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SOMMAIRE

Le developpement de la medecine moderne dans Ie domaine des techniques de diagnostic

comme la radiologie, 1'histopathologie et la tomographie avait comme resultat Pexplosion

du nombre et de Pimportance des images medicales sauvegardees par la majorite des

hopitaux. Afin d'aider les medecins a confirmer leurs diagnostics, plusieurs systemes de

recherche d'images medicales out vu Ie jour. La conception de ces systemes presente plu-

sieurs etapes. Nous pensons que Ie resume des bases de donnees d'images est une etape

importante dans chaque systeme de recherche. En effet, la categorisation d'une base de

donnees d'images facilite enormement la recherche et permet de localiser les images vou-

lues en un minimum de temps.

Dans ce memoire, nous etudions en un premier temps, les differents problemes com-

muns a tous les systemes de recherche d'images a savoir 1'indexation, 1'extraction des

caracteristiques, la definition des mesures de similarites et Ie retour de pertinence. Nous

etudions aussi d'autres categories de problemes specifiques a la recherche d'images. Cette

etude est completee par une analyse des systemes existants les plus connus.

Dans la deuxieme partie du memoire, nous nous interessons aux mixtures de Dirichlet et

comment on peut les exploiter pour la classification, en particulier Ie resume des bases de

donnees d'images. Contrairement aux approches classiques qui considerent la loi normale

comme densite, nous utilisons une generalisation de la Dirichlet pour Padapter plus aux

problemes reels. Notre approche est traduite par un modele mathematique base sur Ie

maximum de vraisemblance et la methode de Fisher. Une interpretation tres interessante

de notre methode, basee sur la statistique geometrique, est donnee. Finalement, nous

presentons des evaluations contextuelles et non-contextuelles, qui prouvent la validite de

notre methode.
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Introduction

Durant les dernieres annees, 1'interet accorde aux images digitales a augmente enormement.

Get interet est stimule, au moins, par 1'evolution rapide de 1'imagerie dans plusieurs do-

maines tels que Ie World Wide Web et la medecine. Les utilisateurs, dans plusieurs

domaines professionnels, essaient d'exploiter au maximum les opportunites ofFertes pour

manipuler ces images apres y avoir accede. Cependant, ils decouvrent que la localisation

d'une image desiree dans une base de donnees est une source considerable de frustra-

tion. Les methodes classiques de recherche d'images, basees sur Ie texte, avaient deux

difHcultes majeures. La premiere est Ie travail considerable que demande 1 annotation

manuelle des images. La deuxieme, qui est selon nous plus essentielle, est la richesse de

1'image du point de vue contenu et la subjectivite de la perception humaine. En efFet,

une meme image peut etre vue de difFerentes fagons par des personnes difFerentes. Cette

subjectivite peut causer plusieurs imprecisions dans 1'annotation et ensuite dans la re-

cherche. Ces problemes out eu comme consequence 1'augment ation de 1'interet accorde

aux techniques de recherche d'images par Ie contenu.

Dans notre travail, nous nous interessons aux problemes relatifs a la recherche d'images

medicales. Comme les images medicales ont des particularites, nous commenQons par

une etude sur ces images. Ensuite, nous etudions les differents points essentiels pour la

conception d'un systeme de recherche d'images. D'abord, il y a 1'identification et I'extrac-

tion des caracteristiques pertinentes des images, ainsi que la production des metadonnees

qui peuvent aider a localiser facilement les images voulues. Ensuite, il y a 1'interaction

de Putilisateur avec Ie systeme pour 1'attribution d'un degre d'importance a chaque ca-

racteristique ou bien pour Ie rafBnement de la recherche. II y a aussi Ie probleme qui

consiste a definir une mesure de similarite qui correspond mieux a la perception de



Pusager. D'autres problemes en recherche d'images sont aussi importants telles que 1'in-

dexation et la classification qui permettent aux usagers de naviguer dans la collection

d'images. Dans la majorite des systemes que nous avons etudies, 1'indexation se fait

en utilisant des structures de donnees de grande complexite a savoir les arbres. Cepen-

dant, cette approche devient tres complexe pour une grande base de donnee (des milliers

d'images). A notre avis, d'autres moyens statistiques sont plus efHcaces non seulement

du point de vue complexite mais aussi en ce qui concerne Ie temps de classification. Les

mixtures sont 1'un de ces moyens. Grace aux mixtures, les donnees d'une base de donnees

peuvent etre partitionnees en categories homogenes. Toutefois, la majorite des travaux

existants utilise la loi normale dans les mixtures. Bien que cette loi offre plusieurs avan-

tages, telles que sa nature isotropique et sa capacite a representer une distribution juste

par une moyenne et une matrice de covariance, elle echoue a donner de bons resultats

lorsque la partition n'est pas gaussienne. Pour cette raison, nous avons considere la dis-

tribution de Dirichlet qui offre une tres grande flexibilite et qui permet plusieurs formes.

Cette densite a ete generalisee afin de s'adapter plus aux problemes reels. Les parametres

de notre nouvelle mixture, basee sur la Dirichlet, sont estimes grace au maximum de

vraissemblance et la methode de Fisher. De meme, plusieurs evaluations contextuelles et

non-contextuelles ont ete faites pour valider notre methode.

Ce memoire est divise en deux chapitres. Le premier chapitre comprend une etude analy-

tique de la problematique de la recherche d'images particulierement en medecine. L? article

An Overview of Medical Image Retrieval Systems a fait 1'objet d'un rapport d'acti-

vite. Dans Ie second chapitre, nous proposons une nouvelle mixture. L'article Maxirnum

Likelihood Estimation of the Generalized Dirichlet Mixture est soumis.



Chap it re 1

La recherche cTimages medicales :

une synthese

Dans la premiere partie de ce memoire, nous presentons Ie travail intitule An Overview

of Medical Image Retrieval Systems. Ce travail concerne 1'etude des problemes re-

latifs aux systemes de recherche d'images, particulierement dans Ie domaine medicale.

Plusieurs travaux de synthese, concernant la recherche d'images en general, ont ete faits

[10, 9, 8, 7, 4]. Cependant, nous pensons qu'il vaut mieux traiter ce sujet pour des do-

maines specifiques. En efl^et, les systemes de recherche d'images dependent enormement

de la culture de leurs utilisateurs ainsi que des caracteristiques des donnees. La recherche

d'images dans des domaines specifiques, tels que Ie Web et 1'image medicale, n'a pas fait

1'objet de grands travaux de synthese. Dans la litterature, nous avons trouve un seul

rapport de synthese traitant de la recherche d'images sur Ie web [6]. Par contre, aucun

rapport traitant de la recherche d'images medicales n'a ete trouve . Cela nous a motives

a efFectuer une etude complete sur les systemes de recherche d'images medicales.

Comme les images medicales ont des caracteristiques difFerentes des autres images, nous

avons commence par une etude sur les differents types d'images medicales utilisees.

Ensuite, nous nous sommes attaques aux problemes relatifs a la recherche d'images

medicales. Une grande partie de ces problemes concerne la recherche d'images en general

telle que la consideration des specificites des utilisateurs et de leurs besoins, 1'extraction



des caracteristiques des images et la production des metadonnees, la definition des me-

sures de similarites, 1'indexation, Ie retour de pertinence et les methodes d'evaluation.

Cette etude a ete projetee sur quelques systemes existants pour la recherche d'images

medicales. Nous avons analyse ces systemes en respectant differents points a savoir leurs

objectifs, la formulation des requetes, 1'indexation et les caracteristiques utilisees.

Le sujet a ete propose par les Professeurs Djemel Ziou et Jean Vaillancourt. La recherche

bibliographique ainsi que la synthese des problemes et Panalyse des systemes existants

ont ete faites sous leur supervision. Cela a fait 1'objet d'un rapport [2] qui apparait dans

les pages suivantes de ce memoire.
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Abstract

The increasing reliance of modern medicine on diagnostic techniques such as radiology, histopathol-

ogy and computerized tomography has resulted in an explosion in the number and importance of

medical images now stored by most hospitals. While the prime requirement for medical imag-

ing systems is to be able to display images relating to a patient, there is an increasing interest

in the use of CBIR (Content-Based Image Retrieval), a technique for retrieving images on

the basis of automatically-derived features such as color, texture and shape to aid diagnosis by

identifying similar past cases. This report provides a comprehensive survey of the technical

achievements in this research area. It clarifies some of the issues raised by this new technology,

by reviewing its current capabilities and limitations, and its potential usefulness to users in

medicine. The survey includes interesting papers covering the research aspects of medical image

feature representation, multidimensional indexing, and system design. The report begins by dis-

cussing the operating conditions for content-based retrieval in the medical domain. Evaluation

in content-based image retrieval is discussed next. Finally, based on the state of the art and

the requirements for real-world applications, open research issues are identified and promising

directions for future research are suggested.

Keywords: Medical images, Retrieval by content, Medical image database systems,

PACS, HIS, MM.

The completion of this research was made possible thanks to Bell Canada's support through its Bell Uni-
versity Laboratories R&D program.
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1 Introduction

Interest in the potential of digital images has increased enormously over the last few years,

fuelled at least in part by the rapid growth of imaging in many domains such as the World

Wide Web [73, 74, 76, 85, 86, 87] and medicine [10, 37, 52]. Users in many professional fields

are exploiting the opportunities offered by the ability to access and manipulate remotely stored

images in all kinds of existing new ways. However, they are also discovering that the process

of locating a desired image within a large and varied collection can be a source of considerable

frustration. Consequently, the problems of image retrieval are becoming widely recognized,

and the search for solutions is an increasingly active area for research and development [8, 28].

With traditional text-based methods of image retrieval there are two major difficulties, espe-

daily when the size of image collections is large (tens, hundreds, or thousands). One is the

vast amount of labor required for manual image annotation. The other difficulty, which is

more fundamental, results from the rich content of the images and the subjectivity of human

perception [65]. That is, the same image content may be perceived differently by different

people. This perceptual subjectivity, coupled with imprecise annotation can cause irrepara-

ble mismatches in later retrieval processes. These problems have led to increased interest in

techniques for retrieving images on the basis of automatically derived features such as color,

texture, and shape. For example, in therapy treatment planning, the therapist is often inter-

ested in retrieving historical cases that exhibit a particular image feature. This research subject

is now generally referred to as Content-Based Image Retrieval (CBIR) [26]. A number of survey

articles have been published on CBIR [68, 67, 60, 82, 94, I], but they deals with its general

uses. However, the design of a CBIR system should take into account the needs of users and

the specific nature of the data. Studying CBIR systems as a function of their context, their

applications and the data they use gives us a better picture of CBIR research and generates

numerous recommandations on how these systems can be adapted to users' needs. Kherfi et

al. presented a thorough study of image retrieval on the Web [40]. In this report, we examine

existing CBIR systems dedicated to the medical domain. These systems have several unique

features, due to characteristics of medical images such as multiplicative noise, as we will explain

in the next section. These characteristics require the use of imaging tools for color constancy,



spatial resolution, contour correction [17], etc. Moreover, content-based image retrieval from a

database of medical images cannot be carried out using completely automated approaches; the

presence of an expert is indispensable [78].

This report is organized as follows: The next section surveys medical image databases. To aid

the reader in understanding the rest of the paper, Section 3 presents the problems underlying

CBIR. In Section 4, we analyze methods for evaluating CBIR systems. To give an overview of

CBIR in the medical domain, some existing medical image retrieval systems are examined in

Section 5. In Section 6, we analyze the state of the art.

2 Background

In the health care domain, a huge amount of data is generated every day [3]. These data

include alphanumeric structured data (e.g. demographic information), free text with imprecise

medical terms and descriptions (e.g. pathology reports), images (e.g. computed tomography,

magnetic resonance), and voice data. Fig. 1 shows various medical data repositories [16] which

are intensively consulted using various retrieval systems such as Hospital Information Systems

(HIS), Radiology Information Systems (RIS), Picture Archiving and Communication Systems

(PACS), and (4) various research database systems (pathology, genome mapping, brain map-

ping, etc). Because there are many specialized branches of medicine, database systems are

developed independently, their design reflecting the innovativeness of the database implemen-

tors, the scope of data required for their operation, and the culture of the particular department.

The database system is only a first step in managing the available data. Some form of cata-

loguing and indexing is still necessary. Research involving data stored in multiple databases

is often hindered by the fact that these databases function under different operating systems,

with different data access and manipulation languages and different communication protocols.

In addition, to provide the researcher with more data, scientific and medical databases require

better query answering capabilities [16]. In this report, we will be interested in types of images

which merit a particular attention because of their importance for physicians, the complex

treatment they demand and their considerable number compared to other data generated. For

example, a typical 700-bed teaching hospital conducts about 200,000 radiological studies per



year, generating over a million images [12]. The Georges Pompidou Hospital in Paris is a new

middle-sized hospital with 827 beds; 360,000 imaging studies are expected to be performed each

year [5]. We will also consider the various types of textual data which permit the utilization

of these images. Alphanumeric data such as statistics and text, can be processed by many

methods [41]. Finally, we should mention that voice analysis is not the subject of this report.

Now, let us look in more detail at medical images and the needs of health care experts.

2.1 Characteristics of medical images

Before the acquired images can be used by information systems, these images must be digitized.

However, the process of digitization does not in itself make image collections easier to manage.

Medical images arising from pathology (endoscopy, histology, dermatology, etc), radiographic

projection (X-rays, some nuclear medicine, etc), and tomography (CT, MRI, ultrasound, etc)

impose unique, image-dependent restrictions on the nature of the features available for CBIR

[91]. It is of foremost importance to consider whether the image arises from a projection

technique such as conventional radiography or from a tomographic technique such as magnetic

resonance imaging. We will present each of these in turn.

2.1.1 X-ray images

One of the earliest applications of X-rays was in medicine, where they were used for both

diagnosis and therapy. Today, X-rays are still most widely used in this field [4]. They penetrate

soft tissues but are stopped by bones, which absorb them. Thus if a photographic plate is placed

behind a part of the body and an X-ray source is placed in front, X-ray exposure will result in

a picture of the inner organs (Fig. 2). In the resulting image, dense tissues show up as light

or white regions, while tissues that are easily penetrated by X-rays appear dark. X-ray images

have the following characteristics:

• Distinguishing objects can be difficult. This is especially true when looking at multiple

soft-tissue objects with low absorption characteristics that overlie one another. Structures

may be obscured by overlying organs, or soft tissues may be insufficiently delineated for

clear viewing.
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• Multiplicative noise and granularity, may be present.

• The three-dimensional shape of objects such as internal organs can be hard to envisage.

2.1.2 Computed Tomography (CT) [38]

Conventional X-ray techniques have a major disadvantage: structures may be obscured by

overlying organs. This issue is of particular importance in localizing brain tumors and other

damaged sites in the brain. For such applications, a new form of X-ray process was developed,

called computed tomography, or CT, formerly known as Computerized Axial Tomography, or

CAT. In this process, the patient is placed inside an X-ray machine, and a narrow beam of

X-rays sweeps across an area of the body, moving through a slight angle after each X-ray pulse

(Fig. 3). The resulting series of X-ray images, taken from a different angles, appear with lighter

brightnesses (Fig. 4). Computed Tomography is used in three primary modes. The original

technique is the transmissive mode and uses an X-ray source. X-rays are transmitted through

the imaged object and received at X-ray detection devices. The received signal at the detector

is proportional to the density of the elements of the imaged object. The emissive mode of

computed tomography relies on the emission of a detectable signal from the imaged object.

The object can be directly excited or a substance can be introduced that is excited. In either

case, detectors receive the emitted signals. The third mode of computed tomography is the

reflective mode. As in the transmissive mode, a source transmits a signal directed at the imaged

object. Instead of passing through the object, the signal enters the object and is reflected by

the internal elements of the object back out to a detector device. The signal received at the

detector is proportional to the density of the elements of the imaged object. Images produced

by CT have the following characteristics:

• They are subject to multiplicative noise, because CT is in fact a form of X-ray process.

• They yield three-dimensional structures.

To produce high quality medical images, imaging techniques such as Magnetic Resonance Imag-

ing (MRI) and Ultrasound imaging can be used.



2.1.3 Magnetic Resonance Imaging (MRI) [32]

MRI is an emissive mode imaging technique used primarily in medical settings to produce

high quality images of the inside of the human body. It is based on the principles of Nuclear

Magnetic Resonance (NMR), a spectroscopic technique used by scientists to obtain microscopic

chemical and physical information about molecules. MRI started out as a tomographic imaging

technique; that is, it produced an image of the NMR signal in a thin slice through the human

body. After image acquisition is complete, co-registration, image enhacement and rendering

are required. Images produced by MRI have the following characteristics:

• Contrast resolution is excellent.

• They yield three-dimensional information.

• Additive noise may be present.

2.1.4 Ultrasound imaging [34]

Ultrasound imaging (also called ultrasound scanning or sonography) is a relatively inexpensive,

fast and radiation-free imaging modality. Ultrasound is excellent for non-invasively imaging

and diagnosing a number of organs and conditions, without X-ray radiation. Ultrasound is

a reflective mode technique which can show fetal development and bodily functions such as

breathing, urination, and movement. Ultrasound is also extensively used for evaluating the

kidneys, liver, pancreas, heart, and the blood vessels of the neck and abdomen. Ultrasound

can also be used to guide fine-needle tissue biopsy to facilitate sampling of cells from an organ

for lab testing (for example, to test for cancerous tissue). The ultrasound process involves

placing a small device, called a transducer, against the skin of the patient near the region of

interest. The ultrasound transducer combines functions like those of stereo loudspeaker and

a microphone in one device: it can transmit and receive sound. This transducer produces

a stream of inaudible, high-frequency sound waves which penetrate the body and bounce off

the organs inside. The transducer detects sound waves as they bounce off or echo back from

internal structures and organ contours. Different tissues reflect these sound waves differently,

causing a signature which can be measured and transformed into an image. These waves are



received by the ultrasound machine and turned into live pictures via the use of computers and

reconstruction software. Because high-frequency sound waves cannot penetrate bone or air,

ultrasound is especially useful in imaging soft tissues and fluid-filled spaces. Images produced

by ultrasound have the following characteristics:

• They are high-contrast.

• They yield three-dimensional information.

• Multiplicative noise may be present.

2.2 User needs and characteristics of medical queries

Medicine and related health professions use and store visual information in the form of X-rays,

ultrasound or other scanned images, for diagnosis and monitoring purposes. There are strict

rules on the confidentiality of such information. The images are kept with patients' health

records which are, in the main, manual files, stored by unique identifier. Visual information

derived from them, may be used for research and teaching purposes, for example, detecting

and diagnosing lesions and tumors and tracking progress/growth by effective image processing

(e.g. boundary/feature detection). What kinds of query are users likely to put to a medical

database? To answer this question in depth, detailed knowledge of user needs (why users

seek images, what use they make of them, and how they judge the utility of the images they

retrieve) must be obtained. From the medical point of view, there are several applications [21]

for automated content-based image retrieval:

• Automatic retrieval of relevant images may be useful for follow-up studies within a PACS

[66].

• A medical student may have a set of images and wish to explore possible diagnoses.

• One may wish to display detailed data for analysis to locate other treated lesions in the

database that are similar to the current case with respect to size, shape, intensity, and

growth.



• A general practitioner may confirm her/his diagnosis of a specific patient and explore

possible treatment plans by consultating the medical knowledge bank via the Web.

Accessing a desired image from a repository might thus involve a search for images depicting

specific types of object or scene, evoking a particular mood, or simply containing a specific

texture or pattern. Potentially, images have many types of attribute which could be used for

retrieval, including the presence of a particular combination of color, texture or shape features;

the presence of named events; the presence or arrangement of specific types of object or the

depiction of a particular event. Each of the query types listed above represents a higher level

of abstraction than its predecessor, and each is more difficult to answer without reference to

some body of external knowledge. This leads naturally to a classification of query types into

three levels of increasing complexity:

• Level 1: Comprises retrieval by primitive features such as color, texture, shape or the

spatial location of image elements. This level of retrieval uses features which are directly

derivable from the images themselves.

• Level 2: Comprises retrieval by derived features, involving some degree of inference about

the identity of the objects depicted in the image (e.g. find a picture of a coronary artery.)

• Level 3: Comprises retrieval by abstract attributes, involving a significant amount of

high-level reasoning about the meaning and purpose of the objects or scenes depicted

(e.g. find an image of a patient who has suffered a blockage of the right coronary artery.)

3 Content-based image retrieval

Content-based image retrieval provides an alternative approach to the traditional information

retrieval paradigm [68, 82, 96, 97]. It is the process of retrieving desired images from a large

collection on the basis of features (such as color, texture and shape) that can be automatically

extracted from the images themselves. Research and development issues in CBIR cover a range

of topics [60, 67, 63, 50, 85, 9], many of them shared with mainstream image processing and

information retrieval. Some of the most important are:
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• Understanding image users' needs and information-seeking behavior.

• Identifying of suitable ways of describing image content.

• Extracting such features from raw images.

• Providing compact storage for large image databases.

• Matching query and stored images in a way that reflects human similarity judgements.

• EfHciently accessing stored images by content.

• Providing usable human interfaces with CBIR systems.

Thus, the issues which must be addressed by a retrieval system which supports queries based

on image content may be summarized as follows [29]:

• Retrieval methods based on similarity, as opposed to exact matching.

• Selection, derivation, and computation of image features and objects that provide useful

query expressiveness.

• A user interface that supports the visual expression of queries and allows query refinement

and navigation of results.

• Indexing of the database in a way that compatible with the expressiveness of the queries.

• Taking into account distributed databases as well as the fusion of images produced by

different sensors and thus providing different information.

Many image retrieval systems can be conceptually described by the framework depicted in Fig.

5. At the heart of this framework is a database structured with respect to image features which

are extracted for both data entry and query interpretation and compared for similarity during

retrieval. The user interface supports the closing of the loop which relates the formulation of

queries to the browsing, to retrieve images, or to summarize the database. We will now present

the main problems underlying CBIR.
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Color

Shape

Texture

Other

Histograms, color co-occurrence histograms.

Moments, template matching, size functions, edges.

Directionality, periodicity, randomness, Covariance.

Wavelet coefficients, invariant features

Table 1: Overview of commonly used features in CBIR

3.1 Feature extraction and metadata production

Feature extraction is the basis of Content-Based Image Retrieval (See Table 1). In a broad sense,

features may include both text-based features (keywords, annotations, etc) and visual features

(colors, textures, shapes, faces, etc). Within the visual feature category, the features can be

further classified as general (e.g. color, texture, shape) or domain-specific (e.g. geometric

and anatomical location [43, 44]). The latter group is application-dependent. Because of

perceptual subjectivity, there is no single best presentation for a given feature. In fact, for

any given feature there are multiple representations which characterize it. For example, some

representative studies of color perception and color spaces can be found in [47, 95], and a

summary of the different features is given in [67]. We can classify features into two groups:

• Low-level features: color [33], color layout, shape, texture [64, 84], etc.

• High-level features: spatial and temporal relations, object's name, etc.

We will now present one of the most important high-level features used in CBIR, metadata.

Metadata is data about the data or information that describes the data. Sometimes, the two

concepts (data and metadata) may be confused. In fact, the distinction between data and

metadata is not always clear. The emerging interest of researchers in the use of metadata is

motivated by two main factors: on one hand, metadata use has been investigated as a way of

managing complex multimedia documents efficiently [20]. On the other hand, the use of meta-

data seems promising in order to solve problems in heterogeneous systems. Modern health care

systems present both of the features discussed above: diagnostic tests produce a huge amount

of data from different media, and health care organizations are characterized by distributed

structures which manage their own information in heterogeneous environment [10]. For an
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efficient use of diagnostic data, it is important for physicians to be able to access multimedia

data by content. Moreover, effective solutions are needed in order to share information about

patients whose health care history involves other health organizations. A medical report can be

modeled as a hypermedia structured document which consists of five main components: general

data about the patient, data about the test, multimedia data (e.g. images), semiotic description

of multimedia data, and a diagnostic conclusion, which may be produced by a radiologist [14].

To take another example, a wide variety of images may also be acquired by an ophthalmologist

in clinical practice. These images must be integrated into the medical record and must be

available for archiving, searching, and retrieval. An ophthalmic image can be annotated with

literally hundreds of tags, recording image properties and their relationships (e.g. patient data,

administrative data, prior medical history, ocular history, laboratory results, etc). It is par-

ticularly important that these data be machine-readable and Web-accessible. Use of the Web

reduces proprietary hardware and software barriers and facilitates the exchange of information

[56]. But, the growth of a global information network, mainly supported by the success of

Internet and WWW, is emphasizing the development of systems characterized by both of the

problems discussed above (complex multimedia documents, heterogeneous systems). For the

first of these, metadata becomes important as it makes it possible to perform content-based

search on not-traditional data such as images, video, and so on. For the latter, metadata is

used to browse, navigate and retrieve information with the focusing on information content,

without relying on the structure and organization of the individual databases. A very important

language used in the medical domain, in which highly specialized concepts and attributes exist

and new ones are regularly created, is XML (extensible Markup Language) [23], which allows

data description tags to be extended and customized according to the domain user's specifi-

cations. In contrast to HTML (HyperText Markup Language) [30], which is solely concerned

with display, XML adds semantic information to the markup so that document searching and

retrieval is much easier. XML imposes structure on data and allows a logical tree to be built

that represents data elements and attributes. The advantages of encoding medical and image

data using XML are manifold. The benefits of structured data in medical care include vastly

improved workflow and content management. It also enables measurement of outcomes, foster

quality assurance, and improves medicolegal documentation. Unlike other standards, XML

13



supports the document-centered approach to medical records. (See Fig. 6).

3.2 Classification and indexing schemes

A major problem in dealing with large image database is efficiency of retrieval. One of the key

issues in achieving such efficiency is the design of a suitable indexing scheme [2, 22]. The goal

of indexing is to create a compact summary of the database contents to provide an efBcient

mechanism for retrieval of the data. To make content-based image retrieval truly scalable to

large image collections, efficient hierarchical multi-dimensional indexing techniques need to be

explored [98, 99, 90, 35]. For example, in medicine, there are many methods for classifying

images. The inherent categorization of pathologies in medicine provides a way to classify

medical images (cases). This content-based organization of medical images naturally forms a

hierarchical structure in wich the bottom leaves correspond to a set of specific images (cases),

and higher nodes correspond to a subcategory of pathological cases. Using this structure, cases

are first stored by their pathological nature (tumor, bleeding, stroke, etc), then stored by their

proximate anatomical locations (intra-axial, extra-axial), and lastly by their visual features.

Microscopic histology or the macrophotography used in dermatology could suggest different

approach to database organization because of their inherent properties of color, shading, and

resolution. These last two examples suggest a database indexing scheme that could take into

account visual features. Ultrasound images of large organs with relatively uniform tissue, such

as the spleen or liver present relatively homogenous image patterns. These might be indexable

by texture. In general, the existing popular multidimensional indexing techniques include k-d

tree, priority k-d tree [99], quad-tree, K-D-B tree, hB-tree, R-tree and its variants R+-iiee

and R*-tTee [31]. Chang [7] has proposed the use of 2D-strings for the indexing of images

based on spatial relationships and attributes of the objects in the image. His methods have

been extended by other researchers [62, 42]. In addition to the above approaches, clustering

and neural nets are also promising indexing techniques [24]. For more information, very good

reviews of various indexing techniques in image retrieval can be found in [98, 49].
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3.3 Similarity and matching

When a user submits a query, the system searches the database containing features that repre-

sent the medical database images in order to retrieve all images that correspond to the query.

If images are indexed, parsing time will be reduced because the system will no longer be forced

to search the whole database but only the index. A first question to be answered is whether the

system uses matching or similarity to find the designed images. In traditional databases, match-

ing is the fundamental operation, it consists of comparing an item with the query, and deciding

whether, or not the item satisfies the query [61]. In textual databases, matching is a binary

operation, in other words it involves a decision whether the item matches the query or not. In

similarity-based search, on the other hand, images are ordered with respect to similarity with

the query, given a fixed similarity criterion [72]. The results consist of the images most similar

to the query. Image databases should rely on similarity rather than on matching [71]. In fact,

one way of assigning a meaning to an observed feature set is to compare a pair of observations

using a similarity function. Requiring robust matching is not a satisfactory solution because

there may be a slight difference between a database image and the query due to some accident,

imperfection, geometric transformation, or change in illumination; or the two compared images

may be similar but not necessarily identical. In searching for a query image among the elements

of the data set of images, knowledge of the domain will be expressed by formulating a measure

of the similarity between images on the basis of some feature set. It should also be noted that

there is another view in which similarity is seen as an essentially probabilistic concept. This

view is rooted in the psychological literature [59] and the context of content-based retrieval,

where the notion of similarity used should be as close as possible to human similarity since

human judgement is the reference. Similarity perception is a complicated activity. It results

from the cooperation of a number of different mechanisms placed at different levels in the visual

system. Because of this, it is difficult to give a unique characterisation of similarity perception.

A number of similarity models have been proposed [71]. Early models [92] hypothesized that

similarity assessment was based on the measurement of a suitable distance in a psychological

space. Another class of similarity models, strongly connected to the metric approach, is the

Thurstone Shepard class, based on an idea that goes back to [92]; these are reviewed in [25]. In

such models, the similarity between two images is a function of the Minkowski distance given
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by:
JL . . -i

d(x^) = [^\xk-Vk\^ (1)
k=l

In more recent years, some models that abandon the strict distance model have been developed.

Among these models we can find the work of Amos Tversky [93], who proposed the feature

contrast model. Instead of considering images as points in a metric space, he characterized

them as sets of features. Let a, b be two images and A, B the respective sets of features. The

results implies that the similarity can be obtained using a linear combination (contrast) of a

function of the common features (A H B) and the distinctive features (A — B and B — A).

Mathematically, this can be written:

5(a, b) = /(A H B) - a(A - B) - /3(B - A) (2)

where / is a non-negative function, a and /3 are two constants and S is the similarity. An-

other problem for similarity based searches is how to deal with complex queries that include

operations like ordering with respect to two or more similarity measures (show me images with

this dominant color and this texture), or with respect to two or more images (what is there

similar to either of these images?). Complex queries can be constructed from simple queries

using the connectors AND, OR and NOT. The similarity corresponding to a complex query

can be defined as a function of the similarities corresponding to its components simple queries.

Similarity can be computed by measuring the resemblance or the difference between two images

and is based on the features describing the two images [71]. It is a subjective concept that must

consider the image features, the application, the specific needs of the users and his attachment

to features. For more information about similarity, a very good review is given in [82].

3.4 Relevance feedback

Since subjectivity and imprecision are usually associated with the specification and interpre-

tation of subjective attributes, the query processor should be designed to deal interactively

with these problems at the time of query specification or processing. The query interface can

be designed to guide users through the query-specification process and facilitate user-relevance

feedback [75]. Relevance feedback can be seen as an interactive process in which the user judges
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the quality of the retrieval performed by the system by marking, among the images retrieved

by the system, the ones he/she perceives as truly relevant. This information is then used to

refine the original query, resubmitted for a sharper selection. User involvement in providing

the relevance feedback should be at a conceptual level. That is, users should not be forced

to explain feedback in terms of low-level image features. For example, the user may provide

relevance feedback by simply labeling a set of retrieval images relevant, nonrelevant, or some-

what relevant. The user should also have the possibility of indicating the class of features (e.g.

shape, texture) relevant for retrieval, and specifying the weight of each feature in the retrieval

process. Relevance feedback has been shown to be a very effective tool for enhancing results

in text retrieval [89]. In CBIR it is more and more frequently used and good results have been

obtained [70, 100, 69, 39]. The two main strategies for relevance feedback are [6]:

• Making separate queries for each feedback image and merging the query results, or

• Creating a pseudo-image from the feedback images and executing a query with this image.

Two types of feedback are possible:

• Positive feedback: It is limited to preselected images and weights the features of these

images more strongly. All high-ranked returned images have many features in common.

• Negative feedback: It can greatly improve the query result, but it is important to use the

right images as negative feedback so as not to inhibit any important features.

Different methods have been proposed for implementing relevance feedback. In some systems,

like J2C [52, 51, 58] or the one proposed by the Robotics Institute [43, 46, 45], the user can

assign weights to features to improve the feedback. In the IGDS [17, 18, 19] system, the user

is asked to introduce voice and graphical input at the begining, after which visual and audio

feedback are possible. A very interesting approach, based on the use of negative examples, is

proposed by Kherfi et al. [39].
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4 Evaluation in content-based image retrieval

Evaluation of retrieval performance is a crucial problem in content-based image retrieval. Dif-

ferent methods for measuring the performance of a system have been created and used by

researchers [83]. Most of the measures used in CBIR have long been used in text retrieval [88].

Two examples of such measures are:

No. Relevant documents retrieved
precision = ^ , , ^ —,, —

No. Relevant documents retrieved
Total No. Relevant documents

A good information retrieval system should maximize these two measures. We note that these

measures require ground truth and can't be used in this form to evaluate a medical image

retrieval system, especially one that is Web-oriented, since neither the total number of images

on the Web nor the number of images relevant to a given query can be known. However, we

can consider other evaluation measures:

• Relevance and accuracy: Ground truth is replaced by the human subjectivity; i.e., either

the system returns the results the user expects or not. We can distinguish different degrees

of relevance, ranging from retrieving exactly the images the user is looking for, through

retrieving images that are close to the query or relevant to the same subject but not

exactly what the user is looking for, to retrieving images that are totally irrelevant to the

query.

• Retrieval time: After the user submits his query, the system looks in its index and per-

forms comparisons between images. This operation must be as quick as possible in order

to return the results to the user in an acceptable time.

• Ease of use: The visible part of the system, its interface, must be easy to use in all stages:

formulating queries, selecting sample images and specifying regions of interest in these

images, and displaying retrieval results.

As the user is the judge, these measures can be estimated by asking a number of representative

people to use the system and evaluate its performance by giving a grade indicating their degree

of satisfaction.
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5 State of the art

In this section, we give details on the following systems: KMeD, J2C, J2Cnet, a system proposed

by The Robotics Institute, IGDS, and ASSERT. Each system is analyzed on the basis of the

following features: objectives, queries, retrieval methods, relevance feedback, user interface,

and feature extraction.

5.1 KMeD: Knowledge-Based Multimedia Medical Distributed Databases

[10, 13, 15, 11]

'.' Department of Computer Science, University of California, Los Angeles.

Homepage: http://www.kmed.cs.ucla.edu/

This system utilizes a knowledge-based approach to retrieve medical images using spatial and

temporal constructs. Selected medical images (e.g. X-ray, MRI) are segmented, and contours

are generated from them. Features (e.g. shape, size, texture) and relations (e.g. spatial

relationships among objects) are extracted and stored.

Objectives:

• Query medical distributed databases by both image and alphanumeric content.

• Model the temporal, evolutionary and spatial natures of objects (e.g. bone growth) and

enable queries based on this modeling.

• Formulate and answer conceptual and imprecise queries by relaxation, and provide relax-

ation control to satisfy user constraints.

• Provide relevant value-added information as part of the query answer even though it is

not explicitly requested (an ability called associative query answering).

• Provide a domain-independent high-level query language and a medical domain-oriented,

graphically interactive user interface.

• Provide analysis and presentation methods for display of data and knowledge models.
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Centralized/Distributed system: Distributed databases.

Data: Computed Tomography, MRI (Sagittal Magnetic Resonance Images), HIS information

(patient's sex, date of birth, annotations,etc), X-rays and sounds.

Indexing: Use of data structures such as R-trees and B-trees.

Queries:

• Example 1: Temporal object management using a predicate to restrict an evolutionary

event. Retrieve an image sequence of a patient demonstrating the fusion of the thumb

metacarpal.

• Example 2: Query by image content and cooperative query processing using abstraction

hierarchies with association. Retrieve all hand X-rays of 12 year old Korean American

patients with Turner's Syndrome.

• Example 3: Spatial object management. Retrieve all image cases demonstrating the

invasion of an adenoma, into the sphenoid sinus in pre-adolescent patients.

Retrieval methods: KMeD includes a cooperative query answering layer which uses domain

knowledge and inference techniques to make intelligent decisions on localizing a query's search

space, regulating a query's solution space, conceptualizing complex data entities and processes,

and associating context-dependent subjects.

User /Feedback:

• Graphical user interface employing both textual and graphical queries.

• Ability to control the size of returned answers.

Features:

• Low-level: Region (segmentation based on wavelet transforms,etc), edge (detection re-

quiring user interaction), contour, intensity discrimination, bounding box, area, volume

diameter, length, circumference, text.

• High-level:

- Spatial relations: Spatial relations between a pair of objects include:
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* Orthogonal relations: Describe directional relationships between objects, such

as East, South, and Southeast.

* Containment relations: Describe the relative position and the locations of con-

tact between a pair of objects, such as invades and contains.

- Temporal relations.

5.2 J2C: Image Indexing by Content [52, 51, 58]

>6T.' Institute of Computer Science, Foundation for Research and Technology-Hellas

and Department of Computer Sciences, University of Crete, Heraklion, Crete, Greece.

Homepdge.' http://terpsi.ics.forth.gr/ICS/acti/cmiJita/activities/software/i2c/i2c.htrnl

1C is an information system for the indexing, storage, and retrieval of medical images by

pictorial content. As illustrated in Fig. 7 it is a modular extensible system which has been

developed based on object-oriented principles. The 1C architecture incorporates a set of tools

and algorithms for the extraction, indexing, and storage of image descriptions. These include

noise reduction, segmentation, and line approximation algorithms, as well as a contour editor

and a storage manager. Some of these tools are interactive and others are automatic. The

system is open in the sense that new tools may be added to the system with minimal effort,

in some cases without even disrupting its operation. J2C provides an integrated environment

for the definition and management of content descriptions of medical images and appropriate

similarity criteria, which capture and possibly extend the knowledge of experts, so that medical

images are compared not only on the basis of their morphological characteristics, but also their

clinical content. The basic features of this system are:

• indexing and retrieval of medical images by pictorial content;

• an image browser;

• image processing and analysis tools;

• interactive construction of pictorial content descriptions.

Objectives:
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• Image indexing, storage and retrieval.

• Browsing.

Centralized/ Distributed system: Distributed databases.

Data: MRI.

Indexing:

• Hash, B-tree indices or structures combining these two types of indices.

• Individual medical images are identified with a byte string called imageID.

Queries: Sketch or image queries.

Retrieval methods: Description types are used in I2C to encapsulate information relevant to

an image content description method and a content-based retrieval strategy. The structural

components of a description type are: the description generator, the description manager, and

the description matcher. The description generator produces the logical image, which consists

of a set of persistent objects. The description manager manages logical images in the logical

database of the description type. Finally, the description matcher processes content-based

queries addressed to the description type and identifies images similar to the query image.

The imageIDs of the images that constitute the response to the query are reported back to

the system, the raw image data are retrieved, and their miniature are displayed on the image

browser.

User '/Feedback:

• The users are allowed to search via relations among objects, relative position, texture,

orientation, border type.

• Presence of a browser and of segmentation and contour tools.

• Insertion of annotations to the images, setting of weights.

• Display of results of image queries (up to 18 simultaneous pictures).

Features:
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• Low-level: Area, texture, border type, region, contour.

• High-level: None

5.3 J2Cnet: Image Indexing by Content network [56, 53, 54, 57, 55]

'.' Institute of Computer Science, Foundation for Research and Technology-Hellas

and Department of Computer Sciences, University of Crete, Heraklion, Crete, Greece.

'.'http://terpsi.ics.forth.gr/ICS/acti/cmiJita/activities/software/i2cnet/i2cnet.html.

J2Cnet extends the functionality of I2G which can serve as a browser for images and image

descriptions, an editor of image content descriptions, and a processor of content-based queries.

J2Cnet addresses these issues by providing content-based retrieval as an added-value service

in a regional health care network. The main elements of the J2Cnet architecture are: J2C

clients, servers, and brokers. J2C clients use a standard WWW browser to request J2C services

and submit content-based similarity queries. I2C service brokers activate software agents to

update the profile of available services and provide support for network-transparent queries.

J2C servers maintain databases of image content descriptions and interact with the health care

network to retrieve additional information on selected images and respond to queries which

involve image content and other electronic patient record data. A major advantage of this

approach is that other services like those of QBIC [27], can be accessible through a unified

framework offered by HTML. The combination of standard HTML and browser programming

offers a generalized interface to heterogeneous types of data, and provides advanced, platform-

independent, client-server interaction.

Objectives: The representation, storage, and retrieval of medical images based on different de-

scriptions of the image.

Centralized /Distributed system: Distributed databases.

Data: MRI.

Indexing: The same methods of indexing used by 1C.

Queries: Sketch or image queries.

Retrieval methods: A matching algorithm retrieves from the database images whose descrip-

tions match the query description under the specific similarity criterion.
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User/Feedback:

• The combination of standard HTML and browser programming offers a generalized in-

terface to heterogeneous type of data, and provides advanced, platform-independent,

client-server interaction.

• Network-transparent interaction, in which the user formulates a request without any

concern as to which server or servers will process it.

• Server-specific interaction, in which the user specifies how the request should be handled.

• The user interface of an I G client is a typical Web browser like Mosaic, Netscape, etc.

The user submits content-based queries by interacting with Web pages (effectively filling

out HTML forms), and then browses the retrieved images.

Features:

• Low-level: Area, texture, border type, region, contour.

• High-level: None.

5.4 System proposed by TJie Robotics Institute^ Carnegie Mellon

University [43, 46, 45]

Developer: The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Homepdge.' http://www.ri.cmu.edu/projects/project-281.html

This is an image retrieval framework centered around classification-driven search for a weighted

similarity metric for image retrieval. It uses an approach rooted in Bayes decision theory. In

summary, the approach uses memory-based learning to explore, discover and manipulate image

feature space, in the hope of finding the most direct, effective and economical mapping from

a proper subset of non-uniformly rescaled image features to their corresponding image classes.

This image retrieval framework consists of three stages, as shown in Figure 8: (1) feature

extraction; (2) feature selection via image classification ; and (3) image retrieval.

Objectives:
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• Construct creative statistical image features such that the image semantics are captured

with high probabilities.

• Use the most discriminative feature-subset as the front-end index to find (for image clas-

sification or retrieval) medically similar cases in a large image database to aid diagnosis,

surgical planning, patient treatment, outcome evaluation and medical education.

Centralized/ Distributed system: Distributed databases.

Data: CT, MRI and HIS (patient's age, sex, symptoms, test results, etc).

Indexing: A memory based learning (MBL) technique, called Kernel regression, is applied to

classify images.

Queries: An entire medical image or a part of it.

Retrieval methods: Using k-nearest neighbors in the selected feature space: the weighted subset

of the features that yield the best performance in classification is used as a similarity metric

for image retrieval.

User '/Feedback: The user assigns the weights of features used for the retrieval.

Features:

• Low-level: Size, contrast, boundaries, density, shape, global statistical properties, mean

of gray-level intensity, deviation of gray-level intensity, and local regional statistics.

• High-level: Geometric and anatomic location.

5.5 IGDS: Image Guided Decision Support System for Pathology

[17, 18, 19]

\' Department of Electrical and Computer Engineering, Rutgers University, Pis-

cataway, USA.

'.' http://www.caip.rutgers.edu/~comanici/jretrieval.html

This system has been developed for multimodal indexing, querying, and retrieval of medical

information from consensus-graded archives of digitized images. The system allows physicians

to interactively review diagnostic images and to delineate regions containing structures which

are either unidentifiable or are known to be key to the diagnosis. The architecture of this
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system is given in Fig. 9.

Objectives:

• Locate, retrieve and display cases which exhibit morphological profiles consistent with

the case in question and assist pathologists to discriminate wrong malignant lymphomas

and microscopic specimens.

• Help physicians and technicians during routine screening and analysis.

Centralized /Distributed system: Distributed databases.

Data: Images corresponding to malignant lymphoma, leukemia and benign cases: 450x350

true color pixels taken with a high-resolution video camera.

Indexing: The database indexing is performed off line. A module is used for the analysis and

registration of the incoming cases. Then, the weights of the dissimilarity measure are re-learned

to account for the new entries in the database.

Queries: Load a query image and select a region of interest (ROI).

Retrieval methods: Dissimilarity metric defined as a linear combination of the normalized dis-

tance corresponding to each visual attribute. The retrieval process is multithread (simultaneous

access to the database being permitted).

User '/Feedback: Retrieval can be browsed using voice or graphical input. Audio feedback

is provided by speech analysis. The users can modify the color and spatial resolutions (for

experiments and maintenance). The system provides a user-handled contour correction tool

based on cubic splines. Users can select different query attributes, browse the retrieval, select

a different scale for viewing and display specific clinical data and video clips. Input commands

can be formulated by voice or graphical input.

Features:

• Low-level: Shape, area, texture, color, contour, region, texture and text. Based on mul-

tiresolution simultaneous autoregressive model.

• High-level: None.
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5.6 ASSERT: Automatic Search and Selection Engine with Retrieval

Tools [37, 79, 80, 78, 81, 77]

Developer: The Department of Radiology at Indiana University, the School of Medicine at

the University of Wisconsin and the Machine Learning Lab at Purdue University.

Homepage: http://rvl2.ecn.purdue.edu/~cbirdev/WWW/CBIRmain.html.

This is a human-in-the-loop CBIR system for medical images. A unique feature of this system is

that it is interactive. In fact, it seeks a physician's help in areas that cannot be fully automated

like the segmentation of pathologies. An important characteristic of this system is that it uses

local features, not global ones like the majority of CBIR systems.

Objectives: Provide an opportunity to aid physicians in the process of diagnosis.

Centralized/ Distributed system: Centralized databases.

Data: HRCT (High Resolution Computed Tomography) lung images.

Indexing: An efficient algorithm called M^ulti-Attributed Hash Table Indexing is used to archive

and index the medical image database. Based on the pre-selected attribute set, the system

creates a decision tree and then translates this decision tree into a multi-attribute hash table.

An index is computed from the hash table for archiving the images.

Queries: An entire medical image or a part of it.

Retrieval methods: Observing an abnormality in a diagnostic image, the physician can query a

database of known cases to retrieve images (and associated textual information) that contain

regions with features similar to what is in the image of interest. Thus, a first classification of

the query image under a disease is done according to a set of features. The images the most

similar to the query image are retrieved using the same set of features. Similarity is defined by

Euclidean distance.

User/Feedback: User intervention is necessary because the Pathology Bearing Regions (PBRs)

in the images used cannot be segmented out by any of the state of the art segmentation routines

due to the fact that for many diseases, these regions often do not possess sharp edges and

contours. Thanks to the graphical interface, it takes a physician only a few seconds to delineate

the PBRs and any relevant anatomical landmarks. A benefit of this approach is that when a

query image contains more than one pathology, the physician can choose to circumscribe only
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one of the regions in order to focus retrieval on that pathology. The system permits feedback,

also.

Features:

• Low-level: Region, shape, texture, and edges.

• High-level: None.

6 Critical analysis

After surveying most of the existing systems, we will now give a brief critical analysis of them,

based on the points evoked in Section 3, that is, the consideration of user needs, relevance

feedback, features used, similarity, and indexing.

6.1 Consideration of user's needs

User needs are supported in different manners by the above systems. If we consider the possible

queries, we note systems like I2C which allow sketch queries; systems which allow an entire

medical image or a part of it as a query such as ASSERT; and systems which enable the use of

predicates to restrict evolutionary events and provide more useful responses to a given query,

like KMeD. Users may sometimes be interested in the content of the image (the presence of

a given shape). Such queries are relatively easy to express and there are systems which allow

this such as J2Cnet. However, we can't find a system which combines all of these types of

queries. ASSERT, for example, is dedicated to high-resolution computed tomography lung

images. Among the specialized systems we find IGDS, which is dedicated to digitized images

corresponding to malignant lymphoma and leukemia. Another specialized system is I C which

is dedicated to MRI. Another important point that must be taken into account is the issue of

iconic queries which are user-generated. These may be sketches of features that are important

or they may be prototypes. The use of icons and associations with prototypes will provide

the user with a means of developing customized semantics. Generic schemas will be needed to

provide a starting point for the schema developments so that a user can define which relations

and which similarity measures are appropriate for the problem under consideration. A variety
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of objects at different levels of abstraction will be required by users to support iconic queries

and customized schemas. A pictorial-based query language will be essential for full utilization

of a medical imaging database [36]. In certain systems such as J2Cnet, the user can interact

with the generation of the image description. First, the query image is segmented, a number

of key ROIs are selected, and their features are computed. In fact, the majority of the systems

allow the user to introduce queries based on a region of interest (ROI). The clinical researcher

will also require tools that allow for end-user designed customized schemas for retrieval and

search that can be edited, modified, and adapted to new queries. Queries to an image database

by different users may make vastly different demands on the query language [12]. For example,

a medical oncologist may want to generate complex queries about an image that relate to the

functionality and/or structure of organs in the image. A database to be used for teaching,

on the other hand, may require a means of accessing images that all exhibit a particular

morphological characteristic. Thus, all of the systems described must not only embed the

retrieval functionality, but also offer the possibility of categorizing images by general or specific

subject. In fact, a catalogue or a resume of the database is very useful for a user who doesn't

have a clear idea in mind about the image he is looking for. It allows him to browse through

different subjects [97]. Some of the systems studied allow browsing (IGDS, I2C), but none

of them permit the use of negative examples. This functionality is very important because it

enables the user to refine the query, so we think that its introduction in future systems would be

really advantageous. In addition, it is clear that medical images represent a particularly unique

class of problem for database design. In fact, the database schema must evolve considerably

over the lifetime of the database. The changeability of the schema seems to be the single

most important aspect of medical image databases, and much design effort must be focused on

managing this change. Users must be able to generate queries of a set of medical images that are

changing and dynamic [12]. A patient who undergoes a CT scan to delineate a primary tumor

of the lung may subsequently be discovered to have liver metastases. Thus, the physicians

accessing the database will want to incorporate new knowledge about liver metastases into the

database and have the capability of developing relevant questions about the patient's condition,

both in the past and in the present. As the user develops possible hypotheses for exploring a

database, having the opportunity to navigate through the database collecting images that are
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interesting will suggest new formalizations [21]. Thus, tools that allow for "show me one like

this but larger" or " show me one between these two" or " show me one that is very different"

may provide the user with powerful means of developing new conceptualizations and knowledge.

This changing the field of view approach is perceived as an important attribute of a medical

imaging database. Having a descriptive language is very important too, because the description

of image features will lead to new knowledge and new categories for describing disease. Finally,

to respond better to the different kinds of queries, any system must support relevance feedback.

This question will be discussed in the next subsection.

6.2 ]VIetadata and features used

Only some systems use metadata. The most significant example is KMeD, which uses a Tem-

poral and Spatial Evolutionary Data Model (TEDM & SEDM), a unified data model for rep-

resenting multimedia, timeline, and simulation data [12]. In our opinion, this model could be

used in other medical image retrieval systems because it has proved its efficiency in KMED.

However, this model could be improved by taking into account the notion of the Region Of

Interest, which we believe is a very important aspect, especially in medical images. Thus, seri-

ous study must be devoted to producing a data model which supports all aspects of an image

produced in the health care domain [48 . The majority of the systems described here use low

and high-level features to index images. Table 2 summarize the features used by the different

medical image retrieval systems that we have studied. If a system can make use of other data

types (such as sound and video) it will be much better. However, using a large number of

features can cause certain difficulties such as the problem of feature dimension which makes

comparison difficult and renders the existing indexing methods unusable. Selection of pertinent

features and relevance feedback can be good solutions. Concerning relevance feedback, most

of the systems are based on it. We think that relevance feedback is important because one-

pass retrieval often doesn't yield the desired results. Among general image retrieval systems,

there are those which allow relaxation control by the user, the control of the size of returned

answers, or a combination of the two. The majority of the systems we presented in the last

section have a graphical interface which enables the user to interact with the system. Some
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Color

Texture

Region

Contour

Shape

Text

Statistical properties

Spatial Relations

Temporal Relations

Geometric and anatomic location

KMeD

x

x

x

x

x

x

x

J2C

x

x

x

J2Cnet

x

x

x

Tiie Robotics Institute

x

x

x

x

IGDS

x

x

x

x

x

ASSERT

x

x

x

Table 2: Features used by existing systems

systems, like the one proposed by Tlie Robotics Institute, allow the user to adjust the weights

of various visual features interactively [43, 46, 45]. This last technique seems to be the best

way of retrieving the most relevant images because it satisfies the user needs. In fact, thanks to

interaction with the system, the characteristics can be selected and the similarity computed. In

our opinion, proposing a feedback method which allows this is very important. In this regard,

the introduction of negative examples [39] becomes a real necessity.

6.3 Indexing and similarity

When we look at data indexing, some of the reviewed systems use it and some not. Using

indexing can help to minimize retrieval time because the system is not required to search

the whole database of features when it looks for images [90]. However, when dealing with

systems which utilize generic databases like the Web (J2Cnet for example), indexing techniques

are not very effective. We think that the use of mixtures as an indexing technique is very

efficient because of its simplicity [21] compared to data structures. Given an image, we compute

posterior and prior probabilities for each image class, as this information is needed for further

31



processing. Another problem this raises is which features will be extracted from the images and

used to construct the index. This problem is closely related to the notion of similarity, because

any index should minimize the time required to find similar images, so the index schema should

take into account the similarity measures that are used [78]. When developing a user-centered

approach, the system designer needs to consider user requirements, and in particular, to know

what the user means by similar images. Existing systems use different similarity measures,

such as quadratic distance between color histograms and shape matching. These measures do

not always correspond to human perception. Although relevance feedback can help, we think

more studies should be done to define similarity measures which correspond better to human

judgement. Similarity is a subjective notion and can have different meaning to different users,

or even for the same user at different times. Two images that are considered very similar by

one user may be considered very different by another, depending on the features on which the

judgement is based. A possible solution for this subjectivity is the similarity learning, which is

based on relevance feedback: after a user introduces his query, the system will have to analyze

it and try to find out the most important features that are of interest to that user, weighting

features on this basis. Note that similarity and indexing are related problems. This is very clear

in the ASSERT system, for example. In this system, retrieval of the images most similar to the

query image is facilitated by the way in which images are indexed. In our opinion, therefore,

indexing must take retrieval methods into account.

7 Conclusion

In this report, we have discussed medical image retrieval, giving some examples of medical

image retrieval systems. An interesting question regarding the topic of this survey is whether

medical databases present novel problems to the content-based image retrieval community. In

many ways, medical images are not similar to optical or radar images. However, like other

databases, the goal of medical imaging databases is to provide a mean for organizing large

collections of heterogeneous, changing, pictorial, and symbolic data. This must reside in a

structured environment that can be synthesized, classified, and presented in an organized and

efficient manner to facilitate optimal decision making in a health care environment. We believe
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that responding better to user queries requires the system designer to understand user needs,

which is why through study is needed on the actual use of medical image databases. Often,

however, the user doesn't have a clear idea in mind about the image he is looking for. Thus, a

catalogue or resume of the database is useful, allowing him to browse through different subjects.

This will be more interesting if the system allow both positive and negative feedback to refine

queries.
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Figure 1: Medical Center multimedia database.
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HOW AN X-RAY MACHINE WORKS

Figure 2: An X-Ray machine sends X-rays from a source within a glass tube through part of

the patient's body, behind which is a photographic plate.

COMPUTED X-RAV TOMOCiRAPEtV (CT'i SCANNER

nweiwd'ii
Of i.C.TKWCr

cc'nwiw

Figure 3: To make a CT scan, a narrow beam of X-rays sweeps across an area of the body,

moving through a slight angle after each X-ray pulse. Using the resulting images, a computer

produces a three-dimensional X-ray image of the body site.
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Figure 4: Human chest X-ray images showing dense objects with lighter brightnesses and

objects that are less dense with darker brightnesses. The three images show the progressive

collapse of the right upper lobe over a period of months.

Figure 5: Content-based image retrieval framework.
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XML: Easy to Search
<SYMPTOM>fever</SYMPTOM>

<DIAGNOSIS>pharyngitis</DIAGNOSIS>

< M edi cal .R ecord .N um her > 123456 789 </ M edi cal .R ecord. N um b er >

<Phone.N urn ber>210.123 .4567 </Phone.N urn ber>

Figure 6: XML easy to search

Interoperability
withPACS

Imagp Processing

Figure 7: The role of I2C as an added-value PACS subsystem. The architecture of J2C is

modular. Different modules communicate by exchanging messages through the I2C core.
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Potential

Index feature

Best similarity
metnc

Figure 8: Three steps in classification-driven image retrieval.
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Figure 9: Architecture of the IGDS system.
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Chapitre 2

I/apport des mixtures de Dirichlet

dans la classification et la recherche

d'images

La deuxieme partie de ce memoire concerne Ie travail intitule Maximum Likelihood

Estimation of the Generalized Dirichlet Mixture. Ce travail concerne une nouvelle

mixture, qui peut etre appliquee pour la classification et la segmentation des images

medicales, utilisant la distribution de Dirichlet. En effet, la majorite des methodes ac-

tuelles utilisant les mixtures ne considerent que la Gaussienne comme distribution. Tou-

tefois, cette distribution n'est pas Ie bon choix dans toutes les applications. Ceci est du

au fait que la normale est symetrique et ainsi a une forme rigide. De plus, elle n'a pas un

support compact puisqu'elle est definie sur R ce qui cause 1'imprecision des valeurs es-

timees. Nous pensons que la distribution de Dirichlet est Ie meilleur choix pour remedier

aux inconvenients de la Gaussienne. En effet, la Dirichlet est la generalisation multidi-

mensionnelles de la Beta et elle permet une grande flexibilite. Contrairement a d'autres

distributions telle que la normale, la Dirichlet permet difFerentes formes symetriques

et asymetriques. Cette flexibilite a ete prouve par A. El Zaart et D. Ziou [5] qui out

propose un systeme nomme GGBL. Ce systeme est compose de quatre distributions pa-

rametriques (normale, Gamma, Beta et Log-Normal). Ce systeme est defini par un graphe

de chaque distribution dans Ie plan (ft, ^2) ou /?i et ft sont respectivement Ie troisieme
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et Ie quatrieme moment et representent les coefficients d'asymetrie et de planeite d'une

distribution donnee. Dans ce plan, Ie graphe de la Gaussienne est un point. Le graphe

de la Gamma est une ligne. Le graphe de la Beta est un plan. Le graphe du Log-Normal

est une ligne. Done, on peut deduire que la Beta ajuste mieux les donnees que les autres

distributions. Nous avons propose un algorithme pour 1'estimation des parametres d'une

mixture de GDD (une generalisation de la Dirichlet). Get algorithme est evalue par des

methodes contextuelles et d'autres non-contextuelles. En particulier, nous 1'avons utilise

pour Ie resume des bases de donnees d'images.

L'idee de base du probleme a ete proposee par les Professeurs Djemel Ziou et Jean

Vaillancourt, et les recherches necessaires a la modelisation du probleme etaient sous leur

direction. Ce travail a fait 1'objet d'un rapport [1] qui apparait dans les pages suivantes

de ce memoire. Une version compacte de cet article [3] est soumise a Computer Vision

and Pattern Recognition (CVPR 2003) qui se tiendra a Madison en 2003.
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Maximum Likelihood Estimation of the Generalized
Dirichlet Mixture 1
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Abstract

The Dirichlet distribution offers high flexibility for modeling data. However, it has certain char-

acteristics which present a handicap in practical terms. This paper describes a generalization

of the Dirichlet distribution to overcome this handicap which we call the GDD (Generalized

Dirichlet Distribution). We propose a method for estimating the parameters of a GDD mixture.

This estimation is based on the Maximum Likelihood (ML) and Fisher's scoring methods. A

very interesting interpretation, based on the Statistical Geometric Information, is given. To

allow convergence to better local minimum and take the GDD distribution into account from

the outset, an initialization algorithm is proposed. The performance of our method is tested by

contextual and non-contextual evaluation. The non-contextual evaluation is based on synthetic

histograms, while the contextual one compares the performance of Gaussian and GDD mixtures

m the classification of several pattern- recognition data sets. The GDD mixture is also applied

to the problem of summarizing image databases.

Keywords : Dirichlet distribution, mixture modeling, Maximum Likelihood, Fisher's

scoring method, Riemannian space, Natural Gradient, image summarizing.

1 The completion of this research was made possible thanks to Bell Canada's support through its Bell Uni-
versity Laboratories R&D program.
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1 Introduction

Scientific pursuits and human activity in general generate data. These data may be incomplete,

redundant or erroneous [10]. Probabilistic methods are particularly useful in understanding the

patterns present in such data. One such methods is the Bayesian approach which can be roughly

described as estimating the uncertainty of a model [36]. In fact, by the Bayesian approach we

can estimate the uncertainty of a model's fit and the uncertainty of the estimated parameters

themselves. The Bayesian approach can be employed with mixture models, which have been

used extensively to model a wide variety of important practical situations where data can

be viewed as arising from several populations mixed in varying proportions. Nowadays, this

kind of statistical model is used in a variety of domains. In computer vision applications, for

example, we can use mixture models to organize image collections as well as for color image

segmentation, restoration and texture processing, and content-based image retrieval. Mixture

modeling can be viewed as the superimposition of a finite number of component densities. The

problem of estimating the parameters of the components of a mixture has been the subject of

diverse studies [13]. The isotropic nature of Gaussian functions, along with their capability for

representing the distribution compactly by a mean vector and covariance matrix, have made

Gaussian Mixture Decomposition (GM) a popular technique [24]. The Gaussian mixture is not

the best choice in all applications, however, and it will fail to discover true structure where

the partitions are clearly non-Gaussian [35, 31]. This is due to the fact that the Gaussian

shape is rigid, as we will explain below. Moreover, this distribution is defined on R and thus

does not have a compact support, which is why parameters estimated by the moment method,

for example, such as the mean, are not accurate in many cases. Indeed, having a compact

support is an interesting property for a given density because of the nature of data in general

[15]. Generally, we estimate data which are compactly supported, such as data originating from

videos, images or text.

In this paper we will show that the Dirichlet distribution can be a very good choice to overcome

the disadvantages of the Gaussian. The Dirichlet distribution is the multivariate generalization

of the Beta distribution, which offers considerable flexibility and ease of use. In contrast with

other distributions such as the Gaussian, which permit only symmetric modes, the Dirichlet



distribution is highly flexible and permit multiple symmetric and asymmetric modes. In fact,

the Dirichlet distribution may be skewed to the right, skewed to the left or symmetric (see

Fig. 1). The flexibility of the Beta distribution was also proven by A. El Zaart and D. Ziou

[12]. In fact, they proposed a system called GGBL, composed of four parametric distributions

(Gaussian, Gamma, Beta and Log-Normal). This system was defined by the graph of each

distribution in the (/?i, f3^) plane where ft and ft are respectively the third and the fourth

moment and represent the coefHcients of the asymmetry and flatness of a given distribution.

In this plane, the graph of the Gaussian distribution is represented by a point, that of the

Gamma distribution is a line, that of the Beta distribution is a plane and that of the Log-

Normal is a line. Thus we can deduce that the Beta distribution can fit data better than the

other distributions, particulary the Gaussian and the Gamma.

(a) (b) (c)

Figure 1: The Dirichlet distribution for different parameters, (a) o;i =8.5, a^ = 7.5, a^ = 1.5.

(b) o/i = 10.5, o;2 = 3.5, c^3 = 3.5. (c) OL\ = 3.5, o/2 = 3.5, as= 3.5.

For all these reasons, we are interested in the Dirichlet distribution. In contrast to the vast

amount of theoretical work that exists on the Dirichlet distribution, however, very little work

has been done on its practical applications, such as parameter estimation. The majority of

the works either consider a single distribution [27, 37] or is restricted to the 2-parameter Beta

distribution [14, 16, 4, 39]. This neglect may be due to the fact that this distribution is

unfamiliar to many scientists. In this paper, we will propose a generalization of the Dirichlet

distribution which we will call the GDD (Generalized Dirichlet Distribution) . We will estimate

the parameters of a GDD mixture and test it with real data.



The paper is organized as follows. The next section describes the GDD mixture in details. In

section 3, we propose a method for estimating the parameters of a ODD mixture. In section

4, we present a way of initializing the parameters and give the complete estimation algorithm.

Section 5 is devoted to experimental results. We end the paper with some concluding remarks.

2 The Generalized Dirichlet Distribution Mixture

If the random vector X = (Xi,... ,Xdirn) follows a Dirichlet distribution [22, 23] the joint

density function is given by:

^1^ dim+1

p(X,,..., X^) = ^^-, n xr-1 (i)
[i=l ' 1 \ai) i=T

where
dim

Ex. <1 (2)
i=l

dim

\X\=^Xi, 0<Xi<l ^i=l...dim (3)
i=l

Xdim+1 =1-\X\ (4)

dim+1

\a\ = ^ Q^, o/i > 0 Vz = 1... d%m + 1 (5)
1=1

This distribution is the multivariate extension of the 2-parameter Beta distribution. The mean

and the variance of the Dirichlet distribution are given by:

E(X.) = g (6)

V-r(X.) = ^,oal7,a:) (7)a|2(|a|+l)
and the covariance between Xi and Xj is:

C7o.W,X,)=,^a3\, (8)
la 2(1"1+1)

The Dirichlet distribution with parameter vector a = (o/i,..., adim+i) can be represented either

as a distribution on the hyperplane Bdzm+i ={(Xi,..., Xdim+i), S?=i xi = 1} m Kfm+\ or

6



as a distribution inside the simplex Adim = {(^i? • • •; ^ dim), S?lm Xi < 1} m R^m.

This simplex represents a real handicap for us. Indeed, we can't be sure that the data we use

will be inside it (between 0 and 1). A simple solution is to apply some transformation, such as

normalization, to the vectors X = (Xi,..., Xdzm) in order to make them fall inside the simplex

Adim- However, much important information may be lost in this type of transformation. Here,

we propose a distribution which we call the Generalized Dirichlet Distribution (GDD) in order

to overcome this problem. For this purpose, consider X = (Xi,... ,Xdim), 0 < Xi < A V

%=!... dim and JC| < A. By performing the transformation

Yi=Xi/A, i= 1,2,..., dim

which has Jacobian A~ im, we obtain: 0 <Yi < 1 Vz=l... dzm and |y| < 1. Suppose that

y = (Yi,..., y^m) follows a Dirichlet distribution with parameter vector a = (c^i,..., o^m+i),

then:

_»i\ dim dim
\a\) V[Vai-l(-j _ \~^ V..}adim^-1

^•••^dim) - T-Tdmi+l^/- \ LL^i ^~ / .1^
[i=l 1 W) T=l 7^1

dim dim

= A-dim_^a^ Y[(Xi/A)ai-l(l - y"(X,/A))adtm+1-1
rr^m+i-p/^ 11^1"V"J-/ v'1' z^^"1'
1 lz=l L \uii) z==l t=l

r(l"l)
•dim+1

dim dim

Aiai-1 rrr r(".) tA
JJXft-l(A - ^"Xi)oidim+1-1

i=l

The GDD is a particular case of the Liouville distribution, where the generating density is

uniform and equal to 1/A [22] . Thus, if the random vector X = (Xi, ..., Xdim) follows a GDD

with parameter vector a = (o/i,..., o'^m+i); the joint density function is given by :

^^ dim+1

Ci,..., X^) = ,„ .i^i_. n ^t-l'15'"'^m;-AH-infim+lr(Q/z) u ^

This density is defined in the simplex {(Xi,..., Xciim), Sf=T -^i < A}, and we have:

Xdim^=A-\X\ (10)

The mean and the variance of the GDD satisfy the following conditions (see Appendix Al):

OiiE(X,) = A^ (11)



^ ai(\a\ - ai)v^m = A2,s—^ (12)
a 2(1"1+1)

and the covariance between Xi and Xj is:

l2 aia3
Cov(X,,X,)=-A2,_^:,3, „ (13)

a 2(|a|+l)

A GDD mixture with M components is defined as :

M
p(x/e)=^p(x/j,e,)P(j) (i4)

J=l

where the P(j) (0 < P(j) < 1 and Y^J^P(j) = 1) are the mixing proportions and p(X/j, Qj)

is the GDD. The symbol 6 refers to the entire set of parameters to be estimated:

6=(di,...^M,P(l),...,P(M))

where aj is the parameter vector for the jth population. In the following developments, we use

the notation 6j = (aj, P(j)) for j = 1 ... M.

3 Maximum Likelihood Estimation

The problem of estimating the parameters which determine a mixture has been the subject of

diverse studies [34]. During the last two decades, the method of maximum likelihood (ML)

[7, 38, 33] has become the most common followed approach to this problem. Of the variety of

iterative methods which have been suggested as alternatives to optimize the parameters of a

mixture, one most widely used is the Expectation Maximization (EM). The EM was originally

proposed by Dempster et al. [10] for estimating the Maximum Likelihood Estimator (MLE)

of stochastic models. This algorithm gives us an iterative procedure and the practical form is

usually very simple. The EM algorithm can be viewed as an approximation of Fisher scoring

method [18]. A maximum likelihood estimate associated with a sample of observations is a

choice of parameters which maximizes the probability density function of the sample. Thus,

with ML estimation, the problem of determining 6 becomes:

maxQp(X/Q) (15)



with the constraint: S^i-P(j) = 1 and P(j) > 0 V^' € [1,M] (this constraint is satisfied).

These constraints permit us to take into consideration a priori probabilities P(j). Using La-

grange multipliers, we maximize the following function:

M
<S>(X, Q, A) = ln(p(X/Q)) + A(l - ^ P(z)) (16)

i=l

where A is the Lagrange multiplier. For convenience, we have replaced the function p{X/Q) in

Eq. 15 by the function ln(p(X/Q)). If we assume that we have N random vector Xi which are

independent, we can write:

p(X/Q) = np(J?,/e) (17)
i=l

M
p(X,/Q)=j^p(X,/j,e,)P(j) (18)

J=l

Replacing equations 17 and 18 we obtain:

N M M
$(x,e,A) = ^>(Ep(x'/^')py)) +A(I - ^P(J)) (19)

1=1 j=l j=l

We will now try to resolve this optimization problem. To do this, we must determine the

solution to the following equations:

,$(X,e,A)=0 (20)9Q

^$(X,9,A)=0 (21)

Calculating the derivative with respect to ©j, we obtain (see Appendix A2):

N Q .

-0>(X,e,A) = ^p(j/X,,Q,)^ln(p(X./j,Q,)) (22)
'J ^ u^3

where p(j/Xi, Qj) is the posterior probability. In what follows, we will estimate the parameters.

3.1 Estimation of the a priori probability

Since p(Xi/j, Oj) is independent of P(j"), straight forward manipulations yield:

g^-^(x,9.A) = p^y Epy/;?" ^) - A = ° (23)
t,:^:

9



Now we take the derivative of Eq. 19 with respect to A. We find:

M
^(X,6,A)=l-^Pa)=0 (24)

J=l

From Eq. 23, we obtain:
N

P(])=^P(J/X^) (25)

Thus Eq. 24 gives us:

A1^
M ^ M N

Epy)=iEEpO'/;?"^)=1 (26)
j=l " 3=1 i==l

Since
M
^pO/X.,a,)=l (27)
.7=1

This gives
M_ ^ ^_M_
E po') = x E Epy/x" ^) = 7- =1 (28)
3=1 i=l j=l

Thus,

A = N (29)

Finally, the a priori probability is:

JL
P[j)=^p(]/X.,a,) (30)

i=l

3.2 Estimation of the a parameters

In order to estimate the a parameters we will use Fisher's scoring method. This approach is a

variant of the Newton-Raphson [32] method. In fact, Eq. 20 can be approximated by expanding

it in a power series around a point 6jo:

^<E>(x,e,A) ^ ^(x,e,A)(e,,) + (e, -e,j^$(^,e,A)(e,,,) (3i)

Since ^|-^(X,9,A) = 0, then

e, ^ e,, - (^$(x,e,A)(e,,))-l^$(x,e,A)(9,j (32)
/3 u^3

10



Thus, an updated estimate, Q^~r±}, of a current estimate 6^; is given by:

Qf^ = QW _ (^(X,Q,A)(Q,))-^(^(X,Q,A)(Q,))^^ (33)

which is equivalent to:

e?+l> = ew - ff-l(eW)(^$(x,e,A)(e,))^,^> (34)

where H is the Hessian matrix evaluated at the current estimate. One variant of this approach

is Fisher's scoring method, where the Hessian matrix H is replaced by the negative of Fisher's

information matrix. The scoring method is based on the first, second and mixed derivatives of

the log-likelihood function. Thus, we will compute these derivatives.

According to Eq. 22 we have:

N
-$(x, e, A) = ^p(j/x,, a,)^ln(p(X./j, a,)) (35)
)i3l ' ^ ' " °aJl

Calculating the derivative of ln(p(Xi/j, aj) with respect to 6j, we obtain (see Appendix A3):

-ln(pW^ ^')) = ^(1^1) - ^(^) + ^?) - ^(A) (36)
vjl

where ^(.) is the digamma function. Thus:

N N
-^(X, 6, A) = (1/(|a,|) - <&(a,,)) ^>0/X., a,) + j^p(j/Xi, a,)[ln(Xa) - ln(A)) (37)

1=1 1=1

During iterations, the aji can become negative. In order to overcome this problem, a suggestion

was given by Ronning [37] for the case of one Dirichlet distribution. His suggestion is to set

all aji = mm{Xn}, i = 1.. .N. These initial estimates only prevent the aji from becoming

negative during the first few iterations. Besides, the method gives good results only in the case

of one distribution, because of sensitivity to initialization in the case of a mixture (see next

section). Here, we give a better solution for keeping the aji positive during all the iterations.

Since we require that the aji be strictly positive, and we want the parameters upon which we will

derive to be unconstrained, we reparametrize, setting aji = e/3-';, where (3ji is an unconstrained

real number. Then, the partial derivative of <& (Eq. 19 ) with respect to f3ji is as follows (see

Appendix A4):
N N

^$(X,6,A) = a^(\a,\)-9(a,t))^p(j/X,,a,)+Y^p(j/X,,a,)(ln(Xa)-ln(A))] (38)
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By computing the second and mixed derivatives of the log-likelihood function we obtain (see

Appendix A5):
j92_
9PJ, $(^,e,A) = ^(^,e,A)+a,2,(vp'(|a,|)-^'(a,,))Ef=iPO'/^,^)

N Q+ ^,[(^(|",|) - ^(a,,)) E,;Li ^.PU/Xi,",) (39)
+ ^ N

^z=l 9p,î p(j/X,,di;)(ln(Xn)-ln(A))]

^^<S>(X,e,A) = o^^a^'(\a,\)^,p(j/X,,a,)
+ a,,, [(<&(|a,|) - >P(a,,,)) E.iv=i ^PO'/^, ^)
+ E,^ a^p(J/X,,a,)(ln(X^) - ln(A))]

(40)

where ^ (.) is the trigamma function. Note that we need to compute the derivative of the a

posterior probability p(j/Xi, aj) with respect to f3ji (see Appendix A6):

9
9P,i

p(j/X., a,) = a,t x p(j/X,, a,)(l - p(j/X,, a,))(-9(\a,\) - ^(a,,) + ln(Xa) - ln(A)) (41)

Given a set of initial estimates (see the next section), Fisher's scoring method can now be used.

The iterative scheme of the Fisher method is given by the following equation:

/ \

\ Pjdim+1

\ old

+

/\

lim+1

( Var(^) ... Cov^,^^)\°td ( ^ \

\Cov((3jdim+i,f3ji) ... Var(/3jdim+i) )

old

\ Qftjdim+1
(42)

where j is the class number: 1 < j < M.

The variance-covariance matrix is obtained as the inverse2 of the Fisher's information matrix

I. The information matrix I is:

92
I = Iw, = -E[- .$(x,e,A)] (43)

^PjhQPjh
Comparing this iterative scheme based on Fisher's scoring method with a quasi-Newton method

presented by the following equation [34, 11]:

9
l3yw:=Pf-ri^(X,Q,^ (44)

We have made some approximations to avoid inverting the information matrix in each iteration. See

Appendix B for more details.

12



where 0 <?7 < l,we can note the presence of an extra term which is the inverse of the Fisher's

information matrix. Let us now focus on the geometrical interpretation of Eq. 42:

^.w ^ ^« _ ( var(^) ... Cov(^,p,^) )
old

f -^^ \^
old

, 9 ^
\ 9/3jdim+l

(45)

NG

Thus, the ordinary gradient -^-^(X, 6, A) is replaced by the term NG, which is called the
-^

Natural Gradient or Contravariant Gradient by Amari [3]. Let S = {f3 = (A,... ,Pdim+i) ^

Rdtm+1} be a parameter space in which a given likelihood function (^>) is defined. When S

is a Euclidean space with an orthonormal coordinate system, the squared length of a small
--* . _ _ _ . -* -* _-*

incremental vector 9(3 = (9 Pi, ..., 9f3dim+i) connecting f3 and /3 + 9(3 is given by:

dim+1

\a/3\2 = ^ (9ft)2 (46)
;1=1

However, when the coordinate system is nonorthonormal, the squared length is given by the

following quadratic form [3]:

dim+1 dim+1

1^12= E E^(W(W (47)
d=l ;2=1

The (dim + 1) x (dim + 1) matrix G = (gi^) is called the Riemannian metric tensor. This

matrix is reduced to the unit matrix Idim+ixdim+i in the Euclidean orthonormal case. Knowing

that the GDD is an exponential density [22], we can affirm that the parameter space of our

likelihood function ^>, described by Eq. 19, is a curved manifold. In fact, according to Amari,

the exponential family of probability forms a manifold which is equipped with a Riemannian

metric given by the Fisher's information matrix [2, 3, 1]. Thus, we do not have an orthonormal
-»

linear coordinate system, and the length of 9(3 is writen as Eq. 47. Knowing that the steepest

direction of a function <& at f3 is defined by the vector 9/3 that minimizes ^(/3 + ^/3), where |c?/?|

has a fixed length and is sufficiently small, we can deduce that the gradient of <& can't be the

same in a Euclidean space and a Riemannian one. The relation between the natural gradient

^- and the ordinary gradient is given by the following equation [2]:

94=G-l94 (48)

13



where G is the Fisher's information matrix. This result was confirmed by experiments. Indeed,

we have implemented these two methods and observed that the method given by Eq. 44 does

not give good results compared with the Fisher s scoring method.

4 Initialization and Convergence Test

The maximum likelihood function presented by Eq. 19 is globally concave [37] in the case of

one distribution (M = 1). However, this particular advantage is not preserved when M > 1,

as shown in Fig. 2. In order to make our algorithm less sensitive to local maxima, we have

used some initialization schemes including the Fuzzy C-means [6] and the method of moments

(MM). In fact, the method of moments gives really good estimations because of the compact

support of the Dirichlet distribution.

alpha2

100 '100

70'
.40'

alpha2 60

'20
'40.

'60 alphal

100 100

(a) (b)
Figure 2: Representation of <E> as function of two parameters a\ and as. (a) M > 1. (b) M = 1.

From an examination of Eq. 11 and Eq. 12 we see that there are first dim first-order

moments and dim second-order moments, yielding a total of C^^ possible combinations of

equations to solve for the dim parameters. According to Fieltiz and Myers [14] a symmetrical

way of proceeding would be to choose the first dim first-order equations and the first second-

order equation. The reason for not choosing the (dim + l)-th first order equation is that the

(dim + 1)-th equation is a linear combination of the others and together they do not form an

14



independent set of equations. Thus we have:

a, = (fu - s%; (=1,2...,Am (49)
X21 ~ {xll.

and
[xll ~ x2l){L ~ 2^1=1 xll,

adim+l = ^'-^/^2-
/21 — ^11.

where
1 v^

xll= AxN^xil l=l^--^dim+l (51)
i=l

1 v^
21 = A2xN^ n ^

z=l

Thus, our initialization method can be resumed as follows (we suppose that the number of

clusters M is known):

INITIALIZATION Algorithm

1. Apply the Fuzzy C-means to obtain the elements, covariance matrix and mean of each

component.

2. Apply the MM for each component j to obtain the vector of parameters dj.

3. Assign the data to clusters, assuming that the current model is correct.

4. If the current model and the new model are sufficiently close to each other, terminate,

else go to 2.

We can readily note that this initialization algorithm take the distribution into account. In

contrast to the classic initialization methods which use only algorithms such as K-means to

obtain the initialization parameters, we have introduced the method of moments with an it-

erative scheme to refine the results. By using the method of moments, we suppose from the

outset that we have a GDD mixture. This initialization method is designed to work on large

databases. When working on small data sets, applying the Fuzzy C-means and the MM only

once is a feasible option. With this initialization method in hand, our algorithm for estimating

of GDD mixtures can be summarized as follows:

15



GDD MIXTURE ESTIMATION Algorithm

1. INPUT: c^m-dimensional data Xi, i = 1,... ,N and the number of clusters M.

2. INITIALIZATION Algorithm.

3. Update the aj using Eq. 42, j = 1,..., M.

4. Update the P(j) using Eq. 30, j = 1,..., M.

5. If the convergence test is passed, terminate, else go to 3.

If the sample is sufficiently large, the test of convergence can be done using a statistical method

[8]. The method uses a quadratic form of the gradient vector. Consider the statistics:

_1_^ , ^ , a —^
a/3,1 ' • • • a^dim+i

Var(^) ... Cov(f3^,f3jdim+i) \ ( af^^

Cov(Pjdim+i,/3ji) ... Var(/3jdim+i) ) —9—^
\ QPjdim+1

(53)
This statistical test can be shown to be approximately distributed as a Chi-square random

variable with dim + 1 degrees of freedom. The iteration is continued until S falls below than

Xdim+l(l/) ^or a ^xe^ ^- Other convergence tests could involve testing the stabilization of the

(3j or the value of the maximum likelihood function.

5 Experimental Results

In this section, we validate the GDD mixture using contextual and non-contextual evaluation

[29] to test the performance of our method. For the non-contextual evaluation, we use some

synthetic histograms. The contextual evaluation is based on a pattern recognition application

and one from computer vision. We begin with the non-contextual evaluation. For this purpose

we synthesized three histograms (figures 3, 4 and 5). The real and the estimated parameters of

each histogram are specified in tables 1, 2 and 3. We also defined an error measure, given by:

1 v^
E = ^7 Y \ \Hreal(Xi) ~ Hestimated(Xi) \ (54)

Nz-_
i=l
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where
M

Hreal(X) = H estimated^) = ^ \ ,PU) ^^|
r(l"l) dim+1

Al<
n xrl (55)^ w'AH-inS*+lr(a,) ^

N is the number of data point used to compute the error, Hreai(X) is the real value of the

histogram in X and Hestimated(X) is the estimated value. The first histogram presents a GDD

mixture of three well separated components. We used N = 100, the error was 3.433 xl0-8.

The second and the third histograms present overlapped GDD components. The errors were

5.99 xl0-7 and 2.5 xl0-2, respectively for N = 255.

3,5

3

2,5

2

1.5-

1

0.5-

0' 0:2

<•

0:4
Legend

<? <t. .»

0:6 0:8 1
x

Real Histogram
tistogram

Figure 3: Real and estimated histograms for the first synthetic data set.

In the pattern recognition application, our method was used to model the class-conditional

densities in four standard pattern recognition data sets which differ in dimension, size and

complexity. The classification was performed using the Bayes rule {Xi is assigned to class ji if

P(ji)p(xi/j^) > P(j)p(xi/j),^j -f- ji) after the class-conditional densities have been estimated.

The goal of this application is also to compare the modeling capabilities of GDD and Gaussian

mixture. We have used the EM algorithm to estimate the parameters of Gaussian mixtures

because it's very hard in practice to use the scoring method in the case of Gaussians [40, 30].

The comparison will be based essentially on errors of classification, error of fit and number
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Mode 1

Mode 2

Mode 3

Real parameters

P(l)=0.33

Q/n = 8

ai2=2

P(2)=0.34

Q'21 = 80

0/22 = 80

P(3)=0.33

o/3i = 2

Q'32 = 8

Estimated parameters

P(l)=0.333

o/ii = 8.116

ai2 = 2.024

P(2)=0.335

a2i = 79.567

o;22 =79.567

P(3)=0.332

o;3i = 2.024

CK32 = 8.116

Table 1: Estimation of the parameters of the GDD for the first synthetic data set.

of iterations in each case. We begin with two examples which are reported in [5, 9]. The

first data set describes an enzymatic activity distribution in the blood and the second one an

acidity index distribution for 155 lakes. For these two data sets, a mixture of 2 distributions is

identified [5, 9]. Figures 6 and 8 show the real and the estimated histograms for the Enzyme

and Acidity data sets, respectively. In both cases, it's clear that the GDD and the Gaussian

fit the data. We also compared the likelihood cycle of the Gaussian and the ODD (figures 7

and 9). According to these figures our algorithm converges in a smaller number of iterations

(9 for the Enzyme data set and 14 for the Acidity set) compared to the case where Gaussian

mixture was considered (17 for the Enzyme data set and 20 for the Acidity set). The final

results of the estimations are given in tables 4 and 5. Our algorithm was also validated with

multidimensional data sets. We took two well-known examples, the Ruspini [19] and Wisconsin

Breast Cancer [21] data sets. We chose these data sets for their specific characteristics. The

Ruspini data set contains two-dimensional3 data in four groups (see Fig. 10) and the Breast

Cancer data set is characterized by its size (683 patterns) and its dimension (9) [26] . For both

3 There is of course, no requirement that the problem be of such low dimensionality and we chose dim =

2 purely for ease of presentation. It does, however, become increasingly difficult to verify the results of any

modeling when the dimensionality is high.
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Figure 4: Real and estimated histograms for the second synthetic data set.

examples, the comparison between the GDD and the Gaussian mixtures is based on the errors

of classification. By using the ODD mixture for the Ruspini data, we reached convergence in

10 iterations with an error of 1.33 percent (see tables 6 and 7). This is slightly better than the

result found for the Gaussian mixture (an error of 2.66 percent in 11 iterations). We also plotted

the results. In each case we can clearly observe the presence of 4 classes (see figures 11 and

12). The GDD also gave better results (an error of 1.024 percent) for the Breast Cancer data,

compared with the Gaussian mixture (an error of 2.342 percent). The estimated parameters

are given in tables 8 and 9.

The third validation is contextual and concerns the summarization of image databases. For

this validation, we have used only GDD mixture because of the difficulty to applicate Gaussian

mixture (due to the singularity of the covariance matrix during iterations). This application is

very important especially in the case of content-based image retrieval [25]. Summarizing the

database simplifies the task of retrieval by restricting the search for similar images to a smaller

domain of the database. Summarization is also very efficient for browsing [28]. Knowing the

categories of images in a given database allows the user to find the images he is looking for more

quickly. Using mixture decomposition, we can find natural groupings of images and represent

each group by the most representative image in the group. In other words, after appropriate

19



Mode 1

Mode 2

Real parameters

P(l)=0.5

0/11=2

Qil2 = 8

P(2)=0.5

Q/2l = 5

0^22 = 5

Estimated parameters

P(l)=0.545

an = 1.942

Q'12 = 7.141

P(2)=0.455

c^2i = 5.466

Q;22 =5.108

Table 2: Estimation of the parameters of the GDD for the second synthetic data set.

features are extracted from the images, it allows us to partition the feature space into regions

that are relatively homogeneous, with respect to the chosen set of features. By identifying the

homogeneous regions in the feature space, the task of summarization is accomplished. We used a

database containing 600 images of size 128 x 96, and took color as a feature for categorizing the

images. In order to determine the vector of characteristics for each image, pixels were projected

onto the 3D HSI (H = Hue, S = Saturation, and I = Intensity) space. We thus obtained a

3-D color histogram for each image. Based on the work of Kherfi et al. [20], we obtained an

SD vector from this histogram. Their method consists of partitioning the space by subdividing

each of the axes H, S and I into n equal intervals. This gives n subspaces. The sum of the

elements in each subspace is computed and the result is placed in the corresponding cell of the

feature vector. In our application, we chose n = 2, so each image was represented by a 23 = SD

feature vector. We also asked a human subject to determine the number of groups, and he found

five categories. After the feature were extracted from the images, the GDD mixture algorithm

was applied to the feature vectors by specifying five classes, where each vector represents an

image. The two classifications (the one generated by the human subject and the one given

by our algorithm) were compared by counting the number of misclassified images, yielding the

confusion matrix (see table 10). In this confusion matrix, the cell (classic class j) represents

the number of images from classi which are classified as class j. Our algorithm reached the

convergence in 15 iterations (see Fig. 14). The number of images misclassified was small: 40

images, which represents an accuracy of 93.34 percent.
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6 Conclusion

In this paper, we have introduced a new mixture, based on a generalization of the Dirichlet

distribution, that we call the GDD. The GDD has the advantage that by varying its parameters,

it permits multiple modes and asymmetry and can thus approximate a wide variety of shapes.

We estimated the parameters of this mixture using the maximum likelihood and Fisher's scoring

methods. An interesting interpretation, based on the statistical geometric information, was

given. In order to make our method less sensitive to initialization, we proposed an initialization

algorithm based on the moments, which takes the distribution into account from the outset.

Contextual and non-contextual evaluations were used to test the performance of our method.

The non-contextual evaluation was based on synthetic histograms. The contextual test involved

data classification and summarization of image databases. From the results of these evaluations,

we can say that the GDD mixture has good modeling capabilities.
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A Appendix A

A.l Appendix Al

Here, we determine the mean, variance and covariance of a GDD. Take the random vector

X = (Xl, . . . , X^m)? 0<^<AVi=l... dim and |X| < A. Suppose that this vector follows

a GDD with parameter vector a = (o;i,..., o'^m+i); then:

E(Xi) = E(A x Yi) = A x E(Y,) = A^

2..T._/^_ A2ai(\d\-ai)Var(X,) = Var(A x Y,) = A2 x Var(Yi) = A a|2(|a|+l)

Cov(Xi,Xj) = Cov(A x Yi,A x V,) = A2 x Cov(Yi,Yj) = -A2^,,^'
a 2(|a|+l)

A.2 Appendix A2

Here, we calculate the derivative of ^ with respect to Qj.

N M
^(X,Q,A) = -^^ln(^p(X./j,Q,)P(j))

i=l j=l

N r, M

= ^g^ln(^P(Xi/J,@,}P(j))
z=l 3 j=l

N -, c, MY^_1_<9^E.^p(^,e,)py)9Q,^2_^ Y^M
<r

N ^ ^ M

= i^^(wj'Q3)pw

^^p(X,/j,Q,)P(j))

Since:

p(j/X.,Q,)=p(x1;^ (56)
^y

Then
^v A A^V^,/-?. ^^S,Mip(^,e,)pa)',9,A)= > \p(j/Xi,Qi)v^3 ~"^
9Q^^'-'-' -^-"-"^' p(x./j,0,)P(j)
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which is equivalent to:

9 ^^ ^ ^_V^/..^ „, S^./^W^(x. e, A) = y/x., ^9S^'^' W

Finally, we obtain:

N
-$(x, e, A) = ^p(j/x,, Q,)^ln(p{X,/j, 6,)Pa)) (59)
/J -^ ^^'

A.3 Appendix A3

Here, we calculate the derivative of ln(p(Xi/j, aj)) with respect to aji. We have:

_-+ i\ dim+1
X/7.d^= iuajiu FT X^-l
^'a^=A?i-in^+lr(Q,,) n ^"'

Then

dim+1 dim+1

ln{p(X./j,a,)) = ln(T(\a,\)) - ln(A^-1) - ln( [] r(a,,)) + ln( ]-[ X^-1)xy-1)
;=1 1=1

So,

dim-\-l

^n(p(X,/,,a,)) = ^(r(|a,|))-^(^l-l)-^(nr(".))
dim+1

^ ^("'Ip.?'-1)

Since we have:

|^))=]^^) (60)
Then:

dim+1 D dzm+1

^-ln( n F(a,,)) = ^ E ;"(r(a.'))
V -^ uui3l ~iZ[

9
Qaji

= ^0
ln(T(a,,))
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We have also:

^n^-1)= ^ln^^l r=T uui3l ^T

-W-1)•S1—1

Qaji
Q

Qaji

and

(aji - l)ln(Xu) = ln{Xu)

Qaji~'^~~ ' Qaji

Finally we obtain:

Q

9-ln(A^-1) = 7,—(|a,| - l)ln(A) = ln(A)

Qa-,'3l
ln{p(X,/j, a,)) = ^(|a,|) - ^(o/,,) + ^?) - /n(A)

A.4 Appendix A4

Here, we calculate the derivative of <& with respect to

Q ^t^. ^ A\ ^ ^f^- r\ K\ ., ^a3l•$(x,e,A) = ^—$(x,e,A)xaftrv"'"'"/ 9a,rv""""/"a,9,,

9 _ / _i _ .. Qe^1
-^(x,e,A)x9a,r~-""""'" 9/3,t

-^(X,6,A)xe^
Yjl

Since e^ = aji, then:

N N

-<S>(X, e, A) = a,,[OP(|a,|) - 'P(a,,)) ^p(j/X., a,) + ^p(j/X., a,)(;n(X.,) - ;n(A))]
s '' " s

A.5 Appendix A5

Here, we calculate the second and the mixing derivatives of the log-Likelihood function with

respect to /^;.

^(X,Q,A.)
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^(^(xt6'A))
9 .... _„.„ ., ..^ ..,-- ., ^.-[e^' x [(M>(|a,|) - ^(a,,)) ^pO'/X., d?,) + ^p(j/X., a,)(i»?) - ;n(A))]]

s ' "' s
N N

= [e^" x [(1/(|a,|) - ^?(a,,)) ^p07X., a,) + ^>(j7;?., a,)(ln(X.i) - ln(A))]}
i=l i=l

+[e^" * [^' x (^'(|a,|) - ^'(a,,)) ^>a/X., a,) + (^(|a,|) - ^(a,,)) ^ ^-p07^, ",)
s ^1

+ E lSr.P(3/x" a,Wn(xa) - MA))]]
^T

= ^(x, e, A) + a,2,(^'(|a,|) - ^'(a,,)) ^pO/X., a,)
~i=l

N

+a,,?(K|) - 9(afl)) ^ ^P07^., ",)

N
+ E ^-P(J/;?" a.)(;"?0 - ("(A))i

^1
^ (.) is the Trigamma function and we have:

^'(x)=^(x)=^ln(T(x)) (61)

-^-$(X.Q.A)
9pji,9f3ji,

^-(^-$(x,e,A))
^1 °Pjh

9 ... _„_ _, ,,^ ,.,.- ., ^-\e^ x [(v&(|a,|) - 1/(a,J) ^p(j/X., a,) + ^pO'/X., a,)(in(^) - ln(A))]]
72 7ri ^1

= [e^ x [e^ x (•S'(\a,\))^p(j/X.,a,) + W\a,\) - ^(a,J) ^ ^-p(j/X,,a,)
1^~1 ~^1u^12

N

+ E -^P(J/X" a.)(in?J - ;"(A))]l
^1 u^^

^ ..,_. .. ._...., .. ..v^ 9
= a^a^' (\a,\)) ^p(j/X,, a,) + Q/^?(|a,|) - ^(a,-J) ^ ^-p(j/^ a,)

S ^1 t7^721=1

N
+ E 7^-P(3/X" a^ln(x'b) - ln(A))]

^T u^^
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A.6 Appendix A6

Here, we calculate the derivative o!p(j/Xi,aj) with respect to f3ji. We know that:

-p(j/Xi, Oj) = aji^—p(j/Xi, dj)Q^^J1^^^' ^Qa,i

Since:

9^p(j/x"al)

9 p(X./j, a,)P(j)
9afl^P(X,/J,^)P(j)
P(j)^p(X,/j, a,) ^p(X,l],e,)P(j) - P(j)p(X./j, a,)^ ^M=iP(Xi/3, S,)P(j)

(EMt^Wj,a,)P(j)}'-
p(])^p(x./3,«,) E,Mi p(^./j, ^)-PO') - P(3)p(Xi/3, S,)^;P(X,/J, a,)P(j)

(E,Mipto^).PO-))2
P(j)^,p(Xi/j,a,)(^p(X,/j,a,)P(j) - P(j)p(X,/j,a,))

^M(E^p(x./3,^)P(j)Y

Using the following result (see Appendix A7):

9
Qdji

we obtain:

9

p(X,/j, a,) = p(X,/j, a,)(-r(|a;|) - ^(a,,) + topC.i) - ln(A)) (62)

9^p(j/x"ai)

P(j)p{X,/j,a,) (P(j)p(X./j,a,))--|a,|) - -^(o^) + ln(Xu} - ln{A}}\_^ w/^--/^-^ _ _^w/x-^
•M ._/-("? / • -* \ n/ -\ /\—\M . / x? / • _-* \ n/ _•^T=lP(xi/^ aJ')PO") (^=lP(xi/^ a])p(W'J:

\2^= a,,(^(|a,|) - 'B(a,t)+ln(Xa)-ln(A))(p(j/X,,aj) -p(j/X.,a,Y)

= a,,(^(|d;-|) - ^(a,i) + ln(Xu) - ln(A))p(j/Xi, a,)(l - p(j/Xi, a,))

A.7 Appendix A7

Here, we calculate the derivative of p(Xi/j, aj) with respect to f3ji. For this purpose, we use

Eq. 36. We have:

^-ln(p(X./j,a,)) = '&(|a,|) - <&(a,i) + ln(X») - ln(A))
^jl
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Since:

Thus

9 ,„/„/-? /.. ^ _ 47P^'^)
MpWj^j)) = "T^ ,,^^ ^ v ""' "// p(Xi/j,aj)

-p(Xi/j, aj) = p(Xi/j, aj)-^—ln(p(Xi/j, a;-))Qa,it'^^'J^'J} t'^^IJ^'J)Qa,{

Finally:

^Lp(Xt/j, a,) = p(X./j, a,)^-(-9(\a,\) - r(a,,) + ln(X») - ln(A))Qaji^^'ilJ^'J/ ^y^'t/J^J/Qa,i

B Appendix B

Experiments have shown that the following approximations can be made without affecting the

final results:

N r, AT

(r(|a,|) - 1/(a,,)) ^ ^PU/Xi, a,) + ^ ^-PO/X., a,)(;n(X,,) - ln(A)) ^ 0
^aP3l ~ ' " ^aP3i

Thus, Eq. 39 becomes:

^$(X,e,A) = —c&(X,6,A) +a,2,(^'(|a,|) - ^ (a,,))^p(j/X,,a,) (63)

Besides, we have noted that:

N r, N
.-»

(^(|a,|) - ^(a,J) ^ ,^-P07X,, a,) + ^ ^p(]/X., a,)(ln(Xa,) - ln(A)) ^ 0
7^1 up3h 'i=l up3h

Thus, Eq. 40 becomes:

9a . N

-<S>(X, Q, A) = a,,,a,,^'(|a,|) J^p(j/X,, a,) (64)
f3h°P3b ' ' "ST

According to Eq. 43 the information matrix I is:

N
Ihh = -ajh^jh^ (\aj\)^p(j/Xi,dj), h / k (65)

i=l

27



N
Ihh=-^-^(x'Q'A)-a]h(}s'(\aJ\)-^'(a^))Y,P(]/Xi,^) (66)

11 ^1

This matrix can be written as:

I = D + Ja6T, (67)

where

D = diag[D^ ..., Dd,m+i] (68)

N
D' = -^-$(-y-e'A) +a]ft'WEp(]/X,,a,) (69)

1Z1
N

5=-9'(\a,\)^p(j/X.,a,) (70)
i=l

aT = bT = (oiji,.. -,0ijdim+i) (71)

The variance-covariance matrix is obtained as the inverse of the Fisher's information matrix

I by a well-known theorem (Theorem 8.3.3) given by Graybill [17]. The variance-covariance

matrix V = vi^ is thus found to be:

V =I-1 = D* + Wa*T, (72)

where:

D's=diag[l/D^...,l/Ddim+i] (73)

a* = (Q;ji/jDi, . . . , Q;^m+l/A^m+l) (74)

N N dim+1 _2

5' = ^'(|a,|) ^pO'/X., d;.)(l - ^'(|a,|) ^pa/^., ^) E ^) (75)
i=l i^l 7=1 ;
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Figure 5: Real and estimated histograms of the third synthetic data set.
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Figure 6: Real and estimated histograms for the Enzyme data set.
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Mode 1

Mode 2

Mode 3

Real parameters

P(l)=0.75

o/u=2

0/12 = 8

P(2)=0.15

Q'21 = 20

0^22 = 20

P(3)=0.1

0^31 = 8

0/32 = 2

Estimated parameters

P(l)=0.746

o;n = 2.043

c^i2 = 8.307

P(2)=0.156

o;2i = 19.185

022 =19.086

P(3)=0.098

o;3i = 8.220

Q'32 =2.035

Table 3: Estimation of the parameters of the GDD for the third synthetic data set.

1 2 3 A 5 G 7 8 9 10 11 12 13 14 15 16 17 1B 19

/
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Figure 7: The likelihood cycle in the case of the Gaussian and the GDD for the Enzyme data

set.
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Estimated parameters

Number of iterations

ODD Mixture

class 1

P(l)=0.396

Q;u=3.201

o;i2=4.185

class2

P(2)=0.604

o;2i=4.894

0^2=72.401

9

Gaussian Mixture

class 1

P(l)=0.408

,^1=1.253

ai2=0.263

class2

P(2)=0.592

,22=0.187

crJ=0.005

17

Table 4: Estimation of the parameters of the GDD and Gaussian mixtures for the Enzyme data

set.

Figure 8: Real and estimated histograms for the acidity data set.
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Figure 9: The likelihood cycle in the case of the Gaussian and the GDD for the Acidity data

set.
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Estimated parameters

Number of iterations

GDD Mixture

class 1

P(l)=0.579

Q;u=66.570

ai2=56.969

class2

P(2)=0.421

o;2i=26.656

Q;22=7.760

14

Gaussian Mixture

class 1

P(l)=0.596

^1=4.330

^=0.138

class2

P(2)=0.404

,^2=6.249

crj=0.270

20

Table 5: Estimation of the parameters of the GDD and Gaussian mixtures for the Acidity data

set.
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Figure 10: The Ruspini data set.
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Parameters

Error

Iterations

ODD Mixture

class 1

P(l)=0.267

Q;n=4.709

Q;12=16.121

o;i3=40.487

class2

P(2)=0.295

o;2i=23.023

0:22=78.146

o;23=32.315

class3

P(3)=0.239

o;3i=15.465

032=18.781

o;33=5.744

class4

P(4)=0.199

Q4i=29.289

042=7.914

0/43=68.230

%1.33

10

Table 6: Estimation of the parameters of the GDD mixture for the Ruspini data set.

x2 1.5 1.5 xl

Figure 11: Representation of the Ruspini data set by a GDD mixture.
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Parameters

Error

Iterations

Gaussian Mixture

classl

P(l)=0.266

^11=20.15

^12=64.95

44.013 -2.396

-2.396 48.223

class2

P(2)=0.294

^21=43.453

,^22=147.046

43.481 -6.348
V2=( '"""' ^"'^

-6.348 14,752

class3

P(3)=0.240

^31=95.720

^32=115.039

77.426 30.246V3=| ^""" """
30.245 56.640

class4

P(4)=0.2

^41=68.933

^42=19-4

23.897 0.113V4=| ''"•""' ";'

0.113 24.653

2.66 %

11

Table 7: Estimation of the parameters of the Gaussian mixture for the Ruspini data set.

x2
100

x1

200 ' ~ ~200

Figure 12: Representation of the Ruspini data set by a Gaussian mixture.
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Table 8: Estimation of the parameters of the Gaussian mixture for the Breast Cancer data set.
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Parameters

Error

ODD Mixture

class 1

P(l)=0.625

Q;n=8.595

o;i2=4.323

Q;i3=4.556

o/i4=4.444

ai5=7.079

o;i6==4.283

o;i7=6.604

0/18=4.156

0/19=3.983

Q;no=292.75

class2

P(2)=0.375

0^21=3.482

Q;22=3.113

Q;23=3.146

024=2.457

0^25=2.668

o;26=3.374

o;27=2.949

0/28=2.547

0/29=1.273

o;2io=21.617

1.024 %

Table 9: Estimation of the parameters of the GDD mixture for the Breast Cancer data set.

Classl

Class2

ClassS

Class4

Class5

Classl

101

0

0

0

0

Class2

0

120

0

6

2

Class3

10

0

108

0

0

Class4

0

13

0

104

5

Class5

0

0

0

4

127

Table 10: Confusion matrix for image classification by a GDD mixture.
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(d) (e)

Figure 13: Sample images from each group, (a) Classl, (b) Class2, (c) Class3, (d) Class4, (e)

Class5.
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Figure 14: The likelihood cycle in the case of the image-summarizing application.
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Conclusion

Dans ce memoire, nous nous sommes interesses aux problemes relatifs a la recherche

d'images, particulierement medicales. L'etude detaillee de ces problemes nous a permis

de comprendre les elements cles de ces systemes.

Dans la premiere partie du travail, nous avons etudie chacun des problemes relatifs a la

recherche d'images medicales afin de comprendre les specificites de ce domaine. D'abord

il y a 1'identification et Pextraction des caracteristiques et des metadonnees qui decrivent

Ie mieux les images. Ensuite, il y a la definition des mesures de similarite qui corres-

pondent mieux a Pusager. Nous avons etudie egalement Ie probleme de 1'indexation et

de la categorisation de la base de donnees d'images et nous pensons que c'est un point

tres important dans la recherche d'images. Cette etude a ete suivie par une analyse des

systemes existants pour la recherche d'images medicales. Nous pensons que la recherche

d images medicales est un domaine en pleine expansion et de grande complexite a cause

de la quantite d'information produite par la medecine et la diversite des domaines.

Comme nous pensons que les mixtures sont un moyen tres efficace pour 1'indexation

et pour resumer les bases de donnees nous nous sommes focalises sur ce sujet dans la

deuxieme partie du memoire. Grace aux mixtures, les donnees peuvent etre partitionnees

en categories homogenes et ainsi la recherche sera plus facile et plus rapide. Contraire-

ment aux travaux classiques qui utilisent la loi normale comme densite, nous avons utilise

la distribution de Dirichlet qui presente plusieurs avantages. Notre methode a ete validee

par plusieurs evaluations non-contextuelles basees sur des histogrammes synthetises et

contextuelles concernant la classification des donnees et Ie resume des bases de donnees

d'images. Le travail que nous avons presente est une premiere etape. D'autres questions

restent a etre abordees telle que la determination automatique du nombre des classes.
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