
Object-Oriented GUI Design of a Modeling Environment for Logical 
Discrete Event Systems 

by 

Haoming Wang 

mémoire présenté au Département d'informatique en vue 

de l'obtention du grade de maître ès sciences (M.Sc.) 

FACULTÉ DES SCIENCES 

UNIVERSITÉ DE SHERBROOKE 

Sherbrooke, Québec, Canada, juillet 2004 



Le / ( f· : 11d' "J- <:> <I L.( ---=---'---+-! ~_......D....,at'----'e'----"""'---Z-----'--+---
'\, 

le jury a accepté le mémoire de M Haoming Wang dans sa version finale. 

Membres du jury 

M. Richard St-Denis 
Directeur 

Département d'informatique 

Mme Reine Gagnon 
Membre 

Département d'informatique 

M. Gabriel Girard 
Président-rapporteur 

Département d'informatique 



Sommaire 

Ce mémoire porte sur la conception et l'implémentation d'une partie de l'interface 

personne-machine orientée objet d'un environnement de modélisation de systèmes réactifs 

appelé MELODIES (Modeling Environment for LOgical Discrete Event Systems). Cet 

environnement permet la conception, l'analyse, la simulation et le contrôle de systèmes à 

événements discrets. L'architecture de l'interface est basée sur certaines idées empruntées 

au schéma de conception M odel- View-Controller (MVC) et au paradigme JSP M odel 2 

Architecture. Il en résulte une nette séparation entre l'interface personne-machine, les 

structures de données ainsi que les fonctions sous-jacentes. L'adoption d'une approche 

orientée objet, comme celle supportée par VisualAge for Java 4.0, au lieu d'une approche 

orientée fichier supportée par plusieurs environnements de développement (par exemple 

JBuilder for Java 3.0) permet une plus grande convivialité et une meilleure organisation 

des artéfacts de modélisation. Afin de déployer cette interface sur différentes plateformes 

et d'assurer une rapidité d'exécution, la boîte à outils Qt 3.0 et le langage C++, avec 

sa librairie STL, ont été utilisés dans l'étape de codification. De plus, XML a été retenu 

comme langage de représentation de données afin de permettre un déploiement éventuel 

de MELODIES sur le Web. 

11 



Acknowledgments 

I am very grateful to my supervisor Professor R. St-Denis. I have gotten a lot of advices 

and directions from him in my work. Under his guidance, I can finally accomplish my 

project and master thesis. 

I am very thankful to Professor G. Girard and Professor R. Gagnon for their advices 

and guidances. 

Thanks to Mr. I. Manimpire. His work and cooperation were very helpful to my work. 

iii 



Table of contents 

Sommaire 

Acknowledgments 

Table of contents 

List of figures 

List of ab breviations 

Introduction 

1 Discrete Event Systems and Supervisory Control Theory 

1.1 Introduction to DES 

1.2 Modeling Formalisms 

1.2.1 Events, Strings, and Languages 

1.2.2 Language Models . . . 

1.2.3 Finite State Machines 

1.3 Supervisory Control Theory . 

1.3.1 Control under Complete Observation 

1.3.2 Control under Partial Observation . 

1.3.3 Synthesis of a Controller .. 

iv 

ii 

iii 

iv 

vii 

ix 

1 

5 

5 

6 

7 

7 

8 

12 

13 

14 

15 



1.3.4 Extension of SCT Used in MELODIES 

2 GUI Programming in Qt 

2.1 Introduction . 

2.2 Widgets .... 

2.3 Signals and Slots 

2.4 Look of GUI Programming in Qt 

2.4.1 Look and Feel of Widgets and Layout Management 

2.4.2 Using Signals and Slots to Communicate between Widgets 

3 Using XML as Data Transmission Format 

3.1 Introduction ...... 
3.2 XML Document Design . 

3.2.1 Well-Formated Document 

3.2.2 Modeling Data with DTD 

3.2.3 Validation of XML Documents . 

3.3 XML Processing with Document Object Model 

3.3.1 Document Object Model 

3.3.2 DOM Interface ..... 
3.3.3 XML Module in Qt . 

3.4 XML Design for the GUI Data . 

4 Object-Oriented GUI Design 

4.1 Design Concepts ..... . 

4.1.1 Model-View-Controller (MVC) Design Pattern . 

4.1.2 JSP Model 2 Architecture 

4.1.3 VisualAge for Java 4.0 .. 

4.2 GUI Design and Implementation. 

V 

15 

20 

20 

21 

22 

27 

27 

28 

32 

32 

33 

34 

34 

36 

36 

37 

40 

41 

42 

50 

50 

50 

51 

56 

58 



4. 2 .1 Repository Class . . . . . . . 

4.2.2 MelodiesCentralWidget Class 

4.2.3 GuiData Class . . . . . . . . 

4.2.4 AddWindow and Projectltem Classes 

Conclusion 

Appendix 

A DTD Files 

A.1 project.dtd. 

A.2 adt.dtd .. 

A.3 ttg.dtd 

A.4 mask.dtd. 

A.5 formula.dtd 

A.6 feedback.dtd . . 

Bibliography 

vi 

60 

64 

66 

68 

72 

74 

. 74 

74 
76 

77 
78 

79 

79 

80 



List of figures 

1 Functionalities of MELODIES architecture 2 

2 A non-deterministic finite state machine 9 

3 A deterministic finite state machine . 9 

4 Gis not trim 1 ••••••••••• 11 

5 Trim generator G' obtained from G of Fig. 4 11 

6 A DES under complete observation 13 

7 A DES under partial observation 14 

8 The process to be controlled . 17 

9 The behavior of machine Mi . 17 

10 The abstract data type Buff er 18 

11 A general view of signal and slot connections . . 26 

12 DOM structure representing a typical XML document . 38 

13 XML processing with DOM 39 

14 Project hierarchy ..... 43 

15 JSP Model 2 Architecture 52 

16 Main window of VisualAge for Java 4.0 57 

17 Tab widget of VisualAge for Java 4.0 57 

18 A pop-up menu of VisualAge for Java 4.0 . 58 

19 Relations of GUI classes 60 

20 MelodiesCentralWidget . 70 

Vll 



21 Process tab widget . . . 

22 Component tab widget 

23 TTG tab widget . . . . 

viii 

70 

71 

71 



List of abbreviations 

ADT 

DES 

DOM 

DTD 

FSM 

GUI 

JSP 

MELODIES 

MVC 

00 
PLC 

SCT 

TTG 

XML 

Abstract Data Type 

Discrete Event System 

Document Object Model 

Document Type Definition 

Finite State Machine 

Graphie User Interface 

J avaServer Page 

Modeling Environment for LOgical Discrete Event Systems 

Model-View-Controller 

Object-oriented 

Programmable Logic Controller 

Supervisory Control Theory 

Timed Transition Graph 

Extensible Markup Language 

IX 



Introduction 

Much work and effort have been clone in modeling discrete event systems (DESs) 

for control purpose in the past years since the Supervisory Control Theory (SCT) has 

been developed by Ramadge and Wonham [12). MELODIES (Modeling Environment for 

LOgical Discrete Event Systems) is among one of them. MELODIES is a new paradigm in 

designing reactive systems that was originally proposed by Professor St-Denis in [13). Now 

it has been developed into a large application project. The fonctionalities of MELODIES 

are shown in Fig. 1. MELODIES includes the following modules: 

- 00 Interface module includes an object-oriented graphie user interface (GUI) for 

the MELODIES software environment. 

- I/0 module is responsible for data format, files, and input/output fonctionalities. 

- Editing module is responsible for editing timed transition graphs (TTGs), abstract 

data types (ADTs), formulas, mask fonctions, and feedback fonctions. 

- Drawing module is responsible for drawing timed transition graphs (TTGs) and 

trees. 

- Simulation module is responsible for simulating the behaviors of a closed-loop sys-

tem that interact between the system and the controller. 

- Synthesis module includes algorithms to synthesize controllers. 

- Computation module includes basic algorithms for operations on automata. 

- PLC (Programmable Logic Controller) module is responsible for code generation 

1 



to PLC. 

- Help module includes on-line help about the MELODIES softwares. 

- Customization module includes configuration for the GUI. 

Help 

Simulation 
Customization PLC 

Drawing Computation 

Editing \ I Synthesis 
00 

' Interface 
I \ 

ItO 

FIG. 1 - Functionalities of MELODIES architecture 

In this thesis, we discuss the 00 Interface and part of I/0 modules as shown in Fig. 1. 

In the GUI design, we need to represent information of DES project hierarchy and 

related processes. From the developer's point of view, the GUI design takes into conside-

ration three possible abstract levels: top, middle, and low levels. 

2 



The top level includes classes that deal with presentation of all the items that need 

to be displayed on the GUI. Designers do not need to know much about DESs to develop 

these classes. They can base the interaction on a main menu and a pop-up menu to 

invoke their methods. In addition, these classes provide fonctions that are very common 

in GUI such as insertion, deletion, renaming, and modification. The implementation 

of these classes has less relationships with DESs. Hence the classes can be developed 

independently. From a functional point of view, this level includes the 00 Interface and 

part of I/0 modules in the MELODIES architecture as shown in Fig. 1. 

The middle level includes classes whose implementation involves much knowledge 

about DESs. To implement these classes designers must master the theory that MELO-

DIES is based on. Typical fonctions in this level are edition and creation of a new timed 

transition graph, and simulation. This level includes Editing, Simulation, Drawing, and 

part of I/0 modules in the MELODIES architecture as shown in Fig. 1. 

The low level includes underlying software that can be used by the two top levels such 

as synchronous composition and controller synthesis. This level includes Computation, 

Synthesis, and PLC modules in the MELODIES architecture as shown in Fig. 1. 

In addition, there are accessory fonctions such as configuration and help. These fonc-

tions belong to Help and Customization modules in the MELODIES architecture. 

In this thesis, we mainly discuss the design and implementation of the top level. Simu-

lation, Editing, Help, and Customization modules have been designed and implemented 

in a companion thesis [8]. 

In the GUI design, we take some ideas from the Model-View-Controller (MVC) de-

sign pattern, the JSP (JavaServer Pages) Madel 2 Architecture, and the object-oriented 

approach used in VisualAge for Java 4.0. We use Qt 3.0 and C++ STL (Standard Tem-

plate Library) in the implementation phase. Beside, XML is applied as data format for 

possible future use on the Web. The GUI can be used for design and analysis of discrete 

event systems by calling the underlying software. 

3 



The rest of the thesis is organized as follows. In Chapter 1, we discus the basic theory 

about modeling DESs and Supervisory Control Theory (SCT) that MELODIES is based 

on. In Chapter 2, we present some basic concepts of Qt and discuss practical issues about 

using Qt in GUI design. In Chapter 3, we discuss XML as data transmission format and 

give the corresponding DTD (Document Type Definition) design. In Chapter 4, we discuss 

the design issue used in the GUI design and the main classes involved. In conclusion, we 

give some points about future development. 

4 



Chapter 1 

Discrete Event Systems and 

Supervisory Control Theory 

The MELODIES software environment is based on the Supervisory Control Theory 

for discrete event systems [12] and a paradigm for designing reactive systems [13]. In this 

chapter we introduce some concepts of discrete event systems and the paradigm used in 

MELODIES. 

1.1 Introduction to DES 

Classical control theory uses differential equations to deal with time-driven systems. 

The input and output variables as well as the internal state variables of a time-driven 

system can be described by real, or possibly complex, numbers that change their values in 

accordance with time. Since the behaviors of such systems may be modeled as continuous 

fonctions of time, they can be appropriately described by sets of differential equations. 

However, behaviors of some systems such as traffic systems, for instance, cannot be 

appropriately described by differential equations at the logic level of abstraction. In this 

situation, classical control theory is not applicable. These systems may be modeled as 

5 



discrete event systems instead. 

A discrete event system (DES) is a dynamical system which evolves according to asyn-

chronous occurrence of certain discrete changes, called events. The main characteristic 

of a DES is that the events (inputs and outputs) last a short period and that the sys-

tem transitions between states happen on the occurrence of these events. Discrete event 

systems are useful to model the systems that are characterized with logical behavior. 

These types of systems may thus be called event-driven. Unlike the states of time-driven 

systems, the states of DESs are modeled by symbolic-valued variables that may indicate 

a certain kind of operation, for instance. In DESs, the relationships between state tran-

sitions and events are highly irregular and usually cannot be described using differential 

equations. So, a totally different approach is adopted to deal with DESs. 

To conclude, the behavior of a DES is described by the sequences of events that occur 

and the sequences of states whose transitions depend on events. Typical application areas 

in which DES theory is applied are traffic systems, communication protocols, database 

systems, and manufacturing systems. 

1.2 Modeling Formalisms 

In this section, we introduce the main modeling formalisms for discrete event sys-

tems. Specifically, formal languages and finite state machines are discussed. As mentioned 

above, a discrete event system can be described by sequences of events and sequences of 

states. This approach leads to a state based model to be used to describe discrete event 

systems. There are, however, several formalisms that can be used to model discrete event 

systems. The basic ones are finite state machines and formal languages. 

6 



1.2.1 Events, Strings, and Languages 

Before introducing formal language and finite state machine modeling formalisms, we 

first introduce the most important concepts that are needed for the following sections. 

Given a finite set of events, called the alphabet, a system behavior is described by the 

sequences of events from the alphabet that may occur. At the logical level of abstraction, 

the behavior of a DES is described by the set of all possible sequences of state and event 

pairs: 

(xo ,eo) ( X1 ,e1) ... 

We only consider deterministic DESs here. A deterministic DES is a DES such that the 

next state is uniquely determined by the current state and an event that occurs in that 

state. It is obvious that the behavior of a deterministic DES can be equivalently described 

by the initial state x 0 and the set of all the possible sequences of events e1e2e3 ... , each 

such sequence is called a trace or string of the system, and a collection of strings is called 

a language. Let :E* denote the set of all finite length strings consisting of events from :E, 

including the zero length string E. Then a language is a subset of :E*. 

The formal language modeling formalism is given next according to the concepts pre-

viously discussed. Definitions, concepts, texts, and results presented in the next sections 

are borrowed from Kumar and Garg [6]. 

1.2.2 Language Models 

Let K Ç :E* (K i=- 0) be a language which consists of all the strings that can occur 

in a DES and pr(K) be the prefix of K. It is easy to conclude that for a sequence of 

events to occur in a DES, all of its prefixes must occur first; so we get that K = pr(K) 

in a DES. The language K is called the generated language of a DES. Let Km Ç K 

be the language consisting of those strings in the generated language of the DES whose 

execution represents completion of a certain task. This language is called the marked 

7 



language of a DES. Thus, a DES can be modeled by a pair of languages (K,Km). Given 

two language models (K,Km) and (H,Hm), they are said to be equal if Km = Hm and 

K=H. 

1.2.3 Finite State Machines 

A formal language model is simple but it just gives a brief description of the system. 

From a formal language model, we only know what events may occur ( the alphabet), 

and in which order they do occur ( the language). There is no suffi.dent state information 

embedded in such a model. Because of this limitation, finite state machines may be used 

instead. Just like formal languages, finite state machines are mathematically well defined. 

A finite state machine introduces states, transitions that may happen between the states 

and events that are associated with transitions. Furthermore, marked states may be used 

to indicate the completion of desired tasks. A formal definition of a finite state machine 

is given in Definition 1.1. 

Definition 1.1 Finite State Machine (FSM) 

A finite state machine is defined by a 5-tuple G := (X,I::,a,x 0 ,Xm), where X denotes 

a finite set of states, the state space, I:: is a finite set of event labels, the alphabet, 

a : X x (I:: U E) • 2x is the transition fonction, x0 E X is the initial state, and Xm Ç X 

is a set of marked states. A state transition on E represents a hidden transition, also called 

an E-move. In general, the state transition fonction a does not uniquely determine the 

resulting state. Hence, G is referred as a non-deterministic state machine with E-moves 

(c-NSM). Gis simply said to be a NSM if its state transition fonction can be written as 

a partial map a : X x I:: • 2x, i.e., if there are no hidden transitions in G. G is said 

to be a deterministic finite state machine (DFSM) if its state transition fonction can be 

written as a partial map a : X x I:: • X, i.e., if there are no hidden transitions and the 

transition fonction uniquely determines the resulting state. 

8 



Example 1: Fig. 2 represents a non-deterministic fini te state machine. Fig. 3 repre-

sents a deterministic finite state machine. 

el 

G: 

e2 

FIG. 2 - A non-deterministic finite state machine 

el 

G: • 

e2 
FIG. 3 - A deterministic fini te state machine 

We only consider DFSM here, since a FSM can be changed to an equivalent DFSM. 

As a finite state machine evolves on the occurrence of events, so it is possible to describe 

it by a formal language. Indeed, a finite state machine G is described by two languages, 

the prefix closed language L ( G) and the mar ked language Lm ( G). They are defined 

respectively as: 

9 



L(G) := {s E ~* 1 a(xo,s)-/= 0} and Lm(G) := {s E L(G) 1 a(xo,s) nXm f: 0} 

Normally, the prefix closed language L( G) is straightforward to determine. Following 

we give some properties and operations of FSM which are important in MELODIES 

computation model. 

Definition 1.2 Reachability 

For a FSM G, a state x E X is reachable if there exists some string s E L( G) such 

that a(x0 ,s) = x. 
Definition 1.3 Accessibility 

A FSM is accessible if all states are reachable. 

Definition 1.4 Co-reachability 

For a FSM G, astate x EX is co-reachable if there exist some strings E L(G) such 

that a(x,s) = Xm, where Xm E Xm. 
Definition 1.5 Co-Accessibility 

A FSM is co-accessible if all states are co-reachable. 

Definition 1.6 Trim 

A FSM that is both accessible and co-accessible is trim. For a trim FSM, pr(Lm(G)) = 
L(G). 
Example 2: In Fig. 4, state x3 is not co-reachable, so G is not trim. 

Example 3: In Fig. 5, G' is trim FSM obtained from G given in Example 2. 

Definition 1. 7 Synchronous Composition of FSM 

Given two FSMs G1 := (X1,~1,Œ1,xo,1,Xm,1) and G2 := (X2,~2,Œ2,xo,2,Xm,2), the 

synchronous composition of G1 and G2 , denoted G1IIG2 := (X,~,a,xo,Xm), is defined 

as X := X1 X X2; := ~1 U ~2; Xo := (xo,1,xo,2); Xm := Xm,1 X Xm,2; and for each 

10 



G: 
e2 i xü 

el 

e2 

e3 

e5 e4 

FIG. 4 - G is not trim 

G': 

el 

FIG. 5 - Trim generator G' obtained from G of Fig. 4 

11 



( Œ1 ( X1 ,a-) ,Œ2 ( X2 ,a)) if Œ1(x1,a), Œ2(x2,a) defined, a E ~1 n ~2 

(a1(x1,a),x2)) if Œ1(x1,a) defined, a E ~1 - ~2 
a(x,a) := 

(x1,Œ2(x2,a)) if Œ2(x2,a) defined, a E ~2 - ~1 
undefined otherwise 

For efficient computation in specific situations, the synchronous composition is classified 

as three specific operations in MELODIES computation model: 

1. Shuffie product, if ~ 1 n ~2 = 0. This is a parallel composition with no synchroni-

zation composition. 

2. Cartesian product, if ~ 1 = ~2 . This is a parallel composition with full synchroni-

zation. 

3. Synchronous product, if ~ 1 n ~2 -=J:. 0 and ~ 1 # ~2 . This is a parallel composition 

with partial synchronization. 

1.3 Supervisory Control Theory 

The DES model described above is simply based on languages or automaton gene-

rators without considering external control. In practice, control is necessary in the case 

DESs need external inputs to evolve, or to fulfill the control requirements ( called a spe-

cification). For this purpose, we introduce the Supervisory Control Theory (SCT) that 

was initially developed by Ramadge and Wonham (12]. It was a general approach to the 

synthesis of controllers for DESs. In its original formulation, the SCT is described in 

terms of formal languages and finite state automata that represent those languages. 

12 



1.3.1 Control under Complete Observation 

The supervisory control problem of DES under complete observation of events can be 

stated as follows. 

Given the controlled system, called the process or plant, the controlling system, called 

the controller or supervisor, is to be designed such that the process and the controller 

will work together to conform to a desired behavior, the specification. The interaction of 

a process and a controller is depicted in Fig. 6. 

Disabled 
Events 

--- Process 

Controller ........... 
.... 

FIG. 6 - A DES under complete observation 

Event 

The event set is divided into two disjoint sets, the set of uncontrollable events, 

denoted ~u, and the set of controllable events, denoted ~c· That is = ~u U ~c· On 

one hand, the generation of the controllable events may be dynamically disabled by the 

controller, on the other hand, the uncontrollable events cannot be disabled. 

The process, controller, and specification can be modeled by FSMs. Let P denote a 

FSM representing a process, C denote a FSM representing a controller, and S denote a 

FSM representing a specification. It can be proved that the synchronous composition of 

P and C can restrict the behavior of the process. Moreover, we can get a synchronous 

composition based controller C such that L(PIIC) Ç L(S) or Lm(PIIC) Ç Lm(S). 

13 



1.3.2 Control under Partial Observation 

It was assumed in the SCT under complete observation of events that a controller is 

able to observe all the events generated by the process. In many situations, it is difficult, 

if not impossible to observe all the events due to lack of sensors or failure of sensors. 

Thus, a controller is not able to observe a particular event, or distinguish some events. 

In such partial observation, we define the set of observable events ~ 0 and an observation 

mask M: • ~ 0 UE. If an event is mapped to E, then it is unobservable to a controller. If 

an event is mapped to ~ 0 , then it is observable to a controller. If two events are mapped 

to the same symbol, then they are indistinguishable to a controller. A controller is called 

observation-compatible if it takes identical control action following all sequences of events 

that have identical mask values. The interaction of a process and a controller is depicted 

in Fig. 7. 

Disabled 
Events 

-- Process --

" 

Controller ----

Eve nt ,, 
Mask 

Obs erved 
nt Eve 

FIG. 7 - A DES under partial observation 

Similarly, we can get a synchronous composition based observation-compatible controller 

14 



1.3.3 Synthesis of a Controller 

The SCT has given us a means to get a synchronous composition based controller. 

But the existence of a controller requires that one or more of the properties of prefix-

closure, relative-closure, controllability, observability, or normality are satisfied by the 

desired behaviors in accordance with specifications [ 6]. If the conditions hold, then we 

can synthesize a controller by using the language K, that represents the desired behavior 

(specification), such that L(P Il C) = K. If the conditions fail to hold, then we canuse 

a maximal sublanguage or a minimal superlanguage K' of K that satisfied the requi-

red properties to synthesize a controller called the minimally restrictive or maximally 

permissive controller such that L(P Il C) = K'. 

In the SCT, Ramadge and Wonham provided an algorithm to compute a unique 

sublanguage of K, called the supermal sublanguage and denoted sup(K), that satisfies 

one or more of the properties of prefix-closure, relative-closure, and controllability. The 

algorithm is also applied in MELODIES synthesis model. 

1.3.4 Extension of SCT Used in MELODIES 

The conventional framework of SCT is not directly applied to MELODIES. Instead 

a new framework developed within the framework of conventional SCT for DESs based 

on [2, 13] is applied. For simplicity, the former is called conventional SCT and the latter 

extension SCT, respectively. The main differences between the extension SCT and the 

conventional SCT are as follows. 

1. Modeling formalism - In the extension SCT, the process to be controlled is des-

cribed not only in terms of controllable active components but also in terms of 

uncontrollable passive components by using timed transition graphs and algebraic 

specifications, respectively [13]. In conventional SCT, only active components are 

used to describe the process to be controlled. 

15 



2. Synthesis of controllers - In the extension SCT, in addition to Ramadge and Won-

ham synthesis method, which is used in the conventional SCT, a synthesis method 

is used that automatically derives controllers for timed DESs with non-terminating 

behavior modeled by timed transition graphs and specifications of control require-

ments or constraints expressed by metric temporal logic formulas [2]. 

Since the representation of a DES project in our GUI design is based on the modeling 

formalism, more details of the modeling formalism are given in the rest of the section. 

Details of the new synthesis method, which is used in MELODIES synthesis model, can 

be found in [2]. 

As mentioned above, a process is described by using active components and passive 

components. Active components and passive components are expressed by timed transi-

tion graphs (TTGs) and abstract data types ( ADTs), respectively. A factory example, 

which is given in [13], is used to illustra te how TTGs and ADTs are used to describe 

active components and passive components in a process. The factory is depicted in Fig. 8. 

It includes p' machines (producer machines) on the left, a table in the middle, and p - p' 

machines ( consumer machines) on the right. In a process cycle, a producer machine takes 

components from its own basket, produces a part, and puts the part on the table. A 

consumer machine removes a part from the table, performs some operations, and puts 

the part in its own basket. The machines may fail from time to time. In the example, 

both p' producer machines and p - p' consumer machines are active components, and 

the table is a passive component. The behavior of active components is described by the 

TTG in Fig. 9, which includes three states: Ji (machine Mi is idle), Wi (machine Mi is 

working), and Di (machine Mi is clown). The arcs are labeled ai (machine Mi starts a 

cycle), bi (machine Mi completes a cycle), ci (machine Mi breaks clown), and di (machine 

Mi is repaired). Event ai and di are controllable, while event bi and ci are not. Every 

event has a duration of one time unit. 

16 



Repair Shop 

FIG. 8 - The process to be controlled 

FIG. 9 - The behavior of machine Mi 

17 



The passive component table is described by an object b of type Buffer. The definition 

of ADT Buffer is given in Fig. 10. 

Buffer(capacity E nat) := 
import: bool, nat 
hidden sorts: buffer 

operations: 
New: • buffer 
Put: buff er • buff er 
Get: buff er • buff er 
I sEmpty: buffer • bool 
I sFull: buffer • bool 
Size: buffer • nat 

equations: b E buffer, n E nat 
Get(New) = ERROR 
Get(Put(b)) = b 
Put(Putcapacity(New)) = ERROR 
IsEmpty(New) = TRUE 
I sEmpty(Put(b)) = F ALSE 
IsFull(New) = FALSE 
IsFull(Putn(New)) = FALSE (n-/- capacity) 
IsFull(Putcapacity(New)) = TRUE 
Size(New) = 0 
Size(Put(b)) = Size(b) + 1 

FIG. 10 - The abstract data type Buff er 

Now we give the composition of TTG and ADT. From [13], it is concluded that: 

1. TTG is composed of states (name, initial, marked, duration, cost), events (name, 

controllable, observable, forceable, duration, sensor cost, actuator cost, operation), 

and transitions (source state, event, destination state). 

2. ADT is composed of import sorts, hidden sorts, parameters (names and types), 

variables ( names and types), operations, and equations. 

Process, TTG, and ADT are discussed above. In MELODIES, the control of a DES is 

treated as a project and from the application's point of view a mask fonction is included 

18 



into a process. So, a project includes processes, constraints, and controllers. The overall 

view of a project is listed below. 

1. A process is composed of active components (TTGs), passive components (ADTs), 

and mask fonctions. The number of active components, passive components, and 

mask fonctions in a process can be zero to many. More specifically, when the number 

of passive components in a process equals zero, the process is only composed of 

active components. This situation falls into the conventional SCT domain. The 

number of processes in a project can be zero to many. 

2. A constraint is composed of TTGs and/or metric temporal logic formulas. The 

number of both TTGs and formulas can be zero to many. Constraints are used 

to describe specifications of control requirements. The number of constraints in a 

project can be zero to many. 

3. A controller is composed of TTGs and feedback fonctions. The nmnber of both 

TTGs and feedback fonctions can be zero to many. The number of controllers in a 

project can be zero to many. 

In this chapter, we have discussed basic theories in MELODIES. Next, we turn to 

programming aspects of the GUI design. 

19 



Chapter 2 

GUI Programming in Qt 

2.1 Introduction 

Qt is a C++ toolkit for cross-platform GUI and application development. It is avai-

lable for Windows, MacOS, Unix, including Linux, and many embedded systems. In 

addition to the Qt C++ class library, the toolkit includes tools to make writing applica-

tions fast and straightforward. With its mutiple platform support, Qt has always been an 

ideal C++ toolkit for building cross-platform applications. For the most part, you just 

need to recompile your Qt application to run on Unix, Windows, or embedded systems. 

Actually, the Qt application programming interface ( API) is virtually identical for all 

desktop platforms, hence you can create a single source-code base and should be able to 

compile it without modification for all the supported operating systems. As compared 

with other two widely used GUI toolkits, Java JFC/Swing and Visual c++/MFC, Qt 

is faster than the former and supports more platforms than the latter. That is the main 

reasons why we use it to design the GUI. The two following features also make Qt more 

suitable for GUI programming [4]: 

1. Object orientation and component support - Qt has a modular design and a strong 

focus on reusable software components. It allows objects to cooperate without any 

20 



knowledge of each other. A widget does not need to know its context and commu-

nicates with the outside world through signals and slots. 

2. Full widget set - The widget is the basic built-in component of Qt. Qt contains all 

the ready-to-use widgets you need to create professional-looking user interfaces for 

your software. 

Sorne concepts, definitions, results, and texts are based on or borrowed from [4) in the 

following sections. 

2.2 Widgets 

Widgets are visual elements that can be used to create user interfaces. Qt library 

contains a rich set of widgets. Buttons, menus, scroll bars, message boxes, and application 

windows are all examples of widgets. Such a rich set of widgets caters for most situations. 

You can just use these widgets to assemble graphie user interfaces. Qt's widgets are also 

flexible and easy to subclass for special requirements and some custom widgets are created 

in the GUI design. Widgets are instances of QWidget or one of its subclasses. 

In contrast with other GUI toolkits, Qt's widgets are not arbitrarily divided between 

controls and containers; all widgets can be used both as controls and as containers. A 

widget rnay contain any number of child widgets. Child widgets are shown within the 

parent widget's area. A widget with no parent is a top-level widget (a window), which 

is similar to the frame or window in Java JFC/Swing or Visual C++/MFC. Qt imposes 

no arbitrary limitations on widgets. Any widget can be a top-level widget; any widget 

can be a child of any other widget. The position of child widgets within the parent's area 

can be organized automatically using layout managers, or manually if preferred. When 

a parent widget is disabled, hidden or deleted, the sarne action is applied to all its child 

widgets recursively. 

21 



In Qt, the predefined widgets can be classified as follows: 

1. Abstract widgets - Abstract widget classes usable through subclassing. 

2. Advanced widgets - Advanced GUI widgets such as list views and list view items. 

3. Basic widgets - Basic GUI widgets such as buttons and combo boxes. 

4. Main window and related classes - Everything you need for a typical modern main 

application window, including menus, toolbars, and workspaces. 

5. Standard dialogs - Ready-made dialogs for file, font, or color selection and more. 

2.3 Signais and Slots 

The signal/ slot mechanism, a unique feature of Qt, is used for communication between 

abjects. In GUI programming a change in one widget often needs to be notified to another 

widget. For example, we want to add a new item in a QListView through a dialog. After 

inputing the item's name in the input field and clicking the accepted button (usually 

labeled <<Ük») in the dialog, we need to notify the QListView that a new item is added. 

More generally, any kind of abjects should be able to communicate with one another. 

Older toolkits use callbacks to process such communication. A callback is a pointer 

to a fonction. If you want a processing fonction to notify you about some event, you pass 

a pointer to the callback to the processing fonction. The processing fonction then calls 

the callback when appropriate. But callbacks have two fondamental drawbacks: 

1. They are not type-safe - It is not certain that the processing fonction will call the 

callback with the correct arguments. 

2. The processing fonction and the callbacks are tightly coupled - The processing 

fonction must know which callback to call. 

Qt uses an alternative to the callback technique instead. That is signal/ slot mechanism. 

22 



Here is an example about how to define signals and slots in a class: 

class myState: public Q0bject 

{ 

Q_0BJECT 

public: 

myStateO; 

int getState() const { return state; } 

public slots: 

void setState( int ); 

signals: 

void stateChanged( int ); 

private: 

int state; 

}; 

It is necessary to add Q_0BJECT in the declaration in any class that contains signals and 

slots. Signals are automatically generated by moc, the meta object compiler, and must 

not be implemented in the . cpp file. They can never have return types (i.e. use void). 

Slots must be implemented in the . cpp file. All classes that inherit from Q0bj ect or one 

of its subclasses ( e.g. QWidget) can contain signals and slots. 

A signal is emitted when a particular event occurs. You can emit a signal from an 

object by using emit signal(arguments). The emit signal(arguments) can be put 

into any methods or slots implementation. In the example above, we can do it like this: 

23 



void myState: :setState( int s) 

{ 

} 

if(s!=state){ 

state=s; 

emit stateChanged(s); 

} 

Signals use arguments to pass information to outside world. Only the class that defines a 

signal and its subclasses can emit the signal. When a signal is emitted, the slots connected 

to it are executed immediately, just like a normal fonction call. The signal/ slot mechani-

sm is totally independent of any GUI event loop. The emi t command will return when 

all slots have returned. 

A slot is called when a signal connected to it is emitted. Slots are normal C++ 

fonctions and can be called normally; their only special feature is that signals can be 

connected to them. Slot's arguments cannot have default values and, like signals, it is 

rarely wise to use your own custom types for slot arguments. 

Slots can be used for receiving signals, but they are also normal member fonctions. 

Just as an object does not know if anything receives its signals, a slot does not know if it 

has any signals connected to it. This ensures that truly independent components can be 

created with Qt. As a normal class method, a slot can be declared as public, protected, 

private, and virtual. 

1. A public slot defined in a class can be connected to signals defined in any class. This 

is very usefol for component programming. You create objects that know nothing 

about each other, connect their signals and slots so that information is passed 

correctly. 

2. A protected slot defined in a class can only be connected to the signals defined in 

the class and its subclasses. This is intended for slots that are part of the class's 

24 



implementation rather than its interface to the rest of the world. 

3. A private slot can only connect to the signals defined in the class itself. 

4. Defining slots to be virtual is quite useful in practice. 

A slot's access right determines who can connect toit. 

Signals and slots are brought together at runtime by the QObject:: connect () me-

thod, one of the central classes in Qt: 

connect(object1, SIGNAL(), object2, SLOT()); 

You can connect as many signals as you want to a single slot, and a signal can be 

connected to as many slots as you want. We can treat the signal/slot relationship as a 

many-to-many relationship. It is even possible to connect a signal directly to another 

signal (This will emit the second signal immediately whenever the first one is emitted). 

If several slots are connected to one signal, the slots will be executed one after the other, 

in an arbitrary order, when the signal is emitted. Fig. 11 represents a general view of 

signal and slot connections. 

Qt 's widgets have many predefined signals and slots, but you can also add your own 

signals and slots in order to handle special situations. 

The signal/ slot mechanism is type-safe. The signature of a signal must match the 

signature of the receiving slot (in fact a slot may have a shorter signature than the signal 

it receives because it can ignore extra arguments). Since the signatures are compatible, 

the compiler can detect type mismatches. Signals and slots are loosely coupled. An object 

which emits a signal neither knows nor cares which slots receive the signal. Qt's signals 

and slots technique ensures that a slot will be called with connected signal's parameters 

at the right time. 

The signal/slot mechanism is efficient, but not as fast as «real» callbacks. Signals and 

slots are slightly slower because of the increased flexibility they provide, although the 

difference for real applications is insignificant. 

The signal/slot mechanism allows for component-based programming. Objects can 

25 



r- "'Il r "'Il 

Objectl Object3 
signall signal31 ---- signal2 signal32 -

public slots: 
slotl 1 

public slots: 
slotl2 - slot31 protected slots: -
slotl3 -- - slot32 -- -

privated slots: 
slot14 

Il,. .... \.. .... 

~l r "'Il 

Object4 
r "'Il 

Object2 signal41 

signal21 public slots: 

signal22 - slot41 -- slot42 --- --
public slots: 

slot21 
slot22 

Il,. .... 
\.. ..... 

FIG. 11 - A general view of signal and slot connections 

26 



define signals that they emit when an event occurs. Objects can also define slots. The only 

way that an abject communicates with other abjects is through signals and slots. This 

makes information encapsulation and ensures that the abject can be used as a software 

component. Together, signals and slots make up a powerful component programming 

technique. 

2.4 Look of GUI Programming in Qt 

GUI design incorporates artistic and technological concerns. The artistic aspect is 

mainly associated with look and feel, and layout management. The main technological 

concern in Qt is how the widgets communicate to fulfill some tasks. 

2.4.1 Look and Feel of Widgets and Layout Management 

Qt provides many classes used to customize a widget's style, fonts, and colors. Since 

Qt is cross-platform, it includes different looks and feels corresponding to different plat-

forms it supports, such as Microsoft Window-like look and feel, Motif look and feel, and 

Mac/Platinum look and feel. On each platform, it has the default look and feel. But you 

can choose any existing look and feel of Qt for your application. On Solaris operating 

system, for example, the default look and feel of a widget is the Motif look and feel; you 

can change the look and feel of the widget to the Microsoft Window-like look and feel 

using QWidget: : QStyle (QWindowsStyle). You can also change fonts and colors using 

corresponding classes and methods. In addition, Qt provides several kinds of layout for 

geometry management. Among them, the following are most used. 

1. QBoxLayout - Lines up child widgets horizontally or vertically. 

2. QGridLayout - Lays out widgets in a grid. 

3. QHBoxLayout - Lines up widgets horizontally. 

27 



4. QVBoxLayout - Lines up widgets vertically. 

With Qt provided classes, we can customize an application's appearance and style. 

2.4.2 Using Signais and Slots to Communicate between Wid-

gets 

We already know that signals and slots are used to communicate between widgets. 

More details need to be discussed through a simple example. The example is typical 

in GUI design: Users use a custom dialog box to update some data in an application. 

The dialog box is composed of some input fields and a push button labeled «Ok». When 

an user inputs data into the input fields and clicks on the button «Ok», the data in 

the application are updated accordingly and the dialog is closed. It is natural to use 

signals and slots to communicate between the dialog and the application. But things 

get complicated when there are many data that need to be updated simultaneously and 

especially when the updated data are not of simple data type, or the updated data are 

user-defined classes which include many instances that need to be updated. Even though 

signals and slots can take any number of arguments of any type, it is not efficient to 

define a signal and a slot with too many arguments or with user-defined data type, 

especially in a complicated structure. So, we must compromise which information need 

to be communicate with signals and slots in above situations. Sorne information may 

be passed in traditional ways. Taking it into account, we give three solutions for the 

example. 

1. Update the data in the dialog class. This requires to expose internal structure of 

the application class to the dialog class or declare an instance of the application 

class in the dialog class. In the dialog class, a slot is defined to do the update and 

it is invoked by a signal: 

public slot: 

28 



void update () { 

//update by calling the application's corresponding methods 

} 

//Button OK connects its clicked() signal to dialog's update() 

slot, so that the update() is called when the button is clicked 

connect(Ok, SIGNAL(clicked()), this, SLOT(update()); 

2. Update the data in the application. This requires to expose internal structure of 

the dialog class to the application or declare an instance of the dialog class in the 

application class. In the application class, a slot is defined to do the update and it 

is invoked by a dialog's signal: 

public slot: 

void update () { 

//do the update here by calling dialog's corresponding methods 

} 

//Button OK connects its clicked() signal to application's 

update() slot, and the update() is called when the button 

is clicked 

connect(Ok, SIGNAL(clicked()), this, SLOT(update()); 

3. Using signals and slots to pass and receive the updated information, both the dialog 

class and the application class do not expose their interna! structure to each other. 

In the dialog class, a protected slot updating() is defined to emit the do-update() 

signal: 

protected slots: 

void updating(){//set new information to the signal's args and 

emits the signal 

29 



emit do-update( ... ) 

} 

signals: 

do-update(arg1,arg2, ... );//send information through args 

//Button OK connects its clicked() signal to dialog's 

updating() slot, so that the updating() is called 

when the button is clicked 

connect(Ok, SIGNAL(clicked()), this, SLOT(updating()); 

In the application class, a slot called update() is defined to receive the updated 

information that are passed from the dialog class: 

public slots: 

void update(arg1,arg2, ... ){//receive information through args 

//do the update here 

} 

The dialog class connects its do-update() signal to application's update() slot and the 

update() is called when the dialog emits its do-update() signal. The connection happens 

outside both the dialog class and the application class. 

connect(dialog, SIGNAL(do-update()), application, SLOT(update()); 

In the solution, the predefined signal clicked () of the button does not contain any 

arguments and hence cannot pass the needed information through arguments. So, we 

define a signal with arguments containing updated information and a protected ( or pri-

vate) slot that emits the signal. But we still use signal clicked () to trigger the whole 

communication. This way extends a solution while keeping the initial functionality in 

place. 

30 



Usually the third solution is recommended. It is based on the component-based pro-

gramming concept of Qt. So, we should take this approach when it is possible. Unfortu-

nately, if a class involved in communication contains many data needed to update and 

has a complicated data structure to organize these data, we must compromise in choosing 

those solutions. For example we use the Reposi tory class in our GUI. The Reposi tory 

class is used to contain all the GUI data which need to be updated. Too many slot calls 

will decrease the speed and efficiency of the application. So, we take the first solution 

instead of third one in the GUI design. 

31 



Chapter 3 

U sing XML as Data Transmission 

Format 

3.1 Introduction 

In this chapter, we introduce XML as a data transmission format in our GUI I/O 

module. Sorne.concepts and texts are borrowed from the references as indicated. 

The Extensible M arkup Language (XML) specification was proposed by the World 

Wide Web Consortium (W3C), the organization that develops and recommends Web 

specifications and standards. XML is derived from the Standard Generalized Markup 

Language (SGML) and provides a simple, very flexible text format for representing struc-

tured information on the Web [9). XML operates on two main levels: first, it provides 

syntax for document markup; and second, it provides syntax for declaring the structures 

of documents. Although XML is originally designed to meet needs of the Web, it has 

been used as a standard data transmission format for a wide variety of applications, not 

just Web applications. 

XML allows developers to set standards for defining the information that should ap-

pear in a document, and in which sequence. XML, in combination with other standards, 

32 



makes it possible to define the content of a document separately from its formatting, 

making it easy to reuse that content in other applications or in other presentation en-

vironments. Most important, XML provides a basic syntax that can be used to share 

information between different kinds of computers, different applications, and different 

organizations without the need to pass through many layers of conversion [10]. 

XML provides a simple format that is flexible enough to accommodate widely diverse 

needs. Even developers that perform tasks on different types of applications with different 

interfaces and different data structures can share XML formats and tools for parsing those 

formats into data structures that applications can use. XML offers many advantages, 

including [7]: 

- simplicity, 

- extensibility, 

- interoperability, and 

- openness. 

In the following sections, we first discuss the XML design and processing issues, and then 

the XML design of the GUI data in details. 

3.2 XML Document Design 

The XML document design is mainly concerned with two aspects: one is the format 

of the XML document, and the other is its structure. The first point is related to well-

formated document and the second to Document Type Definition (DTD) of the XML 

document. 

33 



3.2.1 Well-Formated Document 

One of the basic requirements of XML document design is to produce well-formated 

documents. A well-formated document respects the following rules: 

- XML elements must have a start and a corresponding end tag, 

- tags are case sensitive, 

- XML elements must be properly nested, 

- XML elements must have a root tag, 

- XML attribute values must be quoted (single or double quotes). 

Obviously, these rules ensure that a well-formated document obeys the general XML 

syntax. In fact, you must guarantee that a XML document is well-formated if you want 

it to work. 

3.2.2 Modeling Data with DTD 

The purpose of a DTD is to define the legal building blocks of an XML document. It 

defines the document structure with a list of legal elements. However, the DTD is only 

one way to build an XML design. There are other means of creating an XML design used 

in different contexts such as XML Schema or XML Data-Reduced (XDR). We focus on 

DTDs because the DTD is the most essential form of XML design and is used in our 

XML document design for the GUI data. A DTD describes how an XML document is 

constructed, which XML elements and their attributes are allowed, and how they put 

together to forma valid piece of XML. The DTD states the following rules [11]: 

- the element types allowed within the document, 

- the characteristics of each element type, including its attributes and the content, 

- the notations that can be encountered within the document, 

- the entities that can be encountered within the document. 

34 



A DTD of an XML document can be internal or external. The following example illus-

trates the two situations: 

1. Internal DTD. The DTD is included in the document type declaration. 

<?XML version= 11 1.0 11 standalone= 11 yes 11 ?> 

<!DOCTYPE greeting [ 

<!ELEMENT greeting (#PCDATA)>J> 

<greeting>Hello World</greeting> 

The internal DTD is declared between the square brackets ( [ ] ) . 

#PCDAT A stands for parsed character data. 

2. External DTD. Here, the DTD is given in the file referenced by the Uniform Re-

source Identifier (URL) hello.dtd. 

<?XML version= 11 1.0 11 standalone= 11 no 11 ?> 

<!DOCTYPE greeting SYSTEM 11 hello.dtd 11 > 

<greeting>Hello World</greeting> 

In the hello. dtd, there is an element declaration: 

<!ELEMENT greeting (#PCDATA)> 

Here we just give a simple example to illustrate the DTD, the details of a DTD are given 

in the later part. You can also have both internal and external DTD in the document 

type declarations. This approach allows to define general declaration rules in an external 

DTD and the specific features of a document in an internal DTD. It is important to 

note that the declarations in the internal DTD are read first and take precedence over 

declarations in the external DTD [11]. 

With object-oriented terminology, a DTD can be considered as a class, and an XML 

document as an instance of that class [1]. 

35 



3.2.3 Validation of XML Documents 

A well-formated XML document provides a legal, convenient format for XML infor-

mation. In contrast to well-formated XML documents, valid XML documents not only 

have a DTD, but must follow the rules of the DTD. 

A well-formated XML can work without a DTD defined. However, not much informa-

tion will actually be created and managed as well-formated XML, except in the simplest 

applications. When authoring XML documents, it is actually easier to work with a DTD 

than without one. More important, a DTD is necessary for a valid document. As men-

tioned above, a valid XML document has a DTD and each element must follow the rules 

of the DTD. XML's validity rules are an additional layer on top of the rules for being 

well-formated [10]. Every valid XML document must be well-formated as well. 

Whether an application checks that an XML document is valid as well as being well-

formated is determined by the XML parser it uses. If a non-validating XML parser is 

used, it just checks that the XML document is well-formated. If a validating XML parser 

is used, it reports any validity error in addition to checking that the XML document is 

well-formated. 

3.3 XML Processing with Document Object Madel 

After discussing XML design, we turn to the XML processing. Parsing an XML do-

cument is the first step in processing it. To achieve this goal, an XML parser is needed. 

An XML parser is the most important part to any XML-based application. It takes an 

XML document as input and checks whether it is well-formated or valid. The result from 

an XML document being parsed is typically a data structure that can be manipulated 

and handled by other XML tools or APis. There are two basic APis to XML parsers: 

Simple API for XML (SAX), which supports the event-driven approach, and Document 

Object Madel (DOM), which represents the result of parsing in a tree-like structure. As 

36 



our choice, we will discuss DOM in details. 

3.3.1 Document Object Model 

The Document Object M odel has its origins in the World Wide Web Consortium. The 

DOM is designed to represent the content and model of documents across all program-

ming languages and tools. Hence, DOM is a cross-platform and cross-language specifica-

tion. The DOM is organized as levels instead of versions [9, 11]: 

- Level O is a restatement of the J avaScript syntax that was used to manipula te 

HTML documents. 

- Level 1 allows access to all parts of the XML document. It does not allow access 

to the DTD associated with the document. 

- Level 2 adds upon Level 1 by supplying modules and options aimed at specific 

content models, such as XML, HTML, and Cascading Style Sheets (CSS). It allows 

access to the DTD and actually provides APis that can be shared by different 

applications. 

- Level 3 adds a standard Load and Save package so that it will be possible to write 

completely implementation independent DOM programs. The saving partis based 

on the DOMWri ter interface. DOMWri ter is more powerful than XMLSerializer. 

The following discussion is mainly based on DOM level 1 and level 2. 

At the core of DOM is a tree model. It provides a complete in-memory representation 

of an XML document. A document is provided in a tree format, and all of this is built 

upon the DOM interfaces. Because of this model, all DOM structures can be treated 

either as their generic type, Node, or as their specific type (Element, Attr, etc.). A typical 

XML document might get a tree model like Fig. 12 [10]. Fig. 13 illustrates the diagram 

of XML processing with DOM. 

37 



Element 

1 

Document type Element 

Element Element Attr Text 

1 

Text Entity reference Text 

Attr Attr Element Comment Element 

Text Text 

FIG. 12 - DOM structure representing a typical XML document 

38 



DTD (Optional) 

XML 

Application 

Output 

FIG. 13 - XML processing with DOM 

39 



3.3.2 DOM Interface 

DOM defines several interfaces. The following interfaces are used in our application 

by binding to Qt. 

Document This interface returns information about the main document itself that has 

been loaded into the abject. The one that is most used is the docurnentElernent 

attribute that creates anode of the root element of the document. This is a starting 

point to traverse the tree to get a node. The document interface has methods. The 

most important method is getElernentsByTagNarne () which will return a NodeList 

of all the documents' elements of the name passed toit as a parameter. This is the 

method to use if you want to access an element by name. 

Node It is the key interface of DOM. Everything in a document can be treated as a 

node such as elements, comments, the document itself, etc. This interface contains 

several general attributes and methods for manipulating any kind of node. Here are 

the read-only attributes of the node interface: 

- nodeNarne, 

- nodeValue, 

- nodeType, 

- parentNode, 

- childNodes, 

- firstChild, 

- lastChild, 

- previousSibling, 

- nextSibling, 

- attributes. 

Here are the most used methods of the node interface: 

- parentNode () - This method is used to access the parent node. 

40 



- childNode () - This method is used to access the first child of the node. If no 

such node exists, null is returned. 

- previousSiblingO -This method is used to access the previous sibling node. 

If no such node exists, null is returned. 

- nextSiblingO - This method is used to access the next sibling node. If no 

such node exists, null is returned. 

- insertBefore () - This method is used to insert anode. 

- replaceChild () - This method is used to replace a node. 

- removeChild () - This method is used to remove a node. 

- appendChild () - This method is used to append a node. 

N odeList This is an ordered collection of no des that can be accessed by using an index. 

You can use the item method of the NodeList interface to access the node object 

in the NodeList. 

Char acter Data This is an interface that deals with the character data or text of the 

document. 

Attr This interface deals with the XML attributes of a node. 

Element Most of the nodes of an XML document will be elements. This interface has 

properties and methods for dealing with elements and their XML attributes. 

Text This deals with the text content of an element. Most of the required functionalities 

are handled by the CharacterData interface. 

3.3.3 XML Module in Qt 

Qt's XML module provides a SAX parser and a DOM Level 2 parser, both of which 

read well-formated XML. Many Qt applications use XML format to store their persistent 

data. The DOM parser reads the entire file into a tree structure in memory that can be 

traversed in some way [4]. Qt provides a series of classes that implement most interfaces 

41 



of DOM. Qt uses a prefix QDorn plus the name of a DOM interface as the corresponding 

class name that implements the DOM interface. For example, QDornNode class gives the 

implementation of Node interface. It is convenient to use these classes for processing XML 

documents in Qt. 

3.4 XML Design for the GUI Data 

We have discussed all the parts of building XML document and its processing. Now we 

will be gin to design the XML and DTD for the GUI data. According to the requirements 

of the GUI project, we need to build the following XML documents and related DTDs: 

- pro j ect list, 

- timed transition graph ( ttg) data, 

- abstract data type ( adt) data, 

- mask fonction data, 

- formula data, 

- feedback fonction data. 

Here, we only give the XML and DTD design of the project list in details. The pro-

ject list contains a collection of projects, processes, constraints, controllers, components, 

ttgs, adts, mask fonctions, formulas, and feedback fonctions. Each project entry in the 

document is contained within a project element and has a variety of different pieces of 

information that need to be represented with either elements or attributes. Let us start 

with a project entry. From Chapter 1, the hierarchy of a project is shown in Fig. 14. 

From the project hierarchy, it is easy to transfer the child nodes into corresponding 

elements that are included in a project entry. 

A project element contains three child elements: process, constraint, and controller. 

A process element contains two child elements: component and mask fonction, while 

a component element contains one child element either ttg or adt. 

42 



P oject 

Process (O ... n) 

Corponent (O ... n) 

TTG (0 ... 1) 
ADT (0 ... 1) 

Mask fonction (O ... n) 

Constraint (O ... n) 

c'ITG(O ... n) 

Formula (O ... n) 

rtr lier (O .. . n) 
TTG (O ... n) 

Feedback fonction (0 ... n) 

FIG. 14 - Project hierarchy 

A constraint element contains two child elements: ttg and formula. 

A controller element contains two child elements: ttg and feedback fonction. 

According to the requirements, the GUI project should provide the following additio-

nal informations: 

- project name; 

- process name, creation date, update date, and comment; 

- constraint name, creation date, update date, and comment; 

- controller name, creation date, update date, and comment; 

- component name, creation date, update date, and comment; 

- ttg name, creation date, update date, and comment; 

- adt name, creation date, update date, and comment; 

- mask fonction name, creation date, update date, and comment; 

43 



- formula name, creation date, update date, and comment; 

- feedback fonction name, creation date, update date, and comment. 

After gathering all the information of a project entry, we need to determine which of the 

above additional informations is represented as an element or an attribute. There is no 

general rule for the determination. We use the following rule to organize the information: 

all the informations in a project that associate with other I/O data (such as ttg data, adt 

data, mask fonction data) are represented as elements, otherwise they are represented as 

attributes. 

According to this rule, the names of ttg, adt, mask fonction, formula, and feedback 

fonction are represented as elements, the rest of the information is represented as attri-

butes. 

Next step in XML design is to build a DTD based on the information. A DTD for a 

project entry is shown as follows: 

<!ELEMENT project (process,constraint,controller)*> 

<!ATTLIST project narne ID #REQUIRED> 

<!ELEMENT process (cornponent,rnaskfun)*> 

<!ATTLIST process 

narne ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT constraint (ttg,forrnula)*> 

<!ATTLIST constraint 

narne ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

44 



comment CDATA #REQUIRED 

> 
<!ELEMENT controller (ttg,feedbackfun)*> 

<!ATTLIST controller 

name ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT component (ttgladt)?> 

<!ATTLIST component 

name ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT ttg (#PCDATA)> 

<!ATTLIST ttg 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT adt (#PCDATA)> 

<!ATTLIST adt 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

45 



> 

<!ELEMENT maskfun (#PCDATA)> 

<!ATTLIST maskfun 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT formula (#PCDATA)> 

<!ATTLIST formula 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT feedbackfun (#PCDATA)> 

<!ATTLIST feedbackfun 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

Each of these elements must be defined within the DTD using the ELEMENT keyword. 

Each declaration of an element has two parts: the element name such as process, and 

its content model, which defines what the element can contain. In the declaration of 

elements: 

- parentheses ( ()) enclose a sequence or choice group of child elements; 

- comma (,) separates the items in a sequence and establishes the order in which 

they must appear; 

- pipe (1) separates the items in a choice group of alternatives; 

46 



- question mark (?) indicates that a child element must appear exactly once or not 

at all; 

- asterisk (*) indicates that a child element can appear any number of times; 

- #PCDATA stands for parsed character data. 

Each element must have its own attribute list declaration (using the ATTLIST keyword). 

Each attribute declaration consists of an identifier associating it with a specific element, 

the attribute's name (such as name, creation), and its type (such as ID, CDATA). In the 

attribute declaration: 

- ID stands for a unique identifier; 

- CDATA stands for character data; 

- #REQUIRED indicates that the attribute is required. 

Based on the DTD, a project entry of the factory example in Chapter 1 might look like 

the following: 

<project name= 11 Factory_Project 11 > 

<process name= 11 Factory 11 > 

<component name= 11 Producer 11 comment="active component"> 

<ttg comment="behavior of machine M1">M1</ttg> 

</component> 

<component name="Consumer" comment="active component"> 

<ttg comment="behavior of machine M2">M2</ttg> 

</component> 

<component name= 11 Table 11 comment="passive component"> 

<adt>Buffer</adt> 

</component> 

</process> 

<constraint name= 11 Factory_Constraint 11 > 

47 



<formula comment="metric temporal logic formula">f</formula> 

</constraint> 

</project> 

After finishing the design of the project, we easily get the DTD for project list by adding 

the following declaration as first declaration in the DTD for the project: 

<!ELEMENT project-list (project, process, constraint, controller, 

component, ttg, adt, maskfun, formula, feedbackfun)*> 

In most situations, project-list only contains projects, while a project contains processes, 

constrains, and controllers. But there still exist some situations where an existing process 

does not belong to any project for the time being. We call the process «unused process». 

The unused process may be used by a project later. There exist unused constraints, 

controllers, and so on. Taking this into account, we use 

<!ELEMENT project-list (project, process, constraint, controller, 

component, ttg, adt, maskfun, formula, feedbackfun)*> 

instead of 

<!ELEMENT project-list (project)*> 

in the DTD for a project. In the design, we apply an external DTD for all the XML 

documents related to the GUI data. The external DTD becomes more valuable when 

creating multiple valid documents of the same class, while the internal DTD is inefficient 

in this situation because we would have to maintain copies of markup declaration in every 

document. Other DTDs for ttg data, adt data, mask fonction data, formula data, and 

feedback fonction data can be found in Appendix A. 

At last, we briefly describe how to read and write an XML document in Qt. The 

following piece of code shows the way to read an XML file into a DOM tree: 

//read the XML file and create DOM tree 

QFile xmlFile (fileName); 

48 



if (!xmlFile.open (IO_Read•nly)) { 

//error processing 

} 

if (!domîree.setContent (&xmlFile)) { 

//error processing 

} 

xmlFile. close(); 

After this, we get a DOM instance domîree for further processing. Because Qt's XML 

module does not support DOM level 3 and because we may not want to write DOM 

to XML for efficiency consideration, we use QTextStream to write to XML document 

directly. The following piece of code shows how to write a project element into an XML 

document named proJ·ect. xml: 

QFile f("project.xml"); 

if(f.open(IO_Write•nly)) {//file opened successfully 

QTextStream t(&f); // use a text stream 

t << "<?xml version= 11 1.0 11 standalone= 11 no 11 ?> 11 << endl; 

t « 11 <project> 11 << endl; 

// write project items to xml 

t << 11 </project>" « endl; 

f. close(); 

} 

So far we have finished all the preparation. Next we will touch the core part of the GUI 

design. 

49 



Chapter 4 

Object-Oriented GUI Design 

4.1 Design Concepts 

In this chapter, we mainly concentrate on the design and implementation of the GUI. 

We begin with some design concepts used in the GUI design. 

4.1.1 Model-View-Controller (MVC) Design Pattern 

Model-View-Controller (MVC) design pattern is a widely used software design pattern 

that was created by Xerox PARC for Smalltalk-80 in the 1980s [5]. This type of interface 

has since been borrowed by the developers of the Apple Lisa and Macintosh. More re-

cently, it has become the recommended model for web applications such as Sun's J2EE 

platform, Microsoft's ASP.Net and many other third party's products. MVC design pat-

tern provides an object-oriented design and object-oriented programming environment 

for rapid development of applications that involve user interface, data transmission, and 

presentation. U nder this design pattern, an application can be divided into three different 

functional parts: 

1. Model - the object to be examined and/or modified. It manages the state and data 

50 



that the application represents. When changes occur in the model, it updates all 

of its views. 

2. View - the user interface which displays information about the model to the user. 

Any object that needs information about the model needs to be a registered view 

with the model. 

3. Controller - the object that encapsulates interactions with the model and view 

objects. Usually it is the user interface that manipulates the application. 

The works of MVC can be briefly described as follows. 

The model base class has associations with various view and controller classes. When 

changes occur in a base model, the base model sends message to itself to indicate that 

its state has changed. The message notifies each dependent model that the base model 

has changed. Each dependent model can then determine when to update itself based 

on the message and make corresponding update in the view through the controller. In 

MVC design pattern, different views can be attached to the same model. The views 

can be assembled into large or complex components as needed. The controllers may be 

interchanged, allowing different user interactions. 

In general, MVC design pattern brings better organization and code reuse in software 

development. Nevertheless, MVC design pattern requires significant works and introduces 

more complexity on planning. So, in some situations, especially for small applications 

and even many medium-size ones, the extra work in taking the time to design a complex 

architecture may not be worth the payoff. In our design, we take a more practical approach 

as it is used in JSP Model 2 Architecture. 

4.1.2 JSP Model 2 Architecture 

JSP Model 2 Architecture is a server-side implementation of the MVC design pattern 

using Servlets and JavaServer Pages (JSP). Fig. 15 illustrates JSP Model 2 Architecture 

51 



r----------------------------------, 

:,•.·.·.·.•,•,.•.·.·.·.· .. ·,•.·.·.·.•,•.·.·.·.·,•. ·,·.·.·.·. 
•:: ·:::yG6'iifrôllêr): ·.:·.: ·.:·.:·.:-.: 

i---R-e-qu-e-st---t--a-1 !.:_:·::r./::~:;S~JI~t~:\:}~/.\·'.:: 
•.'/ ••:·::··. ···. •• • • • •• • •• ·.······•.·. ·. · •• :. ·.,•.·:·-

\ 
\ 

\ 1 \\\ 
3 

\ 2 
\\ i \ (Model) 

\JavaBean 
' 4 

~i(:'.(j\;}[{-R-e s-:o_ns_e _____ \t\i"f ~ii1\?('.:.);----91 

'-----------------------------------

................... ' 

Application Server E nterp ris e Servers/ 
Data Sources 

FIG. 15 - JSP Madel 2 Architecture 

[3). In a server-side application, we usually classify the units of the application as busi-

ness logic, presentation, and request processing. Business logic is the term used for the 

manipulation of an application's data, such as customer, product, and other information. 

Presentation refers to how the application data is displayed to the user, for example, 

position, font, and size. And finally, requesting processing is what ties the business logic 

and presentation parts together. In MVC terms, the model corresponds to business logic 

and data, the view to the presentation, and the controller to the requesting processing. In 

JSP Madel 2 Architecture, servlets control the flow of the web application and delegate 

the business logic to either JavaBeans or EJBs, while JSP pages take care of producing 

52 



the HTML. So, servlets are commonly used as controllers, JSPs as view, and JavaBean 

and/or EJB components as models. Although many real-world web applications are de-

veloped in this way, JSPs may be used as both the controller and the view. An example 

is given to show how JavaBeans, JSPs, and servlets work together to implement the JSP 

Model 2 Architecture. In the example, a servlet checks user name and password, then 

dispatches the corresponding JSP page. 

This is the servlet that acts as the controller: 

public class LoginServlet extends HttpServlet { 

// the method is used to rceive user request, do processes, 

and send response to user 

public void doPost (HttpServletRequest req, HttpServletResponse res) 

throws ServletException, !•Exception 

{ 

//get the session created by server to user 

HttpSession session= req.getSession(true); 

String username = req.getParameter( 11 user 11 );//get user name 

String password = req.getParameter( 11 password 11 );//get password 

if(username.equalslgnoreCase( 11 hmw 11 )) //if it is registered user 11 hmw 11 

{ if(password .equalslgnoreCase( 11 www 11 )) //if password is "www" 

{//do processing here 

IdBean idb=new IdBean();//initialize a JavaBean to store the data 

idb.setMatch(true); //set flag for legal user 

session.setAttribute( 11 id 11 ,idb);//set user id to the JavaBean 

//dispatch corresponding JSP page 

53 



} 

String url=" .. /Data.jsp";//jsp to be dispatched 

rd.forward(req, res);//forwards user request 

} 

else //password is wrong 

{ 

//error processing 

} 

else //not registered user or wrong user name 

} 

} 

{ 

} 

//error processing 

This is the JSP ( Data.jsp) that acts as the view: 

<%©page session= 11 true 11 %> 

<%©page language="java" import=" .. /IdBean 11 %> 

<htrnl> 

<body> 

<% 

//create a JavaBean frorn the JavaBean that is paased frorn user session, 

so that it can get user data 

IdBean id=(IdBean)session.getAttribute("id"); 

if(id.getMatch()){//it is legal user 

%> 

54 



) 

<table BORDER=O CELLSPACING=O CELLPADDING=2 WIDTH="20%"> 

//send request to another servlet called RWServlet using post method 

<form name="readwrite" action=" .. /servlet/RWServlet" method="post"> 

<input type="submit" name="action" value="read"> 

<input type="submit" name="action" value="write"> 

</form> 

</table> 

//display corresponding jsp according to user's request 

<jsp:include page="Read.jsp" flush="true"/> 

<jsp:include page="Write.jsp" flush="true"/> 

<%}%> 

</body> 

</html> 

This is the JavaBean that acts as the model: 

public class IdBean implements Serializable{ 

} 

private boolean match; //identify if legal login 

public IdBean(){//initialize the match flag to false 

match=false; 

} 

public boolean getMatch(){//get the match flag to identify a legal user 

return match; 

} 

public void setMatch(boolean isMatch){//set the match flag 

match=isMatch; 

} 

55 



This example can be easily understood by combining the pieces of code with Fig. 15. 

Any user request goes to the servlet first, then instantiates a JavaBean called IdBean 

and returns a JSP page to the user. 

This model encourages a much cleaner separation of business and presentation lo-

gic, as well as of the responsibilities between developers and designers. As a result, it 

makes application development and maintenance easier. The most popular example of 

frameworks implementing JSP Model 2 Architecture is an Apache Jakarta project called 

Struts. 

In my opinion, JSP Model 2 Architecture shows a simplified and straightforward way 

to use the MVC design pattern in real-world applications. It follows the MVC architecture 

but keeps relatively simple implementation because programming in JavaBeans, EJBs, 

and servlets is simpler than in Java or C++. 

4.1.3 VisualAge for Java 4.0 

VisualAge for Java 4.0 is an integrated visual environment that supports the complete 

cycle of Java program development. Here, we do not mention fonction or use details about 

VisualAge for Java 4.0. Our interest in VisualAge for Java 4.0 concentrates on its look 

and feel, and object-oriented approach. Sorne old IDE such as JBuilder and Visual C++ 

do not take an object-oriented approach when they present information to users. They 

rather used a file-oriented approach, because developers manipulate only files that are 

not organized hierarchically in user's point of view, users only interact with files by open, 

modify, and save buttons. VisualAge for Java 4.0 takes an object-oriented approach in 

the design. It organizes its files in a hierarchy of objects and manipulates these objects 

( classes, interfaces, packages, etc.) instead of files. 

Fig. 16 illustrates the main interface window when VisualAge for Java 4.0 starts. 

Besicles the toolbar and menu, we can see a tab widget in the main window as shown in 

Fig. 17. The tab widget can switch from one to another to display different contents. In our 

56 



&J Workbench R~ Œ3 

FIG. 16 - Main window of VisualAge for Java 4.0 

FIG. 17 - Tab widget of VisualAge for Java 4. 0 

57 



&::J'Ylmkbench 11!!1~ f3 

PecJsege ... 

.!:;lass ... 
é,pplet.. . 
.S.ervlet.. . 

Replace ~ith 
De]ete ... 
Reorganize 

• Application ... 
lnterlace .. . 

Mf/JJao..d .. . 
Manage füiefül!. , 
_!;;ompere \.llith • 
RJJn 
jlocument 

Tools 
Copy to Clip.board 
.Eroperties 

FIG. 18 - A pop-up menu of VisualAge for Java 4. 0 

GUI design, we need to display projects, processes, constraints, controllers, components, 

ttgs, adts, and feedback fonctions in the same way as VisualAge for Java 4.0 does. So, 

we use a tab central widget similarly. Fig. 18 illustrates the pop-up menu when a user 

adds a new item such as a project, a package, or a class. We also use a similar way to 

add a project or a process in our GUI design. 

4.2 GUI Design and lmplementation 

We have discussed some basic ideas that are used in the GUI design. Now we discuss 

how to use these ide as to design the GUI. The GUI design takes some ideas from MVC 

design pattern, JSP Model 2 Architecture, and VisualAge for Java 4.0. We also describe 

how to use these ideas in the GUI design. We use these ideas in two aspects: architecture 

and implementation. 

As we know from above, the MVC design pattern <livides all the functional parts into 

three parts: model, view, and controller. Usually these three parts are totally separated. 

In a GUI, a typical situation is an interface that takes the user input from a keyboard 

58 



or/and a mouse, then the GUI does the necessary update to the presentation and data. 

In this situation, a simple and typical solution is to use a GUI as both controller and 

view. Although this solution is not a true MVC architecture because it puts controller 

and view into one part, its architecture and implementation is clear and simple. We uses 

this solution as architecture design in the GUI. We also mention that JSP Model 2 Ar-

chitecture follows MVC architecture but keeps relatively simple implementation because 

J avaBeans, EJBs, and servlets facilita te programming. In a JSP Model 2 Architecture 

application as shown in the above example, the servlet as a controller takes the user 

request in one of the two built-in methods ( they are invoked by GET and POST methods 

in HTML form respectively.): 

doPost (HttpServletRequest req, HttpServletResponse res); 

doGet (HttpServletRequest req, HttpServletResponse res); 

Then it updates a J avaBean or/ and an EJB that acts as model and sends back the 

corresponding JSP as view. Message (request and response) passing is simple through 

above two methods. We do not need to know and consider the details of message passing 

but just how to process the message. This approach also avoids complicated design and 

implementation of message passing in using the MVC design pattern. Fortunately, Qt's 

powerful signal/slot mechanism provides an easy way for message passing between ab-

jects. So, we canuse signal/slot mechanism to simplify the GUI implementation while 

keeping an architecture that approximately follows the MVC design pattern. According 

to the consideration above, the implementation of the GUI involves the following classes: 

1. Reposi tory class which is equivalent to the model; 

2. MelodiesCentralWidget class which is mainly equivalent to the view and control-

ler; 

3. GuiData class which is responsible for reading and writing data from and to XML 

files; 

4. AddWindow class which is used to add items on the GUI; 

59 



AddWidow 

MelodiesCentralWidget 

Projectltem 

Repository 

GuiData 

H 
Input Output 

, ' 
XML 

FIG. 19 - Relations of GUI classes 

5. Project!tem class which is used to identify item types on the GUI. 

Fig. 19 shows how these classes work together. When the GUI program starts, the 

GuiData object reads data from an XML file and setups the Repository object, then the 

MelodiesCentralWidget object displays according to information from the Repository 

object. When changes occured, the MelodiesCentralWidget object updates itself as 

well as the Reposi tory object. Last, the GuiData object can output data stored in the 

Reposi tory object to an XML file. Following we discuss these classes. 

4.2.1 Repository Class 

The Repository class which has been written by Professor St-Denis builds a data 

structure that manages a project hierarchy. We can process a project hierarchy with it. 

60 



With Repository class, we can manipulate GUI data in an object-oriented approach as 

VisualAge for Java 4.0 does. Repository class declaration code fragment is as follows: 

class Repository 

{ 

public: 

typedef int Single_idx; Il Single index 

typedef pair<int, int> Pair_idx; 

typedef map<string, Info> Map_of_instances; 

private: 

Il Pair of indexes 

Il Map of instances 

typedef list<int> List_of_associations; Il List of associations 

typedef Map_of_instances: :iterator Instance_ptr; Il Iterator on a map 

struct Entity 

{ 

string name; 

Map_of_instances instances; 

Il Entity 

Il name 

Il instances 

List_of_associations associations; Il associations 

}; 

struct Info 

{ 

}; 

List_of_list_of_instances *ass; 

bool indicator; 

int value; 

string c_date; 

string u_date; 

string comment; 

unsigned int nb_entities; 

61 

Il Information for an instance 

Il association instances 

Il application dependent 

Il application dependent 

Il creation date 

Il modification date 

Il comment 

Il Number of entities 



vector<Entity> dictionary; Il Table of entities 

public: 

Repository(); Il Default constructor 

bool Add_Entity(const string&); Il Add an entity in the dictionary 

Il Get the number of an entity 

Single_idx Get_Entity_Number(const string &e) const; 

unsigned int Nb_Of_Entities() Il Return the number of entities 

Il Add an association in the dictionary 

bool Add_Association(const string & ,const string&); 

Il Return the number of associations 

int Nb_Of_Associations(Single_idx) const; 

Il Add an instance of an entity type 

bool Add_Instance(const string&, Single_idx); 

Il Return the number of instances 

int Nb_Of_Instances(Single_idx) const; 

Il Associate two instances 

bool Associate(const string&, Single_idx, const string&, 

Single_idx); Il Return the number of instances 

int Nb_Of_Instances(const string&, Single_idx); 

int Nb_Of_Instances(const string&, Single_idx, int); 

Il Dissociate two instances 

bool Dissociate(const string&, Single_idx, const string&, 

Single_idx); 

Il Rename an instance 

bool Rename_Instance(const string&, const string&, 

Single_idx); 

Il Delete an instance 

62 



} 

bool Delete_Instance(const string&, Single_idx); 

// Set information for an instance 

bool Set_Indicator(const string&, Single_idx, bool); 

bool Set_Value(const string&, Single_idx, int); 

bool Set_Creation_Date(const string&, Single_idx, 

const string&); 

bool Set_Update_Date(const string&, Single_idx, const string&); 

bool Set_Comment(const string&, Single_idx, const string&); 

// Get information for an instance 

bool Get_Indicator(const string&, Single_idx); 

int Get_Value(const string&, Single_idx); 

string Get_Creation_Date(const string&, Single_idx); 

string Get_Update_Date(const string&, Single_idx); 

string Get_Comment(const string&, Single_idx); 

In Repository class, we use Entity and Instance to represent item's type and item itself 

in project hierarchy respectively. In MELODIES, there are nine entities: project, process, 

constraint, controller, component, ttg, adt, formula, and feedback fonction. Taking Fig. 9 

and the factory described in Chapter 1 for example, we have the following instances: 

Factory_Project, Factory, Producer, Consumer, M1, M2, Table, Buffer, and f. 

Obviously, the maximum number of entities is nine. But many instances can be-

long to one entity. We use two structures, Enti ty and Info, to represent entities and 

instances respectively. The Reposi tory class provides some methods to perform opera-

tions on entities and instances. For example, we canuse Add_Entity(const string&), 

Add_Instance ( const string & , Single_idx) to add an entity and an instance in the 

repository or Delete_Instance ( const string & , Single_idx) to remove an instance 

from the repository. Because the number of entities is usually fixed, the Reposi tory class 

63 



does not define a method to remove entities. The Repository class also provides methods 

for updating information of instances, associating or disassociating entities and instances. 

The declarations of these methods are shown in the above code fragment. Besicles, the 

Repository class declares and defines some private methods and data structures. The 

Reposi tory class is written in C++ STL and it is completely independent of Qt. So, it 

is a total separation to GUI presentation. 

4.2.2 MelodiesCentralWidget Class 

The MelodiesCentralWidget class is responsible for building the central widget in 

the GUI main window. It is written in Qt 3.0. MelodiesCentralWidget class declaration 

code fragment is as follows: 

class MelodiesCentralWidget 

{ 

public QWidget 

public: 

MelodiesCentralWidget( QWidget *parent, const char *name = 0 ); 

~MelodiesCentralWidget(); 

void save (); 

Repository & getRepository(); 

protected: 

Repository r; 

QTabWidget *tabWidget; 

QListView *project_view; 

QListView *process_view; 

QListView *pcorn_view; 

QListView *rnsk_view; 

QListView *constraint_view; 

64 



}; 

QListView *CSt_ttg_view; 

QListView *for_view; 

QListView *controller_view; 

QListView *ctl_ttg_view; 

QListView *fbk_view; 

QListView *component_view; 

QListView *com_ttg_view; 

QListView *com_adt_view; 

QListView *ttg_view; 

QListView *adt_view; 

QListView *maskfun_view; 

QListView *formula_view; 

QListView *feedbackfun_view; 

protected: 

void setupTabWidget(); 

void setView(); 

public slots: 

void createView(); 

protected slots: 

void additemO; 

void rename(); 

void deleteListViewitem(); 

void popup_menu(QListViewitem *, const QPoint &); 

The MelodiesCentralWidget class is a subclass of QWidget which is the base class 

of all user interface object. In the MelodiesCentralWidget class, some QListViews, 

which implement a list/tree view, are declared to represent the project hierarchy. A 

65 



QTabWidget is also declared as the container of all the QListViews. To arrange the 

QListViews in the QTabWidget, QGridLayout is used. According to the requirement, 

we use Windows look and feel. When a MelodiesCentralWidget abject is initialized, 

it calls setupTabWidget () and setView () methods in its default constructor. The me-

thod setupTabWidget () initializes all the QListViews, QTabWidget, QGridLayout, and 

setups Windows look and feel. In the setView () method, a GuiData abject is crea-

ted and inputs GUI data from the corresponding XML file. Then the setView() me-

thod calls the createView () method to get data from Reposi tory abject and put it 

into the right QListView. The MelodiesCentralWidget class provides such methods 

as additem (), rename (), deleteListViewitem () to update information. When upda-

ted information needs to be saved, a MelodiesCentralWidget abject calls its save () 

method to accomplish the work. In the save () method, a GuiData abject is created 

and outputs GUI data to the corresponding XML file. Another important method is 

popup_menu (QListViewitem *, const QPoint &) . A pop-up menu is displayed when 

a user right clicks on a QListViewitem, then the right process is called. A Repository 

abject is declared in the MelodiesCentralWidget class. To do so, we can update data 

in MelodiesCentralWidget abject and the corresponding data in the Repository ab-

ject concurrently. The getRepositoryO method is used when adding new items in 

QListViews. 

4.2.3 GuiData Class 

The GuiData class is used to input and output data from and to the XML file and 

initialize a Reposi tory abject used by MelodiesCentralWidget abject. The methods of 

the GuiData class could be incorporated into the MelodiesCentralWidget class. There 

are, however, mainly two reasons why we encapsulate the methods into a separation class 

66 



GuiData: 

1. These methods are usually used when the application starts and exits. Mostly they 

are not touched during execution. 

2. The separation increases flexibility. If we want to choose another input/output 

format instead of XML file, we just need to modify the GuiData class. 

The GuiData class declaration code fragment is as follows: 

class GuiData 

{ 

}; 

public: 

GuiDataO; 

void writeXrnl(Repository &, const QString &fnarne); 

void createDorn(const QString &fnarne); 

void createRepository(Repository &); 

protected: 

Type node_type(QDornNode); 

QString node_stype(Type); 

protected: 

QDornDocurnent dornTree; 

The createDorn(const QString &fnarne) method is used to read data from the XML file 

and create a QDornDocurnent abject called dornTree to be processed further. After dornTree 

is created, the createRepos i tory (Repos i tory &r) method is called to initialize the re-

ference of the Repositroy abject which is declared in the MelodiesCentralWidget class. 

The methods node_type () and node_stype () are used by the createRepos i tory (Repo-

si tory &r) method for the type cast from element of QDornDocurnent to Entity and 

Instance of the Reposi tory class. The wri teXrnl (Reposi tory & , const QString &f-

narne) method is called when updated data need to be saved. It consists of two parts: 

67 



extracting data from the Repository object and writing the data to the correspon-

ding XML file. The wri teXml (Reposi tory & , const QString &fname) method can be 

treated as a converse process of the methods createDom(const QString &fname) and 

createRepository(Repository &r). The difference is that the former goes from Repos-

i tory to XML, while the latter goes from XML file to QDomDocument then to Reposi tory. 

In the methods, we use the similar code to read from or write to XML file as shown at 

the end of Chapter 3. 

4.2.4 AddWindow and Projectltem Classes 

The AddWindow class is a subclass of QDialog which is the base class of dialog win-

dows. It is used when the additemO method of MelodiesCentralWidget is called. The 

AddWindow class can add an existing item or create a new item to corresponding list view 

and update the Repository class at the same time. 

The Projectitem class is a subclass of QListViewitem. The class QListViewitem is 

declared as: 

QListViewitem( QListView * parent, QString label1, ... ) 

Without type information included, it cannot distinguish a project item to process 

item in the project list view. That is why the Proj ectitem class is created. In the 

Projectitem class, item type information is added and declared as follows: 

Projectitem(QListView *, QString, Type); 

Projectitem(QListView *, QListViewitem *, QString, Type); 

Projectitem(QListViewitem *, QListViewitem *, QString, Type); 

where Type is defined as: 

enum Type {Non, Project, Process, Constraint, Controller, Component, 

TTG, ADT, MaskFun, Formula, FeedbackFun}; 

With the Projectitem class, we can identify proper item and call the right processing. 

68 



We have discussed the GUI design and implementation above. We also test properly 

and deploy it on Sun Solaris. At last, we show the running result of machine example 

given in Chapter 1 in Fig. 20 to Fig. 23 

Fig. 20 shows the main window that displays Factory _Froject hierarchy. The Fac-

tory _Project includes a process called Factory and a constraint called Factory _Constraint. 

Fig. 21 shows the Process window that displays Factory process and it's three com-

ponents (Consumer, Producer and Table). 

Fig. 22 shows the Components window that displays three components (Consumer, 

Producer and Table) and their associated TTG or ADT. 

Fig. 23 shows the TTG window that displays TTG Ml and M2 in the Factory process. 

69 



FIG. 20 - MelodiesCentralWidget 

FIG. 21 - Process tab widget 

70 



Prcducer 
Table 10/20/2001 

27/02/2004 
12/20/2001 component ·· 

FIG. 22 - Component tab widget 

FIG. 23 - TTC tab widget 

71 



Conclusion 

This thesis has given an object-oriented GUI design for MELODIES. Because the 

conventional SCT situation can be treated as a special situation of the extension of 

conventional SCT that MELODIES is based on, we take the latter as general considera-

tion. So, the GUI is available for the former as well as the latter. In the GUI, a DES is 

represented by a project and its processes, constraints, and controllers are organized into 

the project hierarchy. Unused processes, constraints, and controllers, which do not belong 

to any project, are represented in the corresponding tab widget instead of the project 

hierarchy. These components can be added to a project as needed. All the components 

are treated as objects, no matter whether it is a project, a process, or a controller. So, 

it can be processed independently in the GUI. With the GUI, users can easily create, 

add, delete, or modify a DES project, process, or controller. The GUI is partly integrated 

in the I/ 0 and Editing modules and will be integrated with the other modules in the 

future. The GUI also provides a main menu and pop-up menus for calling the procedure 

to simulate a DES. 

The GUI implementation is written in Qt and C++ STL. One advantage of developing 

the GUI in Qt and C++ STL is that it can be used on multiple platforms. We just need 

to recompile instead of modifying the code in different platforms to achieve this. Another 

advantage is its fast speed as compared with a Java implementation. XML is chosen as 

data transmission format in the GUI design because XML has become a standard data 

format that is widely used in Web and many other applications. Many software products 

72 



include XML processors. It is easy to transfer and share XML data through Internet. 

One of the future goal of MELODIES is to use it on Internet. This choice is the first step 

to reach the goal. 

Although the GUI reaches the requirement at the development stage, further impro-

vements can be made in the future. One big issue that we have mentioned in the thesis 

is that the GUI design does not follow pure MVC design pattern because the view is not 

separated from the controller in the design. Total separation between model, view, and 

controller class would benefit us. First, it is easy for developers to maintain the applica-

tion. Second, it permits new views or controllers to be added easily. This improvement 

can make the GUI design more scalable. 

73 



Appendix A 

DTD Files 

A.1 project.dtd 

<!ELEMENT project-list (project,process,constraint,controller, 

component,ttg,adt,maskfun,formula,feedbackfun)*> 

<!ELEMENT project (process,constraint,controller)*> 

<!ATTLIST project name ID #REQUIRED> 

<!ELEMENT process (component,maskfun)*> 

<!ATTLIST process 

name ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT constraint (ttg,formula)*> 

<!ATTLIST constraint 

name ID #REQUIRED 

creation CDATA #REQUIRED 

74 



update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 
<!ELEMENT controller (ttg,feedbackfun)*> 

<!ATTLIST controller 

name ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT component (ttgladt)?> 

<!ATTLIST component 

name ID #REQUIRED 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT ttg (#PCDATA)> 

<!ATTLIST ttg 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT adt (#PCDATA)> 

<!ATTLIST adt 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

75 



comment CDATA #REQUIRED 

> 

<!ELEMENT maskfun (#PCDATA)> 

< !ATTLIST maskfun 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT formula (#PCDATA)> 

<!ATTLIST formula 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

<!ELEMENT feedbackfun (#PCDATA)> 

<!ATTLIST feedbackfun 

creation CDATA #REQUIRED 

update CDATA #REQUIRED 

comment CDATA #REQUIRED 

> 

A.2 adt.dtd 

<!ELEMENT adt (hname,imports,hsort,parameters,operations, 

signature,variables,equation)> 

<!ELEMENT hname (#PCDATA)> 

<!ELEMENT imports (import)+> 

76 



<!ELEMENT import (#PCDATA)> 

<!ELEMENT hsort (#PCDATA)> 

<!ELEMENT parameters (parameter)> 

<!ELEMENT parameter (name,type)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT type (#PCDATA)> 

<!ELEMENT operations (operation)> 

<!ELEMENT operation (#PCDATA)> 

<!ELEMENT signature (#PCDATA)> 

<!ATTLIST signature 

rank CDATA #REQUIRED 

> 
<!ELEMENT variables (variable)+> 

<!ELEMENT variable (name,type)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT type (#PCDATA)> 

<!ELEMENT equation (#PCDATA)> 

A.3 ttg.dtd 

<!ELEMENT ttg (events,states,transitions)> 

<!ELEMENT events (event)+> 

<!ELEMENT event (name,controllable,observable,forceable, 

duration,cost,other_cost,operation)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT controllable (#PCDATA)> 

<!ELEMENT observable (#PCDATA)> 

77 



<!ELEMENT forceable (#PCDATA)> 

<!ELEMENT duration (#PCDATA)> 

<!ELEMENT cost (#PCDATA)> 

<!ELEMENT other_cost (#PCDATA)> 

<!ELEMENT operation (#PCDATA)> 

<!ELEMENT states (state)+> 

<!ELEMENT state (name,initial,marked,duration,cost)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT initial (#PCDATA)> 

<!ELEMENT marked (#PCDATA)> 

<!ELEMENT duration (#PCDATA)> 

<!ELEMENT cost (#PCDATA)> 

<!ELEMENT transitions (transition)+> 

<!ELEMENT transition (from,event,to)> 

<!ELEMENT from (#PCDATA)> 

<!ELEMENT event (#PCDATA)> 

<!ELEMENT to (#PCDATA)> 

A.4 mask.dtd 

<!ELEMENT mask_list (maskfun)+> 

<!ELEMENT maskfun (event,mask)> 

<!ELEMENT event (#PCDATA)> 

<!ELEMENT mask (#PCDATA)> 

78 



A.5 formula.dtd 

<!ELEMENT formula(#PCDATA)> 

A.6 feedback.dtd 

<!ELEMENT feedbackfun_list (feedbackfun)> 

<!ELEMENT feedbackfun (state,event)> 

<!ELEMENT state (#PCDATA)> 

<!ELEMENT event (#PCDATA)> 

79 



Bibliography 

[1] D. K. Appelquist. XML and SQL. Addison-Wesley, 2000. 

[2] M. Barbeau, F. Kabanza, and R. St-Denis. A method for the synthesis of controllers 

to handle safety, liveness, and real-time constraints. IEEE Trans. on Automatic 

Control, 43(11): 1543-1559, 1998. 

[3] H. Bergsten. JavaServer Pages. O'REILLY, 2003. 

[4] J. Blanchette and M. Summerfield. C++ GUI Programming with Qt 3. Prentice 

Hall, 2004. 

[5] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller 

user interface paradigm in smalltalk-80. Journal of Object-Oriented Programming, 

1(3):26-49, 1988. 

[6] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete Event Systems. 

Kluwer Academic Publishers, 1995. 

[7] R. Light. Presenting XML. Sams Publishing, 1997. 

[8] I. Manimpire. Conception d'une interface pour un environnement de modélisation et 

de simulation de systèmes réactifs. Mémoire de maîtrise, Université de Sherbrooke, 

Sherbrooke, 2003. 

[9] D. Martin and M. Birbeck. Professional XML. Wrox Press Ltd., 2000. 

[10] B. Mclaughlin. Java €3 XML. O'Reilly Associates, Inc., 2001. 

[11] M. Morriso. XML Unleashed. Sams Publishing, 2000. 

80 



[12] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. 

Proceedings of the IEEE, 77(1):81-98, 1989. 

[13] R. St-Denis. Designing reactive systems: integration of abstraction techniques into 

a synthesis procedure. Journal of Systems and Software, 60(2):103-112, 2002. 

81 


	1hao
	2hao
	3hao
	4hao
	5hao
	6hao
	7hao

