Schenia 

TREN: send excite(Name, -1) to Schem,a Hierarchy 
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Rule 6 (refracted): Continue forrner task from break action after interruption 

IF: finish_action(Goal) is in Experiniental T,,Vorld: World State 

schema_subgoals (prepare_coffee / coff ee, Subgoals) is in Schema States 

Goal is in a mernber of Subgoals 

schema_goal (Schema, Goal) is in Schema States 

TREN: send goaLoLschema_is_achieved(Schema) to Trigger Schemas 

Condition Definition: goal_of_scherna_is_achieved/1: Has this schema)s goal been 

achieved? 

goaLoLschema_is_achieved(Schema) :-

schema_status (Schema, selected, Subgoals, Time) is in Schema States 

not - Goal is a member of Subgoals 

goaLoLschema_is_achieved(Schema) :-
schema_status (Schema, unselected) is in Schema States 

schema_status (Parent, selected, Subgoals, Time) is in Schema States 

schema_goal(Schema) Goal) is in Schema States 

+ Goal is a member of Subgoals 

not - Goal is a member of Subgoals 

Condition Definition: ordering_constraint,r,_satisfieclj~: Are a scherna )s preconcli-

tions met? 

ordering_constr aints_satisfied ( S chema, Pare nt):-
s chema_go al( S chema, Goal) is in Schema States 

schema_status (Parent, selected, SubGoals, Time) is in Schema States 

not order-ing_constraint(Parent) PreGoal j Goal) is in Schema States 

- PreGoal is a member of Subgoals 

Condition Definition: number_of_children/2: H ow man y subgoals does a schema 

have? 
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number _oLchildren(Schema, N) :-
schema_subgoals (Schema, SubGoals) is in Scherna States 

Nisthe length of Subgoals 

Condition Definition: schem,a_ch-ildren/2: Cet the list of child goals of a scherna. 

schema_children (Schema, Children) :-
s chema_subgo als (Schema, ChildGoalList) is in Scherna States 

strip_functfons ( ChildGoalList, Children) 

schema_children(Schema, []) :-
node(Schem,a, X) is in Schenw Hierarchy 

not scherna_subgoals(Schem,a, ChildGoalList) is in Schema States 

Condition Definition: Strip off any argum.,ent function specifications fro-m a goal 
list. 

strip_functions([], []). 

strip_functions([Goal / _-Rest], [Goal-StripRest]):-

strip_functions ( Rest, StripRest) 

strip_functions ( [Goal-Rest], [ Goal-StripRest]) :-

strip-functions (Rest) StripRest) 

Condition Definition: selecterLparent_of(Scherna) Parent):-

strip_functions ( [Goal-Rest], [ Goal-StripRest]) :-

parenLof (Scherna1 Parent) 

sche1na_status(Parent1 selected) -J -) is in Schema States 

Condition Definition: parent_of/2: Check scherno/parent relationships 
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parenLof(Schema, Parent):-

schema_chilrlren(Parent1 ChilrlGoals) 

schem,a_goal(Sche1na1 Goal) is in Schema States 

Goal is a member of ChildGoals 

Condition Definition: parent_of/2: Check schema/parent relationships 

parenLof(Schema, Parent):-

schem,a_chilrlren(Parent1 ChilrlGoals) 

schema_goal(Scherna., Goal) is in Schema States 

Goal is a member of ChildGoals 

Box N ame: Select & Act 

Handle schema selection and action execution. 

Glass: Box/Process 

Rules & Condition Definitions: 

Rule 1 ( unrefracted): Select any appropriate schenias 

IF: schema_goal (Name, Goal) is in Schema States 

schema_should_be_selected(Name, UnachievedSubgoals) 

the current cycle is Ti?ne 

THEN: delete schema_status (Name, unselected) from Schema States 

add schema_status (Name, selected, UnachievedSubgoals, Time) to Schenia States 

add ù,_rloing(Goal) to Experimental VVorlrl: VVorlrl State 
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Rule 2 (refracted): Deselect any appropriate schernas 

IF: schema_status (Name, selected, Subgoals, Time) is in Scherna States 

schema_should_be_deselected(Name) 

TREN: delete schema_status (Name, selected, Subgoals, Time) from Scherna States 

add schema_status (Name, unselected) to Schem,a States 

Rule 3 ( unrefracted): Uprlate achieverl snbgoals 

TRIGGER: done (Goal) 

IF: schema_status (Name, selected, BeforeSubgoals, Time) is in Scherna States 

mark_goal(Goal, BeforeSubgoals, AfterSubgoals) 

TREN: 

not not schema_should_be_deselected(Name) 

delete schema_status (Name, selected, BeforeSubgoals, Time) frorn Scherna Stc 

add schem,a_status(Na1ne1 selecterl1 AjterSnbgoals1 Tirne) to Scherna States 

Rule 4 (unrefracted): Recnrse on the parent if all snbgoals are ach:ie'uerl 

TRIGGER: done ( Goal) 

IF: schema_status (Name, selected, Bef oreSubgoals, Time) is in Scherna States 

mark_goal(Goal, BeforeSubgoals, AfterSubgoals) 

not - DtherGoal is a member of AfterSubgoals 

schema_goal (Name, ParentGoal) is in Scherna States 

TREN: send done (ParentGoal) to Select 8 Act 

add finish_action(ParentGoal) to E.rperiniental VVorlrl: VVorlrl State 
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Rule 5 (refracted): Execution an action when a lowest-level scherna ù, selected 
IF: schema_status (S, selected, [] , Time) is in Scherna States 

schema_goal(S, G) is in Schenw States 

TREN: add finish_action(G) to Ktperirnental World: Hlorld State 

send done ( G) to Select €_.1 Act 

Condition Definition: rnark_goal/8: Take a li8t of goals and mark one as achieved 

mark_goal(Goal, [- Goal-Rest], [+ Goal-Rest]):-

mark_goal(Goal, [H-T], [H-MT]):-
mark_goal(Goal, T, MT) 

Comment: Conditions involved in schema selection/deselection: 

Condition Definition: scherna_should_be_selected/2: True for unselected winning 

schernas w-ith acfiruation above threshold 
schema_should_be_selected(Schema, Subgoals) :-

schema_status (Schema, unselected) is in Scherna States 

activation_above_threshold(Schema) 

winn:ing_schenw(Scherna) 

sch.erna_children(Sche1naJ Children) 

constrv,ct_unach:ieved_l·ist( Children1 Subgoals) 

Condition Definition: constrnct_v,nachierued_list/2: Initially1 all s11,bgoal8 are un-

achieved. 
number _of_children (Schema, N) :-

s chema_subgo als (Schema, SubGoals) is in Scherna States 

N is the length of Subgoals 

Condition Definition: scherna_ch:ildren/2: Cet the list of child goals of a scherna. 

construcLunachieved_list ( [], []). 

86 



construcLunachieved_list([G-TO], [- G-Tl]):-

constru,ct_ unachieverl_list( T01 T 1) 

Condition Definition: schema_shov,lrLbe_deselected/1: True for selecterl schenias 

tlwt are no longer winning 

schema_should_be_deselected ( Schema) :-

s chema_st atus (Schema, selected, _, _) is in Schema States 
not not winnfng_schem,a(Schema) 

schema_should_be_deselected(Schema) :-

schema_status(Schem,a1 selecterl1 _1 _) is in Schem,a States 
wimüng_scherna(Scherno) 
selected_parent_of(Schema, ParentSchema) 

schema_should_be_deselected(ParentSchema) 

schema_should_be_deselected(Schema) :-

schema_stafos(Schema1 selecterl1 _ 1 _) is in Schema States 

wi nning_s chenia( S chemo,) 
not selected_parent_of (Schema, _) 

parent_of(Schema, ParentSchema) 

schema_should_be_selected(ParentSchema, _) 

Condition Definition: winning_schema/1: A schem,a is the w·inner if no cornpet-i-
tor has greater activation: 

winning_schema(Schemal) :-

node (Schema1, Acti vation1) is in Schem,a Hierarchy 
not compet?:tor_of_schem,a(Schema1 1 Scherna2) 

node (Scherna2, Acti vation2) is in Schema Hiernrchy 
Acti vation2 is greater than Activation1 
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Condition Definition: acti,vatfon_above_thresholrl/1: Is a schema Js activation above 

the selection thresholrl? 

activation_above_threshold(Schema) :-

norle{SchemaJ Actiruatfon) is in Scherna Hierarchy 

Activation is not less than O. 60 

Condition Definition: co1npetitor_of_schenia/2: Schem,as compete if they achieve 
the same goal) share a subgoal) or share resource requirement8 

competitor _of_schema(Schema, Competitor) :-

scherna,c;_.r,hare_goal(Schema) Competdor) 

Schenw is distinct frorn Competi tor 

competitor _of_schema(Schema, Competitor) :-

schem,as_share_subgoal{Schem,a) Competitor) 

not schem,as_share_goal(Scherna) Competitor) 

Condition Definition: schemas_share_goal/2: Do two schemas achieve the same 

goal? 

schemas_share_goal(Schemal, Schema2) :-

schenw_goal{Schema1) Goal) is in Schema States 
sch.em,a_goal{Schenia2) Goal) is in Schema States 

Condition Definition: schernas_share_subgoal/2: Schenias share a subgoal is the-ir 

subgoal lists have a cmmnon element 

schemas_share_subgoal(Schemal, Schema2) :-

s chema_chilrlren( S chema1 1 Chilrlren1) 

s chema_chilrlren{ S chema2) Chilrlren2) 
co1nmon_member{ Chilrlren1 ., Chilrlren2) 

Condition Definition: common_member/2: Do two lists have a common member? 

88 



common_member([Goal-_], L):-
Goal is a mernber of L 

common_member([_-Rest], L):-

common__member(Rest, L) 

Condition Definition: schema_children/2: Cet the list of child goals of a schema. 

schema_children(Schema, Children) :-

schema_subgoals (Schema, ChildGoalList) is in Schema States 

strip_functions ( ChildGoalList) Children) 

schema_children(Schema, []):-

node (Schema, X) is in Schem,a Hierœrchy 

not schema_subgoals (Schema, ChildGoalList) is in Schem,a States 

Condition Definition: Strip off any argument function specifications from a goal 
list. 

strip_functions([], []). 

strip_functions([Goal / _-Rest], [Goal-StripRest]) :-

strip_functions ( Rest) StripRest) 

strip_functions ( [Goal-Rest], [ Goal-StripRest]) :-

strip_functfons (Rest) StripRest) 

Condition Definition: selected_parenLof /2: Which (if any) superschema of the 

gii,en schema ù, selected? 

selected_parenLof( S chema, Pare nt):-
parent_o f( S cherna) Parent) 

schema_status (Parent, selected, _) is in Schema States 
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Condition Definition: parent_of/2: Check schema/parent relationslâps 

parent_of(Schema, Parent):-

schem,a_chûrlren(Parent1 ChilrlGoals) 

Goal is a meniber of ChilrlGoals 
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