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Sommaire

L’attention est une habilité cognitive qui joue un rdle primordial dans le controle
des actions. L’attention réfere & Pallocation des ressources pour réaliser une action.
L’interférence survient quand plusieurs événements réclament de l'attention. L’objet
de ce mémoire est de modéliser Pattention, ce qui permettra de modéliser comment
I'attention contrdle les actions humaines. En psychologie, Norman et Shallice ont con-
struit un modele d’organisation et de contrdle de l'attention. Ce modele est basé sur
deux composants responsables du controle de ’action, le “Contention Scheduling” et
le “Supervisory Attentional System”. Nous présentons dans ce mémoire le modele au
complet mais 'emphase est portée sur le lien entre les deux composants. Des activités
de la vie quotidienne sont simulées pour démontrer comment le modsle interagit en cas
d’interruption d’une tache routiniére par une nouvelle tache. Le temps ol Uinterruption
survient est choisi aléatoirement. Le modele d’attention est alors capable d’ajuster son

comportement n’importe quand pendant I’action de la tache routiniere.
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Introduction

Historically, technologies were created mainly to help people with physical limita-
tions. Therefore, human lives have benefited from such technological productions as

reading glasses, hearing aids, wheelchairs and so forth.

But cognitively impaired diseases, e.g. Alzheimer’s disease, are becoming one of the
major health problems facing the western world. Patients with Alzheimer’s disease are
seldom able to live safely and independently. Usually they require at least part-time
caregivers, whether they live in medical care centers or in their own homes. Because
of growing population of the cognitively impaired population, their families and society
are burdened more and more with the demands of care giving. Therefore, techniques
emerge for helping this confluence of people, as the times require. To develop such kinds
of techniques, fundamentally, one needs to know how human cognitive processes work.
The evolution of related fields of study like artificial intelligence and computer science,
offer approaches to dabble in the complex area of cognition. Health Smart Home has
developed a smart residence for the main purpose of allowing disabled people to stay
home with security through connection with a remote health care center [1]. Cognitive
assistances are technological ways to make up for the patients’ impaired memories or
some disabilities. By doing so, cognitive assistants aim to the autonomy of cognitively
impaired patients as well as a safe life. Cognitive models are computer models that

represent cognitive processes, and can be used to predict some human behaviors through

many simulations.



Among human cognitive processes, attention plays a very important role. In psy-
chological literature, attention refers to the allocation of processing resources. It is the
ability to focus on a behavior and is responsible for action control. In daily life, people
carry out lots of actions to fulfill expected goals. Some actions require attention: novel
actions, dangerous ones or actions that need deliberate plans. But routine actions, also
called automatic actions, which are well-learned in some environments, require much less
attention or can sometimes be executed without awareness. Action, so called behavior,
is the act of purpose to accomplish a goal in stages, usually over a period of time. An
action is often suspended and resumed later because of interruptions. An interruption
is an unanticipated change in the environment while a main action is being performed.
Depending on how urgent the interruption is, one may react in three different ways (that
will be discussed later) to deal with the interruption. But however the interruption is
dealt with, it is under the control of attention. Without attention, it’s impossible to

switch from one action to another.

The theme of this master’s thesis is a model of attention, which gives a view of
how attention controls human actions. The model is based on Norman and Shallice’s
model, a psychological theory, which provides a framework of two-levels of control over
actions [2]. The model of attention is implemented in COGENT (3], which provides a
visual design environment for cognitive modelling. This thesis is organized as follows:
it first introduces an overview of the background; then it reviews the related literature,
which includes three parts: 1) the Norman and Shallice’s model, on which the model of
attention is based; 2) the COGENT programming environment, under which the model
of attention is implemented and 3) the works on implementation of Norman and Shallice
model; it thirdly presents the model of attention with its objectives, implementation,

experimental results and discussions. Finally the paper ends with a brief conclusion.



Chapter 1

Background

1.1 Cognitively Impaired Population

The rising number of cognitively impaired people is one of the greatest health prob-
lems in the occidental world. The growth of the Alzheimer’s disease is an example: in
1950 in the United States, there were 200,000 cases at most. Within less than 25 years,
this number doubled. By 2050 the number of Alzheimer’s patients in the world is ex-
pected to reach 80 millions [4]. Consequently, the cost of caring for such kind of patients
is steadily increasing. The economic spending for care of a patient with cognitive disease
is striking. For example, for a single person with Alzheimer’s disease, whether at home

or in a nursing home, it costs more than $47,000 a year [1].

Moreover, patients with Alzheimer’s disease or similar cognitive disorders are not
able to live autonomously and safely. They need at least part-time help and care from
proxies. However, elder care responsihility increases the physical and financial burdens

as well as emotional strains among the caregivers.

To lessen the burdens on the caregivers and to increase quality of care and quality of
life for the patients, it is necessary to assist people with cognitive disease in a technological

way.




1.2 Health Smart Home

According to the patients’ preference, most of them would choose to live an indepen-
dent way of life in a residential setting with minimum intervention from the caregiver.
The second reason for keeping the patients at home is that it is cost diminishing [1].
Thus, the recent establishment of Health Smart Home (HSH), which aims at allowing
people with special needs to remain independently in their own homes as well as pro-
viding health care services [5]. It is a combination of three research domains: medicine,
home networks and information systems. HSH provides an efficient way to develop
patient-centred telemedicine and telecare services. Typical clienteles include: disabled
and elderly people living alone, people with loss of autonomy, people who need a precise

daily medical follow-up and patients with chronic health disease.

1.2.1 Definition
A HSH is such a home that has [5]:

e A number of automatic devices and smart sensors used to ensure patients’ safety;

e A local intelligence unit responsible to analyze the data collected by sensors and

detect the critical or dangerous situations;

e A connection with a remote control center, which responds to emergency cases and

offers an interface between patients and hospital staff or health care centers.

The HSH projects have two objectives: a patient-centered objective and a public
health-centered objective. The former aims to improve and enhance the quality, and
especially the security of patients’ lives by utilizing new technologies. These technologies
help them to be more independent in their own environment. The latter aims at the
efficiency of public health care services. The patients at home could receive information,
advice and supervision from health care services of the hospital through phone calls or

net communications.




1.2.2 An Example of HSH

SmartBo is an example of HSH designed for autonomous elderly people who feel
insecure living alone at home [6]. The SmartBo project focuses on information and com-
munication technology and computer based solutions for mobility-impaired people, visu-
ally and/or hearing impaired people and people with light cognitive disabilities. From its
startup, the SmartBo project has continued to develop an ideal smart home for disabled

people to live an independent and rich life regardless of their disability.

The project is implemented in a two-room ground-floor apartment including kitchen
with dining area and a large bathroom. With no steps or stairs, the entry is easy for the

disabled. The entrance door can be opened by remote control.

The installations in the room are divided into two categories: one common to all
users, and one adapted for each group or even for each disabled individual. A cable
connects all sensors and all devices in the apartment. Sensors are input devices to the
cable such as switches, motion detectors, magnetic switches, pressure sensitive switches,
current sensing devices, water flow sensing devices etc. Actors are output devices, i.e.

relays for switching power, door automation, or controlling lamp dimmers.

Recently, new client/server-based SmartBo control programs are customized upon
the clients’ need [7]. A great advantage of this client/server-solution is that the client
can be chosen for or adapted for maximum benefit of the user. For example, depending
on the user’s need, a palm computer, or a normal computer is available to the user for

his convenience. All computers in SmartBo are linked together in a wireless network.

An alarm is set off in case of water running longer than desired, doorbell or phone
ringing, overheated appliances and so on. The alert could be displayed on the computer

monitor and even with a voice announcement sometimes.

In addition, some complex functions of the system contribute to the safety of older
people. For example, when a person leaves his bed at night, dimmed lamps light the
way from bedroom to bathroom. If he doesn’t return to bed after a pre-set time, helpers

could then be alerted.



1.2.3 Constraints of HSH

While HSH aims for better life for people as well as diminishing family and social

burdens, some factors restrict the use of HSH [5]:

Ethical: their use must take place under the strict control of medicine and ethics;

Economical: they must be cost effective from the viewpoint of both the patients

and society;

Technological: the equipment used in the homes must be perfectly suitable to the

patients’ needs, and ensure their safety and privacy;

Psycho-social: the new technology must be accepted and easily used by all the HSH

actors.

1.3 Cognitive Assistance

As mentioned above, the HSH is mainly directed to physical needs. In this sec-
tion, another new concept is introduced, called cognitive assistance, which implies some
contrived ways to help people with cognitive limitations. For people with physical limita-
tions, autonomy depends on the equilibrium between the individual and his environment.
In the same way, one’s cognitive ability could be improved through environmental con-
text, useful information in the environment and useful ability-supporting technologies.

Cognitive assistance, which is defined below, is such an ability-supporting system.

Unlike HSH, cognitive assistance aims mainly to help cognitively impaired people
such as Alzheimer’s patients, brain injury patients, schizophrenic patients and memory

impaired patients.




1.3.1 Definition

Cognitive assistance could be provided both indoors and outdoors. This assistance
malkes up the patients’ deficit to ensure their autonomy as well as their safety. Thus,
the action of the system can range from “doing nothing” to drastic operations such as
shutting down electricity [8,9]. In their intelligent habitats, Pigot et al. explained a

three-layered infrastructure that cognitive assistance usually comprises.

The infrastructure is divided into three layers:

e Hardware layer: the hardware layer is concerned with many kinds of sensors, devices
and effectors, which record the patient’s positions, activities and environmental

states, offer some advice or provide help directly in some cases;

o Middleware layer: the middleware layer links all the agents of the system in a

wireless network, through which these agents can communicate with each other;

e Application layer: the application layer contains two integrated services, one for

tele-monitoring, and the other for decision of proper cognitive assistance.

Most people can be in need of cognitive assistance. But here, the objective of
cognitive assistance is to develop new systems, mostly computer systems, to enhance the
quality of life of cognitively impaired people such as patients with Alzheimer’s disease or

similar cognitive disorders.

1.3.2 Examples

The Activity Compass is a cognitive assistant that guides disoriented people toward
their destination both indoor and outdoor [10]. For example, the compass can guide the
patient toward his kitchen when mealtime is overdue. It is developed on the basis of
a layered client/server architecture [10], shown as Figure 1.1. In the architecture, the
client is a hand held device that handles interaction with user, and the server stores the

sensor’s readings, constructed models and background information.
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Figure 1.1: The architecture of the activity compass.

The architecture includes several layers to link sensor data to behavior, behavior to

plans, and plans to potential interventions:

e Sensor Layer: the layer has a variety of sensors which are installed for different

users;

e Data Fusion Layer: the layer extracts information from a continuous stream of data

collected by the sensors. Bayes filters are applied in this layer;

e Behavior Recognition Layer: in this layer the user’s behavior is estimated based on

the output of the Data Fusion Layer;

e Plan and Intention Recognition Layer: this layer performs the task of identifying

the user’s plans or goals by given a partial view of the user’s behavior;

e Intervention Layer: in this layer, the system decides under which circumstances it

should initiate an interaction with the user.

The activity compass has to be initialized before it can work effectively. Firstly, the
compass needs to construct a high-level model of the patient’s activities by recording the
person’s habitual activities coupled with background information and sensor readings.
Secondly, plan recognition is essential for the compass to make sense of the patient’s cur-
rent actions. Finally, the compass needs to detect alternative pattern under uncertainty

cases requiring appropriate reasoning.



1.4 Cognitive Modelling

1.4.1 Outset of the Issue

|

Describes Gives an.
explanation
JV A
Cognitive | Generates N Behavior
processes
(a)
Theory
Describes Gives an
explanation
Y Y
Cognitive l Generate \‘ Behavi
processes ] e ehavior
A A
Implement
Simulate Model Generates

(b)

Figure 1.2: (a) The classical relations between a behavior, underlying cognitive pro-
cesses and a theory of those processes; (b) The relation between a cognitive model and a
behavior, a theory, and cognitive processes.

As its name implies, cognitive modelling is the development of computer models,
which represent cognitive processes, and use of such models to simulate or predict hu-
man behavior. A model is a representation of a real object, for example, a model in
architecture may be a small paper-house to show the real house’s appearance or to evalu-
ate its structure. Similarly, a computer model is also a representation but using specified
computer language. This study concerns two issues: 1) the contents of the model and 2)
the way the model is designed. The first issue is discussed here, the second one will be

discussed section 1.5.




1.4.2 The Role of Cognitive Modelling

Cognitive modelling is based on a concern of three entities: behaviors, cognitive
processes underlying them and theories of these cognitive processes. Behaviors are the
actions done by the subject with some purposes. Cognitive processes of the subject,
such as long term memory, generates behaviors. A well suited theory describes the
cognitive processes and consequently gives an explanation for the behavior generated
by those cognitive processes. Figure 1.2(a) shows their relations. Computer simulation
techniques allow cognitive models to be built, thus, an extra entity is added to the
Figure 2.1, demonstrated as Figure 1.2(b). A model plays the role of generating behaviors,

implementing a theory and simulating a cognitive process.

1.5 Cognitive Architecture

1.5.1 An overview

A cognitive architecture refers to a particular set of conceptual structures, tools,
techniques and methods that support the design and the construction of cognitive mod-
els. A cognitive architecture embodies the more general structures and mechanisms out
of which could be made a model of individual cognition in a certain situation [11]. A
cognitive architecture is an integrated system capable of intelligence supporting, which
may comprise a short-term memory, a long-term memory, perceptual and motor subsys-
tems, some learning mechanisms, and so on. Shown as Figure 1.3, a cognitive model is

an instance of a cognitive architecture in a specified domain.

Cognitive architecture, such as Soar [12,13], ACT-R [14,15], CAP [16] and EPIC [17],
models human behaviors via different approaches. Soar and EPIC are symbolic architec-
tures, CAP is a connectionist architecture and ACT-R is a hybrid architecture. Among
these architectures, ACT-R is currently the most influential one because it offers whole

mechanisms in generalization which is domain independent, and because it approaches

10
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Figure 1.3: A cognitive model is an instance of a cognitive architecture in a specified
domain,

both from symbolic and from connectionist.

1.5.2 ACT-R
1.5.2.1 Introduction

ACT-R is a production-rule based cognitive architecture, which is implemented in
Common LISP language. It intends to simulate the human behavior in a generalized
way. It simulates the acquisition of knowledge and human actions influenced by the

environment.

Since ACT-R is a cognitive architecture, it covers a wide range of human cognitive
tasks, focusing on problem solving, learning and memory. It has been previously applied
to modeling such tasks as solving the standard Tower of Hanoi problem, memory for
text or for lists of words, language comprehension, communication, task switching and

aircraft controlling.

In ACT-R, knowledge is represented by two types of memory: declarative memory
and procedural memory. Chunks are the atomic components of declarative memory. The
basic unit of procedural memory is production rule. A chunk is defined by its type (e.g.,
birds) and its slots (e.g., color or size). A production rule is a condition-action pair.
The production rule specifies an action to be executed when a condition is satisfied. The
condition consists of a specified goal and a set of chunks while the action usually creates

or modifies some chunks. Thus procedural memories manipulate chunks to produce

11



cognition. Two buffers are defined in ACT-R: the goal buffer (to specify the actual
state of a goal) and the retrieval buffer (to store information retrieved from declarative
memory). Four other buffers are defined in perceptual motor, the addition of ACT-R.
These buffers are the visual buffer, the manual buffer, the aural buffer and the vocal

buffer. They all correlate to the human perception and will be discussed later.

1.5.2.2 Mechanisms

In this section, main mechanisms in ACT-R, are discussed. Through these mecha-
nisms, ACT-R manipulates chunks and production rules, sub-goals, perceptual motor,

~ and learning ability.

Activation and Latency

Each chunk of the declarative memory is associated with an activation value. This
value is evaluated at each cycle of processing. It depends on the basic activation, the
strength of association with other chunks, the similarity between each part of the chunk
and each part of the retrieval condition. Therefore, the activation value of the chunk 7 is

expressed by the formula below:
Ai :Bi+ZWjSﬁ+ZQJ\Jki+€1 + &3. (11)
] k

It is computed as following:

The base-level activation B; reflects the recency and frequency of practice of the

chunk. Tt is influenced by two parameters:
1. m;, the number of times that the chunk 7 is practiced;
2. L, the real time elapsed in seconds.

B; = log(n;/L — d) — dlog(L), (1.2)

where d is a parameter set by the user at the beginning of the simulation. Thus B;

increases with practice and decreases with time.

12



The sources of Activation: computed as the summation below (Sum. (1.3)):
> WSy (1.3)
J

The elements j being summed over are the chunks which are in the slots of the chunk
i. W; is the amount of activation from source j. Sji is the strength of association from
source j to chunk 7. It is set using this equation (Eq. (1.4)) when chunk j is in a slot of
chunk 1:

Sji = S — In(fany), (1.4)

where S is a parameter to be set with the maximum associative strength; fan; is the
number of chunks in which j is the value of a slot plus one for chunk j being associated
with itself.

The final term that influences the retrieval of the chunk 4 is the partial matching

component. Expressed as the following summation (Sum. (1.5)):
Y QM. (1.5)
k

Specification elements k: the matching summation is computed over the slot values of
the retrieval specification; match scale Q: this reflects the amount of weighting given to
the similarity in slot k. By default this is a constant across all slots with the value of 1;
match similarities, My;: the similarity between the value k in the retrieval specification

and the value in the corresponding slot of chunk .

To simulate the chunk retrieval in a more realistic way, it should not be completely
deterministic. Therefore, two types of noise have been introduced. The permanent noise
€1, which is given by equation is set at the creation of each chunk, while €;, the transient
noise, is set each time the chunk is retrieved. Both noise values are generated according

to a logistic distribution characterized by a parameter s.

Probability of Recall

A chunk is recalled only if its activation value is over a threshold, which is named

utility threshold. Among the chunks whose activation value is over the utility threshold,

13



the probability of choosing a chunk 7 is given by the equation:

eAi/\/is

prob(’]’) = _“‘E 6Ac/\/§sy

(1.6)
where A; is the activation value of chunk 7, A, is the activation value of any competing

chunk c. s is the parameter s of the noise.

ACT-R also simulates the retrieval time for each chunk. The rule is quite simple:
the higher the activation, the faster the chunk will be retrieved. The retrieval time T; is

given by the following equation (1.7). Where F' is another parameter to be estimated,

called the latency scale.

T; = Fe . (1.7)

Utility Learning

The utility learning is used to determine which production rule will be chosen to
fire if several of them satisfy the same conditions. Each production is associated with
an utility. It reflects how much the production is expected to contribute to achieve the

system’s goal. The one that has the highest utility U; will be chosen.

This utility is an estimation based on experience. It increases with success and

decreases when the cost increases.

The success is evaluated through the estimation of the probability of success P;. It
is computed as following:

P, = successes/totaluse,

where totaluse is the total number of times the production rule has been tried during
the experiment and success is the number of successes of this production along its total

use.

The value of the cost C; represents the average amount of time, counted in seconds,

spent to execute the production rule 7, then:
C; = totaltime/totaluse,

14



where the totaltime is the cumulative time over each time the production rule is used
(totaluse).

As the cost is counted in seconds, the value of the objective G is also counted in
seconds. It has a default value of 20 seconds, which can be changed by the user. This
value of the goal times the probability of success represent an estimation of success of

the production rule 4. So, the utility U; for the production rule 4 is:

Because it is more realistic to maintain a level of uncertainty, a noise ¢ is always
added to simulate randomness. It follows the same logistic function as either €; or €, in

the computation of the level of activation A;.

Like the choice of a chunk, the choice of a production rule is performed in a prob-
abilistic way, called the probability of recall of the production rule. It is given by the

equation:

et eUi/V2s
PI‘ObabllltY('L) = i—m’ (19)
eVilves

j
where the summation is over every competing production rule, including utility threshold

as if it were a production rule. s is the parameter s of the noise.

Production Rule Learning

A new production rule can be built from two old production rules by applying
succession into a single rule. This process of acquiring new production rules is called
production composition. The basic idea is to combine the tests in two conditions and
combine the two actions into one that has both effects. The composition is based on
buffers, because usually the conditions involve buffer tests and the actions involve buffer
transformations. The complications of production composition can be divided into three
cases according to whether the old production rules request a new goal. Many technical

details are needed to make sure that the proper references are built to variables and

15



constants in the composed productions. If the reader is interested, please check them at:

act.psy.cmu.edu/ACT-R$_-$5.0/unit9.doc

Conflict Resolution

After a new production (called New) is composed from two old productions (Old1
and Old2), a fact is that whenever New could apply Old1 could also apply, other-
wise, it does not mean that whenever Old1 could apply New could also apply, because
New might be specialized. The choice among the New, the Old1, and whatever other
productions might apply will be determined by their utilities. As discussed before, if
New could apply, Old1 could apply also, that means New and Old1 have the same
probability. Moreover, since New is created by merging Old1l and Old2, it is more
specified than Old1. Therefore, New will have less chance to be successful than Old1
will. A parameter o has been introduced (called initial experience) to reflect the setting
of the successes or failures for new production, whose value is ranged from 0 to 1. This

expresses the fact that New is more specific than Old1.

The new production rule is supposed to be better than the old one. The problem
is that because of the lower initial utility than the older production rule (scaled down
by «), there is less probability for ACT-R. to choose them. This problem is overcome by
the noise parameter, which introduces some irregularities into the computation of utility
functions. Sometimes the new merged production rules will be chosen. Because they
usually execute a complex task faster, their utility will increase and they will tend to be

used more and more.
Subgoals

ACT-R offers a mechanism of subgoals. With it, ACT-R enables the subgoal hi-
erarchical processing. The main idea of subgoals is the division of a complex goal into
several different subgoals, each of which is considered as a child of the original goal (called

parent).

Each subgoal is set by using the command “+goal> expression”. This expression
y g p D
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agsigns a certain task to the subgoal. After the subgoal finishes its task, it may go
back up to its parent. To retrieve the original goal, use the command “+ goal>” and
set “parent = goal”. Let us pay more attention to the latter command. By setting a
goal to the “parent”, it enables ACT-R to create a hierarchy of subgoals. That means
whenever considering of a subgoal, its situation must be taken into account, because this

subgoal may also be a parent of other sub-subgoals.

Following is a simple tree to show the generations of goal and subgoals:

subgoal A

subgoalB

subgoal A2

subgoalB1

Figure 1.4: A family tree of a goal and its subgoals.

In the tree structure, subgoalA and subgoalB are two subgoals of goal, and at
the same time, they are also parents. SubgoalA has two sub-subgoals: subgoalA1l and

subgoalA2; and subgoalB also has subgoalB1 as its subgoals.

Perceptual Motor

Overview

Around 1997, Perceptual Motor was added. Together with ACT-R, it is ACT-

R/PM. Perceptual Motor, in fact, plays an important role since its appearance, because
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LNTENTS

Figure 1.5: Perceptual motor includes four buffers: Visual, Manual, Aural and Vocal
buffers.

it mediates the communication between cognition and the external environment. Shown
as Figure 1.6, is an overview of the ACT-R/PM system [18]. As we discussed before,
production rules manipulate chunks through buffers. Four of these buffers belong to
the perceptual motor. They are respectively: the visual buffer, the manual buffer, the
aural buffer and the vocal buffer (see Figure 1.5). Stimuli come from these four different
sources, and correspondingly there are different modules in Perceptual-Motor layer to

handle some certain aspects of perception and action.
Attention

In ACT-R, attention and focus are two different actions. It means in order to focus
on another location, the model has to take two steps: first move attention and then focus
on the new target. For example, it is easy for a person to notice a motion, like a mouse
running on the floor, while focusing elsewhere at the same time, on the TV for example.
Despite the fact that the attention is on the TV, the vision area is wider than the screen
only. That’s why it is possible to notice what happens around. This illustrates the fact
that seeing something is different from focusing on it. In ACT-R, this aspect is taken

into account: in order to focus on a location, the model has to look at this location first.
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Figure 1.6: An overview of ACT-R/PM system.
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Chapter 2

Review of literature

2.1 Introduction

This chapter is divided into four parts. The first section gives the definitions of
some important concepts in the current research. Then the second section introduces
the Norman and Shallice model, on which the model of attention in the current research
is based. The model consists of two mechanisms, the Contention Scheduling and the
Supervisory Attentional System, which together explain how attention can control human
actions. Next, the third section introduces the COGENT, an implemental environment
for cognitive objects, under which the model is built currently. Finally, the fourth section
reviews some previous works that have been done by others on implementation of the

Norman and Shallice model.

2.2 Concepts

2.2.1 Action

Action, so called behavior, is defined as the act of purpose to accomplish a goal in

some stages, usually over a period of time. Two kinds of action are considered: automatic
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behaviors and willed behaviors. The former, also called well-learned actions, refers to the
activities that can be carried out with diminished awareness; the later is the performances
based on will or attention. Whether the purpose is conscious or not, the action is directed
by a goal that is satisfied at the end of the completed action. Some goals are simple and
do not need to be broken into sub-goals. In contrast, complex goals are divided to create
simpler ones, each of them representing an action to be performed. Accordingly, the
action to achieve a complex goal should be decomposed into several sub-actions, each of
which fulfills a sub-goal. This hierarchical structure could be presented by a tree where

the action and the goal levels alternate [19].

2.2.2 Attention

Attention refers to the allocation of processing resources. It is the ability to focus
on a behavior. Some actions require attention: novel actions, dangerous ones or actions
that need deliberate plans. But routine actions, called automatic actions, which have
been performed several times in the same conditions, require much less attention. In
some cases when unanticipated interruptions or unexpected environment changes occur,
the attention rises to cope with the new situation. Therefore, the same action may
belong to the automatic or to the willed action depending on the environment in which
it is performed. For example, driving a car is considered as an automatic action. Every
day, one drives from home to office and hack. While driving his well-known route, the
driver can talk or listen to the radio without much concentration on his action. But if
a hazardous situation takes place on the route, like a traffic jam or a child crossing the
road, the driver stops his conversation and turns his attention to the road. In addition,
if the journey is new, the driver needs to pay attention to the road situation, the traffic
lights, the road signs and so forth. In these cases, the action of driving is considered a.

willed action.
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2.3 Norman and Shallice Model

2.3.1 An Overview

Norman and Shallice provided a framework that comprises two mechanisms to con-
trol the two kinds of actions defined above, the Contention Scheduling (CS) and the
Supervisory Attentional System (SAS) [2]. CS is responsible for well-learned actions,
and SAS is required when the action is new, or when the action itself is dangerous, or
when the plan must be modified according to an unanticipated environmental change.
Actions are represented as some schemas in memory. CS controls actions directly by
selecting from among competing schemas. While SAS controls actions via biasing the
selection process. Figure 2.1 is an overview of the architecture of these two levels of

control.

Supervisory Attentional System
(SAS)

A

Contention Scheduling (CS)

Schema hierarchy

£y

Atomic actions

Figure 2.1: The architecture of the two controlling levels: CS and SAS.

Most of the time, CS makes the selection alone. SAS oversees the processing of CS
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and interferes when necessary. Since a complex action is usually divided into a set of sub-
actions, the schemas for these sub-actions are organized hierarchically in CS according

to different levels of actions. Selections among these schemas are mainly based on their
activation value. Each schema is assigned to an activation value. This value varies over
time during procedure of an action’s performance. When a schema’s activation value is
higher than a threshold, it is selected. A selected schema will lead to either an internal

action or an external action in the world.

In addition, the model contacts with its environment. Some events in the environ-
ment can trigger appropriate schemas. Consider a simple action as “picking up a pen”.
This action can be represented by a set of component schemas like reaching the pen,
holding it and picking it up. Triggered by the perception of the pen on a table, the
source schema of “picking up a pen” is set up by an activation, which in turn activates
the component schemas in a sequence and results in choosing the proper arm, hand, and
finger movements to get the pen. Such a sequence is called a horizontal thread. A simple
horizontal thread is shown as Figure 2.2. Selection of component schemas is determined

mainly by how well its trigger condition matches the contents of the trigger database.

Sensory External and
information | Sensory internal actions

Trigger Component schemas
E \| Perceptual Data ) @ >
Structures Base

Source schema
Figure 2.2: A horizontal thread for an automatic, well-learned behavior.

!

Yy Y VY

In many situations, several actions can be performed synchronously, each of them
is specified by its own horizontal thread. Different component schemas may all access a
common memory database, or need use the same sources (i.e., the same hand). Some
means may become necessary to provide resolutions for conflict under these situations.
As a result, the different threads may interact with one another. Shown in Figure 2.3, the
lines between different schemas represent their interactions. It is similar to the concept

of multi-thread process in computer science.
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Sensory ) External and

information Sensory > Trigger v internal actions
Perceptual »| Data :> >
Structures »{ Base

schemas

Figure 2.3: Three horizontal threads may take place at the same time.

In some cases, attention is required for a particular action either because some
critical or dangerous situations are involved or because the action itself is not well-
learned or because some unexpected issues interrupt the action. In these cases, the
relevant horizontal threads are not sufficient for controlling the action. Therefore, the
vertical threads, shown as Figure 2.4, take over. In fact, these vertical threads take
control over an action only by providing additional activations, as adding activation for

the desired schemas and decreasing that of the undesired ones.

Attentional Resources
add or decrease Activation

Vertical Threads

Sensory V% \ v External an.d
information | Sensory > Trigger Component schemas internal actions

Perceptual > Data

Structures y| Base

Source schema
L >
Horizontal Thread

Figure 2.4: Vertical threads provide additional activations when attention to particular
action is required.
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2.3.2 Contention Scheduling

The CS mainly comprises two parts: the schema hierarchy, within which schemas
are competing and the schema selection mechanism, which is dedicated to the selection

between these schemas. The following describes them in details.

2.3.2.1 Schema Hierarchy

The core of CS is the schema hierarchy and within which a set of schemas are
competing. Shown in Figure 2.1, actions are represented by a number of memory schemas.
When an action is complex, it may be broken down into a sequence of sub-actions.
Schemas are organized into a hierarchy according to different levels of actions, within
which the source schema represents the action and the component schemas represent its
sub-actions. A schema controls an action, either an internal processing or an external
movement of effectors. The source schema is serving as the highest order control and its

component schemas can be activated via the source schema.

There are three states of a schema: dormant, activated and selected. A schema is
dormant when it rests in the memory, playing no role in current processing. For example,
the schemas of cooking are usually dormant during the individual’s sleep. A schema is
activated when it is set up with an activation value. Whenever this value is sufficiently

high, it is selected. A schema’s activation is influenced by several factors:

A top-down influence, also called internal influence, which is from the source schema
or directly set by the SAS;

An external influence, also called environmental influence, which is an input from
the environment. For example, a reachable spoon can excite a schema that repre-

: H (49 .,
sents an action like “pick up a spoon”;

A lateral influence, which comes from interactions with other schemas;

A self influence, which is opposite to the lateral influence.
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2.3.2.2 Schema Selection Mechanism

The schema selection mechanism is in charge of selection among relevant schemas
in order to carry out an action properly. The selection of a schema is according to its
activation value and a pre-assigned threshold. Whenever a schema’s activation value
exceeds the threshold and is higher than that of any other competitor schemas, it is
selected. Under some situations, several schemas may have an activation value which is
higher than the threshold at the same time. In this case, these schemas compete with each
other and the one which suits the situation most can get more activation and finally be
selected. This procedure, therefore, is similar to the re’erieval of chunks in ACT-R [14].
As mentioned in Chapter 1, when ACT-R processes knowledge, it has to determinate
which chunk is to be retrieved. Once the activation of each chunk is computed, every
chunk can be potentially chosen with a probability which depends on their activation.
First, if the activation is below a value, which called the utility threshold, the chunk has
no chance to be chosen at all. In case it is over this threshold, it provides a chance of
that chunk to be retrieved. But only the chunk which most accurately fits the conditions

will have the highest activation level and will be retrieved.

The selection depends upon three effects: horizontal threads, vertical threads and
current environmental conditions. The horizontal threads determine the organization of
a particular action sequence. For example, to make a coffee, one can add sugar before
adding coffee powder or vice versa. The vertical threads determine the biases acting on
the selection process. Usually sugar could be taken from a sugar bowl or from packets in
the same example. But if the sugar in the bowl is dirty, the vertical threads will inhibit
it and therefore give more chance for the sugar in packets to be selected. The trigger
conditions determine the appropriate timing for schemas. For example, an opening milk
carton may trigger the action of adding milk to the coffee or the action of closing the

carton.
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2.3.3 Supervisory Attentional System

The SAS controls actions under non-routine situations. Norman and Shallice sug-
gested that SAS oversees the performance of action and participates in control by creating
schema or by modifying activation values when needed [2]. When an action is novel, or
some dangerous situations are involved, or some unexpected interruptions shbws up, at-
tention is required. Attention is put in from SAS to CS through the vertical threads,
which controls over schemas by modifying the schemas’ activation values, either increas-
ing the values of desired schemas or inhibiting the values of improper schemas according
to the different situations. Shallice and Burgess addressed three stages of SAS to respond

to uncommon situations [20]:

e The construction of a temporary new schema,
e The implementation of this temporary new schema;

e And the monitoring of the schema execution.

Coping with a novel situation involves a variety of different types of processes oper-
ating over these three stages. The key element is the construction and implementation of
a temporary new schema, which takes the place of the source schema, and which in turn
can control the lower-level schemas to provide a plausible procedure for action control
over the novel situation. The 8 processes involved in these three stages are displayed

below. Numbers in parentheses are specified by Shallice and Burgess [20].

Stage 1 (the construction of a temporary new schema)
o The process (4) generates strategies for coping with the current situation automat-
ically by just following a sense of the preceding method of tackling the situation;

e The process (5) generates strategies by using problem solving, which include a series
of phases like problem formation or orientation, the phase of attempting to find a

solution, the assessment of a solution and the phase of checking;
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o The process (6) leads to goal setting, which is required in the phase of problem

formation to provide the criteria for later assessment of the solution attempt;
o The process (7) prepares a strategy and plan for a later time;

e The process (8) provides raw material of related experiences for confronting a new

situation via episodic memories retrieval.
Stage 2 (the implementation of this temporary new schema)

o The process (1) implements the temporary new schema, which has been constructed

in the stage 1.

Since in a new situation, a schema may not be triggered automatically, a special
working memory, which is used to hold the temporally active schema, is required to

implement the operations of the temporary new schema.

Stage 3 (the monitoring of the schema execution)

e The process (2) monitors how well the processes in stage 1 work in a new situation;

o The process (3) rejects or alternates the temporary new schema.

2.4 COGENT: the Cognitive Modelling Environment

COGENT stands for Cognitive Objects within a Graphical EnviroNmenT. It is a

graphical environment for computational modeling of cognitive processes [3].

Typically, cognitive modeling is performed either in a cognitive architecture as ACT-
R [14], or directly in AI programming language as Prolog [21]. COGENT is designed
to allow psychologists with little or no computational expertise to develop their own
computational models. It provides an integrated set of tools to simplify the process

of developing and evaluating computational models of high-level cognitive processes.
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The basic system provides the modeler with a sketch pad on which the model can be
drawn as a box and arrow diagram. This box and arrow notation builds upon the
concepts of functional modularity (from cognitive psychology) and object-oriented design
(from computer science). Different types of box are used to represent different types of
component. Each box represents an object. Different types of arrows are used to indicate
different types of communications between boxes. COGENT is not an architecture like
ACT-R [14] or SOAR [12,13]. Tt does not embody any specific assumption about control
processes and it does not contain any pre-specified learning mechanisms. COGENT is
most appropriate for the development of cognitive models which are not clearly rooted in
any specific architecture. However, as an environment, COGENT provides facilities for
implementing complete architectures or learning mechanisms within models of varying

complexity.

COGENT is not domain specified, it is intend to be as flexible and domain general
as possible. By now, COGENT has been used to develop models in the domains of
problem solving, memory, reasoning decision-making, categorization, mental rotation,

routine action control and executive process control.

COGENT is a powerful computational modeling system, which is designed to sim-
plify rigorous development and testing of cognitive models, and to aid data analysis and

reporting. It provides:

o Memory buffers to store information;

Rule-based processes to operate on the information stored in the memory buffers;

Connectionist networks to represent connectionist object types;

Inter-module communication links to relate compound boxes by means of arrows;

[ ]

1/O devices to send or collect data and objects during model execution.

COGENT also has a good testing environment which allows the users to test their

model step by step or in a whole. During the execution of a model, the traffic between
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Tableau conforme a 'original.

components could be viewed through messages of each component’s window. Following,

some special components of COGENT will be highlighted in details.

2.4.1 The Visual Programming Environment

COGENT offers a visual programming environment out of which models may be
developed, edited, executed and tested. Especially, the programming environment allows
users to create models in a box-arrow notation. Figure 2.5, from the COGENT tuto-
rial [22], shows a box-arrow diagram of a production system. In the diagram, the rounded
rectangle represents a buffer, the square rectangle is compound box, the hexagonal box
represents a process, the solid-end arrow and the bare-end arrow are representing the

read arrow and write arrow respectively.

£ warlding
: M "y

S 5.0 i R
e f\.\ fction - TR LY

Figure 2.5: A box-arrow diagram of a production system.

The graphical model editor offers a number of standard types of component, such
as kinds of buffers, rule-based processes, networks, compound boxes and so forth, which
will be described in details in section 2.4.3. The model shown in Figure 2.5 uses two

propositional buffers (Production Memory and Working Memory), a rule-based process
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(Execute Action), an analogue buffer (paper), and a generic compound box (Production
System Interpreter). These components communicate via reading from and writing to

one another.

2.4.2 Standard Functional Components
2.4.2,.1 Memory Buffers
A membry buffer is a general information storage device, which is appropriate for

both short-term memory (i.e. as in modeling working memory) and long-term memory

(i.e. as in knowledge bases). Five types of buffer box are available:

e Propositional buffer: it is the most basic type of buffer supported by COGENT.

No restriction is set on the types of items stored in a propositional buffer;

o Stack buffer: a stack is a data structure that allows last-in, first-out (LIFO) access.

Stack buffers are more often used to maintain a sequence of goals and sub-goals.

Only the top-most sub-goal could be operated until it is achieved and be popped
off the stack, and then the next sub-goal is revealed. These operations will continue

till the stack is empty, that means the final goal is achieved;

e Analogue buffer: this type of buffer is specified in COGENT to contain and ma-

nipulate graphical representations, such as points, lines, circles, boxes, and so on;

e Table buffer: in a table buffer, data are represented in a two-dimensional table,

thus, the messages are formed like data (row, column, value);

e Graph buffer: in a graph buffer, data are represented in several graphical formats

like histogram, line-graphs or scatter-plots.
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2.4.2.2 Networks

Three types networks are available in COGENT, the feed forward network, the

interactive activation network and the associative network.

e Feed forward network: it provides a general two-layer feed-forward network capa-
bility. It is an object which consists of a set of input nodes and a set of output
nodes, together with a set of weighted connections between the nodes. This kind
of network is able to map input vectors (of the specified width) to output vectors,

and to learn input/output correspondences;

e Interactive activation networks: it contains nodes with associated activation values,
which should be real numbers. Interactive activation networks normally co-exist
with a process which sends appropriate excite messages to control the node activa-

tions:
send excite(NodeName, Excitation) to MyNet.

In such a message, Excitation should be a numeric quantity which specifies the
level of excitation to apply to the node. Another operation available on networks
is matching. The activation value of a node may be queried by matching against

the node’s name:
node(Name, Activation) is in MyNet.

The above code segment may occur in the conditions of any rule or condition def-
inition that can read MyNet. Nodes within an interactive activation network may
be created or deleted. A nodes can be excited (with a positive number) or inhibited
(with a negative number). COGENT offers a special purpose dynamically updated
viewer, so called Activation Graph View, allows activations to be monitored during

model execution;

e Associative network: it consists of a set of nodes joined by weighted connections.

Nodes may be fully connected, as in interactive activation networks. And weights
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between nodes may be learnt as in feed-forward networks in response to training
signals. Associative networks may be configured by setting the network’s size,
learning rule, learning rate, activation function, etc. Associative networks may be

sent two types of messages:

send learn(Vector) to MyNet, messages are used to train the network; send ex-

cite(Vector) to MyNet, messages are used to activate nodes within the network.

2.4.2.3 Compound Boxes

Compound box is a box that contains a set of sub boxes. The behaviors of the set
of sub boxes and their interactions determine the entire behavior of the compound box.
The system defines two kinds of compound box. One is the General compound box and
the other is the Subject compound box. As the name implied, the former is general, it
may contain any types of boxes and has no restriction on those boxes; the latter, has
some constraint on its sub boxes, that is they must make sense themselves. Therefore, a
subject compound box can not have a sub box as general compound box or some other

data boxes, meanwhile have another subject compound box as its content.

2.4.3 The Rule-Based Modeling Language

In COGENT, processes are specified in terms of a powerful but complex rule-based
modeling language. Each rule is a condition-action pair. The condition includes logical
operations, which typically involved matching elements in buffers and whose outcome
may be true or false. Action passes a list of messages to their destinations when the
rule’s condition is true. Following is an example of a rule in COGENT. This rule fires
when there is a word in the short-term storage. And by firing, it adds the word into the

long-term storage:

IF Word in STS
THEN add Word in LTS
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COGENT's representation language is borrowed from Prolog [21], a programming

language developed for Al applications. The representational units include:

1. Atoms: which are sequences of letters or other characters with a number of occur-

rence limitations;
2. Numbers: which are integers or real numbers;
3. Lists: which are sequences of information;

4. Compound terms: which are used to represent information with internal structure,

ie., “Salt is a seasoning” could be represented as seasoning (salt);

5. Variables: which are unknown or non-fixed information.

COGENT also permits users to define their own conditions using Prolog.

2.5 Implementation of Norman and Shallice Model

2.5.1 Contention Scheduling Implementation

Cooper and Shallice have implemented a detailed computational model of CS [19].
It comprises three functional networks: Schema Network, Object Network and Resource
Network. The heart of CS is the Schema Network. The other two networks serve to model
object representations and resource representations. In addition, a selection process

oversees the schema network and interfaces with the object, resource, and motor system.

2.5.1.1 Schema Hierarchy

In the Schema Network, nodes are organized hierarchically according to different
level of actions. Since an action is an act of will, each schema is also associated with a

goal. Thus an action is represented in a hierarchy within which schema levels alternate
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with goal levels. Figure 2.6 shows an example of such hierarchies, which represents an

action and its schema/goal organization.
Prepare-coffee

Prepare-coffee

Add-sugar Add-milk Add-coffee

N LN

Sugar-frm-pack Sugar-frm-bowl Milk:frim-carton  Coffee-frm-jar ~ Coffee-frm-pack

Pick-up Open Pour Put-down
Pick-up Open Pour Put-down

Figure 2.6: Schema/goal organized for the action of coffee preparation. Goals are printed
in bold type and schema in italic type.

To fulfill a goal, at least one schema is proposed. This schema, in turn, may be
associated with a set of subgoals. For example, in Figure 2.6 the goal prepare-coffee
is fulfilled by one schema prepare-coffee. While to execute the schema prepare-coffee,
three goals are to be achieved: add-sugar, add-milk and add-coffee. In addition,
the goal add-coffee could be fulfilled either by the schema coffee-frm-pack or by the
schema coffee-frm-jar. Therefore, within the schema/goal hierarchy the components of
goal nodes are disjunctive while the components of schema nodes are conjunctive. Thus
if the parent is a goal, one (and only one) of the children has to be executed. If the

parent is a schema, all the children have to be fulfilled.

2.5.1.2 Activation Value

Each schema is also associated with an activation value which varies over time. At
any time, the net influence on schema activation is given by a weighted sum of fours

sources [19]:
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e Environmental influence: schema activation may be affected by the presence or

absence of appropriate triggering situation in the environment;

e Internal influence : also called top-down influence, which is from SAS or high-level

schemas;
e Lateral influence: this influence ensure that competitive schemas inhibit each other;

o Self influence: a self influence generally works to excite schemas;

In addition, nodes in Object Network and Resource Network are also associated with
activation values. Cooper and Shallice report the detailed calculations of activations of all

networks and how the four influences contribute to the activations in their implementation

of CS [19].

2.5.1.3 Selection Mechanism

The Selection Process connects the Schema Network with Motor System and oversees
their status. A schema is selected when its activation exceeds a threshold. This selected
schema in turn excites its children schemas. Selection of a lowest-level schema will lead

to an action in the motor system.

2.5.2 Supervisory Attentional System Implementation

2.5.2.1 Internal Processes of SAS

Shallice and Burgess [20] have divided the internal processes of SAS into three stages:
1) the construction of a temporary new schema; 2) the implementation of this tempo-
rary new schema; and 3) the monitoring of the schema execution. Shallice and Burgess
specified 8 processes in these three stages [20]. These internal processes of SAS are
similar to the usual ones that are always addressed in artificial intelligence. Therefore,
Glasspool [23] proposed to use an artificial intelligence agent, Domino, as an approach

for implementing SAS into a computer model.
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2.5.2.2 Domino Agent

Domino is an artificial intelligence (AI) agent [24]. An AI agent is defined as an
autonomous entity which can set its goals and act on the world to pursue these goals.
Domino, therefore, addresses the types of cognitive processes like setting goals, generating
strategies to fulfill these goals, carrying out actions to implement the strategies and

reacting to environmental changes.

Domino agent provides a framework with seven types of processes operating on six

types of information:

e Goal generation: based on some beliefs about its environment and current state,

this process sets up a goal for the agent;

e Solution generation: this process treats the goal as a problem to be solved and finds

possible strategies to fulfill the goal,

e Solution evaluation: this process compares all proposed solutions and chooses the

proper one;
e Belief update: this process updates its beliefs according to the new solution;

e Plan adoption: this process determines a new plan of actions for the selected solu-

tion;

e Plan execution: this process decomposes the new adopted plan of action into atomic

actions that are executed by the agent;
e Monitoring: this process monitors the effects of these actions on the world and

checks how well the intended goals are achieved.

2.5.2.3 Implementation SAS in COGENT

Using buffers to store the information and rule-based processes to handle the pro-

cesses, the Domino agent is ready to be implemented in COGENT. Actually, Glasspool [23]
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has mapped the outline of SAS [20] directly onto the Domino outline, see Figure 2.7. In
Figure 2.7, the numbers in parentheses refer to the processes decomposition in the three

stages mentioned in Chapter 2.3. The processes addressed in Domino are printed in
boldface.

Based on this mapping, a model of SAS has been implemented in COGENT accord-
ing to the Domino processes explained above [23,25], shown as Figure 2.8. Processes
are implemented in rule-based processes shown as the hexagons. Information are stored
in buffers shown as the round rectangles. Arrows imply the communications between
processes and buffers. CS is implemented in a compound box shown as a rectangle, in

which the schema hierarchy is implemented in an interactive network.

2.6 Conclusion

This chapter reviews the literature of the current research. The theme of this re-
search is to build a model of attention and to view how attention switches from one

action to another during interruptions. Therefore, attention and two kinds of actions are
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Figure 2.8: Implementation of SAS in COGENT based on Domino agent.

first explain in the chapter. With these concepts, Norman and Shallice model presents
two mechanisms, the CS and SAS, which control automatic actions and willed actions
respectively. The model proposes that each action is represented by a memory schema
which is associated with an activation value. At any time, only the action with the
highest activation is executed. The primary role of attention is in the control of action.

Attention affects actions’ execution by adjusting the activations of schemas.

COGENT provides a box-arrow modelling environment for cognitive objects. Dif-
ferent types of boxes are used to represent different components like memory buffers,
cognitive processes, networks and compound boxes. Two types of arrows are used to
indicate two types of communications (either read or write) between boxes. The pro-
cesses are rule-based. Each rule is a if-then clause which defines a pair of condition and

operation.
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Under the environment of COGENT, CS has been implemented as a network inter-
acted with object and resource. Schemas are organized hierarchically as a tree. Each
schema has an activation value which is influenced by four facts: a self influence from
the schema itself, a lateral influence from competitor schemas, an internal influence from
high level schemas and an environmental influence from the object network and the re-
source network. Whenever a schema’s activation value is exceed a threshold, it is selected.
When a lowest-level schema is selected, it excites the proper object and resource in order
to execute an action. The implementation of SAS proposes an Al agent as its approach.

It specifies six processes which is implemented directly in COGENT.

But by now, there has no report about implementation of the entire Norman and
Shallice model or works on the interaction between the CS and SAS. Therefore, it causes
our interest on the current research. In next chapter, we will explain details about the

research.
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Chapter 3

Attention implementation

3.1 Introduction

This chapter presents most details of our current research. The first section is a
preliminary, which includes a brief review of the theoretical and empirical background,
the definition of interruption and its three cases, the objectives of the research and the
methodology and its constraints. The second section concentrates on the implementing
interruption in Norman and Shallice model. This part explains action representation,
activation compute, interruption implementation, processes in SAS and their main func-
tions and uses an example to describe the procedure of an interruption and the interac-
tions between CS and SAS during the interruption. Then, the third section prints out
the results of the research from two experiments, discusses the experimental results in
accordance with the real world and compares the model of attention with task switching

and reactive planning.
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3.2 Preliminary

As discussed before, it’s time to help cognitively impaired people in a technological
way. To develop such technologies, first of all, we need to understand how human cog-
nitive processes work and what factors affect these processes. Attention is one of such
factors because human actions are under control of attention. Attention is what enables
us to process information about the world around us. We can only be aware of things
around us if we pay attention to them. Attention filters and feeds information about the
world around us into our mind. This thesis aims to implement a model of attention. The

model gives a view of how attention controls human actions during interruptions.

The delay of action performance leads to the goal concurrence. Goals management
is necessary because two actions could not always be performed at the same time. The
interruptions, which are presented later, are an example of such conflict. In our everyday
lives, interruptions occur very often. For example, the phone rings as one is deeply
engaged in preparing meals, or somebody knocks the door unexpectedly as one is writing
a letter, or an urgent message arrives from the supervisor as one is planning a document.
Each case easily creates a situation in which one’s attention switches from one action to

another.

3.2.1 Interruption

An interruption is defined as an unanticipated issue rising up from the environment
while a main action is being performed. Facing an interruption issue, individuals mainly

react in three different manners depending on the urgency.

e Case 1: if the interruption is more urgent than the current action, one switches his
attention from the current action to perform the interruption action and completes

the main action afterward.

e Case 2: the interruption is urgent, but the main action is currently dangerous,

one still executes a part of the current action in order to keep it safe and then
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accomplishes the interruption. For example, somebody knocks at the door when

one is frying eggs, usually people turn off the stove then go and open the door.

e Case 3: the interruption is less urgent than the main action and will be processed

later after the completion of the current action.

To deal with interruptions during action completion implies to deal with attention.
An intelligent system attended to model interruptions needs to represent the action in
process, the changes in the environment leading to an interruption and the decisions

controlling the actions order.

3.2.2 Attention Model Implementations

Norman and Shallice, as we mentioned before, provide a psychological model com-
posed of two mechanisms of action control, Contention Scheduling mechanism (CS) re-
sponsible for well-learned actions, and Supervisory Attentional System (SAS) required
when the sequence of actions is new, when the action itself is dangerous, or when the
plan must be modified according to an unanticipated environmental change [2]. Cooper
and Shallice have implemented a detailed computational model of CS [19]. Shallice and
Burgess proposed an outline of the processes and their interactions involved in SAS [20].
As an intelligent agent, SAS is able to plan, generate strategies and solve problems.
Therefore, Glasspool used an artificial intelligence (AI) agent theory to implement the
SAS [23]. But still no implementation resumes the SAS role neither the interactions

between the SAS and CS, which are essential to explain how to deal with interruptions.

3.2.3 Objectives

The objectives of this thesis are to implement the entire theory of SAS and CS and
the interactions between these two mechanisms regarding interruption control. Therefore,

the objectives of this thesis are threefold:
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e Implementing a scenario of the SAS;
e Implementing the attention switching from the SAS to the CS;

e Implementing the interruption management in the first case (see 3.2.1).

3.2.4 Methodology and Constraints

Cooper fleshed out the internal processes of SAS-CS model by using COGENT [25].
Based on this structure, the model of attention is implemented in COGENT. In this

implementation, modifications are made as few as necessary for the current purpose.

As stated above, the main purpose of this thesis is to treat the Norman and Shallice’s
model as an entire entity and to focus on how attention switches between two control
levels during an interruption. To give a simple and typical view of how attention handles
an interruption, only the first case is implemented in current research. This means
that the interruption management includes three steps: performing the main action;
performing the interruption action as soon as it occurs; and completing the main action
afterwards. Here, only one level of interruption is implemented, although sometimes new

further interruptions could happen.

Regarding of the environment under which the model performs, Cooper and Shal-
lice [19] built vivid environment for their model of CS. In their environment, resources
and objects are taken into account to let the model arrange the proper resources and
objects when it executes an action. For example, to pick up a spoon, the right hand
(resource) and the spoon on the table (object) are required. Meanwhile, the environ-
ment can influence the schema selection of CS to some extent (depending on the amount
of environmental influence). However, this research is not interested either in how the
model interacts with its environment or in how much the environment could influence
the action selection. Therefore, the environment here is implemented without the repre-
sentation of resources and objects. By doing so, it is assumed that whenever the model

needs a certain resource or object to complete an action, it is available and could be used
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correctly. Moreover, since the resource is ignored here, the model of attention cannot
simulate two actions synchronously and cannot be used to simulate process errors caused
by interference of requests of a resource or an object. It performs actions separately. In
addition, in current implementation, the environmental influence is ignored as the result

of simplification of the environment implementation.

3.3 Implementation of Interruption in Norman and

Shallice Model

In this chapter, the interactions between CS and SAS are implemented to show
how attention switches from one action to another during an interruption. Section 3.3.1
describes two actions representation in the current implementation. The following two
sections 3.3.2 and 3.3.3 talk about the implementation of the two mechanisms of action
control, CS and SAS. Section 3.3.5 discusses the interactions between CS and SAS during
an interruption. And the last section (3.3.6) presents how interruption is implemented

for the current purpose.

3.3.1 Action Representation
3.3.1.1 Hierarchy Representation

Proposed by Cooper and Shallice in their model of CS [19], schemas are goal di-
rected. Thus an action is represented in a hierarchy within which schema levels alternate
with goal levels. In the current implementation two actions are taken into account: the
prepare-coffee action and the answer-phone action. Figure 3.1 presents their schema/goal
organizations respectively. The leaves of the schema/goal representation correspond to

the atomic actions which could be executed directly in the world.

Each schema is associated with an activation value. The activation value is a real

number and varies over time. Section 3.3.6 discusses the details about how a schema’s
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Prepare-coffee

Prepare-coffee

Add-sugar Add-milk Add-coffee

SN LN

Sugarfrm-pack Sugarfim-bowl Milkfrm-carton  Coffee-frm-jar ~ Coffee-frm-pack

Pick-up Open Pour Put-down
Pick-up Open Pour Put-down

(a) Schema/goal organized for the action of coffee preparation.
Answer-phone

Answer-phone
Pick-up-receiver Talking Hang-up
Pick-up Talking Hang-up

(b) Schema/goal organized for the action of answer phone.

Figure 3.1: The trees relate to schemas and goals. Goals are printed in bold type and
schema in italic type.

activation value updates during the model’s performance.

3.3.1.2 TUrgent Priority Value

As emphasized before, the theme of this research is to model attention controlling
actions during interruption. Therefore an additional parameter is specified in our imple-
mentation. It is called urgent priority value. This value identifies how urgently an action
has to be executed. Thus, an action is represented as a pair of its name with its priority
value like Action (Name, Priority). Name identifies the action’s schema hierarchy as

any one of the trees in Figure 3.1. Priority is the action’s urgent priority value. At any
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time, if an action’s urgent priority value is higher than any others, it should be executed
first. .

During the simulation of the model of attention the prepare-coffee action is initializec
as the main action which is interrupted by the interruption: answer-phone action. There-
fore, the prepare-coffee action is assigned a lower priority value than that of answer-phone

action for current purpose. Section 3.3.6 will give more details on this aspect.

3.3.2 CS Implementation

As mentioned before, our objective is to implement interruption in Norman and
Shallice model and by doing so to give a view of how attention switches between actions
during an interruption. Therefore, in current implementation, we remove the Object
Network and Resource Network from the former implementation of CS [19]. We assume
that at any time when the subject needs allocate some objects or resources to take out an
action, they are available and can be used properly. Thus, the current implementation

of CS is composed of the schema hierarchy and the selection mechanism.

3.3.2.1 Schema Hierarchy

The core of the CS is the schema hierarchy, within which each schema represents
an action [26]. Two sub-nets, named coffee and phone respectively, are defined in the
Schema Hierarchy to refer to the two actions in the current implementation. Each schema
must be identified by its description and the sub-net it belongs to. This is because an
action is often involved to contribute to different goals. For example, the schema milk-
from-carton could be used for a preparing coffee goal, or for a baking cookies goal, or

even for a frying eggs goal.

Two processes, the trigger schemas and the select € act, operate on the schema
hierarchy. First, the trigger schemas updates each schema’s activation value. Then, the
select € act works as the schema selection mechanism to select the proper schema and

leads an action in the world when a lowest-level schema is selected.
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3.3.2.2 Activation Value

Methodology

COGENT provides a set of parameters to contribute the activation value calcula-
tion. These parameters are binding on the Schema Hierarchy network. The Min Act
parameter and the Max Act parameterare set to ensure schema activation varies
over time within a range of [0.0, 1.0]. The Lateral parameter and Self parameter
are set through some trials according to the following criterions: 1) each schema, even
the lowest-level schema, has to get an activation value which allows it to be selected; 2)

both the lateral influence and the self influence should belong in a comparable rang.

Schema Activation Updating

Schema activation value is updated on each cycle during the model’s performance [26].
The process trigger schemas calculates each schema’s activation value on each cycle. The

activation update function is expressed as equation (3.1) [19]:
AT =T[PFTH(A) + N, (3.1)

where P is the network’s persistence parameter which could be any real number. It
describes the degree to which activation values persist in the absence of excitation. For
example, a persistence of 1.0 will lead to nodes maintaining their current activation in
the absence of further excitation. While a persistence of 0.0 will lead to nodes reverting
immediately to rest activation in the absence of excitation. Af, which belongs to the
interval 0 and 1, is node #’s activation on cycle ¢; IV; is the net input to node i; and 7 is

the standard sigmoid activation function (o) shifted and scaled such that:

(00) = 1.0
7(0) = 0.1
7(—o0) = 0.0

The net input N; of a schema is determined by four factors: internal influence,

environmental influence, self influence and lateral influence.
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Internal Influence

The internal influence, also called the top-down influence which comes from the

parent schema or from SAS directly, is calculated as follows (equation (3.2)).

Let I; be the internal influence on a schema 4, let A, be the activation value of its

parent and let N, be the number of the children of that parent p,

I; = Ap /Np. (3.2)

When the schema is directly triggered by SAS, the internal influence from SAS on

that schema is set to 1.0.

Environmental Influence

The environmental influence comes from the object and the resource with which the
model interacts during action performances [19]. For example, a bowl of sugar and a free
hand could give an excitation on the schema sugar-from-bowl. In current implementation,
the environment is implemented without resource network and object network. The
object network and resource network are removed from CS by assuming that at any time
when the subject needs allocate some objects or resources to take out an action, they
are available and can be used properly. Therefore, the environmental influence is ignored

here.

Lateral Influence

Competitive schemas inhibit each other. This inhibition is called a lateral influence.
Competitive schemas are defined as those sharing either the same goal or one or more
subgoals in common. For example, in Figure 3.1(a), schema sugar-from-bowl is a com-
petitor of the schema sugar-from-pack, because they share the same goal Add-sugar.
At any cycle ¢, the lateral influence on a schema is the sum of the influences from all its

competitors, which is expressed as equation (3.3):
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L;= ZLP(AZ — L) (3.3)

k
where A? is the current activation of any competitor of that schema; and two parameters,
L,, and Ly, both of which could be any real numbers, control how lateral influences from

competitor schemas are calculated.

Self Influence

A schema is influencing on its own activation. It is called self influence, which is
proportional to the schema’s activation value. Equation (3.4) explains how self influence

on a schema 7 is calculated:

S; = S,(Af — S) (3.4)

where A is the schema’s activation on current cycle 7; and two parameters S, and Sy,
both of which could be any real numbers, control how the schema’s activation contributes

to its self influence.

Finally the net input to schema i, IV; is calculated as equation (3.5):

where /; is the internal influence on that schema; C is a parameter, which represents the
total competitive input to the schema and is scaled by the schema’s self influence and

lateral influence, shown as equation (3.6):

where S; and L; are respectively the self influence and lateral influence on the schema 1.

3.3.2.3 Selection Mechanism

The process Select & Act in CS works as the selection mechanism. It is in charge
of selection of the most proper schema and carries out an action when a lowest-level

schema is selected. Whenever a schema’s activation value exceeds a threshold, which is
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Table 3.1: The main processes and their functions in SAS.

SAS Component Process Function

Perception Senses any environmental change
and transfer useful information

to the subject.

Monitoring & Monitors action execution and sets
Goal Generation goals if necessary.

Strategy Generation Generates different strategies to
achieve the set goal.

Evaluation Evaluates the strategies and selects
the most suitable one currently.
Schemas Construction | Constructs a temporary new schema
for the select strategy.

Beliefs Update Updates beliefs about the environment.

set to 0.60, and is higher than any of its competitor’s activation values, it is selected.
A competitor of a schema is a schema that may share the same goal or share one or
more subgoals in common. For example, in Figure 3.1, the schema sugar-from-bowl is a
competitor of the schema sugar-from-pack, because they share the same goal Add-sugar.
A selected source schema in turn excites its component schemas. After achieving its goal,

a schema should be inhibited (sending a negative exciting value) and be deselected.

3.3.3 SAS Implementation

We continue to use the structure fleshed out by Cooper [23,25]. Modifications are
made for the current purpose. Table 3.1 lists the processes involved in the structure and
their major functions during action control. Among these processes, we highlight two in
the following example: Perception and Monitoring & Goal Generation. These play the

most important role during the response to interruptions.

As mentioned above, all processes are implemented in rule-base processes in CO-
GENT. That implies that each of the processes is based on rules. A rule usually is a
if-then pair. Operations could be any COGENT defined or user defined functions. The
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basic rules of each process in the current implementation are described as below.

Perception
This rule detects a new action from the world and adds it into Working Memory.

{If action (T, U) in the World
not do-action (T, U) in Working Memory

Then add do-action (T, U) in Working Memory.}

Monitoring & Goal Generation

Rule 1 initials an action and sets a goal for it.

{If do-action (T, U) in working memory
not current-strategy (T, S) in Working Memory

Then add strategy-generate (T) in Goals}

Rule 2 monitors the interruption while the subject is doing the main action. It makes

decision of attention switching by calling a function, which is discussed in next section.

{If do-action (Ti, Ui) in working memory
not current-strategy (Ti, Si) in Working Memory
is~doing (Tc, Uc) in Working Memory

Then
call Compare (Ui, Uc) }

Strategy Generation

This rule is used to generate strategies for a new goal.

{If strategy-generate (T) in Goals
Then add (Strategy-T) in Candidate Strategy}

52



Evaluation

This rule evaluates candidate strategies. In the current implementation, we only

implemented one strategy for both of the actions’ goal. Therefore, the strategy is selected

directly.

{If (Candidate) in Candidate Strategy
Then add selected(Candidate) in Evaluated Strategies}

Schemas Construction

This rule constructs a new temporary schema for the action that the subject is going

to do next. It also deletes all the outdated temporary schemas.

{If selected(S) in Evaluated Strategies
not schema(s) in Temporary Schema
Then delete all schema(X) from Temporary Schema

add schema(s) in Temporary Schemal}

Beliefs Update

This rule updates the belief about the current strategy.

{If selected(8) in Evaluated Strategies
do-task(T) in Working Memory
not current-strategy (T, S) in Working Memory
Then delete all current-strategy (X,Y) from Working Memory
add current-strategy (T, S) in Working Memory}

3.3.4 Example

Initiation

53



In this implementation, it is assumed that at the initial time, the subject wants
to prepare a coffee. The first process in SAS, Perception, adds a request of the coffee
preparation action in the working memory. Then Monitoring & Goal Generation sets
up the goal of coffee preparation. The Strategy Generalion in turn generates a possible
approach to achieve the goal. Currently, to make a coffee by using instant coffee is the
one and only strategy for the goal. Therefore, after evaluation, this strategy then is
selected to construct a temporary new schema for coffee preparation. The temporary
new schema, triggers the source schema of coffee preparation action in the CS. So far,
SAS delegates control of action to CS.

Perception of Interruption

Now the coffee preparation action is controlled by the CS unless an interruption
occurs. At this time Perception acts as an “advisor” to indicate the change in the
environment. When Perception perceives the phone ringing, it feeds the request to answer

the phone.

Attention Switching Determination

Then a central function Compare (Ui, Uc) in Monitoring & Goal Generation is
responding to the determination of attention switching during interruptions. Let Ac-
tion (C, Uc) and Action (I, Ui) represent the current action and the action for the

interruption respectively, the function is described as following:

{If Ui > Uc
Then set a goal for I in Goals;
marker (stop(C)) in working memory;
{If finished (I)
Then resume (C)}
Else {If finished(C)
Then set a goal for I in Goals} }
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The function in Monitoring & Goal Generation first will compare the new interrup-
tion action’s urgent priority with that of the current action. If it is higher, another rule
in the process will be fired to raise a goal for the new action and pause the current action
at the same time. This goal will lead to another flow of processes in SAS and reconfig-
ures CS to adopt another schema hierarchy for the action of answering the phone. After
finishing the phone call, the cue of an unfinished action of coffee preparation reminds the
subject to resume it. Here, the unsatisfied goal is retrieved from the working memory.
A goal then should be set again to continue the former coffee preparation action. The
processes flow of SAS will finally recbnﬁgure CS to handle it until completion unless
another interruption occurs. Cues in the world help the subject to determine where to

continue the former action.

3.3.5 Interactions between CS and SAS

In Chapter 2, it is described that SAS takes over control of actions through vertical
threads. In the current implementation, SAS interacts on CS in three main spots. That

means three vertical threads are involved in the implementation.

First, at the initial stage, SAS initializes a routine action and delegates it to CS to

be completed automatically if no interruption occurs.

Second, when an interruption takes place during the routine action performance,
SAS switches attention from the routine action to the interruption by constructing and
implementing a new temporary schema for the interruption action as well as pausing the

initial routine action.

Third, when the action of interruption is done, SAS updates beliefs about its situa-
tion and reconfigures CS to continue the unfinished former routine action until completion

if no other interruptions occur.
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3.3.6 Interruption Implementation

Only the first case of interruptions is implemented in this research. Therefore, when-
ever the subject perceives that the phone is ringing (through the Perception process), it
switches its attention from the current coffee preparation to answering the phone. For
this purpose, the answer phone action is assigned to an urgent priority of 30 while the

coffee preparation to 10.

The model interacts with its world, which is called Experimental World. The phone
call interruption occurs randomly from the world. In Fzperimental World, a process
Manipulate World responds to the interruptions’ random. As in many other computer
programming language, the rule-based language of COGENT offers the random number
to contribute to this issue. In this implementation, a random number R is introduced.
Whenever R is numerically equal to 5, a request of answer phone is added in the State

of the world.

3.4 Results and Discussions

In this Chapter, the results of two experiments are reported to explain how the
model of attention works. Results of these two simulations are presented in groups of
cycles. Then the experimental results are explained through their accordance with the
real world. Afterwards discussions are divided into three parts: 1) the model of attention
is reviewed and some ongoing works are proposed; 2) the model of attention is compared
with another task switching model built by Sohn and Anderson in ACT-R [27]; and 3) a

parallel is drawn between the model of attention and AI concepts.

3.4.1 Results

In this section, results of the simulation are reported based on two experiments,

both done in COGENT. As mentioned before, the time when the phone call interruption
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occurs is set randomly. In the following two experiments, the interruption feeds in the
model on different cycles. Results are presented in groups of cycles to show how atten-
tion controls actions. Some representational cycles are listed and explained afterwards.
On each cycle, the information transference can be obtained from the message page of
any activated windows. More visually, COGENT provides the Activation Graph of the
Schema Hierarchy to give a dynamic view of nodes’ activation value, which updates over
time. Figure 3.2 provides a view of the schemas’ activations when the subject is answer-
ing the phone. As mentioned previously, while answering the phone, the initial action
of coffee preparation is paused. Therefore, in Figure 3.2, the schemas belonging to the

sub-net of coffee are inhibited.

Figure 3.2: The Activation Graph histogram.

3.4.1.1 Experiment 1

In the first experiment, the answer-phone action feeds in at cycle 33. As we stated

earlier, during the execution of the model, the traffic between components could be viewed
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through messages of each component’s window. Through these message views, we get

the information of each cycle. Some of them are highlighted below.

e From cycle 1 to cycle 16, preparing the action of coffee preparation. During this

time duration, SAS initializes the main action;

e From cycle 16 on, SAS delegates control of action to CS. The current action is

coffee preparation and schemas’ activations are updating in CS;

e From cycle 33 to cycle 50, preparing to answer the phone. During this time dura-
tion, information flows within SAS to switch attention to the action of answering

phone call, while CS continues with the main action of coffee preparation;
o At cycle 41, schema add-coffee-from-packet/coffee is selected;
o At cycle 49, schema add-sugar-from-packet/coffee is selected,

e From cycle 50 to cycle 123, executing the action of answering the phone. Now
schemas belonging to answer phone are excited enough by SAS and are executed

by CS automatically;

e From cycle 124 to cycle 139, resuming the former action of coffee preparation. Dur-

ing this time, SAS returns attention to the interrupted action of coffee preparation;

e From cycle 139 to the end of the model, executing and finishing the action of coffee

preparation.

3.4.1.2 Experiment 2

In the second experiment, the answer phone action feeds in at cycle 24. Messages of

this experiment are listed below.

e From cycle 1 to cycle 22, SAS initializes the action of coffee preparation;
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From cycle 22 on, SAS delegates control of action to CS. The current action is

coffee preparation;

From cycle 24 to cycle 36, SAS is preparing to answer the phone. Meanwhile the

coffee preparation is paused;

From cycle 37 to cycle 123, SAS delegates control of action to CS to execute and

complete the action of answering phone;
From cycle 124 to cycle 135, SAS is resuming the former action of coffee preparation;

From cycle 135 on, SAS delegates control of action to CS, in which the schemas’

activation is excited again;

At cycle 157, the schema add-sugar-from-bowl/coffee is selected,;
At cycle 163, the schema add-coffee-from-packet/coffee is selected;
At cycle 182, the schema add-milk-from-carton/coffee is selected,

From cycle 183 to the end of the model, the action of coffee preparation is completed

with no further interruption.

Whenever attention is required, SAS interferes in the performance of actions. As

discussed before, SAS put attention to an action through modifying its corresponding

schema’s activation. Therefore, if a schema is triggered directly by SAS, it gets an

excitation of the amount of 1.0 from SAS.

The CS, as its name implies, is in charge of two facets of schemas’ mechanism:

contention and scheduling. Firstly, competitor schemas compete with each other. For

example, from the two experiments, we see that the schema selected to achieve a certain

goal is not always the same. In Experiment 1, the schema add-sugar-from-packet/coffee

is selected to achieve the goal of add sugar; while in Experiment 2, the schema selected

for this goal is the schema add-sugar-from-bowl/coffee.

59



Secondly, as discussed in section 5.1.1, schemas are goal directed. In addition, a goal
could be decomposed into a set of subgoals. These subgoals are either equally ordered
or scheduled in a sequence. For example, the order of the schema’s selection is different
in the two experiments. In Experiment 1, the schema add-coffee-from-packet/coffee is
selected before the schema add-sugar-from-packet/coffee. In Experiment 2, the schema
add-sugar-from-bowl/coffee is selected before schema the add-coffee-from-packet/coffee.
Because these two schemas are equally ordered, the order of their selection is a result of

competition.

Notice that in Experiment 1, the phone call feeds in on cycle 33 and the action of
answering the phone begins at cycle 50. In this duration of its excitement, the activations
of some schemas in coffee preparation are still increasing. This could be explained in the
real world: when the phone rings while we are executing another routine action, most
times, we need a period of time to respond to the ringing phone. Until we pick up the
receiver, we continue our performance of the former action, though it may be inhibited

unintentionally at the very second that the phone rings.

In the implementation, SAS interacts with CS on several stages. First of all, SAS
initializes a routine action (e.g., coffee preparation) and delegates it to CS to complete
by executing a set of actions. Second, when an interruption (e.g., phone ringing) occurs
during the routine action performance, SAS switches attention from the former action
to the interruption by constructing and implementing a new temporary schema for the
interruption action, as well as pausing the former action. Third, when the action of
interruption is done, SAS updates beliefs about its situation and reconfigures CS to

continue the former routine action to completion if no other interruptions occur.
3.4.2 Discussions

3.4.2.1 Review of the model

The model of attention gives a view of the role of attention in action controlling

through coping with interruptions. With the introduced parameter of the urgent priority,
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the model could recognize an interruption and make a decision about the direction to
which the attention should be driven. SAS oversees the execution of action and the state
of the environment. Whenever necessary, it interferes with the action control and finally
delegates control of action to CS. Schemas in CS are organized hierarchically, which
incarnate the integrality and conciseness of the model. Because the model here treats
the CS and SAS as a whole, it did not put more ink on either of the two. Parameters are
settled on through several experiments until the model performs properly. Interruptions
are simulated randomly like most situations in the real world. The model can react and
handle these random interruptions successfully as expected. However, considering the

model in accordance with the real world, it could be improved, at least in some aspects.

First, in current implementation, the urgent priority is assigned to be a constant.
But in the real world, depending on its different processing stages, how urgent an action
is may vary over time. For example, the coffee preparation action is less urgent at the
very beginning. But while the stove is turned on to boil the water, its degree of urgency
should increase according to the current danger of fire. Therefore, a more mature analysis
should take into account the variation of this parameter according to time and to the

hazardous status of the action.

Second, to simplify the routine actions execution, the experimental world is imple-
mented without the representation of objects and resources. Therefore in our simulations,
the model performs actions separately. That means, for example, when a phone call
comes during the coffee preparation procedures, it pauses the coffee preparation action
to answer the phone call, then goes back to preparing coffee after conversation. However,
in many situations, people can do these two actions together at the same time. In fact,
in daily life, people often do more than one things simultaneously. Processing resources
should be taken into account to let the model simulate synchronous performance of two
actions. On the other hand, because of the ignored objects and resource implementation,
the model here did not simulate process errors caused by interference of requests of a

resource or an object.

Another issue that takes place often in our daily life is that people’s actions are not
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always interrupted by a single interruption. That means a complex action, because of
its relatively long time duration and deep decomposition of stages, may be disturbed by
a series of interruptions. For example, while a clerk is preparing his weekly work plan,
the phone rings; then while he is answering the phone, his manager asks him to attend
an emergency meeting. The model can simulate human cognition more effectively if this

aspect is taken into account.

3.4.2.2 Comparison with Task Switching in ACT-R

As discussed before, switching from one action to another is under the control of
attention. The model we implemented focus on the role of two mechanisms, CS and SAS,
during attention switching from one action to another. To carry out any action could be
treated as a task. Therefore, attention switching between actions is often referred using
the term of “task switching”. Many studies are dedicated to task switching. An example
is provided by M. H. Sohn and J. R. Anderson with their model of task switching in
ACT-R [27].

As discussed in 1.5.2, the ACT-R system is a general system for modeling higher level
cognition. It could be characterized as both symbolic and subsymbolic. At the symbolic
level, information processing in ACT-R involves a sequence of production rule firings.
Each production rule involves some chunks’ retrieval to transform the goal status [14,27].
At the subsymbolic level, ACT-R assumes that multiple production rules compete to
determine the schedule of information processing. In addition, the retrieval of a chunk
depends on its activation value. This idea is similar to the CS mechanism. Therefore,
ACT-R model could be used to simulate executive and automatic actions. In fact, in their
model, Sohn and Anderson investigated how executive and automatic control mechanisms

have their effects when people rapidly switch from one task to another [27].

But there was no SAS in the ACT-R model. In ACT-R, the calls for shift of atten-
tion are controlled by explicit firing of production rules [28]. However, changes in the

environment could be transferred into declarative chunks which can then be processed
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by the ACT-R system. When its goal is changed (which means its task is switched to an-
other), the model retrieves some other chunks according to the new goal and determines

the next task. Therefore, attention switches automatically from one task to another.

In a word, the key difference between the two models is: in the SAS-CS model,
attention is directed by SAS while in Sohn and Anderson’s model, switching of attention
is controlled by production rules. In addition, Sohn and Anderson’s model is focused on
how executive and automatic control mechanisms have their effects when people rapidly
switch from one task to another. In contrast, the model here focuses on how attention

could control actions through interaction of the SAS and CS.

3.4.2.3 Comparison with Reactive Planning

In this research, the model interacts with an experimental world, from where an
interruption takes place. Dealing with context changes is often referred to as another Al
concept: reactive planning. Planning is a key ability for intelligent systems, increasing
their autonomy and flexibility through the construction of sequences of actions to achieve
their goals. More precisely, reactive planning extends the traditional planning by adding
the current context influences in the action selection [29]. Action selection is supported
by reactive plans, which are stored structures specifying the next act according to both
current internal and environmental contexts. However, reactive planning chooses only
the immediate next action. A deliberate planning may inform or create new plans or

behaviors. Therefore a complete intelligent agent combines three-layers [30]:

1. Behavior-based Al, the decomposition of intelligence into simple, robust, reliable

modules;

N

Reactive planning, the ordering of expressed actions via carefully specified program

structures;

3. Deliberative planning, which may inform or create new plans or behaviors.
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The SAS-CS model presented here are parallel to such an agent. The first layer is
at the motor level and is part of the CS; the second layer is the CS itself; and the third
layer is the deliberate level and corresponds to the SAS.

In psychology, attention is responsible for context awareness. In the model of atten-
tion, one of the SAS’ roles is to detect environmental changes. The model of attention
in this paper presents SAS directing attention onto a specified individual schema in CS
to control action. Therefore, the automatic process is then isolated from the decisions
requiring much more elaborations. It could be compared with the Basic Reactive Plan,
which is explained by Bryson and Stein [29]. Both of the models select actions based
on priority levels and hierarchical plans. But, the choice of the next action is embodied
in the action representation in the Basic Reactive Plan. In the current model, action
selections are divided into two cases: for automatic actions, action selection is done by
CS based on schemas’ activation value; for novel actions, the next action is chosen by
other SAS processes [26]. Two SAS processes which are involved in case of interruption
are: the Perception and Monitoring & Goal Generation. These two processes respectively
respond to the interruption identification and the action selection based on the priority

of urgency.

The model presented in this paper is not intended to present the whole mechanism of
the Norman & Shallice model. It focuses on how attention switches and handles actions
when confronting an interruption. First, it shows how an environmental change leads to
an interruption in the CS process and second, how the SAS gives back the control to the

CS when the chosen action becomes automatic.

3.5 Conclusion

This chapter describes the model of attention, which is the theme of this thesis. The
model is based on the Norman and Shallice model, therefore, during the implementation
we continue using the approach discussed in section 2.5 for current purpose. An interrup-

tion is defined as an unexpected action that need to be handled immediately while one is
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doing another action. To identify the two actions, an additional parameter called urgent
priority is bound to each action. The interruption always has a higher priority than the
main action does in order to simulate the interruption. Activation compute is explained
with a set of parameters offered by COGENT. The implementation of SAS focuses on
two important processes: Perception and Monitoring & Goal generation. The function
of each process is described through a set of rules. The logics of the main rules of each
process are presented. Next, results from two simulations of interruption are listed with
program executing cycles. Finally, the whole model is discussed through comparisons

with two other researches: Task Switching in ACT-R and Reactive Planning.
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Conclusion

In this thesis, a cognitive model is presented to examine how attention switches in
order to control actions during interruptions. Concepts of action, attention and interrup-
tion are described with examples. Everyday, people perform many actions. These actions
are driven by particular goals even if these goals are not always conscious. Actions requir-
ing less awareness are called well-learned behaviors or automatic actions. Other kinds of
actions need much more attentions to be executed successfully. These actions are called
willed behavior. Responding to these two kinds of actions, Norman and Shallice’s model
addressed two distinct mechanisms of control, CS and SAS. They work together as an
intelligent agent that is able to raise its goal according to beliefs about its current envi-
ronment, to generate possible strategies for problem solving, to evaluate these strategies
and to‘ select the most proper one, allocate relative resources to carry out actions, and

update its beliefs about the environment as well.

Taking both CS and SAS into account, the model is implemented in COGENT. The
SAS-CS models the way humans perform actions under attention control. The simulation
presented here highlights the interactions between these two agents and how interruption
stops a current action. It sketches the link between the two components of the model,
SAS and CS. SAS plays a referee role between the current action and the interruption
action. Then, SAS gives back the control to CS when action schemas become automatic.
The model proposed successfully simulates the real world. Some adjustments are to be
made to take into account other cases of interruption, a series of interruptions and the

evolution of the urgent priority.
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Appendix

World State

Class: Box/Buffer/Propositional

Access: Random

Initial Contents:

Element: Initial task

task(prepare_coffee, 10)

Current Contents (of World State):

0 : task(prepare_coffee, 10)

Manipulate World

Class: Box/Process
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Rules & Condition Definitions:

Rule 1 (refracted): Random Interruption

IF: not is_doing(answer_phone) is in World State
R is a random integer drawn from 0 to 100 inclusive
R is numerically equal to 5

THEN: add task(answer_phone, 30) to World State

Rule 2 (refracted): Delete a task after its completion
IF: task (T, U) is in World State

finish action(T) is in World State
THEN: delete task (T, U) from World State

Rule 3 (refracted): Stop the model after all tasks are finished
IF: not task(T, U) is in World State
THEN: send stop to Attention during an interruption

Perception

Class: Box/Process

Rules & Condition Definitions:

Rule 1 (refracted): Add a new task into Working Memory

IF: task(T, U) is in Fxperimental World: World State
not do_task(T, U) is in Working Memory

THEN: add do_task(T, U) to Working Memory
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Rule 2 (unrefracted): Delete an old belief about o task
[F: do_task(T, U) is in Working Memory

not task(T, U) is in Faperimental World: World State
THEN: delete do_task(T, U) from Working Memory

Rule 3 (refracted): Add current action into Working Memory
IF: is_doing(Action) is in Ezperimental World:World State
not is_doing(Action) is in Working Memory

THEN: add is_doing(Action) to Working Memory

Rule 4 (refracted): Add a completed action into Working Memory
IF: finish_action(T) is in Fzperimental World: World State
not finish action(T) is in Working Memory

THEN: add finish action(T) to Working Memory

Rule 5 (refracted): Continue coffee task after finishing interruption

IF: finish action(answer _phone) is in Frperimental World:World State
task(prepare_coffee, 10) is in Experimental World: World State
pause (prepare_coffee) is in Working Memory

THEN: add continue_task(prepare_coffee, 10) to Working Memory

Monitoring & Goal Generation

Class: Box/Process
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Rules & Condition Definitions:

Rule 1 (refracted): Trigger generation of a new strategy to handle a request
IE: do_task(T, U) is in Working Memory

not current_strategy(T, Strategy) is in Working Memory
THEN: add generate_strategy(T) to Goals

Rule 2 (refracted): Trigger generation of a new strategy to handle a request
IF: continue_task(T, U) is in Working Memory

not current_strategy(T, Strategy) is in Working Memory
THEN: add generate_strategy(T) to Goals

Rule 3 (refracted): Interruption decision

IF: do_task(T1, U1) is in Working Memory
is_doing(T1) is in Working Memory
do_task(T2, U2) is in Working Memory
U2 is greater than Ul

THEN: add pause(T1) to Working Memory
delete all selected(T) from Fvaluated Strategies

Strategy Generation

Class: Box/Process

Rules & Condition Definitions:

Rule 1 (unrefracted):
IF: generate_strategy (prepare_coffee) is in Goals

THEN: add prepare_coffee to Candidate Strategies
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Rule 2 (unrefracted):
IF: generate_strategy(answer_phone) is in Goals

THEN: add answer_phone to Candidate Strategies

Evaluation

Class: Box/Process

Rules & Condition Definitions:

Rule 1 (unrefracted): Rule

IF: Candidate is in Candidate Strategies

THEN: delete all selected(S) from Evaluated Strategies
add selected(Candidate) to Evaluated Strategies

Schema Construction

Class: Box/Process

Rules & Condition Definitions:

Rule 1 (unrefracted): Create a temporary schema for the selected strategy
IF: selected(8S) is in Evaluated Strategies

not schema(8) is in Temporary Schema
THEN: delete all schema(X) from Temporary Schema

add schema(8) to Temporary Schema
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Rule 2 (unrefracted): Delete temporary schemas for non-selected strategies
IF: schema(8) is in Temporary Schema
not selected(S) is in Fvaluated Strategies

THEN: delete schema(S) from Temporary Schema

Belief Update

Class: Box/Process

Rules & Condition Definitions:

Rule 1 (unrefracted): Update beliefs with new strategy
IF: selected(T) is in Evaluated Strategies
do_task(T, U) is in Working Memory
not current_strategy (T, T) is in Working Memory
THEN: delete all current_strategy(., ) from Working Memory
add current_strategy (T, T) to Working Memory
Rule 2 (unrefracted): Rule
IF: not do_task(T, U) is in Working Memory
current_strategy(T, Strategy) is in Working Memory
THEN: delete current_strategy (T, Strategy) from Working Memory

Schema Hierarchy

Class: Box/Network/Interactive
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Properties (free):
Initialise: ‘Each Trial’
Rest Act: 0.10

Noise: 0.00

Act Parameter B:

0.15

Lateral Baseline:
‘Rest Act’

Self Baseline: ‘Rest
Act’

Min Act: 0.00
Update Function:
(CS)

Initial Acts: uniform

Lateral Influence:
‘Sub Net’

Lateral Parameter:
0.15

Self Parameter: 0.50
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Max Act: 1.00

Persistence: 0.90

Act Parameter A:
0.05
Lateral Function:
‘Sum’

Self Influence: 1



Initial nodes and Activation Graph at cycle O:

Input Nodes

prepare_coffee / coffee:

sugar _from_pack / coffee:
sugar_from_bowl / coffee:
coffee_from pack / coftee:

coffee_from_jar / coffee:

milk_from_carton / coffee:

open / coffee:

pour / coffee:

pick_up / coffee:
put_down / coffee:
answer_phone / phone:
pick_up / phone:
hold_on / phone:
hang_up / phone:

Min Act

Iy enes
[}
=

Max Act
[1.00]

Schema States

Class: Box/Buffer/Propositional

Access: Random

Description (of Schema States):

Hold schema-goal relation
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Initial Contents:

Comment: for coffee preparation

Comment: Level 3: —

Element: The coffee_schema’s goal:

schema_goal (prepare_coffee / coffee, prepare_coffee)

Element: The coffee_schema’s subgoals:

schema_subgoals(prepare coffee / coffee, [add_sugar, add_coffee, addmilk])

Element: The coffee_schema’s order constraint:

ordering_constraint(prepare_coffee / coffee, add coffee < addmilk)

Element: The coffee_schema’s order constraint:

ordering constraint (prepare_coffee / coffee, add sugar < add milk)

Element: The coffee_schema’s initial selection status:

schema_status (prepare_coffee / coffee, unselected)

Comment: Level 2: —— -

Element: The sugar_from_pack schema’s goal:

schema _goal (sugar from pack / coffee, add_sugar)

Element: Nothing

schema_subgoals (sugar_from_pack / coffee, [])

Element: The sugar_from_pack schema’s initial selection status:

schema_status(sugar_from_pack / coffee, unselected)

Element: The sugar_from_bowl schema’s goal:

schema_goal (sugar_from bowl / coffee, add_sugar)

Element: Nothing

schema_subgoals(sugar_from bowl / coffee, [])

Element: The sugar_from_bowl schema’s initial selection status:

schema_status (sugar from bowl / coffee, unselected)
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Element: The coffee_from_pack schema’s goal:

schema_goal(coffee_from pack / coffee, add.coffee)

Element: Nothing

schema_subgoals(coffee from pack / coffee, [])

Element: The coffee_from_pack schema’s initial selection status:

schema_status(coffee_from pack / coffee, unselected)

Element: The coffee_from_jar schema’s goal:

schema goal(coffee_from_jar / coffee, add_coffee)

Element: The coffee_from_jar schema’s initial selection status:

schema_status(coffee from_jar / coffee, unselected)

Element: Nothing

schema_subgoals(coffee_from_jar / coffee, [])

Element: The milk_from_carton schema’s goal:

schema goal (milk from carton / coffee, addmilk)

Element: The milk_from_carton schema’s subgoals:

schema_subgoals (milk_from_carton / coffee, [pick.up, open, pour, put_down])

Element: The milk_from_carton schema’s order constraint:

ordering_constraint (milk from carton / coffee, open < pour)

Element: The milk_from_carton schema’s order constraint:

ordering _constraint (milk_from carton / coffee, pour < put_down)

Element: The milk_from_carton schema’s initial selection status:

schema_status(milk_from_carton / coffee, unselected)

Comment: Level 1:

Element: The pick_up_schema’s goal:

schema_goal (pick.up / coffee, pick.up)

Element: Nothing
schema_subgoals(pick up / coffee, [])
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Element: The pick_up_schema’s initial selection status:

schema_status(pick.up / coffee, unselected)

Element: The put_down_schema’s goal:

schema_goal (put_down / coffee, put_down)

Element: Nothing

schema_subgoals(put_down / coffee, [])

Element: The put_down_schema’s itial selection status:
p

schema_status (put_down / coffee, unselected)

Element: The pour_schema’s goal:

schema_goal (pour / coffee, pour)

Element: Nothing

schema_subgoals(pour / coffee, [1)

Element: The pour_schema’s initial selection status:

schema_status(pour / coffee, unselected)

Element: The open_schema’s goal:

schema_goal (open / coffee, open)

Element: Nothing

schema_subgoals(open / coffee, [])

Element: The open_schema’s initial selection status:

schema_status (open / coffee, unselected)
Comment: for phone answering

Comment: Level 2: _ _

Element: answer_phone’s goal

schema_goal (answer_phone / phone, answer_phone)

Element: anser_phone’s subgoals

schema_subgoals(answer_phone / phone, [pick_up_receiver, talking, hang up])

Element: The answer_phone’s order constraint:
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ordering constraint (answer_phone / phone, pick_up receiver < talking)

Element: The answer_phone’s order constraint:

ordering_constraint (answer_phone / phone, talking < hang up)

Element: The answer_phone’s initial selection status:

schema_status (answer_phone / phone, unselected)

Comment: Level 1:—

Element: Nothing

schema_goal (pick up / phone, pick_up_receiver)

Element: Nothing
schema_subgoals(pick_ﬁp / phone, [1)

Element: Nothing

schema_status(pick_up / phone, unselected)

Element: Nothing
schema_goal(hold_on / phone, talking)

Element: Nothing
schema_subgoals(hold_on / phone, [1)

Element: Nothing

schema_status (hold_on / phone, unselected)

Element: Nothing
schema_goal (hang up / phone, hang up)

Element: Nothing
schema_subgoals(hang up / phone, [])

Element: Nothing

schema_status (hang up / phone, unselected)
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Current Contents (of Schema States):

o O O O O O O O O O O O O O o O O O O o o o o o o o o

0 : schema status(hang_up / phone, unselected)

: schema subgoals(hang_up / phone, [])

: schema_goal(hang_up / phone, hang_up)

: schema.status(hold_on / phone, unselected)

: schema._subgoals(hold_on / phone, [])

: schema. goal(hold_on / phone, talking)

: schema. status(pick_up / phone, unselected)

: schema._subgoals(pick_up / phone, [])

. schema_goal(pick_up / phone, pick_up_receiver)

: schema. status(answer_phone / phone, unselected)

. ordering_constraint(answer_phone / phone, talking < hang_up)
. ordering_constraint(answer_phone / phone, pick_up_receiver < talking)
: schema._subgoals(answer_phone / phone, [pick_up_ receiver, talking, hang up])
: schema_goal(answer_phone / phone, answer_phone)

: schema_status(open / coffee, unselected)

. schema_subgoals(open / coffee, [])

: schema_goal(open / coffee, open)

. schema.status(pour / coffee, unselected)

: schema_subgoals(pour / coffee, [])

: schema._goal(pour / coffee, pour)

: schema_status(put-down / coffee, unselected)

: schema._subgoals(put_-down / coffee, [])

. schema_goal(put_down / coffee, put_down)

: schema_status(pick-up / coffee, unselected)

: schema_subgoals(pick_up / coffee, [])

: schema._goal(pick_up / coffee, pick_up)

: schema_status(milk_from_carton / coffee, unselected)

: ordering_constraint(milk from_carton / coffee, pour < put_down)
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: ordering_constraint(milk from_carton / coffee, open < pour)

. schema_subgoals(milk_from_carton / coffee, [pick_up, open, pour, put-down])
: schema. goal(milk from_carton / coffee, add_milk)

: schema_subgoals(coffee_from_jar / coffee, [])

: schema._status(coffee_from_jar / coffee, unselected)

: schema.goal(coffee_from_jar / coffee, add_coffee)

: schema._status(coffee_from_pack / coffee, unselected)

: schema_subgoals(coffee_from_pack / coffes, [])

: schema._goal(coffee_from_pack / coffee, add_coffee)

: schema_status(sugar_from_bowl / coffee, unselected)

: schema. subgoals(sugar_from_bowl / coftee, [])

: schema.goal(sugar_from_bowl / coffee, add_sugar)

: schema. status(sugar from_pack / coffee, unselected)

: schema. subgoals(sugar_from_pack / coffee, [])

: schema._goal(sugar_from pack / coffee, add_sugar)

: schema_status(prepare_coffee / coffee, unselected)

: ordering_constraint(prepare_coffee / coffee, add_sugar < add_milk)
: ordering_constraint(prepare_coffee / coffee, add_coffee < add-milk)

: schema._subgoals(prepare_coffee / coffee, [add_sugar, add_coffee, add_milk))

O O O O O O O OO O O o O o o oo o o o o o

: schema._goal(prepare_coffee / coffee, prepare_coffee)

Box Name: Trigger Schemas

Updates schemas activation values at each cycle.

Class: Box/Process
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Rules & Condition Definitions:

Rule 1 (unrefracted): Rule! excites schema triggered by SAS
IE: task(prepare_coffee, 10) is in Experimental World: World State
schema (prepare_coffee) is in Temporary Schema

THEN: send excite(prepare_coffee / coffee, 1) to Schema Hierarchy

Rule 2 (unrefracted): Rule! excites schema triggered by SAS
IF: task(answer_phone, 30) is in Experimental World: World State
schema(answer_phone) is in Temporary Schema

THEN: send excite(answer_phone / phone, 1) to Schema Hierarchy

Rule 3 (unrefracted): Activation flow from parent
IF: selected parent_of (S, P)
ordering constraints_satisfied(S, P)
node(P, V) is in Schema Hierarchy
number_of_children(P, N)
Value is (V) / (W)
THEN: send excite(S, Value) to Schema Hierarchy

Rule 4 (unrefracted): Inhibit o schema after its goal is achieved
IF: node (Schema, Value) is in Schema Hierarchy
goal of _schema_is_achieved(Schema)

THEN: send excite(Schema, -1) to Schema Hierarchy

Rule 5 (unrefracted): Inhibit the former schema during interruptions
IF: task(T, U) isin Experimental World: World State

schema_goal (Name, T) is in Schema States

not schema(T) is in Temporary Schema

THEN: send excite(Name, -1) to Schema Hierarchy
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Rule 6 (refracted): Continue former task from break action after interruption

IF: finish action(Goal) is in Ezperimental World:World State
schema_subgoals(prepare_coffee / coffee, Subgoals) isin Schema States
Goal is in a member of Subgoals
schema-goal(Scheina, Goal) is in Schema States

THEN: send goal_of_schema_is_achieved(Schema) to Trigger Schemas

Condition Definition: goal of schema_is_achieved/1: Has this schema’s goal been
achieved?
goal_of_schema_is_achieved(Schema):-
schema_status(Schema, selected, Subgoals, Time) is in Schema States

not - Goal is a member of Subgoals

goal_of_schema_is_achieved(Schema):-
schema_status(Schema, unselected) is in Schema States
schema _status(Parent, selected, Subgoals, Time) is in Schema States
schema_goal(Schema, Goal) is in Schema States
+ Goal is a member of Subgoals

not - Goal is a member of Subgoals

Condition Definition: ordering_constraints_satisfied/2: Are a schema’s precondi-
- tions met?
ordering_constraints_satisfied(Schema, Parent):-
schema_goal (Schema, Goal) is in Schema States
schema_status(Parent, selected, SubGoals, Time) is in Schema States
not ordering-constraint(Parent, PreGoal j Goal) is in Schema States

- PreGoal is a member of Subgoals

Condition Definition: number_of-children/2: How many subgoals does a schema

have?
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number_of _children(Schema, N):-
schema_subgoals(Schema, SubGoals) is in Schema States

Nis the length of Subgoals

Condition Definition: schema-children/2: Get the list of child goals of a schema.

schema_children(Schema, Children):-
schema_subgoals(Schema, ChildGoallist) isin Schema States

strip_functions(ChildGoalList, Children)

schema_children(Schema, []):-
node(Schema, X) is in Schema Hierarchy

not schema-subgoals(Schema, ChildGoalList) is in Schema States

Condition Definition: Strip off any argument function specifications from a goal
list.

strip_functions([], [])-

strip_functions([Goal / —Rest], [Goal—StripRest]):-
!

strip_functions(Rest, StripRest)

strip_functions([Goal—Rest], [Goal—StripRest]):-
strip_functions(Rest, StripRest)

Condition Definition: selected_parent_of(Schema, Parent):-

strip_functions([Goal—Rest], [Goal—StripRest]):-
parent_of (Schema, Parent)

schema_status(Parent, selected, _, _) is in Schema States

Condition Definition: parent_of/2: Check schema/parent relationships
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parent_of(Schema, Parent):-
schema_children(Parent, ChildGoals)
schema_goal(Schema, Goal) is in Schema States

Goal is a member of ChildGoals

Condition Definition: parent_of/2: Check schema/parent relationships

parent_of(Schema, Parent):-
schema_children(Parent, ChildGoals)
schema_goal(Schema, Goal) is in Schema States

Goal is a member of ChildGoals

Box Name: Select & Act

Handle schema selection and action execution.
Class: Box/Process

Rules & Condition Definitions:

Rule 1 (unrefracted): Select any appropriate schemas
IF: schema_goal (Name, Goal) is in Schema States
schema_should be_selected(Name, UnachievedSubgoals)
the current cycle is Time
THEN: delete schema_status(Name, unselected) from Schema States
add schema_status (Name, selected, UnachievedSubgoals, Time) to Schema States

add is_doing(Goal) to Ezperimental World: World State
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Rule 2 (refracted): Deselect any appropriate schemas

IF:

schema_status(Name, selected, Subgoals, Time) is in Schema States

schema_should_be_deselected(Name)

THEN: delete schema _status(Name, selected, Subgoals, Time) from Schema States

add schema_status(Name, unselected) to Schema States

Rule 3 (unrefracted): Update achieved subgoals
TRIGGER: done (Goal)

IF:

THEN:

schema _status (Name, selected, BeforeSubgoals, Time) is in Schema States
mark_goal (Goal, BeforeSubgoals, AfterSubgoals)

not not schema_should be_deselected(Name)

delete schema_status(Name, selected, BeforeSubgoals, Time) from Schema Stc

add schema_status(Name, selected, AfterSubgoals, Time) to Schema States

Rule 4 (unrefracted): Recurse on the parent if all subgoals are achieved
TRIGGER: done (Goal)

IF:

THEN:

schema_status(Name, selected, BeforeSubgoals, Time) is in Schema States
mark_goal(Goal, BeforeSubgoals, AfterSubgoals)

not - OtherGoal is a member of AfterSubgoals

schema_goal (Name, ParentGoal) is in Schema States

send done (ParentGoal) to Select & Act

add finish action(ParentGoal) to Eaperimental World: World State
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Rule 5 (refracted): Ezecution an action when a lowest-level schema is selected
1F: schema_status(S, selected, [], Time) is in Schema States
schema_goal(S, G) isin Schema States
THEN: add finish action(G) to Experimental World: World State
send done (G) to Select & Act

Condition Definition: mark_goal/3: Tuke « list of goals and mark one as achieved

mark_goal(Goal, [- Goal—Rest], [+ Goal—Rest]):-
|

mark_goal(Goal, [H—T]|, [H—MT]):-
mark_goal (Goal, T, MT)

Comment: Conditions involved in schema selection/deselection:

Condition Definition: schema_should_be_selected/2: True for unselected winning
schemas with activation above threshold
schema_should_be_selected(Schema, Subgoals):-
schema_status(Schema, unselected) is in Schema States
activation_above_threshold(Schema)
winning-schema(Schema)
schema._children(Schema, Children)

construct_unachieved_list(Children, Subgoals)

Condition Definition: construct-unachieved_list/2: Initially, all subgoals are un-
achieved.
number _of_children(Schema, N):-
schema_subgoals(Schema, SubGoals) is in Schema States

N is the length of Subgoals

Condition Definition: schema_children/2: Get the list of child goals of a schema.

construct_unachieved._list([], []).
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construct_unachieved_list([G—TO0], [- G—T1]):-

construct-unachieved_list(T0, T1)

Condition Definition: schema_should_be_deselected/1: True for selected schemas
that are mo longer winning
schema_should_be_deselected(Schema):-
schema_status(Schema, selected, _, _) isin Schema States

not not winning-schema(Schema)

schema_should_be_deselected(Schema):-

schema_status(Schema, selected, _, _) is in Schema States

winning-schema(Schema)

selected parent_of (Schema, ParentSchema)

schema_should be_deselected(ParentSchema)

schema_should_be_deselected(Schema):-

schema_status(Schema, selected, _, _) is in Schema States

winning-schema(Schema)
not selected _parent_of (Schema, _)
parent_of (Schema, ParentSchema)

schema_should be_selected(ParentSchema, _)

Condition Definition: winning_schema/1: A schema is the winner if no competi-
tor has greater activation:
winning_schema(Schemal):-
node(Schemal, Activationl) isin Schema Hierarchy

not competitor_of_schema(Schemal, Schema?2)
node (Schema2, Activation?) is in Schema Hierarchy

Activation? is greater than Activationl
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Condition Definition: activation_above_threshold/1: Is a schema’s activation above

the selection threshold?

activation_above_threshold(Schema):-
node(Schema, Activation) is in Schema Hierarchy

Activation is not less than 0.60

Condition Definition: competitor_of-schema/2: Schemas compete if they achieve

the same goal, share a subgoal, or share resource requirements

competitor_of schema(Schema, Competitor):-
schemas_share_goal(Schema, Competitor)

Schema is distinct from Competitor

competitor_of _schema(Schema, Competitor):-
schemas_share_subgoal(Schema, Competitor)

not schemas_share_goal(Schema, Competitor)

Condition Definition: schemas_share_goal/2: Do two schemas achieve the same

goal?

schemas_share_goal(Schemal, Schema?2):-
schema_goal(Schemal, Goal) is in Schema States

schema_goal(Schema?, Goal) is in Schema States

Condition Definition: schemas_share_subgoal/2: Schemas share a subgoal is their

subgoal lists have a common element

schemas_share_subgoal(Schemal, Schema?2):-
schema_children(Schemal, Childrenl)
schema_children(Schema?2, Children2)

common._member(Childrenl, Children2)

Condition Definition: common_member/2: Do two lists have a common member?
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common_member ([Goal—_], L):-

Goal is a member of L
!

common_member ([ —Rest], L):-

common _member (Rest, L)

Condition Definition: schema_children/2: Get the list of child goals of a schema.

schema_children(Schema, Children):-
schema_subgoals(Schema, ChildGoallList) is in Schema States
strip_functions(ChildGoalList, Children)

schema_children(Schema, []):-
node (Schema, X) is in Schema Hierarchy

not schema_subgoals(Schema, ChildGoalList) is in Schema States

Condition Definition: Strip off any argument function specifications from a goal
list.

strip_functions([], []).

strip_functions([Goal / -—Rest|, [Goal—StripRest]):-
!

strip_functions(Rest, StripRest)

strip_functions([Goal—Rest], [Goal—StripRest]):-
strip_functions(Rest, StripRest)

Condition Definition: selected_parent_of/2: Which (if any) superschema of the

given schema is selected?

selected_parent_of(Schema, Parent):-
parent_of(Schema, Parent)

schema_status (Parent, selected, _) is in Schema States
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Condition Definition: parent_of/2: Check schema/parent relationships

parent_of(Schema, Parent):-
schema_children(Parent, ChildGoals)

Goal is a member of ChildGoals
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