AN ANNOTATED AND CLASSIFIED BIBLIOGRAPHY OF
SOFTWARE METRICS PUBLICATIONS
1988 TO 1994

Qiang Ma

A thesis submitted to the Département de mathématiques et d’informatique
in partial fulfillment of the requirements for the degree of maitre &s sciences (M.Sc.)

FACULTE DES SCIENCES
UNIVERSITE DE SHERBROOKE

Sherbrooke, Québec, Canada, September 1996

(L4 |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et _
services bibliographlques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

» Canada

0-612-21799-X

ABSTRACT

With the growth of the software industry, the measurement of software plays an
ever increasing role. In order to provide software metric researchers and practi-
tioners with references so they can quickly identify the references of particular
interest to them, over 60 of the many publications on software metrics that have
appeared since 1988 are classified into four tables that comprise, respectively, (1)
Metrics through the Life Cycle, (2) Classic Metrics, (3) Programming Language
Metrics, and (4) New Metrics. Table 1 serves as a complete list of all the classified
publications while Table 2, Table 3 and Table 4 are subsets of Table 1. The subset
tables present more detailed information than Table 1. The bibliographic reference
section contains brief summaries of the publications in the classified tables. As a
continuation of the 1988 survey done by V. Cbté, P. Bourque, S. Oligny and N.
Rivard through the paper, “Software metrics: an overview of recent results”, this
project was conducted to discover the current trends in software metrics practice,
and to report the trend movement from the 1988 paper until now by comparison
of the results from the two surveys. All the table comparisons from the two surveys
are given in percentages. As a survey, we are fully aware of the limitations of our
collection out of the wealth of the publications in the software metrics field, but we
are confident that our survey is a good indicator of the practice in the software
metrics field.

ii

ACKNOWLEDGMENTS

This thesis in written in memory of the late Vianney Cé6té, my original research
director. I thank him for introducing me to the software metrics area and choosing
this significant topic.

I thank my current directors of research, Jean Goulet and Pierre Bourque for
directing my thesis and making its completion possible. I thank Jean Goulet for his
correction of the final version of this thesis. I thank Pierre Bourque for his detailed
advice and verification of my classification by reviewing the tables based on the
table classification schema. I thank Guy Custeau for offering useful suggestions.

I thank my lovely baby, Jared, for giving me the night time to complete this thesis.
I thank my husband, Hai, for his continuing support of my studies.

iii

TABLE OF CONTENTS

ABSTRACT ...cocvviviviviiiniiinnnas ettt st eb bbb ereaneres ceveveseaereniaes ii
ACKNOWLEDGMENTS ..o e vereereneeennenesneseens 11
TABLE OF CONTENTS.............. freeerer e ebaae s cereserire e e SO \ ¢
LIST OF TABLEScccoovuviiininiiriieneneniennnenas e retrrereets e v
CHAPTER 1 INTRODUCTION et erereeteteet et bbb e b 1
CHAPTER 2 REFERENCE TABLES AND SCHEMA e oo 5
2.1 Metrics through the Life Cycle ...ooiviiiiiinnnnes ceereere e eaens e
2.2 Classic MELIICS .evvverriveneriiininiiniiriniinienneiesinenes cereerereree e veeren 10
2.3 Programming Language Metricscocvvueenee. e R v 13
2.4 New Metrics bttt s eheer e bans cevereenenneenenes 14
CHAPTER 3 COMPARISON e reveene et .19
3.1 Comparison of Table 1.....coovieeinnnininennc. vosvesesses v vevveeneee 19
3.2 Comparison of Table 2 ..coovvrineniniisineieinin, verereerenesesnsnnenenn 21
3.3 Comparison of Table 3ccceevnnans cevereene et sr st enere s er s 22
3.4 Comparison of Table 4 ...oooiiniiiiiiiniiincine, cerereeenneni 23
CHAPTER 4 ANNOTATED BIBLIOGRAPHYcccccovvnrininiiiiiniininnn ceveeenen 24
CHAPTER 5 SUMMARYccccoivinminnnninninen veeerenes e cevevereeerennnnnn 47
TEXT REFERENCES OO OO OO PPPUSPOPOTOPRPOO .49

iv

LIST OF TABLES

TABLE 1 Metrics Through The Life Cycle ..o 9
TABLE 2 Classic MELLICS .veveererririininriiiriiiireinnie e ssesiesiesresssissestessssnesissnssssnes 11
TABLE 3 Programming Language Metricscocoeverivviiieniiniiiniiiiinniiiniinsnnnns 13
TABLE 4 NeW MELIICS 1.vvevvevirrerrerrereiririiiiiieritiiensesssssssssstessessessssessessisnssasns 15
TABLE 5 Comparison of Life Cycle Metrics Tablesooveuieveivnicirniniiiinnnn, 20
TABLE 6 Comparison of Classic Metrics Tables ...coooviieniniceinciiii 21
TABLE 7 Comparison of Programming Language Metrics Tablesc.cocoucee. 22

CHAPTER 1

INTRODUCTION

When you can measure what you are speaking about, and
express it in numbers, you know something about it; but
when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory

kind,

(Lord Kelvin, Popular Lectures and Addresses, 1889)

Measurement lies at the heart of many systems which govern our lives [FENT91].
Measurements in economic systems determine price and pay increases.
Measurements in radar systems enable us to detect aircraft through clouds.
Measurements in medical systems enable the diagnosis of specific illnesses. But
measurement is not solely the domain of professional technologists. We all use it in
everyday life. We can measure the height of our children to make sure we buy the
right size clothes. We can calculate the total bill in a shop to make sure we are
given the right change.

Since software has entered almost every corner of society, the need for
measurement in the software field is unavoidable in order to confirm the accuracy
and the quality of the software. For example, the need to measure the cost of
various processes within software production, the need to measure the productivity
of staff in order to determine pay settlements for different divisions, the need to
measure the quality of the software products which are developed, the need to
measure attributes of existing products and current processes to be able to make

predictions about future ones, etc.

Therefore, software metrics as a unit of measurement of a software product or
software related process is used to govern software development and management
into a discipline, an engineering activity [HAMES85][FENT91]. In this study, by
“software metrics publication”, we mean all publications related to software
measurement, software metrics, and statistical and mathematical software
engineering models. A publication on validation of metrics is also considered as a
software metrics publication. Due to the large number of publications in the
software metrics field, this survey is unable to include a list of all of them. Only
selected publications are used.

The fist step of the project was to collect papers through inter library search with
the key words “software metrics”, “software engineering”, “quality assurance”,
“software measurement”. Over three hundred papers came out of the initial search.
During the process of writing this thesis, some of the papers were added to the
selection from some key software journals, like the Journal of Systems and Software,
ot IEEE Transactions on Software Engineering. In deciding how to reduce the total
number of papers, we examined more closely in how much detail software metrics
is covered, and we selected the papers based on the criteria that their central theme
should be software metrics.

This resulted in over 60 publications on software metrics that have appeared since
1988 being summarized and classified in order to accomplish the following two

goals:

1). Provide software metrics researchers and practitioners with reference
information so they can quickly identify the publications of particular interest to

them.

Although software metrics is still a relatively new field in software engineering, it
has already been catching the attention of researchers and practitioners for some
time. Many publications have appeared since the groundwork on software metrics
in the seventies. In order to shed some light for researchers and practitioners on the

publications on software metrics since 1988, and omit some unnecessary steps in
their research and practice, selected publications are classified into tables and
annotated. By reading the annotations and tables presented in this survey, it is the
aim of this project:

* to help beginners find the starting point to navigate in the field of
software metrics;

* to guide them from the general topic to the specific;

* to help software metrics professionals find out what is available for
their work, examples offered and valuable lessons learned by their
fellow colleagues;

* to help the software metrics researchers and practitioners choose the
unexplored topics as their research interest in the domain of
software metrics by observing the current literature survey results.

2). Compare the results of this literature survey with the survey published in the
1988 paper. '

This survey is a continuation of the project done by V. Coté, P. Bourque, S.
Oligny and N. Rivard through the paper, “Software metrics: an overview of recent
results” in 1988 [COTES88]. By comparison of the results, this project was
conducted to discover the current trends in software metrics practice, to report the
trend movement from the 1988 paper until now, and predict the future trends.
Three of our tables can be directly compared with the tables from that survey :
“Metrics Through The Life Cycle”, “Classic Metrics”, and “Programming
Language Metrics”. Only two of the papers of the current survey are from early
1995, so the current survey is labeled “1994”.

This survey is organized into five chapters. Chapter 2 contains the explanation of
the table classification schema used in the study, and the tables resulting from it.
Chapter 3 is a comparison of the 1988 and 1994 surveys. In Chapter 4, table
references are annotated. In Chapter 5, a summary of this study is presented.
Finally, the text references end the whole survey. Table references contain all the
publications appearing in the tables. For each table reference, a brief summary is

wtitten to give the reader a general feel of that publication. Text references contain
the publications appearing only in the body text, and not in any table. If a software
metrics publication appears in both a table and the body of the text, it is only
included in the table references. All the publications are identified with a four letter
code together with a two digit year specification, e.g., FENT90, which appears
both in the body text and in the Label column of the tables. An extra letter
(A/B/C) is introduced for the sake of code uniqueness. In the short summary of the
reference entry, we state the main characteristics of that paper, so the reader can
understand the classification. For example, by looking at the words “Halstead’s
Software Science Volume and Effort and McCabe’s Cyclomatic Complexity” in
[BOWMOY0], the reader will see why this paper belongs to the “Classic Metrics”
table, under the columns “HSS” and “MCC”.

CHAPTER 2

REFERENCE TABLES AND SCHEMA

There exist many schema for metrics classification. One chooses the different

schema according to one's need. Here, we are going to explain each schema used in
our four classified tables: Metrics through the Life Cycle (Table 1), Classic Metrics
(Table 2), Programming Language Metrics (Table 3) and New Metrics (Table 4).

Metrics through the Life Cycle (Table 1) serves as the complete list of all the
references appearing in this survey. All the other tables (Classic Metrics,
Programming Language Metrics and New Metrics) are subsets and cross references
to Table 1. These tables classify the papers each with a different perspective, based
on each table’s classification schema.

Every entry in the subset tables can be found in Table 1, but not all the entries of
Table 1 can be found in a subset table, especially some of the entries listed under
the “Others” column of Table 1. There is also some overlapping between subset
tables. For example, Table 2 covers the papers mainly on classic metrics while
Table 4 concerns the “new metrics”. If for example an entry in Table 4 exploits a
classic metric to some significant degree, a researcher interested in the classic metric
might find some valuable ideas or definitions there, so it will be listed in Table 2

also.

2.1. Metrics through the Life Cycle

There are seven columns in the table Metrics through the Life Cycle: Empirical

(Emp), Specification (Spe), Design (Des), Coding (Cod), Testing (Tes), Main-
tenance (Mai) and Others (Oth).

The Empirical column would be checked if the paper includes some empirical
validation with real data or includes a detailed discussion of an industrial case
study. An empirical paper contains measurement conducted on source data. An
empirical paper can be a report from a real measurement practice, projects or a
paper on metrics with some data collection and statistical analysis. Software metrics
publications are generally empirical due to the nature of the field. It is natural that
most papers on measurement should have measurement data since their aim is to
measure certain aspects of software based on a given data set. For example, in a
software quality metrics publication, some actual measure on software must be
present, otherwise, there will be no sound evidence of the quality of the software.

Example: [GORL90] describes an experiment of debugging effort estimation using
software metrics, therefore, it is checked under Empirical. [CHAN9I] not only contains
a description of some software reliability growth models but also presents them with
statistical samples. Therefore it is checked under Empirical also.

We often consider the software life cycle as consisting of several phases, each phase
having a defined starting point and ending point. While in practice the phases tend
to overlap, it is important to define each phase and the activities in each phase as
accurately as possible in order to define precisely those metrics that are phase-

dependent [CONTS0).

Here one waterfall model [JONE90] is adapted to our phase definition and the
columns of Specification (Spe), Design (Des), Coding (Cod), Testing (Tes) and
Maintenance (Mai) correspond to each of these phases. The papers checked under
each of them are the ones that contain metrics dealing with the issues existing in
that particular phase. For example, a paper checked under the Maintenance
column could contain some discussion on functional metrics, but its main purpose
is to present a metric (or metrics) on the issue of maintenance . In this case, it will
be checked under Maintenance only. But if the discussion on functional metrics
shows some real depth, then it is checked under Specification also.

Specification - This phase should produce a complete description of the required
functions and non functional characteristics of the software. It should also address
the question of resource needs and preliminary budget estimates.

Example: [BOLO93] supports a metric-driven approach to software development by
incorporating, with relative ease, the metric computation into the software specification
environment. Therefore, it is checked under Specification.

Design - This phase should specify the overall system configuration, the
implementation language, major modules and their interfaces, configuration
control and data structures, and a testing plan. It should produce more detailed
module specifications including their expected size, the necessary communication
among modules, algorithms to be used, interface data structures, and internal
control structures. It should highlight important constraints relative to timing or
storage, and include a plan for testing the individual modules.

Example : [OFFU93] deals with metrics on module coupling. Since coupling is a design
issue, it is checked under Design.

Coding - This phase should produce an implementation of the modules in the
chosen language. The papers appearing under this column are also often listed
under the Design column. For example, coupling and complexity are issues in both
the design and coding phases, so the papers dealing with them will often be
checked under the Coding and Design columns. Papers listed under the Coding
column can often be found in the Programming Language Metrics Table (Table
3). If a paper deals with the measurement of some particular programming
language, then it will be listed not only under this coding column but also in Table
3. Sometimes a publication presents some measure on code, like lines of code,
without specifying any language; it will then be checked under the Coding column
in Table 1, but it will not be in Table 3.

Example: [LO90] discusses the size estimation for expert systems applications. It covers
the topics of lines of code, function points, and software science. A COBOL-based

program is used for the analysis of sizing. It is listed under the Design and Coding
columns in Table 1, and the COBOL column in Table 3. [CHID94] measures
programs coded in C and Smalltalk, so it is checked in Table 1 and in Table 3.

Testing - This phase should make sure that the product does exactly what it is
supposed to do. It should confirm the quality of the product (indirectly of the
process also), find and eliminate any residual errors from previous stages, validate
the software as a solution to the original problem, demonstrate the presence of all
specified functionality in the product, and estimate the operational reliability of the
system.

Example: [MYER92] proposes a parameterized metric to measure the complexity of
software testing, so it is checked under Testing.

Maintenance - The maintenance effort revisits all the other stages of the software
life cycle. Changes may be requitred to eliminate errors in the product, to provide
additional capabilities or to allow the product to be used in a new environment.
Each modification requires some planning, specification, design, coding and
testing. Some modifications may require very little effort at a given stage, but just
as much attention must be given to correct methodology in maintenance as in the
original development. Some changes, however, will involve so much effort that
they amount to a new development project.

Example: [LEWI89] introduces a methodology for integrating maintainability into
software early in the development process using metrics. Therefore it is checked under
Maintenance.

Others - Since Table 1 serves as a complete list of the references, the Others
column will cover the metrics papers included in this survey that are not phase
specific, like process and resource metrics. It could also be that the papers are about
general issues like quality, predictability and usability. It could also cover the
foundation works in software metrics and general comments on metrics without
exploration of a particular one.

Example: In the theoretical report paper [RENGI1], metrics as indicators of usability
based on performance are identified and assigned to generic groups. Usability metrics
based on performance are proposed. Since usability metrics cannot be directly classified
into a specific phase of the life cycle, we classify it under the “Others” column.

Table 1. Metrics Through The Life Cycle

Label Emp| Spe | Des | Cod |Tes | Mai| Oth

ABRAY94 * *
BAKE90 *
BEVA91 *
BIEM94 * * *
BOL0O93 *
BOWMO0 * * *
BUSH90 *
BUTL93 *
CARV90 *
CHANO91 * *
CHIDY94
CHUN91 *
CIO0C91
COLE95
COOK94
COST95
COUP90
DAVIO90)
DEHNO90 *
EBER91 * *
FENT90 * *
FUCHO90 * *
GORL90 * * *
GUNS91 * * *
HARR90 *
HENRO90

HENRO91A
HENRO1B
HISH91

INCE90 *
JACO091
KELL91 * *
KELL92 * * * * *

*
*
*

*| | #| *| #| *
*
x_

#| k| *| *
*

>*
*

Label Emp | Spe | Des | Cod | Tes | Mai| Oth

KHOS94 * * *
LAKS91 *
LEWI89
LO90

LUBISO
MALAS0
MAYR91
MORE 93A * *
MORE 93B *
MUNS90 * o
MUNS91 *
MUNS92 * * *
MUNS93
MYER92 *
OFFU93
OMAN94
PFLE93
REDM9Y0
REIF90
RENGI1 *
RISI%4
SAMA91
SCHN91
SEAR93
SELBY91
SHEPI91
SHEP94
STAR94
VOAS93
WRIGI1
ZAGE93

X1 k| k| X %
*

*

*
>*
X%

X1 % k|] X
*

P I B I R I 8 B o R o ol I
*
*

2.2. Classic Metrics

We consider Halstead’s software science (HSS), McCabe’s cyclomatic complexity
(MCCQ), lines of code (LOC), and Albrecht’s function points (AFP) as “classic”
metrics [COTE88]. The reason is that they are the earliest of the well-established
metrics. Many other metrics have been created since then, as can be seen in the
publications listed in the “New Metrics” table.

All the publications of Table 2 discuss in detail the above metrics. This table is a

10

subset of the entries in Table 1. The Classic Metrics table (Table 2) is divided into
Label, HSS, MCC, LOC and AFP.

Table 2. Classic Metrics

Label HSS |MCC | LOC | AFP

ABRAS4 *
BOWMSY0
COOK94
COUP90
HENR90
HENR91B
INCE90
KELL91
KHOS9%4
LAKS91
LEWI89
LO90
LUBIOO
MUNS90
MUNS92
MUNS93
MYER92
OMAN94
REDM90
REIF90 *
SAMAS1 :
SHEP9%4 * *
WRIGS1 * *

k| | k| k| *
*

b I I I B I B ol I

*| *
*

*| %

*

b B o I
*| *f | %] X*| *

*
>
*

Here is a brief definition of the above classic metrics:

Software science considers a computer program to be a collection of tokens that
can be classified as either operators or operands. All software science measures are

functions of counts of these tokens [CONTS86].

11

Example: [MUNS90] partly uses Halstead’s metric to form a new metric. Since
Halstead’s software science is used for measuring in this paper, it is checked under HSS.

McCabe’s cyclomatic complexity is designed to measure the number of distinct
paths through a particular program by representing the program with a graph and
counting the number of nodes and edges [HENR91B].

Example: [BOWMO90] performs a simple experiment to determine if the training on
software complexity metrics integrated into an advanced COBOL programming class

has any effect on program complexity based on Halstead’s Software Science and
McCabe’s Cyclomatic Complexity. Therefore, it is checked under both HSS and MCC.

A line of code is any line of program text that is not a comment or blank line,
regardless of the number of statements or fragments of statement in the line. This
specifically includes all lines containing program headers, declarations, and
executable and non-executable statements [CONT86].

Example: [LUBI90] measures software size by distinct lines of code. Therefore, it is
checked under LOC,

Function points is used to measure the functionality delivered by the software to
the user, in terms of the data it uses and generates. By counting the number of
external inputs, external outputs, logical internal files, external interface files and
external inquiry types delivered by the software, and by classifying them according
to their complexity, a function point count is obtained. The measure is then
adjusted for processing complexity using a multiplier obtained from rating a set of
variables which characterize the software. The adjusted function point measure is

the product of the unadjusted function point count and the processing complexity
adjustment factor [LO90].

Example: [ABRA94] studses the measurement processes and scale transformations of
function points. Therefore, it is checked under AFP.

12

2.3. Programming Language Metrics

The Programming Language Metrics table (Table 3) classifies the publications that
present some measurements of code in specific programming languages. Any
publication that mentions its data source coming from program coding in a
specific programming language will be listed under the corresponding column in
this table. This table is divided into Label, Assembler (Ass), COBOL (Cob),
FORTRAN (For), Pascal (Pas), C (C) and Others (Oth).

The “Others” column covers programming languages which do not appear in the
other columns (Ass, Cob, For, Pas, and C) in this table, such as ADA, Smalltalk,
C++, etc. The publications listed in this table are a large subset of those listed
under the Coding column in Table 3.

Example: [HENRI1A] conducts an experiment on an actual product consisting of 193
procedures comprising about 15000 lines of C code, so it is listed under the C column in

Table 3.
Table 3. Programming Language Metrics

Label Ass | Cob | For | Pas C |Oth

BOWMI0 *
CHIDY94 * *
COLE95
COUP90 * * * * *
DAVI90 *
FENTO90 * * * * *
GORL90 *
HENRO91A
KELL91 *
KELL92
KHOS94
LO90 *
LUBI9O
MAYRO1
MUNS92 * * * *
OFFU93 *
OMAN94 *
REDM90 *

>*

*| %[%] *

>*
*

*

13

Label Ass | Cob | For | Pas C |Oth

RISIS4 *
SAMA91 ' *
SCHNI1 *
SELBI91 * *
WRIGI1
ZAGES3

2.4. New Metrics

Far from limiting themselves to the classic metrics, researchers and practitioners
have developed new ones. The strongest incentive behind this is probably the need
for measuring specific things in a given situation and the fact that we don’t know
what to measure [COTES88]. Based on Fenton’s framework [FENT91], the New
Metrics table (Table 4) is divided into four columns: Label, Process, Product, and
Resource. Since this table includes all the metrics other than classic metrics, it
covers most entries from Table 1.

Product refers to deliverables, artifacts or generally documents which arise from the
software life cycle. Product metrics are the metrics that measure /length,
functionality, modularity, reuse, redundancy, and syntactic correctness of documents,
module coupling and cohesiveness of design and code, wunderstandability of a
specification document, maintainability of source code, complexity, usability and
portability of software, etc. We also consider that the classic metrics (HSS, MCC,
LOC and AFP) are product metrics.

Example: [HARRIO] develops a new model of software maintenance based upon a
quantitative decision rule which determines whether a given software module can be
effectively modified, or if it should instead be rewritten. Since maintainability belongs
to the measurement domain of product metrics, this paper is checked under Product.

14

Table 4. New Metrics

Label

Product

Process

Resource

BIEM9%4

BOLO93

BOWMS0

BUSH90

BUTL93

b R B B B B

CARVI0

CHANS1

CHIDS4

CHUN91

CIOCIl

COLE95

COOK94

COST95

COUP90

DAVISO

L IR Rl B B B o B

DEHNS0

EBERI1

FENTS0

FUCHS0

GORLY0

GUNS91

HARRS0

HENRY1A

HENR91B

HISH91

bl I . I I o I o B o B

JACO91

KELL91

KELL92

KHOS94

LAKS91

x| %

MALAS0

MAYRI1

MORE93A

MORE 93B

MUNS90

MUNS91

MUNS92

MUNS93

MYER92

b B e B ol o I o I

OFFU93

15

Label Product | Process |Resource

OMAN94
RENG91
RISI9%4
SAMA91
SCHN91
SEAR93
SELBI91
SHEPO91
SHEP94
STAR94
VOAS93
WRIGI1
ZAGE93

b B o B o B I B I B 3 R I I
»

Process are software related activities which normally have a time factor. This
means that they could simply be a time slice of any software project. Examples of
processes include reasonably well-defined and coherent activities like constructing a
specification document or developing a software system from requirements
through its release to the customer.

Process metrics are the metrics used to measure process activities. Therefore,
process metrics could be the metrics on time, effort, number of incidents of a
specified type arising during the process. Process metrics could also be the measure
of the cost, controllability, observability and stability of a process. Here, time refers to
the duration of the process. Effort is measured by total staff-hours, -days, -weeks,
etc., to complete a given task. This is usually recorded manually, and high
precision should not be expected, particularly where staff divide their time between
many different activities. Effort alone is inadequate as a measure of cost, since, for
example, clerical effort to process incident reports will generally be charged at a
lower rate than the time of highly-skilled staff who can diagnose and repair faults.
Incidents refer to the number of requirement changes, number of specification faults
found and number of bugs found during the process. Usually, cost is measured in
monetary terms, and when we are concerned with the cost of developing and
maintaining software, this can often be calculated as effort times labor rate, plus
indirect costs and overhead. Some process metrics results cannot be calculated
independently of one another.

16

Example: [GORLIO] deals with debugging effort. Therefore it is checked under Process.

[SELB91] quantifies ratios of coupling and strength and uses them to identify error-
prone system structures. Since coupling is an issue of product, it is checked under
product. Since errors are incidents, it is checked under process also.

Resource refers to the miscellany of items considered as inputs to software
production. Examples include pesonnel (individuals or teams), materials (including
offices), tools (software, hardware) and methods. ~All of them have a market price.
Elements which are considered to be resources for some processes are clearly
products of other processes. This is true of software tools. For example a CASE
tool is clearly a major product of the software company which developed it,
whereas it is a resource for a company which uses it in its own design process.
Although generally tools may be considered as entities which are both products and
resources, it will be quite clear from the context that only one view is relevant. In
the case of personnel considered as resource, we are especially interested in the
attributes of productivity. We can only meaningfully talk about the productivity of
a programmer with respect to some activity such as coding a particular program or
coding during a particular period of time. Other apects of interest of personnel as
individuals are experience, age ot, as teams, size, structure, and communication skills.

Example: [HENR91B] evaluates two design languages using sofiware quality metrics.
These languages are the software tools used in the design stage. Therefore, it is listed
under Resource.

[BUSH90] gives a rationalized, theoretical overview of the subject of sofiware
measurement, and a classification scheme (product, process and resource). Since it covers
all three kinds of new metrics, it is checked under each of them.

[CIOC91] wuses a measurement technique in an experiment which assesses
comprehension and misinterpretation of requirements specifications. Since requirements
specifications are the activities of product, and misinterpretation is an issue of resource,
it is checked under product and resource.

17

[DAVIOO] investigates subjective entropy, a new information-theoretic measure of
program comprehensibility which accounts for semantics and pragmatics involved in
programmer-program interaction. Since comprehensibility lies in the domain of resource
metrics, it is checked under resource metrics. Semantics are an issue of product, so it is

also checked under product.

[STAR94] presents a set of metrics which measures the software issues from product,
process and resource perspectives. Therefore, it is checked under product, process and

resource.

18

CHAPTER 3

COMPARISON

There are 64 publications classified in this survey and 124 in the 1988 survey. This
chapter will compare the findings in this survey with those in the 1988 survey.
Since the table schema of the two surveys vary, the comparison will be done on the
common ground. The results are presented in percentages. All the comparison
tables have three columns: Metrics, 1994 and 1988. The Metrics column specifies
the metrics compared, and the values in the 1994 and 1988 columns are the
percentages of the presence of the corresponding metrics in that year’s survey. We
refer to the current survey as “1994” in this chapter.

3.1. Comparison of Table 1

Comparison of Table 1 (Metrics through the Life Cycle) is given in Table 5. The
data is calculated according to the following formula:

number of checks in one individual phase column

total number of references in the survey

By observing the data, we see that the percentages of specification and design
metrics remain stable, and that the percentage of coding metric publications is
declining. Some categories cannot be compared, due to the differences in the
classification schema of the two surveys.

19

Table 5. Comparison of Life Cycle Metrics Tables

Metrics 1994 1988
Empirical 70%

Specification 18% 18%
Design 27% 27%
Coding 39% 44%
Testing 16%

Maintenance 17%

Quality ass. 29%
Method 21%
Other 27% %

First, it should be noted that most of the metric papers in the 1994 survey are
empirical papers. It means that software practitioners are more careful about the
applicability of their metrics. All the metrics validations and sample measurement
results are the proof that the field of software metrics is becoming more rigorous.

Since the 1988 survey, we would expect an increasing number of design metrics.
But this is not happening. The following factors might be the reasons for this.
First, broader interests among software metrics practitioners: rather then limiting
themselves to the refining of the design metrics, they are exploring metrics from all
possible angles of software. In other words, the metric practitioners are keen as to
how software mettics can improve software. This is understandable since software
metrics are still in an early stage of evolution, and need to define their territory.

Software maintenance has been recognized as the single most expensive factor in a
software project’s life [LEWI89]. As the complexity level of a piece of software
increases, the code becomes difficult to understand and therefore more likely to
contain errors. Code containing errors must be modified, but that maintenance is
non-trivial since the code is difficult to comprehend. To compound the problem
further, it has been shown that programs cannot be made more maintainable by
simply changing their code. This is the ripple effect of software maintenance which
must be controlled at the earliest possible point in the life cycle. This reality

20

promotes maintenance metrics.

3.2. Comparison of Table 2

Comparison of Table 2 (Classic Metrics) is given in Table 6. The data is calculated
according to the following formula:

number of checks in one classic metric column

total number of references in the classic metrics
There is a declining percentage of the publications on classic metrics: 60% (74 out

of 124) of the papers in the 1988 survey deal with classic metrics with only 36%
(23 out of 64) in this survey.

Table 6. Comparison of Classic Metrics Tables

Metrics 1994 1988

HSS 74% 45%
MCC 4% 42%
LOC 52% 40%
AFP 17% 15%

According to the data, function point publications still remain low in number as in
the 1988 survey, and the even usage of Halstead’s software science, McCabe’s
cyclomatic complexity and lines of code has been broken. In the current survey,
the metrics most used are Halstead’s software science and McCabe’s cyclomatic
complexity, followed by lines of code and function points.

The increase of the number of publications on Halstead’s software science and

McCabe’s cyclomatic complexity could be due to the increasing interest in quality
and complexity metrics, since McCabe’s theory applies graph theoretic measures to

21

software, associating the complexity of the control flow graph to the complexity of
the program, while Halstead’s theory develops measures based on the counts of
operators and operands in the program [KELL91]. As the software industry
becomes more and more standardized, modularity, reusability, reliability and
maintainability have been the key issues. These issues influence the quality and
complexity of the software. Lower complexity is an important contribution to

software quality.
3.3. Comparison of Table 3

Comparison of Table 3 (Programming Language Metrics) is given in Table 7. The
data is calculated according to the formula:

number of checks in one language metric column

total number of references in the programming language metrics

Table 7. Comparison of Programming Language Metrics Tables

Metrics 1994 1988
Ass 8% 21%
Cob 21% 19%
For 13% 40%
Pas 25% 17%
C 63% 17%
PL/1 10%
Oth 46% 35%

There are 24 entries in Table 3 of the cuirent survey and 48 in the Code Metrics
table of the 1988 survey (the table names vary).

In the 1988 survey, the most studied language is FORTRAN, followed by
Assembler, COBOL, C , Pascal and PL/1, while in the current survey, C is the

22

most studied, followed by Pascal, COBOL, FORTRAN, and Assembler. The most
attractive programming language for metrics practitioners has shifted from
FORTRAN to C. This shift also embodies the popular programming language
shifting in the real world. With the increased usage of languages such as Ada and
Smalltalk, there should be more measurement done on them.

3.4. Comparison of Table 4

Since the new metrics classification schema differs in the current survey and in the
1988 survey, a direct comparison cannot be done. But by the number of entries in
the New Metrics tables in the two surveys, it is clear that papers on new metrics are
being published at about the same level in the two surveys: 84% (54 out of 64) in
the current one and 74% (92 out of 124) in 1988. Therefore, we can see that the
interest in generating new metrics and publishing on them is still high among
researchers and practitioners.

There are two important reasons for this interest. First, classic metrics have been
practiced and tested for roughly two decades. It is time to explore something new.
New metrics open a new horizon beyond the territory of classic metrics. It is from
these new metrics that new ideas in software measurement are being discovered
and promoted to classic metrics as time goes on. Second, we are living in an
information age: new concepts appear quite often. Take graphical user interfaces
for example, it was not a necessity in the past. But now one can hardly find a
commercial software product without such an interface. The requirement of a
graphical user interface generates a need for specific measurement metrics, such as
layout and usability measurements. We believe that the new metrics will still be the
focus of software metrics.

23

CHAPTER 4

ANNOTATED BIBLIOGRAPHY

In this chapter, all the metric papers that appear in the tables are presented in the
following format: 1) paper identification code; 2) name of the author(s), title, and
journal; page, year; and 3) a brief summary and classification information. The
papers are listed alphabetically according to the paper identification code.

Let’s take [ABRA94] as an example to see how each entry is presented:

1) paper identification code:
[ABRA94]

2) name of the authors, title, and journal:

Alain Abran and Pierre N. Robillard, “Function points: a study of their measurement
processes and scale transformations”, Journal of Systems and Software, Vol.25, p171-
184, 1994.

3) brief summary and classification notes

This paper studies the underlying measurement model in function points in order to
reveal the true nature of these metrics and their usefulness in fields other than their
initial management information system domain. Statistical data of function points is

also provided in table format.
The first sentence not only gives the summary of the paper: this paper studies the

underlying measurement model in function points in order to reveal the true nature of
these metrics and their usefulness in fields other than their initial management

24

information system domain, but also gives the information necessary for
classification: it is a paper on function points, therefore, it should be checked under
AFP in the Classic Metrics Table; since function point deals with specification
issues (this information being common knowledge, it is not specified here), it
should also be checked under SPE in the Metrics through the Life Cycle table. The
second sentence, Statistical data of function points is also provided in table format.,
tells us that it is an empirical paper, therefore it should be checked under EMP in
the Metrics through the Life cycle table.

To classify an entry in the metrics table, the reader needs to go back to Chapter 2
to review the table classification schema, and apply the schema to the entry to find
a proper column and table for it. The reader might also need some background
common knowledge such as the fact that function point is a metric on the
specification of software, as in [ABRA94]. Our classic metrics section only presents
short definitions of each classic metric because we take for granted that those are
very well known metrics among metrics practitioners. Obviously, there is not a
clear cut decision for each paper classification, and the reader might, in some cases,
classify certain papers differently from what is presented here.

[ABRAY4]

Alain Abran and Pierre N. Robillard, "Function points: a study of their
measurement processes and scale transformations”, Journal of Systems and
Software, Vol.25, p171-184, 1994.

This paper studies the underlying measurement model in function points in order
to reveal the true nature of these metrics and their usefulness in fields other than
their initial management information system domain. Statistical data of function
points is also provided in table format.

[BAKES0]

Albert L. Baker, James M. Bieman, Norman Fenton, David A. Gustafson, Austin
Melton and Robin Whitty, "A philosophy for software measurement”, Journal of
Systems and Software, Vol.12, p277-281, 1990.

It introduces the application of measurement theory to software measures on a
theoretical level only. It describes implications of the theory to validation and to

25

the development of structural measures, and shows that useful measures can be
developed under the measurement theory framework.

[BEVA91] _

Nigel Bevan, Jurek Kirakowski and Jonathan Maissel, "What Is Usability?"
Human Aspects in Computing: Design and Use of Interactive Systems and Work
with Terminals. 1991.

This paper relates different approaches to usability based on the product, user,
case-of-use, actual usage and the context of use; and proposes a definition of
usability. Diagnostic evaluation of usability problems may be based on the analysis
of user interaction or on the comparison of product attributes with guidelines. This
paper is a general theory on usability; no particular metric is given.

[BIEM94]

James M. Bieman and Linda M. Ott, "Measuring functional cohesion", IEEE
Transactions on Software Engineering, Vol.20, No.8, p644-657, 1994.

The set of metrics proposed in this paper examines the functional cohesion of
procedures using a data slice abstraction. The analysis identifies the data tokens
that lie on more than one slice as the “glue” that binds separate components
together. Cohesion is measured in terms of the relative number of glue tokens. An
application of these sets of metrics is also presented. There is no specific mention
of the programming language used.

[BOLO93]

Germinal Boloix, Paul G. Sorenson and J. Paul Tremblay, "Software metrics using
a metasystem approach to software specification”, Journal of Systems and Software,
Vol.20, p273-294, 1993.

The authors believe that metrics can assist in the transformation from a source
specification to a target specification. The goal of this paper is to support a metric-
driven approach to software development by incorporating, with relative ease, the
metric computation into the software specification environment. As representative
examples to implement the theory presented in this paper, metrics for data flow
diagrams, structure charts, and resource flow graphs are described and analyzed.

26

[BOWMOI0]

Brent J. Bowman and William A. Newman, "Software metrics as a programming
training tool", Journal of Systems and Software, Vol.13, p139-147, 1990.

An experiment is performed to determine if training has any effect on program
complexity, development time and quality based on Halstead’s Software Science
Volume and Effort and McCabe’s Cyclomatic Complexity number metrics after
training on software complexity metrics has been integrated into an advanced
COBOL programming class. A simple experiment was performed to determine if
the training had any effect on program complexity, development time, and several
dimensions of quality. The nonparametric Mann-Whitney U test was performed
to determine whether statistically significant differences existed between the means
and standard deviations of the measurement data. The results of using complexity
metrics as a training tool are positive. Since design has a major contribution to
complexity (another element could be coding) , it is checked under Design. Since
complexity is an issue of Product, it should be under Product. Since time is an
issue of Process, it should be under Process also.

[BUSH90]

Martin E. Bush and Norman E. Fenton, "Software measurement: a conceptual
framework", Journal of Systems and Software, Vol.12, p223-231, 1990.

A conceptual framework that gives a rationalized overview of the subject of
software measurement is presented and the classification scheme (product, process
and resource) is explained theoretically. This paper gives rise to a systematic
classification of the subject matter of software measurement.

[BUTL93]

Ricky W. Butler and George B. Finelli, "The unfeasibility of quantifying the
reliability of life-critical real-time software", IEEE Transactions on Software
Engineering, Vol.19, No.1, p3-12, January 1993.

This paper affirms that the quantification of life-critical software reliability is
unfeasible using statistical methods when these methods are applied to standard
software or fault tolerant software.

27

[CARVI0]

D. L. Carver, D. W. Cordes, and Nancy Gautier, “Object-based measurement in
the requirements specification phase”, Empirical Foundations of Information and
Software Science V, p369-p377, 1990, Plenum Press, New York.

In this paper, the authors develop measurements that provide a characterization of
the difficulty of the proposed system at the early stage of requirements definition.
The characterization measurements are from an object-oriented perspective. They
are based on solution objects, actions, and the level of interaction among the
objects. These characterizations provide objective measures that can be used as
input to the early evaluation of problem difficulty that is required when cost and
time estimates must be formulated.

[CHANI1]

Francis C. L. Chan, Paul P. Dasiewicz and Rudolph E. Seviora, "Metrics for
evaluation of software reliability growth models”, Proceedings,. 1991 International
Symposium on Software Reliability Engineering, p163-167, 1991.

It presents three metrics which have been helpful in assessing the applicability and
predictive validity of reliability growth models. These metrics are the relative fitting
error metric, the short term predictive validity metric and the long term predictive
validity metric. The application of these metrics is illustrated on the estimation of
the field reliability of telecommunication switching systems.

[CHIDY%4] -

Shyam R. Chidamber and Chris F. Kemerer, "A metrics suite for object oriented
design", IEEE Transactions on Software Engineering, Vol.20, No.6, p476-493,
1994.

This research presents a new set of software metrics for object oriented design.
Data is collected from C and Smalltalk implementations.

[CHUN91]

Chi-Ming Chung, "Integration metrics and software testing”, International Journal
of Information and Management Sciences, p59-71, December 1991.

Since most testing strategies and metrics are derived from similar program factors,
such as control flow or data flow factors, software development methodologies can

28

be developed by considering both testing and metrics factors to be utilized in
testing and measurement of software to form a more effective software
development tool. Path complexity techniques are proposed for integrating metrics
and software testing. A diagram is given to illustrate the utilization of software
metrics and testing methodologies to control software quality. Two test criteria:
intra level first and inter level first are presented. The idea of the most complicated
path is also illustrated.

[CIOCI1]

Frank A. Cioch, "Measuring software misinterpretation”, Journal of Systems and
Software, Vol.14, p85-95, 1991.

A distinction is made between software comprehension and misinterpretation. The
measurement technique is used in an experiment which assesses comprehension
and misinterpretation of requirements specifications. The results of the experiment
suggest that the impact of the specification language on comprehension can differ
from its impact on misinterpretation. The comprehension and misinterpretation
by personnel are measured using a number scale. Experience of the personnel plays
a key role in this measurement.

[COLEY5]

Don Coleman, Bruce Lowther and Paul Oman, “The application of software
maintainability models in industrial software systems”, Journal of Systems and
Software, Vol.29, p3-16, 1995.

This article reviews two early attempts at software maintainability assessment and
describes five recently developed models. Two of these are then applied to
industrial software systems, and the results are evaluated. Each of the two models
are shown to be effective in evaluating industrial software systems at the
component, subsystem, and system levels. Sample data from C programs is

included.

[COOK94]
Curtis R. Cook and Andreas Roesch, "Real-time software metrics”, Journal of
Systems and Software, Vol.24, p223-237, 1994.

This article describes the software metrics analysis of the 10th release of a real-time

29

telephone switching system developed by a German telecommunications firm. A
metrics program that computes the standard software complexity metrics plus
information flow metrics was developed. It reports that the information flow
metrics characterize the complexity of the real-time parts of the software better
than the standard software complexity metrics like lines of code, McCabe’s
cyclomatic complexity and Halstead’s software science. Since this is the 10th
release of the product, it will be classified into the maintenance phase of the life
cycle. It will also be classified into design and coding in the life cycle as we consider
that complexity always goes hand in hand with design and coding.

[COSTI95]

Rita J. Costello and Dar-Biau Liu, “Metrics for requirements engineering”, Journal
of Systems and Software, Vol.29, p39-63, 1995.

This article is an introduction to work in progress at The Aerospace Corporation
and California State University, Ling Beach, in the area of metrics for requirements
engineering. The first in a planned series of papers on metrics for full life cycle
system and software engineering, it describes the role of metrics in an integrated
approach to system and software engineering, introduces the basic components of
complete metric definitions, and discusses the use of metrics in comprehensively
assessing objective aspects of the requirements engineering process and its products.
Statistical data from requirements, which include total requirement, volatility,
requirement change reason etc., are presented graphically.

[COUPY0]

Daniel Coupal and Pierre N. Robillard, "Factor analysis of source code metrics”,
Journal of Systems and Software, Vol.12, p263-269, 1990.

Conventional metrics based on Halstead's software science and McCabe's
cyclomatic complexity have been studied extensively. A statistical procedure for
validating these metrics is presented on the factor analysis approach. This model
also proposes a methodology to analyze large software projects with a single set of
metrics. Data used are from commercial software and previous articles by the

authors, coded in FORTRAN, C, Pascal, COBOL, PL/1 and Modula-2.

30

[DAVIO]

John Stephen Davis, Melody J. Davis and Monique M. Law, “Comparison of
subjective entropy and user estimates of software complexity”, Empirical
Foundations of Information and Software Science V, Plenum Press, New York,
1990. ‘ ‘
This paper investigates subjective entropy, a new information-theoretic measure of
program comprehensibility which accounts for semantics and pragmatics involved
in programmer-program interaction. Subjective Entropy is used in this paper to
measure the comprehensibility of the software dBase III and Lotus 1-2-3, using
student programs. This result reflects the usability of these two languages by
measuring the comprehensibility of the programs.

[DEHN90]

Khosrow Dehnad, "Software metrics from a user's perspective”, Journal of Systems
and Software, Vol.13, p111-115, 1990.

A quantitative approach for the evaluation of the quality of a software package is
proposed. The method is based on the principle that poor quality is closely
associated with certain losses. Users, consciously or sub-consciously, view these
losses as the true software quality metrics. A quality model is developed that
combines all these metrics into a single metric which measures the total loss to a
user due to the poor quality of a package. It measures the quality of the software
product through the factors affecting the user’s perception.

[EBER91]

C. Ebert and A. Riegg, "A Framework for selecting system design metrics”,
Proceedings, 1991 International Symposium on Software Reliability Engineering,
pl2-19, 1991.

A framework for selecting design metrics is built, based on the classification of
design aspects. The selection of appropriate metrics and their integration into a
CASE tool allow the tracing of design aspects through the decision making process.
This CASE tool is tested based on real data from industry.

[FENT90]

Norman E. Fenton, "Software metrics: theory, tools and validation”, Software

31

Engineering Journal, January 1990.

This paper is the report of the Alvey project in the U. K. This project has a major
goal of developing rigorous techniques for analyzing and measuring structural
properties of systems which are coded in many languages: COBOL, FORTRAN,
Pascal, C, Ada, etc. A new metric family called VINAP is developed to meet the
goal. This paper also frankly describes the achievements and failures of the project,
the lessons to be learnt and, in particular, how the very perception of software
measurement changed fundamentally during the project.

[FUCH90]

Norbert Fuchs, Ka Lun Tse and Robin Whitty, “Cost management with metrics of
specification: The COSMOS Project”, Approving Software Products, Elsevier
Science Publishers, B.V. North-Holland, IFIP, 1990.

This is a report from the COSMOS project. COSMOS represents a new approach
to obtaining objective information about the evaluation of software products
during the early stages of the life cycle. Non-trivial information about product
structure is captured from formal specifications and designs for cost management.

[GORLI0]

Narasimhaiah Gorla, Alan C. Benander and Barbara A. Benander, "Debugging
effort estimation using software metrics", IEEE Transactions on Software
Engineering, Vol.16, No. 2, p233-231, February 1990.

Measurements of 23 style characteristics, and other program measures are collected
from student COBOL programs by a program analyzer. These measurements,
together with debugging time data, are analyzed using several statistical procedures.
A debugging effort estimator was developed to estimate debug times.

[GUNS91]

Dirk Gunsthovel and Tom Bosser, "Predictive metrics for usability”, Human
Aspects in Computing: Design and Use of Interactive Systems and Work with
Terminals, 1991.

A model of cognitive skills is presented as a basis for calculating various indicators
of usability, mainly relating to the complexity of user procedures. This model was
developed to model the factors relevant for usability, i.e. tasks, functionality and

32

procedural user knowledge, in an efficient form, applicable for usability evaluation
in an early design stage. The main objective is to derive information about the
usability of a product as early as possible, based on requirements specifications and
a functional specification of the product.

[HARR90]

Warren Harrison and Curtis Cook, "Insights on improving the maintenance
process through software measurement”, Proceedings, Conference on Software
Maintenance 1990, p37-45, 1990.

It develops a new model of software maintenance based upon an objective decision
rule which determines whether a given software module can be effectively
modified, or if it should instead be rewritten. A metric is defined to provide a
measure of program evolution over a given release cycle.

[HENRY0]

Sallie Henry and John Lewis, "Integrating metrics into a large-scale software
development environment", Journal of Systems and Software, Vol.13, p89-95,
1990.

This paper presents an experiment that introduces a nondisruptive method for
integrating metrics into a large-scale commercial software development
environment. This paper considers that the key to integrating quality into software
stems from the relationship between code complexity and errors. Theories on
software complexity are presented by some classical metrics: lines of code,
Halstead’s software science indicators, McCabe’s cyclomatic complexity, etc. The
error predictor equations presented here are valid only at a higher level, which
restricts their use, but the technique to generate them is completely general.

[HENRO91A]

Sallie Henry and Steve Wake, "Predicting maintainability with software quality
metrics", Software Maintenance: Research and Practice, Vol. 3, p129-143. 1991.
In this paper, maintenance is defined as the correction of errors in a program. It
details a study of the use of software quality metrics to determine high complexity
components in a software system. By the use of a history of maintenance done on a
particular system, it is shown that a predictor equation can be developed to identify

33

components which need maintenance activities. This same equation can also be
used to determine which components are likely to need maintenance in the future.
The software system used in the experiment consists of 193 procedures comprising
about 15 000 lines of C code.

[HENR91B]

S. Henry and R. Goft, " Companson ofa graphxcal and a textual design language
using software quality metrics”, Journal of Systems and Software, Vol.14, p133-
146, 1991.

There are two popular trends in attacking the software reliability problem on two
fronts: first by design methodologies, languages, and tools as a precheck on quality
and second by measuring the quality of produced software as a postcheck. This
research attempts to unify the approach to creating reliable software by providing
the ability to measure the quality of a design prior to its implementation. It
evaluates two design languages to prove that the human brain works more
effectively in images than in text. It also covers some briefings on classic metrics
like lines of code, McCabe’s cyclomatic complexity and Halstead’s software
science.

[HISHI91]

Jun Hishitani, Shigeru Yamada and Shunji Osaki, "Reliability assessment measures
based on software reliability growth model with normalized method", Journal of
Information Processing, Vol.14, No.2, p178-183, 1991.

It is very important to assess software reliability quantitatively by using fallure time
data observed during software testing. This paper discusses a method of assessing
software reliability on the basis of a software reliability model described by a
nonhomogeneous Poisson process, that is to say, an exponential reliability growth
model. Numerical examples of the mean time between software failures and the
software reliability function are given by applying the method proposed here to
actual data.

[INCE90]
Darrel Ince, "How good is your software", EXE, p44-47, April 1990.

It is easy to judge the design of software if you have to re-code it twice a week. But

34

Darrel Ince can tell before the program is finished by using McCabe’s and
Halstead’s metrics. This paper summarises some key groundbreaking work in
software history and usage of metrics. It mainly concerns itself with the graphic
approach in measuring. A valuable critique of McCabe’s and Halstead’s metrics is

described.

JACO91]

Raymond Jacoby and Yoshihiro Tohma, "Precise formulation and applicability of
a software reliability growth model based on the hyper-geometric distribution”,
Journal of Information Processing, Vol.14, No.2, p192-203, 1991.

This paper presents the basic concepts of the Hyper-geometric Distribution
Growth Model for the estimation of the number of faults in a program at the
beginning of the testing phase. The exact formulation of the model is established.
Data is collected for the evaluation of this model.

[KELL91]

Sallie Keller-McNulty, Mark S. McNulty and David A. Gustafson, "Stochastic
models for software science", Journal of Systems and Software, Vol.16, p59-68,
1991.

Stochastic models are developed in this paper mainly for length measures. The
predictive properties of the models are investigated in an empirical study based on
data from software programmed in Pascal and C. Software science also gets a brief
introduction since it has the same goal as the stochastic models: to provide a
comprehensive model of the software construction process. But there is a major
difference in the two metrics families: in software science, the software
construction is treated as a deterministic process while in stochastic models, it
provides estimates of the probability distributions of the measures.

[KELL92]

John C. Kelly, Joseph S. Sherif and Jonathan Hops, "An analysis of defect densities
found during software inspections,” Journal of Systems and Software, Vol.17,
pl11-117, 1992.

The research is conducted based on the projects at Jet Propulsion Laboratory. It
describes an analysis of factors influencing the defect density of products

35

undergoing software inspection throughout all the software development phases.
The results show a significantly higher density of defects during requirements
inspections. The defect densities decrease exponentially as the products approach
the coding phase because defects are fixed when detected and do not migrate to
subsequent phases. This results in a relatively flat profile for cost to fix. Increasing
the pace of the inspection meetings decreases the density of defects found. Real

data is provided from projects using ADA, C and SIMULA.

[KHOS94]

Taghi M. Khoshgoftaar, John C. Munson and David L. Lanning, "Alternative
approaches for the use of ‘metrics to order programs by complexity”, Journal of
Systems and Software, Vol.24, p211-221, 1994.

With many program complexity metrics available, it is difficult to rank programs
by complexity: The different metrics can give different indications. There are two
parts to this problem. First, because different metrics can measure the same
program attribute, we need a method of evaluating a given program attribute based
on the values of all metrics that measure this attribute. Second, because different
metrics can measure distinct program attributes, we need a method of evaluating
the overall program attributes. This paper compares two methods of
simultaneously detecting different aspects of software complexity measured by
Halstead's software science and McCabe's cyclomatic complexity number with a
validation study. A relative complexity metric is derived to represent each
complexity metric in proportion to the amount of unique variation that it
contributes. The experiments are done on C programs.

[LAKS91]

K. B. Lakshmanan, S. Jayaprakash and P. K. Sinha, "Properties of control flow
complexity measures”, IEEE Transactions on Software Engineering, Vol.17,
p1289-1296, 1991.

It attempts to formalize some properties which any reasonable control-flow
complexity measure must satisfy. This paper also reveals the strengths and
weaknesses of some of the existing control flow complexity measures, including
McCabe’s metrics.

36

[LEWI89]

John Lewis and Sallie Henry, "A methodology for integrating maintainability using
software metrics", Proceedings, IEEE Conference on Software Maintenance, 1989,
p- 32-9. '

Maintainability must be integrated into software early in the development process.
But for practical use, the techniques used must be as unobtrusive to- the existing
software development process as possible. This paper defines a methodology for
integrating maintainability into large-scale software and describes an experiment
which implements the methodology into a major commercial software
development environment. The classical metrics Halstead's software science,
McCabe's cyclomatic complexity, and Lines of code are used to form the
integrating process.

[LO90] ‘

Linton Lo, "An initial view on size estimation for expert system applications”,
Proceedings of the 4th Australian Joint Conference on Artificial Intelligence, p335-
358, Nov. 1990.

This paper discusses the size estimation for expert system applications. Major
factors that influence the development of expert system applications are examined.
A number of size metrics that are popular in the estimation of traditional software
applications are considered with respect to their application to the new technology.
Finally criteria for future size metric development are suggested but no new metric
is presented. It covers the topics of lines of code, function points, and software
science. A COBOL based program is used for the analysis of sizing.

[LUBI9O]

David J. Lubinsky, "Measuring software size by distinct lines”, Proceedings,
Fourteenth Annual International Computer Software and Applications
Conference, p 403-407, 1990.

The relationship between distinct lines of code and non comment soutrce lines is
studied on a number of projects (the ¢ compiler, the vi editor, unison, etc.). The
result is that overall the distinct lines of code metric is a very attractive measure of
size that has more advantages than non comment source lines.

37

[MALA90]

Yashwant K. Malaiya and Nachimuthu Karunanithi, "Predictability measures for
software reliability models", Proceedings. F ourteenth Annual International
Computer Software and Applications Conference, p 7-12, 1990.

To be able to estimate the testing efforts required, it is necessary to use a software
reliability growth model. While several different software reliability growth models
have been proposed, there exist no clear guidelines about which model should be
used. Here a two-component predictability measure is presented that characterizes
the long term predictability of a model. The first component measures how well a
model predicts throughout the testing phase while the second component is a
measure of the general tendency to overestimate or underestimate the number of
faults. Data sets for both large and small projects from diverse sources have been
analyzed. Results presented here indicate that some models perform better than
others in most cases.

[MAYR91] A

Anneliese Von Mayrhauser and James M. Keables. "A data collection environment
for software Reliability Research”, Proceedings, 1991 IEEE International
Symposium on Software Reliability Engineering, p. 98-105.

It reports ongoing research at IIT, their approach to data collection and the
development of a simulation environment used in software reliability research on a
theoretical level. The environment is, in essence, a laboratory in which software
reliability experiments are conducted. It is a useful tool for the testing of software.
The experiments are done on C programs.

[MORE93A]

Larry J. Morell and Jeffrey M. Voas, "A framework for defining semantic metrics”,
Journal of Systems and Software, Vol.20, p245-251, 1993.

Software metrics are measures of particular characteristics found in software.
Research in this area seeks to identify relationships between software characteristics
and software engineering processes. Most software metrics are based on program
structure and are determined statically. This paper presents a framework by which
semantic information that is essential to debugging can be quantified. Semantic
information designates information concerning what occurs internally during

38

execution as program states are created. The metric presented here is essential to

debugging.

[MORE93B]

Larry Morell and Branson Murrill, "Semantic metrics through error flow analysis”,
Journal of Systems and Software, Vol.20, p253-265, 1993.

Error flow analysis of a computer program, originally developed as a technique to
facilitate software testing, derives information about how potential data stated
errors may arise and propagate as the program executes. This information can be
used to measure the semantic effects on an execution path caused by changing
statements along-the path. A dynamic style of error flow analysis is defined and a
system for performing this analysis called Dynamic Error Flow Analysis is
described. Several semantic metrics are described.

[MUNS90]

John C. Munson and Taghi M. Khoshgoftaar, "The relative software complexity
metric: a validation study”, Proceedings of Software Engineering 90, p89-102,
1990.

In this paper, a new approach to the use of complexity metrics is explored. A
method is presented theoretically for the construction of a linear.combination of
existing metrics to form a single relative complexity metric. The particular focus is
on the validation of this metric concept with regards to its stability. A large sample
of darta is used for the validation. Halstead’s software science and McCabe’s
cyclomatic complexity are used to form this new metric. There is no mention of a
specific programming language. |

[MUNS91]

John C. Munson and Taghi M. Khoshgoftaar, "The use of software complexity
metrics in software reliability modeling”, Proceedings. 1991 International
Symposium on Software Reliability Engineering, p2-11, 1991.

The central theme of this study is the creation ofa suitable complexity measure for
use in software reliability models. Factor analysis techniques are employed to
reduce the dimensionality of the complexity problem space, to produce a set of
reduced metrics. The reduced metrics are subsequently combined into a single

39

relative complexity measure. The notion of relative complexity is intended to a
dynamic or functional complexity metric for use in proposed modifications to
existing reliability models. It is a purely theoretical paper.

[MUNS92] 4

John C. Munson and Taghi M. Khoshgoftaar, "The detection of fault-prone
programs", IEEE Transactions on Software Engineering, Vol.18, No.5, p423-433,
May 1992. '

The use of the statistical technique of discriminate analysis as a tool for the
detection of fault-prone programs is explored. The foundations for the predictive
model development is based on software complexity metrics, such as lines of code,
Halstead’s software science, McCabe’s cyclomatic complexity, etc. Data used in
this paper comes from two systems. The first one is a Medical Imaging System
coded in Pascal, FORTRAN, Assembler and PL/M. The second one is an Ada
development environment for the command and control of a military data link
communication system.

[MUNS93]

John C. Munson and Taghi M. Khoshgoftaar, "Measurement of data structure
complexity”, Journal of Systems and Software, Vol.20, p217-225, 1993.

A new measure of software complexity is introduced. This new metric describes the
data structure complexity of operands in a program from a functional point of
view. The computational methodology for the metric is presented. An empirical
study is included to show the behavior of the new metric in relation to an existing
set of validated metric primitives. '

[MYER92] .

J. Paul Myers, Jr., "The complexity of software testing”, Software Engineering
Journal, p13-24, January 1992.

This study represents a reasoned theory of the specific complexity of the various
phases of the testing endeavour, in which the minimal complexity of adaptive
strategies is provable. Moreover, the theory incorporates, and thereby validates, a
number of well established and often used complexity metrics like the McCabe
metric and Halstead’s length. An overview of testing techniques is performed. A

parameterized metric is developed to measure the complexity of testing.

[OFFU93]

A. Jefferson Offutt, Mary Jean Harrold and Priyadarshan Kolte, "A software metric
system for module coupling”, Journal of Systems and Software, Vol.20, p295-308,
1993. -

Low module coupling is considered to be a desirable quality for modular programs.
The metric system defined here not only measures the coupling of a particular
module, but also measures the coupling of an entire system. This paper presents
coupling measures from several well-used C programs.

[OMANY4]

Paul Oman and Jack Hagemeister, "Construction and testing of polynomials
predicting software maintainability”, Journal of Systems and Software, Vol.24,
p250-266, 1994. '

This article shows how the set of applicable measures can be reduced to a
minimum number of metrics useful in predicting maintainability. Eight suites of
programs coded in C and Pascal are obtained from Hewlett-Packard. McCabe’s
cyclomatic complexity, Lines of code and Halstead’s software science are also used
for measuring in this article.

[PFLE93] ,

Shari Lawrence Pfleeger, "Lessons learned in building a corporate metrics
program”, IEEE Software, p67-74, May 1993.

A metrics program to address corporate needs should include linking metrics to
process maturity, a tools-evaluation database, and the use of multiple-metrics
graphs. Though no new metrics are introduced, this is a good paper for software
measurement practitioners. Data is presented in graphical and table format.

[REDM90]

James A. Redmond and Reynold Ah-Chuen, "Software metrics - a user's
petspective”, Journal of Systems and Software, Vol.13, p97-110, 1990. '

The evaluation and use of a prototype software metrics tool on three software
objects of increasing complexity are discussed. The need for heuristics, limits, and

41

feedback from programmers and project managers is covered. Suggestions for
improvement of the tool are made. This paper is a recorder of the validation of the
tool. Programs in C are used as an evaluation test bed for this tool. McCabe’s
cyclomatic complexity and non-comment source lines of code are used as the
metrics to measure the level of complexity of a module. Measurement data is
included in this paper. '

[REIF90]

Donald J. Relfer, "ASSET-R: a function point sizing tool for scientific and real-
time systems", Journal of Systems and'Software, Vol.11, No.3, p159-171, 1990.
This paper presents the results of experiments conducted over three years to
empirically validate extensions made to enable function point theory to handle
scientific and real-time systems. It begins by presenting some background
information on the theory of function points and the fundamental mathematics
upon which it is based. It then summarizes the strengths and weaknesses of the
technique. Analytical Software Size Estimation Technique (ASSET) i is formulated
and validated statistically. The paper next reports the statistical results of the
experiments. It also briefly describes the Analytical Software Size Estimation
Technique Real-Time (ASSET-R) package, its basis and its mathematical

formulation.

[RENGI1]

Ralph Rengger, "Indicators of usability based on performance”, Human Aspects in
Computing: Design and Use of Interactive Systems and Work with Terminals,
p656-660, 1991.

In this theoretical report paper based on a part of a large project, metrics as
indicators of usability based on performance are identified and assigned to generic
groups. Usability metrics based on performance are proposed.

[RISI94]

Linda S. Rising and Frank W. Calliss, "An information-hiding metric", Journal of
Systems and Software, Vol.26, p211-220, 1994.

The most critical problem facing developers and maintainers of large software
systems is overwhelming complexity. Abstraction, a powerful tool for dealing with

42

complexity, limits details that must be considered to those that are most relevant.

Programming languages have evolved to provide a high-level construct, called a
module or a class that supports abstraction by allowing the encapsulation of details
and enforcing information hiding. This paper describes the creation of metrics for
information hiding at the module level with mathematical expressions. The
relationship between the information-hiding metrics and the maintainability of
programs is examined by use of subjective validation. Measurements on a large Ada
program are presented in this paper.

[SAMA91]

M. H. Samadzadeh and K. Nandakumar, "A study of software metrics", Journal of
Systems and Software, Vol.16, p229-234, 1991.

This article reports on an empirical study conducted to explore the
interdependencies among a number of software sizing and complexity metrics
(Lines of code, McCabe’s and Halstead’s metrics) and validate a new complexity
metric. A detailed description of the new metric is given. Also a model of code
faults in terms of static metrics is presented and investigated. This study is based on
a real application software written in C.

[SCHNO91] _
Norman F. Schneidewind, "Setting maintenance quahty objectives and prioritizing
maintenance work by using quality metrics", Proceedings, Conference on Software
Maintenance 1991, p204-209, 1991.

It shows how metrics that are collected and validated during development can be
used during maintenance to control quality and prioritize maintenance work. The
motivation for this research stems from the need to provide maintenance
management with the following: 1) a quantitative basis for establishing quality
objectives during maintenance and 2) a rationale for allocating resources and
equipment. It covers time, error count, human resources, complexity, etc.
Measurement data from Pascal programs are included.

[SEAR93]
Andrew Sears, "Layout appropriateness: a metric for evaluating user interface

widget layout”, IEEE Transactions on Software Engineering, Vol.19, No.7, p707-

43

719, July 1993. .

This paper presents a new metric which incorporates simple-task descriptions. This
metric can assist designers in organizing widgets in the user interface. This metric
requires a description of the sequences of widget-level actions users perform and
how frequently each sequence is used. An example with a sample program is
presented. Statistical results of comparisons of layout from different packages are
presented.

[SELB91]

Richard W. Selby and Victor R. Basili, "Analyzing error-prone system structure”,
IEEE Transactions on Software Engineering, Vol.17, No.2, p141-150, February
1991.

The purpose of this study is to quantify ratios of coupling and strength and use
them to identify an error-prone system structure. The measurement of strength
and coupling is based on intrasystem interaction in terms of software data
bindings. The measurement of error-proneness is based on software error data
collected from high-level system design through system testing. The software
projects selected for this study are coded in Assembler, C and other high level
programming languages.

[SHEP91]

Martin Shepperd and Darrel Ince, "Design metrics and software maintainability:
an experimental investigation”, Software Maintenance: Research and Practice, Vol.
3, p215-232, 1991.

This paper presents an empirical investigation into the feasibility of using design
metrics to identify potential maintenance trouble spots within software systems.
The experiment is based upon maintenance changes made to four different
versions of a project management tool carried out by a total of 60 programmers.
The overall conclusion from the investigation is that accurate prediction of quality
characteristics for single maintenance changes is extremely difficult. But it also
shows that measures of information flow local to specific modifications are
significantly related to error rates. The different types of changes reveal marked
variations in their relationships with the design metrics.

[SHEP94]

M. Shepperd, D. C. Ince, "A critique of three metrics", Journal of Systems and
Software, Vol.26, p197-210, 1994.

It examines the metrics of the software science model, cyclomatic complexity and
an information flow metric of Henry and Kafura. Claimed benefits are
summarized. Each metric is then subjected to an in-depth critique. Empirical
validations are performed for these metrics.

[STAR94]

George E. Stark, Louise C. Kern, C. W. Vowell, "A software metric set for
program maintenance management”, Journal of Systems and Software, Vol.24,
p239-249, 1994.

It is designed for the managers at the National Aeronautics and Space
Administration’s Mission Operations Directorate at the Johnson Space Center in
order to increase their insight into the cost, schedule, and quality of software-
intensive systems. To support this objective, a software metrics set that contains 13
metrics related to corrective and adaptive maintenance actions is defined and
implemented. This metrics set measures the software issues from product, process
and resource perspectives.

[VOAS93]

Jeffrey M. Voas and Keith W. Miller, "Semantic metrics for software testability”,
Journal of Systems and Software, Vol. 20, p207-216, 1993.

This paper describes a metric (domain/range ratio), derivable from semantic
information found in software specifications, and concludes that this metric
indicates software subfunctions that tend to hide faults. The domain/range ratio is
the ratio of the number of possible inputs to the number of possible outputs.
Detailed discussion is given together with statistical data.

[WRIGY1]

Clive D. Wrigley and Albert S. Dexter, "A model for measuring information
system size", MIS Quarterly, p245-257, June 1991.

This article presents a research model to measure the information system size.
There are 26 systems containing more than 779 FOCUS programs used for the

45

experiment. A brief introduction on lines of code and function points is presented.

[ZAGE93]

Wayne M. Zage and Dolores M. Zage, "Evaluating design metrics on large-scale
software", IEEE Software, p75-81, July 1993.

Knowing design stress points eatly in the development saves time and money on
redesign. Two new design metrics, tested in a study of 21 Ada programs, can help
to identify trouble spots even in large-scale projects. First, the theory of these
metrics is presented, and then their application.

46

CHAPTER 5

SUMMARY

This project is divided into five chapters including the current one. In chapter 1,
the need for software measurement is briefly described, the definitions for software
metrics and metrics papers are given, the goals of the project are defined, the
pioneer work of this project is presented, and the organization of this project is
explained.

In chapter 2, the table classification schema are defined. There are four schema in
this project. Each one is presented with a detailed definition together with some
examples. The first one is the Metrics Through The Life Cycle based on the waterfall
model. The second one is the Classic Metrics, as defined by [COTE88]. The third
one is the Programming Language Metrics. The fourth concerns New Metrics. The
reference tables are also included in this chapter.

In chapter 3, a comparison is done between the 1988 paper and the current
project. The comparison is done on a table by table basis. The result is given
together with an analysis as to how and why it happened. This chapter also
includes some comments on the findings of the project.

In chapter 4, an annotated bibliography is presented. Each entry contains three
blocks. The first block is the entry’s identifier. The second block contains the
names of the authors, the paper’s title, publication, etc. The third block gives a
brief summary of the paper and some table classification information based on the
table classification schema presented in Chapter 2.

Between the moment this survey was completed, in 1994, and the submission of

this thesis, more papers concerning software metrics have been published, and it
would be interesting to compare the trends we have found with the reality of a few

47

years from now. This work, somewhere around the year 2000, will be much easier
to conduct, even considering the increase in the number of publications, because of
the existence of electronic bibliographies on software metrics, available on the
World Wide Web, and regularly updated. Three of them are listed on the next

page, along with the text references.

48

TEXT REFERENCES

[CONTS86] Conte, S. D., Dunsmore H. E., Shen V. Y., "Software Engineering
Metrics and Models", Benjamin/Cummings, Menlo Park, C, 1986

[COTES88] V. Coté, P. Bourque, S. Oligny and N. Rivard, "Software metrics: an
overview of recent results”, Journal of Systems and Software, Vol.8, No.2, p121-
131, March 1988.

[FENT91] Norman E Fenton, “Software metrics: a rigorous approach”, New
York, Chapman & Hall, 1991.

[HAMES85] P. Hamer and G. Frewin, “Software metrics: a critical overview”,
Pergamon Infotech State of the Art Report, 1985.

[JONE90] Gregory W. Jones, “Software engineering”, John Wiley & Sons, 1990.
Electronic bibliographies:

http://irb.cs.uni-magdeburg.de/se/bibliography/bib main.html
Software Metrics - A subdivided bibliography, Research Report IRB-007/92, July
1996, Reiner Dumke, Software Measurement Laboratory, IRB, University of
Magdeburg, PF 4120,39016 Magdeburg, Germany.

http://www.sbu.ac.uk/~csse/publications/OOMetrics.html
Object-Oriented Metrics: People and Publications, June 1996, Robin Whitty,
Centre for Systems and Software Engineering, School of Computing, Information
Systems and Mathematics, South Bank University, London SE1 0AA, UK.

http://saturne.info.uqgam.ca/Labo_Recherche/Lrgl/biblio.html
Software Metrics Bibliography, Laboratoire de recherche en gestion des logiciels,
Département d'informatique, Université du Québec 3 Montréal, Case postale

8888, succursale Centre-Ville, Montréal (Québec), Canada, H3C 3P8.

49

	Ma début
	Ma p 16
	Ma p 17

