
CONCEPTION D'UN TRADUCTEUR INTELLIGENT

DE RTF VERS XML

par

YiXu

mémoire présenté au Département d'informatique en vue de l'obtention du grade de

maître ès sciences (M.Sc.)

FACULTÉ DES SCIENCES

UNIVERSITÉ DE SHERBROOKE

Sherbooke, Québec, Canada, mars 2004

le jury a accepté le mémoire de M Yi Xu dans sa version finale.

Membres du jury

M. Richard St-Denis
Directeur

Département d'informatique

M. Richard St-Denis
Directeur

Département d'informatique

M. Marc Frappier
Membre

Département d'informatique

M. Gabriel Girard
Président-rapporteur

Département d'informatique

l+I Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Your file Votre référence
ISBN: 0-612-94918-4
Our file Notre référence
ISBN: 0-612-94918-4

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque et Archives Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Sommaire

Les fichiers de textes formatés (.doc) produits par l'outil Microsoft Word sont

omniprésents dans la très grande majorité des ordinateurs. Ils constituent des documents

digitaux dont certains sont de nature publique et leurs propriétaires aimeraient bien les

publier facilement sur l'Internet. Une solution consiste à traduire, par exemple, ces

fichiers en des fichiers dans le format HTML. Ce mémoire présente un nouveau système

informatique qui permet de convertir un fichier dans le format RTF, un format proche du

format . doc mais universel et lisible par un humain, en un fichier dans un format XML.

Dans ce mémoire, le format XML est considéré comme un format intermédiaire

puisqu'un fichier dans ce format est à son tour utilisé pour générer un fichier dans un

format cible comme HTML, JSP, TeX ou D2E. En plus de présenter l'architecture et des

éléments de conception de ce système, ce mémoire porte une attention particulière sur des

règles de traduction, des règles de simplification et des règles de préférence mises en

œuvre grâce à des techniques empruntées au domaine de la construction des compilateurs.

11

Acknowledgments

First and foremost 1 would like to express my sincere gratitude to Professor Richard St-

Denis for his intellectual ideas, scientific thoughts, generous help and supervision during

the preparation and writing of this thesis. Without his patient scrutiny with so many

resourceful suggestions and comments, this thesis would never have been possible. 1 have

leamed many things from him including how to identify a problem and how to address it.

Even during his illness, not only he spent his countless valuable hours to correct different

versions of my thesis but also he has given me his patient hearing. Again 1 wish to

express my gratitude toward him.

Thanks to my friend Mr. S.A.M. Matiur Rahman for helping me in correction of English

grammar of my thesis.

Thanks are also due to the staff in the département d'informatique for their assistance

during my study in Université de Sherbrooke.

iii

Table of Contents

Summary

Acknowledgments

Table of Contents

List of Tables

List of Figures

Introduction

Methodology

Solution 1: Converting into RTF

Solution 2: Extracting RTF File

Solution 3: Understanding Corresponding Tags

Solution 4: XML Representation

Solution 5: Generating New File

Contribution

Organization .. .

Chapter 1 Translator System Structure

1.1 System Components .. .

1.1.1 Microsoft W ord .. .

IV

ii

iii

iv

ix

X

1

3

3

4

4

5

5

5

6

7

7

8

1.1.2 Extractor 9

1.1.3 Intelligent Translator . 10

1.1.4 Generator . 10

1.2 Data Flow of the System . 11

1.3 RTF Syntax . 16

1.3.1 Contrai Words 17

1.3.2 Contrai Symbols 17

1.3.3 Groups .. 18

1.3.4 Plain Text 18

1.3.5 A RTF Example: Hello, World! 19

1.4 A Compact Package of Control W ords . 20

Chapter 2 Overview of the Translator 24

2.1 Text Processing Domain . 24

2.1.1 Character Reading . 26

2.1.2 Lexical Analysis . 26

2.1.3 Syntax Analysis . 27

2.1.4 Semantic Analysis

2.1.5 Code Optimization

28

28

2.1.6 Code Generation . 29

2.2 Binary Tree Data Structure ... 29

2.2.1 The Class TreeNode .. 30

2.2.2 Intermediate Nodes 31

2.2.3 Target Nodes . 32

2.2.3.1 The Class TagNode 33

2.2.3.2 The Class FieldNode 34

2.2.3.3 The Class BookMarkNode . 35

2.2.3.4 The Class ImageNode . 35

2.2.3.5 The Class TextNode ... 36

V

2.2.4 The Node Representation 37

2.3 Object-Oriented System . 38

2.3.l Encapsulation . 39

2.3.2 Abstraction . 39

2.3.3 Inheritance . 40

2.3.4 Self-Recursion 41

2.4 Algorithm 41

2.4.1 Translation Rules 42

2.4.2 Simplification Rules 42

2.4.3 Preference Rules 42

Chapter 3 Translation Rules . 43

3.1 Sorne Associations Between RTF, HTML, and XML 44

3.2 Translation Rules on Fonts and Paragraphs 45

3.2.1 The Font and Paragraph Attribute Table 45

3.2.2 Rules in Implementation Level 47

3.2.3 An Example Translating with the Rules on Fonts 48

3.3 Translation Rules on Headings 53

3.4 Translation Rules on Lists 54

3.4.1 The Compulsory Rules on Lists 56

3.4.2 Translation Rules on Items of a List 60

3.4.3 Nested Lists and Normal Lists 63

3.5 Translation Rules on Images 65

3.6 Translation Rules on Bookmarks 67

3.7 Translation Rules on Fields 68

3.8 Translation Rules on Tables 70

3.8.1 Basic Rules for Tables 70

3.8.2 Translation Rules for Nested Cells . 72

Chapter 4 Simplification Rules .. 76

vi

4.1 Simplification Rules on U seless Blocks

4.2 Simplification Rules on Merging

Chapter 5 Code Generation

5.1 XMI,

5.1.l What is XMI,? .. .

5 .1.2 The Components of XMl., .. .

5.2 DTD

5.2.1 DTD Syntax .. .

5.2.1.1 ELEMENT Declarations

5.2.1.2 ATTLIST Declarations

5.2.1.3 ENTITY Declarations .. .

5.2.1.4 NOTATION Declarations

5.2.2 The DTD for the Translator .. .

5.2.2.1 Definition of a Paragraph

5.2.2.2 Definition of a Reading

5.2.2.3 Definition of an Image .. .

5.2.2.4 Definition of a List

5.2.2.5 Definition of a Table

5.3 Implementation Aspects

5.3.1 Identification Tags and an Activating Mechanism

5.3.2 Image Generation .. .

5.3.3 Table Generation .. .

5.3.4 Paragraph Generation

5.3.5 Text Generation .. .

5.3.6 Reading Generation

5.3.7 Field Generation .. .

5.3.8

5.3.9

Bookmark Generation

List Generation

vii

76

78

81

82

82

83

83

84

84

85

87

88

89

90

91

92

92

93

93

94

96

96

98

99

101

101

102

103

5.3.10 Item Generation

5.3.11 Font Generation

5 .4 Display the Translated XML

5.4.l Root Node Match .. .

5.4.2 Child Element Nodes Match .. .

5.4.3 DisplayXMLoutput.xml

Conclusion

Appendix A C++ Code in the Translator

A.l The Class Translator. cpp

A.2 The Class TreeNode. cpp

Appendix B The File Translator.xsl

Appendix C The Test Files

C.l TheRTFFileTest.rtf

C.2 The Command File Test. cmd

C.3 The Text File Test. txt .. .

C.4 The Translated XML File XML output . xml

C.5 The Transformed HTML Page .. .

Bibliography

viii

103

104

105

108

109

109

112

117

117

139

145

150

151

153

157

158

161

163

List of Tables

1 The translator recognizable RTF control words 22

2 The table storing font and paragraph attributes 44

3 Sorne associations between RTF, XML, and HTML ... 45

4 The attributeTable with default values 49

5 The attributeTable ending in line 1

6 The attributeTable ending in line 3

50

51

7 The attributeTable ending in line 7 . 52

8 The syntax of an image . 65

9 The syntax of a bookmark . 67

10 The syntax of a field . 68

11 The syntax of a table row . 70

12 Default value in ATTLIST declaration . 87

ix

List of Figures

1 The RTF file HelloWorld. rtf 9

2 Data flow of the intelligent translator system 12

3 The input file Dataflow. doc 13

4 The converted RTF file Dataflow. rtf 13

5 IntemaltextformattingofDataflow.rtf ... 14

6 The file Dataflow. cmd to store extracted control words 14

7 The file Dataflow. txt to store extracted texts 15

8 The XML output file Dataflow. xml 15

9 The file Dataflow. html browsed by Microsoft Internet Explorer 16

10 A RTF file to show plain text 18

11 RTF control words for HelloWorld. rtf 19

12 The RTF file HelloWorld.rtf 20

13 The command file HelloWorld. cmd .. . 23

14 The fonction ConstructTree () 26

15 A syntax tree constructed by the translator program 28

16 The class TreeNode 31

17 The class BlockNode 32

18 The class SequenceNode 32

19 The class TagNode . 34

X

20 The class Field.Node 34

21 The class BookMarkNode .. 35

22 The class ImageNode . 36

23 The class TextNode 37

24 Part of the syntax tree generated from the file Dataflow. cmd 38

25 Inheritance between nodes . 40

26 Three files (RTF, text, and command) for testing translation rules on fonts . . . 50

27 The command file testHeading. cmd .. 53

28 The syntax for the list table . 55

29 Values in \levelnfcN and the corresponding meaning 57

30 Part of control words for number type of ordered lists . 58

31 An ugly list with different aligned items . 59

32 The RTF file testitem. rtf ... 61

33 The command file testitem. cmd ... 62

34 The text file testitem. txt .. 62

35 The RTF file testNestedList. rtf 64

36 The text file testNestedList. txt 64

37 The command file testNestedList. cmd 65

38 A bookmark example . 67

39 The RTF file test Table. rtf for nested tables 73

40 The command file tes tTable. cmd for nested tables 74

41 The text file testTable. txt for nested tables 74

42 An example for simplification rules on blocks 78

43 Three files (RTF, command, and text) for testing merging . 79

44 DTD for the translator . 89

45 The fonction Makeimage () 96

46 The fonction MakeCel 1 () . 98

47 The fonction MakePar () 99

xi

48 The fonction MakeText () . 1 OO

49 The fonction MakeHeading () 101

50 The fonction MakeField () 102

51 The fonction MakeBookMark () 102

52 The fonction Makeitem() 104

53 The fonction GetFontList () 105

54 Options to display XML 106

55 The code for the root node match 108

56 The first heading expression in XML output . xml 110

xii

Introduction

Text processing and transformation is a fondamental domain of computer science. lt

embraces a procedure mainly based on character reading, lexical analysis, syntax analysis,

semantic analysis, code optimization, and code generation. Character reading does the

actual reading of the source text, which is usually in the form of a stream of characters.

Lexical analysis is to collect sequences of characters into meaningful units called tokens.

Syntax analysis determines the structural elements of the text and their relationships with

a result generally represented as a parse tree. Semantic analysis is to interpret text

meaning as opposed to its syntax. Optimization is for purpose of code improvement.

Finally, the step for code generation represents the production of the last and useful results.

The procedure above is also called translation because it accepts as input a text in a

certain language and produces as output a text in another language, while preserving the

meaning of that text. A typical example of translation is the compilation of programs

written in a high-level programming language into a code machine [1].

One important application in text processing and transformation is the development of

format translators. With the rise of the Internet, there has been a pervasive need for file

sharing between machines and between applications. However, different kinds of

vendor-specific binary file formats prevent a standard to appear. Each applications

1

program uses its own vendor-specific format to store data. Most of the information about

file formats is confidential, not well documented or not available for public use [2].

Besides, PC software evolved rapidly, leading to a proliferation of binary file formats and

file format versions [3]. Both become serious problems for users, who found that file

sharing was often impractical and that upgrades to application and operating system

software could make their older files inaccessible. It results in the current trend toward

open, Web-accessible publication formats. Therefore there is a great need for software to

convert binary file formats to a universal format. Two file formats are predominant: . doc

introduced by Microsoft is the most widely used vendor specific binary format [2], and

XML (Extensible Markup Language) is being looked at for exchanging content between

databases, systems, and users, as a web services protocol for enabling interoperability

between systems [4]. The objective of our project is to study how to convert . doc files

into XML. Because the internai binary format . doc is not easily recognizable for human

and . doc can be transformed by Microsoft Word into RTF (Rich Text Format) that is an

internai textual formatting, this thesis focuses on the RTF to XML conversion.

There are some conversion tools available on the market, capable of translating from

a . doc/RTF file to XML format. For example, RTF2FO XML converter [5] and NTS

Word/RTF-to-XML translator [6] are two format converters. However, they may not

always satisfy particular requirements in some cases. Besides, in some applications, only

part of tags/control words is often used. It is not an efficient way to parse this small

number of tags with existing tools which were originally designed for a large package of

complicated tags (supporting about 500 tags for a commercial product). Finally, some new

format documents are required to be converted into and the current translators and

generators cannot make out such results. For these reasons, we are motivated to design an

efficient and flexible translator converting between different formats for particular usage.

Especially we focus on the design and creation of a tool to translate from RTF to XML.

This thesis introduces an intelligent algorithm used in the translator and demonstrates how

it works and why it is efficient.

2

Methodology

The following problems are found during the stage of designing a universal translator

converting .doc files to other formats:

1) How to read an intemal binary formatting which is not publicly available?

2) How to get the control words from the source document?

3) How to understand the control words?

4) Which is the best candidate for target document?

5) How to generate the target document?

Problem 1 can be solved by converting a . doc document into a human readable RTF

document that has an intemal textual representation. Problem 2 can be solved by

extracting content and control words of a RTF document with an extractor. Problem 3 can

be solved by building some association relationships between RTF control words and a

new file format. This is the main aspect of the translator. We apply techniques and

knowledge in text processing and transformation introduced in the previous section to do

this job. Problem 4 can be solved by adopting XML to represent translated documents.

Problem 5 can be solved by a generator to produce a specific format document taking an

XML file as input.

Solution 1: Converting into RTF

Microsoft offers an exchange format of its own, the Rich Text Format (RTF). RTF is the

most portable file format used to exchange files across platform while still retaining all or

much of its formatting [7]. RTF is a universal file format that pervades practically every

PC. Because RTF is a textual representation, it is much easier to generate and process

3

than binary . doc files. The first thing is to convert a . doc document into a RTF with a

word processor.

Solution 2: Extracting RTF File

A RTF file consists of texts, images, and control words. In our implementation, these

elements are extracted and classified into three parts (texts, images, and control words) by

an extractor which is already implemented. Every piece of extracted texts is associated to

a label for identification when generated into the target document. The texts and images

are the fondamental data about a RTF document and will be combined into the target

document with the translator. A subset of the RTF file contains RTF control words with

references to labels and images. The RTF control words play an important role in forming

a document appearance. lt is these words that arrange and decide the format of a

document. The main problem is on dealing with RTF control words.

Solution 3: Understanding Corresponding Tags

RTF control words are associated with corresponding XML tags according to some

association rules. In this stage, the control words will be translated according to the rules.

This procedure is actually text processing. A program is coded to read RTF control words

letter by letter (by reading a character stream), scan tokens (to group into control words),

parse syntax tree (control words stored in a binary tree), and do semantic analysis (to find

control words' meaning). Simplification rules are set for code optimization. Since there

may exist more than one tags in the target file associated with one RTF control word, a

preference rule would be adopted as one of the inputs along with RTF commands. The

preference may be decided by users or by default.

4

Solution 4: XML Representation

XML is a good candidate for representing initial documents. XML has been originally

designed for ease of implementation and for interoperability with both SGML and HTML.

Nowadays, it is looked as a standardized file format flowing between different

information systems. In our case, XML is chosen as the format of the target file of the

translator which can translate many kinds of formats with different code generators.

Solution 5: Generating New File

After the corresponding XML result cornes out, this result and images are inputted into a

code generator and then the generator produces a new file. If the output of the translator is

presented with XML, a related Document Object Model and an XSL file will be also

added as part of inputs in the generator.

Contribution

This thesis discusses an algorithm for the format translator. This algorithm is based on

three rules: translation rules, simplification rules, and preference rules. The translation

rules are for translating the RTF control words. The simplification rules are for code

optimization. Finally, preference rules are for considering preferences supplied by users.

The translator is extensible. Firstly, the input file could be other files rather than a RTF

file as long as they can be divided into command parts and other parts as the RTF format

does. Secondly, particularly interesting control words could be easily added in a particular

case. Thirdly, the output which is currently an XML file could be changed for other

5

formats. Two ways could realize this goal. The translator either uses the XML file to

convert any preferred file with a format generator or outputs a preferred file directly.

Organization

Besides the introduction, this master thesis consists of six parts. Chapter 1 gives readers a

general overview about the whole system. lt introduces the main processes and data flow

between them. Chapter 2 describes the translator's binary tree data structure, a

context-free grammar, the object-oriented character of the translator, and an algorithm

which includes three sets of rules. Chapter 3 explains the translation rules in detail. Plenty

of examples are supplied to demonstrate how the translation rules work. Also the RTF

syntax is outlined in this chapter. Chapter 4 introduces the simplification rules with some

samples. Chapter 5 discusses code generation. The syntaxes of XML and XSL are

outlined, respectively. Then the DTD (Document Type Definition) of the XML result is

described. In addition, a HTML file transformed by the XML result with an XSL file is

displayed in the chapter. The conclusion part discusses the advantages and weaknesses of

the translator.

6

Chapter 1

Translator System Structure

1.1 System Components

In this thesis, the term "translater system" refers to a whole system including several

components that do translation together. The term "translator" on the other hand, refers to

a specific program which translates a RTF file into an XML file. There are four

components in the system: Microsoft Word, extractor, translator, and generator. It is a

one-direction system whose data cannot flow back to the other end. Such kind of

architecture is one of the most common ways to partition application logic between pairs

consisting of a data sender and a data receiver. In the translater system, a sender always

works on data for the following one. A receiver always processes the received data and

then outputs it as the input or one of inputs to the next component that acts as another data

sender. For each pair in the system, the sender is responsible for supplying data and the

receiver is responsible for the application and presentation.

7

Each component in the system is logically independent but each functionally depends on

the data supplied by the previous one. From the view-point of a system user, the whole

system is a converter that converts a . doc document into a document written in a

preferred target format. However, each component plays its own role inside the system.

Two components work as translators. Microsoft Word is actually a pure translator. It

converts the source file completely without missing data. On the contrary, the translator

in the system is an intelligent translator. It chooses some useful control words of RTF files

and does not consider meaningless data. Its intelligence is also proven by the preference

rules with which a user can select an option in the case there are two or more translation

choices. If no preference is indicated by the user, a default value is taken. In some cases,

some attributes, which are not important enough to affect the translated document

apparently, are set by the developer for purpose of simplicity.

The other two components work as an information decomposer and a composer,

respectively. Obviously, the extractor is such a decomposer that extracts the source file

into three kinds of data: texts, images, and control words. The generator, which acts as a

composer, takes the extracted control words and original texts and images together to

generate a text file in the target format.

1.1.1 Microsoft Word

Because . doc files are not easily readable and accessible due to their internai binary

representation, we have to consider an easier processing format. RTF is such kind of

format which is tag based and text formatting. Microsoft Word is used for converting

a . doc file into a RTF file. It is very easy to make a RTF file from a . doc file through

Microsoft Word. The concrete steps are below. Firstly open a . doc file with Microsoft

8

Ward then click the "File" button and then choose "Save As". Next you may keep the file

name as before and select "*.RTF" as "Save as type". You may also simply change the

extension of the . doc file into the RTF extension directly. The input data for Microsoft

Ward is a . doc file and Microsoft Ward outputs the corresponding RTF file. Then this

RTF file will be forwarded to the next component, the extractor.

1.1.2 Extractor

Although the interna! representation of RFT files is much more human-recognizable than

that of . doc files, it is still a huge job for human beings. For example Figure 1 shows a

RTF document which externally consists of pure letters "Hello, world!". It is pretty

complex internally from the view-point of human beings.

l!.i HelloWorld rtf - Bloc-notes l!tr;]CJ
Fichier Edrtion Format ?
{\rtfl \ansi\ansicpg 1252\ucl \deffO\deflangl 033\deflangfe 103 6{\fonttbl{\f0\frornan\fcharset0\fprq2{*\panose 02020603050405020304}
Times New Rornan;}{\f214\froman\fcharset238\fprq2 Times New Roman CE;}{\f215\froman\fcharset204\fprq2 Times New Roman Cyr;} ;;1

{\1117\froman\fcharsetl61\fprq2 Times New Roman Greek;}(\1118\frornan\fcharsetl 62\fprq2 Times New Roman Tur;}{\f2 !9\froman 1~1
\fcharsetl 86\fprq2 Times New Roman Baltic;} }{\colortbl;\redO\greenO\blueO;\redO\greenO\blue255;\redO\green255\blue255; j,
\red0\green25 5\blue0;\red25 5\green0\blue25 5;\red25 5\green0\blue0;\red25 5\green25 5\blue0;\red25 5\green25 5\blue255;\redO\greenO\blue128; JI
\redO\green 128\blue 128;\redO\green 128\blueO;\redl 28\greenO\blue 128;\redl 28\greenO\blueO;\redl 28\greenl 28\blueO; [1
\redl 28\greenl 28\blue 128;\redl 92\green 192\bluel 92;}{\stylesheet{\nowidctlpar\widctlpar\adjustright \fs20\cgrid \snextO Normal;}{*\csl O H1~
\additive Default Paragraph Font;} }{\info{\title Hello, World}{lauthor pcOl 8 }{\operator pcO 18}{\creatim\yr2003\rno1 O\dy21\hrl6\min56} i;.j
{\revtim\yr2003\rno 1 O\dy21\hrl6\min57 }{\version! }{\edrninsl }{\nofpagesl }{\nofwordsO }{\nofcharsO }{*\company Univers il il!
\'e9 de Sherbrooke }{\nofcharswsO }{\vem73} }\deftab708\widowctrl\ftnbjlaenddoc\hyphhotz425\formshade\viewkindl \viewscale 100\pgbrdrhead 'i il
\pgbrdrfoot \f eto\sectd \linex0\headery7 09\footery7 09\colsx7 09\endnhere\sectdefaultcl {\ *\pnseclvl 1\pnucrm\pnstart1\pnindent720\pnhang(1!

1
\pntxta .} }{*\pnseclvl2 dl
\pnucltr\pnstarll\pnindent720\pnhang{\pntxta .} }{*\pnseclvl3\pndec\pnstartl\pnindent720\pnhang{\pntxta .} }{*\pnseclvl4\pnlcltr\pnstartl /
\pnindent720\pnhang{\pntxta)} }{*\pnseclvl5\pndec\pnstart1 \pnindent720\pnhang{\pntxtb (}{\pntxta)} }{*\pnseclvl6
\pnlcltrlpnstartl \pnindent7 20\pnhang{\pntxtb (}{\pntxta)} }{*lpnseclvl7\pnlcrm\pnstartl \pnindent7 20\pnhang{\pntxtb (}{\pntxta)} }{
\ *\pnseclvl8\pnlcltr\pnstart 1\pnindent720\pnhang{\pntxtb (}{\pntxta)}} {\ *\pnseclvl9\pnlcrm\pnstart 1\pnindent720\pnhang
{\pntxtb (}{\pntxta)} }\pard\plain \qc\nowidctlpar\widctlpar\adjustright \fs20\cgrid {\b\fs24 Hello, Worldl }{\fs24
\par}~

Figure 1: The RTF file HelloWorld. rtf

There are several reasons that prevent analysis of RTF to become an easy job for human

beings. Firstly, there are too many characters, 3 415, in this very simple document that

includes no lists, no images, and no tables. Secondly, its interna! representation lacks of

logic and relationship between tags. Thirdly, most of control words are not easy to

9

remember and understand. For a regular RTF document, the inner code is much bigger

and more complicated.

A RTF document is considered as the composition of three kinds of parts: images, texts,

and control words. The extractor extracts a RTF document into images, texts, and control

tags. Images and texts are kept unchanged for later use. The extracted RTF control words

are translated with the translator based on some translation rules.

1.1.3 Intelligent Translator

As a general translater in common sense, the translator does not create extra information.

lt forwards the sender's information, the RTF control words, to the receiver in a way in

which another side may understand. So, the translator collects data from its client and

translates this "foreign language" into understandable words for the generator. In this

sense, the translator is a middleman in communication. Actually it is located in the

middle place in the system. As mentioned before, it is a producer-consumer pair based

system. In the extractor-translator pair, the translator works as a client. It is the extractor

who makes a service by supplying extracted RTF control tags to the client. But in the

translator-generator pair, the translator changes its role and works as a server. The

translator outputs an XML result to the generator.

1.1.4 Generator

After obtaining new file tags, the extracted images and texts can be rearranged by means

of the generator. Control words are responsible for arranging document appearance. The

generator is the last part in linked components inside of the system. Its role is to create the

target format based on the translated XML file and extracted texts as well as images. For

purpose of extensibility, we choose XML rather than other data representation to carry

10

data content. Because XML can be used to describe data, the generator can read all

required data from the XML document and makes some specific format users prefer.

Since the XML document carries style attributes and other information of the source

document, the generator simply gets the information from the XML document and

generates a new kind of file. Certainly, a DTD file and an XSL file are required as

companion files to define and represent the XML document.

So far the generator is implemented as a HTML format generator for purpose of

demonstration. Of course, it could be made as other format generators, D2E [8] or TeX [9]

for example. The generator could also be an all-in-one powerful generator that is able to

generate some format documents according to user's preference. In fact, we can go one

step further. The generator can be within the system or it can be in other different systems.

XML is an extensible, generalized markup language that is capable to describe data

passing between different systems or applications. So the generator can still safely get

information from the translator system without any trouble.

1.2 Data Flow of the System

Figure 2 shows the dataflow of the translator system. The input file for the whole system

is in . doc format. We use Microsoft Word to convert . doc format into RTF format. Tuen

the converted . rt f file is forwarded into the extractor that is already implemented by

our research group. The output of the extractor is classified as three subsets: images

(. png or . jpg), texts (. txt), and control words (. cmd). In order to recognize the

commands, the RTF control words should be inputted into the intelligent translator as

well as texts and then it yields XML result. The final stage is in the generator. The XML

result flows into the generator. Also a DTD file, which is used for definition of the XML

file, and an . XSL file, which is used for presentation of the result, are inputted into the

generator along with images and the XML file. Because there may exist more than one

11

translation for one contrai word, a preference file (. prf) is also inputted into the

generator. Finally, the generator outputs the final result-HTML, D2E [8], or TeX [9].

Figure 2: Data flow of the intelligent translator system

To demonstrate the data flow in the translator system, a simple Microsoft Ward . doc

document, Dataflow. doc, is taken as the input of the system. Assume the generator is

an XMLtoHTML generator which takes XML as input and produces a HTML file as

output.

Stage 1: Take Input as • doc Format

Figure 3 shows the Dataflow. doc input file. Because . doc internai code is not public

available and is in a binary representation, only its appearance is illustrated. This simple

document includes an unordered list, an image, and some paragraphs.

Stage 2: Convert to RTF Format

Next, a . doc file flows into Microsoft Ward where it is converted into a RTF file.

Although the RTF file bas the same physically appearance as its . doc version from the

12

view of human beings (compare Figure 3 and Figure 4), its internai representation is qui te

different (see Figure 5) because one is binary and the other is textual. Unlike the binary

internai formatting of . doc, RTF's textual representation offers an opportunity to analyze

the document's "source code" and then build a translator.

".'

Data flow example
In this example, yo11 will see data flow amoug the translator f.y:>tem. It takes a .doc
file as input. There are forn· compouents in this system. They ru·e
• l\.ficrosoft Worcl
• E.xtrne:tor
• TrruL• lntor
• Generator

Data wil/ be converted or e:x.tracted or composed when entering these components.
Also rut ima2e is iududed in this tile.

Ft'11nlfr 011rv11t n Tit111/ filt'.

Figure 3: The input file Dataflow. doc

Data flow examplq
In this exnmple. yo11 will see datn flow runou.!' the tmnslntor system. Il tnkes n .doc
file ns input. There are forn· compouents in this system. They nre
• .1\-Iicrosoft " 'onl
• Exb·nctor
• Trrutslntor
• Gener·ator

Data wi/J be converted or e:x.tracted or composed when entering these components.
A..lso nn imnne is iuducled in this file .

Ft"11n/6' 011tzml n 111111/ Hfr.

Figure 4: The converted RTF file Dataflow. rtf

13

pitffiffiit!H"UMalt!i§ft!i § _j9i>cl
Fichier Editlori Formel ?
lrlfl \ansilansicpgl 252\uc l \deffO\denangl 033\denangfel 036(\fonUbl(\fO\froman\fcharsetO\fprq2(*lpanose 02020603050405020:i04 }Times "'

{\f14\fnil\fcharset2\fprq2(*\panose 05000000000000000000 }Wingdings;}{\f204\fnil\fcharsetl 34\fprq2{*lpanose 02010600030101010101 :
{lf21I\froman\fcharset161 \fprq2 Times New Roman Oreek;}{lf212\fromanlfcharset l 62\fprq2 Times New Roman Tur;}{lf213\fromanlfcharsetll ~~
lredOlgreenOlblue255;\redOlgreen255\blue255;\redO\green255\blueO;lred2551greenO\blue255;\red255\greenO\blueO;lred2551green255\blueO;lre• X:~
\red 128\greenO\blueO;lredl 28\greenl 28.lblueO;lred 128\greenl 28\bluel 28;\red 192\greenl 92\bluel 92;}{\slylesheet(\qj\nowidctlpar\adjustright \1 ~~·I
\b\keming21cgrid \sbasedonO \snextl 5 T1tle;}{\sl 6\<[J\nowidctlparladjustright \b\kemmg21cgrid \sbasedonO \snextl 6 Body Text;} }{l*\listtable{\li: ~}I
\levelindenW{\leveltext\'01\u-3913 ?;}{llevelnumbers;}\f3\fbias0 \fi-360\li360\jclisttab\lx360 }{\listname ;}\listid543 l 7 8643 }{llist\listtemplat.E §>"
\'02\'00.;}{llevelnumbers\'Ol;}lfbiasO \fi -360\li360\jclisttab\tx360 }{\listlevel\levelnfc4\leveljcO\levelfollowO\levelstartatl\levelspaceO\levelind< :JI
~~~~~:~:~~~~i1:::~~~;~1IT~1~:~~::1~::~~i~!~:::::I~~~·~.~W;;;~~~·:~~=~~~:~~:!:C2.~~i:;.~~~~~:OUC'~~.~~.~'~\~!~);~{~Y:::i~: ~ 
~~ri~~~~~~~~~~·~i{\~~.~\~~~11~~:~~:r~~~~e;ij~b~:~:\~::;T!~~·~:~?;{!:.,~~~:!~~~~~!~~;~;e~~A~~~11~:~~;~~·~J)S~~:~~~'!~:~~~g~j~~ ~ 
\levelindenW{\leveltext\'02\'08.;}{llevelnumbers\'OI ;}lfi-420\li3780\jclisttabltx3780 }{\listnarne ;l\l.istid888996937 }{llist\lisltemplateid-5350< ~J] 
\'Ollu-3988 ?;}(\levelnumbers;}lfl4\fb1asO lfi-420\11420\Jcltsttabltx420 }{\lsstlevel\levelnfc23\levelJC0\levelfolloWO\levelstartatl\levelspace0\l< ~v'! 
\levelnf c23\leve lj cO\leve lfollowO\levelstartat 1 \levelspaceO\level indenlO{\levellextl'O 1lu-397 9 ?;) {\levelnumbers; }\fi 4 \fbiasO \fi -420\li 1260\jcli ~•'! 
\'0 ! lu-3988 ?;}(\levelnumbers;}\fl4\fbias0\fi-420\li1680\jclisttabltxl 680 }{\listlevelllevelnfc23\leveljcOllevelfollowO\levelstartatl \levelspaceC ~-~ 
{llistlevelllevelnfc23\leveljc0\levelfollow0\levelstartat 1\levelspaceO\levelindenW(\leveltext\'01lu-3979 ?;}(llevelnumbers;}lfl 4 \fbiasO \fi-42011: ~i 
{lleveltext\'01\u-3988 ?; }{llevelnumbers;}lfl 4\fbiasO \fi-4 20\li2940\jclisttabltx2940 }{\listlevel\levelnfc23\levelj cO\levelfolloWO\levelstartat 1 Il :Kj 

~,~:~~~~:~:~i~dJ~1;~~~·3e~~;~~~;;;,~!~~~:~~~~~!~>1f ~~~~~~:~=:~;:~c~~;~~~~e~~:;r;~~~:;~~~~·?,1~;:.~;~~;~11~~~~~b;~;l~: ~ 
~~~:~;r,;i~~~:_~~~Jl~~J:~~~U,~~~~~~~~~~:~~~!~h:!~'2.:I~~~J;~~~~:1~';3jo<~~~~:':;~<~~~~~~~~~~~~~~!~~~~{~~ ~~1 
lpnucltrlpnstart 1 lp".indent7201pnhang{lpntxta . } }{*lpnseclvl31pndeclpnstartl lpnindent7201pnhang{lpntxta .} }{*lpnseclvl4\pnlcltrlpnstart 1 lpnind ~~~
lpnlcllr\pnstartl lpnmdent7201pnhang{lpntxtb (}{\pntxta)} }{*lpnseclvl7\pnlcrmlpnstartl lpnmdent720lpnhang(lpntxtb (}(lpntxta)} }{l*lpnseclvlE g
{lpntxtb (}(lpntxta)} }lpardlplain \si 5\qc\nowidctlpar\adjustright \b\keming2\cgrid {lfs28 \hichlaf0\dbchlaf204\lochlf0 Data now exarnple Z~

to: ~'f.~tr~::;_ ~~;:u~;~~:~~:~:~~~~f,:t~~~~~!2~d~~bo \hich\af0\dbchlaf204\loch\f0 In this exarnple, you will see data n ow arnong ~
~~h\t~~~~~~~~~~~~~~~~!~~~~~21cgrid \loch\af3\dbchlaf204\hich\f3 \'b7\IJ!b} }lpard \si 6\qj\fi-360\li360\nowidctlpar\jclisltab\tx36 ~

~~h~~~~~~~~~;~~~~~c3~~eming2\cgrid \loch\af3\dbch\af204\hich\f3 \'b7\lab})lpard \si 6\qj\fi-360\li360\nowidctlpar\jclisltab\tx36 ~~

\par {lpntextlpardlplainlsl 6 \langl 033\keming2\cgrid \loch\af3\dbch\af204\hich\f3 \'b7\lab} }lpard \si 6\qj\fi-360\li360\nowidctlpar\jclisltabltx36 8J
\hichlaf0\dbchlaf204\loch\f0 Translator ? l
\par {lpntextlpardlplainlsl 6 \Jang! 033\keming2\cgrid \lochlaf3\dbchlaf204\hich\f3 \'b7\lab} }lpard \si 6\qjlfi-360\li360\nowidctlpar\jclisltab\tx36 ;. "

~ichlaf0\dbchlaf204\loch\f0 Generator ~~ZS':'-3:"&"&".;"&'fr.'i>.'.:;{>,?~~?i:::.::;:\:&"&"&'&"'.Y'~.'~·{f.-?;~'>,~;.,,;_;;;&\:&'O:i~Y.':'~
f'~oém-..,.,e;l[,..::K•YA .. ! ;Jioi~ciu ~! r:!;i ..;.,~.;::·T':§li;.~;. I t.11m~o . .. FTW.-.::Ë'dJ 1Il' .:4i;:;;;:'.Tiïii;;;,;.-;-:: .u@!?.,D.l.~i';)2ïci~i~i:::!j~(!j;Ç~_!~.· ~~J

Figure 5: Interna! text formatting of Dataflow. rtf

Stage 3: Extract Three Parts from the RTF File

The Da taflow. rtf file is read by the extractor from which information is extracted

into three parts: Dataflow. cmd shown in Figure 6 to store extracted RTF command

words (control words), Dataflow. txt shown in Figure 7 to store extracted texts, and

Dataflowimg_l. jpg which contains the extracted image.

(
(
(\qj}
{\qc\b}
(\qj\b)

)
{ \info}
\paperw 1 1 906\pard\plftin\qc\b
{\TEXTl\par)
\pw-d\ploin\qj\ b
{ \bO\'IEXTZ\par
{\pud\plain}

)
\pnrd\qj
{\pnlvlblt.}
{\bO\TEXTJ\plU"'
{\pnrd\plnin}

)
\pard\qj
{\pnlvlbll}
{\b0\TEXT4\pur
{\pard\plain}

)
\pard\qj
{\pnlv lbll}

!i:rM

\\~O~~p~~tar \ 1
) l'<.1
~~ w
{\b0\TEXT6\par} l~ j

,~ff~:~:-~·:~,:·,, .~>:,.,'.·' · ::'., ·-~'~;;,~· :;: ,,'.'..,,: ,•;,. :" '\b:i\".<Y., .. ,;h :;,,:,'. .. ~ . :'.f\YÜ.·. h''~ , :,: ~·.'. -~' ~>'. .J
t--o•m~•••(iJ -KayA. .. (!SDl•qu ... !k::si • .t,~ .. ! Citheolo (14'JNSE .• .' (<!, WlnEdJ ID'"'l"'o •.. (•1nv;io .. .! ,;:;i dat..n . .. !l of?,l.,~~-1~"" ~éT.{ijjî~~ \~Xtif"

Figure 6: The file Dataflow. cmd to store extracted control words

14

@t5ffiiffi irjM:lh§ifijl, -l~lxl
Fichier Edition Fonnat '?
TEXTI 1 Data flow example _i:-
TEXT2 I In this example, you will see data flow among the translalor system lt takes a .doc file as inpul There are four components in this system ('.)j
TEXTI IMicrosoftWord '/•1
TEXT4 1 Extractor ~'.~ !

~~:=~~~ rn
TEXTI 1 Data will be converted or exlracted or composed when entering these components. ~j
TEXTS I Also an image 1s mcluded m this file. ~l

h=ii'""'•'"'~'""·~ ~"""'""7'~0==0=='1>:="~_,..,,,.,,=,,,,,I ÙÙliltfl-:râ
• ~!"'. """®d~~ .. -~ ~f§iir";'~:~;:

Figure 7: The file Dataflow. txt to store extracted texts

Stage 4: Dataflow. cmd Flows into the Translator

The command file dataflow. cmd is read by the translator which outputs an XML file:

Dataflow. xml shown in Figure 8.

tJE \conrses\Thesis\Codeî\DAUl'Ull llL - licrosoft Internet Ezplorer l!lfiJ EJ

~ Copernic Aient

<?nnl version="l.0' ?>
-<docwnenl>

ff.$• :~ ltit!ll I~ rse_s\Ihe_si_s\Cod_e_7\DAUJlJ)_l . XULJj ~ft}jj
P jQrhe.Web !ËJI SUp J @ Hstory &j rra~ IFJ

- <heading level="l" fllignment='center''>
-<headtext>

<bold> Data ilow example<lbold>
<llmdtext>

</heac!ing>
-<paragraph>

<text>ln tlùs example, you will see data ilow among lke translator system. It takts a .doc file as input. Ture are four
compomnls in tlùs system. They are<ftext>

</paragraph>
• <list lype="order''>

-<it~m>

<text>Mil:rosoft Word<ftext>
</item>

-<item>
<text>F.xtractor<ftext>

</item>
-<item>

<text>Translator<ftext>
</item>

-<item>
<text>Gemrator<ftext>

</item>
</list>
<paragraphl>

- <poragraph>
-<text>

<itfllic>Data will be converled or extracted or composed when entering lkese compomnls.</itfllic>
u -~"'{fu:.t'>

8Code7

Figure 8: The XML output file Dataflow. xml

15

Stage 5: Code Generation

It is the last stage in which the generator does code generation taking Dataflow. xml,

Dataflow.pre, Dataflow_imgl.jpg, and Dataflow.xsl as well as

Da ta f 1 ow . d td. Assume an XMLtoHTML generator is adopted. Figure 9 shows

Da taflow. html browsed by Microsoft Internet Explorer.

-Ui~UJ.tuut...__,.,,,,,., .. , .. ~,,.,,~ .. ~ .. 'tt.'mttuto't'

il G lpcllronslotnrlifotHflow html - Mrrrnsofl Internet Ex lorer lllll!JCI
1--Fich- ier _Editi~on _Affich_oge _- F_ovo_ri-s _outi_1;--7==-::-~~~--_ -~-.-----------.

+- Proc)Jd,,n\f, "' -+ "' @ @) Gll ! ~Rachercher l5Fo.11C rls (~ t.fê d io ~ lrJ, ... ~ . . l

Data now example w
w

ln this example, you will see data ftow among the transistor system. Il takes a .doc file as input. There are four components in this Y(
system. They are W

• MicrosoftWord
• Extractor
• Translator
• Generator

Data wi ll be converted or extracted or composed when entering these components. Also an image is included in this file.

\','
w
i,lll.
w·
:l:t~
H
Yi w
tir

,;Vi
V~
'1' li
l'i

Final/y output a html file. ~~

f.:};;i5>.ii'E::i1:r-::·:i=:·=ï·=;;:,~: :· ·;:;;;;.=.:;;::::;:r~;;;;::·~~:n:;;,;= ; ... _.;~:::;;;; ·· ï ·~:.-::::--..;-=;;~::.-:.~·-:@-.'::..:::.r;;;·.,_.:!~~"'2ti-;;;;;;;.::..---:::.~ ,

Figure 9: The file Dataflow. html browsed by Microsoft Internet Explorer

1.3 RTF Syntax

RTF is a document format. RTF is not intended to be a markup language anyone would use

for coding entire documents by bands (although it could be done). Instead, it is meant to be

a format for document data that ail sorts of programs can read and write. By Rich Text

Format Specification version 1.6 [10], RTF is a file format for encoding graphies and

formatted text to permit easy transfer between different applications and operating systems.

RTF breaks down into four basic categories: control words, control symbols, groups, and

plaintext.

16

1.3.1 Control W ords

A control word is a specially formatted command that RTF uses to mark printer control

code and information that applications use to manage documents. A control word cannot be

longer than 32 characters. A control word takes the following form:

\LetterSequence<Del imiter>

Three parts are involved in each control word. The first is a backslash. Then cornes an

identifier that is made up of lowercase alphabetic characters (a-z). RTF is case sensitive.

The final part is a delimiter. The delimiter can be a space, a digit, a hyphen (-) or any

character other than a letter or a digit. For example, \fs24 is a control words which means

the size of some text is 24 half-points.

The control properties of certain control words (such as bold, italic, keep together and so

on) have only two states. When such a control word has no parameter or has a nonzero

parameter, it is assumed that the control word tums on the property. When such a control

word has a parameter of 0, it is assumed that the control word tums off the property. For

example, \b tums on bold, whereas \bO tums off bold.

1.3.2 Control Symbols

A control symbol consists of a backslash followed by a single, nonalphabetic character.

Control symbols take no delimiters. There are only three control symbols that are of

general interest: \- is the one that indicates a nonbreaking space; \- is an optional hyphen

(a hyphenation point); and _ is a nonbreaking hyphen (that is, a hyphen that is not safe

for breaking the line after). The escape* is also part of a construct we do not discussed

now.

17

1.3.3 Groups

A group consists of text and control words or control symbols enclosed in braces ({ }).

The opening brace " { " indicates the start of the group and the closing brace " } "

indicates the end of the group. Each group contains the text affected by the group and the

different attributes of that text. A RTF file can also include groups for fonts, styles, screen

color, pictures, footnotes, comments (annotations), headers and footers, summary

information, fields, and bookmarks, as well as document, section, paragraph, and

character formatting properties. If the font, file, style, screen-color, revision mark, and

summary-information groups and document-formatting properties are included, they must

precede the first plain text character in the document. These groups form the RTF file

header. If the group for fonts is included, it should precede the group for styles. If any

group is not used, it can be omitted.

1.3.4 Plain Text

The control words, control symbols, and braces constitute control information. All other

characters in the file are plain text. Figure 10 shows an example of plain text that exists

within a group.

{\RTF1{\nofpagesl}{\nofwords0}{\nofchars0}{\vern835
1}\widoctrl\ftnbj\sectd\linexO\endnhere\pard\plain
\fs20 This is plain text.\par}

Figure 10: A RTF file to show plain text

The phrase "This is plain text" is part of a group, but it is nota control word (no backslash

before it) and is treated as a document text.

18

1.3.5 A RTF Example: Hello, World!

RTF is not designed for coding document by bands. But we can still do it to show the

basic syntax of RTF. Figure 11 shows the source code written by bands.

{\RTFl\ansi\deffO {\fonttbl {\fO Times New Roman;}}
\qc\f0\fs24\b Hello, World!}

Figure 11: RTF control words for HelloWorld. rtf

The \RTF1 at the start of the file means "the file that starts here will be in RTF, Version

l," and it is required of all RTF documents. The \ansi means that this document is in the

ANSI character set.

The \deffO says that the default font for the document is font #0 in the font table, which

immediately follows. The {\fonttbl ... } construct is for listing the names of all the fonts

that may be used in the document, associating a number with each. The {\fonttbl ... }

construct contains a number of {\fnumber font name;} constructs, for associating a

number with a font name. This ends the prolog to the RTF document; everything

afterward is actual text.

The \qc, the first part of the actual text of the document, means that this paragraph should

be centered. The \fO means that we should now use the font associated with the number 0

in the font table, namely, Times New Roman. The \fs24 means to change the font size to

12 points. The \fs command's parameter is in half-points: so \fs24 means 12 points. As

you probably inferred, the \b means bold on the font sytle. The space after the \b does not

actually appear in the text, but merely ends the \b token.

19

And finally, the document ends with a }. While there are other }'s in the document, we

know that it is the one that ends this document because it matches the { that started the

document, and because there is nothing after it in this file.

To see the RTF file of this example, open a Notepad text editor and type it in, save this

file as HelloWorld. rtf, and finally open it with a Ward processor. Figure 12 shows

the RTF document HelloWorld. rtf.

Figure 12: The RTF file HelloWorld. rtf

1.4 A Compact Package of Control Words

The extractor works on a compact package of RTF contrai words. Although there are

hundreds of RTF contrai words by Rich Text Format Specification version 1.6 [10], the

extractor only extracts 95 kinds of contrai words from a RTF document. The reason is

that only a few number of RTF contrai words are related with the layout of a RTF

document and therefore are considered important. Many other contrai words are either

ignored or set by default. Ail RTF contrai words are classified into four categories by the

translator system.

20

Useless Control Words

The first category is for those control words which are not useful at all in the translator

implementation although they may be useful in other applications. For example,

\facenter is a control word for font alignment. But in the translator design, a font is not

allowed to have alignment attributes. Only a paragraph/heading/cell has alignment. So

this kind of control words is useless for the translater system and is simply excluded by

the extractor and the translator.

Least Important Control W ords

The second category is for those control words which have minor contribution to a

document construction. For example, \levelindentN that shows minimum distance from

the left indent to the start of the paragraph text (used for Word 7.0 compatibility only), is

not very important to build a paragraph. Such control words are also excluded.

Less Important Control W ords

The third category is for those control words which are important but their value is not

taken out. lnstead they are assigned a default value for purpose of simplification. For

instance, \levelnfcN is used to specify the number type for the item icon. The number N

starts from 0 to 2 146. Each refers a number type in an ordered list, such as Arabie

number or Chinese · number. In the translator implementation, the number type of an

ordered list is always set to the Arabie number system (1, 2, 3, ...). This kind of control

words is important for the translator but a fixed value is adopted. Therefore the third

category is not included by the extractor and the translator.

21

Most Important Control Words

The final category is for those necessary to construct a document. For example,

\pnlvlbody which shows an ordered list is such a necessary control word. With this

control word, the translator knows there is a list in the source document and its type is

ordered. The control word database of the extractor only contains these tags.

The extractor adopts only 95 RTF control words. They are key control words for fonts,

paragraphs, lists, tables, and images which can basically control layout and appearance of

documents written in the target format. The other control words cannot be recognized by

the extractor unless they are added into its database of control words. Since the translator

takes a . cmd file from the extractor, the translator deals with at most 95 control words.

Table 1 shows all 95 RTF control words on which the extractor and the translator work.

Table 1: The translater recognizable RTF control words

bin ' * \OxOa \OxOd tab lquote rquote

ldblquote rdblquote { } \ plain b i

ul ulw sub super strike striked li ne par

pard ql qc qj qr outlinelevel fldrslt ls

pnlvlblt pnlvlbody shppict jpegblip pngblip nonshppict emtblip macpict

wmetafile di bitmap wbitmap picwgoal pichgoal pmmetafile trowd row

cell cellx intbl brdrw trgaph paperw margl margr

info fldinst bkmkstart pict author buptim colortbl comment

creatim doccomm fonttbl footer footerf footerl footerr footnote

ftncn ftnsep ftnsepc header headerf headerl headerr keywords

operator pntext printim privatel revtim stylesheet rxe subject

te title txe xe fs picscalex picscaley

22

The tags inside of the table are RTF control words for font size and style, paragraph

alignment, page break, page numbering, page headers and footers, widow-and-orphan

control, ordered list, unordered list, image, and other features as well as some important

control symbols. The concrete meaning of each tag is out of this thesis although some of

them are explained somewhere in this thesis when necessary. But one thing worth mention

is that these tags are complete and accurate to control a normal RTF document. They are

loaded into the extractor RTF control words' database. The extractor reads the words

among the table and then the translator processes them. Those that are not in the table are

simply neglected by the translator.

Compare two HelloWorld. rtf documents. The first one is created by bands and its

intemal code is shown in Figure 11. The second one is created in normal way: converted

from HelloWorld. doc by Microsoft Word. Both have exactly content-- Hello, World!.

But their intemal code is quite different. The intemal code of the second one, shown in

Figure 1, is much larger and more complex than that of the first one. Why the two RTF

documents with the same content have so different intemal representations? The answer is

too many extra words exist in the second file. A limited number of RTF control words are

enough to decide a document attribute and its appearance. Figure 13 shows the control

words extracted by the extractor. Compared to about 300 control words shown in Figure 1,

only 10 are extracted and these control words combined with the extracted TEXTl are

enough to re-create HelloWorld. rtf.

{ \qj}

{ \info}

\paperw11906\rnargl1800\rnargr1800\pard\plain\qc

{\b\TEXTl}

{\par}

Figure 13: The command file HelloWorld. cmd

23

Chapter 2

Overview of the Translator

2.1 Text Processing Domain

The translator is an application of text processing and transformation domain. Like any

other applications in this domain, the translator works with procedures including

character reading, lexical analysis, syntax analysis, semantic analysis, code optimization,

and code generation. The function ConstructTree (), shown in Figure 14, is

developed for character reading, lexical analysis, and syntax analysis. The function

FirstScan (), shown in Appendix A, is for semantic analysis. The function

SecondScan () , shown in Appendix A, is for code optimization. And the function

ThirdScan () , shown in Appendix A, is for code generation. The four functions are the

main functions in the translator program. They play important roles in text processing and

transformation during translation.

24

void TranslatorTree: :ConstructTree(ifstream &inFile)
//omit some code lines for simplification//
value=O;// initialize the value attached in the end of a token
int BlockID=l;
ImageID=l;
BlockNode* pRoot=new BlockNode(O);
SequenceNode* child=new SequenceNode();
pRoot->AddRightSon(NULL);//the root node has no right child
pRoot->AddLeftSon(child);// the root node has only a sequence node
m_tree=(TreeNode*)pRoot;
pCurrentNode=(TreeNode*)child;
while(!inFile.eof())//read the whole characters of the command file

getline(inFile,mstr);//for character reading
for(int i=O;i<mstr.length();i++)//read each letter in the string

ch=mstr.at(i);//read one letter at "i"
if (ch=='{'} //meet a block

//make a block and push into the tree
treeStack.push((TreeNode*)pCurrentNode);
pBlock=AddBlockNode(&pCurrentNode->m_pLeft,BlockID++);
pSequence=AddSequenceNode(&pBlock->m_pLeft);
pCurrentNode=pSequence;

else if(ch =='\\')//a token ends

int pos=mstr.length();//last token without ending "}"or"\"
for(int j=i+l;j<mstr.length();j++)//for making a token

if (mstr. at (j) ==' \ \' 11 mstr. at (j) ==') ' 11 mstr. at (j) ==' {' }
{ //count the position when the token ends

pos=j;
break;

token=mstr.substr(i+l, (pos-i-1)); //make a token
makeDataNode();// a function to store the token into

else if(ch=='}')//End Block

//Pop Parent Node from Stack
pCurrentNode=(SequenceNode*)treeStack.top();
treeStack.pop();

25

if (pCurrentNode!=pRoot)
//make a sequence node
pSequence=AddSequenceNode(&pCurrentNode->m_pRight);
pCurrentNode=pSequence;

Figure 14: The fonction ConstructTree ()

The data structure of the translator is a binary tree. Ail characters of the . cmd file for a

RTF document are read and loaded into the tree with the fonction ConstructTree ().

The fonction is responsible for building the data tree. When characters are read, they are

firstly grouped into different tokens. This procedure is called lexical analysis. Then tokens

are classified into three categories: block, sequence, and data node. This procedure is

called syntax analysis. After syntax analysis, these nodes are loaded into the tree.

2.1.1 Character Reading

Character reading in the translator program is to read a character stream letter by letter

from a . cmd file supplied by the extractor. Because the . cmd file is attached with an

ifstream object inFile (defined in the main fonction), the fonction

Cons truct Tree () , shown in Figure 14, is ready to read the stream. In this fonction, a

character variable ch is used to load a letter from a line of the stream. The string fonction

getline () reads line one by one.

2.1.2 Lexical Analysis

Lexical analysis is a procedure to collect sequence of characters into meaningfol units

called tokens. Each token in the translator program consists of one or more characters

26

that are collected into a unit before further processing takes place. There are six kinds of

tokens that are recognized by the translator program:

control word - a sequence of lower case letters between a backslash and either

another backslash or a left brace or a right brace is a control word;

text - "TEXT" and following integer digits is a text;

field - "FIELD" and following integer digits is a field;

bookmark - "BOOKMARK" and following integer digits is a bookmark;

image - "IMAGE" is an image;

image name - a sequence of letters after IMAGE followed by an empty space and

bef ore a right brace is an image name.

In the ConstructTree () fonction, a character string called token is used to store a

token.

2.1.3 Syntax Analysis

After tokens are produced, syntax analysis is performed which determines the structural

elements of the . cmd file as well as their relationships [11]. The results of syntax analysis

are represented as a syntax tree in the translator program according to a context-free

grammar. Figure 15 shows a general example of a syntax tree.

Context-Free Grammar for Syntax Analysis

Block-> {Sequence li { }
Sequence-> Block Sequence 1 Tag Sequence 1 Image Sequence 1 Field Sequence

1 Bookmark Sequence 1 Text Sequence 1 Block 1 Tag 1 Text 1 Bookmark 1 Field 1 Image

27

Figure 15: A syntax tree constructed by the translator program

2.1.4 Semantic Analysis

Semantic analysis is to interpret text meaning as opposed to its syntax. The translation is

done in this procedure. In the translator implementation, the fonction FirstScan () is

for translation. A set of rules, called translation rules, specifies concrete translation issues.

A top-down traversai of the syntax tree is carried out in the semantic analysis phase of the

translator program.

2.1.5 Code Optimization

The goal of code optimization, also called improvement, is to increase the efficiency of

the target code [12]. The fonction SecondScan () is for code optimization. A top-down

traversai of the syntax tree is carried out in code optimization in the translator program. A

28

set of rules, called simplification rules, specifies concrete code improvement in the

program. There are two cases that can be applied with the simplification rules. The first

one happens in a block which contains useless data. In this case, the block is simply

jumped during the traversa!. The second one happens in two or more nearby texts which

have the same style attributes. In this case, these texts are merged together and share the

same attributes.

2.1.6 Code Generation

This is the last stage of text processing and transformation domain. The translator outputs

the target code XML. The fonction ThirdScan () is for code generation. Like semantic

analysis and code optimization, code generation also adopts a top-down traversa! of the

syntax tree.

2.2 Binary Tree Data Structure

The data structure of the system is implemented with a binary tree. A binary tree can be

implemented either explicitly in a linked list or implicitly in an array [13]. With the

former it is easier to maintain a parent-child relationship but it takes more memory space

because of the storage used for references. The latter is much less self-documenting but

saves space because there are no references. ln the translator system, the explicit linked

list representation is selected. The main reason is that the binary tree constructed by the

translator is not full or complete in most translation cases. The linked list representation

for binary trees does not need to account for the gaps where nodes are missing. On the

contrary, the array representation has to keep control of the slots which do not contain

actual tree elements [14].

29

Bach node is an instance of class TreeNode or its subclasses. A node keeps two

TreeNode pointers to point to its left child and right child. The tree nodes are holders of

input RTF control words. Every control word is read and then stored in this binary tree.

Physically, there are eight kinds of nodes in this tree. But fonctionally, we can categorize

them into three kinds by the fonctions they own. First is TreeNode, a parent node used

for making children. Because each node is an object of the TreeNode's subclasses,

recursion calls which traverse the whole tree are valid. Second are intermediate nodes,

BlockNode and SequenceNode, which do not hold any data for document contents.

They show the structure and sequence of control words. Third are the target nodes in

which control words actually locate. Without exception, target nodes are the tree leaves.

The translator mainly works on the . cmd file. A . cmd file has a solid format as shown in

Figure 6 and Figure 13. This kind of file always starts with an open brace and ends with a

close brace. Between them are a series of blocks and sequences of tags. The translator

reads the . cmd file and builds a binary tree based on its contents. So the root of the tree is

always a block and this block keeps a single pointer to one child only called

sequenceNode. The sequenceNode maintains a pointer to its left child -a block or

one of target nodes-and another pointer to its right child called sequenceNode. Next,

the left child of the root node goes on to point to its child if it is a block. Otherwise, it is

one of target nodes (a leaf) and does nothing. The right child, which is also a

sequenceNode, points to its two children as its parent does. Tuen each child has its

own children and points to the children, respectively. This child creation process goes on

until reading the last control word in the . cmd file.

2.2.1 The Class TreeNode

Figure 16 shows the class TreeNode, a super class from which its child classes inherit. lt

is an abstract class with a pure virtual fonction and other four regular fonctions. There are

30

three attributes in the class TreeNode: m_NodeType to contain the type of each node;

m_pLeft and m_pRight to point to the left child node and right child node,

respectively. The pure virtual fonction GetNodeType () is overridden by the derived

classes. Other four fonctions are implemented for getting or adding two children of a node

abject.

class TreeNode

public:
NODETYPE m_NodeType;
TreeNode* m_pLeft;
TreeNode* m_pRight;
TreeNode();
-TreeNode();
virtual NODETYPE GetNodeType()=O;
void AddLeftSon(TreeNode* tn);
void AddRightSon(TreeNode* tn);
TreeNode* GetLeftSon();
TreeNode* GetRightSon();

Figure 16: The class TreeNode

2.2.2 lntermediate Nodes

Intermediate nodes are used to express a process that can identify nodes that store

attribute information. Normally they are in the middle of the binary tree. Leaves are the

only nodes to store RTF document attributes and contents. Intermediate nodes do not hold

any document information, but they can guide a traversa! fonction where to go and what is

the next kind of node. Two kinds of intermediate nodes are used in the binary tree

implementation. Figure 17 and Figure 18 show class BlockNode and class

SequenceNode, respectively.

31

class BlockNode public TreeNode

public:

} ;

int id;
bool use;
BlockNode();
BlockNode(int i);
-BlockNode();
bool GetUse();
void SetUse(bool myUse);
NODETYPE GetNodeType();

Figure 17: The class BlockNode

The Boolean variable use is for showing if the node has usefol data in the second

traversa! for simplification. The fonction GetUse () and SetUse () are implemented

for getting and setting the variable use. The fonction GetNodeType () is overridden

and it returns the NT_BLOCK node type.

class SequenceNode public TreeNode

public:

} ;

SequenceNode();
-SequenceNode();
NODETYPE GetNodeType();

Figure 18: The class SequenceNode

2.2.3 Target Nodes

Target nodes are nodes in which useful RTF information locates. The information is

something required for generating the target file. Totally, there are five kinds of important

32

data in a RTF document: control words (tags) to regulate document appearance, text

contents (texts), images, bookmarks, and fields. The control words are RTF command tags

to decide and control the appearance of a RTF document. The texts are all sequences of

characters in a RTF document that have a meaning for the user. The images are pictures

included in a RTF document. A bookmark is a term to refer to a location within a RTF

document, referred elsewhere as an anchor.

A field is used as a placeholder for data that might change in a RTF document and for

creating form letters and labels in mail-merge documents or as a hyperlink to a destination.

Besides a hyperlink, other common uses for fields are the following:

Display information about a document such as the author's name, the file size, or

the number of pages. To do so, use the AUTHOR, FILESIZE, NUMPAGES, or

DOCPROPERTY field.

Add, subtract, or perform other calculations. To do so, use the= (Formula) field.

Work with documents in a mail merge. For example, insert ASK and FILLIN

fields to display a prompt as Microsoft Word merges each data record with the

main document.

Correspondingly, five kinds of nodes are implemented to store the information.

2.2.3.1 The Class TagNode

This class is used for producing a tag node to hold a RTF control word. A private string

variable m_strTag is used to store a control word; an integer value records the value

accompanied with the control word. For example, when outlinelevel2 is read,

outlinelevel is stored in the string m_strTag and value 2 is stored in the variable

value that regulates the level of a title. Figure 19 shows the class TagNode.

33

class TagNode public TreeNode

private:
string m_strTag;
int value;

public:

} ;

TagNode();
-TagNode();
void SetTag(string str);
void SetValue(int m_value);
string GetTag();
int GetValue();
NODETYPE GetNodeType();

Figure 19: The class TagNode

2.2.3.2 The Class FieldNode

This class is used for producing a field node to hold a field in a RTF document. The

variable f ieldID is used to identify the field. The Boolean variable f ieldText is

used to indicate if the field has a text inside. Figure 20 shows the class FieldNode.

class FieldNode public TreeNode

private:

public:

} i

int fieldID;
bool fieldText;

FieldNode(int id);
-FieldNode();
void SetID(const int id);
int GetID();
void SetFieldText(bool flag);
bool GetFieldText();
NODETYPE GetNodeType();

Figure 20: The class FieldNode

34

2.2.3.3 The Class BookMarkNode

This class is used for producing a bookmark node to hold a bookmark in a RTF document.

Variable bookID is used to identify the ID of the bookmark. Figure 21 shows the class

BookMarkNode.

class BookMarkNode public TreeNode

private:

public:

} i

int bookID;

BookMarkNode(int id);
-BookMarkNode();
void SetID(const int id);
int GetID();
NODETYPE GetNodeType();

Figure 21: The class BookMarkNode

2.2.3.4 The Class ImageNode

This class is for producing an image node to hold an image in a RTF document. The

variable imageID is used to identify the image. The variable ImageWidth is used to

load the width of the original image. The variable Im.ageHeight is used to load the

height of the original image. The variable ImageScaleX is used to load the horizontal

scaling value. And the variable Im.ageScaleY is used to load the vertical scaling value.

Figure 22 shows the class Im.ageNode.

35

class ImageNode public TreeNode

private:
int imageID;
string imageFile;
int ImageWidth; //width of original Image
int ImageHeight; //height of original image
int ImageScaleX; //Horizontal scaling value
int ImageScaleY; //vertical scaling value

public:

} i

ImageNode(int id);
-ImageNode();
void SetID(const int id);
int GetID();
string GetFile();
void SetFile(string str);
void SetWidth(const int width);
int GetWidth () ;
void SetHeight(const int height);
int GetHeight();
void SetScaleX(const int scaleX);
int GetScaleX();
void SetScaleY(const int scaleY);
int GetScaleY();
NODETYPE GetNodeType();

Figure 22: The class ImageNode

2.2.3.5 The Class TextNode

This class is for producing a text node to hold the reference of a text in a RTF document.

The variable TextID is used to identify the text. We use a template table t_table to

record all attributes for font and alignment of this text. The Boolean variable marge is

used to determine if the text is merged with the next text in a simplification process. The

fonction CompareText () is used to compare if two texts have the same attributes and

styles. Figure 23 shows the class TextNode.

36

class TextNode public TreeNode

public:

} ;

int t_table[20];
int TextID;
bool merge;
int attributeNum;
TextNode(int id);
TextNode();
-TextNode();
void initialTable();
int GetTextID();
bool CompareText(TextNode* a, TextNode* b);
bool GetMerge();
NODETYPE GetNodeType();

Figure 23: The class TextNode

2.2.4 The Node Representation

The binary tree implemented in the translator is nota general one. lts nodes are not the

same object each other although their classes are inherited from the same class. The input

data of the translator are from . txt and . cmd files supplied by the extractor. The . txt

file is used in code generation stage (see Chapter 5). In the stage of translation, only

the . cmd file is concemed. The data from the . cmd file is a subset of RTF and has a

similar form as Dataflow. cmd shown in Figure 6. Figure 24 shows the node

presentation in a syntax tree. The figure displays only part of the syntax tree

representation taking Dataflow. cmd as the input. This tree in the figure stops at the

block that contains the tag node \info and the sequence node that contains the rest of the

nodes.

37

\b

Figure 24: Part of the syntax tree generated from the file Dataflow. cmd

2.3 Object-Oriented System

Object-oriented system is defined by Ian Graham as "inheriting the features of both

object-based and class-based systems and additionally having full inheritance between

classes" and "support self-recursion" [15]. Class-based is explained as abstraction plus

object-based which means encapsulation as well as abject identity. So, an object-oriented

system could be simply defined as: object-oriented system = encapsulation + abject

identity + inheritance + abstraction + self-recursion. The translator system is such an OO

system with characteristics of encapsulation, abstraction, inheritance, and self-recursion.

38

2.3.1 Encapsulation

The data structures and method implementation details of an object are hidden from other

objects in the system. The only way to access an object's state is to send it a message that

causes one of its methods to execute. In our implementation of the translator, the

attributes or variables are almost set private. The access methods, Setxxx () and

Getxxx (), are responsible to access an object state. For example, every node object is

encapsulated as such way. To pickup control tags, the fonction GetTag () is used to do

this job rather than access tags directly. The advantage of using data encapsulation is

safety for future change of the translater system. For instance, the database used to store

control words is replaced by a vector for some reasons. With the encapsulation design,

users can still use the interface for accessing tags while alter inner database of the

TagNode. So it is safe and efficient for future modifications.

2.3.2 Abstraction

The second character the translater system has is abstraction. Abstraction is a design

technique that focuses on the essential aspects of an entity and ignores or conceals Jess

important or non-essential aspects [16]. In the translater system, abstraction is concemed

with both the attributes and behaviors of an object. The goal of abstraction in the system is

to make entity (tree node) simpler, more accurate, more coherent, and more complete.

Working as a general node, TreeNode only possesses basic attributes (two children and

m_NodeType to show the type of anode) and attribute-access fonctions (to set and get

data). The pure virtual fonction GetNodeType () does nothing except supplying a

template for the child classes to override it. The fonctions GetNodeType () overridden

in subclasses are dynamically bound at run time. Figure 16 displays the TreeNode

implementation. For those target nodes, the specific attributes and fonctions are added.

39

For example, a FieldNode is an object to represent a field. Besides what a field already

inherits from the TreeNode, two additional attributes, f ieldid and f ieldText, and

the corresponding access fonctions are supplied (see Figure 20). Abstraction design

applied in the translator system maintains the system as a simple efficient one.

2.3.3 Inheritance

The third character the translator system bas is inheritance. Inheritance is the means by

which data and behavior are transferred from one class to another. Main objects in the

system are instances of the classes inherited from the base class TreeNode. An

important reason to implement inheritance is that the binary tree is chosen as the data

structure of the translator.

Tree is an excellent data structure for semantic analysis. It is often seen that each node in a

tree implementation is the same object. However, images, fields, and texts are very

different entities with different attributes in the translator. If only one class is used to

instantiate these entities, many attributes would be set to NULL. Inheritance is the right

approach to use. The implementation becomes more efficient and the code is easier to

understand. The entities have some common ground because they have the same ancestor.

So, all entities can be put on a tree and are visited with recursion calls. Figure 25 shows

the relationship between entities inside the tree.

Figure 25: Inheritance between nodes

40

2.3.4 Self-Recursion

The last character of OO system is self-recursion or self-reference. This means that

abjects can send messages to their own methods recursively or send messages to

themselves. Many recursion called fonctions are implemented in this system.

FirstScan (), SecondScan (), Destroy'l'ree (), and PrintTree () in the class

TranslatorTree are such fonctions by which abjects of the class

TranslatorTree can do self-recursion. Actually, the binary tree data structure often

uses recursion to traverse the tree.

2.4 Algorithm

Contrai words decide the appearance of a document. So, the words should be translated

by means of some translation rules. Generally speaking, every RTF control word can

match with one corresponding XML tag. In real programming, the fonction

FirstScan () is implemented to traverse the tree and the RTF control words are

transformed by the translation rules. If more than two results exist, one should be chosen

from them by some preference rules.

Three traversais are executed in the tree. The first traversai is for translation matter guided

by the translation rules. During a top-down traversai, all attributes about font and

alignment for example, are collected in a template table. All or parts of attributes on the

table are then copied back into one of three nodes: a TextNode, a FieldNode, or an

ImageNode when one of them is met. These three nodes supply all data in generating

the target document. The second traversai is for simplification. Sorne nodes store useless

or unrelated data for translation. Sorne nodes and their children do not make contribution

at all to the translation. Both kinds of nodes are regarded as useless nodes by

41

simplification rules. Sometimes two nearby text nodes are defined by two sets of

attributes. The simplification rules regulate this case. The third traversai is for purpose of

generating the target document. During this traversai, the useless nodes are jumped. If

multi-choice situation happens, preference rules are applied. The algorithm of the

translater system is based on the three rules.

2.4.1 Translation Rules

Translation rules, also called association rules, are the fondamental part of the translator.

lt maintains a relationship between RTF control words and XML tags (or other format).

After RTF control words are read into the binary tree, the important RTF words are

translated into something the translater knows by translation rules.

2.4.2 Simplification Rules

The simplification rules are used to simplify a complex relation into the simpler one.

Sorne extracted RTF control words are not related to document attributes. So they are

neglected and are signed NONUSE flags. During code generation stage in the third

traversai, the nodes to store these control words are jumped over. Sorne neighboring texts

which have the same property are separated and defined with two sets of control tags. In

this case these texts can be merged together and shared with the same set of control words.

The simplification job is done through the second traversai for purpose of efficiency.

2.4.3 Preference Rules

The preference rules are used for choosing one result among multi-choices specified by

users. Sorne RTF control words have more than one corresponding control word of the

target document for translation. Users can select an option or a default value is used.

42

Chapter 3

Translation Rules

Translation rules, also called association rules, are a set of rules to regulate translation in

the translator system. There is a relationship between RTF control words and XML or

HTML tags (or in other formats). Like any other rules in the world, the translation rules

are a statement that describes what is true in most or all cases. As the developer of the

translator system, we prescribe the body of regulations to govem the conduct of

translation. During the first traversa! throughout the tree (by the fonction

FirstScan ()), the translation rules are applied for concrete translation issues. Because

XML tags are actually defined by a DTD as users wish, only some important contrai

words and their associations between RTF, XML, and HTML are demonstrated in this

translation system. The translation rules on fonts, paragraphs, images, lists, bookmarks,

hyperlinks, fields, and tables are discussed in this chapter. Since there are some

associations between RTF, HTML, and XML formats, it is possible for us to find the

relations between them and enact rules for translation.

43

3.1 Sorne Associations Between RTF, HTML, and XML

Table 3 shows part of control words in the control words database (shown in Table 1) of

the extractor and their corresponding tags in XML and HTML. Generally, all associations

represented in Table 3 are the translation rules by which corresponding control words of

the target file could be found. In implementation layer, more concrete rules are needed.

From this table, some RTF tags have more than one corresponding HTML tags capable to

realize the same fonction. For example, italic font in RTF is controlled by \i. But there are

four control tags in HTML to decide this attribute. This is where the preference rules

corne from.

3.2 Translation Rules on Fonts and Paragraphs

Font and alignment are the basic attributes for texts and paragraphs. This section

demonstrates what the translation rules are on fonts and paragraphs and how they work

with some examples.

3.2.1 The Font and Paragraph Attribute Table

Table 2: The table storing font and paragraph attributes

i B ul ulw sub sup strike striked fsN qi qc qr ql
N

The attributes in Table 2 are control words for font size and style, and paragraph

alignment. Eight of them are about font style; four attributes are about paragraph

alignment; and one attribute is about font size.

44

Table 3: Sorne associations between RTF, XML, and HTML

FUNCTION RTF XML HTML
The default font size \fs24 (default is 24) size (default is 3) <BASEFONT SIZE= ... >

Boldface \b bold B orSTRONG

Italie \i italic CITE or EM or 1 or VAR

Underline \ul ul u
Underline in a word \ulw ulw

A line through text \strike strike Sor Strike

Two lines through text \striked striked

Subscript \sub sub SUB

Superscript \sup super SUP

Ordered list \pnlvlbody list (type="order") <OL START=value>

Unordered list \pnlvlblt list (type= "unorder") <UL TYPE=" ... ">

Create paragraph \par paragraph p

lnsert a line break \line BR

Centering text \qc center align= "center"

Left-aligned \ql left align= "left"

Right-aligned \qr right align= "right"

Justified \qj justified align= "justify"

A plain text style \plain plain PLAINTEXT

A table table table

A row of a table \row row tr

A cell of a row \cell cell td

The level of a heading \outlinelevelO levell Hl

The level of a heading \outlinelevell level2 H2

The level of a heading \outlinelevel2 level3 H3
The level of a heading \outlinelevel3 level4 H4

Apng file \pngblip source=. png IMG SRC=.png

Ajpeg file \jpegblip source=.jpeg IMG SRC=.jpeg

The original image width \picwgoalN width WIDTH=N

The original image height \pichgoalN height HEIGHT=N

Horizontal scaling value \picscalexN scaleX
Vertical scaling value \picscaleyN scaleY
Ahyperlink \fldinst <field href=xxx>

Go to a bookmark \fldrslt <field bookName=xxx >

Abookmark \bkmkstart bookmark

45

i in cell 0 is for italic.

b in cell 1 is for bold.

ul in cell 2 is for an underline.

ulw in cell 3 is for an underline of a word.

sub in cell 4 is for subscript.

sup in cell 5 is for superscript.

strike in cell 6 is for inserting text with a line through it.

striked in cell 7 is for inserting text with double lines through it.

fs in cell 8 is the only control word for font size.

qj in cell 9 is for justified alignment.

qc in cell 10 is for center aligned.

qr in cell 11 is for right aligned.

ql in cell 12 is for left aligned.

Font and paragraph alignment are two basic features in a RTF document. Text is the

important elements that constitute a RTF document. Moreover, font size and style are

associated with every text. Paragraphs have wider meaning in RTF. A regular paragraph in

a RTF document is a paragraph. Besides, each item in a list is a paragraph too. Paragraph

alignment is also a basic feature in RTF construction. One important reason why font and

alignment are put together into a table is that both sets of control words are changeable

when they meet a new text or paragraph in the first tree traversai.

Conflict Attributes

Sorne attributes inside the table, called conflict attributes, cannot exist at the same time.

qc, qj, qr, and ql;

sub and sup;

strike and striked;

ul andulw.

46

For example, a paragraph can have only one alignment attribute and should be regulated

by one of four alignment tags.

Non-conflict Attributes

Sorne attributes inside the table, called non-conflict attributes, can exist at the same time.

They are fs, i, b, one of sub and sup, one of strike and striked, one of ul and

ulw, and one of align attributes. At most seven attributes can exist at the same time. For

example, the expression "font sample", between the quotation marks, is italic, bold, and

underline with the font size of 12 points.

3.2.2 Rules in Implementation Level

A RTF group is functionally a basic structure just like a sentence in English. A sentence is

a piece of text with some grammars to define it. So, the sentence you are reading is active

voice and present tense. By analogy, each group specifies the text and contains attributes

of that text. A group can include another group inside which also has its child group. Any

child group could either have its own control words to define itself or have some or no

control word. In last case, the child group simply uses its parent group's attributes.

In implementation, we use a template table exactly like Table 3, called m_table, to store

font and alignment attributes. The template table m_table is implemented as an integer

array. Every cell in the table stores those thirteen attributes. A block node corresponds to a

group in a RTF file, and a text node is used to hold font and alignment information. In

fact, a field node is a special text node. So, the final goal of the first traversa! of the binary

data tree is to collect necessary information about a text or field node and then write into

this text or field when it is met. That is what the first traversa! does. For easier

demonstration, the translator is assumed to scan the tree during the first traversa!.

47

Based on the analysis above, we get the translation rules on fonts and paragraphs.

Rule 1: All attributes in the table are initialized to default values before the traversai

begins. Every cell except fs is set to 0 which meansfalse; 1 means true.

Rule 2: When the translator enters a block, a copy of the table is made. And this copy

may be modified while the translator processes the nodes inside the block

depending on the conflicted attributes or not.

Rule 3: When the translator leaves the block, the original table is taken in further scan

and the copied one is thrown away. In other words, the attributes in the original

table are kept unchanged unless a tag node in the same level occurs. Two nodes

locating inside of the same block are considered in the same level.

Rule 4: When the translator meets the tag \pard, which means to reset paragraph

properties, all paragraph attributes: qc, qj , qr, and ql are set to O.

Rule 5: When the translator meets the tag \plain, which means to reset default font

property, all font attributes are set to O.

Rule 6: When meeting a text or a field node, the translator copies the current table back.

Rule 7: \par means a new paragraph.

3.2.3 An Example Translating with the Rules on Fonts

In real tree traversai, the top-down left-right traversai is adopted. According to this

traversai, the leaf nodes that store control words and texts/fields/images in the . cmd file

48

are processed by an order exactly as a person reads the . cmd content: top-down and

left-right. For example, the person reads this file from top to bottom (line 1 before line 2)

and reads every control word or tag from left to right within a line. This sequence matches

the tree traversa! order. Because the processing order is the same as human normal reading,

there is no need to show a complex tree. Instead, the real traversa! is simulated with

reading the . cmd file directly by a person. Everything between an opening brace and a

closing brace is regarded as a block. Any attribute inside a block is effective for this block

only. Any tag after a tag is regarded as a SequenceNode until there is nothing left in a

block. In other examples, this simulation way is applied to demonstrate the tree traversa!.

Figure 26 shows an example, which includes a RTF file and its two extracted files: a text

file and a command file, used to explain the translation rules. Assume the translator starts

to process. By Rule 1, firstly the translator holds a temporary table shown by Table 4 with

the default value in every cell. This table, called attributeTable, is implemented

with one dimension integer array.

Table 4: The attributeTable with default values

i b ul ulw sub sup strike striked fsN qj qc qr ql

0 0 0 0 0 0 0 0 24 0 0 0 0

Line 1: For easy demonstration, suppose the translator starts from line 1. The first tag that

the translator meets in line 1 is \pard that means setting default value on a paragraph. By

Rule 4, qj, qc, qr, and ql are reset to 0 although they are already in zero. The second

tag is \plain that means to reset all font styles to zero. So i, b, ul, ulw, sub, sup,

strike, and striked are set to zero by Rule 5. The third one is \qr so the translator

sets the cell that corresponds to qr in attributeTable to 1. After finishing the first

line, the translator gets the table shown in Table 5.

49

i

0

--RTF file:

First paragraph

Second paragraph and then next

Three paragraph

--Text file:
TEXTl First paragraph
TEXT2 Second paragraph
TEXT3 and then next
TEXT4 Three paragraph

--Command file:

}

}

{\ql}
{\qj\outlinelevelO}
{\ql\outlinelevell\b}

{\info}
\pard\plain\qr
{\b\fs24\TEXT1\par}
\pard\plain\qc
{\i\ul\fs28\TEXT2}
{\fs28\TEXT3}
{\i \par}
\pard\plain\ql\b\fs36
{\i\TEXT4\par}

//line 1
//line 2
//line 3
//line 4
//line 5
//line 6
//line 7
//line 8

Figure 26: Three files (RTF, text, and command) for testing translation rules on fonts

Table 5: The attributeTable ending in line 1

b ul ulw sub sup strike striked fsN qj qc qr ql

0 0 0 0 0 0 0 24 0 0 1 0

50

Line 2: The translator continues to traverse on line 2. A block is found by meeting an

opening brace. By Rule 2, the translator gets a copy of the original table and gives the

copy with the name "copyTable". The first tag the translator meets inside the block is

\b. So, the second cell of copyTable corresponding to \b is set to 1. The next tag is

\fs24. No change on it. Then the translator meets a text node. By Rule 6, the translator

copies copyTable into the text node in which the integer array m_table of the text

node loads every cell value in copyTable. The last control word in line 2 is \par so the

current paragraph finishes and a new paragraph is made by Rule 7. Although the

translator does not change the attribute table, with \par it is known that TEXTl alone

consists of a paragraph. This control word is very useful in the third tree traversai for code

generation. Finally, the translator meets a closing brace which means ending the block.

By Rule 3, copyTable is thrown away. Only attributeTable is carried further for

traversai. With the table stored within the TEXTl, TEXTl is known as bold and its size is

24. And it is right aligned in its paragraph.

Line 3: The first control word is \pard. By Rule 4, all alignment attributes are reset. Next

is \plain. All fonts are reset. Finally, the translator meets \qc. So, \qc cell of the table is

set to 1. Table 6 shows the attributeTable when the translator ends scan on line 3.

Table 6: The attributeTable ending in line 3

1 b ul ulw sub sup strike striked f sN qj qc qr ql

0 0 0 0 0 0 0 0 24 0 1 0 0

Line 4: Again, it is a block. So, by Rule 2, the translator copies attributeTable into

a new table called copyTable. The first three control words are \i\ul\fs28\. \i and \ul

are both non-conflict attributes so italic and underline can exist at the same time. The

translator sets both cells to 1. And the font size is altered to 28. Finally, the translator

51

copies copyTable into TEXT2 because the translator meets a text node. By Rule 3,

copyTable finishes its job and is deleted. Tuen, the translator goes to the next line with

attributeTable.

Line 5: This line is almost the same as line 4 except no italic and underline. So the

translator only changes the font size into 28 as it did in line 4 and copies the new table

into TEXT3. Finally, it keeps attributeTable unchanged and goes to the next line.

Line 6: The translator meets a block. As the translator did in line 4 and line 5, it gets a

copy of attributeTable and traverses along the line. Since meeting \i, it wants to

change the italic cell. However, there is no existing text node. So, the translator does

nothing on copying new attributes. Again the translator carries attributeTable for

the next line.

Line 7: There is no brace in this line. So, the translator does not need to get a copy of the

original table. lt carries attributeTable for further traversai. lt meets

\pard\plain\ql\b\fs36, respectively. Because alignment attributes are conflict ones, qr is

reset. Finally, the translator gets the new attributeTable shown in Table 7.

Table 7: The attributeTable ending in line 7

i b ul ulw sub sup strike striked f sN qj qc qr ql

0 1 0 0 0 0 0 0 36 0 0 0 1

Line 8: The translator firstly gets a copy called copyTable. The only font and

alignment control word is \i. So, the translator just changes the italic cell of copyTable

into 1. Tuen the table is copied back into TEXT4. The translator finally deletes

copyTable and finishes the traversai.

52

3.3 Translation Rules on Headings

A heading (title) is a special paragraph. Like a paragraph, a heading contains some piece

of texts with an alignment attribute. The difference between a paragraph and a heading is

that a heading has a fixed font size for every component within it.

Rule 1: A heading is a specific paragraph identified by the control word \outlinelevel.

Rule 2: The font size of a heading is uniform and is decided by N in \outlinelevelN.

The regular font size control word \fs within the heading is neglected.

Figure 27 shows the command file testHeading.cmd. By Rule 1, a heading is

obtained. This heading includes three texts only. Bach has a different font size attribute.

However, all real font sizes are actually controlled by \outlinelevelO as prescribed by

Rule 2. Therefore the font sizes for TEXTl, TEXT2, and TEXT3 are the same, which are

0 levels.

{

{

}

{\qj\fs21}
{\qj\b\fs44}

}

{ \info}
\paperw11906\margl1800\margr1800\pard\plain\qj
\outlinelevel0\b\fs44
{\TEXTl}
{\fs28\TEXT2}
{\fs36\TEXT3}
{\par}

Figure 27: The command file tes tHeading. cmd

53

3.4 Translation Rules on Lists

Generally speaking, there are two types of lists in RTF documents: ordered lists and

unordered lists. Sorne lists also include lists called inner lists. Items which compose a list

may have different font attributes. Before the translation rules on lists are presented, some

fondamental knowledge and syntax are introduced first.

Microsoft Word 1997 and Microsoft Word 2000 store bullets and numbering information

very differently from earlier versions of Microsoft Word. In Word 6.0, for example,

number formatting data is stored individually with each paragraph. From Microsoft Word

1997 onwards, however, all the formatting information is stored in a pair of

document-wide list tables and each individual paragraph stores only an index to one of

the tables. The translator system deals with Microsoft Word 1997 upwards only. There are

two list tables in RTF: the list table (destination \listtable), and the list override table

(destination \listoverridetable).

The List Table

The first table is the list table. A list table is a list of lists (destination \list). Each list

contains a number of list properties that pertain to the entire list and a list of levels

(destination \listlevel), each of which contains properties that pertain only to that level.

The syntax for the list table is shown in Figure 28.

List Override Table

The list override table is a list of list overrides (destination \listoverride). Each list

override contains the listid of one of the lists in the list table, as well as a list of any

properties it chooses to override. Each paragraph contains a list override index (keyword

54

ls) which is a 1-based index into this table. Most list overrides do not override any

properties . Instead, they provide a level of indirection to a list. The two types of list

overrides are, in general: (1) formatting overrides, which allow a paragraph to be part of a

list, are numbered together with the other members of the list, but have different

formatting properties; and (2) startat overrides, which allow a paragraph to share the

formatting properties of a list, but have a different startat value. The first element in the

document with each list override index takes the start-at value that the list override

specifies as its value, while each subsequent element is assigned the number succeeding

the previous element of the list.

<listtable> '{' *\listtable <list>+ '}'

<list> \list \listernplateid & (\listsirnple l listhybrid?

& <listlevel>+ & \listrestarthdn & \listid & (\listnarne

#PCDATA ' ; ')
<listlevel> <nurnber> <justification> & \leveljcnN? &

\levelstartatN & (\leveloldN & \levelprevN? &

\levelprevspaceN? & \levelspaceN? & \levelindentN?)?

& <leveltext> & <levelnurnbers> & \levelfollowN &

\levellegalN? & \levelnorestartN? & <chrfrnt>? & \li?

& \fi? & (\jclisttab \tx)?

<number> \levelnfcN 1 \levelnfcnN

\levelnfcnN)

(\ levelnf cN &

<justification> \leveljcN 1 \leveljcnN 1 (\leveljcN

& \leveljcnN)
<leveltext> '{' \leveltext \levelternplateid? #SDATA
1 i ' 1 } 1

<levelnumbers> '{' \levelnurnbers #SDATA ';' '}'

Figure 28: The syntax for the list table

Among many control words on lists, only small parts of them are vital for deciding the list

main structure from view of a human being. They are \pnlvlbody, \pnlvlblt, and \ls.

The rest is ignored. In order to be able to build a list, some compulsory rules are added.

55

3.4.1 The Compulsory Rules on Lists

There are three translation rules for lists and they are all compulsory ones.

Rule 1: No choice for the numbering system of an ordered list.

Rule 2: No choice for the bullet icon of an unordered list.

Rule 3: All item alignment attributes in a list should be left aligned.

The reason the compulsory rules are enacted is for efficiency. Otherwise many extra

control words are added in order to build a list. With the compulsory rules, many control

words can be excluded by the translator system. To see the extra words and for future

extensions, related control words and their meanings are listed.

Control Words for the Number Type of Lists Excluded by Rule 1

\levelnfcN - specifies the number type for the level. Sorne common number

styles are listed in figure 29. N is an integer from 0 to 2 146.

The listed values, shown in Figure 29 are the only legal values for number system of lists

in RTF Specification version 1.6 [10]. It is not technically a problem to store those

number systems and corresponding information. For example, a hash table can be used to

store data. However, it would make the system larger and slower. Moreover, a majority of

those number systems are seldom used in the daily activity in a specific region. For

efficiency, no information exists for numbering type in the translator implementation.

Such choice is made in the generator level by the preference rules.

56

0 - Arabie (1, 2, 3)
1 Uppercase Roman numeral (I, II, III)
2 Lowercase Roman numeral (i, ii, iii)
3 - Uppercase letter (A, B, C)
4 Lowercase letter (a, b, c)
5 Ordinal number (lst, 2nd, 3rd)
6 Cardinal text number (One, Two, Three)
7 Ordinal text number (First, Second, Third)
10 Kanji numbering without the digit character
11 Kanji numbering with the digit character
14 Double Byte character
15 Single Byte character
22 Arabie with leading zero (01, 02, 03, ...)
24 Korean numbering 2 (*ganada)
25 Korean numbering 1 (*chosung)
26 Chinese numbering 1 (*gbl)
30 Chinese Zodiac numbering 1 (* zodiacl)
33 Taiwanese double-byte numbering 1
37 Chinese double-byte numbering 1
41 Korean double-byte numbering 1
255 - No number
2146 - Phonetic double-byte Katakana characters

Figure 29: Values in \level nfcN and the corresponding meaning

Also, there are specific control words for each specific numbering style. Sorne of them are

shown in Figure 30. Too many control words would aggravate the translating job

compared to dealing with a single control word such as \levelnfcN as introduced above.

These control words are also ignored by the translator system.

Control Words for the Unordered List Icons Excluded by Rule 2

\pntxtb: It contains the characters used for bullets.

\levelnfcN: It is the same control word involved in Rule 1. Actually the value 23

in \levelnfc23 is used to represent bullet (no number at all).

57

There are many icons to show unordered lists such as

0

D

And thousands of self-defined icons/symbols as long as users can find in a database

supplied by Microsoft Word, such as

À

V

®

~

l

For the same reason as the one mentioned in the first rule, all options for unordered list

are ignored. Actually, no control words for icon types of items are kept for purpose of

efficiency. The choice for the icons is made in the generator level by the preference rules.

\pncard - Cardinal numbering (One, Two, Three)
\pndec - Decimal numbering (1, 2, 3)
\pnucltr - Uppercase alphabetic numbering (A, B, C)

\pnucrm - Uppercase Roman numbering (I, II, III)

\pnlcltr - Lowercase alphabetic numbering (a, b, c)
\pnlcrm - Lowercase Roman numbering (i, ii, iii)
\pnord - Ordinal numbering (lst, 2nd, 3rd)

\pnordt - Ordinal text numbering (First, Second, ...)
\pnbidia - Abj ad Jawaz for Arabie and Biblical Standard

for Hebrew
\pnaiu - Phonetic Katakana characters
\pnganada - Korean numbering 1 (*ganada)
\pngbnum - Chinese numbering 1 (*gbl)

Figure 30: Part of control words for number type of ordered lists

58

Control Words for the Item Alignment Excluded by Rule 3

\leveljcnN -

• 0 - left aligned is for left-to-right paragraphs and right justified for

right-to-left paragraphs.

• 1 - center aligned.

• 2 - right aligned is for left-to-right paragraphs and left aligned for

right-to-left paragraphs.

\pnqc - centered numbering.

\pnql - left-aligned numbering.

\pnqr - right-aligned numbering.

In the translator implementation, different items in a list are not allowed to have different

alignment attributes. All items should be left justified because center or right alignment

makes no sense for practical use. Figure 31 shows a list whose items have different

alignments. By Rule 3, all items in a list have only a left aligned alignment.

~ Documenl1 - Mlcroson Ward r;J@~
t'. E,le ~clt ï!ew lnsert FQ.rmet Iools Ta,ble Wlndow t:lelp l~lH H ·~rn !,;1 i ~.r, 1"''' t;, ~ ·p • X

~···~·;~·:-1!:·~-.L~·~:-~-:1·~~··~~-~···~~-1:~~~:-··~-;-· ·:·~··;~~7-~~~~·~·~~·~;-·,-·=;·~1-._.~ll~J~~-~·!~J.-~~~.l~~·~:::.-.~::::;; .. ~.~ ... :!.:'~

.A.11 Ugly List. füU! Different Aligned It~ms

A llst wlth ccnt"1·ccl ituns
• The fint ite1n

• The içe r. 01ul itMn
• Itetn 3

A list with 1ight nligit"41 itc1ns
1 ~ Tlt4!> fit·~t îte1n

- · The second ite1n
3 . Item3

At 2.5'" ln 9 Col 32 R'.'X''. TR· S".T 1? ... 'R EngKsh (U.S 0

Figure 31: An ugly list with different aligned items

59

3.4.2 Translation Rules on Items of a List

The control words \pnlvlbody and \pnlvlblt are two important control words involved

in the translation of a list. They are used to differentiate an ordered list and an unordered

list, respectively.

\pnlvlblt - bulleted paragraph: the actual character used for the bullet is stored in

the \pntxtb group.

\pnlvlbody - simple paragraph numbering.

In RTF specification, no specific control words are responsible for list items which

compose a list. No control word can be found to show the start or end of an item. But

\pnlvlbody, \pnlvlblt, and some list or paragraph attribute control words allow to

identify items of a list. For example, an item is a text or a paragraph consisting of several

pieces of texts in the RTF context. The idea is that all meaningful things in a paragraph

(texts, bookmarks, fields, hyperlinks, tables, and images) between two list tags are

probably an item although a pure text is a common form for an item. Therefore some

translation rules on items of a list are obtained.

Rule 1: An item is a text or several texts which compose a paragraph. No more than one

paragraph is allowed in an item.

Rule 2: A text or a paragraph between list control words \pnlvlbody or \pnlvlblt may

become content of an item.

But Rule 1 and Rule 2 cannot judge an item at any case. How are a new item and a new

paragraph differentiated? Other attributes of a paragraph are used to differentiate them. A

RTF file shown in Figure 32 is the input file for the extractor.

60

•fi} X

Test for items of a list .. •
First paragraph: It is our example ta test item. •'

• Item 1: an item can be longer than a line. It could be a paragraph which consists of
several sentences.+'

. ï

... ' • Item 2: end of socond item. +'

Second paragraph: How do you know it is the beginning of the socond paragraph rather than the
third item of the list above? •'

• See rule I+'
• Andrule~

Figure 32: The RTF file testitem. rtf

Normally, an item is a paragraph that consists of some texts, and one of two list control

words always appears before a text or some texts which compose an item in the

translator's input file . cmd. Figure 33 shows such patterns. TEXT3, TEXT4, TEXT6,

and TEXT7 are items of two lists in Figure 33 and Figure 34. They are always after the

list control word \pnlvlblt. More important thing is that a paragraph after an item should

be either the next item or the new paragraph which ends the list. The control word

\par-means new paragraph-could be used to judge it.

Rule 3: A new paragraph (a piece of text or several texts), which follows after a list

control word (\pnlvlbody or \pnlvlblt), is the next item. A new paragraph or an

empty paragraph without a list contrai word following means the ending of a list.

61

Flo Eat Format Holp

I\ ls1~ \ls2
\ls3
\ls4

l\info}
\paperw:l1906\margl1BOO\mar gr1BOO\pard\p 1 ai n\qc\b\TE:XT1 \par
{\~~~~~~!~\qj
} {\pard\pl ai n}

{\~~~)n,i:\ ls3 >
\ls3
{\ TE:XT3\par
} {\pard\pl a1 n}

~~~nii:\ls3} 
\ls3 
{\TEXT4\par} 
{\~~~}'qj 
}l'~~~~~ar 
'{\pard\pl ai n} 
} 

{\~~~Jn1i:\ 1 s4} 
\ls4 
{\TEXT6\par 
} {\pard\pl ai n} 

{\~~~)~6li:\ 1 s4} 
\ls4 
{\TEXT7\par} 

Figure 33: The command file testitem. cmd 

êJ tes li tea - li!*:<!' L!ri.JEJ 

TEXT1 1 Test for items of a list i~ 
TEXT2 1 First paragraph: It is our example to test item. ~ 
TEXT3 1 Item 1: an item can be longer than a line. It could be a paragraph which consists of seue1~ 
TEXT4 1 Item 2: end of second item. ~ 
TEXTS 1 Second paragraph: How do you know it is the beginning of the second paragraph rather than~ 
TEXT6 1 See rule 1 ~ 
TEXT7 1 And rule 2 ~ 

·~ 
~, 

lr.·~-"""""-""""'"''~~~,..... .................................... ~ ..... ....,~~,..... .......... ----................. ~.~~~~~~m 
,!~1f~~ J ~ ~ ~· @j ·~ [WUicros ... ~~f#tf~,.;l @testit ... rllràftil~ ;:49 1 

Figure 34: The text file test Item. txt 

Let us simulate the translator to translate a list based on the translation rules. After 

reading testitem. cmd file, the translator begins to do syntactic and semantic analysis. 

We jump font and alignment translation and concentrate on lists only. When the translator 

meets the first \pnlvlblt, it knows the first item for a list will corne in. Next the translator 

scans "TEXT3" which refers to "Item 1: an item can be longer than a line ... " (see Figure 

33). This text starts the beginning of the first item. Then \paris scanned which means a 

new paragraph start. By Rule 1, the first item is finished. But it is not sure if there are still 

62 



other items until the translator scans another \pnlvlblt. After getting the second \pnlvlblt 

and "TEXT4", the translator knows the TEXT4 ("Item 2: end of second item.") is the 

second item. Then another \par is read which means ending of the second item. ls there a 

third item? The translator continues to scan until \par. By Rule 3, if a new paragraph 

cornes in without following a list control word, the whole list is completed. So, when the 

"TEXT5" is read in, the translator knows it is a new paragraph after the list rather than a 

next item. By applying the three rules on lists, the translator gets another list which 

includes two items. 

3.4.3 Nested Lists and Normal Lists 

A nested list is a list that includes one or more lists inside. \lsN-index of the 

\listoverride in the \listoverride table-is used to differentiate them. This value should 

never be zero inside a \listoverride, and must be unique for all \listoverride within a 

document. The N value in \lsN is used to determine an indented item. 

Rule 1: AU items in a list have the same N value in \lsN. 

Rule 2: If one item has a larger value N in its corresponding \lsN than the previous item 

and nothing (paragraphs, images, and tables) separate the item and the previous 

item, this item is the first item of a nested list. 

Rule 3: If one item has a smaller value N in its corresponding \lsN than the previous 

item and the value associated to the previous list is equal to N, this item is one of 

items of the previous list. 

Figure 35 shows a nested list. Each list control word is followed by a \lsN (see 

testNestedList. txt shown in Figure 36 and testNestedList.cmd shown in 

63 



Figure 37). For the first two items, both have the same value 1 for N. But the third 

item-TEXT4 has 2 in its corresponding \lsN. By Rule 2, this item is the first item of a 

nested list. Next, another item TEXT5 is scanned. Since it also has 2 in its corresponding 

\lsN as the previous item, this item is an item of the nested list by Rule 1. The final item 

(TEXT6) is read with \ls1. Because 1 in \lsN is smaller than the value of the previous 

item and it is equal to the value of the previous list, by Rule 3, this item is the third item 

of the previous list (outer list) and the nested list is finished at the same time. 

~ nl!Stlist -Microsoft Word ~~rRJ 
Î Ele ~dl: ïiew lnsert FQ.rmat Iools T~e '.t[indow tlelp Tyçe"' !f . .e;ljcn i·Jr h~'p • X 

~ Cl ~ ~ l5J 'fi ! ®1 [Q. ~ j libJ Wi j .,·; ~ t, . 100% • ~ j Tines New Roman • 12 • 1 B I !l ~ ~ 1 î=: Ë] t~ i~ ~ 
[~I · .-:o~,-.-. -. ,;-.-:-:·-.' .-.-. z-.-. -. . ' -:-:~·-.. -. ·;-·:-:-~~-.-. -.. -s :-~-~~~~-·-• • -, :-:-. ---_. 

Ttst a ntstetl list 
• First item 
• Second item 

1. Item 1 of the nested list 
2. Item 2 of the nested list 

• Third ite~ 

1 ~ra~ ::.~ 
Page 1 Sec 1 1/1 At 2' ln 6 Col 13 REC: Tl'.I L" (>'!'< Englsh (Ca liJ 

Figure 35: The RTF file testNestedList. rtf 

ei nestlist • Notepad ~@~ 
File Edt Format Yiew Help frExri ... i .... r .. és't .... a .... nëst.eëi ... Hs't' ........... . 

I

TEXT2 1 First item 
TEXT3 1 second item 
TEXT4 1 Item 1 of the nested 1 i st 
,TEXT5 1 Item 2 of the nested list 
!TEXT6 1 Third item 

1 

! ~-

Figure 36: The text file testNestedList. txt 

64 



l!i nestlr.t - Nalepad ~~['8) 
File Edit Format Vlew Help 

l
' T~~~~;; . . ........ . 

{'\ls2} 

1 

t\1nro} 
\pard\~a 1n\qc\b\rs2 B\ TEXT1 \par 
{\pard la1n} 
\pard\p a1n\q1 

{{'\:,~:J\~~~~}ar 

1 

{\pnlvlblt'\lsi} 
'\lsl.\rs20 

{ ard\q {\pnlvl~lt\ 1 sl.} 
'\lsl. 

1 

{'\f's24'\TEXT3'\}ar 
} {\pard\pl a1 n 
'\ ard\q 
{\pnlvl ~ody\ 1 s2} 

~ i 24'\TEXT4'\par 
j } ard\pl a1 n} 

1 i\~~~J~~ody\ls2} 
' \ls2 

} 

1 

{{\~~:~~~~}ar 

{'\~~~J~ht\lsl.} 
'\lsl. 

1 
{\f's24\TEXT6\par} 

i {'\i~~}\~ar} 
! } 
1 < 

Figure 37: The command file testNestedList. cmd 

3.5 Translation Rules on Images 

i 1 

11 ! t ~ 
1 jil 
'I 
11 

l 1 

1 

1 

u~ 
) ~J~ 

A RTF document can include images (pictures) created with other applications. These 

pictures can be in hexadecimal (the default) or binary format. Pictures are destinations, 

and begin with the \pict control word, which is preceded by \*\shppict destination 

control keyword. A picture destination bas the syntax shown in Table 8. 

Table 8: The syntax of an image 

<pict> 1 { 1 \pict {<brdr>? & <shading>? & <picttype> & <pictsize> & 

<rnetafileinfo>?) <data> 1 } 1 

<picttype> 1 \ernfblip 1 \pngblip 1 \jpegblip 1 \rnacpict 1 \pmrnetaf ile 1 

\wrnetafile 1 \dibitrnap <bitrnapinfo> 1 \wbitrnap <bitrnapinfo> 

<bitrnapinfo> \wbmbitspixel & \wbrnplanes & \wbrnwidthbytes 

<pictsize> {\picw & \pi ch) \picwgoal? & \pichgoal? \picscalex? & 

\picscaley? & \picscaled? & \piccropt? & \piccropb? & 

\piccropr? & \piccropl? 

<rnetaf ileinfo> \picbrnp & \picbpp 

<data> { \bin #BDATA) 1 #SDATA 

65 



Translation on images is quite simple as long as the four control words about size are 

picked up and their meanings are understood. The image type or metafile information is 

not necessary since the extractor already extracted images out and assigned them with 

specific names as well as an extension of file such as Dataflow_l. jpg. The only thing 

should know is its size. Measurements within these control words are in twips; a twip is 

one-twentieth of a point. 

\picwgoalW - desired width of the picture in twips: the W argument is a long 

integer. 

\pichgoalH - desired height of the picture in twips: the H argument is a long 

integer. 

\picscalexX - horizontal scaling value: the X argument is a value representing a 

percentage (the default is 100). 

\picscaleyY - vertical scaling value: the Y argument is a value representing a 

percentage (the default is 100). 

Translation rules on images are listed below: 

Rule 1: The width of original image is Win \picwgoalW. 

Rule 2: The height of original image is H in \pichgoalH. 

Rule 3: The percentage of compression rate on the width of the original image is X in 

\picscalexX. 

Rule 4: The percentage of compression rate on the height of the original image is Y in 

\picscaleyY. 

Rule 5: The real size of an image in a RTF is: width= W*X; height= H*Y. 

66 



3.6 Translation Rules on Bookmarks 

A bookmark is identified by two contrai words: \bkmkstart, which indicates the start of 

the specified bookmark, and \bkmkend, which indicates the end of the specified 

bookmark. Bookmarks have the syntax shown in Table 9. 

Table 9: The syntax of a bookmark 

<book> <bookstart> 1 <bookend> 

<bookstart> '{\*' \bkrnkstart ( \bkmkcol f? & \bkrnkcoll?) #PCDATA 1 } 1 

<bookend> '{\*' \bkrnkend #PCDATA 1 } 1 

A bookmark example is shown in Figure 38. The bookmark start and the bookmark end 

are matched with the bookmark tags. In the example, the bookmark tag is "paradigm". 

Bach bookmark start should have a matching bookmark end. The bookmark start and the 

bookmark end may, however, be in any order. 

\pard\plain \fs20 Kuhn believes that science, rather than 
discovering in experience certain structured relationships, 
actually creates (or already participates in) a presupposed 
structure to which it fits the data. {\bkmkstart paradigm} Kuhn 
calls such a presupposed structure a paradigm. {\bkmkend 
paradigm} 

Figure 38: A bookmark example 

The contrai word \bkmkcolfN is used to denote the first column of a table covered by a 

bookmark. If it is not included, the first column is assumed The contrai word 

\bkmkcollN is used to denote the last column. If it is not used, the last column is 

assumed. These contrais are used within the \*\bkmkstart destination following the 

67 



\bkmkstart control. For example, { \ * \bkmkstart \bkmkcolf2 \bkmkco115 Tablel} 

places the bookmark "Tablel" on columns 2 through 5 of a table. 

In the translator implementation, only \bkmkstart is extracted for efficiency reason. In 

order to locate where a bookmark is, a rule is enacted. 

Rule 1: The location of a bookmark is the first text or field or bookmark before it. 

3. 7 Translation Rules on Fields 

The \field control word introduces a field destination that contains the text of fields. 

Fields have the following syntax shown in Table 10. 

Table 10: The syntax of a field 

<field> 1 { 1 \field <fieldmod>? <fieldinst> <fieldrslt> 1 } 1 

<fieldmod> \flddirty? & \fldedit? & \ fldlock? & \fldpriv? 

<fieldinst> '{\*' \fldinst <para>+ <fldalt>? 1 } 1 

<fldalt> \fldalt 

<fieldrslt> 1 { 1 \fldrslt <para>+ 1 } 1 

What the extractor actually extracts are two control words: \fldinst and \fldrslt. 

\fldinst - field instructions. 

\fldrslt - most recent calculated result of the field. 

Translation on a field is very simple because the extractor does most of things for the 

translator. The label \FIELD exists in a . cmd file. The corresponding content of the 

field is in a . txt file extracted by the extractor. The translator takes the field from 

68 



the . txt file and then separates the field type and the field content. For example, when 

the translator scans \FIELDS in the testField.cmd file, it wants to take out all the 

strings to which the label \FIELDS refers in the testField. txt file. So "HYPERLINK 

ht tp: / /www. usherbrooke. ca" is picked up. Then the translator separates the type and 

contents. The type of the field is "HYPERLINK" and the content is 

"http://www. usherbrooke. ca". 

A field is classified into an empty field and a regular field. An empty field is a field with 

its type only, lacking of its field content. A regular field bas both type and content which 

define the field. 

Translation rules for fields are listed below: 

Rule 1: All information about a field is the field itself, which is stored in the 

corresponding . txt file. 

Rule 2: A field is composed of two parts. One is the field type spelled in capital letters. 

The other is the field content after the capital letters. 

Rule 3: A field is identified by the control word \fldrslt. A field is regular only if some 

texts exist with the control word within the same block otherwise it is empty. 

Severa! common fields are listed here: 

link to existing file; 

link to browsed page; 

link to recent file; 

link to some place in this document (go to a bookmark); 

link to an email address; 

link to a web address. 

69 



3.8 Translation Rules on Tables 

There is no RTF table group in a RTF specification; instead, tables are specified as 

paragraph properties. A table is represented as a sequence of table rows. A table row is a 

continuous sequence of paragraphs partitioned into cells. The table row begins with the 

\trowd control word and ends with the \row control word. Every paragraph that is 

contained in a table row must have the \intbl control word specified or inherited from the 

previous paragraph. A cell may have more than one paragraph in it; a, cell is terminated 

by a cell mark (the \cell control word), and a row is terminated by a row mark (the \row 

control word). Table rows can also be positioned. Table properties may be inherited from 

the previous row; therefore, a series of table rows may be introduced by a single 

<tbldef>. 

A RTF table row has the syntax shown in Table 11. 

Table 11: The syntax of a table row 

<row> (<tbldef> <cell>+ <tbldef> \row) 1 (<tbldef> <cell>+ \row) 

(<cell>+ <tbldef> \row) 

<cell> (<nestrow>? <tbldef>?) & <textpar>+ \cell 

<nestrow> <nestcell>+ '{\*'\nesttableprops <tbldef > \nestrow ' } ' 

<nestcell> <textpar>+ \nestcell 

3.8.1 Basic Rules for Tables 

Tables are the most complicated case in RTF translation. There are two kinds of 

translation rules on tables. The first are the basic translation rules capable to draw a 

simple table. The second are translation rules on the complex tables with nested cells. 

Sorne basic control words for tables are introduced in order to know tables well. 

70 

1 



\trowd: sets table row defaults. 

\row: denotes the end of a row. 

\cell: denotes the end of a table cel. 

\trgaphN - half the space between the cells of a table row in twips. 

\intbl - paragraph is part of a table. 

\cellxN: defines the right boundary of a table cell, including its half of the space 

between cells. 

\brdrwN: N is the width in twips of the pen used to draw the paragraph border 

line. N cannot be greater than 75. To obtain a larger border width, the \brdth 

control word can be used to obtain a width double that of N. 

From these control words and table syntax, we define the basic rules on table translation. 

Rule 1: A table is a sequence of table rows. Each row ends with the control words \row. 

Rule 2: The next row follows underneath the previous row in the top-down order. 

Rule 3: A row is a sequence of cells. Each cell ends with the control word \cell. 

Rule 4: The next cell follows exactly right after the previous cell in the left-right order. 

Rule 5: A cell consists of a paragraph or more. All paragraphs in cells of a row are 

followed by the control word \intbl. 

Rule 6: Border line of the paragraph among cells is N twips in \brdrwlN. 

Rule 7: The space between the cells of a table row is 2N twips in \trgaphN. 

71 



Rule 8: The right boundary of a table cell is defined in \cellxN. In other words, a cell 

ends at the position N twips (measured from left margin) in \cellxN. 

Rule 9: The number of\cellxN appeared should match the number of cells in a row. 

Rule 10: A table starts when the first cell in the first row starts. A row starts when the 

first cell in the row starts. 

Rule 11: A table ends when a paragraph without \cell following it appears. 

3.8.2 Translation Rules for Nested Cells 

A nested cell is the cell that has its own cells inside. Like regular tables, tables with 

nested cells should abide regular translation rules for normal tables above. However, 

nested cell tables have particular rules. 

Rule 1: A row consists of a sequence of cells. Different rows can have different number 

of cells. lt is called the nested cell. 

Rule 2: A regular cell could appear more than one times in different rows as long as the 

nested cells in different rows bef ore it has same border with it. 

Rule 3: An empty cell which has no text losses its top border and the cell above tosses 

its bottom border. In other word, these two cells join together and appear as a 

cell. 

The rules are explained with an example shown in Figure 39. 

72 



- (J X 

···o 

Tust nested table +' 

Tahk 1<' 

Firsl ce!! in row l +' Second ce!! in row l/row 2. However, ail " 
irst ce!! in row 2•' Second ce!! in row2 +1 words beong to row 1 rallier than row 2.•' ,, 

Firsl ce!! in row l •' Second ce!! in row l/row 2>-
First ce!! in row 2 ~ Second ce!! in row2 <' " 

Tahk3 +' 

Figure 39: The RTF file testTable. rtf for nested tables 

By common sense, a table is described with columns and rows. But there is only 

definition for rows in a RTF table. And the basic unit in a RTF table is a cell. On the one 

hand, a RTF table can be regarded as a series of rows piled as a stack. The next coming 

row is put under the previous one in the top-down order. On the other hand, cells in a row 

are put together in the left-right order. Cell position could be located by each \cellxN. 

Let us observe how the translation works. Like previous examples, assume the translator 

processes the document. Start with the first table shown in Figure 39. When the 

translator reads \trowd at the first time in the testTable. cmd file shown in Figure 

40, it knows that it is the first cell in the first row in the table by basic Rule 1. \cellxN 

appears two times before \row firstly appears. lt means the first row has two cells only 

by basic Rule 1 and Rule 9. The first cell has content of TEXT2 which refers to "First 

cell in row 1" because the first \cell follows TEXT2 (see the text file in Figure 41). The 

first cell ends at position 4 153 twips (starting from left margin shown in \cellx4153) by 

73 



basic Rule 8. Then the translator gets the second cell with content TEXT3 with right 

border ended at 8 414 twips. 

\ t rowd\ t rgaphl 08\brdrwl 0\brdrwl 0\brdrwl 0\ brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0 
\brdrw 10\brdrwl 0\brdrwl 0\cellx4l5J\brdrw1 O\brdrwl O\brdrwl O\brdrwl O\cellx8414 \pard 
\plain \qc\int bl \out linelevelO\b 
{\b0\TEXT2\cell} 
\pard\plain\qc\intbl 
{\TEKTJ\cell} 
\pard\intbl 
{\b\row} 
\ t rowd\ t rgaphl 08\brdrwl 0\brdrwl 0\brdrwl O\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0 
\brdrw 10\brdrwl 0\brdrwl 0\cellx 1885\brdrw 10\brdrwl 0\brdrwl O\brdrwl O\cellx4 l 5J\brdrwl 0 
\brdrw 10\brdrwl 0\brdrwl 0\cellx8414\pard\qj \intbl 
{\TEKT4\cell \TEKT5\cell \TEKT6\cell} 
\pard\intbl 
{\b\row} 
\pard\qc 
{\b\i \ TEKT7} 
\ t rowd\ t rgaphl 08\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0 
\brdrwl 0\brdrwl 0\brdrwl 0\cellx4 l 5J\brdrw l O\brdrwl 0\brdrwl 0\brdrwl 0\collx8624 \pard 
\plain\qc\intbl \outlinelovelO\b 
{\b0\TEKT8\coll} 
\pard\plain\qj\intbl 
{\ TEKT9\cell} 
\pard\intbl 
{\row} 
\ t rowd\ t rgaphl 08\brdrwl O\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0 
\brdrw 10\brdrwl 0\brdrwl 0\cellx 1885\brdrwl 0\brdrwl 0\brdrwl 0\brdrwl 0\cellx4 l 5J\brdrwl 0 
\brdrwl 0\brdrwl 0\brdrwl 0\cellx8624 \pard\qj \intbl 
{\TEXTlO\cell \TEXTl 1 \coll \cell!I 

~·;'ifaF ~ iirfiï '································· · ··········· ' ~"············ · · . . · ·.,· 
i 1'17f~ llifii~@J:::; ~ ~ : »l iJ 1JWMi.::J'~MS ... ,èu ... f6J~· · Jl@t~ .. ~ · ~h·~f[lmji'\ 

Figure 40: The command file testTable. cmd for nested tables 

4 testtable - îllJl:<I> l!lr;:JJ3 

TEXT1 1 Test table 
TEXT2 1 First cell in row 1 
TEXT3 1 Second cell in row 1 
TEXT4 1 First cell in row 2 
TEXTS 1 Second cell in row2 
TEXT6 1 Third cen in row 2 
TEXT7 1 Table 1 
TEXT8 1 First cell in row 1 
TEXT9 1 Second cell in row 1/row 2. Howeuer, allwordsbeong to row 1 rather than row 2. 
TEXT1 O 1 First cell in row 2 
TEXT11 1 Second cen in row2 
TEXT12 I Table 2 
TEXT13 1 First ce 11 in row 1 
TEXT14 1 Second cell in row 1/row 2 
TEXT15 1 First cell in row 2 
TEXT16 1 Second cell in row2 
TEXT17 I Table 3 

Figure 41: The text file testTable. txt tested for nested tables 

74 



By seeing \row and the second \trowd, the translator knows the first row finishes and 

the second row begins. Because there are three \cellxNs before the second row appears, 

the translator knows the second row has three cells. So, this is a table with nested cells 

(two cells in first row and three cells in the second row). The three cells end at 1 185, 4 

153, and 8 414, respectively. After the second \row, there is a separate paragraph which 

consists of TEXT7 and no \cell follows; the translator knows a normal text appears 

outside of the table. So the first table is finished. 

Next we concentrate on translation rules on nested tables by translating the second table. 

From view of human beings, the second column of the table has a single cell only. And 

this cell (physically larger than its left cells) is neighbored by the two cells which belong 

to the first row and the second row at the same time. No column idea exists in a RTF 

table. Only rows and cells are applied in the translation. So, a table is translated 

row-by-row and cell-by-cell. In the second table, the first cell in the first row is located 

and translated as normal. Even the second cell, which contains the text "Second cell in 

row 1/row 2. However, all words be long to row 1 rather than row 2. ", is dealt as a normal 

cell. By taking \cellxN, the translator knows there are two cells in the first row. Then the 

translator scans the second row and finds three cells in the second row. But the third one 

has no text inside. See "{ \TEXTlO\cell \TEXTll \cell \cell}" in testTable. txt. 

By Rule 2 and Rule 3 for nested cells, the translator gets this larger cell which belongs to 

the first row and the second row. 

Compulsory Rule 

A compulsory rule is set for efficiency reasons. 

Rule 1: All borders of cells in a table have the same size. 

75 



Chapter 4 

Simplification Rules 

Code optimization is a very important phase in text processing and transforming domain. 

The target code has to be improved before it is finally generated. Such improvements 

include eliminating redundant or unnecessary blocks which contain no useful information 

and merging some piece of texts which hold the same attributes. All these improvements 

are regulated by a set of rules called simplification rules. The fonction SecondScan ( ) 

is implemented to execute the second traversa! of the binary data tree for simplification. 

4.1 Simplification Rules on Useless Blocks 

A RTF document includes hundreds of control words inside. Even the basic control 

words are extracted; some of them are still useless or redundant for some specific cases. 

Two reasons attract us to study blocks for purpose of simplification. Firstly, a block is the 

main unit in the structured data input file (. cmd) and a block may include many other 

76 



blocks. Actually the content of the command input file is a block. Another reason is that 

the attributes for fonts and paragraphs inside a block are independent and the block can 

be ignored if it is not useful. On the contrary, the attributes outside of a block are not only 

a copy for this block but also valid for further traversa! (see section 3.2.2). So, a block is 

much simpler to be dealt with. A block is thrown away as long as it includes no 

information. 

The idea is to associate a Boolean flag to each block that shows if this block contains 

useful data. If the block is redundant or unnecessary, the parser jumps this block and 

continues to do further scan. In the binary tree data structure, a block node is an 

intermediate node which can have child nodes such as sequence, text, and all other data 

nodes. To jump to useless nodes in a tree leads to code optimization in the third traversai 

for code generation. There are some blocks which are considered useless. Therefore 

corresponding rules are set for them. 

Rule 1: An empty block without any node inside (no child from the view of the parser) 

is a useless block. 

Rule 2: A block including data nodes such as texts, images, fields, and bookmarks is a 

good block. 

Rule 3: A block including lists, tables, and paragraphs is a good block. 

Rule 4: The parent of a good block is also good. 

Rule 5: All other blocks are useless blocks. 

An example for simplification rules on blocks is shown in Figure 42. 

77 



m SHphficahonrule - ~~~ ll!lr;'Jl3 

{ 
{ 
{\qj} 
{\qc\b) 

} 
{\info} 
\ paperw11906\margl1800\margrl 800\pard\plain\qc\b\TEXT 1 \par 
\ pard\plain\ qj 
{\ TEXT1 \par 
{\pard\plain} 

} 
{\i 
{\pnlvlblt\ls3} 
} 

) 

1 

l . 
~ "~AA· • 

Figure 42: An example for simplification rules on blocks 

The first block, which includes two inner blocks { \ qj } and { \ qc \b}, is regarded as 

useless because its two child blocks do not have any useful data inside-neither data nodes 

nor list/table/paragraph/table control words. So, the two inner blocks and their parent 

blocks are useless by Rule 1 and Rule 5. For the same reason, the next block { \ inf o} is 

useless for the parser. The following block is { \ TEXTl \par { \pard \plain} } . The inner 

one { \pard\plain} is useless. However, the outer block, which includes a text node, is a 

good block by Rule 2. The last block is { \ i { \pnl vlbl t \ ls3}} which has an inner block. 

Because its child block { \pnl vlblt \ 1s3} is a good block by Rule 3, the outer block is 

also useful by Rule 4. Finally, the largest block which includes several useful inner 

blocks is evaluated as useful block by Rule 4. 

4.2 Simplification Rules on Merging 

Sorne continuous texts in a paragraph are separated but their attributes defining their font 

and alignment features are the same. In this case, these texts are merged into a single text 

in order to simplify their relationship. See an example shown in figure 43. 

78 



--the rtf file 

You arereading fWO attributeS. 

--the command file 

{\ql\fs24} 
{\ql\fs20} 

} 

{ \info} 
\pard\plain\ql\fs24 
{\TEXTl} 
{\i\fs40\ul\TEXT2} 
{\i\fs40\ul\TEXT3} 
{\TEXT4\par\par} 

--the text file 
TEXTl You are reading 
TEXT2 two 
TEXT3 attributes 
TEXT4 

Figure 43: Three files (RTF, command, and text) for testing merging 

Two texts in a sequence can be merged together in the example. They are TEXT2 and 

TEXT3. Both are italic, underline, and with font size of 40. Before simplification, they 

should be translated into something like: 

<text size=40><italic><underline>TEXT2<\underline><\italic><\bold><\text> 

AND 

<text size=40><italic><underline>TEXT3<\underline><\italic><\bold><\text> 

79 



To improve the code, the two texts are merged like: 

<text size=40><italic><underline>TEXT2 TEXT3<\underline><\italic><\bold> 

<\text> 

We get the simplification rules on merging. 

Rule 1: Two texts in different cells in a table cannot be merged. 

Rule 2: Two or more texts in a paragraph without different texts and images separating 

them are merged together if and only if their font and paragraph attributes are 

the same. 

lt seems to exclude a field or a bookmark between two possible merged texts. But neither 

has two qualified texts which can merge together. Firstly, a field is extemally extracted as 

a real text in . txt file although it is also extracted as a FIELD with a field name at the 

same time. Two qualified texts are merged together no matter whether they are field or 

not. Secondly, a bookmark invisibly exists in a document. So, it does not matter if there is 

a bookmark between two texts. But an image does matter. Normally an image is often 

located in a separated paragraph. However in some case, an image could be used as small 

as a short text in a paragraph. So, the two texts which have a paragraph between them 

cannot be merged together. 

In real programming, two steps are involved to judge if two texts could be merged 

together. The first is to collect any two neighboring texts (no \par, \cell or image 

between them). The second is to pick up their attribute tables and compare them 

cell-by-cell. If they exactly match, a merge flag is set to indicate that the two texts can be 

merged. The real merging job is not done in the second traversa!. The code optimization 

is performed in code generation during the third traversa!. 

80 



Chapter 5 

Code Generation 

The last phase of text processing and transforming is code generation. Usually, code 

generation is the most complex phase of an application domain because it depends not 

only on the characteristics of the source language but also on detailed information about 

the target architecture and the structure of the runtime environment [11]. The target code 

of the translator is XML. The fonction ThirdScan ( ) is implemented to execute the 

third traversai of the binary data tree for code generation. An activating mechanism is 

applied to activate concrete code generation for elements and attributes of XML 

documents. Identification tags, which identify the elements or the attributes and then fire 

code generation, play an important role in the activating mechanism. 

Like other applications of text processing and transforming, code generation also 

in volves some attempts to optimize the target code. The real code optimization is done in 

this phase although the simplification job is completed in the second traversai. The target 

code XML is a user-defined file. So, a DTD file for the translator is discussed in this 

chapter. To display the XML result, an XSL file is required. 

81 



5.1 XML 

5.1.1 What is XML? 

Coming straight to the point, XML stands for eXtensible Markup Language. XML is a 

radically simplified subset of Standard Generalized Markup Language (SGML). XML is 

a public format and not a proprietary format of any company. The version 1.0 

specification was accepted by the World Wide Web Consortium (W3C) as 

recommendation on February 10, 1998 [17]. 

XML files always clearly mark where the start and end of each of the logical parts (called 

elements) of an interchanged document occur. By defining the role of each element of a 

text in a formal model, known as a DTD, users of XML can check that each component 

of a document occurs in a valid place within the interchanged data stream. An XML DTD 

allows computers to check, for example, that users do not accidentally enter a third-level 

heading without first having entered a second-level heading, something that cannot be 

checked using HTML previously used to code documents that form part of the World 

Wide Web of documents accessible through the Internet. 

XML was not designed to be a standardized way of coding text; in fact it is impossible to 

devise a single coding scheme that would be suitable for all languages and all 

applications. Instead XML is a formal language that can be used to pass information 

about the component parts of a document to another computer system. XML is flexible 

enough to describe any logical text structure, whether it is a form, memo, letter, report, 

book, encyclopedia, dictionary or database. 

82 



5.1.2 The Components of XML 

XML is based on the concept of documents composed of a series of entities. Each entity 

can contain one or more logical elements. Each of these elements can have certain 

attributes (properties) that describe the way in which it is to be processed. XML provides 

a formal syntax for describing the relationships between the entities, elements, and 

attributes that make up an XML document, which can be used to tell the computer how it 

can recognize the component parts of each document. 

XML differs from other markup languages in that it does not simply indicate where a 

change of appearance occurs, or where a new element starts. XML sets out to clearly 

identify the boundaries of every part of a document, whether it is a new chapter, a piece 

of boilerplate text, or a reference to another publication. 

To allow the computer to check the structure of a document, users must provide it with a 

DTD that declares each of the permitted entities, elements and attributes, and the 

relationships between them. 

5.2DTD 

A DTD provides a way of writing markup rules that specify how XML documents can be 

validly created. When XML 1.0 was originally specified, the DTD syntax (which is not 

XML-based) was inherited mainly from earlier markup languages, such as SGML and 

HTML. The syntax introduced in this section is mainly from MSDN Library [18] and is 

reorganized. 

83 



5.2.1 DTD Syntax 

DTD uses a specialized non-XML vocabulary, which includes the following grammar for 

writing and declaring markup rules that define a specific type of an XML document 

structure: 

AITLIST declarations; 

ELEMENT declarations; 

ENTITY declarations; 

NOTATION declarations. 

5.2.1.1 ELEMENT Declarations 

The ELEMENT statement is used to declare each element used within the document type 

defined by the DTD. lt first declares an element by name, and then specifies what content 

is allowed for the element. 

Syntax 

<!ELEMENT name content > 

Parameters 

name 

The name of the element. Exact case is required. 

84 



content 

The allowable content model for the element, which must be one of the following: 

- ANY: any content is allowed within the element. When used in an element 

declaration, this keyword permits an open unrestricted content model for the 

element and any of its child nodes. 

EMPTY: the element is not allowed to have content and must remain 

empty. 

Declared Content Rule: for this option, users need to write a content rule 

and enclose it within a set of parentheses. 

5.2.1.2 ATTLIST Declarations 

The AITLIST (attribute lists) statement is used to list and declare each attribute that can 

be long to an element. lt first specifies the name of the element (or elements) for which the 

attribute list will apply. It then lists each attribute by name, indicates whether it is 

required, and specifies what character data it is allowed to have as a value. 

Syntax 

<!AITLIST elementName attributeName dataType default > 

Parameters 

elementName 

The name of the element to which the attribute list applies. 

attributeName 

The name of an attribute. This parameter can be repeated as many times as needed 

to list all attributes available for use with elementName. 

85 



data Type 

default 

The data type for the attribute named in the attributeName parameter, which must 

be one of the following: 

CDATA: the attribute will contain only character data. 

ID: the value of the attribute must be unique. lt cannot be repeated in other 

elements or attributes used in the document. 

IDREF: the attribute references the value of another attribute in the 

document, of ID type. 

ENTITY: the attribute value must correspond to the name of an extemal 

unparsed ENTITY, which is also declared in the same DTD. 

ENTITIES: the attribute value contains multiple names of extemal unparsed 

entities declared in the DTD. 

NMTOKEN: the attribute value must be a name token. Name tokens allow 

character data values, but are more limited than CDATA. A name token can 

contain letters, numbers, and some punctuation symbols such as periods, 

dashes, underscores, and colons. Name token values, however, cannot 

contain any spacing characters. 

NMTOKENS: the attribute value contains multiple name tokens. See the 

description for NMTOKEN and ENUMERATED for detail. 

ENUMERATED: the attribute values are limited to those within an 

enumerated list. Only values that match those listed are validly parsed. All 

enumerated data types are enclosed in a set of parentheses with each value 

separated by a vertical bar ("j"). 

The default value for the attribute named in attributeName. Table 12 describes the 

possible defaults. 

86 



Table 12: Default value in ATTLIST declaration 

#REQUIRED The attribute must appear in the XML document or a parsing 
error will result. To avoid a parse error, you can optionally use 
the defaultValue field directly following this keyword. 

#IMPLIED The attribute can appear in the XML document, but if omitted, 
no parsing error will result. In some cases you can also use 
the defaultValue field directly following this keyword. 

#FIXED The attribute value is fixed in the DTD and cannot be changed 
or overridden in the XML document. If this keyword is used, 
the defaultValue field directly following this keyword mus1 
also be used to declare the fixed attribute value. 

defaultValue A default or fixed value. The parser inserts this value into the 
XML document when the attribute is missing or is not used in 
the XML document. All values must be enclosed in a set of 
quotation marks (either single or double quotes). 

5.2.1.3 ENTITY Declarations 

The ENTITY statement is used to define entities in the DTD, for use in both the XML 

document associated with the DTD and the DTD itself. 

Syntax 

<IENTITY [%] name [SYSTEMjPUBLIC public!D] resource [NDATA notation]> 

Parameters 

name 

The name of the entity. Required for all entity definitions. 

public!D 

The public identifier for the entity. Only required if the declaration uses the 

PUBLIC keyword. 

87 



resource 

The value for the entity. Required for all entity definitions. 

notation 

The name of a notation declared elsewhere in the DTD using the NOTATION 

statement. Only required when declaring an unparsed entity through the use of the 

non-XML data (NDATA) keyword. 

5.2.1.4 NOTATION Declarations 

The NOTATION statement is used to define notations. Notations allow an XML document 

to pass notifying information to external applications. 

Syntax 

<!NOTATION name [SYSTEMIPUBLIC publicID] resource > 

Parameters 

name 

The name of the notation. Required for all notation definitions. 

publicID 

The public identifier for the notation. Only required if the declaration uses the 

PUBLIC keyword. 

resource 

The value for the notation. Required for all notation definitions. Typically, if the 

notation is public it is a URI, readable to humans but not to machines. 

88 



5.2.2 The DTD for the Translator 

<!ELEMENT document((paragraph*iheading*limage*llist*jtable*)+)> 
<!ELEMENT heading(text+)> 

<!ATTLIST heading alignrnent CTADA "justified" level CDATA #REQUIRED > 

<!ELEMENT paragraph(text*jfield*jbookrnark*)> 
<!ATTLIST paragraph alignrnent CTADA "justified"> 

<!ELEMENT text(italic*jbold*j (uljulw)*j (subisuper)*I (strikejstriked)* 
j#PCDATA)> 

<!ATTLIST text size CDATA "3"> 

<!ELEMENT italic(bold*I (ullulw)*I (sublsuper)*I (strikejstriked)* 
l#PCDATA)> 

<!ELEMENT bold((uljulw)*j (sublsuper)*j (strikejstriked)*j#PCDATA)> 
<!ELEMENT ul((subjsuper)*j (strikejstriked)*j#PCDATA)> 
<!ELEMENT ulw((subjsuper)*j (strikeistriked)*j#PCDATA)> 
<!ELEMENT sub((strikejstriked)*j#PCDATA)> 

<!ELEMENT super((strikejstriked)*l#PCDATA)> 
<!ELEMENT strike(#PCDATA)> 
<!ELEMENT striked(#PCDATA)> 

<!ELEMENT field (text*)> 

<!ATTLIST field ref CDATA #REQUIRED> 

<!ELEMENT bookrnark EMPTY> 

<!ATTLIST bookrnark narne CDATA #REQUIRED> 
<!ELEMENT list (item+)> 
<!ATTLIST list type (orderiunorder) # REQUIRED> 

<!ELEMENT item (text+jfield*lbookrnark*jlist*)> 
<!ELEMENT image EMPTY> 

<!ATTLIST image 

source CDATA #REQUIRED 
width CDATA #REQUIRED 

height CDATA #REQUIRED 

scaleX CDATA #REQUIRED 
scaleY CDATA #REQUIRED> 

<!ELEMENT table(row+)> 
<!ELEMENT row(cell+)> 

<!ELEMENT cell(text*)> 
<!ATTLIST cell alignrnent CDATA "justified" position CDATA #REQUIRED> 

Figure 44: DTD for the translator 

89 



Figure 44 shows the DTD for the translator. The XML output of the translator is defined 

by the DTD. The root node of the DTD is document. A document includes five elements: 

paragraph, heading, image, list, and table. Bach element has some attributes and 

contains its own elements with attributes. 

5.2.2.1 Definition of a Paragraph 

The element paragraph is a regular paragraph in the target document. A paragraph has an 

attribute alignment that describes the alignment feature of the paragraph. The default 

value of alignment is ')ustified". In other word, the alignment of a paragraph in the target 

file is always justified unless a specific alignment attribute appears. A paragraph contains 

three elements: text, field, and bookmark. 

Text Definition 

The element text consists of a sequence of letters which have font and font size in the 

target file. In the DTD for the translator, the font size is defined with an attribute of size 

whose default value is 3. The font character is implemented with several elements (italic, 

bold, ul, ulw, sub, super, strike, and striked) instead of an attribute. A font element 

includes other font elements. For example, italic contains bold, either ul or ulw, either 

sub or super, and either strike or striked. bold contains either ul or ulw, either sub or 

super, and either strike or striked. ul or ulw contains either sub or super, and either strike 

or striked. sub or super contains either strike or striked. Although using an attribute is 

simpler and clearer than using several elements, an element option is adopted in the 

translator. The reason is that an element expression looks nicer in the target file. 

Compare two options: 
<text size=2><italic><bold>text content</italic></bold></text> 

90 



and 

<text size=2 font="italic bold">text content</text> 

The first expression is more popular in structured formatting files, HTML for example. 

The text element or one of its child elements must contains a PCDATA which forms the 

atoms of the document, the units from which the higher-level structures are built. The 

PCDATA here is actually the "plain" text for text. 

Field Definition 

A field is used as a placeholder for data that might change in the target document and for 

creating form letters and labels in mail-merge documents or as a hyperlink to a 

destination. The element field may contain an element text which has exactly the same 

syntax as text in paragraph. The only attribute of text is refwhich is a required CDATA. 

The attribute ref defines the name to which a field refers. 

Bookmark Definition 

A bookmark is a term to refer to a location within the target document, referred to 

elsewhere as an anchor. The element bookmark has no element. The only attribute of 

bookmark is name which is a required CDATA. The attribute name defines the name of a 

bookmark. 

5.2.2.2 Definition of a Reading 

The element heading is a title or subtitle in the target document. A heading has two 

attributes to define it. One attribute is alignment that describes the alignment feature of 

91 



the heading. Like paragraph, the default value of alignment is also '1ustified". Another 

attribute for heading is levez that describes the level of the font size. The element heading 

contains only one element text whose number is 1 or more. 

5.2.2.3 Definition of an Image 

An image is a picture in the target document. The element image does not have element. 

Pive required CDATA attributes define an image: 

source - the name of the image file; 

width - the original width of the image size; 

height - the original height of the image size; 

scaleX - the horizontal scaling value of the image; 

scaleY - the vertical scaling value of the image. 

5.2.2.4 Definition of a List 

A list in the target document has two types: ordered and unordered. Correspondingly, 

order and unorder are two attributes that describe the element list in the DTD. A list has a 

single element item whose number is 1 or more. The element item contains four elements: 

text; 

- field; 

bookmark; 

list. 

The fourth element list means that a nested (indented) list exists. 

92 



5.2.2.5 Definition of a Table 

The last element of document in the DTD is table. A table contains a single element row 

whose number is 1 or more. 

The element row has one element cell and a cell has two attributes. The attribute 

alignment, whose default value is also ''justified" like any other alignment attribute in the 

DTD, defines the alignment character of the cell. Another attribute position defines the 

right border position of the cell. A cell has its own element text. 

5.3 lmplementation Aspects 

Code generation of the translator is implemented with the fonction ThirdScan ( ) and 

other fonctions called by ThirdScan ( ) . All related fonctions and variables could be 

found in translater. cpp shown in Appendix A. According to the DTD for the 

translator (see Figure 44), the target document XML is called document. A document may 

contain five elements: paragraph, heading, image, list, and table. Each element may have 

some attributes and contains its own elements with attributes. For example, a paragraph 

contains elements field, bookmark, and text. The attribute alignment defines the paragraph 

alignment feature. Also a field has one element text and an attribute ref In the 

implementation level, one or more fonctions are responsible for generation of the 

elements and attributes. 

The extracted "plain" data about texts, fields, and bookmarks is applied in construction of 

the target code. The three kinds of data are extracted by the extractor and are stored in 

the . txt file. In the code generation stage, the data should be retrieved. In the translator 

program, three string arrays are implemented to load the data before the beginning of code 

93 



generation. The three arrays are text, field, and boolanark. They are used to 

retrieve the related data when a text, a field, or a bookmark is generated. 

5.3.1 Identification Tags and an Activating Mechanism 

The first thing for code generation is to find an "identification" tag for each element and 

attribute during the third traversai of the data tree and then activate code generation. An 

identification tag in this thesis is a RTF control word or a variable that identifies a node 

type or the combination of a control word and some conditions used for identifying and 

then activating code generation. The identifying fonction of an identification tag is similar 

to a primary key to identify an entity in a database. The activating fonction is used to start 

code generation. When an identification tag is met, related code generation starts at once 

or later depending on the category of the identification tag. The identification tags of some 

elements and attributes are easily found. But some are quite complex to obtain. For 

example, the type of an image node, NT_IMAGE, is its identification tag since image 

nodes are unique among other nodes. Whenever NT_IMAGE is scanned during the third 

traversai, image code is generated immediately. On the contrary, more information is 

required to fire generation of an item of a list. The list control word \pnlvlbody or 

\pnlvlblt represents a list item but neither can activate item code generation correctly. A 

Boolean variable i temGoOn is added to compose the identification tag for an item. 

Whenever a list control word is parsed and i temGoOn is true, item code is produced. 

The last identification tags are for identifying elements or attributes only. They do not 

have the right to activate code generation. 

Identification tags are classified into instant, conditional, and slave categories based on 

how long is the activation time or which has the right to activate code generation. 

94 



• Instant Identification Tags 

An instant identification tag is a RTF control word stored in a tag node or a 

variable for identifying a tree node. These tags are kind of firing signais. Once the 

tags are parsed, the corresponding code generation fonctions are called to produce 

related code at once without any delay. The identification tag of an image is in this 

category. 

• Conditional Identification Tags 

A conditional identification tag is some control words plus one or more Boolean 

variables. When the control words are met and the Boolean variables are true, code 

generation starts. The identification tag of a list item is in this category. A 

conditional identification tag can include Boolean variables only without a control 

word. 

• Slave Identification Tags 

A slave identification tag is a control word or a variable for identifying a tree node. 

When the control word or the type variable is parsed, the corresponding code is 

ready to generate. But the slave identification tag does not have the power to 

activate the code generation. Sorne entity in higher level, acting as a master, keeps 

control of the code generation. For example, a text is an element of a paragraph. A 

paragraph can include many texts. lt is the fonction MakePar ( ) which produces 

the paragraph to decide when the texts are generated. 

The code generation fonction for the translator is ThirdScan ( ) . This fonction realizes 

code generation by finding all identification tags and then calling the corresponding code 

generation fonctions directly or indirectly. 

95 



5.3.2 Image Generation 

The identification tag for an image is NT_IMAGE and it is an instant identification tag. In 

the data tree, an image is uniquely represented by ImageNode. Whenever an image node 

is traversed during ThirdScan (), image code is generated by calling the fonction 

Makeimage () shown in Figure 45. The XML tags to delimit a table ("") are written in the fonction. Pive attributes of image, source, width, height, 

scaleX, and scaleY, are obtained by calling the five corresponding Get () fonctions. 

void TranslatorTree::Makeimage(ImageNode* image) 

char* source=image->GetFile(); 
//roughly convert to html unit 
int width=image->GetWidth()*0.063; 
int height=image->GetHeight()*0.063; 
int scaleX=image->GetScaleX(); 
int scaleY=image->GetScaleY(); 
file<< "<image source=\"" << source<< "\" width=" 

<< "\"" << width << "\" height=\"" << height 
<< "\" scaleX=\ 1111 << scaleX << "\" scaleY=\ 1111 

<< scaleY << "\">" << endl; 
file << "</image>" << endl; 

Figure 45: The fonction Makeimage ( ) 

5.3.3 Table Generation 

In RTF, there is no specific contrai word for creating a table. A RTF table is composed of 

a series of rows. And a row is composed of a series of cells. Because the start of a table is 

known by meeting the first cell at the first row of the table (see translation mies on tables 

in section 3.8), we can make use of this condition to build the identification tag for a table. 

96 



A Boolean variable doTable is used to show if it is the first time the table is produced. If 

it is, the translator does table generation and writes the string "<table>". Since there is 

no control word responsible for building a table and a row according to the translation 

rules for tables, the cell control word /cell and the Boolean variable doTable together 

constitute the conditional identification tag for making a table. Because the RTF control 

words are stored in TagNode in the translator program, a tag node should be found at 

first during the third traversai. Tuen the node is checked if it stores /cell. Finally, the 

variable doTable is checked if it is true. After these conditions are met, the string 

"<table>" is written into the XML document. 

The identification tag for ending a table is two Boolean variables doTable and doRow. 

When doTable is true and doRow is false, the string "</table>" is written into the 

XML document. 

Row Generation 

Similar to table generation, the identification tag for row starting is also conditional. The 

cell control word /cell and the Boolean variable doRow together constitute the 

conditional identification tag for making a row. Whenever a TagNode that stores /cell is 

traversed and doRow is false, the string "<row>" is written into the XML document. The 

identification tag for row ending is /row and it is an instant identification tag. Whenever a 

TagNode that stores /row is traversed, the string "</row>" is written out immediately. 

Cell Generation 

Cells are basic units in a table. Actually, most jobs for generating a table are done in the 

cell generation stage. In this stage, the cell alignment are computed and cell texts are 

printed out in the fonction MakeCell () shown in Figure 46. The identification tag for 

97 



cell generation is /cell and it is an instant identification tag. Whenever /cell is identified, 

MakeCell () is called. In this fonction, alignment of the cell is firstly obtained by 

calling the fonction GetAlig:runent (). Secondly, the XML tags to delimit a cell are 

written in the fonction. Thirdly, the texts in the cell are generated by calling the fonction 

MakeText () in a for loop. Finally, in this fonction, the string "< ! cell>" is written for 

ending the cell. 

The attribute position is obtained during the third traversai. The identification tag for cell 

position is /cellx. It is forwarded as a parameter into the fonction MakeCell (). 

void TranslatorTree::MakeCell(TextNode* 
TextArray[],int countText,int Position) 

string alignment=GetAlignment(TextArray[O]); 
if (alignment==" justified") 

file<< "<cell position=\"" <<Position<< "\">" 
<< endl; 

el se 
file << "<cell alignment=" << alignment 

<< "position=\" "<<Position<< "\ ">" << endl; 

for(int i=O;i<countText;i++) 
MakeText(text[TextArray[i]->GetTextID()-1], 

TextArray[i]); 
file << "</cell>" << endl; 

Figure 46: The fonction MakeCell () 

5.3.4 Paragraph Generation 

The identification tag for a paragraph is \par and it is an instant identification tag. 

Whenever \paris parsed in the third traversai, the fonction MakePar () shown in Figure 

4 7 is called. The XML tags to delimit a paragraph are also written in the fonction. The 

98 



fonction DoParagraph () (shown in Appendix A) is used to generate elements of a 

paragraph. The text generation fonction MakeText ( ) is called in DoParagraph ( ) . 

void TranslatorTree: :MakePar{TreeNode* 

Nodearray[],int length) 

if{head!=-1)//to rnake a header 

MakeHead{Nodearray,length); 

el se 

//to rnake a paragraph 

if {rneetTF==false 11 Paralignrnent==" justified") 

file << "<paragraph>" << endl; 

if {rneetTF==true && Paralignrnent!="justified") 

file << "<paragraph alignrnent=" 

<< Paralignrnent << ">" << endl; 

DoParagraph{Nodearray,length); 

file << "</paragraph>" << endl; 

Figure 47: The fonction MakePar () 

A paragraph contains elements text, field, and bookmark. A node array, Nodearray, 

stores all elements of the paragraph during the third traversa! of the data tree. The array is 

forwarded as a parameter into the fonction DoParagraph ( ) . Three kinds of elements, 

text, field, 'and bookmark, are produced in the fonction. 

5.3.5 Text Generation 

The identification tag for a text is NT_TEXT and it is a slave identification tag. When a 

text node is parsed during the third traversa!, the text node is stored in the node array 

Nodearray. Unlike image generation which outputs the code right after the 

identification tag is found, text generation is delayed until its parent entities call it. A text 

99 



is a basic unit in an XML document. It is the element of paragraphs, headings, fields, cells, 

and items. When its parent entities are generated, the text generation fonction 

MakeText ( ) , shown in Figure 48, is called by its parents, respectively. Since it is a 

passive character, NT_TEXT is not an instant identification tag. 

void TranslatorTree::MakeText(string 
textString,TreeNode* node) 

TextNode* temp=(TextNode*)node; 
int fontSize=GetFontSize(temp); 
string fontList=GetFont(temp); 
int defaultSize=3; 
if(head!=-1)//make text in heading 

file << "<text>" << GetFontList(textString, 
temp)<< "</text>" << endl; 

el se 

//make text in a normal paragraph 

if (fontSize==defaultSize && fontList=="plain") 
file << "<text>" << textString << "</text>" 

<< endl; 
if (fontSize!=defaultSize && fontList=="plain") 

file<< "<text size=\"" << fontSize << "\">" 
<< textString << "</text>" << endl; 

if (fontSize==defaultSize && fontList!="plain") 
file<< "<text>" << GetFontList(textString,temp) 

<< "</text>" << endl; 
if (fontSize!=defaultSize && fontList!="plain") 

file<< "<text size=\"" << fontSize << "\">" 
<< GetFontList (textString, temp) << "</text>" 
<< endl; 

Figure 48: The fonction MakeText ( ) 

100 



5.3.6 Heading Generation 

The identification tag for a heading is \outlinelevel and it is an instant one. Whenever 

\outlinelevel is parsed in the third traversa!, the fonction MakeHeading (), shown in 

Figure 49, is called. The XML tags to delimit a heading are also written in the fonction. 

void TranslatorTree: :MakeHead(TreeNode*Nodearray[], 
int length) 

if (Paralignment== 11 justified 11
) 

file<< 11 <heading level=\ 1111 << head+l<< 11
\

11 > 11 << endl; 

el se 
file<< 11 <heading level=\ 1111 << head+l << 11

\
11 

alignment= 11 << Paralignment << 11 > 11 << endl; 
DoParagraph(Nodearray,length); 

file << 11 </heading> 11 << endl; 

head=-1; 

Figure 49: The fonction MakeHeading ( ) 

A heading is a special paragraph. By the DTD for the translator (shown in Figure 44), a 

heading contains the element text as a paragraph does. Unlike a paragraph, the font size 

for each text in a heading is uniform, regulated by the N in \outlinelevelN. And all the 

font sizes stored in each text node are ignored. To do this in heading text generation 

fonction MakeHeading (), shown in Figure 49, the string "<text>" is printed out no 

matter what the font size is. On the contrary, the regular text generation for a paragraph 

takes action on collecting the font size in each text node (see MakeText () fonction). 

5.3.7 Field Generation 

The identification tag for a field is NT_FIELD and it is a slave one. Like a text node, the 

traversed field node is stored in the node array Nodearray before the field generation is 

101 



done. The field generation fonction MakeField ( } , shown in Figure 50, is called when 

its parent entity (a paragraph, a heading, or an item) is generated. 

void TranslatorTree: :MakeField (TreeNode* node) 

int defaultSize=O;//default size of font 
Field.Node* temp=(Field.Node*)node; 
string ref=field[temp->GetID()-1]; 
for(unsigned int i=O;i<ref.length();i++) 

if(ref.at(i)=='"')//is nota quotation mark 
ref.erase(i,l); 

GetFieldName(ref); 

Figure 50: The fonction MakeField (} 

5.3.8 Bookmark Generation 

The identification tag for a bookmark is NT_FI:ELD and it is a slave one. Like other 

elements (text and field) of a paragraph, bookmark generation has the similar model as 

them. The bookmark generation fonction MakeBookMark ( } is shown in Figure 51. 

void TranslatorTree::MakeBookMark (TreeNode* node) 

BookMarkNode* temp=(BookMarkNode*)node; 
string bookName=bookmark[temp->GetID()-1]; 
file<< "<bookmark name=\"" 

<< bookName << "\"></bookmark>" << endl; 

Figure 51: The fonction MakeBookMark ( } 

102 



5.3.9 List Generation 

The identification tag for a list is a conditional one consisting of a group of control words, 

a Boolean variable, and a condition: 

\pnlvlbody: to indicate an ordered list. 

\pnlvlblt: to indicate an unordered list. 

\lsN: to give the indent distance of an indented item between the previous item. 

\par: to indicate the start of a new paragraph. 

i tem.GoOn: a Boolean variable to indicate item making process. 

Condition - items are indented?: to determine a new list. 

The string "<list>" is generated only when either \pnlvlbody or \pnlvlblt and \par are 

met, the Boolean variable i tem.GoOn is true, and the indent distance of the current item 

is greater than that of the previous item. 

The indent distance of the current item is set to zero by default before a list is met. When 

the first list cornes in, the Nin \lsN is normally 1 which is greater than the default value O. 

The string "</list>" is generated only when either \pnlvlbody or \pnlvlblt and \par 

are met, and the Boolean variable i tem.GoOn is true, and the indent distance of the 

current item is less than that of the previous item. 

5.3.10 Item Generation 

The identification tag for an item is \par and a Boolean variable i tem.GoOn. So, it is a 

conditional identification tag. The item.GoOn is set to true when either \pnlvlbody or 

\pnlvlblt is met. When \par is identified and i tem.GoOn is true, the item generation 

fonction Make:Item ( ) , shown in Figure 52, is called. 

103 



void TranslatorTree::Makeitem(TreeNode* 
Nodearray[],int length) 

file << "<item>" << endl; 
DoParagraph(Nodearray,length); 

file << "</item>" << endl; 

Figure 52: The fonction Makeitem {) 

5.3.11 Font Generation 

There are eight font attributes recognized by the translator. Font generation takes a 

master-slave pattern. The master of it is the fonction MakeText {) which makes a text 

entity. But a font does not have corresponding identification tags. The reason is that the 

font attributes have been already parsed and loaded into an attribute table in a TextNode 

during the first traversai (see translation rules on font and paragraph in section 3.2). When 

font code is ready for generation, the font attributes are withdrawn from the text node. 

The style of font code has a special format compared to other elements. All font attributes 

should be listed in a line although they have a child-parent relationship. All opening XML 

contrai words for font are inserted before a plain text and all closing contrai words are 

inserted after the text. "<i talic><bold><sub>a text< / sub>< /bold>< / i talic>", for 

example, is the form in expressing font in an XML document. The fonction 

GetFontList {), shown in Figure 53, is responsible for font generation. The string 

stringBefore is used to store the opening font contrai words. The string 

stringAfter is used to store the closing font contrai words. A plain font list 

f ontList is praduced by calling TakingFont {). Then opening contrai words and 

closing contrai words are generated, respectively. Finally, stringBefore, 

textString (a string of the plain text), and stringafter are combined together. 

104 



string TranslatorTree:: GetFontList(string 
textString,TextNode* node) 

string fontList[lO];//to store all font strings 
string stringAfter=""; 
string stringBefore=""; 
int countFont=O;//to count the font number 
int const fontStart=O; 
int const fontEnd=7; 
for(int i=fontStart;i<fontEnd+l;i++) 

//store all fonts in a list 
if (node->t_table[i] !=0) 

fontList[countFont++]=TakeFont(i); 

for(int k=O;k<countFont;k++) 
Il do a string before the text 
stringBefore . append("<"); 
stringBefore.append(fontList[k]); 
stringBefore.append(">"); 

for(int m=countFont-l;m>-l;m--) 
Il do a string after the text 
stringAfter. append ( "</"); 
stringAfter.append(fontList[m]); 
stringAfter.append(">"); 

stringBefore.append(textString); 
return stringBefore.append(stringAfter); 

Figure 53: The fonction GetFontList () 

5.4 Display the Translated XML 

There are basically three options to display an XML document. One is to use eXtensible 

Stylesheet Language (XSL) to transform to a HTML document at first and then to browse 

it with a regular web browser. The second option is to use an XSL display engine defined 

105 



by an XSL style sheet to display the XML document. The third one is to browse the XML 

document directly with an XML-enable · browser defined by Cascading Style Sheets 

(CSS). Two options are involved with style sheets. A style sheet is a language 

specification which defines a simple grammar, or language. The grammar specifies what 

types of the statement can be made within a style sheet. The three options are shown in 

Figure 54. 

Figure 54: Options to display XML 

XSL is the preferred style sheet language of XML [19]. XSL can be used to define how an 

XML file should be displayed by transforming the XML file into a format that is 

recognizable by a browser. One such format is HTML. Normally XSL does this by 

transforming each XML element into an element of HTML or other formats. 

XSL consists of three parts: XSL Transformations (XSLT), a language for transforming 

XML documents; XML Path Language (XPath), a language for defining parts of an XML 

document; and XSL Formatting Objects (XSLFO), a vocabulary for formatting XML 

documents. XSLT uses XPath to define the matching patterns for transformations. 

106 



An XML document can be represented as a tree view of nodes (very similar to the tree view 

of folders). XPath uses a pattern expression to identify nodes in the XML document. An 

XPath pattern is a slash-separated list of child element names that describe a path through 

the XML document. The pattern selects elements that match the path. 

The first option (with XSLT) is chosen in this thesis to transform and display the 

translated XML document into a HTML document. The XSLT document for the 

translator called translater. xsl is shown in Appendix B. With 

translater. xs 1, any XML documents defined by the DTD for the translator can be 

transformed into HTML documents by including a processing instruction: 

<?xml-stylesheet type=" text/xsl" href=" translater .xsl" media=" screen" ?> 

just after the XML version declaration. The instruction means that the type is text/xsl (to 

link to an XSLT file, with the reference name translater .xsl) and media for 

display is screen. 

The first line of an XSLT document is always about the version of XML. In the translator 

XSLT, version 1.0 is adopted by a command <?xml version=" 1. o" ?>.The root element 

of the style sheet is the <xsl: stylesheet>. By the mechanism of the namespaces and 

schemas in XMLT Specification [20], any element beginning with the prefix xsl: is part 

of the XSL vocabulary. The only attribute of <xsl: stylesheet> is xmlns :xsl, which 

holds the namespace http: ! !www. w3. org /TR/WD-xsl for the XSL transformation 

recommendation. 

The <stylesheet> element contains 19 templates, each of which is nested within the 

<template> element, which is actually <xsl: template> in the style sheet because the 

namespace has been included. The <template> element has an attribute called match. 

The value of this attribute is a pattern that matches the node of the tree that the template 

should be applied to, in the form of an XPath expression. 

107 



5.4.1 Root Node Match 

The XML processor starts in the source document tree at the root node. A template is 

looked for in the style sheet that matches the root node. The root node is not the 

<document> element in the translated Xiv1L, but rather the XML document itself. The 

root of a document can be represented by a forward slash (/) symbol. The code for the 

root node match is shown in Figure 55. 

<xsl:template match="/"> 
<html xrnlns="http://www.w3.org/TR/xhtmll/strict"> 

<head> 
<title>Translation from XML to HTML</title> 

</head> 

<body> 

<xsl:apply-templates select="document/*"/> 
</body> 

</html> 

</xsl:template> 

Figure 55: The code for the root node match 

This template like other templates in the translator pro gram takes the match attribute, 

which specifies the element to which the template should be applied. This is the selector. 

In this case, its value is the XML document's root element. Within this template, the 

resulting HTML document starts to produce. 

The instruction <xsl: apply-templates select= "document/*"/> is used to apply any 

further templates specified at this position. The XPath "document/* " means that all 

templates for the child elements of the <document>, which is the parent element of the 

target Xiv1L document, will be matched. 

108 



5.4.2 Child Element Nodes Match 

The rest of the XSLT of the translator is about the child element nodes match. By the 

DTD for the translator, there are 18 elements/components of the document in the 

translated XML document. Therefore 18 corresponding templates are implemented to 

wait for match of the parsed XML document. Inside of the templates, the matched 

elements or contents are placed between opening and closing HTML tags. See the XSL 

file translator. xsl in Appendix B for more details. 

5.4.3 Display XMLoutput .xml 

An XML document XMLoutput. xml, shown in Appendix C, is used to demonstrate 

how to transform the XML document into a HTML document with the XSLT file 

translator. xsl. Assume an XML processor used to parse the XML document. The 

root node of the XML document is processed at first. The root node is the XML itself. 

Therefore the first line of translator. xsl cornes. After XML version 1.0 is declared, 

the second line 

<?xml-stylesheet type= "text/xsl" href= "translater .xsl" media=" screen" ?> 

instructs that the stylesheet is XSL type and it refers to translater. xsl and the output 

can be seen by the screen media. 

The first template is for the root node match in translator. xsl. The command 

<xsl: apply-templates select=" document/*"/> is inserted between HTML tags 

<body> and </body> (see Figure 55). Therefore all children of the document in 

XML output . xml should be applied as HTML body. The first child of the document is a 

heading. So the heading expression, shown in Figure 56, is then processed. 

109 



<heading level="l" aligrunent="center"> 
<text><bold>Display an XML</bold></text> 

</heading> 

Figure 56: The first heading expression in XML output . xml 

The heading template in translator.xsl supplies the heading definition (see 

Appendix B). A heading has two attributes. The attribute level is responsible for the level 

of the heading. Six levels of a heading (from 1 to 6) are set in the DTD for the translator. 

The tags hl to h6 are the HTML tags for heading level generation. Another attribute is 

alignment which decides the alignment feature of the heading. The command 
<xsl:attribute name="align"> 

<xsl:value-of select="@aligrunent"/> 
</xsl:attribute> 

in translator. xsl picks up the value of alignment (an XML attribute) and assigns 

the value into align (a HTML attribute) of <h>. Therefore, the first heading in 

XMLou tpu t . xml is transformed into HTML code so far 
<hl align="center"> 

elements of the heading 

</hl> 

In this step, the content elements of the heading between <hl> and </hl> are not 

completely converted. The content code will be produced by matching other templates. 

The instruction <xsl: apply-ternplates select = " . /*">in the heading template means 

applying all the child elements of the current node, which is the heading, between the 

XML tags <hl align= "center" > and </hl>. The heading, shown in Figure 56, has only 

one element: text. The text template specifies the text definition (see Appendix B). 

Similarly, all elements of the text are embedded between a pair of HTML tags which are 

<font> and </font>. Although there is the size attribute for the font in the template, the 

attribute is jumped because the text of the heading (see Figure 56) does not have a size 

value inside. The XSLT instruction <xsl: value-of select= "text () "/> after 

110 



<xsl: apply-templates select="./*"> applies the PCDATA (plain text) of the current 

node. Because there is no PCDATA in the text node, nothing is actually applied. In this 

step, the transformed HTML code is: 

<hl align="center"> 
<font> 

elements of the text 
</font> 

</hl> 

The element text contains only one child element bold, which includes a PCDAT A. By 

the bold template (see Appendix B), the transformed HTML code in this step is: 

<hl align="center"> 
<font> 

<strong> 
elements of the bold 
PCDATA of the bold 

</strong> 
</font> 

</hl> 

Although a bold may contain further elements by the DTD for the translator, the bold in 

the first heading (see Appendix B) does not have any element but it contains a PCDATA 

"Display an XML". In this step a completed HTML code for the first heading is 

produced: 

<hl align="center"> 
<font> 

<strong> 
Display an XML 

</strong> 
</font> 

</hl> 

The first element heading is transformed into HTML. The other child elements of the 

document in XML output . xml are applied by matching the related templates as the 

same way as heading transformation. The whole HTML document browsed by Internet 

Explorer 5.0 is shown in Appendix C. 

111 



Conclusion 

This thesis demonstrates how to design and implement an intelligent translator converting 

RTF to XML. lt is an application of text processing and transformation domain. The 

translation process covers stages of character reading, lexical analysis, syntax analysis, 

semantic analysis, code optimization, and code generation. The advantages of the 

translator are its intelligence, efficiency, and extensibility. The main limits of the system 

are its dependency on the version of Microsoft Office and some assumptions in enacting 

translation rules. 

The goal of the project is to implement an intelligent translator. The intelligence cornes 

from the XML representation of the output of the translator and code optimization. 

The translator can convert a RTF document into an XML document which can be 

transparently exchanged bewteen different systems and applications. For this reason, the 

translator could be widely applied in format transformation with a specific format 

generator and an XSL document. Since XML is known for its separation of content and 

style, to deal with XML leads to more convenience and fewer errors. Users of the 

translator could appreciate such intelligence. 

112 



Another effort we put for intelligence is to optimize the XML code. Code optimization is 

to improve the target code generation during the second traversa! of the binary data tree 

by applying the simplification rules. There are two kinds of code optimization in the 

translator program before the XML code is generated. One is realized by jumping the 

redundant or unnecessary blocks which contain useless information during the third 

traversai for code generation. Another is to merge two or more texts which hold the same 

attributes. 

The second advantage of the translator is efficiency. The efficiency is achieved by 

choosing a compact package of the RTF control words for the translation, using some 

facilities supplied by the standard C++ library, and adopting compulsory translation rules. 

The compact package of the RTF control words avoids a lot of computing on translation. 

All RTF control words defined by RTF Specification version 1.6 are divided into four 

categories in this thesis. Only the most important RTF control words category, which 

contains 95 control words, is recognized and processed in translation. They are key control 

words for fonts, paragraphs, lists, tables, and images which can basically control the layout 

and appearance of a document written in the target format. Other control words are either 

ignored or set by default. Generally speaking, the more control words are included, the 

more nodes are constructed in the data tree. In addition, the less data is collected and the 

fewer data structures are implemented. By throwing hundreds of RTF control words, the 

translator program becomes efficient. Although our proach is theorically an efficient way, 

we do not test it yet by comparison. 

Application of standard facilities also improves the efficiency of the translator program. 

The program uses some facilities in the standard C++ library. For example, all the strings 

in the program are defined as standard strings. Also the data structure for constructing 

the data tree and the data structure for the second traversai are both implemented with a 

113 



standard C++ stack. Since the standard facilities allow us to create a direct, nuts-and-bolts 

approach to solving problems, using the standard C++ library leads to smaller source 

code, more efficient coding, and faster execution. 

Compulsory translation rules are the last factor resulting in the efficiency of the 

translator. For example, we set up some compulsory rules on list translation: no choice 

for bullet icon and the numbering style; setting item alignment as left aligned. Such 

design excludes extra control words in the data tree and avoids much execution on 

dealing with unimportant translation cases. 

The third advantage of the translator is extensibility. The translated XML code is 

designed to keep the style or format of the source document as exactly as possible. Sorne 

data kept in an XML document seem to be useless in transforming XML into a HTML 

document, but they may be necessary in covering other formats. There are three kinds of 

data remaining for future extension. The first is the percentage of compression rate on the 

width/height of the original image. The second is the position of the right border of a cell. 

The third is the empty paragraph. 

However, the translator has some limitations with respect to our initial goal. The goal is to 

design and implement a universal intelligent translator. This tool is supposed to be used in 

many environments with robust features. Unfortunately, we find that this goal cannot be 

realized at the end of implementation. 

The first reason for the limitations is that the translator heavily depends on the version 

of Microsoft Office. As a component of the translator system, the translator takes the 

output of the extractor as its own input, and the extractor cannot always successfully 

extract a uniform format of contents or some important control words at all with different 

versions of Microsoft Office. For example, the list control words \pnlvlbody and 

114 



\pnlvlblt cannot be extracted from a list created with either Microsoft Office 2000 or 

Microsoft Office 2002. Therefore the translator is affected by this problem. In some case, 

the translator cannot translate a correct target document, missing some contents of the 

source document, for example, a list expression. So, the translator system has to choose 

Microsoft Office 1997 (French version) as its only RTF converting tool which is used to 

couvert a . doc document into a RTF document. The translator can work well with this 

version. Other Microsoft Office versions may result in problems in generation of lists and 

some special fields. 

The second reason for the limitations cornes from assumptions that the . doc document is 

created with a common sense. For example, a cell is assumed not to contain images, lists, 

fields, bookmarks, and tables. Another example is that an item has a paragraph only. The 

translation rules on tables and lists are based on these assumptions. If users intentionally 

or unintentionally create a . doc document with an unusual way beyond what we expect, 

the translation would fail. In the worse case, this problem is fatal and leads to failure on 

translation because some XML tags cannot be properly produced. 

The third reason for the limitations cornes from the small number of control words which 

are recognizable by the translator. Everything in the world has two faces. On the one 

band, the compact package of the RTF control words benefits the translator in efficiency. 

On the other band, the design may not result in a translation of source documents in every 

deep aspect. Sorne information may be lost. For example, the bullet type of a bullet list 

cannot be kept as the original one. Also the border sizes of each cell in the original table 

are not kept either. Therefore, some subtle contents of the source document may not be 

translated with the translator. Although the compact package is our choice for purpose of 

efficiency and easy implementation, the translator has limitations on application in high 

quality translation. 

115 



For the three reasons, the translator is nota universal tool. Actually, we consider it as a 

prototype of a translator. Although we prepare many test files for the translation, we do 

not apply a formal method to test the translator. There is not an exception catch 

mechanism in the C++ program. So, it is hard to say the translator program is robust. lt 

is the main weakness of the translator. Also, the design of the program does not follow 

the state of the art quite well. 

The translator could be eventually marketed if some further steps are done. The first step 

is to resolve the compatibility problem on different versions of Microsoft Office. If the 

problem cannot be removed, two versions of the translator should be separately 

implemented for different Microsoft Office versions. One version is for Microsoft Office 

1997 and the other for Microsoft Office 2000 and upwards. The second step is to throw 

away the assumption on the translation rules on tables and lists. All situations are 

allowed in creation of a . doc document even if it is in an unusual and a non-standard 

style. The reason to do sois to allow the translator to be a bug-free program. With the 

current translator, the translation would fail on the unusual document. At least, a 

mechanism should be set to alarm users that such document may not successfully be 

translated. The third is to apply formai test methods and use more programming 

standards in order to implement a more robust translator. 

116 



AppendixA 

C++ Code in the Translator 

The translator is written in C++. The classes Translator. cpp and TreeNode. cpp 

as well as their header files compose the translator project that implements the translator. 

Classes for the seven kinds of tree nodes are also included in the class TreeNode. cpp. 

However, two header files: Translator. h and TreeNode. h, are not listed in 

Appendix A for saving space. 

A.1 The class Translator. cpp 

#include "translator.h" 
#include <string> 
using namespace std; 

/************************************************************************** 
** 
** class Translater implementation 

117 



** 
**************************************************************************/ 
Translater: :Translater() 
{ 

m_tree=NULL; 
initialTable(); 
meetTBFI=false; 

num=13; 
previousText=NULL; 
meetField=false; 
head=-1; 
int user_choice; 
coutDataNode=O; 
fieldEnd=false; 
Paralignment="justified"; 
meetTF=false; 
makeList=false; 
itemGoOn=false; 
previousindent=-1; 
countList=O; 
countCell=O; 
countText=O; 
cellOrder=O; 
addTextTable=false; 
doRow=false; 
doTable=false; 
TextArray[O]=new TextNode; 

//number of attributes in the font table 
//default 
//to show if to meet a field 
//initialize head 
//choice for output 
//NO. of text/field/bookmark in a paragraph 
//to show if to need to print out end of a field 
//default value of alignment for a paragraph 
//to show if a paragraph has texts or fields 
//to show if to begin to make a list 
//if still to go on to make an item 
//default value of indentation of a list 
//default value of number of lists 
//to record the number of cells in a row 
//to count number of texts in the textArray 
//to show order of cells (first or second) 
/ /to show if add text to an array for table generation 
//to show if row generation is doing 
//to show if table generation is doing 

cout << "To display XML as HTML, type 1. Input other to get an XML file " << endl; 
cin >> user_choice; 
if(user_choice==l) 

file.open("HTMLoutput.xml"); 
el se 

file. open ( "XMLoutput. xml") ; 
file<< "<?xml version=\"1.0\" ?>" << "\n"; //initialize file 
if(user_choice==l) 

file<< "<?xml-stylesheet type=\"text/xsl\" href=\"translator.xsl\""; 
file << " media=\"screen\"?>" << endl; 
file << "<document>" << "\n"; 

Translater: :-Translater() 
{ 

DestroyTree(m_tree); 

void Translater: :DestroyTree(TreeNode* pParent) 

if(pParent==NULL) 
return; 

DestroyTree(pParent->GetLeftSon()); 
DestroyTree(pParent->GetRightSon()); 
delete pParent; 
pParent=NULL; 

void Translater:: initialTable() 

/* 0-italic,1-bold,2-ul,3-ulw,4-sub,5-super,6-strike, 
7-striked,8-fs,9-qj,10-qc,ll-qr,12-ql */ 

118 



for(int i=O; i< num; i++) 
m_table[i]=O; 

m_table[8]=3;//default value of font size 
m_table[9]=1;//default value of alignement is justified 

SequenceNode* Translater: :AddSequenceNode(TreeNode** pParent) 
{ 

SequenceNode* pNode=new SequenceNode(); 
*pParent=(TreeNode*)pNode; 
return pNode; 

TagNode* Translater: :AddTagNode(TreeNode** pParent, string p, int value) 
{ 

TagNode* pNode=new TagNode(); 
If{NonmeetNum==true) 

value=-1; 
pNode->SetTag(p); 
pNode->SetValue(value); 
*pParent=(TreeNode*)pNode; 
NonmeetNum=true; 
return pNode; 

TextNode* Translator::AddTextNode(TreeNode** pParent, int id) 

TextNode* pNode=new TextNode(id); 
*pParent=(TreeNode*)pNode; 
return pNode; 

FieldNode* Translater: :AddFieldNode(TreeNode** pParent, int id) 
{ 

FieldNode* pNode=new FieldNode(id); 
*pParent =(TreeNode*)pNode; 
return pNode; 

BookMarkNode* Translater: :AddBookMarkNode(TreeNode** pParent, int id) 

BookMarkNode* pNode=new BookMarkNode(id); 
*pParent=(TreeNode*)pNode; 
return pNode; 

ImageNode* Translater: :AddimageNode(TreeNode** pParent, string str,int id) 
{ 

ImageNode* pNode=new ImageNode(id); 
pNode->SetFile(str); 
*pParent=(TreeNode*)pNode; 
return pNode; 

BlockNode* Translator::AddBlockNode(TreeNode** pParent,int id) 
{ 

BlockNode* pNode=new BlockNode(id); 
*pParent=(TreeNode*)pNode; 
return pNode; 

119 



void Translator::makeDataNode() 
{ 

string str=token; 
string imageFile; 
bool meetimage=false; 
int pos=token.find_first_of(' '); 
if(pos!=string: :npos) 
{ 

str=token.substr(O,pos); 
imageFile=token.substr(pos+l); 
if(str=="IMAGE") 
{ 

pimage=AddimageNode(&pCurrentNode->m_pLeft,imageFile,ImageID++); 
meetimage=true; 

for(int i=O; i<token.length();i++) 
if(isdigit(token.at(i))) 
{ 

NonmeetNum=false; 
str=token.substr(O,i); 
for(int j=i;j<token.length();j++) 

value=value*lO+int(token.at(j)-'0'); 
break; 

if (str=="TEXT") 
pText=AddTextNode(&pCurrentNode->m_pLeft,value); 

else if(str=="FIELD") 
pField=AddFieldNode(&pCurrentNode->m_pLeft,value); 

else if(str=="BOOKMARK") 
pBookMark=AddBookMarkNode(&pCurrentNode->m_pLeft,value); 

else if(!meetimage) 
pTag=AddTagNode(&pCurrentNode->m_pLeft, str,value); 

NonmeetNum=true; 
pSequence=AddSequenceNode(&pCurrentNode->m_pRight ); 
pCurrentNode=pSequence; 
value=O; 
token= 1111

; 

meetimage=false; 

string Translator::Checkillegal(string line) 
{ 

int length=line.length(); 
for(int i=O;i<length;i++) 
{ 

int k=line.at(i); 
cout << "position" << i << "is " << k << endl; 
if(line.at(i)=='<') //read illegal XML character "<" 
{ 

line.replace(i, 1, "&lt; "); 
i=i+3; 
length=length+3; 

else if(line.at(i)=='>') 
{ 

//read illegal XML character ">" 

line.replace(i,1,"&gt;"); 

120 



i=i+3; 
length=length+3; 

else if(line.at(i)=='&')//read illegal XML character "&" 
{ 

line.replace(i,1,"&arnp;"); 
i=i+4; 
length=length+4; 

else if(line.at(i)=='\' ')//read illegal XML character "'" 
{ 

line.replace(i,1,"&apos;"); 
i=i+S; 
length=length+S; 

else if(line.at(i)==-108 11 line.at(i)==-109) 
{ 

//read illegal XML character 
line.replace(i,1,"&quot;"); 
i=i+S; 
length=length+S; 

}//end for loop 
return line; 

void Translator: :ReadText() 

int pos=line.find_first_of(' 1 '); 
if(pos==string: :npos) 

cout<< "Error. Lack of separated signs in the text file." << endl; 
el se 
{ 

string temp=line.substr(pos+2); 
text[indexText++]=Checkillegal(temp); 

void Translator::ReadField() 

int pos=line.find_first_of(' 1 '); 
if(pos==string: :npos) 

cout<< "Error. Lack of separated signs in the text file." << endl; 
el se 

string temp=line.substr(pos+2); 
field[indexField++]=Checkillegal(temp); 

void Translator::ReadBookMark() 

int pos=line.find_first_of(' 1 '); 

if(pos==string: :npos) 
cout<< "Error. Lack of seperated signs in the text file."<< endl; 

el se 

string temp=line.substr(pos+2); 
bookmark[indexBook++]=Checkillegal(temp); 

121 



void Translator::ReadData(ifstrearn &in) 
{ 

indexText=O; //number of string in a text array 
//number of string in a field array 
//number of string in a bookmark array 

indexField=O; 
indexBook=O; 
while(getline(in,line, '\n')) 
{ 

//read texts,fields, and book marks from text file 
indexTemp=O; //index of temp array 
if(line.at(O)=='T') //read a text 

ReadText ( ) ; 
If(line.at(O)=='F') 

ReadField(); 
If(line.at(O)=='B') 

ReadBookMark(); 
}//end while 

//read a field 

//read a book mark 

void Translator::ConstructTree(ifstrearn &inFile) 

DestroyTree(m_tree); 
NonmeetNum=true; 
char ch; 
bTag=false; 
index=O; 
value=O; 
int BlockID=l; 
ImageID=l; 
BlockNode* pRoot=new BlockNode(O); 
SequenceNode* child=new SequenceNode(); 
pRoot->AddRightSon(NULL); 
pRoot->AddLeftSon(child); 
m_tree=(TreeNode*)pRoot; 
pCurrentNode=(TreeNode*)child; 
while(!inFile.eof()) 
{ 

getline(inFile,mstr); //read command file line by line 
for(int i=O;i<mstr.length();i++) 
{ 

//read the line character by character 
ch=mstr.at(i); 
if (ch==' { ') //Begin Block 
{ 

//Push Parent Node To Stack 
treeStack.push( (TreeNode*)pCurrentNode ); 
//Add Block Node To Tree 
pBlock=AddBlockNode( &pCurrentNode->m_pLeft,BlockID++ ); 
//Add Sequence Node To Tree 
pSequence=AddSequenceNode( &pBlock->m_pLeft ); 
pCurrentNode=pSequence; 

else if(ch=='\\') 
{ 

int pos=mstr.length();// last token without ending "}"or"\" 
for(int j=i+l;j<mstr.length();j++) 

if(mstr.at(j)=='\\' 11 mstr.at(j)==')' 11 mstr.at(j)=='{') 
{ 

122 



pos=j; 
break; 

token=mstr.substr(i+l, (pos-i-1)); 
makeDataNode(); 

else if(ch == '}') 
{ 

//End Block 

//Pop Parent Node From Stack 
pCurrentNode=(SequenceNode*)treeStack.top(); 
treeStack.pop(); 
if( pCurrentNode!=pRoot) 
{ 

pSequence=AddSequenceNode(&pCurrentNode->m_pRight); 
pCurrentNode=pSequence; 

}//end for loop 
}//end while 

void Translator: :PrintTree(TreeNode* pParent, int cnt) 

if(pParent==NULL) 
return; 

TagNode* pTag; 
BlockNode* pBlock; 
TextNode* pText; 
BookMarkNode* pBookMark; 
FieldNode* pField; 
ImageNode* pimage; 
char* p=new char[255]; 
for(int i=O; i<cnt; i++) 

cout<< '-'; 
if(pParent->GetNodeType()==NT_SEQUENCE 

cout << "Sequence" << endl; 
else if(pParent->GetNodeType()==NT_BLOCK) 
{ 

pBlock=(BlockNode*)pParent; 
if(pBlock->GetUse()==true) 

cout << "Block" << pBlock->id << "--use" << endl; 
el se 

cout << "Block" << pBlock->id << "--nonuse" << endl; 

else if(pParent->GetNodeType()==NT_TAG) 

pTag = (TagNode*)pParent; 
if(pTag->GetValue()>=O) 

cout << pTag->GetTag() << pTag->GetValue() << endl; 
el se 

cout << pTag->GetTag() << endl; 

else if(pParent->GetNodeType() == NT_FIELD) 

pField=(FieldNode*)pParent; 
cout << "FieldNode" << pField->GetID() << endl; 

else if( pParent->GetNodeType()==NT_BOOKMARK) 
{ 

pBookMark=(BookMarkNode*)pParent; 

123 



cout << "BookMarkNode" << pBookMark->GetID(} << endl; 

else if(pParent->GetNodeType(}==NT_IMAGE} 

pimage=(ImageNode*}pParent; 
cout << "ImageNode" << pimage->GetID(} << endl; 

else if(pParent->GetNodeType(}==NT_TEXT 
{ 

pText=(TextNode*}pParent; 
int id=pText->GetTextID(}; 
cout << "TextNode" << id << endl; 
for(int i=O;i<num;i++} 

cout<< pText->t_table[i]; 
cout << endl; 

delete p; 
PrintTree(pParent->GetLeftSon(}, cnt+l}; 
PrintTree(pParent->GetRightSon(}, cnt+l}; 

void Translator::FirstScan(TreeNode* pRoot,int table[],int length} 

if(pRoot !=NULL} 
{ 

if(pRoot->GetNodeType(}==NT_TAG} 
{ 

string str;//a string to store tag 
TagNode* temp; 
temp=(TagNode*}pRoot; 
str=temp->GetTag(}; 
//do font and paragraph issues 
if (str=="pard"} 

SetPard(table}; 
if(str=="b" && temp->GetValue(}==-1)//not number follows 

SetBold (table} ; 
if(str=="b" && temp->GetValue(}==O} //zero follows 

ResetBold(table}; 
if(str=="i" && temp->GetValue(}==-1) 

Setitalic(table}; 
if(str=="i" && temp->GetValue(}==O} 

Resetitalic(table}; 
if(str=="ul" && temp->GetValue(}==-1) 

SetUnderline(table}; 
if(str=="ul" && temp->GetValue(}==O} 

ResetUnderline(table}; 
if(str=="ulw"&& temp->GetValue(}==-1) 

SetUlw(table}; 
if(str=="ulw" && temp->GetValue(}==O} 

ResetUlw (table} ; 
if(str=="sub" && temp->GetValue(}==-1) 

SetSub (table} ; 
if(str=="sub" && temp->GetValue(}==O} 

ResetSub(table}; 
if(str=="super" && temp->Getvalue(}==-1) 

SetSuper (table} ; 
if(str=="super" && temp->GetValue(}==O} 

ResetSuper(table}; 
if(str=="strike" && temp->GetValue(}==-1) 

124 



SetStrike(table); 
if(str=="strike" && temp->GetValue()==O) 

ResetStrike(table); 
if(str=="striked" && temp->GetValue()==l) 

SetStriked(table); 
if(str=="striked" && temp->GetValue()==O) 

ResetStriked(table); 
if(str=="fs" && temp->GetValue() !=-1) 
{ 

int fontsize=temp->GetValue()/8; //convert to html unit 
SetOutlevel(table,fontsize); 

if (str=="plain") 
SetPlain (table) ; 

if(str=="qj") 
SetQJ (table) ; 

If (str== "qc") 
SetQC (table) ; 

if (str=="qr") 
SetQR(table); 

if(str=="ql") 
SetQL (table) ; 

if(str=="picwgoal") 
ImageWidth= temp->Getvalue(); 

if(str=="pichgoal") 
ImageHeight= temp->GetValue(); 

if(str=="picscalex") 
ImageScaleX= temp->GetValue(); 

if (str=="picscaley") 
ImageScaleY= temp->GetValue(); 

if(str=="fldrslt" && currentSeq->GetRightSon()->GetLeftSon() !=NULL) 
currentField->SetFieldText(true); 

if(pRoot->GetNodeType()==NT_IMAGE) 
{ 

ImageNode* pimage; 
pimage=(ImageNode*)pRoot; 
pimage->SetWidth(ImageWidth); 
pimage->SetHeight(ImageHeight); 
pimage->SetScaleX(ImageScaleX); 
pimage->SetScaleY(ImageScaleY); 

if(pRoot->GetNodeType()==NT_TEXT) 
{ 

TextNode* pText; 
pText=(TextNode*)pRoot; 
for(int i=O;i<num;i++) 

pText->t_table[i]=table[i]; 

if(pRoot->GetNodeType()==NT_SEQUENCE) 
currentSeq=(SequenceNode*)pRoot; 

if(pRoot->GetNodeType()==NT_FIELD) 
currentField=(FieldNode*)pRoot; 

if(pRoot->GetNodeType()==NT_BLOCK) 
{ 

int BlockTable[20]; //a copy of font and paragraph table 
for(int i=O;i<length;i++) 

BlockTable[i]=table[i]; 
FirstScan(pRoot->GetLeftSon(), BlockTable,length); 
FirstScan(pRoot->GetRightSon(), BlockTable,length); 

125 



else//Use previous table toscan further 
{ 

FirstScan(pRoot->GetLeftSon(), table,length); 
FirstScan(pRoot->GetRightSon(), table,length); 

void Translater: :SecondScan(TreeNode* pRoot)//for simplificatin rule 

if( pRoot==NULL) 
return; 

if(pRoot->GetNodeType()==NT_BLOCK)//set default value of a block to nonuse 
treeStack.push((TreeNode*)pRoot); 

if(pRoot->GetNodeType()==NT_TEXTI lpRoot->GetNodeType()==NT_FIELD 
11 pRoot->GetNodeType()==NT_BOOKMARK) 

if(pRoot->GetNodeType()==NT_FIELD) 
meetField=true; 
meetTBFI=true;//a block includes text/bookmark/field is regarded use 

if(pRoot->GetNodeType()==NT_IMAGE) 
{ 

meetTBFI=true;//a block includes image is regarded use 
previousText=NULL;//don't compare two texts seperated by an image 

if(pRoot->GetNodeType()==NT_TAG) 
{ 

TagNode* temp=(TagNode*)pRoot; 
//a block includes control words for list, table, or paragraph 
if(temp->GetTag()=="pnlvlblt" 11 temp->GetTag()=="pnlvlbody" 11 

temp->GetTag()=="cell" 11 temp->GetTag()=="row" 11 temp->GetTag()=="par") 

meetTBFI=true; 
if(temp->GetTag()=="par")//in a new paragraph, start from bottom 

meetField=false; 

//two tags in different cells or paragraphs or seperated by a field 
if(temp->GetTag()=="cell" 11 temp->GetTag()=="par" 

11 temp->GetTag () ==" fldinst" 11 temp->GetTag () == "picwgoal") 
previousText=NULL; 

}//end tag 
if(pRoot->GetNodeType()== NT_TEXT) 
{ 

TextNode* tempText=(TextNode*)pRoot; 
if(previousText==NULL)//no any text can be compared 

previousText=tempText; 
else//compare two texts 
{ 

if(meetField)//do not compare field name and the next text 
{ 

meetField=false; 
previousText=NULL; 

else if(tempText->CompareText(previousText,tempText)==true) 
{ 

previousText->merge=true; 
tempText->merge=true; 

126 



previousText=tempText; 

}//end text 
if(pRoot->GetNodeType()==NT_SEQUENCE &&pRoot->GetLeftSon()==NULL) 
{ 

//ends a block reading and signs its use or unuse flag 
BlockNode* block=(BlockNode*)treeStack.top(); 
treeStack.pop(); 
if(meetTBFI==true) 
{ 

block->SetUse(true); 
meetTBFI=false; 

else if(block->GetUse()==false) 
block->SetUse(false); 

if(block->GetUse()==true && treeStack.size()>O)//set its parent to true 
{ 

BlockNode* b=(BlockNode*)treeStack.top(); 
b->SetUse(true); 

//for ending block 
SecondScan(pRoot->GetLeftSon()); 
SecondScan(pRoot->GetRightSon()); 

void Translator::ThirdScan(TreeNode* pRoot) 

if(pRoot==NULL) 
return; 

if(pRoot->GetNodeType()==NT_BLOCK 
//jump if the block is useless 
if(((BlockNode*)pRoot)->GetUse()==false) 

return; 
if(pRoot->GetNodeType()==NT_TEXT) 
{ 

TextNode* temp=(TextNode*)pRoot; 
if(addTextTable==true)//add text into an array for table generation 

TextArray[countText++]=temp; 
el se 

meetTF=true; 
Paralignment=GetAlignment(temp); 
NodeArray[coutDataNode++]=pRoot;//store this text 

if(pRoot->GetNodeType()==NT_FIELD) 
{ 

meetTF=true; 
NodeArray[coutDataNode++]=pRoot;//store this FIELD 

} 
if(pRoot->GetNodeType()==NT_BOOKMARK) 
{ 

NodeArray[coutDataNode++]=pRoot;//store this BOOKMARK 

if(pRoot->GetNodeType()==NT_IMAGE) 
{ 

Makermage((ImageNode*)pRoot); 

if(pRoot->GetNodeType()==NT_TAG) 
{ 

127 



TagNode* temp=(TagNode*)pRoot; 
if(temp->GetTag()=="outlinelevel")//meet heading 

head=temp->GetValue(); 
//----make a table title or end a list before a table-------------------// 
if (temp->GetTag () =="trowd") 

addTextTable=true; 
//-------------------do row issue---------------------------------------// 
if (temp->GetTag () =="row") 
{ 

doRow=false; 
cellOrder=O; 
countCell=O; 
file << "</row>" << endl; 

if (temp->GetTag () =="cellx") 
CellPosition[countCell++J=temp->GetValue(); 

If(temp->GetTag()=="cell") 
{ 

//end the list when a table directly follows without anything between 
if(makeList==true) 
{ 

for(int i=countList-l;i>-l;i--) 
{ 

file << "</list>" << endl; 

makeList=false; 
countList=O; 
previousindent=-1;//default value of indentation of a list 

if(doTable==false)//first time to do table 
{ 

doTable=true; 
file << "<table>" << endl; 

if(doRow==false)//the first cell of a row 
{ 

doRow=true; 
file << "<row>" << endl; 

MakeCell(TextArray,countText,CellPosition[cellOrder++)); 
countText=O; 

//----------------do new paragragh and ends case -----------------------// 
if(temp->GetTag()=="par" && itemGoOn==false 
{ 

if(doRow==false && doTable==true)//end a table 
{ 

doTable=false; 
addTextTable=false; 
file << "</table>" << endl; 

if(makeList==true)//end the list 
{ 

for(int i=countList-l;i>-l;i--) 
file << "</list>" << endl; 

makeList=false; 
countList=O; 
previousindent=-1;//default value of indentation of a list 

//do normal paragraph task 

128 



MakePar(NodeArray,coutDataNode);//to make a paragraph 
coutDataNode=O;//reset the cout 

if{temp->GetTag()=="picwgoal") 
{ 

//end a list when an image directly follows without anything bewteen 
if(makeList==true) 
{ 

for(int i=countList-l;i>-l;i--) 
file << "</list>" << endl; 

makeList=false; 
countList=O; 
previousindent=-1;//default value of indentation of a list 

//end a table which directly follows an image with nothing seperated 
if(doTable==true) 
{ 

doTable=false; 
file << "</table>" << endl; 

//------do list issue and end a table directly before the list----------// 
if (temp->GetTag () == "pnlvlbody") 
{ 

makeList=true; 
iternGoOn=true; 
orderList=true; 
if{doTable==true) 
{ 

//end a table which directly follows a list with nothing seperated 
doTable=false; 
file << "</table>" << endl; 

if (temp->GetTag () =="pnlvlblt") 
{ 

makeList=true; 
itemGoOn=true; 
orderList=false; 
if(doTable==true) 
{ 

//end a table which directly follows a list with nothing seperated 
doTable=false; 
file << "</table>" << endl; 

11---------------------------do list issue-------------------------------// 
if (temp->GetTag () ==" ls") 

currentindent=temp->GetValue(); 
//to make a list 
if(temp->GetTag()=="par" && itemGoOn==true) 
{ 

iternGoOn=false; 
//asurne \ls should be before \par otherwise prograrn cannot work 
if{currentindent==previousindent)//do an item only 
{ 

Makeitem(NodeArray,coutDataNode);//to make an item 
coutDataNode=O;//reset the cout 

if(currentindent>previousindent)//do a new list 

129 



countList++;//increase the number of lists 

if(orderList) 
file<< "<list type=\"order\">" << endl; 

el se 
file<< "<list type=\"unorder\">" << endl; 

Makeitem(NodeArray,coutDataNode);//to make an item 
coutDataNode=O;//reset the cout 

if(currentindent<previousindent)//nested list ends 
{ 

file << "</list>" << endl; 
countList--;//decrease the number of lists 
Makeitem(NodeArray,coutDataNode); 
coutDataNode=O;//reset the cout 

previousindent=currentindent; 

ThirdScan(pRoot->GetLeftSon()); 
ThirdScan(pRoot->GetRightSon()); 

void Translator::MakeCell(TextNode* TextArray[],int countText,int Position) 

string alignment=GetAlignment(TextArray[O]); 
if(alignment=="justified") 

file<< "<cell position=\"" << Position<< "\">" << endl; 
el se 

file<< "<cell alignment=" << alignment <<"position=\"" <<Position<<"\">" 
<< endl; 

for(int i=O;i<countText;i++) 
MakeText(text[TextArray[i]->GetTextID()-1],TextArray[i]); 

file << "</cell>" << endl; 

void Translator::Makeimage(ImageNode* image) 

string source=image->GetFile(); 
int width=image->GetWidth()*0.063;//roughly convert to html unit 
int height=image->GetHeight()*0.063;//roughly convert to html unit 
int scaleX=image->GetScaleX(); 
int scaleY=image->GetScaleY(); 
file << "<image source=\" " << source << "\" width=" << "\" " << width << "\" height= \" " 

<< height << "\" scaleX= \" " << scaleX << "\" scaleY= \" " << scaleY << "\ ">" <<endl; 
file << "</image>" << endl; 

void Translator::SetPlain(int m_table[]) 
{ 

/* 0-italic,1-bold,2-ul,3-ulw,4-sub,5-super,6-strike,7-striked, 
8-fs,9-qj,10-qc,ll-qr,12-ql */ 

//reset all font to zero 
m_table[O]=O; 
m_table[l]=O; 
m_table[2]=0; 
m_table[3]=0; 
m_table[4]=0; 
m_table[5]=0; 

130 



m_table[6)=0; 
m_table[7)=0; 

veid Translater::Setitalic(int m_table[)) 
{ 

m_table[OJ=l; 

veid Translater::Resetitalic(int m_table[)) 

m_table[OJ=O; 

veid Translater::SetBeld(int m_table[)) 

m_table[l)=l; 

veid Translater::ResetBeld(int m_table[)) 

m_table[l)=O; 

veid Translater: :SetUnderline(int m_table[]) 

m_table[2]=1; 

veid Translater::ResetUnderline(int m_table[]) 

m_table[2)=0; 

veid Translater::SetUlw(int m_table[)) 

m_table[3)=1; 

veid Translater::ResetUlw(int m_table[)) 

m_table[3]=0; 

veid Translater::SetSub(int m_table[)) 

m_table[4)=1; 

veid Translater: :ResetSub(int m_table[)) 

m_table[4]=0; 

veid Translater::SetSuper(int m_table[)) 

m_table[5]=1; 

veid Translater::ResetSuper(int m_table[)) 

131 



m_table[S]=O; 

veid Translater::SetStrike(int m_table[]} 

m_table[6]=1; 

veid Translater::ResetStrike(int m_table[]} 

m_table[6]=0; 

veid Translater::SetStriked(int m_table[]} 

m_table[7]=1; 

veid Translater::ResetStriked(int m_table[]} 

m_table[7]=0; 

veid Translater: :SetOutlevel(int m_table[],int level} 

m_table[8]=level; 

veid Translater: :SetQJ{int m_table[]} 

m_table[9]=1; 
m_table[10]=0; 
m_table[ll]=O; 
m_table[12]=0; 

veid Translater: :SetQC(int m_table[]} 

m_table[9]=0; 
m_table[lO]=l; 
m_table[ll]=O; 
m_table[12]=0; 

veid Translater: :SetQR(int m_table[]} 

m_table[9]=0; 
m_table[lO]=O; 
m_table [11] =l; 
m_table[12]=0; 

veid Translater: :SetQL(int m_table[]} 

m_table[9]=0; 
m_table [ 10] =0; 
m_table [ 11] =O; 
m_table[12]=1; 

132 



void Translator::SetPard(int m_table[]) 
{ 

m_table[9]=0; 
m_table[lO]=O; 
m_table[ll]=O; 
m_table[12]=0; 

void Translater:: Makeitem(TreeNode* Nodearray[],int length) 

file << "<item>" << endl; 
DoParagraph(Nodearray,length); 
file << "</item>" << endl; 

void Translater: :DoParagraph(TreeNode* Nodearray[],int length) 

string mergedString; 
int mergedFontSize; 
string mergedFont; 
mergedString==" " ; 
bool mergeFlag=false; 
TextNode* temp; 

//a string to store merged string 
//the common font size 
//the common font attributes 
//initialization 
//to show a merging process 

for(int i=O;i<length;i++) 
{ 

if(Nodearray[i]->GetNodeType()==NT_BOOKMARK) 
MakeBookMark(Nodearray[i]); 

if(Nodearray[i]->GetNodeType()==NT_FIELD) 
{ 

FieldNode* field=(FieldNode*)Nodearray[i]; 
//when merged texts before a field 
if(mergeFlag==true) 
{ 

MakeText(mergedString,temp); 
mergedString=="";//reset for the next pair merged texts 
mergeFlag=false; 

MakeField(Nodearray[i]); 
if(field->GetFieldText()==false) 
{ 

file << "</field>" << endl; 
fieldEnd=false; 

else fieldEnd=true; 

if(Nodearray[i]->GetNodeType()==NT_TEXT) 
{ 

temp=(TextNode*)Nodearray[i]; 
//when two or more texts can do merge 
if(temp->GetMerge()==false && mergeFlag==true) 
{ 

MakeText(mergedString,Nodearray[i-1]);//bring previous text's fonts 
mergedString="";//reset for the next pair rnerged texts 
rnergeFlag=false; 

if(ternp->GetMerge())//a rnerged text cornes in 
{ 

if(rnergedString!="") 

133 



mergedString.append(" ");//add one space between 
mergedString.append(text[temp->GetTextID()-1]); 
mergedFontSize=GetFontSize(temp); 
mergedFont=GetFont(temp); 
mergeFlag=true; 

//when two merged strings in the last of Nodearray 
if(mergeFlag==true && i==length-1) 
{ 

MakeText(mergedString,Nodearray[i-1]);//bring previous text's fonts 
mergeFlag=false; 

if(temp->GetMerge()==false)//do normal text generation 
{ 

MakeText(text[temp->GetTextID()-1],Nodearray[i]); 
mergeFlag=false; 

if(fieldEnd==true)//print after field ending 
{ 

file << "</field>" << endl; 
fieldEnd=false; 

void Translator::MakeHead(TreeNode* Nodearray[],int length) 

if ( Paralignment==" justified") 
file<< "<heading level=\"" << head+l << "\">" << endl; 

el se 
file <<"<heading level=\"" << head+l << "\" alignment=" << Paralignment << ">" 

<< endl; 
DoParagraph(Nodearray,length); 
file << "</heading>" << endl; 
head=-1; 

void Translator:: MakePar(TreeNode* Nodearray[],int length) 

if(head!=-1)//to make a header 
MakeHead(Nodearray,length); 

//empty paragraph or default alignment 
el se 

if (meetTF==false 11 Paralignment==" justified") 
file << "<paragraph>" << endl; 

if(meetTF==true && Paralignment!="justified") 
file << "<paragraph alignment=" << Paralignment << ">" << endl; 

DoParagraph(Nodearray,length); 
file << "</paragraph>" << endl; 

void Translator::MakeBookMark (TreeNode* node) 

BookMarkNode* temp=(BookMarkNode*)node; 
string bookName=bookmark[temp->GetID()-1]; 
file<< "<bookmark name=\"" << bookName << "\"></bookmark>" << endl; 

134 



void Translater: :MakeText{string textString,TreeNode* node) 
{ 

TextNode* temp={TextNode*)node; 
int fontSize=GetFontSize{temp); 
string fontList=GetFont{temp); 
int defaultSize=3;//default size of fontis 3 in html 
if{head!=-1)//make heading 

file << "<text>" << GetFontList{textString,temp) << "</text>" << endl; 
el se 

//make normal paragraph 
if{fontSize==defaultSize && fontList=="plain") 

file << "<text>" << textString << "</text>" << endl; 
if{fontSize!=defaultSize && fontList=="plain") 

file<< "<text size=\"" << fontSize << "\ ">" <<textString << "</text> << endl; 
if{fontSize==defaultSize && fontList!="plain") 

file<< "<text>" << GetFontList{textString,temp) << "</text>" << endl; 
if{fontSize!=defaultSize && fontList!="plain") 

file<< "<text size=\"" << fontSize << "\ ">" << GetFontList {textString,temp) 
<< "</text>" << endl; 

string Translater:: GetFontList{string textString,TextNode* node) 
{ 

string fontList[lO];//to store all font strings 
string stringAfter="";//a font string after "text" 
string stringBefore="";//a font string before "text" 
int countFont=O;//to count the font number 
int const fontStart=O; 
int const fontEnd=7; 
//store all fonts in a list 
for{int i=fontStart;i<fontEnd+l;i++) 
{ 

if{node->t_table[i] !=0) 
fontList[countFont++]=TakeFont{i); 

} 
Il do a string before the text 
for{int k=O;k<countFont;k++) 
{ 

stringBefore. append { "<") ; 
stringBefore.append{fontList[k]); 
stringBefore. append { ">") ; 

} 
Il do a string after the text 
for{int m=countFont-l;m>-l;m--) 
{ 

stringAfter.append ( "</"); 
stringAfter.append{fontList[m]); 
stringAfter.append(">"); 

//combine text and the two strings together 
stringBefore.append(textString); 
return stringBefore.append(stringAfter); 

135 



string Translator: :TakeFont(int index) 
{ 

switch(index) 
{ 

case 0: 
return 

case 1: 
return 

case 2: 
return 

case 3: 
return 

case 4: 
return 

case 5: 
return 

case 6: 
return 

case 7: 
return 

11 italic"; 

"bold"; 

11 ul 11
; 

11 ulw 11
; 

"sub"; 

"super"; 

"strike"; 

"striked"; 

return "error 11 
; 

void Translator: :MakeField (TreeNode* node) 

int defaultSize=O;//default size of font 
FieldNode* temp=(FieldNode*)node; 
string ref=field[temp->GetID()-1]; 
for(unsigned int i=O;i<ref.length();i++) 
{ 

if(ref.at(i)=="")//is nota quotation mark 
ref.erase(i,1); 

GetFieldName(ref); 

void Translator: :GetFieldName(string simple) 

string HREF; 
string rest="not a standard field"; 
int pos=simple.find_first_of(' '); 
if(pos==string::npos) 

//a string to store first name in field 
//a string to store after field name 

cout<< "Error. Lack of space in the field input line." << endl; 
el se 

HREF=simple.substr(O,pos); 
rest=simple.substr(pos+l); 
if (HREF== "HYPERLINK") 
{ 

int linkpos=rest.find_first_of('\\'); 
if(linkpos!=string: :npos) 

file<< "<field bookName=\"" << rest. substr ( linkpos+3) << "\ ">" << endl; 
el se 

file<< "<field href=\"" << rest << "\">" << endl; 

el se 
file << "<field ref=\"" << rest << "\">" << endl; 

136 



int Translator:: GetFontSize{TextNode* node) 

int const FontSizeindex=8;//font size index in attribute table 
return node->t_table[FontSizeindex]; 

string Translater: :GetAlign.ment{TextNode* node) 
{ 

//font&paragraph table stores align.ment attributes from 9 to 12 
int const alignStart=9; 
int const alignEnd=l2; 
int alignindex=9;//initialization 
for{int i=alignStart;i<alignEnd+l;i++) 
{ 

if{node->t_table[i] !=0) 
{ 

alignindex=i; 
break; 

switch{alignindex) 
{ 

case 9: 
return "\"justified\""; 

case 10: 
return "\"center\""; 

case 11: 
return "\"right\""; 

case 12: 
return "\"left\""; 

return" failed to find align.ment attributes"; 

string Translator::GetFont{TextNode* node) 
{ 

//font&paragraph table stores font attributes from 0 to 7 
int const fontStart=O; 
int const fontEnd=7; 
fontString=" "; 
for{int i=fontStart;i<fontEnd+l;i++) 
{ 

if(node->t_table[i] !=0) 
fontString=DoFont{i,fontString); 

if(fontString==""l//the default value of font is plain 
return "plain"; 

el se 
return fontString; 

string Translator: :DoFont{int index, string fontString) 
{ 

switch {index) 
{ 

case 0: 
return fontString.append{"italic"); 

case 1: 

137 



return fontString. append ( " bold" ) ; 

case 2: 
return fontString.append(" ul"); 

case 3: 
return fontString.append(" ulw"); 

case 4: 
return fontString.append(" sub"); 

case 5: 
return fontString.append(" super"); 

case 6: 
return fontString.append(" strike"); 

case 7: 
return fontString.append(" striked"); 

void Translater: :EndGeneration() 

file << "</document>" << endl; 

void Translator::FinishList(int countList) 

for(int i=countList-l;i>-l;i--) 
file << "</list>" << endl; 

makeList=false; 
countList=O; 

/************************************************************************** 
** 
** main function 
** 
**************************************************************************/ 
int main(int argc, char* argv[J) 
{ 

static const int tableLength=13;//the number of font and paragraph attributes 
Translater* trans = new Translater(); 
ifstream inFile ("input. cmd"); 
cout<< " ... load a command file" << endl; 
trans->ConstructTree(inFile); 
trans->FirstScan(trans->m_tree,trans->m_table,tableLength); 
cout<< " ... do translation"<< endl; 
trans->SecondScan(trans->m_tree); 
cout<< " ... do simplification"<< endl; 
trans->PrintTree(trans->m_tree, 1); 
ifstream in("input.txt"); 
cout<< " ... load a text file" << endl; 
trans->ReadData (in) ; / /read input. txt and classi fy into texts, fields and book marks 
trans->ThirdScan(trans->m_tree); 
cout<< " ... generate XML codes" << endl; 
if(trans->makeList==true) 

trans->FinishList(trans->countList); 
trans->EndGeneration(); 
cout<< "Translation is over!" << endl; 
delete trans; 
return O; 

138 



A.2 The Class TreeNode • cpp 

#include "TreeNode.h" 
#include <string> 
using namespace std; 

/************************************************************************** 
** 
** class TreeNode implementation 
** 
**************************************************************************/ 
TreeNode::TreeNode() 
{ 

m_pLeft = NULL; 
m_pRight = NULL; 

TreeNode::-TreeNode() 
{ 

void TreeNode::AddLeftSon(TreeNode* tn) 

m_pLeft = tn; 

TreeNode* TreeNode::GetLeftSon() 

return m_pLeft; 

void TreeNode: :AddRightSon(TreeNode* tn) 

m_pRight = tn; 

TreeNode* TreeNode: :GetRightSon() 

return m_pRight; 

/************************************************************************** 
** 
** class BlockNode implementation 
** 
**************************************************************************/ 
BlockNode: :BlockNode(int i) : TreeNode() 
{ 

m_NodeType=NT_BLOCK; 
id=i; 
use=false; 

139 



BlockNode::BlockNode() 
{ 

m_NodeType=NT_BLOCK; 
use=false; 

BlockNode::-BlockNode() 
{ 

TreeNode() 

void BlockNode: :SetUse(bool myUse) 

use=myUse; 

bool BlockNode::GetUse() 
{ 

return use; 

NODETYPE BlockNode: :GetNodeType() 
{ 

return m_NodeType; 

/************************************************************************** 
** 
** class SequenceNode implementation 
** 
**************************************************************************/ 
SequenceNode: :SequenceNode() : TreeNode() 
{ 

m_NodeType=NT_SEQUENCE; 

SequenceNode::-SequenceNode() 
{ 

NODETYPE SequenceNode: :GetNodeType() 
{ 

return m_NodeType; 

/************************************************************************** 
** 
** class FieldNode implementation 
** 
**************************************************************************/ 
FieldNode: :FieldNode(int id) : TreeNode() 
{ 

m_NodeType=NT_FIELD; 
fieldID=id; 
fieldText=false; 

140 



FieldNode::-FieldNode() 
{ 

void FieldNode: :SetID(const int id) 

fieldID=id; 

void FieldNode: :SetFieldText(bool flag) 

fieldText=flag; 

bool FieldNode: :GetFieldText() 
{ 

return fieldText; 

int FieldNode: :GetID() 

return fieldID; 

NODETYPE FieldNode: :GetNodeType() 
{ 

return m_NodeType; 

/************************************************************************** 
** 
** class BookMarkNode implementation 
** 
**************************************************************************/ 
BookMarkNode::BookMarkNode(int id) : TreeNode() 
{ 

m_NodeType=NT_BOOKMARK; 
bookID=id; 

BookMarkNode: :-BookMarkNode() 
{ 

void BookMarkNode::SetID(const int id) 
{ 

bookID=id; 

int BookMarkNode::GetID() 

return bookID; 

NODETYPE BookMarkNode: :GetNodeType() 
{ 

141 



return m_NodeType; 

/************************************************************************** 
** 
** class ImageNode implementation 
** 
**************************************************************************/ 
ImageNode: :ImageNode(int id) : TreeNode() 
{ 

m_NodeType=NT_IMAGE; 
image ID= id; 

ImageNode::-ImageNode() 
{ 

void ImageNode: :SetID(const int id) 

image ID= id; 

void ImageNode::SetFile(string str) 

imageFile=str; 

string ImageNode::GetFile() 
{ 

return imageFile; 

int ImageNode: :GetID() 

return imageID; 

void ImageNode:: SetWidth(const int width) 

ImageWidth=width; 

int ImageNode:: GetWidth() 
{ 

return ImageWidth; 

void ImageNode:: SetHeight(const int height) 

ImageHeight=height; 

int ImageNode:: GetHeight() 
{ 

return ImageHeight; 

void ImageNode:: SetScaleX(const int scaleX) 

ImageScaleX=scaleX; 

142 



int IrnageNode:: GetScaleX() 
{ 

return IrnageScaleX; 

void IrnageNode:: SetScaleY(const int scaleY) 

IrnageScaleY=scaleY; 

int IrnageNode:: GetScaleY() 

return IrnageScaleY; 

NODETYPE IrnageNode: :GetNodeType() 
{ 

return rn_NodeType; 

/************************************************************************** 
** 
** class TagNode irnplernentation 
** 
**************************************************************************/ 
TagNode::TagNode() : TreeNode() 
{ 

rn_NodeType=NT_TAG; 

TagNode::-TagNode() 
{ 

void TagNode::SetTag(string str) 

rn_strTag=str; 

string TagNode: :GetTag() 
{ 

return rn_strTag; 

void TagNode: :SetValue(int rn_value) 
{ 

value=rn_value; 

int TagNode: :GetValue() 

return value; 

NODETYPE TagNode: :GetNodeType() 
{ 

return rn_NodeType; 

143 



/************************************************************************** 
** 
** class TextNode implementation 
** 
**************************************************************************/ 
TextNode::TextNode(int id) : TreeNode() 
{ 

m_NodeType=NT_TEXT; 
TextID=id; 
initialTable(); 
merge=false; 
attributeNum=13;//the number of font and paragraph attributes 

TextNode: :TextNode() 
{ 

m_NodeType=NT_TEXT; 
TextID=O; 
initialTable(); 
merge=false; 

TreeNode() 

attributeNum=13;//the number of font and paragraph attributes 

TextNode::-TextNode() 
{ 
} 

void TextNode:: initialTable() 

/*O-italic,l-bold,2-ul,3-ulw,4-sub,5-super,6-strike,7-striked,8-outlevel 
9-qj,10-qc,11-qr,12-ql*/ 

for(int i=O;i<attributeNum;i++) 
t_table[i]=O; 

bool TextNode::CompareText(TextNode* a,TextNode* b) 
{ 

for(int i=O;i<attributeNum;i++) 
if(a->t_table[i] !=b->t_table[i]) 

return false; 
return true; 

int TextNode: :GetTextID() 

return TextID; 

bool TextNode: :GetMerge() 
{ 

return merge; 

NODETYPE TextNode: :GetNodeType() 
{ 

return m_NodeType; 

144 



AppendixB 

TheFileTranslator.xsl 

The XSLT file translator. xsl is used to transform the translated XML document 

into a HTML document. Nineteen templates in this file are applied to transform all 

elements and attributes defined by the DTD for the translator. 

The File Translator. xsl 

<?xml version="l.0"?> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"> 

<xsl:template match="/"> 
<html xmlns="http://www.w3.org/TR/xhtmll/strict"> 

<head> 
<title>The translated page from XML to HTML</title> 

</head> 
<body> 

<xsl:apply-templates select="document/*"/> 
</body> 

</html> 
</xsl:template> 

145 



<xsl:template match="image"> 
<img> 

<xsl:attribute name="src"> 
<xsl:value-of select="@source"/> 

</xsl:attribute> 
<xsl:attribute name="width"> 

<xsl:value-of select="@width"/> 
</xsl:attribute> 
<xsl:attribute name="height"> 

<xsl:value-of select="@height"/> 
</xsl:attribute> 

</img> 
</xsl:template> 

<xsl:template match="list[@type ='order']"> 
<ol> 

<xsl:apply-templates select="./*"/> 
</ol> 

</xsl:template> 
<xsl:template match="list[@type ='unorder']"> 

<ul> 
<xsl:apply-templates select="./*"/> 

</ul> 
</xsl:template> 

<xsl:template match="item"> 
<li> 

<xsl:apply-templates select="./*"/> 
</li> 

</xsl:template> 

<xsl:template match="table"> 
<table border="l"> 

<tbody> 
<xsl:for-each select="row"> 

<tr> 
<xsl:for-each select="cell"> 

<td> 
<xsl:attribute name="align"> 

<xsl:value-of select="@alignment"/> 
</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</td> 
</xsl:for-each> 

</tr> 
</xsl:for-each> 

</tbody> 
</table> 

</xsl:template> 

<xsl:template match="paragraph"> 
<P> 

<xsl:choose> 
<xsl:when test="@alignment"> 

<xsl:attribute name="align"> 
<xsl:value-of select="@alignment"/> 

</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</xsl:when> 

146 



<xsl:otherwise> 
<xsl:apply-templates select="./*"/> 

</xsl:otherwise> 
</xsl:choose> 

</P> 
</xsl:template> 

<xsl:template match="heading"> 
<xsl:choose> 

<xsl:when match=". [@level='l']"> 
<hl> 

<xsl:attribute name="align"> 
<xsl:value-of select="@alignment"/> 

</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</hl> 
</xsl:when> 
<xsl:when match=". [@level='2']"> 

<h2> 
<xsl:attribute name="align"> 

<xsl:value-of select="@alignment"/> 
</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</h2> 
</xsl:when> 
<xsl:when match=". [@level='3']"> 

<h3> 
<xsl:attribute name="align"> 

<xsl:value-of select="@alignment"/> 
</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</h3> 
</xsl:when> 
<xsl:when match=". [@level= '4'] "> 

<h4> 
<xsl:attribute name="align"> 

<xsl:value-of select="@alignment"/> 
</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</h4> 
</xsl:when> 
<xsl:when match=". [@level='5']"> 

<h5> 
<xsl:attribute name="align"> 

<xsl:value-of select="@alignment"/> 
</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</h5> 
</xsl:when> 
<xsl:otherwise> 

<h6> 
<xsl:attribute name="align"> 

<xsl:value-of select="@alignment"/> 
</xsl:attribute> 
<xsl:apply-templates select="./*"/> 

</h6> 
</xsl:otherwise> 

</xsl:choose> 
</xsl:template> 

147 



<xsl:template match="field"> 
<A> 

<xsl:choose> 
<xsl:when test="@href"> 

<xsl:attribute name="href"> 
<xsl:value-of select="@href"/> 

</xsl:attribute> 
<xsl:apply-templates select="./text"/> 

</xsl:when> 
<xsl:when test="@bookName"> 

<xsl:attribute name="href"> 
#<xsl:value-of select="@bookName"/> 

</xsl:attribute> 
<xsl:apply-templates select="./text"/> 

</xsl:when> 
<xsl:otherwise> 

<xsl:apply-templates select="./*"/> 
</xsl:otherwise> 

</xsl:choose> 
</A> 

</xsl:template> 

<xsl:template match="bookmark"> 
<A> 

<xsl:attribute name="name"> 
<xsl:value-of select="@name"/> 

</xsl:attribute> 
</A> 

</xsl:template> 

<xsl:template match="text"> 
<font> 

<xsl:attribute name="size"> 
<xsl:value-of select="@size"/> 

</xsl:attribute> 
<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text{)"/> 

</font> 
</xsl:template> 

<xsl:template match="italic"> 
<i> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text{)"/> 

</i> 
</xsl:template> 

<xsl:template match="bold"> 
<strong> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text{)"/> 

</strong> 
</xsl:template> 

<xsl:template match="ul"> 
<U> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text{)"/> 

</U> 

148 



</xsl:template> 
<xsl:template match="ulw"> 

<U> 
<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text()"/> 

</U> 
</xsl:template> 

<xsl:template match="sub"> 
<SUB> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text()"/> 

</SUB> 
</xsl:template> 

<xsl:template match="super"> 
<SUP> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text()"/> 

</SUP> 
</xsl:template> 

<xsl:template match="strike"> 
<STRIKE> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text()"/> 

</STRIKE> 
</xsl:template> 

<xsl:template match="striked"> 
<STRIKE> 

<xsl:apply-templates select="./*"/> 
<xsl:value-of select="text()"/> 

</STRIKE> 
</xsl:template> 

</xsl:stylesheet> 

149 



Appendix C 

The Test Files 

We prepare a file, called Test. rtf, to test the translator. This file contains all 

fundamental elements and attributes which could constitute a simple RTF document. The 

corresponding command file Test. cmd and the text file Test. txt, which are both 

extracted by the extractor, are also attached in this appendix. There are two output files 

from the translation process. One is the translated XML file, called XML output . xml, 

produced by the translator if the user chooses the XML presentation option. The other is 

HTMLoutput. xml produced by the translator if the user chooses the HTML 

presentation option. The file HTMLoutput .xml is not shown with its source code 

which is almost the same with XMLoutput. xml. Instead, we paste the browsed result 

by Microsoft Internet Explorer. Because the result shown as a HTML page is quite long, 

we seperate two parts of it and show them together. 

150 



C.1 The Test File Test. rtf 

Display an XML 

Xu Yi 

Part 1: Test for font and font size 

Sm"1 big bigger big g est• A book mark here: 

Plain italic bold italic and bold and underline SllfleFStrike s,uh and striked 

Part 2: Test for a table and alignment 

The first cell at row 1 The second cell at row 1 The third cell at row 1 empty 
The first cell at row 2 Left alignment Right alignment 
The first cell at row 3 Center alignment Justified alignment 

Part 3: Test for simplification rules 

Two texts with same font attributes and size are merged into together. As you will 

see in input.txt file and input.xml file, same and font are two separated texts in.txt 

file but they are merged in XML file. 

Part 4: Test for an image 

151 



Part 5: Test for lists and fields 

• Item 1 of the first list. This is a hyperlink : www.google.ca 

• Item 2 of the first list. Another field here: mailto.jrankxuyi@yahoo.com 
1. The first item of an inner list begins. 
2. Item2 of the inner list 

• The most inner list 
• Second item of the most inner list 

3. ltme3 of the first inner list 

• Item 3 of the first list. Go to mybookmark 

152 



C.2 The Command File Test. cmd 

{ 
{ 

} 
{ 

} 

{\ql\fs20} 
{\qj\outlinelevel0\fs32} 
{\qj\outlinelevell\fs28} 
{\ql\fs24} 
{\ql\outlinelevel3\b\fs28} 
{\qc\b\fs40} 
{\qc\b\i\fs28} 
{\ul} 
{\ul} 

{\lsl} 
{\ls2} 
{\ls3} 
{\ls4} 

{\info} 
\margr333\pard\plain\qc\outlinelevel3\b\fs28 
{\TEXTl\par} 
\pard\qc\outlinelevel3 
{\b0\i\TEXT2\par} 
\pard\plain\ql\fs20 
{\par} 
\pard\plain\ql\outlinelevel3\b\fs28 
{\TEXT3\par} 
\pard\plain\qj\fs20 
{ \ fs16 \ TEXT4} 
{\fs28} 
{\fs24\TEXT5} 
{\fs28} 
{ \ fs3 6 \ TEXT6} 
{\fs28} 
{\fs72} 
{\fs96\TEXT7} 
{\fs24\TEXT8} 
{\fs96 

} 

{\bkmkstart\BOOKMARKl} 
\par 

{\fs24\TEXT9} 
{\i\fs24\TEXT10} 
{\fs24} 
{ \b\fs24 \TEXTll} 
{\fs24} 
{\b\i\fs24\ul\TEXT12} 
{\fs24} 
{\strike\fs24\super\TEXT13} 
{\fs24} 
{\fs72\sub\strikedl\TEXT14\par} 
{\fs24\sub\strikedl\par} 
\pard\plain\ql\outlinelevel3\b\fs28 

153 



{\TEXT15\par} 
\pard\plain\ql\fs20 
{\par} 
\trowd\trgaph70\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrwl0\brdrwl0 
\brdrw10\brdrw10\brdrw10\cellx2268\brdrw10\brdrw10\brdrw10\brdrwl0\cellx4962 
\brdrw10\brdrw10\brdrw10\brdrw10\cellx7371\brdrw10\brdrw10\brdrwl0\brdrwl0 
\cellx8222\pard\plain\qj\intbl\b\i\fs28 
{\b0\i0\fs24\TEXT16\cell\TEXT17\cell\TEXT18\cell\TEXT19\cell} 
\pard\plain\ql\intbl\fs20 
{\trowd\trgaph70\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrwl0 
\brdrw10\brdrw10\brdrw10\cellx2268\brdrw10\brdrw10\brdrw10\brdrwl0\cellx4962 
\brdrw10\brdrw10\brdrw10\brdrw10\cellx7371\brdrw10\brdrwl0\brdrwl0\brdrwl0 
\cellx8222\row} 

\trowd\trgaph70\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrwl0\brdrwl0 
\brdrw10\brdrw10\cellx2268\brdrw10\brdrw10\brdrw10\brdrw10\cellx4962\brdrwl0 
\brdrw10\brdrw10\brdrw10\cellx7371\brdrw10\brdrw10\brdrw10\brdrwl0\cellx8222 
\pard\plain\qj\intbl\b\i\fs28 
{\b0\i0\fs24\TEXT20\cell} 
\pard\ql\intbl 
{\b0\i0\fs24\TEXT21\cell} 
\pard\qr\intbl 
{\b0\i0\fs24\TEXT22\cell\cell} 
\pard\plain\ql\intbl\fs20 
{\trowd\trgaph70\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrwl0\brdrwl0 
\brdrw10\brdrw10\cellx2268\brdrw10\brdrw10\brdrw10\brdrw10\cellx4962\brdrwl0 
\brdrw10\brdrw10\brdrw10\cellx7371\brdrw10\brdrw10\brdrw10\brdrwl0\cellx8222\row} 

\trowd\trgaph70\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrwl0\brdrwl0 
\brdrw10\brdrw10\cellx2268\brdrw10\brdrw10\brdrw10\brdrw10\cellx4962\brdrwl0 
\brdrw10\brdrw10\brdrw10\cellx7371\brdrw10\brdrw10\brdrwl0\brdrw10\cellx8222\pard 
\plain\qj\intbl\b\i\fs28 
{\b0\i0\fs24\TEXT23\cell} 
\pard\qc\intbl 
{\b0\i0\fs24\TEXT24\cell} 
\pard\qj\intbl 
{\b0\i0\fs24\TEXT25\cell\cell} 
\pard\plain\ql\intbl\fs20 
{\trowd\trgaph70\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrw10\brdrwl0\brdrwl0 
\brdrw10\brdrw10\cellx2268\brdrw10\brdrw10\brdrw10\brdrw10\cellx4962\brdrwl0 
\brdrw10\brdrw10\brdrw10\cellx7371\brdrw10\brdrw10\brdrw10\brdrwl0\cellx8222\row} 

\pard\ql 
{\b\fs28\par} 
\pard\plain\ql\outlinelevel3\b\fs28 
{\TEXT26\par} 
\pard\plain\qj\fs20 
{\par} 
\pard\plain\qj\b\i\fs28 
{\b0\i0\fs24\TEXT27} 
{\i0\fs32\TEXT28} 
{\b0\i0\fs24} 
{\i0\fs32\TEXT29} 
{\b0\i0\fs24\TEXT30} 
{\b0\fs24\TEXT31} 
{\b0\i0\fs24} 
{\b0\fs24\TEXT32} 
{\bO\iO\fs24\TEXT33\par\TEXT34} 
{\i0\fs32\TEXT35} 
{\b0\i0\fs24\TEXT36} 
{\iO\fs32\TEXT37} 
{\b0\i0\fs24\TEXT38\par\TEXT39\par} 
\pard\qj 

154 



{\i0\fs32\par} 
\pard\plain\ql\outlinelevel3\b\fs28 
{\TEXT40\par} 
\pard\plain\ql\fs20 
{\par\par} 
\pard\plain\qj\b\i\fs28 
{\i0\fs20 
{\shppict 
{\picscalex100\picscaleyl00\picwgoal5655\pichgoalll85\pngblip 

{\IMAGE input_imgl.png}} 

{\nonshppict 
{\picscalex100\picscaleyl00\picwgoal5655\pichgoalll85} 

} 
} 
{\bO\par} 
\pard\plain\ql\fs20 
{\b\fs28\par} 
\pard\plain\ql\outlinelevel3\b\fs28 
{\TEXT41\par} 
\pard\plain\ql\fs20 
{\par 
{\pard\plain} 

} 
\pard\plain\qj 
{\pnlvlblt\ls2} 
\ls2\b\i\fs28 
{\b0\i0\fs24\TEXT42} 
{ 
{\fldinst 
{\b0\i0\fs24\FIELD1} 
{\fs20} 

} 
{\fldrslt 
{\ul\TEXT43} 

} 
} 
{\fs24\par 
{\pard\plain} 

} 
\pard\qj 
{\pnlvlblt\ls2} 
\ls2 
{\b0\i0\fs24\TEXT44} 
{ 
{\fldinst 
{\b0\i0\fs24\FIELD2} 
{\b0\i0\fs20} 

} 
{\fldrslt 
{\ul\TEXT45} 

} 
} 
{\b0\i0\fs24\par 
{\pard\plain} 

} 
\pard\qj 
{\pnlvlbody\ls3} 
\ls3 
{\b0\i0\fs24\TEXT46\par 

155 



{\pard\plain} 
} 
\pard\qj 
{\pnlvlbody\ls3} 
\ls3 
{\b0\i0\fs24\TEXT47\par 
{\pard\plain} 

} 
\pard\qj 
{\pnlvlblt\ls4} 
\ls4 
{\b0\i0\fs24\TEXT48\par 
{\pard\plain} 

} 
\pard\qj 
{\pnlvlblt\ls4} 
\ls4 
{\b0\i0\fs24\TEXT49\par 
{\pard\plain} 

} 
\pard\qj 
{\pnlvlbody\ls3} 
\ls3 
{\b0\i0\fs24\TEXT50\par 
{\pard\plain} 

} 
\pard\qj 
{\pnlvlblt\ls2} 
\ls2 
{\b0\i0\fs24\TEXT51} 
{\b0\i0\fs24\TEXT52} 
{ 
{\fldinst 
{\bO\iO\fs24\FIELD3} 
{\b0\i0\fs20} 

} 
{\fldrslt 
{\ul\TEXT53} 

} 
} 
{\b0\i0\fs24\par} 

} 

156 



C.3 The Text File Test. txt 

TEXTl 1 Display an XML 
TEXT2 1 Xu Yi 
TEXT3 1 Part 1: Test for font and font size 
TEXT4 1 Small 
TEXT5 1 big 
TEXT6 1 bigger 
TEXT7 1 biggest. 
TEXT8 1 A book mark here: 
BOOKMARKl 1 mybookmark 
TEXT9 1 Plain 
TEXTlO italic 
TEXTll bold 
TEXT12 
TEXT13 
TEXT14 
TEXT15 
TEXT16 
TEXT17 
TEXT18 
TEXT19 
TEXT20 
TEXT21 
TEXT22 
TEXT23 
TEXT24 
TEXT25 
TEXT26 
TEXT27 
TEXT28 
TEXT29 
TEXT30 
TEXT31 
TEXT32 
TEXT33 
TEXT34 
TEXT35 
TEXT36 
TEXT37 
TEXT38 
TEXT39 
TEXT40 
TEXT41 
TEXT42 
FIELDl 
TEXT43 
TEXT44 
FIELD2 
TEXT45 
TEXT46 
TEXT47 
TEXT48 
TEXT49 
TEXT50 
TEXT51 
TEXT52 
FIELD3 
TEXT53 

italic and bold and underline 
superstrike 
sub and striked 
Part 2: Test for a table and alignment 
The first cell at row 1 
The second cell at row 1 
The third cell at row 1 
empty 
The first cell at row 
Left alignment 
Right alignment 
The first cell at row 
Center alignment 
Justified alignment 

2 

3 

Part 3: Test for simplification rules 
Two texts with 
same 
font 
attributes and size 
are 
merged 
into together. As you will 
see in input.txt file and input.xml file, 
same 
and 
font 
are two separated texts in .txt 
file but they are merged in XML file. 
Part 4: Test for an image 
Part 5: Test for lists and fields 
Item 1 of the first list. This is a hyperlink: 
HYPERLINK http://www.google.ca 
www.google.ca 
Item 2 of the first list. Another field here: 
HYPERLINK "mailto:frankxuyi@yahoo.com" 
mailto:frankxuyi@yahoo.com 
The first item of an inner list begins. 
Item2 of the inner list 
The most inner list 
Second item of the most inner list 
Itme3 of the f irst inner list 
Item 3 of the first list. 
Go to 
HYPERLINK \1 "mybookmark" 
mybookmark 

157 



C.4 The Translated XML File XMLou tpu t • xml 

<?xml version="l.0" ?> 
<document> 
<heading level="4" alignment="center"> 
<text><bold>Display an XML</bold></text> 
</heading> 
<heading level="4" alignment="center"> 
<text><italic>Xu Yi</italic></text> 
</heading> 
<paragraph alignment="center"> 
</paragraph> 
<heading level="4" alignment="left"> 
<text><bold>Part 1: Test for font and font size </bold></text> 
</heading> 
<paragraph> 
<text size="2">Small</text> 
<text>big</text> 
<text size="4">bigger</text> 
<text size="12">biggest. </text> 
<text>A book mark here:</text> 
<bookmark name="mybookmark"></bookmark> 
</paragraph> 
<paragraph> 
<text>Plain </text> 
<text><italic>italic</italic></text> 
<text><bold>bold</bold></text> 
<text><italic><bold><ul>italic and bold and underline</ul></bold></italic></text> 
<text><super><strike>superstrike</strike></super></text> 
<text size="9"><sub><striked>sub and striked</striked></sub></text> 
</paragraph> 
<paragraph> 
</paragraph> 
<heading level="4" alignment="left"> 
<text><bold>Part 2: Test for a table and alignment</bold></text> 
</heading> 
<paragraph alignment="left"> 
</paragraph> 
<table> 
<row> 
<cell position="2268"> 
<text>The first cell at row 1</text> 
</cell> 
<cell position="4962"> 
<text>The second cell at row 1</text> 
</cell> 
<cell position="7371"> 
<text>The third cell at row l</text> 
</cell> 
<cell position="8222"> 
<text>empty</text> 
</cell> 
</row> 
<row> 
<cell position="2268"> 

158 



<text>The first cell at row 2</text> 
</cell> 
<cell aligrunent="left" position="4962"> 
<text>Left aligrunent</text> 
</cell> 
<cell aligrunent="right" position="7371"> 
<text>Right aligrunent</text> 
</cell> 
<cell aligrunent="right" position="8222"> 
</cell> 
</row> 
<row> 
<cell position="2268"> 
<text>The first cell at row 3</text> 
</cell> 
<cell aligrunent="center" position="4962"> 
<text>Center aligrunent</text> 
</cell> 
<cell position="7371"> 
<text>Justified aligrunent</text> 
</cell> 
<cell position="8222"> 
</cell> 
</row> 
</table> 
<paragraph aligrunent="left"> 
</paragraph> 
<heading level="4" aligrunent="left"> 
<text><bold>Part 3: Test for simplification rules</bold></text> 
</heading> 
<paragraph aligrunent="left"> 
</paragraph> 
<paragraph> 
<text>Two texts with </text> 
<text size="4"><bold>same font</bold></text> 
<text>attributes and size </text> 
<text><italic>are merged</italic></text> 
<text>into together. As you will</text> 
</paragraph> 
<paragraph> 
<text>see in input.txt file and input.xml file, </text> 
<text size="4"><bold>same</bold></text> 
<text>and </text> 
<text size="4"><bold>font</bold></text> 
<text> are two separated texts in .txt</text> 
</paragraph> 
<paragraph> 
<text>file but they are merged in XML file.</text> 
</paragraph> 
<paragraph> 
</paragraph> 
<heading level="4" aligrunent="left"> 
<text><bold>Part 4: Test for an image</bold></text> 
</heading> 
<paragraph aligrunent="left"> 
</paragraph> 
<paragraph aligrunent="left"> 
</paragraph> 
<image source="input_imgl.png" width="356" height="74" scaleX="lOO" scaleY="lOO"> 
</image> 

159 



<paragraph aligrunent="left"> 
</paragraph> 
<paragraph aligrunent="left"> 
</paragraph> 
<heading level="4" aligrunent="left"> 
<text><bold>Part 5: Test for lists and fields</bold></text> 
</heading> 
<paragraph aligrunent="left"> 
</paragraph> 
<list type="unorder"> 
<item> 
<text>Item 1 of the first list. This is a hyperlink: </text> 
<field href="http://www.google.ca "> 
<text><italic><bold><ul>www.google.ca</ul></bold></italic></text> 
</field> 
</item> 
<item> 
<text>Item 2 of the first list. Another field here: </text> 
<field href="mailto:frankxuyi@yahoo.com "> 
<text><italic><bold><ul>mailto:frankxuyi@yahoo.com</ul></bold></italic></text> 
</field> 
</item> 
<list type="order"> 
<item> 
<text>The first item of an inner list begins. </text> 
</item> 
<item> 
<text>Item2 of the inner list</text> 
</item> 
<list type="unorder"> 
<item> 
<text>The most inner list</text> 
</item> 
<item> 
<text>Second item of the most inner list</text> 
</item> 
</list> 
<item> 
<text>Itme3 of the first inner list</text> 
</item> 
</list> 
<item> 
<text>Item 3 of the first list. Go to </text> 
<field bookName="mybookmark "> 
<text><italic><bold><ul>mybookmark</ul></bold></italic></text> 
</field> 
</item> 
</list> 
</document> 

160 



C.5 The Transf ormed HTML Page 

~The translated page from XML to HTML - Microsoft Internet Explorer' " 

J Fichier Edition Affichage Favoris Outils ? 

T4:. Pré~éd~;;--~-m~"":(=·-.-~~·~T'ijRe~hercher . [!]Favoris ®-~-dia J~ 1 ~T ·-~ ~ ~~-~-IŒJ _ 
J . Adr~~se r~Is:\tr~;l~~~\~~~~;\~·!.;~~0~:.;~;~1 m m =--- m - -- .. 

Display an X1VlL 

XuYi 

Part 1: Test for font and font size 

smallbigbigger biggest. A book mark here: 

Plain italic bold italic (OJd hold mld underline supml:t:ike a:u.b ,.j '1 ,..l 
~"O't' tlftu stnJfeu 

Part 2: Test for a table and aligmnent 

l~~,,~~~'··;~'U.'';~,,~?;'Tl~~,,,~,~,;?;~,-~,~~~,;~,,;?;'"Dl~~,,~d."'~~U.,,;~,,~?y;,,n1~,;;o/ll 

1 [Th~ ~st __ c_e~ at :ow_~l!::~~-~-~~t__ __ _ _JL., __ ~-~~-~J 1 
l?!1e. fli-5.t ce~ '1.t ~~Y-7 ~ j ~e.11te.~ ~e.nt Jl!tlstifie.<i ~el1~ 1 

Part 3: Test for simplification rules 

161 



1J The translated page from XML to HTML - Microsoft Internet EKPloter :20;~ , , 

!J Fichier Editio~ Affichage . Fav~ris Outils ? 

fj <?Précédente T ..; T ~ ~ l .{aRechercher @jFa~oris ~Média ~ 1 ~T ~ g /El. !fil 

Two texts with srune ont attributes and size are merged into together. As you wi11 

see in input.bd file and input.xml file, S31lle and font are two separated texts in .M 

file but they are merged in XNL file . 

Part 4: Test for an image 

Part 5: Test for lists and fields 

• Item 1 of the first list. 1bis is a hyperlink: www.googl.e.ca 
• Item 2 of the first list. Another field here: maili.o:frankxuvi(ji)paJwo.com 

1. The first item of an inner list begins. 
2. Item2 of the inner list 

• The most inner list 
• Second item of the most inner list 

3. Itme3 of the first inner list 
• Item 3 of the first list. Go to mvhookmark 

162 



Bibliography 

[l] D. Grune, H. E. Bal, C. J. Jacobs and K. G. Langendoen. Modern Compiler Design. 

John Wiley&sons, Chichester, England, 2000. 

[2] G. Born. File Formats Handbook. International Thomson Computer Press, London, 

England, 1995. 

[3] P. A. Mansfield. How to Make a File Format Translator Using XML. Proceeding of 

XML of XML Conference & Exposition, Baltimore, Maryland, USA, December 8-13, 

2002. http://www.idealliance.org/papers/xml02/ dx_xml02/papers/05-04-04/05-04-

04.html (available on March 16, 2004). 

[4] C. Wheedleton. The Role of XML in a New Intelligence Paradigm. Proceeding of XML 

of XML Conference & Exposition, Baltimore, Maryland, USA, December 8-13, 2002. 

http://www.idealliance.org/papers/xml02/ dx_xml02/papers/03-02-01/03-02-01. html 

(available on March 16, 2004). 

[5] A. G. Adwired. RTF to XML Converter. http://www.rtf2fo.com/references.html, 

(available on March 16, 2004). 

[6] North Atlantic Publishing Systems, Inc. North Atlantic Announces NTS: Quark XML 

Conversion Product Streamlines Cross-Media Publishing. 

http://www.napsys.com/NTS%20Announcement.html (available on March 16, 2004). 

[7] S. M. Burke. RTF Pocket Guide. O'Reilly & Associates, Cambridge, MA, USA, 2003. 

163 



[8] B. Bébubé and R. St-Denis. Web-Site Design Using D2Engine. Proceedings of the 

IASTED International Conference on Internet and Multimedia Systems and 

Applications, Honolulu, Hawaii, USA, 128-132, August 2001. 

[9] D. E. Knuth. TEX and METAFONT: New Directions in Typesetting. The American 

Mathematical Society and Digital Press, Providence, RI. USA, 1979. 

[10] Microsoft Word. Rich Text Format (RTF) Specification version 1.6. 

http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnrtfspec/html/rtfspec.a 

sp(available on March 16, 2004). 

[11] K. C. Louden. Compiler Construction Principles and Practice. PWS Publishing 

Company, Boston, MA, USA, 1997. 

[12] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Compiler Design Theory. Addison 

Wesley Publishing Company, Reading, MA, USA, 1976. 

[13] N. Dale. C++ Plus Data Structures. Jones and Bartlett Publishers, Sudbury, MA, USA, 

1999. 

[14] N. Dale, D. T. Joyce, and C. Weems. Object-Oriented Data Structures Using Java. 

Jones and Bartlett Publishers, Sudbury, MA, USA, 2002. 

[15] 1. Graham. Object-Oriented Methods. Addison-Wesley, Reading, MA, USA, 2001. 

[16] D. Kafura. Object-oriented Software Design & Construction with Java. Prentice Hall, 

Upper Saddle River, NJ, USA, 2000. 

[17] W3C. Extensible Markup Language J.O. http://www.xml.com/axml/testaxml.htm 

(available on March 16, 2004). 

[18] MICROSOFT. MSDN Library. 

http://msdn.microsoft.com/library/default.asp?url=/library/enus/xmlsdk/htm/dtd_dev_2 

bw8.asp (available on March 16, 2004). 

[19] J. E. Refsnes. Introduction to XSL. http://xmlfiles.com/xsl/xsl_intro.asp (available on 

March 16, 2004). 

[20] W3C. XSL Transformations (XSLT) Version 1.0. http://www.w3.orgffR/xslt 

(available on March 16, 2004). 

164 




