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Resume (en francais) 

La structure coiffe est une unite protectrice situee a l'extremite 5' des ARNm eucaryotes. 
Cette structure est essentielle pour le transport et la traduction des ARNm. La coiffe est 
synthetisee co-transcriptionellement par trois activites enzymatiques consecutives : (1) Une 
ARN triphosphatase (RTase) qui hydrolyse le phosphate terminal de l'extremite 5' de 
TARN; (2) Une ARN guanylyltransferase (GTase) transfere un groupement GMP a cette 
extremite diphosphorylee et; (3) une ARN (guanine-N7) methyltransferase (MTase) qui 
ajoute un groupement methyle a la position N7 de la coiffe. 

La cristallographie a permis d'elucider la structure de plusieurs enzymes impliquees dans la 
synthese de la structure coiffe. En depit du fait que ces structures ont permis de mieux 
comprendre plusieurs aspects mecanistiques du fonctionnement de ces enzymes, certains 
points nebuleux persistent, notamment, sur les interactions enzymes-substrats. Parmi les 
premieres etudes cristallographiques des enzymes de la synthese de la coiffe, la structure de 
la proteine Cetl, la RTase de Saccharomyces cerevisiae, fut elucidee en complexe avec une 
molecule de sulfate. La difficulte a elucider la structure du complexe enzyme-ligands est 
probablement liee a l'instabilite thermodynamique de ce complexe. Afin d'avoir une 
meilleure comprehension de l'activite RTase de S. cerevisiae une analyse en profondeur du 
site actif de cette enzyme en complexe avec un substrat approprie reste a etre etablie. 

Les nombreuses etudes cristallographiques sur la GTase du virus Paramecium bursaria 
chlorella virus-\ (PBCV-1) ont permis d'elucider le chemin reactionnel macroscopique de 
cette famille d'enzyme. Cette proteine a ete cristallisee en presence de plusieurs ligands et 
sous differentes conformations; ce qui a permis de visualiser certaines etapes de la reaction 
de la synthese de la coiffe. Malgre tout, en depit du fait que le substrat naturel, le GTP, a 
ete co-cristallise avec la proteine, d'autres etudes permettant la comprehension de la 
specificite de la GTase envers la guanine doivent etre realisees. De plus, un mecanisme 
moleculaire de la catalyse de la reaction GTase manque toujours a nos connaissances. 

L'importance de la structure coiffe pour le processus de traduction est incontestable. La 
relation entre la coiffe et la machinerie traductionnelle a ete etudiee indirectement par 
1'etude des proteines qui lient la coiffe. La plupart des etudes qui investiguaient directement 
la structure coiffe etaient restreintes a evaluer 1'inhibition de la traduction par des analogues 
de la coiffe. Des etudes sur les effets des analogues de la coiffe en 5' n'ont debute que 
depuis peu, et de plus, la fonction principale de la methylation en N7 de la coiffe n'a pas 
encore ete adressee. 

Cette these vise done a fournir un apercu de la dynamique structurale des interactions 
enzyme-ligand de la RTase de S. cerevisiae et de la GTase de PBCV-1. Nous montrons que 
des analogues de purines peuvent etre un outil utile pour l'etude de plusieurs processus 
cellulaires, tels que la traduction. Au cours de mes etudes, nous avons decouvert une 
nouvelle classe de GTase virale dans la famille des flavivirus, foumissant ainsi un apercu 
plus succinct du complexe de replication de ce virus. 
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SUMMARY: 

The RNA cap structure is a fundamental feature of most known eukaryotic mRNAs and 

some viral RNAs. It is important for the stability, transport and translation of mRNAs. It is 

co-transcriptionally synthesized via the action of 3 consecutive enzymatic reactions: (1) A 

RNA triphosphatase which cleaves off the 5' terminal phosphate of nascent RNAs; (2) A 

RNA guanylyltransferase which transfers a GMP moiety onto the acceptor RNA; (3) A 

RNA (guanine-N7) methyltransferase which methylates the cap guanine at the N7 position. 

Through the end of the 1990's until now, the crystal structures of several capping enzymes 

have been solved. However, these structures, although very insightful in themselves, failed 

to provide any instructive information on several key issues regarding enzyme-substrate 

interactions. For instance, one of the first breakthrough crystallographic studies in RNA 

capping chemistry led to the elucidation of the yeast RNA triphosphatase structure (the 

Cetl protein). However, in the crystal structure, the Cetl protein was bound to a sulphate 

molecule, which was hypothesised to be mimicking the product of the RNA triphosphatase 

reaction- a phosphate molecule. The inability to capture the RNA triphosphatase in 

complex with its ligands is probably on account of the inherent thermodynamic instability 

of this protein when bound to RNA or a nucleotide. A structural definition of the active site 

of the yeast RNA triphosphatase in complex with an appropriate substrate is still lacking. 

In addition, the elucidation of the structure of the RNA guanylyltransferase of the 

Paramecium bursaria chlorella virus-\ (PBCV-1) in several different conformations has 

been a landmark study which greatly contributed towards the understanding of the catalytic 

pathway of this model enzyme. On the other hand, despite the presence of the natural 

substrate-GTP, within the active site of the enzyme, the rationale behind the GTP 

specificity of RNA guanylyltransferase remains poorly understood. Moreover, a molecular 

mechanism for the RNA guanylyltransferase reaction is still missing. Finally, the 

importance of the RNA cap for the process of eukaryotic translation is undisputable. 

However, the relationship between the RNA cap and translation has been mostly studied 

indirectly through proteins which bind to the cap structure. Most studies pertaining directly 

to the impact of the binding of the RNA cap structure have been restricted to investigating 
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the inhibitory potential of various cap analogues on the translation process. Studies on the 

effects of modified RNA caps at the 5' ends of RNAs have only started in the last few 

years, and more importantly, the necessity of the N7-methyl group on RNA cap analogues 

had not been addressed. 

This thesis therefore aims to provide a structural insight into the structural dynamics of 

enzyme-ligand(s) interactions of the model S. cerevisiae's RNA triphosphatase and the 

PBCV-1 RNA guanylyltransferase. In addition, we show that purine analogues can be a 

useful tool for the study of several cellular processes, such as RNA translation. In the 

process we have uncovered a novel class of RNA capping enzyme in the flavivirus genus of 

the Flaviviridae family of RNA viruses, thus providing a more succinct insight into the 

flaviviral replication complex. 
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INTRODUCTION 

1. The lifecycle of eukaryotic mRNAs 

The life cycle of mRNAs starts with their transcription and ends ultimately in their demise 

by degradation (Gu and Lima 2005). Eukaryotic mRNAs differ from their bacterial 

counterparts in several ways namely by undergoing several co-transcriptional modifications 

such as the addition of a RNA cap at their 5' end, the synthesis of a poly(A) tail at the 3' 

end following cleavage, and the splicing of introns to form mature functional mRNAs 

(Varani 1997). These modifications are crucial to establish the fate of the mRNA. 

Appropriately modified mRNAs will be eligible for transport to the cytoplasm and 

translation by ribosomes (Hamm and Mattaj 1990; Shatkin and Manley 2000). On the other 

hand, a pre-mRNA possessing a defect in maturation (a splicing defect for instance) is 

rapidly targeted for degradation (Isken and Maquat 2007). 

An mRNA, from its synthesis to its degradation, is bound by several proteins and protein 

complexes throughout its life cycle. For instance, following synthesis of the 5' end by RNA 

Polymerase II and capping by the RNA capping machinery, the RNA cap structure is bound 

by the CBP20/80 complex in the nucleus. This interaction is important for the splicing of 

mRNAs as well as their transport from the nucleus to the cytoplasm (Izaurralde, Lewis et 

al. 1994; Visa, Izaurralde et al. 1996; Lewis and Izaurralde 1997; Newbury 2006). The 

CBP20/80 complex is exchanged for the eIF4E protein of the translation initiation complex 

in the cytoplasm. The binding of the RNA cap structure to eIF4E is fundamental for cap-

dependent translation to occur. The 3' poly(A) tail also plays a vital role in the life cycle of 

mRNAs. It is bound by several proteins, the most notable one being PABP, which is vital to 

improve translation efficiencies of mRNAs (Kuhn and Wahle 2004). 

The 5' and 3' modifications brought about on an mRNA also contribute to the stability of 

mRNAs. The 5' RNA cap structure blocks the 5' end in an unusual 5'-5' linkage, thus 

effectively preventing 5' exonucleases from degrading the mRNA. For a regulated 

degradation of mRNAs, decapping enzymes cleave off the cap structure to aid in RNA 

degradation (Newbury 2006). Therefore, due to the critical roles that RNA modifications 

play in the life cycle of mRNAs, most enzymes directly involved in the synthesis of these 

modifications have been shown to be essential. Extensive genetic studies in the model 
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organism budding yeast have shown that all components of the RNA capping machinery 

are crucial for survival (Shatkin and Manley 2000). In addition, in several viruses, 

abrogating any step of RNA cap synthesis leads to defective viral replication (Bisaillon and 

Lemay 1997). This underlines the fundamental importance of the RNA cap structure in the 

life cycle of eukaryotic mRNAs. 

1.1 Synthesis and co-transcriptional modifications 

Eukaryotic mRNAs are exclusively transcribed by the DNA-dependent RNA Polymerase II 

(Pol II). The transcription process is guided by several tightly regulated steps. Initially in 

the first steps of transcription, a pre-initiation complex consisting of the polymerase and 

transcription factors (such as TBP, TAFs and SWI/SNF units) binds to the promoter region 

of the gene of interest, and RNA synthesis begins. Initiation is followed by promoter 

clearance, when initial contacts between the promoter and the polymerase are broken. The 

polymerase complex then enters the elongation phase of transcription, culminating finally 

into transcription termination when the polymerase dissociates from the DNA template and 

the RNA transcript is released (Howe 2002). During the tightly regulated process of mRNA 

synthesis, several modifications are also brought about co-transcriptionally on the mRNA 

(Fig. 1) (Moore and Proudfoot 2009). 

The first modification to occur is the addition of the 5' RNA cap structure. In vivo, cap 

addition occurs early during transcription, when about 25-30 nucleotides have been 

polymerized and the 5' end is protruding from the RNA binding pocket of the RNA Pol II. 

The enzymes involved in RNA cap synthesis are specifically recruited to the Pol II pre-

initiation complex. The phosphorylation level of the CTD of the PolII holoenzyme 

mediates this specific recruitment at the beginning of the transcription process. The 

evolutionary conserved proteins, CBP20 and CBP80, co-transcriptionally bind as a 

heterodimer to the RNA cap structure shortly after its synthesis. The RNA cap structure 

retains its association to this cap-binding complex (CBC) throughout its transcription, co-

transcriptional processing and nucleocytoplasmic export (Moore and Proudfoot 2009). 

During transcription elongation, intron removal occurs. This step is catalyzed by the 

assembly of a macromolecular ribonucleoprotein complex, the spliceosome. The splicing 
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reaction has been extensively characterized in several organisms and will only be alluded to 

in this thesis (Martinez-Contreras, Cloutier et al. 2007). Prior to transcription termination, 

another key modification to occur on the pre-mRNA is the addition of a poly(A) tail. This 

is a multi-step mechanism which is initiated by the recognition of the Poly(A) cleavage site 

by processing factors. Following endonucleolytic cleavage of the pre-mRNA, a chain of 

adenosine nucleotides is added to the transcript by a Poly(A) polymerase (PAP), to which 

Poly(A) Binding Protein (PABP) binds co-transcriptionally. At the end of these steps, a 

mature mRNA is released from the transcription bubble for transport to the cytoplasm 

(Shatkin and Manley 2000; Moore and Proudfoot 2009). This is summarized in Figure 1. 

Introduction, Figure 1: Global overview of mRNA synthesis and co-transcriptional 
modifications brought on the pre-mRNA in human cells (adapted from Per ales and 
Bentley. Mol Cell, 2009) 

mRNAs are transcribed by RNA Polymerase II, which possess a hepta-peptide repeat in its 
CTD. The level of phosphorylation of the CTD dictates transcription progress. The RNA is 
bound by several proteins or protein complexes during its synthesis. The CBP 20/80 
complex binds to the 5' cap following its synthesis by HCE and ITT (human capping enzyme 
and human methyltransferase). The spliceosome binds to excise introns, while the Cleavage 
and polyadenylation specificity factor (CPSF) binds to the pre-mRNA for cleavage and 
polyadenylation. Following these modifications, mRNAs can he exported for translation to 
the cytoplasm. Scissors depict RNA cleavage at the poly (A) site. 
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2. The RNA cap structure 

2.1. Structure and function 

The RNA cap structure consists of a N7-methyI guanosine residue added at the 5' ends of 

eukaryotic mRNAs via a 5'-5' triphosphate bridge (Fig. 2). The capped guanosine residue 

is methylated at the N7 position in most mRNAs and forms a functional RNA cap structure 

known as a cap 0. In some organisms and viruses, the ribose of the first nucleotide of the 

mRNA may be methylated at the 2' position. This leads to the formation of a cap 1 

structure. Additional methylations on the 2' position of subsequent nucleotides in the RNA 

lead to the formation of cap 2, 3 etc structures (Bisaillon and Lemay 1997). The 5' RNA 

cap has several essential functions in eukaryotic cells. In addition to being essential for cap-

dependent translation for protein synthesis, it plays several key roles in the life cycle and 

life span of mRNAs. 

4 - * " 
CH3 0 

U II 

HC» || j I 

-in all caps 

H2C-

r] p 
OH OH 

7-methylguanylate 

0 0 0 
II II II 

0 —P —0 —P —O —P —o 
I 1 I 

o- o- or 

5*-5' triphosphate bridge 

in cap2 

Introduction, Figure 2: The structure of the mRNA cap 

In green is the A'/'-methyl guanosine residue linked via a 5 '-5' triphosphate bridge (in grey) 
onto the 5' end of the RNA (in blue). In red are the methylation positions on mRNAs. 
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Stability of mRNAs: The unconventional 5'-5* bond in the RNA cap structure protects the 

5' ends of mRNAs against most exonucleases since they only hydrolyze 3' -5' bonds. 

During the regulated degradation of mRNAs in cells, decapping enzymes (the Dcpl/Dcp2 

complex in baker's yeast) degrades the 5'-5" linkage prior to the 5'to 3" degradation 

process (Newbury 2006). In cells, the cap structure is strongly bound by the Cap Binding 

Complex (CBC 20/80 in metazoans and CBC 1/2 in yeast) in the nucleus and eIF4E/eIF4G 

in the cytoplasm, which limits its access by the decapping machinery, thus effectively 

protecting the mRNA against 5' to 3' degradation (Moore and Proudfoot 2009). 

Nucleo-cytoplasmic transport of mRNAs: Following transcription of mRNAs within the 

nucleus, their transport to the cytoplasm for translation is ensured by the Cap Binding 

Complex. The Nuclear Cap Binding Complex binds exclusively to the RNA cap structure 

and is then recognized by the Nuclear Pore Complex, for transport into the cytoplasm, 

where, following the first pioneer round of translation, it is replaced by the eIF4E/eIF4G 

complex (Maquat 2004). 

Translation efficiency of mRNA: Translation efficiency is significantly improved by the 

presence of the 5' cap. The 5' cap plays a key role in recruiting protein co-factors, and 

ultimately the small ribosomal subunit to the 5' ends of mRNAs. In addition, the 5' cap, 

when bound by the cytoplasmic cap binding complexes (eIF4E/eIF4G), lead to the 

circularization of the mRNA molecule by interactions with poly(A) binding proteins bound 

at the 3'ends of mRNAs (Fig.3). Such interactions enable an efficient recycling of 

ribosomes, thus improving translational efficiency of mRNAs (Livingstone, Atas et al. 

2010). 

Splicing of the 5' proximal intron: The RNA cap structure has also been shown to be 

important to promote intron excision during the splicing of the 5' proximal intron (Lewis, 

Izaurralde et al. 1996; Lewis and Izaurralde 1997). The precise mechanism by which this is 

achieved is still under study in model organisms (Raczynska, Simpson et al. 2010). 
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initiation 

Introduction, Figure 3: Importance of the RNA cap and Poly(A) tail (adapted from 
Sonenberg and Dever, Curr. Opin. Struct. Biol, 2003) 

The RNA cap structure is bound by eIF4E a component of the eIF4F complex during 
translation initiation. eIF4G, another component of the initiation complex binds to PABP, 
the poly (A) binding protein. Thus a mature mRNA is effectively circularised, which ensures 
rapid recycling of ribosomes for efficient translation. 

2.2 Synthesis of the RNA cap structure 

RNA cap synthesis is a co-transcriptional event requiring 3 essential enzymatic reactions 

(Fig. 4). During RNA transcription, the 5' end of the nascent RNA is triphosphorylated. A 

RNA triphosphatase is first required to cleave off the terminal phosphate (y) of this RNA to 

yield a diphosphorylated end. onto vvhich a RNA guanylyltransferase will transfer a GMP 

moiety. Finally a RNA (guanine-N7) methyltransferase transfers a methyl group onto the 

N7 position of the cap guanine nucleotide. These 3 consecutive reactions lead to the 

formation of a functional cap structure called cap 0 (Fig. 4) (Shuman 1995). As mentioned 

previously, in some organisms and viruses, additional mcthylation events may occur on the 

ribose moiety of the first nucleotide(s) of the RNA molecule, thereby leading to the 

formation of cap 1. 2 etc structures. RNAs harbouring such cap structures (Cap 0.1,2 etc), 

are translation competent. The importance of these additional methylations is still under 

investigation. 1 lowever. in some viruses, a recent report suggests that 2"C) methylation of 

viral mRNAs serve to subvert the host antiviral response (Daffis, Szretter et al. 2010). 
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Mutant viruses of the flavivirus. poxvirus and coronavirus genera, which are deficient in 

their 2"0- methyltransferase activity, are more sensitive to the antiviral action of 

Interferon-1. It is speculated that 2 '0 methylation has evolved in some eukaryotic 

genomes, in order to differentiate self from non-self mRNAs (Zust, Cervantes-Barragan et 

al. 2010). In addition to these types of RNA cap structures, there also exists RNAs 

harbouring a trimethylguanosine (TMG) cap structure. This cap differs from the typical cap 

0 structure of mRNAs with the addition of two methyl groups at the exocyclic N2 position. 

A subset of RNA Pol II transcribed cellular RNAs, including small nuclear RNAs 

(snRNA), small nucleolar RNA (snoRNA), and the telomerase RNA are thus capped 

(Reddy, Singh et al. 1992). These RNAs are transported within the cell for various 

functions and are not aimed for translation. 

?p N p N p N... 

^J (1) RNA triphosphatase 

N p N p N... 

1 (2) RNA guanylyltransferase 
pp, "**** 

r;"'p N p N p N . . . 

SWl " \ 

^ vli ' 
T 

«n,(,'V NpNpN... 

(3) RNA guanine (N7) methyltransferase 

Introduction, Figure 4: RNA Cap Synthesis 

(I) Cleavage of the terminal (y) phosphate by a RNA triphosphatase followed by release of 
inorganic phosphate (P,J. (2) Transfer of a GMP moiety onto the diphosphorylated end by a 
RNA guanylyltransferase with the concomitant release of pyrophosphate tPPj (3) Addition 
of a methyl group at the N7 position of the cap guanine by a RNA (guanine-N7) 
methyltransferase with S-Adenosyl Methionine (SAM) as co-factor S-Adenosyl-
homocysteine (SAIIj is released as a by product of the reaction. 
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2.3 Functional Organization of RNA capping enzymes 

From viruses to metazoans, the RNA cap structure is identical. However, the physical 

organization and to some extent the mechanism of the enzymes responsible for its synthesis 

differ significantly across the various taxa (Ghosh and Lima 2010). While in all known 

unicellular eukaryotes, each RNA modifying activity for RNA cap synthesis lies on a 

separate polypeptide, in higher order eukaryotes like plants and metazoans, the RNA 

(guanine-N7) methyltransferase is segregated from the RNA triphosphatase and RNA 

guanylyltransferase which are fused together in a single polypeptide (Fig. 5). On the other 

hand, with regards to viruses, no common theme distinct to any viral group emerges. 

However, the genomic organization as well as the mechanism of some of the proteins 

involved in RNA capping (more precisely the RNA triphosphatase and the RNA 

guanylyltransferase) diverges widely from those in unicellular eukaryotes or from those in 

plants and metazoans (Fig. 5). 
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Introduction, Figure 5: Schematic depiction of the organization of capping enzymes 
across various taxa (adapted from Issur et al, Wiley's RNA, 2010) 

Each box represents an enzymatic activity A space between boxes infers enzymatic 
activities harboured by distinct polypeptides while fused boxes represent enzymatic 
activities residing on the same protein. The colour code represents the structural and or 
mechanistic divergence between members of the same family oj enzymes 
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2.3.1 RNA triphosphatase 

The RNA triphosphatase catalyzes the first step of RNA cap synthesis. Across the various 

eukaryotic lineages, RNA triphosphatases differ significantly with respect to structure and 

catalytic mechanism and can be grouped into 2 distinct families: (1) metal-dependent RNA 

triphosphatases of lower eukaryotes such as fungi and protozoans (2) metal-independent 

RNA triphosphatases of nematodes, metazoans and plants (Fig. 6 and 7). 

2.3.1.1. Metal-dependent RNA triphosphatases 

The metal-dependent RNA triphosphatase has been identified in several eukaryotic lineages 

ranging from DNA viruses to fungi and protozoans. These RNA triphosphatases belong to 

the triphosphate tunnel metalloenzyme (TTM) family of phosphohydrolases and in contrast 

to metal-independent RNA triphosphatases, can hydrolyze NTPs (Ghosh and Lima 2010). 

The initial crystallization of the 5". cerevisiae's RNA triphosphatase, the Cetl protein, 

revealed its homodimeric nature, whereby two equivalent active sites are present around a 

topologically closed eight-stranded anti-parallel P barrel (Fig. 6A) (Lima, Wang et al. 

1999). Biochemical and mutational evidences also suggest that this then-novel fold also 

encompasses the RNA triphosphatases of other fungi (Schizosaccharomyces pombe, 

Candida albicans), protozoan parasites (Plasmodium falciparum, Trypanosoma brucei, 

Encephalitozoon cuniculi, Giardia lambia) and some DNA viruses (Chlorella virus, 

poxvirus, baculovirus) (Shuman 2002). The recent elucidation of the Mimivirus RNA 

triphosphatase domain crystal structure has provided the first structural evidence for the 

inclusion of viral RNA triphosphatases in the TTM clade (Fig. 6B) (Benarroch, Smith et al. 

2008). Most interestingly, the TTM fold is more widely distributed across the various taxa 

than initially expected. Its finding within the archael and bacterial domains of life suggests 

a deeper evolutionary origin. The family of metal-dependent RNA triphosphatases is 

exemplified by the model S. cerevisiae's RNA triphosphatase, the Cetl protein. Its active 

site consists of several basic residues presumably important for coordinating the 

triphosphate moiety of pppRNA, as well as some basic residues coordinating metal ions 

which directly interact with the pppRNA triphosphate moiety (Fig. 7A). Phosphohydrolysis 

by RNA triphosphatases of the TTM clade is purported to occur in a one-step in-line 

catalytic mechanism. The metal ions are suggested to be important for activating a water 
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molecule for nucleophilic attack on the y-phosphate as well as to stabilize the subsequent 

phosphorane transition state intermediate formed (Bisaillon and Shuman 2001; Bisaillon 

and Bougie 2003). A crucial glutamate residue (Glu 433 in Cetl) is suggested to act as a 

general base by abstracting a proton from a water molecule coordinated by the 

aforementioned glutamate residue and potentially a metal ion. thus effectively rendering the 

coordinated water molecule a general acid for nucleophilic attack on the y-phosphate. This 

mechanism is still under investigation. 
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Introduction, Figure 6: Structures of yeast, viral and metazoan RNA triphosphatases 

(All structures were generated using PYMOL) 

fi-sheets are coloured in red, alpha helices in orange and random coils in gray. (A) I'he 
homodimeric RNA triphosphatase Cetl (PDB lD8H)jrom S. cerevisiae with a view looking 
into the triphosphate tunnel with a co-crystallized sulphate shown in sticks. (B) The 
monomeric RNA triphosphatase domain of mimivirus (PDB 3BGY). (CjThe NS3 protein 
from Dengue virus corresponding to its RNA triphosphatase domain is shown (PDB 
2BHR). (D) The murine RNA triphosphatase domain (PDB 1196). The active site cysteine 
(( ysl26) is denoted in stick representation and labelled. 
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2.3.1.2. Metal ion- independent RNA triphosphatase 

In higher eukaryotes the metal-independent RNA triphosphatase belonging to the cysteine-

phosphatase enzyme superfamily, prevails. The elucidation of the crystal structure of the 

mouse RNA triphosphatase provided the first structural evidence that the mammalian RNA 

triphosphatase (Mcel), which is defined by a central five-stranded parallel B-sheet flanked 

with several a-helices, is entirely unrelated to the TTM-clade of RNA triphosphatases (Fig. 

6D) (Fabrega, Shen et al. 2003). Phosphohydrolysis by these metal-independent RNA 

triphosphatases occurs in two steps not unlike the protein phosphatases of the same family. 

In the first step of the reaction, the conserved cysteine (Cys 126 in Mcel) attacks the 5' y-

phosphate of the RNA transcript to form a covalent protein-cysteinyl-5-phosphate 

intermediate with the concomitant release of the 5' ppRNA product. In the second step, the 

covalent phosphoprotein is hydrolyzed to liberate inorganic phosphate (Fig. 7B) (Ghosh 

and Lima 2010). 

With the ultimate intent to find novel antiviral and anti-microbial targets, this thesis is more 

concerned with RNA triphosphatases of the TTM clade, more specifically, the model Cetl 

protein. The relative instability induced to the Cetl protein upon ligand binding is probably 

the reason behind the lack of structural data of these enzymes bound to their substrates 

(Bisaillon and Bougie 2003). TTM RNA triphosphatases have only been co-crystalized 

with magnesium ions and sulphate or acetate bound within the active site. The bound 

sulphate/acetate molecule is purported to act as the y-phosphate of the substrate RNA. In 

this thesis, through computational and biochemical methods we provide the first insight 

into how the tunnel active site of the TTM RNA triphosphatases binds to their substrates. 

12 



(A) Metal-dependent RNA triphosphatase (Cetl tunnel) 

( = > 
o o 

o ' l V l N R N A 
o o 

(B) Metal-independent RNA triphosphatase 

-SriN^RNA 
O f) o 

o o 
I' 

o^o'T^ RNA 
o o 

Introduction, Figure 7: Schematic depiction of the RNA triphosphatase mechanism 
(adapted from Ghosh and Lima, Wiley Wire's RNA, 2010) 

The metal-dependent (top) and the metal-independent (bottom) RNA triphosphatase 
activities catalyze the removal of the y phosphate from pppRNA. The tunnel topology of the 
metal dependent RNA triphosphatase Cetl is shown with the side chains that coordinate 
pppRNA and 2 divalent metal ions, one derived from biochemical studies (circle with the 
letter M) and one derived from structural studies (solid sphere in blue). 
Metal independent RNA triphosphatases operate in 2 steps. In the first step (shown above) 
a covalent protein-cysteinyl-S-phosphate intermediate is formed with the y-phosphate from 
pppRNA following its hydrolysis. The covalent intermediate is then hydrolyzed to liberate 
inorganic phosphate in solution. 
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2.3.2. RNA guanylyltransferase 

The RNA guanylyltransferase carries out the second step of RNA cap synthesis. This 

enzyme catalyzes the formation of a chemical bond between the 5' end of a GMP moiety 

and the 5' diphosphorylated end of mRNA, thus effectively forming an exonuclease-

resistant 5'-5' linkage. With only a few exceptions in some viral families, the RNA 

guanylyltransferase reaction is very conserved across all eukaryotic lineages (Fig. 5) 

(Doherty and Suh 2000; Shuman and Lima 2004). 
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Introduction, Figure 8: Schematic depiction of the RNA guanylyltransferase 
mechanism (adapted from Ghosh and Lima, Wiley Wire's RNA, 2010) 

(A) RNA guanylyltransferase catalyzes capping in a two-step reaction. In step I, the 
enzyme binds GTP and magnesium to catalyze transfer of GMP to the active site lysine to 
form a covalent enzyme-(lysyl-N)-GMP intermediate. (B) In step 2, the enzyme binds the 
ppRNA (colored red) to catalyze transfer of the GMP to form GpppRNA. 
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2.3.2.1.Mechanism of RNA guanylyltransferase 

Two distinct catalytic events, in a ping-pong type reaction, define the RNA 

guanylyltransferase mechanism (Fig.8). In the first step, attack of the a-phosphorus of GTP 

by the capping enzyme results in the release of pyrophosphate and formation of a covalent 

enzyme-(/>'5>'/-A/)-GMP intermediate (Fig.8A). The second step entails the transfer of this 

covalently bound GMP onto an acceptor RNA (Fig.8B). The RNA substrate in the second 

step of the reaction is specifically a diphosphorylated RNA formed from the hydrolysis of 

the terminal 5' phosphate by an RNA triphosphatase. Both steps of this reaction require the 

presence of a divalent metal ion and have been shown to be reversible (Souliere, Perreault 

et al. 2008). The catalytic lysine, the s amino group of which forms the covalent 

phosphoamidate intermediate in the first step, is part of a KxDG motif (Motif I), one of six 

co-linear conserved sequences (I-VI) defining the active site of this family of enzymes 

(Fig.9). 

2.3.221 Nucleotidyltransferase superfamily 

Interestingly, the mechanism as well as the conserved motifs (I-VI) of capping enzymes are 

shared by ATP-dependent RNA and DNA ligases, which along with the former belong to 

the broader nucleotidyltransferase superfamily (Fig. 9) (Doherty and Suh 2000). In fact, 

crystal structures of the Chlorella virus RNA guanylyltransferase and of the T7 DNA ligase 

bound to GTP and ATP respectively have revealed a common tertiary fold in which the 

conserved motifs are assembled together at the enzyme's active site (Fig. 10). Both 

enzymes can be split into 2 distinct domains: a larger N-terminal domain encompassing 

motifs I, III, Ilia, IV and V which form the nucleotide binding pocket, and a smaller C-

terminal OB fold domain, which includes motif VI. Indeed, the enzyme-AMP intermediate, 

analogous to the phosphoamidate intermediate during cap synthesis, formed when 

RNA/DNA ligases react with ATP, clearly highlights the mechanistic similarity shared by 

the members of this superfamily (Fig. 11). 
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8T7 Lig IIKYDGVR -48 
Vac Lig EVKYDGER -41 
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Introduction, Figure 9: Sequence alignments of RNA guanylyltransferases 
(abbreviated CE) and ATP-dependent ligases (abbreviated Lig) (extracted from 
Doherty and Shu, Nucleic Acids Res, 2000) 

Motifs I, II, HI, Ilia, IV, V and VI are the six conserved elements in NAD+- and ATP-
dependent DNA/RNA ligases and RNA guanylyltransferases. The upper part of the 
alignment consists of the NAD+dependent ligases encoded by T. filiformis (Tfi), B. 
stearothermophilus (Bst), E. coli (Eco) and T. thermophilus (Tth). Below these are aligned 
sequences for the ATP-dependent DNA ligases (Lig) of bacteriophage T7 (BT7), vaccinia 
virus (Vac), Saccharomyces cerevisiae (See), Schizosaccharomyces pombe (Spo) and 
human ligases I (Hul), 3 (Hu3) and 4 (Hu4). The last block of the alignment includes the 
RNA guanylyltransferases encoded by Chlorella virus PBCV-I (ChV). S. cerevisiae, S. 
pombe, Candida albicans (Cal), African swine fever virus (ASF), vaccinia virus and 
Caenorhabditis elegans (Cel). The catalytic lysine residue is highlighted in red for each 
protein. 
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Introduction, Figure 10: Structural similarity of DNA ligases and RNA 
guanylyltransferases (adaptedfrom Doherty and Shu, Nucleic Acids Res., 2000) 
The location of the conserved sequences as defined in figure 9 are indicated, with the same 
color coding for the T7 DNA ligase and the PBCV-1 RNA guanylyltransferase. 

RNA guanylyltransferase 

(1st step) 

E + pppG 

PP. 

EpG 

ATP-dependent DNA/RNA ligase 

(1st step) 

E + pppA « ^s» EpA 

PP, 

B 
H O 

LyS _ N — p . o — (Nucleoside) 
! \ 
H cr 

Introduction, Figure 11: Mechanistic similarity between RNA guanylyltransferases 
and ATP-dependent DNA/RNA ligases. 

(A) The first step of the nucleotidytransferase reaction. RNA guanylyltransferases form a 
covalent bond with GMP, while A TP-dependent DNA 'RNA ligases form a covalent bond 
with AMP (B) In both cases, the covalent bond is a phosphoamidate bond formed between 
a nucleoside and a Ivsine residue. 
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2.3.2.3. Nucleotide specificity of RNA guanylyltransferases 

Despite the availability of more structural and biochemical data on several members of the 

nucleotidyltransferase superfamily, an accurate understanding of the substrate specificity of 

RNA capping enzyme still remains elusive. As yet, from a biological perspective, studies 

pertaining to this particular issue are scarce. It is worth mentioning that through domain 

swapping between the T7 ligase and the PBCV-1 RNA guanylyltransferase, an ATP 

capping enzyme has been previously generated (Doherty 1999). However, modulation of 

the substrate specificity of RNA guanylyltransferases through the rational design of point 

mutations remains to be achieved. While mutational analyses have yielded substantial data 

on protein-substrate interactions, gauging the importance of each with regards to their 

importance in substrate recognition is tedious and limited in its scope. 

In 2004, the report that, in vitro, ribavirin triphosphate (RTP) could be used as a cap donor 

by the vaccinia virus RNA capping enzyme revived interest in the possibility of modulating 

the substrate specificity of RNA guanylyltransferases (Fig. 12) (Bougie and Bisaillon 2004). 

This was the first report that an RNA capping enzyme could potentially use an alternative 

substrate to GTP to generate a modified RNA cap structure at the 5' end of an mRNA. In 

the wake of this study, we decided to investigate into the propensity of a model RNA 

guanylyltransferase to use artificial substrates as cap donors. Synthetic cap analogues have 

been extensively studied with regards to RNA stability and translation. However, few 

studies have aimed to probe into the capping machinery itself with a view to understand the 

underlying interactions leading to substrate discrimination. In this thesis we present a 

thorough study of the structural requirements of a ligand to be a cap donor by the model 

PBCV-1 RNA guanylyltransferase. We use purine analogues bearing various modifications 

at different positions and by gauging the effect of each modification, we traced the essential 

recognition motifs on the guanosine residue which determine its inherent ability to act as a 

cap donor. 
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Introduction, Figure 12: A viral RNA guanyly(transferase can form a covalent 
intermediate with Ribavirin monophosphate (adapted from Bougie et Bisaillon, JBC, 
2004) 

Left: Structural difference and similarity between Ribavirin and Guanosine. 
Right: Visualisation of the enzyme-ribavirin monophosphate (Dl-RMP) complex formation 
by capillary electrophoresis. Ribavirin triphosphate (RTP) and potassium pyrophosphate 
(KPPi) were added where indicated. The location of the covalent complex with Ribavirin 
monophosphate is indicated to the right. 

2.3.3. RNA (guanine-N7) methyltransferase 

The last essential step during RNA capping chemistry is carried out by the RNA (guanine-

N7) methyltransferase, which catalyzes the transfer of a methyl group from S-Adenosyl 

Methionine (SAM) onto the N7 position of the capped guanine residue (Fig. 13). The 

methylation of the N7 residue is crucial for the formation of a functional RNA cap structure 

which can be recognised by cap binding proteins for nuclear export and for the formation of 

the translation initiation complex. 

In our study we used the model RNA (guanine-N7) methyltransferase from S. cerevisiae. 

The MTase of S. cerevisiae bears a strong similarity with that of the protozoan parasite 

Encephalitozoon cuniculi; the structure of which had previously been determined in 

complex with SAH and therefore has been extensively characterized (Fabrega, Hausmann 

et al. 2004). The absence of stacking interactions within the RNA MTase crystal structure 

as compared to other cap binding proteins necessarily infers a need for a precise 
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orchestration of amino acids in the active site to ensure optimal ligand positioning for 

nucleophilic attack onto the methyl donor (SAM). A model of the MTase mechanism is 

shown in figure 13. 
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Introduction, Figure 13: Schematic depiction of the RNA (guanine-N7) 
methyltransferase mechanism (adapted from Ghosh and Lima, Wiley Wire's RNA, 2010) 

Methyltransferase activities: RNA (guanine-N7) methyltransferase binds S-
adenosylmethionine (AdoMet) (colored green) and GpppRNA (colored as above) to 
catalyze transfer of the methyl group (colored green) to the N7position of the guanine. 

2.4. Unconventional RNA capping apparatus 

The RNA cap structure is exclusively found in eukaryotes. The aforementioned RNA 

capping mechanism is the general RNA capping pathway that is found in all known 

organisms from fungi to mammals. However, in several viruses alternative pathways for 

cap formation have been described. These pathways not only differ in terms of the enzymes 

required, but also in the mechanism as well as in the order of the reactions involved in 

RNA cap formation. A few examples arc discussed below with a particular emphasis on the 

RNA capping apparatus of the flaviviruses. 

Vesicular stomatitis virus (VSV) exemplifies the Rhabdoviridae family of the 

Monegavirales order of viruses. VSV is a single stranded RNA virus of negative sense. The 
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L protein of VSV has a RNA-dependent RNA polymerase activity which ensures viral 

replication. In addition to this, the L protein also possesses RNA guanylyltransferase 

activity, without possessing any of the conserved motifs of the nucleotidyltransferase 

superfamiiy (Fig. 9). In fact, the L protein uses the 5* triphosphate end of an RNA to form a 

covalent enzyme-RNA adduct through a phosphoamide bond between the the 5' Di­

phosphate and a histidine residue on the protein. It has been demonstrated that the L protein 

also possesses a GTPase activity in vitro, which leads to the formation of GDP - the 

nucleophile in the second step of the reaction to generate the 5' capped RNA (Fig. 14) 

(Ogino, Yadav et al.; Ogino and Banerjee 2007). The L protein also possesses RNA 

(guanine-N7) methyltransferase activities. 
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Introduction, Figure 14: Schematic depiction of the proposed model of the 
unconventional RNA capping with GDP by VSV (adapted from Ogino, et al, PNAS, 
2010) 

The L polymerase forms a histidine-mediated covalent bond with the a-phosphate at the 
5'end of the RXA The covalently hound monophosphate RXA is then transferred onto a 
diphosphorylated Guanos ine residue (GDP) to form the RNA cap structure 
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In alphaviruses the nspl protein is responsible for capping of nascent transcripts. The nspl 

protein lacks the conserved motifs of the nucleotidyltransferase superfamily. The nspl 

protein can also add a methyl group at the N7 position of the guanine cap. by using S-

adenosyl methionine (SAM) as substrate. From biochemical analysis of the nspl protein, it 

has been discovered that very much unlike cellular GTases nspl forms a covalent complex 

not with GMP but instead with an m7GMP molecule. Nspl employs a unique capping 

mechanism whereby the addition of the methyl group at the N7 position occurs prior to the 

the guanylation of the nascent RNA molecule (Fig. 15) (Bisaillon and Lemay 1997). 
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Introduction, Figure 15: Schematic depiction of the proposed model of the 
unconventional RNA capping with m7GTP by alphaviruses (adapted from Ghosh and 
Lima, Wiley Wire '.y RNA. 2010) 

The nspl protein, by its (guanine-N7) methyltrunsferase activity, transfers a methyl group 
at (he A7" position of a GTP molecule. The N7-methyl GTP is then hydrolyzed and 
transferred onto an acceptor RNA. 
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It should however be mentioned that instead of using the host RNA capping machinery, or 

encoding for a viral RNA capping apparatus, some viruses like those of the genus 

bunyaviridae snatch the cellular RNA cap structure from cellular mRNAs and use these 

snatched capped short RNAs to synthesize viral mRNAs (Ghosh and Lima 2010). The 

mechanism used by the influenza virus is shown in figure 16. 

(a) (b) 
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Introduction, Figure 16: Schematic depiction of the model of the cap-snatching 
mechanism by the influenza virus (adapted from Ruigrok RW, et al, Current opinion in 
structural biology, 2010) 

(a) Host mRNAs bind to the cap binding domain on the PB2 subunit. (b) The bound cellular 
mRNAs are cleaved by the endoniiclease activity of the PA subunit. (c) The 5' capped 
cleaved cellular RNA fragment is used to elongate the viral mRNA by the 
nucleotidyltransferase activity of the PBI subunit and by using the viral RNA as template. 
(d) The chimeric viral RNA is polyadenylated by a polymerase stuttering mechanism at the 
oligo-U sequence near the 5' end of the viral RNA. 
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2.5. The other unconventional RNA guanylyltransferases and the case of the Jlavivirus 

genus 

Unconventional RNA guanylyltransferases have been observed in several families of RNA 

viruses. In several human pathogenic viruses, the identity of the RNA capping apparatus is 

still unknown. For instance, the RNA (guanine-N7) methyltransferase of members of the 

coronavirus genus, of which the deadly SARS virus forms part of, has only been recently 

identified on the nspl protein of the virus (Chen, Cai et al. 2009). The identity of the RNA 

guanylyltransferase is still under investigation. In the Jlavivirus genus, of the Flaviviridae 

family, the identity of the complete RNA capping apparatus has only recently been 

confirmed. 

The Jlavivirus genus belongs to the Flaviviridae family of viruses along with the 

Hepacivirus and Pestivirus genera. These genera differ in numerous ways. One major 

divergence is the presence of an IRES at the 5' ends of the RNA genomes of the 

Hepacivirus and Pestivirus genera whereas members of the the Jlavivirus genus harbour a 

RNA cap 1 structure. All members of the flavivirus genus possess an RNA cap 1 structure 

at the 5' end of their RNA genomes. The organization of the RNA genome and the nature 

of the 5' cap are shown in figure 17 (Bollati, Alvarez et al. 2010). 

The Jlavivirus genus comprises several medically important pathogens, the most notorious 

one being the Dengue Fever virus. This family also includes the Yellow Fever virus, the 

West Nile virus and the Japanese Encephalitis virus, amongst others (Ecker, Sampath et al. 

2005). Flaviviruses are arthropod-born viruses, possessing a complex life cycle involving 2 

distinct hosts, mosquito and human (Bollati, Alvarez et al. 2010). The replication cycle of 

flaviviruses is shown in figure 18. 

The viral E protein mediates the attachment of the virions to the host cell surface; and the 

virions penetrate cells by receptor mediated endocytosis. In the low pH of the endosome, 

fusion of the viral and host membranes occurs which leads to the release of the 

nucleocapsid and the viral RNA into the cytoplasm of the cell. The translation of the viral 

RNA generates a polyprotein which is co-translationally and post-translationally processed 

by host encoded proteases (eg furin) and the viral encoded protease (NS2B/NS3) to form 3 
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structural and 7 non-structural proteins (Fig. 17). The replication of the viral RNA occurs 

within the membranes of the rough endoplasmic reticulum; assembly of virus particles 

takes place within the lumen of the ER, and virus maturation prior to release occurs through 

the Golgi apparatus (Sampath and Padmanabhan 2009). 

Among the viral proteins translated, the NS3 (-70 kDa) and NS5 (-105 kDa) proteins are 

the most characterized, possessing enzymatic activities essential for viral replication. The 

NS3 protein possesses (1) serine protease activity with the co-factor NS2B. which is 

required for the polyprotein processing; (2) helicase/NTPase activity required for 

unwinding the viral RNA; and (3) RNA triphosphatase activity which is essential for the 

synthesis of the viral RNA cap structure (Lescar, Luo et al. 2008). The NS5 protein is the 

largest flaviviral protein. It is a multi-functional protein which harbours in its C-terminal 

domain the RNA-dependent RNA polymerase activity of the virus and in its C-terminal 

domain a (guanine-N7) and a (2'0) methyltransferase activities, which are required for the 

synthesis of the RNA cap 1 structure (Dong, Zhang et al. 2008). 

Structural proteins Non-Structural proteins 

| J 
S'- •3' 

Introduction, Figure 17: Schematic linear depiction and organization of the RNA 
genome of flavivirus (inspiredfrom Bollati, et al. Antiviral Research, 20JO) 

The flaviviral RNA genome possesses a RNA cap I structure at its 5' end This RNA 
genome encodes for a polyprotein which is organized into 2 distinct parts: structural and 
non-structural proteins as indicated. 
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Introduction, Figure 18: Schematic depiction of the replication cycle of viruses of the 
flavivirus genus (taken from Sampath and Padmanabhan Molecular targets for flavivirus 
drug discovery, 2009) 

Virion enters host cells by receptor-mediated endocytosis. Following liberation of the RNA 
from virions, viral RNA replication occurs in the rough endoplasmic reticulum (RER). 
Virion assembly occurs within the lumen of the Endoplasmic Reticulum (ER) while virus 
maturation occurs via the Golgi apparatus. 

As mentioned previously the flavivirus genome possesses a cap 1 structure at its 5' end. Of 

the 3 essential activities required for RNA cap synthesis, only the RNA triphosphatase (on 

the NS3 protein) and the RNA methytransferase (on the NS5) protein have been identified. 

The RNA guanylyltransferase had escaped identification. The report of a co-crystal 

structure of GTP with the N-terminal domain of the NS5 protein of the Wesselsbron virus 

(a member of the flavivirus genus) led us to speculate that the NS5 protein also possessed 

RNA guanylyltransferase activity (Bollati, Milani ct al. 2009). In this thesis, we present the 

first biochemical proof that the NS5 proteins of flaviviruses do possess RNA 

guanylyltransferase activity. 



3. Research Objectives 

Enzymes involved in the synthesis of the RNA cap structure are essential for survival. In all 

eukaryotic organisms, hindering the RNA capping process severely hampers cell growth or 

leads ultimately to cellular death. In viruses encoding RNA capping apparatuses, inhibiting 

any of the components of this apparatus severely undermines viral replication. The study of 

RNA capping enzymes is important because due to their essentiality they can prove to be 

potential anti-microbial targets. In addition, with regards to viral RNA capping enzymes, 

they are valuable tools for the mechanistic study of RNA capping enzymes in general on 

account of their small sizes, which englobe all the essential catalytic motifs for activity. 

Therefore, it is of fundamental importance to study and make a thorough characterization of 

RNA capping enzymes, with a view to evaluate their similarity with related enzymes in 

human and thus, gauge their potency as anti microbial targets. 

The yeast RNA triphosphatase is the model enzyme for the study of most fungal, 

protozoan, and trypanosomal related enzymes, including that from the deadly malaria 

parasite, Plasmodium falciparum. The crystal structure of this enzyme has been solved in 

complex with a sulphate molecule, purported to mimic the 7-phosphate of the 5' end of an 

mRNA. Ligand (RNA or NTP) binding thermodynamically destabilizes the protein relative 

to its free unbound form. This is probably why the structure of the enzyme-ligand complex 

cannot be elucidated by crystallography for now. The yeast RNA triphosphatase, which 

belongs to the TTM family of metalo-enzymes, can prove to be an efficient drug target, 

mainly on account of the fact that the metazoan RNA triphosphatase belongs to the TTM-

unrelated metal-independent cysteine phosphatase family. A more acute understanding of 

the interactions of the enzyme with RNA, could potentially prove to be useful for the 

design of anti-microbial agents. Therefore, our aim is to probe into the molecular 

determinants for ligand binding by the model enzyme of the TTM family of RTases, the S. 

cerevisiae's RTase. 

RNA guanylyltransferases are conserved across various viral lineages as well as most of the 

known eukaryotic taxa. These enzymes belong to the nucleotidyltransferase superfamily, 

which also includes the ATP dependent or NAD+ dependent DNA/RNA ligases. Despite 

sharing the same conserved motifs in the same order, as well as displaying very similar 
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tertiary structure, ligases and RNA guanylyltransferases possess very different nucleotide 

specificity. Structures of both RNA guanylyltransferases and ligases have been elucidated 

bound to GTP and ATP respectively. However, even though the molecular contacts 

between the ligand and the enzyme are known, modulating the substrate specificity of these 

enzymes has proven be unfeasible. A precise understanding of their substrate specificity 

could potentially pave the way for the design of novel proteins with novel activities, which 

could be of use for drug development. In this study our aim is to find the essential 

recognition elements of GTP which render it able to act as RNA cap donor. The PBCV-1 

RNA guanylyltransferase was the model used since it has been co-crystallised several times 

in complex with GTP. In addition, the PBCV-1 RNA guanylyltransferase, at 330 amino 

acids, is the smallest known enzyme of this family. It comprises all the essential motifs 

required for RNA capping chemistry in its short sequence, thus making it an ideal tool to 

probe into the active site of RNA capping enzymes. 

Finally, in the course of my PhD, I investigated into the identity of RNA capping apparatus 

of the flavivirus genus, which includes human pathogenic viruses like the Dengue Fever 

virus, Yellow Fever virus and the West Nile virus. Up until very recently their RNA 

capping apparatus had only been partially identified. The RNA triphosphatase activity was 

shown to reside on the NS3 protein, which also possesses RNA helicase and a serine 

protease activity. The NS5 protein, which harbours the RNA dependent RNA polymerase 

activity of the virus, was shown to possess RNA (guanine-N7) and RNA (2'0) 

methyltransferase activities. The identity of the RNA guanylyltransferase was still 

unknown. The elucidation of the NS5 protein of several flaviviruses in complex with either 

GTP or Ribavirin triphosphate, led to the speculation that the NS5 protein could potentially 

also possess the RNA guanylyltransferase activity of the virus. In this study, we went out to 

formally identify the NS5 protein as possessing RNA guanylyltransferase activity. The 

importance of this study lies mainly in the fact that a novel family of RNA 

guanylyltransferase, unrelated to the metazoan RNA guanylyltransferase, has been 

identified. Therefore, this activity could be a potent antiviral target for the rational design of 

anti-flaviviral drugs. 
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General objectives 

The main aim of my research is to probe into the substrate interactions of model enzymes 

involved in the synthesis of the RNA cap structure, in order to better understand their 

substrate specificity. 

Specific objectives 

My research has been focused on essentially 3 different enzymes from different organisms. 

This has been grouped accordingly in 3 chapters each with the following specific 

objectives: 

(1) Structural characterization of the yeast RNA triphosphatase bound to a nucleotide 

by computational modelling and validation of the computational model by 

mutational analysis of the protein and through the use of nucleotide analogues. 

(2) Understanding the nucleotide specificity of the model PBCV-1 RNA 

guanylyltransferase by the use of nucleotide analogues and probing into the 

consequences of modified RNA cap structures on the process of RNA translation in 

cellulo. 

(3) Investigating into the identity and characterization of the RNA guanylyltransferase 

of the West Nile virus. 
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RESULTS 

Chapter I - Understanding protein-ligand interactions of the model yeast RNA 

triphosphatase 

1.1. ARTICLE: 

Nucleotide analogs and molecular modeling studies reveal key interactions 

involved in substrate recognition by the yeast RNA triphosphatase 

Moheshwarnath Issur, Simon Despins, Isabelle Bougie and Martin Bisaillon 

Article published in NUCLEIC ACIDS RESEARCH, 2009, Vol. 37, No. 11: 3714-3722 

CONTRIBUTIONS 

I performed 50% of the experiments, analysed all the results and participated in the 

preparation of the manuscript. SD expressed and purified the Cetl protein, and 

helped for the phosphohydrolase assays with BioMol Green. IB generated the 

expression vector of the Cetl protein. MB had the original idea, helped in the 

generation of the docking models, provided the funding and wrote the manuscript. 
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SUMMARY (enfrangais) 

Notre etude de la proteine Cetl, revele en detail les residus specifiques requis pour les 

interactions d'un ARN triphosphatase avec un ligand. Cette information n'etait pas 

disponible auparavant car la structure cristalline de la proteine en complexe avec un 

nucleotide ou un oligonucleotide n'a pas encore ete resolue. Grace a des algorithmes 

d'arrimage moleculaire («molecular docking»), nous avons produit un modele de la 

proteine Cetl liee a un nucleotide GTP. Selon ce modele, la molecule entiere de GTP et 

non pas seulement la queue triphosphate penetre a Tinterieur de la structure en tunnel de la 

proteine Cetl. Ce modele predit egalement que, en plus des residus Arg393, Lys456 et 

Arg458, qui avaient ete observes en coordination avec une molecule de sulfate dans le site 

actif dans la structure cristalline de la proteine Cetl, plusieurs autres acides amines 

(Glu305, Glu433 et Arg458 pour ne citer que ces trois) pourraient etre contraignants pour la 

liaison de la queue triphosphate. La plupart des acides amines qu'on a identifies ont ete 

precedemment demontres par mutagenese comme etant importants pour la catalyse. Ces 

acides amines ont ete postules pour etre importants pour la liaison des phosphates du 

substrat ou de l'ion metallique par des contacts specifiques avec des molecules d'eau. Bien 

que des implications non liees a la coordination des phosphates par ces acides amines ne 

puissent etre exclues, notre modele suggere que les chaines laterales de ces acides amines 

sont directement impliquees dans la coordination de la partie triphosphate du substrat, afin 

de permettre son alignement optimal dans le site actif de la proteine. Dans le but de 

confirmer experimentalement la validite de notre modele, des analogues de nucleotides ont 

ete utilises comme sondes afin de caracteriser les determinants moleculaires de l'interaction 

de l'ARN triphosphatase de S. cerevisiae avec un nucleotide. Tous les analogues de 

nucleotides analyses peuvent inhiber, quoiqu'a des degres differents, la reaction d'ARN 

triphosphatase de la proteine Cetl, mettant ainsi en evidence la flexibilite structurelle du 

site actif de cette enzyme. Durant cette etude on a remarque que plusieurs analogues de 

nucleotides peuvent se Her fortement a l'enzyme, sans pour autant etre hydrolyses par 

Tactivite ARN triphosphatase de la proteine. Ces molecules pourront potentiellement etre 

utilisees comme point de depart pour la conception et le developpement d'agents anti-

fongiques ayant comme cible l'ARN triphosphatase. 
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SUMMARY 

Our study of the S. cerevisiae's RNA triphosphatase, the Cetl protein, reveals for 

the first time the specific residues required for the interactions of an RNA triphosphatase 

with a ligand. Through extensive computational docking procedures, we have produced a 

model of the Cetl protein bound to a GTP nucleotide. This computerised model structure 

predicts that the whole GTP molecule and not only the triphosphate tail is located within 

the tunnel structure of the yeast RNA triphosphatase. This model also predicts that in 

addition to Arg393, Lys456 and Arg458 residues, which were previously observed in the 

crystal structure of S. cerevisiae's RNA triphosphatase to coordinate the bound sulphate, 

several other amino acids (Glu305, Glu433 and Arg458 to mention only these three) could 

be binding to the phosphates. Most of the identified amino acids were previously 

demonstrated to be important for catalysis by mutational analysis. They were postulated to 

be involved in water-mediated contacts with the phosphates or the divalent metal ion. 

Although the implication of these amino acids in making interactions unrelated to the 

binding of the phosphates cannot be excluded, our model suggests that their side chains are 

directly involved in coordinating the triphosphate moiety of the nucleotide substrate, for the 

optimal alignment of the substrate for the nucleotide triphosphatase activity of tunnel 

shaped RNA triphosphatase enzymes. Finally, in order to experimentally confirm the 

validity of our model, we used nucleotide analogues to probe into the molecular 

determinants of the interactions of the yeast RNA triphosphatase with a nucleotide. Of the 

17 nucleotide analogues tested all could inhibit the RNA triphosphatase reaction, albeit to 

different extents, thus highlighting the structural flexibility of this enzyme's active site. 

More interestingly, several analogues could strongly bind to the enzyme, but were not 

efficiently hydrolyzed. These molecules could be strong starting points for the design of 

nucleotide based inhibitors of the RNA triphosphatase of pathogens. 
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ABSTRACT 

RNA triphosphatases (RTPases) are involved in the addition of the distinctive cap 

structure found at the 5' ends of eukaryotic mRNAs. Fungi, protozoa, and some DNA 

viruses possess an RTPase that belongs to the triphosphate tunnel metalloenzyme 

family of enzymes that can also hydrolyze nucleoside triphosphates. Previous 

crystallization studies revealed that the phosphohydrolase catalytic core is located in a 

hydrophilic tunnel composed of antiparallel p-strands. However, all past efforts to 

obtain structural information on the interaction between RTPases and their 

substrates were unsuccessful. In the present study, we used computational molecular 

docking to model the binding of a nucleotide substrate into the yeast RTPase active 

site. In order to confirm the docking model, and to gain additional insights into the 

molecular determinants involved in substrate recognition, we also evaluated both the 

phosphohydrolysis and the inhibitory potential of an important number of nucleotide 

analogues. Our study highlights the importance of specific amino acids for the binding 

of the sugar, base, and triphosphate moieties of the nucleotide substrate, and reveals 

both the structural flexibility and complexity of the active site. These data illustrate 

the functional features required for the interaction of an RTPase with a ligand, and 

pave the way to the use of nucleotide analogues as potential inhibitors of pathogenic 

RTPases. 
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INTRODUCTION 

Eukaryotic mRNAs harbor a distinctive m7GpppN cap structure at their 5" ends (1). The 

structure is added shortly after the initiation of transcription by a series of three sequential 

enzymatic reactions (2-4). The first step involves the hydrolysis of the 5' triphosphate end of the 

nascent mRNA by an RNA triphosphatase to form a diphosphate extremity. The addition of GMP to 

the diphosphate end is then mediated by an RNA guanylyltransferase, or capping enzyme. Finally, 

the GpppN cap is methylated by an RNA (guanine-N7) methyltransferase. Since its discovery three 

decades ago, numerous studies have demonstrated the importance of the cap structure for the 

stability, transport, and translation of mRNAs (reviewed in refs. 2 and 5). 

An important number of enzymes involved in the synthesis of the cap structure have been 

found in different eukaryotic organisms ranging from fungi, protozoans, viruses, plants, and 

metazoans (6). Numerous structural and functional studies have also contributed to elucidate the 

basic features of these enzymes (reviewed in ref. 5). Interestingly, significant structural and 

mechanistic differences are found in the RNA triphosphatase (RTPase) component of the capping 

machinery. Metazoan and plant RTPases belong to the cysteine phosphatase family which also 

includes numerous protein tyrosine phosphatases (7, 8). However, structural and biochemical 

studies have shown that despite sharing an HCxxxxxR(S/T) motif, a phosphoenzyme intermediate 

and a core ot/p-fold with other cysteine phosphatases, the precise mechanism of phosphoanhydride 

cleavage by these RTPases differs from the one used by protein phosphatases to hydrolyze 

phosphomonoesters (7, 8). The most important difference is the absence of a carboxylate general 

acid catalyst in metazoan and plant RTPases (8). Finally, the RTPases of this family are divalent 

cation-independent and are not able to hydrolyze NTPs. 

Fungi, protozoa, and some DNA viruses possess an RTPase that belongs to the triphosphate 

tunnel family of metal-dependent phosphohydrolases that can also hydrolyze NTPs (9-14). These 

enzymes harbor two glutamate-containing motifs that are essential for catalysis and that coordinate 

the essential metal cation (9). The initial crystallization of the S. cerevisiae RTPase revealed a novel 

fold in which the catalytic core is located in a hydrophilic tunnel composed of eight antiparallel P-

strands (15). Interestingly, this particular fold appears to be more widely distributed in the various 

taxa than initially expected, being found in archael and bacterial homologs, thus suggesting a deep 

evolutionary origin (16). The analysis of the crystal structure of the yeast RTPase revealed the 

presence of a single sulfate ion which is coordinated by the side chains of three essential amino 

acids (Arg393, Lys456, and Arg458). It was suggested that the side chain interactions with this 

sulfate ion reflect the contacts made by the protein with the y-phosphate of the RNA or NTP 
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substrates (15). Numerous mutational studies have also contributed to the identification of a dozen 

additional residues that are essential for the enzymatic activity through their interactions with the 

divalent metal ion, or through their water-mediated contacts with either the metal ion or the sulfate 

ion (9, 17-19). More recently, analysis of the crystal structure of the RTPase component of 

mimivirus, a giant virus of amoeba, also revealed a minimized tunnel fold and an active site 

strikingly similar to the yeast enzyme (20). However, all past efforts to obtain structural information 

on the interaction between RTPases and their substrates were unsuccessful. This is perhaps not 

surprising since thermodynamic studies have shown that the binding of the RNA or nucleotide 

substrates to RTPases results in a destabilization of the enzymes (21, 22). Available crystals of the 

RTPases of the triphosphate tunnel metalloenzyme (TTM) family do not provide any information 

on the contacts between the enzyme and the triphosphate, sugar, or base moieties of the 

phosphohydrolase substrate. 

In the present study, we used computational molecular docking to model the binding of a 

nucleotide substrate into the yeast RTPase active site. In order to confirm the generated model, and 

to gain additional insights into the molecular determinants involved in substrate recognition and 

catalysis, we also evaluated the phosphohydrolysis of an important number of nucleotide analogues. 

Our study highlights the importance of specific residues for the binding of the sugar, base, and 

triphosphate moieties of the nucleotide substrate, and reveals both the structural flexibility and 

complexity of the active site. 
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MATERIALS AND METHODS 

Molecular docking 

Docking calculations were carried out using the DockingServer software and the 

Dreiding force field was used for energy minimization of GTP using built-in Chemaxon 

tools in DockingServer (23). PM6 semi-empirical charges calculated by MOPAC2007 were 

added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds 

were defined (24). Docking calculations were carried out using the coordinated of the S. 

cerevisiae RNA triphosphatase (Protein Data Bank ld8h). Essential hydrogen atoms, 

Kollman united atom type charges, and solvation parameters were added with the aid of 

AutoDock tools (25). Affinity (grid) maps of 20x20x20 A grid points and 0.375 A spacing 

were generated using the Autogrid program (25). AutoDock parameter set- and distance-

dependent dielectric functions were used in the calculation of the van der Waals and the 

electrostatic terms, respectively. Docking simulations were performed using the 

Lamarckian genetic algorithm (LGA) and the Solis & Wets local search method (26). 

Initial position, orientation, and torsions of the ligand molecules were set randomly. Each 

docking experiment was derived from 2 different runs that were set to terminate after a 

maximum of 2,500,000 energy evaluations. The population size was set to 150. During the 

search, a translational step of 0.2 A, and quaternion and torsion steps of 5 were applied. 

Cetl Expression and Purification 

The Cetl protein was expressed and purified as described before (21). 

Competition assay 

GTPase reactions were performed in reaction mixtures (20 uL) containing 50 mM 

Tris-HCl, pH 7.0, 5 mM DTT, 2 mM MnCl2, 1 uM of the S. cerevisiae RTPase, and 20 uM 

[y-32P]GTP. The reactions were incubated for 15 min at 30 °C. Initially, the reactions were 

carried out both in the absence or presence of 100 uM of nucleotide analogues (or 

tripolyphosphate). The reactions were quenched by the addition of 5 uL of 5M formic acid. 

Aliquots of the reactions were spotted on polyethyleneimine-cellulose thin-layer 
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chromatography plates. The plates were developed in a solution of 1M formic acid and 0.5 

M LiCl and the released inorganic phosphate was quantitated by scanning the plates with a 

Phosphorlmager (Molecular Dynamics). The average of at least two single independent 

experiments is presented. 

The IC50 values were evaluated by performing the standard GTPase assay in the 

presence of increasing concentrations of nucleotide analogues (or tripolyphosphate) ranging 

from 0 to 200 uM. The K\ values were determined by performing GTP assays with GTP 

concentrations ranging from 0 to 100 uM in the presence of 0, 5, 10, or 20 uM of analogues 

(or tripolyphosphate). The average of at least two single independent experiments is 

presented. 

Phosphohydrolase assay 

The reaction mixtures (20 uL) containing 50 mM Tris-HCl, pH 7.0, 5 mM DTT, 2 

mM MnCb, 1 uM of the S. cerevisiae RTPase, and various concentrations of substrates 

(GTP, nucleotide analogues, or tripolyphosphate) were incubated for 15 min at 30 °C. The 

reactions were quenched by the addition of 400 uL of malachite green reagent (BIOMOL 

Research Laboratories). The released inorganic phosphate was measured by monitoring the 

Aon. The values were extrapolated to a standard curve for phosphate. Background levels of 

contaminating phosphate were subtracted in all cases. 
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RESULTS AND DISCUSSION 

Molecular docking 

Although important structural information is available from the currently available crystal 

structures of the members of the TTM family, the substrates (RNA or NTP) are conspicuously 

absent from all these structures (15, 20). We set out to initially use the power of molecular docking 

to provide information on the interaction between the yeast RTPase and a nucleotide substrate. 

Guanosine triphosphate (GTP) was selected as the substrate since this purine nucleotide is 

frequently encountered as the initiating nucleotide in eukaryotic mRNAs (27). Extensive 

computational docking and structure optimizations were then used to generate a model of the 

enzyme-GTP complex. More than 2,000,000 energy evaluations were performed in order to 

provide an accurate description of the enzyme-substrate interactions. The model underwent 150 

rounds of steepest descent energy minimization, and did not contain energetically unfavourable 

bonds, angles, or torsions. 

The molecular docking model predicts that the GTP substrate is located in the middle of the 

tunnel structure of the yeast RTPase (Fig. 1). The space-filling analysis suggests that the tunnel can 

accommodate the ribose, base, and phosphate moieties of the GTP molecule, thereby implying that 

the entire nucleotide, and not only the phosphates, is entering the tunnel (Fig. 1E). The molecular 

docking model provides instructive findings on the interaction between specific residues and the 

nucleotide substrate. For instance, multiple side chains (Summarized in Table 1) are contacting the 

a, p, and y phosphates of GTP. In addition to the Arg393, Lys456, and Arg458 residues that were 

previously observed in the crystal structure of the S. cerevisiae RTPase (15), six other amino acids 

appear to be involved in the coordination of the phosphates (Fig. 2). Some of these residues, such as 

Arg393, Lys409, Lys456, and Glu494 are solely contacting one phosphate, while others (Glu305, 

Glu433, Arg458, Asp471, and Glu496) are contacting two adjacent phosphates (Fig. 2A-D). 

Interestingly, all of these phosphate-contacting residues were previously shown to be essential for 

catalysis through mutational studies thereby highlighting their importance in catalysis (9, 17-19). 

Based on the crystal structure of the enzyme (15), some of these essential residues were previously 

proposed to be important for catalysis through their ability to make water-mediated contacts with 

the phosphate or the essential divalent metal ion (Glu433 and Glu494). Similarly, other residues 

such as Lys409 were thought to be indirectly involved in catalysis via their interactions with other 

essential side chains (15, 17). Although the role of these amino acids in making important 

interactions unrelated to the binding of phosphate cannot be excluded, the current model clearly 

reveals that the side chains of these amino acids are involved in the coordination of the triphosphate 

39 



moiety of the nucleotide substrate. The previously observed ability of the TTM family of RTPases 

to hydrolyze tripolyphosphate (28-30), which completely lacks the sugar and base components of 

the nucleotide, is probably a reflection of the excessive number of interactions between the active 

site residues and the a-, (3-, and y-phosphates. 

Analysis of the docking model between the enzyme and GTP suggests that only four amino 

acids are responsible for the coordination of the hydroxyl groups of the ribose. These are Glu307 

and Lys409, which are contacting the 3'OH group, and Arg393 and Arg454, which are coordinating 

the 2'OH group of the sugar (Fig. 2A and 2D; Table 1). Previous mutational studies have shown 

that each of these four residues is essential for catalysis (9, 17-19). The molecular docking model 

also highlights key amino acids involved in the binding of the guanine base. These amino acids are 

either contacting the exocyclic 2-amino (Ser429, and Asn431) or the 6-oxo (Lys427) groups of the 

pyrimidine ring of guanine (Fig. 2A and 2D). Previous structure-function analyses of the amino 

acids that are contacting the guanine base in the docking model indicate that these residues are not 

essential for catalysis (17, 19). Moreover, pi-pi and cation-pi stacking interactions are also 

occurring between His411 (non-essential) and the pyrimidine ring of guanine, while Pro341 is 

engaged in hydrophobic interactions with the imidazole ring of guanine (Fig. 2A and 2C). The non-

essentiality of the amino acids contacting the guanine base is not surprising since the enzyme can 

efficiently hydrolyze both purine and pyrimidine nucleotides. Both the coordination geometry and 

the nature of the amino acids contacting the purine/pyrimindine rings are likely modified according 

to the precise nature of the substrate. 

Nucleotide analogues to probe the active site 

In order to experimentally confirm the docking model, and to gain additional insights on the 

molecular determinants involved in the formation of the enzyme-substrate complex, we have used 

nucleotide analogues to monitor their effects on the reaction chemistry. The nucleotide analogues 

displayed various modifications on both the ribose and the guanine base of GTP (Fig. 3). We 

initially monitored the ability of 17 analogues of GTP to inhibit the activity of the yeast RTPase by 

evaluating both the IC50 and K, values for each molecule (Table 2). The informative finding is that 

every analogue tested had the ability to inhibit the RTPase reaction, albeit to different extents, thus 

highlighting the high structural flexibility of the active site (Fig. 4A). All the nucleotide analogues 

used in the current study were competitive inhibitors of the RTPase reaction indicating that they 

bind to the active site of the enzyme. A typical example using the analogue A-12 is shown in figure 

4B-E. In order to gain additional information on the functional flexibility of the catalytic center, we 

determined the ability of the various nucleotide analogues to be hydrolyzed by the enzyme. The 

40 



yeast RNA triphosphatase catalyzed the phosphohydrolysis of all nucleotide analogues tested in the 

current study with specific activity ranging from 7 to 138 % of GTP (Table 2). Interestingly, some 

of the analogues bound strongly to the enzyme active site (as evidenced from the low IC5o and K, 

values) but were not efficiently hydrolyzed. These analogues (A4, Ag, A,,, A,8, A2o, and A24) had 

IC50 values ranging from 2 to 16 u.M with low specific phosphohydrolase activities varying from 7 

to 18% of the GTP substrate (Table 2). 

Our study indicates that the active center of the yeast RTPase is highly flexible and can 

accommodate nucleotide substrates displaying a number of unusual chemical modifications. For 

instance, analogues harboring modifications on the hydroxyl moieties of the ribose (2'OH and 

3'OH) were hydrolyzed with a high level of efficiency by the enzyme. The addition of a methyl 

group to either the 2' or 3' hydroxyls (A-13 and A-17) had no significant effect on the 

phosphohydrolase activity (Table 2). Most strikingly, A-12 which lacks both ribose hydroxyls 

(2',3'-dideoxy-GTP) was hydrolyzed very efficiently by the yeast RTPase. This was unexpected 

since amino acids contacting the ribose hydroxyls (Glu307, Arg393, Lys409, Arg454) were 

previously shown to be essential for catalysis through mutational studies (9, 17-19). However, we 

observe that two of these residues (Arg393 and Lys409) are also contacting the a-phosphate of the 

bound GTP, while Glu307 coordinates the essential divalent cation. Moreover, Arg454 forms a salt 

bridge with Glu492, an interaction which is important for the stabilization of the tunnel architecture 

(15, 17). Therefore, we conclude that the importance of these amino acids is not directly related to 

their ability to bind to the hydroxyls of the ribose, but rather lies in their other functions namely 

through the coordination of the a-phosphate and metal ion, or in the stabilization of the tunnel 

structure. 

Some of the analogues used in the current study contain chemical modifications on the 

guanine base of the GTP molecule (Fig. 3). Although the S. cerevisiae RTPase is active on both 

purine and pyrimidine nucleotides (ATP, CTP and UTP were used as substrates with specific 

activities of 103, 103, and 109 % of the GTP substrate, respectively), analysis of the GTP analogues 

helped to illuminate the flexibility and complexity of the RTPase active site. For instance, the 

addition of a chemical group to the C8 position of guanine had a negative effect on the 

phosphohydrolysis activity. Analogues harboring such modification (A-10 and A-24) were used 

inefficiently by the enzyme. Although it can be argued that the addition of a bromo- or iodo- group 

at this position can potentially alter the electronic properties of the guanine ring, analysis of the 

docking model indicates that steric hindrance is the likely explanation for the limited hydrolysis of 

these substrates. Analysis of the enzyme-GTP model indicates that the space is occupied by Lys474 
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and Glu476 of the pi 0 strand that comprises part of the walls of the tunnel. The presence of halogen 

elements with large atomic radius at the C8 position of the guanine base reveals the conformational 

importance of amino acids not directly involved in catalysis. The importance of these amino acids 

in forming an optimal nucleotide binding pocket could not be inferred from previous mutational 

analyses. Similarly, the addition of a methyl group at the Nl position of guanine (A-4, Nl-methyl-

GTP) decreases the catalytic activity of the enzyme by 5-fold (Table 2). In our docking model, 

Lys427 occupies the space that is filled by the additional methyl group thereby hindering the 

optimal positioning of the substrate and the concomitant hydrolysis of the analogue (Fig. 2A, 2C, 

and 2D). 

The 6-oxo group of the guanine ring also appears important for substrate recognition and 

hydrolysis. The phosphohydrolysis activity of all the analogues which harbored chemical 

modifications at this position (A-5, A-6, A-9, A-19) was lower as compared to the hydrolysis of 

GTP (Table 2). We initially suspected that the inability of these analogues to form hydrogen bonds 

through this position was the likely explanation to explain their low catalytic usage. However, 

Lys427 is the only proximal amino acid which can potentially coordinate the 6-oxo group of 

guanine through hydrogen-bonding, and previous studies have shown that the substitution of this 

residue by alanine has no effect on the catalytic activity. Steric hindrance might again be a factor 

since analogues with larger substituents (A-5, 06-methyl-GTP; A-9, 6-thio-GTP; and A-19, 6-thio-

methyl-GTP) were less hydrolyzed relative to A-6 (6-chloro-GTP) which harbored a smaller 

substituent at the same position on the guanine ring. Closer examination of the enzyme-GTP 

docking model indicates that three amino acids are in the vicinity of the 6-oxo group of guanine 

(Fig. 5A). These are His338 and Thr340 of the 02 strand and Thr489 of the pi 1 strand, which are 

just too far removed to hydrogen-bond with the 6-oxo group but might interfere with the larger 

substituents displayed by the analogues. The importance of these amino acids was therefore 

investigated by generating three distinct enzymatic mutants. His338, Thr340, and Thr489 were 

individually substituted for alanine, and the mutant polypeptides were expressed and purified in 

parallel with the wild-type enzyme (Fig. 5B). The GTP substrate was hydrolyzed efficiently by the 

mutants polypeptides as evidenced from the specific activities of 98, 69, and 79 % of wild-type 

activity for the H338A, T340A, and T489A mutants, respectively (data not shown). The informative 

finding is that the replacement of these lateral side chains by alanine resulted in an increase in the 

phosphohydrolysis of analogues harboring larger substituents at the 6-oxo position (A-5, A-9, and 

A-19). For instance, the relative hydrolysis of 6-thio-methyl-GTP (A-19) increased from 0.38 for 

the wild-type enzyme to 0.60, 0.85, and 0.81 for the H338A, T340A, and T489A mutants, 

respectively (Fig. 5C). A similar increase in phosphohydrolysis was also observed for both the A-5 
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(06-methyl-GTP) and A-19 (6-thio-methyl-GTP) analogues when the His338, Thr340, and Thr489 

lateral side chains were individually replaced by alanine (Fig. 5C). However, these substitutions had 

no positive effect on the phosphohydrolysis of A-6 (6-chloro-GTP) which harbored a smaller 

substituent at the same position on the guanine ring. Overall, the mutagenesis data confirmed that 

steric hindrance prevents the phosphohydrolysis of analogues harboring larger substituents at the 6-

oxo position. 

One of the most striking features of the GTP-enzyme complex formation is the importance 

of the 2-amino group of guanine. In that regard, A-11, A-18, and A-20 are particularly interesting 

since they only differ with A-6, A-9, and A-19 by the lack of the 2-amino moiety (Fig. 3). The 

absence of the amino group drastically reduces the hydrolysis of the analogues (compare A-6 with 

A-11, A-9 with A-18, and A-19 with A-20) highlighting its importance for efficient catalysis (Table 

2). The importance of this functional group is also underscored by the relative inability of the 

enzyme to hydrolyze A-8 which only differs with GTP by harboring a 6-oxo group at this position 

instead of the amino group (Table 2). The most likely explanation for the importance of the 2-amino 

group is that it can act as hydrogen-bond donor with specific amino acids. Analysis of our docking 

model with bound GTP reveals that two amino acids (Ser429 and Asn431) are potentially 

contacting the 2-amino group of guanine through hydrogen-bonding. We hypothesize that Ser429 is 

likely the key amino acid responsible for coordination of the 2-amino group. Previous conservative 

substitution analyses have revealed the importance of the hydroxyl moiety of the lateral side chain 

of Ser429 for the activity of the protein (18). Moreover, earlier in vivo studies have indicated that 

the substitution of this residue by alanine elicits a cold-sensitive phenotype, thereby highlighting the 

importance of this residue in the proper folding of the enzyme (18). As for Asn431, previous 

mutational analyses have shown that it is not critical for hydrolysis (17), and its distance from the 2-

amino group suggests that it makes a rather weak hydrogen bond with guanine. 

The RTPase component of the capping machinery is an attractive target for the future 

development of inhibitors targeting pathogenic fungi, viruses, and protozoans since these RTPases 

are structurally and mechanistically different from their human counterpart. Some of the analogues 

identified in the current study appear as good starting blocks for the design of more specific 

inhibitors. These analogues bound very tightly to the yeast RTPase active site but were not 

efficiently hydrolyzed. In that respect both A-20 and A-11, which are structurally related with a 

substitution of the 6-oxo group and the lack of the 2-amino group of guanine, possess high 

inhibitory potential (Table 2). Although tripolyphosphate, which was previously shown to inhibit 

other RTPases of the TTM family (31), displays even higher inhibitory potential in vitro, it is 
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unlikely that such a molecule could eventually display any specificity towards pathogenic RTPase 

in vivo. Because our study revealed the intrinsic flexibility of the RTPase active site, we believe that 

additional chemical modifications of A-20 and A-11 could lead to molecules displaying a very 

robust and specific inhibition of pathogenic RTPases. 
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CONCLUSION 

The current study contributes to highlight both the complexity and flexibility of the TTM family 

active site. It is clear that the RTPase reaction requires a very precise alignment between the active 

site residues, the substrate, and the metal ion cofactor. Two observations support this conclusion. 

First, the hydrolysis of RNA triphosphate ends is activated by magnesium, but not by manganese or 

cobalt, whereas the NTPase activity is supported by manganese and cobalt, but not magnesium. 

Second, unnatural substrates such as nucleotide analogues or tripolyphosphate can still be 

hydrolyzed, albeit very inefficiently, even if the conformation of the active site is less than optimal, 

lacking several important contacts with the substrate. In summary, our structural docking model, 

coupled with the use of an important number of nucleotide analogues highlights the importance of 

specific residues for the binding of the nucleotide substrate, and reveals both the structural 

flexibility and complexity of the active site. Our study illustrates the important structural and 

functional features for the interaction of an RTPase with a ligand, and opens the way to the use of 

nucleotide analogues as potential inhibitors of pathogens. 
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FIGURE LEGENDS 

Figure 1. Molecular docking model for the binding of GTP to the yeast RNA triphosphatase. 

(A) Ribbon diagram looking into the tunnel exit of the enzyme with bound GTP. Numerous amino 

acids are interacting with the nucleotide. (B) A view looking into the triphosphate tunnel entrance. 

(C) Side view of the enzyme following a 90° rotation to the left depicting both the entrance {left) 

and exit (right) of the tunnel. (D) A three-quarter exploded view of the tunnel with bound GTP. (E) 

Space-filling surface view looking into the tunnel entrance of the enzyme with bound GTP. 

Figure 2. Active site of the yeast RNA triphosphatase. The GTP molecule is coordinated by an 

elaborate network of interactions. The side chains of an important number of amino acids are 

contacting the phosphates, ribose, and guanine base of the substrate. Four different views are 

depicted in order to observe the various interactions. 

Figure 3. Nucleotide analogues used in the current study. The GTP analogues harbored various 

modifications on both the ribose and the guanine base of GTP. 

Figure 4. Inhibition of the phosphohydrolase activity by nucleotide analogues. (A) The 

standard GTPase activity was performed in the presence of 20 uM [y-32P]GTP. The various 

nucleotide analogues were added at a single concentration of 100 uM and the inhibition of 

the GTPase activity was evaluated by monitoring the release of radiolabeled inorganic 

phosphate which was separated from the GTP substrate by thin-layer chromatography. (B) 

Dose-response inhibition of the GTPase activity by A12 (2',3'-dideoxy-GTP). (C and D) 

Competitive inhibition of the GTPase reaction by A12. The GTPase activity was evaluated 

in the absence ( • ) or presence of 5 ( • ) or 10 uM (O) of A12. (E) Dixon plot of the 

inhibition performed at each fixed concentration of GTP substrate, 5 ( • ) , 10 ( A ) , or 50 

mM (•). 

Figure 5. Steric hindrance caused by analogues harboring large substituents at the 6-

oxo position of the guanine ring of GTP. (A) The His338, Thr340, and Thr489 residues 

of the enzyme are in the vicinity of the 6-oxo group of the GTP substrate. (B) Aliquots (2 

ug) of the purified wild-type (WT, lane 1), H338 A (lane 2), Thr340A (lane 3), and 

Thr489A (lane 4) mutant proteins were analyzed by electrophoresis through a 12.5% 

polyacrylamide gel containing 0.1% SDS, and visualized with Coomassie Blue Dye. The 

positions and sizes (in kDa) of the size markers are indicated on the left. (C) Normalized 
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phosphohydrolase activities of the wild-type (WT), H338A, T340A, and T489A mutants. 

The phosphohydrolase specific activities were calculated from the slopes of the titration 

curves and normalized to the specific activity for the hydrolysis of GTP by the wild-type 

enzyme. GTP, 06-methyl-GTP (A-5), 6-chloro-GTP (A-6), 6-thio-GTP (A-9), and 6-thio-

methyl-GTP (A-19) were used as substrates. 
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Table 1. Key interactions between the active site residues of 
the yeast RNA triphosphatase and GTP as predicted by the 
molecular docking model. 

Amino acid 

Lys427 

Ser429 

Asn431 

Glu307 

Arg393 

Lys409 

Arg454 

Glu305 

Arg393 

Lys409 

Glu433 

Lys456 

Arg458 

Asp471 

Glu494 

Glu496 

Interaction 

06 of guanine 

NH2 of guanine 

NH2 of guanine 

3'0H of ribose 

2'0H of ribose 

3'0H of ribose 

2'0H of ribose 

p-P04 and Y-PO4 

a-P04 

a-P04 

p-P04 and Y-PO4 

a-P04 

CX-PO4 and P-PO4 

a-P04 and p-P04 

a-P04 

P-P04 and y-P04 

Distance (A) 

3.9 

2.6 

3.9 

4.4 

2.6 

3.5 

3.9 

3.2 and 3.7 

3.4 

3.2 

3.1 and 3.6 

3.6 

3.2 and 2.9 

4.1 and 4.4 

4.3 

3.3 and 3.9 
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Table 2. Inhibition of the GTPase activity by nucleotide analogues. 

Molecule 

GTP 

dGTP 

A3 

A4 

A5 

Ah 

A8 

A9 

A10 

A,, 

AI2 

A13 

A,5 

A|7 

A|x 

Am 

A20 

A22 

A24 

Tripoly-PQ4 

IC50 
(uM) 

87 

76 

83 

8.1 

150 

53 

10 

16 

93 

2.0 

6.1 

32 

49 

59 

8.1 

61 

2.0 

113 

8.1 

0.4 

(uM) 

16 

14 

15 

1.5 

27 

9.6 

1.8 

2.9 

17 

0.4 

1.1 

5.9 

8.8 

11 

1.5 

11 

0.4 

21 

1.5 

0.1 

Phosphohydrolase 
specific activity 

(% of GTP) * 

100 

99 

88 

18 

17 

70 

10 

41 

20 

16 

138 

109 

111 

116 

12 

38 

7.2 

81 

7.2 

3.6 

Inhibitory 
potentialb 

1.0 

1.1 

1.2 

60 

3.4 

2.4 

86 

13 

4.7 

268 

10 

2.5 

1.6 

1.3 

89 

3.8 

597 

0.9 

149 

5965 

" The phosphohydrolase specific activities were calculated from the slopes of the 
titration curves and normalized to the specific activity for the hydrolysis of GTP. 

''The inhibitory potential is defined by the following equation: 
(K, (iTP/K, Uolecule) A (Spec, activity (;Tf/Spec. activity Uolecil,J 
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SUMMARY (enfrangais) 

En utilisant la meme methodologie que dans l'etude precedente, nous avons effectue une 

etude approfondie du site actif de l'ARN guanylyltransferase modele de PBCV-1, la 

proteine A103R. Bien que, cette enzyme modele a ete co-cristallisee avec le GTP et le 

GMP dans son site actif, le rationnel de la specificite de cette proteine envers le GTP reste 

un sujet de debat. En effet, meme si plusieurs interactions entre I'enzyme et le groupement 

guanine de GTP ont ete mises en evidence, l'incapacite de moduler la specificite de 

I'enzyme par le biais des mutations ponctuelles indique qu'il y a des lacunes dans notre 

comprehension du fonctionnement de ces enzymes. Dans cette etude, grace a l'utilisation 

des analogues de purines, notre intention est de fournir une image plus detaillee des 

diverses interactions qui entrent en jeu lorsque I'enzyme se lie au GTP, catalyse la 

formation d'un intermediate covalent avec le GMP ainsi que le transfert de ce GMP a un 

ARN accepteur. Ainsi nous avons pu demontrer que la Lysl88, en etablissant des ponts 

hydrogene avec le 06 et le N7 participe a medier la specificite de I'enzyme envers le GTP. 

La Lysl88 est un residu conserve chez toutes les ARN guanylyltransferases 

conventionelles et est absent chez les ADN/ARN ligases dependantes de l'ATP. La 

conversion de ce residu en alanine abolit toute activite de I'enzyme quoique la liaison au 

GTP ne soit pas affectee. Nous avons aussi demontre que le 3'OH de la molecule de GMP 

est fondamental pour la coordination de l'ARN accepteur pour permettre a la deuxieme 

etape de la reaction d'ARN guanylyltransferase d'avoir lieu. En plus de plusieurs autres 

grandes conclusions que cette etude a etablies, nous avons egalement ete en mesure de 

generer plusieurs molecules d'ARN possedant des structures coiffes artificielles. Notre 

objectif ultime est d'evaluer l'impact de ces structures d'ARN modifiees sur divers 

processus cellulaires. Jusqu'a present, nous nous sommes concentres sur la capacite de ces 

structures coiffes modifiees a soutenir la traduction des ARN. L'affinite de ces nouveaux 

analogues de la coiffe avec la proteine eIF4E, un des facteurs cles impliques dans la 

reconnaissance par la machinerie traductionnelle a aussi ete evalue. Nos resultats 

demontrent qu'en presence de certaines modifications compensatoires sur la structure 

coiffe, l'absence du groupement methyle (essentiel pour la reconnaissance de la coiffe 

naturelle par eIF4E), situe a la position N7, n'a pas de repercussion negative sur les 

proprietes traductionnelles d'un ARN. 
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SUMMARY 

Using the same methodology as in the previous study, we have performed a thorough 

investigation into the active site of the model PBCV-1 RNA guanylyltransferase, the 

A103R protein. Although, this model enzyme has been co-crystallised with both GTP and 

GMP in its active site, the rationale behind its specificity remains a matter of debate. 

Indeed, even though several interactions of the enzyme with the guanine moiety of GTP has 

been pinpointed to contribute to the guanine specificity of RNA guanylyltransferases, the 

inability to modulate the specificity of the enzyme through point mutations is indicative of 

only a partial understanding of the enzyme's interactions with its substrates. Therefore, 

through the use of several purine analogues our intent is to provide a broader picture of the 

various interactions coming into play when the enzyme binds to GTP, catalyzes the 

formation of a covalent intermediate with GMP as well as transfer this bound molecule 

onto an acceptor RNA. Thus we have been able to show that Lysl88, through hydrogen 

bond type of interactions with both the 06 and partially with the N7 position of guanine, 

mediates the GTP specificity of the enzyme. Lysl88 is a conserved residue among all 

conventional RNA guanylyltransferases known and is absent in all known ATP-dependent 

RNA/DNA ligases. Alanine conversion of this residue abolishes all activities of this 

enzyme. We have also demonstrated that the 3'OH of guanosine, while relatively 

unimportant for the first step of the reaction, is fundamental for the coordination of the 

acceptor RNA molecule to enable the second step of the RNA guanylyltransferase reaction. 

In addition to several other major conclusions that this study led to, we were also ultimately 

able to generate, from a biological perspective, several RNA molecules possessing 

unnatural RNA cap structures. Our future aim is to evaluate the impact of these modified 

RNA cap structures on several key cellular events. Up until now, we have concentrated 

ourselves on the ability of these modified RNA cap structures to support the translatability 

of mRNAs. We also monitored the binding affinity of these novel cap structures to the 

eIF4E protein. The novel cap structures revealed that in the light of compensatory 

modifications on either the base or the ribose moiety of the capped residue, the presence of 

the N7-methyl group in the classical N7-methyl guanosine cap is not indispensible. Overall, 

this study highlights the importance of several features of the RNA cap structure itself in 

ensuring the various functions the RNA cap structure is subjected to. 
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Abstract 

The incorporation of synthetic nucleotide analogues in RNAs has been of considerable use for the 

study of various aspects of RNA metabolism, most notably the steps of pre-mRNA splicing, mRNA 

turnover and the translation process. Of particular interest have been RNAs capped with synthetic 

analogues. These are traditionally generated by chemically synthesising cap dinucleotide analogues, 

which are incorporated at the 5' ends of RNAs during in vitro transcription. In this study we 

describe a simple and fast method to generate RNAs capped with modified nucleotides by using a 

purified RNA capping enzyme and purine analogues. Thus, we identified several key structural 

determinants at each step of the RNA capping reaction and generated RNAs harbouring several 

novel 5' cap analogues. Moreover, we monitored the binding affinity of these novel cap structures 

to the eIF4E protein and evaluated their translational properties in cellulo. The novel cap structures 

revealed that in the light of compensatory modifications on either the base or the ribose moiety of 

the capped residue, the presence of the essential N7-methyl group in the classical N7-methyl 

guanosine cap is not indispensible. Several modified RNA cap structures lacking this N7-methyl 

group conserved binding to eIF4E and were translation competent when present at the 5' ends of 

RNAs in cellulo. 
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INTRODUCTION 

The addition of a 5' cap structure to RNA transcripts synthesized by RNA polymerase II is a 

fundamental eukaryotic process (Shuman 1995). The N7-methyl guanosine cap in mRNAs is 

essential for their stability, maturation, transport and translation. RNA cap synthesis occurs in 3 

consecutive steps. An RNA triphosphatase (RTase) first cleaves off the 5' terminal phosphate of the 

RNA molecule, to form a diphosphorylated end. An RNA guanylyltransferase (GTase) transfers a 

GMP moiety onto the diphosphorylated end, followed by an RNA (guanine-N7) methyltransferase 

(MTase) which adds a methyl group at the N7 position to form the classical RNA cap structure 

(Shuman 2001). On account of the essentiality of all the proteins involved in RNA cap synthesis, 

the study of the various roles of the cap structure is often restricted to the analysis of cap binding 

proteins. The advent of RNA cap analogues has provided a new tool to directly investigate RNA 

cap metabolism and function, either as competitive inhibitors or as alternative structures at the 5' 

ends of RNAs (Darzynkiewicz, Stepinski et al. 1989; Carberry, Darzynkiewicz et al. 1990). So far, 

RNA cap analogues have been solely generated through chemical synthesis. However, although a 

wide range of RNA cap analogues have been chemically synthesized, the structural variety of 

possible RNA cap analogues is restricted by the method. The requirement of protected nucleosides 

as starting materials, the poor solubility of RNA cap analogues in organic solvents as well as their 

susceptibility to hydrolysis in both acidic and basic conditions during the removal of the protecting 

groups, make the production of RNA cap analogues a very challenging task (Strenkowska, 

Kowalska et al. 2010). In addition, the incorporation of these chemically synthesized cap analogues 

at the 5' ends of RNAs is heavily dependent on the conditions of in vitro transcription. This further 

limits the variability of possible cap structures at the 5' ends of RNAs. 

In an attempt to seek for an alternative way to generate novel RNA cap analogues, we decided to 

probe into the guanine specificity of RNA guanylyltransferases. GTases first hydrolyze GTP to 

form a covalent enzyme-(7ysy/-./V)-GMP intermediate prior to transferring the GMP moiety onto an 

acceptor RNA (Fig. 1A). GTases share the same mechanistic profile as well as six co-linear 

conserved motifs, including the catalytic KxDG motif, with ATP-dependent ligases (Supplementary 

figure 1) (Shuman and Lima 2004). Crystal structures of the Paramecium bursaria Chlorella virus-

1 (PBCV-1) GTase and T7 DNA ligase bound to GTP and ATP respectively have revealed a 

common tertiary fold in which these conserved motifs are brought together at the active site of the 

enzyme (Hakansson, Doherty et al. 1997). However, in spite of numerous structural and 

biochemical data on these enzymes, modulation of the substrate specificity of GTases or ligases 

through the rational design of point mutations remains to be achieved. The previous finding that the 
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antiviral nucleotide analogue, ribavirin triphosphate, could be used as substrate by a viral GTase led 

us to interrogate whether the active sites of GTases were flexible enough to accommodate other 

nucleotide analogues and catalyze an RNA capping reaction to form potential novel RNA cap 

structures (Bougie and Bisaillon 2004). While synthetic nucleotide analogues have been extensively 

studied with regards to RNA stability and translation, few studies have aimed to probe into the 

capping machinery itself, in order to understand the underlying interactions involved in GTP 

binding for RNA cap synthesis (Grudzien, Stepinski et al. 2004; Stepinski, Zuberek et al. 2005; 

Grudzien-Nogalska, Jemielity et al. 2007; Grudzien-Nogalska, Stepinski et al. 2007; Kowalska, 

Lewdorowicz et al. 2008). In order to understand the modulation of substrate specificity in RNA 

capping enzymes, this report aims to identify the essential interactions at each step of the RNA 

capping pathway. Synthetic purine analogues were therefore evaluated for their efficiency to 

substitute GTP for the two steps of the RNA capping reaction by the PBCV-1 GTase. The fact that 

the PBCV-1 GTase has been isolated in several different conformations rendered it the ideal tool to 

delve further into the RNA capping mechanism (Doherty, Hakansson et al. 1997). Several novel cap 

structures bearing unusual substitutions on the base moiety were thus generated in vitro. While 

assessing the impact of these modifications on the translation machinery in cellulo, key features for 

translation-competent RNA cap structures were unravelled. 
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METHODS: 

Expression and purification of the relevant proteins 

Recombinant His-tagged PBCV-1 GTase, PBCV-1 RTase, S. cerevisiae's MTase, human MTase 

and murine eIF4E proteins were expressed in bacteria as described before (Mao, Schwer et al. 1996; 

Saha, Schwer et al. 1999; Bougie and Bisaillon 2006; Slepenkov, Darzynkiewicz et al. 2006; 

Souliere, Perreault et al. 2008). 

Preparation and purification of RNA substrates 

RNA substrates were synthesized with the MAXIscript kit (Ambion) using T7 RNA polymerase. 

For the evaluation of RNA capping efficiencies, a 50 nt long RNA was synthesized using a 

modified version of the T7 promoter that will allow the initiation of the transcription with a single 

guanosine residue ( 5 ' - T A A T A C G A C T C A C T A T A > U J A4Q-3', where i indicates the initiation start 

site). In cellulo translation assays, were done with the firefly luciferase RNA bearing a 60 nt long 

poly(A) tail at its 3' end, which was synthesized from an Hpal digested p/wcv^ plasmid (a generous 

gift from Dr. Rhoads, Louisiana State University). Following transcription, the RNA molecules 

were purified on denaturing 8M UREA-PAGE and visualized by ultraviolet shadowing. The 

corresponding band was excised and then eluted from the gel by an overnight incubation in 0.1% 

SDS and 0.5 M ammonium acetate. The RNA was then precipitated with ethanol and quantified by 

spectrophotometry at 260 nm. 

Nucleotide Analogues 

All nucleotide analogues used in this study were purchased from Jena Biosciences (Germany) and 

Tri-Link Biotechnologies (USA). 

First step RNA guanylyltransferase reaction 

The first step of the GTase reaction was carried out by incubating the purified PBCV-1 GTase (10 

uM) with the appropriate substrates (GTP or nucleotide analogues) in a buffer containing 50 mM 

Tris-HCl, pH 7.5, 5 mM DTT, 5 mM MgCl? and 1.5 ug/ml of inorganic yeast pyrophosphatase 

(Roche) for lhr at 30°C. 

Inhibition assay and determination of the IC50 
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Inhibition of the first step of the GTase reaction was evaluated by carrying out the standard first 

step RNA guanylyltransferase reaction in the presence of 0.2 pmol of [a-32P] GTP and 2 mM of 

either unlabelled GTP or each unlabelled nucleotide analogue separately (Fig. 2A). The IC5o of 

nucleotide analogues was determined by carrying out the standard first step reaction in the presence 

of 0.2 pmol of [a-32P] GTP and increasing concentrations of up to 2 mM of each nucleotide 

analogue. The reactions were stopped by the addition of EDTA to 10 mM and SDS to 1% and 

analyzed by electrophoresis through a 12.5% polyacrylamide gel containing 0.1% SDS. The 

radiolabeled proteins were visualized by autoradiography of the gel. Radiolabeled covalent 

complex formation was quantified by scanning the gel with a Phosphorlmager (Amersham 

Biosciences). 

Evaluation of the formation of the covalent intermediate 

The standard first step reaction was carried out in the presence of each nucleotide analogue (2 mM) 

in the presence or absence of potassium pyrophosphate (1 mM). The reactions were resolved on 

SDS-PAGE followed by Coomassie blue staining. 

In vitro RNA capping reaction 

RNA capping was performed by incubating the purified PBCV-1 GTase (10 ^M) and PBCV-1 

RTase (5 uM), either GTP (2 mM) or a nucleotide analogue (2 mM) with the appropriate RNA in a 

buffer containing 50 mM Tris-HCI, pH 7.5, 5 mM DTT, 5 mM MgCl2 and RnaseOut (1 unit) 

(Invitrogen). 

Transfer of nucleotide analogues to RNA 

The transfer of GTP or of a nucleotide analogue onto RNA was assayed by performing the in vitro 

RNA capping reaction in the presence of an internally labelled 50 nt long RNA substrate (10 pmol). 

The RNA was extracted with phenol/chloroform and recovered by ethanol precipitation before 

being analyzed on a denaturing UREA-PAGE. Autoradiography of the gel with a Phosphorlmager 

enabled discrimination between a cap and uncapped RNA. Alternatively, a 50 nt long RNA 

molecule with a 5' a-labelled guanosine residue (5'-pp32p RNA-3') was used. To evaluate capping 

efficiency, the GTase reaction mixture was heated to 95°C for 3 minutes before being adjusted to 50 

mM sodium acetate (pH 5.2) and digested with nuclease PI (5ug) and alkaline phosphatase (1 unit) 

at 37°C for 1 hr. The products were then analyzed by thin layer chromatography (TLC) on a 

polyethyleneimine-cellulose plate developed with 0.5 M LiCl and 1 M formic acid, following 

which, the extent of cap formation was measured by scanning the TLC with a Phosphorlmager. Cap 
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formation is inferred from the presence of unhydrolyzable 5'-5' triphosphate bridge (Npp "pG) on 

the TLCs. 

Cell culture 

Human embryonic kidney cells (HEK293) were maintained in Dulbecco's modified Eagle's 

medium supplemented with 10% fetal bovine serum. 

Transfection 

The day before transfection 600,000 cells/well were distributed in a 6-well plate. LucA6o RNA (5 

ug) was transfected using the Qiagen Transmessenger kit according to the manufacturer's protocol 

for 3 hr. Each RNA species was transfected twice per experiment. For each RNA species 

transfected, the cells in one of the wells were washed with PBS and harvested, while in the other, 

the cells were incubated at 37°C in pre-warmed complete medium for 6 hr, following which, the 

cells were washed and harvested. 

Determination of translation efficiency 

The harvested cells were split into 2 tubes. Cells in one of the tubes were lysed in Luciferase Cell 

Culture Lysis Reagent (Promega) and luciferase activity was measured according to the 

manufacturer's protocol (Promega). Total protein concentration of cell extracts was determined by 

the Bio-Rad dye binding method, using bovine serum albumin as the standard. Relative luciferase 

units (RLU) reads were rationalized onto the total protein concentration in the extracts and the 

capping efficiency of each nucleotide analogue tested. The translation efficiency was determined by 

normalising the data relative to the natural N7-methyl guanosine cap lucA60 RNA. 

Determination of RNA stability 

Harvested cells were lysed in Qiazol and RNA was extracted according to the manufacturer's 

protocol (Qiagen). Real-time quantitative PCR analysis using total RNA extracts was performed as 

described previously (Bachand, Lackner et al. 2006). Briefly, 1 ug of total RNA was treated with 

Promega DNase RQ1 and reverse transcribed using Qiagen Omniscript RT. cDNAs were diluted 

20-fold and analyzed on an Eppendorf Realplex PCR instrument using PerfeCTa™ SYBR Green 

Supermix kit (Quanta Biosciences). LucA60 RNA levels were quantified relative to the GAPDH 

RNA using the AACt method as previously described (Bachand, Lackner et al. 2006). RNA stability 

was determined by comparing relative lucA60 RNA levels 6 hr post-transfection relative to 0 hr 
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post-transfection. The data presented has been normalized relative to the stability of the N7-methyl 

guanosine capped lucA6o RNA. 

In vitro RNA binding assay to eIF4E 

The binding of RNAs harbouring modified RNA cap structures to the eIF4E protein was evaluated 

by fluorescence spectroscopy as described previously (Benzaghou, Bougie et al. 2006). Briefly, 

excitation was performed at a wavelength of 290 nm fluorescence using a Hitachi F-2500 

fluorescence spectrophotometer. Background emission was eliminated by subtracting the signal 

from the buffer containing the RNA substrate. The extent to which the RNA binds to purified eIF4E 

protein was determined by monitoring the fluorescence emission of a fixed concentration of 

proteins with and without the appropriate RNA (2 uM). All data has been rationalized relative to the 

capping efficiency of each nucleotide analogue (Table 1) and is presented relative to the 

fluorescence quenching observed when eIF4E binds the natural N7-methyl guanosine cap. 
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RESULTS 

Formation of a covalent intermediate with nucleotide analogues 

In order to probe into the structural flexibility of the active site of an RNA guanylyltransferase, we 

decided to evaluate the relative propensity of the PBCV-1 GTase to accommodate modified 

substrates through the use of nucleotide analogues. The nucleotide analogues harboured various 

modifications on both the ribose and the guanine base of GTP (Fig. 1C). 

We initially monitored the ability of a library of 22 synthetic nucleotide analogues to inhibit the 

PBCV-1 GTase. In order to identify nucleotide analogues which could efficiently substitute GTP in 

the reaction under steady state conditions, the candidate molecules (2 mM) were incubated in the 

presence of [a-32P]GTP and the PBCV-1 capping enzyme (10 uM). The presence of non-labelled 

GTP (2 mM) led to a maximum loss of the radiolabeled EpG signal while ATP at the same 

concentration had no apparent effect. Each synthetic analogue inhibited the intermediate formation 

to a different extent (Fig. 2A). The IC50 of the nucleotide analogues were then determined. 

Increasing concentrations of non-labelled GTP or nucleotide analogue were added to the standard 

GTase reaction. An example, using ITP (A2) as an inhibitor is shown in figure 2B. IC50 values 

ranged from 100 uM (high inhibition e.g. GTP) to 2.0 mM or more (low inhibition e.g. 2'dGTP). 

The fact that some nucleotide analogues led to inhibition of the PBCV-1 GTase activity at high 

concentrations (> 2.0 mM) raised the possibility that they might be acting as chelator for the 

essential divalent metal ion co-factor, and therefore these analogues were not included in later 

analysis. 

In order to monitor the formation of the covalent intermediate, the PBCV-1 GTase was incubated in 

the presence of magnesium ions (5 mM) and the nucleotide analogues (2 mM). The reaction 

products were then analyzed by SDS-PAGE and visualised by Coomassie Blue staining (Fig. ID). 

In each reaction with a nucleotide analogue, a slower migrating species relative to the unbound 

protein was observed. We deduced that this band corresponds to the enzyme covalently bound to a 

nucleotide analogue (E-NMP). Pyrophosphate, the reaction product, promoted the release of NTP 

through reversal of the reaction, thus indicating that the use of different nucleotide analogues did 

not alter the reaction reversibility (Fig. 1A and 2D). The informative finding is that all identified 

inhibitors of the first step of the GTase reaction could form the covalent intermediate. 

Nucleotide analogues as RNA cap donors 
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Having confirmed that the PBCV-1 GTase can efficiently form covalent intermediates with several 

nucleotide analogues, we next questioned whether these intermediates had conserved the ability to 

be transferred onto a 5'-diphosphate RNA. The PBCV-1 GTase was therefore incubated with the 

appropriate nucleotide analogue, a 5'-a terminally labelled RNA and the PBCV-1 RTase. The 

reaction products were digested by nuclease PI and alkaline phosphatase and resolved by thin layer 

chromatography. The resolved chromatogram revealed the presence of a digestion resistant species 

corresponding to GpppG when GTP was added to the RNA capping reaction mixture, thus 

confirming the transfer of GMP onto an acceptor RNA (Fig. 2F). The covalent intermediates 

formed from various purine triphosphate analogues showed varying degrees of efficiency in their 

ability to act as cap donors (Table 1). However, some of the analogues tested, such as A5, Ag, A9, 

and Aio, were clearly not transferable onto RNA. We conclude that the formation of the covalent E-

NMP intermediate does not necessarily imply the completion of the second step of the GTase 

reaction. A second assay was performed to demonstrate the transfer of nucleotide analogues onto 

RNA. A purified 32P-internally labelled RNA was incubated with the PBCV-1 GTase, the PBCV-1 

RTase, magnesium ions and each nucleotide analogue separately. The reaction products were 

analyzed by UREA-PAGE. The addition of GTP or a nucleotide triphosphate (A2) analogue led to 

the formation of a slower migrating species corresponding to the capped RNA (Fig. 2E). ATP, on 

the other hand had no effect. This clearly confirmed that some nucleotide analogues can act as cap 

donors and be transferred onto RNA, while some others cannot. 

Translation and stability of differentially capped RNAs in cellulo 

Several studies have demonstrated that the N7-methyl guanosine cap structure is essential for the 

process of cap dependent translation, since the association of a functional translation initiation 

complex requires the prior interaction of the RNA cap structure with the eukaryotic initiation factor 

4E (eIF4E), a phylogenetically conserved subunit of the heterotrimeric eIF4F initiation complex 

(Sonenberg 2008). Having generated several novel 5' cap structures bearing new modifications on 

both the base and the ribose moieties, we decided to investigate the structural link between 

translation and the nature of the cap structure by performing in cellulo translation assays with these 

modified RNAs. It is worth mentioning that we first evaluated the capacity of each modified cap to 

accommodate a methyl group at the N7 position, by using the human and the yeast MTases. RNAs 

blocked with A2, A6, A7, A|3, A|4 and A22 could be methylated by an MTase to different extents 

(Supplementary table 2). However, all attempts to methylate an RNA blocked with A| were 

unsuccessful. 
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Firefly luciferase RNA (5ug) harbouring modified caps at their 5' ends were transfected into 

HEK293 cells. An outline of the experimental procedure is shown in figure 3 A. In order to ensure 

reproducibility, each transfection procedure was performed in parallel with a positive (m7G cap) and 

a negative (uncap) control RNA. Luc A6o RNA levels relative to the GAPDH RNA level 

(normalising control) were evaluated just after transfection and 6 hr post-transfection by qRT-PCR 

using specific primers which amplify sequences near the 5' end. The results were normalized onto 

the relative amount of lucA6o RNA possessing a natural cap (Fig. 3B). 

In addition, for each transfection assay, the luciferase activity of total cell extracts was also 

determined and corrected for the capping efficiency of each nucleotide analogue and translation 

efficiency was determined relative to the positive control for each assay (Fig. 3B). Interestingly, the 

translation efficiencies of the RNAs investigated did not reflect their relative efficiency as methyl 

acceptors. RNA capped with 3'O-Me GTP (A22), despite its poor propensity to be a N7-methyl 

acceptor, displayed higher translation efficiency as compared to RNAs capped with A2, A)3 or A|4. 

Moreover, our results suggest that a methyl group at the 06 position render the presence of a methyl 

group at the N7 position futile; the 06-Me guanosine cap (A7), being able by itself to sustain RNA 

translation. Our results are in agreement with previous studies which showed that RNAs possessing 

an N7-(3'0) dimethyl guanosine cap structure (m7A22) are translationally more active than RNAs 

possessing the natural cap (Kuhn, Diken et al.; Kalek, Jemielity et al. 2005; Kore and 

Shanmugasundaram 2008). However, most intriguingly, the absence of the N7-methyl group (A22 

cap) does not impact translation efficiency negatively. The translation efficiency of A22 and m7A22 

remain similar (within experimental error) despite the absence of the methyl group at the N7 

position and consequently of the positive charge on the cap structure. We therefore concluded that 

for the process of translation in cellulo, the presence or absence of the essential N7-methyl 

modification of the natural N7-methyl guanosine cap becomes secondary in the light of other 

modifications on either the base or even the ribose moiety of the 5' RNA cap structure. 

In vitro binding to eIF4E 

In an effort to further analyze the translation profile obtained, we set out to determine the binding 

affinity of each novel RNA cap structure obtained to the eIF4E protein. The eIF4E protein harbours 

eight conserved tryptophan residues within its cap binding slot (Marcotrigiano, Gingras et al. 1997; 

Matsuo, Li et al. 1997). Therefore, binding affinity was evaluated by monitoring the quenching of 

the intrinsic fluorescence of the protein when incubated with a 30 nt long RNA possessing a natural 

or modified cap structure (Fig. 3B). Our results echo previous studies in that for cap dependent 
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translation to occur, binding to eIF4E is a fundamental requirement. For instance, the affinity of 

eIF4E to an A22 capped RNA relative to a naturally capped RNA was more than 2 fold higher, in 

spite of the lack of the N7-methyl group on this cap analogue. This relates directly with the higher 

translation profile obtained for the A2? capped lucA6o RNA. Overall, these results indicate that cap 

dependent translation can be sustained in the absence of the N7 modification of the RNA cap 

structure, provided that alternative modifications enable proper binding to the eIF4E protein. 
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DISCUSSION 

RNA cap analogues are important biological tools for the study of RNA metabolism, and could 

prove to be potent novel therapeutic agents. In an attempt to look for an easier and more effective 

way than chemical synthesis to generate novel cap structures at the 5' ends of RNAs, we report that 

RNA cap analogues can be formed by enzymatic synthesis using nucleotide analogues. The 

differential ability of nucleotide analogues to be used by the PBCV-1 GTase was used as a measure 

of the flexibility of the active site, and we were able to show that the active site can accommodate 

several unnatural substrates, and can efficiently cap an RNA molecule with a modified substrate. 

Thus, we were able to gain a better understanding of the interactions involved in substrate binding 

and catalysis in GTases and in the translation process. 

C2 and 0 6 modified analogues 

Our analogues indicate that the exocyclic amino group of GTP is not crucial for substrate 

discrimination by GTases. ITP (A2) efficiently substitutes GTP in both steps of the GTase reaction 

(Table 1). This discloses a relative lack of importance of the exocyclic C2 amino group for substrate 

binding by the PBCV-1 GTase, and in accordance, 2-amino-ATP (A4), which harbours an exocyclic 

amino group equivalent to GTP, could not inhibit the first step of the GTase reaction. 

It has previously been speculated from crystallographic data that GTP specificity of capping 

enzymes is mediated by the interactions of the 06 of GTP via a hydrogen bond with a conserved 

lysine residue (Lysl88 in the PBCV-1 GTase) (Fig. IB) (Hakansson, Doherty et al. 1997; Fabrega, 

Shen et al. 2003). A sequence alignment between RNA capping enzymes tentatively places this 

conserved lysine residue in a motif (denoted IIIc), which ostensibly seems to be absent among DNA 

ligases (Supplementary figure 1). Interestingly, while alanine mutation of this lysine residue 

abolishes GTase activity, binding of GTP remains unaffected (Supplementary figure 3). Therefore, 

it is presumed that other amino acids are contributing to GTP binding. Nucleotide analogues 

harbouring modifications at the 06 position were used to investigate this issue. With the exception 

of 6-thio ITP (A9) (IC50=1.7 mM) and 6-Me-thio ITP (A,0) (IC50=1.2 mM), 06 modified analogues 

that were tested did not differ significantly relative to GTP ((IC5O=0.1 mM) in their ability to inhibit 

the first step of the reaction. At most, the fact that 6-Me thio GTP (Ag) (ICso=0.43 mM) is a poorer 

substrate than 6-thio GTP (A6) (IC50=0.22 mM) or 06-Me GTP (A7) (IC50=0.15 mM) may be 

indicative of steric hindrance for substrate binding. The similar IC50 of A5, A6 and A7 indicate that 

the extent of Lysl88 interactions with nucleotide analogues bearing C6 modifiers is permeable to 
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steric constraints and variations in the electrostatic potential. However, in all cases, the transfer onto 

an acceptor RNA was heavily compromised during the second step of the GTase reaction. While 

06-Me GTP (A7) was transferred -50% as efficiently as GTP onto an RNA, A5 and A6 (8% and 16 

% respectively relative to GTP) were very poor cap donors. Our results indicate that along with 

Lysl88 and 06 hydrogen bonding, it is the very architecture of this region of the active site which 

may be mediating substrate binding and contributing to the reaction progress. In addition, in the 

light of the fact that only 06-Me GMP (A7) retains appreciable transferability onto an RNA, we 

inferred that only oxygen at the C6 position could preserve the subtleties of interactions with 

Lysl88, thereby allowing accurate substrate alignment for the intermediate complex formation 

while also retaining the transferability of the bound nucleotide analogue onto an acceptor RNA. 

N7 and C8 modified analogues 

Additional proof of the involvement of other factors in determining cap donor specificity was 

obtained through N7 (A]5 and A|6) and corroborated with C8 (A12-i4) modified purine analogues. 

Neither 7-deaza GTP (Ai5) nor N7-methyl GTP (Ai6) could inhibit the first step of the reaction 

(Table 1). This is suggestive of an important role of the N7 position. The poor inhibition by A!6 

may also be partly due to its positively charged imidazole ring which may be impeding stacking 

interactions with Phel46 in the GTP binding site (Fig. IB). C8 modified analogues displayed a 

differential utilization by the PBCV-1 GTase based on the nature of the substituent. In fact, while 

the presence of a hydroxyl group at the C8 position (A12) abolished inhibition (IC50 > 2.0 mM), 

halide substituted C8 analogues (An.|4) were less detrimental in that an appreciable IC5o was 

obtainable for the case of 8-bromo GTP (A,3) (IC50=1.5 mM) and 8-iodo GTP (A14) (IC50=0.42 

mM) (Table 1). The decreasing tendency of C8 substituted GTP analogues (8-1 GTP > 8-Br GTP » 

8-Oxo GTP) to inhibit the first step of the GTase reaction was suggestive of an influence of the 

relative electronegativity of each substitution (% of I < Br < O) on the guanine base. A direct 

consequence of the presence of electronegative substitutions at the C8 position is a net decrease in 

the electron density by inductive effect at the N7 position. Therefore, taken together, N7 and C8 

modifications (A]2-i6) indicate that both N7 and 06 likely mediate interactions responsible for cap 

donor specificity. In contrast to GTP, the lone pair of electrons at the N7 position in ATP is less 

available for interactions due to the basic chemical properties of the base (Kmpf, Kapinos et al. 

2002). The requirement for interactions with both 06 and N7 could also be explaining why 06 

modifiers (A6.n) led to such a wide difference in their effectiveness between the first and the second 

steps of the reaction. 
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V modified GTP analogues 

Previous studies have shown that 2'dGTP (Aig) cannot be hydrolyzed by the PBCV-1 GTase (Ho, 

Van Etten et al. 1996). This is suggestive of an important role of the 2'OH group. This might be due 

to the following reasons: (i) the T-endo conformation, which is preferred by ribonucleotides but not 

deoxyribonucleotides may be important; (ii) the inductive effect of the 2'OH group may be 

important; (iii) the 2'OH group coordinates a critical metal ion or (iv) binding of the 2'OH may be a 

pre-requisite for proper alignment of the triphosphate moiety. 

With the exception of the poxvirus capping enzyme, exemplified by the vaccinia virus Dl protein, 

most known capping enzymes are unable to hydrolyze 2'dGTP (Venkatesan and Moss 1980; 

Venkatesan and Moss 1982). Since the Dl protein shares the same conserved motifs as the PBCV-1 

GTase, we think that the 2'OH must have a preponderant role in ligand binding rather than 

catalysis. Therefore, the hypothesis that the 2'OH may be participating in the coordination of a 

critical metal ion is unlikely. The sugar moiety of 2'F-2'dGTP (A2o) has a net preference for the 3'-

endo conformation and the 2'F substituent has a stronger inductive effect than the hydroxy! group 

in GTP (Roitzsch, Fedorova et al. 2010). The fact that the 2'F substituent negatively affects the first 

step of the GTase reaction by drastically increasing the IC50 (1.4 mM for A2o compared to 0.10 mM 

for GTP) is a clear indication that neither the preference for the V-endo conformation nor the 

inductive effect explains the preference of the PBCV-1 GTase for GTP over 2'dGTP. Thus far, our 

results indicate that the 2'OH is involved in ligand binding/positioning, without necessarily being 

involved in catalysis. Previous structure-function analysis in budding yeast and mouse capping 

enzymes have shown the 2' OH group to be interacting with an essential Motif III glutamate -

Glul31 in the PBCV-1 GTase, with which it forms a hydrogen bond (Fig. IB and Supplementary 

figure 1) (Shuman, Liu et al. 1994). The pH dependency of the inhibition of the first step of the 

GTase reaction by 2'O-Me GTP (Ai9) further substantiated this conclusion. A]9 does not inhibit the 

GTase reaction at pH 7.5 (Table 1). However, decreasing the pH reduced the ease of formation of 

the radiolabelled covalent EpG intermediate, thereby indicating that at lower pH, AiQcan effectively 

inhibit the reaction (Supplementary figure 2). Decreasing pH infers protonation of basic residues 

(like Glul31) which renders possible the otherwise unfavourable interaction between the glutamate 

residue and the 2' oxygen of 2'O-Me GTP at a pH of 7.5. Likewise, 2'F-2'dGTP also shows a pH 

dependency for the first step of the reaction, albeit to a lesser extent that 2'O-Me GTP. We 

conclude that the essentiality of the 2'OH group in RNA capping resides mainly in proper ligand 

positioning. 
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3' modified GTP analogues 

The role of the 3' OH group was evaluated through the different levels of inhibition and activity 

displayed by 3'dGTP (A2]) and 3'O-Me GTP (A22). The absence of the 3'OH group (A2i) did not 

affect the first step of the reaction, while its substitution by 3' O-Me (A22) led to an increase in the 

IC50; a change that we attributed to steric hindrance due to the methyl group. However this trend 

was not conserved in the second step of the reaction. RNA capping with 3'dGTP was markedly 

inferior relative to capping with 3' O-Me GTP (10% and -40% respectively relative to GTP). It has 

previously been speculated that the role of the 3'OH was to coordinate the acceptor RNA molecule. 

The structure of the Candida albicans GTase has been solved in an open conformation receptive for 

RNA binding, with a phosphate ligand, speculatively attributed to be mimicking the terminal 

phosphate of RNA, near the 3' hydroxyl group of the bound GMP (Fabrega, Shen et al. 2003). 

Crystal structures of other nucleotidyltransferases in complex with their ligands also seemed to 

suggest that the covalently bound ligand contributes to the formation of a novel active site, where 

the ligand itself plays a fundamental functional role in the coordination of the incoming RNA or 

DNA substrate (Nair, Nandakumar et al. 2007). Our results add weight to this hypothesis. While the 

absence of a hydroxyl group at the 3' position is detrimental to RNA coordination, the presence of 

an O-Me group at the same position can clearly rescue capping efficiency, albeit to a limited extent 

only. Therefore, we believe that the role of the 3'OH lies mainly in the coordination of the 

diphosphate RNA ligand. 

In cellulo properties of artificial cap structures 

The subset of RNAs generated with modified cap structures at their 5' ends were evaluated for their 

translational properties in HEK293 cells. Regarding the relative stability of RNAs capped with 

various analogues in cellulo, our results were consistent with the fact that the presence of a blocking 

residue at the 5' end of an RNA was sufficient to protect it from rapid degradation as compared to 

an uncapped RNA (Bougie and Bisaillon 2004). Previous studies addressing the low ability of 
m7IMP and m7IDP to inhibit translation have demonstrated their poor binding affinity for the 

mammalian eIF4E, and in agreement, a very low translation efficiency was observed for a NT-

methyl inosine (m7A2) capped RNA(Adams, Morgan et al. 1978; Ueda, Maruyama et al. 1991). In 

addition, our results concerning an N7-(3'0)-dimethyl guanosine (m7A22) capped RNA are 

consistent with previous observations that an RNA capped with m7A22 are translationaily more 

active than RNAs possessing the natural cap (Fig. 3B) (Jemielity, Fowler et al. 2003; Kalek, 

Jemielity et al. 2005; Kore and Shanmugasundaram 2008). 
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On the other hand, our observations with regards to the translational properties of RNAs capped 

with A7 and A22 were very unexpected. A7 and A22 capped RNA could support translation in cellulo 

in spite of the absence of the N7-methyl modification. To the best of our knowledge, this is the first 

report of an N7-methyl deficient capped RNA which can support cap-dependent translation in 

cellulo. Previous reports have evaluated the importance of the N7-methyl addition solely in the 

context of the natural N7-methyl guanosine cap. Compensation for the absence of the N7-methyl 

group by alternative modifications on the cap structure had not been looked into before. Our in vitro 

binding studies indicate that the relative binding affinity of eIF4E to the modified cap structures 

was enough to explain the observed translation efficiency. While a GpppG capped RNA is not 

bound by eIF4E, the presence of a methyl group at the 06 (A7) or 3'-0 (A22) clearly restores eIF4E 

binding, and thus ensures translation. The major implication of this result is that cap binding by 

eIF4E does not necessarily require a positively charged capped nucleotide, as is the case for the 

natural RNA cap structure. Crystallographic data on eIF4E indicates that the cap binding slot is 

essentially divided into a positively charged region which binds the phosphate bridge, and a 

hydrophobic region where the charged N7-methyl guanosine cap is stacked between two conserved 

tryptophan residues through cation-7t-7t interactions (Marcotrigiano, Gingras et al. 1997). The N7-

methyl group is involved in Van der Waal's interactions only, and has been shown to be 

substitutable with various alkyl groups without being deleterious to eIF4E binding (Brown, McNae 

et al. 2007). It was therefore surmised that the main purpose of the N7-methyl group is to confer a 

positive charge to the cap. Since, most previous studies used the premise that cap binding to the 

eIF4E protein requires a positively charged RNA cap analogue, the necessity of the N7-methyl 

group in the light of other modifications on the RNA cap structure had not been addressed before. 

In view of the fact that neither Ay nor A22 can conserve the cation-7t-7t interactions of the natural cap 

with eIF4E, we conclude that other factors are necessarily rendering A7 and A22 interactions with 

eIF4E favourable. 

Several contradictory observations have been reported with regards to the ionic state of the cap 

structure on eIF4E binding. Previous studies on the pH dependency of eIF4E binding to cap 

analogues have suggested that the cap preferably binds in its enolate tautomer (in which Nl is 

deprotonated) rather than in the keto form (Rhoads, Hellmann et al. 1983; Matsuo, Li et al. 1997). 

NMR studies of cap analogue binding to eIF4E showed that the imino proton (at Nl position) was 

absent, thus further indicating that binding occurs in the enolate tautomeric form of the ligand 

(Matsuo, Li et al. 1997). On the other hand, in the crystal structure of the yeast eIF4E bound to 
m7GDP, the keto tautomer is present in the cap binding site (Marcotrigiano, Gingras et al. 1997). 
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Other in vitro studies have pointed out that tightest binding to eIF4E is achieved by the keto 

tautomeric form of the N7-methyl guanosine cap (Niedzwiecka, Marcotrigiano et al. 2002). The 

deprotonated imino group of A7 is reminiscent of the enolate tautomer of guanosine. Since we 

detect translation of both A7 and m7A7 capped RNA, this infers that for the occurrence of eIF4E 

binding in cellulo, there is no need for the N1 proton of the cap to be engaged in a hydrogen bond 

within the cap binding site. Therefore, from our current results we suggest that cap binding by 

eIF4E preferentially occurs in the enolate form of the ligand. The protonation equilibrium of the 

enolate and keto tautomers probably guides eIF4E binding to the natural cap. Therefore, we 

surmised that the fact that the imino group of A7 is permanently deprotonated, greatly favours eIF4E 

binding, which may also explain the higher translation efficiency observed despite the absence of 

the N7-methyl modification. 

The ribose moiety of the capped guanosine residue has very seldom been described to be involved 

in cap binding by eIF4E. In fact, the stacking interactions of the base, and interactions between the 

phosphate chain and positively charged amino acids are the main energetic contributions for cap 

binding to eIF4E (Niedzwiecka, Stepinski et al. 2002; Niedzwiecka, Stepinski et al. 2003). It is 

postulated that the phosphate bridge of the RNA cap acts as an anchor to enable the capped N7-

guanosine to interact within the cap binding slot. The observation that RNA blocked with 3'O-Me 

guanosine (A22) was efficiently translated was very unexpected. Two hypotheses may explain these 

results: either the conformation of the A22 cap renders the anchoring of the phosphate chain more 

energetically favourable thus effectively decreasing the energetic requirement of the stacking 

interactions of the base for tight binding of the cap analogue with eIF4E; or conformational changes 

upon cap binding may be stabilizing the eIF4E-cap analogue complex. This is presently being 

investigated. Another interesting finding of this study is that binding to eIF4E does not necessarily 

imply formation of a translation competent initiation complex. RNA blocked with either of m7Ai3 or 
m7A!4 is poorly translated, while retaining an appreciable relative binding affinity to eIF4E (0.4 and 

0.8 fold relative to a natural cap respectively). Therefore, we hypothesize that conformational 

changes on cap binding by eIF4E rather than the cap binding in itself may be playing a crucial role 

in the formation of a translation competent initiation complex. Overall, our results indicate that cap-

dependent translation can occur in the absence of the N7-methyl group on the cap structure 

provided that alternative modifications enable appropriate binding to eIF4E. 

The importance of the N7-methyl group of the cap structure has been highlighted in several studies. 

In the light of our results which indicate that some N7-methyl deficient RNA cap analogues are 

biologically active, it raises the question of the functional role of this methyl group. At which step 
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of RNA metabolism is the N7-methyl group most important? The use of more novel RNA cap 

analogues for the study of other aspects of RNA metabolism would certainly prove to be crucial to 

address this question. Moreover, our results have major implications for the design and synthesis of 

potential therapeutic agents targeting the eIF4E protein. eIF4E is over-expressed in various cancers, 

and is under investigation as a potential drug target (Ruggero, Montanaro et al. 2004; Graff, 

Konicek et al. 2007; Graff, Konicek et al. 2008). The finding that some N7-methyl deficient RNA 

cap analogues are able to bind eIF4E has a direct impact on the various steps involved in the 

chemical synthesis of cap analogues and also raises the possibility of using RNA capping enzymes 

to generate them. 
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FIGURE LEGENDS 

Figure 1: The RNA capping mechanism and the nucleotide analogues tested (A) The two-step 

RNA guanylyltransferase reaction. (B) The GTP binding site of the PBCV-1 RNA 

guanylyltransferase (PDB 1CKN). Residues shown are those interacting with the base and the sugar 

moiety. (C) Nucleotide analogues used in this study. 

Figure 2: Biosynthesis of novel RNA cap structures (A) The PBCV-1 GTase was incubated with 

[a-32P]GTP in the absence or presence of unlabelled GTP (2 mM) (lanes 1 and 2) or purine 

analogues (2 mM) (lanes 3-12). An autoradiogram of the SDS-PAGE gel is shown. The location of 

the EpG complex is indicated on the right. (B) Competitive inhibition of the EpG complex 

formation by ITP (A2). Increasing concentrations of A2 (0.0625, 0.125, 0.25, 0.5, 1.0, 2.0 mM) were 

added to the standard GTase reaction containing [a-32P]GTP. An autoradiogram of the SDS-PAGE 

gel is shown. The location of the EpG complex is indicated on the left. (C) Dose-response inhibition 

of the PBCV-1 GTase by unlabelled GTP and ITP (A2). (D) Formation of the enzyme covalent 

intermediate. The PBCV-1 GTase was incubated with GTP (lanes 2 and 3) or nucleotide analogues 

(lanes 4 to7) in the presence of either yeast pyrophosphatase or potassium pyrophosphate (5 mM). 

A Coomassie blue stain of the SDS-PAGE gel is shown. (E) Unlabelled GTP or nucleotide 

analogue (2 mM) was incubated with a ""P-radiolabeled RNA substrate of 50 nt in the presence of 

the PBCV-1 GTase and RTase. The RNA samples were extracted with phenol/chloroform, 

recovered by ethanol precipitation, and analyzed on a 20% UREA-PAGE. An autoradiogram of the 

gel is shown. The position of the unblocked RNA of 50 nt is indicated. (F) The RNA capping 

reaction was carried out with a 50 nt long 5' terminally labelled RNA on the a phosphate. The 

reaction mixtures were heated for 5 min at 70°C, adjusted to 50 mM NaOAc, pH 5.2, and subjected 

to digestion by nuclease PI for 60 min at 37°C and then adjusted to 50 mM Tris-HCl, pH 8, and 

digested by an alkaline phosphatase. The reaction products were analyzed by thin layer 

chromatography on a PEI-cellulose plate developed with 0.5 M LiCl and 1M formic acid. An 

autoradiogram of the plate is shown. The positions of the chromatographic origin (ori), GpppG, and 

of inorganic phosphate (P,) are indicated. P, in lane 1 (negative control) migrates higher because this 

reaction was done in the absence of any RNA capping proteins. (*) indicates the position of the 

radiolabeled phosphate in the capped dinucleotide. 

Figure 3: In cellulo and in vitro properties of the novel cap analogues (A) Schematic 

representation of the experimental procedure for the determination of the translation efficiency of 

differentially capped lucA60 RNA in HEK293 cells. (B) Comparative analysis of the relative 
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translation of differentially capped lucA6o RNAs with respect to the relative stability of each RNA 

in HEK.293 cells, and with respect to their relative binding affinity to the eIF4E protein. Binding to 

eIF4E was determined by fluorescence spectroscopy with a 30 nt long RNA molecule. The relative 

RNA stability was evaluated by quantifying the amount of lucA6o RNA relative to the GAPDH 

RNA by qRT-PCR 0 hr and 6 hr post-transfection. The relative translation efficiency was 

experimentally determined by quantifying firefly luciferase activity relative to the amount of total 

protein 6 hr post-transfection. Experimental data was adjusted relative to the capping efficiency (as 

determined in Table 1) of each analogue, and rationalized onto the m7G cap. The error associated 

with each data set is less than ± 0 . 1 . (*) indicates more than 1.5 fold difference relative to the 

translation efficiency of a naturally capped RNA. (t) indicates more than 2 fold difference relative 

to the binding observed for the natural m7G capped RNA. 

82 



REFERENCE 

1. Shuman, S., Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res 
Mol Biol, 1995. 50: p. 101-29. 

2. Shuman, S., Structure, mechanism, and evolution of the mRNA capping apparatus. 
Prog Nucleic Acid Res Mol Biol, 2001. 66: p. 1-40. 

3. Darzynkiewicz, E., et al., Inhibition of eukaryotic translation by nucleoside 5'-
monophosphate analogues of mRNA 5'-cap: changes in N7 substituent affect 
analogue activity. Biochemistry, 1989. 28(11): p. 4771-8. 

4. Carberry, S.E., et al., A spectroscopic study of the binding of N-7-substituted cap 
analogues to human protein synthesis initiation factor 4E. Biochemistry, 1990. 
29(13): p. 3337-41. 

5. Strenkowska, M., et al., Towards mRNA with superior translational activity: 
synthesis and properties of ARCA tetraphosphates with single phosphorothioate 
modifications. New J Chem. 34(5): p. 993-1007. 

6. Shuman, S. and CD. Lima, The polynucleotide ligase and RNA capping enzyme 
superfamily ofcovalent nucleotidyltransferases. Curr Opin Struct Biol, 2004. 14(6): 
p. 757-64. 

7. Hakansson, K., et al., X-ray crystallography reveals a large conformational change 
during guanyl transfer by mRNA capping enzymes. Cell, 1997. 89(4): p. 545-53. 

8. Bougie, I. and M. Bisaillon, The broad spectrum antiviral nucleoside ribavirin as a 
substrate for a viral RNA capping enzyme. J Biol Chem, 2004. 279(21): p. 22124-
30. 

9. Kowalska, J., et al., Synthesis and characterization of mRNA cap analogs 
containing phosphorothioate substitutions that bind tightly to eIF4E and are 
resistant to the decappingpyrophosphatase DcpS. RNA, 2008. 14(6): p. 1119-31. 

10. Grudzien-Nogalska, E., et al., Synthesis of anti-reverse cap analogs (ARCAs) and 
their applications in mRNA translation and stability. Methods Enzymol, 2007. 431: 
p. 203-27. 

11. Grudzien-Nogalska, E., et al., Phosphorothioate cap analogs stabilize mRNA and 
increase translational efficiency in mammalian cells. RNA, 2007. 13(10): p. 1745-
55. 

83 



12. Stepinski, J., et al., Novel dinucleoside 5',5'-triphosphate cap analogues. Synthesis 
and affinity for murine translation factor eIF4E. Nucleosides Nucleotides Nucleic 
Acids, 2005. 24(5-7): p. 629-33. 

13. Grudzien, E., et al., Novel cap analogs for in vitro synthesis ofmRNAs with high 
translational efficiency. RNA, 2004. 10(9): p. 1479-87. 

14. Doherty, A.J., et al., Crystallization of the RNA guanylyltransferase of Chlorella 
virus PBCV-1. Acta Crystallogr D Biol Crystallogr, 1997. 53(Pt 4): p. 482-4. 

15. Bougie, I. and M. Bisaillon, Inhibition of a metal-dependent viral RNA 
triphosphatase by decavanadate. Biochem J, 2006. 398(3): p. 557-67. 

16. Souliere, M.F., J.P. Perreault, and M. Bisaillon, Kinetic and thermodynamic 
characterization of the RNA guanylyltransferase reaction. Biochemistry, 2008. 
47(12): p. 3863-74. 

17. Mao, X., B. Schwer, and S. Shuman, Mutational analysis of the Saccharomyces 
cerevisiae ABD1 gene: cap methyltransferase activity is essential for cell growth. 
Mol Cell Biol, 1996. 16(2): p. 475-80. 

18. Slepenkov, S.V., E. Darzynkiewicz, and R.E. Rhoads, Stopped-flow kinetic analysis 
of elF4E and phosphorylated eIF4E binding to cap analogs and capped 
oligoribonucleotides: evidence for a one-step binding mechanism. J Biol Chem, 
2006. 281(21): p. 14927-38. 

19. Saha, N., B. Schwer, and S. Shuman, Characterization of human, 
Schizosaccharomyces pombe, and Candida albicans mRNA cap methyltransferases 
and complete replacement of the yeast capping apparatus by mammalian enzymes. J 
Biol Chem, 1999. 274(23): p. 16553-62. 

20. Bachand, F., et al., Autoregulation of ribosome biosynthesis by a translational 
response in fission yeast. Mol Cell Biol, 2006. 26(5): p. 1731-42. 

21. Benzaghou, I., et al., Energetics of RNA binding by the West Nile virus RNA 
triphosphatase. FEBS Lett, 2006. 580(3): p. 867-77. 

22. Sonenberg, N., eIF4E, the mRNA cap-binding protein: from basic discovery to 
translational research. Biochem Cell Biol, 2008. 86(2): p. 178-83. 

23. Kuhn, A.N., et al., Phosphorothioate cap analogs increase stability and 
translational efficiency of RNA vaccines in immature dendritic cells and induce 
superior immune responses in vivo. Gene Ther. 17(8): p. 961-71. 

84 



24. Kalek, M., et al., Synthesis and biochemical properties of novel mRNA 5' cap 
analogs resistant to enzymatic hydrolysis. Nucleosides Nucleotides Nucleic Acids, 
2005. 24(5-7): p. 615-21. 

25. Kore, A.R. and M. Shanmugasundaram, Synthesis and biological evaluation of 
trimethyl-substituted cap analogs. Bioorg Med Chem Lett, 2008. 18(3): p. 880-4. 

26. Matsuo, H., et al., Structure of translation factor eIF4E bound to ml GDP and 
interaction with 4E-bindingprotein. Nat Struct Biol, 1997. 4(9): p. 717-24. 

27. Marcotrigiano, J., et al., Cocrystal structure of the messenger RNA 5' cap-binding 
protein (eIF4E) bound to 7-methyl-GDP. Cell, 1997. 89(6): p. 951-61. 

28. Fabrega, C , et al., Structure of an mRNA capping enzyme bound to the 
phosphorylated carboxy-terminal domain of RNA polymerase II. Mol Cell, 2003. 
11(6): p. 1549-61. 

29. Kmpf, G., et al., Comparison of the acid-base properties of purine derivatives in 
aqueous solution. Determination of intrinsic proton affinities of various basic sites. 
Journal of the Chemical Society, Perkin Transactions 2, 2002: p. 1320-1327. 

30. Ho, C.K., J.L. Van Etten, and S. Shuman, Expression and characterization of an 
RNA capping enzyme encoded by Chlorella virus PBCV-1. J Virol, 1996. 70(10): p. 
6658-64. 

31. Venkatesan, S. and B. Moss, Donor and acceptor specificities of HeLa cell mRNA 
guanylyltransferase. J Biol Chem, 1980. 255(7): p. 2835-42. 

32. Venkatesan, S. and B. Moss, Eukaryotic mRNA capping enzyme-guanylate covalent 
intermediate. Proc Natl Acad Sci U S A , 1982. 79(2): p. 340-4. 

33. Roitzsch, M., O. Fedorova, and A.M. Pyle, The 2'-OH group at the group II intron 
terminus acts as a proton shuttle. Nat Chem Biol. 6(3): p. 218-224. 

34. Shuman, S., Y. Liu, and B. Schwer, Covalent catalysis in nucleotidyl transfer 
reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are 
conserved in Schizosaccharomyces pombe and viral capping enzymes and among 
polynucleotide ligases. Proc Natl Acad Sci U S A , 1994. 91(25): p. 12046-50. 

35. Nair, P.A., et al., Structural basis for nick recognition by a minimal pluripotent 
DNA ligase. Nat Struct Mol Biol, 2007. 14(8): p. 770-8. 

85 



36. Adams. B.L., et al., The effect of "cap" analogs on reovirus mRNA binding to wheat 
germ ribosomes. Evidence for enhancement of ribosomal binding via a preferred 
cap conformation. J Biol Chem, 1978. 253(8): p. 2589-95. 

37. Ueda, H., et al., Expression of a synthetic gene for human cap binding protein 
(human 1F-4E) in Escherichia coli and fluorescence studies on interaction with 
mRNA cap structure analogues. J Biochem, 1991. 109(6): p. 882-9. 

38. Jemielity, J., et al., Novel "anti-reverse" cap analogs with superior translational 
properties. RNA, 2003. 9(9): p. 1108-22. 

39. Brown, C.J., et al., Crystallographic and mass spectrometric characterisation of 
eIF4E with N7-alkylated cap derivatives. J Mol Biol, 2007. 372( 1): p. 7-15. 

40. Rhoads, R.E., et al., Translational recognition of messenger ribonucleic acid caps 
as a function ofpH. Biochemistry, 1983. 22(26): p. 6084-8. 

41. Niedzwiecka, A., et al., Biophysical studies of eIF4E cap-binding protein: 
recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-
BP1 proteins. J Mol Biol, 2002. 319(3): p. 615-35. 

42. Niedzwiecka, A., et al., Thermodynamics of 7-methylguanosine cation stacking with 
tryptophan upon mRNA 5' cap binding to translation factor eIF4E. Nucleosides 
Nucleotides Nucleic Acids, 2003. 22(5-8): p. 1557-61. 

43. Niedzwiecka, A., et al., Positive heat capacity change upon specific binding of 
translation initiation factor eIF4E to mRNA 5' cap. Biochemistry, 2002. 41(40): p. 
12140-8. 

44. Graff, J.R., et al., Therapeutic suppression of translation initiation factor eIF4E 
expression reduces tumor growth without toxicity. J Clin Invest, 2007. 117(9): p. 
2638-48. 

45. Ruggero, D., et al., The translation factor eIF-4E promotes tumor formation and 
cooperates with c-Myc in lymphomagenesis. Nat Med, 2004. 10(5): p. 484-6. 

46. Graff, J.R., et al., Targeting the eukaryotic translation initiation factor 4E for 
cancer therapy. Cancer Res, 2008. 68(3): p. 631-4. 

86 



Table 1: RNA capping reaction with nucleotide analogues 

Analogues IC50 for E-GMP 
formation (mMja 

Formation of a 
covalent complex*1 

Relative efficiency of 
RNA capping0 

A i 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

Au 

A u 

Au 

A14 

A15 

Aw 

A l 7 

A i g 

A19 

A20 

A21 

A22 

GTP 

ATP 

Nl-Me GTP 

ITP 

XTP 

2-Amino ATP 

2-Amino-6 CI purine RTPd 

6-thio GTP 

06-Me GTP 

6-Me thio GTP 

6- thio ITP 

6-Me thio ITP 

6-CI purine RTPd 

8-Oxo GTP 

8-Bromo GTP 

8-lodo GTP 

N7-Me GTP 

7-deaza GTP 

ddGTP 

2'dGTP 

2'0-Me GTP 

2' F-2' dGTP 

3'dGTP 

3' O-Me GTP 

1st Step 

0.10 

>2.0 

0.08 

0.34 

>2.0 

>2.0 

0.16 

0.22 

0.15 

0.43 

1.7 

1.2 

>2.0 

>2.0 

1.5 

0.42 

>2.0 

>2.0 

>2.0 

>2.0 

>2.0 

1.4 

0.15 

0.45 

f'Step 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1st and 2nd Steps 

1.0 

1.1 

1.3 

0.08 

0.16 

0.48 

0.07 

0.40 

1.0 

0.16 

0.15 

0.38 

a IC50 were determined from the dose response inhibition of the GTase activity as indicated in figures 2B and 2C for A3. 
bThe formation of the covalent complex was determined as indicated in figure 2D for each nucleotide analogue. 
c The efficiency of RNA capping was calculated by quantifying the nuclease PI and alkaline phosphatase digestion resistar 
products formed for GTP and each nucleotide analogue as indicated in figure 2F and normalizing it onto the value obtaine 
with GTP. 
d RTP stands for Ribose triphosphate 
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Supplementary Table 1 

Supplementary Table 1: RNA (guanine-N7) methyltransferase activities with RNA capped with nucleotide 

analogues 

(A,) 

(AO 

(As) 

(A7) 

(A13) 

(A14) 

(A22) 

Nl-MeGTP 

ITP 

6-thio GTP 

06-Me GTP 

8-Bromo GTP 

8-Iodo GTP 

3'0-MeGTP 

b RNA capped with8 Efficiency of N7-methylation 

GTP +++ 

+++ 

+ 

+++ 

++ 

+++ 

+ 

a Nucleotides analogues presenting more than 30% RNA capping efficiency were selected to undergo N7-
methylation by the S. cerevisiae's RNA (guanine-N7) methyltransferase. 
b The efficiency of N7-methylation was determined by comparing the release of nuclease PI and alkaline 
phosphatase digestion resistant products (m7NpppG (where N is a nucleotide analogue) relative to NpppG), following 
incubation with the S. cerevisiae's MTase and S-Adenosyl-methionine. 
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Supplementary Figure 1 
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Supplementary Figure 1: Structural conservation in GTases and ligases. The amino acid 
sequences of RNA guanylyltransferases from Paramecium bursaria Chlorella virus-1 (Chv), S. 
cerevisiae (See), S. pombe (Spo) and C. albicans (Cal) are aligned with ligases from the T7 
phage (T7), Vaccinia virus (Vac) and See (S. cerevisiae) 
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Supplementary Figure 2 
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Supplementary Figure 2: pH dependency of the inhibition by 2' modified nucleotide analogues (A) 

pH dependency for the inhibition by A3. The PBCV-1 GTase was incubated with [a-32P]GTP in the 

presence of either GTP (0.5 mM) or A19 or A20 (0.5 mM) in a standard GTase buffer ranging from a pH 

of 5 to 9. The reactions were resolved by SDS-PAGE and analyzed by a Phosphorimager. The formation 

of the radiolabelled E-GMP complex was quantified and its relative ease of formation is plotted as a 

function of the pH. High ease of formation implies low inhibition by either GTP or the nucleotide 

analogue, while low ease of formation implies high inhibition by the unlabelled nucleotides. 
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Supplementary Figure 3 
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Supplementary figure 3: Binding of GTP to the wild-type and K188A mutant of the PBCV-1 

GTase. Increasing amounts of GTP were added to a 2 uM solution of the enzyme in binding buffer (50 

mM Tris/HCl, pH 8.0, and 50 mM KOAc) and the emission spectrum was scanned from 310 to 440 nm, 

following excitation of tryptophan residues at 290 nm. 
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Chapter III - Identification of a novel class of viral RNA guanylyltransferase 

3.1. ARTICLE: 

The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a 

two-step reaction to form the RNA cap structure 

Moheshwarnath Issur*, Brian J. Geiss*, Isabelle Bougie, Frederic Picard-Jean, Simon 
Despins, Joannie Mayette, Sarah E. Hobdey and Martin Bisaillon 

Article published in RNA, Dec 2009, 15: 2340 - 2350 

CONTRIBUTIONS 

I had the original idea and made the actual demonstration that NS5 possess RNA 

guanylyltransferase activity and characterized this activity. BJG of the Colorado State 

University provided purified versions of the NS5 protein from the various flaviviruses 

analyzed in this study. IB helped in the characterization of the RNA 

guanylyltransferase activity. FPJ, SD and JM also helped in the characterization of 

the activity although their work was not included in the final paper and provided 

helpful comments thoughout the project. SEH is a student in the lab of BJG who 

helped in the expression and purification of all purified versions of the NS5 proteins 

used in this study. MB provided the necessary funding and was instrumental to the 

establishment of the collaboration with the lab of BJG. 
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SUMMARY (enfrangais) 

L'extremite 5' du genome des flavivirus abrite une structure coiffe d'ARN dite de type 1. 

Cette structure est generee par I'activite ARN triphosphatase de la proteine virale NS3, 

l'ARN (guanine-N7) methyltransferase et l'ARN (2'0) methyltransferase de la proteine 

virale NS5, et une ARN guanylyltransferase qui n'avait pas encore ete identifiee. En raison 

du role crucial de la structure coiffe pour le metabolisme et la stabilite des ARNm, 

l'identification complete du complexe de synthese de la structure coiffe des flavivirus est 

apparue comme un defi important. Nous avons etudie la capacite de la proteine NS5 du 

virus du Nil occidental a catalyser la reaction ARN guanylyltransferase. La proteine NS5 

est la plus grosse proteine non-structurale chez les flavivirus, hebergeant, en plus de ses 

activites ARN methyltransferases, I'activite ARN polymerase ARN-dependante qui est 

cruciale pour la replication et la transcription du genome viral. La proteine NS5 ne possede 

aucun des motifs conserves chez les ARN guanylyltransferases conventionelles (Fig. 10). 

Dans cette etude, nous avons montre que le GTP peut etre utilise comme substrat par 

l'enzyme pour former un lien covalent enzyme-GMP, caracteristique du mecanisme d'ARN 

guanylyltransferase. Nos donnees indiquent que le groupement GMP peut etre transfere a la 

fin diphosphate d'un transcrit d'ARN pour former la structure coiffe d'ARN virale. Cette 

etape est dependante de la nature du premier nucleotide en 5' de l'ARN utilise. Ceci 

pourrait expliquer pourquoi cette activite de la proteine NS5 a echappe a toute 

identification jusqu'a present. Nous avons aussi d'autres resultats experimentaux qui 

demontrent que la proteine NS5 d'autres virus du genre flavivirus possederait I'activite 

ARN guanylyltransferase, notamment les proteines NS5 des virus de la fievre jaune, de la 

dengue et de l'encephalite japonaise. Finalement, nous demontrons que la proteine NS3 des 

flavivirus stimule I'activite ARN guanylyltransferase de la proteine NS5, et que ces deux 

enzymes sont suffisantes pour catalyser la formation de novo d'une structure coiffe d'ARN. 

Grace a cette demonstration biochimique qui etablit clairement que la proteine NS5 possede 

une activite ARN guanylyltransferase, nous etions done en mesure de proposer un modele 

pour le complexe de replication flavivirus. Comme I'activite ARN guanylyltransferase est 

indispensable, cette etude a des implications majeures pour l'elaboration de medicaments 

antiviraux contre les flavivirus pathogenes comme les virus de la fievre dengue, de la fievre 

jaune, de l'encephalite japonaise et du Nil Occidental. 
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SUMMARY 

The 5'-end of the flavivirus genome harbors an RNA cap 1 structure which is 

generated by the virus-encoded RNA triphosphatase found on the NS3 protein, RNA 

(guanine-N7) methyltransferase and nucleoside 2'-0 methyltransferase both found on the 

NS5 protein, and an as yet unidentified RNA guanylyltransferase. Because of the crucial 

role of the RNA cap structure for RNA metabolism and stability, the complete 

identification of the molecular species involved in the capping of flavivirus RNA appeared 

as an important challenge. In the present study, we investigated the ability of the West Nile 

virus NS5 protein to catalyze the elusive RNA guanylyltransferase reaction. The NS5 

protein is the largest non-structural protein of flaviviruses, harboring, in addition to its 

RNA methyltransferase activities, the RNA dependent RNA polymerase activity required 

for the replication and transcription of the viral genome. Moreover, it does not possess any 

of the classically conserved motifs of conventional RNA guanylyltransferases (Fig. 10). In 

this study I demonstrated that GTP can be used as a substrate by the enzyme to form a 

covalent GMP-enzyme intermediate, characteristic of the mechanism of known RNA 

guanylyltransferases. Furthermore, our data indicate that the GMP moiety can be 

transferred to the diphosphate end of an RNA transcript to form the classical RNA cap 

structure; a step which is highly dependent on the nature of the initiating nucleotide of the 

RNA used. We also provide experimental evidence that the NS5 protein from other 

flaviviruses harbour the active site of the RNA guanylyltransferase. Finally, we also 

demonstrate that the flavivirus NS3 protein stimulates the RNA guanylyltransferase activity 

of the NS5 protein, and that both enzymes are sufficient to catalyze the de novo formation 

of a methylated RNA cap 1 structure. Our study provides the first biochemical evidences 

that flaviviruses encode an RNA capping enzyme and we were, thus, able to propose a 

model for the flaviviral replication complex. Since RNA guanylyltransferase activity is 

known to be essential, this study has major implications for the elaboration of antiviral 

drugs against major pathogenic flaviviruses like Dengue Fever virus, Yellow Fever Virus, 

Japanese Encephalitis virus and West Nile virus. 
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ABSTRACT 

The 5'-end of the flavivirus genome harbors a methylated m7GpppA20Me cap structure, 

which is generated by the virus-encoded RNA triphosphatase, RNA (guanine-N7) 

methyltransferase, nucleoside 2'-0 methyltransferase, and RNA guanylyltransferase. The 

presence of the flavivirus guanylyltransferase activity in NS5 has been suggested by several 

groups but has not been empirically proven. Here we provide evidence that the N-terminus 

of the flavivirus NS5 protein is a true RNA guanylyltransferase. We demonstrate that GTP 

can be used as a substrate by the enzyme to form a covalent GMP-enzyme intermediate via 

a phosphoamide bond. Mutational studies also confirm the importance of a specific lysine 

residue in the GTP binding site for the enzymatic activity. We show that the GMP moiety 

can be transferred to the diphosphate end of an RNA transcript harboring an adenosine as 

the initiating residue. We also demonstrate that the flavivirus RNA triphosphatase (NS3 

protein) stimulates the RNA guanylyltransferase activity of the NS5 protein. Finally, we 

show that both enzymes are sufficient and necessary to catalyze the de novo formation of a 

methylated RNA cap structure in vitro using a triphosphorylated RNA transcript. Our study 

provides biochemical evidence that flaviviruses encode a complete RNA capping 

machinery. 
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INTRODUCTION 

The 5'-end of eukaryotic mRNAs and many viral mRNAs harbors a m7GpppN cap 

structure that plays a crucial role in the translation and stability of mRNAs (Shuman 2001). 

Synthesis of the cap structure involves three distinct enzymatic activities (Furuichi and 

Shatkin 1976). In the first step of the reaction, the RNA 5'-triphosphate end of the nascent 

RNA is hydrolyzed by an RNA triphosphatase (RTase) to form a diphosphate end. An 

RNA guanylyltransferase (GTase) then catalyzes a two-step reaction in which it utilizes 

GTP as a substrate to form a covalent GMP-enzyme intermediate. The GMP moiety is then 

transferred to the diphosphate end of the RNA transcript in the second step of the reaction 

to form the GpppN structure. Lastly, the guanosine base is methylated by an RNA 

(guanine-N7) methyltransferase (N7MTase) to form the typical m7GpppN cap structure. The 

ribose of the nucleotides adjacent to the cap structure can also be 2'-0 methylated to 

various extents by a nucleoside 2'-0 methyltransferase (2'OMTase) (Shatkin 1976). 

The Flavivirus genus includes more than 70 human pathogens such as West Nile, 

yellow fever, and Dengue viruses (Heinz et al. 2000). The flavivirus genome is a single-

stranded RNA of positive polarity that possesses a methylated cap 1 structure at its 5' end 

(m7GpppA2-oMe-RNA) (Brinton 2002). The genome encodes for a single open reading frame 

of 11 kb in length that is translated into a large polyprotein precursor which is processed 

into three structural (capsid C, membrane M, and envelope E) and seven nonstructural 

proteins (NSl, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) by both viral and cellular 

proteases (Brinton 2002; Nowak et al. 1989; Wengler et al. 1991). The NS5 protein is the 

largest non-structural protein of flaviviruses. It harbors the RNA-dependent RNA 

polymerase (RdRp) activity which is required both for replication and transcription of the 

viral genome (Choi et al. 2004). The N-terminal domain of NS5 also contains N7MTase 

and 2'OMTase activities, both of which are involved in the synthesis of the RNA cap 1 

structure (Geiss et al. 2009; Egloff et al. 2002). The RTase activity is mediated by the C-

terminal domain of NS3 (Benarroch et al. 2004a) while the precise nature of the GTase 

remains uncertain. Recent cross-linking and fluorescence polarization assays have shown 

that GTP can bind to the MTase domain of NS5 with high affinity, and a thorough 

biochemical understanding of how the methyltransferase domain binds GTP is available 
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(Geiss et al. 2009; Bollati et al. 2009). Crystal structures of the flavivirus MTase 

complexed with GTP show how the MTase can bind to GTP and suggest a possible site for 

GMP-enzyme formation (Geiss et al. 2009; Egloff et al. 2002; Benarroch et al. 2004a; 

Bollati et al. 2009; Zhou et al. 2007; Assenberg et al. 2007; Egloff et al. 2007). Moreover, 

the MTase domain of the NS5 protein of Wesselsbron virus was recently demonstrated to 

covalently bind GMP upon incubation with GTP, hinting to a possible role in RNA capping 

chemistry (Bollati et al. 2009). However, despite the structural and biochemical evidence 

suggesting that the NS5 MTase domain can bind GTP and form a GMP-enzyme complex, 

there has been no experimental demonstration of GTase activity i.e. there is no evidence 

that the GMP moiety can be transferred to an acceptor RNA. 

In the present study we investigated if the flavivirus NS5 protein is a true RNA 

GTase which can catalyze the formation of the viral RNA cap structure. We demonstrate 

that GTP can be used as a substrate by the flavivirus NS5 protein to form a covalent GMP-

enzyme intermediate, and that the presence of NS3 is stimulatory to the formation of the 

GMP-enzyme intermediate. Furthermore, our data indicate that GMP can be transferred 

from NS5 to the diphosphate end of an acceptor RNA transcript. Finally, we show that NS3 

and NS5 are sufficient for the formation of the complete RNA cap structure in vitro. These 

data demonstrate that the flavivirus NS5 protein is a true RNA GTase. 
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RESULTS 

Formation of an enzyme-GMP covalent intermediate 

The first step of the RNA GTase reaction entails the nucleophilic attack of the Di­

phosphate of GTP by the enzyme and the subsequent formation of a covalent enzyme-GMP 

intermediate (Shuman and Hurwitz 1981; Shuman 1982; Venkatesan and Moss 1982). The 

ability of the purified full-length NS5 (NS5F1) protein (Fig. 1A) from West Nile virus 

(WNV) to form a covalent GMP-enzyme intermediate was detected by label transfer from 

[a- P]GTP to the enzyme in the presence of magnesium ions. A single SDS-stable GMP-

enzyme complex was detected following SDS-PAGE (Fig. 1B). No labelling was observed 

upon incubation with [y- P]GTP (data not shown). Since the presence of pyrophosphate 

has been shown to strongly inhibit the forward RNA guanylyltransferase reaction (Ho et al. 

1996), we therefore decided to investigate the effect of pyrophosphate on the reaction 

catalyzed by the WNV NS5FL protein. Our results demonstrate that the addition of 

pyrophosphate inhibited the formation of the covalent enzyme-GMP intermediate. We 

therefore conclude that the WNV NS5FL protein is active in the formation of a protein-GMP 

covalent complex, and that pyrophosphate is a potent inhibitor of the reaction. 

The formation of the covalent NS5FL-GMP complex was quantified as described 

under "Materials and Methods." As can be seen in figure 1C, the yield of enzyme-GMP 

formation in the presence of 3 uM (150 pmoles) of NS5FL increased as a function of GTP 

concentration. The titration assay indicated that half-saturation was reached at a 

concentration of 1 mM GTP. At this GTP concentration, we estimated that at least 30% of 

the NS5FL molecules were labelled with GMP in vitro (50 pmoles of enzyme-GMP 

complex). As observed for other GTases (Ho et al. 1998; Cong and Shuman 1995), this 

substoichiometric GMP labeling is likely due to the fact that a significant fraction of the 

enzyme is already guanylylated and remains so during purification of the enzyme from 

bacteria. Moreover, GTase activity was only observed in the presence of magnesium ions. 

Manganese, cobalt, calcium, copper, nickel, and zinc could not support the formation of the 

NS5FL-GMP complex (Fig. ID). 
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In order to determine the nature of the enzyme-GMP linkage, the radiolabeled 

NS5FL-GMP complex was isolated by gel filtration, and submitted to chemical treatment. In 

the classical GTase reaction, the nucleophilic attack on the a-phosphate of GTP by the 

enzyme results in the formation of a covalent intermediate in which GMP is typically 

covalently linked via a phosphoamide bond to the attacking lysine residue of the enzyme 

(Shuman and Hurwitz 1981; Pena et al. 1993; Cong and Shuman 1993). The reaction 

products resulting from chemical treatments were analyzed by thin layer chromatography 

(Fig. IE). Our data indicate that the NS5FL-GMP intermediate was resistant to NaOH 

treatment, but treatments with HCl or NH2OH resulted in the release of GMP, which is 

indicative of a phosphoamide linkage. 

The NS5 N-terminal methyltransferase domain forms a covalent linkage with GMP 

The N-terminal MTase domain of NS5 has been shown to bind to GTP (Geiss et al. 

2009; Bollati et al. 2009; Egloff et al. 2002), and recent evidence suggests that an enzyme-

GMP complex can be formed within this domain of the Wesselsbron virus NS5 protein 

(Bollati et al. 2009). We wanted to validate to results from this paper and see if the enzyme-

GMP complex can be formed by other flavivirus MTase domains. Incubation of the WNV 

NS5 MTase domain (aa 1-268) in the GTase reaction resulted in the transfer of a GMP 

moiety to the protein, indicating that the GMP-enzyme bond is formed within the first 268 

amino acids of the NS5 protein (Fig. 2A). Note that the extent of NS51"268 -GMP formation 

(55 pmoles / 150 pmoles of enzyme) was comparable to the one observed for the full-length 

protein. In order to evaluate whether this activity was common to other flaviviruses, we 

next tested the ability of other flavivirus NS5 proteins to form a protein-GMP covalent 

complex. Truncated versions of the NS5 protein from Dengue virus (DV) and Yellow 

Fever Virus (YFV) were incubated with radiolabeled GTP, and the formation of the 

enzyme-GMP covalent complex was evaluated by monitoring the transfer of radiolabeled 

GMP from [a- P]GTP to the enzyme. Again, the formation of SDS-stable GMP-enzyme 

complexes was detected following SDS-PAGE for both enzymes (Fig. 2A). We hereby 

conclude that the formation of a GMP-enzyme complex is an intrinsic property of the N-

terminal portion of the flavivirus NS5 protein. 
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A recent paper by Bollati et al (Bollati et al. 2009) suggested that the GMP-enzyme 

bond is formed at Lys-29. However, the mass spectroscopy data reported in that paper 

appears to be in error, as the fragment reported as the GMP-modified peptide was the same 

size (2225.12 Mhz) as a commonly observed methylated trypsin fragment (Ding et al. 

2003). Moreover, we were not able to detect a guanylylated K29 peptide by mass 

spectroscopy when the enzyme was incubated with GTP (data not shown). In order to shed 

light into the specific residues involved in the formation of the enzyme-GMP complex, a 

mutational analysis was performed on the DV NS5 protein. The Lys29 residue, which 

interacts with the a-phosphate of GTP (Geiss et al. 2009; Egloff et al. 2002) was therefore 

substituted for alanine, and the mutant polypeptide was expressed and purified in parallel 

with the wild-type enzyme (Fig. 2B). The effect of this single alanine mutation on the 

formation of the covalent enzyme-GMP complex was then investigated. Alanine 

substitution of Lys29 resulted in a significant decrease in the ability of the enzyme to 

covalently bind GMP (Fig. 2C). The extent of NS5K29A-GMP formation at 1 mM GTP (8 

pmoles of enzyme-GMP / 3 uM of enzyme) was about 15% of the wild-type enzyme. We 

conclude that the residue is important for catalysis. However, the fact that a residual 

activity is still present raises speculations on its precise role in the reaction chemistry (see 

Discussion). 

NS5 is a true RNA guanylyltransferase 

RNA GTases catalyze a two-step reaction in which they initially form a covalent 

enzyme-GMP intermediate which is transferred to an acceptor RNA molecule in the second 

part of the reaction. The flavivirus NS5 protein clearly has the ability to form a covalent 

GMP-enzyme intermediate, but can it transfer GMP to an RNA substrate containing a 5'-

diphosphate end? We initially attempted to monitor the transfer of GMP to an acceptor 

RNA harboring a 5'-diphosphate end. This substrate was initially synthesized by in vitro 

transcription before being subjected to phosphohydrolysis in order to specifically remove 

the g-phosphate. This RNA transcript harbors a guanosine as the initiating residue and is 

typically used in biochemical assays to monitor the transfer of the GMP moiety to an 

acceptor RNA. The ability of the enzyme to transfer GMP to this RNA molecule was tested 

by incubating the WNV NS5FL protein with [a32P]GTP, the RNA substrate (81 nucleotides) 
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containing a diphosphate 5'-end, and magnesium ions. The products of the reaction were 

extracted with phenol/chloroform to remove the radiolabeled protein, and the RNA 

recovered by ethanol precipitation. However, following electrophoresis on a denaturing 

polyacrylamide gel (Fig. 3), we were unable to detect an efficient transfer of the GMP 

moiety from the flavivirus NS5FL-GMP complex to this acceptor RNA (<0.05 pmoles of 

GMP transferred / 7 pmoles of NS5FL). Since the initiating residue of the flavivirus mRNAs 

is always an adenosine, we surmise that the nature of this residue might influence the RNA 

guanylyltransferase reaction. We therefore synthesized an RNA substrate harboring a 5'-

diphosphate end with an adenosine as the initiating nucleotide (see Materials and Methods). 

The transfer of radiolabeled GMP to the RNA substrate was confirmed by electrophoresis 

on a denaturing polyacrylamide gel, indicating that the NS5FL protein has the ability to 

transfer the GMP moiety to an acceptor RNA substrate harboring an adenosine as the 

initiating residue (Fig. 3). We evaluated that 5 pmoles of GMP were transferred to the RNA 

substrate in the presence of 7 pmoles of protein. We conclude that the NS5 protein is a true 

RNA GTase that catalyzes both steps of the typical RNA capping reaction. 

The NS3 protein stimulates the RNA guanylyltransferase activity 

Allosteric regulation frequently plays a crucial role in enzymatic catalysis. We 

therefore investigated the ability of various effectors to modulate the GTase activity of the 

WNV NS5 protein. The addition of S-adenosyl-L-methionine (AdoMet), which serves as 

the methyl donor during the MTase reaction, did not affect the formation of the enzyme-

GMP intermediate (data not shown). Similarly, the addition of other nucleotides did not 

result in the stimulation of the activity (data not shown). The NS5 flexible linker region 

between the MTase and RdRp domains has been shown to be a site of interaction between 

the NS3 and NS5 proteins (Yon et al. 2005). As NS3 encodes the RTase enzyme, it seemed 

likely that the formation of the RNA cap structure is dependent on the interaction between 

these two proteins. To determine if NS3 can alter the GTase activity, we performed the 

GTase assay with the full-length WNV NS5 protein at a concentration 2 uM in the presence 

of the WNV NS3168"618 protein (10 uM). We observed that the addition of the purified 

WNV NS3 protein, which has no GTase activity of its own, significantly increased the 

formation of the NS5FL-GMP complex (Fig. 4A). The activity increased from 15 pmoles of 
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NS5FL-GMP complex / 100 pmoles of NS5FL to 45 pmoles of NS5FL-GMP / 100 pmoles of 

NS5FL when the assay was performed in the presence of NS3168"618. Moreover, we observed 

that the extent of NS5FL-GMP complex formation was proportional to the concentration of 

input NS3 in the 4-20 uM and plateaued thereafter (Fig. 4B). A maximal stimulation of 6-

fold was reached at a -6:1 molar ratio of NS3 to NS5. 

Synthesis of the RNA cap structure by the NS3 and NS5 proteins 

We finally tested the ability of the flavivirus NS3 and NS5 proteins to catalyze the 

de novo formation of a methylated RNA cap structure. An 81 nucleotide RNA substrate 

harboring a 5'-triphosphate end with an adenosine as the initiating nucleotide was incubated 

with the WNV NS3 protein (RTase). The resulting RNA product was then incubated with 

the WNV NS5FL protein and [a-32P]GTP in the presence or absence of 5-adenosyl-

methionine. The products of the reaction were extracted with phenol/chloroform to remove 

the radiolabeled protein, and the RNA products were recovered by ethanol precipitation. 

The transfer of the radiolabeled GMP to the RNA substrate was confirmed by 

electrophoresis on a denaturing polyacrylamide gel, thereby indicating that the NS5 protein 

has the ability to transfer a GMP moiety to the 5'-diphosphate end of an acceptor RNA 

substrate that was generated through the RNA 5'-triphosphatase activity of NS3 (Fig. 5A). 

Note that the transfer of the radiolabeled GMP moiety to the RNA was not observed in 

control reactions performed in the absence of either NS3 or NS5FL (Fig. 5A). Aliquots of 

the RNA samples were then digested with nuclease PI and alkaline phosphatase, and 

analyzed by polyethyleneimine-cellulose thin layer chromatography (Fig. 5B). The reaction 

performed in the presence of S-adenosyl-methionine displayed a faster migrating species 

corresponding to the RNA cap m7GpppA structure, as judged from the unlabelled markers, 

visualized under ultraviolet light. These data indicate that NS3 and NS5 are the sole 

flaviviral enzymes involved in genomic RNA cap formation, and that we have observed the 

formation of a flavivirus RNA cap structure in vitro. 
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DISCUSSION 

Our study provides biochemical evidences that the flavivirus NS5 protein is a true 

RNA GTase that has the ability to form a covalent protein-GMP intermediate and 

subsequently transfer the GMP moiety to a 5'-diphosphate RNA. There have been several 

pieces of evidence used to suggest that NS5 MTase domain contains the flaviviral GTase 

activity, including structural and biochemical analysis of MTase GTP binding, limited data 

showing covalent formation of a GMP-enzyme complex, and structural data with cap 

analogs to propose a mechanism for RNA capping (Geiss et al. 2009; Egloff et al. 2002; 

Egloff et al. 2007). These reports, while important to understand the MTase activity of the 

enzyme, did not demonstrate that the MTase domain catalyzes a true GTase reaction. The 

data that we present in the current study fills this gap by demonstrating that NS5 can 

catalyze both steps of the RNA GTase reaction. Moreover, the enzyme can synthesize a 

complete methylated cap structure in the presence of NS3 using a nascent triphosphorylated 

RNA transcript harboring a 5' adenine base. Therefore, we conclude that the N-terminus of 

NS5, in combination with the NS3 RTase, comprises the complete flavivirus capping 

enzyme. 

The identification of the flaviviral RNA GTase highlights the large diversity in the 

physical organization of the RNA capping machineries. For instance, the RTase and GTase 

activities of metazoans and plants are catalyzed by a single protein which contains both 

active sites while both the N7MTase and 2'OMTase activities reside on separate single-

domain enzymes (Shuman 2000). In yeast, the RTase, GTase, and N7MTase are all 

catalyzed by separate proteins (Mao et al. 1995; Shibagaki et al. 1992). Interestingly, an 

important variety of molecular organizations has been observed for viruses. For instance, 

the poxviruses harbor a single protein that contains the active site for the RTase, GTase, 

and N7MTase while a different protein is responsible for the 2'OMTase activity (Higman et 

al. 1994; Schwer et al. 2006). In alphaviruses, both the GTase and N7MTase activities are 

catalyzed by a single enzyme while the RTase active site is located on a different peptide 

(Ahola and Kaariainen 1995; Vasiljeva et al. 2000). Mammalian reoviruses harbor a single 

multi-functional protein containing the active sites of the GTase, N7MTase, and 2'OMTase 

while the RTase reaction is performed by a distinct protein (Bisaillon and Lemay 1997a; 
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Luongo et al. 2000). This particular RNA capping machinery is reminiscent of what is 

observed in flaviviruses where the NS3 protein contains the active site of the RTase while 

the NS5 protein is responsible for the N7MTase, 2'OMTase, and GTase activities. 

However, a distinction between the two viral families is the additional presence of the RNA 

polymerase active site on the multi-functional enzyme (NS5) (Oh et al. 1999). The multiple 

essential enzymatic activities catalyzed by the flavivirus NS5 protein clearly make it an 

attractive target for future drug development. 

The GTases of metazoans, plants, and DNA viruses are members of the covalent 

nucleotidyl transferase superfamily, which also includes DNA and RNA ligases (Cong and 

Shuman 1993). These GTases harbor a consensus KxDG motif in which the e-amino group 

of the active-site lysine is covalently bound to GMP through a phosphoamide bond (Cong 

and Shuman 1993). However, the GTases of several RNA viruses lack this precise 

consensus sequence found in DNA viruses and cellular GTases. For instance, this 

consensus signature is not found in the GTase of alphaviruses and several genera of the 

Reoviridae family (Ahola and Kaariainen 1995; Supyani et al. 2007; Cleveland et al. 1986; 

Hsiao et al. 2002; Liu et al. 1992; Le Blois et al. 1992; Qiu and Luongo 2003; Mohd Jaafar 

et al. 2005; Suzuki et al. 1996). Similarly, the KxDG consensus sequence is conspicuously 

absent form the NS5 protein of flaviviruses. Henceforth we speculate that the residue 

involved in the formation of the covalent enzyme-GMP intermediate is either a lysine 

located outside the classically consensus sequence or mediated via a completely different 

amino acid residue since formation of the enzyme-GMP intermediate can potentially occur 

with the imidamino group of a histidine residue and the guanido-amino group of an 

arginine residue (Shuman and Hurwitz 1981). Mutagenesis studies of the DV NS5 protein 

by us and others have highlighted the importance of Lys29 in the binding of GTP (Geiss et 

al. 2009; Bollati et al. 2009). However, a residual GTase activity is still present upon 

substitution of the lysine residue by alanine which raises questions about the precise role of 

the lysine residue in the catalytic activity. Interestingly, the residue next to the Lys29 

residue is also a lysine (Lys-30) in the DV NS5 protein. It is possible that altering the 

structure of the protein upon replacement of the Lys29 residue by alanine may allow the 

Lys30 residue to come closer than it normally would and form a weak bond with the GMP 
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moiety. Surprisingly, the Lys29 position is not strictly occupied by a lysine residue in all 

flaviviruses; in some members of the family such as West Nile virus, Japanese encephalitis, 

and St. Louis encephalitis virus, an arginine is found at the position normally occupied by 

the lysine (Bollati et al. 2009). This is somewhat surprising since all known GTases 

identified so far are thought to bind the GMP moiety through a lysine residue (Shuman and 

Hurwitz 1981; Pena et al. 1993; Cong and Shuman 1993). The precise biochemical 

consequences of this conservative substitution remain to be investigated. 

The crystal structures of different members of the nucleotidyl transferase 

superfamily have been determined and have provided insightful information on the GTase 

reaction chemistry (Fabrega et al. 2003; Doherty et al. 1997; Hakansson et al. 1997; Lee et 

al. 2000; Odell et al. 2000). Members of the family are characterized by a common tertiary 

fold that consists of an N-terminus, which encompasses the nucleotide-binding pocket, and 

a C-terminal oligonucleotide binding-fold domain (Odell et al. 2000; Hakansson and 

Wigley 1998; Benarroch et al. 2004b; Malet et al. 2007; Yap et al. 2007). Examination of 

the Chlorella virus GTase crystals have revealed that a large conformational change occurs 

on GTP binding, shifting the structure from an open to a closed state (Hakansson et al. 

1997; Hakansson and Wigley 1998). On the basis of these crystallographic studies, a model 

has been suggested, in which the conformational change encountered on GTP binding 

would promote metal ion binding and guanylylation (Hakansson et al. 1997; Hakansson 

and Wigley 1998). In contrast, recent crystallographic data suggests the presence of 

important structural and mechanistic differences between the flavivirus NS5 protein and the 

members of the nucleotidyl transferase superfamily (Hakansson and Wigley 1998; 

Benarroch et al. 2004b; Malet et al. 2007; Yap et al. 2007; Ago et al. 1999; Bressanelli et 

al. 1999; Lesburg et al. 1999). The GTase-MTase domain of the flavivirus NS5 protein is 

characterized by three subdomains with a core region that resembles the topology observed 

in the catalytic domain of all other AdoMet-dependent MTases (Geiss et al. 2009; Bollati et 

al. 2009; Lesburg et al. 1999). The GTP-binding site located on the N-terminal appendage 

of the classical MTase core region shows a previously unreported fold and a structurally 

novel way of promoting the specific binding of GTP by which the specific contacts to the 

guanine base are exclusively provided by main-chain atoms to the 2-amino group and the 
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Nl nitrogen via a water bridge (Geiss et al. 2009). This is in contrast to the nucleotidyl 

transferase superfamily GTases in which the specificity for GTP is achieved through 

interactions with the 6-oxo and 2-amino group of guanine (Fabrega et al. 2003; Doherty et 

al. 1997; Hakansson et al. 1997; Lee et al. 2000; Odell et al. 2000). Finally, binding of the 

GTP molecule to the flavivirus GTase active site is not characterized by large 

conformational changes in the architecture of the enzyme (Geiss et al. 2009). 

Our study demonstrates that the GTase activity of NS5 is stimulated by the presence 

of NS3. Future biochemical studies will undoubtedly reveal key insights on this catalytic 

regulation. Interestingly, a similar stimulation of the GTase (Cegl) upon binding to the 

RTase (Cetl) is also observed in Saccharomyces cerevisiae where the Cetl-Cegl 

interaction increases the extent of formation of the Cegl-GMP complex (Ho et al. 1999; 

Hausmann et al. 2001; Ho et al. 1998). This interaction is crucial for the stabilization of the 

yeast GTase which is inherently thermolabile (Hausmann et al. 2001). Moreover, the 

interaction also enhances the affinity of the enzyme for the GTP substrate (Ho et al. 1998). 

Such an allosteric stimulation of an enzyme involved in RNA capping chemistry is also 

encountered in the vaccinia virus capping machinery where the active site of the N7MTase 

is located within the C-terminal portion of the virus-encoded Dl protein (Schnierle et al. 

1992; Mao and Shuman 1994). The Dl protein has a weak intrinsic MTase activity which 

is stimulated allosterically by the binding of the viral D12 protein (Mao and Shuman 1994). 

The basal level of MTase activity can be stimulated by as much as 100-fold by the addition 

of the catalytically inert D12 protein (Mao and Shuman 1994). NS3 is known to interact 

with the flexible linker region on NS5, positioning NS3 between the NS5 RdRP and 

MTase-GTase domains (Yon et al. 2005). With the current demonstration that NS3 can 

stimulate the NS5 GTase activity and that NS3 and NS5 are sufficient for RNA cap 

formation, a model of the entire RNA capping process can now be proposed (Fig. 6). In this 

model, the nascent positive strand RNA immediately interacts with the NS3 RTase 

following polymerization by the NS5 C-terminal RdRp, leading to the removal of the y-

phosphate from the RNA. The modified RNA would then be in position to interact with the 

NS5 MTase-GTase domain. Association of NS3 with NS5 increases the GTase activity of 

the MTase-GTase domain, and results in the transfer of GMP to the modified RNA, 
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resulting in the synthesis of a capped RNA transcript. Subsequently, the modified RNA 

would be in excellent position for N7-methylation to generate the RNA cap structure. 

Future studies will seek to rigorously test this model for RNA cap formation. 

Because of the crucial role of the RNA cap structure for mRNA metabolism and 

stability, potent inhibitors of pathogen GTases are an attractive area for drug development. 

For instance, an elegant study recently demonstrated the ability of non-nucleoside 

inhibitors to inhibit the mRNA guanylylation of the human respiratory syncytial virus 

transcripts (Liuzzi et al. 2005). These GTase inhibitors were shown to exhibit antiviral 

activities both in vitro and in a mouse model of infection. The broad-spectrum antiviral 

ribavirin triphosphate, a nucleoside analog, has also been shown to directly interact with the 

guanylyltransferase of vaccinia virus thereby inhibiting the guanylylation of RNA 

transcripts (Bougie and Bisaillon 2004). However, because of the high overall similarity 

between viral and cellular GTases, it was initially suggested that mechanism-based 

inhibitors might not be specific and show adverse side effects on human cells (Bougie and 

Bisaillon 2004). Nonetheless, mounting evidence suggests that subtle structural and 

mechanistic differences exist between the RNA viruses and cellular GTases. These 

differences will undoubtedly be exploited in the near future for the rational design of potent 

antivirals against these medically important viruses. 
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MATERIALS AND METHODS 

Expression and purification of the flavivirus NS5 protein 

Expression and purification of the NS5 and NS3 protein from West Nile virus, 

Dengue virus, and Yellow fever virus was performed as described before (Geiss et al. 2009; 

Bougie and Bisaillon 2009; Benzaghou et al. 2006). Briefly, recombinant full-length WNV 

NS5 protein (strain NY1999, aa 1-905), truncated WNV NS3 protein (strain NY99, aa 

168-618), and the NS5 MTase domains from DEN (strain 16681, aa 1-267), YF (strain 

17D, aa 1-268), and WNV (strain NY1999, aa 1-268) were expressed from inducible T7 

expression plasmids that contain a carboxy-terminal 6-histidine tag. The plasmids were 

transformed into Escherichia coli BL21(DE3) and cultures were induced with 400 uM 

IPTG overnight at 22 °C. The bacterial pellets were collected, sonicated, and the histidine-

tagged proteins were purified from clarified lysates by affinity chromatography based on 

the affinity of the tag for immobilized nickel. The eluted proteins were further purified over 

a HiTrap-S cation-exchange column (Amersham). The isolated proteins were > 99% pure 

as estimated from SDS-PAGE and Coomasie blue staining. 

Assay for enzyme-GMP complex formation 

The assay was performed by incubating the enzyme (3 uM) with 1 mM [a- P]GTP 

in a buffer containing 50 mM Tris-HCl, pH 7.5, 5 mM DTT, and 5 mM MgCl2 for 60 min at 

37 °C. The reactions were stopped by the addition of EDTA to 10 mM and SDS to 1%. The 

reactions were analyzed by electrophoresis through a 12.5% polyacrylamide gel containing 

0.1% SDS. The radiolabeled proteins were visualized by autoradiography of the gel. The 

extent of covalent complex formation was quantitated by scanning the gel with a 

Phosphorlmager (Amersham Biosciences). Alternatively, the NS5-GMP labelled complex 

was isolated by gel filtration and treated with either 0.5 M NaOH or 0.5 M HCL at 70 °C 

for 10 min or with 3.8 M hydroxylamine (NH2OH) in 0.2 M sodium acetate (pH 4.8) at 37 

°C for 20 min. The sample products were analyzed by thin layer chromatography on a 

polyethyleneimine-cellulose plate and developed with 0.75 M KH2PO4. 

Preparation of the 5'-diphosphate RNA substrate 

An RNA substrate of 81 nt was synthesized using a pair of complementary 
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oligonucleotides including a modified T7 RNA promoter 

(TAATACGACTCACTATAAGC) which allowed the synthesis of an RNA transcript 

(pppAGCCATG...) that harbored an adenosine as the initiating nucleotide. A standard T7 

RNA promoter was also used as a control to generate an RNA harboring a guanosine as the 

initiating nucleotide. The sequences of these RNAs are not derived from WNV and contain 

a random sequence having no bearing to the sequence or structure of the 5' terminus of the 

WNV positive stranded RNA. In both cases, the RNA substrates of 81 nucleotides were 

synthesized with the MAXIscript kit (Ambion) using T7 RNA polymerase. The 

corresponding bands were excised and then eluted from the gel by an overnight incubation 

in 0.1% SDS and 0.5 M ammonium acetate. The 5'-triphosphate RNAs were then 

precipitated with ethanol and quantified by spectrophotometry. An RNA triphosphatase 

reaction was performed in a buffer containing 50 mM Tris/HCl (pH 7.0), 5 mM DTT, 1 

mM MgCb, 1 pmol of RNA, and 1 ug of purified Chlorella virus RTase. The reaction 

mixture was incubated at 30 °C for 30 min, and stopped by the addition of formic acid 

(1.25 M). The RNA substrate was purified on a denaturing 20% polyacrylamide gel and 

visualized by ultraviolet shadowing. The corresponding band was excised and then eluted 

from the gel by an overnight incubation in 0.1% SDS and 0.5 M ammonium acetate. The 5'-

diphosphate RNA was then precipitated with ethanol and quantified by spectrophotometry. 

Transfer of GMP to RNA 

The transfer of GMP to the 5'-diphosphate RNA was assayed by monitoring the 

transfer of [32P]GMP to the RNA substrate (1 ug) in a buffer containing 50 mM Tris-HCl, 

pH 7.5, 5 mM MgCl2, 5 mM DTT, 2 uM of purified NS5FL protein, and 1 mM [a-32P]GTP. 

The reaction was incubated at 37 °C for 60 min the RNA was extracted with 

phenol/chloroform and recovered by ethanol precipitation. The RNA was analyzed on a 

denaturing 10% polyacrylamide gel. The gel was then scanned with a Phosphorlmager 

(Amersham Biosciences). 

Synthesis of the RNA cap structure by the WNV NS3 and NS5 proteins 

The RNA capping reaction was performed in a buffer containing 50 mM Tris-HCl, 

pH 7.5, 5 mM DTT, 1 u.g of triphosphate-terminated RNA (81 nucleotides) and 2 uM of 
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purified WNV js^'6 8"6 1 8 protein. The reaction was incubated at 37 °C for 60 min. The 

RNA was extracted with phenol/chloroform, recovered by ethanol precipitation, adjusted to 

5 mM MgCb, and incubated with 3 uM of purified WNV NS5FL protein and 1 mM [a-
•2*) 

P]GTP. The sample was incubated at 37 °C for 60 min. The RNA sample was extracted 

with phenol/chloroform, recovered by ethanol precipitation, and analyzed on a denaturing 

10% polyacrylamide gel. 

Alternatively, aliquots of the RNA capping reactions were adjusted to 50 mM 

NaOAc, pH 5.2, and digested with nuclease PI (5 ug) for 60 min at 37 °C. The reactions 

were then adjusted to 50 mM Tris-HCl, pH 8.0, and digested with alkaline phosphatase (1 

unit) for 30 min at 37 °C. The reaction products were analyzed by thin layer 

chromatography on a polyethyleneimine-cellulose plate developed with 0.4 M ammonium 

sulfate. 
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FIGURE LEGENDS 

Figure 1. Formation of a NS5-GMP covalent intermediate. (A) An aliquot (1 [ig) of the 

purified full-length NS5 (NS5FL) protein from WNV was analyzed by electrophoresis 

through a 12.5% polyacrylamide gel containing 0.1% SDS and visualized by staining with 

Coomassie Blue dye. The positions and sizes (in kDa) of the molecular weight markers (L) 

are indicated on the left. (B) Formation of an enzyme-GMP covalent intermediate. The 

NS5FL enzyme (3 uM) was incubated for 60 min at 37 °C with 1 mM [ct-32P]GTP in a 

buffer containing 50 mM Tris-HCl, pH 7.5, 5 mM DTT, and 5 mM MgCb. Potassium 

pyrophosphate (PPi) (1 mM) was also added to the reaction where indicated. A control 

reaction was also performed with 1 ug of the RNA GTase from Paramecium bursaria 

Chlorella virus-1 (A103R). The reactions were stopped by the addition of EDTA to 10 mM 

and SDS to 1%, and analyzed by electrophoresis through a 12.5%o polyacrylamide gel 

containing 0.1% SDS. An autoradiogram of the gel is shown. The positions and sizes (in 

kDa) of the molecular weight markers are indicated on the left. (C) The extent of NS5FL-

GMP complex formation is plotted as a function of GTP concentration. A double-reciprocal 

plot of the data is shown in the inset. (D) Divalent cation specificity. Formation of the 

NS5FL-GMP complex was performed in the presence of 5 mM divalent cation as specified. 

Mg, Mn, Co, Ca, and Zn were added as chloride salts; Cu and Ni were added as sulfates. 

(E) The NS5FL-GMP labelled complex (EpG) was isolated by gel filtration and treated with 

either 0.5 M NaOH or 0.5 M HCL at 70 °C for 10 min or with 3.8 M hydroxylamine 

(NH2OH) in 0.2 M sodium acetate (pH 4.8) at 37 °C for 20 min. The sample products were 

analyzed by thin layer chromatography on a polyethyleneimine-cellulose plate and 

developed with 0.75 M KH2PO4. An autoradiogram of the plate is shown. The positions of 

the chromatographic origin (ori), the nucleotidyl-enzyme complex, and unlabelled GMP 

marker, visualized under ultraviolet light, are indicated. 

Figure 2. The NS5 N-terminal methyltransferase domain is active in the formation of 

a protein-GMP covalent complex. (A) The N-terminal MTase domain of the NS5 proteins 

(3 uM) of Dengue virus (DEN; strain 16681, aa 1-267), Yellow fever virus (YFV; strain 

17D, aa 1-268) and West Nile virus (WNV; strain NY99, aa 1-268) were incubated for 60 

min at 37 °C with 1 mM [a-32P]GTP in a buffer containing 50 mM Tris-HCl, pH 7.5, 5 mM 

122 



DTT, and 5 mM MgC^. The reactions were stopped by the addition of EDTA to 10 mM 

and SDS to 1%, and analyzed by electrophoresis through a 12.5% polyacrylamide gel 

containing 0.1% SDS. An autoradiogram of the gel is shown. The positions and sizes (in 

kDa) of the molecular weight markers are indicated on the left. (B) Mutational analysis of 

the N-terminal domain of the Dengue virus NS5 protein. Lys29 was substituted for alanine 

in the DEN (aa 1 -267) construct, and the mutant polypeptide was expressed and purified in 

parallel with the corresponding wild-type enzyme. Aliquots (3 uM) of the purified fractions 

were analyzed by electrophoresis through a 12.5% polyacrylamide gel containing 0.1% 

SDS and visualized by staining with Coomassie Blue dye. The positions and sizes (in kDa) 

of the molecular weight markers are indicated on the left. (C) Effect of the K29A mutation 

on the formation of the covalent enzyme-GMP complex formation. The reactions were 

performed with 3 uM of the mutant and wild-type proteins, and analyzed as described in 

panel A. The positions and sizes (in kDa) of the molecular weight markers are indicated on 

the left of the autoradiogram. 

Figure 3. Transfer of GMP to an acceptor RNA. 5'-diphosphate acceptor RNAs of 81 

nucleotides (1 ug) initiating either with a guanosine (left) or adenosine (right) were 

incubated with 1 mM [a-32P]GTP in a reaction mixture containing 50 mM Tris-HCl, pH 

7.5, 5 mM MgCl2, 5 mM DTT, and 0.3 uM of purified WNV NS5FL protein. A control 

reaction was also performed with 1 ug of the RNA GTase from Paramecium bursaria 

Chlorella virus-1 (A103R). The RNA samples were extracted with phenol/chloroform, 

recovered by ethanol precipitation, and analyzed on a denaturing 10% polyacrylamide gel. 

An autoradiogram of the polyacrylamide gel is shown. 

Figure 4. Stimulation of the GTase activity by the NS3 protein. (A) The WNV NS5FL 

protein (2 uM) was incubated in the absence or presence of purified WNV NS3168"618 

protein (10 uM) for 60 min at 37 °C with 1 mM [a-32P]GTP in a buffer containing 50 mM 

Tris-HCl, pH 7.5, 5 mM DTT, and 5 mM MgCl2. As a control, the purified NS3168"618 

protein was also assayed in the absence of NS5FL. The reactions were stopped by the 

addition of EDTA to 10 mM and SDS to 1%, and analyzed by electrophoresis through a 

12.5% polyacrylamide gel containing 0.1% SDS. An autoradiogram of the gel is shown. 
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The positions and sizes (in kDa) of the molecular weight markers arc indicated on the left. 

(B) Increasing concentrations of NS3168"618 were used in the GTase assay, and the 

formation of the NS5FL-GMP complex was monitored through electrophoresis and 

autoradiography. The intensities of the NS5FL-GMP complexes were normalized to the 

signal obtained in the absence of NS3168"618 protein. 

Figure 5. Synthesis of the RNA cap 1 structure by the NS3 and NS5 proteins. (A) The 

RNA capping reaction was initiated by performing an RTase assay in a buffer containing 

50 mM Tris-HCl, pH 7.5. 5 mM DTT, 20 pmol of triphosphate-terminated RNA, and 2 uM 

of purified WNV NS3168"618 protein. The reaction was incubated at 37 °C for 60 min. The 

RNA was extracted with phenol/chloroform, recovered by ethanol precipitation, adjusted to 

5 mM MgCb, and the GTase reaction was performed in the presence of 3 uM of purified 

WNV NS5FL protein and 1 mM [a-32P]GTP. The sample was incubated at 37 °C for 60 

min. The RNA sample was extracted with phenol/chloroform, recovered by ethanol 

precipitation, and analyzed on a denaturing 10% polyacrylamide gel (lane 3). An 

autoradiogram of the polyacrylamide gel is shown. A control reaction was also performed 

with the RTase (A449R) and GTase (A103R) of Paramecium bursaria Chlorella virus 

(PBCV-1) (lane 4). Control reactions were also performed in the presence of WNV NS3 
618 (lane 1) or NS5FL proteins (lane 2). The position of the radiolabeled phosphate, 

originating from the [a- P]GTP substrate, is denoted by an asterisk. (B) Aliquots of the 

RNA capping reactions were adjusted to 50 mM NaOAc, pH 5.2, and digested with 

nuclease PI (5 ug) for 60 min at 37 °C. The reactions were then adjusted to 50 mM Tris-

HCl, pH 8.0, and digested with alkaline phosphatase (1 unit) for 30 min at 37 °C. The 

reaction products were analyzed by thin layer chromatography on a polyethyleneimine-

cellulose plate developed with 0.5 M LiCl/ 1 M formic acid. An autoradiogram of the plate 

is shown. Lane 1, Control reaction performed in the absence of protein; Lane 2, Control 

reaction performed with the Chlorella virus GTase (A103R); Lane 3, Reaction performed 

with the WNV NS5FL protein; Lane 4, The RNA from the standard GTase reaction 

(performed with A103R) was extracted with phenol/chloroform and recovered by ethanol 

precipitation. The purified RNA was then subjected to a standard MTase reaction with the 

S. cerevisiae MTase (Abdl) in the presence of 1 mM S-adenosyl-methionine; Lane 5, The 
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RNA from the Gtase reaction performed with the WNV NS5 protein was extracted with 

phenol/chloroform and recovered by ethanol precipitation. The purified RNA was then 

subjected to a methylation reaction with the NS5FL in the presence of 1 mM 5-adenosyl-

methionine; The positions of the chromatographic origin (ori), GpppA, and m7GpppA are 

indicated. 

Figure 6. RNA cap synthesis by the flavivirus NS5 and NS3 proteins. The flavivirus 

NS5 protein harbors the catalytic center of the RNA-dependent RNA polymerase (RdRp) 

and initiates the synthesis of the triphosphorylated RNA transcript. The C-terminal region 

of NS3 is responsible for the helicase activity which is necessary to allow progression of 

the polymerase along the template strand. The nascent RNA then interacts with the NS3 

RTase leading to the removal of the y-phosphate from the RNA. The modified RNA would 

then be in position to interact with the NS5 MTase-GTase domain. The interaction between 

NS3 and NS5 increases the GTase activity of the NS5 protein, generating a covalent 

intermediate (EpG*) in which the GMP moiety is linked to the Lys-29 residue of NS5. 

Subsequently, the NS5 protein can perform the transfer of GMP to the acceptor RNA 

resulting in the synthesis of a capped RNA transcript. The capped RNA would then be 

methylated to generate the RNA cap structure. 
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DISCUSSION 

Developing inhibitors against fungal and viral RNA triphosphatases 

Fungal and viral RNA triphosphatases are one of the most potent anti-microbial targets, 

because of the high degree of divergence between these enzymes and the human RTase. As 

mentioned in the introduction, fungal and viral RTases differ from their mammalian 

counterparts in terms of their mechanism of action, and also in terms of their tertiary 

structure (Introduction, figures 5 and 6). 

In addition to showing that the tunnel architecture of the microbial TTM RTase is far more 

flexible than initially expected, our studies pinpoint several interesting candidates as 

potential inhibitors of the TTM RTase. Some of these candidate molecules are Nl-Me 

GTP, XTP, 6-Chloro purine riboside triphosphate, 6-thio purine riboside triphosphate and 

8-Iodo GTP. All of these 5 molecules are characterized by a good binding affinity to the S. 

cerevisiae's RTase (Cetl), while being poorly hydrolyzed. Their K, range from 0.4 to 1.8 

uM. By comparison, the K, of these inhibitors have also been evaluated against a viral 

RTase, the West Nile virus RTase (NS3). Table 1 provides a brief summary of the major 

differences between the inhibition of Cetl and NS3. The informative finding here is that 

while the Kj for Cetl is in the low micromolar range, the Kj for NS3 is much higher. This 

implies that these molecules are better inhibitors of the fungal RTase than the viral one. In 

order to complete this analysis on the potency of these purine analogues as starting points 

for the rational design of drugs, the Kj of these inhibitors for the mammalian RTase need to 

be evaluated. However, its value is expected to be much higher than the Kj obtained for the 

NS3 protein, because the metal ion-independent mammalian RTase, in contrast to the 

fungal RTase of the TTM family, cannot hydrolyze nucleotide triphosphates (NTPs) 

(Ghosh and Lima 2010). The substrate of the mammalian RTase is exclusively 5' 

triphosphorylated RNA molecules. 
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Discussion, Table 1: Comparison of the Kj of 4 potent inhibitors for the RTase of S. 
cerevisiae (Cetl) against the Kj of the West Nile virus RTase (NS3) 

Inhibitor 
Kj (mM) 

Cetl1 NS32 

Nl-MeGTP 

XTP 

6-C1 purine RTP3 

6-thio RTP3 

8-Iodo GTP 

0.0015 

0.0018 

0.0004 

0.0015 

0.0015 

2.6 

>2.6 

NA 

0.8 

>2.6 

1: Extracted from Issur M, et al, NAR, 2009 (Issur, Despins et al. 2009) 
2: Extracted from Despins S, et al, NAR 2010 (Despins, Issur et al. 2010) 
3: RTP stands for Riboside triphosphate 

The RTases of fungi, trypanosomes and of several viruses are the founding members of the 

TTM family of phosphohydrolases. The Cetl-like TTM fold is conserved in the mimi virus 

RTase, as well as in several proteins of bacterial and archael origin (Jain and Shuman 

2008). With the exception of eukaryal RTases of fungi and trypanosomes, this TTM fold 

has not been discovered yet in any other higher order eukaryotic phosphohydrolases. 

Therefore, I believe that the design of drugs specific to the TTM RTase is an achievable 

goal. We plan to perform in vivo studies in a Axrnl S. cerevisiae strain with several of the 

inhibitors. Xrnl is a 5'-3' exonuclease which degrades uncapped RNA. If the RNA capping 

machinery is indeed the major target, the Axrnl strain will enable us to visualize the 

formation of cap deficient RNAs in the presence of these inhibitors. It should be noted that 

in order to improve the potency of the inhibitors, the addition of two or more modifications 

on the purine base is being considered. For instance, the effects of the presence of an N1 -

methyl group in addition to a 6-Chloro modification on the Kj for the fungal RTase are 

supplementary information which would be important, for the generation of more potent 

and specific compounds. The impact of these results does not apply solely to the fungal 
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RTase. The implications are much broader, since the TTM RTase is also present in several 

very pathogenic organisms, including the malaria parasite, Plasmodium falciparum (Ho and 

Shuman 2001). Any major advances in the development of inhibitors against the model 

TTM RTase of S. cerevisiae are also applicable to the malaria parasite RTase. 

The TTM-RNA triphosphatase mechanism 

In all crystal structures of RTases of the TTM clade, the active sites of the proteins are 

devoid of substrates. The reaction products and a metal ion have been found within the 

tunnel architecture of the protein, while all attempts to co-crystallize a nucleotide or RNA 

substrate with the protein have failed. This is not surprising since our lab has previously 

shown that the protein is thermodynamically unstable when bound to a nucleotide or RNA 

substrate (Bisaillon and Bougie 2003). The use of molecular docking has provided the first 

insight into how a ligand is bound within the tunnel architecture of the enzyme. 

From this model, several other aspects of the RTase reaction can now be investigated. From 

our model which indicates all the essential residues contacting the triphosphate tail, and by 

re-analyzing previous mutational data, we can now correctly infer the catalytic mechanism 

for phosphohydrolysis. Based on our model, Lanthier et al, (unpublished data) are presently 

investigating the residue(s) involved in the nucleophilic attack on the phosphate tail. They 

have thus been able to conclusively point out that a water molecule coordinated by a 

conserved glutamate residue (Glu433 in Cetl) is responsible for the nucleophilic attack on 

the phosphate tail. In our model, this glutamate residue is coordinating both the P and y 

phosphates of the nucleotide. Several previous studies have shown that the TTM RTase 

uses a two-metal ion catalytic mechanism, without however any definite proof of two 

divalent metal ions binding to the protein. One metal ion has been found in the crystal 

structure which is not involved in catalysis but in the stabilization of the reaction products. 

We think that the unidentified metal ion is the catalytic metal ion which may be 

coordinated by both the glutamate residue and the attacking water molecule. This is 

currently being investigated in the lab. In addition our data show that not only the 

triphosphate tail, but the whole nucleotide enters the tunnel of the protein. It would be of 

great fundamental interest to investigate into how product release occurs. It would be very 
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interesting to know whether the "entrance" and the "exit" of the runnel have any functional 

significance. And more importantly, what happens when the true ligand, RNA, is present? 

The cap donor specificity of the RNA guanylyltransferase reaction 

In our study with regards to the use of nucleotide analogues by the PBCV-1 GTase, we 

have demonstrated that the active site of the conventional GTase can accommodate ligands 

possessing several different types of modifications. In addition, the PBCV-1 GTase can 

transfer several of these modified analogues onto RNAs to form novel RNA cap structures 

at their 5' ends. Some of these cap analogues could be methylated at the N7 position by 

either the yeast or human RNA (guanine-N7) methyltransferase. In addition to generating 

several differentially capped RNAs, this procedure allowed us to gain a better insight into 

the guanine specificity of both the GTase and MTase reactions. This is summarized in 

figure 1. 

Defining elements mediating GTP specificity 

through interactions with Motif I and IIIc 

Adefining element of the novel active 

site of the E-GMP complex, which 

coordinates RNA binding. 

Defines Guanine cap acceptor 

specificity of RNA Guanine (N7) 

methyltransferase 

Essential for the optimal 
alignment of GTP for 

catalysis to occur 

Discussion, figure 1: A brief summary of the major conclusions of Chapter II on the 
guanine specificity of the PBCV-1 GTase and the S. cerevisiae MTase. 

Encircled in red are positions which are most important for the first step of the GTase 
reaction. In green is the 3' position whose importance resides mainly in the second step of 
the reaction. The red arrow pointing towards the Nl position indicates the position which 
was most detrimental to N7-methylation by the S. cerevisiae's MTase. 
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Having deciphered the major contributions of the base and ribose moieties for ligand 

binding, the next question we are asking ourselves is how to broaden the range of 

nucleotide analogues which can be used by the PBCV-1 GTase. This can be achieved by 

generating enzymes harbouring different mutations within the GTP binding. However, 

enzymes of the nucleotidyltransferase superfamily, of which the PBCV-1 GTase is a 

member, are known to be very sensitive to any mutation within the GTP binding site 

(Wang, Deng et al. 1997). For instance, alanine mutation of Lysl88, which interacts with 

06 and N7 of GTP in the PBCV-1 GTase, leads to complete loss of activity of the enzyme, 

even if it does not contact the phosphate tail of the GTP molecule. Therefore, we propose to 

look into the effects of mutations of conserved non-essential residues around the known 

essential amino acids interacting with GTP, on the GTP specificity of the capping enzyme. 

For instance, Lysl88, which interacts with 06 of guanine, is embedded between two Motif 

I residues (Ser80 and Glu81) located just besides the catalytic lysine residue (Lys82). We 

intend to look into importance of these two conserved, non-essential, Motif I residues on 

capping chemistry and on the GTP specificity of the reaction. Our ultimate goal is to 

generate mutant enzymes which could carry out the GTase reaction with purine analogues 

reminiscent of ATP, in order to create a wider range of RNA cap structures. 

We have also shown that the use of several analogues is dependent on the pH of the 

reaction. The case of 2' modified GTP analogues is presented in Chapter II. We also have 

evidence that the use of Xanthosine triphosphate, a C2 modified GTP analogue can also be 

influenced by pH (Fig. 3). XTP harbours an exocyclic keto group at the C2 position, 

instead of the exocyclic amino group in GTP. The poor inhibition of the first step GTase 

reaction by XTP was intriguing since our data clearly showed that the C2 amino group was 

unimportant for RNA capping. ITP which lacks this exocyclic amino group is as efficient 

as GTP for RNA capping. It has been reported that the keto group in free xanthine is in an 

ionised enol form at pH greater than 5.7 (Kulikowska, Kierdaszuk et al. 2004). We believe 

that this ionised enol form predominates in XTP at the reaction's conditions, thus rendering 

it inert as substrate for RNA capping. To test this hypothesis, competition assays with 

radiolabeled [a-32P]GTP were recently performed at various pH in the presence of XTP or 

GTP (Fig. 3). Decreasing the pH of the reaction rescued inhibition by XTP, while at higher 

pH (pH > 6) XTP could no longer inhibit the reaction. In the light of these data, we think 
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that the poor inhibition by XTP is due to the predominance of the ionised enol form of the 

molecule. The negative charge on the molecule may be affecting ligand binding. Taken 

together, these results indicate that the range of possible RNA cap analogues that can be 

generated by RNA capping enzymes can be widened by varying the pH of the reactions. 

pH=4 pH=5 pH=6 pH=7 pH=8 pH=9 

i EpG ^ 

A Residual^ 
GTP 

- <? £ - <£ £ - £ £ 
* * * * * 

- — — « . « < • > — • -

B 1 00 

Discussion, figure 2: pH dependency of the inhibition by XTP 

(A) The PBCV-1 GTase was incubated with [a- "PJGTP and magnesium ions in various 
buffer solutions with pH ranging from 4 to 9. For each pH, a reaction with no inhibitor (-), 
one with GTP (2.0 mM), and one with XTP (2.0 mM) were carried out. At a given pH, if 
GTP or the nucleotide analogue was inhibiting, a loss of the EpG signal was observed 
relative to the reaction with no inhibitor (-). (B) Equilibrium between the keto- and ionised 
enol form of Xanthosine (C) Quantification of the ease of formation of the radiolabeled 
EpG complex in the presence of unlabelled GTP (*) and unlabelled XTP (A). High ease of 
formation implies poor inhibition; and vice-versa. 
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With the same intent to generate more RNA cap analogues, unconventional RNA 

guanylyltransferases can also be used. Geiss et al, have recently shown that the NS5 

protein, the newly identified RNA guanylyltransferase from me JJavivirus genus can bind 

several unnatural substrates in its N-terminal domain (Table 2) (Geiss, Thompson et al. 

2009). However, no report on whether NS5 can form a covalent intermediate with any of 

the GTP analogues tested nor whether any of these substrates can be transferred on an 

acceptor RNA has been made yet. The use of unconventional RNA capping enzymes can 

also be broadened to generate methylated nucleotide analogues. Some viral GTases are 

known to use N7-methyl GTP as their substrate instead of GTP (Bisaillon and Lemay 

1997). Generating N7-methylated nucleotide analogues to be used as substrates by 

unconventional GTases could also be an interesting alternative. This will reduce the 

number of steps required to produce methylated (at the N7 position) cap RNAs. 
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Discussion, Table 2: Binding of purine nucleotides and dinucleotides to the N-terminal 
domain of the Dengue virus NS5 protein (Extractedfrom Geiss et al, JMB, 2009) 

Binding studies with the NS5 protein and GTP-bodipy in the presence of various nucleotide 
analogues was performed. The NS5 e" (1-267) protein was incubated with GTP-Bodipy y-
phosphate-labelled fluorescent analogue (10 nM) and an unlabelled nucleotide analogue. 
Fluorescent polarization assays were made to determine K,. 
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The methyl acceptor specificities of the RNA (guanine-N7) methyltransferase reaction 

The final step in the formation of the cap structure is the addition of a methyl group at the 

N7 position by an RNA (guanine-N7) methyltransferase. We tested the ability of each of 

the cap analogs to be methylated at the N7 position by 5. cerevisiae's MTase. We used the 

available crystal structure of the E. cuniculi's MTase to analyze our results. 

Discussion, figure 3: The RNA cap binding site of E. cuniculi RNA (guanine-N7) 
methyltransferase 

Magnification of the cap binding site of the E. cuniculi RNA (guanine-N7) 
methyltransferase (PDB 1RI5). Residues shown are those interacting with GTP, which is 
purported to be mimicking a cap analogue. 

Briefly, all but one of the modified cap structures could accommodate a methyl group at the 

N7 position. An RNA capped with N1 -Me GTP could not be methylated at the N7 position. 

By analyzing the crystal structure of the MTase of E. cuniculi bound to a cap analogue and 

S-adenosyl homocysteine (SAH). we deduced that hydrogen bonding between the Nl 

hydrogen and an essential glutamate residue (Glu225 in figure 3) within the active site may 

be crucial for cap binding and optimal alignment of the capped residue for nucleophilic 

attack on the SAM co-factor. We also inferred that this interaction may mediate guanine 

specificity, since the Nl position of ATP is deprotonated and exposes a lone pair of 

electrons to the solvent. Finally, the reason why RNA capped with 3'0-Me GTP was a 

relatively poor methyl acceptor is likely due to steric hindrance, since in the active site of 

the E. cunuculi MTase. several residues are seen to be interacting with the ribose moiety of 

the cap guanosinc (Supplementary table 1 in Chapter II and Fig.3 of the discussion). 
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Impact of the novel cap analogues on the process of translation 

In an attempt to investigate the biological impact of these novel RNA cap analogues, we 

synthesized firefly luciferase RNAs harbouring these modified caps at their 5' ends and a 

60 nt long Poly(A) tail at their 3' ends. These were transfected into HEK293 cells and 

evaluated for their translation efficiency. We were very surprised to detect that some cap 

analogues could efficiently support translation in spite of the absence of the N7-methyl 

group. These were the 06-Me guanosine and the 3'O-Me guanosine capped luciferase 

RNA (Chapter II). As mentioned previously, all previous studies on the effect of RNA cap 

analogues on the process of translation have been conducted either with GpppG, N7-methyl 

or N7-modified GpppG cap analogues. The impact of alternative modifications on the 

essentiality of the N7-methyl group has been overlooked. 

In order to better understand the in cellulo effects, the binding of each cap analogue to the 

murine eIF4E was evaluated in vitro. The binding affinity of both 3'0-Me guanosine and 

06-Me guanosine cap analogues were higher than the GpppG cap dinucleotide and their 

binding to eIF4E was sufficient to explain the higher translation profile observed (Chapter 

II). Again, with the same intent to better understand the binding of N7-methyl deficient cap 

analogues to eIF4E, I am presently doing some in silico binding experiments. Since the 

eIF4E protein has been co-crystallised with m7GDP, I have performed docking experiments 

with 3'0-Me GDP and 06-Me GDP to the eIF4E protein (PDB 1L8B). Our in silico results 

are consistent with good binding affinity to eIF4E (Table 3). The estimated free energy of 

binding for the docking of m7GDP (positive control), 3'0-Me GDP and 06-Me GDP are 

very similar (Table 3). 

Discussion, Table 3: In silico parameters for the best selected docking result* 

Docked Estimated Free Estimated Inhibition vdW+Hbond+desolv Flectrostatic Total Intermoiecu 
ligand Energy of Binding Constant, K, Energy Energy Energy 

8 96 kcal/mol 270 76nM -6 40kcal/mol -4 82kcal/mol -II 23 kcal/mol 

8 40kcaJ/mol 6 9 3 l l n M -5 77 kcal/mol -5 22 kcal/mol -10 99 kcal/mol 

10 41 kcal/mol 23 34nM -6 86 kcal/mol -5 03 kcal/mol -11 89 kcal/mol 

* Docking was performed on the murine eIf4E (PDB 1L8B) crystal structure, from which the bound m7GDP 
ligand was removed. m7GDP was docked backed into the structure as a positive control. 

m7GDP 

3'0-Me GDP 

06-Me GDP 
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The in silico positioning of 3'O-Me GDP is very similarly to the in crystallo position of the 
m7GDP ligand (Fig.4A). The major difference between the proposed model and the 

crystallographic structure is an 180° flip of the guanine base in the docking model relative 

to the crystal structure. The ribose moiety has rotated around the glycosidic bond to be 

significantly differently positioned relative to the ribose of m7GDP. A direct consequence of 

this rotation is the possibility of hydrophobic interactions between the 3' O-Me group and 

the Trpl02 (Fig.4B). From these in silico data, we hypothesize that the 3'O-methyl group is 

enhancing interactions of the cap residue with eIF4E, thus increasing binding affinity and 

subsequently translation. 

A B 

Discussion, figure 4: In silico docking of 3'O-Me GDP to eIF4E (PDB 1L8B) 

(A) Comparision of the in crystallo m7GDP with the in silico 3 'O-Me GDP, within the cap 
binding site of the murine eIF4E protein. In blue is the m7GDP found in the crystal 
structure, and in yellow is the 3 O-Me GDP of the docking model. (B) Interactions of the 
3 'O-Me GDP with murine elF-lE as predicted by the docking model. 
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Novel RNA cap analogues to study RNA metabolism 

The fact that some N7- methyl deficient capped RNA can sustain cap-dependent translation 

in cellulo has important implications for other aspects of RNA metabolism. The RNA cap 

structure interacts with several different proteins during its life cycle, starting from CBP20 

after its synthesis to decapping enzymes (Dcp2 and DcpS) for its degradation. How do NT-

deficient cap analogues interact with cap binding proteins which have different modes of 

recognizing the cap structure? For instance, decapping enzymes do not recognize the cap 

structure by n-% stacking interactions like most cap binding proteins (Fig. 5). Instead, 

decapping enzymes bind the capped guanosine residue by a network of interactions 

involving hydrogen bonds, polar and non-polar interactions (Fig. 5D). A previous report by 

Souliere et al, showed that 3'0-Me GTP could inhibit decapping activity in vitro with 

similar kinetic constants to GTP, while 06-Me GTP was a poorer inhibitor in comparison 

(Souliere, Perreault et al. 2010). From the kinetic experiments in this report, we deduced 

that 3'0-Me GTP could compete for the cap binding site, while 06-Me GTP could not. In 

addition, neither the proposed model in this report nor previous crystallographic data 

identified any interactions with the N7-methyl residue (Fig. 6). It would be very interesting 

to look into the decapping profile of N7-methyl and N7-methyl deficient RNA cap 

analogues, in order to understand the impact of the novel cap analogues identified in 

Chapter II, on RNA metabolism. Finally, since both CBP20 and VP39 (a 2 '0 MTase) 

recognize the cap structure essentially by TC-TC stacking interactions not unlike eIF4E, can 

they also bind to the N7-methyl deficient 3'O-Me guanosine and 06-Me guanosine cap 

structures? These are important questions that need to be addressed in the near future, since 

RNA cap analogues are potential candidates as therapeutic agents for the treatment of 

certain cancers. 
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Discussion, figure 5: Recognition of the RNA cap structure by different RNA cap 
binding proteins (extracted from Fetcher and Brownlee, J Gen Virol, 2005 and She et al, 
NSMB, 2006) 

(A) Structure of the murine eIF4E protein bound to m7GDP (PDB IL8B). (B) Structure of 
the human CBP20 bound with the cap analogue ",7GpppG (PDB 1H2T) (C) Structure of 
VP39 from Vaccinia virus bound to a hexameric capped RNA (PDB IA V6)) (D) Structure 
0fSpDcpI-SpDcp2 bound to a nucleotide (PDB 2A6T) 

C D 
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Discussion, figure 6: Proposed model for cap recognition by a decapping enzyme 
(extractedfrom Souliere et al, Nucleic Acids Res, 2010) 

A proposed model for the recognition of the RNA cap structure by the DIO decapping 
enzyme from Vaccinia virus. This model was elaborated from inhibition studies of the 
decapping activity with nucleotide analogues. 

Novel RNA capping enzyme 

During my PhD, I made the first biochemical demonstration that the NS5 protein of viruses 

of the flavivirus genus from the Flaviviridae family harboured the RNA guanylyltransferase 

activity. Up until that point, only the RNA triphosphatase and the RNA (guanine-N7) and 

RNA (2'0) methyltransferases had been identified. These are harboured on the NS3 protein 

and on the N-terminal domain of the NS5 protein, respectively. The elusive RNA 

guanylyltransferase activity had escaped identification. There have been several previous 

indications that the NS5 protein could potentially harbour this activity. For instance, the N-

terminal domain of the NS5 protein from the Murray Valley Encephalitis virus has been 

crvstallizcd with GTP. However, in this structure the GTP was assumed to be a snapshot of 

the protein in a pre-N7-methylation state whereby the GTP is mimicking the cap guanosine 

residue. More recently, the N-terminal domain of the NS5 protein from the Wessehbron 

virus was co-crystallized with GTP. and the mass spectroscopic data in this report seemed 
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to indicate that this protein fragment could form a covalent bond with GMP (Bollati, Milani 

et al. 2009). As pointed out in Chapter III though, the mass spectroscopic data in this report 

by Bollati et al, appears to be erroneous (Fig. 5). The fragment reported as a GMP modified 

peptide of NS5 corresponds to a commonly observed methylated trypsin fragment (Ding, 

Xiao et al. 2003). In addition, no proof that the NS5 protein could indeed cap an RNA, had 

yet been reported. In my research, I showed that the NS5 protein is in fact an RNA 

guanylyltransferase, possessing a specificity towards the initiating nucleotide of the RNA 

to be capped. 

Characterization of the RNA guanylyltransferase activity of NS5WNV 

Several aspects of the RNA guanylyltransferase reaction by the NS5WNV protein are 

presently being investigated in the lab. One of the issues which interests me most is the 

specificity of the protein towards an RNA initiating with adenine. I therefore decided to 

look whether the RNA structure itself may potentially be influencing the detected RNA 

guanylyltransferase activity. Since RNA capping is a co-transcriptional event, and also 

since only the positive strand of the virus genome is capped, I decided to look into the 

various conformations that a newly transcribed RNA, corresponding to the positive strand 

of the virus, may adopt during its synthesis by the bio-informatics tool, MFOLD. I 

identified several RNA conformations, of which the three major ones are indicated in figure 

7A. These RNA molecules were synthesized in vitro, di-phosphorylated by the PBCV-1 

RNA triphosphatase, and subjected to RNA capping by either the PBCV-1 RNA 

guanylyltransferase or the NS5 protein (Fig.7B). Most interestingly, while the PBCV-1 

RNA guanylyltransferase did not show any sequence specificity, the NSS*1^ protein had a 

marked preference for the 45 nucleotide long RNA sequence. We hypothesise that this 

RNA conformation or sequence is optimal for RNA capping by NS5WNV protein potentially 

due to conformational changes it may be causing to the protein. However, this remains to 

be confirmed. It is however not surprising that a particular conformation/sequence seems to 

favour RNA capping. This particular sequence is absent from the 5' end of the negative 

strand of the virus, which might explain why it is not capped during the virus replication 

cycle. 
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Discussion, figure 7: RNA structure and RNA capping by NS5 

(A) MFOLD predictions for the structure of the first 80 nucleotides of the positive strand of 
the West Nile Virus genome. The structure has been generated for the first 25, 45 and 81 nt. 
(B) RNA guanyltransferase reaction by the NS5liKV and PBCV-1 GTase in the presence of 
the 25 nt, 45 nt and 81 nt diphosphoryiated fragments and [a-32P]GTP. The RNAs were 
extracted by phenol/chloroform and precipitated by ethanol and resolved by UREA-PAGE. 
An autoradiogram of the gel is shown. To the left is the reaction by the PBCV-1 GTase 
which does not shown any sequence specificity, while to the right is the NS5nSi which 
prefers the 45 nt long RNA fragment. 

Most curiously, while conventional GTases are very specific to GTP. we discovered in the 

lab that the NS5WNV protein can also form a covalent complex with ATP (Fig. 8A and 8B). 

The nature and the importance of this complex are still undetermined. This activity is 

currently under investigation. Our preliminary characterization revealed that at low 
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B 
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nucleotide concentrations, GTP is hydrolyzed while ATP hydrolysis starts at higher 

nucleotide concentrations (Fig. 8C). This result is consistent with cellular concentrations of 

GTP which are usually much lower than that of ATP. Therefore, we deduced that at 

physiological conditions, the NS5WNV protein can likely form a covalent complex with both 

GTP and ATP. In order to further characterise this activity, we performed inhibition assays 

with S-Adenosyl methionine (SAM) (Fig. 8D). The results were very suggestive of two 

different locations for guanylylation and adenylation on the NS5W,NV protein. If adenylation 

and guanylation occurred at the same position, the effect of the inhibitor would have been 

similar for both reactions. In contrast we observed that while SAM did not negatively 

impact adenylation, the guanylylation reaction was greatly compromised. Considering that 

guanylylation occurs in very close proximity to the (guanine-N7) and (2*0) methylation 

active sites, the negative impact of SAM binding to guanylylation is not wholly 

unexpected. The fact that SAM does not have the same effect on adenylation suggests that 

another active site may be involved. Our hypothesis is that the C-terminal domain of the 

NS5WNV protein, which also harbours RNA-dependent RNA polymerase activity, may be 

involved in the adenylation activity. Previous reports on the bunyavirus RNA polymerase 

activity have shown that guanylylation of the RdRp is used as a priming mechanism for the 

polymerase reaction. This may be a plausible explanation for the adenylation of the 

N S S ^ protein. If this is the case, adenylation would be closely associated to the 

polymerase active site. Mutations within the polymerase active site which abrogates 

polymerase activity, more precisely within the essential metal ion binding site would most 

certainly help to provide an answer to this hypothesis. If adenylation is associated with 

polymerase activity, we should observe a sharp decrease in adenylated NS5. However, 

other hypotheses could also explain the adenylation of NS5. For instance, the NS5 protein 

may also possess ligation activity. Ligases, similar to RNA guanylyltransferases, form an 

enzyme-nucleotide complex (refer to Introduction, figure 10). 

I believe that a better understanding of both the adenylation and guanylylation properties of 

the NS5 protein would shed some light on the organization of the replication complex of 

the virus. Questions on how the NS5 protein juggles between RNA polymerase activity, 

RNA guanylyltransferase activity and RNA (guanine-N7) and (2'0) methyltransferase 

activities remain to be answered. In addition, prior to RNA capping, the newly synthesized 
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RNA molecule needs to interact with the NS3 protein for RNA triphosphatase activity. In 

chapter III, we proposed a simple model whereby the NS3 protein interacts at the linker 

region between the N- and C- terminal domains of NS5 to ensure this activity. However, 

according to new theories. NS5 may be a dimer or a multimer. How do all the components 

of the capping machinery coordinate with the polymerase complex is a key question to be 

answered in the future. 

[mictoothtollmM) [SAM] (mM) 

Discussion, figure 8: Guanylylation and adenylation by NS5 

(A) NS5VVNV has been incubated with [a-32P]GTP in the appropriate buffer containing 
magnesium ions and increasing concentrations oj unlabelled GTP up to 1 mM. The 
formation of the E-GMP covalent complex was monitored by resolving the reactions on an 
SDS-PAGE An autoradiogram of the PAGE is shown. (B) The NS5Vl has been incubated 
with fa- "PJ4TP in the same buffer as above and increasing concentrations of unlabelled 
ATP up to 2 mM The formation of an Enzyme-adenylate covalent complex was observed by 
resolving the reactions on an SDS-PAGE An autoradiogram oj the PAGE is shown. (C) 
Quantification of the relative guanylylation and adenylation oj the .\S5liK! protein (D) 
Inhibition of the Enzyme-guanylate (u) or -adenylate (•) complex by S-Adenosyl-
methionine (SA M) 
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Importance as a drug target 

According to the World Health Organization, viruses of the flavivirus genus are major 

causes of mortality and morbidity worldwide (Gould and Solomon 2008). The various 

genotypes of the Dengue virus alone lead to thousands of deaths per year and almost 50 

million people are infected each year, particularly in developing nations (Hotez 2008). 

Epidemic outbreaks of Dengue virus around the world have increased since 2000 ((WHO) 

2009). Other flaviviruses, most notably the Yellow Fever virus and the Japanese 

Encephalitis virus, cause thousands of deaths each year and are major causes of morbidity 

in poor countries (Gould and Solomon 2008). These viruses are transmitted principally by 

the Aedes aegypti mosquito, which is known to reproduce in the tropical and some sub­

tropical regions of the world (Pastorino, Nougairede et al. 2010). However, due to climate 

change, the reproductive ground of this mosquito is increasing and consequently, the 

transmission of flaviviruses may become an issue for developed nations in the near future. 

The development of antiviral drugs against flaviviruses has become pressing. 

The demonstration that the NS5 proteins of flaviviruses possess RNA guanylyltransferase 

activity has key implications for the design of anti-flaviviral drugs. The NS5 protein is an 

unconventional RNA guanylyltransferase, because it does not possess any of the conserved 

motifs of classical GTases, which also includes the human GTase. In addition, GTP binding 

seems to be mediated by different amino acids in the NS5 protein (Fig. 9). Therefore, the 

use of nucleotide analogues could potentially prove to be of antiviral interest. As shown in 

chapter II, the interactions of the classical GTase with its substrates are governed by several 

key parts of the guanine base and ribose moiety. Geiss et al, have drawn a partial picture of 

the interactions of GTP with the NS5 protein (Discussion, Table 2) (Geiss, Thompson et al. 

2009). However, a more detailed analysis of the NS5 interactions with its substrates is 

required. Comparative analysis of the substrate specificities of the GTP binding sites of 

NS5 and classical GTase will enable the design of inhibitors specific to the essential GTase 

activity of the NS5 protein. 
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Discussion, figure 9: Comparison of the GTP binding site of the N-terminal domain of 
the NS5 protein of Murray Valley Encephalitis virus with the PBCV-1 GTase 

Residues contacting the GTP molecule within 4.0 A are shown. (A) The GTP binding site of 
the N-terminal domain of the NS5 protein (PDB 3EVD) (B) The GTP binding site of the 
PBCV-1 GTase (PDB 1CKM) 
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CONCLUSIONS 

This thesis highlights the coming together of different aspects of research in biological 

sciences in order to find a solution to the lack of structural data on protein-substrate 

interactions with regards to several RNA capping enzymes. From the pressing need to find 

potent anti-microbial and antiviral agents, such integrative approaches offer a fast 

alternative for the finding of novel drug targets. My research draws a structural link 

between basic chemical biology, fundamental biochemistry and bio-informatics. Bio-

informatics predictions have been successfully applied for the better understanding of 

protein-substrates interactions. The use of chemical biology to probe into the active site of 

the yeast RNA triphosphatase has demonstrated the relative plasticity of the tunnel 

architechture of the TTM fold, and revealed key determinants of the metal-dependent RNA 

triphosphatase for the rational design of anti-microbial drugs. In addition, through the use 

of chemical biology, a subset of RNAs harbouring differentially modified caps has been 

generated which guided some pioneering works on the recognition of an uncharged cap 

structure by the mammalian eIF4E protein, for cap-dependent translation. Our results 

greatly enhance the knowledge of cap recognition by several cap binding proteins, and raise 

the question on the exact role of the N7-methyl group of the cap structure. 

In addition, through this research, we laid the foundation for the elaboration of a model of 

the flaviviral replication complex by identifying one of the core activities essential to the 

translation of the viral RNA. Our identification of the flaviviral RNA guanylyltransferase 

paves the way for more research in order to understand the organization of the replication 

complex, and ultimately for the design of flaviviral specific antiviral drug. At present, on 

account of the high degree of multi-tasking of the NS5 protein, delimiting the RNA 

guanylyltransferase site from the RNA (guanine-N7) and (2'0) methyltransferase sites is a 

very challenging task. In the near future, with the advent of novel bio-informatics tools 

which account for the dynamism of the active site residues as well as the flexibility of the 

ligand, such questions would be accurately addressed. Only by evolving at the crossroads 

of biochemistry, chemical biology, biophysics, cellular biology and bio-informatics can 

new tools be developed to address some key questions in biological research. This thesis 

highlights some of the benefits from this approach. 
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