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Résumé 
L'augmentation de la masse des muscles lisses autour des bronches et bronchioles est 
une caractéristique typique de l'asthme. L'hyperplasie des cellules musculaires lisses 
(CML) contribue de façon majoritaire à ce changement structural des voies 
respiratoires. Plusieurs mediateurs retrouvés dans les poumons des asthmatiques sont 
susceptibles d'influencer de façon concertée ou de façon antagoniste la prolifération 
des CML. Les travaux de cette thèse ont pour objet de quantifier le rôle de certains 
facteurs de croissance, de certaines cytokines de type T H2 et des cystéinyl-leucotriènes 
(cys-LTs) dans la prolifération des CML bronchiques humaines in vitro en tenant 
compte de leurs séquences de surexpression dans les poumons des asthmatiques suite 
à une provocation allergique. Les résultats démontrent que le transforming growth 
factor (TGF)f31, !'interleukine (IL)-4 et l'IL-13, trois médiateurs tardivement régulés 
à la hausse suivant une provocation allergique, ont aucun effet sur la prolifération des 
CML lorsqu'ils sont administrés seul. Par contre, un pré-traitement avec le fibrobast 
growthfactor (FGF)2, un facteur rapidement libéré dans la lumière des bronches suite 
à une provocation allergique, confère au TGFf31, ainsi qu'à l'IL-4 et l'IL-13 des effets 
mitogéniques. Dans tous les cas, les synergies semblent partiellement dépendantes 
d'une boucle autocrine de facteurs de croissance dans la famille du platelet-derived 
growth factor (PDGF), où le FGF2 induit l'expression de la chaîne a du récepteur des 
PDGFs et le TGFf31, l'IL-4 et l'IL-13 induisent l'expression des ligands dépendants 
de cette chaîne pour signaler, soient le PDGF-AA et le PDGF-CC. Les cys-LTs, tant 
qu'à eux, n'ont aucun effet direct sur la prolifération des CML bronchiques avec ou 
sans pré-traitement avec le FGF2. Cependant, ils stimulent la production du TGFf31 
par les cellules épithéliales. Dans des conditions in vivo, où les CML ont déjà été 
stimulées par le FGF2, les cys-LTs pourraient donc induire la prolifération par une 
boucle paracrine impliquant la production de TGFf31 par les cellules épitheliales. En 
somme, les résultats suggèrent que plusieurs facteurs surexprimés dans les poumons 
des asthmatiques peuvent collaborer pour induire la prolifération des CML. Le FGF2, 
entre autre, est un facteur essentiel, puisqu'en plus de son effet direct sur la 
prolifération des CML, il confère un effect mitogénique au TGFf31, ainsi qu'aux 
cytokines de type T H2, IL-4 et IL-13. Étant donné que les séquences de stimulations 
utilisées dans ces travaux réflètent temporellement les évènements se produisant dans 
des conditions in vivo, les synergies prolifératives répertoriées dans cette thèse sont 
susceptibles de contribuer à l'hyperplasie des CML que l'on retrouve dans les voies 
respiratoires des sujets asthmatiques. 
Mots clés: muscle lisse des voies respiratoires, mitogénèse, facteurs de croissance, 
cytokines, leucotrienes. 
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Increased bulk of smooth muscle mass arround the airways is a typical feature of 

asthma. Severa} mediators act in concert or antagonistically to regulate airway smooth 

muscle (ASM) cell proliferation. This thesis focuses on fibroblast growth factor 

(FGF)2 and transforming growth factor (TGF)~l, which are known to be sequentially 

upregulated in the lung following allergie challenge and have recently been shown to 

synergize together in ASM cell proliferation. Emphasis is put toward the conflicting 

studies documenting the mitogenic effect of TGF~ 1 in vitro and to its seemingly 

potent effect in vivo. Thereafter, different asthma mediators, such as IL-4 and IL-13, 

are introduced and how their mitogenic potential toward ASM cells could be altered 

by FGF2 is presented. Finally, how the controversial issue between in vitro and in 

vivo data regarding the mitogenic effect of leukotrienes could be reconciliated and 

how it could be related to FGF2 and TGF~l proliferative synergism is discussed. 

Key words : airway smooth muscle, mitogenesis, growth factors, cytokines, 

leukotrienes 
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INTRODUCTION 

Allergie asthma is cause by an immunological response toward innocuous inhaled 

enviranmental triggers and is characterized by recurrent breathing symptoms 

secondary to inflammation, airway hyperresponsiveness (AHR) and airway 

obstruction. In 1922, Huber and Koesler (Huber and Koessler, 1922) described for the 

first time an increase in ASM tissue in the airways of asthmatics. Since then, 

enlargement of peribranchial ASM tissue has become a histopathologic signature of 

asthma (Hirst et al., 2004). Other structural alterations of the lung, collectively called 

remodeling, also occur in asthma. It includes epithelial metaplasia, which is largely 

characterized by goblet cells hyperplasia, and hypertraphy of branchial glands, which 

both lead to mucus hypersecretion. Altered deposition of extracellular matrix (ECM) 

is also observed and mostly translates into subepithelial fibrasis, furthering the 

thickness of the airway wall (Pascual and Peters, 2005). However, due toits 

contractile nature and its increased abundance in asthma, ASM tissue has alway been 

thought responsible for AHR. Current evidence for this contention includes: 1-

Exagerated branchial responsiveness of asthmatic patients to non-inflammatory 

contractile agonists, such as cholinergie stimuli, in periods of asthma remission where 

inflammation and mucus hypersecretion are largely attenuated (Seow and Fredberg, 

2001); 2- Mathematical modeling established in the early 1990's, which suggested 

that among all features of airway remodeling found in asthma, increased bulk of ASM 

tissue arround the branchi was likely the main contributor to AHR (reviewed in (Pare 

et al., 1997)); and 3- Branchial thermoplasty, which alters the structure and the 

contractility of ASM tissue in the wall of conducting airways, and was shown to cause 
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long term improvement in AHR in human asthmatics (Brown et al., 2005; Cox et al., 

2006; Danek et al., 2004). 

In the last few years, new aspects of ASM cell biology have gained interest of 

researchers working in the field of asthma. Information emanating from these studies 

suggests that ASM cells are not only a contractile unit, but are also able to express 

adhesion molecules for inflammatory cell recruitment and are potent secretagogues 

for cytokines, chemokines and ECM components (Joubert and Hamid, 2005). Hence, 

beyond their role in bronchoconstriction, ASM cells are now believed to play a 

significant role in the initiation and/or perpetuation of airway inflammation, as well as 

in the architectural changes that arise in asthmatic airways. 

These new emerging concepts, together with the ability of ASM to contract in 

response to spasmogens, highlight the possible deleterious consequences of an 

increased peribronchial ASM mass in the pathology of asthma. In the same direction, 

elucidation of the main factors involved in ASM cell hyperplasia may significantly 

enhance our understanding of asthma etiology and may, hopefully, culminate in the 

elaboration of improved therapeutics for the treatment of this prevalent disease. 

This thesis aims to present the current evidence supporting the role of TGFf)l and 

FGF2 in ASM cell hyperplasia, to document the lack of data concerning the effect of 

IL-4 and IL-13 in this altered phenotype and to underscore recent developments made 

in this field that may shed light on some of the paradoxical results published so far 
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concerning the mitogenic effects of TGF~l and leukotrienes on ASM cells. New 

evidence is given that FGF2 may be the cornerstone of ASM cell hyperplasia owing 

to its ability to confer mitogenic potential to different asthma mediators. 
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GENERAL AND SPECIFIC OBJECTIVES 

Chapter 1 

General Objective: To review published studies supporting the involvement of TGFPl 

on ASM cell hyperplasia characterizing asthma. 

Specific Objectives: The first objective of this chapter is to give a global overview of 

the TGFPl cytokine, its cell-surface receptors and the intracellular signaling pathways 

that are responsible for transducing its biological effects. The second objective is to 

compute the results of published studies regarding the expression of TGFP 1 in asthma 

or experimentally-induced asthma. Finally, the last objectives of this chapter are to 

discuss the current in vivo evidence supporting arole for TGFPl in ASM cell 

hyperplasia and the rather controversial state of the literature regarding the eff ect of 

TGFBl on ASM cell proliferation in vitro. 

Chapter 2 

General Objective: To review the current literature documenting the potential role of 

FGF2 on asthmatic ASM cell hyperplasia. 

Specific Objectives: The first objective was to give an overall picture of the FGF2 

growth factor and to present the different cell-surface receptors onto which this ligand 

can bind. The intracellular signal transduction pathways that ensure its biological 

effects are also briefly discussed. Then, the consitent results obtained by diff erent 

groups of investigators, revealing its increased expression in asthmatic airways, 

together with its unequivocal effect on ASM cell proliferation in vitro are reviewed. 
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However, its as yet unrecognized contribution to ASM tissue remodeling in vivo is 

also highlighted. 

Chapter 3 

General Objective: To document the mitogenic effect of TGFBl on primary human 

bronchial smooth muscle cells with or without a pre-treatment with FGF2. 

Working hypothesis: FGF2 pre-treatment influences the mitogenic potential of 

TGFBl, which would help to explain the conflicting results obtained so far concerning 

the effect of TGFBl on ASM cell proliferation in vitro. 

Specific Objectives: To determine the time- and concentration-dependent effect of 

TGFBl on ASM cell proliferation with or without a 24 hour pre-treatment with 

increasing concentrations of FGF2. The most important finding included in this 

chapter is a striking synergism between FGF2 and TGFBl on ASM cell proliferation. 

The next objectives then turn toward elucidating the operational mechanisms involved 

in this proliferative synergism. 

Chapter4 

General Objective: Discuss the results obtained in chapter 3 in relation to the 

collective proliferative synergism of ASM cells that might occur in vivo between any 

member of the TGFBl and FGF2 families. 

Specific Objectives: The first objective of this chapter was to identify ail other 

members of TGFBl and FGF2 families that have been shown to be upregulated in 

asthmatic airways. Since the different members of each of these families transduce 

their biological effects via similar signaling pathways, we postulate that they might 
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exert similar effects. If true, any member of one family potentially synergizes with 

any member of the other family in inducing ASM cell proliferation. This chapter 

underscores the potential contribution of other members of the TGFj31 and FGF2 

families to the enlarged ASM tissue found in the bronchi and bronchioles of asthmatic 

patients. Overall, it proposes the hypothesis that ASM cell hyperplasia occuring in 

vivo may not simply be the result of the individual proliferative synergism between 

FGF2 and TGFj31, but rather to the potential additive action of ail individual 

synergisms susceptible to occur between every upregulated members of the FGF2 

family with any of the upregulated members of the TGFj31 family. 

ChapterS 

General Objective: To review the current state of the literarure in regard to the effect 

of IL-4 and IL-13 on ASM cell proliferation. 

Specific Objectives: The first objective of this chapter was to introduce IL-4 and IL-

13 cytokines in terms of their structures, their cognate cell-surface receptors and the 

intracellular signaling pathways that they use to transduce their biological effects. 

This chapter also aims to review the knowledge aquired so far concerning the role that 

each of these cytokines might have in asthma etiology and diathesis. lt is concluded 

that even if either IL-4 or IL-13 were shown to be required, and sometime sufficient, 

in the development of many pathognomonic features of asthma, their respective role 

in ASM cell hyperplasia is still unknown. 
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Chapter6 

General Objective: To document the individual and the FGF2-combined effects of IL-

4 and IL-13 on primary human bronchial smooth muscle cell proliferation. 

Specific Objectives: To determine the concentration-dependent effect of IL-4 and IL-

13 on ASM cell proliferation with or without a pre-treatment with increasing 

concentrations of FGF2. Similar to what we observed with TGFj31 in chapter 3, the 

results suggest that both IL-4 and IL-13 have no mitogenic effect on their own, but 

synergize in a concentration-dependent manner with FGF2 to induce ASM cell 

proliferation. The next objectives were then to determine the operational mechanisms 

involved in this proliferative synergism. 

Chapter7 

General Objective: To review the current state of knowledge concerning the effect of 

cys-LTs on ASM cell hyperplasia. 

Specific Objectives: The first objectives of this chapter are to give a general overview 

of cys-LTs structure, their synthesis and their cognate cell-surface receptors, and to 

briefly discuss their well-established increased expression in asthma. Another 

objective is to revise the conflicting results between in vitro studies, which suggest 

very weak or no direct effect of cys-LTs on ASM cell proliferation, and the in vivo 

studies, which consistently report a trophic effect of these mediators in ASM cell 

hyperplasia. Owing to the great reminiscence of this last observation with the effect of 

TGFj31 highlighted in chapter 1, the final objective of chapter 7 was to wrap up recent 

evidence suggesting that cys-LTs are potent inducers of TGFf31 in vivo, as well as in 

different types of cells in vitro. 
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Chapter8 

General Objective: To document the potential paracrine influence of epithelial cell-

derived, cys-LT-induced TGFf:H on the proliferation of primary human branchial 

smooth muscle cells. 

Working hypothesis: Based on our previous results suggesting an important effect of 

TGF~l on ASM cell proliferation (chapter 3), we hypothesized that the mitogenic 

effect of cys-LTs reported in vivo, together with their lack of effect in vitro, may be 

related to their capacity to stimulate the production of this growth factor in airway 

epithelial cells, which will, in turn, act as a paracrine factor to induce ASM cell 

proliferation. 

Specific Objectives: The initial objective of this chapter was to determine whether 

cys-LTs are capable to upregulate TGF~l expression in an epithelial cell line that 

overexpressed the high affinity receptor for leukotriene D4, CysLTl. Another major 

concern was to determine whether this endogenously produced TGF~l is able to 

support ASM cell proliferation. This initial part of the work presented in chapter 8 

reports that cys-LTs are potent inducers of TGF~l and that this cys-LT-induced 

TGF~l is able to support the proliferation of FGF2-pretreated ASM cells. It was 

thereof important to determine whether untransformed airway epithelial cells behaved 

in a similar manner. Hence, the hypothesis that CysLTl is expressed on airway 

epithelial cells and that epithelial cells have the capacity to respond to cys-LTs in a 

CysLTI specific manner in term of TGF~l production were tested. The cumulated 

data highlights the possibility that cys-LTs can induce TGF~l expression in airway 

epithelial cells. Altogether, these results shed light on the conflicting results reported 
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so far between in vivo and in vitro studies documenting the effect of cys-LTs on ASM 

cell proliferation, and suggest that the mitogenic effect observed in vivo may be 

related to a paracrine involvement of airway epithelial cell-derived ASM cell 

mitogens that are induced by cys-LTs. 
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1.1. TGFfJl 

CHAPTER 1 

TGFfU 

TGFf31 was first isolated and characterized in platelets in 1983 (Assoian et al., 1983) 

and is now the prototypic member of a superfamily of cytokines, which actually 

counts 33 members in man (de Caestecker, 2004). TGFf31 is encoded by a 7-exon 

gene localizes on chromosome 19ql3 and several genetic studies have associated 

some of its common single nucleotide polymorphisms (SNP) with asthma phenotypes 

(Buckova et al., 2001; Hakonarson et al., 2001; Hobbs et al., 1998; Mak et al., 2006; 

Nagpal et al., 2005; Pulleyn et al., 2001). TGFf31 protein has a short half-life 

(normally less than 3 min) in cell free systems (Wakefield et al., 1990). However, to 

overcome its lability, TGFf31 is usually secreted in a latent formas a 180-210-KD 

multi-protein complex containing the glycosylated 125-190-KD latency TGFf3 

binding protein (LTBP), the 75-KD latency-associated peptide (LAP) and the 25-KD 

mature form of TGFf31 (Harpel et al., 1992). 

1.2. TGFfJl activation 

Activation of latent TGFf31 occurs through different mechanisms including: 1-

proteolytic dissociation from LAP by the urokinase plasminogen activator 

(uPA)/plasmin system (Khalil et al., 1996a; Lyons et al., 1988), or by other proteases 

such as metalloproteinase (MMP)-2 (McMahon et al., 2003), MMP-9 (Lee et al., 

2001a; Yu and Stamenkovic, 2000) and the lysosomal serine protease cathepsin D 

(Lyons et al., 1988); 2- conformational alteration in its structure by thrombospondin 
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(Crawford et al., 1998) or integrin such as avj36 (Morris et al., 2003; Munger et al., 

1999); 3- oxidation and nitrosylation (Barcellos-Hoff and Dix, 1996; Vodovotz et al., 

1999); 4- removal of carbohydrate structure on LAP by glycosidases such as sialidase 

(Miyazono and Heldin, 1989); and 5- integrin avj38-mediated latent TGF(31 

recruitment to the cell membrane for membrane type 1 (MTl)-MMP-dependent 

proteolytic activation (Fjellbirkeland et al., 2003). Extracellular regulation of TGFfH 

activation is also influence by different cell-surface molecules and ECM constituents 

that bind TGF(31 and ensure its activation in restricted localised compartment. For 

example, mannose 6-phosphate/insuline-like growth factor II (IGF-11) receptor 

(Gleizes et al., 1997; Kovacina et al., 1989) as well as integrins a8(31 (Lu et al., 2002) 

and avj31 (Munger et al., 1998) bind latent forms of TGF()l and are thus believed to 

target the latent complex on the surface of cells for subsequent proteolytic activation 

with ensuing binding toits signaling receptor. TGF()l is also a heparin binding 

growth factor (HBGF) (Miyazono et al., 1994a). Consequently, its binding availability 

for cell surface receptors is regulated extracellularly by heparan sulfate proteoglycans 

(HSPG). Whereas certain proteoglycans, such as betaglycan and endoglin (Cheifetz et 

al., 1992), facilitate TGF()l binding toits receptors; others, such as biglycan and 

decorin, sequester TGFj31 in the ECM (Redington et al., 1998). In addition, because 

of their ability to release TGF() 1 from pericellular stores, certain enzymes such as 

thrombin, neutrophil elastase or mast cell chymase may be essential in the process of 

TGFj31 activation, even if they cannot activate latent TGFj31 directly (Taipale et al., 

1992; Taipale et al., 1995). 
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1.3. TGF{Jl receptors and signaling 

Six receptors have been identified for TGFf31 (Huang and Huang, 2005), but the most 

studied are the 65-KD type 1 receptor (Tf3RI or ALK5), the 85-KD type II receptor 

(Tf3RII), the 280-KD type III receptor (Tf3RIII or betaglycan, a heparan 

sulfate/chondroitin sulfate proteoglycan), and more recently the 504-KD Tf3R5, which 

is also known as the low-density lipoprotein receptor-related protein 1 (LRPl). The 

canonic mechanisms by which TGFf31 binds and activates its cognate cell surface 

receptors as well as the intracellular signaling pathways that transduce intracellularly 

the TGFf31 message from the cell membrane to the nucleus have been reviewed 

extensively (Shi and Massague, 2003). Briefly, TGFf31 initially binds to the single 

transmembrane, constitutively active, serine/threonine kinase Tf3RII homodimer. The 

formed complex subsequently recruits the single transmembrane, activable, 

serine/threonine kinase Tf3RI homodimer, which is concomitantly activated by Tf3RII-

mediated phosphorylation of several threonine and serine residues in its intracellular 

GS juxtamembrane domain. This phosphorylated GS domain then serves as a docking 

site for activin-receptor activated Smads (AR-Smads; namely Smad2 and Smad3), 

which are, in turn, phosphorylated by Tf3Rl. The phospho-AR-Smads (pSmad2 and 

pSmad3) then homo or hetero-oligomerize with each other and with at least one co-

mediator Smad (Co-Smad; most often called Smad4) and the complex ultimately 

translocates to the nucleus where it binds Smad binding element (SBE)-containing 

promoters or interacts with other transcriptional partners to regulate gene expression. 

Apart from the Smad pathway, it is now clear that other intracellular signaling 

pathways such as mitogen-activated protein kinase (MAPK), the phosphoinositide 3-
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kinase (PI3K), the PP2A phosphatase-mediated p70s6K inactivation and the Rho-

family of small guanosine triphosphatase (GTPase) pathways are activated by TGFj31 

and transduce some of its biological activities (reviewed in (Derynck and Zhang, 

2003) and (Moustakas and Heldin, 2005)) (Figure 1). In addition, Smads were shown 

to cross talk with other important signaling pathways such as Janus kinase-Signal 

transduction and activator of transcription (JAK-STAT) (Ulloa et al., 1999) and WNT 

(Nishita et al., 2000). 

Figure 1: TGFfH signaling 

Derynck and Zhang, Nature 2003; 425: 577-84. 
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1.4. Expression of TGF fJJ in asthma 

Expression of TGFf3 l is altered in asthma and the current weight of evidence suggests 

that TGFf3 l is upregulated in human and animal asthmatic airways (summarized in 

Table 1 and 2). However, 5 studies performed with human tissues have shown no 

regulation of TGFf3 l expression in asthma. In contrast to their previous articles, in 

which they reported an increased expression of TGFf31 in branchoalveolar lavage 

fluid (BALF) before and after allergie challenge (Redington et al., 1997), Redington 

and coworkers (Redington et al., 1998) have demonstrated indistinguishable pattern of 

TGFf31 immunohistochemical staining between asthmatic and contrai subjects. 

Aubert and coworkers (Aubert et al., 1994) had previously reported similar findings, 

but their results were contested since their contrai subjects were heavy smokers. The 

relative intensity of TGFf31 immunostaining in the branchial mucosa was also similar 

between asthmatics and healthy subjects in Hoshino and coworkers' study (Hoshino et 

al., 1998). More recently, Chu and coworkers (Chu et al., 2004) confirmed these 

results by documenting a lack of significant augmentation of TGFf3 l 

immunoreactivity in asthmatic epithelium. Agreeing with these studies, Balzar and 

coworkers (Balzar et al., 2005) have shown no difference in the number of cells 

staining positive for TGFf31 in the submucosa of normal subjects and asthmatic 

patients suffering from different severity of the disease. 

Reasons for these discrepancies are currently unknown. However, ail conflicting 

results came from studies measuring TGFf31 expression by immunohistochemical 

appraach, using tissue specimens obtained by branchial biopsies or lung resections. 
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Immunohistochemistry requires extensive tissue handling. Ali the steps before 

microscopie reading, including immediate precaution to preserve tissue integrity, 

reagent used for fixation or to embed the tissue, strength and specificity of the 

detection and the staining antibodies, and bleaching of the fluorochrome or attenuated 

chemiluminescence signal occurring during the procedures could all lead to erroneous 

results and false interpretations. It is thus reasonable to surmise that the conflicting 

results concerning the increased expression of TGFPl in the airways of asthmatics 

may be the result of technical artefacts. However, alternative hypothesis may explain 

this conundrum. 

TeIDporalconcerns 
It is worth mentioning that collection of lung specimens off ers promiscuous 

advantages for studying mRNA or protein expression at the tissue level. For example, 

staining of cross-sectional sections of these Jung specimens by immunohistochemical 

approach or by in situ hybridization brings ample information regarding the tissue or 

the cellular sources of TGFPl. Combined with laser microdissection, tissue specific 

expression of a particular gene can even be confirmed by more conventional 

technique such as RT-PCR (Kelly et al., 2005). Unfortunately, limits of these 

techniques are also prominent. As such, results obtained from these experiments must 

be interpreted with caution. Protein or mRNA detected in Jung specimens reflect their 

expression levels at a particular time point. Asthma is a waxing and waning disease, 

where a period of exacerbation is usually followed by a period of remission and where 

the severity of symptoms is temporally associated with the degree of airway 

inflammation. Therefore, upregulation of asthma mediators, such as TGF~l, is also 
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likely to be inducible and transient in nature. Correspondingly, TGF~l was shown to 

be increased at 24 h, but not at 10 min, following segmental allergie challenge (SAC) 

and its concentration returned to baseline level after 1 week (Batra et al., 2004; 

Redington et al., 1997). Whether TGF~l expression starts to increase earlier is 

unknown, but in animal models of acute or chronic antigen challenge, TGFf31 

expression in BALF is still unaffected 6 h following the last allergen exposure 

(Kumar et al., 2004). In contrast to Batra and coworkers (Batra et al., 2004), 

Redington and coworkers (Redington et al., 1997) also reported a statistically 

significant increase in TGFf31 level in BALF of asthmatics at baseline compared to 

healthy controls (8 pg/ml vs 5.5 pg/ml), but whether this difference is physiologically 

relevant remains questionable. Tillie-Leblond and coworkers (Tillie-Leblond et al., 

1999) have also reported no difference in the levels of latent and active form of 

TGF~l in BALF at baseline between mild asthmatics and healthy volunteers. In the 

same study, both the latent and active form of TGFf31 were significantly increased in 

patients suffering from status asthmaticus compared to healthy controls or to patients 

presenting similar severity of the disease, but distant from an acute exacerbation 

period. Nomura and coworkers (Nomura et al., 2002) have substantiated these results 

by examining longitudinal changes that occur in the lung fonction (forced expiratory 

volume in 1 sec,% of predicted (%FEV1)) and the percentage of TGFf31 positive 

cells in induced sputum samples of five asthmatic subjects. They demonstrated that 

during asthma exacerbation, %FEV1 decreased from 86.5 to 51.0% and that TGFf31 

positive cells rose from 1.9 to 55.4% during the same time period. These results 

confirmed the inducible and transient upregulation of TGFf31 that have been 
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demonstrated by others in BALF following SAC (Batra et al., 2004; Redington et al., 

1997). Based on results obtained with animal models of chronic allergen challenge-

induced airway remodeling, it was also suggested that several allergen provocations 

must be required before the upregulation of TGF~l could be appreciated (Corbel et 

al., 2003). 

These aformentioned findings suggest that the samples would need to be collected 

following bronchoprovocative challenge to observe the transient increase of TGF~ 1 

expression by immunohistochemistry. In all studies documenting no regulation of 

TGF~l expression in asthma, lung specimens had been taken at baseline, i.e. in a 

remission period where no sign of exacerbation was present or without prior 

experimentally-induced bronchoprovocation. In Hoshino and coworkers' study 

(Hoshino et al., 1998) for example, asthmatics presented daily symptoms, but based 

on their attack score, the number and severity of symptoms were very low, suggesting 

that subjects were not in an exacerbation period when biopsies were taken. In the 

immunohistochemical study carried out by Redington and coworkers (Redington et 

al., 1998), asthmatic subjects were presented as mildly symptomatic. However, they 

were clinically stable despite being restricted from use of oral or inhaled 

glucocorticoids for 4 weeks, indicating once again that no acute exacerbation was 

present at the time bronchial biopsies were taken. Hence, failure to demonstrate a 

significant upregulation may simply reflect the punctual expression of TGFf:H 

measured in the two extreme poles of a transient response. Taken together, these 

results implied that TGF~l is not necessarily overexpressed in asthmatics at baseline, 
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but it is inducible upon allergen challenge. Determining the sequence and the kinetics 

of TGF~l expression may be important to increase our understanding of the role of 

this cytokine in asthma. 

Spatial concerns 
Along with the transient nature of TGFf31 response following allergie challenge, 

failure to detect an increased expression of TGFf31 in certain immunohistochemical 

studies may be related to the airway compartment studied. Expression of TGFf3 was 

shown to be heterogenous within the same sample (Vignola et al., 1997) and its 

increased expression in asthma may occur exclusively in very localized 

compartments. For instance, periglandular tissues or sites of epithelial desquamation 

were shown to stain strongly for this cytokine (Kokturk et al., 2003; Vignola et al., 

1997). On the other hand, Magnan and coworkers (Magnan et al., 1997) have 

demonstrated homogenous intensity of TGFf3 immunostaining in ciliated and mucous 

cells as well as in areas of epithelial impairment, such as sites of deciliated cells or 

desquamated regions. However, apart from a homogenous staining in the epithelium 

within each sample, Magnan and coworkers (Magnan et al., 1997) suggested an 

altered compartmentalization of TGFf3 expression in asthmatic airways. Whereas 

TGFf3 immunoreactivity was strong in the epithelium of control subjects, negative or 

faintly positive staining was observed in this particular compartment of asthmatics. In 

contrast, asthmatics expressed higher amounts of TGFf3 in the submucosa compared 

to healthy individuals. This epithelial to submucosal redistribution of TGFf3 was in 

accordance with an increased number of inflammatory cells staining positive for 

18 



TGFj3 in the submucosa of human asthmatics (Chakir et al., 2003; Chu et al., 2000; 

Flood-Page et al., 2003; Minshall et al., 1997; Ohno et al., 1996; Vignola et al., 1997). 

Whatever the physiologie or pathophysiologic reason for this altered 

compartmentalization, the same trend of TGFj31 relocalization was observed in 

murine models of allergie airway inflammation. In this regard, McMillan and 

coworkers (McMillan and Lloyd, 2004) have demonstrated that TGFj31 expression 

was confined to the bronchiolar and alveolar epitheliums in control animais and was 

relocalized to the submucosal compartment in association with inflammatory 

infiltrates after repeated allergen challenges of sensitized animais. In this particular 

mode!, even smooth muscle became positive for TGFj31 immunostaining during the 

chronic phase of allergen challenge. lnterestingly, this altered compartmentalisation 

also occurred in other types of airway inflammation, such as the one induced by 

prolonged (4 wk) lipopolysaccharide (LPS) exposure (Savov et al., 2002). Initially, 

TGFj31 expression was confined to the airway epithelium, but subsequent to LPS 

exposure, TGFj31 immunostaining was mainly localised in the subepithelial area 

(Savov et al., 2002). Hence, in addition to look at the right time, investigators 

attempting to document an increased expression of TGFj31 in asthma need to look at 

the right place. 

With the use of techniques permitting to appreciate the overall expression of TGFj31, 

such as in studies using BALF, serum or plasma, or with the use of animal models, 

which allow sufficient biologie materials to be homogenized, it is becoming clear that 
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TGFf:H is upregulated in asthma following allergie challenge. But once again, 

controversies are reported and are related to different peculiarities of the studied 

populations. For example, Joseph and coworkers (Joseph et al., 2003) have reported 

an increase of TGF~ 1 expression in the plasma of nonatopic, but not of atopic 

asthmatic patients. However, using atopic patients only, which were included based 

on skin prick test positivity and corroborating medical history of allergen-induced 

asthma, Karagiannidis and coworkers (Karagiannidis et al., 2006) reported a 

significant increase of TGF~l in the serum of asthmatics, attaining levels almost 7-

fold higher than those measured in healthy controls. No clear explanation is currently 

ascribed to explain these contrasting results and the question of whether TGF~l 

expression is influence by the atopic phenotype will need further exploration. 

Increased expression of TGF~l measured in the BALF must also be interpreted with 

caution. Epithelium desquamation is a characteristic feature of remodeled asthmatic 

airways. Epithelium denudation may give access to a certain amount of TGF~l, which 

is otherwise masked by an intact epithelium in non-asthmatic individuals. Thus, the 

increased expression of TGF~l observed in BALF of asthmatics following challenge 

may simply be related to an easiest accessibility to TGF~l stores cause by epithelium 

desquamation. In support to this contention, increased concentration of TGF~l has 

been noted in BALF following a sham bronchoprovocation procedure, which is likely 

to be the result of epithelial damage (Redington et al., 1997). Moreover, positive 

correlation (r = 0.89) has been reported in the same study between concentration of 

TGF~l and the number of epithelial cells collected in BALF of saline-challenged site. 
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These results suggest that epithelium denudation renders a bulk of TGFj31 normally 

sequestered in the subepithelial layer, such as the one associated with the basal lamina 

(Aubert et al., 1994; Redington et al., 1998), collectable by bronchoalveolar lavage. 

Of major concern, degranulation products of eosinophils such as major basic protein 

(MBP) and eosinophil cationic protein (ECP) (Frigas et al., 1980; Robinson et al., 

1992), as well as mast cell proteases, such as tryptase and chymase (Redington et al., 

1995), are damaging for the airway epithelium. Increased expression of TGFj31 

observed at 24 h, but not at 10 min, following SAC may consequently be caused by 

eosinophil-mediated epithelium desquamation, rather then a true de novo TGFj31 

protein synthesis. Together, these observations raise doubts on the techniques 

currently used to measure the expression of different mediators in the airways and for 

instance, to the increased expression of TG Fj31 in asthma. 

Table 1: Expression ofTGFfH in human asthma 

Tissues mRNAor Description of the effect References protein Asthmatics vs controls 
Lung resections or 1-mRNA 1- 108 vs 100% in asthmatics vs controls, (Aubert et 
necropsies (expression respectively (ns). al., 1994) 

relative to 
GAPDH) 

2- Protein 2- Neither different patterns nor different 
levels of expression. (P.S. control subjects 
were heavy smokers) 
- Connective tissues of the airway wall, 
alveolar macrophages and the epithelium 
were +for TGF~l. 

Sputum Prote in - Sputum was collected from asthmatics (Adachi et 
during moderate or severe attacks. al., 1996) 
- Active form was ND, but inactive form 
was 21.7 ng/ml. 
- There was no control group for 
comparison. 

Bronchial biopsies mRNA - 52.1 vs 10.5 + cells/mm2 in severe (Ohno et al., 
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asthmatics vs controls, respectively (p < 1996) 
0.02), but was not elevated in mild 
asthmatics (1.0 + cell/mm2

) 

- In asthmatics, + cells were eo. 
Alveolar Protein - Median of 435 vs 210 ng/million cells in (Vignola et 
macrophages asthmatics vs controls, respectively (p = al., 1996) 

0.005). 
Bronchial biopsies Protein* - Altered compartmentalization: In (Magnan et 

asthmatics, TGFBl intensity of staining al., 1997) 
decreased in the epithelium (p < 0.01) and 
increased in the submucosa in association 
with an increase inflammatory cell 
infiltrate. 

Bronchial biopsies Prote in* - Median of 4 vs 0 + cells/mm of BM in (Vignola et 
the epithelium and 31.5 vs 0 + cells/mm2 al., 1997) 
in the submucosa in controls vs 
asthmatics, respectively (p =::; 0.015). 

BALF Protein - 8.0 vs 5.5 pg/ml in asthmatics vs (Redington 
controls, respectively (p = 0.027). et al., 1997) 
- lncreased expression following SAC: 
31.3 vs 25.0 at 10 min (p = 0.78) and 46.0 
vs 21.5 pg/ml at 24 h (p = 0.017) post-
allergen- vs saline-challenged sites, 
respectively. 

Bronchial biopsies 1-mRNA - 18.5, 10.8 and 7.8 vs 3.5 + cells/mm of (Minshall et 
BM in severe, moderate and mild al., 1997) 
asthmatics vs controls, respectively (p < 
0.05 for severe and moderate asthmatics). 

2- Protein - 18.8, 12.3 and 9.2 vs 5.2 + cells/mm of 
BM in severe, moderate and mild 
asthmatics vs controls, respectively (p < 
0.05 for all groups of asthmatics). 

Bronchial biopsies Protein - 18 vs 16% relative intensity in the (Hoshino et 
bronchial mucosa of asthmatics vs al., 1998) 
controls (ns). 

Bronchial biopsies Prote in - Neither different patterns nor different (Redington 
levels of expression between asthmatics et al., 1998) 
and controls. 
- Positive staining was observed in 
subepithelial connective tissues of the 
airway wall and in the bronchial 
epithelium. 

Bronchial biopsies Protein* - 12.5 vs 6.6 + cells/mm2 in the (Chu et al., 
submucosa of asthmatics vs controls (ns, p 1998) 
= 0.06). 

BALF Protein -Active TGFBl: median of -350 and 30 (Tillie-
vs 60 pg/ml in status asthmaticus and Leblond et 
stable asthmatic patients vs controls, al., 1999) 
respectively (p < 0.05). 
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- Latent TGF~l: median of-900 and 75 
vs 1 OO pg/ml in status asthmaticus and 
stable asthmatic patients vs controls, 
respectively (p < 0.05). 

Bronchial biopsies Protein* -Medianof-41.4vs7.8, 11.1, 15,and8.l (Wenzel et 
cell/mm2 in the submucosa of eo + severe al., 1999) 
asthmatics vs controls, mild asthmatics, 
moderate asthmatics and eo - severe 
asthmatics, respectively (p = 0.0003). 
- TGFB + cells correlate with eosinophils, 
neutrophils and macrophages number (p < 
0.0001). 

BALF-enriched mRNA - Increased in mild atopic asthmatics vs (Prieto et al., 
alveolar controls (p < 0.005). 2000) 
macrophages 
1-B ronchial 1- Protein* 1- 108 vs 24 + cells/mm2 of airway (Chu et al., 
biopsies submucosa in asthmatics vs controls (p = 2000) 

0.002). 

2-Peripheral blood 2- Protein 2- 115 vs 46 pg/106 cells in asthmatics vs 
neutrophils (spontaneous controls, respectively (p = 0.007). 

release ex 
vivo) 

Airway epithelial Prote in - ~4 vs 1.5 pg/ 104 ce lis in asthmatics vs (Hastie et 
ce lis (ex vivo) controls (p = 0.032). al., 2002) 
Cells in sputum Prote in - 23 out of 26 asthmatics demonstrated (Nomura et 
samples TGF~ 1 + cells vs 0 out of 8 in normal al., 2002) 

volunteers. 
Bronchial biopsies Protein* - ~11and6 vs< 1 + cells/mm2 of (Chakir et 

bronchial submucosa, in severe-to- al., 2003) 
moderate and mild asthmatics vs controls, 
respectively (p < 0.05). 
- Immunoreactivity was mainly localized 
in inflammatory cells. 

1- Bronchial 1-mRNA 1- Median of ~43 vs 5 + eo/mm2 before vs (Flood-Page 
biopsies after treatment with mepolizumab in mild et al., 2003) 

atopic asthmatics, respectively (p = 0.04). 
- Median of ~20 vs 39 + eo/mm2 before vs 
after placebo treatment, respectively. 

2- BALF 2- Protein 2- Median of ~5 vs 4 pg/ml before vs after 
treatment with mepolizumab in mild 
atopic asthmatics, respectively (p = 0.05). 
- Median of ~4 vs 4 pg/ml before vs after 
placebo treatment, respectively. 

- In both cases, there was no control group 
for comparison. 

Bronchial biopsies Protein - 13.5 vs 3.2% of tissue area in ASM layer (Berger et 
in persistent asthmatics vs controls (p = al., 2003) 
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0.02), but was not elevated in intermittent 
asthmatics (2.7%) and was not affected in 
neither the epithelial nor the submucosal 
tissues. 

Plasma Prote in - 2.5 vs 1.5 ng/ml in nonatopic asthmatics (Joseph et 
vs controls, respectively (p = 0.002), but al.,2003) 
was not different in atopic asthmatics ( 1.4 
ng/ml). 

Bronchial biopsies Protein - Higher intensity of staining in the (Kokturk et 
submucosa, but not in the epithelium, of al., 2003) 
asthmatics vs controls (p < 0.05). 
- TGFf31 was mainly localized in 
association with connective tissue in all 
groups. 

BALF Prote in - Identical at baseline ( ,,_,50 pg/ml) (Batra et al., 
- Significantly increased after SAC in 2004) 
asthmatics only (""170 pg/ml) (p < 0.05). 

Bronchial Protein - ( 1.0-2.4) vs (0.2-1.6)% of total epithelial (Chu et al., 
epithelium area (interquartile 25-75% range) in 2004) 

asthmatic vs normal subjects, respectively 
(ns). 

Bronchial biopsies 1-mRNA 1- no diff erence between mild and severe (Balzar et 
(with or without persistent eosinophilia) al.,2005) 
asthmatics vs controls. 

2- Protein* 2- The majority of subjects in every 
groups expressed undetectable or very low 
number of+ cells in the submucosa. 

1-Serum 1- Protein 1- 11.7, 14.5 and 36.8, vs 5.5 ng/ml in (Karagiannid 
severe asthmatics with inhaled and is et al., 
systemic GCs, moderate asthmatics with 2006) 
inhaled GCs and moderate asthmatics 
without any drug treatment vs healthy 
subjects, respectively (p ::5 0.001 for all 
groups of asthmatics vs controls). 

2-CD4+ T cells 2-mRNA 2- Decreased expression in moderate 
asthmatics without any drug treatment 
compared to each of the 3 other groups (p 
::5 0.01). 

Exhaled breath Protein* - 1.69-fold increase in asthmatics (Matsunaga 
condensate compared to healthy subjects (p < 0.01). et al., 2006) 
*Antibody used did not discriminate between TGFj31, 2 or 3 or is not specified. 
Unless otherwise indicated, amounts of TGFf:H represent the mean values. 
Abbreviation: +, positive; BALF, bronchoalveolar lavage fluid; BM, basement 
membrane; eo, eosinophils; GCs, glucocorticoids; ns; not statistically significant; 
SAC, segmental allergen challenge. 

24 



Table 2: lncreased expression of TGFfH in animal models of asthma 

Species Models Tissues mRNAor Extent of the increase References Protein 
Female OVA Whole-lung Active protein - Increased in fonction of allergen (Tanaka et 
BALB/c sensitization lavage concentration. From - 10, 60, 145 al., 2001) 
mi ce and and 190 pg/ml in saline, 0.01, 0.1 

challenge and 1 % OVA, respectively (p < 
0.01). 

C57BU6 IL-13 1- Lung 1-mRNA 1- Increased expression in (Lee et al., 
mi ce transgenic homogenates transgenic mice vs littermate 200la) 

controls. 

2- Whole-lung 2- Protein 2- -294 vs 132, 1794 vs 59 and 
lavage 2610 vs 88 pg/ml in transgenic 

mice vs littermate controls at 1, 2 
and 3 mo of age, respectively (p < 
0.01). 

Active protein - -2.4 to 4.3-fold increases in 
Iuciferase activity when CCI-64 
cells stably transfected with a 
luciferase reporter gene driven by 
the PAI-1 promoter were 
stimulated with BALF of 
transgenic compared to littermate 
control mice (p < 0.001). 

3- Lung sections 3-mRNAand 3- Expression was restricted to the 
Protein airway epithelium and to some AM 

in littermate controls, but increased 
in AM and was appreciated in 
airway epithelium, type Il 
pneumocytes and occasionally in 
eosinophils of transgenic mice. 

Male Endotoxin- Lung sections Prote in 1- 2.64 vs 0 relative intensity in air- (Savov et 
C3H/HeBF induced 1- (Staining vs LPS-exposed animais after 4 wk al., 2002) 
el mice asthma Subepithelium intensity was of LPS exposure (p < 0.005), but 

are a graded from 0 this difference did not persist after 
to 3) a 4 wk recovery period. 

2- Epithelium 2- 2.59 vs 0.83 relative intensity in 
air- vs LPS-exposed animais after 4 
wk of recovery of the 4 wk LPS 
exposure (p < 0.005), but no 
difference (0.83 vs 1.14 in air- vs 
LPS-exposed animais) after the 4 
wk of exposure. 

Male BP2 OVA -BALFand Protein* - Increased expression in both of (Corbel et 
mi ce sensitization whole lung these Jung compartments 48 h after al., 2003) 

and the Jast challenge of a 8 mo 
challenge protocol of bronchoprovocation, 

but not after 48 h of a single 
challenge, compared to control 
mi ce. 

Female OVA Whole-lung Active protein - 44.9, 41.8 and 583.6 pg/ml in (Masudaet 
WBB6F1, sensitization lavage control, sensitized only and al.,2003) 
W/Wv and and sensitized/challenged WBB6F1 
Sl/Sld mice challenge mice, respectively (p < 0.001). 

- 38.4, 45.3 and 555.8 pg/ml in 
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control, sensitized only and 
sensitized/challenged W/Wv, 
respectively (p < 0.001). 
- 102.4 vs 464.6 pg/ml in sensitized 
only vs sensitized/challenged 
Sl/Sld, respectively (p < 0.05). 

Male Endotoxin- Whole-lung 1- Protein 1- -865 vs 58 pg/ml in C3HeB/FeJ (Brass et 
C3HeB/FeJ induced lavage vs C3H/HeJ after 5 d of LPS al., 2003) 
(LPS- asthma exposure (p < 0.05), but was not 
sensible) different after 4 h of exposure or 96 
and h after an 8 wk of exposure. 
C3H/HeJ 
(LPS- 2- Active 2- -111vs19 pg/ml in C3HeB/FeJ 
insensible) protein vs C3H/HeJ after 5 d of LPS 
mi ce exposure (p < 0.05), and -22 vs 0 

pg/ml in C3HeB/FeJ vs C3H/HeJ 
after 4 h of LPS exposure (p < 
0.05), but not different 96 h after a 
8 wk of LPS exposure. 

Female OVA Whole-lung Active protein - 47.5, 57.9 and 178.0 pg/ml in (Nagao et 
C57BL/6 sensitization lavage control, sensitized only and al., 2003) 
and and sensitized/challenged C57BL/6, 
congenic IP challenge respectively (p < 0.01). 
KO mice - 39.1, 44.3 and 342.5 pg/ml in 

control, sensitized only and 
sensitized/challenged IP KO, 
respectively (p < 0.01). 

Female OVA Whole-lung Active protein - 17.l and 265.3 pg/ml in sensitized (Komai et 
BALB/c, sensitization lavage only and sensitized/challenged al., 2003) 
BALB/cJ, and BALB/c, respectively (p < 0.01). 
and challenge - 27.5, 32.5 and 333.8 pg/ml in 
BALB/cJ control, sensitized only and 
congenic sensitized/challenged BALB/cJ, 
IL-4KO respectively (p < 0.01). 
mi ce - 27.9, 29.5 and 81.6 pg/ml in 

control, sensitized only and 
sensitized/challenged IL-4 KO, 
respectively (p < 0.01). 

Female OVA 1- Lung sections 1- Protein 1- Altered compartmentalization of (Mc Millan 
BALB/c sensitization TGFfH immunoreactivity, from and Lloyd, 
mi ce and airway epithelium to submucosal 2004) 

challenge compartment. 

2- Lung 2- Active 2- -66, 180, 160 and 66 vs 50 
homogenates protein pg/ml in 25, 35, 55 days challenged 

and 80 days challenged, 1 month 
recovered vs control mice, 
respectively (p < 0.05 for 35 and 55 
days challenged vs control mice). 

Female OVA 1- Whole-lung Prote in 1- 300 vs 135, 356 vs 156 and 369 (Cho etal., 
BALB/c sensitization lavage fluid vs 146 pg/ml in sensitized mice 2004b) 
mi ce and challenged vs unchallenged for 1, 3 

challenge and 6 mo, respectively (p = 0.03). 
- Reduction to 241 and 269 pg/ml 
with ISS treatment in sensitized 
mice challenged for 3 mo and 6 
mo, respectively, (p = 0.05), but no 
reduction in the l mo challenged 
group. 
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2- Lung 2- 1946 vs 664 pg/mg of lung 
homogenates protein in challenged (3 mo) vs 

unchallenged sensitized mice, 
respectively (p = 0.02). 
- Reduction to 939 pg/mg of lung 
protein in challenged sensitized 
mice treated with ISS (P = 0.05) 

C57BU6 OVA 1- Lung 1- Protein 1- 3740 vs -1855 pg/ml in (Cho et al., 
and sensitization homogenates challenged vs unchallenged 2004a) 
congenic and sensitized WT mice, respectively (p 
IL-5 KO challenge < 0.01). 
mi ce - 2170 vs -1455 pg/ml in 

challenged vs unchallenged 
sensitized IL-5"1 mice (p < 0.05 
when compared challenged mice 
with WT and IL-5 1 genotypes). 

2- Lung sections 2- Protein* 2- 64.5 VS -5 TGFB + 
(numberof cells/bronchus in challenged vs 
peri bronchial unchallenged sensitized WT mice, 
cells +for respectively (p < 0.001). 
TGFB per - 22.6 vs -1 TGFB + cells/bronchus 
bronchiole of in challenged vs unchallenged 
150-200 µm of sensitized IL-5 1

· mice (p < 0.001 
internai when compared challenged mice 
diameter) with WT and IL-5"1

· genotypes). 
- Peribronchial cells + for TGFB 
were mainly eo (63%) and 
macrophages (35%), but increased 
expression of TGFB was also 
observed in the epithelium of both 
WT and IL-s-1

· challenged mice. 
Male Endotoxin- Whole-lung 1- Protein 1- 266. l, 173.8 and 43.2 vs nd (Brass et 
C57BU6 induced lavage fluid pg/ml in 4 wk exposed, 3 d al., 2004) 
and asthma recovered, 5 d and 4 h exposed vs 
congenic control mice, respectively. 
LBPKO - 115.7, 87.7 and 34.2 vs nd pg/ml 
mi ce in 4 wk exposed, 3 d recovered, 5 d 

and 4 h exposed vs control LBP·1
· 

mice, respectively. 

2-Active 2- 4.3, 58.3 and 6.5 vs nd pg/ml in 
protein 4 wk exposed, 3 d recovered, 5 d 

and 4 h exposed vs control mice, 
respectively. 
- nd, 23.5 and 5.4 vs nd pg/ml in 4 
wk exposed, 3 d recovered, 5 d and 
4 h exposed vs control LBP·' mice, 
respectively. 

Female OVA 1- Lung sections la) Protein la)- Intense staining in airway (Kumar et 
BALB/c, sensitization (Ab used was epithelium of naïve mice al., 2004) 
congenic and acutely specific for - Median values of 3 vs 2 in the 
IL-13·'· and challenge the active epithelium of chronically 
CD4+- or form, but the challenged (6 wk), sensitized WT 
depleted chronically latent form vs similarly treated IL-131 mice (p 
mi ce challenge was revealed < 0.01). 

following - Median values of 3 vs 3 in the 
proteinase K epithelium of chronically 
treatment) challenged (6 wk), sensitized WT 
(staining vs similarlv treated CD4+ -deoleted 
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intensity was mice (ns). 
graded from 0 
to 3) 

lb) Active lb)- Median values of 2, 1.5 and 0 
protein in the epithelium at 3, 6 and 24 h 

following the last exposure, 
respectively, in chronically 
challenged, sensitized WT mice 
compared to 0, 0 and 0.5 in acutely 
challenged, non-sensitized and to l, 
1.5 and 0.5 in acutely challenged, 
sensitized WT mice at the same 
time points. 
- Median values of 2, 2 and 2 in the 
subepithelial zone at 3, 6 and 24 h 
following the last exposure, 
respectively, in chronically 
challenged, sensitized WT mice 
compared to 0, 0 and 0 in acutely 
challenged, non-sensitized and 2, 3 
and 2 in acutely challenged, 
sensitized WT mice at the same 
time points. 
- Median values of 3, 2, 2 and 1 vs 
0 in the subepithelial zone of 
sensitized WT mice, challenged for 
8, 6, 4 and 2 wk vs naïve mice, 
respectively (p < 0.05 for 8 and 6 
wk compared to naïve). 
- Median values of 2 vs 1 in the 
subepithelial zone of chronically 
challenged (6 wk), sensitized WT 
vs similarly treated IL-13·1

• mice (p 
< 0.05). 
- Median values of 2 vs 0 in the 
epithelium of chronically 
challenged (6 wk), sensitized WT 
vs similarly treated IL-13·1· mice 3 
h after the last exposure (p < 0.01). 
- Median values of 2 vs 0.5 in the 
subepithelial zone of chronically 
challenged (6 wk), sensitized WT 
vs similarly treated CD4•-depleted 
mice (p < 0.01). 

2- Whole-lung 2-Active 2- 11.8, 6.5, 4.3 and 8.0 VS 5.1, 
lavage prote in ng/ml in non-sensitized acute, 

sensitized acute, non-sensitized 
chronic and sensitized chronic at 6 
h following the last challenge vs 
naïve, respectively (ns). 
- 80% ofTGF(:H in the BALF was 
in an active form. 

Male OVA Whole-lung Active -300 vs 30 pg/ml in sensitized and (Peng et al., 
BALB/c sensitization lavage Protein* challenged vs shammed animais, 2005) 
mi ce and (ns). 

challenge 
Female OVA 1- Whole lung mRNA 1- No difference between sensitized (Kelly et 
BALB/c sensitization mice challenired with OV A or al., 2005) 
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mi ce and saline at either 2 or 8 wk following 
challenge the Iast exposure. 

2- 2- Increased at 2 wk, but not at 8 
Microdissected: wk, following the last exposure in 
a) Branchial the branchial wall (p < 0.05). 
wall - When the epithelium and the 
b) Epithelium ASM cells of the branchial wall 
c)ASM were analysed separately, the 

increase observed at 2 wk after the 
last exposure was restricted to the 
epithelium (p < 0.05). 

BALB/c OVA Lung mRNA - Weak, but seemingly significant (Karagianni 
mi ce sensitization homogenates decrease at 2, but not 12 h, dis et al., 

and following two or four 1-h antigen 2006) 
challenge challenge in mice recovered from a 

first period of challenge 228 days 
ago (p ,;; 0.0 l ). 

BALB/c OVA Lung Prote in - -6000 vs 7250 and 5250 pg/rat (Kiwamoto 
T-cell sensitization homogenates Jung in WT vs GAT A and T-bet et al., 2006) 
GATA-3 or and transgenic miive mice, respectively, 
T-bet challenge compared to 5750 vs 8375 and 
transgenic 4425 in the same groups 1 d 
mice following the last challenge on 

sensitized mice (p < 0.05 for both 
transgenic mice vs WT after 
sensitization/ challenge). 

Female Occupationa 1- Lung Protein 1- Increased expression 48 h after (Lee et al., 
BALB/c 1 asthma homogenates the last TDI inhalation. 2006a) 
mi ce (TDI- - PPARy agonists rasiglitazone and 

induced) pioglitazone, as well as transferred 
of adenovirus gene vector 
expressing PPARy2 cDNA or BA Y 
11-7085 partial! y prevent TDI-
induced TGFfH. 

2- Whole-lung 2- nd vs ~ 120 pg/ml 48 h after the 
lavage last TOI inhalation in control vs 

experimental group, respectively (p 
<0.05). 
- PPARy agonists rosiglitazone and 
pioglitazone, as well as transferred 
of adenovirus gene vector 
expressing PPARy2 cDNA partially 
prevent TDI-induced TGF{31 (p < 
0.05). 

Female OVA 1- Whole-lung Protein 1- 236 vs 789 and 543 pg/rnl in (Lee et al., 
BALB/c sensitization lavage control vs sensitized and 2006c) 
mi ce and challenged mice treated or not with 

challenge fluticasone (p < 0.05). 

2- Lung sections 2- lncreased positive cells in the 
peribronchial region of control vs 
sensitized and challenged mice, 
which was reduced by fluticasone 
treatrnent. 

Female OVA Whole-lung Protein - ~650 vs 450 pg/ml in OVA- (Munitz et 
BALB/c sensitization lavage challenged vs saline-challenged al., 2006) 
mi ce and sensitized mice, respectively. 

challenge - Continued to increase steadily in 
a chronic (38 additional days) 
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challenge pratocol, up to ~900 
pg/ml. 
- Correlated with eo counts in the 
lavage (R2 = 0.89). 
- The increase was completely 
reversed with a bispecific antibody 
directed against CD300a that 
targeted CCR3+ cells (LCl) (p < 
0.01). 

Brown OVA - Lung sections - Pratein* - Staining intensity scores in airway (Mansoor et 
Norway rats sensitization (midlevel epithelium and ASM tissue were al., 2006) 

and segmental significantly increased from isotype 
challenge branchi) control in sensitized/challenged 

(4.71), but not in contrai rats 
(2.00). 
- Addition of pirfenidone in 
sensitized/challenged animal's diet 
may slightly decreased staining 
intensitv ( 4.5). 

Female OVA 1- Whole-lung - Pratein 1- ~125 vs nd pg/ml in OVA- (Lee et al., 
C57BL/6 sensitization lavage (7 days challenged vs saline-challenged 2007) 

and after the last sensitized mice, respectively (p < 
challenge challenge) 0.05). 

- Reduced to ~60, 65 and 70 vs 126 
or 128 pg/ml in Montelukast-, 
Pranlukast- and anti-IL-11 Ab- vs 
vehicle- or control Ab-treated 
animais, respectively (p < 0.05). 

2- lncreased in OV A-challenged vs 
saline-challenged sensitized mice 

2- Lung (p < 0.05). 
homogenates (7 - Reduced in Montelukast-, 
days after the Pranlukast- and anti-IL-11 Ab- vs 
last challenge) vehicle- or contrai Ab-treated 

animais (o < 0.05). 
*Antibody used did not discriminate between TGF~l, 2 or 3 or is not specified. 
Unless otherwise indicated, amounts of TGF~l represent the mean values. 
Abbreviation: AM, alveolar macrophages; d, day; eo, eosinophils; h, hour; IP, 
prostaglandin (PG)l2 receptor; KO, knockout; LBP, LPS binding protein; nd, none 
detected; ns, not statistically significant; OVA, ovalbumin; PAI-1, plasminogen 
activator inhibitor-1; PPAR, peroxisome proliferator-activated receptor; TDI, toluene 
diisocyanate; wk, week; WT, wild type. 

1.5. Cellular sources of TGF{Jl in asthma 

Studies investigating the cellular source of TGF~l in asthma have also yielded 

inconsistent results. It is known that TGF~l is widely expressed throughout the body 

and every resident structural and immune cell in the lung, as well as every 

inflammatory cell mobilised to the airways during asthma exacerbation, are able to 
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express and secrete TGFf31. In the lung of non-asthmatic human or animal, airway 

epithelium seems to be the major site of TGFf31 expression (de Boer et al., 1998; Lee 

et al., 2001a; Magnan et al., 1994; Magnan et al., 1997; Pelton et al., 1991; 

Warshamana et al., 2001; Yamauchi et al., 1988). However, other stroma! cells in the 

airways such as fibroblasts (Kelley et al., 1991a; Kelley et al., 1991b; Lee et al., 1995; 

Vignola et al., 1997), endothelial cells (Coker et al., 1996), vascular smooth muscle 

(VSM) cells (de Boer et al., 1998) and ASM cells (Berger et al., 2003; Black et al., 

1996; Coutts et al., 2001; de Boer et al., 1998; Fukuda, 1993; Hamet et al., 1991; 

Kokturk et al., 2003; Lee et al., 2006b; Magnan et al., 1994; Majesky et al., 1991; 

McKay et al., 1998) are also potential sources of this cytokine, since they were all 

shown to express and produce detectable amount of TGFf31. Due toits affinity to 

certain components of the ECM, latent forms of TGFf31 in the lung have a tendency to 

accumulate in particular compartments of the airway wall. In fact, many 

immunohistochemical studies have localized TGFf31 mainly in extracellular 

compartments in association with connective tissues of the airway wall (Aubert et al., 

1994; Kokturk et al., 2003; Redington et al., 1998). However, the cellular sources of 

ECM-sequestered TGFf31 are bard to infer. Contrasting these results, Magnan and 

coworkers (Magnan et al., 1997) were unable to identify TGFf3 expression in 

extracellular space, but rather identified inflammatory cells infiltrating the submucosa 

and the epithelium as the major source of this cytokine. One could speculate that this 

controversy may be related to the use of a pan-TGFf3 antibody (Ab) in Magnan and 

cow orkers study, but the detecti on of all three forms of TG Ff3 instead of TG Ff31 onl y 

would be an additional reason to find TGFf3 in extracellular spaces. 
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Neutrophils 
In asthma, the cellular origin of TGFj31 is less clear and numerous inflammatory cells 

as well as structural cells were shown to contribute. Blood- or airway-derived 

neutrophils in normal and asthmatic individuals were shown to express TGFj3 (Chu et 

al., 2000; Grotendorst et al., 1989). Since, airway neutrophilia is particularly 

prominent in nonatopic asthma (Amin et al., 2000) and in more severe forms of the 

disease (reviewed in (Ennis, 2003)), neutrophils could contribute significantly to the 

increased expression of TGFj3 in these types of asthma. In this regard, Chu and 

coworkers (Chu et al., 2000) have demonstrated that around 55% of TGFj3 positive 

cells in the submucosal compartment of asthmatics and normal controls were 

neutrophils (Chu et al., 2000). However, only a fraction of neutrophils expressed 

TGFj3 (29 and 20% in asthmatic and normal submucosa, respectively). In animais, 

increased TGFj31 expression in the subepithelial area following prolonged (4 weeks) 

exposure to LPS was also neutrophil-dependent, as neutropenic animais did not 

develop this altered expression of TGFj31 (Savov et al., 2002). Interestingly, 

upregulation of TGFj31 expression in the airway epithelium observed after a recovery 

period of 4 weeks following exposure to LPS was also dependent on the presence of 

neutrophils during the LPS exposure period (Savov et al., 2002). Hence, it was 

concluded that neutrophils may be a direct source of TGFj31 following their 

mobilisation into the submucosa, but may also alter the subsequent expression of 

TGFj31 in other airway compartments, for instance the epithelium. In addition to the 

epithelium, Lee and coworkers (Lee et al., 2006b) have recently demonstrated that 

neutrophil elastase increased the expression of TGF(31 in ASM cells, suggesting once 
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again that the mobilisation and activation of neutrophils into the airways may increase 

TGF(31 via indirect mechanisms. Since TGF(31 was also recognised as a potent 

trophic factor for granulopoiesis (Keller et al., 1991) and was shown to recruit, 

activate and prolong survival of neutrophils in other diseases (Fava et al., 1991), 

TGF(31 upregulation and neutrophilia observed in asthma may mutually feedback 

each other, allowing the establishment of a vicious cycle potentially involved in 

disease exacerbation. 

Eosinophils 
In contrast to the aforementioned studies, Ohno and coworkers (Ohno et al., 1996) 

claimed that close to 100% of cells positive for TGF(31 mRNA in mild and severe 

asthma were eosinophils, whereas this cell accounts for only 20.8% of total TGF(31 

mRNA positive cells in control subjects. Similarly, Flood-Page and coworkers 

(Flood-Page et al., 2003) have shown that 86% of cells positive for TGF(31 mRNA in 

the bronchial mucosa were eosinophils, and that 76% of total eosinophil population in 

this tissue compartment was immunolabeled. These findings were substantiated by 

Minshall and coworkers study (Minshall et al., 1997), which reported a coefficient of 

determination (R2
) of 0.86 between TGFf:H mRNA positive cells beneath the 

basement membrane and the degree of eosinophilia in the same compartment. In this 

latter study, 65% of the TGFj31 mRNA positive cells were eosinophils and 75% of 

eosinophils were positive for TGFj31 mRNA. The remaining TGF(31 mRNA positive 

cells were identified as macrophages and fibroblasts (Minshall et al., 1997). Finally, 

Vignola and coworkers (Vignola et al., 1997) reported that eosinophils accounted for 
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80% of TGF~l mRNA positive cells in the submucosa, the other 20% being 

fibroblasts. 

Many other studies performed in humans or in animais bear witness to the contention 

that eosinophils are a major cellular source of TGF~l in asthmatic lungs by 

demonstrating a linear relationship between the degree of eosinophilia and the 

expression of TGFBl in different lung tissues. For example, Nomura and coworkers 

(Nomura et al., 2002) found positive correlation between eosinophil counts and the 

number of cells staining positive for TGFBI in induced sputum samples of asthmatics. 

In a murine mode! of allergie asthma, Tanaka and coworkers (Tanaka et al., 2001) 

reported a positive correlation between the number of eosinophils and the level of 

TGF~l in whole-lung lavage fluid. It was also proposed that eosinophils from 

bronchial asthmatics are more competent in TGFBI secretion compared to eosinophils 

of control subjects, owing to their elevated TGFBI mRNA (Minshall et al., 1997) and 

protein (Ohno et al., 1992) levels per cell. 

In inflammatory conditions affecting the upper airways, such as nasal polyps or 

allergie rhinitis, the cells expressing TGFBI gene in the mucosa specimens were also 

identified as being predominantly eosinophils (Ohno et al., 1992). The proportion of 

eosinophils positive for TGF~l gene was estimated to 50%. However, a great deal of 

TGFBI protein in these specimens was not cell-associated, but rather localized in the 

ECM associated with the vessels, the basement membrane or within the submucosa 

(Ohno et al., 1992). This later result was consistent with several 
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immunohistochemical studies investigating the expression of TGFj31 expression in 

Jung specimens (Aubert et al., 1994; Kokturk et al., 2003; Redington et al., 1998). 

IL-5 knockout mice also support the role for eosinophils in TGFj31 production. 

Compared to wild type animais, IL-5-deficient mice chronically exposed to allergie 

challenge showed a decreased expression of MBP positive cells, which paralleled the 

reduction in the number of TGFj3 positive cells in the peribronchial region and a 

decrease of TGFj31 expression in whole lungs (Cho et al., 2004a). These changes in 

TGFj31 expression also correlated with fewer signs of airway remodeling. In 

accordance with this animal model, treatment of mild atopic asthmatics for 2 months 

with anti-IL-5 Ab (mepolizumab) was shown to be successful in reducing tissue 

eosinophilia, Jung TGFj31 expression and deposition of ECM components in the 

lamina reticularis (Flood-Page et al., 2003). Therefore, the fact that bath IL-5-

deficient mice (Cho et al., 2004a) and asthmatics treated with anti-IL-5 Ab (Flood-

Page et al., 2003) demonstrated fewer eosinophils, less TGFj31 expression and fewer 

signs of remodeling supports the notion that eosinophils are an important source of 

TGFj31 in the lungs of asthmatics and that IL-5-dependent recruitment of eosinophils 

is a prerequisite for TGFj31-mediated airway remodeling. However, it is worthy of 

mention that the statistically significant decrease in the median level of TGFj31 in 

BALF reported by Flood-Page and coworkers (Flood-Page et al., 2003) following 

anti-IL-5 treatment was approximately 1 pg/ml, which is unlikely to be 

physiologically relevant. 
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Macrophages 
In the above study with IL-5-deficient mice, Cho and coworkers (Cho et al., 2004a) 

also demonstrated that 35% of TGFj31 positive cells in the peribronchial region were 

macrophages. In humans, macrophages derived from induced sputum samples also 

expressed TGFj31 (Nomura et al., 2002) and alveolar macrophages from asthmatics 

released spontaneously higher amounts of TGFj31 relative to alveolar macrophages 

derived from control subjects (Vignola et al., 1996). Similarly, Prieto and coworkers 

(Prieto et al., 2000) found higher level of TGFj31 mRNA in alveolar macrophages of 

mild atopic asthmatics compared to healthy subjects. In Magnan and coworkers study 

(Magnan et al., 1997), TGFj3 positive cells present in the submucosa of asthmatics 

were mainly identified as lymphocytes, macrophages and, to a lesser extent, 

eosinophils. In a transgenic model of asthma induced by lung overexpression of IL-

13, TGFj31 mRNA and protein were observed mainly in macrophages, but also in type 

II pneumocytes, airway epithelial cells and occasionally in eosinophils (Lee et al., 

2001a). In a mice model of prolonged allergen challenge-induced airway remodeling, 

the main source of TGFj31 was identified as mononucleated cells, likely macrophages 

(McMillan and Lloyd, 2004). Collectively, these studies suggest that macrophages are 

a likely source of TGFj31 in asthma. 

The higher levels of TGFj31 mRNA in BALF-enriched alveolar macrophages (AM) 

observed by Prieto and coworkers (Prieto et al., 2000) in mild atopic asthmatics at 

baseline was not further increase following repeated low-dose allergen inhalation. 

Similarly, the increased release of TGFj31 by alveolar macrophages derived from 

asthmatics demonstrated by Vignola and coworkers (Vignola et al., 1996) was at 
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baseline (i.e. without prior allergen bronchoprovocation). These results suggest that 

alveolar macrophages of asthmatics produce higher amounts of TGFf31 

spontaneously. lt equally raise the possibility that the baseline overexpression of 

TGFf31 observed in asthma by certain investigators (Kokturk et al., 2003; Matsunaga 

et al., 2006) is related to the increased production of this cytokine by alveolar 

macrophages. The teleologic advantage of an increased TGFf31 production by these 

cells in asthma is unknown. However, it is worth mentioning that alveolar 

macrophages are predominant in the airways compared to other cells mobillised into 

the airways following allergen challenge. Consequently, the mediators they produce 

are susceptible to influence to a great extent the pathologie outcomes. Of interest, 

alveolar macrophages were shown to be protective against asthma development in a 

rat model of asthma (Careau and Bissonnette, 2004). Owing toits well known 

immunosuppressive activity, it is tempting to speculate that the increased expression 

of TG Ff31 observed in al veolar macrophages of asthmatics at baseline may represent a 

regulatory mechanism to mitigate the variable chronic ongoing inflammation during 

the stable phase of the disease. In addition, and in contrast to other airway 

compartments, expression of TGFf31 may not be altered in this particular cell 

following allergen challenge. 

Mast cells 
Unfortunately, the contribution of mast cells in the upregulation of TGFf31 expression 

in asthma is not clear either. Based on a study using mast cell-deficient mice (W/W 

and Sl/Sld), Masuda and coworkers (Masuda et al., 2003) have demonstrated that the 

overall contribution of mast cells in the upregulation of TGFf31 expression in BALF 

37 



of sensitized and challenged mice was negligible. However, several groups have 

demonstrated that mast cells were capable of secreting TGFf:H constitutively or upon 

stimulations in in vitro conditions (Baumgartner et al., 1996; Gordon and Galli, 1994; 

Pennington et al., 1991). 

Epithelium 
In contrast to Magnan and coworkers (Magnan et al., 1997) that reported a decrease 

expression of TGF~ in the epithelium of asthmatics, some studies have pointed 

toward this tissue to explain the increased expression of TGF~l in the airways of 

asthmatic individuals (Hastie et al., 2002; Vignola et al., 1997). Vignola and 

coworkers (Vignola et al., 1997) reported that TGF~ was faintly expressed in the 

airway epithelium of control subjects and was significantly elevated in asthmatic 

subjects. It was also demonstrated that the spontaneous release of TGF~ 1 ex vivo was 

higher in airway epithelial cells derived from asthmatic subjects compared to that 

derived from non-asthmatic subjects (Hastie et al., 2002). In animal mode) of 

sensitized mice chronically challenged by inhalation of low doses of antigen, Kumar 

and coworkers (Kumar et al., 2004) have demonstrated that TGFf:H expression 

increased in airway epithelial cells, but not in eosinophils or any other non-epithelial 

cells. In addition, using laser capture microdissection and real-time PCR to quantify 

TGF~l mRNA level in Jung sections of mice, Kelly and coworkers (Kelly et al., 

2005) demonstrated that the TGF~l mRNA upregulation observed 2 wk after chronic 

allergen exposure in sensitized animais was confined to the airway epithelium. Kumar 

and coworkers (Kumar et al., 2004) have also shown that TGF~l in airway epithelial 

cells of naïve animais is in its uncleaved, biologically inactive form. Following 
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chronic challenge of sensitized mice with low doses of antigen, the cleaved and 

biologically active form of TGFf:H was found mainly in the subepithelial zone in 

association with connective tissue (Kumar et al., 2004). They suggested that the 

increased expression of TGFf:H in the subepithelial zone simply reflects deposition of 

epithelial cell-derived TGFf:H onto the subjacent ECM following its activation by 

antigen challenge. Hence, the concept that the increased expression of TGFj)l in the 

submucosa originates from inflammatory cell infiltrates makes no unanimous 

consensus among investigators in the field. This result was consistent with 

observations made by Kokturk and coworkers (Kokturk et al., 2003) on human 

tissues, which confirmed the increased expression of TGFj)l in the airway submucosa 

of asthmatics despite the lack of a simultaneous alteration in inflammatory cell 

infiltrate. However, only asthmatics that were free from symptoms for at least a month 

preceding the biopsy were included in this latter study. lt is thus possible that remuant 

(i.e. non-utilised) inflammatory cell-derived TGFj) 1 was stored in the ECM after 

secretion and, as a result, be responsible for the increased TGFj)l expression observed 

at a time when cellular inflammation was resolved. Otherwise, increased TGFj)l 

expression may be produced by airway structural cells such as the cells present in the 

submucosa, including (myo)fibroblasts and ASM cells (Kokturk et al., 2003; 

McMillan and Lloyd, 2004), or may be derived from the epithelium as suggested by 

Kumar and coworkers (Kumar et al., 2004). These later also suggested that the 

concentration of antigen and the number of antigen expositions are key elements 

determining which cells will preferentially produce TGFj)l in allergie asthma. They 

concluded that eosinophils are the main TGFj)l-producing cells in acute models of 
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allergie asthma challenged with high doses of antigen, but the epithelium is the main 

source of this cytokine in sensitized animais chronically challenged with low doses of 

antigen. 

This increased TGFf:H production by the airway epithelium in asthma is consistent 

with numerous reports suggesting that epithelial cell-derived TGF~l could be 

upregulated upon different phlogogenic challenges in vitro (Dakhama et al., 2003; 

Hastie et al., 2002; Perng et al., 2006; Richter et al., 2001; Warshamana et al., 2001); 

albeit conflicting results have also been reported (Kwong et al., 2004). Ex vivo 

cultures of bronchiolar epithelial cells derived from smokers and from patients with 

COPD also secrete higher amounts of TGF~ compared from those of control patients 

(Takizawa et al., 2001). In addition, TGF~l upregulation in airway epithelial cells 

occurs by mechanical stress that mimics bronchocontriction (Tschumperlin et al., 

2003), as well as in several in vivo conditions in addition to animal models of asthma 

(Cho et al., 2004a; Kelly et al., 2005; Kumar et al., 2004), including IL-13 transgenic 

mice (Lee et al., 2001a), and advanced pulmonary fibrosis (Khalil et al., 1996b) and 

COPD (Takizawa et al., 2001) in humans. 

The decreased expression of TGF~ in the airway epithelium of asthmatics reported in 

some studies (Magnan et al., 1997) may reflect an active secretion of TGF~. In this 

case, intracellular stores found in non-asthmatic epithelium would give higher staining 

intensity in immunohistochemical study, but the latter would be attenuated in 

asthmatics as soon as the intracellular stores are emptied from the cells during the 
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course of the disease. Physiologically, this active TGFj3 secretion may be interpreted 

as an attempt by the epithelium to buffer excessive ongoing inflammation. 

Alternatively, a decreased immunoreactivity may represent a real decrease in de nova 

synthesis of TGFj31 by the asthmatic epithelium. In this case, this may represent a 

well-regulated process that favours inception or perennialization of airway 

inflammation. 

1.6. Cellular sources ofTGF{Jl in other types of inflammation 

In other types of airway inflammation mediated by allergy-independent mechanisms, 

such as the one induced by prolonged LPS exposure, TGFj31 also increased in the 

whole-lung lavage, as well as in the epithelium and the submucosal compartments of 

the Jung (Brass et al., 2003; Brass et al., 2004). Similarly, a single intratracheal 

delivery of an adenoviral vector containing the proinflammatory cytokine IL-113 was 

sufficient to increase the expression of TGFj31 (Kolb et al., 200la). Together, these 

findings suggest that TGFj31 is induced downstream of many kinds of inflammation, 

probably acting as a counterregulatory cytokine to resolve inflammation and to initiate 

repair processes. If this conjecture is true, and because asthma is an inflammatory 

disease of the airways, it is expected that TGFj31 would be upregulated in asthmatic 

airways at a Iater time-point following challenge. In addition, since it is a cytokine 

ubiquitously expressed, its cellular source in a particular disease may originate from 

the cells triggered by the inflammatory signais or by the inflammatory cells mobilised 

to the site of inflammation perse. Consequently, in the case of severe asthma where 

neutrophils predominate, neutrophils would be the main source of TGFj3 l; and in the 
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case of mild to moderate asthma where eosinophils predominate, eosinophils would 

be the principal cells secreting this cytokine. This hypothesis would reconciliate many 

of the conflicting results published so far and simply suggested that TGF~l is 

upregulated as a general mechanism to circumvent inflammation and its secretion is 

ensured by any cells present at the site of inflammation. Therefore, inconsistencies 

surrounding the cellular source of TGF~ 1 expression in asthma may be related to 

either the heterogeneity of asthma groups studied or to the particular states of the 

disease (exacerbation vs remission period) when the biopsies were taken. 

Sorne weaknesses in the studies involved in the controversial issue concerning the 

cellular source of TGF~l in asthma are also worthy of mention: Firstly, the Ab used 

in Magnan and coworkers (Magnan et al., 1997), Vignola and coworkers (Vignola et 

al., 1997), and Chu and coworkers (Chu et al., 2000) did not discriminate between the 

3 isoforms of TGF~ and thus, the staining distribution and intensity is additionally 

confounded by TGF~2 and TGFf:B expression. Secondly, the discrepancy may also be 

related to the control group of Magnan and coworkers (Magnan et al., 1997), half of 

which were smokers and ail showed existing or suspected lung disease. Finally, 

absence of medication withdrawal in the asthmatic group before tissue collections in 

this same study could also have led to erroneous results. 

1.7. Active TGFfJ signaling in asthma 

Active TGF~ signaling, measured by nuclear phosphorylated Smad2 (pSmad2) 

immunostaining, has also been observed in airways of animal (Lee et al., 2006c; 
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McMillan et al., 2005; Rosendahl et al., 2001) and human (Phipps et al., 2004; Sagara 

et al., 2002) asthmatics before and after allergie challenge. Whether it is a result of an 

increased expression of TGFf3, its desequestration from ECM or simply its activation 

could be debated, but active signaling surely testify that one or several of these 

processes are operati ve in asthma. 

However, one should mention that this increased pSmad2 observed in asthma did not 

exclude the possible involvement of other TGFf3 family members in the activation of 

AR-Smads (Smad2/3). Activin A, in particular, has recently gained interest in asthma 

pathophysiology. Both mRNA levels in total lung (Karagiannidis et al., 2006) and 

BALF concentrations (Cho et al., 2003) of Activin f3A were upregulated following 

OV A sensitization and challenge in mi ce. In humans, serum levels of Activin A were 

shown to be elevated in moderate asthmatics (l.16 ng/ml) compared to healthy 

individuals (0.14 ng/ml) (Karagiannidis et al., 2006). These studies suggest that 

increased expression of pSmad2 following SAC may not be entirely related to 

TGFf31, but also to other cytokines of the TGFf3 superfamily that signal via the AR-

Smads, such as Activin A. However, the serum levels of TGFf31 were more than 20-

fold higher than those of Activin A (Karagiannidis et al., 2006). In addition, this latter 

was 10-fold Jess potent than TGFf31 to activate Smad2/3 complex, as measured by 

transfection of human Jung fibroblasts (IMR-90) with a Smad2/3-responsive reporter 

gene (Karagiannidis et al., 2006). lt is thus believed that TGFf31 might outweigh the 

effect of Activin A, and consequently, may represent the main contributor of Smad2 

phosphorylation following SAC. 
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TGFf32 is also of particular interest in asthma. Two studies that failed to identify an 

increased expression of TGFf31 in asthmatic airways have looked at TGFf32 

expression, and both revealed significant increases (Balzar et al., 2005; Chu et al., 

2004). In one of these studies, Chu and coworkers (Chu et al., 2004) demonstrated a 

higher level of TGFf32 in the airway epithelium of asthmatics compared to normal 

subjects. They further demonstrated that TGF[32, but not TGFf31, is increased in 

primary cultures of bronchial epithelial cells following IL-13 stimulation. This 

result was supported by two previous articles, in which both IL-13 and IL-4 

increased TGFf32 production in bronchial epithelial cells (Richter et al., 2001; 

Wen et al., 2002). In the second study, Balzar and coworkers (Balzar et al., 2005) 

quantified the number of cells staining positive for TGFf) in the submucosa. They 

demonstrated that among the 3 TGFf) isoforms, only TGFf32 was increased in 

asthmatics. This increased expression was also restricted to the group of patients 

demonstrating the more severe form of the disease with persistent eosinophilia, which 

is surprisingly similar to the finding of Wenzel and coworkers (Wenzel et al., 1999) 

using a pan-TGFf3 Ab. Moreover, they showed that tissue eosinophils from the severe 

group of patients expressed higher amounts of TGFf32 compared to tissue eosinophils 

of control subjects or from patients suffering from a mil der form of the disease. 

Hence, in addition to the increased production of TGFf32 by the airway epithelium in 

response to T H2 cytokines (Chu et al., 2004; Richter et al., 2001; Wen et al., 2002), 

eosinophils in the submucosa could contribute to the overall increase of TGFf32 in the 

airways of severe asthmatics (Balzar et al., 2005). 
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Elevated expression of TGF~2 following bronchoprovocation was further 

substantiated by Batra and coworkers (Batra et al., 2004). In that study, TGFf32 

expression was increased in BALF 24 h after SAC. However, these investigators also 

noted higher expression of TGFf32 in non-asthmatics at baseline as well as 1 and 2 

weeks after SAC compared to asthmatic subjects. In fact, only at 24 h post-SAC did 

TGFf32 levels in BALF of asthmatics reach the concentration found in non-asthmatics. 

Collectively, these results suggest that TGFf32 is increased in the airway epithelium of 

asthmatics (Chu et al., 2004), as well as in eosinophils of a subgroup of severe 

asthmatics (Balzar et al., 2005), and even if its baseline expression in the fluid 

harvested by bronchoalveolar lavage is lower compared to non-asthmatics, it is 

transiently increased after allergen challenge (Batra et al., 2004). Since the TGFf32 

isoform acts on the same receptors and signal via the same AR-Smads than TGFf31, 

these results indicate that TGFf32 is also a likely candidate to explain activation of 

Smad signaling in asthma. 

However, TGFf31 Ab was shown to prevent phosphorylation of Smad2 in a murine 

model of prolonged allergen challenge-induced asthma (McMillan et al., 2005). This 

finding suggested that TGFf31 is responsible for the increased expression of pSmad2 

in the airways of asthmatics and excluded the possible involvement of TGFf32 or 

Activin A. lnterestingly, this anti-TGFf31 Ab was administered following the 

establishment of eosinophilic inflammation, and in addition to abrogating pSmad2 

signaling in situ, it reduced total and proliferating ASM cell numbers, mucus 
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production and peribronchiolar ECM deposition. Collectively, these results suggest 

that anti-TGFf31 therapy can be envisaged as a therapeutic approach (i.e. following the 

establishment and the diagnosis of the disease), not only to reverse fibrosis, but also to 

alleviate other features of airway disease in asthma. 

Complementary to McMillan and coworkers' study (McMillan et al., 2005), Leung 

and coworkers have recently shown that SD-208, a pharmacological inhibitor 

targeting ALK5, administered both as a prophylactic or as a therapeutic, successfolly 

reduce airway inflammation, goblet cell hyperplasia and ASM cell hyperplasia in a 

Brown Norway rat model of allergie asthma (Leung et al., 2006). This study suggests 

a potent pro-inflammatory action of TGFf3 in asthma in addition toits well-recognized 

fonction in airway remodeling. This study also joined McMillan and coworkers' 

conclusions (McMillan et al., 2005), highlighting the beneficial effect of a strategy 

preventing TGFf3 signaling in reversing established features of airway disease. 

The anti-inflammatory effect observed with SD-208 are counterintuitive to the well-

known immunomodulatory fonction of TGFf31 (Leung et al., 2006). In fact, several 

evidences have shown that TGFf31 counteracts excessive airway inflammation. 

Examples include the following: 1-TGFf)l heterozygous mice, which express 30% of 

the TGFf31 protein level observed in the wild type animal, develop a more severe 

form of the disease when exposed to an OV A sensitization/challenge protocol (Scherf 

et al., 2005); 2-T lymphocytes engineered to produce TGFf31 or conditioned to 

secrete higher amounts of TGFf3 by oral tolerance reverse and ameliorate, 

respectively, allergen-induced airway inflammation (Haneda et al., 1999; Hansen et 
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al., 2000); and 3- blocking TGFf3 signaling in T cells by overexpressing Smad7 

enhances allergen-induced airway inflammation (Sagara et al., 2002). However, the 

findings obtained with SD-208 indicate that considering TGFf31 only as an 

immunosuppressive cytokine can be misleading. In support to the inflammatory role 

of TGFf31 in asthma, others have shown that its release by structural cells in the 

airways contributes to inflammatory cell recruitment (Berger et al., 2003; Berger et 

al., 2005). In fact, TGFf31 is a powerful chemotactic factor for 

monocytes/macrophages (Wahl et al., 1987), eosinophils (Luttmann et al., 1998), 

neutrophils (Thelen et al., 1995) and mast cells (Gruber et al., 1994) in vitro. 

Migration of monocytes/macrophages toward a gradient of TGFf31 concentrations 

occurs at concentrations in the femtomolar range (Wahl et al., 1987). Additionally, 

TGFf31 have been shown to rescue murine macrophages from apoptosis (Chin et al., 

1999). In vivo, the number of mast cells in ASM bundles was positively associated 

with the ASM tissue expression of TGFf31 (Berger et al., 2003). Given the important 

fonction of mast cells in the pathophysiology of allergie asthma (Brightling et al., 

2002), increased secretion of TGFf31 by structural cells in the airways following 

allergie challenge may foster, rather than attenuate, inflammation. 

1.8. Speculative argument 

With ail data taken together, one might imagine the following scenario of TGFf31 

regulation in asthma and its potential role in the pathogenesis of the disease. In the 

first stage of the disease, structural cells-derived TGFf31 may be release, or simply 

activated, to induce antigen presenting cell (APC, i.e. monocytes and dentritic cells) 
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and mast cell tissue infiltration. Both of these cells are required for an immunologie 

response to take place in the airways. APC capture and process the allergen and then 

migrate to regional lymph nodes to build a T- and B-lymphocyte immunologie 

response. On the other hand, mast cells homes the airway walls and will catch the B-

cell-derived IgE to produce an allergen-specific reaction following subsequent 

allergen exposure. In this scenario, it is thus inferred that TGFf:H is implicated in the 

inception of allergie asthma by fostering the sensitization process. In later stage of the 

disease (i.e. in already sensitized individuals), TGFPl synthesis by structural cells 

may stay downregulated to favor the establishment of lymphocytic and 

neutrophilic/eosinophilic inflammation. These mobilised inflammatory cells are first 

programmed to synthesize or secrete pro-inflammatory mediators and to sequentially 

express and secrete immunosuppressive cytokines, such as TGFpl, to prevent 

excessive inflammation and damage. At later time points, when the bulk of 

inflammation is resolved, alveolar macrophages would maintain a higher secretion of 

TGFPl and the airway epithelium would start to expressed TGFPl again (Kelly et al., 

2005). Increased expression of TGFPl by both of these cellular sources may aim to 

get rid of remnant inflammation and to pursue the healing response. In this scenario, 

when TGFPl action is well regulated, restitution of airway wall integrity would take 

place and airway fonction would be recovered. Otherwise, when TGFPl actions are 

uncontrolled, airway remodeling would be likely to occur. 
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1.9. TGF{31 receptors in asthma 

TGFB receptors are also expressed ubiquitously on mammalian cells (Bassing et al., 

1994; Miyazono et al., 1994b; Tucker et al., 1984; Wakefield et al., 1987). In the lung, 

TBRI and TBRII were identified in macrophages, as well as in epithelial, VSM, ASM 

and endothelial cells of both conducting airways and alveoli (de Boer et al., 1998). In 

contrast to its ligand, only few studies have documented the regulation of these 

receptors in asthmatic airways. Balzar and coworkers (Balzar et al., 2005) have 

demonstrated that TBRl is downregulated in mild and severe asthma. Similarly, 

Barbato and coworkers (Barbato et al., 2003) have reported a decrease in the number 

of cells positive for TBRII in the subepithelium of children with asthma. According to 

the authors, these results may be indicative of active TGFB signaling, which is 

associated with TGFB receptor internalization. In contrast, wounding (Chen and 

Khalil, 2002) as well as granulocyte-macrophage colony-stimulating factor (GM-

CSF) treatment (Chenet al., 2003) have been shown to increase TGFB receptor 

expression in monocultures of ASM cells. Since ASM cells are subjected to different 

damaging stress and that GM-CSF is upregulated in the lungs of asthmatic patients 

(Marini et al., 1992; Sousa et al., 1993; Vignola et al., 1997), these in vitro 

observations will required further attention as they may actually subtantiate the 

biological effect of TGFBl on ASM cells in vivo. 

1.10. Interim conclusions and perspectives 

Des pite being extensively studied, the expression of TGFB 1 in the airways of 

asthmatics still elicits more questions than answers. The current weight of evidence 
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suggests that TGF~l is upregulated in asthma. However, whether its expression is 

altered at baseline or it is upregulated in a transient fashion following 

bronchoprovocation is not clear and may depend on the particular cell and/or tissue 

studied. For instance, baseline expression of TGF~l seems to be increased in alveolar 

macrophages (Prieto et al., 2000; Vignola et al., 1996), but its expression in the 

airway lumen seem to be inducible. In support to the later contention, two groups of 

investigators that have collected BALF following SAC in human asthmatics have 

demonstrated that the TGF~l level is transiently increased (Batra et al., 2003; Batra et 

al., 2004; Redington et al., 1997). On the other hand, the kinetics of TGF~l 

expression in the airway epithelium of asthmatics seems to be more complex since 

both upregulation (Hastie et al., 2002; Vignola et al., 1997) and downregulation 

(Magnan et al., 1997) have been reported. Studies looking at the kinetic of TGF~ l 

expression in this particular tissue following allergen challenge should shed light on 

these conflicting results. 

As pointed earlier, ail the studies that were unable to detect an altered expression of 

TGF~l in asthma were investigating its expression levels by immunohistochemistry. 

Owing to the static picture obtained by staining lung sections by 

immunohistochemical technique, the lack of increased expression of TGF~l reported 

by these groups of investigators can reflect the failure to capture the transient TGF~l 

upregulation and thus, be the origin of the conflicting results. On the other hand, 

limitations with BALF procedure were also highlighted and it may thus be to soon to 

reject the possibility that TGFf:H in not overexpressed in asthma. Studies designed to 
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harvest tissues at multiple-time points following allergie challenge would be very 

useful to understand the kinetics of cytokine upregulations. Considering the invasive 

nature of trans- or endo-bronchial biobsies or even BALF, repeated measurements 

seems quite unrealistic with human subjects. Less invasive techniques of 

investigation, such as induced sputum (Adachi et al., 1996; Nomura et al., 2002) or 

exhaled breath condensate (Matsunaga et al., 2006), represent interesting alternatives 

for these multiple-time points studies and have previously been used successfully to 

assess TGFf:H expression in human subjects. The question that remains is to which 

extent these techniques accurately reflect TGFj31 expression in deeper airways. As 

such, the validity of these techniques needs to be tested. Otherwise, identification of 

other surrogates of Jung TGFj31 expression that could be readily measured by these 

Jess invasive techniques would be required. A last possibility to understand the 

kinetics of TGFj31 expression and activation would be to consider the used of animal 

models. 

In the mean time, increased expression of TGFj31 have been shown to occur 

exclusively in restricted localization in the airways or only in particular subgroups of 

patients, such as in severe asthmatics demonstrating prominent eosinophilic 

inflammation (Wenzel et al., 1999). Hence, in addition to temporal concern, spatial 

concern needs to be considered. The fact that TGFj31 may be differently involved in 

the pathogenesis (or in the remission) of asthma symptoms in phenotypicaly distinct 

group of asthmatics must also be appreciated. In addition, a debate still persists 

conceming the inflammatory cell that is mainly involved in the generation of TGFj31 
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in asthma, as eosinophils, macrophages, neutrophils and epithelial cells have been 

pointed-out. Whether these conflicting results mirror the heterogeneity of the disease 

in term of triggering agents, individual genetic variability or history and severity of 

the disease, or whether it is simply related to the time points or the tissue chosen to 

measure TGFf31 expression are still unresolved questions and will required further 

explorations. 

Since TGFf31 is released in an inactive form, its kinetics of activation will also be 

relevant to elucidate its biological or pathobiological fonctions in asthma. As 

highlighted earlier, several points of regulation can influence the final magnitude of 

the TGFf31 response. All of these points of regulation are as important as the 

expression of TGFf31 per see if one attempts to appreciate the overall contribution of 

this cytokine in airway pathogenesis that characterized asthma. Unfortunately, studies 

investigating these points of control are limited, so as the understanding of TGFf31 

activation in the airways. On the other band, compiling studies brings evidence that 

TGFf31 activity is increased in the airways of asthmatics by measuring intermediary 

end point of TGFf31 signaling (pSmads), which testified that TGFf31 has been 

activated and bas bound to its cognate cell-surface receptor. These results suggested 

that if TGFf31 is not upregulated in asthma, other points of control must be altered and 

translates into an increased TGFf31 activity. However, these results do not exclude the 

involvement of other TGFf3 superfamily members that signal via the same Smads. But 

in this regard, one study suggested that among these family members, TGFf31 is likely 

the main contributor of this increased Smad signaling (McMillan et al., 2005). 
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Dissecting the kinetics of TGF~l regulation following bronchoprovocation will 

undoubtedly increase our understanding of the inflammatory and fibrotic processes 

that take place in asthma. Due to its large spectrum of biologie effect, it is also 

unfortunately to soon to distinguish whether TGF~l is the good guy or the nasty guy 

in asthma. However, results obtained recently with TGF~l Ab (McMillan et al., 2005) 

or with an ALK-5 inhibitor (SD-208) (Leung et al., 2006) on animal models of the 

disease are promising and suggested that targeting TGF~l may be beneficial in the 

treatment of human asthma. 

1.11. In vivo links between TGF{Jl and ASM cell hyperplasia 

Despite the conundrums surrounding the increased expression and the cellular sources 

of TGF~l in asthma, many recently gained insights highlight the potential 

contribution of TGF~l in ASM cell hyperplasia in vivo. The particular mechanisms 

explored in each of the following studies are not necessarily related to one another. 

However, they are a good reflection of the array of mechanisms currently explored to 

shed light on the understanding of asthma pathology. 

To investigate the effect of IL-5 in airway remodeling, Cho and coworkers (Cho et al., 

2004a) have measured lung expression of TGF~l and the thickness of the ASM layer 

(assayed directly by measuring the transverse diameter of ASM layer and by a-

smooth muscle actin ( a-SMA) immunostaining) in WT and IL-5-deficient mice 

exposed to a chronic protocol of allergie airway inflammation. In that study, 
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decreased expression of TGFf'.31 in whole-lung homogenates and decrease in TGFf3 

positive cells in the peribronchial region of IL-5-deficient mice following 3 mo of 

allergen challenge correlated with a decreased thickness of the ASM layer. 

In endotoxin-induced asthma, increases of TGFf'.31 expression in whole-lung lavage of 

mice following graded periods of endotoxin exposure correlated temporally with an 

increased proliferation of cells in the submucosal compartment (Brass et al., 2004). In 

addition, mice deficient in LPS binding protein (LBP), a glycoprotein potentiating 

LPS binding to one of its cell surface receptors, CD14, demonstrated a significantly 

attenuated TGFf'.31 induction and correspondingly less submucosal cellular 

proliferation when submitted to the same protocol of endotoxin-induced asthma 

(Brass et al., 2004). Enlargement of the submucosal area was seen in all airway sizes 

of the endotoxin-exposed wild type animais. However, the nature of the proliferating 

cells in the submucosa was not clear and may easily represent fibroblasts and/or 

myofibroblasts rather than ASM cells. 

To investigate the role of the T 8 2-biased transcription factor GATA-3 in asthma 

pathology, BALB/c mice overexpressing GATA-3 in their T lymphocytes were 

generated and submitted to a chronic protocol of allergie asthma. Increased expression 

of TGFf'.31 in the lungs occurred in association with ASM mass enlargement in the 

transgenic animais sensitized and exposed to the allergen (Kiwamoto et al., 2006). 

Surprisingly, increased TGFf'.31 expression did not occur in the non-transgenic mice in 

this particular model and this finding paralleled the lack of increase in ASM mass. 
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In a mouse model of occupational asthma induced by repetitive sensitizations and 

challenges with toluene diisocyanate, TGFBI expression in whole-lung lavages and in 

lung homogenates was shown to be increased in parallel with a thickening of the 

peribronchial smooth muscle layer (Lee et al., 2006a). Interestingly, treatment of these 

mice with peroxisome proliferator-activated receptor (PPAR)y agonists, rosiglitazone 

and pioglitazone, partially prevents ASM tissue enlargement, which occurs in 

conjunction with a decreased induction of TGFBI. In the same study (Lee et al., 

2006a), intratracheal administration of an adenovirus gene vector carrying the 

PPARy2 cDNA was equally potent to reduce both TGFBI expression and the 

increased layer of ASM tissue around the bronchi. 

Increased expression of TGFBI in whole-lung lavage, as well as active TGFBI 

signaling in airway tissues (measured by pSmad2/3 staining in lung sections), were 

associated with an increased peribronchial immunostaining of aSMA in a murine 

mode! of allergie asthma chronically (3 mo) exposed to OV A (Lee et al., 2006c ). 

Interestingly, treatment of these rnice with fluticasone during the chronic phase of the 

challenge protocol (i.e. following the establishment of eosinophilic inflammation) 

reduced significantly aSMA expression, which occured in conjunction with a 

decrease in both TGFBI expression in the lavage and active Smad signaling in lung 

tissue. Surprisingly, fluticasone also increased lung tissue expression of the inhibitory 

Smad, Smad7. 
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Intraperitoneal injection of immunostimulatory sequences of DNA (ISS) into 

sensitized mice every other week during a chronic allergen challenge protocol reduced 

ASM layer thickness and peribronchial a-SMA staining (Cho et al., 2004b). These 

structural changes also paralleled the expression of TGFf31 in the lavage and in the 

lung tissue, such that TGFf31 was increased in chronically challenged mice and was 

reduced in the sensitized and chronically challenged mice treated with ISS (Cho et al., 

2004b). These results suggest, once again, that TGFf31 expression and increased 

peribronchial bulk of ASM tissue are two associated phenomenons. 

In a murine model of chronic allergen challenge-induced airway remodeling, TGFf31 

increased acutely and continued to raise constantly during the chronic phase of the 

disease, which was associated with an increased thickness of the peribronchial ASM 

tissue on day 59 (Munitz et al., 2006). lnterestingly, treatment of mice with a 

bispecific Ab directed against CD300a and targeting CCR3+ cells following the 

establishment of airway inflammation completely reversed the increased expression of 

TGFf31, which occured in conjunction with a decreased thickness of peribronchial 

ASM tissue. 

Other studies can be added to this list to support the positive correlation between 

TGFf31 and ASM cell enlargement. For example, in a chronic murine model of 

pulmonary allergie inflammation, ASM cell hyperplasia occurred during the chronic 

phase of allergen challenge in conjunction with an increase in the active form of 

TGFf31 in the lung homogenates (McMillan and Lloyd, 2004). Similarly, Corbel and 
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coworkers (Corbel et al., 2003) have reported an increase in peribronchial ASM mass 

and an increased expression of TGFj) expression in both BALF and whole-lung 

tissues in a mouse model of prolonged allergen challenge-induced airway remodeling. 

However, ail of the aforementioned studies correlate two phenomena occuring in 

asthma, namely increased expression of TGFj) 1 and ASM cell hyperplasia, but do not 

support a cause and effect relationship between them. The following studies provide 

the proof of causality of this relationship and, thus, represent pivotai advancements in 

the understanding of ASM cell hyperplasia that occurs in asthma. 

Several transgenic animais have been generated to investigate the in vivo role played 

by a particular cytokine on airway structure or physiology. Transgene constructs 

containing the Clara cell 10-KD protein (CClO) promoter is the most utilised to target 

the transgene of interest in the airways exclusively. Mice overexpressing the 

transgene in an airway-restricted fashion using this CClO promoter approach have 

already been used successfully to investigate the respective roles of IL-4, IL-5, IL-13, 

IL-6 and IL-11 (Elias, 2000; Lee et al., 1997; Rankin et al., 1996). However, the 

TGFj)l effect in the CClO promoter transgenic mice required further engineering, 

since targeted overexpression of TGFj)l in the lung in a constitutive manner induced 

fetal lethality (Zhou et al., 1996). This problem has been overcome by using an 

externally regulatable, triple transgenic system described earlier (Zhu et al., 2001). 

While being able to ablate leakage of the inducible transgene, this system allows 

TGFj)l to be induced in a lung-specific fashion by adding an agent (Dox) in the 
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animal's diet. Using this innovating system, Lee and coworkers (Lee et al., 2004) 

studied the effects of TGF~l overexpression in the lungs of adult mice. Interestingly, 

TGF~l overexpression reproduced many of the remodeling features pathognomonic 

of human asthma, including ASM cell hyperplasia. This result was the first to suggest 

that overexpression of TGF~l in the lung, as it might occur in asthmatic subjects 

following allergie challenge, was sufficient to cause ASM cell hyperplasia. 

The same group of investigators had previously demonstrated that the typical T 8 2 

cytokine IL-13 was capable of inducing and activating TGF~l in vivo when 

overexpressed in the lungs of mi ce (Lee et al., 2001a). Accordingly, the increased 

expression of active TGF~l expression in the epithelium and the subepithelial zone 

following chronic inhalation of antigen in sensitized mice was attenuated in IL-13-

deficient mi ce (Kumar et al., 2004). The latent form of TGF~l was also reduced in the 

epithelium of IL-13-deficient mice, suggesting that the epithelial cells may represent a 

potent cellular source ofTGF~l following increased expression ofIL-13 in the 

airways. IL-13 is relevant here since it is upregulated in the airways of human 

asthmatics and is known as an effector cytokine in the establishment of many 

pathognomonic features of asthma in animal models of the disease (reviewed in 

(Chatila, 2004; Hershey, 2003; Izuhara and Arima, 2004; Mueller et al., 2002; Wills-

Karp, 2001; Wills-Karp and Chiaramonte, 2003)). Lee and coworkers (Lee et al., 

200la) have documented that most of the fibrotic processes induced by lung 

overexpression ofIL-13 are mediated by the induction and activation of TGF~l. 

However, despite its capacity to induce and activate TGF~l in vivo and its capacity to 
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recapitulate most of the characteristic features of asthmatic airways, the effect of IL-

13 on ASM cell proliferation is unknown (Elias, 2000). The only evidence supporting 

the proliferative effect of IL-13 on ASM cells cornes from an review article by Wills-

Karp and Chiaramonte (Wills-Karp and Chiaramonte, 2003), which demonstrated a 

thickened ASM layer in an airway of naïve mice following repeated tracheal 

instillation of recombinant IL-13. Based on these findings, one may still suggest that 

the growth-promoting effect of IL-13 in vivo may be related toits ability to induce 

and activate TGF~l. 

One of the best proof of concept that ASM cells are in vivo targets of TGF~ is the fact 

that ASM cells from airway sections derived from mice sensitized and chronically 

challenged with OVA strongly expressed pSmad2 (McMillan et al., 2005). The same 

group of investigators have equally shown that treatment of these mice with TGF~l 

Ab prevented phosphorylation of Smad2 in ASM tissue (McMillan et al., 2005), 

which concomitantly resulted in reduced number of total and proliferating ASM cells 

(McMillan et al., 2005). Taken together, these results clearly indicate that ASM cells 

are targeted by the increased expression and/or activation of TGF~l in asthmatic 

lungs and that active TGF~l signaling may be involved in ASM cell proliferation in 

vivo. 

In addition to active TGF~ signaling (McMillan et al., 2005), Leung and coworkers 

(Leung et al., 2006) showed an increased expression of Smad2/3 in ASM tissue of 

Brown Norway rats sensitized and exposed to allergen. This result indicates that the 
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asthmatic state may prone ASM tissue to respond in an excessive manner to TGFj3. 

This altered expression of Smad2/3 was abrogated with oral administration of SD-

208, a pharmacological inhibitor targeting ALKS, which suggests that TGFj3 is 

involved in the upregulation of its own signaling intermediates that ensure its signal 

transduction. Interestingly, both preventive and curative treatments with SD-208 

successfully abrogated ASM cell hyperplasia. 

Overall, these results clearly indicate that TGFj31 plays a significant role in ASM cell 

hyperplasia in vivo. However, the mechanisms that govern TGFj31-induced ASM cell 

proliferation remain unknown. The following section will describe in vitro studies that 

aim to define the mechanisms by which TGFj31 could foster ASM cell mitogenesis. 

1.12. In vitro effect ofTGF{Jl on ASM cell proliferation 

Using bovine ASM cells, Black and coworkers (Black et al., 1996) initially reported a 

bimodal time-dependent effect of TGFj31 on ASM cell mitogenesis. Whilst TGFj31 

inhibited DNA synthesis between 8 and 24 h post-stimulation, it increased DNA 

synthesis and cell counts at later time points. Increased DNA synthesis in bovine 

tracheal ASM cells between 24 and 48 h post-TGFj31 stimulation was also observed 

· by Okona-Mensah and coworkers (Okona-Mensah et al., 1998). This delayed 

proliferative response to TGFj31 was consistent with the one observed in other 

mesenchymal cells (Battegay et al., 1990; Stouffer and Owens, 1994; Vivien et al., 

1990). In the latter, the delayed effect was explained by an autocrine loop of growth 

factors, which were secreted following TGFj31 stimulation. However, Chen and 
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Khalil (Chen and Khalil, 2006) have recently demonstrated that neutralizing Abs 

against FGF2, PDGF, epidermal growth factor (EGF) and IGF-1 have no effect on 

bovine ASM cell mitogenesis induced by TGFl31. They also demonstrated that earlier 

assessment of DNA synthesis following TGFl31 stimulation, such as between 20 and 

24 h post-stimulation, was sufficient to appreciate the pro-mitogenic effect of this 

cytokine, which was in great contrast to the results presented by Black and coworkers 

(Black et al., 1996). 

Black and coworkers (Black et al., 1996) also demonstrated that TGFl31 could induce 

ASM cell hypertrophy. This result was subsequently confirmed by others (Goldsmith 

et al., 2006; McKay et al., 1998). Whether the increase in ASM mass in asthmatic 

airways is of hyperplastic (Heard and Hossain, 1973; Johnson et al., 2001; Woodruff 

et al., 2004) or hypertrophie (Benayoun et al., 2003) nature is still a contemporaneous 

debate as both phenotypes have been observed. Ebina and coworkers (Ebina et al., 

1993) have suggested the existence of two types of asthma based on stereological 

assessment of ASM tissue in human lungs. Type 1 asthma was characterised by 

hyperplasia of ASM cells in the larger airways of the respiratory tract, whereas type 2 

asthma was predominantly characterised with ASM hypertrophy in the smaller, 

peripheral airways of the respiratory tract with moderate hyperplasia observed in the 

major bronchi. Interestingly, the hyperplastic or hypertrophie response to TGFl31 was 

shown to be animal specific in the study of Black and coworkers (Black et al., 1996). 

They reported a strong inverse correlation (r = -0.97) between changes in cell size and 

cell number after TGFl31 stimulation. Whereas cell hypertrophy was observed in 
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ASM cells derived form some animais, the predominant effect of TGFf31 on ASM 

cells from other animais was cellular hyperplasia. These results suggest that the 

individual response of asthmatics to TGFj31 stimulation may determine whether they 

develop type 1 (ASM hyperplasia) or type 2 (predominantly ASM hypertrophy) 

asthma. 

The first data concerning the effect of TGFj31 on the proliferation of human ASM 

cells came from Panettieri's group in Philadelphia (Cohen et al., 1997~ Krymskaya et 

al., 1997). In both of their studies, they showed that TGFj31 had no effect on its own, 

but inhibited the growth-promoting effect of EGF and thrombin. They subsequently 

tried to elucidate the signaling mechanisms involved in this anti-mitogenic effect of 

TGFf31, but neither MAPKs nor PBK pathways, which were both activated and 

required for EGF-induced ASM cell proliferation, were affected by TGFf31 treatment. 

In contrast, and despite failing to induce PI3K activity on its own, TGFf31 increased 

by "'4-fold the PI3K activation induced by EGF (Krymskaya et al., 1997). However, 

the EGF-induced activation of p7056
K, a downstream target of PI3K with well-

recognized fonctions in cell cycle regulation, was unaffected by TGFf31 (Krymskaya 

et al., 1997). 

The anti-mitogenic trend of TGFf31 on human ASM cells obtained with these two 

initial studies was subsequently reversed by two other studies published in 2000 

(Cohen et al., 2000; Ediger and Toews, 2000). These results heralded the saga of 

another controversial issue concerning the effect of TGFf31 in asthma. Cohen and 
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coworkers (Cohen et al., 2000) demonstrated that TGF~l enhanced the mitogenic 

effect of a growth medium containing FBS (5% ), FGF2, EGF and insulin. In addition, 

they demonstrated that this growth-promoting effect of TGF~ 1 was dependent on an 

autocrine loop of IGF binding protein (IGFBP)-3. Human ASM cells secrete 

impressive amount of IGFBP-3 protein in response to TGF~l stimulation. Cohen and 

coworkers (Cohen et al., 2000) reported an increase of IGFBP-3 levels attaining over 

1 µg/ml in the conditioned medium of ASM cells following a 3-day stimulation with 1 

ng/ml of TGF~l (Cohen et al., 2000). This tremendous increase was confirmed by 

Jarai and coworkers (Jarai et al., 2004), using gene chip array technology. Among,...,, 12 

500 genes analysed, IGFBP-3 was the most upregulated (54.1-fold over baseline) 

following 24 h stimulation of human ASM cells with 10 ng/ml of TGF~ 1. 

However, consistent with bovine ASM cells, the mitogenic effect of TGF~l on human 

ASM cells was delayed compared to other growth factors. The shorter time recorded 

for the pro-mitogenic effect of TGF~l on human ASM cells was reported in the study 

of Ediger and Toews (Ediger and Toews, 2000), where increased DNA synthesis was 

shown to occur during a 2-h pulse of radiolabeled thymidine begining 22 h post-

stimulation. 

TGF~l is also known to synergize with other mediators to induce ASM cell 

proliferation. For instance, the nonapeptide brakykinin, which otherwise has no 

mitogenic effect when administered alone, potentiates the weak mitogenic effect of 

TGF~l in bovine ASM cells by acting on its B2 receptor (Gosens et al., 2006). 
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Lysophosphatidic acid (LPA), another GPCR ligand, equally amplifies the mitogenic 

effect of TGFf31 on human ASM cells (Ediger and Toews, 2000). Similarly, receptor 

tyrosine kinase (RTK) ligands, such as EGF (Okona-Mensah et al., 1998), were 

shown to synergize with TGFf31 to induce bovine ASM cell mitogenesis. This latter 

result was in marked contrast to the anti-mitogenic action of TGFf31 on EGF-induced 

human ASM cell mitogenesis described by Panettieri's group (Cohen et al., 1997; 

Krymskaya et al., 1997). Cohen and coworkers (Cohen et al., 2000) also demonstrated 

that the supplemented medium is required for the proliferative effect of TGFf31 to 

proceed, suggesting that factor(s) in the serum and/or one of the growth factors added 

in the growth medium (FGF2, EGF or Insulin) is(are) capable of conferring to TGFf31 

a mitogenic potential on human ASM cells (Cohen et al., 2000). 

TGFf31 could also potentiate ASM cell proliferation via indirect mechanisms. We 

previously demonstrated that LTD4, a lipid mediator involved in asthma pathogenesis, 

was without any effect in ASM cell proliferation when administered alone. However, 

pre-treatment of human ASM cells with TGFf31 was shown to confer to LTD4 a 

significant mitogenic effect (Espinosa et al., 2003). The operational mechanism 

mediating this proliferative synergism involves the upregulation of CysLTl, the high 

affinity receptor for LTD4, by TGFf31 (Espinosa et al., 2003). 

Taken all together, studies published in the last decade concerning the effect of 

TGFf31 on ASM cell proliferation in vitro have yielded different, and sometimes 

contradictory results (summarized in Table 3). Sorne data report an anti-mitogenic 
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activity (Cohen et al., 1997; Krymskaya et al., 1997; Okona-Mensah et al., 1998), 

whereas other studies support the opposite, reporting a mitogenic activity for this 

cytokine, acting by itself (Black et al., 1996; Chen and Khalil, 2006; Ediger and 

Toews, 2000; Espinosa et al., 2003; Okona-Mensah et al., 1998) or in synergy with 

other mitogens (Bosse et al., 2006; Cohen et al., 2000; Ediger and Toews, 2000; 

Espinosa et al., 2003; Gosens et al., 2006). The effect of TGFf:H on ASM cell 

proliferation in vitro may be influenced by a plethora of factors, such as: 1-the cell 

origin (the species, the level in the airway tree where the cells have been obtained, e.g. 

trachea vs bronchi, and the individual characteristics of the donor such as gender, age, 

race, existing lung diseases, smoking status and genetic background); 2- the 

peculiarities of culture conditions (the medium perse, whether the cells were growth-

arrested or not and for how long, the presence of serum and its concentration, the level 

of cell confluency, and the matrix on which the cells were grown); 3-the conditions of 

stimulation (concentration of TGFf31, the time spent after stimulation to assess 

proliferation, co-stimulation with other factors and their respective concentrations); 

and 4-the way to assess ASM cell proliferation (DNA synthesis vs cell numbers). 

Taking all this into account, the studies performed so far describing the mitogenic 

effect of TGFf31 on ASM cell proliferation are seldom comparable. Hence, the results 

may not be conflicting after ail. However, if ail these inconsistencies were real and 

could be explained by cell or methodological peculiarities employed by different 

studies, one can only argue that the effect of TGFf31 on ASM cell proliferation in vitro 

is context-dependent. The only trends that are worthy of mention in the two species 

investigated so far are the following: 1- In bovines, TGFf31 seems to exert a weak 
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pro-mitogenic effect in confluent, tracheal ASM cells; 2-In humans, even if the 

picture is less clear, the weight of evidence suggests that TGF~l has no effect on its 

own, but synergises with other mediators to induce ASM cell proliferation. 

Unfortunately, based on the current litterature, no definitive conclusions can be drawn 

at the moment. 
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Table 3: Effect of TGFIH on ASM cell proliferation in vitro 

Species Level in 
the Cell Growth-arrested TGFIU and Confluency Mitogenic assays Description of the effects Ref. 

strains airway passages or not concentration 
tree 

Bovine Trachea 1 '' Non- 24hin2% FBS 1- [3H]-thyrnidine From 0.01 to 1- Decreased and increased at 24 and 48 h, (Black 
confluent Ham's F-12 media incorporation at 24 10 ng/ml respectively, for concentration over 0.01 ng/ml et al., 

and 48 h (pulse in the (p < 0.001), but the response was variable from 1996) 
last 16 h of an animal to the other. 
stimulation) 

2- Cell counting (72 2- Variability of the response from an animal to 
h post-stimulation) the other, ranging from a -30% increase over 

unstimulated cells to no effect at ail. 
- ln the high-responding cells the effect begans 
at30 pg/ml. 

Human Trachea 3ro to 5'h Confluent 48 h in serum-free 1- [3H]-thyrnidine From 0.1 to 10 Dose-dependent inhibition of EGF- and (Cohen 
F12 media incorporation (pulse ng/ml Thrombin-induced ASM cell mitogenesis et al., 
supplemented with between 16 and 40 h 1997) 
5 µg!ml of insulin post-stimulation) 
and transferrin 

2-Cell counting ( 48 
h) 

Human Trachea 3'd to 4'h Confluent 48 h in serum-free BrdU incorporation 1 ng/ml Reduced cell cycle progression induced by EGF (Kryms 
F12 media during the first 40 h kaya et 
containing 0.1 % of stimulation al., 
BSA 1997) 

Bovine Trachea Up to 4'h 1- Confluent 24 h in serum-free 1- [3H]-thymidine 1to100 pM 1- Concentration-dependent increase, starting at (Okona-
(10 to 45 M199 containing incorporation for 1 pM and increasing continuously up to -300% Mensah 
000 with 0.25% BSA confluent cells (pulse above baseline lev el at 1 OO pM. et al., 
cells/cm2

) between 24 and 48 h - TGF!)l (100 pM) synergized with EGF (70 1998) 
post-stimulation) nM) 

- Increased 0.5%, but not 10%, FBS-induced 
DNA synthesis (p < 0.001). 

2- Sparse 2- Cell counting for 2- Decreased 10%, but not 0.5%, FBS-induced 
(300 sparse cells (5 d) cell proliferation (p < 0.01). 
cells/cm2

) 

Human Bronchi ni Confluent No starving. Cells MTT assay to 1 ng/ml - Increased ASM cells proliferation in a time- (Cohen 



(from a 
37 and a 
17 years 
old 
healthy 
male 
donors) 

Human 

Human 

Human 

Bovine 

Bovine 

0\ 
OO 

Trachea 

Bronchi 

Bronchi 

Trachea 

Trachea 

(10 000 
cells/cm2) 

ni Confluent 

2nd to 6'h Non-
confluent 
HOOOO 
cells/cm2) 

ni Non-
confluent 
(50% 
confluence) 

1" to 3'd Confluent 

1" to 5'h Confluent 

were directly 
stimulated in 
SmGM containing 
5% FBS and other 
growth factors such 
as EGF (10 ng/ml), 
FGF2 (2 ng/rnl) and 
Insulin (5 mg/ml) 
24 h in serum-free 
high-glucose 
(4.5g/L) DMEM 
containing 0.25% 
BSA 
1-24hin 1%FBS 
SmBM 
2- Pre-treated 24 h 
with TGFf)l 
3- Washed 
4- Stimulated for 72 
h with LTD4 (10 
7M) or the control 
vehicle (ethanol). 
ni, but experiments 
were conducted 
without serum. 

72 h in serum-free 
DMEM 
supplemented with 
apo-transferrin (5 
µglml, ascorbate 
(lOOµM) and 
lnsulin ( 1 µM) 

3 days in one of the 
following media : 
1- serum-free 
DMEM containing 
0.2%BSA 

measure cell dependent fashion (p < 0.001). et al., 
proliferation at 2, 5 2000) 
and 7 days post- - 90% increase at day 7 relative to SmGM alone 
stimulation (p < 0.001). 

[3H]-thymidine 1 ng/ml - 6.1-fold increase over baseline. (Ediger 
incorporation (pulse - Synergized with LPA (10 µM), increasing et al., 
between 22 and 24 h from 8.3 to 21.7-fold over baseline in LPA alone 2000) 
post-stimulation) vs to LPA + TGFf)l. 

Crystal violet 10 ng/ml - 24 h pre-treatment alone induced proliferation (Espino 
staining (p < 0.05). sa et al., 

2003) 
- TGFf)l pre-treatment confered to LTD4 a 
proliferative effect (p < 0.05). 

Cell counting ni No effect, but the duration of the stimulation (Golds 
(the isoform of was ni. mith et 
TGFf) used al., 
was ni neither) 2005) 

1- [3H]-thymidine 2 ng/ml 1- Increased DNA synthesis to -144% the (Gosens 
incorporation (pulse baseline level (p < 0.05). et al., 
between 4 and 28 h -Additive, rather than synergistic effect occur 2006) 
post-stimulation) with BK (10 µM), reaching-170% the baseline 

level together vs -122% with BK alone. 

2- Alamar Blue® 2- No effect on cell proliferation when used 
conversion, an alone, but synergized with BK (10 µM), 
metabolic assay (48 h reaching -123% of the baseline level together vs 
oost-stimulation) -109% with BK alone (P < 0.05). 
1- [3H]-thymidine 0.1 to 5 ng/ml 1-At 5 ng/ml, increased DNA synthesis in ail (Chen 
incorporation (pulse three culture media occur: From -14 to 55 x lü3 and 
between 20 and 24 or DPM in 0.2% BSA (p < 0.01); from -19 to 31 in Khalil, 
44 and 48 h post- 0.5% FBS (p < 0.01); and from 110 to 150 in 2006) 
stimulation) 10% FBS (ns). 



2- 0.5% FBS - In 0.2% BSA medium, increased DNA 
DMEM synthesis in a concentration-dependent manner, 
3- 10% FBS starting at 0.1 and increasing continuously up to 
DMEM 5 ng/ml at both 24 and 48 h (p < 0.05), but at 

concentration higher than 1 ng/ml the effect was 
more pronounced at 48 h. 
-In 0.2% BSA medium, 1 ng/ml increased 10% 
FBS-induced DNA synthesis at 48 h (p = 
0.006). Similar results were obtained with 1 % 
FBS. 

2-Cell counting with 2- In 0.2% BSA medium, increased cell number 
hemacytometer in a concentration-dependent manner, starting at 

0.1 and increasing continuously up to 5 ng/ml at 
both 24 and 48 h (p < 0.05), but no difference 
was observed between 24 and 48 h. 
- In 0.2% BSA medium, 1 ng/ml increased 10% 
FBS-induced cell number at 48 h (p = 0.0002). 
Similar results were obtained with 1 % FBS. 

Human Bronchi 4th Non- 24hin 1% FBS 1- Crystal violet 0.1to20 1- No effect on cell proliferation when 
confluent SmBMwithor (measured during 5 ng/ml administered alone, at ail concentrations and 
(-10 000 without FGF2 (2 consecutive days time points measured. 
cells/cm2) ng/ml) following TGFj31 - Increased FGF2-induced cell proliferation in a 

stimulation) concentration-dependent manner, starting at 0.1 
ng/ml and raising continuoulsy up to 20 ng/ml to 
attain a 6-fold increase over the proliferation 
induced by FGF2 alone at 4 days post-TGFj31 
stimulation (p < 0.01). 
- Increased FGF2-induced cell proliferation in a 
time-dependent manner, raising by more than 5-
fold FGF2-induced proliferation at 5 days post-
TGFj31 (10 ng/ml) stimulation. 

2- [3H]-thyrrùdine 2- Neither affected DNA synthesis when 
incorporation (pulses administered alone, nor increased FGF2-induced 
in the last 4 h of 5 DNA synthesis at the time window where FGF2 
consecutive days) exerted its maximal effect, but prolonged by -2 

days FGF2-induced DNA synthesis (P < 0.05). 
. . . . . . .. 

Abbreviations: BK, Bradykimn; BrdU; bromodeoxyundme; LPA, Lysophosphat1d1c ac1d; LTD4, Leukotnene 0 4 ; m; not md1cated; ns, not statJstJcally s1gmf1cant; MTT, 
methylthiazolyldiphenyl-tetrazolium brorrùde; SmBM, smooth muscle basal medium; SmGM, smooth musle growth medium. 

(Bossé 
et al., 
2006) 



2.1. FGF family and biology 

CHAPTER2 

FGF2 

Fibroblast growth factor (FGF) proteins constitute one of the largest families of 

growth factors, counting 18 members and 4 homologues (FGF homologous 

factors/FHFs) in man, which are named FGFl to FGF23 (Eswarakumar et al., 2005; 

Mohammadi et al., 2005). Their biology is unique as they often function together as 

intercellular signaling molecules ensuring reciprocal communication between adjacent 

tissues. They are best recognized for their trophic functions in embryonic 

development, including lung organogenesis (Arman et al., 1999; Celli et al., 1998; De 

Moerlooze et al., 2000; Hajihosseini et al., 2001; Peters et al., 1994; Xu et al., 1998), 

but also for their involvement in homeostasis and regenerative processes in adult 

tissues (Mohammadi et al., 2005). Deletion of branchless or breathless, genes 

encoding the drosophila orthologs of human FGF and FGF receptor (FGFR), 

respectively, gives rise to drosophila that fail to form tracheal intussusceptions and 

subsequent outgrowth of the branches that normally lead to an elaborated tree 

structure (Glazer and Shilo, 1991; Sutherland et al., 1996). These observations 

demonstrate the indispensable role of FGF signaling in lung branching 

morphogenesis. 

2.2. FGF2 structure, secretion and extracellular localization 

The most studied member of the FGF family in asthma pathophysiology is FGF2. 

This growth factor was first identified in bovine pituitary extracts, and together with 
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FGFl, they were named based on their capacity to stimulate the proliferation of the 

fibroblastic cell line NIH3T3 (Gospodarowicz, 1975). In humans, FGF2 is encoded by 

a 3-exon gene localized on chromosome 4q26-27. The cytoplasmic low molecular 

weight (LMW) isoform of FGF2 is a single-chain nonglycosylated protein of 18-kD 

(155 aa). Higher molecular weight (HMW) isoforms of 34, 24, 22,5 and 22-KD have 

also been identified and are derived from four translationally alternative CUG 

(leucine) initiation codons upstream of the AUG (methionine) initiation codon that 

give rise to the LMW isoform. The protein was previously known as basic FGF 

(bFGF) due to its high isoelectric point (p/ = 9.6) owing to its large number of basic 

residues (Nugent and Iozzo, 2000). 

Unlike most of the FGF family members, FGF2 lacks a recognizable N-terminal 

· secretory signal sequence required for extracellular export (Mignatti et al., 1992; 

Ornitz and Marie, 2002). Consequently, rather than being secreted, it was previously 

thought that FGF2 acted as a cell-associated growth factor. More recently, it was 

demonstrated that the HMW isoforms of FGF2, which contain nuclear localization 

sequences (NLS) in their extended N-terminal sequence, are redirected into the 

nucleus after their release into the cytosol (reviewed in (Stachowiak et al., 2003)). 

However, FGF2 is also found anchored to ECM components at the extracellular 

surface of plasmalemma and within the basement membrane of different tissues 

(Folkman et al., 1988; Gonzalez et al., 1990; Sannes et al., 1992; Shute et al., 2004), 

suggesting that it can be released from the cell. In fact, FGF2 is the main growth 

factor stored in basement membranes (Folkman et al., 1988; Sannes and Wang, 1997). 
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Extracellular export of FGF2 was proposed to be mediated by an exocytotic 

mechanism independent of the classical endoplasmic-reticulum-Golgi secretory 

pathway and the multidrug resistance proteins (MRP) pathway (Mignatti et al., 1992). 

Just as observed with TGFj)l, FGF2 in the ECM was shown to bind preferentially to 

glycosaminoglycan (GAG) side chains of HSPG, including cell-associated HSPG 

such as syndecans and glypicans, and ECM-associated HSPG such as agrin and 

perlecans (Nugent and Iozzo, 2000). In fact, FGF2 expression was shown to mirror 

the expression of perlecans in tracheal rings of rhesus monkeys (Evans et al., 2002). 

Anchorage of FGF2 onto HSPG and its accumulation in ECM provide a means by 

which this growth factor is protected from proteolysis and offer a reservoir of stable 

but inactive FGF2 that could be available upon requirement (Flaumenhaft et al., 1989; 

Folkman et al., 1988; Moscatelli, 1988; Vlodavsky et al., 1987a; Vlodavsky et al., 

1987b). Accordingly, many investigators have suggested that its storage in basement 

membranes presumably offers a way for rapid cellular response to take place in the 

face of sudden changes in local environmental conditions (Bikfalvi et al., 1997; 

Nugent and Iozzo, 2000). However, the regulatory processes leading to FGF2 

desequestration from the ECM in vivo are still unknown. In vitro evidence proposes 

that the release of stored pools of FGF2 could be mediated by the following 

mechanisms: 1- proteolytic cleavage of HSPG core protein by heparinases (Benezra et 

al., 1993; Folkman et al., 1988; Saksela and Rifkin, 1990); 2-glycosaminoglycans 

(GAG) degrading enzymes (Bashkin et al., 1989; Folkman et al., 1988; Ishai-Michaeli 

et al., 1990; Shute et al., 2004); and 3- the ability of heparin to elute FGF2 from 

72 



HSPG binding sites (Bashkin et al., 1989; Folkman et al., 1988; Shute et al., 2004). 

Release of FGF2 then allows it to bind one of its receptors on the plasma membrane. 

2.3. FGFs receptors and co-receptors 

Four high-affinity receptors with aa length ranging from 802 to 822 have been 

identified for the FGF family of growth factors. They were named FGF receptor 

(FGFR)l through FGFR4. These receptors are type 1 transmembrane proteins with an 

ectodomain composed of 3 immunoglobulin-like domains (Dl-D3) and a cytoplasmic 

tail bearing an intrinsic tyrosine kinase domain (EC 2.7.10.1). Severa} alternative 

splicing events take place during transcription of FGFRI, FGFR2 and FGFR3 and 

give rise to different isoforms with distinct functional properties. The mutually 

exclusive splicing of exon 8 (Illb) or exon 9 (Ille), which encode the C-terminal half 

of D3, with exon 7 (Ilia), which encodes the N-terminal half of D3, is of particular 

functional significance, because it confers specificity of binding to the different FGF 

ligands. In fact, this alternative splicing raises to 7 the number of functionally 

different receptors in the FGF family (Mohammadi et al., 2005). lnterestingly, the 

splicing is not random, but rather tissue-specific. Whereas cells of epidermal origin 

express the lllb isoform, cells of mesenchymal origin express the Ille isoform. In turn, 

the production of ligands is also tissue-specific. The IIIb receptor-expressing tissue 

( epidermal) secretes the FGF ligands that bind to the Ille isoforms of the receptors 

expressed on the neighboring tissue (mesenchymal) and vice versa. In addition, each 

subgroups mutually stimulates each other's production to forma reiterated paracrine 

loop. This continuous bidirectional communication is essential during embryogenesis 
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and is known to be of crucial importance for lung development during this ontologie 

stage. This epithelial-mesenchymal trophic unit (EMTU) is also thought to be 

reactivated in patients suffering from asthma and many investigators in the field 

believe that it may be the cause of airway remodeling (Holgate et al., 2003). As 

mentioned earlier, the basement membrane has a great propensity to accumulate 

FGF2. Considering that the basement membrane is the central structure in the EMTU, 

one can imagine that the rapid release of basement membrane-bound FGF2 following 

phlogogenic challenges may initiate this bidirectional communication between the 

epithelium and the mesenchymal compartments and ultimately foster ASM tissue 

enlargement. 

In addition to regulating extracellularly the biology of FGFs, HSPGs also serve as 

low-affinity receptors for these ligands. Cell-associated syndecans and glypicans are 

of particular interest, but perlecans are also a likely candidate due to their close 

association with the cell surface (Nugent and lozzo, 2000). HSPGs act by increasing 

the availability of FGFs to the plasmalemma and, thus, facilitate FGFs binding to 

FGFR by reducing ligand dimensionality. However, it was also recognised that 

HSPGs are required for the formation of the high-affinity binding sites and for the 

FGFs-mediated biological effects. The exact role of HSPGs in the elaboration of a 

functional receptor is a contemporaneous debate today, but the weight of evidence 

suggests that HSPGs stabilize the FGF receptor (FGFR) complex in an active 

conformation by binding to a basic canyon formed between the 02 ectodomain of the 

receptor and the receptor-bound FGF (reviewed in (Mohammadi et al., 2005)). 
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Horowitz and coworkers (Horowitz et al., 2002) also suggested that the cytoplasmic 

tail of certain HSPGs, for instance syndecan-4, participates in the activation of 

downstream intracellular signaling. In addition, this signal, which is generated by 

FGF2-induced cell surface clustering of syndecan-4, is required for the growth-

promoting activity of FGF2. With 18 ligands and 7 functionally distinct high-affinity 

receptors, which raises to 126 the number of potential FGF-FGFR complexes, 

together with the different ligand and receptor isoforms known to exist and the 

requirement of HSPGs for the formation of a functional receptor complexes 

(Mohammadi et al., 2005; Wiedlocha and Sorensen, 2004), the family of FGF growth 

factors was already considered one of the most complex. This newly identified 

fonction of HSPGs, as a potent regulator of intracellular signaling and potent modifier 

of cell behaviour in response to FGFs, indicates that the biology of FGFs is even more 

complicated that what was previously thought. 

2.4. FGF receptor signaling 

As observed for the other growth factor receptors, FGFR dimerization is a prerequisite 

for the activation of downstream signaling pathways. FGF-induced FGFR 

dimerization brings the two chains of the receptor in sufficient proximity to permit the 

protein tyrosine kinase (PTK) domain of each chain to transphosphorylate several 

tyrosine residues on the other chain. Phosphorylated tyrosines then serve as docking 

sites for proteins containing src homology (SH)2 or phosphotyrosine binding (PTB) 

domains. Phospholipase (PL)Cyl, Shc, Shb and Crk bind directly to the activated 

receptor (Wiedlocha and Sorensen, 2004). The scaffolding protein FGF receptor 

75 



substrate (FRS)2 also binds directly to the receptor via its PTB domain. However, in 

contrast to other proteins that bind to FGFR cytoplasmic tail, its association with the 

receptor occurs in a phosphotyrosine-independent manner (Ong et al., 2000). Upon 

receptor activation, the C-terminal portion of FRS2 is phosphorylated on several 

tyrosine residues, providing additional docking sites to recruit other adaptor proteins 

and enzymes into the signalosome. Of particular significance, the constitutive 

complex Growth factor receptor-binding protein (Grb)2-Son of sevenless (Sos) is 

recruited by FRS2 and initiates different signaling transduction pathways involved in 

mitogenesis, such as the Ras/MAPK and the PI3K/Akt pathways. FGFR dimerization 

also leads to the activation of PLCy, which catalyses phosphatidylinositol 4,5-

diphosphate into diacylglycerol (DG) and inositol 3-phosphate (IP). These latter 

second messengers subsequently activate conventional and nove! forms of protein 

kinase (PK)C and increase the intracellular concentration of Ca2
+ by binding to IP 

receptors on endoplasmic reticulum, respectively. Generally speaking, these 

enumerated pathways are the ones ensuring the signal transduction of activated FGFR 

and are thus responsible for the altered behaviour (proliferation, differentiation, 

migration, survival) adopted by a particular cell type in response to FGF stimulation 

(Figure 2). However, their respective contribution, as well as the role that other 

signaling pathways might play in the elaboration of this altered cellular behaviour, are 

hard to predict owing to the cell-type specific nature of these responses. 
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Figure 2: FGF2 signaling 
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Dailey et al., Cytokine Growth Factor Rev 2005; 16(2): 233-47. 

2.5. Increased FGF2 expression in asthma or in experimental animal models of 

asthma 

FGF2 is almost ubiquitous (Cordon-Cardo et al., 1990; Hughes and Hall, 1993). In the 

Jung, FGF2 is localized in the cytoplasm of airway epithelial cells (Cordon-Cardo et 

al., 1990; Kranenburg et al.,; Shute et al., 2004) and in the nuclei of cells within the 

subepithelial region (Shute et al., 2004), including ASM, VSM and endothelial cells 

(Kranenburg et al., 2002). ECM from the alveolar and bronchiolar epithelial basement 

membranes (Sannes et al., 1992; Shute et al., 2004), together with the pericellular 

matrix of endothelial cells (Shute et al., 2004) are also positive for FGF2 staining. 
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FGF2 is also localized by immunohistochemistry in lung specimens of other species, 

such as rodents (Sannes et al., 1992) and rhesus monkeys (Evans et al., 2002). 

Compared to TGFj31, interest in the potential rote of FGF2 in the pathophysiology of 

asthma has just emerged. Studies documenting the expression of FGF2 in asthmatic 

tissues have started in the early years of this new millennium. Initially, BALF levels 

of FGF2 expression were shown to be higher in atopic asthmatics compared to control 

subjects (Redington et al., 2001). Elevated immunohistochemical reactivity for FGF2 

was then demonstrated in the airway submucosa of asthmatic patients and in a non-

human primate model of asthma (summarized in Table 4). In addition, FGF2 was 

shown to be further upregulated in BALF of atopic asthmatics following allergie 

challenge (Redington et al., 2001). However, in contrast to TGFf)l, which increases at 

24 h but not at 10 min following allergie challenge (Redington et al., 1997), FGF2 is 

rapidly upregulated (at 10 min). 

Table 4: Expression of FGF2 in human and in a non-human primate model of asthma 

Characteristic mRNA 
Species of the subjects Tissues or Description of the effects Ref. 

or the models protein 
Human Mildly atopic BALF Prote in - Median of 0.22 vs 0.06 (Redingt 

asthmatics pg/ml at baseline in on et al., 
asthmatics vs controls, 2001) 
respectively (p = 0.003). 
- Median of 1.52 vs 0.3 
pg/ml in allergen-challenge 
vs saline-challenge sites of 
asthmatics, respectively (p < 
0.002). 

Human Atopic Bronchial Prote in - 53.7 vs 33.3 + cells/mm2 in (Hoshino 
asthmatics biopsy bronchial submucosa of et al., 

specimens asthmatics vs controls, 2001) 
respectively (p < 0.01). 
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Rhesus Exposure to Tracheal Prote in - Increased expression in (Evans et 
monkeys HDMAduring rings HDMA group in and around al., 2002) 

the first basal cells and within the 
postnatal 6 mo BMZ 

- The intensity of 
immunoreactivy in the BMZ 
was stronger near the 
epithelial surface, suggesting 
that the basal epithelial cells 
may producing it. 

Human Mild asthmatics Bronchial Prote in - Median of 8.7 vs 5.3% of (Shute et 
(6 out of 7 were biopsy epithelial area staining +for al., 2004) 
atopic) specimens FGF2 in asthmatics vs 

controls, respectively (p < 
0.05). 
- Median of 36 vs 29.5% of 
endothelial area staining + 
for FGF2 in asthmatics vs 
controls, respectively (ns). 

Human 11 out of 17 Sputum Prote in - 46.4 pg/ml vs 6.0 pg/ml in (Kanaza 
were atopic asthmatics vs controls, waand 

respectively (p < 0.05). Yoshika 
- 1 yr of BDP treatment was wa, 
without effect (45.4 pg/ml) 2005) 

Human 4 mild and 5 Small Protein - 143.9 vs 75.8 and 106.2 vs (Hashimo 
mode rate (inner 72.6 + cells/mm2 in the inner to et al., 
asthmatics diameter and outer walls of small 2005) 

<2mm) airways in asthmatics vs 
and controls, respectively (p < 
medium 0.05 and ns). 
(inner - 93.6 vs 75.5 and 51.2 vs 
diameter 69. l + cells/mm2 in the inner 
between 2 and outer walls of medium 
to 5 mm) airways in asthmatics vs 
size controls, respectively (ns). 
airways 

Unless otherwise specified, numbers presented in the table represent mean values. 
Abbreviations: BDP, beclomethasone dipropionate; BMZ, basement membrane zone; 
HDMA, bouse dust mite allergens; mo, month; ns, not statistically significant; yr, 
year. 

2.6. Rapid release of FGF2 following allergen challenge 

Proteolysis-mediated FGF2 desequestration from ECM 
The rapid increase of FGF2 induced by allergen unlikely represents de nova protein 

synthesis. As mentioned earlier, desequestration of pre-formed FGF2 stored in ECM 
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may be involved. Among other proteases, mast cell tryptase (Broide et al., 1991; 

Jarjour et al., 1991; Wenzel et al., 1988), neutrophils elastase (Vignola et al., 1998), 

MMP-9 (Corbel et al., 2003; Dahlen et al., 1999; Tang et al., 2006), MMP-1 (Rajah et 

al., 1999), MMP-3 (Dahlen et al., 1999), thrombin (Terada et al., 2004) and kallikrein 

(Christiansen et al., 1992) are increased in lung tissues of asthmatics. Many of these 

were shown to be released and/or activated following allergie challenge and may 

likely be involved in the rapid desequestration of FGF2 from the basement membrane 

zone of the EMTU. 

Mast cell degranulation 
Identification of CD34-FGF2 double positive cells in the airways have prone 

investigators to suggest that inflammatory cells is also a likely sources of FGF2 in 

asthma (Hoshino et al., 2001). In fact, FGF2 can efficiently be secreted by 

macrophages (Baird et al., 1985; Henke et al., 1993; Hoshino et al., 2001), T 

lymphocytes (Blotnick et al., 1994; Hoshino et al., 2001), eosinophils (Hoshino et al., 

2001) and mast cells (Hoshino et al., 2001; Inoue et al., 2002; Inoue et al., 1996; Qu et 

al., 1998; Qu et al., 1995). Considering the fast activation of mast cells in atopic 

reactions, this cell is a likely candidate to explain the rapid increase of FGF2 in BALF 

of asthmatics following allergie challenge (Redington et al., 2001). 

The effect of mast cells in FGF2 upregulation may also be indirect. Mast cells are the 

only endogenous source of heparin in mammals and the latter is known to be released 

during the process of degranulation (Green et al., 1993). Due to heparin ability to 

elute FGF2 from its HSPGs binding sites in vitro (Bashkin et al., 1989; Folkman et 
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al., 1988; Shute et al., 2004), it is tempting to speculate that the in vivo release of 

heparin induced by allergen-triggering of sensitized mast cells may be a means by 

which FGF2 is rapidly freed from ECM following SAC (Redington et al., 2001). In 

addition, heparin structure is very similar to the heparan sulfate moiety of HSPGs and 

can efficiently substitute for the role of the latter as a coreceptor, conferring to FGF2 

its high-affinity binding to FGFR and its subsequent biological effects (Mohammadi 

et al., 2005). Therefore, in addition to allowing FGF2 desequestration, heparin can 

also functionally potentiate the effect of FGF2 on ASM cell proliferation. Considering 

the close vicinity of mast cells and ASM cells in the airways of asthmatics (Brightling 

et al., 2002), a paracrine signaling involving concomitant secretion of FGF2 and 

heparin by mast cells, together with indirect desequestration of pre-formed stores of 

FGF2 by mast cell-derived heparin, may be of major significance in ASM cell 

hyperplasia. 

In addition, other factors secreted by mast cells are known to support ASM cell 

proliferation in vitro. For example, tryptase, which is the main factor released by mast 

cells during degranulation (Schwartz, 1994), was documented as having a mitogenic 

effect on ASM cells by two groups of investigators (Berger et al., 2001; Brown et al., 

2001). However, its mitogenic effect was delayed compared to other growth factors 

and was dependent on its proteolytic activity (Brown et al., 2001), suggesting that it 

was mediated by the release of growth factors sequestered on pericellular ECM. 

Interestingly, the mitogenic effect of tryptase was enhanced by heparin (Berger et al., 

2001), which was in great contrast to the well-recognised anti-mitogenic action of 
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heparin (in particular to serum- and TGF~l-induced ASM cell mitogenesis) (Johnson 

et al., 1995; Kanabar et al., 2005; Kilfeather et al., 1995; Okona-Mensah et al., 1998). 

On the other band, the growth-promoting effect of heparin on tryptase-induced ASM 

cell proliferation is reminiscent to the role of heparin in conferring cell surf ace high-

affinity binding and growth-promoting effect to ligands in the FGF family. 

Altogether, these observations suggest that the slow onset, protease-dependent 

mitogenic effect of tryptase on ASM cells may be related to its capacity to de grade 

ECM constituents, and consequently, to desequester one or several members of the 

FGF family. This conjecture as well as the potential relevance of other interplays 

between mast cells and ASM cells in the progression of ASM cell hyperplasia justifies 

further investigations. 

Released following epithelium damage 
Under pathologie conditions, such as asthma, it is also possible that FGF2 is released 

following epithelial damage. The airway epithelium is the sole source of the 

cytoplasmic, LMW isoform of FGF2 in the lungs (Kranenburg et al., ; Shute et al., 

2004). Airway epithelial tissue is the primary target for different kinds of phlogogenic 

insults entering the airways (bacteria, virus, allergens, pollutants). Following such 

aggressions, cellular membrane integrity of the epithelium could be compromised, 

directly or through the subsequent mobilisation and activation of inflammatory cells 

into the airways, which could ultimately lead to cytoplasmic release of FGF2 into the 

airway lumen. 

82 



In support to this contention, Zhang and coworkers (Zhang et al., 1999) pioneered a 

three-dimensional co-culture system in which primary lung myofibroblasts were 

embedded in collagen gel and epithelial cells were seeded over it. This system allows 

elucidation of the paracrine influence of epithelial damage on the behaviour of 

underlying cells. Using this in vitro system, they demonstrated that different 

epithelial-damaging stimuli, such as mechanical scraping or poly-L-arginine treatment 

cause myofibroblast proliferation. Myofibroblast growth-promoting activity is 

released rapidly by epithelial cells following injuries ( observed at the earlier time 

point measured: i.e. 4 h), suggesting that a pre-formed mitogenic factor, possibly 

FGF2, is liberated as a result of epithelial damage. Accordingly, this enhanced growth 

was temporally associated with FGF2 release in the supernatant of wounded cells. The 

highest FGF2 expression was observed at the earlier time point measured (i.e. 4 h 

following injury) and remained elevated thereafter for 24 h. Moreover, anti-FGF2 

antibody (200 µglml) reduced by 32% myobibroblast proliferation induced by 

epithelial wounding. Other mitogenic factors, such as PDGF-AB, TGFf32, IGF-1 and 

endothelin (ET)-1 were also upregulated, but their increased expression in the 

supernatant following epithelial injury were delayed compared to FGF2. The early 

increase in FGF2 expression in damaged epithelial cell supernatants prompted the 

authors to investigate whether MMPs are involved in ECM-bound FGF2 release. 

Whereas both mechanical and chemical injuries increased FGF2 release, only 

mechanical damage increased MMP-2 and MMP-9 activities, discarding the 

possibility that FGF2 is desequestrated after injury only by gelatinase-induced ECM 

degradation. Moreover, adding a2-macroglobulin, an inhibitor of MMPs, to the 
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epithelial culture did not prevent the early increase in FGF2 release induced by either 

mechanical or chemical damages. The authors thus suggest that intracellular stores of 

pre-formed FGF2 in the epithelium are rapidly liberated after damage and contribute 

to myofibroblast growth-promoting activity (Zhang et al., 1999). Noteworthy of 

mention, FGF2 is released prior to TGFl3 following these types of airway epithelial 

cell aggression (Zhang et al., 1999). This sequence of growth factor production by the 

damaged epithelial cells is reminiscent to the kinetics of FGF2 (Redington et al., 

2001) and TGFj)l (Redington et al., 1997) upregulation observed in BALF of 

asthmatics following allergie challenge. In addition, since both growth factors bind to 

the same proteoglycans (HSPGs), the possibility is raised that de nova synthesis of 

TGFj)l would be redirected in close vicinity of extracellular sites where FGF2 was 

previously stored before its desequestration, and consequently, these two growth 

factors may act sequentially on the same tissues in in vivo conditions. 

The chemical used to damage the epithelium in Zhang and coworkers's study (Zhang 

et al., 1999) mimics the positively charged proteins liberated by eosinophils following 

their activation in the airways of asthmatics. lt was recognised a long time ago that the 

degree of eosinophilia or their degranulation products correlate with the severity of 

different markers of asthma (Bousquet et al., 1990; Frick et al., 1989; Wardlaw et al., 

1988). Airway eosinophilia induced by inhalation of rIL-5 was equally associated 

with an increased sputum level of ECP in asthmatic patients (Shi et al., 1998). These 

eosinophil-derived mediators were shown to be toxic for the airway epithelium 

(Robinson et al., 1992). Consequently, alteration of the plasma membrane of epithelial 
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cells by eosinophil-degranulation products, such as ECP and MBP, may be involved 

in the release of FGF2 by the epithelium. 

In addition to acting as a potential tissue involved in the brisk release of FGF2 in 

asthmatic airways following allergie challenge, the epithelium of asthmatics was 

shown to express higher amount of FGF2 (Shute et al., 2004). In fact, the 

augmentation seems to be confined to the airway epithelium, since neither the 

pulmonary vascular endothelial expression, nor the response of stimulated release of 

FGF2 by heparin or heparitinase I (bacterial endoglycosidase) in endobronchial tissue 

specimens were significantly different between asthmatic and non-asthmatic subjects 

(Shute et al., 2004). Considering the following: 1- the Iocalization of the epithelial 

cells relative to the airway lumen; 2- the demonstration that the epithelial cells are the 

sole source of the cytoplasmic LMW form of FGF2 in the airways; and 3- the 

increased expression of FGF2 in asthmatic epithelium, it is tempting to suggest that 

the alteration of epithelial cell plasmalemma integrity is responsible for the rapid 

increase of FGF2 expression observed in BALF of asthmatics following allergie 

challenge (Redington et al., 2001). 

On the other hand, the involvement of eosinophils in the increased FGF2 expression 

bas been requestioned recently. Kanazawa and Y oshikawa (Kanazawa and 

Y oshikawa, 2005) have shown that a one-year therapy with beclomethasone 

dipropionate (BDP) was effective in abrogating airway eosinophilia, but was 

inefficient to reduce the elevated level of FGF2 in induced sputum samples of 
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asthmatic subjects (Kanazawa and Y oshikawa, 2005). In addition, deficiency in MBP-

1 in a mouse model of allergie asthma did not protect against allergen-induced asthma 

(Denzler et al., 2000). In contrast to FGF2, increased expression of VEGF in induced 

sputum of asthmatics (4270 pg/ml) compared to control subjects (1730 pg/ml) was 

responsive to BDP therapy (2530 pg/ml) (Kanazawa and Y oshikawa, 2005). This 

upregulation of VEGF in induced sputum of asthmatics and the reduced expression 

following corticosteroid treatment were in accordance with other studies (Asai et al., 

2003; Asai et al., 2002). These data suggest that these 2 growth factors are differently 

regulated by corticosteroid therapy. Kanasawa and Y oshikawa (Kanazawa and 

Yoshikawa, 2005) also demonstrated that procollagen type III peptide (P-IIl-P), which 

is the N-terminal peptide of type III collagen precursor, increased in induced sputum 

of asthmatics and was also refractory to BDP therapy. In fact, FGF2 levels correlate 

positively and significantly with P-III-P levels before (r = 0.84) and after (r = 0.89) 

BDP therapy, suggesting that FGF2 could play arole in pro-fibrotic lesions in asthma 

(Kanazawa and Y oshikawa, 2005). Consistent with this result, Chakir and coworkers 

(Chakir et al., 2003) had demonstrated that fibrotic proteins such as collagens type I 

and III were unresponsive to the oral corticosteroid methylprednisolone. However, 

they attributed this lack of response to an increased TGFf:H expression, which was 

also unaffected by corticosteroid treatment. Collectively, these studies suggest that the 

inability of corticosteroids to downregulate FGF2 and TGFf) 1 expression may explain 

previous findings showing that airway fibrosis, characterized by collagen deposition 

in the lamina reticularis, was not effectively reduced by corticosteroid therapies 

(Chakir et al., 2003; Jeffery et al., 1992). 
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Overall, even if the cellular source of FGF2 is still unclear, its overexpression was 

consistently reported in the airways of asthmatics. Further studies will be required to 

identify the mechanisms involved in its increased release and to determine its 

functional relevance in asthma etiology. However, considering its growth-promoting 

effect toward cells of different origins and the well-known trophic fonctions of this 

family of growth factors in the EMTU during lung morphogenesis, FGF2 is a 

potential contributor to airway remodeling, including ASM cell hyperplasia. 

2.7. FGF2 receptors on ASM cells 

Unlike FGFI, which appears to be a universal FGFR ligand, FGF2 seems to possess a 

greater binding specificity for the Ille splice form of FGFRI to R3 and with the 

FGFR4 (Ornitz et al., 1996), but also demonstrates some activity toward the FGFRlb 

splice form. Being a mesenchymal tissue, ASM expresses the Ille isoform of FGFRs, 

and consequently, is capable of responding to extracellular FGF2. However, it is not 

clear yet which FGFRs are expressed in the ASM cells. Among FGFRs, FGFRI is the 

most widely distributed throughout the organism and its expression tends to be 

confined to tissue microvasculature, including lung vessels, and the epithelia, 

including epithelial cells from the respiratory tract (Hughes and Hall, 1993). 

Kranenburg and coworkers (Kranenburg et al., 2002) have detected FGFRl in VSM 

cells, ASM cells and the airway epithelium. It is thus believed that the FGFRlc is 

expressed on ASM cells and may be responsible for the FGF2-mediated biological 

effects. However, due to insufficient studies on the matter, expression of the other 
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high-affinity receptors (FGFR2 to FGFR4) could not be excluded presently. In 

addition, no modulation of FGFRs has been reported so far in lung tissues of 

asthmatic subjects. 

2.8. In vivo links between FGF2 and ASM cell hyperplasia 

There is currently no published study documenting the effect of FGF2 on ASM cell 

hyperplasia in vivo. 

2.9. In vitro effect of FGF2 on ASM cell proliferation 

In contrast to TGFBl, there is no controversy surrounding the effect of FGF2 on ASM 

cell mitogenesis. Whatever the origin of the cells and the cell culture conditions used, 

it is well established that FGF2 induces ASM cell proliferation in vitro (Bonacci et al., 

2003; Bonacci and Stewart, 2006; Bonner et al., 1996; Bosse et al., 2006; Brown et 

al., 2002; Ediger and Toews, 2000; Fernandes et al., 2004; Fujitani and Bertrand, 

1997; Ravenhall et al., 2000). Moreover, FGF2 was shown to synergize with PDGF-

AA and PDGF-AB (Bonner et al., 1996; Bosse et al., 2006; Ediger and Toews, 2000), 

as well as with other RTK-acting ligands, such as insulin (Ediger and Toews, 2000). 

The synergism with some of the members of PDGF family was attributable to its 

ability to induce the expression of PDGF receptor a chain (PDGFRa) (Bonner et al., 

1996; Bosse et al., 2006). Just as observed with TGFBl, FGF2 can potentiate the 

mitogenic effect of the GPCR-acting ligand LPA (Ediger and Toews, 2000). ET-1, 

another GPCR-acting ligand, also synergized with FGF2 to induce guinea pig ASM 

cell mitogenesis (Fujitani and Bertrand, 1997). On the other band, simultaneous 
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stimulation of human ASM cells with FGF2 and EGF induced no additive effect 

compared with each of the growth factors administered al one (Ediger and Toews, 

2000). Since both of these growth factors act on distinct RTK cell surface receptors, 

these results suggest that they might use the same intracellular signaling pathways to 

transmit their mitogenic effect. 

In contrast to other ASM cell mitogens, such as thrombin, FGF2 requires p38 MAPK 

to transduce its mitogenic signal into the nucleus (Fernandes et al., 2004). 

Accordingly, kinetic experiments demonstrated biphasic p38 activation, showing 

early (5 and 30 min) and late (20 h) phosphorylation following FGF2 stimulation 

without evidence of activation in middle time points (2 and 6 h). Upregulation of 

cyclin D 1 mRNA and protein levels, as well as downregulation of the cyclin-

dependent kinase (cdk) inhibitor p2lciPvwAFI protein by FGF2 was unaffected by pre-

treatment with the p38 pharmacological inhibitor SB203580. However, the extent of 

Retinoblastoma (Rb) protein phosphorylation was attenuated by SB203580 20 h post-

FGF2 stimulation. These results suggest that late p38 activation induced by FGF2 

participates in the late events of the G 1 phase of the cell cycle and its activation is 

obligatory for G 1 to S phase traversai, which subsequently leads to DNA synthesis 

and cell proliferation (Fernandes et al., 2004). Interestingly, treatment of mice with 

SD282, a selective inhibitor of p38, abrogated ASM cell hyperplasia in a model of 

allergie airway inflammation, which was further associated with a significant 

reduction in AHR to acetylcholine (Nath et al., 2006). This result may be the only 

due so far for the involvement of FGF2 in ASM cell proliferation in vivo. 
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Interestingly, the mitogenic effect of FGF2 on ASM cells is inhibited by f32-

adrenoceptor agonists (Bonacci et al., 2003) and by glucocorticoids (Bonacci et al., 

2003; Bonacci and Stewart, 2006), which are the mainstay therapies for the treatment 

of asthma. The anti-migotenic action of glucocorticoids is maintained when ASM 

cells are cultured on laminin (Bonacci et al., 2003). However, its anti-mitogenic 

potential is lost when the cells are seeded on collagen type 1 (Bonacci et al., 2003; 

Bonacci and Stewart, 2006), suggesting that certain ECM components influence the 

response of ASM cells to glucocorticoids. On the other hand, the anti-mitogenic effect 

of f32-adrenoceptor agonists was conserved whatever the matrix on which the cells 

were seeded. Collectively, these results suggest that the drugs currently used to 

attenuate the symptoms of asthma may be efficacious to prevent ASM cell 

hyperplasia. However, the anti-mitogenic action of glucocorticoids may be 

compromised in remodeled airways of asthmatics associated with increased 

deposition of type 1 collagen (Chakir et al., 2003; Roche et al., 1989; Tormanen et al., 

2005). Also of interest, Johnson and coworkers (Johnson et al., 2004) have shown that 

ASM cells from asthmatic subjects secrete higher amounts of collagen type 1 

compared to ASM cells derived from non-asthmatic subjects, which may render 

asthmatic ASM cells less responsive to the anti-mitogenic effect of glucocorticoids. 

The following chapter tend to demystify the conflicting results surrounding the 

mitogenic effect of TGFf31 on human ASM cells in vitro, and to determine whether 
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initial pre-treatment of ASM cells with FGF2 could influence the mitogenic effect of 

this cytokine. 

91 



CHAPTER3 

MANUSCRIPT 1 

Y nuk Bossé, Charles Thompson, Jana Stankova, Marek Rola-Pleszczynski. FGF2 
and TGFfH Synergism in Human Bronchial Smooth Muscle Cell Proliferation. 
American Journal of Respiratory Celland Molecular Biology 2006; 34(6): 746-53. 

Contributions of first author: 

Ali the experiments were perf ormed by the first author. 
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CHAPTER4 

SYNERGISM BETWEEN FGF AND TGF(3 FAMIL Y MEMBERS 

We have good reasons to believe that this FGF2-TGF~l synergy has already been 

reported earlier in the literature, but without identifying the incriminated factor added 

to the Smooth muscle Growth Medium (SmGM) responsible for the mitogenic effect 

of TGF~l. Effectively, Cohen and coworkers (Cohen et al., 2000) had demonstrated 

that TGFf:H was able to induce human ASM cell proliferation, but this effect was 

silent if the growth factors (FGF2, EGF and Insulin) and the serum (5%) were omitted 

in the culture medium. To our view, the essential factor was not in the serum, as 

suggested by the authors, but was the FGF2 added to the culture medium. Without 

any effort for identifying this factor, Cohen and coworkers (Cohen et al., 2000) 

pursued their study and demonstrated convincingly that the IGFBP-3 induced by 

TGF~l was responsible for its mitogenic effect, offering an another perspective of 

what might be the mechanism explaining the mitogenic synergism between FGF2 and 

TGF~l. However, considering the fact that TGF~l alone was sufficient in the absence 

of added serum or growth factors to induce IGFBP-3 (Cohen et al., 2000), but was 

unable to support ASM cell proliferation in the absence of added growth factors 

(Bosse et al., 2006), we could only expect that IGFBP-3 is one of the factor induced 

by TGFf:H that mediates the proliferative synergism with FGF2. 

One can argue that the concentrations of FGF2 and TGF~l required to induce the 

synergism were higher than what was recovered in BALF of asthmatic subjects, and is 

thus unlikely to occur under physiologie conditions. In fact, the synergism between 
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FGF2 and TGFf31 was perceptible at 100 pg/ml of FGF2, which is 67-fold higher than 

the concentration reported in BALF of asthmatics following SAC (1.52 pg/ml) 

(Redington et al., 2001). Similarly, 100 pg/ml of TGFf31 was sufficient to increase 

FGF2-induced proliferation, but still represents a 2-fold higher concentration than the 

one reported in BALF of asthmatic patients 24 h post-challenge (46 pg/ml) 

(Redington et al., 1997). However, 0.9% saline solution injected in the airways may 

not be adequate to harvest the totality of a particular protein depending on its 

predominant localization or to its binding properties with components of the airways. 

Since FGF2 is mainly produced by basal epithelial cells and is preferentially 

sequestered in the basement membrane zone after its extracellular release (Evans et 

al., 2002), the bulk of FGF2 may not be accessible by bronchoalveolar lavage. 

Moreover, based on the observations that FGF2 and TGFf31 expression levels were 

calculated for the unconcentrated BALF in the two aforementioned studies, a 

considerable dilution factor must be taken into account (a total of 120 ml of saline 

have been injected in a particular segment of the airways). Since neither TGFf31 nor 

FGF2 are found in the middle of the airway lumen, an issue of volume to surface ratio 

must also be considered. The concentration measured in BALF volume is actually 

derived from the luminal surface of the airway walls in in vivo conditions. Hence, 

BALF concentrations of FGF2 and TGFf31 may not reflect the actual concentrations 

of these growth factors in the airway microenvironments in the vicinity of ASM 

tissue. 
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In addition, the time points where BALF have been collected may not represent the 

highest levels reached by FGF2 or TGF~l following allergen bronchoprovocation. 

However, the time points chosen to recover BALF (10 min for FGF2 and 10 min as 

well as 24 h post-challenge for TGF~l) clearly indicate that FGF2 release in the 

airways occurs more rapidly compared to TGF~ 1 and suggest that ASM cells are 

probably stimulated sequentially by these growth factors in this respective order 

following allergie challenge. Finally, antibodies used in the ELISA kit have usually 

been raised against the recombinant form of the protein of interest and the 

quantification assay is based on a standard curve obtained with the use of the 

recombinant protein. The values obtained by this technique surely correlate with the 

real amount of endogenous protein found in the samples, but may still underestimate 

it. For ail these reasons, we assume that the concentrations of growth factors we used 

in our study were physiologically relevant. If not, the definition of an ASM cell 

mitogen will have to be reconsidered, because the proliferative synergism that we 

reported in our study is more than twice as potent as the stronger mitogen, namely 

PDGF-BB (10 ng/ml), to induce ASM cell proliferation (data not shown). 

Even if TGF~l would not be upregulated in asthma, this FGF2-TGF~l synergy is 

likely to take place and cause ASM cell hyperplasia. The studies enumerated in Table 

1, as well as de Boer and coworkers (de Boer et al., 1998) have demonstrated the 

constitutive nature of TGF~l expression in airway and alveolar epithelial cells. 

TGF~l mRNA was also observed in different cells of healthy human lungs, including 

bronchiolar epithelial, endothelial and mesenchymal cells, as well as in alveolar 
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macrophages (Coker et al., 1996). Hence, asthmatic or not, it is clear that TGF(:H is 

expressed in the airways. Based on our results, TGFf31 cannot trigger ASM cell 

proliferation in the absence of FGF2. However, following the release of FGF2 by 

allergie challenge, ASM cells may become primed to the proliferative effect of 

TGFf31. Consequently, the constitutive expression of this later may become sufficient 

to cause ASM cell hyperplasia. In addition, TGFf31 must be activated by post-

translational modifications before binding to its cognate cell surface receptor and 

mediating its biological effect. Hence, even if its expression is not altered in asthma, 

its activation may occur in the face of asthmatic inflammatory reactions, and this will 

unmask its mitogenic action toward FGF2-primed ASM cells. 

The synergy reported in vitro between FGF2 and TGFf31 may also reproduce what is 

really occurring in vivo with other factors that act via similar receptors or signaling 

pathways. As mentioned earlier, Activin A, another activator of AR-Smads, is 

upregulated in asthma (Cho et al., 2003; Karagiannidis et al., 2006) and is a potent 

inducer of human ASM cell proliferation (Cho et al., 2003). Immunohistologic studies 

have co-localized Activin A with mast cell tryptase in asthmatics (Cho et al., 2003), 

suggesting that mast cells are potent sources of Activin A in asthma. Accordingly, 

increased expression of Activin A in a murine mode) of allergie asthma was severely 

impaired in mast cell-deficient mice (W/W) following allergie bronchoprovocation. 

Activin A secretion by mast cells following FcERI cross-linking in vitro further 

corroborates these results (Cho et al., 2003). Interestingly, mast cells are interspersed 

in ASM cell bundles of asthmatics and are well-known modulator of ASM cell 
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fonctions (Brightling et al., 2002). Hence, considering the vicinity of mast cells and 

ASM cells in vivo, it is conceivable that mast cell-derived Activin A could be the 

main TGFf3 superfamily member that synergizes with FGF2 (or other FGF family 

members) to induce ASM cell hyperplasia. 

As deeply discussed previously, TGFf32 is also upregulated in asthma (Balzar et al., 

2005; Chu et al., 2004). Since the TGFf32 isoform acts on the same receptors and 

signal via AR-Smads, TGFf32 is also a likely candidate to synergize with FGF2, or 

other FGF family members, for inducing ASM cell hyperplasia in asthma. 

On the other band, no members of the FGF family, apart FGF2, were reported to be 

upregulated in asthmatic tissues. However, FGFl is overexpressed in other chronic 

inflammatory lung diseases (Kranenburg et al., 2002; Kranenburg et al., 2005) and 

was shown capable of inducing ASM cell proliferation in vitro (Kranenburg et al., 

2005). In addition, IL-lf3 is structurally related to the family of FGF growth factors 

(Schmitz et al., 2005) and is known to be upregulated in asthma. lnterestingly, and as 

observed for FGF2 (Bonner et al., 1996; Bosse et al., 2006), this pro-inflammatory 

cytokine synergizes with PDGF in mesenchymal cell proliferation through its ability 

to increase the expression of PDGFRa (Coin et al., 1996; Lindroos et al., 1995; 

Tsukamoto et al., 1991). Hence, as observed for FGF2, both FGFI and IL-1(:3 are 

likely candidates to prime ASM cells to proliferate in response to TGFf3 family 

members that signal via AR-Smads. 
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lt is also noteworthy to mention that each of the individual interactions that may take 

place in vivo between members of FGF and TGFf3 family are not mutually exclusive. 

Instead, every extracellular eue from one family of growth factors may be cumulative 

and synergize with the culminated signal generated from simultaneous extracellular 

eues of several members of the other family of growth factors. ASM cell hyperplasia 

is a complex phenotype. lt would be surprising that only a single synergism between 

two growth factors would explain this structural alteration. lt is more likely that a 

concerted action of 2 families of growth factors, where every member of one family 

potentiates the mitogenic action of every member of the other family, would lead to 

ASM hyperplasia. 

In the following two chapters, two other asthma mediators, namely IL-4 and IL-13, 

will be discussed in regard to their respective contribution to asthma pathogenesis, 

and the hypothesis that FGF2 could influence the mitogenic potential of these two 

cytokines was tested. 
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CHAPTERS 

IL-4 AND IL-13 

5.1. IL-4 and IL-13 and their receptors 

While TGFj31 is considered the most important cytokine in the fibrotic processes that 

take place in asthma, IL-4 and IL-13 are cornerstones in the sensitization and effector 

phases of the disease, respectively (reviewed in (Chatila, 2004; Hershey, 2003; 

Izuhara and Arima, 2004; Mueller et al., 2002; Wills-Karp, 2001; Wills-Karp and 

Chiaramonte, 2003)). These cytokines are mainly produced by T H2 lymphocytes, but 

eosinophils (Gessner et al., 2005; Schmid-Grendelmeier et al., 2002; Woerly et al., 

2002), mast cells (Gessner et al., 2005; Kobayashi et al., 1998), macrophages 

(Hancock et al., 1998; Prieto et al., 2000), basophils (Gessner et al., 2005; Shimizu et 

al., 1998; Tschopp et al., 2006), dendritic cells (de Saint-Vis et al., 1998) and ASM 

cells (Grunstein et al., 2002) are also potential cellular sources. They are both encoded 

by a 4-exon gene cluster in the 5q31 chromosome, which has been associated with 

several asthma phenotypes (lzuhara and Arima, 2004). The primary sequences of the 

processed forms of IL-4 and IL-13 are 129 and 112 aa long, respectively. Their 

secondary and tertiary structures form in 4-helix bundle arranged in an up-up-down-

down topology, just as the other cytokines acting on class 1 cytokine receptors 

(Grotzinger, 2002). Four receptor chains are involved in the binding of IL-4 and IL-13 

onto the cell membrane (Chatila, 2004; Hershey, 2003) (Figure 3). Every chain 

possesses the conserved cytokine binding module (CBM) (consisting of two 

fibronectin type III domains with the conserved cysteine motif and the WSXWS 

sequence) in their ectodomain, a single transmembrane domain and the box domain in 
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the juxtamembrane region of the cytoplasmic tail. The latter is required for the 

constititive binding of members of the Janus kinase (JAK) family of cytoplasmic 

tyrosine kinases. The common y chain, which is also required to initiate intracelullar 

signaling by IL-2, IL-7, IL-9, IL-15 and IL-21 cytokines, together with the IL-4Ra 

chain form the type 1 receptor. On the other band, IL-4Ra with IL-13Ral form the 

type 2 receptor. Whereas dimerization of type 1 receptor is exclusively induced by IL-

4 and leads to JAKl and JAK3 activation, type 2 receptor is induced by both IL-4 and 

IL-13 and activates JAKl and tyrosine kinase (Tyk)2, which is also one of the 

members of the JAK family. However, in both cases, engagement of type 1 or type 2 

receptors culminates in the activation of the same signal transducer and activator of 

transcription (STAT), namely STAT6 (Figure 3). Consequently, many biological 

effects are shared between IL-4 and IL-13. IL-13 also binds to a second chain, IL-

13Ra2, which was suggested to actas a decoy receptor owing toits short cytoplasmic 

tail, which is not coupled with downstream signaling pathways (lzuhara and Arima, 

2004). This receptor chain is inducible by IL-4 or IL-13 stimulations and 

overexpressed in the case of bronchial asthma, suggesting that it may act as an 

autoregulatory mechanism to attenuate the effect of IL-13 (lzuhara and Arima, 2004). 

5.2 Involvement of IL-4 and IL-13 in the development of asthma pathogenesis 

The two initial studies documenting that each of these cytokines are sufficient alone to 

recapitulate most of the pathognomonic features of asthma in naïve mice have picked 

the curiosity of many investigators in the field and have generated an explosion of 

papers confirming their effects (Grunig et al., 1998; Wills-Karp et al., 1998). lt was 
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Figure 3: IL-4 and IL-13 receptors and signaling 

Type Il 
IL-4 Receptor IL-13 Receptor 

IL4Ra 
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Hershey. JACI 2003; 111: 677-90. 
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thus demonstrated that IL-13 and IL-4 knockout mice are protected against allergen-

induced AHR (Komai et al., 2003; Walter et al., 2001). Similarly, neutralization of IL-

4 with Ab during the sensitization period (Corry et al., 1996) or with Ab against IL-13 

before each challenge (Eum et al., 2005) prevent the development of AHR in murine 

models of allergie pulmonary inflammation. Furthermore, deficiency in IL-4Ra or in 

ST AT6, which are the common receptor chain and signaling molecule borrowed by 

both IL-4 and IL-13 to propagate their biological effects, also render mice resistant to 

experimentally-induced allergie asthma (Akimoto et al., 1998; Grunig et al., 1998; 

Kuperman et al., 1998). 

Targeting the IL-13-responsive cells in the airways by intranasal delivery of chimera 

cytotoxin, which was formed by anchorage of Pseudomonas exotoxin to IL-13, 

reduced features of airway disease, including AHR, lymphocytic inflammation, goblet 

cell hyperplasia and peribronchial fibrosis in a murine model of chronic asthma 

induced by Aspergillus famigatus sensitization and conidia challenge (Blease et al., 

2001). However, considering the amount of structural cells in the airways expressing 

IL-4Ra, IL-13Ral and IL-13Ra2, it is surprising that such a treatment did not induce 

airway destruction or, at least, severe inflammation. 

In addition to mouse models, tracheal administration of IL-13 into the lungs of guinea 

pigs was also sufficient to induce AHR (Morse et al., 2002). Cellular inflammation 

was characterized by eosinophilia and a robust neutrophilia, but the number of 

macrophages and lymphocytes also increased significantly. In addition, double 
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intraperitoneal injections of 10 or 20 mg/kg of sIL-13Ra2 at 24 and 2 h before 

allergie challenge in sensitized guinea pigs prevented the establishment of AHR. 

Hence, similar to what was observed in murine models of asthma, AHR in guinea pigs 

following experimentally-induced allergie asthma requires IL-13. 

Taken together, these results clearly indicate that IL-4 and IL-13 are required and 

sufficient for the development of asthma, at least in animal models of the disease. 

Interests have now turned toward the understanding of the downstream cellular and 

molecular mechanisms by which these two T tt2 cytokines mediate their actions 

(reviewed in (Wills-Karp and Chiaramonte, 2003)). 

5.3 Cellular and molecular mechanisms mediating the effector funtions of IL-4 and 

IL-13 

Based on recombination-activating gene 1 (Ragl)-deficient mice, it was suggested 

that IL-13 acts directly on the bronchial tissue through non-T cell and non-B cell 

mechanisms to induce the asthma phenotype (Grunig et al., 1998). Moreover, pre-

treatment with vinblastine, a granulocyte-depleting agent, was ineffective in blocking 

IL-13-induced AHR (Singer et al., 2002), thus discarding the possible involvement of 

neutrophils, eosinophils and basophils in the asthma phenotype induce by IL-13. 

Correspondingly, IL-5 and CCLl 1 double knock-out mice, which are severely 

impaired in their ability to recruit eosinophils into the airways, still demonstrated 

AHR upon IL-13 exposure (Yang et al., 2001 ). In addition, a single dose of IL-13 or 

IL-4 was sufficient to induce AHR at an early time point (6 hours), when leucocyte 
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infiltration in the airways was still comparable to that of mice treated with saline 

alone (Venkayya et al., 2002). Intranasal administration of conditioned medium 

derived from T H2-activated cells also induced AHR in wild-type mice. This effect was 

blunted in mice lacking either IL-4Ra or STAT6. lnterestingly, AHR was still present 

in mast cell-deficient W/W mice in this particular setting (Venkayya et al., 2002), 

discarding the possible involvement of tissue residential mast cells in the asthma 

phenotype induced by IL-4 or IL-13. Finally, an elegant complementary study has 

confirmed ail these observations by demonstrating with adoptive transfer experiments 

that IL-4Ra chain in the irradiated recipient, but not in the bone marrow donors, is a 

prerequisite for asthma development upon antigen exposure (Kelly-Welch et al., 

2004). Hence, unequivocal evidence now suggests that T H2 cytokines, at least in mi ce, 

exert their effector fonctions by acting primarily through airway structural cells. 

Generation of trangenic mi ce overexpressing IL-13 in the airways using the CC 10 

promoter approach bas been particularly useful in revealing the downstream cellular 

and molecular effector mechanisms driving IL-13-induced asthma-like phenotype. 

This transgenic model has evolved forma single (Zhu et al., 1999), to a double 

(Zheng et al., 2000) and then to a triple (Zhu et al., 2001) transgenic model to produce 

a mouse where the expression of IL-13 is exclusive to the airways and its expression 

is externally regulatable by adding dox to the animal' s di et, just as the systeme used 

for the TGFf31 transgenic mice (Lee et al., 2004). Collectively, these studies 

confirmed the results obtained with repeated intratracheal instillations (Wills-Karp et 

al., 1998) or intranasal administrations (Grunig et al., 1998) of rIL-13, in that it 
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reproduced reliably some of the pathognomonic phenotypes of human asthma, such as 

peribronchial eosinophilic and lymphocytic inflammations, subepithelial fibrosis, 

hypertrophy and metaplasia of the epithelium, basal airway obstruction and AHR 

(reviewed in (Elias, 2000; Zhu et al., 2001)). As expected, STAT6-deficient animais 

were protected from the asthma phenotype induced by IL-13 in this mode! (Kuperman 

et al., 2002). Kuperman and coworkers (Kuperman et al., 2002) subsequently 

demonstrated that reconstitution of STAT6 in the airway epithelium of STAT6_,_ mice 

was sufficient to restore AHR and goblet cell hyperplasia, but not airway eosinophilia 

in this transgenic mode!. These results suggest that the airway epithelium is targeted 

by IL-13 and that active signaling of IL-13 in this tissue is involved in the 

development of some of the pathologie phenotypes mediated by IL-13 

overexpression. 

The use of the IL-13 transgenic mode! has also revealed important molecular insigths 

toward the understanding of IL-13-induced pathogenesis. By using knockout or 

inhibitor approaches, MMP9 and MMP12 (Lanone et al., 2002), TGF~l (Lee et al., 

200la), CCR2 (Zhu et al., 2002), adenosine (Blackburn et al., 2003), CCL6 and 

CCRl (Ma et al., 2004), acidic mammalian chitinase (Zhu et al., 2004), IL-11 

receptor a (Chenet al., 2005), ERKl/2 (Lee et al., 2006b), Erg-1 (Cho et al., 2006), 

CCR5 (Ma et al., 2006) and 5-Iipoxygenase (Shim et al., 2006) were identified as 

downstream effector pathways of IL-13. Together, these results suggest that the 

pathology induced by IL-13 overexpression is as complex as the one induced by 

allergen sensitization and challenge. 
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5.4 Increased expression of IL-4 and IL-13 in asthma and experimental animal 

models of asthma 

In humans, Huang and coworkers (Huang et al., 1995) provided the first in vivo 

evidence of IL-13 expression in human lungs. Constitutive expression levels of IL-13 

in BALF of both asthmatic and normal subjects was in the range of 20 to 300 pg/ml. 

They further demonstrated that the IL-13 protein level was upregulated 18 to 24 h 

following SAC (6 out of 8 asthmatic patients demonstrated an increase in IL-13 

expression), rising to the range of 0.1 to 2.5 ng/ml. In that study, IL-13 mRNA 

expression in BALF cells was also elevated by an estimated 100-fold following SAC 

to reach 0.55 pg of IL-13 transcript per µg of RNA. Non-asthmatic patients did not 

demonstrate this augmentation following the same allergie challenge. Mononucleated 

cells were identified as the cellular source of the IL-13 transcript, with none detected 

in the isolated eosinophil fraction. Similarly, Prieto and coworkers (Prieto et al., 2000) 

have demonstrated that mRNA expression of IL-13 was elevated in BALF-enriched 

alveolar macrophages of mild atopic asthmatics after repeated low-doses of allergen 

inhalation. Only 2 out of 8 asthmatic subjects expressed IL-13 mRNA before allergen 

exposure, confirming the inducible nature of IL-13 response rather than a 

constitutively higher expression level in asthmatics (Prieto et al., 2000). Effectively, 

no difference was observed in IL-13 mRNA expression of alveolar macrophages 

between asthmatic and healthy subjects before allergen bronchoprovocation (Prieto et 

al., 2000). T cells harvested from BALF of asthmatics also express higher levels of 

IL-13 after local allergen challenge (Bodey et al., 1999). More recently, Batra and 

106 



coworker (Batra et al., 2004) confirmed these observations, demonstrating no 

difference in BALF concentration of either IL-4 or IL-13 at baseline between 

asthmatic and control subjects, but the increases of both cytokines 1 day post-SAC. In 

addition, IL-13 induction following SAC was shown to occur during the late-phase 

(18 h), but not in the early-phase (10 min) of an airway allergie reaction (Tschopp et 

al., 2006). Hence, allergen-induced IL-13 seems to follow a kinetics similar to the one 

observed for TGFl)l and is delayed relative to FGF2 upregulation. 

At the tissue level, examination of endobronchial biopsy specimens by in situ 

hybridization has revealed that the number of positive-cells for both IL-4 and IL-13 

mRNA per millimeter of basement membrane was elevated in the bronchial mucosa 

of atopic asthmatics compared to control subjects (Kotsimbos et al., 1996). In the 

latter study, they also demonstrated that 90% of IL-13 mRNA-positive cells were 

equally CD3-positive cells. RT-PCR performed on biopsy speciments also confirmed 

these results (Humbert et al., 1997), and further demonstrated that the asthmatic 

status, but not the atopic status, is a key determinant to predict the levels of IL-13 

(Humbert et al., 1997) and IL-4 (Humbert et al., 1996) mRNA in lung tissues. These 

studies raised doubt concerning the aformentioned inducible nature of IL-4 and IL-13 

expression identified by others. However, their results are readily explained by the 

higher number of T-lymphocytes in the airway of asthmatics. Altogether, these results 

are consistent with the increased expression of IL-4 and IL-13 observed in animal 

models of asthma and suggest that these two cytokines may be involved in the 

development of structural and functional alterations characterizing human asthma. 
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5.5 Effects of IL-4 and IL-13 on ASM cells 

A large body of evidence also suggests that IL-4 and IL-13 act directly on ASM cells 

to mediate their effective fonctions. Using gene microarray analysis, it was 

established that among structural cells present in the airways, BSMC were the most 

responsive to IL-13 stimulation (Lee et al., 2001b). In addition, autocrine production 

of IL-13 was shown to increase airway responsivess to spasmogen-induced 

bronchoconstriction and to decrease Pz-agonist-induced bronchodilation (Grunstein et 

al., 2002), which remarkably mimics the contractile changes observed in airway 

tissues of asthmatics (Bai, 1990). Surprisingly, IL-13 alone induces a transient 

increase in intracellular Ca2+ concentration in murine ASM cells (Eum et al., 2005). lt 

was thus suggested that IL-13 may act directly on ASM to induce AHR. 

IL-13 and IL-4 also stimulate the secretion of diff erent chemokines, cytokines and 

growth factors in ASM cells. In fact, both IL-4 and IL-13 stimulate the secretion of 

CCLI 1 (Faffe et al., 2005; Hirst et al., 2002), IL-5 (Grunstein et al., 2002), and VEGF 

(Faffe et al., 2006). Moreover, they synergized with IL-IP (Hirst et al., 2002) and 

oncostatin M (Faffe et al., 2005) to induce CCLl 1 release, and with tumor necrosis 

factor (TNF)a to induce CCL17 release (Faffe et al., 2003). Of particular interest in 

the present thesis, an experiment conducted with genechips containing probes for 

6500 human genes has shown that a 6 h-stimulation of human ASM cells with IL-13 

increased by 2.3-fold the mRNA expression of FGF2 (Lee et al., 2001b). 
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However, with ail the accumulated results documenting the effects of IL-4 and IL-13 

in asthma, it is surprising that ASM cell hyperplasia, which is one of the most 

invariable remodeling features of asthma, has been ignored. Even in vitro, the effects 

of IL-4 and IL-13 on ASM cell proliferation have never been reported. 
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ABSTRACT 

Bronchial smooth muscle cell (BSMC) hyperplasia is a typical feature of airway 

remodeling and contributes to airway obstruction and hyperresponsiveness in 

asthma. Fibroblast growth factor 2 (FGF2) and transforming growth factor ~ 1 

(TGF~l) are sequentially up-regulated in asthmatic airways after allergie challenge. 

Whereas FGF2 induces BSMC proliferation, the mitogenic effect of TGF~l remains 

controversial and the effect of sequential FGF2 and TGF~l co-stimulation on 

BSMC proliferation is unknown. This study aims to assess the individual and 

sequential cooperative effects ofFGF2 and TGF~l on human BSMC proliferation 

and define the underlying mechanisms. Mitogenic response was measured using 

crystal violet staining and [3H]-thymidine incorporation. Protein and steady state 

mRNA levels were measured by Western blot, ELISA and semi-quantitative RT-

PCR, respectively. TGF~l (0.1-20 ng/ml) alone had no effect on BSMC 

proliferation, but increased the proliferative effect of FGF2 (2 ng/ml) in a 

concentration-dependent manner (up to 6-fold). Two distinct platelet-derived 

growth factor receptor (PDG FR) inhibitors, AG 1296 and lnhibitor III, as well as a 

neutralizing Ab against PDGFRa partially blocked the synergism between these 

two growth factors. In this regard, TGF~l increased PDGF-A and PDGF-C mRNA 

expression as well as PDGF-AA protein expression. Moreover, FGF2 pre-treatment 

increased the mRNA and protein expression of PDGFRa and the proliferative effect 

of exogenous PDGF-AA (140%). Our data suggest that FGF2 and TGF~l synergize 

in BSMC proliferation and this synergism is partially mediated by a PDGF loop, 
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where FGF2 and TGFj31 upregulate the receptor (PDGFRa) and the ligands 

(PDGF-AA and PDGF-CC), respectively. This powerful synergistic effect may thus 

contribute to the hyperplastic phenotype of BSMC in remodeled asthmatic airways. 

Keywords: asthma, airway remodeling, smooth muscle, hyperplasia, TGFj31, 

FGF2, PDGF 
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INTRODUCTION 

Bronchial smooth muscle cell (BSMC) hyperplasia has been recognised as a feature 

of airway remodeling in asthmatic patients almost a century ago (1 ). Since then, 

several groups of investigators have suggested that BSMC hyperplasia is the major 

histologie alteration contributing to bronchial hyperresponsiveness (2, 3). BSMC are 

also active participant in the inflammatory response during asthma exacerbation by 

their ability to synthesize and secrete a diverse array of mediators involved in 

recruitment, activation and enhanced survival of inflammatory cells ( 4 ). Thus, 

elucidating the factors involved in BSMC hyperplasia is of major significance to the 

understanding of airway wall thickening and hyperresponsiveness, but is also likely 

relevant to the elaboration of improved therapeutics for the treatment of airway 

inflammation that arises in asthmatic patients. 

Numerous individual mediators have been shown to induce BSMC proliferation in 

vitro, including growth factors, proteases, spasmogenes, reactive oxygen species 

(ROS) and cytokines (5). Most ofthese mitogens are up-regulated during asthma 

exacerbation and the order in which the expression of certain growth factors 

increase following phlogogenic challenge have been documented. In this regard, 

Redington and coworkers (6) have reported a rapid (10 min) FGF2 increase in 

bronchoalveolar lavage fluid (BALF) after a segmental allergen challenge, whereas 

TGFBI upregulation was observed only 24 h post-challenge (7). 
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Despite the lack of secretory signal peptide (8), the low molecular weight (LMW; 

18 KDa) cytoplasmic isoform of FGF2 was found in the extracellular milieu (8, 9) 

and has been shown to support BSMC proliferation in vitro (10, 11). The airway 

epitheliurn is the main source of this LMW isoform in the lung (9), but 

inflamrnatory cells such as mast cells (12), macrophages (13) and eosinophils (14) 

can also secrete FGF2. Its elevated expression in asthmatic airways has been 

confirmed by immunohistochemistry in humans (9, 14) and in a non-human primate 

model (15). 

Increased TGFBl expression in human asthmatics (7, 16-23) and in animal rnodels 

of airway inflammation (24-26) has been extensively documented as well. Various 

cells in the airway could contribute to TGFBl up-regulation. However, its role in 

BSMC proliferation is still questionable. Sorne in vitro data reported anti-rnitogenic 

activity (27-29), whereas other studies supported the opposite, reporting a mitogenic 

activity for this cytokine, acting by itself (29-33) or in synergy with other rnitogens 

(31,33). 

The aim of the current study was to clarify the individual mitogenic effect of 

TGFBl, and to measure the combined effects of sequentially added FGF2 and 

TGFB 1 on the proliferation of human primary BSMC. Our results showed that 

TGFBl had no significant mitogenic effect, but synergized with FGF2-induced 

proliferation in a concentration-dependent manner. Moreover, the results suggested 

that part of this synergism involved an autocrine PDGF loop, where FGF2 increased 
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PDGF receptor a chain (PDGFRa) expression and TGF!)l increased production of 

PDGFR ligands (PDGF-AA and PDGF-C). 
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MATERIALS AND METHODS 

Cell culture 

Human primary bronchial smooth muscle cells (BSMC) (Bio Whittaker, Inc. 

Walkersville, MD) were used for all the experiments. BSMC were derived from a 5 

week-old black male and a 1 year-old and a 21 year-old caucasian females. All 

donors, had negative history of smoking and were free of pre-existing lung disease. 

Upon reception, cryopreserved cells were cultured in T-75 flasks in Smooth muscle 

Growth Medium (SmGM) (SmGM-2 Bulletkit) provided by the manufacturer and 

consisting of Smooth muscle Basal Medium (SmBM), 5% fetal bovine serum (FBS) 

and a mixture of growth factors, including fibroblast growth factor 2 (FGF2) (2 

ng/ml), epidermal growth factor (EGF) (0.5 ng/ml) and insulin (5 µg/ml), as well as 

a mixture of antibiotics, including Gentamicin (1 OO ng/ml) and Amphotericin B (0.1 

ng/ml). Thawing, subculturing and harvesting procedures were performed according 

to manufacturer's instructions. Experiments were performed with cells at the 4th 

passage. 

Cell proliferation: Crystal violet staining 

Cells were subcultured into 96-well plates at 3000 cells/well in a starvation medium, 

consisting of SmBM + 1 % FBS, with or without FGF2 (2 ng/ml). Cells were 

maintained in these conditions for 24 h before TGFf31 (PeproTech Canada, Inc. 

Ottawa, ON) or PDGF-AA (PeproTech, Inc. Rocky Hill, NJ) (10 ng/ml; unless 

otherwise specified) stimulations. BSMC proliferation was measured 96 h after 
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stimulation using the DNA staining property of crystal violet (Sigma, Oakville, 

ON). Briefly, cells were washed once with HBSS solution containing 2 mM CaCh 

and 10 mM Hepes, fixed 20 min with ethanol (70%) at -20°C, incubated 15 min in 

crystal violet dilution (1 % w/v) at room temperature, washed 6 times under tap 

water and dissolved in acetic acid (33%). Optical density (OD) was determined at 

550 nm with an ELISA reader (Bio-Rad Laboratory, Inc. Hercules, CA). 

To confirm the validity of crystal violet staining as a surrogate of cell proliferation 

in the BSMC cell line, preliminary tests were performed where different numbers of 

cells were cultured in a 96-well plate (from 1 to 11 thousands). Simple regression 

model was then calculated (Y= 8 x 10-6 
• X+ 0.12) and demonstrated significant 

value (p<0.001) with a very high coefficient of determination (r2 = 0.997), 

indicating that the variance in one variable (OD) would predict almost all the 

variance in the other variable (number of cells). Based on the slope of the linear 

regression model, OD variation of 0.01 unit corresponds to 1230 cells. Thus, the 

crystal violet staining method is a valid approach to quantify BSMC proliferation. 

To investigate signaling pathways involved in BSMC proliferation, pharmacological 

inhibitors were added 1 h before TGFj31 treatment at the following concentrations: 

phosphatidylinositol 3-kinase (PBK) inhibitors, L Y294002 (10 µM) and 

Wortmannin (1 µM) (Biomol. Plymouth Meeting, PA); Src kinase inhibitors, PPl 

and PP2 (10 µM) (Biomol. Plymouth Meeting, PA); PDGF receptor tyrosine kinase 

inhibitor, tyrphostin AG 1296 (10 µM; unless otherwise specified) (Biomol. 
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Plymouth Meeting, PA) and PDGF receptor inhibitor III (Calbiochem, San Diego, 

CA); and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated 

kinase (ERK) kinase (MEK) inhibitor, PD98059 (10 µM) (Biomol. Plymouth 

Meeting, PA). DMSO (0.1 %; unless otherwise specified) was used as the control 

vehicle. To investigate the contribution of an autocrine PDGF loop in the observed 

FGF2-TGF~ 1 synergism, neutralizing mAb against human PDGFRa (R&D, 

Minneapolis, MN) was also evaluated. Anti-PDGFRa was administered 1 h prior to 

TGF~l treatment at concentrations of 0.2, 2 or 20 µg/ml. 

DNA synthesis: [3H]-thymidine incorporation 

Thymidine incorporation assays were used to measure DNA synthesis. Cells were 

seeded in 96-well plates at a density of 3000 cells/well in SmBM 1 % FBS and 

stimulated thereafter at different intervals during a 5 day time-course. FGF2 (2 

ng/ml) and TGF~ 1 (10 ng/ml) treatment were administered alone or sequentially 

with a 24 h interval in their respective order. BSMC were pulsed with 2.5 µCi/ml of 

[methyl-3H]-thymidine (91 Ci/mmol) (Amersham Biosciences. Piscataway, NJ) 4 

hours before being placed at -20°C until further processed. DNA of individual wells 

was then transferred onto a Whatman membrane using a cell harvester (Titertek Cell 

Harvester. Rockville, Md) and placed in scintillation vials for radioactivity 

quantification using a 1215 Rackbeta II liquid scintillation counter (LKB Wallac, 

Turku, Finland). 
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RT-PCR 

Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was 

used to measure mRNA expression. After reaching confluency in 6-well plates, cells 

were starved for 24 h in SmBM 1 % FBS prior to TGF~ 1 (10 ng/ml) stimulations in 

fresh medium. Cells were then harvested, centrifuged and resuspended in TriPure 

solution (Roche Diagnostics Canada, Laval, QC) to perform mRNA extraction as 

described by the manufacturer. To avoid DNA contamination and mRNA 

degradation, mRNA extracts were treated for 15 min with dexoxyribonuclease 

(DNAse 1 from Amersham Biosciences. Piscataway, NJ) and ribonuclease inhibitor 

(RNasin from Promega, Madison, WI) at 37°C. RT reactions were performed using 

1 µg of mRNA extract and M-ML V reverse transcriptase kit (BioCan Scientific, 

Inc. Mississauga, ON) and PCR was performed with a Taq polymerase kit (New 

England BioLabs, Ltd. Pickering, ON). For all experiments, GAPDH mRNA was 

used as an interna! house keeping gene control. The PCR primers used were: PDGF-

A forward, 5'-gaccaggacggtcatttacg-3'; PDGF-A reverse, 3'-cctcacatccgtgtcctctt-5'; 

PDGF-C forward, 5 '-ttcagcaacaaggaacagaac-3'; PDGF-C reverse, 3 ' -

ctgaagggggtagctctgaa-3 '; PDG FR a forward, 5 '-gaagctgtcaacctgcatga-3'; PDGFRa 

reverse, 3'-atcgaccaagtccagaatgg-5'; tPA forward, 5'-cccagatcgagactcaaagc-3'; tPA 

reverse, 3'- tggggttctgtgctgtgtaa-5'; GAPDH forward, 5'-gatgacatcaagaaggtggtgaa-

3'; GAPDH reverse, 3'-gtcttactccttggaggccatgt-5'. 
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Protein determination: ELISA 

Cells were allowed to reach confluence in 6-well plates in SmGM before being 

washed once in PBS and starved for 24 h in SmBM 1 % FBS. TGFB 1 (10 ng/ml) 

was then added in fresh starvation medium and the conditioned medium (CM) was 

recuperated 24 h later. Protein quantification in the CM was determined by the 

human/mouse PDGF-AA Quantikine® ELISA kit (R&D, Minneapolis, MN). 

Western analysis 

Cells reached confluence in 6-well plates in SmGM before being starved for at least 

24 h in SmBM 1 % FBS. FGF2 stimulation was then initiated for 24 h by adding 

fresh medium in all wells. Cells were harvested as described above and lysed in 

RIPA solution (NaCl, 0.15M; Tris-HCl, 0.05M; lgepal 1 %, v:v; Na-Deoxycholate 

0.5%, v:v, SDS 0.1%, w:v; EDTA, 5mM) containing the following inhibitors: 

Aprotinin (2 µg/ml), Leupeptin, (1 µM), Soybean trypsin inhibitor (10 µg/ml), 

AEBSF (0.1 mg/ml), NaF (1 OmM), and Na3 V04 (1 mM). Lysates were subsequently 

exposed to reducing condition (2.86 M Mercaptoethanol in the 4X loading buffer) 

and boiled for 3 min before being submitted to electrophoresis in 7% SDS 

polyacrylamyde gel and transferred overnight onto nitrocellulose membranes. 

Following blocking (milk), membranes were immunoblotted with a mouse anti-

human PDGFRa mAb (1 µg/ml) (R&D, Minneapolis, MN) and the secondary goat 

anti-mouse mAb conjugated with HRP (1 :2500) (Amersham Biosciences, Baie 

D'Urfé, Qc) with appropriated washing after each step (TBS: 0.1% Tween 20, v:v). 

Thereafter, HRP substrate (ECLTM Western Blotting Detection Reagents from 
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Amersham Biosciences, Baie d'Urfé, Qc) was added and protein amount revealed 

by exposure on ECL detecting film (Hyperfilm ™ ECL from Amersham 

Biosciences, Baie d'Urfé, Qc). To control for equal loading, membranes were 

stripped (SDS 2%, w:v; Mercaptoethanol, 1 OOmM; Tris, 50mM, pH6.8) for 20 min 

at 50°C and reblotted following similar procedures with a mouse anti-human 

vinculin mAb (1: 1000) (mouse monoclonal anti-vinculin clone VIN-11-5 from 

Sigma-Aldrich, Oakvill, On) as the primary antibody. 

Data analysis 

Results illustrated in the figures, as well as their statistical analysis, are compiled 

data obtained using BSMC derived from the 5 week-old donor. Unless otherwise 

specified, raw data were used for statistical analysis. ANOVA was first performed 

to determine overall significance of differences among conditions tested and was 

followed by Fisher' s PLSD test to specify which conditions significantly differed 

from each other. In RT-PCR analysis, ratios over GAPDH were standardized in Z 

score within each experiment before the data obtained for every experiment were 

compiled and analysed as described above. In ELISA analysis, unpaired Student's t 

test was used to compare the protein expression levels between TGFf) 1-treated vs 

untreated cells. p s 0.05 was arbitrarily considered sufficient to reject the null 

hypothesis. 



Bossé et al. FGF2 and TGFf31 in ASM proliferation p. 13 

RESULTS 

TGFf31 synergizes in a concentration-dependent manner with FGF2 to induce 

BSMC proliferation. 

The proliferative effect ofTGFf31, alone or 24 h after FGF2 stimulation, in human 

primary BSMC was examined. Results illustrated in the figures are calculated data 

obtained using BSMC from the 5 week-old donor. As shown in Figure IA, 

increasing concentrations of TGFf31 on its own had no effect on BSMC 

proliferation. However, when FGF2 (2 ng/ml) was added to the culture medium 24 

h before TGFf31 stimulation, the latter induced a concentration-dependent increase 

in BSMC proliferation. At 10 ng/ml, TGFf31 induced a 5-fold increase in BSMC 

proliferation relative to FGF2 (2 ng/ml) alone. Conversely, a fixed concentration of 

TGFf31 (10 ng/ml) also increased the mitogenic effect of increasing concentrations 

ofFGF2 (Figure lB). Dose-response curves for FGF2-TGFf:H proliferative 

synergism with the two other donors gave similar results, although the overall effect 

was smaller. At the concentrations used above (2 ng/ml for FGF2 and 10 ng/ml for 

TGFf31) TGFf31 increased FGF2-induced BSMC proliferation by 89 and 129% in 

cells from the 1 year-old and the 21 year-old caucasian female donors, respectively 

(supplementary Figure 1). Unless otherwise specified, the remaining experiments 

were performed with BSMC obtained from the 5 week-old black male donor. 
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TGFfH increases and prolongs DNA synthesis induced by FGF2. 

[3H]-thymidine incorporation assays, as a surrogate of DNA synthesis and cell cycle 

activation, were also performed following sequential FGF2 and TGFf3 l co-

stimulation. As shown in Figure 2, the mitogenic effect of FGF2 (2 ng/ml) peaked at 

48 hours and returned to baseline levels at 96 hours post-stimulation. As expected, 

TGFj31 (10 ng/ml) alone had no effect on DNA synthesis from 24 to 96 hours post-

stimulation. However, TGFj31 increased (at 96 h), but most importantly prolonged 

(to at least 120 h), the mitogenic effect of FGF2. Time-course experiments were 

also performed using crystal violet staining during 5 consecutive days following 

TGFj31 administration. As depicted in figure 2B, FGF2 alone increased BSMC 

proliferation, starting at day one and peaking at day 4. On the other hand, TGF(31 

alone did not affect BSMC proliferation over baseline conditions (FBS 1 %) at any 

particular day. However, when added following a 24 h pre-treatment with FGF2, 

TGFj31 strikingly increased FGF2-induced proliferation, starting at day 2 and 

continuing for at least 5 days post-stimulation. Based on a standard curve and a 

calculated simple linear regression model obtained by plotting OD values with 

known quantity ofBSMC seeded (see Materials and Methods), the number of cells 

per well at day 5 in this particular experiment was estimated at 4968 for control, 

4845 for TGF(31, 14 193 for FGF2 and 51 954 for the sequential FGF2 and TGFf31 

co-stimulation. 
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Tyrosine kinase activity of PDG FR is involved in the FGF2-TGF~l synergism 

BSMC were treated with different pharmacological inhibitors or the vehicle control 

DMSO (0.1 % ) for 1 hour before TGFj31 administration. As shown in Figure 3A, the 

Src inhibitor PP 1 abrogated the proliferative effect of FGF2 and of FGF2-TGFj31 

co-stimulation. On the other hand, tyrphostin AG 1296 (10 µM), a PDG FR tyrosine 

kinase inhibitor, partially blocked FGF2-TGFj31 synergism without any effect on 

FGF2-induced proliferation. To confirm this partial inhibition of FGF2-TGFj31 

synergy, increasing concentrations of the tyrphostin AG1296 and another potent and 

selective ATP-competitive inhibitor of PDGFR tyrosine kinase activity, namely 

PDGF Receptor Tyrosine Kinase Inhibitor III (refered herein as Inhibitor III) were 

tested (Figure 3B). Whereas 20 µM of AG1296 as well as lµM oflnhibitor III did 

not affect the FGF2-induced proliferation (data not shown), the synergism between 

FGF2 and TGFj31 was greatly reduced (66 and 52%, respectively). At higher 

concentrations (50µM and lOµM of AG 1296 and Inhibitor III, respectively), both 

PDGFR inhibitors abrogated the synersism between FGF2 and TGFj31 (Figure 3B). 

However, these concentrations also partially reduced FGF2-induced proliferation 

(data not shown), suggesting a non-specific effect of these inhibitors on BSMC 

proliferation when used at these higher concentrations. Proliferative synergism 

between FGF2 and TGFj31 observed in cells derived from the other two donors was 

also reduced by AG1296 (lOµM) (23 and 37% for the 1 year-old and the 21 year-

old caucasian females, respectively) (data not illustrated). Additional experiments 

were performed using a neutralizing mAb against PDGFRa. At 0.2, 2 and 20 µg/ml, 
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the synergism between FGF2 and TGFj)l was reduced by S, 22 and 33%, 

respectively (data not shown). 

TGFfH increases PDGFR ligand expression 

p. 16 

The expression of PDGF-A, -Band -C mRNA was measured by semi-quantitative 

RT-PCR during time-course stimulations with TGFj)l (10 ng/ml). Relative PDGF-

A mRNA increased significantly after 1 h stimulation with TGFPl and persisted for 

12 h post-stimulation (Figure 4A). At the protein level, conditioned medium (CM) 

from BSMC treated for 24 h with TGFPl (10 ng/ml) showed a -S-fold increase in 

PDGF-AA expression compared to CM from non-treated cells (from S.60 ± 1.71 to 

29.29 ± 4.93 pg/ml, p = 0.001) (Figure 4B). PDGF-C was also up-regulated after 

TGFPl stimulation (Figure 4C). However, in contrast to the transient induction of 

PDGF-A, the increase in PDGF-C expression was maintained for at least 2 days. 

PDGF-B, on the other hand, was not detected in BSMC (data not shown). 

FGF2 increases PDGFRa as well as the proliferation induced by exogenous 

PDGF-AA 

Semi-quantitative RT-PCR revealed that FGF2 (2 ng/ml) time-dependently 

increased the mRNA expression level of PDGFRa, reaching a peak at 1 h post-

stimulation (Figure SA). To ensure that PDGFRa protein was upregulated at the 

time of TGFj)l stimulation, expression of PDGFRa was measured by Western blot 

analysis in whole cell lysates 24 h following FGF2 administration. As demonstrated 

in figure SB, levels of PDGFRa were elevated 24 h post-FGF2 stimulation relative 
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to levels found in unstimulated cells. In contrast, expression of the structural protein 

vinculin did not differ between baseline and stimulated conditions, indicating that 

equal amounts of protein had been loaded in each well. 

The effect of exogenous PDGF-AA with or without a 24 h pre-treatment with FGF2 

was then evaluated to confirm the functionality of the induced receptor. 

Recombinant PDGF-AA alone (1to50 ng/ml) tended to increase BSMC 

proliferation in a concentration-dependent manner (not statistically significant at 

any concentration tested) (Figure 5C). However, with a prior FGF2 stimulation (2 

ng/ml), the proliferative effect of increasing concentrations of PDGF-AA was 

enhanced, reaching a statistically significant difference at 10 ng/ml and 

demonstrating a 140% increase at 50 ng/ml compared to FGF2 alone. 

FGF2 increases tissue plasminogen activator (tPA) mRNA expression 

To investigate whether FGF2 pre-stimulation would allow latent PDGF-CC 

activation after its potential secretion induced by TGF/31, kinetic studies of FGF2 

stimulation were performed to measure mRNA expression of the PDGF-CC 

activating protease tP A. As demonstrated in Figure 6A, FGF2 increased in a time-

dependent fashion the rnRNA expression of tP A, reaching its peak levels between 

12 and 24 h of stimulation. In additional experiments, leupeptin (50µM), a serine 

and cysteine protease inhibitor which inhibits tP A activity, administered 1 h before 

TGFj31 stimulation, reduced significantly (36%) the proliferative synergism induced 

by sequential FGF2 and TGF/31 co-stimulation. 
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DISCUSSION 

This is the first demonstration of FGF2 and TGF~ 1 synergism in human BSMC 

proliferation. The mechanisms responsible for this synergy are partially elucidated 

here and indicate that members of the well-known PDGF family of mitogens are 

involved. In support ofthis hypothesis, our data demonstrated that: 1- inhibitors of 

PDGFR tyrosine kinase activity (AG 1296 and Inhibitor III) reduced significantly 

the synergism between FGF2 and TGF~l; 2-TGF~l induced PDGF-AA mRNA 

and protein as well as PDGF-C mRNA expression; 3- FGF2 increased PDGFRa 

mRNA and protein expression and potentiated the proliferative effect of exogenous 

PDGF-AA; 4- FGF2 also increased the mRNA expression of the PDGF-CC 

activating protease tP A, and the tP A protease inhibitor leupeptin partially blocked 

the FGF2-TGF~ 1 synergy; and 5- neutralizing Ab against the receptor engaged by 

both PDGF-AA and PDGF-CC, namely PDGFRa, also reduced the proliferative 

synergism triggered by sequential FGF2 and TGF~l co-stimulation (Figure 7). The 

mechanisms involved in the remaining part of the synergism, which is not blocked 

by inhibitors of PDG FR signaling, are still unresolved and are the subject of current 

investigations in our laboratory. 

For the last two decades, the eff ect of TGF~ 1 on airway smooth muscle 

proliferation in vitro has been a matter of debate. (27-33). However, its potential 

contribution to BSMC hyperplasia in vivo has recently gained many insights: 1-

TGF~ l was consistently reported to be upregulated in animal (24-26) or human 
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asthmatic airways (7, 16-21, 23); 2- its expression further increased after allergie 

challenge in human asthmatics (7); 3- active TGFBl signaling (measured by nuclear 

phospho-Smad2 immunostainning) has been observed in airways of animal (34, 35) 

and human asthmatics before and after allergie challenge (22, 36); 4- targeted 

overexpression of TGFBI in the adult lung of mice induced BSMC hyperplasia 

(37); and 5- therapeutically administered anti-TGFB 1 antibodies prevented BSMC 

hyperplasia in a prolonged allergen sensitization/challenge mouse model (35). 

However, the mechanisms that govern TGFBl-induced BSMC hyperplasia in vivo 

remain unknown and its controversial effect observed in in vitro condition 

necessitates elucidation. 

In this regard, the temporal increase in TGFBI expression after phlogogenic 

challenge relative to other growth factors could potentially bring information 

regarding the aetiology of BSMC hyperplasia. Contrary to other rapidly released 

mediators such as histamine, leukotrienes or FGF2, the upregulation of TGFB 1 

during an asthma attack is delayed (7). In this work, we studied the effect of 

TGFBl, alone or with a prior stimulation with FGF2, on human BSMC 

proliferation. 

In our proliferation assay, TGFBI alone had no detectable effect on BSMC 

proliferation. However, when administered 24 h after FGF2 stimulation, TGFBl 

markedly increased BSMC proliferation. The mechanisms involved were tested by 

screening the effect of different pharmacological inhibitors. Src inhibitors PPl and 
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PP2 abrogated the proliferation induced by FGF2 alone. Considering that both 

signais from FGF2 and TGFf31 are required for the synergy to occur, the blocking 

effect of Src inhibitors on the synergy was expected. More surprisingly, tyrphostin 

AG 1296 (20µM) and Inhibitor III (1 µM), which inhibit tyrosine kinase activity of 

the a and f3 chains of PDGF receptors, significantly blocked the synergism between 

FGF2 and TGFf31 without affecting FGF2-induced proliferation. 

Based on time-course proliferation assays with [3H]-thymidine and crystal violet 

staining, TGFf31 did not increase FGF2 mitogenicity, but rather prolonged DNA 

synthesis induced by FGF2. The delayed mitogenic effect of TGFf31, together with 

the involvement of PDG FR tyrosine kinase activity in the FGF2-TGFf31 synergy, 

was suggestive of an induced expression of PDG FR ligands by TGFf31. Our 

findings indicate that this may indeed be the case, since expression of both PDGF-

AA and PDGF-C was induced by TGFf31. Moreover, neutralizing antibody against 

PDGFRa reduced in a concentration-dependent manner FGF2-TGFf31 synergy. 

Collectively, these results suggest that PDGF-AA and PDGF-C are upregulated by 

TGFf31 and could likely actas autocrine growth factors to increase BSMC 

proliferation. 

Intriguingly, TGFf31 alone was sufficient to increase PDGF-AA and PDGF-C 

expression, but was unable to induce BSMC proliferation. However, Bonner and 

coworkers (11) have already demonstrated that FGF2 could potentiate the mitogenic 

response ofBSMC to exogenous PDGF-AA by its ability to increase PDGFRa 
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expression. This mechanism seems operational in our study as well, since we found 

FGF2 to increase PDGFRa mRNA and protein expression. In addition, based on the 

enhanced proliferative response of BSMC to exogenous PDGF-AA following a 24 h 

pre-treatment with FGF2, these newly synthesized receptors were shown to 

befunctional. The magnitude of this enhanced proliferation may however be 

underestimated compared to the role of PDGF in the FGF2-TGFl31 synergy, since 

stimulations were performed with PDGF-AA only, rather than with both PDGF-AA 

and PDGF-CC. In any case, the lack of mitogenic effect of TGFj31 on its own 

supports the notion that TGFl31-induced PDGF-AA and PDGF-CC were insufficient 

to stimulate mitogenesis, but would require PDGFRa upregulation by FGF2 to exert 

their proliferative effect. 

In contrast to PDGF-AA, PDGF-CC is secreted in a latent form. To be of any 

significance in the proliferative synergism between FGF2 and TGFj31, latent PDGF-

CC would need to be activated by proteolytic cleavage. The only protease known to 

activate latent PDGF-CC is tissue plasminogen activator (tPA) (38). Accordingly, 

we demonstrated that FGF2 induced tP A mRNA expression in BSMC. Moreover, 

the serine and cysteine protease inhibitor leupeptin partially blocked the synergism 

between FGF2 and TGFj31. These results highlight the possibility that latent PDGF-

CC induced by TGFl31 would be cleaved by FGF2-induced tP A, which will 

subsequently permit binding to and dimerization-induced activation of its receptors. 

This also corroborates the lack of proliferative effect ofTGFj31 on its own. 
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In conclusion, we speculate that the proliferative synergism obtained in in vitro 

conditions with human BSMC following such sequential FGF2 and TGFj) 1 co-

stimulation represents potential etiologic events leading to BSMC hyperplasia in 

asthmatic individuals. Since this observed synergism has been reproduced in BSMC 

derived from two other donors with different age, sex and ethnicity, we propose that 

this proliferative response is a generalized mechanism leading to BSMC 

hyperplasia, regardless of the genetic heterogeneity among the population. Our 

results also suggest that the well known mitogenic receptor PDGFRa contributes 

significantly to this response via an autocrine agonist-dependent activation, but 

other mechanisms are likely operational as well. 
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FIGURE LEGENDS 

Figure J. TGF(31 and FGF2 synergized in a concentration-dependent manner to 

induce BSMC proliferation. BSMC were seeded with a fixed (A) or increasing (B) 

concentration of FGF2 (2 ng/ml) and stimulated 24 h later with increasing (A) or 

fixed (B) concentrations of TGF(3 l. Cell proliferation was measured 4 days 

following TGF(3 l stimulation as described in Materials and Methods. Points are 

means ± SEM of quadruplicate measurements of at least 3 independent experiments. 

In Figure A, all concentrations over 0.25 ng/ml of TGFf:H are significantly higher 

compared to FGF2 alone (p<0.01). In Figure B, the effects ofTGF(31 are 

significantly higher compared to respective concentration of FGF2 alone, starting at 

0.25 ng/ml (p~0.01). 

Figure 2. TGF(3 l prolonged mitogenicity when administered 24 h after FGF2 

treatment. (A) Cells were stimulated with FGF2 (2 ng/ml) or TGF(31 (10 ng/ml) 

individually or sequentially at 24 h intervals in their respective order during a 5 day 

time-course experiment. DNA synthesis was evaluated with a 4 h pulse of [3H]-

thymidine at the end of 4 consecutive days following TGF(31 administration. Bars 

are means ± SEM of quadruplicate measurements of at least 3 independent 

experiments. p<0.05: * compared to baseline. (B) Five day time-course experiment 

performed with crystal violet staining to assess BSMC proliferation. Bars are means 

of quadruplicate measurements of a single experiment. 
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Figure 3. Tyrosine kinase inhibitors of PDG FR reduced the proliferative synergism 

obtained by sequential FGF2 and TGFPl co-stimulation. (A) Effects of different 

pharmacological inhibitors on FGF2 (2 ng/ml)- and FGF2 (2 ng/ml) + TGFPl (10 

ng/ml)-induced proliferation. Pharmalogical inhibitors were administered 1 h before 

TGFPl treatment and, hence, 23 hours after FGF2 treatment. Results are expressed 

as percentage ofbaseline OD (i.e. without any stimulus, inhibitor orvehicle) where 

each bar represents means ± SEM of quadruplicate measurements of at least 4 

independent experiments. ps0.05: * compared to their respective vehicle (DMSO)-

treated control. (B) The effect of increasing concentration of AG 1296, Inhibitor III 

or DMSO on FGF2-TGFP1 synergy. Results are expressed as percentage of the 

synergism ( defined as the difference between FGF2- and FGF2 + TGFP 1-induced 

proliferation) for every concentration of AG 1296, Inhibitor III or equivalent 

AG1296-concentration ofDMSO tested. Each bar represents means ± SD of 

quadruplicate measurements of at least 3 experiments. ps0.05: * compared to 

control FGF2-TGFP 1 synergism. Inhibitor III was used in one experiment in 

quadruplicate. 

Figure 4. TGFPl increased PDGF-AA and PDGF-C expression. Representative 

kinetics (upper panels) and densitometric analysis (lower panels) of PDGF-A (A) 

and PDGF-C (C) mRNA expression in response to TGFPl (10 ng/ml) stimulation. 

Each point represents a compilation of at least 3 independent experiments. ps0.05: * 

compared to time O. (B) PDGF-AA expression level in CM from TGFPl (10 

ng/ml)- or non-treated BSMC. Bars represent means ± SEM of duplicate 
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measurements of 6 independent experiments. ps0.05: * compared to non-treated 

cells. 

Figure 5. FGF2 increases PDGFRa expression as well as the proliferation induced 

by increasing concentrations of exogenous PDGF-AA. Representative kinetics 

(upper panels) and densitometric analysis (lower panels) of PDGFRa expression 

(A) in response to FGF2 (2 ng/ml) stimulation. Each point represents a compilation 

of at least 3 independent experiments. ps0.05: * compared to time O. (B) Western 

blot analysis of PDGFRa (-180 KDa) and vinculin (-113 KDa) expression at 

baseline and following 24 h stimulation with FGF2 (2 ng/ml). Molecular markers 

were loaded in the first lane. (C) BSMC were seeded with or without a fixed 

concentration of FGF2 (2 ng/ml) and stimulated 24 h later with increasing 

concentrations of PDGF-AA. Points are means ± SEM of quadruplicate 

measurements of at least 3 independent experiments. ps0.05: * compared to FGF2 

al one. 

Figure 6. FGF2 increases tP A expression and protease activity is required for 

optimal proliferative synergism between FGF2 and TGFj31. Representative kinetics 

(upper panels) and densitometric analysis (lower panels) oftPA mRNA expression 

(A) in response to FGF2 (2 ng/ml) stimulation. Each point represents a compilation 

of at least 3 independent experiments. ps0.05: * compared to time O. (B) FGF2-

TGFj31 synergism was investigated in the presence of leupeptin (50µM; 

administered 1 h before TGFj31 stimulation). Points are means ±SEM of 
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quadruplicate measurements of 3 independent experiments. ps0.05: * compared to 

FGF2-TGFf3 l without inhibitor. 

Figure 7. Proliferative synergism between FGF2 and TGFf31 involves a PDGF 

loop. Whereas FGF2 increases PDGF receptor a-chain (PDGFRa) and PDGF-CC 

activating protease (tP A) expression in human branchial smooth muscle cells, 

TGFf3 l increases the expression of PDGFRa ligands, namely PDGF-AA and 

PDGF-CC. When FGF2 and TGFf31 are administered sequentially at a 24 h interval 

in their respective order, as demonstrated in the schematic representation, a 

proliferative synergism occurs. 
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ABSTRACT 

Background: T H2 inflammation and bronchial smooth muscle cell (BSMC) 

hyperplasia are characteristic features of asthma, but whether these phenomena are 

linked remains to be clarified. 

Objectives: To define the effect of the T H2 cytokines IL-4 and IL-13 on human 

BSMC proliferation when administered alone or in combination with the FGF2 

growth factor. To test the additional effects of pro-inflammatory mediators such as 

TNFa and IL-113 and the involvement of members of the well-known family of 

platelet-derived growth factor (PDGF) mitogens. 

Methods: BSMC proliferation was measured by crystal violet staining and PDGF 

mRNA and PDGF receptor (PDGFR) expression were determined by RT-PCR and 

immunocytochemistry, respectively. 

Results: Neither IL-4 nor IL-13 (0.1 to 20 ng/ml) alone induced BSMC 

proliferation, despite being both potent inducers of PDGF-A and PDGF-C mRNA. 

However, following a pre-treatment with FGF2 (2 ng/ml), which increased PDGF 

receptor a chain expression, both IL-4 and IL-13 increased FGF2-induced BSMC 

proliferation in a time and concentration-dependent manner (70% and 40% increase 

compared to FGF2 alone, respectively.). On the other hand, TNFa and IL-113 did 

not affect basal or FGF2-induced BSMC proliferation, but both pro-inflammatory 
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mediators enhanced the proliferative synergism between FGF2 and the T 8 2 

cytokines. 

p.3 

Conclusions: The typical T 8 2 cytokines, IL-4 and IL-13, potently induce BSMC 

proliferation when combined with FGF2 and this proliferative synergism is 

amplified by pro-inflammatory cytokines. 

Clinicat Implication: Increased expression of FGF2 observed in asthmatic airways 

following allergen challenge may prime BSMC to proliferate when subsequently 

exposed to T 8 2-type inflammation, which, in turn, contributes to airway 

hyperresponsiveness. 

CAPSULE SUMMARY 

Treating T8 2 inflammation with current anti-inflammatory therapies may prevent 

some remodeling features of asthma. This article reports that IL-4 and IL-13 induce 

bronchial smooth muscle cell hyperplasia when combined with the FGF2 growth 

factor. 

KEYWORDS 

Human, stroma! cells, cytokines, lung, allergy 
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ABBREVIATIONS 

AHR, airway hyperresponsiveness; BALF, bronchoalveolar lavage fluid; BSMC, 

bronchial smooth muscle cell; FGF2, fibroblast growth factor 2; PDGF, platelet-

derived growth factor; PDGFR, PDGF receptor. 
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INTRODUCTION 

Allergie asthma is an acute and recurent T 8 2-mediated disease initiated by allergen 

encounters and characterized by airway inflammation and reversible airway 

hyperresponsiveness (AHR). It is also accepted that exaggerated or uncontrolled 

healing processes following each asthma exacerbation lead to cumulative structural 

changes in the airways over time translating into more chronic and irreversible 

airway dysfonction 1
• Among the remodeling phenomena observed in asthmatic 

airways, BSMC hyperplasia is thought to be the main contributor to the asthma 

diathesis 2 3
. 

A decade ago, increased expression of the T 8 2 cytokines IL-4 and IL-13 in the 

lungs of asthmatic patients has been recognised 4 5 6. Since then, IL-4 and IL-13 

have both been shown to contribute extensively to the pathology of asthma 7. In 

vivo, repetitive intratracheal instillation or intranasal administration of recombinant 

forms of IL-13 or IL-4 to naïve mice recapitulates most of the features of allergie 

asthma 8 9
, including enlargement of airway smooth mucle (ASM) mass 10

• 

Transient or constitutive overexpression of IL-13 transgene in the airway epithelium 

of mi ce also mimi es man y pathological features of asthma 11 12
. On the other hand, 

IL-13 and IL-4 knock-out mice are protected against allergen-induced AHR 13 14 

and neutralization of IL-4 with monoclonal antibodies during the sensitization 

period prevents the development of AHR in a mouse model of allergie inflammation 

15
• Furthermore, deficiency in IL-4Ra or in STAT6, the main signaling transducer 
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and activator of transcription (STAT) activated by IL-4 or IL-13 after binding to 

their cognate receptors, also renders mice resistant to experimentally-induced 

allergie asthma 9 16 17. 

p.6 

Based on recombination-activating gene 1 (Rag 1 )-deficient mice, it was suggested 

that IL-13 acts directly on the bronchial tissue through non-T cell and non-B cell 

mechanisms to induce the asthma phenotype 9• Moreover, pre-treatment with 

vinblastin, a granulocyte-depleting agent, was ineffective in blocking IL-13-induced 

AHR 18
, thus discarding the possible involvement of neutrophils, eosinophils and 

basophils in the asthma phenotype induce by IL-13. Correspondingly, IL-5 and 

eotaxin double knock-out mice, which are severely impaired in their ability to 

recruit eosinophils into the airways, still demonstrated AHR upon IL-13 exposure 19
. 

In addition, a single dose of IL-13 or IL-4 was sufficient to induce AHR at an early 

time point ( 6 hours ), when leucocyte infiltration in the airways was still comparable 

to that of mi ce treated with saline al one 20
• Intranasal administration of conditioned 

medium derived from T H2-activated cells also induced AHR in wild-type mice. This 

effect was blunted in IL-4Ra- or STAT6-deficient mice, but was still present in 

mast cell-deficient W/Wv mice 20
, discarding the possible involvement of immune 

tissue residential mast cells in the asthma phenotype induced by IL-4 or IL-13. 

Finally, an elegant complementary study has confirmed all these observations by 

demonstrating with adoptive transfer experiments that IL-4Ra chain in the 

irradiated recipient, but not in the bone marrow donors, is a prerequisite for asthma 

development upon antigen exposure 21
• Hence, ample evidence now suggests that 
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T H2 cytokines, at least in mice, exerts their effector fonctions by acting primarily 

through airway structural cells. Using gene microarray analysis, it was also 

established that among structural cells present in the airways, BSMC were the most 

responsive to IL-13 stimulation 22
. 

Most of the information gained in the aforementioned studies regarding the role of 

T H2 cytokines in the pathology of asthma has been obtained using acute models of 

pulmonary inflammation 7• Presently, different models of chronic asthma are 

established and some investigators have started to delineate the contribution of IL-4 

and IL-13 in AHR, goblet-cell metaplasia and peribronchial inflammation in such 

models 23 24
. However, the potential role of these cytokines in BSMC hyperplasia is 

still unknown. This study aims at defining the effect of the T H2 cytokines, IL-4 and 

IL-13, in primary human BSMC proliferation. The results show, that administration 

of either IL-4 or IL-13 alone has no effect on BSMC proliferation, but both 

cytokines can synergize in a time- and concentration-dependent manner when 

administered following exposure of the cells to the growth factor FGF2. 
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MATERIALS AND METHODS 

Cell culture 

Human primary BSMC (BioWhittaker, Inc. Walkersville, MD) were used for all 

experiments. BSMC were derived from a 5 week-old black male and a 1 year-old 

and a 21 year-old caucasian females. All donors had negative history of smoking 

and were free of pre-existing lung disease. The identity and purity of the cells have 

been confirmed with a-SMA positive and with von Willebrand Factor negative 

staining. Upon reception, cryopreserved cells were cultured in T-75 flasks in 

Smooth muscle Growth Medium (SmGM) (SmGM-2 Bulletkit) provided by the 

manufacturer and consisting of Smooth muscle Basal Medium (SmBM), 5% fetal 

bovine serum (FBS) and a mixture of growth factors, including fibroblast growth 

factor 2 (FGF2) (2 ng/ml), epidermal growth factor (EGF) (0.5 ng/ml) and insulin (5 

µg/ml), as well as a mixture of antibiotics, including Gentamicin (1 OO ng/ml) and 

Amphotericin B (0.1 ng/ml). Thawing, subculturing and harvesting procedures were 

performed according to manufacturer's instructions. Experiments were performed 

with cells at the 4th passage. 

Cell proliferation: Crystal violet staining 

Cells were subcultured into 96-well plates at 3000 cells/well in a starvation medium, 

consisting of SmBM + 1 % FBS, with or without FGF2 (2 ng/ml) as previously 

described 25
. Cells were maintained in these conditions for 24 h before IL-4 

(PeproTech Canada, Inc. Ottawa, ON) or IL-13 (R&D, Minneapolis, MN) 
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stimulations (10 ng/ml; unless otherwise specified). BSMC proliferation was 

measured at different time intervals after cytokine administration using the DNA 

staining property of crystal violet (Sigma, Oakville, ON) as previously described 

25.The validity of crystal violet staining as a surrogate of cell proliferation in the 

BSMC cell line has been determined elsewhere 25
. 

p.9 

To investigate the involvement of PDGF receptors in BSMC proliferation induced 

by sequential FGF2 and T tt2 cytokines stimulation, a pharmacological inhibitor of 

PDGF receptor tyrosine kinase activity, tyrphostin AG 1296 (10 µM; unless 

otherwise specified) (Biomol. Plymouth Meeting, PA) was added 1 h before 

cytokine treatments. DMSO (0.1 % ) was used as the control vehicle. 

Imm unocytochemistry 

BSMC were allowed to reach confluency in cover slip-containing 6-well plates 

before being serum-starved for 24 h in SmBM 1 % FBS and stimulated with FGF2 

(2 ng/ml) in fresh medium for different time intervals. The cells were then washed 

in HBSS and sequentially fixed and permeabilized in paraformaldehyde (2%) and 

saponine (0.1 %) PBS solutions, respectively. Non-specific binding sites were 

blocked with 5% (w:v) milk in PBS. A mAb against human PDGFRa (R&D, 

Minneapolis, MN) at 15 µg/ml final concentration was then applied as primary Ab 

followed by fluorescein (FITC)-conjugated goat anti-mouse IgG Ab (1 :250) 

(Jackson ImmunoResearch Laboratories, Inc. West Groove, PA) as secondary Ab. 

Finally, cells were counterstained with Hoechst solution to identify cell nuclei. 

Appropriate washing with PBS BSA (2%) solution was performed after each step. 
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Following staining procedures, cover slips were transferred onto slides and 

examined under microscope, using a LEI CA DMIRE2 fluorescent microscope 

(Leica microsystems. Wetzlar, Germany). 

RT-PCR 

p. 10 

Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was 

used to measure mRNA expression, as previously described 25
. After reaching 

confluency in 6-well plates, cells were starved for 24 h in SmBM 1 % FBS prior to 

IL-13 or IL-4 ( 10 ng/ml) stimulations in fresh medium. For all experiments, 

GAPDH mRNA was used as an internai housekeeping gene control. The PCR 

primers used were: PDGF-A forward, 5'-gaccaggacggtcatttacg-3'; PDGF-A reverse, 

3'-cctcacatccgtgtcctctt-5'; PDGF-C forward, 5'-ttcagcaacaaggaacagaac-3'; PDGF-C 

reverse, 3'-ctgaagggggtagctctgaa-3'; GAPDH forward, 5'-gatgacatcaagaaggtggtgaa-

3'; GAPDH reverse, 3'-gtcttactccttggaggccatgt-5'. 

Statistical analysis 

Results illustrated in the figures, as well as their statistical analysis, are compiled 

data obtained using BSMC derived from the 3 donors. To appreciate the 

independent effect of the T tt2 cytokines (IL-4 or IL-13) and the time of stimulation 

as well as the interaction between these two variables, the effect of FGF2 al one and 

in combination with either of the T tt2 cytokines was compared by using two-way 

ANOVA (Fig. 1). Similarly, in the proliferation experiments with increasing or 

fixed concentrations of either FGF2 or the T tt2 cytokines (Fig. 2), two-way 



Bossé et al. T H2 cytokines in BSMC proliferation p. 11 

ANOVA was performed to determine the effect ofboth factors individually and 

their interactions. In experiments with the pharmacological inhibitor AG 1296 (Fig. 

6), unpaired Student's t test was used to compare the FGF2-IL-4/IL-13 proliferative 

synergism between AG 1296- and DMSO-treated cells (analysis was performed on 

raw data before conversion to percentage). Finally, an ANOVA followed by 

Tukey's test a posteriori for comparison of all pairs of conditions was performed to 

determine the effect of the pro-inflammatory cytokines TNFa and IL-1~ on the 

synergism between FGF2 and IL-4 or IL-13 (Fig. 7). All statistical analysis were 

performed using Prism 4 (GraphPad Software, San Diego CA) and a p s 0.05 was 

arbitrarily considered sufficient to reject the null hypothesis. 
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RESULTS 

IL-4 and IL-13 induce BSMC proliferation 

The proliferative effect ofIL-4 and IL-13, alone or 24 hours after FGF2 stimulation, 

was exarnined in primary hurnan BSMC. Kinetic responses were first determined 

with fixed concentrations of the T H2 cytokines ( 10 ng/ml) and FGF2 (2 ng/ml). As 

shown in Fig. 1, neither IL-4 nor IL-13 alone induced BSMC proliferation 

compared to the starvation medium alone (SmBM + 1 % FBS). However, when 

BSMC were primed with FGF2, both IL-4 and IL-13 potentiated the proliferation 

induced by FGF2 in a time-dependent manner. Based on two-way ANOVA analysis 

comparing the effect of FGF2 alone with the effect of FGF2 in combination with 

either of the T H2 cytokines, both IL-4 and IL-13 significantly increased FGF2-

induced BSMC proliferation independently of time. Since no apparent effect could 

be appreciated on the first two days following IL-4 or IL-13 administration (Fig. 1 ), 

the independent effect of both T H2 cytokines are obviously the result of large 

differences observed at the 3 and 4-day time points. In fact, the interaction between 

the conditions tested (FGF2 al one or in combination with either of the T H2 

cytokines) and the time of stimulation was significant for IL-4 (p = 0.02) and tended 

toward significance for IL-13 (p = 0.1), meaning that the proliferative behavior of 

BSMC to FGF2 in fonction of time depends on whether or not they were treated 

with the T H2 cytokines. Considering the significant increase in BSMC proliferation 

over that with FGF2 al one 4 days following T H2 cytokines administration, this time 

point was chosen to measure BSMC proliferation for the remaining experiments. 
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Concentration-response studies were then performed for both the T H2 cytokines and 

the FGF2 growth factor. As shown in Fig. 2A and B, FGF2 alone induced BSMC 

proliferation in a concentration-dependent manner (p < 0.0001). Consistent with the 

findings in Fig. 1, a fixed concentration ofIL-4 or IL-13 (10 ng/ml) alone did not 

lead to BSMC proliferation. However, both cytokines used at that concentration 

induced significant BSMC proliferation when combined with increasing 

concentrations of FGF2 (p < 0.0001 for IL-4 as well as IL-13) and their effects were 

proportional to the concentration of FGF2 used (interaction: p = .001 and .05 for 

IL-4 and IL-13, respectively). On the other hand, Fig. 2C and D show that none of 

the concentrations of T H2 cytokines tested were able to support BSMC proliferation 

when administered alone. Once again, the proliferative effect of a fixed 

concentration of FGF2 (2 ng/ml) could be appreciated (p < 0.0001 for both Fig. 2C 

and D) and its effect was gradually augmented by increasing concentrations of 

either IL-4 or IL-13 (interaction: p = 0.002 and not significant, respectively). 

Interestingly, administration of IL-4 and IL-13 together (both at 10 ng/ml) did not 

lead to an additive effect on the proliferative synergism with FGF2 (data not 

shown), which was consistent with both cytokines acting on the same receptor in 

structural cells. 

PDGFRa is upregulated by FGF2 

We 25 and others 26 have previously demonstrated that PDGFRa mRNA and protein 

expression are upregulated following FGF2 treatment. In the present study, these 
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results were confirmed by immunocytochemistry using an anti-human PDGFRa 

monoclonal antibody. As observed in Fig. 3, the major increase occured in the 8 

hour gap between 16 and 24 hours post-FGF2 stimulation and was maintained for at 

least 48 hours. 26 

TH2 cytokines increase PDGF-A and PDGF-C expression in a time-dependent 

manner 

To determine whether IL-4 and IL-13 synergized with FGF2 by increasing the 

expression of agonists for PDGFRa, steady state mRNA expression levels of 

PDGF-A and PDGF-C were measured by semi-quantitative RT-PCR. As shown in 

Fig. 4A, PDGF-A, and most importantly PDGF-C, were upregulated in a time-

dependent fashion following IL-4 or IL-13 stimulation. However, the kinetics of 

expression of PDGF-A and PDGF-C mRNA following T8 2 cytokine stimulation 

were different. Whereas PDGF-A was upregulated transiently (between 4 and 16 h 

post-stimulation), the increased expression of PDGF-C was maintained for at least 

48 h. PDGF-B, on the other hand, was not detected in BSMC (data not shown). 

Intrinsic tyrosine kinase activity of PDGFR is required for optimal 

proliferative synergism between FGF2 and the T H2 cytokines 

To be of any significance in the proliferative synergism observed between FGF2 

and the T H2 cytokines, PDGF production must lead to the activation of PDGFR. 

AG1296, a selective pharmacological inhibitor of PDGFR tyrosine kinase activity, 

was used to determine the role of PDG FR activation in FGF2 and IL-4 or IL-13 



Bossé et al. T tt2 cytokines in BSMC proliferation p. 15 

proliferative synergism. As shown in Fig. 5, the synergism between FGF2 and either 

IL-4 or IL-13 was significantly reduced (~ 50 %) by AG1296 compared to 

equivalent concentrations of the vehicle (DMSO). Neither DMSO, nor AG1296 

affected FGF2-induced BSMC proliferation (data not shown). This result suggests 

that PDGFR activation is required for optimal proliferative synergism to occur and 

that induction of PDGFRa.-binding ligands by IL-4 or IL-13 may act as potent 

mitogens in FGF2-primed BSMC. 

Pro-inflammatory cytokines TNFa. and IL-1~ enhance the proliferative 

synergism between FGF2 and the T 0 2 cytokines. 

To determine the influence of pro-inflammatory mediators on the observed 

proliferative synergism between FGF2 and the Ttt2 cytokines, TNFa (10 ng/ml) and 

IL-1~ (10 ng/ml) were co-administered with the Ttt2 cytokines (10 ng/ml) with or 

without a 24 hours pre-treatment with FGF2 (2 ng/ml). As demonstrated in Fig. 6A, 

IL-1 ~ did not influence BSMC proliferation al one or in combination with FGF2, but 

increased by 79% the synergism between FGF2 and IL-4 (p < 0.05). Similarly, 

TNFa did not affect BSMC proliferation when administered alone, and even if it 

reduced the proliferative effect of FGF2, it increased by 111 % the synergism 

obtained by FGF2+1L-4 (p < 0.05). The same trends were observed for the 

synergism between FGF2 and IL-13 (115 and 70% increases for TNFa. and IL-1~ 

respectively compared to FGF2+1L-13 synergism alone) (Fig. 6B), but the effects 

were not statistically significant. 
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DISCUSSION 

The mitogenic effects of FGF2 on BSMC have been documented in several in vitro 

studies. FGF2 is a member of the IL-1 family of pro-inflammatory cytokines, which 

now comprises the newly identified interleukin with a TH2 biology, IL-33 27
. 

Histological examination of lung sections have shown that FGF2 expression is 

increased in human asthmatics as well as in non-human primate models of asthma 28 

29 30 31
. FGF2 expression is also higher in BALF and induced sputum samples of 

asthmatics compared to healthy subjects 32 33
. Moreover, BALF concentrations of 

FGF2 are further increased following segmental allergen challenge in asthmatics 32
, 

an effect occuring rapidly (10 min) and mediated by FGF2 desequestration from 

ECM constituents, mast cell degranulation or epithelial cell damage. 

On the other hand, IL-4 and IL-13 are predominantly produced by T lymphocytes, 

mast cells and eosinophils 7• Consequently, their peak expression following allergen 

challenge occurs during the late asthmatic response, where lymphocytic and 

eosinophilic inflammation is prominent. Hence, in order to mimic the sequence of 

upregulated factors in the airways following allergie challenge, BSMC proliferation 

was measured, in our study, after sequential co-stimulation with FGF2 and IL-4 or 

IL-13. Our results demonstrate for the first time that both IL-4 and IL-13 synergize 

with FGF2 to induce human BSMC proliferation. 
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Even if they share a comrnon signaling chain (IL-4Ra) in cells ofhematopoietic 

lineage and both IL-4 and IL-13 bind to the same IL-4 type II receptor in structural 

cells of the airways, they demonstrate divergent fonctions in the development of 

asthma. The currently accepted paradigm is that IL-4 is primarily involved in the 

sensitization process, whereas IL-13 seems to be the main effector cytokine in 

inducing the asthma phenotype 7• However, Batra and coworkers 6 have recently 

demonstrated that both IL-4 and IL-13 are increased in BALF of asthmatic patients 

24 h following segmental allergen challenge, but only IL-4 was still elevated after 1 

week. Interestingly, the investigators have shown in the same study that only IL-4 

was capable of inducing human lung fibroblast differentiation into myofibroblast 

and stimulating collagen III secretion in vitro. A murine model of allergie 

pulmonary inflammation also suggests that IL-4 may be more involved than IL-13 

in the remodeling processes occuring in the chronic phase of the disease 34
• Hence, 

even if IL-13 is the main effector cytokine in the acute phase responses, the 

sustained IL-4 upregulation in asthmatic airways likely participates in the long term 

remodeling processes observed in asthma, such as BSMC hyperplasia. Herein, we 

report a similar effect ofIL-4 and IL-13 on BSMC proliferation, supporting a 

potential role for both cytokines in airway remodeling. Moreover, since addition of 

bath cytokines simultaneously did not further potentiate the synergism with FGF2, 

our results indicate that IL-4 and IL-13 may have redundant effects on BSMC 

proliferation. 
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Despite being defined as a T tt2-dominated immune response, the allergie airway 

inflammation in asthma is also characterized by elevated expression of other 

common pro-inflammatory mediators found in both T Hl and T H2 type inflarnmatory 

responses. Among these, TNFa and IL-1~ were repeatedly reported to be up-

regulated in the airways of asthmatics and were shown here to enhance the 

synergism between FGF2 and the T H2 cytokines. It is thus anticipated that other 

aspects of the ongoing inflammation, which occurs in the airways of sensitized 

individuals following allergen challenge, would amplify the proliferation of BSMC 

induced by the sequential stimulation with FGF2 and IL-4 or IL-13. These results 

also suggest that not one, but multiple mediators are likely responsible for the 

BSMC hyperplasia observed in remodeled asthmatic airways. 

In contrast to our results, Hawker and coworkers 35 have demonstrated that IL-4 

reduced the mitogenic effect of several BSMC growth factors, including FGF2. 

Multiple issues may underlie the apparently conflicting results, such as the 

concentration of IL-4 and FGF2 used (30 vs 2 ng/ml for FGF2 and 50 vs 10 ng/ml 

for IL-4 in Hawker's and our studies, respectively), the cell density employed 

(confluent vs underconfluent) and the simultaneous vs sequential administration of 

the two factors. However, in our opinion, the method employed to measure cellular 

proliferation was the main issue explaining the discrepancy between the two studies. 

Hawker's group did not measure BSMC proliferation, but instead measured DNA 

synthesis by pulsing the cells with radiolabeled-thymidine in the last 5 h of a 24 h 

stimulation. DNA synthesis precedes cell division and likely reflects cellular 
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proliferation, but only if the entire DNA synthesis induced by the stimulation is 

measured, or, alternatively, if several pulses of thymidine are performed after cell 

stimulation to follow the kinetics of DNA synthesis over time. Evidence in the 

literature shows that the synergism between two factors might not be the result of an 

increased DNA synthesis at a particular time point, but rather the result of an 

extended period ofDNA synthesis 25
. This extended DNA synthesis might not be 

appreciated by a single pulse of radiolabeled thymidine. Based on our kinetics 

study, the synergism between FGF2 and IL-4 occurs at later time points and the 

exclusive measurement of DNA synthesis between 19 and 24 h post-stimulation 

may not represent the right window where the synergism between FGF2 and IL-4 

will be apparent. Moreover, since the synergism is partially dependent on a PDGF 

loop, it is more likely that the synergistic mitogenesis induced by sequential FGF2 

and IL-4 will be the result of an extended, rather than a particular time-point 

increase in DNA synthesis. 

The results presented here also suggest that the mitogenic effect of the TH2 

cytokines are indirect and mediated, at least partially, by the induction of PDGFRa-

acting ligands, PDGF-A and PDGF-C. Under basal conditions, BSMC are 

unresponsive to the mitogenic effects oflL-4- or IL-13-induced PDGF-A and 

PDGF-C due to the lack of sufficient PDGFRa chain expression. However, 

following PDGFRa upregulation by FGF2, PDGFRa-binding ligands induced by 

T H2 cytokines would trigger PDGFR chain dimerization and activation, which 

would be subsequently translated into extended BSMC proliferation. In support of 
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this contention, the PDGFR tyrosine kinase inhibitor AG 1296 effectively reduced 

the proliferative synergism. Collectively, this study suggests that autocrine loops of 

PDGF are likely operational in the observed proliferative synergism between FGF2 

and the Ttt2 cytokines IL-4 and IL-13. Of note, AG1296 was unable to completely 

black this synergism, indicating that other mechanisms are also operative and 

remain to be identified. 

Finally, we have recently demonstrated that TGF~l also synergized with FGF2 in 

BSMC proliferation and that this synergism similarly involves an autocrine loop of 

PDGF 25
. Collectively, these studies suggest that several mediators, with elevated 

levels in the airways following allergie challenge, likely cooperate to orchestrate the 

enlargement of airway smooth muscle tissue observed in asthmatic individuals. For 

the first time in this paper, the two classical TH2 cytokines IL-4 and IL-13 are 

highlighted as such patent mediators potentially involved in BSMC hyperplasia. 
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FIGURE LEGENDS 

FIG. 1. IL-4 and IL-13 increase FGF2-induced BSMC proliferation in a time-

dependent fashion. BSMC were sequentially stimulated with FGF2 (2 ng/ml) and 

IL-4 or IL-13 (10 ng/ml) at 24 h intervals and BSMC proliferation was investigated 

for 4 consecutive days following T H2 cytokine administration. A two-way ANOV A 

was performed to compare the effect of FGF2 al one with the effect of FGF2 in 

combination with either of the T H2 cytokines in fonction of time. P values are 

presented in the insets for each analysis. Symbols are means ± SEM of 

quadruplicate measurements of four independent experiments. 

FIG. 2. FGF2 and the T H2 cytokines IL-4 and IL-13 synergize in a concentration-

dependent manner to induce BSMC proliferation. BSMC proliferation was 

measured 4 days following T H2 cytokine admnistration. P values in the insets 

correspond to a two-way ANOVA evaluating the two main effects and the 

interaction effect of the following factors: (a) an increasing dose of FGF2 with a 

fixed dose oflL-4, (b) an increasing dose ofFGF2 with a fixed dose oflL-13, (c) an 

increasing dose of IL-4 with a fixed dose of FGF2, and ( d) an increasing dose of IL-

13 with a fixed dose of FGF2. Symbols are means ± SEM of compiled data obtained 

in three different cell lines in A and B (n = 6) and in two different cell lines in C and 

D (n = 5). 
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FIG. 3. FGF2 increases PDGFRa chain expression. BSMC were stimulated with 2 

ng/ml of FGF2 and PDGFRa expression (shown in green) was investigated at 

different time intervals by immunocytochemistry. Represented in blue is the 

Hoechst staining to reveal cell nuclei. Figures presented are from a single 

experiment representative of three. 

FIG. 4. IL-4 and IL-13 increase mRNA expression of PDGFRa-acting agonists in a 

time-dependent manner. BSMC were stimulated with 10 ng/ml ofIL-4 (A and C) or 

IL-13 (Band D) and kinetics of PDGF-A (A and B) and PDGF-C (C and D) mRNA 

expression were investigated up to 48 hours thereafter by RT-PCR. Shown is one 

representative experiment out of three. 

FIG. 5. Tyrphostin AG1296, a pharmacological inhibitor of PDGFR tyrosine kinase 

activity, reduced the proliferative synergism between FGF2 and the TH2 cytokines. 

Experiments were performed as described in Fig. 2, but AG1296 (lOµM) was 

administered 1 hour before IL-4 (A) or IL-13 (B) administration. Results are 

expressed as percentage of the synergism, 100% being defined as the diff erence 

between the proliferation induced by FGF2 + IL-4 (A) or FGF2 + IL-13 (B) with 

DMSO and the proliferation induced by FGF2 alone similarly treated with DMSO 

(A and B). * indicates statistically significant differences with respective DMSO-

treated controls (p :s; 0.05). Bars represent means ± SEM of five independent 

experiments performed in quadruplicates. 
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FIG. 6. Pro-inflammatory cytokines TNFa and IL-1 f> increased the proliferative 

synergism between FGF2 and IL-4 or IL-13. Experiments were performed as 

described in Fig. 2, but TNFa (10 ng/ml) or IL-If> (10 ng/ml) was administered 

simultaneously with IL-4 (A) or IL-13 (B). Synergism is indicated by subtracting 

from raw data either baseline OD (-) or OD obtained with FGF2 alone ( + ). * 

indicates statistically significant differences based on ANOVA and Tukey a 

posteriori test (p s 0.05). Bars represent means ± SEM of five independent 

experiments performed in quadruplicates. 
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7.1. Leukotrienes and receptors 

CHAPTER 7 

LEUKOTRIENES 

Leukotrienes (LTs) are a subgroup of eicosanoids involved in several inflammatory 

processes (reviewed in (Capra, 2004)). They are produced by a series of enzymatic 

reactions begining after the cytosolic phospholipase (PL)A2-mediated release of 

arachidonic acid (AA) from membrane glycerophospholipids by cleavage of the ester 

bond at the sn-2 position of the glycerol backbone (reviewed in (Peters-Golden and 

Brock, 2003; Shimizu et al., 2006)). The intitial step occurs in the vicinity of the 

nuclear envelope where the membrane-associated 5-lipoxygenase activating protein 

(FLAP) binds to AA and transfers endogenous AA to 5-lipoxygenase (5-LO). This 

enzyme then catalyses the conversion of AA by two successive reactions of 

oxygenation and dihydration to yield the 5-hydroperoxyeicosatetraenoic acid (5-

HPETE) intermediate product and the epoxide metabolite LTA4, respectively. LTA4 is 

very unstable and is rapidly transformed by the action of either LT A4 hydrolase or 

LTC4 synthase (LTC4S). The former hydrolyzes LTA4 to form the double hydroxyl 

molecule LTB4, and the latter conjugates the sulfhydryl group of gluthathione (GSH) 

to C6 of LT A4 to form the first peptidoleukotriene LTC4• Both of these lipid mediators 

are released in the extacellular space and act mainly as autacoids by binding on 

plasmalemma of adjacent cells to heptahelicoidal receptors coupled to cytoplasmic 

heterotrimeric G proteins (GPCR). LTB4 transduces its biological effect by binding 

onto two different GPCRs. The high affinity receptor, BLTl, is specific for LTB4 and 

is exclusively expressed in leukocytes (Okuno et al., 2005). The other receptor, BLT2, 
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is of lower affinity for LTB4, binds to other eicosanoids and its expression is more 

widely distributed. Recent evidence in a mouse model of asthma suggests that the 

LTB4-BLT1 axis mediates early T cells recruitment into the airways (Tager et al., 

2003) and may th us be relevant in the understanding of asthma pathogenesis. 

However, for the sake of clarity and since its effect on ASM cell mitogenesis has 

never been reported, the LTB4-BLT1 axis will not be discussed further here. 

Peptidoleukotrienes are mainly produced by cells with constitutive expression of 5-

LO, such as granulocytes and monocytes/macrophages. Neutrophils also contribute to 

the overall peptidoleukotriene synthesis by a transcellular metabolism. As such, 

neutrophil-derived LTA4 can efficiently be taken up by platelets (reviewed in 

(Murphy et al., 1991)) and vascular endothelial cells (reviewed in (Sala and Folco, 

2001)) and the laters possess the intracellular machinery to convertit to LTC4 . After 

its secretion, LTC4 can be further processed extracellularly by gamma-glutamyl 

transpeptidase (y-GT), which cleaves the glutamate aa of the GSH moiety of LTC4 to 

form LTD4, and then by a variety of dipetidases, which cleave the peptide of the 

remnant GSH moiety, consisting henceforth of a glycine and a cysteine residues, to 

form the single amino acid-bound leukotriene, LTE4• Each of these cysteinyl-LTs 

(cys-LTs) bind to two GPCRs, called CysLTl and CysLT2, with affinity in the 

following rank order of potency: LTD4 > LTC4 > LTE4 for CysLTl and LTD4 = LTC4 

> LTE4 for CysLT2 (Capra, 2004). CysLTl is expressed predominantly in peripheral 

blood leukocytes and spleen with lower levels of expression found in placenta, small 

intestine and lung, including ASM tissue (Capra, 2004). On the other hand, CysLT2 
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expression demonstrates some overlaps with CysLTl, but it is peculiarly expressed in 

heart, adrenals, and brain (Capra, 2004). 

7.2. Increased expression of cys-LTs and CysLTI in asthma and experimental 

asthma 

Release of cys-LTs has been observed in sensitized rats (Powell et al., 1995) and mice 

(Henderson et al., 1996; Lee et al., 2007) following allergie challenge. In human, cys-

LTs have been consistently reported to increase in BALF (Lam et al., 1988; Wenzel et 

al., 1990), urine (Bellia et al., 1996; Christie et al., 1991; Daffern et al., 1999; 

Diamant et al., 1995; Green et al., 2004; Israel et al., 1993; Micheletto et al., 2006a; 

Micheletto et al., 2006b; Mita et al., 2004; Oosaki et al., 1997; Rasmussen et al., 

1992a; Rasmussen et al., 1992b; Reiss et al., 1997; Sampson et al., 1995; Smith et al., 

1992), bronchial biopsies (Cowburn et al., 1998; Volovitz et al., 1999), sputum 

(Macfarlane et al., 2000; Pavord et al., 1999), blood (Levy et al., 2005; Sampson et 

al., 1995), and exhaled breath condensate (EBC) (Baraldi et al., 2003; Csoma et al., 

2002; Hanazawa et al., 2000; Lex et al., 2006) of asthmatic subjects both at baseline 

and following allergen exposure. Spontaneous, as well as C5a-induced release of cys-

LTs, are also greater in blood leukocytes derived from asthmatics compared to normal 

individuals (Mewes et al., 1996). 

Numbers of cells expressing CysLTl receptor in the subepithelial zone are equally 

upregulated in stable asthmatics compared to non-asthmatic subjects and were further 

augmented in asthmatics hospitalized for acute exacerbation (Zhu et al., 2005). These 
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increased numbers of CysLTl positive cells correlate with the increased numbers of 

CD45 positive cells, indicating an increase in leucocyte recruitment in the bronchial 

mucosa rather than an increased expression of this receptor on pre-existing mucosal 

cells. The cells positive for CysLTl were identified as eosinophils, neutrophils, mast 

cells, macrophages, B lymphocytes and plasma cells, but not CD3 positive cells of 

either CD4 or CDS positive phenotypes. However, structural cells, such as the 

vascular endothelial cells, also stained positive for CysLTl in all groups of subjects. 

Moreover, CysLTl expression was higher in the cytoplasm of epithelial cells derived 

from asthmatic patients suffering of acute exacerbation. This latter result suggests that 

the airway epithelium of asthmatics is likely to respond in an exaggerated manner to 

the increased expression of cys-LTs that occurs in vivo upon allergen challenge. 

7.3. Cys-LTs in asthma pathogenesis 

Cys-LTs has been recognised a long time ago as ASM cell spasmogens that were 

initially adopted as the slow reactive substances of anaphylaxis (SRS-A). lt was thus 

shown that Cys-LTs are highly potent bronchial constrictors on isolated human 

bronchi (Dahlen et al., 1980). The spasmogenic effect of cys-LTs was equally 

demonstrated in monoculture of ASM cells in vitro (Amrani et al., 2001), as well as in 

humans in vivo (Weiss et al., 1982). In fact, LTC4 was 600 to 9500 times more potent 

than histamine on a molar basis in producing an equivalent decrement in lung residual 

volume (Weiss et al., 1982). However, it is henceforth well established that cys-LTs' 

roles in asthma pathogenesis extended way above their initially described effects on 

ASM cell contraction. As has been reviewed by Hay and coworkers more then a 
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decade ago (Hay et al., 1995), cys-LTs were now suggested to: 1-increase vascular 

permeability, which leads to edema and concomitant increase in airway wall 

thickening; 2-induce mucus hypersecretion and ciliary dyskinesia, which alter mucus 

clearance; and 3-recruit inflammatory cells into the airways, such as eosinophils. 

The exact cys-LTs mediating the influx of eosinophils into the airways of human 

subjects is, however, a matter of controversy. Gauvreau and coworkers have shown 

that inhalation of LTE4, but not LTD4, by atopic asthmatics causes eosinophil influx 

into the airway wall (Gauvreau et al., 2001). Laitinen and coworkers (Laitinen et al., 

1993) had previously published similar observations, showing that LTE4 increases the 

influx of eosinophils, and to lesser extent neutrophils, 4 h after inhalation. In contrast 

to Gauvreau and coworkers (Gauvreau et al., 2001), Diamant and coworkers (Diamant 

et al., 1997) have shown that LTD4 inhalation also triggers an increased number of 

eosinophils in the sputum. Mobilisation of eosinophils into the airways in response to 

aerolized LTD4 was also demonstrated in guinea pigs (Underwood et al., 1996). 1t is 

thus likely that several cys-LTs are involved in the inflammatory cell infiltration 

characterizing asthma. 

The contribution of cys-LTs into the pathogenesis of allergie asthma was mainly 

elucidated in animal models of the disease using both knockout approaches and 

CysLTl receptor antagonists (LTRA) or pharmacological inhibitors targeting key 

enzymes in their synthesis. Upon allergie challenge, sensitized 5-LO-deficient mice 

showed reduced AHR and pulmonary eosinophilia, as well as lower levels of total IgE 
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and antigen (Ag)-specific IgG in their serum, compared to wild type animais (lrvin et 

al., 1997). Since 5-LO is required for the synthesis of both LTB4 and cys-LTs, 

reduced asthma features observed in mice containing the 5-Lo-1
- background (lrvin et 

al., 1997) did not discriminate which of the two pathways contributes to experimental 

asthma development. Recently, mice deficient for the terminal enzyme responsible for 

cys-LTs synthesis, LTC4S, were studied in a model of allergie pulmonary 

inflammation (Kim et al., 2006a). 

Kim and coworkers (Kim et al., 2006a) have shown that LTC4s-1
- mice were largely 

protected against experimentally-induced asthma. Among the features tested, 

eosinophil infiltration, goblet cell hyperplasia, mucus hypersecretion, mobilisation 

and activation of intraepithelial mast cells, AHR, and serum levels of Ag-specific IgE 

and IgG 1, as well as l ung mRNA expression of T H2-type cytokines and chemokines 

such as IL-5, IL-13, IL-10 and CCLl 1, were significantly reduced in LTC4s-1
-

animals. Moreover, higher numbers of cells were harvested from parabronchial lymph 

nodes of LTC4S-null mice and these cells secreted less IL-4, IL-5, IL-13 and IFNy on 

a per-cell basis when stimulated ex vivo with antigen compared to cells derived from 

parabronchial lymph nodes of wild type animais. 

These results confirm the crucial role of cys-LTs in animal models of asthma that was 

previously demonstrated by the use of either 5-LO and FLAP inhibitors (Henderson et 

al., 1996; Salmon et al., 1999) or LTRA (Henderson et al., 2002; Lee et al., 2007; 

Muz et al., 2006; Salmon et al., 1999; Wang et al., 1993). It is thus believed that cys-
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LTs orchestrate many features of asthma. In fact, intratracheal instillations of LTC4, 

LTD4 or LTE4 in mice induced AHR, inflammatory cell recruitment, fibroblast growth 

and mucus production into the airways (Chavez et al., 2006; Vargaftig and Singer, 

2003), indicating that any cys-LTs alone are sufficient to induce an asthma-like 

phenotype in mice. Similarly, mice deficient in y-glutamyl leukotrienase (GGL-1
-), an 

enzyme that couverts LTC4 to LTD4, showed higher amount of cys-LTs in their lungs 

and spontaneous AHR to acetylcholine (Chavez et al., 2006). Surprisingly, lung 

inflammatory cell infiltrates were not observed in GGL-1
- mice, suggesting that cys-

LTs act on airway resident cells to increase airway responsiveness to cholinergie 

agonists. 

7.4. CysLTl receptor transduces the asthma-like effects of cys-LTs. 

Owing to the ability of LTRA to block several feature of asthma and their specificity 

for CysLTl receptor, the effects of cys-LTs in asthma are thought to be mediate 

mainly by this particular receptor (Busse and Kraft, 2005). LTRA as been shown to: 

1-attenuate eosinophilia in human asthma (Taylor et al., 1991), as well as in such 

different species models of asthma as mouse (Blain and Sirois, 2000), sheep 

(Abraham et al., 1993) and rat (Ihaku et al., 1999); 2- attenuate exercise-induced 

bronchospasm (Reiss et al., 1997); 3- prevent AMP- and neurokinin A-induced 

bronchoconstriction (Crimi et al., 2003; Rorke et al., 2002); 4- protect against early 

and late phases of bronchoconstriction induced by antigen challenge (Rasmussen et 

al., 1992a; Rasmussen et al., 1992c); 5- reduce airway reactivity to non-specific 

spasmogens such as methacholine (Rasmussen et al., 1992c); 6- improve pulmonary 
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functions and quality of life, and reduce asthma symptoms and the needs of rescue 

medication in aspirin-intolerant asthma (Dahlen et al., 2002); and 7- provide additive 

clinical benefit when used as initial treatment for preschool-aged children suffering 

from acute exacerbation relative to short-acting j32-agonist bronchodilators alone 

(Harmanci et al., 2006). ln vitro studies also demonstrated that montelukast (a LTRA) 

prevented the increased stiffness of human ASM cells in response by LTD4 (Amrani 

et al., 2001). 

In addition, a recent genetic study have shown that polymorphisms in the CysLTl 

receptor promoter are associated with aspirin-intolerant asthma in male Koreans (Kim 

et al., 2006b), furthering the contention that cys-LTs may required binding onto this 

receptor to induce asthma-like features. Interestingly, the same study showed that a 

luciferase construct containing the haplotype associated with an increased disease risk 

(T-C-G ; OR= 2. 71) was shown to yield higher luciferase activity when transfected 

into Jurkat cells. This genetic association may thus be functionally related to increased 

CysLTl expression in the carriers of the high risk haplotype (Kim et al., 2006b). 

7.5. Effect of leukotrienes on ASM cell mitogenesis in vivo vs in vitro 

The first evidence that cys-LTs can be mitogenic for ASM came from a study 

measuring the effect of thromboxane (Tx)A2 on the proliferation of rabbit ASM cells 

(Noverai and Grunstein, 1992). lt was demonstrated that the mitogenic effect of TxA2 

was inhibited by phospholipase A2 and 5-LO inhibitors, as well as by the blockade of 

cys-LTs binding toits LTD4 receptor (currently known as CysLTl). They pursued by 
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demonstrating that TxA2 effectively enhances the release of endogenous cys-LTs and 

that administration of LTD4 al one mimi es the mitogenic effect of TxA2 (Noverai and 

Grunstein, 1992). A year later, these results gained physiological significance when 

Wang and coworkers (Wang et al., 1993) demonstrated that LTRA (MK-571) was 

successful in preventing ASM cell enlargement in a rat model of allergie asthma. 

lt was then followed by a series of studies performed by the same group that 

demonstrated a LTD4-dependent mitogenic effect of TxA2 on rabbit ASM cells 

(Noverai and Grunstein, 1992). Using the cells from the same species, they 

contradicted their previous results and showed that LTD4 alone was not sufficient to 

induce ASM cell proliferation, but was able to increase the proliferation induced by 

IGF-1 (Cohen et al., 1995). They proposed an elegant mechanism to explain this 

proliferative synergism, whereby the key element was the induction of MMP-1 in 

response to LTD4• The latter proteolytically degrades IGFBP-2, which normally 

sequesters IGF and prevents it from binding toits receptor and mediating its 

mitogenic action. Hence, it was concluded that LTD4 potentiates the mitogenic effect 

of IGF-IGF receptor axis by fostering IGF-1 binding onto its cell surface receptor via 

a MMP-1-dependent degradation of IGFBP-2 (Cohen et al., 1995; Rajah et al., 1995; 

Rajah et al., 1996). 

Elucidation of the LTD4 effect on human ASM cell proliferation took longer and was 

not documented until 1998. At that moment, Panettieri's group (Panettieri et al., 1998) 

demonstrated that LTD4 was not mitogenic on its own, but appeared to synergize with 
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EGF. The results were quite evident and concentration-dependent, with a perceptible 

effect starting at 10-7 M of LTD4, when DNA synthesis was measured as the surrogate 

for cell proliferation. However, in terms of true cell proliferation, the growth-

potentiating effect of LTD4 on EGF-induced proliferation was less convincing and 

was only demonstrated at 10-5 M of LTD4, which is a concentration much too high to 

be of any physiological significance. 

Despite the weakness of these results, the contention that cys-LTs were mitogenic for 

ASM cells continues to reap momentum because of two other in vivo studies. Salmon 

and coworkers (Salmon et al., 1999) first showed that both an enzyme inhibitor of 5-

LO (SB 210661) and a LTRA (pranlukast), but nota LTB4 receptor antagonist (SB 

205312), attenuate ASM cell DNA synthesis (measured by bromodeoxyuridine 

incorporation) in a rat model of allergie asthma. Henderson and coworkers 

(Henderson et al., 2002) pursued by confirming these results in a mouse model of 

allergie asthma, demonstrating this time the efficacy of montelukast (another LTRA) 

to reduce the development of ASM cell hyperplasia. 

Since then, three studies have been conducted to measure the mitogenic potential of 

LTD4 on human ASM cells. Among them, only Ravasi and coworkers (Ravasi et al., 

2006) were able to show that LTD4 alone is sufficient to stimulate DNA synthesis. 

However, they did not extend their experiments to measure true ASM cell 

proliferation and had to use two sequential stimulations, seperated by a 4 h interval, 

with 10-6 M of LTD4 to observe the mitogenic effect. Once again, this concentration of 
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LTD4 is unlikely to be encountered by ASM ceIIs in in vivo condition and thus, this 

mitogenic effect may simply represent a non-physiologie cellular response. 

Similar to Panettieri and coworkers (Panettieri et al., 1998), Ravasi (Ravasi et al., 

2006) and Potter-Perigo's (Potter-Perigo et al., 2004) groups observed a mitogenic 

synergism between LTD4 and EGF in term of DNA synthesis. Even though the former 

showed that this synergistic response required binding of LTD4 toits cognate CysLTl 

receptor by efficaciously blocking with pranlukast and zafirlukast, the latter showed 

that the response was insensitive to montelukast treatment, revealing another 

conflicting result on the matter. In addition, in both cases, they did not confirm their 

results by measuring true ASM cell proliferation. 

Finally, we demonstrated, with a more physiological concentration (a single 

stimulation with 10-7 M), that LTD4 was unable to support ASM cell proliferation 

when administered alone, but that following a 24 h pre-treatment with IL-13 or 

TGFf)l, which both increased CysLTl expression, the same concentration of LTD4 

induced cellular proliferation (Espinosa et al., 2003). This raises the possibility that 

CysLTl is not sufficiently expressed on ASM in baseline conditions to transduce the 

mitogenic signal of cys-LTs. 

In support of this contention, in situ hybridization and immunohistochemical studies 

raise questions concerning the expression of CysLTl on human ASM tissue (Zhu et 

al., 2005). The lack of significant CysLTl expression in hurnan ASM would readily 
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explain the weak, almost inexistence effect of LTD4 on human ASM cell proliferation 

and would corroborate the results obtained with mouse airways, which did not 

contract in response to LTD4 stimulation (Martin et al., 1988; Richter and Sirois, 

2000). 

Taken together, the presented evidence shows a conspicuous dichotomy between the 

in vitro and in vivo data documenting the effect of cys-LTs on ASM cell proliferation. 

Whereas all the in vivo data support arole for cys-LTs in ASM cell hyperplasia, in 

vitro data demonstrate that cys-LTs are not mitogenic when administered alone and 

their growth-potentiating eff ects with other mediators are marginal and only occur 

with supraphysiologic concentrations of cys-LTs (synthetized in Table 5). Otherwise, 

CysLTl must be upregulated by specific stimuli before cellular proliferation could 

take place in response to cys-LTs, as we demonstrated with IL-13 and TGF~l pre-

treatment (Espinosa et al., 2003). In this regard, airway responsiveness to cys-LTs 

was shown to be higher in asthmatic individuals (O'Hickey et al., 1988). 

Altogether, these results may also imply that the mitogenic effect of cys-LTs on ASM 

cell proliferation in vivo may be indirect and depend on a paracrine loop involving the 

cys-LT-induced secretion of ASM cell mitogens by other airway cells. In this regard, 

the airway epithelium of asthmatics expresses CysLTl (Zhu et al., 2005) and may 

release substances affecting the proliferative behaviour of the underlying ASM tissue 

following cys-LTs stimulation. 
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Table 5: Cys-LTs on ASM cell mitogenesis 

Leukotrienes Type of Species Effects References studies 
(Noveral and 

LTD4 in vitro Rabbit Induced Grunstein, 
1992) 

LTD4 in vivo BN rat Induced (Wang et al., 
1993) 

LTD4 in vitro Rabbit fi mitogenesis induced by IGF-1 (Cohen et al., 
1995) 

LTD4 in vitro Rabbit fi mitogenesis induced by IGF-1 (Rajah et al., 
1995) 

LTD4 in vitro Rabbit fi mitogenesis induced by IGF-1 (Rajah et al., 
1996) 

LTD4 in vitro Human fi mitogenesis induced by EGF (Panettieri et 
al., 1998) 

Cys-LTs in vivo BN rat Induced (Salmon et 
al., 1999) 

Cys-LTs in vivo BALB/c Induced (Henderson et 
m1ce al., 2002) 

LTD4 in vitro Human Induced following IL-13 or (Espinosa et 
TGF~l pre-treatment. al.,2003) 

LTD4 in vitro Human fi mitogenesis induced by EGF (Potter-Perigo 
et al., 2004) 

LTD4 in vitro Human Induced alone and fi (Ravasi et al., 
mitogenesis induced by EGF 2006) 

7.6. Induction of TGFfJl in vitro and in vivo 

The mitogenic effect of cys-LTs in vivo with the lack of effect when administered 

alone in vitro is very reminiscent to the effect of TGF~l on ASM cell proliferation. 

These results are also suggestive that the in vivo action of cys-LTs on ASM cell 

mitogenesis may not be direct, but rather related to their capacity to induce TGF~l 
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expression. In this regard, two recent papers have demonstrated the capacity of cys-

LTs to induce TGFBl expression in two different cell types in vitro. Kato and 

coworkers (Kato et al., 2005) first dernonstrated that LTD4 increases TGFBl rnRNA 

expression in eosinophils. Secondly, Perng and coworkers (Perng et al., 2006) have 

shown that LTC4 increases TGFBl expression in airway epithelial cells. Interestingly, 

the induction of TGFBl was p38 MAPK-dependent in this last paper. Since p38 is 

crucial for the transduction of FGF2-dependent rnitogenic signais (Fernandes et al., 

2004) and it is involved in cys-LTs-induced TGFBl upregulation in airway epithelial 

cells (Pemg et al., 2006), its inhibition rnay interfere with the FGF2-TGFB1 

synergisrn and rnay prove beneficial to prevent ASM cell hyperplasia if this synergy 

really occurs in vivo. As aforernentioned, SD282 (a selective p38 inhibitor) was used 

successfully (Nath et al., 2006) to prevent ASM cell hyperplasia in a rnouse mode! of 

allergen sensitization/challenge. Unfortunately, this result is nota proof of concept 

since it rnay be due to other p38-dependent rnechanisrns unrelated to FGF2-TGFB1 

synergisrn. 

The next manuscript presents the first evidence that endogenous production of TGFBl 

by airway epithelial cells in response to LTD4 is able to support FGF2-primed ASM 

cell proliferation in vitro. Consequently, it suggests that a paracrine loop of TGFBl 

production by airway epitheliurn in response to LTD4 is required for cys-LTs-induced 

ASM cell hyperplasia in vivo. 
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ABSTRACT 

Background: Cysteinyl-leukotrienes (cysLTs) orchestrate many pathognomonic 

features of asthma in animal models of allergie airway inflammation, including 

bronchial smooth muscle cells (BSMC) hyperplasia. However, since cysLTs atone do 

not induce mitogenesis in monocultures of human BSMC, the effect observed in vivo 

seemingly involves indirect mechanisms, which are still undefined. 

Objectives: To investigate the regulatory role of leukotriene (LT) D4 on transforming 

growth factor (TGF)~l expression in airway epithelial cells and the consequence of 

this interplay on BSMC proliferation. 

Methods: HEK293 cells stably transfected with cysLT receptor 1 (CysLTl) 

(293LT1) were stimulated with LTD4 and TGFl31 mRNA and protein expression was 

measured using Northern blot and ELISA, respectively. Conditioned medium (CM) 

harvested from LTD4-treated cells was then assayed for its proliferative effect on 

primary human BSMC. TGFf31 mRNA expression was also determined in tumoral 

type II pneumocytes A549 and in normal human bronchial epithelial cells (NHBE) 

following LTD4 stimulation. 

Results: LTD4 induced TGF~l mRNA production in a time- and concentration-

dependent manner in 293LT1. TGFf31 secretion was also upregulated and CM from 

LTD4-treated 293LT1 was shown to increase BSMC proliferation in a TGFf31-
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dependent manner. The increased expression of TGF(31 mRNA by LTD4 also occured 

in A549 and NHBE cells via a CysLTl-dependent mechanism. 

Conclusions: Increased secretion of TGF(31 by airway epithelial cells in response to 

LTD4 may contribute to BSMC proliferation. 

Clinical Implication: Elevated expression of cysLTs in asthmatic airways might 

contribute to BSMC hyperplasia and concomitant clinical features of asthma such as 

airway hyperresponsiveness via a paracrine loop involving TGF(31 production by 

airway epithelial cells. 

CAPSULE SUMMARY 

Long term treatment with CysLTl receptor antagonists, might prevent BSMC 

hyperplasia and ensuing airway hyperresponsiveness by decreasing LTD4-enhanced 

TGF(31 secretion by airway epithelial cells. 

KEYWORDS 

Cysteinyl-leukotrienes, asthma, airway smooth muscle, mitogenesis, FGF2 



Bossé et al. LTD4-induced TGFf31 in BSMC praliferation 

ABBREVIATIONS 

AHR, airway hyperresponsiveness; BALF, branchoalveolar lavage fluid; BSMC, 

branchial smooth muscle cells; CysLTl, type 1 receptor for cysLTs; cysLTs, 

cysteinyl-leukotrienes; FGF2, Fibrablast Grawth Factor 2; LTD4, leukotriene D4; 

NHBE; normal human branchial epithelial cells; TGFf31, Transforming Growth 
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INTRODUCTION 

Bronchial smooth muscle cell (BSMC) hyperplasia is a characteristic feature of 

asthma 1 and contributes extensively to airway hyperresponsiveness (AHR) 2
• Among 

the mediators capable of supporting BSMC proliferation in vitro, fibroblast growth 

factor (FGF)2 was shown to be upregulated in human asthmatic airways 3 4 5 6 7 and its 

expression is further increased rapidly (10 min) following allergen challenge 3 • 

Expression of the pleiotropic cytokine, transforming growth factor (TGF)j31, is also 

increased in human asthmatic airways 8 9 10 11 12 13 14 15 16
• But, despite evidence 

suggesting that TGFj31 supports BSMC hyperplasia in murine models in vivo 17 18
, its 

effect on human BSMC proliferation in vitro is controversial 19 20 21 22 23 24
. In this 

regard, we have recently shown that TGFj31 atone failed to affect human BSMC 

proliferation, but strikingly increased mitogenesis when administered 24 hours 

following FGF2 treatment 23
• These results indicate that TGFj31 could be a major 

player in BSMC hyperplasia in an allergie inflammatory context where BSMC were 

primed with FGF2. However, the cellular source of TGFj31 and the mechanism by 

which TGFj31 is upregulated in response to allergen challenge in asthmatic airways 

are still uncertain. 

Inflammatory cells that infiltrate the airways following allergen exposure as well as 

resident structural cells in the Jung have been shown to produce TGFj31. However, 

airway epithelial cells are the main source of TGFj31 in normal murine 25 26 and human 

27 28 lungs. Morevover, numerous reports suggested that epithelial cell-derived TGFj31 
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could be upregulated by phlogogenic challenges in vitro 26 29 and in vivo 30 31
• Hastie 

and coworkers 32 have also demonstrated that ex vivo cultures of airway epithelial cells 

derived from asthmatic subjects secreted higher amounts of TGFj31 compared to those 

derived from non-asthmatic subjects 32
• 

Histological evidence suggests that type 1 cysteinyl-leukotriene (cysLT) receptor, 

CysLTl, is expressed in airway epithelium of asthmatic patients 33
• CysLTs 

orchestrate many pathognomonic features of asthma in animal models of the disease 34 

35 36 37 38 39 and have consistently been reported to be upregulated in bronchoalveolar 

lavage fluid (BALF) 40
, urine 41

, bronchial biopsies 42, sputum 43
, blood 44

, and exhaled 

breath condensates 45 of asthmatic subjects both at baseline and following allergen 

exposure. Interestingly, CysLTl antagonists significantly attenuated BSMC 

hyperplasia in murine 36 37 46 and rat 34 35 models of allergie airway inflammation, but 

the effect of cysLTs on human BSMC proliferation in vitro is modest and only occurs 

with high concentrations (2 sequential stimulations with 10-6M of LTD4) 
47 or when 

combined with other growth factors 48 24 49
. These observations suggest that cysLTs 

support BSMC proliferation in vivo via indirect mechanisms. The current study aims 

to determine whether epithelial cells secrete TGFj31 in response to cysLTs and test the 

hypothesis that cysLT-induced BSMC proliferation, as observed in vivo, is mediated 

through a paracrine loop involving TGFj31 production by epithelial cells. 
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METHODS 

Cells and culture conditions 

The 293LT1 cell line was generated in our laboratory as previously described 50
• Cells 

were cultured in Dulbecco's modified Eagle's medium (DMEM) with glucose (Life 

technologies. Burlington, ON, Canada) with 10% FBS and 100 µg!ml hygromycin B 

(Wisent. St-Bruno, Qc, Canada), until the last passage. Human primary BSMC 

(BioWhittaker, Inc. Walkersville, MD) were derived from a 5 week-old black male, 

free of pre-existing lung disease. Culture procedures have previously been described 23 

and all experiments with BSMC were performed with cells at the 4th passage. Cells 

from the human tumoral type 2 pneumocytic cell line A549 (ATCC), derived from a 

58 years-old caucasian male, were cultured in RPMI-1640 (Life technologies) with 

5% FBS. Normal human bronchial epithelial cells (NHBE) were derived from a 13 

year-old caucasian male, free of pre-existing lung disease, and cultured as 

recommended by the supplier (BioWhittaker, Inc.). Ail experiments with NHBE were 

performed with cells at the 4h passage. At the last passage, 293LT1, A549 or NHBE 

cells were subcultured into 6-well plates and were allowed to reach confluence in their 

respective growth culture medium. Cells were then starved for 24 hours (DMEM with 

0.2% FBS for 293LT1 and RPMI and BEBM atone for A549 and NHBE, 

respectively) before starting the stimulations in fresh starving medium. 
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Northern blot analysis 

Cells were stimulated for the indicated time with the indicated concentration before 

mRNA extraction with TRizol® reagent (lnvitrogen. Burlington, ON, Canada). In 

some experiments, cells were pre-treated for 30 min with montelukast (MK-476) 

(Merck Frosst. Pointe-Claire, Qc, Canada) before LTD4 or ethanol administration. 

mRNA was then separated on agarose gel (1 % ) by electrophoresis and transferred 

onto Hybond-N+ (Amersham Pharmacia Biotech. Baie d'Urfé, Qc, Canada) 

membrane. The ethidium bromide-stained 18S band on the membrane was used as a 

loading control. Membranes were subsequently hybridized overnight at 68°C with 

human TGFf)l riboprobe, washed extensively and radioactive signais were detected 

with Hyperfilm MP (Amersham Pharmacia Biotech). 

ELISA 

Aliquots of conditionned medium (CM) from 293LT1 cells were collected 24 hours 

following addition of LTD4 (10-8M) or equivalent concentration of the vehicle 

(ethanol). CM aliquots were centrifuged to remove cellular debris and TGFf)l protein 

levels were quantified using Quantikine® ELISA kit (R&D System. Minneapolis, 

MN) as described in the manufacturer's instruction manual. 

BSMC proliferation 

The experimental design employed to assay BSMC proliferation is schematically 

presented in Fig. 1. BSMC were subcultured into 96-well plates at 3000 cells/well in a 

starvation medium, consisting of Smooth muscle Basal Medium (SmBM) 
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(BioWhittaker, Inc.) with 1 % FBS, with or without FGF2 (2 ng/ml). Cells were 

maintained in these conditions for 24 hours before incubating them with heat-

activated (10 min at 80°C for activation of latent TGFj)l) CM derived from LTD4 (10-

8M)- or ethanol-treated 293LT1. In some experiments, BSMC were pre-treated for 1 

hour with SB431542 (lOµM) (Sigma-Aldrich. Oakville, ON, Canada) or an equivalent 

concentration of the vehicle (DMSO) before incubation with 293LT1 CM. BSMC 

proliferation was measured 4 days after 293LT1 CM administration using the DNA 

staining property of crystal violet (Sigma-Aldrich). Briefly, cells were washed once 

with a HBSS solution containing 2 mM CaC12 and 10 mM Hepes, fixed 20 min with 

ethanol (70%) at -20°C, incubated 15 min in crystal violet dilution (1 % w/v) at room 

temperature, washed 6 times under tap water and dissolved in acetic acid (33% ). 

Optical density (OD) was spectophotometrically determined at 550 nm with an 

ELISA reader (Bio-Rad Laboratory, Inc. Hercules, CA). The validity of crystal violet 

staining as a surrogate of cell proliferation in the BSMC cell line has been determined 

elsewhere 23
• 

RT-PCR 

Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was 

used to measure CysLT 1 mRNA expression. Starved, unstimulated cells were 

resuspended in TRizol® reagent for mRNA extraction. To avoid DNA contamination 

and mRNA degradation, mRNA extracts were treated for 15 min with 

dexoxyribonuclease (DNAse 1 from Amersham Biosciences. Piscataway, NJ) and 

ribonuclease inhibitor (RNasin from Promega, Madison, WI) at 37°C. RT reactions 
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were performed using 1 µg of mRNA extract and M-ML V reverse transcriptase kit 

(BioCan Scientific, Inc. Mississauga, ON) and PCR was performed with a Taq 

polymerase kit (New England BioLabs, Ltd. Pickering, ON). Peripheral blood 

mononucleated cells (PBMC) and the monocyte-like cell line THP-1 (A TCC) were 

used as CysLTl mRNA positive controls and human umbilical vein endothelial cells 

(HUVEC) were used as negative controls. For all experiments, GAPDH mRNA was 

used as an internai housekeeping gene control. The PCR primers and conditions used 

were: CysLTl forward, 5'-CGGGATCCGATGAAACAGGAAATC-3'; CysLTl 

reverse, 3'-CCGGAATTCAATGGGTTTAAACTATAC-5'; 32 cycles at 60°C 

annealing temperature; GAPDH forward, 5' -GATGACATCAAGAAGGTGGTGAA-

3'; GAPDH reverse, 3'-GTCTTACTCCTTGGAGGCCATGT-5'; 28 cycles at 55°C 

annealing temperature. 

Flow cytometry 

Flow cytometry analysis was used to measure CysLTl expression in A549 and NHBE 

cells. Starved, unstimulated cells were harvested, fixed (2% paraformaldehyde), 

permeabilised (0.1 % saponine) and labeled sequentially with rabbit anti-human 

CysLTl Ab (1:2000) (Cayman Chemical. Ann Arbour, Ml) or isotypic control 

(1 :2000) (Southern Biotechnology Associates. Birmingham, AL) and with FITC-

conjugated goat anti-rabbit IgG Ab (1: 1000) (Jackson Immuno Research Laboratories 

Inc. West Grove, PA). Mean fluorescence intensity (MFI) on labeled cells was then 

measured using a FACScan flow cytometer (Becton Dickinson, San Jose, CA) and 

analysed using BD CellQuest Pro (version 4.0.1) software. 
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Statistical analyses 

In ELISA experiments (Fig. 3), unpaired Student's t test was used to compare the 

level of TGFj31 expression between LTD4- and ethanol-treated 293LT1 CM. ANOVA 

followed by Tukey's test a posteriori for comparison of ail pairs of conditions was 

performed to compared the eff ect of 293LT1-deri ved LTD 4- and ethanol-treated CM 

on FGF2-pre-treated-BSMC proliferation (Fig. 4A and B). In Northern blot analysis 

with NHBE cells (Fig. 6B), ratios of TGFfH expression over 18S were standardized in 

Z scores within each experiment before the data obtained for every experiment were 

compiled and analysed by paired Student's t test. Ali statistical analysis were 

performed using StatView or Prism software and p values are indicated in the figures. 
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RESULTS 

LTD4 upregulated TGFfH expression at the mRNA and protein levels in 293LT1 

cells 

To determine whether cysLTs can affect TGF~l expression, the CysLTl-expressing 

epithelial cells (293LT1) were stimulated with LTD4 or equivalent concentrations of 

the vehicle (ethanol). As shown in Fig. 2A, LTD4 (10-8M) increased TGF~l mRNA 

expression in a time-dependent fashion. However, the kinetics of TGF~ 1 upregulation 

by LTD4 were relatively slow, beginning at 8 hours and continuing to increase up to 

24 hours post-stimulation. When increasing concentrations of LTD4 were tested at the 

earliest time point where LTD4 increased TGFBl mRNA expression (8 hours), the 

effect of LTD4 was shown to be concentration-dependent, starting at 10-11M and 

increasing up to 10-1M (Fig. 2B). The amount of TGFB 1 secreted in the conditioned 

medium (CM) was then determined following 24 hours of stimulation. As shown in 

Fig. 3, the constitutive expression of TGF~l in CM of 293LT1 cells was 

approximately 3 ng/ml. However, LTD4 (10-8M) stimulation doubled this amount to 

attain more than 6 ng/ml. 

CM from LTD4-treated 293LT1 cells increased BSMC proliferation in a TGFfH-

dependent fashion. 

We previously demonstrated that TGFBI alone did not affect human BSMC 

proliferation. However, when TGF~l was sequentially administered 24 hours 

following FGF2 treatment, it synergized in a concentration-dependent manner with 
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FGF2-induced mitogenesis 23
• Together, these results prompted us to investigate 

whether endogenous TGFj31 production by 293LT1, at baseline or following LTD4 

stimulation, could support BSMC proliferation when the latter had been pre-treated 

with FGF2. Primary human BSMC pre-treated or not for 24 hours with FGF2 (2 

ng/ml) were thus incubated with CM derived from LTD4-treated or ethanol-treated 

293LT1 cells. Recombinant TGFj31 at 10 ng/ml was used as a positive control. As 

shown previously, TGFj31 had no effect on its own, but synergised with FGF2 to 

induce BSMC proliferation (Fig. 4A). Similarly, CM from 293LT1 cells induced 

proliferation only when BSMC were pre-treated with FGF2, suggesting that TGFj31 in 

the CM of 293LT1 cells was responsible for the mitogenic effect. Moreover, this 

proliferative synergism with FGF2 was amplified with CM derived from LTD4-treated 

cells (Fig. 4A), which is consistent with the amount of TGFfH measured in CM of 

LTD4-treated (~ 6 ng/ml) or ethanol-treated (~ 3 ng/ml) 293LT1 cells (Fig. 3). 

Most of the biological effects mediated by TGFj31 after binding toits cognate cell 

surface receptor depend on the Smad signal transduction pathway. Hence, to confirm 

the involvement of endogenous TGFj31 in BSMC proliferation induced by 293LT1-

derived CM, BSMC were pre-treated for 1 hour with SB431542, used at a 

concentration (10 µM) that completely inhibit Smad protein activation 51
, or an 

equivalent concentration of the vehicle (DMSO) before incubation with 293LT 1 CM. 

As shown in Fig. 4B, SB431542, but not DMSO, abrogated BSMC proliferation 

induced by LTD4-treated or ethanol-treated 293LT1 CM. 
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CysLTl is expressed in airway epithelial cells and is required for LTD4-induced 

TGFfU mRNA upregulation 

We subsequently tested whether LTD4 can enhance TGF(31 expression in airway 

epithelial cells, as observed in 293LT1 cells. However, since endogenous expression 

of CysLTl has never been demonstrated in cultured airway epithelial cells, CysLTl 

mRNA and protein expression was first determined in tumoral type 2 pneumocytes 

AS49 and in NHBE cells. As determined by RT-PCR, CysLTl mRNA was expressed 

in both cell lines, but the level of expression was higher in AS49 cells (Fig. SA). 

PBMC and THP-1 cells were used as positive controls and HUVEC as negative 

control. CysLTl protein expression was then assayed by flow cytometry and, again, it 

was seen in both cell lines with a higher expression observed in AS49 (Fig. SB). 

AS49 or NHBE cells were then stimulated with 10-1M LTD4 or equivalent 

concentration of ethanol for 24 hours and TGF(31 mRNA expression was determined 

by Northern blot analysis. As shown in Fig. 6A and B, LTD4 stimulation increased 

TGF(31 mRNA expression in both cell lines. To measure whether the increased 

expression of TGF(31 mRNA induced by LTD4 was mediated by the CysLTl receptor, 

cells were pre-treated with the specific CysLTl receptor antagonist MK-476 

(montelukast) during 30 min prior to LTD4 stimulation. As shown in Fig. 6A and B, 

MK-476 totally prevented the induction of TGF(31 mRNA by LTD4, demonstrating 

the requirement for LTD4 activation of its high affinity receptor CysLTl in order to 

upregulate TGF(31 mRNA expression in airway epithelial cells. 
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DISCUSSION 

LTD4 and TGFf31 are both regarded as orchestrating factors in the pathology of 

asthma 52 53
• Whereas LTD4 is synthesized and released early following allergenic 

challenge and is best known as an inflammatory and spasmogenic stimulus, TGFf31 is 

secreted later on and is primarily involved in immunoregulation and tissue remodeling 

processes. However, it is unknown whether the rapid release of LTD4 affects the 

sequential upregulation of TGFf31 expression. Here, we demonstrated that LTD4 

enhances TGFf31 secretion in a cell line stably transfected with the high affinity 

receptor for LTD4 (293LT1). In addition, CM from LTD4-stimulated cells was 

mitogenic for human BSMC pre-treated with FGF2. The magnitude of this 

proliferative response was consistent with the amount of TGFf31 measured in CM of 

LTD4-treated ("' 6 ng/ml) or vehicle-treated 293LT1 cells ("' 3 ng/ml) (Fig. 3) and was 

in accordance with the concentration-dependent synergistic effect of TGFf31 on 

FGF2-induced BSMC proliferation that we reported previously 23
• In addition, intact 

Smad signaling was required for this proliferative response to occur, supporting the 

concept that TGFf31 is the growth factor responsible for the mitogenic effect of the 

CM. 

The airway epithelial tissue, with its overlaying apical-associated mucus layer, 

represents a large host-environment interface targeted by allergens, pollutants, virus, 

bacteria and several mediators secreted by host cells infiltrating the airways. Experts 

in the field consider the airway epithelium as the protagonist tissue in asthma 

aetiology 52
• They propose that asthmatic epithelium shows increased susceptibility to 
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injurious agents, leading to chronic inflammation, subsequent activation of repair 

processes in the epithelial-mesenchymal trophic unit which ultimately lead to airway 

remodeling. 

In this regard, TGFBl was shown to contribute extensively to airway remodeling in 

diff erent animal models 17 18 and airway epithelial cells were shown to be an important 

cellular source of TGFB 1, both in normal 27 28 25 26 and in inflammatory conditions 26 29 

30 31
• It was also determined that airway epithelial cells derived from asthmatic 

subjects secreted higher amounts of TGFB 1 compared to cells from healthy don ors 32
• 

However, whether airway epithelial cells released TGFBl in response to LTD4 

stimulation and whether the remodeling effect of cysLTs observed in vivo 36 37 34 35 

was mediated by TGFBl was still unexplored. 

In the initial report characterizing the CysLTl receptor, Lynch and coworkers 54 

identified CysLTl mRNA expression mainly in BSMC and in lung macrophages with 

minimal expression detected in airway epithelial cells. More recently, CysLTl mRNA 

and protein expression has been questioned in human BSMC using in situ 

hybridization and immunohistochemical approaches 33
. However, its expression has 

been confirmed in airway epithelium of nonsmoking, nonatopic control subjects and 

was shown to be higher in epithelial cells of asthmatic subjects 33
. In the current study, 

CysLTl expression at the mRNA and protein levels was confirmed in A549 and 

NHBE, two airway epithelial cell lines. Our data also demonstrate that TGFBl mRNA 

expression in airway epithelial cells increased in a CysLTl-dependent manner in 
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response to LTD4 stimulation, confirming the findings in 293LT1 cells. Taken 

together, these results suggest that LTD4-induced BSMC proliferation in vivo may 

involve a paracrine loop of TGFf31 secretion by airway epithelial cells (Fig. 7). 

In conclusion, our data present a new mechanism by which cysLTs may lead to 

BSMC hyperplasia in vivo 36 37 34 35
, despite their marginal effects on proliferation of 

human BSMC cultured ex vivo 47 48 24 49
. In addition, our results suggest that the 

increased secretion of TGFf31 by airway epithelial cells in response to LTD4 may 

represent an important paracrine loop where CysLTl antagonists could interfere in 

order to prevent BSMC hyperplasia. Supportingly, long term therapy with CysLTl 

antagonists was shown beneficial to prevent key features of airway remodeling in 

animal models of allergie airway inflammation 36 37 34 35
. Hence, anti-leukotrienes 

drugs might be considered in the treatment of asthma to prevent TGFf31 production 

and its ensuing effect on airway remodeling, including BSMC hyperplasia. Finally, 

the results of the current study also highlight the importance of studying the cell-cell 

interplay that inevitably occurs in vivo and likely participates in the development of a 

phenotype as complex as airway remodeling. 
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FIGURE LEGENDS 

FIG. 1. 5 day time-course experimental design used in this study to measure BSMC 

proliferation. 

FIG. 2. Northern blot analysis of TGF~l mRNA expression in 293LT1 cells 

following different times of incubation with LTD4 (10-8M) (A) or different 

concentrations of LTD4 for 8 hours (B). Presented are representative blots of two 

independent experiments. 

FIG. 3. TGFP 1 protein level in CM of 293LT 1 following 24 hours of treatment with 

LTD4 (10-8M) or equivalent concentration of ethanol was determined by ELISA. Bars 

are means ± SEM of duplicate measurements of 2 independent experiments. 

FIG. 4. BSMC proliferation in response to CM from 293LT1 cells. (A) BSMC were 

pre-treated or not with FGF2 (2 ng/ml) and then incubated with CM harvested from 

LTD4- or ethanol-treated 293LT1. TGF~l (10 ng/ml) was used as a positive control. 

Proliferation was measured using crystal violet uptake. (B) As in (A), except that 

BSMC were pre-treated with SB431542 ( 1 OµM) or equivalent concentration of 

DMSO 1 hour before the addition of 293LT1 CM. Each bar represents means ±SEM 

of quadruplicate measurements of 3 independent experiments and are expressed 

relative to their respective control, i.e. compared to medium alone (-)or FGF2 alone 

(+). 
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FIG. S. CysLTl mRNA (A) and protein (B) expression were measured in 

unstimulated lung epithelial A549 and NHBE cells by RT-PCR and flow cytometry, 

respectively. In (A), PBMC and THP-1 cells were used as positive controls and 

HUVEC were used as a negative control. In (B), the difference in mean fluorescence 

intensity (8 MFI) between anti-CysLTl and isotypic control Ab-labeled cells is 

indicated. Presented are representative results of three independent experiments. 

FIG. 6. TGFj31 mRNA expression was measured in A549 and NHBE cells following 

24 hours stimulation with LTD4 (10-7M) or equivalent concentration of ethanol in the 

absence or presence of prior treatment with MK-476 (10-6M). (A) Presented are 

representative results of three independent experiments. Numbers below each lane 

represent the ratio of densitometric assessment of TGFj31 and 18S bands. (B) Means ± 

SEM of the TGFj31/18S ratios obtained in NHBE cells, n = 3 per condition. 

FIG. 7. Inflammatory cells infiltrating the airway lumen, the epithelium and the 

submucosal compartment produced cysLT. In response to LTD4, airway epithelial 

cells produce TGFj31, which, in turn, induces cellular proliferation in FGF2-

preexposed BSMC. 
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CONCLUSION 

The molecular mechanisms involved in ASM cell hyperplasia have been widely 

studied, but remain an open field of investigation since no clear picture of its etiology 

is yet defined. Numerous individual mediators have been shown to induce ASM cell 

proliferation in vitro, including growth factors, proteases, spamogens, reactive oxygen 

species (ROS) and cytokines (Hirst et al., 2004). Most of these mitogens are 

upregulated during asthma exacerbation and must act together, simultaneously or 

sequentially, to induce ASM cell hyperplasia. However, to date, interactions among 

these mediators and whether they can synergize or antagonize each other have not 

been explored extensively. Moreover, the order of production of ail these mitogens in 

the airways after phlogogenic challenge is not clearly defined yet, but clues regarding 

the sequence of expression of certain growth factors have been documented. In this 

regard, Redington and coworkers (Redington et al., 2001) have reported a rapid FGF2 

increase in BALF after a SAC, whereas TGF~l was upregulated only 24 h post-SAC 

(Redington et al., 1997). Similarly, increased expressions of IL-13 and IL-4 in the 

lungs of asthmatics are inducible, transient and with a slow onset (Batra et al., 2004; 

Tschopp et al., 2006). Their peaked expressions are thought to occur during the late 

asthmatic reaction (LAR), at the time that T H2 lymphocytes and eosinophils are 

mobilised into the lungs (the former being the most important cellular source of these 

cytokines). Our results suggest that initial upregulation of FGF2 can render ASM cells 

responsive to the mitogenic effect of cytokines that are upregulated with slower 

kinetics following allergie challenge and which are otherwise non-mitogenic in the 

absence of FGF2 pre-treatment. 
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Even if asthma mediators are upregulated transiently, Phipps and coworkers (Phipps 

et al., 2004) have proposed that the effects of serial acute processes occurring as a 

result of multiple single allergenic insults culminate over time to cause airway 

remodeling. Hence, repeated allergie challenges with concomitant sequential increases 

of FGF2 and TGFf:H, IL-4 and IL-13 may lead to cumulative structural changes, such 

as ASM cell hyperplasia. 

Evidence from in vivo studies suggests that TGFf31 contributes to ASM cell 

hyperplasia. The results presented in this thesis confirm its mitogenic potential and 

shed light on the conundrum surrounding its mitogenic effect in vitro. In contrast, the 

in vivo data supporting arole of IL-4 or IL-13 in ASM cell proliferation are sparse. In 

this context, our results suggest that both IL-4 and IL-13 may be able to induce ASM 

cell hyperplasia in the context of allergie airway inflammation, i.e. when FGF2 has 

previously stimulated ASM cells (submitted article). Accordingly, we demonstrated 

that similar to TGFf31, both IL-4 and IL-13 synergize with FGF2 to induce ASM cell 

proliferation in vitro. It is worthy of mention that the effects of both IL-4 and IL-13 

were marginal compared to the effect observed with TGFf31. However, it is likely that 

in in vivo conditions, IL-13 may induce ASM cell hyperplasia by either acting directly 

on its receptor expressed on ASM cells or indirectly via its ability to induce a 

paracrine loop of TGFf31 (Lee et al., 2001a; Shim et al., 2006). In both cases, FGF2 

priming is required for IL-13 and TGFf31 to stimulate ASM cell proliferation in vitro. 

Our results also suggest that the mitogenic effect of cys-LTs observed in vivo may not 
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be a direct effect of cys-LTs on ASM cell behaviour, but instead a paracrine loop 

involving the secretion of TGFj31 by other cells (submitted article). 

Concerning leukotrienes, accumuling evidence now suggests that most of the asthma-

like pathogenesis induced by IL-13 is dependent on leukotrienes-mediated 

mechanisms (Elias et al., 2003; Grunig, 2003; Vargaftig and Singer, 2003). In fact, 

leukotriene receptor antagonists (LTRAs) were shown to prevent AHR, inflammation 

and part of mucosal metaplasia and tissue in jury induced by intratracheal instillation 

of IL-13 into the lungs of mice (Vargaftig and Singer, 2003). However, the 

conversion of LTC4 into LTD4 seems dispensable, since GGL-deficient mice still 

showed increased airway responsiveness after intranasal instillation of IL-13 (Chavez 

et al., 2006). The fact that IL-4Ra-deficient mice have increased AHR to LTC4, but 

not to IL-13, is also suggestive that cys-LTs are downstream mediators of IL-13-

induced AHR (Chavez et al., 2006). More confusing is that ST A T6-deficient animais 

are protected against AHR development induced by intranasal instillation of either IL-

13 or LTC4 (Chavez et al., 2006). This result highlights the crucial role of STAT6 in 

the development AHR and suggests a yet unrecognized fonction of cys-LTs in the 

activation of this transcription factor. 

Additionally, intranasal instillation of IL-13 augments the mRNA expression of the 

two cys-LTs receptors, CysLTl and CysLT2, as well as the expression of 5-LO 

(Chavez et al., 2006). These results corroborate with our previous findings 

demonstrating an increased expression of CysLTl in human ASM cells following IL-
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13 stimulation (Espinosa et al., 2003). In Chavez and coworkers' study, IL-13 also 

increased the mRNA expression of one of its own receptor chain, the al chain (IL-

13Ral). On the other hand, intranasal instillation of LTC4 increased pulmonary 

mRNA expression of its own CysLTl receptor, as well as IL-13Ral, highlighting the 

prominent in vivo cross-talk between IL-13 and cys-LTs (Chavez et al., 2006). 

Additional studies support the potential interplay occurring between IL-13 and cys-

LTs. For example, IL-13 increases the intracellular mobilisation of Ca2+ and the 

contractile response of cultured murine ASM cells to LTD4 (Eum et al., 2005). Also of 

interest in that study, BALF levels of IL-13 were comparable between sham-

challenged (111 pg/ml) and OV A-challenged (94 pg/ml) animais, indicating that IL-

13 is not sufficient to induce AHR. Instead, IL-13 may require other active 

inflammatory mediators released during allergie challenge, such as cys-LTs, to induce 

ASM contraction. 

In IL-13 transgenic mice, mRNA encoding cytosolic phospholipase A (cPLA)2, LTA4 

hydrolase, and 5-LO-activating protein (FLAP) were upregulated (Shim et al., 2006). 

However, in contrast to mice instilled via intranasal (Chavez et al., 2006) or 

intratracheal routes (Vargaftig and Singer, 2003) with IL-13, neither CysLTl and 

CysLT2 nor 5-LO mRNA expressions were affected in IL-13 transgenic mice (Shim 

et al., 2006). To test the effect of 5-LO and its end products in the pathogenesis 

induced by IL-13 overexpression, crosses between IL-13 transgenic mice and 5-LO 

deficient mice have been generated (Shim et al., 2006). This study demonstrated that 
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5-LO, and by inference leukotrienes, play a critical role in the pathogenesis of IL-13-

induced airway inflammation, fibrosis, and respiratory failure. As previously 

mentioned, TGF~ 1 was induced and activated in this IL-13 transgenic model, and was 

shown to mediate most of the fibrotic effect of IL-13 transgene (Lee et al., 2001a). 

This was in concordance with the lack of active TGF~l upregulation in the epithelial 

and the submucosal zones of IL-13-deficient mi ce exposed to a prolonged challenge 

protocol of allergie asthma (Kumar et al., 2004). Interestingly, 5-LO was also required 

for optimal stimulation and activation of TGF~ 1 in this IL-13 transgenic mouse (Shim 

et al., 2006). This in vivo result corroborates in vitro data demonstrating increased 

expression of TGF~l in both epithelial cells (Perng et al., 2006) (and submitted 

manuscript) and eosinophils (Kato et al., 2005) following cys-LTs stimulation. It also 

corroborates with new observations showing a substantial reduction of TGF~ 1 

expression in whole-lung lavages, as well as in lung tissues, in OV A sensitized and 

challenged mice treated with montelukast or pranlukast (Lee et al., 2007). However, 

the results presented in Shim and coworkers' study (Shim et al., 2006) represent the 

first in vivo demonstration that cys-LTs induced by IL-13 are required for TGF~ 1 

induction in vivo. Thus, if IL-13 is upstream of cys-LTs production and TGF~l is 

downstream of cys-LTs production, it is easy to imagine that this ordered sequence of 

upregulated mediators in the airways of asthmatics following allergie challenge may 

contribute to ASM cell hyperplasia (Figure 4). 

In this sequence, every single upstream mediator is a stimulus to upregulate the 

expression of its downstream effectors and some intermediaries in the sequence (i.e. 
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Figure 4: Sequence of upregulated mediators in asthma 
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onset of TGF~ 1 upregulation occurring in the airways of asthmatics following SAC 

(Redington et al., 1997). As demonstrated in the results presented in this thesis, the 

key element in this pathway is FGF2, because none of the asthma mediators listed in 

the sequence is effective in inducing ASM cell proliferation in the absence of FGF2. 

Altogether, these results suggest that FGF2 may be a central regulator of ASM cell 

hyperplasia in asthma and must prone investigators in the field to turn their interests 

toward the understanding of this growth factor regulation in asthmatic airways and 

demystifying whether its growth-promoting effect with different asthma mediators 

occurs in vivo. 
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In turn, the operational mechanism involved in the synergistic proliferations occurring 

between FGF2 and different asthma mediators was partially elucidated in this thesis. 

It seems that an autocrine loop involving different members of the PDGF and PDGFR 

family of growth factors could account for approximately 50% of the synergism 

(Bosse et al. , 2006) (and manuscript submitted). This family consists of four protein 

chains that yield 5 different isoforms (AA, BB, AB, CC and DD), where each binds 

and causes dimerization of PDGF receptor a and ~ chains with diff erent 

specificity/promiscuity (Figure 5). 

Figure 5: PDGF receptors 
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Even though we did not measure the protein expression PDGF-CC due to the lack of 

available Ab, we have many reasons to speculate that PDGF-CC might be the most 

important player in the part of the synergistic responses that were blocked by PDG FR 

tyrosine kinase inhibitors. The induction of PDGF-C mRNA by TGFpl, IL-4 or IL-13 

persisted much longer than the induction of PDGF-A mRNA. Moreover, PDGF-AA 

binds exclusively to the PDGFRa chain (Heldin and Westermark, 1990) (figure 5) 

and it was clearly established that homodimerization of this receptor induces a poor 

mitogenic signal in bronchial and vascular smooth muscle cells, as reported herein 

and by others (Bonner et al., 1996; Bosse et al., 2006; Stouffer and Owens, 1994). 

Like PDGF-AA, PDGF-CC binds and activates PDGFRa homodimers. However, 

PDGF-CC also engages PDGFRap heterodimers (Cao et al., 2002; Gilbertson et al., 

2001) (figure 5), which have been demonstrated to be more efficient in inducing 

mitogenesis compared to PDGFRa homodimers (Seifert et al., 1993). Unlike 

PDGFRa chain, the PDGFRP chain is constitutively expressed (Bonner et al., 1996). 

Taken together, the increased expression of PDGFRa chain by FGF2 may increase 

the binding of PDGF-AA and PDGF-CC on ASM cells, but may also increase the 

likelihood of ap heterodimerization by PDGF-CC, which is more likely to be of 

major significance in ASM cell proliferation. 

One can also discuss the fairly low amounts of PDGF-AA measured in the 

conditioned medium of TGFPl-stimulated ASM cells. However, PDGF-AA, AB and 

BB are secreted in an active form. Consequently, in cells expressing both the 

receptors and the ligands, autocrine binding is likely to occur before externalisation. 
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Hence, low amounts are expected to be secreted by these cells since most of the 

PDGF content in the Golgi apparatus may already be bound to their cognate receptors 

prior to exocytosis. However, as soon as the complex reaches the plasmalemma, the 

activated receptor is likely to initiate signaling and cause the PDGF-mediated cellular 

effects. Certain factors subject to such an autocrine signaling (i.e. secreted by the cells 

that also express its receptor), are prevented from binding to its receptor prematurely 

by being secreted as an latent, inactive form. TGFf31 for example, is associated non-

covalently with its pro-peptide LAP before being secreted, which prevents its 

intracellular interaction with its receptors within the Golgi apparatus (Wakefield et al., 

1987). Only cells that possess the extracellular machinery to intercept and to activate 

TGFf31 are subjected toits biological effect. However, it is not the case for PDGF-

AA, and this may explain the fairly low amount of PDGF-AA detected in the 

conditioned medium of TGFf31-treated or non-treated ASM cells. 

Similar to TGFf31, PDGF-CC and the newly identified member of PDGFfamily, 

PDGF-DD, are secreted in a latent form, covalently associated with their extended N-

terminal CUB domain (Bergsten et al., 2001; LaRochelle et al., 2001; Li et al., 2002). 

The CUB domain must be cleaved by tPA (Fredriksson et al., 2004) to permit binding 

of the growth-factor domain toits cognate PDGF receptor. In this regard, FGF2 has 

been shown to increase plasminogen activator (PA) activity in several in vitro systems 

(Cavallaro et al., 2001; Flaumenhaft et al., 1992). Our results suggest that tPA is 

increased following FGF2 stimulation and, based on the proliferative inhibition 

induced by leupeptin, its activity is required for optimal mitogenic effect of TGFf31 on 
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FGF2-primed ASM cells. We thus speculate that the proteolytic activation of PDGF-

CC might take place in this synergism and its autocrine binding may contribute to the 

overall mitogenic input of TGFB 1. lt is also interesting to note that the protease 

inhibitor used (leupeptin) reduced FGF2-TGFB1 synergism to an intermediate level 

compared to PDG FR tyrosine kinase inhibitors, suggesting that both PDGF-CC (the 

leupeptin blocking part) and PDGF-AA (the AG 1296 blocking part not affected by 

leupeptin) are involved in FGF2-TGFB1 proliferative synergism. 

In contrast to other members of the PDGF family, PDGF-BB is a universal ligand for 

PDGF receptors (Heldin and Westermark, 1990). lt can induce Band a homodimers 

as well as aB heterodimers. By increasing PDGFRa expression, one might expect that 

FGF2 pre-treatment would enhance the proliferative effect of PDGF-BB. However, 

we did not observe a synergistic effect of FGF2 on PDGF-BB-induced proliferation in 

our study (data not shown), which was consistent with the results obtained by Bonner 

and coworkers (Bonner et al., 1996). In their study, FGF2 pre-treatment increased the 

mitogenic response of ASM cells to PDGF-AA and PDGF-AB, but did not potentiate 

the effect of PDGF-BB. 

In conclusion, our data suggest that PDGF-AA and PDGF-CC are induced by TGFBl, 

IL-4 and IL-13 and their mitogenic actions on ASM cells are potentiated by PDGFRa 

upregulation by FGF2. In normal development, a paracrine mode of action of PDGFs 

is well recognized. However, in exagerated growth pathologies such as cancer, 

PDGFs act largely in an autocrine fashion (reviewed in (Betsholtz, 2003)). After 
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sequential FGF2 and TGF~l/IL-4/IL-13 stimulations, which likely occur after allergie 

challenge in vivo, ASM cells will express a and ~ chains of PDG FR and secrete 

PDGF-AA and PDGF-CC ligands. Hence, unlike the normal paracrine mode of action 

of PDGFs, the PDGF signaling reported herein would act in an autocrine fashion and 

may lead to abnormal proliferation of ASM cells, as observed in asthmatic 

individuals. 

Therapeutic options to alter these prolif erative synergisms 

Since its recognition in 1922 (Huber and Koessler, 1922), ASM cell hyperplasia has 

been regarded as the major structural alteration contributing to bronchial 

hyperresponsiveness (Lambert et al., 1993; Pare et al., 1997). In addtion toits active 

rote in bronchial constriction, ASM hyperplasia increases airway wall thickening, 

which concomitantly decreases airway lumen diameter and increases susceptibility to 

airway closure even with limited bronchoconstriction (James et al., 1989; Wiggs et 

al., 1992). In addition, increased ASM mass around the airways participates in 

symptoms of asthma in many other ways. In particular, it has been recognized as an 

active participant in the inflammatory and fibrotic responses during asthma 

exacerbation by its ability to synthesize and secrete a diverse array of mediators 

involved in recruitment, activation and enhanced survival of inflammatory cells 

(Howarth et al., 2004; Joubert and Hamid, 2005; Panettieri, 2002). Considering ail of 

these detrimental effects induced by ASM tissue enlargement, any strategy employed 

to reduce or reverse ASM cell hyperplasia is likely to improve asthma symptoms. 
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The results presented in this thesis demonstrate that FGF2 can confer a mitogenic 

potential to TGF~l, IL-4 and IL-13, as well as to cys-LTs-induced TGF~l, and 

suggest that all of these proliferative synergisms may work in concert in vivo to 

contribute to ASM cell hyperplasia. Hence, interfering with the function of any of 

these mediators may prevent the proliferative synergism to take place and thus, 

prevent ASM cell hyperplasia, together with the concomitant features of asthma 

associated with this altered phenotype. For instance, LTRAs, such as montelukast, 

pranlukast, zafirlukast and pobilukast are currently approved as asthma therapies in 

different countries and were shown to bring beneficial effects to appoximateley 40% 

of asthmatic patients (Figure 6). 

Figure 6 : Variability in the therapeutic response of asthmatics to a leukotriene receptor 
antagonist 
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On the other hand, drugs targeting TGFf:H, IL-13 and IL-4 are not presently available, 

but man y are un der development. In the case of TG Fj31, several experimental and 

pharmacological tools currently exist to modulate its response (Schmidt-Weber and 

Blaser, 2004). Many of these effectively reduce TGFj3 effects in vivo and were shown 

to have therapeutic effects on different animal models of fibrotic diseases. Among the 

strategies employed to block the biological effect of TGFj3 in vivo, certain prevent 

TGFj3 activation by treating the animais with the plasmin/serine protease inhibitor 

aprotinin (Lee et al., 2001a); others have blocked TGF/3 binding to its receptor by 

gene transfer of decorin (Kolb et al., 200lb; Kolb et al., 2001c), neutralising Ab 

against TGFj3 (Giri et al., 1993), soluble Tj3RII (Wang et al., 1999), Tj3RIII peptide 

(Ezquerro et al., 2003), soluble Tj3RIII (Liu et al., 2002) or by the use of a fusion 

protein consisting of soluble Tj3RII attached to the Fe fragment of human IgG 

(sTGFj3-Fc) (Lee et al., 2001a); and finally, others have opted for inhibiting the main 

signaling pathway initiated by TGFj3 following its binding to cognate cell suface 

receptors, including gene transfer of Smad7 (Nakao et al., 1999), inhibitor of ALK5 

(SD-208) (Bonniaud et al., 2005) or inhibitor of Smad3 phosphorylation 

(Halofuginone) (McGaha et al., 2002). Additional molecules inhibit TGF~l effects in 

vitro by blocking its interaction with the receptor, such as ursolic acid (Murakami et 

al., 2004), or by preventing ALKS serine/threonine kinase activation, such as SB-

431542 (Inman et al., 2002) and SB-505124 (DaCosta Byfield et al., 2004), but their 

in vivo effects are currently undefined. 
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As mentioned earlier, McMillan and coworkers (McMillan et al., 2005) have shown 

beneficial therapeutic effects of anti-TGFj3 Ab on ASM cell hyperplasia and AHR in 

an animal model of allergie asthma. This Ab was also successful in preventing 

peribronchial ECM deposition and mucus production. This study implies that 

blocking TGFj31 by neutralizing Ab may be an alternative and effective therapeutic 

option to cure asthma disease. 

Drugs targeting other molecules with indirect influence on TGFj31 expression could 

also be envisaged to alter TGFj31-mediated effects. For example, mepolizumab, an 

anti-IL-5 antibody, was shown to decrease TGFj31 expression in the airways of mild 

atopic asthmatics (Flood-Page et al., 2003). PPARy agonists, such as rosiglitazone and 

pioglitazone, were also shown to reduce lung expression of TGFj31 as well as several 

inflammatory and remodeling features of airway disease in a mouse model of 

occupational asthma (Lee et al., 2006a). The antifibrotic drug pirfenidone is also a 

likely canditate, since it was shown to reduce airway expression of TGFj3 in a hamster 

model of bleomycin-induced pulmonary fibrosis (Iyer et al., 1999), and to potentially 

exert similar effect in a Brown Norway rat model of allergie asthma (Mansoor et al., 

2006). 

Another example would be the corticosteroid methylprednisolone, which had little 

effect on the secretion of TGFj3 by alveolar macrophages in vitro, but reduced the 

total lung content of TGFj3 by preventing the influx of alveolar macrophages into the 

lungs of rats in a rnodel of bleomycin-induced pulmonary inflammation (Khalil et al., 
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1993). However, others have shown that TGF(31 expression in asthmatic subjects was 

unresponsive to corticosteroid treatments (Chakir et al., 2003) and one study even 

demonstrated that it increased TGFj31 mRNA expression in T cells in vitro 

(AyanlarBatuman et al., 1991). Hence, the well-known efficacy of corticosteroids in 

the treatment of asthma may be related to mechanisms other than their capacity to 

alter TGFj31 expression. 

An early study with IL-4 antagonist altrakincept, which is a soluble recombinant IL-4 

receptor, has shown therapeutic benefits as a steroid-replacing agent (Borish et al., 

1999) and new drugs targeting one or both of IL-4 and IL-13 are now under 

development (reviewed in (lzuhara and Arima, 2004)). These drugs are soluble IL-13 

receptor, chimera protein formed by linking the soluble forms of either IL-4Ra and 

IL-13Ral (IL-4/IL-13 Trap), mutant form of IL-4 able to bind to the type 1 receptor 

but unable to signal (IL-4 mutein) or Ab against IL-13Ral. 

Blocking IL-13 was shown to yield successful therapeutic results in animal models of 

asthma. For example, Ab against IL-13 prevents the progression of an established 

disease in a murine model of persistent asthma (Yang et al., 2005). In this study, mice 

were sensitized i.p. and challenged intranasaly at several occasions with OV A. It was 

shown that i.v. administration of anti-IL-13 Ab before every challenge following the 

establishment of the disease (after 2 challenges) prevents further progression of 

eosinophilia and mononuclear cell infiltrates as well as airway fibrosis. Sorne 

pathological features such as excessive mucus production and AHR were even 
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reversed to attain Ievels observed in non-challenged animais. This treatment regiment 

also reduced MMP-9 Ievels as well as the Ievels of IL-4, IL-5, TNFa, CCLl 1, CCL2 

and KC expression in Iung homogenates. The authors suggest that therapeutic doses 

of an anti-IL-13 Ab may be clinically beneficial to inhibit the progression of an 

established disease. 

Since the bottom line of every synergies reported may involve an autocrine loop of 

PDGF, targeting PDGFR tyrosine kinase activity may also be an interesting strategy. 

In this regard, Gleevec (lmatinib) is an inhibitor of the tyrosine kinase activity of 

PDGF receptors and is already approved for treatment of different malignancies 

(Noble et al., 2004). In addition, it has been used with success for the treatment of 

leukaemias that are associated with translocation of the PDG FR gene (Apperley et al., 

2002; Pietras et al., 2003). Unfortunately, Gleevec lacks selectivity as it also blocks 

the activity of other tyrosine kinases, such as ABL, ARG and the KIT receptor (Dibb 

et al., 2004). 

LTRAs or drugs currently under development enumerated above may prove to be 

beneficial in asthma in part because they interfere with the synergistic proliferation of 

ASM cells induced by the combined action of FGF2 with one of the asthma mediators 

(TGFf:H, IL-4, IL-13 or cys-LTs). However, this speculation must be viewed with 

caution, because these drugs target mediators that orchestrate various aspects of the 

pathology of asthma, and consequently, their beneficial effects may be unrelated to 

their capacity to reduce ASM cell hyperplasia. 
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Final remarks and perspectives 

Investigating the role of individual mediators in isolation is a convenient approach 

and an obligatory step undertaken in the last several years to understand the 

mechanisms leading to ASM cell hyperplasia. However, it is unlikely to reflect in vivo 

conditions, where several mediators act simultaneously or sequentially on ASM cells 

and could influence each other's fonction on ASM cell proliferation. By using a single 

mediator approach, we would have failed to reveal the tremendous growth factor-

amplifying effect of TGF~l and the relatively weaker effects of IL-4 and IL-13. The 

results presented in this thesis also highlight the importance of kinetics. As such, not 

only the stimulus perse, but also the moment where the stimulus in added in a 

particular sequence of stimuli may alter cellular behaviour or the extent of the adopted 

behaviour. The sequence of stimulation used in these studies likely mimics the time 

sequence of triggers encountered by ASM tissue in in vivo conditions following 

allergie challenge. Consequently, the outcomes measured are more likely to reflect 

what is really happening in vivo. Finally, our results also shed light on some of the 

inconsistencies between in vitro and in vivo findings regarding the mitogenic effect of 

TGF~l and cys-LTs on ASM cells. 

However, to gain further confidence in the role of these proliferative synergisms in 

ASM cell hyperplasia, several issues need to be clarified and an appreciable amount 

of research remains to be done. Firstly, the few data reporting an increased expression 

FGF2 must be considered only as the stepping stone for undertaking larger and more 
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controlled trials to confirm these early studies. Secondly, studies designed to harvest 

tissues at multiple-time points following allergie challenge would be very useful to 

understand the kinetics of cytokine upregulations. In the case of TGFf31, its 

upregulation but also its kinetics of activation will require elucidation. Non-invasive 

techniques, such as exhaled breath condensate, could be helpful to perform this kind 

of experiments in humans. Otherwise, animal models will need to be considered. 

Finally, the effect of FGF2 and its direct or indirect synergisms with TGFf31, IL-4, IL-

13 and cys-LTs will need to be investigated in vivo, by the use of transgenic or 

knockout animais or with pharmacological inhibitors targeting each or several of these 

pathways. Determining whether other members of both FGF and TGFf3 families could 

synergize with one another to induce ASM cell proliferation would also be interesting 

to document. 

The interactions reported in this thesis also suggest that many other mediators are 

likely to influence the proliferative outcomes of ASM cells in vivo. The elucidation of 

such an intricate network of mediators will undoubtedly require high throughput 

techniques, such as genomic and proteomic platforms. Therefore, 1 think we've been 

walking in the right direction, but we'd better start running if we want to reach a 

complete understanding of ASM tissue enlargement before casting off this task to our 

progeny. 
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