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disulphonated tetraphenylporphine; TPPS2opp, oppositely disulphonated 

tetraphenylporphine; UV, ultraviolet; VLDL, very Iow density Iipoprotein; ZnDPP, 

( 5, 15-diphenylporphinato )zinc; ZnPc, zinc phthalocyanine; ZnPcF 16, zmc 

hexadecafluorinated 

sulfophthalocyanine. 

phthalocyanine; ZnPcF12S1, zinc dodecafluoro-4-
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Abstract: 

Phthalocyanines are among the more promising second generation photosensitizers 

for photodynamic therapy. Our research group has consistently shown that the more 

amphiphilic of tbese compounds display improved biological properties as 

photosensitizers for photodynamic therapy. However, synthetic approaches towards such 

asymmetrically substituted amphiphilic phthalocyanines are quite limited. As such, we 

have examined different methodologies for imparting amphiphilicity to phthalocyanine-

based photosensitizers. Boron subphthalocyanines are the lower homologs of 

phthalocyanines and the reactivity of boron subphthalocyanines allows them to react with 

1,3-diiminoisoindolines in a Kobayashi ring expansion reaction to give 3: 1 

asymmetrically substituted phthalocyanines. While several literature examples 

demonstrate that this protocol can lead to a mixture of substituted phthalocyanine 

products, the ring expansion reaction of halogenated boron subphthalocyanines in the 

current study has proven to proceed smoothly to selectively produce the desired 3:1 

asymmetrically substituted products. Fluorinated photosensitizers have been previously 

demonstrated to have interesting properties for PDT and a series of 3: l asymmetrically 

substituted dodecafluorinated phthalocyanines have been synthesized by the Kobayashi 

ring expansion reaction of ( dodecafluorosubphthalocyaninato )boron(III) bromide. The 

asymmetry in these lipophilic compounds improves the photodynamic effi.ciency of these 

photosensitizers compared to previ01,isly examined symmetrically substituted fl.uorinated 

phthalocyanine derivatives. The chemical versatility of aryl iodides, in particular towards 

palladium-catalyzed reactions, allows for the controlled addition of novel functionality to 

3:1 asymmetrically substituted iodinated phthalocyanines prepared by the Kobayashi ring 
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expansion reaction of iodinated boron subphthalocyanines. Palladium-catalyzed 

reactions have thus been employed in the preparation of new amphiphilic anionic and 

cationic water-soluble photosensitizers. These compounds should have interesting 

properties for photodynamic therapy. Lastly, boron subnaphthalocyanines absorb light at 

a wavelength around 660-680 nm. Their cone-shaped structure prevents aggregation and 

may impart amphiphilicity to the molecule depending on the nature of the substituents on 

the subnaphthalocyanine macrocycle and the axial ligand on the central boron. A series 

of boron subnaphthalocyanines has been synthesized and this class of photosensitizers 

has been shown to effectively generate singlet oxygen in an aqueous, biologically 

relevant environment while undergoing rapid photobleaching. 
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Chapter 1. 

The Introduction 



1. Introduction 

1.1 The Beginning 

The term phthalocyanine finds its origin in the Greek terms "naphtha" , which 

means rock oil and "cyanine", which means dark blue. This tenn was first used to 

describe these intensely blue-green compounds by Sir Reginald Linstead in the early 

1930's during his pioneering work on the subject (Linstead, 1934). He coined this tenn 

for this new class of coloured compounds due to their origin and starting materials 

(phthalic acid derivatives) and due to the intensity and beauty oftheir blue-green colour. 

As with most important discoveries made in science, serendipity played an 

important role in the discovery of phthalocyanines. Serendipity can be defined as the 

ability to make fortunate discoveries by accident or by a chance observation. Numerous 

important discoveries, including X-rays, the smallpox vaccine and the pharmaceutical 

utility of compounds such as cyclophosphamide, valproic acid, viagra, tamoxifen and 

chlorpromazine have ail been due to chance observations. Among the most important 

serendipitous discoveries was made by Sir Alexander Flemming when he observed the 

destruction of staph bacteria in Petri dishes contaminated with penicillium mold. Along 

the same lines, phthalocyanines were discovered quite by accident. One day at Scottish 

Dyes Ltd., during the routine manufacture of phthalimide by passing ammonia gas 

through molten phthalic anhydride, blue impurities were observed around the charge hole 

of the iron reaction vessel (Gregory, 1999; Gregory, 2000). Upon noticing this blue 

colour and in the interest of good plant discipline, the plant chemist raised hell and 

roasted the foreman for allowing such sloppy work and contamination of the phthalimide 
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as he believed that the blue compound must be dibromoindanthrone, a blue dye produced 

in a neighboring reaction vessel. However, luckily for the foreman and ultimately for 

Scottish Dyes Ltd., the blue intermediate was not dibromoindanthrone. What was 

orlginally thought to be an impurity turn out to be iron phthalocyanine, ultimately leading 

to the birth of one of the most important classes of dyes and pigments in the colouring 

industry. A crack in the enamel lining of the iron reaction vessel allowed the reaction 

mixture access to a source of metal ions, serendipitously leading to the formation of iron 

phthalocyanine (Figure 1.1 ). 

NH3 

Fe 

Dark 
Blue 
lmpurity 

Figure 1.1. The original synthesis of phthalocyanine by Scottish Dyes Ltd. 

While preliminary investigations by the chemists at Scottish Dyes Ltd. were only 

able to identify the blue intermediate as an iron-containing compound that was highly 

stable to various harsh reagents and conditions, they immediately recognized the potential 

utility of these intensely coloured conipounds as highly stable dyes and colouring agents 

(Gregory, 2000). The first patent for compounds that are now known as phthalocyanines 

was granted to Scottish Dyes, Ltd. in 1929 (Dandridge et al., 1929). In this patent, a 

method for preparing colouring matters which may be used as vat dyes or pigments by 

reacting with ammonia or a primary amine of the aliphatic or of the benzene or 

naphthalene series on phthalic anhydride, phthalimide, or the mono- or di-amide of 
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phthalic acid in the presence of iron, nickel, or copper is disclosed. In addition, a method 

for preparing the first phthalocyanine dyes, polysulphonated phthalocyanines, was also 

disclosed by reacting phthalocyanines with sulphuric acid or oleum. 

The structure of phthalocyanines was not elucidated until the mid 1930s. 

Supported by grants from the Research Committee of the Dyestuffs Group of Imperia! 

Chemical Industries, Ltd., Sir Reginald Linstead and bis research group identified 

phthalocyanines as tetrabenzotetraaz.aporphyrin macrocycles tbrough molecular weight 

determination, oxidative degradation and synthetic analysis among other techniques 

(Elvidge, 1999). In a classic series of papers, Linstead and bis research associates were 

able to elucidate the structure of phthalocyanines (Linstead, 1934; Linstead and Lowe, 

1934b; Dent et al., 1934; Linstead and Robertson, 1936) while further detennining 

methods for the synthesis of phthalocyanines and related macrocycles (Byrne et al., 1934; 

Linstead and Lowe, 1934a; Linstead et al., 1937; Elvidge and Linstead, 1955) and 

studying their relationsbip to porphyrins (Dent, 1939), their complexes with various 

métal ions (Dent and Linstead, 1934; Barrett et al., 1936; Barrett et al., 1938), their 

unusual degree of stability (Linstead, 1934; Dent and Linstead, 1934) and the mechanism 

oftheir formation (Elvidge and Golden, 1957; Baguley and Elvidge, 1957). In addition, 

the structure established by Linstead was later confirmed by J. Monteath Robertson via 

X-ray crystallography in a classic series of papers (Robertson, 1935; Robertson, 1936; 

Robertson and Woodward, 1937; Robertson and Woodward, 1940). In fact, 

phthalocyanines were the first organic compounds to have their structures confirmed by 

X-ray diffraction studies, validating this technique in structure determination. 

Interestingly, the first molecular and submolecular resolution images of an organic 

4 



compound by high resolution electron microscopy were also obtained usmg 

phthalocyanines (Uyeda et al., 1972). The exceptional stability of phthalocyanines 

allows them to survive the high electron flux needed for high resolution microscopy. 

Acetic 
anhydride 

0 

~NH2 
~CN 

Coloured 
lmpurity 

Figure 1.2. ln hindsight, the first reported synthesis of phthalocyanine. 

ln hindsight, the first reported synthesis of phthalocyanines actually occurred in 

1907, when Braun and Tscherniac observed the production of a coloured impurity of 

unknown origin during the synthesis of o-cyanobenz.amide from phthalimide and acetic 

anhydride (Figure 1.2) (Braun and Tschemiac, 1907). Unfortunately, no further 

investigation of this coloured impurity was undertaken. The second recorded observation 

of a blue-green compound that was later determined to be phthalocyanine was in 1927 

(de Diesbach and von der Weid, 1927). During attempts to synthesize of dinitriles, o-

dibromobenzene was reacted with copper cyanide in pyridine at elevated temperature. 

(X Br 

Br 

CuCN 

pyridine 
/). 

Figure 1.3. Complex copper sait proposed by de Diesbach and von der Weid 
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However, instead of obtaining the desired o-dicyanobenzene, a deeply coloured blue 

compound was obtained, which are tentatively believed to be a complex copper sait of o· 

dicyanobenzene and pyridine (Figure 1.3). Similar deeply coloured blue compounds 

were obtained when the reaction was carried out using either l,2-dimethyl-4,5-

dibromobenzene or 1,2-dibrornonaphthalene. However, it was not until 1931 that it was 

suggested that these complex copper salts were in reality copper phthalocyanines. This 

was later verified by Linstead (Linstead and Lowe, l 934a). 
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1.2 Structure and Properties of Pbthalocvanines 

Figure 1.4. The classic general chemical structure of a tetrasubstituted phthalocyanine 

Phthalocyanines are essentially tetrabenzotetraaz.aporphyrin macrocycles and are 

chemically and physically very closely related to the naturally occurring and biologically 

essential porphyrins. Similar to porphyrins, the central core of phthalocyanines consist of 

an 18.-?t electron aromatic system in the form of a cyclic tetrapyrrolic macrocycle. 

However, in contrast to porphyrins, the individual pyrrole rings are linked by nitrogen 

atoms and not by methine bridges. In addition, the chromophore is extended by the 

presence of the benzo rings on the periphery of the macrocycle. The additional x-orbital 

conjugation afforded by the benzo rings and the orbital perturbation caused by the 

nitrogen atoms at the four meso-positions of the tetrapyrrolic core macrocycle have 

profound effects on the properties of phthalocyanines compared to their porphyrin 
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cousins. Most evident is the entirely different electronic spectra exhibited by 

phthalocyanines, with an important red-shift in the Q band and a corresponding strong 

enhancement in the intensity of this absorption. In addition, the presence of lone pairs on 

the nitrogen atoms in the meso-positions lends a more pronounced aromaticity to 

phthalocyanines while also resulting in stronger, more stable metal complexes compared 

to metalloporphyrins. The inner nitrogens of phthalocyanines are also significantly 

weaker Lewis bases. However, it has been well established that the substitution of 

nitrogen atoms for methine bridges in aromatic heterocycles does very little to alter the 

actual physical structure of the heterocycle. Along these lines, the tetrapyrrolic 

macrocyclic core of phthalocyanines is physically very similar to the one found in 

porphyrins in terms of both size and shape (Berezin, 1981) with only slight differences in 

the size of the central core of the macrocycle. The nitrogen-nitrogen diagonal distance is 

only slightly smaller for phthalocyanines (396 pm) as compared to porphyrins ( 402 pm) 

(Stillman and Nyokong, 1989). 

Based on molecular weight determination, oxidative degradation, synthetic 

analysis and other laboratory techniques, Sir Reginald Linstead proposed the classic 

chemical structure of phthalocyanines as depicted in Figure 4 (Dent et al., 1934). This 

general physical orientation of atoms was confirmed by X-ray diffraction studies by J. 

Monteath Robertson (Robertson, 1935; Robertson, 1936; Robertson and Woodward, 

1937; Robertson and Woodward, 1940). The phthalocyanine molecule itself is planar, 

which along with the unusual degree of aromaticity of its tetrapyrrolic core explains the 

tendency of phthalocyanines to aggregate in solution via 1t-1t orbital stacking. 

Unsubstituted phthalocyanines chelating metal ions are highly symmetrical, displaying 

8 



D4h symmetry. Taken these factors into consideration, the structural fonnula proposed by 

Linstead and universally employed to describe phthalocyanines is adequate. However, 

there are a number of structural anomalies observed by Linstead and by Robertson that 

cannot be explained by the classical structural formula For instance, Robertson observed 

that the carbon-nitrogen bond length in the tetrapyrrolic macrocycle is 1.34 A and is the 

same throughout the molecule (Robertson, 1936). Such bond lengths are indicative of a 

single bond/double bond resonance for ail C-N bonds within the macrocycle, which is not 

indicated by the classic structure. Furthermore, Robertson measured the carbon-carbon 

bonds that link the benzo rings to the inner tetrapyrrolic macrocycle at a constant length 

of l.49A. According to Pauling's empirical formula for determining the double bond 

character of a bond using bond lengths, these bonds would appear to have from 12% to 

15% double bond character (Robertson, 1936). This is significantly less than would be 

expected from the classical structure. Finally, the homogeneity of the oxidation products 

of phthalocyanines when treated with hot acidic permanganate is at odds with the quinoid 

form of one of the benzene rings in the classical structure (Dent et al., 1934; Robertson, 

1935). As such, while the classical structure first proposed by Linstead is adequate in 

representing phthalocyanines, it fails to completely describe the precise structure of 

phthalocyanines. 

In order to explain the above mentioned observations, the structure depicted in 

Figure 1.5 was proposed as a more adequate representation of the structure of a metal-

free phthalocyanine (Berezin, 1981). In this structure, the * represent the 24 x-electrons 

of the four benzo rings, the • represent the 16 x-electrons inherent to the tetrapyrrolic 
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Figure 1.5. The structure ofmetal-free phthalocyanine as proposed by Berezin (Berezin, 

1981) 

macrocyclic core and the - represent the two ionization electrons resulting from the 

intemal ionization of the two imino-hydrogen bonds. The four sextets of n:-electrons in 

the benzo rings intrinsically form stable aromatic shells that only weakly interact with the 

x-electrons of the tetrapyrrolic macrocycle. This weak interaction is evident by the minor 

double bond character of the carbon-carbon bonds joining the benzo rings to the 

tetrapyrrolic macrocycle. The remaining 18 n:-electrons occupy molecular orbitais of the 

tetrapyrrolic macrocycle and independently form a x-electron system exhibiting aromatic 

stabilization. This aromaticity explains the uniformity in the length of all the C-N bonds 

as well as the homogeneity of the oxidation products. 

ln the above proposed representation of metal-free phthalocyanines, the inner 

protons are in the electrostatic field of three nitrogen atoms. lt is energetically favourable 

to have these protons in the electrostatic field of multiple nuclei. Furthermore, such 

bonding liberates the two ionization electrons and allows them to augment the 
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conjugation in the tetrapyrrolic macrocycle, resulting in aromatic stabilization. ln terms 

of experimental evidence supporting this type of bonding, Robertson observed a 

significant distortion from true tetragonal symmetry in metal-free phthalocyanines that 

was not observed for the corresponding phthalocyanines that were chelating metal ions 

(Robertson, 1936). While Robertson explained this distortion in terms of hydrogen 

bonding, it seems unlik:ely that weak hydrogen bonding would be enough to cause any 

signi:ficant distortion of the highly aromatic system present in phthalocyanines. 

However, the three-center bonding of the inner protons should cause some distortion in 

the structure of metal-free phthalocyanines, which would disappear upon chelation of a 

metal ion. ln addition, in the NMR spectra of metal-free phthalocyanines, the signal due 

to the two strongly shielded inner protons (o ~ -5.00 ppm) disappears upon deuterium 

exchange (Dabak et al., 1994). While covalently bound protons should not be susceptible 

to deuterium exchange, protons involved in three-center bonding would undergo 

deuterium exchange. As a result, the structure proposed by Berezin may represent a more 

accurate representation of the true physical structure of phthalocyanines. 

When coordinating a metal ion, the phthalocyanine molecule acts as a tetradentate 

ligand capable of forming four dative cr bonds with the metal ion. Typically, 

metallophthalocyanine complexes exhibit octahedral geometry with the phthalocyanine 

tetradentate ligand occupying the equatorial plane and axial ligands coordinated to the 

metal both above and below the phthalocyanine plane. Stable phthalocyanine complexes 

involve the formation of four equivalent dative cr bonds between the pyrrolic nitrogen 

atoms of the phthalocyanine and the metal ion. These dative cr bonds involve the :filling 

of vacants, Px, Py and dx2
-/ orbitals of the metal ion (those orbitals orientated toward the 
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pyrrolic nitrogen atoms) with the electrons of the lone pairs of the nitrogen atoms. This 

filling of vacant orbitais of the metal ion results in the formation of stable dative bonds 

wherein both electrons involved in bonding originate from the same atom. The most 

stable a bonds require the best possible overlap of orbitais, which in the case of 

phthalocyanines occurs with metal ions having a radius of approximately 1.35A (the 

radius of the inner core of phthalocyanines) (Berezin, 1981). Metal ions such as Cu2+, 

Zn2+, Co2+, Ni2+, Pt2+, Pd2+, AI3+, Ga3+ and V0+2 have covalent radii of this size and are 

know to fonn extremely stable metallophthalocyanine complexes. More labile 

phthalocyanine complexes are fonned by metal ions that do not have the appropriate 

radius. For instance, several 3d and 4d metal ions and all of the lanthanides fonn out-of-

plane and sandwich phthalocyanine complexes wherein the metal ion sits above the 

phthalocyanine plane (1.11 A above the phthalocyanine plane for 

dichlorotin(N)phthalocyanine (Kroenke et al., 1964)) with incomplete orbital overlaps 

and distortion of the phthalocyanine geometry. Labile phthalocyanine complexes are also 

obtained with metal ions that are not capable of forming strong a bonds, either due to 

weak electron affinities or an inability to adopt the planar geometry of orbitals necessary 

for forming cr-bonds with phthalocyanines. Metal ions such as Li+, Na+, Mg2+, Ca2+, Ag+, 

Mn2+, Sn+2 and Pb2+ form labile metallophthalocyanine complexes involving primarily 

ionic bonding and these metal ions are easily removed by treatment with acid. This 

method is in fact often utilized to prepare metal-free phthalocyanines. 

ln addition to cr-bonds, metal ions with filled d-orbitals with 1t symmetry ( dxy, dxz 

or dyz) can also for dative 1t backbonding, with the metal ion donating electrons into 

antibonding 1t* molecular orbitais of the phthalocyanine. Phthalocyanines have an 
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unusually high capacity to fonn dative 1t backbonds with metal ions, significantly 

increasing the coordinative strength of the interactions between the metal ion and the 

phthalocyanine ligand and thus, increasing the stability of the complex. 

Depending on the strength of the coordinative metal-phthalocyanine ligand 

interactions ( which itself is detennined by the strength of the dative a-bonds between the 

metal ion and the pyrrolic nitrogen atoms and the formal charge of the metal ion) metal 

ions may be deemed as being either coordinatively saturated or unsaturated. 

Coordinatively saturated metal ions such as Ni2+, Pt+2 and Pd+2 have a formal charge of 

+ 2 and form extremely stable complexes with both strong a forward- and 1t backbonding. 

Phthalocyanine complexes with such metal ions lack low lying antibonding orbitais at the 

metal and show no tendency towards coordinating axial ligands. It is well-known that d7 

ions such as Ni2+, Pt+2 and Pd+2 form extremely stable square planar complexes (Butler 

and Herrod, 1989) and metallophthalocyanines prepared using these metal ions exhibit a 

square planar geometry with the phthalocyanine ligand and the metal ion occupying the 

same equatorial plane. 

Coordinatively unsaturated metal ions include those that have no tendency 

towards dsp2 hybridization at a fotmal charge of +2 (Zn2+, Fe2+, cr2+ and Mn2l, involve 

unstable oxidation states of the metal (Co2+, Re2+ and Cu°) or have inappropriate ionic 

radii, resulting primarily in ionic complexes (Be2+, Mg2+, Cd2+, Hg+2 and Ca+2). 

Phthalocyanines complexes with these metal ions tend to adopt octahedral geometries, 

typically with solvent molecules acting as axial ligands. Other anions such as cr or HO-

can also act as the axial ligand when present in solution. In solution, phthalocyanines 

tend to aggregate via stacking. In this instance, the metal ion :from an adjacent 
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phtbalocyanine complex is actually acting as the axial ligand. Phthalocyanines with a 

tendency to aggregate in solutions of water or alcohol become monomeric in DMF or 

pyridine. Such solvents are more strongly coordinating (more readily donate electron 

density to the metal ion) and thus remain tightly bound to the metal in solution. This 

prevents the phthalocyanines from stacking. Overall, it should be noted that 

phthalocyanines chelating coordinatively unsaturated metal ions lack axial ligands as 

solids and usually form crystals via some type of stacking, usually either as a a. or P 

polymorph. 

Coordinatively unsaturated metal ions also include any metal with a formai 

charge exceeding +2, irrespective of the strength of the dative a and 1t interactions. 

Phthalocyanine complexes with such metal ions readily coordinate axial ligands in order 

to neutralize the excess charge of the metal ion. As a result, the axial ligands are more 

tightly coordinated and are present in the crystal forms of these complexes. Axial ligand 

binding involves the s, Pz and dz 2 orbitais of the metal ion, along with any empty dsp 2 
-

hybridized orbitais. In solution, the presence of these more tightly bound axial ligands 

tends to prevent aggregation to varying degrees. 

The geometry, energy and occupancy of the d-orbitals of the metal ion influences 

the magnetic properties of the metallophthalocyanine complex. Phtbalocyanine 

complexes of Cu2+, Co2+ and Fe+2 are paramagnetic since they contain unpaired d-orbital 

electrons. In contrast, Zn2+, Ga3+ and AI3+ are d10 ions with a filled outer d-shell and 

phthalocyanine complexes with these metal ions are thus diamagnetic. Metal ions such 

as Ru2+ also form diamagnetic phthalocyanine complexes, even though it is a d6 ion. 

Since it requires energy to pair electrons in any given orbital, atoms and molecules tend 
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to fill degenerate orbitals (such as d-orbitals) before pairing up electrons. However, in 

the case of coordination complexes, crystal field theory dictates that the normally 

degenerate d-orbitals are split into different energy levels as a result of electrostatic 

interactions between the individual d-orbitals of the metal ion and the ligand. ln the case 

of metallophthalocyanine complexes, d-orbitals orientated towards the ligand are 

destabilized ( dx 2-/ and dz 2) while the remaining d-orbitals ( dxy, dxz or dyz) are stabilized as 

compared to an uncomplexed metal ion due to the presence of the ligand. ln the case of 

ruthenium (10 phthalocyanine, it is energetically favourable to pair electrons in the lower 

energy d-orbitals rather than having the electrons remain unpaired and filling the higher 

energy d-orbitals. Thus, the six d-electrons of ruthenium fill the dxy, dxz or dyz orbitais, 

resulting in diamagnetic complexes with phthalocyanines. The magnetism of 

phthalocyanine complexes significantly influences a number of properties. For instance, 

upon illumination with light of an appropriate wavelength, diamagnetic phthalocyanine 

complexes exhibit high triplet state yields and long triplet state lifetimes. ln the 

meanwhile, the first excited singlet electronic state of paramagnetic phthalocyanine 

complexes is rapidly deactivated, leading to poor triplet state yields. Such alterations of 

the electronic characteristics of phthalocyanine complexes are particular important in 

applications such as photodynamic therapy, which requires high triplet state yields and 

long triplet state lifetimes in order to effectively produce the cytotoxic species 

responsible for the biological effects. On the other hand, the dye industry prefers to use 

paramagnetic phthalocyanine complexes in order to avoid oxidative damage caused by 

the generation of these same reactive species. 

15 



1.3 Eleetronic Soeetra of Phthaloevanines 
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Figure 1.6. The typical UV-visible electronic spectra of a metallophthalocyanine complex 

The UV-visible spectra of naturally occurring porphyrins such as heme and 

chlorophyll is extremely complex, characterized by low extinction coefficients for the 

visible absorptions and an intensity B band around 400 nm. There is a great variability in 

the position and intensity of the absorptions in the UV-visible spectra as a function of the 

structure of the porphyrins, in particular with respect to substitution at either the meso or 

P positions. The position and intensity of the absorptions of porphyrins are however . 
relatively insensitive to the nature of solvents while being extremely sensitivity to 
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protonation, complexing agents and strong bases, indicative of the relatively strong Lewis 

basicity of porphyrins. 

The electronic spectra of phthalocyanines are radically different from the spectra 

observed for porphyrins. The extended x-orbital conjugations and the orbital perturbation 

resulting from the nitrogen atoms at the meso positions of the tetrapyrrolic macrocycle 

lowers the energy of the Q band, with a corresponding important increase in the intensity 

of this absorption. In addition, the greatly reduced coupling between the Q and B bands 

means that the Q band in phthalocyanines is unaffected by charge transfer effects. 

Overall, the most important difference between the electronic spectra of porphyrins and 

phthalocyanines is the well-resolved, isolated and intense Q band near 670 nm of the 

phthalocyanine compared to the intense B band located around 400 nm of the porphyrins. 

A typical UV-visible spectrum for a monomeric metallophthalocyanine complex 

is depicted in Figure 1.6. The Q band is observed around 670-680 nm, with an extinction 

coefficient in the range of2.5 x 105 M"1cm·1• A much less intense B band appears around 

340 nm and has an extinction coefficient of approximately 104 M"1cm·1• A weak 

absorption around 600-620 nm, due to an n~* transition out of the az.a-nitrogen lone 

pair orbitais (Mack and Stillman, 2001), is often observed and does not interact with the 

Q band absorption. The isolation and intensity of the Q band absorption in the visible 

region of the spectrum results in the strength and purity of the blue/green colours of these 

compounds, leading to their industrial importance as dyes and pigments. 

The Q band absorption is relatively insensitive to changes in the complexed metal 

ion or any bound axial ligands. In light of these observations, it is evident that the Q 

band in the electronic spectra of phthalocyanines is due to electronic transitions centered 
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on the phthalocyanine ligand, thus making changes to the metal ion or to any axial 

ligands irrelevant. Similarly, changes to the functional groups substituted onto the benzo 

rings on the periphery of the phthalocyanine macrocycle usually has only a minor effect 

on the position and intensity of the Q band. This is in sharp contrast to porphyrins, where 

substitution at either the meso or p positions of the macrocycle results in significant 

alterations to the UV-visible spectra. This is due to the fact that, unlikely in porphyrins, 

the electronic transition leading to the Q band absorption is essentially symmetry allowed 

for phthalocyanines and is therefore less dependent upon an.y gains in intensity resulting 

from differences in substituents. In addition, the benzo rings on the periphery of 

phthalocyanines and the relative electronic independence of the tetrapyrrolic macrocyclic 

core from these benzo rings (as observed by the weak double bond character of the 

carbon-carbon bonds attached the benzo rings to the tetrapyrrolic core) isolates the 

substituents from the tetrapyrrolic core and inhibits their ability to affect the energy of the 

molecular orbitais involved in the Q band transition. On the other band, substituents at 

the meso and ~ positions of porphyrins are directly bound to the tetrapyrrolic macrocycle 

and thus, readily stabilize or destabilize molecular orbitais involved in the corresponding 

transitions in porphyrins. 

Unlike the Q band absorption of phthalocyanines, the B band in the absorption 

spectra of phthalocyanines is extremely sensitive to changes in the structure of the 

chromophore. This is presumably due to the symmetry and orientation of the molecular 

orbitais from which the underlying electronic transitions arise. These orbitais must be 

oriented in such a way that they are more susceptible to changes in electron density 

caused by alterations in the structure of the phthalocyanine macrocycle, ultimately 
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leading to changes in the energy of the electronic transition (and thus, changes in the 

wavelength of the absorption) with accompanying changes in the overall intensity of the 

absorption. 

Several detailed theoretical calculations on the molecular orbitais of 

phthalocyanines have been considered and used to account for empirical observations 

(Gurinovich et al., 1968; Lee et al., 1982; Hale et al., 1987; Stillman and Nyokong, 1989; 

Gantchev et al., 1993; Owens et al., 1998; Mack and Stillman, 2001; Stillman et al., 

2002; Mack and Stillman, 2003). While lacking in terms of explaining some of the more 

detailed features of the absorption spectra of phthalocyanines, the use of a four orbital 

model which considers the top two highest occupied molecular orbitais (HOMO) and the 

degenerate lowest unoccupied molecular orbital (LUMO) readily explains the first few 

electronic transitions in the UV-visible region of the phthalocyanine spectrum and the 

differences between the spectra of porphyrins and phthalocyanines. Diagrammatically. 

this basic theory is described in Figure 1. 7 (Stillman and Nyokong, 1989). 

In the case of porphyrins, the a1u and a2u HOMO orbitais are accidentally 

degenerate (i.e. of the same energy), resulting in extensive interactions between the Q and 

B band absorption. The addition of aza linkages and, to a lesser extent, the increased 11:-

orbital conjugated caused by the fused benzo rings on the tetrapyrrolic core of 

phthalocyanine breaks this accidentai degeneracy and stabilizes the a1u HOMO orbital. 

This results in reduced mixing between the Q and B excited states so that the previously 

forbidden Q transition gains significant intensity and shifts to a longer wavelength. 

Interestingly, this model predicts that the molecular orbitais responsible for the B band 
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Figure 1. 7. A molecular orbital explanation for the origin of the UV -visible spectra of 

phthalocyanines (adapted from Stillman et al., 1989) 

in phthalocyanines are now accidentally degenerate, resulting in a two component 

absorption (B1 and B2). These two absorptions occur at roughly the same energy, 

resulting in the broad B band present in the spectra of phthalocyanines. Such a split B 

band has been observed in the spectra of ZnPc, MgPc and LiiPc (Stillman and Nyok:ung, 

1989). It should be noted that while the weak double bond character of the carbon-

carbon bonds linking the benzo rings to the tetrapyrrolic core indicates only a weak 

conjugation between n-orbitals of the benzo rings and those of the tetrapyrrolic core, the 

presence of the benzo rings in phthalocyanines does result in a significant stabilization of 

the HOMO orbital. This is clear from the UV-visible spectra of phthalocyanines 
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derivatives having increased conjugation such as naphthalocyanines and anthralocyanines 

whose Q band absorptions are at 780 nm and 980 nm respectively (Brasseur et al., 1994; 

Bedworth et al., 1997). 

This model can also be employed to explain the effect of aggregation on the 

electronic spectra of phthalocyanines. It is well-known that phthalocyanines tend to 

aggregate via stacking in solution, the result of the highly hydrophobie and aromatic 

tetrapyrrolic core of these macrocycles and the corresponding stabilization achieved by 

overlapping the n-electron cloud of adjacent phthalocyanine molecules. In solution, 

aggregation by this type of stacking causes a significant broadening of both the Q band 

and B absorptions with a blue shift in the wavelength of the absorption. The Q band, for 

instance, is frequently shifted to approximately 620 nm as a broad, less intense peak. 

lEu(l) , , , , , , , , 
lEu(l) , , Q+ .. .. .. .. .. .. .. .. lEg(l) .. .. 

Q 
Q-

lA1g ----------
Mon orner Dimer 

Figure 1.8: The effect of aggregation on the LUMO orbitals of phthalocyanines 

Upon aggregation and the corresponding overlap of the n-orbitals in adjacent 

phthalocyanine molecules, there is a loss of degeneracy in the LUMO orbital, resulting in 
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two LUMO orbitais with 1Eu<1> and 1Eg<1> symmetries (Figure 1.8) (Stillman and 

Nyokong, 1989). Since, according to quantum mechanics, electronic transitions must 

transform with either Eu or Aiu symmetry, only the electronic transition to the higher 

LUMO orbital (Ql is allowed, thus resulting in the shift in the wavelength of the Q band 

to higher energy. The broadening of the absorption is the result oftwo factors. While the 

transition to the lower LUMO orbital is forbidden according the quantum mechanics, it 

does occur to a small extent, resulting in a wider overall absorption. In addition, the 

magnitude of x-orbital overlap depended directly on the extent of aggregation, which 

depends on the physical proximity of the macrocycles, their physical overlap, and the tilt 

angle. Ali these factors dictate the effectiveness of the overlap of the x-electron clouds of 

the overlapping phthalocyanines and surely differ for each aggregate in solution. As a 

result, the extent of the splitting between the non-degenerate LUMO differs for each 

aggregate, dèpending on the effectiveness of the x-orbital overlap. Hence, each 

aggregate will absorb at a slightly different wavelength, leading to a broad absorption 

spectra. 

Shown in Figure 1.9 is the typical UV-visible spectrum of a metal-free 

phthalocyanine, characterized by a split Q band centered at slightly lower energy than the 

Q band of a metallophthalocyanine complex. The presence of two protons bound in the 

inner core of the phthalocyanihe tetrapyrrolic macrocycle drops the symmetry of the 

molecule from D4h to D2h. Similar to aggregation, the decrease in symmetry results in a 

break in the degeneracy of the LUMO orbital. However, in metal-free phthalocyanines, 

the electronic transition to both the 1Eu<1> and 1Eg<1> LUMO orbitais is allowed due to 
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Figure 1.9. The typical UV-visible spectra of a metal-free phthalocyanine 

polarization in either the x or y direction. As such, the Q band of metal-free 

phthalocyanines is split, with electronic transitions to either of the LUMO orbitais. 

Similar splitting of the Q band may be observed in asymmetrically substituted 

metallophthalocyanines. While the substituents on the benzo rings of phthalocyanines 

generally has only a minor effect on the position and intensity of the Q band, 

asymmetrically substituted phthalocyanines bearing both electron-donating and electron-

withdrawing substituents can significantly alter the geometry of the 1t-electron cloud of 

phthalocyanines. This disruption of the 1t-electron cloud will also cause a break in the 

degeneracy of the LUMO orbital and lead to a split Q band. Such splitting is observed in 

nove! push-pull asymmetrically substituted phthalocyanine bearing alkynyl functional 
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groups (Maya et al., 2000) and m asymmetrically substituted 

benzonaphthaloporphyrazines wherein the 7t-electron cloud is disturbed by the extended 

conjugation introduced by the napthalo rings asymmetrically present in the chromophore 

(Margaron et al., 1992; Michelsen et al., 1996). Indicative of the effect of symmetry on 

the UV-visible spectra of these asymmetrically substituted phthalocyanine derivatives is 

the observation that the dinapthalodibenzoporphyrazine derivative wherein the two 

napthalo groups are on adjacent pyrrolic rings exhibits a split Q band. On the other hand, 

UV-visible spectra of the dinapthalodibenzoporphyrazine derivative wherein the two 

napthalo groups are on opposite pyrrolic rings has a single Q band, the direct result of the 

symmetry in this molecule compared to the chromophore with the naphthalo rings on 

adjacent pyrrolic rings. 
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1.4 Utilitv of Phthalocyanines 

The unique structure along with the distinct physical and chemical characteristics 

and remarkable stability of the phthalocyanine molecule has been exploited by 

researchers in widely divergent high-tech fields. In addition, phthalocyanines have an 

important position in the annals of a number of these high-tech applications, with 

landmark experiments involving phthalocyanine serving to propel the technology forward 

towards actual utility. As has been previously mentioned, the fact that phthalocyanine 

tend to sublime at high temperatures to fonn large crystals allowed Robertson to confinn 

the structure ofphthalocyanines via X-ray diffraction, validating this important method of 

structure determination (Robertson, 1935; Robertson, 1936; Robertson and Woodward, 

1937; Robertson and Woodward, 1940). The unusual stability of the phthalocyanine 

ligand under intense electron flux permitted Uyeda and Kobayashi to use phthalocyanines 

to obtain the first molecular and sub-molecular resolution images of an organic molecule 

(Uyeda et al., 1972). Copper phthalocyanine was used in some of the first experiments to 

demonstrate that organic solid could act as electronic semiconductors (Eley, 1948), thus 

exploiting the electronic properties of the phthalocyanine molecule to validate the use of 

organic molecules in semiconductors. Phthalocyanines also form charge-transfer 

complexes with iodine, with these charge-transfer complexes exhibiting metal-like 

conductivity (Schramm et al., 1978; Marks, 1985; Marks, 1990). With the large increases 

in conductivity upon forming such charge-transfer complexes, phthalocyanines have 

found utility as chemical sensors that are able to detect minute amounts (down to as low 

as a few parts per billion) of toxic, oxidizing gas such as nitrogen dioxide (Bott et al., 

1984; Wright, 1989; Ishii et al., 2000; Nguyen Van et al., 2001; Slota et al., 2002). 
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Chemical sensors based on resistance or capacitance along with field-effect transistor 

sensors, solid state ionic sensors, quartz crystal microbalance sensors, surface acoustic 

wave sensors and optical sensors have ail been prepared using phthalocyanines as the 

means of sensing (Snow et al., 1989; Guillard et al., 1998; Ding et al., 1999; Kudo et al., 

1999). 

Ever since their serendipitous discovery, phthalocyanines have been used as dyes 

and pigments by the colouring industry. In fact, chemists at Scottish Dyes Ltd. attempted 

to use the novel blue compound later identified as aphthalocyanine to colour cotton using 

a vat dyeing technique long before the structure and nature of phthalocyanines was fully 

elucidated (Gregory, 1999; Gregory, 2000). This led to the first issued patent on the use 

of phthalocyanines as dyes and pigments in 1929 (Dandridge et al., 1929). In this patent, 

a method for preparing colouring matters which may be used as vat dyes or pigments by 

reacting with ammonia or a primary amine of the aliphatic or of the benzene or 

naphthalene series on phthalic anhydride, phthalimide, or the mono- or di-amide of 

phthalic acid in the presence of iron, nickel, or copper is disclosed. In addition, a method 

for preparing the first phthalocyanine dyes, polysulphonated phthalocyanines, was also 

disclosed by reacting phthalocyanines with sulphuric acid or oleum. 

The intensity of the blue/green colour of phthalocyanines along with their 

important fastness to light and heat, chemical inertness and high dyeing power and 

tinctorial strength has ensured the reputation of phthalocyanines in the painting, dyeing, 

textile and paper industries as superior quality blue, blue-green and green dyes and 

pigments. Additionally, phthalocyanines are extremely cost effective, being relatively 

inexpensive to prepare on an industrial scale with Pigment blue 15 (the alpha form of 
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copper phthalocyanine) cost $5.73 per lbs (http://www.horsta-

pigment.com/Products_And_Pricelist.htm). The synthetic tlexibility in adding and 

altering the substituents bound to the phthalocyanine cbromophore also allows for the 

control of their solubility and the colour of the individual dye or pigment. Finally, the 

extreme insolubility of certain phthalocyanines makes them valuable blue/green pigments 

( dyes being soluble organic colourants while pigments are insoluble organic or inorganic 

colourants ). 

The amount of phthalocyanine produced for use as dyes and pigments is around 

80 000 tons per year with copper phthalocyanine being the highest volume colourant 

produced worldwide (Wohrle, 2001). Phthalocyanine dyes and pigments are used to 

colour everything from paints and ink through to plastics, rubbers, leather, fabrics and 

paper. Phthalocyanines are also used to colour detergents and cleaning solutions, contact 

lenses, sutures and tattoos while also serving as the major coloured pigment employed by 

the packaging industry. In addition, phthalocyanines are used as biological stains with 

Alcain Blue staining bacteria acid mucopolysaccharides, histocytes and fibroblast and 

Luxol fast blue staining myelin. In terms of the colourant industry, phthalocyanine 

pigments are more important as the molecular size and rigidity of phthalocyanines make 

them of limited usefulness in dyeing synthetic fibers such as polyester, polyacrylonitrile 

and nylon. As such, phthalocyanine dyes are nearly exclusively used to colour cellulosic 

substrates such as cotton and paper. 

While unsubstituted phthalocyanines are important blue/green pigments, they 

cannot be used directly as dyes because of their extreme insolubility in most solvents. 

However, some metallophthalocyanines can be reduced by dithionite to give more 
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soluble vat dyes (Struve, 1955; Jackson, 1978). When steeped onto textile material and 

exposed to air, these dyes reoxidiz.e to the insoluble form and precipitate onto the fibers 

of the textile, thus colouring the textile. Indanthrene brilliant blue 4G (cobalt 

phthalocyanine) is an important vat dye of this type. In the meanwhile, a number of more 

soluble phthalocyanine derivatives have been synthesized and investigated as potential 

dyestuffs. Water-soluble polysulphonated phthalocyanine was described in the first 

patent issued concerning phthalocyanines (Dandridge et al., 1929) and since then, 

functional groups such as sulphonic acids, sulphonyl chlorides, amides, thiols and tertiary 

and quaternary ammonium groups have been added to phthalocyanines to impart 

solubility and to improve the properties of the macrocycle as a dyestuff (Bigelow et al., 

1955; Struve, 1955; Booth, 1971; Vollman, 1971). Reactive phthalocyanine dyes 

containing functional groups that will react with free functional groups of the substrate 

and phthalogen dyes wherein phthalocyanines are formed in situ from phthalocyanine 

precursors (such as 1~3-diiminoisonidolines) during the formation of the fabric are 

important methods of colouring using phthalocyanine chromophores (Sturve, 1955; 

Vollman, 1971; Jackson, 1978; Gregory, 1999). The patent literature is replete with 

novel phthalocyanine derivatives prepared for use as dyestuffs and pigments ( see, for 

instance, James et al., 1980; Lacroix et al., 1980; Marraccini et al., 1987; Saitmacher et 

al., 1994) and this vast repository of phthalocyanine synthetic knowlege remains under-

utilized by synthetic phthalocyanine chemist and scientist interested in employing 

phthalocyanines in high-tech applications. Phthalocyanine dyes have found high-tech 

utility in ink jet printing, where dyes that are soluble at alkaline pH and insoluble at the 

more acidic pH of the paper surface (pH 4.5-7.0) are preferred (Gregory, 1999; Gregory, 
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2000; Shawcross et al., 2003). Currently, research is underway to prepare phthalocyanine 

zwitterions containing amine and sulphonic acid groups wherein at the pH of paper, the 

amine is protonated and the dye becomes insoluble. 

Phthalocyanines exhibit an increase in conductivity upon illumination with light. 

This photoconductivity was first observed in 1948 (V artanyan, 1948) and has been 

exploited with phthalocyanines being employed as photoconducting agents in 

photocopying devices and laser printers (Law, 1993; Nguyen, 1994; Haisch, 1997; 

Gregory, 2000). A number of crystallographic forms of metal-free phthalocyanines, 

titaniumoxo phthalocyanines and vanadiumoxo phthalocyanines absorb in the near-

infrared region of the spectrum and offer excellent photoconductivity when used in 

conjunction with cheaper semiconducting diode lasers (Law, 1993). 

Uniform films composed of a suitable phthalocyanine derivative deposited on a 

smooth reflective metal have been shown to absorb highly focused laser light to form 

well-defined microscopie deformations. Such deformation or pits are used to record data 

on recordable compact disk (Seto et al., 1996; Bemeth et al., 2004; Stawitz et al., 2004). 

Phthalocyanine dyes are more stable and have preferable properties for such data storage 

as compared to cyanine and azo dyes and are thus becoming the dye of choice for 

recordable compact disk (see http://mitsuicdr.com/). Phthalocyanine dyes are more 

responsive to the writing laser, thus giving cleaner, better defined pits and are more 

transparent, contributing to the high reflectivity of phthalocyanine recordable compact 

disk. lt has also been estimated that recordable compact disk employing phthalocyanine 

dyes should reliably store data for over 100-150 years compared to the 20 years estimated 

for disk utilizing azo or cyanine dyes (http://mitsuicdr.com/). In addition, the 
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photophysical, photochemical and structural properties of phthalocyanines may allow for 

superresolution read-out and photochemical hole burning, which would significantly 

improve recording density (by up to two or three orders of magnitude) in order to prepare 

recordable compact disk capable of recording significantly more data (Seto et al., 1996). 

The large, delocalized 1t-electron cloud, planar structure and metal-chelating 

capability of phthalocyanines have been employed to prepare catalyst for numerous and 

varied chemical reactions. Phthalocyanines chelating transition metal ions are known to 

efficiently catalyze numerous chemical reactions, in particular redox reactions and have 

found important roles in a number of important industrial processes. In fact, 

phthalocyanines are the only tetrapyrrolic compounds used as an industrial catalyst with 

cobalt phthalocyanine derivatives employed as the catalyst in the Merox process 

(Douglas, 1978; Salazar, 1986; Kaliya et al., 1999; Navid et al., 1999). The Merox 

process has important environmental implications as it involves the oxidation and 

removal of sulfur compounds from gasoline and petroleum products (see Figure 1.10). 
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Figure 1.10. Schematic representation of the Merox process 

Phthalocyanine-based catalysis are also in development for a new type of heterogeneous 

catalyst for removal of sulfide ion from waste water and in a new variant of Altax 

vulcanization accelerator process which allows for the use of 0 2 instead of the 
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environmental unfriendly N02 as the oxidant (Kaliya et al., 1999). Investigations are also 

underway for the photooxidative degradation of organic pollutants from water using 

water-soluble phthalocyanines (Schneider et al., l 994; Tao et al., 2002). 

Phthalocyanines are particularly useful in the electroreduction of oxygen by 

hydrogen and th.us have been extensively investigated as catalyst in fuel cells (Jasinski, 

1968; Randin, 1974; Moser et al., 1983; Hempstead et al., 1987; Ianda et al., 1989; 

Ouyang et al., 1991; McKeown, 1999; Wôhrle, 2001). While the electroreduction of 

oxygen would ideally lead to the production of water via a four-electron reduction 

mechanism, the electroreduction of oxygen typically proceeds via a two-electron 

reduction to yield peroxide ion. This process can be used as the basis of cheaper fuel 

cells using metallophthalocyanines adsorbed onto suitable electrodes (such as highly 

oriented pyrolytic graphite electrodes) instead of the more expensive conventional used 

platinum electrodes. lt has been suggested that the electroreduction proceeds via the 

adsorption Qf molecular oxygen onto the phthalocyanine as an axial ligand of the central 

metal ion (Beck, 1973, Moser et al., 1983). The phthalocyanine is th.en oxidiz.ed, leading 
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Figure 1.11. Mechanism of phthalocyanine catalysis in fuel cells. 
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to the production of the reduced oxygen species. The phthalocyanine is then reduced in 

an electrochemical follow-up step (see Figure 1.ll). This view of the catalytic activity of 

phthalocyanines is based on the observation that strong ligands such as CN", P04"2 and 

ethylenediaminetetraacetic acid (EDTA) effectively poison the catalyst by displacing 

oxygen from the axial ligand position and preventing oxygen binding to this reactive site 

(Kozawa et al., 1971; Beyer et al., 1972). It has also been observed that catalytic activity 

greatly depends on the crystal structure of the phthalocyanine (Moser et al., 1983) with 

the planar oriented a crystal form having higher catalytic activity as compared to the 

more diagonally aligned p form. The molecular orientation of the phthalocyanine also is 

important in the overall efficiency of the electroreduction with phthalocyanines bearing 

four peripheral crown ether substituents exhibiting the desirable four-electron reduction 

because of their tendency to adsorb uniformly onto graphite (Kobayashi et al., 1992). 

Phthalocyanines are also known to catalyze other reactions (Moser et al., 1983; 

Chen et al., 1996; Kasuga, 1996), including the oxiclation of alkanes, alkenes and alkynes 

(Middleton et al., 1986; Ellis et al., 1992; Pérollier et al., 2002), the hydroformylation of 

olefinic compounds (Homeier, 1979) and even as a catalyst in a method for the 

prevention of dye transfer in washing or bleaching detergents (Johnston et al., 1979; 

Fredj et al., 1994). Unfortunately, the synthetic utility of these catalysts is somewhat 

limited due to self-oxiclation of the phthalocyanine chromophore which significantly 

reduces their catalytic efficiency. This problem has been overcome by incorporating the 

phthalocyanine into the cavity of zeolite by undertaking the cyclotetramerization reaction 

of phthalocyanine precursors within the cavity. The resulting phthalocyanine is too large 
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to escape the cavity and is isolate from other phthalocyanines, significantly decreasing 

phthalocyanine degradation by oxidation. However, small organic molecules are able to 

enter the porous Iattice of the zeolite and can be efficiently oxidized by the 

phthalocyanine catalyst. 

The redox properties of the phthalocyanine molecule can also be altered by 

adding suitable substituents to the phthalocyanine periphery. Alkoxy groups (Sakamoto 

et al., 1999), ferrocene (Jin et al., 1994; Poon et al., 2001), tetrathiafulvalenes (Blower et 

al., 1996; Wang et al., 1997), buckminsterfullerene derivatives (Sastre et al., 1999; 

Goulomis et al., 2000), dendritic groups (K.imura et al., 1999), chelating groups 

(Altunta§ Bayir et al., 1997; Kandaz et al., 1997) and crown ethers (Gümüs et al., 1992) 

have been added to phthalocyanines and have been used to alter the redox properties of 

the molecule. With the physical similarities with naturally occurring porphyrins, 

phthalocyanines have been investigated as synthetic analogs of naturally occurring 

enzymes. Zeolite~entrapped phthalocyanine incorporated into a polymer membrane 

mimics the behavior of cytochrome P450, an enzyme that plays a vital role in a number 

of important biological functions (Parton et al., 1994). In addition, phthalocyanines have 

been studies as possible dual function mimic enzymes of superoxide dismutase and 

catalase, both vital biological antioxidants {Feng et al., 2001) and phthalocyanines have 

I?een reconstituted with hemoproteins (Neya, 1996). These raise the possibility of 

preparing synthetic analogs to naturally occurring and biological vital enzymes and 

macromolecules using phthalocyanines. 

Even with the realized applications mentioned above, the full potential of 

phthalocyanines remains relatively untapped. Due to their unique physical, chemical and 
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electronic properties, phthalocyanines have been extensively investigated in such wide-

ranging and diverse fields as electrochromism (Nicholson, 1980; Bardin et al., 1989), 

photovoltaic junctions (Wôhrle et al., 1996; Forrest et al., 2004), solar cells (fang, 1986; 

Flatz et al., 1994; Nazeeruddin et al., 1998; Lane et al., 2000; Tsuzuki et al., 2000; 

Yanagisawa et al., 2002), molecular metals (Martinsen et al., 1984; Achar et al. 1999), 

liquid crystals (van Nostrum et al., 1995; McKeown, 1999; McKeown et al., 1999; Gürek 

et al, 2000), Landmuir-Blodgett films (Cho et al., 1988; Burghard et al., 1994a; Burghard 

et al., 1994b; Kobayashi et al., 1994; Kenney et al., 1995; Fouriaux et al., 1996; Davidson 

et al., 2001), ionoelectronics (Piechocki et al., 1982; Sielcken et al., 1987; Toupance et 

al., 1994; van Nostrum et al., 1995), functional polymers (Gotoh et al., 1989; McKeown, 

2000; Wôhrle, 2000; Wôhrle, 2001), semiconductors (Clarisse et al., 1991; Bao, 1999), 

photodynamic therapy (van Lier et al., 1989; van Lier, 1990; Rosenthal, 1996; Kenney et 

al., 1996; Ali et al., 1999; Allen et al., 2001) and non-linear optical applications (Nalwa 

et al., 1996; de la Torre et al., 1997; de la Torre et al., 1998; Claessens et al., 2001; Dini · 

et al., 2001; Hanack et al., 2001; de la Torre et al., 2004). While phthalocyanines have 

shown potential in all of these fields, the utility and importance of phthalocyanines in 

non-linear optical applications is particularly impressive. Following the discovery of the 

laser, considerable research has been undertaken in photonics, wherein light photons are 

used to acquire, store, transmit and process information instead of electrons (electronics). 

In order to manipulate the optical signals used in photonics, materials exhibiting non-

linear responses to light are needed as high speed electro-optical and all optical switches 

and modulators. ln addition, materials with non-linear optical properties have 

applicability in high density data storage, phase conjugation, holography, spatial light 
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modulators and in laser frequency conversion devices such as optical parametric 

oscillators and second and third harmonie generators (Nalwa et al., 1996). While early 

stages of research employed inorganic materials, organic materials exhibiting non-linear 

optical properties have markedly increased and exhibit a number of advantages including 

sub-picosecond response times, large non-linearities, low losses, small dielectric 

constants and greater synthetic versatility. Phthalocyanines, with their highly polariz.able 

and conjugated x-electron system, have ideal properties for the development of non-linear 

optical materials (Nalwa et al., 1996). In addition to their incredible stability, 

phthalocyanines provide tremendous architectural flexibility, allowing for engineering of 

the non-linear optical response, which may be based on several varied mechanisms. 

Phthalocyanines are known to provide large nonlinearities with sub-picosecond response 

times and the absorption losses are small over wide regions of the near IR spectral range, 

reducing the power requiremen~ and heat load for non-linear optical devices cotnprising 

phthalocyanines. The centrosymmetry of the phthalocyanine molecule is ideal for third 

harmonie generation and the third order non-linear response of phthalocyanines has been 

extensively investigated (Shirk, 1996; de la Torre et al., 1998). However, second 

harmonie generation requires non-centrosymmetry and a strong molecular dipole (Shirk, 

1996; de la Torre et al., 1997; de la Torre et al., 1998). As such, phthalocyanines would 

seem to lack the necessary properties for second order non-linearity. However, 

theoretical calculations have suggested that asymmetrically substituted push-pull 

phthalocyanines bearing both electron-donating and electron-withdrawing functionality 

may provide efficient intramolecular charge transfer and should yield compounds with 

interesting second order non-linear optical properties. However, to date, the second order 
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non-linear optical properties of such phthalocyanines have only been studied in a limited 

number of cases (Shirk, 1996; de la Torre et al., 1997; de la Torre et al., 1998), the result 

of the difficulty in the synthesis and purification of asymmetrically substituted 

phthalocyanines. ln terms of non-linear optical properties, phthalocyanines have found 

utility in optical limiting, wherein materials increase their absorbance when illuminated 

with high intensity light (Dini et al., 2001; Hanack et al., 2001). The ability to fine-tune 

the absorbance of phthalocyanines over the range 650-850 nm should allow for optical 

limiting devices specitically designed for particular lasers. Overall, the size of the non-

linear response of organic materials has been too modest for commercial utility. 

However, phthalocyanines clearly have utility as third order non-linear optical materials 

and as optical limiters. ln addition, new synthetic pathways towards asymmetrically 

substituted phthalocyanines should lead to organic materials with utility as second order 

non-linear optics. 
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l.S Photodynamic Therapy 

Cancer is one of the leading causes of disease and death in Canada. It is 

estimated that 149 000 new cases of cancer will be diagnosed and 69 500 deaths as a 

result of cancer will occur in Canada in 2005 (www.cancer.ca). This makes cancer the 

leading cause of premature death in Canada. Based on current incidence rates, 38% of 

Canadian women and 44% of Canadian men will develop some form of cancer during 

their lifetimes. Among the leading causes of cancer-related deaths are lung cancer, 

colorectal cancer, breast cancer, prostate cancer, non-Hodgkin's lymphoma, leukemia, 

bladder cancer, esophagus cancer and stomach cancer. 

Traditional cancer therapies such as surgery, chemotherapy and radiation therapy 

involve a delicate balance between removing or destroying diseased tissue and sparing 

surrounding healthy cells. These conventional treatments result in serions side effects 

caused by the loss of normal cell function since traditional cancer therapies exhibit 

relatively indiscriminate cytotoxic properties. Surgery, for instance, involves a delicate 

balance between removing enough tissue to completely eliminate the malignant cells 

while preserving healthy tissue, thus maintaining tissue function while avoiding possible 

foci for future tumor development. Chemotherapy and radiation therapy, on the other 

hand, do not exhibit appreciable selectivity towards malignant cells, resulting in the 

destruction of normal, healthy cells. Consequently, the development of new treatment 

protocols that display improved selectivity for diseased tissue is required. 

Among the more promising new therapies for cancer are binary therapies such as 

binary gene therapy (Pirocanac et al., 2002; Fretya et al., 2004; Gridley et al., 2004; 

Isayeva et al., 2004; Saukkonen et al., 2004; Buchsbaum et al., 2005), radiosensitizers 

37 



(Skov et al., 1994; Mehta et al., 2000; Schaffer et al., 2003; Weinmann et al., 2003), 

neutron capture therapy (Gahbauer et al., 1998; Barth et al., 1999; Diaz et al., 2000; 

Barth, 2003) and photodynamic therapy (Moore et al., 1997; Oschner, 1997; Dougherty 

et al., 1998; Bonnert, 1999; Gudgin Dickson et al., 2002; Lulcliené, 2003; Brown et al., 

2004; Detty et al., 2004). The primary advantage ofbinary therapies such as these is that 

each component of these two component systems is innocuous by themselves and must 

be combined in order to produce cytotoxic effects. Greater selectivity is thus achieved 

since each component can be manipulated independently and only cells simultaneously 

exposed to ail the necessary components are exposed to the cytotoxic effects. 

Photodynamic therapy is based on the dye-sensitized photooxidation of biological 

matter in a target tissue and by definition requires three components: a photosensitizer (a 

compound capable of absorbing light of a particular wavelength and transforming the 

light energy into cytotoxic agents), light of the appropriate wavelength and molecular 

oxygen. The elegance of photodynamic therapy is the same as for other binary therapies. 

Both the photosensitizer and the light are harmless by themselves. However, when 

combined, in the presence of oxygen, they can produce lethal cytotoxic species that can 

inactivate tumour cells. As such, photodynamic therapy provides for a dual selectivity, 

with preferential tumour uptake of the photosensitizer and the ability to illuminate the 

target tissue precisely allowing for the activation of photosensitizer only in the tumour 

volume. 

The photochemical and photophysical mechanism involved in photodynamic 

therapy have been extensively investigated (Oschner, 1997; Philips, 1997). Briefly, upon 
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Figure 1.12. Jablonski Diagram illustrating some of the physical processes that can occur 

after a molecule absorbs a photon, excited state levels and transitions. s0 is the ground 

electronic state of the molecule. S 1 and T1 are the lowest excited singlet and triplet states, 

respectively. Straight arrows represent processes involving photons and wavy arrows 

represent radiationless transitions. (A), absorption; (F), fluorescence; (P), 

phosphorescence; (IC), internal conversion; (ISC), intersystem crossing; (R), vibrational 

and rotational relaxation (adapted from Philips, 1997). 

illumination with light of the appropriate wavelength, the photosensitizer is electronically 

excited from the ground state S0 to its first excited singlet state (S1) (see Figure 1.12). 

This short lived excited state can dissipate its energy by radiative decay (fluorescence 

(F)), which may be used to monitor sensitizer distribution both in vitro and in vivo. The 

excitation energy of the S1 states can also be lost by non-radiative intemal conversion 

(IC), which entails the loss of energy via collusions with surrounding molecules, resulting 

in the generation of heat. It has been suggested that photothermal effect such as those 
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involved in internai conversion may be one of the more important mechanisms for 

photosensitized cell killing. For instance, illumination of cells stained with merocyanine 

540 may increase the internal cell temperature as much as 12 • C/minute provided the cell 

membrane acts as an adiabatic sink (Davila et al., 1991). However, the most important 

transition in terms of photodynamic therapy is intersystem crossing (ISC), resulting in the 

population of the much longer lived first excited triplet electronic state (T1) of the 

photosensitizer. Lifetimes of the first excited triplet electronic state of photosensitizers 

are typically in the micro- to millisecond range as the T 1 --+ So transition is spin-

forbidden (Oschner, 1997). This longer lifetime allows for efficient interaction between 

the electronically excited photosensitizer and surrounding molecules and it is accepted 

that the excited triplet state of photosensitizers is responsible for the generation of the 

cytotoxic species produced during PDT. 
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Figure 1.13. Diagrammatic presentation of Type I and Type II photosensitized oxidation 

reactions (Foote, 1991). 
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The excited triplet electronic state of the photosensitizer may react with its 

surroundings in two ways, defined as Type 1 and Type Il mechanism (Figure 1.13) 

(Foote, 1991). A Type 1 mechanism involves hydrogen atom extraction or electron 

transfer reactions between the excited triplet state of the photosensitizer and a 

surrounding substrate (a biological molecule, solvent or another photosensitizer), yielding 

free radicals and radical ions. These radicals are highly reactive and efficiently react with 

molecular oxygen to give reactive oxygen species such as superoxide anion or hydroxyl 

radicals or to fix the damage, thus making it irrep~ble. These reaction results in 

oxidative damage that ultimately lead to cellular inactivation. 

By contrast, a Type Il mechanism results in an energy transfer from the first 

excited triplet electronic state of the photosensitizer and ground-state molecular oxygen, 

generating singlet oxygen. This highly reactive oxygen species can react with a large 

number of biologically important substrates, causing oxidative damage and ultimately, 

cell death. While it is generally accepted that Type II mechanisms predominate during 

photodynamic therapy and that singlet oxygen is the most important cytotoxic agent 

involved, Type 1 reactions become important at low oxygen concentrations and in more 

polar environments (Oschner, 1997). However, both Type 1 and Type II reactions lead to 

similar oxidative damage and comparable free radical chain reactions. For a more in-

depth review of the mechanisms involved in photodynamic therapy and the role of 

reactive oxygen species in the cytotoxic effects observed during photodynamic therapy, 

please see Chapter 2 (Sharman W. M., C. M. Allen and J. E. van Lier (2000) Role of 

activated oxygen species in photodynamic therapy, Methods Enzymol., 319, 376-400). 

41 



While it is evident that photodynamic therapy can induce the production of 

cytotoxic species that can readily d~stroy neoplastic cells, the in vivo response is affected 

by the complexity of biological systems (Mason, 1999). Any number of subcellular 

targets, including the mitochondria, lysosomes, plasma membrane and nuclei, can be 

targeted (Moore et al., 1997; Dougherty et al., 1998). Cell death may occur by necrosis 

or apoptosis (Jori et al., 1998; Olenick et al., 2002). In addition, the cytotoxic effects of 

photodynamic therapy induce numerous signaling pathways which dictate the cellular 

response to this cytotoxic treatment (Moor, 2000). In addition, while it has been shown 

that the action of some amphiphilic photosensitizers proceeds via direct tumor cell death, 

most photosensitizers that have been investigated induce tumour necrosis via vascular 

shutdown (Henderson et al., 1989; Margaron et al., 1996a; Moore et al., 1997; Oschner, 

1997). In addition, photodynamic therapy can induce inflammation and other tumour-

specific immune reactions (Oschner, 1996; Moore et al., 1997; Dougherty et al., 1998) 

and has been investigated as a potential method of inducing tumour immunity (van 

Duijnhoven et al., 2003). The exact method of photodynamic therapy-induced tumour 

destruction depends greatly on the photosensitizer used as well as the light dose and the 

conditions being treated. However, understanding the biological mechanisms involved 

will enable the design and synthesis of ideal photosensitizers for a given condition or 

disease. 

The first generation photosensitizer is Photo:frin®, a haematoporphyrin derivative 

originally synthesized by combining haematoporphryin with 5% sulphuric acid in acetic 

acid at room temperature, followed by treatment with aqueous base and neutralization. 

This gives a complex mixture of haematoporphyrin dimers and oligomers, primarily 
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Figure 1.14. Photofrin® structure consisting of a complex mixture of dimers and 

oligomers ranging from two to nine porphyrin units linked via ether or ester bonds. 

attached by ester and ether linkages (see Figure 1.14) (Bonnett, 1995). Partial 

purification of the more active oligomers by HPLC or size exclusion gel chromatography 

leads to Photofrin®, which is 90-95% active component (Dougherty et al., 1992). 

Photodynamic therapy using Photofrin® has been accepted in clinic in several countries 

for the treatment of early and late stage lung cancer, superficial and advanced 

oesophageal cancer, bladder cancer, superficial and early stage gastric cancer, early stage 

cervical cancer and cervical dysplasia. It has also recently been approved for the ablation 

of high-grade dysplasia in Barrett's esophagus patients (www.photofrin.com). However, 
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despite the apparent success of Photofrin®, haematoporphyrin derivatives have a number 

of serious disadvantages in terms of their use as photosensitizers for photodynamic 

therapy (Philips, 1997; Kessel et al., 1999). Photofrin® is a complex chemical mixture of 

oligomers that can vary with different preparations and storage times and that makes 

structure·activity relationships impossible to determine. Haematoporphyrin derivatives 

are readily taken up and retained by cutaneous tissue for up to ten weeks after 

administration, causing a marked skin photosensitivity that requires the patient to avoid 

bright sunlight. This is an obvious disadvantage, particularly for patients with late·~ge 

malignancies. In addition, haematoporphyrin derivatives have only a weak absorption at 

the therapeutic wavelength of 630 nm, limiting treatment to tumour depths of no more 

than 5 mm. With these disadvantages in mind, a number of second generation 

photosensitizers have been developed and investigated from their potential as 

photosensitizers for photodynamic therapy. An ideal photosensitizer for photodynamic 

therapy should (MacRoberts et al., 1989; Bonnett, 1996): 

1) be chemically pure and ofknown and constant composition. 

2) have a minimal dark toxicity and only be cytotoxic in the presence of light of the 

appropriate wavelength. 

3) be preferentially retained by the target tissue. 

4) be rapidly excreted from the body, thus inducing a low systemic toxicity. 

5) have high photochemical reactivity, with high triplet state yields and long triplet state 

lifetimes and be able to effectively produce singlet oxygen and other reactive oxygen 

species upon illumination. 
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6) have a strong absorbance with a high extinction coefficient at a longer wavelength 

(600-800 nm) where tissue penetration of Iight is at a maximum while still being 

energetic enough to produce singlet oxygen and where cheaper diode laser can be 

employed. 

While no photosensitizer can be deemed to be ideal for every possible application of 

photodynamic therapy, a number of second generation photosensitizer have been 

investigated with the hopes of overcoming the shortcomings of Photofrin® while taking 

advantages of their more ideal properties. These second generation photosensitizers 

include methylene blue, verteporfin, tin etiopurpurin, temoporfin, texaphryins, 

phthalocyanines, n-aspartyl chlorin e6, rhodamines, hypericin and 5-aminolaevulinic 

acid, a natural precursor in the endogenous production of protoporphyrin IX. For a 

complete review of the various compounds that have been investigated as 

photosensitizers for photodynamic therapy and the conditions possibly treated by each of 

these photosensitizers, please see Chapter 3 (Sharman W. S., C. M. Allen and J. E. van 

Lier (1999) Photodynamic therapeutics: Basic principles and clinical applications, Drug 

Discovery Today, 4, 507-517). 

While photodynamic therapy has been primarily considered as a treatment for 

cancer, preclinical and clinical investigations have been undertake for the treatment of a 

number of other diverse conditions. Photodynamic therapy using 5-aminolaevulinic acid, 

(a precursor to the nature production of protoporphyrin IX, which is itself a precursor in 

the biosynthesis of haem) has been accepted in clinic for the treatment of actinie 

keratoses, a sun-induced precancerous skin lesion (www.dusapharma.com). Methylene 
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blue is currently used in clinic by the Swiss and German Red Cross for the photodynamic 

decontamination of freshly frozen plasma units (Mohr et al., 1993; Mohr et al., 1995). 

Most interesting however is the clinical utility of verteporfin in the treatment of wet age-

related macular degeneration (AMD) (www.qlt-pdt.com). Wet age-related macular 

degeneration involves the rapid growth of abnormal blood vessels under the central 

retina, with leakage from these underdeveloped vessels causing swelling and scarring. 

This ultimately leads to vision loss. V erteportin, like many other photosensitizers, is 

capable of inducing vascular stasis upon illumination and treatment of AMD with 

verteporfin and light of the appropriate wavelength (690 nm) effectively closes off the 

abnormal blood vessels and stops the progression of the disease (Miller et al., 1999; 

Scbmidt-Erfurth et al., 1999; Bressler et al., 1999; Fine, 1999; Az.ab et al., 2005). While 

the photodynamic treatment of AMD does not repaïr destroyed photoreceptors, it does 

hait the progression of the disease by easing swelling and maintaining vision. With a 

common mechanism of action, other photosensitizers have also been under investigation 

as photosensitizers in the treatment of AMD (Oohto et al., 2000; Ohana et al., 2000; 

Sessler et al., 2000). Verteporfin and other photosensitizers have also been examined in 

the treatment of other conditions caused by abnormal choroidal neovasculariz.ation as 

well as other conditions of the eye (Donati et al., 1999; Okunaka et al., 1999; Rivellese et 

al., 1999; Oohto et al., 2000; Sickenberg et al., 2000). Photodynamic therapy has also 

been investigated in the treatment of a number of dermatological conditions including 

psoriasis, acne, viral warts, alopecia areata, port-wine stains, haïr removal and haïr loss 

(Fritsch et al., 1998; Boehncke et al., 2000; Simkin et al., 2003; Tourna et al., 2003; 

Kimura et al., 2004; Evans et al., 2005; Schroeter et al., 2005). Among other conditions 
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that have been treated with photodynamic therapy are cardiovascular disease 

(photoangioplasty of vascular atherosclerotic and restenotic lesioll$) (Rockson et al., 

2000; Sessler et al., 2000), rheumatoid and inflammatory arthritis (Trauner et al., 1996; 

Okunaka et al., 1999; Hendriçh et al., 2000), autoimmune diseases (Leong et al., 1996a; 

Roy et al., 2001), menorrhagia (endometrial ablation) (Brown, 1998; Mhawech et al., 

2003; Degen et al., 2004), microbial (Bertoloni et al., 1992; lchinohe et al., 1998; 

Roncucci et al., 2001; Rabi et al., 2002a; Soncin et al, 2002; Dupouy et al., 2004; Jori et 

al., 2004) and viral infections (Diwu et al., 1994; Kempf et al., 1997; Okunaka et al, 

1999; Rabi et al., 2002a; Wainwright, 2003). Photodynamic therapy has also been shown 

to be useful in bone marrow purging (Gaboury et al., 1996; Gaboury et al., 1998; 

Okunaka et al., 1999; Rabi et al., 2002a; Habi et al., 2002b; Huang et al., 2005), the 

sterilization of blood components (Allen et al., 1995; Wainwright et al., 2002; Horowitz 

et al., 2003; Wagner et al., 2003; Trannoy et al., 2004), the prevention of transplant 

rejection (LaMuraglia et al., 1995; Honey et al., 2000; Roy et al., 2001) and the treatment 

of multiple sclerosis (Leong et al., 1996b). Essentially, conditions to which there is easy 

assess to light can be treated using photodynamic therapy. For a more complete review 

of the diseases and conditions that can be treated with photodynamic therapy, please see 

Chapter 3 (Sharman W. S., C. M. Allen and J. E. van Lier (1999) Photodynamic 

therapeutics: Basic principles and clinical applications, Drug Discovery Today, 4, 507-

517). 

As has been previously mentioned, part of the selectivity demonstrated during 

photodynamic therapy is due to a preferential uptake of the photosensitizer in the target 

tissue. In terms of the treatment of cancer, the preferential uptake of the photosensitizer 
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by the tumor most likely involves a combination of factors specific for malignancies. 

These include increased malignant cell metabolism, leaky tumour vasculature, poor 

lymphatic drainage, lower intratumoural pH, cellul3l'. heterogeneity within the tumor and 

increased LDL receptors on malignant cells (Henderson et al., 1992; Pass, 1993; Hamblin 

et al., 1994a; Stables et al., 1995; Dougherty et al., 1998). Despite these factor, however, 

most first and second generation photosensitizer exhibit only marginally higher tumour 

retention as compared to surrounding healthy tissues. For instance, only 0.1-3% of the 

injected dose of haematoporphyrin derivative accumulates in the tumour tissue (Wôhrle 

et al., 1998) while tumour-to-normal tissue ratios for most photosensitizers range from 

2:1 to 5:1 (Pass, 1993). In order to improve photosensitizer delivery to target tissues, a 

number of different photosensitizer delivery vehicles and photosensitizers conjugated to 

targeting molecules have been developed (Klyashchitsky et al., 1994; Niamien Konan et 

al., 2002; Allen et al., 2002). Polymeric micelles (Taillefer et al., 2000; van Nostrum, 

2004), liposomes (Morgan et al., 1989; Richter et al., 1993; van Leengoed et al., 1994; 

Love et al., 1996; Renno et al., 2001; Derkycke et al., 2004), nanoparticles (Allémann et 

al., 1995; Allémann et al., 1996; Russell et al., 2003), microsphere (Bachor et al., 1991) 

and cyclodextrins (Ruebner et al., 1997; Ruebner et al., 1999) have ail been used as 

vehicles for the delivery of photosensitizers. Photosensitizers conjugated to polymers 

(Soukos et al., 1997; Hamblin et al., 1999; Lu et al., 1999), antibodies (Morgan et al., 

1989; Carcenac et al., 1999; Del Govemature et al., 2000; Vrouenraets et al., 2000; van 

Dongen et al., 2004), viral proteins (Allen et al., 1999), serum proteins (Hamblin et al., 

1994b; Larroque et al., 1996; Nagae et al., 1998; Hamblin et al., 2000; Urizzi et al., 2001; 

Cavanaugh, 2002a; Cavanaugh, 2002b), growth factors (Gijsens et al., 1998; Lutsenko et 
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al., 1999; Gijsens et al., 2000), honnones (Mobr et al., 1997; James et al., 1999; Ray et 

al., 2001; Swamy et al., 2002) and nuclear localization signais (Bisland et al., 1999; 

Rosenkranz et al., 2000; Sobolev et al., 2000; Sobolev et al., 2002) have been prepared 

in order to improve the targeting of photosensitizers to the target tissue and also to 

specific intracellular sites. For a review of targeted photosensitizers and their use in 

photodynamic therapy, please see Chapter 4 (Sharman W. M., J. Evan Lier and C. M. 

Allen (2004) Targeted photodynamic therapy via receptor mediated delivery systems, 

Adv. Drug Delivery Rev., 56, 53-76.) 
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1.6 Structure-Activity Relatîonships in Photodvnamic Therapy 

In addition to its photophysical and photochemical properties, the overall 

photodynamic efficiency of a given photosensitizer is dictated by the interaction of the 

photosensitizer with serum proteins, the degree of aggregation, the total cellular uptake 

and the subcellular localization. Tuese factors are influenced by the chemical structure 

and properties of the photosensitizer, in particular by the overall charge and the 

lipophilicity/hydrophilicity of the molecule. It has been found that amphiphilic 

photosensitizers are generally more photodynamically active than the corresponding 

hydrophilic or lipophilic derivatives (Boyle et al., l 996a). Amphiphilicity describes 

photosensitizers that have both hydrophilic and lipophilic characteristics in distinct parts 

of the molecule. Such structural features permit these distinct portions to interact 

differently with their biological environment while bestowing enhanced solubility, 

modulating molecular aggregation, improving cellular uptake and directing intracellular 

localization to more photosensitive subcellular sites. It has been suggested that the 

favourable pharmacokinetics necessary to ensure selective tumour uptake and rapid 

systemic clearance is directly related to the degree of amphiphilicity of the 

photosensitizer (Bonnett, 1999). Both sulphonated tetraphenylporphines and sulphonated 

phthalocyanines exhibit similar trends in their photocytotoxicity with the more 

amphiphilic adjacently substituted disulphonated photosensitizers being the most 

photocytotoxic (Kessel et al., 1987; Brasseur et al., 1988; Brasseur et al., 1988; Berg et 

al., 1989; Margaron et al., 1996). While the oppositely and adjacently substituted 

disulphonated tetraphenylporphines (TPPS2adj and TPPS20pp) (Figure 1.15) have identical 
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Figure 1.15. Adjacently and oppositely disulphonated 5,10,15,20-tetraphenylporphines 

(Kessel et al., 1987) 

hydrophobicities as measured by their partition coefficients, these photosensitizers 

feature significantly different tumour localization and photocytotoxicities with TPPS2.a4i 

being significantly more photocytotoxic (Kessel et al., 1987). This clearly indicates the 

importance of amphiphilicity in the overall photodynamic efficiency of photosensitizers. 

Furthermore, while the tetrasulphonated tetraphenylporphine has the highest levels of 

tumor cell uptake and the most significant tumor selectivity, this compound remains the 

least photodynamically active member of this family of photosensitizers (Kongshaug et 

al., 1989). This suggests that the amphiphilicity of a photosensitizer also plays an 
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important role in the subcellular targeting of photosensiûzer to more photosensitive 

organelles and subcellular sites. 

The improved photodynamic activity of amphiphilic photosensitizers is not 

limited to anionic photosensitizerS. In a study involving novel cationic photosensitizers 

based on either protoporphyrin or mesotetra( 4-carboxyphenyl)porphine, the asymmetric 

cationic photosensitizers were more efficient in destroying mouse and human melanoma 

cells than anionic haematoporphyrin derivative (HpD) (Haylett et al., 1995). HpD was in 

turn more effective than the symmetrically substituted cationic photosensitizers 

examined. Photosensitizer cell uptake was relatively high for the cationic 

photosensitizers when compared to HpD. Photosensitizer cell uptake correlated with the 

partition coefficient of the asymmetrically substituted protoporphyrin derivatives (Haylett 

et al., 1996). However, cell-associated uptake did not correlate with clonogenic cell 

survival. Interestingly, while the photophysical properties (including singlet oxygen 

quantum yields) did not seem to be responsible for the improved photodynamic 

efficiency of amphiphilic sulphonated phthalocyanines (Allen et al., 2002; Cauchon et al., 

2005), a broad association was found between singlet oxygen quantum yield and 

clonogenic cell killing for the series of asymmetrically substituted protoporphyrin 

derivatives (Haylett et al., 1997). This is in contrast with the knowledge that monomeric 

phthalocyanine molecules with identical central metal atoms and varying degrees of 

sulfonation retaining the same photochemical activity (Wagner et al., 1987). However, 

this apparent link between singlet oxygen quantum yield and clonogenic cell killing may 

be due to aggregation of the more lipophilic photosensitizers, with aggregation known to 
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decrease singlet oxygen quantum yields and to decrease cellular uptake (Haylett et al. , 

1997). 

In terms of phthalocyanines, it bas also been found that asymmetrically 

substituted amphiphilic phthalocyanines are more photodynamically active than the 

corresponding symmetrically substituted phthalocyanines (Paquette et al., 1991a; Allen et 

al., 1995; Margaron et al., 1996b; Kudrevich et al., 1997; Edrei et al., 1998; Allen et al., 

2002; Cauchon et al., 2005). A quantitative structure-activity relationship comparing the 

phototoxicity and the log of the partition coefficients (PBS and n-octanol) of sulphonated 

zinc phthalocyanines gave a parabola with optimal partition values corresponding to the 

amphiphilic adjacently substituted disulphonated zinc phthalocyanine (Margaron et al., 

1996b ). lt should however be noted that the oppositely substituted disulphonated zinc 

phthalocyanines was not included in this study and is known to be significantly less 

photocytotoxic as compared to the adjacently substituted disulphonated zinc 

phthalocyanine while having a similar partition coefficient. 

While more amphiphilic phthalocyanines are more photodynamically active, 

cellular uptake of phthalocyanines bas been shown to increase with increasing 

lipophilicity of the molecule (Brasseur et al., 1988; Berg et al., 1989; Paquette et al., 

199la; Margaron et al., 1996b). For instance, in EMT-6 cells, the more lipophilic 

tetraiodinated zinc phthalocyanine displayed the most important cellular uptake followed 

by the amphiphilic adjacently disulphonated zinc phthalocyanine (Margaron et al., 

1996b). However, despite having the highest cellular uptake, the tetraiodinated zinc 

phthalocyanine were only slightly phototoxic while the amphiphilic photosensitizer 

exhibiting the most important photocytotoxicity. Increasing the lipophilîc character of 
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amphiphilic phthalocyanines has been shown to increase the photocytotoxicity of these 

photosensitizers, with addition of two t-butyl groups to adjacently substituted 

sulphonated phthalocyanine improving the photocytotoxicity of the photosensitizer four-

fold as a result of the additional lipophilic character added by the t-butyl groups (Paquette 

et al., 1991b). The increase in the amphiphilic character of the gallium disulphonated 

phthalocyanine with the t-butyl groups not only promoted cell uptake but also resulted in 

improved targeting of the dye to photosensitive intracellular sites. 

Similarly, cell uptake in Ehrlich ascites mouse tumour cells has been shown to 

correlate well with the overall hydrophobicity of the sulphonated phthalocyanine 

preparation and inversely with the degree of aggregation in the extracellular environment 

(Edrei et al., 1998). While the amphiphilic adjacently substituted disulphonated 

aluminum phthalocyanine (AlPcS2adj) exhibited the highest membrane-penetrating 

properties, even higher cell uptake was observed for a mixture of AlPcS2 comprising both 

oppositely and adjacently substituted disulphonated phthalocyanines. It has been 

suggested that this is due to a combination of optimal amphiphilicity and a lower degree 

of aggregation. Similar observations of the relationship between cellular uptake and 

aggregation of the photosensitizer have been reported (Margaron et al., 1996b ). In light 

of this, the decreased photocytotoxicity of the more lipophilic phthalocyanines may be 

the result of increased aggregation of the phthalocyanine chromophore, which would lead 

to decreased singlet oxygen quantum yields and to decreased cellular uptake. However, 

the decreased photocytotoxicity may also be the result of partitioning to Jess 

photosensitive subcellular sites. 
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lncreasing the amphiphilicity of trisulphonated phthalocyanines by the addition of 

a t-butyl group to the unsubstituted benzo ring has also been shown to result in a 5-40 

fold increase in anti-viral potency versus vaccinia virus in red blood suspension (Allen et 

al., 1995). Importantly, the heightened anti-viral potency did not correlate with 

photohemolytic activity since these t-butyl substituted trisulphonated phthalocyanines 

also exhibit favourable toxicity indices, a measure of the anti-viral activity over the 

photohemolytic activity. These results suggest that the increased amphiphilicity of these 

phthalocyanines permits effective photosensitizer/viral particle interactions, negatively 

affecting the cell fusion function required for infectivity of the viral particle. In the 

meanwhile, possible photodynamically-induced structural modifications of the red blood 

cell membranes were only negligible. 

0 
Il s-NH2(CH2)nCH3 
Il 
0 

Figure 1.16. Amphiphilic derivatives of aluminum tetrasulphonated phthalocyanines 

substituted with long straight chain aliphatic groups via a sulfonamide bond (n = 3, 7, 11 

and 15) (Allen et al., 2002) 
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A series of tetrasulphonated aluminum phthalocyanines or trisulphonated zinc 

phthalocyanines with varying degrees of hydrophilicity have been prepared by adding 

long straight chain aliphatic groups either via a sulfonamide bond (Urizzi et al., 2001; 

Allen et al., 2002) or via an alkynyl bond using palladium-catalzyed reactions (Tian et al., 

Figure 1.17. Amphiphilic trisulphonated zinc phthalocyanines substituted with long 

straight chain aliphatic groups via alkynyl bonds (n = 3, 6, 9 and 13) (Tian et al., 2000) 

2000; Cauchon et al., 2005) (Figures 1.16 and 1.17). In both studies, the various 

photosensitizers gave similar singlet oxygen yields when monomerized using 

Cremophor™ EL (Allen et al., 2002; Cauchon et al., 2005), suggesting that aggregation 

is not the detennining factor in the differences in photodynamic potency since 

phthalocyanines are known to monomerize in the presence of cellular components 

(Paquette et al., 1991a). Trisulphonated zinc phthalocyanines bearing hexynyl and 

nonynyl substituents (Figure 1.17, n = 3 or 6) exhibited high cellular uptake with 
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important localization at the mitochondrial membranes, which coincided with effective 

photocytotoxicity toward EMT-6 tumour cells (Cauchon et al., 2005). Further increasing 

the lipophilicity of these trisulphonated zinc phthalocyanines by increasing the length of 

the alkynyl chain to dodecynyl or hexadecynyl (Figure 1.17, n = 9 or 13) did not further 

improve the phototoxicity of the photosensitizers. This may be the result of extensive 

aggregation of the dye in aqueous medium, resulting in reduced cell uptake. On the other 

hand, when long alkyl chains are bonded to tetrasulphonated aluminum phthalocyanine 

via a sulfonamide bond, it was observed that both cell uptake and photocytotoxicity 

varied directly with the length of the alkyl chain (ie. with the lipophilicity of the dye) 

(Allen et al., 2002). This difference is most likely a result of the nature of the central 

metal atom and the bonding used to attach the long aliphatic chains to the 

phthalocyanines, with the axial ligand of the aluminum central metal atom and the 

sulfonamide bond helping to prevent aggregation in a cellular environment and allowing 

efficient interaction of the long aliphatic chains with the lipophilic cellular membranes. 

lnterestingly, addition of hum.an LDL in appropriate amounts during incubation 

decreased cell uptake of the more lipophilic phthalocyanines while the cytotoxic potency 

increased or remained unaffected (Allen et al., 2002). This seemingly indicates that the 

improved cytotoxicity of these amphiphilic derivatives of zinc tetrasulphonated 

phthalocyanine is at least in part due to improved intracellular targeting. Both of these 

studies indicate that amphiphilic in phthalocyanines improves their photodynamic 

potency by increasing cell uptake and improving subcellular trafficldng to more 

photosensitive sites such as the mitochondria 
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Increased amphiphilicity in aluminum tetrasulphonated phthalocyanines also 

increased the in vivo potential of the photosensitizer (Allen et al., 2002). Complete 

tumour regression was observed for aluminum tetrasulphonated phthalocyanines 

substituted with octyl, dodecyl and hexadecyl chains (Figure 1.15, n = 7, 11 or 15) at 

concentrations that failed to give a tumour response for the parent compound AlPcS4. 

This is at least in part due to interactions of the phthalocyanines with low density 

lipoproteins. It is well established that many tumour cell types have increased LDL 

receptor expression (Ho et al., 1978; Gal et al., 1981; Lombardi et al., 1989; Gueddari et 

al., 1993) and that lipophilic and amphiphilic phthalocyanines associate with LDL upon 

administration in vivo (Reddi et al., 1990; V ersluis et al., 1994; Reddi, 1997). lt has been 

observed that aluminum tetrasulphonated phthalocyanines bearing a dodecyl chain via a 

sulfonamide bond exhibits improved photodynamic activity both in vitro and in vivo 

compared to the unsubstituted aluminum tetrasulphonated phthalocyanine (Urizzi et al., 

2001 ). While incorporation of the long alkyl chains into LDL particles prior to in vitro 

administration significantly increased the in vitro phototoxicity, this incorporation did not 

affect in vivo results. This suggest that the long alkyl chains naturally redistribute to LDL 

particles upon in vivo administration and that this association with LDL particles is at 

least partially responsible for the improved photodynamic efficacy of these amphiphilic 

photosensitizers. 

Asymmetry and the resulting amphiphilicity have also been shown to increase the 

photodynamic e:fficacy of both anionic and cationic naphthobenzoporphyrazines. These 

phthalocyanine derivatives have the advantage of shifting the wavelength of absorption to 

longer wavelengths, where tissue penetration of light is optimized. A comparison of 
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photodynamically-induced tumour regression of zinc ( 4-t-butyl)tri( 4-

sulfo )phthalocyanine and zinc 6-t-butylnaphthotris( 4-sulfobenzo )porphyrazine indicated 

that the asymmetrical anionically charged napthotribenzoporphyrazine induced the best 

tumour response (Kudrevich et al., 1997). The asymmetrically substituted amphiphilic 

zinc ( 4-t-butyl)tri( 4-sulfo )phthalocyanine caused severe damage to surrounding healthy 

muscle tissue under similar PDT conditions. Both of these asymmetrically substituted 

phthalocyanine derivatives however gave similar results in photo-inactivating cells in 

vitro, demonstrating the difficulties in extending in vitro results to in vivo tumour 

environments. Metallo naphthosulfobenzoporphyrazines sulphonated to different degrees 

have also been synthesized and their potential as photosensitizers for PDT of cancer bas 

been evaluated (Margaron et al., 1992). In vitro, the disulphonated 

dinaphthodisulfobenzoporphyrazine proved to be slightly more photoactive than the 

trisulphonated naphthalotrisulfobenzoporphyrazine. In the meanwhile, the 

monosulphonated trinapthalosulfobenzoporphyrazine was inactive in spite of a six-fold 

higher cell uptake. Intriguingly, difference in the in vitro phototoxicity of the 

disulphonated and trisulphonated derivatives correlated well with their relative cell 

uptake, seeming to indicate the di- and trisulphonated derivatives experiences similar 

subcellular trafficking and that this trafficking differed from that the monosulphonated 

derivative. Ex vivo and in vivo PDT using these derivatives followed the same trend. lt 

is important to note that while the corresponding monosulphonated phthalocyanine is less 

active than the disulphonated phthalocyanines, it still exhibits substantial 

photocytotoxicity. The lack of activity of the monosulphonated trinapthalo-

sulfobenzoporphyrazine cannot be explained by a decreased cell uptake as this derivative 
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Figure 1.18. Asymmetrically substituted cationic naphthobenzoporphyrazines 
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actually bas a six fold higher cell uptake compared to the highly phototoxic 

disulphonated derivative. While differences in subcellular trafficking may explain some 

of this inconsistency, the bulky hydrophobie naphthalo groups probably also increase 

aggregation, even in biological environments, with aggregation leading to depression of 

the singlet oxygen yields. 

Along the same lines, a series of naphthobenzoporphyrazines substituted on the 

benzo rings with 3-pyridyloxy and 3-(N-methyl)pyridyloxy groups and with t-butyl 

groups on the napthalo rings (Michelsen et al., 1996) (Figure 1.18) and were studied as 

potential photosensitiz.ers for photodynamic therapy (Peeva et al., 200 l ). Surprisingly, 

the non-methylated naphthotnl>enzoporphyrazine exhibited a higher singlet oxygen 

quantum yield than unsubstituted zinc phthalocyanine or the corresponding 

symmetrically substituted phthalocyanine bearing four 3-pyridyloxy groups (Michelsen et 

al., 1996). It is suggested that this increase in the singlet oxygen quantum yield may be 

the result of the significantly lower symmetry in this molecule, wbich may result in 

additional electronic transitions and different excited state properties. The corresponding 

cationic charged methylated compounds had decreased singlet oxygen quantum yields 

compared to their non-methylated derivatives, most likely a result of quenching by the 

counter ion. As expected, the photostability decreased with increasing number of 

naphthalene rings (Michelsen et al., 1996) as it is well-known tbat naphthalocyanines are 

less photostable than phthalocyanines (Yates et al., 1990; Brasseur et al., 1994; Brasseur 

et al., 1995; Spikes et al., 1995). 

In tenns of photodynamic activity, the cationic methylated 

naphthotribenzoporphyrazine was the most phototoxic against EJ human bladder 
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carcmoma cells in vitro followed by the symmetrically substituted cationic 

phtbalocyanine compound. The monocationic and dicationic porphyrazines did not 

exhibit any phototoxicity, perllaps a result of important aggregation of the 

macromolecules and decreased cell uptake. The best in vivo phototherapeutic effect was 

also observed for the cationic methylated naphthotribenmporphyrazine. In both cases, 

this compound was accumulated to a higher degree in the cells in vitro and the tumour 

tissue in vivo. In addition, this photosensitizer showed higher singlet oxygen quantum 

yields compared to the symmetrically substituted cationic phthalocyanine. Finally, it is 

suggested that the unsymmetrically structure of this photosensitizer may be responsible 

for a more suitable orientation towards cellular and subcellular membranes, resulting in 

more effective damage to membranous cellular organelles. This assumption is supported 

by electron microscopy observations demonstrating typical features of random tumour 

necrosis, which includes heavy dystrophie changes in the membranous subcellular 

organelles. 

In general, the results discussed above indicate that amphiphilic in 

phtbalocyanines leads to favourable properties for photodynamic therapy. Depending on 

the specific phthalocyanine derivatives and conditions employed, these properties may 

include decreased aggregation, increased singlet oxygen quantum yields, increased 

association with serum lipoproteins, improved tumour cell uptakes and increased 

trafficking and improved interactions with photosensitive subcellular organelles. Overall, 

there remains a need for new amphiphilic phthalocyanines that take advantage of any or 

ail of these factors, resulting in new photosensitizers with increased efficiency as 

photodynamic therapy agents. 
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1. 7 General Svnthesis of Phthalocyanines 

Unlike metalloporphyrins derivatives, metallophthalocyanines are seldom 

obtained from an available metal-free phthalocyanine ligand. Typically, 

metallophthalocyanine complexes are synthesized by a metal-templated 

cyclotettameri7.ation reaction involving the heating of an appropriate phthalocyanine 

precursor in the presence of a metal sait. Appropriate phthalocyanine precursors are 

aromatic ortho-carboxylic acid derivatives and include phthalic acids, phthalonitriles, 

phthalic anhydrides, phthalimides, diiminoisoindolines and phthalimides (see Chapter 5, 

Figure 5). Ortho-substitution is absolutely required as compounds having the carboxylic 

acid or related functional group separated from the aromatic system by a saturated bond 

or by extended unsaturation fail to undergo the cyclotetramerization reaction. Such 

compounds include isophthalic acid, terephthalonitrile, 1,2-bis( cyanomethyl)beD7.eDe, 2-

carboxyphenylacetonitrile and 1,2-dicyanohexane (see Figure 5.6). Interestingly, 1-

cyclohexene-1,2-dicarboxylic acid does yield tetracyclohexenetetraa7.aporphyrin via a 

cyclotetramerization reaction, with the corresponding phthalocyanine being obtained by 

dehydration of the tetraaz.aporphyrin derivative via sublimation at 300-320°C, heating in 

sulfur, boiling in chloronaphthalene in the presence of palladium or treating with DDQ 

(Ficken et al., 1952, Ficken et al., 1958). In addition, o-halobenzonitriles and o-

dihalobenz.enes can be used as precursors for phthalocyanines if the cyclotetramerization 

reaction is done in the presence of cuprous cyan.ide. These reactions most probably occur 

via the in situ generation of the corresponding phthalonitriles. Naturally, phthalocyanine 

derivatives with extended conjugation can also be prepared with 2,3-

napthalenedicarbonitrile and 1,2-napthalenedicarbonitrile leading to naphthalocyanines. 
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For a complete review of phtbalocyanine derivatives and their preparatio~ please see 

Chapter S (Sharman W. S. and J. E. van Lier (2002) "Synthesis of Phtbalocyanine 

Precursorsn in The Porphyrin Handbook Vol. 15 Phthalocyanine: Synthesis ( eds. K.. M. 

Kadish, K. M. Smith and R. Guilard), London & Amsterdam: Elsevier Publishers, pp. 1-

60). 

Mecbanistically, the cyclotetrameriz.ation reaction involved in the formation of 

the phthalocyanine macrocycle probably involves a stepwise polymeriz.ation of 

phthalocyanine precursors or reactive intennediates followed by coordination of the 

metal ion and ring closure (Dent, 1938; Owen et al., 1962; Hurley et al., 1967; Berezin, 

1981; Gaspard et al., 1987; Lemoff, 1989). Ring closure is driven not only by the 

template effect of the metal ion and the inherent stabilÏ7.ation achieved by the resulting 

coordination but also by the thermodynamic stabilization and increased aromaticity 

involved in the formation of the phthalocyanine macrocycle. This increased aromaticity 

is clearly demonstrated by the magnetic anisotropy of phthalocyanines that is 15 times 

larger than that ofbenzene (Lonsdale, 1937). 

This basic mechanism of phthalocyanine formation is supported by experimental 

observatio~ in particular in the nature of reaction intennediates isolated during 

phthalocyanine formation. For instance, in the preparation of metal-free phthalocyanine 

using sodium methoxide, a sodium sait of methoxyiminoisoindoline (Figure 1.19, 

Structure 1) has been isolated (Borodkin, 1958). Such an intennediate suggest that 

formation of the iminophthalimidine is implicated in the cyclotetramerization reaction. 

In the meanwhile, nickel complexes II and ID (Figure 1.19) have been isolated during the 
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Figure 1.19. Intermediates isolated during the synthesis of phthalocyanines. 

synthesis of nickel phthalocyanine (Hurley et al., 1967), pointing to the role of the metal 

ion as a template for the cyclization. During the synthesis of lithium 

tetranitrophthalocyanine, lithium salts such as N (Figure 1.19) were observed (Oliver et 

al., 1987). This indicates that the reaction may proceed by a stepwise condensation of 

phthalocyanine precursors. Overall, however, the exact mechanism involved in 
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phtbalocyanine macrocycle formation remains unclear. As observed by Elvidge and 

Linstead as early as 1955, the cyclotetrameri7.ation reaction of diiminoisoindolines should 

lead to a hydrophthalocyanine (Elvidge et al., 1955). Thus, a reductant of some type 

must be involved in the synthesis in order to get the corresponding phthalocyanine. 

White it bas been theoriz.ed that the reduction occurs on the phthalocyanine precursor 

prior to complexation of the metal (Gaspard et al., 1987), the nature and the rote of the 

reductant remains unclear. 

As bas been previously mentioned, unsubstituted phthalocyanines are extremely 

insoluble in most common solvents. In order to increase the solubility and to improve the 

physical, chemical and electronic properties of the phthalocyanine macrocycle, a 

seemingly endless number of functional groups and substitutions have been added to the 

phthalocyanine framework via covalent attachment to the bew.ene rings on the periphery 

of the macrocycle. Careful consideration of the functional groups added to the 

phthalocyanine can be used to fine-tune the properties of the macrocycle, leading to 

compounds with heightened characteristics for a given application. Simple functional 

groups such as alk:yl chains, higher order aromatics, ethers, amines, thiols, halides and 

various acidic groups have been used to improve the solubility and the characteristics of 

phthalocyanines. More exotic substituents including crown ethers, dendrimers, 

ferrocenes and tetrathiafulvalenes lend other properties to the macrocycle that may 

enhance their activity and utility in various applications. Polynuclear phthalocyanine 

systems have also been prepared in order to synthesize novel organic materials, new 

chemical catalysts and high temperature polymers. Reactions involving the preparation 

of ether, amine, thiol and carbon-carbon bonds have been employed along with countless 

66 



other possibilities in order to add a variety of subsûtuents and funcûonal groups to the 

phtbalocyanine framewod. Overall, tbis rich chemistry is the driving force behind the 

tremendous versaûlity of phtbalocyanines and their value in such a wide array of 

technological fields. 

Substitution onto a phtbalocyanine can basically be accomplished by one of two 

methods. The first involves direct substitution onto a pre~xisting phtbalocyanine 

macrocycle. An excellent example of tbis is the sulphonation of phtbalocyanines, wbich 

can be accomplished by heating a phtbalocyanine in oleum (Ali et al., 1988). Such harsh 

reaction conditions can result in substitution at any or ail of the available positions (see 

Figure 5.2), leading to a complex isomeric mixture and varying degrees of substitution. 

Though direct substitution is the preferred method for adding functionality to 

phthalocyanines in the colourant industry (Gregory, 1999; Gregory 2000), the resulting 

phtbalocyanine mixture lacks a distinct structure and isolation and purification of the 

desired phtbalocyanine product is extremely difficult and time-consuming. This greatly 

limits the utility of tbis methodology in applications calling for well-defined 

phthalocyanine structures. It should be noted however tbat p~xisting subsûtuted 

phtbalocyanines have been extensively used in the preparation of novel substituted 

phtbalocyanines by chemically modifying the existing functionality. An excellent 

example of such chemistry is the use of palladium-catalyzed reactions to prepare novel 

phtbalocyanine derivatives. For a complete review of the use of palladium-catalyzed 

reactions in the preparation of novel phtbalocyanine and porphyrin derivatives, please see 

Chapter 6 (Shannan W. S. and J. E. van Lier (2000) Use of palladium catalysis in the 

67 



synthesis of novel porphyrins and phthalocyanines, J. Porphyrins Phthalocyanines, 4, 

441-453). 

The second methodology involves the condensation of a substituted 

phthalocyanine precursor. This obviously leads to a far cleaner reaction, with the degree 

of substitution and the relative position of the substituents readily known from the nature 

of the substituted starting material. For instance, a monosubstituted precursor will yield a 

tetrasubstituted phtbalocyanine while a 4,5-disubstituted phthalonitrile will yield a 

2,3,9,I0,16,17,23,24-octasubstituted phthalocyanine (see Chapter 5, Figure 2 for 

numbering scheme used in phtbalocyanine nomenclature). However, tbis method still 

leads to constitutional isomers when it involves asymmetrically substituted 

phtbalocyanine precursors (see Figure 5.3 for the constitutional isomers obtained in the 

synthesis of a tetrasubstituted phtbalocyanine from a monosubstituted precursor). While 

it is theoretically possible to separate these isomers due to their differing geometries, it 

bas only been accomplished used specialized HPLC columns and the best results often 

only lead to enriched isomeric fractions (Hanack et al., 1993a, Haoack et al., 1993b; 

Haoack et al., 1994; Sommerauer et al., 1996; Schmid et al., 1996). While isomeric 

mixtures are suitable for most applications, high tech fields require phtbalocyanines with 

distinct structural features and thus require synthetic methods that can lead to the 

preparation of single phtbalocyanine isomers. Nonetbeless, the methodology bas been 

used extensively for the preparation of phthalocyanines bearing novel substituents and 

extensive chemical modification of phtbalocyanine precursors bas been undertake to 

ultimately prepare novel phtbalocyanines and phthalocyanine derivatives. For a complete 

review of the preparation of substituted phthalocyanine precursors and tbeir use in the 
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preparation of phthalocyanines, please see Chapter 5 (Sharman W. S. and J. E. van Lier 

(2002) "Synthesis of Phthalocyanine Precursors" in The Porphyrin Handbook Vol. 15 

Phthalocyanine: Synthesis (eds. K. M. Kadish, K. M. Smith and R. Guilard), London & 

Amsterdam: Elsevier Publishers, pp. 1-60). 
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1.8 Svnthesis of Asymm.etrically Substituted Phthalocyanines 

Further complicating matters is the preparatîon of asymmetrically substituted 

phthalocyanines, especially since these phthalocyanine derivatives have important utility 

in fields such as photodynamic therapy and non-linear optics. Such asymmetrically 

substituted phthalocyanines are generally prepared by a statistical mixed condensation 

using two differently substitttted phthalocyanine precursors (Schmid et al., 1996). This 

method can result in reaction mixtures enriched with the desired substitution pattern due 

to the different reactivities of the differently substituted precursors. In most cases, by 

experimentation, the necessary proportions of the individual precursors and the optimal 

reaction conditions can be detennined in order to obtain predominately the desired 

asymmetrically substituted phthalocyanine. However, a mixed condensation still leads to 

six differently substituted phthalocyanine products (see Figure 5.4 for the six differently 

substituted phthalocyanines obtained by a mixed condensation using two differently 

substituted precursors ). Isolation of the desired product from such a mixture can be 

accomplished by extensive column and HPLC chromatography. Nonetheless, such 

isolation and purification is very tedious and the resulting product can still ultimately be 

contamination with the other substituted phthalocyanines. Clearly, the synthesis of 

asymmetrically substituted phthalocyanines via a mixed condensation lacks 

sophistication and new methods are needed to prepare phthalocyanines with exact 

compositions and pure isomeric distributions. 

Due to the need for isomerically pure phthalocyanines and for asymmetrically 

substituted phthalocyanines with precise degrees of substitution, a number of novel 

synthetic approaches have been investigated. One of these methods actually involves 
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avoiding the problems inherent in preparing substituted phthalocyanines and uses the 

axial ligand on the central metal ion of the phthalocyanine complex to impart the desired 

physical and chemical properties to the molecule. In doing this, the phthalocyanine 

1 0-S~N-
f 1 

OH 

Figure 1.20. Pc4 

macrocycle itself can be left unsubstituted. Ful1hermore, covalently attaching a bulky 

axial ligand to the phthalocyanine will help prevent aggregation by sterically inhibiting 

aromatic stacking. Pc4, an unsubstituted silicon phthalocyanine with an alkylsilyl axial 

ligand bearing a terminal amine group (see Figure 1.20) (Oleinick et al., 1993; Rywkin et 

al., 1994) is one of the more promising phthalocyanines for photodynamic therapy and 

this dye entered clinical trials in 2001 (Allen et al., 2001). A number of other 

phthalocyanines with novel axial ligands have also been prepared in view of obtaining 
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molecules with useful properties for various diverse applications (Cbarlesworth et al., 

1994; He et al., 1997; Vollano et al., 1997; Brewis et al., 1998; Decréau et al., 2000; 

Kobayashi et al., 2000; O'Flaherty et al., 2003; Dudnik et al., 2004). However, while 

preventing aggregation and the inherent molecular interactions is important in some 

cases, the ability of phthalocyanines to staclc and interact is vital for other applications. 

In light of tbis, while the use of specifica.lly designed axial ligands enhances the utility of 

phthalocyanines for some uses, it greatly decreases or eliminates the utility in others. As 

a result, the use of an axial ligand to increase solubility and to enhance certain properties 

of phthalocyanines bas only limited potential. 

The overall synthetic mechanism of phtbalocyanine formation is essentially 

extremely symmetric, with the cyclotetramerization reaction occurring from any number 

of possible orientations. This symmetry results in the constitutional isomers observed 

during the preparation of tetrasubstituted phthalocyanines as the orientation of the 

substituents during phtbalocyanine formation is not affected significantly by steric or 

electronic factors. Attempts have been undertaken to prepare novel phthalocyanine 

precursors that will break tbis symmetry and force the condensation reaction to proceed 

in only one possible orientation, thus leading to the exclusive preparation of a single 

isomer or substitution pattern. 

lt bas been demonstrated that ditbiopbthaJimides undergo the 

cyclotetramerization reaction with 1,3-diiminoisoindolines under relatively mild 

conditions (temperatures around 80-90°C) (Leznoff et al., 1987). At these reaction 

temperatures, neither the 1,3-diiminoisoindolines nor the ditbiopbtbalimides sbould self-

condense. Thus, due to the lower reaction temperature employed, tbis reaction should 
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Figure 1.21. Attempted synthesis of pure oppositely disubstituted phthalocyanines using 

dithiophthalimides 

proceed by the selective displacement of a thiol group of the dithiophthalimide by an 

imino group of the 1,3-diiminoisoindoline. Attempts have been undertake to use this 

methodology to prepare pure oppositely disubstituted phthalocyanines wherein one of the 

two precursors bearing a substituents. The dithiophthalimide (such as 1-H-isoindole-

l,3(2H)-dithione or 5-neopentoxy-1-H-isoindole-1,3(2H)-dithione) were readily prepared 

from the corresponding phthalimides by reaction with Lawesson's reagent (see Chapter 5, 

Figure 70). However, all possible substitution patterns were obtained when 5-

neopentoxy-1-H-isoindole-l ,3(2H)-dithione was reacted with unsubstituted 1,3-

diiminoisoindoline (Figure 1.21 ). From this, it was proposed that the first step in this 

synthesis of phthalocyanines would lead to the formation of an intermediate trimeric 

species (see Figure 1.22). ldeally this intermediate would reaction with a second 

dithiophthalimide to give the desired oppositely disubstituted phthalocyanine. However, 

while the initiation step of phthalocyanine formation bas been lowered by using the 

dithiophthalimide precursor, the propagation step remains rapid at these modest 

temperatures and this trimeric species may react with another molecule of the 

unsubstituted 1,3-diiminoisoindoline to give the corresponding monosubstituted 
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Figure 1.22. Intermediate tri.merle and dimerie species proposed for reaction of 1,3-

diiminoisoindolines and dithiophthalimides 

macrocycle. Furthermore, it is theoriz.ed tbat this tri.merle species may undergo N-H 

tautomerle shifts with the resulting tri.merle intermediate reacting with the 1,3-

diiminoisoindoline to give two dimerle species (see Figure 1.22). These dimerle species 

may react with other dimerie species to give the corresponding unsubstituted or 

• disubstituted phthalocyanines or undergo further reaction with 1,3-diminoisoindoline to 

give the corresponding monomerlc substituted 1-3-diiminoisoindolines. The presence of 
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these dimeric and substituted 1,3-diiminoisoindolines in the reaction mixture are the 

reason that the reaction proceeds to give ail possible substitution patterns. 

Along the same line of reason as the above technique in phthalocyanine synthesis, 

the condensation of 1,3,3-trichloroisoindolines with 1,3-<füminoisoindolines should Iead 

to the preparation of pure oppositely disubstituted phthalocyanines. In fact, reacting 

1,3,3-trichloroisoindoline with 5-phenyl-1,3-diiminoisoindoline at room temperature in 

the presence of triethylamine (an organic base) and hydroquinone (a reducing agent) lead 

to exclusive formation of the desired 2,16(17)-diphenylphthalocyanine in a 7% yield 

(Idelson, 1977). When the reaction temperature is raised, however, the reaction leads to a 

mixture of substituted products (Wimmer, 1969). The basis behind the controlled 

reaction of 1,3,3-trichloroisoindolines with 1,3-diiminoisoindolines lies with the lower 

reaction temperatures employed along with the steric hindrance in the 1,3,3-

trichloroisoindolines (Young et al., 1990; Stihler et al., 1997; Hanack et al., 2000). At the 

lower reaction temperatures employed, the diiminoisoindolines do not self-condense 

while the steric hindrance in the 1,3,3-trichloroisoindolines prevent self-condensation 

despite the increased reactivity of these precursors. Thus, only condensation between the 

1,3-diiminoisoindolines and the 1,3,3-trichloroisoindolines is possible, leading to pure 

trans disubstituted products. Note that in some cases, trisubstituted products have been 

obtained (W"unmer, 1969; Stihler et al., 1997; Hanack et al., 2000), most likely the result 

of the presence of small traces of water in the reaction system, which would hydrolyze 

the 1,3,3-trichloroisoindoline and upset the stoichiometric balance of the two precursors. 

It should however be noted that 1,3,3-trichloroisoindolines are generally extremely 

reactive and highly unstable, thus greatly limiting their overall synthetic utility. 
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Furtb.ermore, the harsh reaction conditions used in their synthesis (see Chapter 5, Figure 

68) restricts the functional groups that can be included in these precursors. 

The condensation reaction of substituted iminothioamide8 may lead to the 

production of a single isomer by controlled reaction of the thiol group of one precursor 

with the imino group of an adjacent precursor. Such iminothioamides (l-imino-3-

alkylthioisoindolines) are prepared by reacting the corresponding substituted 

phthalonitrile with hydrogen sulfide followed by methylation with methyl iodide 

(Greenberg et al., 1988) (see Figure 5.69). S-methylation is necessary in order for these 

substituted phthalocyanine precursor to undergo the cyclotetrameri7.ation reaction to gi.ve 

the desired phthalocyanines. The unsubstituted l-imino-3-methylthioisoindoline readily 

condensed to the corresponding phthalocyanines at room temperature. Unfortunately, 

while the resulting l-imino-3-methylthio-6-neopentoxyisoindoline and l-imino-3-

methylthio-5-neopentoxyisoindoline were readily isolated and separated by column 

chromatography, these unique phthalocyanine precursors self-condensed at room 

temperature to gi.ve a mixture of constitutional isomers. However, when small-scale 

condensation reaction was carried out at -20°C in DMF using zinc acetate as a metal ion 

source, a single isomer was obtained (Figure l.23) (Greenberg et al., 1988). 

Interestingly, increasing the scale of this reaction again gave a mixture of structural 

isomers. Furthermore, poor yields are obtained due to extensive by-product formation. It 

is unclear why condensation of l-imino-3-methylthio-6-neopentoxyisoindoline or l-

imino-3-methylthio-5-neopentoxyisoindoline resulted in a mixture of isomers. However, 

it should be noted that the mixture of isomers obtained was not identical to the statistical 

distribution of isomers previously observed for the same phthalocyanine product 
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Figure 1.23. Synthesis ofpme 2,9,16,23-tetrasubstituted phthalocyanines using 1-imino-

3-methylthioisoindolines 

synthesized from the corresponding substituted 1,3-diiminoisoindoline (Marcuccîo et al., 

1985). This suggests that a different reaction pathway is involved for these two 

structurally similar phthalocyanine precursors. 

For a thorough review of the synthesis and use of these novel designed 

phthalocyanine precursors, please see Chapter 5 (Sharman W. S. and J. E. van Lier 

(2002) "Synthesis of Phthalocyanine Precursors" in The Porphyrin Handbook. Vol. 15 

Phthalocyanine: Synthesis ( eds. K. M. Kadish, K. M. Smith and R. Guilard), London & 

Amsterdam: Elsevier Publishers, pp. 1-60). 

In order to prepare 3: 1 asymmetrically substituted phthalocyanines, the use of 

polymer supports has been investigated. As would be expected, this methodology 
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involves the covalent attacbment of a phthalocyanine precursor (typically a 1,3-

diiminoisoindoline or a pbthalonitrile) to a solid phase polymer support. This precursor 

is then reacted with a large excess of a differently substituted precursor in solution. The 

desired 3:1 asymmetrically substituted pbthalocyanine is then readily separated from the 

symmetrically substituted phthalocyanine tbat is produced due to the self-condensation of 

the unbound precursor by filtration as the polymer-bound phthalocyanine product 

remains suspended in the solution. The desired phtbalocyanine can then be isolated by 

cleaving off the solid support. This methodology bas been successively employed to 

prepare a number of 3: 1 asymmetrically substituted phthalocyanines either using 

polymer-bound trityl cbloride derived from a 1 % divinylbell7.ene-co-styrene copolymer 

(Hall et al., 1982; Lemoff et al., 1982; Lemoff et al., 1991) or silica modified by 

aminopropyl groups (Hirth et al., 1997). While this methodology produces the desired 

phthalocyanine product exclusively and in good yields, there are several limitations. It 

can only be used to prepare 3: 1 asymmetrically substituted pbthalocyanines. 

Furthermore, the functional group on the single phthalocyanine precursor must be 

capable of being chemically attached to the polymer support. The reaction is achieved 

using a large excess of the unbound precursor, which is essentially lost because it self-

condenses under the reaction conditions employed to give the corresponding symmetrical 

tetrasubstituted macrocycle. Finally, white yields are often extremely good, only small 

amounts of phtbalocyanine can be prepared due to the low binding capacity of the 

polymeric carrier and the inherent limitations of solid phase chemistry. Thus, white 

smalt scale reactions work very well, the polymer support method is not appropriate for 

larger scale synthesis. 
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For a thorough review of the synthesis and use of these polymer-bound 

phthalocyanine precursors, please see Chapter 5 (Sbannan W. S. and J. E. van Lier 

(2002) "Synthesis of Phthalocyanine Precursors" in The Porphyrin Handbook Vol. 15 

Phthalocyanine: Synthesis (eds. K. M. Kadisb, K. M. Smith and R. Guilard), London & 

Amsterdam: Elsevier Publishers, pp. 1-60). 
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1.9 Boron Subphthalocvanines 

One final method of preparing 3: 1 asymmetrically substituted phtbalocyanines is 

the use of boron subphtbalocyanines as a template. The preorgani7.8tion of three 

isoindoline units is boron subphtbalocyanines make them extremely attractive reagents 

for the synthesis of asymmetrically substituted phtbalocyanines. A simple ring 

enlargement reaction with various 1 ,3-diiminoisoindolines should readily yield the 

desired 3: 1 asymmetrically substituted phtbalocyanine. 

Boron subphthalocyanines themselves are the lower homologs of phthalocyanines 

with the smaller ionic radius of the boron central metal ion allowing formation of a 

tripyrrolic macrocyclic system (see Figure 1.24). The loss of an isoindoline unit as 

compared to phthalocyanines results in a hypsochromic shift in the Q band absorption to 

Figure 1.24. General structure of a boron subphtbalocyanine 

around 560 nm, giving solutions of boron subphtbalocyanines a distinct red/purple 

colour. However, despite the loss of the isoindoline unit, the inner macrocyclic system of 

boron subphthalocyanines is still aromatic in nature, obeying Huckel's 4N+2 rule for 
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aromati.city as there are 14 1t electrons delocalized witbin the tripyrrolic core. 

Importantly, while Pcs are extremely stable molecules exhibiting a higb degree of 

planarity in their central aromatic core, subPcs have a cone-shaped structure, with the 

boron coordinated in a tetrahedral geometry with a single axial ligan~ typically a halide 

that is present during their synthesis. This cone-shaped structure is clearly evident in the 

X-ray crystal structure (Rauscbnabel et al., 1995; Geyer et al., 1996; Sastre et al., 1996; 

Kobayashi, 1999; Claessens et al., 2002) and bas been confirmed by sc.anning tunneling 

microscopy using chloro[tri-tert-butyl-subphthalocyaninato]boron(Ill) on a Au(ll l) 

surface (Suzuki et al., 2003) and quantum mechanical calculations at semiempirical and 

ab initio levels (Ferro et al., 2000). 

The boron in these complexes is in the +3 oxidation state and therefore is 

coordinatively unsaturated. As a result, boron subphthalocyanines have an <J-bonded 

axial ligand. In general, this axial ligand is a halide ion released during 

subphthalocyanine formation. However, when the boron reagent employed contains a 

phenyl group, such as PhBCh or Ph3B, the phenyl group becomes axially coordinated to 

the boron atom. The ability of the x orbitais of the phenyl group to overlap the x--0riented 

d--0rbitals of the boron allows for stabilizing dative backbonding, leading to stronger 

coordination of the phenyl group. Boron subphthalocyanines readily undergo axial 

ligand exchange reactions with the halogen atom easily displaced by nucleophiles such as 

alcohols and silanols (Geyer et al., 1996; del Rey et al., 2000; Zyskowski et al., 2000; 

Claessens et al., 2002). Peripheral donors groups increase the rate and the yield of axial 

ligand exchange, presumably due to the resulting stabili7.ation of the positive charge that 

temporarily forms on the boron atom (Claessens et al., 2002). 
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Due to their unique chemical and physical properties, the lack of a center of 

symmetry in these macrocyclic molecules along with the delocalized nature of this 14 11:-

electron aromatic system make these compounds extremely attractive chemical moieties. 

In particular, their extensively delocalized 14-11: eleciron system and their cone~shaped 

structure have led to investigations in the utility of subPcs in non~linear optical 

applications (Diaz-Garcia et al., 1995; Sastre et al., 1996; Rojo et al., 1997; del Rey et al., 

1998; Kang et al., 1999; de la Torre et al., 2004; Claessens et al., 2005). The cone-shape 

of boron subphthalocyanines results in non-centrosymmetry and a strong molecular 

dipole, ideal properties for second harmonie generation. Boron subphthalocyanines with 

long thioalkyl chains have been prepared and exbibit hexagonal columnar mesophases, 

potentially adding value to these compounds in molecular devices (Kang et al., 1999). In 

addition to utility in non-linear optical applications, the intense reddish colour of boron 

subphthalocyanines has lead to investigations in their use as dyes and pigments (Nohr et 

al., 2002) while their similarities with phthalocyanines bas resulted in the use of 

subphthalocyanines in organic photoconductors (Reynolds et al., 1994) and as an optical 

recording medium for an optical data memory of the DVD-R type (.Zafirov et al., 2002). 

Significant research has also been undertaken in the preparation, properties and utility of 

subphthalocyanine-fullerene dyads which have unique photophysical properties and 

photoinduced energy- and electron-transfer events (Gonzalez-Rodriguez et al., 2002; 

Claessens et al., 2004; Gonzalez-Rodriguez et al., 2004; Gonzalez-Rodriguez et al., 2005; 

Iglesias et al., 2005). 

Boron subphthalocyanines were first prepared serendipitously during attempts to 

prepare boron phthalocyanine by the reaction of phthalonitrile with condensed gaseous 
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boron trichloride at 250°C (Meller et al., 1972). More recently, boron 

subphthalocyanines are typically prepared by a cyclotrimeri7.ation reaction using 

commercially available solutions of boron trihalides. The use of boron trihalides 

however may lead to halogenation of the periphery of the subphthalocyanine macrocycle 

(Dabak et al., 1994; Hanack et al., 1994; Weitemeyer et al., 1996; Kobayashi, 1999; 

Claessens et al., 2002) since halogen is released during subphthalocyanine formation and 

electronic aromatic substitution reactions with balogen are known to be catalyzed by 

boron tribalides (March, 1992). ln addition, a significant number of functional groups are 

not compatible with the strong Lewis acidity of boron tribalides, lim.iting the possible 

substituents on subphthalocyaniries formed using these boron sources. Other boron 

sources such as trialkylboron and triphenylboron avoid these disadvantages (Hanack et 

al., 1994; Rauschnabel et al., 1995; Geyer et al., 1996; Claessens et al., 2002). However, 

such boron sources are much lesser reaction, require an organic base such as DBU or a 

super base and give only low yields of the desired product Overa.U~ the reactivity of 

trisubstituted boron compounds towards phthalonitriles follows the order B( alkyl)3 < 

BPh3 < Bf3 < BCh < BBr3, which mimics the Lewis acidity of these compounds 

(Claessens et al., 2002). Despite the increased reaction of BBr3 and its commercial 

availability as solutions in dichloromethane, heptane or hexanes, BCh is by far the most 

commonly reported boron reagent employed for subphthalocyanine synthesis. lbis is 

primarily due the instability of bromosubphthalocyanines with respect to the bromine 

axial ligand which makes purification and characterization somewhat tedious. It has been 

found that dimethyl sulfide complexes with boron trichloride may be employed as a 

boron source for subphthalocyanine synthesis, with smoother reaction conditions and 
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greater compatibility with various functional groups (Claessens et al., 2002). 

Unfortunately, yields are lower using tbis methodology. 

When boron subphtbalocyanines are prepared from asymmetrically 4-substituted 

phtbalonitriles, a mixture of C3 and C1 constitutional isomers is obtained, generally 

following a statistical distribution (1 :3 respectively) without any steric effects from the 

substituents. This statistical distribution is not observed for 3-substituted phthalonitriles, 

where the C3 is predominately obtained due to steric e:ffects in the C1 isomer (Claessens et 

al., 2000). Overall, the C3 and C1 structural isomers have been separated using 

preparative HPLC (Hanack et al., 1994) and column chromatography on silica gel 

(Claessens et al., 2000a). F.ach of these constitutional isomers is in fact a racemic 

mixture of enantiomers, which have also been resolved (Claessens et al., 2000c; 

Kobayashi, 2001). Very few organic compounds with C3 symmetry have been obtained 

in optically active forms and the resolution of an aromatic chiral C3 molecule has only 

been described for boron subphtbalocyanines (Claessens et al., 2002). Such high-

symmetry chiral molecules are of special interest in the investigation of the molecular 

origin of optical activity. 

With the unique physical and chemical properties of boron subphtbalocyanines 

and their potential utility in fields such as non-linear optics, numerous 

subphthalocyanines bearing di:fferent substituents and axial ligands have been prepared 

(Dabak et al., 1994; Geyer et al., 1996; del Rey et al., 1997; Kudrevich et al., 1997; del 

Rey et al., 1998; Kipp et al., 1998; Kobayshi, 1999; Claessens et al., 2000; del Rey et al., 

2000; Zyskowski et al., 2000; Cao et al., 2002; Claessens et al., 2002; Ohno-Okumura et 

al., 2002; Claessens et al., 2005). The periphery of subphthalocyanines has also been 
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modified following subphthalocyanine formation in order to alter the properties of the 

macrocycle (del Rey et al., 1997; Kudrevich et al., 1997). In addition, asymmetrically 

substituted boron subphthalocyanines have been prepared by a mixed condensation of 

two differently substituted phtbalonitrile derivatives (Ali et al., 1999; Stork et al., 1999; 

Claessens et al., 2000; Zyskowski et al., 2000). Boron suba7.aporpbyrins and boron 

subnaphthalocyanines have also been prepared in low yields (Kobayashi, 1999; 

Kobayashi et al., 1999; Zyskowski et al., 2000; Nonell et al., 2000) and valuable 

properties have been identified in such compounds. For instance, unsubstituted boron 

subnaphthalocyanine, which absorbs at 663 nm, has a high triplet state yield and a long 

triplet state lifetime and can effectively generate singlet oxygen as a quantum yield 

significantly higher than phtbalocyanines (Nonell et al., 2000), resulting in potential as a 

photosensitizer for photodyoamic therapy. Various binuclear subphthalocyanines have 

also been prepared (Kobayashi, 1991; Geyer et al., 1996; Kobayashi, 1999; Kobayashi et 

al., 1999). 

It has been demonstrated that the less stable subPcs readily react with 1,3-

diiminoisoindolines in a ring enlargement reaction to yield 3: 1 asymmetrically substituted 

Pcs (Kobayashi et al., 1990; Kobayashi, 1999; Kobayashi et al., 1999). Such a reaction 

would appear to be ideal for the preparation of 3:1 asymmetrically substituted 

phthalocyanines with the preorga:niz.ation of three isoindoline units in the 

subphthalocyanines hopefully leading exclusively to the desired substituted product. 

Initial reactions of (tri-t-butyl)subphtbalocyanatoboron(lll) bromide with a series of 

diiminoisodoline derivatives of increasing aromaticity in a mixture of 
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Figure 1.25. Initial Kobayashi ring expansion reaction ofboron subphthalocyanines 

(Kobayashi et al., 1990) 
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N,N-dimethylsulfoxide and either of increasing aromaticity in a mixture of N,N-

dimethylsulfoxide and either chlorobemene, o-dichlorobeœene, 1-chloronaphthalene or 

2-chloronaphthalene at 80-90.C for 5-27 hours yielded the predicted 3:1 asymmetrically 

substituted phthalocyanine derivatives in yields of8-200.A. (Figure 1.25) (Kobayashi et al., 

1990). The yield of the desired phthalocyanine is good, even at 8-200.A., compared to 

other methodologies, especially since only the desired 3: l asymmetrically substituted 

phthalocyanine was obtained. Furthermore, isolation and purification of the desired 

phthalocyanine was easy, with a blue fraction for the 3:1 asymmetrically substituted 

phthalocyanine and a reddish purple fraction for unreacted subphthalocyanine. 

Intuitively, it seems logical that the reactivity of subPcs towards a ring expansion 

reaction would be based on the steric hindrance present in the distorted molecular 

structure, with the cone shaped structure of the molecule leading to ineffective p-orbita.l 

overlap and a loss of aromatic stabilization. However, molecular orbital calculations 

comparing the bond energies of subPc with MgPc showed little deviation in the 

calculated C-N bond energies between these two macrocycles. This implies that 

distortion energy is not a major cause of the ring expansion reactivity (K.obayashi et al., 

1999). Similar calculations suggest that the lack of electron-accepting orbitais in boron 

results in a lack of donor-acceptor stabilization in the B-N bonds, at least explaining in 

part the instability of subPcs. More importantly, however, these calculations indicates 

that the loss of the axial ligand alters the shape of the main skeleton of subPcs from a 

shuttlecock shaped to a more planar form, with a corresponding stabilization energy of 

apprQximately 1 OO kJ/mol. Furthermore, the resulting cationic charge on the central 

boron atom would be delocalized over the entire macrocycle. In light of this, it seems 
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likely that thè initial step in the ring expansion reaction consist of a dehalogenation 

reaction, with the corresponding loss of the axial ligand. 

Unfortunately, despite initial success in the preparation of novel 3:1 

asymmetrically substituted phthalocyanines (Kobayashi et al., 1990; Kasuga et al., 1992: 

Musluoglu et al., 1992; Dabak et al., 1994), the Kobayashi ring expansion reaction of 

boron subphthalocyanine may lead to a mixture of substituted phthalocyanines (Sastre et 

al., 1995; Weitemeyer et al., 1995; Geyer et al., 1996; Sastre et al., 1996). Due to these 

results, it has been suggested that the Kobayashi ring expansion reaction is not a 

concerted process and that it must be a multistep process which greatly depends on the 

R 

B 

+ 

R 

A 

c 

Figure 1.26. Proposed mecbanism for the Kobayashi ring expansion reaction (R1 

is the substituents on the 1,3-diirninoisoindoline and R1 are the substituents on the 

subphthalocyanine) (Sastre et al., 1995; Sastre et al., 1996) 
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nature of the substituents on the subphtbalocyanine, the reactivity of the 1,3-

diiminoisoindoline, the solvent and the reaction conditions employed. The following 

mechanism bas been proposed wherein the initial step involves reaction of the 

subphtbalocyanine with the 1,3-diiminoisoindoline to form an open four-membered 

intermediate A (Figure 1.26) (Sas1re et al., 1995; Sas1re et al., 1996). This intermediate 

can cyclize to the desired 3: 1 asymmetrically substituted phthalocyanine. However, 

intermediate A can also undergo cleavage, promoted either thermally or by interactions 

with another 1,3-diiminoisoindoline molecule or a solvent molecule to yield dimers B 

and C. While condensation of B and C also gives the desired 3: 1 asymmetrically 

substituted phthalocyanine, self-condensation of intermediates B or C lead to 

phtbalocyanines with undesirable substitution patterns. These dimers can also undergo 

cleavage to give reactive monomers which may condense with dimers B and C, with 

unreacted 1,3-diiminoisoindoline (which is present in a large excess) or with other 

monomers to give other undesirably substituted phthalocyanines. Finally, depending the 

reaction conditions employed and the reactivity of the 1,3-diiminoisoindoline, the 1,3-

diiminoisoindoline may self-condense to varying degrees, adding additional reactive 

monomer, dimers and trimers to the reaction mixture while also giving small amounts of 

its symmetrically substituted phthalocyanine derivative. 

In a series of experiments involving the reaction of unsubstituted boron 

subphthalocyanine bearing a chlorine axial ligand with 5-( 4-t-buylphenoxy)-1,3-

diiminoisoindoline and 5,6-dimethyl-1,3-diiminoisoindoline, it was observed that the 

subphthalocyanines was stable under the reaction conditions employed for the ring 

expansion reaction (2: 1 mixture of DMSO and chloronaphthalene, 80-90"C, 24 hours) 
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(Weitemeyer et al., 1995). The subphtbalocyanine did not react with the corresponding 

phtbalonitrile to give any phtbalocyanine product under these conditions. The 1,3-

diiminoisoindolines only self-condensed in trace amounts to give the corresponding 

symmetrically substituted phtbalocyanine. Finally, addition of weakly basic zinc acetate 

dihydrate to a solution of the subphthalocyanine lead to the formation of unsubstituted 

zinc phtbalocyanine while a si.milar addition of neutral zinc chloride gave no such 

reaction. Based on these results, it was assumed that the subphtbalocyanine does not 

undergo a concerted ring expansion reaction. The reaction involves a multistep process 

wherein the first step is theoriz.ed to be a base-catalyud decomposition of the 

subphtbalocyanine. This would be followed by condensation of the reactive :fragments 

produced by this decomposition with each other and with the 1,3-diiminoisoindolines. 

Such condensation and ring closure would result in the formation of the differently 

substituted phtbalocyanines observed. 

In a novel approach, the ring expansion reaction bas been carried out in the 

presence of a metal ion (zinc acetate dihydrate) as a template in order to provide 

selectivity for the formation of the desired 3: 1 asymmetrically substituted phtbalocyanine 

and to prepare the metallophthalocyanine in one step (Weitemeyer et al., 1995). In the 

presence of Zn +i, the reaction of the subphtbalocyanine with substituted 1,3-

diiminoisoindolines resulted in higher percentages of the symmetrically tetrasubstituted 

phthalocyanine, a result of the condensation of the 1,3-diiminoisoindolines in the 

presence of the metal ion. Using the corresponding substituted phthalonitrile, this 

reaction gave higher yields in terms of total phthalocyanine production but also relatively 
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Figure 1.27. Synthesis of novel asymmetrically substituted trisulphonated 

phthalocyanines using the Kobayashi ring expansion reaction (a: X= CH, R1 = t-butyl, 

R1 = H; b: X= CH, R1 = R1 = -CH=CH-CH=CH-; c: X= N, R1 = R1 = phenyl) 

(Kudrevich et al., 1996, Kudrevich et al, 1997; van Lier et al., 1999). 
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high amounts of the di-, tri- and tetrasubstituted phtbalocyanines. Formation of these 

undesirable substituted phthalocyanines could be reduced by the use of a catalytic amount 

of DBU and pentanol and by employing higher reaction temperatures, all of which 

promotes ring-opening of the subphthalocyanine. 

Despite the lack of general synthetic utility and the above proposed mechanisms, 

the Kobayashi ring expansion reaction bas been successfully employed to prepare certain 

3:1 asymmetrically substituted phtbalocyanines (Kobayashi et al., 1990; Kasuga et al., 

1992; Musluoglu et al., 1992: Dabak et al., 1994; Kudrevich et al., 1996; Kudrevich et 

al., 1997; Kobayashi, 1999; Kobayashi et al., 1999; van Lier et al., 1999). For instance, 

the Kobayashi ring expansion reaction involving trisulphonated boron 

subphtbalocyanines bas been used to prepare novel asymmetrically substituted 

trisulphonated zinc phtbalocyanines with utility as photosensitizer for photodynamic 

therapy (Kudrevich et al., 1996, Kudrevich et al., 1997, van Lier et al., 1999) (Figure 

1.27). In a number of these examples, lower reaction temperatures and shorter reaction 

times along with electron-withdrawing groups on the subphtbalocyanine and electron-

donating groups on the 1,3-diiminoisoindoline may allow the reaction to proceed 

exclusively to give the desired 3: 1 asymmetrically substituted phtbalocyanines. Thus, 

while the Kobayashi ring expansion reaction of boron subphthalocyanines may not be a 

universal methodology for the preparation of 3:1 asymmetrically substituted 

phthalocyanines, it bas proven to be still extremely useful and successful in specific 

cases. 
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1.10 Research Objectives 

In view of their known utility and improved physical, chemical and spectral 

properties, the preparation of asymmetrically substituted phthalocyanines remains a vital 

objective in phthalocyanine synthesis. While a number of synthetic strategies (such as 

statistical mixed condensations, the use of polymer supports, the use of specially 

designed phthalocyanines precursors and the use of boron subphthalocyanines as 

templates) have been employed, each of these methodologies encounters significant 

drawbacks that limit their universal applicability. Nonetheless, with the importance of 

asymmetrically substituted phthalocyanines in such technical fields as non-linear optics 

and photodynamic therapy, methodologies such as these continue to be investigated and 

modified in order to prepare these crucial phthalocyanine derivatives. 

The current research represents an extension of knowledge obtained in our lab 

concerning the use of certain boron subphthalocyanines in Kobayashi ring expansion 

reactions in order to prepare novel asymmetrically substituted phthalocyanines 

(Kudrevich et al., 1996, Kudrevich et al., 1997, van Lier et al., 1999) and the use of 

palladium-catalyzed reactions to modify the substituents on phthalocyanines and other 

photosensitizers in order to incorporate novel functional groups (Ali et al., 1994; 

Sharman et al., 1996; Ali et al., 1997; Tian et al., 2000; Khan et al., 2001; Khan et al., 

2003; Cauchon et al., 2005) ( also see Chapter 6). Halogenated boron subphthalocyanines 

were targeted as precursors for the synthesis of novel phthalocyanines. The 

corresponding Kobayashi ring expansion reaction of fluorinated boron 

subphthalocyanines would result in asymmetrically substituted phthalocyanines with 

important utility in photodynamic therapy in light of the heavy atom effect and the 
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established photodynamic efficiency of tluorinated photosensiti7.el'S as determined by our 

group (Allémann et al., 1995; Allémann et al., 1996; Boyle et al., 1996b; Allémann et al., 

1997; Bench et al., 2002). In the meanwhile, the well-established reactivity of aryl 

iodides and in particular iodinated phthalocyanines towards palladium-catalyzed cross-

coupling reactions (Ali et al., 1997) can be employed advantageously with iodinated 

phthalocyanines prepared by the Kobayashi ring expansion reaction of iodinated boron 

subphthalocyanines. Such reactions could be used in order to achieve the addition of 

novel functionality to asymmetrically substituted phthalocyanines. Of particular interest 

are novel asymmetrically substituted anionic and novel cationic water-soluble 

asymmetric phthalocyanines as these phthalocyanines would exhibit the amphiphilic 

character that has been shown to be advantageous for photosensiti7.el'S for photodynamic 

therapy (Paquette et al., 1991a; Allen et al., 1995; Margaron et al., 1996b; Kudrevich et 

al., 1997; Edrei et al., 1998; Allen et al., 2002; Cauchon et al., 2005). 
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Role of Activated Oxygen Species in Photodynamic Therapy 
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INTRODUCTION 

Photodynamic therapy (PDn finds its roots at the tum of the 

century when a young medical student found acridine orange killed 

paramecia upon exposure to sunlight.1 Subsequently a plethora of 

information concerning -the lethal effects of the combination of 

photosensitizers and light, both in vitro and in vivo, has been documented. 

Several reviews have recently been published outlining the clinicat aspects 

of PDT and the preclinical and clinical studies predominantly 

accomplished within the past 25 year period.2-7 This chapter outlined the 

basic principles of PDT using first and second generation photosensitizers. 

Attention will be given to their mode of action, either via singlet oxygen 

or other reactive oxygen species. 

Conventional cancer therapies include radiation and 

chemotherapies, surgery and a combination of any or ail of the above. 

The treatments themselves have important side effects, even life 

threatening. Consequently the development of an effective treatment that 

is more selective for diseased tissue is of utmost importance. 

PDT offers an alternative, less invasive treatment for such illnesses 

as psoriasis and several types of cancers. It involves the use of three basic 

components. First, a photosensitizer, a light absorbing molecule which is 

activated by the second element, light of a corresponding wavelength. 

Third, by definition, molecular oxygen is consumed during the 
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photochemical reaction to produce cytotoxic agents thus destroying 

neoplastic tissue. 

The traditional treatment protocol used in photodynamic therapy 

involves the intravenous injection of a photosensitizer. The 

photosensitizer is rapidly distributed throughout the body and experiences 

a differential upta.ke and/or retention time in tumor tissue such that, 

typically 48-72 hours post-injection, there is a marked increase in the 

photosensitizer concentration in the tumor as compared to surrounding 

normal tissue.2 Several explanations have been proposed as to why there 

is more or less selective upta.ke by the tumor of the photosensitizer. They 

include, lower intratumoral pH, increased phagocytosis, increased 

permeability of the tumor vasculature as well as reduced lymphatic 

drainage and an increased number of receptors on the cell membrane for 

cellular proteins (i.e. lipoproteins) which are able to target the 

photosensitizer. 3•
8
•
9 

Unlike laser surgery or psoralen UV-A treatment, PDT employs 

light with wavelengths typically 600-800 nm therefore not toxic as such. 

The photosensitizer alone is not able to generate cytotoxic agents hence 

following administration of the photosensitizer and localization in the 

malignant tumor, the beam of light can be directed to the tumor increasing 

the selectivity of the treatment. This is advantageous as it spares normal 

tissue which is not the case with conventional therapies. PDT offers 
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several advantages. It can be used in conjunction with other therapies, 

there is regeneration of healthy tissue following treatment and due to 

photosensitizer fluorescence, in vivo detection is possible providing a 

means of monitoring photosensitizer concentration and location. 

PHOTOSENSITIZERS 

There are hundreds of naturally occurring and synthetic dyes 

which can function as photosensitizers The most commonly used are first 

generation hematoporphyrin derivatives, most notably Photofrin II TM (Pli) 

(Figure 1 ). Photofrin II TM is obtained by treating hematoporphyrin (Hp) 

with 5% sulfuric acid and acetic acid at room temperature.10 Subsequently 

the mixture is treated with aqueous base then neutralized yielding a 

complex mixture of dimers and oligomers. The active compound being 

either an ether or an ester derivative. Purification of the most active 

compounds via HPLC leads to Photofrin IITM. PII has been accepted in 

several countries including Canada, France, Germany, Japan, the 

Netherlands and the United States.4 It is used for the treatment of 

advanced stage eosophageal, both early and advanced stage lung cancer 

and gastric cancers as well as cervical cancer and dysplasia. In addition it 

is used for the prophylactic treatment of bladder cancer. (See Dougherty 

et. al. 1998 for a complete review of clinical trials). Treatment ofvarious 

other cancers are being thoroughly investigated using PII in the hopes of 
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N=Oto7 

Figure 1. Photofrin Il structure where N is from 0 to 7 repeating units. 
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licensing. Among them are early stage eosophageal cancer, head and neck 

cancers and superficial bladder cancer.4 

Regardless of the success of Pli, it has many important 

drawbacks.2•11 The first being it is not a pure substance but a poorly 

reproducible mixture which varies with different preparations and storage 

times. It has poor absorption at 630 nm (molar extinction coefficient 1t:1 103 

~1 cm-1). Tissue transmittance of light at this wavelength is minimal thus 

limiting the treatment to tumors at a depth of 5 mm or less. There is 

nonspecific accumulation of Pli in various organs with only 0.1-3% of the 

injected dose retained by the malignant tissue. Lastly, Pli is retained by 

cutaneous tissue for up to 2 months post PDT causing skin 

photosensitivity therefore the patient must avoid bright sunlight.6•
10 With 

that said, the search for the ideal photosensitizer has led to second 

generation photosensitizers in clinical trials. 

Most importantly, the photosensitizer should be non-toxic with 

minimal systemic photosensitivity especially cutaneous. ldeally, the 

photosensitizer should absorb in the red or near infra-red (600-1000 nm) 

spectrum thus having enough energy to produce long lived triplet states so 

as to generate cytotoxic species usually believed to be singlet oxygen. (see 

below). Light at a longer wavelength also allows for almost double the 

tissue penetration depth as compared to Pli. There should be selective 

retention in tumor tissue to neighbouring healthy tissue. For convenience, 
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the photosensitizer should fluoresce to allow for visualization. Using 

fluorescent microscopy, the dye can be followed to detennine sub-cellular 

targets. The mitochondria, lysosomes, plasma membrane, tumor cell 

nuclei and tumor vascul~ture have ail been identified as important POT 

targets depending on which photosensitizer is employed. Thus the 

fluorescence is a useful too in drug development. Lastly, a defined 

chemical composition is beneficial, preferably water soluble to avoid the 

need for emulsifiers and organic solvents for solubiliz.ation and 

delivery. 10
•
12 

Various second generation photosensitizers (Figure 2) have entered 

into phase l/II and Il/III clinical trials. One such sensitizers is the very 

active cblorin, tetra (m- hydroxyphenyl) chlorin, mTHPC, having the 

greatest potential. It is now in clinical trials for head and neck cancers 

under the commercial name Temoporfin. It is activated at a number of 

wavelengths, 514 nm and 652 nm. lt is very potent at a dose of 0.1 mg per 

kg of body weight and light doses as low as 10 J cm-2 for superficial 

esophagus cancers and Barrett's esophagus. As it is so potentat 652 nm, 

there is the option of illuminating at 514 nm where the product has a 

smaller extinction coefficient yet e:fficacy is not sacrificed_ A potential 

drawback is that mTHPC has prolonged skin photosensitivity of about 6 

weeks. 10
'
13 
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Figure 2. Second generation photosensitizers. 
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Subsequently NPe6, mono-L-aspartyl chlorin e6 is udergoing 

phase 1/11 trials for endobronchial lung cancer in Japan and the U.S. Npe6 

is very hydrophilic and is therefore rapidly cleared from the blood. lt is 

only effective as a photosensitizer if it is irradiated within 2 hours of 

injection when serum levels are at their peak. Limited skin 

photosensitivity is experiencd.2•
4 

Benzoporphyrin derivative mono acid ring A (BPD-MA) has been 

in phase 1/11 trials for cutaneous tumors such as metastatic breast cancer 

and basal cell carcinoma. It is a lipophilic photosensitizer with a strong 

absorption maximum at 690 nm. BPD-MA rapidly localizes in neoplastic 

tissue therefore 3 hours post injection the light is administered on the 

tumor as opposed to 48-72 hours post injection as is the case for Pli. With 

its rapid body clearance, BPD-MA causes mild cutaneous photosensitivity 

for only 3-5 days.4'14'
15 

Tin etiopurpin (SnET2) is under going phase Il trials in the United 

States for cutaneous breast cancer and Kaposi's sarcoma for HIV 

patients.16 Whereas lutetium texaphrin (Lu•tex) is in phase li/Ill trials for 

skin cancers. Lu-tex is one of the sensitizers with higher tumor to tissue 

ratios.4 

A novel PDT method is the employment of endogerious 

photosensitization. 5-aminolevulinic acid (ALA) is a precusor in the berne 

pathway. 17•
18 ALA formation is the rate limiting step in the formation of 
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protoporphyrin IX (PplX) and is forme<! from glycine and succinyl CoA. 

Excess exogenous ALA can cause an accumulation of PpIX in the tissue 

where ALA was applied. lt has been suggested that cells with higher 

turnover rates produce more PpIX possibly due to decreased 

ferrochelatase activity. In addition, it has been postulatoo that tumor cells 

require more iron thus limiting the amount available to proceed with the 

pathway to heme. The topical application of ALA to acinic keratoses, 

squamous cell carcinoma and superficial basal cell carcinoma induces a 

favourable biological response post illumination. ALA or its methyester 

give excellent results when applied topically yet show systemic toxicity 

when administered orally or intravenous injection. lt is a noninvasive and 

convenient treatment and merits further investigation for an.y diseases 

dealing with epithelial surfaces, oral, vaginal, rectal, gastric, respira.tory 

mucosaetc ... 

Phthalocyanines (Pc) (Figure 3)are another second generation class 

of photosensitizers. •9-
21 They are azoporphyrin derivatives With four 

pyrrole subunits fused together with nitrogen atoms. The macrocycle is 

(fxtended by four benzo rings on the pyrrole units. These modifications 

lead to enhanced absorption in the far red region of the spectrum as 

compared to Pli. In addition, metallo-Pcs can be prepared by chelating 

one of several possible metal cations with the four central benzisoindole 

nitrogens to form stable complexes easily purified. Pcs are available for 
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Phthalocyaniie 

Figure 3. Phthalocyanine structure. 
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several modifications either by substitution on the benzene rings, for 

example the addition of sulphono and phosphono groups or by modifying 

the axial ligand. Pcs have attractive photophysical properties. They 

absorb strongly (E = 105 M"1 cm"1) in the far red (680 nm) where tissue 

penetration is optimal. These photochemically stable compounds have 

been used for a number of in vitro and in vivo studies to evaluate their 

potential usefulness as anti-cancer agents. Both an aluminum and a zinc 

sulfonated phthalocyanine are in phase 1/11 clinical trials for early 

tracheobronchial, oesophagus and digestive tract cancers.22 

MODE OF ACTION 

Typically the photosensitizer is systemically administered and 

allowed to localized in the tumor. At this time, the photosensitizer is 

illuminated with light of the appropriate wavelength, exciting the 

photosensitizer to a higher energy state and ultimately leading to the 

production of cytotoxic species, resulting in cell death and tumor necrosis. 

The underlying mechanism behind the cytotoxic effects displayed during 

photodynamic therapy on the cellular level are described schematically 

below: 

Sen 4- Sen* ~ Cytotoxic Agents~ Biological Damage~ Cell Death 

While the first and last steps are indeed well known as it is clear that 

excitation of the photosensitizer will ultimately lead to cell death, the 

intervening steps are not so clearly understood and are most often assumed 
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relying on conjecture and indirect evidence. However, the overall 

mechanism involved in photodynamic therapy can easily be divided into 

two distinct and well-defined steps. The photophysical and photochemical 

properties of the photosensitizer and its ability to generate cytotoxic agents 

govem the first. The second results from the biological response of the 

cell towards the cytotoxic agents produced. 

The initial photophysical processes experienced by the 

photosensitizer upon illumination have been extensively examined for a 

wide range of potential compounds. Upon illumination with light of the 

appropriate energy, ground state sensitizer (So) is promoted to its short-

lived excited singlet state (81) (Figure 4). The lifetime of this excited 

singlet state (îs) is generally in the nanosecond range,2 which is far too 

short to allow for significant interaction with the surrounding molecules. 

As such, it is generally accepted that photodynamic damage induced by 

the excited singlet state of the sensitizer is negligible. The excited singlet 

state can dissipate its energy via radiative emission of its excitation energy 

(fluorescence) or non-radiative decay (internai conversion). Internai 

conversion entails the lose of energy via collisions with solvent molecules, 

resulting in the generation of heat. It has been suggested that 

photothennal effects caused by internal conversion are one of the most 

important mechanisms for photosensitized cell killing.23 For instance, 

Davila et al. Estimated that illumination of a cell stained with 
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Figure 4. Jablonski Diagram illustrating some of the physical processes 

that can occur after a molecule absorbs a photon, excited state levels and 

transitions.sois the ground electronic state of the molecule. SI and Tl are 

the lowest excited singlet and triplet states, respectively. Straight arrows 

represent processes involving photons and wavy arrows represent 

radiationless transitions. (A), absorption; (F), fluorescence; (P), 

phosphorescence; (IC), internai conversion; (ISC), intersystem crossing; 

(R), vibrational and rotational relaxation. 

D. Phillips, Progress Reaction Kinetics 22, 175 (1997). 
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Merocyanine 540, a polymethine dye, could increase the internai 

temperature of the cell by about 12°C/min. provided the cell membrane 

functioned as an adiabatic sink.24 On the other hand, photosensitizer 

fluorescence can be used to monitor compound distribution in tissues both 

in vitro and in vivo. 

Despite these important factors, the most important method of 

dissipating excited photosensitizer singlet state energy in terms of 

photodynamic therapy is non-radiative intersystem crossing to populate 

the much longer-lived triplet state (T1). Lifetimes for longer-lived triplet 

species are typically in the microsecond to millisecond range since the T 1 

~ S0 transition is spin-forbidden.25 This allows for sufficient time for 

interaction between the excited photosensitizer and surrounding 

molecules. Accordingly, it is believed tbat excited triplet st.ates of the 

photosensitizer are responsible for the generation of the cytotoxic species 

produced during l>DT. In fact, Takemura et al. have shown that the 

phototoxic effects of a given porphyrin are significantly enhanced as its 

triplet st.ate quantum yield and lifetime is increased.26 In addition, 

phthalocyanines containing paramagnetic central metal ions (Cu2+, Fe2+, 

Ni2+), which greatly shorten the lifetime of the triplet st.ate, are far less 

effective photosensitizers as compared to phthalocyanines chelating 

diamagnetic metal ions (AP+, Ga3+, Zn2+), whose triplet lifetimes are much 

longer.19 Finally, it has been well established that addition ofheavy atoms 
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such as bromine or chlorine to a photosensitizer improves it 

photosensitizing activity by improving triplet state quantum yields.27 For 

instance, the triplet yield of rhodamine dyes has been greatly enhanced by 

the addition of bromine to the chromophore. 28 This is due to the internai 

heavy atom effect which increases spin--0rbital coupling and facilitates 

intersystem crossing, thus allowing otherwise forbidden changes in the 

spin state (S1-+ T1). Typical photosensitizers being examined for use in 

photodynamic therapy have triplet state quantum yields ( cj>T) of 0.2 to O. 7 9 

while triplet state lifetimes ( 'tT) greater than 500 ns25 are generally 

considered a prerequisite for efficient photosensitization. 

Once produced, the excited triplet state can lose its excitation 

energy via radiative triplet-singlet emission known as phosphorescence. 

Of more importance for PDT however is the quenching of the excited 

triplet state which turns out to be the process which generates the majority 

of the cytotoxic agents needed to induce a biological effect. The 

quenching mechanism of the T 1 state of the photosensitizer can be 

distinguished as occurring via a Type 1 or a Type II mechanism (Figure 

5).29 A Type 1 mechanism involves hydrogen atom extraction or electron 

tra.nsfer reactions between the excited state of the sensitizer and some 

substrate, either biological, solvent or another photosensitizer, to yield 

radicals and radical ions. These radical species are highly reactive and can 

readily interact with molecular oxygen to either generate reactive oxygen 
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Figure 5. Diagramatic presentation of Type 1 and Type II 

photosensitized oxidation reactions. 

C. S. Foote, Photochem. Photobiol. ~ 659 (1991) 
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species such as superoxide anion or fix the damage so it is unrepairable. 

These reactions cause the formation of oxidative damage and eventually 

lead to the cytotoxic effects seen during photodynamic therapy. The Type 

II mechanism, on the other hand, results from an energy transfer from the 

triplet state of the photosensitizer to ground state molecular oxygen, 

leading to the generation of an excited state of oxygen known as singlet 

oxygen. Due to its high reactivity, singlet oxygen can react with a large 

number of biological substrates, causing oxidative damage and cell death. 

ROLE OF ÜXYGEN 

Ever present in either Type 1 or Type II photodestruction is the role 

of molecular oxygen. It has been well established that the presence of 

oxygen is an absolute requirement for the photoinactivation of cells via 

photodynamic therapy as anoxie conditions totally abolish PDT-mediated 

cellular inactivation. For Photofrinll™ photosensitiz.ation of cells in vitro, 

full effects were observed at around 40 torr oxygen tension with half-

values at about 8 torr.30.31 In addition, PDT-dependent oxygen 

consumption rates for Photofrinll™ have been estimated to be as high as 

6-9 µMis using an incident light intensity of 50 mW/cm2•
32 As such, it is 

clear that oxygen plays a vital and absolute role in photodynamic therapy 

and is in fact one of its key limiting factors. For instance, tumor cells are 

poorly supplied with blood, leading to local areas of hypoxia. In addition, 

during irradiation, oxygen levels within a tumor will be affected by PDT-
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induced vascular damage and even by the production of reactive oxygen 

species by PDT. These effects can greatly limit the potential of PDT 

against solid tumors where regions ofhypoxia become important.4.33 

ÎYPE II: SINGLET ÜXYGEN 

Until recently, it has been universally accepted that the Type II 

mechanism predominates in photodynamic therapy. As such, the single 

most important cytotoxic agent generated during POT is viewed as singlet 

oxygen. Singlet oxygen is produced during PDT via a triplet-triplet 

annihilation reaction between ground state molecular oxygen (which is in 

a triplet state) and the excited triplet state of the photosensitizer. Such an 

energy transfer reaction requîtes a collision between the two species 

involved thus the need for a long triplet state lifetime for the 

photosensitizer and a minimum oxygen concentration in the tissue. It 

should be noted that, with certain sensitizers, singlet oxygen can be 

produced via an energy transfer reaction between the S1 state of the 

sensitizer and molecular oxygen.25 This is possible when the S1-T1 energy 

gap is large enough and the sensitizer has a singlet state lifetime that is 

sufficiently long to allow ample bimolecular collisions with molecular 

oxygen. 

There exist two excited singlet S1 states of molecular oxygen.34 

The 1Ag state has an energy level of 94 kJ/mol. above the ground state 
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while the 11:8+ state is excited by 156.7 kJ/mol. The higher energy 1tt 
state of singlet oxygen bas a very short lifetime (20 ps in methanot35

) and 

is rapidly quenched to yield the 1Ag singlet state in a spin-allowed process. 

Considering this, the 1 Ag singlet state of molecular oxygen is assumed to 

be the only singlet oxygen species involved in the photodynamic effect 

and any further reference to singlet oxygen refers to the 1 Ag state. 

The two highest energy electrons of the 1 Ag state are paired and in 

the same orbital, leading to zwitterionic reactivity.34 Such an electronic 

configuration lends a relatively high reactivity to singlet oxygen towards a 

number of biological substrates. The major chemical entities that 

constitute biological matter are water, amino acids, pyrimidine and purine 

bases and phospholipids. Except for water, all these constituents are 

sensitive to being oxidatively datnaged by singlet oxygen. Presumably 

such chemical modifications can lead to biological lesions and possibly 

cell death. Singlet oxygen readily adds to unsaturated carbon-carbon 

bonds of biomolecules via a 1 :4 addition to eventually yield 

hydroperoxides among primary oxidation products. 36 Reaction of singlet 

oxygen with membrane lipids, proteins or nucleic acids can lead to 

disruption of the cell membrane, the lose of functionality of vital proteins, 

and unrepairable DNA damage. Any or ail of these biological lesions can 

lead to cell death. 
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Singlet oxygen was first proposed as the cytotoxic agent 

responsible for photoinactivation of tumor cells in 1976 by Weishaupt et 

al .. 37 Despite this, direct evidence of the involvement of singlet oxygen in 

POT bas been illusive. However, extensive indirect evidence is available 

that backs up the hypothesis of the involvement of singlet oxygen in PDT-

induced biological damage. 

One of the main problems associated with the detection of singlet 

oxygen in biological systems is its high reactivity, wbich results in 

extremely short singlet oxygen lifetimes. Singlet oxygen is known to have 

a lifetime of about 3 µs in water.38•39 ln the meantime, due to its high 

reactivity with biological substrates, the lifetime of singlet oxygen in cells 

has been estimated to be in the region of 200 ns.40 ln cellular systems, 

saturated with oxygen, the rate of singlet oxygen generation in the cell 

interior has been assessed to be in the range of 2xl0' to 4xl0' s·1
•
41 As 

such, in the best possible conditions ( oxygen saturation), the decay of 

singlet oxygen will occur at a rate that is 5-10 times more rapid than is rate 

of formation. The situation is even more precarious in biological systems 

equilibrated with air only. The resulting five-fold decrease in oxygen 

concentration reduces the rate of generation of singlet oxygen to about 

lxl04 to 4x1G4 s·1
• Clearly, this results in an in:finitesimally smalt amount 

of singlet oxygen being available for detection. 
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The other consequence of the extremely short lifetime of singlet 

oxygen in cells is its short diffusion range, which has been predicted to be 

limited to approximately 45 nm.42 This is in excellent agreement with 

experimental results where singlet oxygen generated by haematoporphyrin 

outside the cell wall of E. coli could not induce DNA strand breaks within 

the bacteria. 43 Thus, since the diameter of human cells range from 10-1 OO 

µm, the primary site of singlet oxygen generation will determine what 

subcellular target will be attacked. Hence, the importance of the 

subcellular distribution of the photosensitizer is obvious in determining 

the efficiency of the compound as a therapeutic agent. 

The only true method of detecting singlet oxygen directly is by 

means of its monomol luminescence at approximately 1270 nm.44
•
45 

Singlet oxygen also has a dimol luminescence emission at 610 nm46 and 

while this emission has proven an effective tool in the identification of the 

·~ state, its production requires a bimolecular reaction between a pair of 

singlet oxygen species. Obviously, this is extremely disadvantageous at 

the micromolar levels seen in PDT. Furthermore, the emission at 610 nm 

is clearly far from ideal as most photosensitizers absorb in that range of 

the electromagnetic spectrum. 

While the demonstration of the intermediacy of singlet oxygen in 

reactions carried out in homogeneous environments using the monomol 

luminescence is a relatively easy procedure, the molecular complexity and 
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heterogeneity of biological systems has made such demonstrations both 

difficult and ambiguous. The ability of a given photosensitizer to generate 

singlet oxygen can be easily determined and is in fact often considered to 

be one of the first parameters to be determined in order to evaluate the 

potential of the sensitizer in PDT. Photofrin ™ has a singlet oxygen 

quantum yield of 0.87 47 while second generation photosensitizers have 

similar or better quantum yields. 

While the triplet excited state of the photosensitizer can easily be 

detected by laser flash photolysis techniques for a sensitizer localized 

intracellularly, there is no such detection of singlet oxygen luminescence 

in intact cells.48 However, recent improvement in techniques has allowed 

for the detection of singlet oxygen luminescence in a variety of cell 

suspensions. For instance, Girotti and associates have detected singlet 

oxygen luminescence from porphyrins bound to erythrocyte ghosts and 

other membranes.49
-
51 Singlet oxygen luminescence in the case of 

porphyrin sensitization was also reported by Bohm et al. using Fourier 

transform techniques for porphyrins bound to membrane surfaces. 52 Y east 

cells sensitized with tetra-(p-phenosulphide )porphyrin also displayed 

singlet oxygen luminescence using flash photolysis techniques.38•53 Baker 

and K.anofsky have detected singlet oxygen in sensitized suspensions of 

red blood cell ghosts and Ll210 leukemia cell using 5-(N-

hexadecanoyl)amino eosin via its emission at 1270 nm.54
-
56 Lifetimes 
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determined in all cases suggested tbat the vast majority of the detected 

luminescence W3$ due to singlet oxygen tbat had diffused into the 

buffer.54-57 

Considerations such as these, along with a number of other 

theoretical considerations of the in vivo singlet oxygen detection problem 

(including the short lifetime in singlet oxygen in cells, the rapid rate of 

singlet oxygen consumption and low luminescent quantum yields of 

singlet oxygen ( only 200 singlet oxygen molecules per billion undergo 

radiative decay41
)) have suggested that it is unlikely that luminescence 

emission will be detected emitting from within cells. However, extensive 

work using indirect means of evaluating the presence of singlet oxygen in 

biological systems has been used to verify the hypothesis of the 

involvement of singlet oxygen in PDT. For instance, it has been shown 

that photo-oxidation of cholesterol by haematoporphyrin or 

tetrasulphonated cbloro-aluminium(lll) phthalocyanine yields 

characteristic reaction products due to singlet oxygen oxidation, 3(3-

hydroxy-5a.-hydroperoxy-cholest-6-ene, 3 ~-hydroxy-6a.-hydroperoxy-

cholest-4-ene and 3J3-hydroxy-6J3-hydroperoxy-cholest-4-ene.5u 1 In 

addition, typical singlet oxygen products are acquired upon sensitization 

of guanosine (4-hydroxy-8-oxo derivatives).62 Cholesterol and guanosine 

both give complex mixtures of species when oxidized by radicals (Type 1 

mechanism), mainly leading to epimeric 7-hydroperoxyl derivatives from 
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cholesterol and imidazole ring opening products from guanosine. In the 

case of cholesterol, reduction of the products using sodium borohydride 

yields the corresponding stable hydroxyl analogues, which can be readily 

identified using chromatographie procedures. This leads to a simple 

diagnostic test to distinguish between the two reaction pathways in 

homogeneous systems.34 However, in complex biological milieu, the 

ensuing lipid peroxidation of cholesterol results in the formation of 

complex mixtures of oxysterols which obscure the initial products. 63 In 

addition, the 5-a.-hydroperoxyl derivative is slowly converted via an 

intramolecular rearrangement to the 7-a.-hydroperoxide, which 

subsequently epimerizes to the 7-(3-hydroperoxyl derivative via a 

dissociative radical mechanism.64 Accordingly, although the presence of 

the 5-a.-hydroperoxyl derivative of cholesterol is unambiguous evidence 

for a Type 1 mechanism, its absence or the presence of 7-

hydroperoxycholesterols alone does not rule out the involvement of singlet 

oxygen in the photochemical process. Despite these problems involving 

biological systems, studies using [14C]cholesterol clearly showed the 

intermediacy of singlet oxygen in unilamellar phospholipid vesicles, ghost 

erythrocytes and in L 1210 leukemia cells. 59 

Routinely, the responsibility of singlet oxygen in the photodamage 

caused during PDT has been indicated by the inhibition of the biological 

effect using competitive quenchers of singlet oxygen. Numerous 
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compounds exist that can competitively react with singlet oxygen, thus 

providing protection against its cytotoxic effects. Among these are 

sodium azide, histidine, 2,5-dimethylfuran, J3-carotene and 1,4-

diaz.abicyclo[2,2,2]octane (DABC0).36•
41

•65-67 In addition, compounds like 

1,3-diphenylisofuran and 9,10-diphenylanthracene has been used to 

determine singlet oxygen quantum yields in heterogeneous environments 

by following their photo-oxidation via fluorescence.68
•
69 These quenchers 

work via different mechanisms. (3-carotene involves an electronic energy 

transfer70 while amines like DABCO and sodium azide react by charge 

transfer quenching.71 Others like 1,3-diphenylisobenzofuran and 9,10-

diphenylanthracene undergo chemical reactions with singlet oxygen to 

form peroxy-derivatives.41 

Quenchers have routinely been used to show not only the 

intermediacy of singlet oxygen in PDT but to also distinguish between the 

reaction mechanism involved in a given system. For instance, PDT· 

induced damage to cytochrome P-450 and associated monooxygenases 

(aryl hydrocarbon hydroxylase, 7-ethoxycoumarin-0-deethylase and 7-

ethoxyresorufin-0-deethylase) along with lipid peroxidation by 

chloroaluminium phthalocyanine tetrasulphonate was studied by Agarwal 

et al. in hepatic microsomes. 66•
67 lt was determined that among quenchers 

of reactive oxygen specie~. only those of singlet oxygen, such as sodium 

azide, histidine and 2,5-dimethylfuran, afforded substantial protection 
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towards photodestruction of cytochrome P450 and associated 

monooxygenase activities along with photo-oxidation of lipids. As such, 

it was suggested that PDT -induced damage was due to the production of 

singlet oxygen. Similar results were obtained for mammalian cells using 

phthalocyanines as the photosensitizer. 72 

UnfortUnately, the use of quenchers is not entirely specific for 

singlet oxygen. The quenchers used are typically systems of low 

oxidation potential and are almost certainly capable on interacting with 

other reactive oxygen species produced during irradiation of the 

photosensitizer. For instance, sodium azide, an effective quencher of 

singlet oxygen, is also .known to react with hydroxyl radicals but at a much 

slower rate and inhibition of lipid peroxidation by sodium azide has been 

found to occur at a rate constant that is 50 times lower than expected. 59 

This could be explained by the limited access of the quencher to the 

singlet oxygen generated in the membrane. However, it could also 

indicate the intermediacy of hydroxyl radical. Tryptophan is also a 

popular quencher of singlet oxygen but has recently been shown to react 

under certain circumstances via a mixed Type I!f ype II mechanism. 73 

Only careful identification of the reaction products can clearly identify the 

reaction mechanism involved in a given case.61 

A second diagnostic test for the involvement of singlet oxygen 

depends on the truly amazing and totally characteristic lifetime variation 
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in different solvents exhibited by singlet oxygen. As was stated 

previously, singlet oxygen has a lifetime in water of about 3 µs. This 

increases to 65 µsin heavy water (D20).41
'
74 The result of changing from 

water to heavy water leads to an increased lifetime for singlet oxygen and 

presumably an increase in the biological effect and this has been used to 

verify the presence on singlet oxygen during PDT. However, while large 

increases in the rate of photo-oxidation have been seen, the results are not 

unequivocal. For instance, the quantum yield for triplet state formation of 

the photosensitizer is greater in D20 which will favor both Type 1 and 

Type II reaction pathways.2•
75 In addition, the structural conformation of 

proteins may not be comparable in H20 and D20 environments, thus 

making the protein more susceptible to oxidative damage, be it via a Type 

1 or Type II mechanism.2 The replacement of water with heavy water may 

also hamper the biological processes involved in recovery from sublethal 

damage and would therefore potentiate cell killing.76 Finally, D20 may be 

expected to have little or no e:tfect on the lifetime of singlet oxygen that is 

generated with a lipid membrane or another hydrophobie environment 

where water does not have access. Thus, while the use of D20 can be used 

to show the involvement of singlet oxygen, it is not unequivocal proof of 

which mechanism is involved. 

One final indirect method for the detection of singlet oxygen in a 

biological system is the use of electron paramagnetic resonance 
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(EPR).69•77•83 While singlet oxygen is not radical in nature and will not 

give a signal in the EPR spectrum, it bas been shown to readily react with 

the spin trap 2,2,6,6-tetramethyl-4-piperidone (TEMP). 77 Such a reaction 

leads to the formation of 2,2,6,6-tetramethyl-4-piperidone-N-oxyl radical 

(TEMPO) (Figure 6) that gives a clear and easily identifiable signal in the 

EPR spectrum. To ensure that the production of TEMPO was due to the 

reaction of TEMP with singlet oxygen, various quenchers and the effects 

of D20 were used. EPR has been used to identify singlet oxygen 

production in liposomes, 79 in human erythrocytes80 and in bronchial 

epithelial cells83 and has proven to be a useful technique. Of particular 

interest is the reported feasibility of in vivo skin EPR spectroscopy and 

imaging which might provide for detection of singlet oxygen production in 

vivo.84
•
85 

TYPE 1: RADICAL AND OTHER REACTNE OXYGEN SPECIES 

While the techniques described above have surely identified singlet 

oxygen as an important reactive oxygen species implicated in 

photodynamic therapy, it is not the only reactive oxygen species fonned 

during POT. Reactive oxygen species such as superoxide anion, hydrogen 
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Figure 6. The reaction of TEMP with singlet oxygen. 

A. Viola, A. Jeunet, R Decreau, M. Chanon, and M. Julliard, Free Rad. 

Res. ~ 517 (1998). 
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peroxide and hydroxyl radicals can be easily formed via Type 1 processes. 

In general, the excitation of the photosensitizer to its excited triplet state 

and the resulting promotion of an electron from an occupied to an 

unoccupied orbital leads to the formation of a reducing electron and an 

oxidizing hole. As such, the triplet state of the photosensitizer is more 

easily oxidized and reduced as compared to the ground state molecule. 

The excited triplet state can react with another photosensitizer in the 

ground state to forma radical anion and radical cation pair. Furthermore, 

the excited triplet state can easily react with electron donating molecules 

to form the sensitizer anion radical. In fact, there exist numerous 

molecules capable of donating electrons to the triplet state of the sensitizer 

in biological matter. They include NADH, vitamin C, cysteine, 

methionine, tyrosine, uracil and guanine among many others. 86 The 

sensitizer anion radical can react with molecular oxygen in an electron-

exchange reaction, leading to the formation of superoxide anion (-02-). It 

should be noted that superoxide anion can also theoretically be formed via 

an electron transfer reaction between molecular oxygen and the triplet 

state of the photosensitizer. However, this process bas been shown to be 

thermodynamically unfavorable as compared to the energy transfer 

reaction that forms singlet oxygen. 87 

Superoxide anion can react with biological substrates either by 

electron transfer or oxidation reactions and can interact directly with a 
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number of cellular structures such as polyunsaturated fatty acids, alcohols, 

amino acids and proteins. It has been shown that superoxide anion can 

inactivate several enzymes as well. In addition, superoxide anion reacts 

rapidly with ascorbic acid and a-tocopherol while one of the most 

important biologically relevant reactions is that of superoxide anion with 

sulfhydryl compounds, leading to the formation of RS· radicals and 

hydrogen peroxide.36 Overall, however, the reactivity of superoxide anion 

is rather limited. Its most important role in the induction of biological 

damage induced by POT is in the generation of the highly reactive 

hydroxyl radical via the Fenton reaction (Figure 7). The hydroxyl radical 

can readily add to double bonds or abstract hydrogen atoms, resulting in 

the formation of secondary radicals ultimately leading to chain reactions 

such as those implicated in lipid peroxidation. 88 

Reactive oxygen species such as superoxide anion, hydrogen 

peroxide and hydroxyl radical have been identified in photodynamic 

therapy using a number of indirect methods. Superoxide anion, for 

instance, has been implicated in photodynamic induced damage using the 

quenching effects of superoxide dismutase (SOD). However, superoxide 

dismutase is too big to enter intact cells and therefore, son is less useful 

in cellular systems. 89 In addition, the dismutation of superoxide anion by 

son leads to the formation of hydrogen peroxide, which can also induce a 

biological effect.36
•
41

•
65

-6
7 Another quencher of superoxide anion, p-

127 



2 02 .. + 2 H+ ---+ 02 + H202 

Fe3+ + 02·· ---+ Fe2+ + 02 

Fe2+ + H20 2 ---+ Fe3+ +Off +OH 

Figure 7. Fenton reaction 

128 



benzoquinone, bas also been used, primarily to distinguish between effects 

due to superoxide anion and the other reactive oxygen species.90 The 

reduction of ferri-cytochrome c to ferro-cytochrome c bas been used to 

quantify the amount of superoxide anion formed during PDT. 77 

Quenching bas also been used to examine the presence of hydrogen 

peroxjde (using catalase) and hydroxyl radical (using sodium benzoate, 

mannitol and ethanol) with varying results. 30.36
•
66

•
67 As was mentioned 

above, quenching experiences seemed to identify singlet oxygen as the 

only reactive species involved in the photodestruction of cytochrome P450 

activity. However, the use of quenchers in studying photodynamic cell 

killing of EMT6 and CHO cells by Photofrin ™ reaffirmed the 

predominant role of singlet oxygen in PDT but also indicated some 

involvement of free radical species such as hydroxyl radical.65 In 

addition, using quenching experiments and studying the effects of D20, it 

was determined that inactivation of catalase in erythrocytes and K562 

leukemia cells using tetrasulphonated metallophthalocyanines involved a 

mixed Type lffype II mechanism.91 Similar studies indicated a mixed 

Type lffype Il mechanism in the photoinactivation of Chinese hamster 

lung fibroblasts.92 Clearly, quenching experiments such as these seem to 

show that the mechanism behind photodynamic therapy is not quite so 

straightforward and most likely involves a combination of Type 1 and 

Type II mechanisms. 
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The presence of reactive oxygen species such as superoxide anion 

and hydrogen peroxide has also been examined using flow cytometry.93 

Using fluorescence probes like hydroethidine (which reacts with 

superoxide anion to give ethidium bromide which emits a red 

fluorescence) and dihydrorhodamine 123 (which reacts with hydrogen 

peroxide to give rhodamine 123 which emits a green fluorescence), it was 

determined that ALA-induced photodestruction of primary human skin 

fibroblast correlates with intracellular superoxide anion production but 

does not correlate with intracellular hydrogen peroxide production. This 

apparent discrepancy was explained by the fact that the flow cytometric 

assay used focused on early stages of cell death and that hydrogen 

peroxide can readily diffuse out of the cell and might not be seen by the 

intracellular method used. 

One of the most important methods for detecting radicals in 

biological systems is electron paramagnetic resonance and it has been used 

extensively in the case of photodynamic therapy. Superoxide anion, for 

instance, can react with the spin trap 5,5-dimethyl-l-pyrolidine-l-oxide 

(DMPO) (Figure 8) to give the superoxide spin trap adduct DMPO-

OOH. 77 However, DMPO-OOH is relatively unstable, especially in the 

presence of transition metals, and rapidly decomposes into various species 

including DMPO-OH, the spin trap adduct of the hydroxyl radical. 

Despite this, the EPR signal due to DMPO-OOH can be seen when 
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Figure 8. Formation of the DMPO spin adducts ofsuperoxide anion and 

hydroxyl radical. 

A. Viola, A. Jeunet, R. Decreau, M. Chano~ and M. Julliard, Free Rad. 

Res. ~ 517 (1998). 
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desferrioxamine is used to chelate the iron ions present in solution and this 

technique has been used to show the presence of superoxide anion during 

photosensitization of numerous photosensitizers. 69 The same goes for 

hydroxyl radical, which has been shown to be present in a number of 

photodynamic systems. In one very interesting EPR study, Viola et al. 

demonstrated that a series of phthalocyanines readily generated both Type 

1 and Type II reactive oxygen species in a homogenous solution of DMF 

with Type II products predominating. 77 In a membrane model, those 

phthalocyanines tested have fixed axial ligands were unchanged, with 

Type II products predominating. However, in the same membrane model, 

Type 1 products became important for those phthalocyanines without axial 

ligands while the Type II pathway was shown to be negligible. Results 

such as these clearly show the importance of environment on the 

mechanism involved in PDT. 

In addition to the spin trapping of superoxide anion and hydroxyl 

radical, spin adducts of the sensitizer anion radical have been detected in 

certain systems,69•81•82 clearly identifying this species as the precursor to 

the formation of the other reactive oxygen species. Furthermore, carbon-

centered radicals have been seen, most likely being due to the formation of 

radicals on biological targets.94
•95 Finally, recent studies have shown that 

the radical cation of the photosensitizer may be involved in 
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photosensitized decomposition of biological peroxides resulting in the 

generation of peroxyl radicals. 96 

TYPE 1 VERSUS TYPE II 

Although the factors that govem the competition between Type 1 

and Type Il processes are reasonably well understood, the complexity of 

the biological environment, as well as uncerta.inty conceming the 

localiz.ation and binding of the sensitizer to tissue and cell constituents, 

combined with fluctuations in oxygen concentrations in tissues and even 

in cellular compartments make it impossible to predict which type of 

reaction mechanism will prevail during PDT. It has been well established, 

for instance, that Type Il processes predominate in oxygenated systems 

while Type 1 reactions prevail under hypoxie conditions.33 At low oxygen 

concentrations, Type 1 processes have been demonstrated to contribute 

significantly to the photo-oxidation of membrane components and amino 

acids using flash photolysis studies with tetrasulphonated chloro-gallium 

(III) phthalocyanine.97 In fact, the consumption of oxygen during PDT 

has been shown to change the mechanism of action from Type II to Type 1 

as the oxygen concentration decreases below a critical level and tumor 

vascularitity is damaged.33
•
81

•
98 For instance, electrochemical 

measurements have demonstrated that the number of cells with a regular 

intracellular oxygen concentration is obviously reduced following 

irradiation of photosensitizer-Ioaded cells.99 Moreover, it has been clearly 
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demonstrated that Type I processes are favoured in more polar 

environments where the high dielectric constant of the medium should 

stabilize the radical pair that is generated. In the meantime, Type II 

reactions should predominate in more lipopbilic environments where the 

lifetime of singlet oxygen is much longer.25 However, despite this, it has 

been shown that even in relatively polar media, singlet oxygen 

mechanisms are often more efficient. Results by Rossi et al. indicated that 

indole derivatives appear to be photo-oxidized largely by a Type I 

mechanism involving electron transfer from the triple state of 

haematoporphyrin to the indole moiety in water.100 Type II processes only 

become important as the environment becomes more lipopbilic. Despite 

this, the situation is not quite so clear as at low trytophan concentrations, 

singlet oxygen has been shown to be able to compete with radical-type 

reactions even in highly polar media. 73 Finally, binding of the sensitizer to 

cellular components should favor Type 1 hydrogen abstraction or electron 

transfer reactions, which will not be evident under in vitro conditions. An 

interesting example of the importance of Type 1 mechanisms involves a 

recently studied photosensitizer copper(Il)-a.-meso-N,N-

dimethyloctaethylbenzochlorin iminium chloride (Figure 9).101 This 

sensitizer has a triplet lifetime of less than 20 ns, which is far too short to 

allow efficient energy transfer to oxygen in order to form singlet oxygen. 

Despite this, this compound has been demonstrated to be an effective 
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Figure 9. Copper(Il)-a-meso-N ,N-dimethyloctaethylbenzochlorin 

imminium chloride 

D. Skalkos, J. A. Hampton, R. W. Keck, M. Wagoner, and S. H. Selman, 

Photochem. Photobiol. ~ 175 (1994). 
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photosensitizer against urothelial tumors in rats. Using superoxide 

dismutase and catalase, it was shown that this sensitizer induces its 

damage via reactive oxygen species other than singlet oxygen. lt was 

determined that the close proximity and/or binding of this compound to 

important biological molecules and the rapid timescale of electron transfer 

reactions (less than 10 ps102) most likely promoted a Type 1 mechanism 

and helped explain the usefulness of this compound as a PDT agent. 

Further complicating the identification of the processes responsible 

in a given system is the finding that the mechanism involved may depend 

on the cell type. 2 It has been demonstrate that killing of bacteria depended 

on whether the bacteria was gram-positive or gram-negative. By adding 

toluidine blue (Figure 10) to sepharose beads, the effects of Type 1 

cytotoxic agents could be ignored as cells could not penetrate the bead 

Type 1 cytotoxic agents could not escape it. Using this, it was determined 

that singlet oxygen was responsible for the cell killing of S. mutans, a 

gram-positive bacteria. On the other hand, gram-negative bacteria such as 

P. gingivalis and E. coli along with a yeast, C. albicans were not killed 

using this beads while toludine blue is capable of inactivating these 

bacteria by itself. From this, it was concluded that the action of Type 1 

free radicals was vital for the cell killing ability of toludine blue towards 

these cells. In addition, it was determined that the kinetics of cell killing 

of these cells by toludine blue was binomial, suggesting a two step 
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Figure 10. Toluidine Blue 
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mechanism whereby free radic~s caused disruption of the cell wall which 

allowed access to the cell interior to toludine blue and the cytotoxic effects 

of singlet oxygen. Such cell specificity is backed up by finding by 

Rywkin et al. who, using various quenchers, established that virus kill in 

red blood cell concentrates operated through a Type II mechanism 

whereas both Type 1 and Type II mechanisms contributed to red blood cell 

damage.103 

CONCLUSION 

Our knowledge of photodynamic therapy has increased 

substantially. So much so that it is now an approved treatment for various 

cancers and subsequent uses for PDT are being determined regularly. 

Although it is well known that PDT is very toxic under specific 

circumstances and conditions, there is much to learn about its exact mode 

of action. For the overall photodamage, the initial reaction is of less 

importance since both Type 1 and Type II reactions lead to similar 

oxidative damage and can lead to comparable radical chain reactions in 

the presence of oxygen. Overall, the effect of either Type 1 or Type II 

reactions is the production of oxidative damage within the cell which will 

ultimately lead to cell death. Where distinguishing between these two 

reaction pathways becomes important is in order to thoroughly understand 

how PDT actually works so that modulation of its effect can be achieved 

to maximize the biological effect. It is highly unlikely that a given 
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photosensitizer or a given PDT mechanism is ideal for every application. 

It is only in completely understanding the processes involved, that ideal 

compounds and conditions can be determined for each use. 

139 



REFERENCES AND FOO'INOTES 

1 O. Raab, Z. Biol. ~ 524 (1900). 

2 D. Phillips, Progress Reaction Kinetics ~ 175 (1997). 

3 G. 1. Stables and D. V. Ash, Cancer Treatment Rev. 2.1. 311 (1995). 

4 T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. 

Korbelik, J. Moan, and Q. Peng, J. Natl. Cancer Inst. 2.Q,. 889 (1998). 

5 T. J. Dougherty and S. L. Marcus, Eur. J. Cancer 28A, 1734 (1992). 

6 D. Wôhrle, A. Hirth, T. Bogdahn-Rai, G. Schnurpfeil, and M. Shapova, 

Russian Chem. Bull. ~ 807 (1998). 

7 C. Eli, Endoscopy 1Q,, 408 (1998). 

8 G. Jori, in "CRC Handbook of Organic Photochemistry and 

Photobiology." (W. H. Horspool, ed.), p.1379-1383. CRC Press Inc., Boca 

Raton, Florida 1995. 

9 J. Moan, Q. Peng, R. Sorensen, V. Iani and, J. M. Nesland, Endoscopy 

1Q,, 387 (1998). 

10 R. Bonnett, Chem. Soc. Rev., 19 (1995). 

11 J. V. Moore, C. M. L. West, and C. Whitehurst, Phys. ~ Biol. ~ 

913 (1997). 

12 A. J. MacRoberts, S. G. Bown, and D. Phillips, in "Photosensitising 

Compounds: Their Chemistry, Biology and Clinical Use." (G. Bock and S. 

Harnett, eds.), p.4-16. Wiley and Sons Ltd., Chichester 1989. 

140 



13 M. C. Berenbaum, R. Bonnett, E. B. Chevretton, S. L Akande-

Adebakin, and M. Ruston, Lasers. Med. Sei. .t. 235 (1993). 

14 A. M. Richter, B. Kelly, J. Chow, D. J. Liu, G. M. N. Towers, D. 

Dolphin, and J. G. Levy, J, Natl. Cancer. Inst. 7!1,. 1327 (1987). 

15 E. Sternberg and D. Dolphin, Photodvnamic Newsletter L 4 (1993). 

16N. Razum, A. Synder, and D. Dorion, SPIE Conf.~ 2675, 43 (1996). 

17 J. C. Kennedy, R. H. Pottier, and D. C. Pross, J. Photochem. Photobiol. 

B: Biol. ~ 143 (1990). 

18 J. C. Kennedy, S. L. Marcus, and R. H. Pottier, J. Clin. Laser~ Surg. 

Hi 289 (1996). 

19 J. E. van Lier and J. D. Spikes, in "Photosensitising Compounds: Their 

Chemistry, Biology and Clinicat Use." (G. Bock and S. Harnett, eds.), 

p.11-32. Wiley and Sons Ltd., Chichester 1989. 

20 B. Paquette and J. E. van Lier, in "Photodynamic Therapy: Basic 

principles and clinicat applications" (B. W. Henderson and T. J. 

Dougherty eds.), p.145-156. Marcel Dekker, Inc., New York, 1991. 

21 1. Rosenthat, in "Phthatocyanines, properties and applications" (C. C. 

Leznoff and A. B. P. Lever eds. ), p.481-.V. C. H. Publisher Inc., New 

York, 1996. 

22 U. Isele, P. van Hoogevest, H. Leuenberger, H.-G. Capraro, and K. 

Schieweck, SPIE Conf. Proc. 2078, 397 (1994). 

141 



23 G. Jori and J. D. Spikes, J. Photochem. Photobiol. B: Biol. 6, 93 (1990). 

24 J. Davila and A. Harriman, Photochem. Photobiol. ~ 1 (1991). 

25 M. Ochsner, J. Photochem. Photobiol. B: Biol. 39, 1 (1997). 

26 T. Takemura, N. Ohta, S. Nakajima, and 1. Sakata, Photchem. Photobiol. 

~ 339 (1989). 

27 M. Wainwright, Chem. Soc. Rev .. 351 (1996). 

28 P. Pal, H. Zeng, G. Durocher, D. Girard, T. Li, A. K. Gupta, R. Giasson, 
Lo. Blanchard, L. Gaboury, A. Balassy, C. Turmel, A. Laperrière, and L. 
Villeneuve, Photochem. Photobiol. fil.. 161 (1996). 

29 C. S. Foote, Photochem. Photobiol. 54, 659 (1991). 

30 B. W. Henderson and V. H. Fingar, Cancer Res.1.L 3110 (1987). 

31 J. D. Chapman, C. C Stobbe, and M.R. Amfield, Radiat. Res. 126, 73 

(1991). 

32 T. H. Poster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and 

R. Hilf, Radiat. Res. 126, 296 (1991). 

33 J. Fuchs and J. Thiele, Free Brut Biol. Med. ~ 835 (1998). 

34 J. E. van Lier, in "Photobiological Techniques." (D. P. Valenzeno et. al. 

eds.), p. 85-98. Plenum Press, New York, 1991. 

35 R. Schmidt and M. Bodescheim, J. Phys. Chem. ~ 2874 (1994). 

36 A. Singh, ~ J. Physiol. Pharmaçol. QQ,. 1330 (1982) 

37 K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty, Cancer. Res. 2..Q.. 

2326 (1976). 

142 



38 S. Y. Egorov, V. F. Kamalov, N. 1. Korroteev, A. A. Krasnovsky, B. N. 

Toleutaev, and S. V. Zinukov, Chem. Phys. Lett. 163, 421 (1989). 

39 A. A. Krasnovsky Jr., Chem. Phys. Lett. !h 443 (1981). 

40 A. Baker and J. R. Kanofsky, Photochem. Photobiol. ~ 523 (1992). 

41 A. A. Gonnan and M. A. J. Rodgers, J. Photochem. Photobiol. B: Biol. 

~ 159 (1992). 

42 J. Moan and E. Boye, Photobiochem. Photobîophys. ~ 301 (1981). 

43 J. Moan, J. Photochem. Photobiol. B: Biol. ~ 343 (1990). 

44 J. G. Parker, IEEE Circuits and Devices January. 10 (1987). 

45 E. Cadenas and H. Seis, Methods Enzymol. 105. 221 (1984). 

46 A. A. Krasnovsky Jr. and K. V. Neverov, Chem. Phys. Lett. 167, 591 

(1990). 

47 A. Blum and L. 1. Grossweiner, Photochem. Photobiol. 41, 27 (1985). 

48 P. A. Firey, T. W. Jones, G. Jori, and M. A. J. Rodgers, Photochem. 

Photobiol. ~ 357 (1988). 

49 R. D. Hall and A. W. Girotti, Photochem. Photobiol. ~ m (1987). 

50 1. P. Thomas, R. D. Hall and A. W. Girotti, Cancer Lett. J.2.s 295 (1987). 

51 J. P. Thomas and A. W. Girotti, Photochem. Photobiol. ils 798 (1988). 

52 F. Bohln, G. Marston, T. G. Truscott and R. P. Wayne, J. Chem. Soc. 

Farad. Trans. 2Q.. 2453 (1994). 

53 S. Y. Egorov, S. V. Zinukov, V. F. Kamalov, N. 1. Koroteev, A. A. 

Kransnovskii, and B. N. Toleutaev, Opt. Soectros. (USSR) ~ 530 (1988). 

143 



54 J. R. Kanofsky, Photochem. PJiotobiol. a 93 (1991). 

55 A. Baker and J. R. Kanofsky, Photochem. Photobiol. R 720 (1993). 

56 A. Baker and J. R. Kanofsky, Arch. Biochem. Biophys. 286, 70 (1991). 

57 Y. Fu and J. R. Kanofsky, Photochem. Photobiol. ~ 692 (1995). 

58 M. J. Kulig and L. L. Smith, J. Org. Chem. ~ 3639 (1973). 

59 W. Korytowski, G. J. Bachowski, and A. W. Girotti, Photochem. 

Photobiol. 2..2,. 1 (1992). 

60 P. G. Geiger, W. Korytowski, and A. W. Girotti, Photchem. Photbiol. 

~ 580 (1995). 

61 R. Langlois, H. Ali, N. Brasseur, J. R. Wagner and, J. E. van Lier, 

Photochem. Photobiol. ~ 117 (1986). 

62 J. L. Ravanat, M. Berger, F. Benard, R. Langlois, R. Ouellet, J. E. van 

Lier, and J. Cadet, Photochem. Photobiol. ~ 809 (1992). 

63 L. L. Smith, "Cholesterol autooxidation." Plenum Press, New York 

(1981). 

64 A. L. J. Beckwith, A. G. Davies, 1. G. E. Davison, A. Maccoll, and M. 

H. Mruzek, J. Chem. Soc. Perkin Trans. Il, 815 (1989). 

65 B. W. Henderson and A. C. Miller, Radiat. Res. 108, 196 (1986). 

66 R. Agarwal, S. I. A. Zaidi, M. Athar, D. R. Bickers, and H. Mukhtar, 

Achives Biochem. Biophys. 294, 30 (1992). 

67 R. Agarwal, M. Athar, D. R. Bickers, and H. Mukhtar, Biochem. 

Biophys. Res. Commun. 173, 34 (1990). 

144 



68 E. Gross, B. Ehrenberg, and F.M. Johnson, Photochem. Photobiol. 57, 

808 (1993). 

69 C. Hadjur, A. Jellllet, and P. Jordon, J. Photochem. Photobiol. B: Biol. 

~ 67 (1994). 

10 A. Farmillo and F. Wil.kenson, Photochem. Photobiol. lt. 809 (1973). 

71 C. S. Foote, T. T. Fujimoto, and Y. C. Chang, Tetrahedron Lett. 13. 45 

(1972). 

72 J. Y. Chen, X. Rong, S. M. Chen, F. D. Lu, K. T. Chen, and H. X. Cai, 

Cancer Biochem. Biophys. lb 103 (1991). 

73 M. Shopova and T. Gantchev, J. Photochem. Photobiol. B: Biol. ~ 49 

(1990). 

74 A. A. Gorman and M. A. J. Rodgers, in "The Handbook ofOrganic 

Photochemistry." (J. C. Scaiano, ed.), p.229-247. CRC Press, Boca Raton, 

Florida 1989. 

75 1. Rosenthal and E. Ben-Hur, Int. J. Radiat. Biol. §L 85 (1995). 

76 E. Ben-Hur and 1. Rosenthal, Radiat. Res. 103. 403 (1985). 

17 A. Viola, A. Jellllet, R. Decreau, M. Chanon, and M. Julliard, Free R&t 

Res. ~ 517 (1998). 

78 C. Hadjur, G. Wagnières, P. Monnier, and H. van den Bergh, 

Photochem. Photobiol. ~ 818 (1997). 

79 C. Hadjur, G. Wagnières, F. Ihringer, P., Monnier, and H. van den 

Bergh, J. Photochem. Photobiol. B: Biol. ~ 196 (1997). 

145 



80 M. Hoebeke, H. J. Schuitmaker, L. E. Jannink, T. M. A. R. Dubbelman, 

A. Jakobs, and A. Van de Vorst, Photochem. Photobiol. ~ 502 (1997). 

81 Y. Y. He, J. Y. An, and L. J. Ji~, Int. J. Radiat. Res . .Ms 647 (1998). 

82 Y.-Z. Hu and L.-J. Jiang, J. Photochem. Photobiol. B: ~ ~ 51 

(1996). 

83 A. C. Nye, G. M. Rosen, E. W. Gabrielson, J.F. W. Keana, and V. S. 

Prabhu, Biochim. Biophys. Acta. 928, 1 (1987). 

84 J. Fuchs, N. Groth, T. Herrling, and L. Packer, Methods Enzymol. 203, 

140 (1994). 

85 T. E. Herrling, N. Groth, and J. Fuchs, Ap_plied Magnetic Resonance lL 

471 (1996). 

86 J. Davila and A. Harriman, Photochem. Photobiol. 50. 29 (1989). 

86 P. C. C. Lee and M. A. J. Rodgers, Photochem. Photobiol. 45, 79 

(1987). 

88 A. W. Girotti, Photochem. Photobiol. ~ 497 (1991). 

89 1. A. Menon, S. D. Persad, and H.F. Haberman, Clin. Biochem. 22, 197 

(1989). 

90 W. Bors, M. Saran, E. Lengfelder, R. Spôttl, and C. Michel, Curr. Top. 

Radiat. Res. 2.. 247 (1974). 

91 T. G. Gantchev and J. E. van Lier, Photochem. Photobiol. 62, 123 

(1995). 

146 



92 M. O. K. Obochi, R. W. Boyle, 8. D. Watts, and J. E. van Lier, 

Photochem. Photobiol. 578. 128 (1993). 

93 Y. Gilaberte, D. Pereboom, F. J. Carapeto, and J.O. Alda, 

Photodermatol. Photoimmunol. Photomed. lb 43 (1997). 

94 T. G. Gantchev, Cancer Biochem. Biophys. 13, 103 (1992). 

95 T. G. Gantchev, 1. J. Urumov, D. J. Hunting, and J. E. van Lier, Int. J. 

Radiat. Biol. ~ 289 (1994). 

96 T. G. Gantchev, J. Lusztyk, and J. E. van Lier, (in press) JAC8 (1998). 

97 G. Ferraudi, G. A. Argüello, H. Ali and J. E. van Lier, Photochem. 

Photobiol.11.,. 657 (1988). 

98 B. W. Henderson and V. H. Fingar, Photochem. Photobiol. ~ 299 

(1989). 

99 F. W. Hetzel and M. Chopp, SPIE Conf. Proc. 1065. 41 (1989). 

100 E. Rossi, A van de Vorst, and G. Jori, Photochem. Photobiol. 34, 447 

(1981). 

101 D. 8kalk:os, J. A. Hampton, R. W. Keck, M. Wagoner, and 8. H. 

8elman, Photochem. Photobiol. ~ 175 (1994). 

102 F. R. Hopf and D. G. Whitten, in "The Porphyrins, Vol. II: Structure 

and Synthesis." (D. Dolphin, ed.), p. 161-195. Academic Press, New 

York, New York 1978. 

103 8. Rywkin, L. Lenny, J. Goldstein, N. E. Geacintov, H. Margolis-

Nunno, and B. Horowitz, Photochem. Photobiol. ~ 463 (1992). 

147 



Chapter3. 

Photodynamic Therapeutics: Basic Principles and Clinical 
Applications 

W. M. Sharman, C. M. Allen and J. E. van Lier (1999) Drug Discovery 
Today, 4, 507-517. 



Photodynamic therapeutics: 

Basic principles and clinical applications 

Wesley M. Shannan, Cynthia M. Allen and Johan E. van Lier* 

Keywords: Photodynamic therapy, Photosensitizer, Clinical trials, Photofrin®, Cancer, 

Macular Degeneration, Psoriasis 

* Correspondence to: Department of Nuclear Medicine and Radiobiology, Faculty of 

Medicine, Université de Sherbrooke, Sherbrooke, Québec JlH 5N4, Canada. Tele: (819) 

564-5409 fax: (819) 564-4442. e-mail: jvanlier@courrier.usherb.ca 

149 



Preface Paragraph 

Photodynamic therapy (PDn is a promising new cancer treatment recently 

accepted in clinic. PDT involves the localiz.ation of a light-sensitive drug 

(photôsensitizer) in the target tissue prior to illumination with light of an appropriate 

wavelength. Cytotoxic agents generated upon illumination trigger a cascade of 

biochemical responses, effectively inactivate cancer cells either directly or via the 

induction of vascular stasis. Such a treatment is better tolerated as it destroys diseased 

tissue while leaving normal tissue intact. Photofrin®, an haematoporphyrin derivative, 

has been approved in a number of European and Asian countries, as well as in North 

America To further enhance the potential of PDT and explore it application for various 

other conditions, second generation photosensitizers are being rigorously investigated. 
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Traditional cancer therapies such as surgery, radiation therapy and chemotherapy 

involve a delicate balance between removirtg or destroying diseased tissue while sparing 

surrounding normal, healthy cells. Ali of these conventional treatments result in very 

important side effects due to undesirable loss of normal cell function as a result of the 

rather indiscriminate nature oftheir cytotoxic properties. Consequently, the development 

of new treatment protocols that display more selectivity for diseased tissue is extremely 

important. 

Photodynamic therapy (PDT) is a promising new cancer treatment modality that 

has recently been accepted into clinic in a number of countries. PDT involves the 

combination of visible light and a photosensitizer, both harmless by themselves but 

together with oxygen, they are capable of producing lethal cytotoxic agents that can 

inactivate tumour cells. This allows for greater selectivity towards diseased tissue as only 

those cells that are in the presence of the photosensitizer, light and oxygen 

simultaneously are exposed to a cytotoxic effect. This dual selectivity is due not only to 

a preferential uptake of the photosensitizer by the diseased tissue but also because light 

delivery can be restricted to specific regions, therefore con:fining activation of the 

photosensitizer to these regions only. Such a therapy allows for the destruction of 

diseased tissue while leaving normal tissue intact. 

Mechanism of action 

The photochemical and photophysical principles behind the mechanisms involved 

during PDT have been extensively studied.1,2 (Box 1) Briefly, upon illumination, the 

photosensitizer is excited from its ground state (S0) to its :first excited single state (S1). 

This short-lived excited singlet state rapidly converts to the much longer lived triplet state 
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Sensmer• + 3 02 (kg) Sensiti2er + 02"· 

Substrate-: 3 Oxilative damage + 02 ( I:g) 

__ ., Oxilative damage 

Type Il mechanmn 

__ ., Sensitizer + 02(1!l~ 

Oxilative damage 

Box 1. Photochemical and photophysical principles of photodynamic therapy 

The underlying mechanism involved in photodynamic therapy is govemed by the 

ability of the photosensitizer to absorb light of a specific wavelength and jump to its first 

excited singlet state. From there, it can readily transform to the much longer lived triplet 

state via intersystem crossing. This excited state of the photosensitizer can effectively 

interact with its surroundings, be it via a Type 1 hydrogen atom abstraction or electron 

transfer reaction or a Type II energy transfer to ground state molecular oxygen {3l:g 1 to 

form singlet oxygen (1 L\g). The reactive species generated (radicals and reactive oxygen 

species) will ultimately lead to oxidative damage and cell death. (Note: hv:::; light energy, 

* = excited state, • = radical) 
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(T 1) via intersystem crossing. The longer lifetime of the triplet state of the 

photosensitizer allows for sufficient time for interaction between the excited 

photosensitizer and surrounding molecules. lt is generally accepted that the triplet state 

of the photosensitizer is responsible for the generation of the cytotoxic species produced 

duringPDT. 

The excited triplet state of the photosensitizer can react in two ways, defined as 

Type 1 and Type Il.3 A Type 1 mechanism involves hydrogen atom abstraction or 

electron transfer reactions between the excited state of the sensitizer and some substrate, 

either biological, solvent or another sensitizer, to yield radicals and radical ions. These 

radical species are generally highly reactive and can readily react with molecular oxygen 

to either generate reactive oxygen species such as superoxide anion or hydroxyl radical or 

can fix the biological damage so it is not repairable. Such reactions cause the formation 

of oxidative damage and eventually lead to the biological lesions expressed during PDT. 

A Type II mechanism, on the other hand, results from an energy transfer between 

the excited triplet state of the sensitizer and ground state molecular oxygen, leading to the 

generation of the first excited state of oxygen, singlet oxygen. This zwitterionic species 

is extremely reactive and can react with a large number of biological substrates, inducing 

oxidative damage and ultimately cell death. While it is generally accepted that Type II 

processes predominate during PDT and that singlet oxygen is the primary cytotoxic agent 

responsible for the biological effects displayed,4-7 it has been shown that Type 1 reactions 

become important at low oxygen concentrations or in more polar environments.1•8 

Overall, however, the initial reaction is of less importance since both Type 1 and Type II 

reactions lead to similar oxidative damage and can lead to comparable radical chain 
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reactions in the presence of oxygen. Overall; the effect of either a Type 1 or Type II 

reaction pathway is the production of oxidative damage within the target cell which will 

ultimately lead to tumour destruction. 

Biological response 

While it is clear that PDT can induce the production of cytotoxic agents that can 

readily destroy neoplastic cells, the complexity of biological systems greatly complicates 

the actual effects involved in the overall PDT response in vivo. Any number of 

subcellular targets can be attacked during PDî. These would include mitochondria, 

lysosomes, plasma membranes and nuclei and the exact target can greatly affect the 

mechanism of cell death, be it via necrosis or apoptosis.9•10 In addition, while it has been 

shown that the action of some amphiphilic sensitiz.ers involve direct tumour cell kill, 

most photosensitiz.ers induce tumour necrosis via vascular shutdown.1•10-14 Finally, it has 

been shown that PDT can induce immunological effèets such as inflammation and other 

important tumour-specific immune reactions. 1•9.I0 The exact nature behind PDT-induced 

tumour destruction depends on the photosensitiz.ers used and will vary greatly depending 

on the condition being treated along with the photosensitizer and light dose used. 

However, knowing the biological effects behind cell death can lead to the selection of an 

ideal photosensitizer to treat a given disease. 

Photosensitizers 

Photosensitizers are compounds that are capable of absorbing light of a specific 

wavelength and transforming it into useful energy. In the case of PDT, this would 

involve the production of lethal cytotoxic agents. There are hundreds of naturally 

occurring and synthetic dyes that can function as photosensitizers for PDT. These range 
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from naturally occurring plant abstracts to complex synthetic macrocycles. The key 

characteristic of any photosensitizers will be its ability to accumulate preferentially in 

diseased tissue and once there, its ability to generate cytotoxic agents so as to induce the 

desired biological effect. Table 1 provides an overview of the fundamental clinical 

characteristics of various photosensitizers currently in clinical or preclinical trials. 

Photofrin@ 

The first generation photosensitizers are haematoporphyrin derivatives15 such as 

Photofrin@ (Figure 1) and are the most commonly used photosensitizers, having been 

accepted in clinic in a number of countries. Haematoporphyrin derivative was originally 

synthesized16 by treating haematoporphyrin with 5 % sulphuric acid and acetic acid at 

room temperature. Subsequently, the mixture was treated with aqueous base and then 

neutralized. This lead to the formation of a complex mixture of dimers and oligomers 

involving primarily ester and ether linkages.17 Partial purification of the most active of 

these oligomers via high performance liquid chromatography (HPLC) or size exclusion 

gel chromatography lead to Photofrin@, which is about 90-95 % active component 18 

Photofrin@ is marketed by QLT PhotoTherapeutics (Vancouver, British 

Columbia, Canada) and has been accepted in clinic in a number of countries (see QLT 

PhotoTherapeutics 1997-1999 Company reports and press releases). lt was approved in 

the United Kingdom in 1999 for the palliative treatment of late-stage lung cancer and 

advanced esophageal cancer. The Food and Drug Administration (FDA) in the United 

States has accepted Photofrin@ for the treatment of advanced esophageal cancer as well 

as for early and late stage lung cancer. France and the Netherlands have accepted 

Photofrin@as a therapy for lung and esophageal cancer19 while it has been accepted in 
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Figure 1. Photosensitizers presently accepted in clinic 

The two photosensitizers accepted in clinic are Photofrin®, which is used to treat a 

number of cancers in several countries and methylene blue, which is used by the Swiss 

and German Red Cross for the sterilization of freshly frozen plasma units. 
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Gennany for early stage lung cancer, in Canada for esophageal and bladder cancer and in 

Finland for esopbageal and lung cancer. In Japan, Photofrin@is used against early stage 

lung cancer, superficial esophageal cancer, superficial and early stage gastric cancer, 

early stage cervical cancer and cervical dysplasia, a precancerous condition. 19 

Furthennore, Photofrin® is awaiting approval in a number of European countries such as 

ltaly and Spain for esophageal cancer and in Canada and European countries for lung 

cancer. In addition, Photofrin@is being investigated as a possible therapy against head 

and neck cancer, intestinal cancer, lung cancer, skin cancer (both primary and metastatic 

breast cancers), urinary bladder cancer, abdominal cancer, thoracic cancer, brain cancer, 

and Kaposi's sarcoma Other conditions include Barrett's esophagus, psoriasis and 

arterial restenosis.9,20 Ail of these conditions are being investigated and are currently in 

various clinical trials with promising results being acquired in most cases. 

Variations on Photofrin@ are being used in other countries as well. Photoheme is 

produced in Russia for instance and has been accepted by the Phannacological 

Committee of Russia (Moscow, Russia) for a wide range of clinical uses including skin, 

breast, oropharingeal, lung, larynx and gastrointestinal cancers. Non-oncological uses 

include psoriasis and prophylaxis for comeal transplant opacity and recurrent 

blindness.21•23 

Second generation photosensitizers 

Despite its apparent successes, haematoporphyrin derivatives such as Photofrin@ 

have two very important drawbacks.2.24 First of ail, these compounds are readily taken up 

and retained by cutaneous tissue for up to eight to ten weeks post-injection. This causes a 

marked skin photosensitivity that requires the patient to avoid bright sunlight, which is 
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obviously a disadvantage especially for patients with late stage malignancies. Secondly, 

while Photofrin@has a number of absorption peaks between 400 and 650 nm, its weakest 

absorption band at 630 nm is most often used to excite the photosensitizer as the tissue 

penetration of light increases with increasing wavelength. While such disadvantages 

have not stopped Photofrin@ from becoming a useful tool against cancer and other 

conditions, the search for new photosensitizers remains an important goal. 

An ideal photosensitizer for POT should have the following characteristics: 16
,24-26 

1) It should be chemically pure and ofknown and constant composition. 

2) It should have a minimal dark toxicity and only be cytotoxic in the presence of light. 

3) lt should be preferentially retained by the target tissue. 

4) lt should be rapidly excreted from the body, th.us inducing a low systemic toxicity. 

5) It should have a high photochemical reactivity, with high triplet state yields (cl>T) and 

long triplet state lifetimes ('tT) and should be able to effectively produce singlet 

oxygen and other reactive oxygen species. 

6) Finally, it should have a strong absorbance, with a high extinction coefficient (E), at a 

longer wavelength, between 600-800 nm, where tissue penetration of light is at a 

maximum while still being energetic enough to produce singlet oxygen. Furthermore, 

cheaper diode lasers can be used in this range, th.us increasing the potential utility of 

PDT in a clinical setting. 

While no photosensitizer can be deemed ideal for every possible application, a number of 

second generation photosensitizers have been developed in order to overcome the 

shortcomings of Photofrin@ and to take advantage of their more ideal properties. 
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Methylene Blue 

The only photosensitizer other than haematoporphyrin derivative that is presently 

used in clinic is methylene blue (Figure 1 ), which is used by the Swiss and German Red 

Cross for the decontamination of freshly frozen plasma units.27
,28 This photosensitizer 

has been shown to effectively inactivate extracellular enveloped viruses28 and is used in 

clinic as a treatment for methemoglobinemia, thus showing its lack of toxicity in 

humans.29 This phenothiazinium dye has been used extensively for over a century as a 

vital stain in biological assays and can be used in the clinical diagnosis of a variety of 

diseases and as a tumour marker in surgery. However, its use as an in vivo 

photosensitizer is limited by its facile reduction in biological milieu by ubiquitous 

cellular enzymes to the colourless leuco methylene blue, which is photodynamically 

inactive.30 

5-Aminolaevulinic acid (ALA) 

The use of ALA-induced endogenous photosensitizers is a novel method currently 

being investigated for PDT. 31 The natural porphyrin haem is synthesized in every 

energy-producing cell and is the prosthetic group for haemoglobin, myoglobin and other 

haematoproteins. The rate-limiting step in the synthetic pathway for haem is the 

conversion of glycine and succinyl coenzyme A to 5-aminolaevulinic acid (ALA), this 

step being under a negative feedback control by haem. However, the addition of excess 

exogenous ALA can bypass this negative feedback and overload the system, leading to a 

build-up of protoporphyrin IX (PpIX), an effective photosensitizer for PDT.32 As such 

ALA has been extensively studies as a prodrug for the endogenous production and 

accumulation of the photosensitizer protoporphyrin IX in diseased tissue, in particular 
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malignancies (see Figme 2). In the case of ALA, tumor selectivity is influenced by a 

number of factors. lncreased permeability of abnormal keratin, increased levels of 

porphobilinogen deaminase and decreased levels of iron and decreased activity of 

ferrochelatase in tumor cells all result in an accumulation of protoporphyrin IX in these 

diseased cells, thus resulting in the preferential accumulation of the photosensitizer in the 

target tissue.31.33 

Marketed under the name Levulan® by DUSA Pharmaceuticals Inc. (Toronto, 

Ontario, Canada), ALA is the photosensitizer that is closest to being the next compound 

accepted into clinic, with its New Drug Application (NDA) having been accepted for 

submission by the FDA for the treatment of actinie keratoses, a common sun-induced 

precancerous skin lesion. DUSA Phannaceuticals Inc. bas also announced Phase 1/11 

clinical trials involving Levulan® as a treatment for acne~ haïr removal and the 

photodetection of bladder cancer (DUSA Pharmaceuticals Inc., 1998 Annual Company 

Report). Other clinical trials are underway using ALA as a therapy for non-melanoma 

skin cancer34, endometrial ablation35, late stage esophageal cancer36
, gastrointestinal 

cancer2°, Barrett's esophagus37 and psoriasis.35 Because of the low molecular weight and 

polar properties of ALA, it can be used as a topical PDT agent against a number of 

dertnatological conditions and has been shown to be effective against superficial basal 

cell carcinomas, Bowen's disease, erythroplasia of Queyrat, cutaneous T-cell lymphoma 

and Hirsutism.35 

One of the problems associated with ALA is that it does not penetrate very deeply 

into the skin when used as a topical agent. Because of this, attention bas been given to 

ALA esters, which possess slightly different properties. PhotoCure AS, a Norwegian 
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Figure 2. S~Aminolaevulinic acid and protoporphyrin IX 

The stimulation of the production of endogenous photosensitizers such as 

protoporphyrin IX by ALA is a novel method being examined for PDT with an NDA 

submitted for the treatment of actinie keratoses. 
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company (Oslo, Norway), is marketing one such ALA ester, P-1202, a methyl ester, and 

is studying its potential against basal cell carcinomas and other skin lesions along with 

several of the conditions that have been shown to be effectively treated using ALA.9 

Verteporfin 

QLT PhotoTherapeutics Inc. has done extensive work on the second generation 

photosensitizer verteporfin or benzoporphyrin derivative monoacid ring A (BPD-MA) 

(Figure 3).38 In collaboration with CIBA Vision Corporation (Duluth, Georgia, USA), 

verteporfin, under the tradename Visudyne ™, is presently undergoing Phase III clinical 

trials for the treatment of wet age-related macular degeneration (AMD) (see QLT 

PhotoTherapeutics and CIBA Vision Joint 1998-1999 Press Releases). AMD is the 

leading causes of blindness for people over the age of 50 and involves the rapid growth of 

abnonnal blood vessels under the central retina Leaking from these abnormal vessels 

causes scarring and an accelerated loss of visual acuity. There is no adequate treatment 

protocol for 80-90 % of patients suffering from AMD.39 Since POT is known to induce 

vascular shutdown, compounds such as verteporfin are ideal for treating this condition. 

Initial results are excellent and show a significant preservation of vision in a number of 

patients. 

Verteporfin is also in Phase III clinical trials against cutaneous non-melanoma 

skin cancer and I/II clinical trials against other non-melanoma skin cancers (such as 

multiple non-melanoma skin cancer)4°, psoriasis41 and psoriatic arthritis along with 

rheumatoid arthritis (also see the 1997 QLT PhotoTherapeutics Annual Company 

Report). Extensive preclinical work has been done using verteporfin as a therapy for 

multiple sclerosis and Barrett's esophagus and as an agent to achieve endometrial 
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Figure 3. Photosensitizers currently in Phase Ill clinical trials 

Verteporfin and tin etiopurpurin are both involved in Phase Ill clinical trials for 

the treatment of macular degeneration while Phase Ill trials are underway using 

temoporfin against head and neck cancers. Barly stage clinical trials and preclinical work 

using these photosensitizers are also underway (see Table 2). 
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ablation and bone marrow purging.40 Verteporfin bas a much stronger absorbance at a 

longer wavelength (690 nm) where tissue penetration of light is 50% greater as that of 

Photofrin® at 630 nm. In addition, verteporfin is rapidly taken up by the tumor, reaching 

optimal tumor/normal tissue ratios between 30-150 minutes post intravenous injection 

and is rapidly cleared so that skin photosensitivity last only a few days.32 

Tin Etiopurpurin 

Miravant Medical Technologies (Santa Barbara, Califomia, USA) markets tin 

etiopurpurin (SnET2)42 (Figure 3) under the tradename Puryltin ™ as part of their 

PhotoPoint™ procedure. The PhotoPoint™ procedure involves three components, a light-

activated photosensitizer, a light-producing device and a light-delivery system and is 

described at the Miravant Medical Technologies Internet site (www.miravant.com). 

Among the light-activated compounds under development by Miravant, the furthest along 

is definitely Puryltin ™, which is presently in Phase Ill clinical trial for the treatment of 

wet age-related macular degeneration (in cooperation with Phannacia & Upjohn 

(Bridgewater, New Jersey, USA)). It is also in Phase 1 clinical trials against prostatic 

cancer (cancer that has not spread to the prostate itself)43 and Phase Il for cutaneous 

metastatic breast cancer and Kaposi's sarcoma in patients with acquired 

immunode:ficiency syndrome.9 Preclinical work done using SnET2 include extensive 

work on other malignancies such as brain, lung, skin, and head and neck cancer. Non-

malignant conditions such as psoriasis and restenosis have also been shown to be 

effectively treated using SnET2. 

Temoporfin 

164 



Temoporfin (Figure 3) or tetra(m-hydroxyphenyl)chlorin (mTHPC),16
•
44 under the 

tradename Foscan®, is being marketed by Scotia Pharmaceuticals (Guildford, Surrey, 

UK) as a new second generation photosensitizer for PDT (see the company website at 

www.quantanova.com). Phase III clinical trials have begun in Europe and in the USA 

using Foscan® against head and neck cancers.45 Trial work has concentrated on this area 

since conventional treatments are difficult, ineffective and disfiguring. Recent press 

releases from the company state that Foscan® has been given fast track designation by 

the FDA for the palliative treatment of recurrent, refractory or second primary squamous 

cell carcinomas of the head and neck in patient considered to be incurable with surgery or 

radiotherapy with NDA file submission expected by the end of September 1999. Late 

stage esophageal cancer and dysplasia in Barrett' s esophagus are also being treated using 

Foscan® in clinical trials.36 Future trials using this photosensitizer in Europe, USA and 

the Far East against malignant and non-malignant diseases are anticipated and will 

include trials against gastric cancer, prostate cancer and hyperplasia and for field 

steriliz.ation after cancer surgery and control of antibiotic-resistant bacteria. 45 ln addition, 

topical formulations of temoporfin are being developed in order to compete with ALA 

against skin cancers and other dermatological conditions.45 

Temoporfin appears to be one of the most phototoxic of all the second generation 

photosensitizers presently being investigated. It requires very low drug doses (as little as 

0.1 mg/kg) as well as an unusually low light dose (as low as 10 J/cm2), making it 100 

times more photoactive than Photofrin®, where drug doses range from 2-5 mg/kg and 

light doses between 100-200 J/cm2 are generally used.9 The reasons behind this 

exceptionally high activity are not fully known. While improved optical properties and 
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singlet oxygen quantum yields can partially explain this increased phototoxicity, it 

appears the explanation resides in subtumoral and subcellular localization of the 

compound. While lipophilic sensitizers have been shown to bind with lipoproteins and 

hydrophilic compounds with serum albumin upon intravenous administration, 46 

temoporfin has been shown to bind to an unknown plasma protein presumably involving 

the PEG vehicle, possibly leading to differences in subcellular localiz.ation.47 

Furthermore, the interaction with a plasma protein other than albumin or lipoproteins 

could explain the novel pharmacokinetics. The immediate peak in plasma drug levels 

following intravenous administration is followed by a second plasma peak some hours 

later48
•
49 may be a factor in the high phototoxicity of this compound. 

Texaphyrins 

Texaphyrins (Figure 4) are "Texas-sized" porphyrins50
•
51 and are marketed by 

Pharmacyclics, Inc. (Sunnyvale, California, USA) as a photosensitizer (see 

Pharmacyclics, Inc. internet site (www.pcyc.com). Under the trade name Lutrin™, 

lutetium texaphyrin is undergoing Phase II clinical trials as a possible therapy for breast 

cancer. The main advantage of using texaphyrins as a PDT agent is its strong absorbance 

at a much longer wavelength (732 nm) so that treatment can be effectively done on a 

much larger tumour or at a much greater depth. Lutetium texaphyrin derivatives are also 

being investigated in Phase 1 clinical trials for angioplasty of atherosclerotic 

cardiovascular disease and the treatment and prevention of restenosis under the 

tradename Antrin ™ and Optrin ™ is under Phase 1 trials for age-related macular 

degeneration. In addition, both radiosensitizers and chemosensitizers based on the 

texaphyrin framework are also being developed by this company, with Xcytrin™, a 
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Figure 4. Lutetium texaphyrin (Lutrin™) 
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radiation sensitizer, presently involved in Phase III clinical trials for the treatment of 

brain metastases and Phase 1 trials for newly diagnosed primary brain tumors. 

Phthalocyanines 

Phthalocyanines are tetrapyrrolic macrocycles where, unlike porphyrins, the 

individual pyrrole units are linked by nitrogen atoms and not methine bridges (Figure 5). 

The periphery of the macrocycle is extended by benzene rings, which leads to stronger 

absorptions at longer wavelengths than porphyrins such as Photofrin®. Phthalocyanines 

have long been used as dyes and colouring agents in industry and have recently found use 

as photoconducting agents in photocopying machines. They have also been extensively 

studied at PDT agents especially due to their favourable photophysical properties and the 

ability to change its properties, such as solubility, through the addition of substituents to 

the periphery of the macrocycle.2
•
52 

Ciba-Geigy Ltd. (Basle, Switzerland), in partnership with QLT 

PhotoTherapeutics, has developed a liposomal preparation of zinc phthalocyanine (CGP 

55847) that was involved in Type 1/11 clinical trials in Switzerland in patients suffering 

from squamous cell carcinomas of the upper aerodigestive trace.53 Attempts to develop a 

topical application for this photosensitizer in the hopes of treating psoriasis were also 

made.20 

Sulphonated aluminium phthalocyanine, under the name Photosense, is currently 

undergoing clinical trials in Russia 21
•
54

•
55 The Oncological Centre of the Russian 

Academy of Medical Sciences (Moscow, Russia) and the Surgical Clinic of Moscow 

Medical Academy (Moscow, Russia) are carrying out trials using this mixture of 

sulphonated derivatives against a number of malignancies including skin, breast, lung and 
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gastrointestinal cancers. The addition of the sulphonate groups to the periphery of the 

phthalocyanine greatly increases the solubility of these compounds, removing the need 

for liposomal delivery vehicles. Success using Photosense has been relatively good. 

V. 1. Technologies lnc. (Vitex) (Melville, New York, USA), a company based at 

the New York Blood Center, has been studying a silicon-based phthalocyanine56, Pc4, for 

the steriliz.ation ofblood components (1999 Press Release from V. 1. Technologies, lnc.). 

Preclinical results have been extremely promising and it is hoped that the procedure used 

will enter clinical trials in late 1999. 

Addition of a second benzene ring to the periphery of the phthalocyanine leads to 

napthalocyanines. 57 (Figure 5) These compounds absorb at a high wavelength than do 

phthalocyanines (770 nm versus 680 nm), thus increases the therapeutic depth that can be 

achieved and rendering them potential photosensitizers for highly pigmented tumours 

such as melanomas. 58 Signi:ficant work has been done evaluating these compounds as 

photosensitizer for PDT58-60 and they are being pushed towards clinical trials in Bulgaria 

by the Bulgarian Academy of Sciences (Sofia, Bulgaria).24 

N-Aspartyl ch/orin e6 

Under the supervision of Nippon Petrochemical (Osaka, Japan), N-aspartyl 

chlorin e6 (Npe6)61 (Figure 6) is being studied as a possible photosensitizer for PDT.62•63 

Phase 1 clinical trials are underway for the treatment of cutaneous malignancies20 and it is 

also being investigated in Japan as a possible therapy for endobronchial lung cancer.9 It 

has been shown to be an effective photosensitizer against skin cancers with little or no 

long term cutaneous photosensitivity.9 The photodynamic activity ofNpe6 has also been 
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Figure 6. Sorne photosensitizers in early clinical or preclinical trials 

Phase l/II clinical trials and preclinical work are being done using 

photosensitizers such as these for the treatment of a number of conditions (see Table 2) 
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demonstrated to involve a combination of vascular and direct anti-tumor photodamage 

(bothdirect and indirect effect), another potential advantage ofthis photosensitizer.64 

Rhodamirtes 

Due to their specific uptake by mitochondria and their known use as a fluorescent 

probe, rhodamines have been used extensively.30 This has been naturally extended to 

. using these sensitizers in the treatment of malignant tumours. However, rhodamine 123, 

a readily availa:ble commercial dye, is a poor phototoxin due to the high fluorescence 

quantum yield of the compound. 6-s This problem can be remedied by adding heavy atoms 

such as bromine or chlorine to the macrocycle (Figure 6). Known as the heavy atom 

effect, the addition of heavy atoms to the chromophore increases intersystem crossing 

from the singlet to the triplet state by increases spin-orbital coupling, thus allowing an 

otherwise forbidden changes in the spin state (S1 ~ T 1). The addition of halogens to the 

chromophore also red-shifts the absorption, an important feature in the case of 

rhodamines, which absorb around 500 nm, a wavelength where tissue penetration of light 

is minimal.30 Despite this, rhodamines have been shown to be very effective 

photosensitizers against malignant cells in vitro and a Quebec-based company, 

Theratechnologies, Inc., has undertaking extensive preclinical studies in the use of 

brominated rhodamine derivatives in the eradication of leukemia cells from bone marrow 

extracts in preparation for transplantation. 66 Phase 1 clinical trials have begun using TH 

9402, a brominated rhodamine analog, for the treatment of chronic myeloid leukemia 

using the patented PhotoDynamic cell therapy Process (PDP) as described at 

www.theratech.com, the company's internet site. This ex vivo photodynamic therapy, 

used fur . purging aurologous b~ ~ow,. has. b~ slwwn. to. destmy diseased GeUs 
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while sparing normal healthy cells, an important prerequisite for such a treatment 

protocol. 

Porphycenes 

Glaxo Dermatology, a division of Glaxo-Wellcome Inc. (Research Triangle Park, 

North Carolina, USA) along with Cytopharm (Menlo Park, Califomia, USA), has done 

extensive preclinical work using the porphycene ATMPn (9-acetoxy-2,7,12,17-tetrakis-

(J3-methoxyethyl)-porphycene) (Figure 6).67-6
9 Its four J3-methoxyethyl side chains leads 

to accelerated cellular uptake and the acetoxy function increases the solubility and 

hydrophilicity of the molecule.67 It has been shown that this compound can be applied 

topically, which would ma.ke it useful in dermal applications.20 In vitro studies has 

shown that ATMPn has an unusually fast uptake into skin cells not seen for other second 

generation photosensitizers. A TMPn is undergoing preclinical testing as a possible agent 

against psoriasis vulgaris and superficial non-melanoma skin cancer.67 

Other photosensitizers 

The success exhibited by Photofrin® and the potential shown by a number of the 

second generation photosensitizers has caused an explosion in photodynamic therapy, 

resulting in the unveiling of new photosensitizers along with an investigation into well-

known naturally occurring chromophores. Hyericin (Figure 6), for example, is well-

documented as having photodynamic activity as it causes hyericism or photopoisoning in 

grazing animais that consume large quantities of plants containing this compound, often 

leading to skin irritation, fever and even death. 70 This multicyclic quinione, which 

absorbs around 590 nm, 65 is being investigated as a photosensitizer for PDT and is 

presently in Phase 1 clinical trials for the treatment of psoriasis, warts and skin cancer 
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(see www.sante.univ-nantes.fr/med.laser/sensitizer.html). The naturally occurring 

perylenequinones such as hypocrellins, which are produced by fungi and insects65, are 

also under evaluation for PDT. Severa! pharmaceutical companies are also actively 

developing new synthetic photosensitizers. Scotia Pharmaceuticals are interested in 

bacteriochlorins for photodynamic therapy (see the company website mentioned above) 

while Hamamatsu Phototonics are investigating ATX-SlO, a chlorin derivative.71 In 

reality, any chromophore able to effectively produce photocytotoxicity upon illumination 

has the potential to be used in photodynamic therapy, leading to endless possibilities. 

Conclusion 

As the new millenium nears, the need for new protocols for the treatment of 

cancer and other diseases is becoming acute. With the population aging and established 

therapies operating close to optimal levels, new therapies that can effectively treat cancer 

and other conditions while being cost effective are at a premium. Photodynamic therapy 

is essentially a very simple concept that still offers the possibility of an effective and 

specific method of destroying malignant, premalignant and benign tissues while sparing 

surrounding normal, healthy cells. Initial clinical studies have shown that PDT is 

effective against cancer and a variety of other diseases (see Table 2) and offers a 

promising treatment option for patients with conditions that have no established or 

effective cure or whose condition has become refractory to existing therapies. 

Since cancer is a large family of diseases with widely different clinical patterns, it 

is highly unlikely that a single photosensitizer will ever serve ail purposes in oncology. 

Add to this the desire to extend PDT into the treatment of other conditions and the need 

to develop new photosensitizers with optimal properties for treating a given condition 
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becomes obvious. With the acceptance of the first generation photosensitizer Photofrin® 

in clinic around the world, second generation photosensitizers are being tested against 

numerous pathogenic states (Table 2). Photodynamic therapy is the treatment of the 

future. 
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Table 1. Fundamental clinical characteristics of the photosensitizers currently in clinical or preclinical trials 

Photosensitizer Âmax Extinction Mode of Delivery Typical Light Thne 
(nm) coefficient delivery vehicle dose dose post-

(Ml cm-1) (mg/kg) (J/cm2) injection 
Haematoporphyrin 100-

derivative 630 3xl03 i.v. or topical 5% dextrose 2-5 200 24-48h 

Methylene blue 668 9.5xl04 Ex vivo water- lµM 50 000 n.a. 
soluble lux 

5-aminolaevulinic acid topical, oral water- <60 (orally) 100- -
(protoporphyrin IX) 635 <5xl03 or i.v. soluble <30 (i.v.) 200 

Verteporfin 690 3.5xl04 i.v. liposomal 0.1-2 100- 30-150 
200 min 

Tin Etiopurpurin 660 2.8xl04 l.V. lipid 1-2 100- 24h 
emulsion 200 

Temoporfin 652 3xl04 l.V. PEO/EtOH/ 0.1-0.3 8-12 24-48h 
H20 

Texaphyrins 732 4.2xl04 i.v. water- 0.6-7.2 150 3-5h 
soluble 

670- 2.5xl0:1 i.v. liposomal 0.5-2 100 24-72h 
Phthalocyanines 680 or water-

soluble 
Napthalocyanines 750- >10' i.v. liposomal - - -

780 
N-aspartyl chlorin e6 664 4.0xlO,. l.V. water- 0.5-3.5 25-100 4h 

soluble 
Rhodamines 511 2.0xl04 ex vivo water- 25µM 1-10 n.a 

soluble 

Duration of skin 
photosensitivity 

2-3 months 

n.a. 

1-2 days 

3-5 days 

Upto 1 month 

Upto 6weeks 

minimal 

8-10 days 

-
3-7 days 

n.a. 



Porphycenes 630 5.2xl04 topical liposomal 1-3 - n.a. -

Hypericin 590 4.4x10 .. topical liposomal - - - -

-OO -



Table 2. Photosensitizers currently in clinical trials or late pre-clinical development 

Company Photosensitizer Tradename Clinical Application Clinical Status 

QLT Haematoporphyrin Photofrin® Esophageal, Lung, Bladder, Gastrie and Approved 
Photo Therapeutics derivative Cervical Cancer, Cervical Dysplasia 

QLT Haematoporphyrin Photofrin® Head and Neck, Intestinal, Lung, Skin, Bladder Phase l/II through 
Photo Therapeutics derivative and Metastatic Breast cancer, Kaposi's Phase III 

Sarcoma, Barrett' s Esophagus, Psoriasis, 
Arterial Restenosis 

State Research Haematoporphyrin Photoheme Skin, Breast, Oropharingeal, Lung, Larynx and Approved 
Centre for Laser derivative Gastrointestinal Cancer, Psoriasis, Prophylaxis 

Medicine (Russia) for Comeal Transplant Opacity 
German and Swiss Methylene Blue - Sterilization of Freshly Frozen Plasma Approved 

Red Cross 
DUSA 5-aminolaevulinic Levulan® Actinie Keratoses NDA submitted 

Pharmaceuticals acid (ALA) Hair removal, Acne, Non- Melanoma Skin, Phase l/II 
Inc. Esophageal and Gastrointestinal Cancer, Preclinical 

Endometrial Ablation, Psoriasis, Barrett's 
Esophagus 

PhotoCure AS 5-aminolaevulinic P-1202 Basal Cell Carcinoma and Other Skin Lesions Preclinical 
acid(ALA) 

QLT Verteporfin VisudynerM Macular Degeneration Phase III 
Photo Therapeutics Verteporfin Non-Melanoma Skin Cancer, Psoriasis, Phase 1/11 

Psoriatic and Rheumatoid Arthritis Preclinical 
Multiple Sclerosis, Barrett's Esophagus, 

Endometrial Ablation, Bone Marrow Purging 
Miravant Medical Tin Etiopurpurin Purlytin™ Macular Degeneration Phase III 

Technologies Metastatic Breast Cancer, Kaposi's Sarcoma Phase II - Prostatic Cancer Phase I 
Brain, Lung, Skin and Head and Neck Cancer, Preclinical oc 

N 
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Psoriasis, Restenois 
Scotia Temoporfin Foscan® Head and Neck Cancer Phase III 

Pharmaceuticals Esophageal Cancer, Barrett's Esophagus Phase llII 
Gastrie and Prostate Cancer, Hyerplasia, Preclinical 

Sterilization, Antibiotic 
Phannacylics lnc. Texaphyrins Lutrin™ Breast cancer Phase II 

Antrin™ Angioplasty Phase 1 
Optrin™ Macular Degeneration Phase 1 

Ciba-Geigy Phthalocyanine CGP 55847 Squamous Cell Carcinoma of Upper Phase llII 
Aerodigestive Tract, Psoriasis 

State Research Phthalocyanine Photosense Skin, Breast, Oropharingeal, Lung, Larynx and Phase III 
Centre (Russia) Gastrointestinal Cancer, Psoriasis 

V. 1. Technologies Phthalocyanine Pc4 Sterilization of Blood Products Phase 1111(late1999) 
Inc. 

Nippon N-aspartyl chlorin NPe6 Endobronchial Lung Cancer and Cutaneous Phase 1 
Petrochemical e6 Mafümancies 

Theratechnologies Rhodamines TH9402 Bone Marrow Purging Phase 1 

Cytopharm/Glaxo Porphycenes ATMPn Dermal Applications (Psoriasis, Non-Melanoma Preclinical 
Skin Cancer) 

VimRx Hypercin - Psoriasis, W arts and Skin Cancer Phase 1 
Phannaceuticals 
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Abbreviations: Ad, adenovirus; Ad2, adenovirus serotype 2; AlPc; aluminium 

phthalocyanine; AlPcS2adj, adjacently disulphonated aluminium phthalocyanine; A1PcS4, 

aluminium tetrasulphonated phthalocyanine; AlPcS~i, aluminium mono-(6-

carboxypentylaminosulphonyl)-tetrasulphophthalocyanine; AIPcS~2; aluminium di-( 6-

carboxypentylaminosulphonyl)-tetrasulphophthalocyanine; AlPcS4C12, aluminium 

(dodecylaminosulphonyl) tetrasulphophthalocyanine; BPO, benzoporphyrin derivative; 

BPO-MA, benzoporphyrin derivative monoacid ring A; BSA, bovine serum albumin; 

CAR, Coxsackie B and Adenovirus receptor; Ce6, chlorin e6; CoPc, cobalt 

phthalocyanine; CRM, Chremophor EL™; Oex, dextran; dsONA, double stranded ONA; 

OTox, diphtheria toxin; OPPC, dipalmitoylphosphatidylcholine; ECso, effective 

concentration 500/o; EGF, epidennal growth factor; Gb3, globotriaosylceramide; GePc, 

gennanium phthalocyanine; HDL, high density lipoprotein; HMP, Escherichia coli 

hemoglobin-like protein; HP, hematoporphyrin; HAS, human serum albumin; LOso, 

lethal dose 50%; LOL, low density lipoprotein; malBSA, maleylated bovine serum 

albumin; MnSOO, manganese superoxide dismutase; MRT, modular recombinant 

transporters; MSH, a-melanocyte stimulating hormone; mTHPC, m-

tetrahydroxyphenylchlorin; NLS, nuclear localization signal; NPC, nuclear pore complex; 

oxLOL, oxidized low density lipoprotein; Pc, phthalocyanine; POT, photodynamic 

therapy; PS, photosensitizer; PV A, polyvinyl alcohol; RGO, Arg-Gly-Asp tripeptide; 

ROS, reactive oxygen species; SL TB, Shiga-like toxins; Sn(N)Ce6, tin(N) chlorin e6; 

SnET 2, tin etiopurpurin; TPPS-2A, adjacently disulphonated tetraphenylporphine; VLOL, 

very low density lipoprotein; ZnPc, zinc phthalocyanine 

187 



Table of Contents 

1. Abstract 

2. Introduction 

3. Serum proteins 

3.1 Albumin 

3 .2 Lipoproteins 

3 .3 Transferrin 

3 .4 Other serum proteins 

4.Annexins 

5. Bisphosphonates 

6. Steroids 

7. Toxins and Lectins 

8. Epidermal Growth Factor 

9. Insulin and nuclear localizing signais 

1 O. Adenoviruses and adenoviral proteins 

11. Conclusion 

12. References 

188 



1. Abstract 

Targeted photodynamic therapy offers the opportunity of enhancing 

photodynamic efficiency by directly targeting diseased cells and tissues. While antibody-

conjugates have received the most attention, cellular transformations offer numerous 

other potent targets to exploit during the delivery of photosensitizers for PDT. 

Alterations in receptor expression, increased levels of specific cell surface membrane 

lipids and proteins as well as changes in the cellular microenvironment all occur in 

diseased cells. Along with other biochemical and physiological changes that occur 

during diseased and malignant cell transformation, these factors have been utilized in 

order to improve the efficacy of PDT. Attempts have been made to either increase the 

uptak:e of the dye by the target cells and tissue or to improve subcellular localization so as 

to deliver the dye to photosensitive sites within the cells. This review discusses various 

photosensitizer bioconjugates that utilize these factors and swnmarizes the results 

obtained to date. 
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2. Introduction 

Traditional cancer treatments including surgery, radiation therapy and 

chemotherapy all result in serious side effects caused by the loss of normal cell function. 

This is a result of the relative indiscriminate cytotoxic properties of modem treatment 

modalities. Researchers have thus invoked the search for the "magic bullet", that single 

underlying process that will allow for selectively targeting and destroying diseased cells 

while sparing their healthy functional neighbors. Despite decades of experimentation, 

success has been fleeting. Complicating the search is the fact that cancer is not a single 

entity but is a family of diseases characterized by uncontrolled proliferative growth and 

the unwanted spread of aberrant cells from their site of origin [l]. Bach malignancy 

exhibits their own characteristics and each expresses their own possible target antigens. 

Furthermore, individual tumours are incredibly heterogeneous, where therapy that causes 

cell death in one subset of cells might in fact strengthen another subset. 

Despite much early promise, antibody targeting has had little real success in 

cancer therapy [2]. There are a number of problems associated with antibody-based 

therapies that preclude them from being the "magic bullet" so long sought after. Among 

these problems are the following: 

1) It is remarkably difficult to achieve tumour-specific antibodies that also display high 

affinity. 

2) Clinical tumours are highly heterogeneous and do not have consistent expression of 

target antigen throughout their mass. 

3) Antibodies are large proteins and do not penetrate well into the tumour mass. 
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4) Only a very small amount of the antibody dose (much less than 1%) actually reaches 

the tumour and most ofthat is localized to the tumour vasculature. 

5) Antibodies are often not intemalized by the cell, leaving the cytotoxic agent to do its 

damage on the cell surface, away from the most sensitive sites within the cell. 

6) Antibody-drug conjugates will only be active against those tumour cells that express 

the corresponding antigen and any chemical instability in the chemical bond between 

the antibody and the drug could result in undesirable systemic effects. 

These important disadvantages have led research towards new areas. 

Photodynamic therapy is one step towards the "magic bullet" as only those cells 

that are simultaneously exposed to the photosensitizing dye, molecular oxygen and light 

receive the cytotoxic insult [3-5]. The ability to confine activation of the photosensitizer 

by restricting illumination to the diseased tissue allows for a certain degree of selectivity 

towards these cells. ldeally, photodynamic therapy holds the promise of dual selectivity 

with preferential tumour uptake of the photosensitizer leading to improved efficiency. To 

date, most first and second-generation photosensitizers studied for photodynamic therapy 

display only a slight preference for malignant cells, often leading to significant skin 

photosensitivity and high uptake by healthy cells and tissues. ln order to overcome this, 

third generation photosensitizers that are actively targeted towards diseased tissue are 

being designed and synthesized [6]. These can be said to include targeted vehicles used 

to improve photosensitizer delivery along with photosensitizer-antibody conjugates. This 

chapter deals with other methods of targeting photosensitizers to cancer cells, paying 

particular attention to non-antibody based protein carriers and protein/receptor systems. 

Severa! of these targeting methodologies offer the added advantage of trafficking the 
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photosensitizer across the cellular plasma membrane, resulting in intracellular 

accumulation of the dye. Such intracellular accumulation may allow for targeting of 

photosensitive intracellular sites, thus improve photajynamic efficiency. 

3. Serum Proteins 

Upon administration into the blood stream, most drugs associate with various 

serum proteins including both high and low density lipoproteins and albumin. The nature 

of this interaction depends on the physical characteristiçs of the drug and the serum 

protein involved. Presumably, hydrogen bonding, van der Waal forces, 1t bond stacking, 

hydrophobie interactions, physical entrapment and ionic pairings all play a role in the 

attachment of the drug to the carrier serum protein. Along these lines, it is well known 

that serum proteins are also predominantly responsible for the transportation of 

photosensitizers throughout the body [7-10]. More hydrophilic photosensitizers such as 

tetrasulphonated aluminium phthalocyanine tend to associate with serum albumin while 

low density lipoproteins (LDL) carry zinc phthalocyanine and other more hydrophobie 

photosensitizers in the blood stream. The in situ generation of these carrier systems can 

lead to improved photodynamic action as they may lead to enhanced intracellular 

accumulation of the dye via receptor-mediated endocytosis along with improved 

targeting. In order to further profit from this improved PDT efficiency, means of 

strengthening the association of the photosensitizer with the serum protein have been 

investigated in the hopes of increasing the target specificity of the dye (Table 1 ). 
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Table 1) Summary of serum·based protein conjugated to photosensitizers. 

Serum Protein Photosensitizer Target Reference 

BSA Hematoporphyrin Macrophages 17 

BSA ZnPc Murine mammary and 14 
human colon carcinoma 

BSA, Fibrinogen, Chlorine6 Tissue solder 22 
Ge latin 
Maleylated BSA Chlorine6 Scavenger receptor, 21 

Intima! hyperplasia 
Maleylated BSA AlPcS..A1 and A1 Scavenger receptor 18 

BSAand Chlorine6 Scavengerreceptor 19,20 
Maleylated BSA 
LDL ZnPc MS-2 fibrosarcoma 15 

LDL Hp HTl 080 fibroblast 34 

LDL BPD-MA GM3348B fibroblast 41 

LDL TPPSn LDL receptor on human 35 
hepatocyte tumour 

LDL (human) BPD-MA Choroidal melanomas, 42-44, 48, 
choroidal neovasculature 

LDL,HDL Hematoporphyrin LDL receptor on 10~ 17, 47 
fibroblast, Scavenger 
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LDL BPD-MA LDL receptor on 41 
rhabdomyosarcoma 
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LDL AlPcS4-A2 and LDL receptor oflung 40 
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Transferrin Hematoporphyrin Transferrin receptor 17 

Transferrin Chlorine6 Adenocarcinoma 53,54 
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3.1 Albumin 

Albumin is by far the most abundant serum protein in hum.ans, with 

concentrations in the range of 0.6 mM [11 ]. As such, it is at least ten times more 

concentrated than the total concentration of ail lipoproteins. Human serum albumin 

consists of 585 amino acids forming a single polypeptide [12]. lt has a molecular weight 

of approximately 66 000 Daltons and is 500/o a helical, giving the protein an overall 

ellipsoïdal shape. Albumin plays several important biological roles including 

involvement in regulating osmotic blood pressure and transporting fatty acids from the 

liver to tissues. Serum albumin possesses a unique capability to bind, covalently or 

reversibly, a great number of various endogenous and exogenous compounds [13]. 

Severa! different transport proteins exist in blood plasma but albumin alone is able to 

bind a wide diversity of ligands reversibly with high affi.nity. This broad specificity of 

human serum albumin towards structurally diverse ligands is related to its flexible 

structure, enabling multiple three dimensional rearrangements of the protein depending 

upon drug binding conditions. This blood serum protein also serves as an important 

source of amino acids for cells [12]. ln fact, over 60% of albumin can be found in 

interstitial fluid. With the increased metabolism and proliferation of cancer cells, this 

would explain the high rate of serum albumin turnover in tumours. 

Initial studies utilizing serum albumin as a targeting vehicle involved noncovalent 

binding of unsubstituted zinc phthalocyanine (Figure 1) into BSA prior to iv 

administration [14]. EMT-6 mouse mammary tumours on Balb/c mice and T380 human 

colon carcinomas on nude mice displayed tumour regression at doses of 0.5 and 2.0 µmol 

per kg, 24 hours post PDT. Importantly, no hepatic toxicity was observed using the 
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Figure 1. Unsubstituted zinc phthalocyanine 

195 



ZnPc-BSA conjugate, thus avoiding an obstacle when administering ZnPc in 

Chremophor EL™ (CRM). Interestingly, analysis of serum fractions from treated 

animais showed that, following injection, the ZnPc redistributed towards the high density 

lipoprotein fraction of the serum. This is similar to observations made using similar dyes 

delivered in liposomal formulations [15]. 

In order to avoid this redistribution, studies have been undertaken to covalently 

bind various photosensitizers to albumin, in particular BSA. lt is known that physically 

altered albumin is targeted by scavenger receptors, which are expressed in high numbers 

on macrophages. These scavenger receptors are able to bind a wide range of different 

ligands and shuttle them to endosomes and lysosomal compartments within the cell. 

Both oxidized LDL and maleylated BSA readily bind to the scavenger receptor while the 

native proteins do not [16]. As it is estimated that over 50% of the tumour mass is of 

macrophage lineage in several cancers, this provides an opportunity to target 

photosensitizers to the tumour volume [6]. For instance, it has been observed that 

tumour-associated macrophages accumulate higher levels of photosensitizer than do 

neighboring tumour cells, with a nine-fold increase being observed in the case of 

porphyrins [17]. 

Among initial studies, Hamblin and Newman covalently coupled 

hematoporphyrin (Figure 2) to BSA via a simple peptide bond to give monomeric and 

cross-linked conjugates [17]. While the fluorescence of these conjugates was quenched 

to a certain degree, single oxygen quantum yields were comparable to those of the free 

porphyrins. In NIH 3T3 fibroblast cells and HT29 tumour cells, it was observed that 

native albumin did not compete with the uptake of the HP-BSA conjugate while the 
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Figure 2. Hematoporphyrin 
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uptake of the HP·BSA was greatly enhanced in the presence of poly-L-lysine and in the 

absence of serum. These observations led to the conclusion that the HP-BSA was most 

likely associated with the plasma membrane of these cells. On the other band, J774 

macrophage-like cells accumulated large amounts of the conjugate as observed by 

increased fluorescence and this uptake could be drastically impeded by naturally binding 

ligands. Of some importance, the J77 4 cells degraded the conjugate, leading to free 

photosensitizer within the cell and allowing the possibility of redistribution to more 

photosensitive sites [17]. 

Altered albumin such as maleylated BSA has also been investigated as a possible 

vehicle for targeting photosensitizers. AIPcS4 was covalently bound to BSA in a 9: 1 

molar ratio via one or two sulphonamide hexanoic amide spacer chains (Figure 3) [18]. 

The resulting conjugate was then treated with maleic anhydride to yield the 

corresponding maleylated BSA-phthalocyanine complex. The mal-BSA-Pc conjugate 

showed greater a:ffinity for the scavenger receptor as compare toits BSA-Pc counterpart. 

These photosensitizer conjugates exhibited higher uptake and improved photodynamic 

efficiency in the macrophage-like J774 cells as compared to the non-phagocytic EMT-6 

murine mammary tumour cells. Competitive binding studies showed that this difference 

was due to recognition of the mal-BSA conjugate by the scavenger receptors expressed 

on the J774 cell line. Unfortunately, these protein-photosensitizers were less active than 

free AIPcS2adj, most likely a result of aggregation of the photosensitizer within the 

conjugate. 

Similarly, chlorin e6 (Ce6) (Figure 4) was covalently attached to BSA and this 

conjugated photosensitizer was further modified by maleylation [19,20]. Dye to protein 
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Figure 4. Chlorin e6 
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ratios of 1: 1 to 3: 1 were obtained. As in the study above, these photosensitizers 

displayed increased uptake and higher photodynamic activity in J774 cells as compared 

to the non-phagocytic OVCAR-5 human ovarian cancer cells. The uptake and 

phototoxicity in J774 cells was greatly diminished after incubation at 4°C, seemingly 

indicating an endocytotic route of entry. Interestingly, during in vivo studies, mal-BSA-

Ce6 had a significant effect on tumour growth delay and reduction in tumour growth in 

scavenger-receptor negative EMT-6 tumours as compared to free chlorin e6. Naturally, 

J774 tumours were effectively treated in vivo using this conjugate. 

Albumin-conjugated photosensitizers have been examined as possible therapies 

for conditions other than cancer, in particular other conditions involving macrophages 

and macrophage recruitment. Mal-BSA-Ce6 has been shown to be readily taken up by 

intimal macrophages and smooth muscle cells that are recruited during the formation of 

hyperplastic lesions [21]. PDT using this agent effectively inhibited intimal hyperplasia 

and decreased restenosis following therapy for arterial occlusion. On the other hand, 

ijSA-Ce6 has been investigated as an agent to induce photodynamic tissue adhesion via 

tissue soldering. Scleral incisions in human cadaveric eyes were welded using conjugates 

and mixtures of chlorin e6 with various proteins including albumin, fibrinogen and 

gelatin [22]. The BSA-Ce6 conjugate formulated with additional free albumin showed 

significantly higher weld strength than the other protein conjugates and mixtures. One 

possible reason for this observation is increased intermolecular cross-linking between the 

BSA-Ce6 conjugate and the free albumin, which would result in improved weld strength. 

3.2 Lipoproteins 
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Cholesterols, triacylglycerols and other lipids are transported in the serum by 

lipoproteins classified according to increasing density: chylomicrons, chylomicron 

remnants, very low density lipoproteins, intermediate density lipoproteins, low density 

lipoproteins and high density lipoproteins [23]. Basically, a lipoprotein is a particle 

consisting of a central core of hydrophobie lipids surrounded by a shell of hydrophilic 

polar lipids and apoproteins, with seven principle apoproteins having been isolated and 

characterized. These serum particles have two important biological functions. They 

solubilize highly hydrophobie lipids and allow the transportation of these important 

molecules throughout the body while also containing signais that regulate the movement 

of the particular lipid into and out of specific cells and tissues. 

Of these lipoproteins, the most important in terms of drug delivery are the low 

density lipoproteins. LDLs are the major carrier of cholesterol in the blood [23]. Having 

a diameter of 22 nm and a mass of approximately three million Daltons, these particles 

contain a core of about 1500 esterified cholesterol molecules (mostly linoleate esters) 

surrounded by a shell of phospholipids and unesterified cholesterols. This outer shell 

also contains a single copy of the very large (514 kd) B-100 apolipoprotein. It is this 

apolipoprotein that is responsible for recognition and binding by the LOL receptor and 

leads to receptor-mediated endocytosis of the LDL particle. As cholesterol is a key 

component of ail eukaryotic plasma membranes and is thus essential for the growth and 

viability of cells in higher organisms, it is natural that tumour cells and tumour vascular 

endothelial cells express the LDL receptor in higher numbers due to either their increased 

proliferation or increased membrane turnover [24]. This makes LDL particles extremely 

attractive vehicles for drug delivery and targeting. An additional advantage of using 
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LDLs during POT is that following irradiation, the LDLs will become highly oxidized 

and the resulting oxidized species are cytotoxic towards endothelial cells, thus further 

extending the photodynamic action [25]. In fact, it has been observed that Pc-loaded 

LDLs are increasingly susceptible to oxidation even without illumination and that this 

causes a local oxidative stress that can further induce cytotoxic effects in neighboring 

cells [26]. 

As was mentioned previously, LDLs are believed to be important in the 

transportation of the more hydrophobie photosensitizers. The interaction between the PS 

and the LDL is believed to be a result of two classes of binding sites on the lipoprotein, 

most likely located in either the matrix of the apolipoprotein or within the lipid core 

[27,28]. This dual binding would seem to dictate where the LDL-PS particles are 

targeted, either to the cellular or vascular components of the tumour, depending on the 

site of binding. 

The more hydrophobie photosensitizers must be formulated in some sort of lipid 

material prior to administration in order to solubilize the dyes [9,25]. Several studies 

were initiated wherein the highly hydrophobie unsubstituted zinc phthalocyanine (Figure 

1) was enclosed into various liposomes and the interaction of these liposomes and serum 

proteins, in particular LDLs, was examined in order to determine the ultimate fate of the 

ZnPc in the blood [29-31]. Depending on the liposomal formulation used, it was found 

that the ZnPc readily redistributed to the LDLs. Incubation of LDLs with liposomes 

containing ZnPc resulted in a progressive increase in the net negative charge of the 

lipoprotein as determined by agarose gel electrophoresis and both ZnPc and liposomal 

phospholipid were found to be incorporated into the LDL particles [30]. Immunoaffinity 
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experiments indicated that upon incubation, a heterogeneous population of apolipoprotein 

B-1 OO was obtained. This would seem to confirm that the LDL particles have two 

distinct bindÎng sites, one of which involving the apolipoprotein. Importantly, the loss of 

antibody affinity in this subpopulation may indicate a potential loss of affinity for the 

LDL receptor. In another study, it was observed that the ZnPc was incorporated into both 

LDL and HDL following incubation with pooled lipoproteins (32,33]. In pooled plasma, 

HDL and LDL took up most of the photosensitizer with some of the dye found in 

association with VLDL. Overall, the density of the ZnPc liposomes increased when the 

liposomes were mcubated with plasma. This suggests that the liposomes are a.t least 

partially opsonized by plasma proteins [31]. It seems likely that lipid-type delivery 

systems partially fuse with the lipid core of lipoproteins. This is supported by the 

observation that CRM alters the density of HDL and LDL particles [32,33]. 

The role of the LDL receptor was investigated using both the amphiphilic 

hematoporphyrin IX (Figure 2) and the hydrophobie ZnPc (Figure l) bound to human 

LDL in molar ratios of 5-6:1 and 10-12:1 respectively [34]. In human HT1080 

fibroblasts, accumulation of the HP-LDL complex was due to high affinity LDL 

receptors while the ZnPc-LDL complex was intemalized through non-specific 

endocytosis. The lack of LDL receptor affinity for the ZnPc-LDL was due to changes in 

the apolipoprotein B structure induced by complexation of the LDL with the 

phthalocyanine. This structural modification was suggested by spectroscopie studies. On 

the other hand, in studies using tetraphenylporphinesulphonates, it was found that the 

monosulphonated (Figure 5 A) and adjacently disulphonated derivatives (Figure SB) 

associate strongly with LDLs [35]. Furthermore, despite the photosensitizer strongly 
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influencing the charge of the lipoproteins, Hep G2 cells showed that up to 250 molecules 

of TPPS-2A per LDL resulted in unchanged LDL receptor recognition. Furthermore, in 

vivo studies in rats indicated that LDLs incorporating up to 1000 photosensitizer 

molecules were still processed like native LDLs. As such, these two studies put into 

question how photosensitizer structure and loading truly influences LDL receptor 

recognition. 

ln vivo studies confirmed that LDLs were indeed involved in Pc transport within 

the body. The relative amount of photosensitizer bound to LDL following iv injection 

depends on the physical characteristics of the compound. The nature of the delivery 

system may also affect the amount of photosensitizer bound to LDL. For instance, it is 

known that the relative amount of SnET 2 bound to LDL increases with the vehicle used 

in the order CRM > cyclodextrin > liposomes following in vitro incubation with dog 

serum [36]. Similar results were obtained in vivo using a germanium(IV) 

octabutoxyphthalocyanine, where CRM-administered GePc let to prolonged serum 

retention and stronger association with LDL as compared to the corresponding liposome-

delivered Pc [37]. 

Improved incorporation into LDLs enhances the PDT efficiency of most 

photosensitizers. In the case of ZnPc, non-covalent complexation of the photosensitizer 

with LDLs prior to injection enhanced both tumour uptake and photodynamic activity of 

the photosensitizer as compared to ZnPc incorporated into DPPC liposomes [38]. 

Accordingly, the LDL receptor pathway should be an effective method of enhancing the 

selectivity of PDT. Interestingly, while albumin is known to mediate the accumulation of 

photosensitizing dye into the vascular stroma, LDL-transported dye is mostly delivered to 

206 



intracellular sites such as the·mitochondria [32,38]. As such, these two vehicles would 

result in different modes of tumour control, with albumin causing photodamage to the 

extracellular matrix and LDLs resulting in more direct cell death [39]. This difference 

was observed in the case of hematoporphyrin. Electron microscopy demonstrated that 

Hp-LDL complexes induced direct cell kill while free Hp is known to induce tumour 

regression via vascular shutdown [9,32,38]. 

In order to enhance the incorporation of phthalocyanines into LDLs, AlPcS4 has 

been modified to include a twelve-carbon long alkyl chain by a sulphonamide bond 

(Figure 3). The long alkyl chain readily inserts into the lipid core of the LDL [40]. In 

vitro PDT studies against A549 adenocarcinoma lung cancer cells showed the 

effectiveness of the AlPcS4C12-LDL conjugate. The LDL conjugate was found to be 

twice as phototoxic as compared to the unconjugated AlPcS4C12 Under the same 

conditions, the parent tetrasulphonated aluminium phthalocyanine was inactive. No 

difference was observed between the conjugated and unconjugated A1PcS4C12 during in 

vivo studies. However, this would be as expected since, upon iv injection, unconjugated 

A1Pc$4C12 would naturally distribute to LDLs in the blood stream. Both the conjugated 

and unconjugated dye exhibited EMT-6 tumour regression at doses as low as 0.2 

µmol/kg. 

Benzoporphyrin derivative (Figure 6) has been non-covalently complexed with 

LDLs and these conjugates have been investigated in the treatment of ocular conditions. 

The importance of the LDL receptor was obvious when it was observed that BPD-LDL 

intracellular accumulation was insignificant when the LDL was chemically modified by 

acetylation or when incubation with LDL receptor negative GM2000E fibroblast 
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Figure 6. Benzoporphyrin derivative monoacid Ring A (verteporfin) 
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cells [ 41 ]. In the meanwhile, normal GM3348B fibroblast accumulated the BPD-LDL by 

a specific binding and internaliz.ation via the LDL receptor. In vivo studies u5ing Ml 

tumour bearing DBA/2J mice showed a pronounced enhancement in the uptak:e of the 

BPD-native LDL conjugate as compared to the acetyl-LDL associated BPD. This result 

shows the importance of the LDL receptor both in vitro and in vivo. Subsequenily, BPD-

LDL photodynamic therapy was tested on experimental models of choroidal melanoma 

[42], choroidal neovascularization [43] and Green melanoma [44]. Results were 

favorable in all three of these models. However, despite evidence suggesting direct 

tumour cell damage, evidence for the role of direct PDT-mediated cell death is lacking 

and the possibility that the BPD-LDL conjugate targets the neovascular endothelial cells 

remains [ 44 ]. 

Unsubstituted AlPc has been non-covalently inserted into oxidized LDL [45]. 

Like albumin, altered LDLs are targeted by the scavenger receptor of macrophages. In 

this case, the oxLDL-Pc complex was stable upon incubation with serum, indicating that 

there was little redistribution of the dye to other serum components. Studies against 

RA W 264. 7 macrophage cells showed that these conjugates were highly photoactive. In 

the presence of a specific ligand against the scavenger receptor, no photocytotoxicity was 

observed, indicating the importance of scavenger receptor in the targeting of the dye to 

these cells. 

In a similar fashion to album.in, LDLs have been covalently attached to 

photosensitizers in an attempt to take advantage of the increased LDL receptor expression 

by malignant cells. Unfortunately, results to date have been disappointing. LDLs were 

covalently bound to AlPcS4 bearing two sulphonamide hexanoic acid spacer chains 
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(AlPcS4A2) in the same way as was described above for A1PcS4-albumin conjugates 

(Figure 3) [40]. The LDL conjugate was not photodynamically active at the highest drug 

and light doses studied. It seems reasonable to hypothesize that covalent coupling of the 

Pc to the apolipoprotein of the LDL led to reduced receptor recognition and as suc~ 

decreased cell/LDL-Pc interactions. A different explanation involves altered trafficking 

of the LDL-Pc upon intemalization with no redistribution of the LDL-Pc to sites more 

susceptible to photodynamic damage. This hypothesis is supported by observations made 

during an investigation on the effects of human serum components on the in vitro uptake 

and photodynamic activity of ZnPc (Figure 1) [46]. ln this study, high density 

lipoproteins increased ZnPc uptake in V -79 cells by 23% but the corresponding 

photodynamic effi.ciency was basically unaffected after correcting for the cellular ZnPc 

concentration. ln the meanwhile, both LDL and albumin inhibited the uptake of ZnPc yet 

increased its cellular photocytotoxicity, seeming to indicate that these serum proteins 

facilitate the localization of the dye to photosensitive subcellular sites. 

Conjugates ofhematoporphyrin (Figure 2) and LDL exhibited increased uptake in 

NIH 3T3 cells, presumably due to receptor-mediated endocytosis as judged by increased 

uptake when LDL receptors were artificially upregulated [47]. Both HP-LDL and HP-

HDL conjugates faced competition for binding sites with unlabelled LDL, suggesting that 

both lipoprotein conjugates may have other cell surface binding sites along with the 

specific LDL receptor. lmportantly, bOth the HP-LDL and HP-HDL conjugates were 

avidly taken up by J774.2 macrophages, although the HP-HDL required aggregation prior 

to endocytosis. It is interesting to note that the method used to prepare these covalently 

bonded complexes caused important aggregation of the HP-LDL, possibly due to 
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apolipoprotein B-1 OO cross-linking. This aggregation would help explain the increased 

uptake of the HP-LDL by phagocytic cells. 

Chlorin e6 (Figure 4) has also been covalently bound to LDLs via a carbodiimide 

method. The LDL-Ce6 conjugates were compared to both free Ce6 and Ce6 non-

covalently complexed with LDL against a fibroblast cell line (GM 03348 C) and a 

retinoblastoma cell line (Y79) [48]. Covalent bonding to LDLs significantly increased 

the uptake of Ce6 in both cell lines. Saturability and competitive inhibition stùdies 

indicated a receptor-mediated uptake. However, binding at 2°C also occurred, indicating 

a degree of non-specific associations. These conjugates had improved photocytotoxic 

activity, with the LDL-Ce6 reducing cell survival by 80% under conditions where both 

the free and mixed Ce6 induced a maximum of 10% cell kill. 

3.3 Transferrin 

Ali rapidly dividing cells require a continuous influx of iron in order to divide. 

Free iron or iron ions are absent from biological systems as they catalyze a number of 

biologically unfavorable reactions including Fenton reactions [49]. As such, ail iron is 

delivered, stored and transported as chelation complexes with various proteins. 

Transferrin is the major circulating iron transport protein. It is present in the blood at 

levels of around 200-400 mg/l OOml and each transferrin molecule can bind two iron ions 

[50]. Cells express specific transferrin receptors, which allow for binding and 

intemalization of the two iron saturated transferrin [51]. Following intemalization, the 

iron is delivered to the necessary sites. Severa! types of cancer cells exhibit increased 

expression of the transferrin receptor. Furthermore, the expression of the transferrin 

receptor correlates with tumour grade, stage, progression and metastasis [50]. Hence, 
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transferrin is an interesting potential vehicle for transporting drugs and photosensitizers 

to cancerous cells [52]. 

Initial studies showed that transferrin-photosensitizer conjugates had potential as 

delivery agents in targeted PDT. Transferrin was covalently coupled to hematoporphyrin 

(Figure 2) using the N-hydroxysuccinimide ester of HP (17]. While the fluorescence of 

the dye was somewhat quenched following bonding to transfe~ the conjugate bad 

similar singlet oxygen quantum yields. The uptake of the HP-transferrin in NIH 3T3 and 

HT29 cells was shown to be receptor-mediated as it was partially inhibited by native 

protein. In addition, the uptake was greatly enhanced when the transferrin receptor was 

upregulated by incubation with desferrioxamine. 

Transferrin has also been covalently bonded to chlorin e6 (Figure 4). In this case, 

a novel method was developed wherein the conjugation was accomplished in the 

presence of a zwitterionic detergent (3-[3-cholidamidopropyl)-dimethylammonio ]-1 • 

propanesulphonate (CHAPS)) while the protein was immobilized on QAE-Sephadex®. 

[53,54] This new methodology allowed the conjugated transferrin to retain its biological 

activity, the loss of which is a common problem encountered when attaching drug 

moieties to this protein. The transferrin-Ce6 conjugate has a singlet oxygen quantum 

yield of approximately 70% of that of the free Ce6. However, during in vitro studies 

against MTLn3 rat mammary adenocarcinoma cells , it was found that the transferrin-Ce6 

conjugate was 10-40 times more photocytotoxic than the free Ce6. Similar results were 

obtained using human MCF-7 mammary adenocarcinoma cells. It was theorized that this 

treatment might be particularly useful against primary or intraductal breast neoplasms as 
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the more aggressive of these types of cancers are known to express high numbers of 

transferriJl, receptors. 

3.4 Other serum proteins 

A number of other serum proteins may be involved in photosensitizer uptake and 

have potential as vehicles for delivering PDT to target molecules. As was previously 

mentioned, HDL display important associations with various photosensitizers. In fact, it 

has been generally reported for a number of porphyrins, phthalocyanines and purpurins 

that HDL bind the highest amount of the photosensitizer as compared to LDL and VLDL 

(33,55). In the case of Photofrin®, there is initially binding to both albumin and 

lipoproteins, with an equal binding to LDL and HDL (28]. However, over a longer time 

period, the binding is shi:fted and occurs almost exclusively to HDL. Despite this, it is 

believed that it is the LDL bound fraction that is delivered to the tumour. Furthermore, 

findings such as those mentioned earlier, where association of ZnPc with HDL leads to 

increased cell uptake but no change in PDT efficiency, seem to indicate that this serum 

protein may be less useful as a targeting moiety [46]. Still, the study by Hamblin and 

Newman did show that HP-HDL was accumulated by NIH 3T3 and J774 cells (47]. 

However, the mode of uptake was clearly different from that observed for the HP-LDL 

conjugate, suggesting that the HP-LDL was not accumulated by an HDL-specific, 

receptor-mediated mechanism. 

There is evidence of the involvement of other serum proteins in the delivery of 

photosensitizers. An important example is in the case of tetra(m-hydroxyphenyl)chlorin 

(mTHPC) (Figure 5C). This compound is one of the most phototoxic of ail second 

generation photosensitizers [3]. It is 200-fold more photoactive than Photofrin® in some 
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cases [ 56]. While improved photophysical properties and singlet ox.ygen generation can 

partially explain this increased activity, it is believed that superior subtumoural and 

subcellular localiz.ation is responsible [57]. It appears that mTHPC can bind to an 

unknown plasma protein, presumably at least partially due to the polyethylene glycol 

vehicle used to administer this dye, which results in these improved biological properties. 

Identification of this protein may lead to a new targeting element for improved 

photosensitizer conjugates. 

A final interesting possibility and one that remains unexplored to date is 

hemoglobin, which has been proposed as an intravascular drug delivery agent [58]. 

Hemoglobin is readily abundant in the blood as a result of release from aging 

erthyrocytes. As such, it is felt that the half-life in the blood should be longer for 

hemoglobin conjugates as compared to albumin and lipoprotein counterparts. In 

addition, hemoglobin has only one free cysteine available for reaction with reagents, thus 

helping to avoid cross-linking, an important problem when using albumin. Hemoglobin 

also provides the fascinating chance to simultaneously deliver both the photosensitizer 

(or another biologically active compound) and ox.ygen. This would be clearly 

advantageous for PDT, which by definition requires oxygen in order to form the 

necessary cytotoxic species that ultimately lead to cell death and/or tumour shutdown. In 

addition to the above-mentioned possibility, hemoglobin-like proteins have been used in 

more sophisticated targeting agents wherein the hemoglobin-like protein acts as the 

backbone on which is attached a photosensitizer, a cellular targeting agent and a 

subcellular localizing agent. Similar sophisticated targeting agents have also used BSA 

and polypeptides as the backbone. These will be discussed later (see Section 9). 
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4. Annexins 

Annexins are normally found in high levels in the cytoplasm of a number of 

normal healthy cells including lymphocytes, monocytes, biliary and renal tubular 

epithelium and placenta [59]. Its physiological function has not been fully elucidated 

although it may involve phospholipid membrane associated processes and calcium 

binding [60]. However, annexins, in particular annexin V, have numerous properties that 

make them useful in preparing diagnostic and therapeutic agents. In particular, annexins 

possess very high affmity for anionic phospholipids such as membrane leaflets having an 

exposed surface ofphosphatidylserine [60,61]. 

In general, biological membranes are asymmetrical with respect to specific 

membrane phospholipids [62]. ln eukaryotic cells, the outer leaflet of the plasma 

membrane is fonned predominantly with cholinephospholipids such as sphingomyelin 

and phosphatidylserine while the inner leaflet is composed of aminophospholipids 

including phosphatidylserine and phosphatidylethanolamine. The asymmetry of the 

membrane is maintained by a number of enzymes including A TP-dependent floppase and 

lipid scramblase. 

While membrane asymmetry is usual for healthy cells, loss of this asymmetry is 

associated with various physiological and pathogenic processes. Among the most 

important is apoptosis, where the appearance of phosphatidylserine on the outer leaflet of 

the plasma membrane is one of the earliest manifestations of this programmed cell death 

[ 61]. As such, annexin V would be ideal in targeting agents to prominent sites of 

apoptosis. However, it is important to note that phosphatidylserine exposure is also a 
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component of necrosis, somewhat limiting the utility of annexin V to selectively target 

sites of apoptosis. 

WO patent application publication number 02/080754 teaches the use of annexin 

V coupled to optically active molecules such as photosensitizers and proposes their use in 

the diagnosis and treatment of conditions characterized by inappropriate apoptosis and 

rapid cell turnover [63]. Among photosensitizers that are mentioned as being useful in 

compositions comprising annexin coupled to a biologically compatible and optically 

active molecule are fluorescein dyes, Photofiin ®, lutetium texaphyrin, hypericin and 

aluminium phthalocyanines. The ability of annexin to localize at sites of tumour cell 

apoptosis also makes a photosensitizer-annexin conjugate an ideal drug to use in 

combination with anti..cancer treatments that cause either apoptosis or necrosis oftumour 

cells. 

Annexin is also mentioned in US patent 6,217 ,869 as a possible targeting agent in 

a novel t.argeting methodology [64]. In this case, targeting agents such as annexin, LDLs, 

transferrin and insulin along with antibodies, antibody fragments, peptides and hormones 

are attached to and used to deliver an anti-ligand such as avidin to the t.arget cell. 

Following this, a photosensitizer bound to the ligand of the ligand/anti-ligand pair (most 

predominantly biotin) is administered, with ligand/anti-ligand bonding resulting in 

delivery of the photosensitizer to the target cells. Among possible ligand/anti-ligand 

pairs are zinc finger protein/dsDNA fragment, lectin/carbohydrate, ligand/receptor and 

enzyme/inhibitor. Possible photosensitizers include chlorin e6, benzoporphyrin 

derivatives and sulphonated derivatives of tetraphenylporphine. Preferably the 

photosensitizing agent has a carboxylic acid group available for conjugation. 
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S. Bisphosphonates 

Bones are constantly being built and destroyed, with the human skeleton being 

rebuilt every 8 to 10 years (65]. This physiological balance is maintained by osteoclasts, 

which mediate bone resorption and osteoblasts, which mediate new bone formation 

[66,67]. Enhanced bone resorption is typical of a number of metabolic bone disorders 

including Paget's disease, malignant hypercalcemia, osteoporosis and bone metastases 

(68]. It has been proposed that PDT might be useful in treating these conditions by 

selectively destroying osteoclasts or other cells involved in metabolic bone disorders. In 

this case, bisphosphonates (Figure 7) have been proposed as targeting agents (69]. Like 

inorganic pyrophosphates, bisphosphonates bind to hydroxyapatite crystals in 

mineralized bone matrix, thus inhibiting osteoclast recruitment and function (68,70]. 

Furthermore, bisphosphonates stimulate osteoblasts to produce inhibitors of osteoclast 

function while avoiding degradation by enzymes within the cell. Indocyanine green, 

methylene blue, chlorins, phthalocyanines, porphyrins, purpurins and texaphyrins are ail 

proposed as potential useful photosensitizers for this targeted PDT [ 69]. These targeted 

moieties could be further conjugated to other molecules such as antibodies, peptides and 

polymers to improve the specificity of the photosensitizer to bone targets. The possibility 

ofusing photosensitizer conjugates ofthis type against bone metastases, Paget's disease, 

hypercalcemia and Type 1 osteoporosis is mentioned. 

6. Steroids 

Steroids form an interesting and potential useful method of targeting 

photosensitizers to diseased tissue. As was previously mentioned, cholesterol is a vital 

component of eukaryotic cell membranes and as such, is rapidly taken up by proliferating 
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cells [23]. As bas been previously stated, LDLs are the primary source of cholesterol for 

cells as they are made up of a cholesterol ester core surrounded by a shell of 

phospholipids and unesterified cholesterol. In order to improve non-covalent LDL-

photosensitizer interactions, pyropheophoride cholesterol oleate conjugates have been 

synthesized [71 ]. These steroid-photosensitizer conjugates were successfully 

reconstituted into the LDL lipid core. Intemalization of the reconstituted LDL via the 

LDL receptor in human hepatoblastoma 0(2) tumour cells was demonstrated using laser 

scanning confocal microscopy. With the same motivation, dicholesteryl-substituted 

germanium phthalocyanine has been synthesized where the cholesterol moieties act as 

axial ligands, bound to the germanium central metal ion via a diphenylsilanediol [72]. 

The length of the spacer chain between the cholesterol and the silane was varied in order 

to alter the overall amphiphilicity of the molecule. Singlet oxygen quantum yields for 

these conjugates were quite good in organic solvents. Silicon phthalocyanines bearing 

two cholesterol axial ligands have also been prepared by reacting dihydroxysilicon 

phthalocyanine with chlorocholesteryloxydiphenylsilane, bis( triflate )-silicon 

phthalocyanine with cholesterol or dichlorosilicon phthalocyanine with cholesterol 

alcoholate (73]. The synthesis of galactopyranosyl-cholesteryloxy substituted porphyrin 

has been reported as well [74]. The amphiphilicity ofthese new carbohydrate cholesterol 

substituted porphyrins led to easy incorporation into model membranes. Furthermore, the 

vesicle forming properties of these compounds have been investigated by light scattering 

experiments and electron microscopy and have been found to be adequate for forming 

vesicles with potential for PDT. 
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Steroids are also useful as an adjunct therapy to PDT. For instance, the anti-

tumour effects of photodynamic therapy are potentiated by 2-methoxyestradiol [75]. Pre-

incubation of 3 mutine and 5 human tumour cell lines with 2-methoxyestradiol prior to 

PDT gave a synergistic anti-tumour effect. Retardation of tumour growth and prolonged 

survival of tumour-bearing mice was also observed when this combination therapy was 

used in vivo. PDT in these series of experiments was shown to induce the expression of 

MnSOD in cancer cells. With 2-methoxyestradiol known as a superoxide dismutase 

inhibitor, the suggestion was made that the synergistic effect of this combined therapy is 

due to inhibition ofthis important oxidative stress defense mechanism. In another study, 

the photodynamic efficiency of hematoporphyrin derivatives was potentiated by 

glucocorticoids when administered after irradiation [76]. Both Lewis lung carcinoma and 

Bl6 melanoma were examined in a transplantable mouse tumour model. Interestingly, 

concurrent administration of the glucocorticoid with the photosensitizer either inhibited 

the PDT response or had no effect. Finally, it was observed that administration of 

lovastatin, a sterol synthesis inhibitor, increases the phototoxic effect of Photofrin® when 

the Photofrin® is delivered by LDLs [77]. In this case, the increased efficiency is due to 

improved photosensitizer uptake via some sort of LDL receptor-mediated process. 

In terms of targeting, steroids and other hormones provide the opportunity to 

deliver the photosensitizer to one of the most photosensitive sites within the cell, namely 

the nucleus. Hormones such as estrogens, androgens, progesterone, 

mineralocorticosteroids, glucocorticosteroids, thyroid hormones, retinoic acid, vitamin D 

and ecdysone all bind with high affinity to a specific member of the nuclear hormone 

receptor superfamily [78]. Each member ofthis family of receptors has a ligand binding 
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domain and a DNA binding domain [79]. Wbile the ligand binding domain is highly 

conserved between the various family members, the DNA binding domain varies, leading 

the family to be divided into at least two subgroups [80]. Most of the steroid receptor 

family, with the exception of the estrogen receptor, are translocating receptors, meaning 

that they have principally a cytoplasmic distribution in the absence of their ligand [81]. 

Upon diffusion of their ligand through the plasma membrane and binding to the ligand 

binding site, these receptors undergo a confonnational change and are trafficked to the 

nucleus where they target sequences of DNA. This ultimately leads to gene expression. 

The estrogen receptor, on the other hand, is found exclusively in the nucleus. However, 

binding with its ligand again leads to DNA sequence targeting and gene expression. 

Furthermore, due to the high affi.nity binding involved, nuclear receptors act like beacons 

to attract and selectively localize their ligands into cells where these receptors are 

expressed. This makes such ligands important in attempts to target these cells with 

photosensitizer and other drugs. 

Obviously, photosensitizers conjugated with ligands for nuclear hormone 

receptors would be useful tools for targeted PDT. This is especially the case for the 

estrogen receptor, which binds estradiol, estriol, estrone and synthetic estrogen 

agonists/antagonists. Breast tumour cells are known to over-express estrogen receptors in 

high levels, particularly in their earlier stages and under hormone treatment [82-84]. As 

such, estrogen receptors represent a potential site for directing photosensitizers, in order 

to both increase cellular uptake and to deliver the dye to the nucleus of these cancer cells. 

A number of attempts have been made to covalently attach estrogen and other hormone 

receptor ligands to photosensitizers. For instance, both estrogen and progesterone 
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derivatives have been conjugated to the zinc(II) and nickel (Il) complexes of 5-15-

diphenylporphyrin (Figure 5) and deuteroporphyrin IX dimethyl ester (85,86]. In 

addition, palladium catalyzed cross coupling methodologies have been used to covalently 

bind the 17a-ethynyl derivatives of estradiol, testosterone and 19-nortestosterone to zinc 

(Il) 5, 10, 15, 20-tetraphenylporphyrin (Figure 5) either on a phenyl ring or in the 2 

and/or 7-beta positions [86]. 

A major problem with steroid-based conjugates in general and photosensitizer-

steroid conjugates in particular is a decrease or loss of receptor recognition. The nuclear 

hormone receptor superfamily is very susceptible to minor variations in the structure of 

its ligand, leading to rapid decreases in receptor binding and receptor recognition, even 

with only slight structural modifications. As such, it is essential to identify positions on 

the parent steroid where an appendage such as a photosensitizer can be attached without 

seriously compromising receptor binding. In the case of estradiol, both structure/activity 

studies and crystal structures of hormone binding domains have demonstrated that 

substitution at the 7a, l lf3 and 17a positions is well tolerated [87-90). In particular, 

modifications at the 11'3 and l 7a positions with hydrophobie moieties Will still lead to 

significant binding with the estrogen receptor. Even with this however, the covalent 

attachment of a large photosensitizer to a steroid molecule most likely will affect 

steroid/nuclear hormone receptor interactions to some extent. For instance, chlorin e6 

dimethyl ester bonded to estradiot via a Cl 7-amino or a Cl 7-ether group at the Cl 7-

hydroxy position do not bind to any significant extend to the estrogen receptor [91,92]. 

Cell uptake and photocytotoxicity studies using receptor positive and receptor negative 
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cells varied greatly and seem to depend more on the inherent photosensitivity of the cell 

line instead of estrogen receptor status. 

With these positions in mind, estrogen-photosensitizer conjugates have been 

prepared and their receptor binding and PDT photocytotoxicity have been studied. l 7a-

Ethynylestradiol, 17 a-(2-buta-l, 7-diynyl)estradiol and l 7a-(phenyl-1,3-diynyl)estradiol 

have been covalently bound to a series of lipophilic and hydrophilic phthalocyanines 

using catalytic palladium chemistry [93]. The more lipophilic conjugates displayed 

higher binding affinity for the estrogen receptor during in vitro testing. At its best, this 

binding was only 12% of that found for native estradiol. Surprisingly, the more 

hydrophilic trisulphonated phthalocyanine conjugates were more phototoxic against the 

EMT-6 mouse mammary tumour model. In fact, the lipophilic conjugates were 

photodynamically inactive at 1 µM while exhibiting a dark toxicity at 5 µM. lt is 

possible that this lack of photodynamic activity was due to the vehicle used to solubilize 

these conjugates. 

Estradiol has also been attached to tetraphenylporphyrin via the 11 f3-position 

(Figure 8) [91,92,94,95]. Competitive radioligand binding assays demonstrated that the 

estradiol-porphyrin conjugate could displace [3H]-estradiol in a dose-dependent manner, 

indicating that estradiol receptor recognition remained even upon substitution with a 

large moiety such as a porphyrin [94]. Still, receptor binding affinity was significantly 

decreased compared to estradiol, with the EC5o for estradiot and the conjugate being 1 

nM and 274 nM respectively. Studies with estrogen receptor-positive MCF-7 breast 

cancer cells revealed that the conjugate was selectively taken up by the receptor-positive 

cells in a dose-dependent manner [95]. This uptake was obliterated when the conjugate 
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was co-incubated with estradiol, an obvious result with the large variation in binding 

affinities. Little uptake was observed using the non-conjugated parent porphyrin or in 

receptor-negative Hs578t breast cancer cells. These results would seem to indicate that 

specific interaction between the estradiol-porphyrin conjugate and the receptor enables 

the cells to selectively intemalize the conjugate over its unconjugated parent. 

Unfortunately, neither the conjugate nor the unconjugated dye were very effective in 

killing either the MCF-7 or the Hs578t breast cancer cells [92,95]. It was believed that 

this tack of photocytotoxicity was due to inadequacies in the photophysical and 

photobiotogical properties of the dye used. 

In order to improve on the photocytotoxicity of the conjugates, Ce6 

(Figure 4) was attached to estradiot via 17a-position using tethers of varying tength [92]. 

While binding to the receptor was poor (300 times less than estradiot), these conjugates 

proved to be photoactive against MCF-7 cells. Conjugates were also prepared using 4-

hydroxytamoxifen, an anti-estrogen that binds strongly to the estrogen receptor. When 

covalently bound to chlorin e6, estrogen receptor binding by the tamoxifen was still 

observed, though in a very smalt amount. Light-induced cell killing experiments against 

MCF-7 breast cancer cells did demonstrate that these tamoxifen conjugates were 

photoactive. lt has been proposed that the methodotogy described here could be extended 

to other nuclear hormone receptor ligands including testosterone and vitamin D [91]. 

7. Toxins and Lectins 

In order to enhance the specificity of cancer therapies, studies have been 

undertaken in order to determine biochemical and physiological changes that occur 

during malignant cell transformation. Among these changes is the expression of cell 
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surface molecules, which are not expressed in the non-transformed cells. The differential 

expression of many cell surface molecules in human cancers has been well studied and 

provide yet another opportunity to target these cells specifically. 

One molecule that has been found to be overexpressed in malignancies such as 

Burkitt's lymphoma and breast, brain, gastric and testicular cancers is 

globotriaosylceramide (also known as Gb3, CD77 and pk antigen) [96]. The Gb3 

glycosphingolipid is normally expressed in several tissues including intestinal and kidney 

epithelium. This molecule is specifically targeted by bacterial toxin proteins belonging to 

the verotoxin family and include Shiga toxins and Shiga-like toxins. These 

bacteriotoxins are produced by S. dysenteria and E. coli and are responsible for the 

disease symptoms associated with these bacteria. Verotoxins comprise two protein 

components. The catalytic A subunit inhibits protein synthesis, inducing disease while 

the pentameric B subunit is responsible for targeting specific cells expressing Gb3 [97]. 

In addition, binding to Gb3 leads to internalization of the ligand/receptor complex. A 

number of studies have been undertaken to utilize the specific binding of the B subunit of 

Shiga toxins to specifically target malignant tissues with promising results [98-101]. 

In terms of PDT, the B subunit of Shiga-like toxins (SLTB) has been covalently 

conjugated to chlorin e6 (Figure 4)and the efficiency of the conjugate has been examined 

[102]. In vitro uptake experiments showed that the cell associated chlorin e6-specific 

fluorescence was readily detected following incubation of Gb3 positive Vero monkey 

kidney fibroblasts with the conjugate. No cell-associated fluorescence was observed 

under identical conditions using free chlorin e6. The conjugate accumulated in the Golgi 

apparatus and endoplasmic reticulum as indicated by MitoTracker® Green FM 
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experiments The chlorin e6-SL TB were also significantly more efficient at inducing 

photodynamic cell death than free chlorin e6, with an LDso of 0.1 nmol/ml compared to 

1.2 nmol/ml for free Ce6. lnterestingly, Ce6 simply absorbed into the SLTB was found 

to localize in mitochondria and had an LDso of 0.6 nmol/ml. This would seem to indicate 

that the ultimate intracellular site of accumulation greatly depends on the method of 

association between the dye and the toxin. 

Based on these results, it was hypothesized that the targeting portion of other 

toxin or lectin molecules may be used to target photosensitizers. Among possible toxins 

and lectins are abrin, heat labile toxins, botulinum toxin, choiera toxin, helix pomatia, 

jacalin, peanut agglutinin, ricin toxin, sambucus nigra, tetanus toxinulex europeaus and 

viscwnin. The targeting fragment of these toxins and lectins would allow for targeting of 

a selection of cell surface reçeptors and help deliver the dye to such potential targets as 

sarcomas, breast cancer, colon cancer and vasoformative tumours (which include 

angiosarcomas and hemangiopericytoma) among many others. Jacalin, which 

specifically recognizes the tumourMassociated T-antigenic disaccharide structure 

Gal(3 l 3GalNAc, has been interacted with various porphyrins to form inclusion complexes 

(103]. Each lectin subunit was found to bind one porphyrin molecule with an association 

constant in the range of 2 x 103 to 1.3 x 105 M"1 at room temperature. Such binding 

suggests that jacalin may potentially be useful as a targeting vehicle for porphyrins, 

possibly leading to accumulation of the dye in gastric, pancreatic and mammary cancers. 

Attempts are also underway to combine the B subunit of Shiga toxin with a new 

family of photosensitizers [104]. These tri-metallic supramolecular organometallic 

compounds consist of three subunits, two light absorbing chromophores and a bioactive 
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site that induces cell death following excitation. Upon illumination, osmium and 

ruthenium based chromophores become excited and pass an electron to the bioactive site, 

which contains rhodium. Utilizing two chromophores increases the range of light that 

can be captured. The passed electron excites the rhodium, creating a charged radical that 

will wreak havoc in the cell, inducing cell death. Using such a system removes the need 

for oxygen, alleviating an important problem with traditional photosensitizers. 

8. Epidermal growth factor 

Epidennal growth factor (EGF) is a small 6 kDa polypeptide that binds 

specifically to a cell surface receptor, stimulating the growth of epidennal and epithelial 

cells [105]. Like the insulin receptor, the EGF receptor has tyrosine kinase activity and is 

activated upon binding of EGF to the extracellular portion of this transmembrane 175 

kDa protein. EGF is a potent mitogen found throughout the body and is an angiogenesis-

stimulating factor. EGF receptors are overexpressed in a number of cancer cell lines 

including ovarian cancer. In fact, over 30% of ovarian cancers have increased EGF 

receptors [6], making EGF a potential drug carrier and EGF receptors important targets in 

treating these types of cancers [106]. This is especially soin view of the fact that over-

expression of the EGF receptor is :frequently correlated with p<>or prognosis and cure 

rates. It has been demonstrated that if EGF is added following PDT with 

hematoporphyrin derivative, photocytotoxicity is greatly decreased in three glioma cell 

lines [107]. Pre-incubation with EGF, on the other hand, did not affect PDT efficiency. 

EGF has been coupled with various photosensitizers in the hopes of specifically 

targeting cells over-expressing the EGF receptor. The cytotoxic activities of aluminium 

and cobalt disulphonated phthalocyanines bound to EGF were detennined against a 
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human breast carcinoma cell line (MCF ... 7) [108]. The AlPc-EGF conjugate was 7 times 

more photoactive than the corresponding free disulphonated phthalocyanine. Binding 

EGF to the CoPc, which required ascorbic acid to induce activation instead of light, 

greatly increases the photoactivity of this photosensitizer, improving cytotoxicity over 

100 times in MCF-7 cells. Subsequent in vivo studies using B16 melanoma were carried 

out with the conjugates delaying tumour growth while free dye had little effect. 

More elaborate EGF-photosensitizer conjugates have been prepared where 

Sn(IV)chlorin e6 and EGF are combined via a carrier such as dextran, polyvinyl alcohol 

and human serum albumin (109,110]. The EGF-HSA-Sn(IV)Ce6 conjugate had the best 

receptor affinity [11 O]. Binding of the EGF-Dex-Sn(IV)Ce6 was substantially impaired, 

with approximately 1 OO times more conjugate needed to obtain equal displacement of 1251 

labeled EGF as compared to unconjugated EGF [109]. The PV A conjugate, on the other 

band, displayed no affinity for the receptor at ail. Photocytotoxicity against MDA-MB-

468 and A43 l cells, both of which over-express the EGF receptor, also varied depending 

on the carrier used. The EGF-HSA-Sn(IV)Ce6 conjugate displayed a high phototoxicity 

with an IC5o of 63 nM at a light dose of 27kJ/m2 [11 O]. Despite the receptor binding 

results, it was found that the PV A conjugate exhibited a higher photocytotoxicity than the 

dextran conjugate [109]. However, it was noted that both the Dex-Ce6 and PV A-Ce6 

displayed similar results as compared to their EGF conjugated counterparts. Thus, it 

would appear that the difference in photocytotoxicity is a result of the carrier and not the 

EGF ligand. In the case of the EGF-HSA-Sn(IV)Ce6, the results were clearly due to 

receptor mediated processes as native EGF could compete for binding sites and decrease 

the photoactivity of the conjugate [110]. Increased production of intracellular ROS upon 
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irradiation was observed using the HSA as compared to the dextran derivative, seeming 

to show increased intracellular accumulation of the dye in the active form. 

Preliminary studies are also tmderway wherein the EGF receptor is targeted using 

an antibody against the receptor [ 111]. BPD was conjugated with the C225 antibody, 

which targeted the EGF receptor on ovarian cancer cells. Such photoimmunotherapy 

remains promising. 

9. lnsulin and nuclear localizing signais 

Drug targeting is an integral part in the planning of novel medications. The vast 

majority of disease treatments are delivered systemically, thus the importance of cell 

specificity is apparent. Initial attempts to improve photosensitizer delivery focused on 

improving target to non-targeted tissue ratios. However, it was shown that elevated 

tumour to normal tissue ratios did not ensure improved tumour eradication in vivo [112]. 

Photodynamic therapy acts through the production of free radicals and singlet oxygen 

( 10 2) to induce cell death. It has been postulated that singlet oxygen is the more 

important of these reactive species. Singlet oxygen has a life span of 200 ns and a 

migrating circumference of 45 nm. Mammalian cells are 104 to 105 nm in diameter, 

making the importance of PS distribution within the target tissue readily evident [4]. The 

site of 10 2 production is the site of photosensitization. Research efforts have 

concentrated on enhanced cellular targeting as a valid approach to improve the 

photodynamic response. 

Initial studies using chlorin e6 (Figure 4) conjugated to either insulin or 

concanavalin A (Con A) demonstrated increased photosensitization due to receptor 

mediated endocytosis [113]. A human hepatoma cell line was incubated with either free 
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chlorin e6 or chlorin e6 conjugated with one of the two ligands followed by illumination. 

The bioconjugates were 4.2 fold more efficient in cell killing than the free 

photosensitizer. lt was shown that this effect could be abrogated if an excess of 

unconjugated ligand was present. ln addition, photosensitization was greatly reduced if 

incubated at a lowered temperature ( 4 °C), suggesting that internalization of the 

photosensitizer led to increased phototoxicity. Akhlynina and associates have expanded 

this work to include subcellular targeting. Nucleic acids are very photosensitive, 

therefore efforts have been made to enhance delivery of the PS to the cell nucleus. 

Numerous chlorin e6 were bound to bovine serum albumin (BSA) which acts as a linker 

to allow the attachment of more PS molecules on an intemalizable ligand such as insulin. 

It was shown that once endocytosed, the BSA-insulin-Ce6 conjugate localized in the cell 

nucleus [114). Singlet oxygen production was monitored using 2'7'-dichlorofluorescein 

diacetate, which yields a fluorescent derivative, 2', 7'-dichlorofluorescein when reacted 

with active oxygen species. Following a 4 hour incubation at physiological temperature 

with the BSA-insulin-Ce6 and subsequent irradiation to produce ample amounts of 102, 

there was increased fluorescence around and within the cell nucleus. 

All transport across the nuclear membrane occurs through the nuclear pore 

complex (NPC). This acts as a sieve to allow smaller proteins of less than 45 kDa to gain 

access to the nucleus via passive diffusion whereas larger molecules, such as would be 

the case with these bioconjugated Ce6 molecules, require specific targeting signais in 

order to penetrate the NPC. Elaborate constructs were studied to exploit the 

photosensitivity of the cell nucleus by directing intracellular transport of the PS with a 

variant of the simian virus SV 40 large tumour antigen nuclear localization signal (NLS). 
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The insulin-BSA-Ce6 was either tagged with a NLS peptide cross-linked to the carrier, 

BSA, or the NLS peptide sequence was encoded within a p-galactosidase fusion protein 

carrier [115]. The use of nuclear localizing signals increases the photosensitizing 

activity of the Ce6 bioconjugates such that the EC5o is reduced by over 2400 times as 

compared to free Ce6. Sobolev and co-workers constructed different Ce6 bioconjugates 

by altering the NLS, carriers and internalizable ligands and found some to be more 

photodynamically efficient than others. However in all cases, the bioconstructs exhibited 

greater efficacy than the parental photosensitizer, chlorin e6 [ 116]. 

Tumour cells typically have increased expression of cell surface receptors for 

various growth factors. For example, melanomas have upregulated a-melanocyte-

stimulating hormone (MSH) receptors. Rosenkranz et al. have produced a bacterial 

expressed recombinant polypeptide vehicle for photosensitizers, which comprises the 

MSH intemalizable ligand, the NLS of SV 40 T-ag, the Escherichia coli hemoglobin-like 

protein HMP as a carrier and an endosomolytic peptide that is required for disruption of 

the endosome once the conjugate is intemalized in the cell [117-119]. Using the M3 

murine melanoma cell line, the PS coupled to the MSH-NLS-HMP-peptide required a 

light dose of 67 kJ/m2 to eradicate the melanoma cells as opposed to 620 kJ/m2 for the 

free photosensitizer [112]. This technology can be applied to several intemalizable 

peptide ligands, i.e. EGF, somatostatin, acidic and basic fibroblast growth factor, platelet-

derived growth factor, interleukin-1, -2, -5 as well as various tumour cell specific 

antibodies. These ligands have a dual advantage for PS trafficking as they have cell 

specifi.c delivery as well as being nuclear localizing in nature. 
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Recent efforts have focused on the development of chimeric modular recombinant 

transporters (MR.n expressed in E. coll and used for PS targeting [117]. The 

bacteriochlorin p6 was conjugated to a MRT which consisted of 4 components: (a) the 

same localizing and intemalizing ligand, a-MSH, (b) the SV 40 large T antigen as the 

NLS, (c) the HMP carrier and (d) the translocation domain of the diphtheria toxin DTox 

as the endosomolytic module. The MRT (DTox-HMP-NLS-MSH-Ce6) enters the target 

cells, either the murine melanoma B16-Fl or M3 cells, both with abundant expression of 

the MSH receptor, via receptor mediated endocytosis. The endosome is a closed 

membrane structure which is considered to be extracellular. In order to deliver the PS to 

the photosensitive cell nucleus, the endosome must be ruptured and its contents emptied 

into the cytoplasm where the NLS directs the construct to interact with a.1~-importins, a 

class of proteins which mediates cytoplasm to nucleus transport. The DTox-HMP-NLS-

MSH was detected in the nuclei of 87 .5% of the cell population in comparison to only 

12.2% of the cells' nuclei when using only the HMP-NLS-MSH without the DTox 

polypeptide for endosomolysis. This resulted in a 250-fold increase in photodynamic 

efficacy when administered to the B16-Fl melanoma cells. These MRT constructs are 

advantageous in that they can be used to target any number of cell types by exchanging 

the internalizable ligand. A similar MRT conjugated with bacteriochlorin p6 has been 

developed where the a-MSH has been replaced with epidermal growth factor, EGF. This 

proved to be 960 times more cytotoxic against human epidermoid carcinoma A43 l cells 

than the free PS [117]. 

Constructs have also been prepared whereby chlorin e6 (Figure 4) has been 

conjugated to a targeting moiety and a subcellular localizing motif via an a-helical 
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polypeptide [120]. Preferred target moieties were antibodies and antibody fragments. 

Interestingly, a-helical polypeptides in the form of a fusion polypeptide containing 

antibody fragments such as single chain Fvs showed promise in targeting chlorin e6 to 

cells. Subcellular targeting peptides proposed include NLS, mitochondrial localiz.ation 

sequences, lysosomal targeting peptides, endoplasmic reticulum retrieval signals and 

Golgi targeting sequences. 

Altematively, vectorial delivery of nucleus-directed complexes into cells has been 

accomplished using synthetic peptides composed of a branched polylysine core with 8 

identical arms [121,122]. These molecules, known as loligomers, have 8 pentalysine 

import signais, which are cytoplasmic translocation signaling peptides, and a NLS from 

SV 40 T antigen for localiz.ation within the cell (Figure 9). The photosensitizer, Ce6 was 

coupled to a nucleus-directed linear peptide or the branched loligomer via solid-phase 

synthesis. The use of eight Ce6 molecules in a single loligomer resulted in a 400-fold 

increase in CHO photocytotoxicity and a 40-fold increase in RIF-1 cell death over Ce6 

alone. Following a six hour incubation of RIF-1 cells, there was 3 times more Ce6-

loligomer located in the cell nuclei than Ce6-peptide. This accumulation in the more 

photosensitive cell nuclei most probably accounts for the increased toxicity of these 

constructs. 

1 O. Adenoviruses and adenoviral proteins 

As previously discussed, endosomal disruption represents a serions limitation in 

photodynamic efficiency. If the PS remains trapped within this membrane bound vesicle, 

upon illumination, the endosome will quench the PDT reaction. To circumvent this 

problem, attenuated Adenovirus (Ad) type 5 had been used. Adenoviruses efficiently 
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CysTyr-GlyGly·CTS-NLS-Chlorin es 

..-----GlyGly·CTS-NLS-Chlorin es 
Lys GlyGly·CTS-NLS-Chlorin es 
Ly~-Lys-GlyGly·CTS-NLS-Chlorin es 

1 LGlyGly·CTS-NLS-Chlorin es 
J3AlaTyrGlyCys--Lys 

1 lGlyGly-CTS-NLS-Chlorin es 
Lys-Lys-GlyGly-CTS-NLS-Chlorin es 

1 Lys---GlyGly-CTS-NLS-Chlorin 0s 

~--GlyGly-CTS-NLS-Chlorin 0s 

Figure 9. Nuclear directed chlorin e6-peptide (A) and loligomer (B) conjugates 

235 



break open the endosomes upon infection and therefore it was hypothesized that the 

bioconstructs would target the cell nucleus more quicldy when delivered in conjunction 

with Ad. This resulted in a 2.5 fold increase in nuclear photosensitizer targeting as 

opposed to that photosensitizing activity when localized in the cytoplasm [123]. 

Using similar principles as described previously, adenoviral proteins were 

investigated as potential targeting agents [124]. Adenoviral particles gain entrance into 

the cells via receptor mediated endocytosis. In place of insulin as an intemaliz.able 

ligand, studies using adenoviral proteins as targeting agents have been carried out to 

improve PDT efficiency against human lung adenocarcinoma cells, A549. This family of 

viruses requires two separate receptors, the first for attachment and the other mediating 

internalization. The Ad fi.ber capsid protein attaches to the cells via the Coxsackie B and 

Adenovirus receptor (CAR) [125]. Intemaliz.ation of the virus particle is vîa the av 

integrin receptors which are able to bind with high affinity to the RGD (Arg .. Gly-Asp) 

binding motif found in the penton base protein of adenovirus [126-128]. This class of 

integrin receptors is up-regulated in several cancer cell lines as well as having a robust 

expression in epithelial cells lining the blood vessels that feed tumours [129,130]. 

Studies using purified adenovirus capsid proteins covalently labeled with AlPcS4 

derivatives have shown this to be a valid approach to tumour cell eradication [124]. The 

hexon, the penton base and the fi.ber antigen of adenovirus type 2 were purified using 

anion exchange chromatography and SDS-P AGE verification of protein content. This 

was followed by ammonium sulfate precipitation and dialysis. The Ad proteins were 

covalently coupled to AlPcS~1 or Ai via a one or two six carbon spacer chains 

containing a terminal free carboxy group using a diimide active ester (Figure 3). The Ad-
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protein-AIPcS4 derivatives were tested both in vitro and in vivo for their PDT efficacy. 

The penton base-AIPcS~2 derivative was the most efficient in vitro with LDso values 

half as much as the free AIPcS~2 as measured in two different cell lines both expressing 

the cell surface integrin receptors. This LDso value was still twice as high as that 

measured for a reference photosensitizer, AIPcS2adj· 

Endosomal entrapment of the photosensitizer has been proposed as an explanation 

for the decreased phototoxicity of the penton base-A1PcS~2. lt is plausible that the 

penton base-Pc/receptor complex is trapped within the endosome and is unable to 

redistribute to cellular targets. Adenovirus cell infection is dependent not only on cell 

recognition and intemalization but also on endosome disruption. This is a two step 

process with an initial cleavage of viral capsid proteins followed by a pH-dependent 

endosome disruption. The Ad protease is required to cleave various cellular proteins to 

facilitate passage from within the endosome into the cytoplasm [131]. Therefore tumour 

response studies using Balb/c mice with EMT-6 tumour implants were carried out using a 

mixture of adenovirus type 2 soluble proteins covalently bound to AlPcS~2. The free 

A1PcS~2 induced tumour regression at a dose of 1 µmol/kg and 400J/cm2 which is 

comparable to AlPcS2adj· The mixture of Ad2 soluble proteins coupled to AIPcS~2 

required a dye dose of 0.5 µmol/kg to cause tumour ablation. 

Tumour targeting using protein vehicles may have serious limitations invoking 

adverse immune responses. The search for small peptidic vectors has led to the 

investigation of the RGD sequence as a possible PS carrier [132]. The RGD motif is 

currently being investigated as a targeting vehicle for conventional chemotherapeutics 

and may be useful for PDT. 
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11. Conclusion 

The diversity of cellular characteristics will eventually lead to the discovery of 

appropriate drug targets and targeting mechanisms. Research is ongoing to find the 

infamous "magic bullet". However, a less general approach is probably more realistic. 

Each disease type must be targeted on an individual basis. In order for photodynamic 

therapy to reach its full potential, there will be a need for varied photosensitizers and 

numerous targeting motifs so that ail cell and tissue types can be selectively destroyed. 

ln addition to finding the ideal photosensitizer and targeting moiety for each 

individual condition, there are a number of other factors specific to PDT that need to be 

addressed. The primary photosensitizers used for PDT have an important tendency to 

aggregate by virtue of their large planar aromatic ring systems, leading to strong 

photosensitizer-photosensitizer interactions and non-covalent complexes with proteins 

and other potential targeting compounds [ 19, 111]. Despite recent advances, this 

aggregation frequently results in difficulties in purifying the covalently bound conjugates 

from unbound photosensitizers. The presence of non-covalently bound photosensitizer 

within the conjugates will affect the biological results obtained using these targeted dyes, 

making the comparison of results difficult and evaluation of the targeting moiety 

questionable. 

Aggregation of photosensitizers within the conjugations along with hydrophobie 

interactions between the aromatic core of the photosensitizers and the targeting protein 

can also greatly affect the photophysical and photochemical properties of the PS [4]. 

Decreases in the absorption coefficient, singlet state lifetimes and triplet state yields and 

lifetimes caused by conjugation will ail negatively affect the production of ROS during 
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illumination, thus decreasing the photocytotoxicity of the dye conjugates. Furthermore, 

as bas been mentioned above, it is necessary not only to consider delivery of the 

photosensitizer to the target cell blit also to get efficient accumulation of the PS at 

susceptible subcellular locations. Therefore, PS conjugates that accumulate in cells 

within endosomes and lysosomes may be less effective th.an the corresponding non-

conjugated PS despite increased intracellular uptake. 

While the majority of targeted POT has involved the treatment of cancer, the use 

of receptor mediated delivery systems also bas immense promise for the treatment of 

other conditions including atherosclerosis, age-related macular degeneration, bacterial 

and parasitic infections and autoimmune diseases. It remains only to find the ideal 

photosensitizer/receptor mediated delivery system for each pathological condition for 

targeted POT to a useful treatment modality and for POT itself to fulfill the potential it 

bas exhibited since its discovery a little over a century ago. 
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Abbreviations: 

Abbreviation Term 
AIBN Azoisobutyronitrile 

DAMN Diaminomaleonitrile 
dba Tris( dibenzvlideneacetone) 
DBI N,N-dibromoisocyanuric acid 
DBU 1,8-diazabicyclof 5.4.0lwidec· 7-ene 
DCC Dicyclohexylcarbodiimide 
DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone 

DMAP p-N,N-dimethylaminot>vridine 
DMF N,N-dimethylformamide 

DMSO Dimethylsulphoxide 
dppf Bis(diphenylphosphino)ferrocene 

HMPA Hexamethylphosphoramide 
HMPT Hexamethylphosohorous triamide 
HPLC High performance liquid chromatol?nlohy 

MCBPA m-chloroperbenzoic acid 
NBS N-bromosuccinimide 

Na2mnt Disodium maleonitriledithiolate 
NMP 1-methyl-2-pyrrolidinone 

Pc Phthalocyanine 
rt Room temperature 

TBAB Tetrabutyl ammonium bromide 
TBAF Tetrabutylammonium fluoride 
THF Tetrahydrofuran 
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1. Introduction 

The importance of tetrapyrrolic macrocycles in nature is obvious. Compounds 

such as haem and chlorophyll play such vital roles in the biological systems responsible 

for the transportation of oxygen to cells in the body and the transformation of light into 

useful energy in plants. Others are involved in the electron transport chain in the 

mitochondria and the protection of cells from oxidative damage. The unique physical, 

chenrical and spectral properties of this class of compounds along with the diversity 

found in their structural features are significant factors governing their importance and 

wide distribution throughout nature and their utility in an impressive list of potential 

applications. Synthetic tetrapyrrolic compounds such as phthalocyanines (1) (Figure 1) 

have been proposed as convenient molecular models for the study of the physicochemical 

properties of naturally occurring tetrapyrrolic macrocycles including porphyrins due to 

their structural similarities. However, owing to their increased stability, improved 

spectroscopie characteristics, diverse coordination properties and architectural flexibility, 

phthalocyanines have surpassed porphyrins in a number of applications and their 

immense potential in diverse fields makes them one of the most highly studied 

macrocyclic and coordination compounds. l-3 

Ever since their serendipitous discovery4-6 and identification7
-
13 in the early 

I 900s, phthalocyanines have been extensively used as dyes and pigments in the paint, 

printing, textile and paper industries due to their extremely intense blue-green color, high 

dyeing power, photostability, insolubility in most solvents and chemical inertness.11-16 

Copper phthalocyanine is the single largest synthetic colorant produced today.15 In 

addition, phthalocyanines are known catalysts for numerous chemical reactions.2,20,2l In 
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Figure 1. General phthalocyanine macrocycle. 
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fact, Pc are the only tetrapyrrolic compound usai as an industrial catalyst with cobalt 

phthalocyanine derivatives used in the Merox process for oxidation of sulphur 

compounds in gasoline fractions.20.22-24 More recently, phthalocyanines have found high 

tech applications in electrophotography and ink jet printing18
•
19 and as photoconducting 

agents in photocopying devices.3,25 In addition, the importance and potential of 

phthalocyanines is rapidly growing in many other fields. These include chemical 

sensors26-29, electrochromism30.31, molecular metals32.33, liquid crystals21.29.34, Langmuir-

Blodgett films21.35, functional polymers36.37, semiconductors27.28, photosensitizers for 

photodynamic therapy38-42 and non-linear optical applications43
-45• The potential to adapt 

to such a wide range of applications originates with their singular chemical structure, 

high degree of aromaticity, unique electronic spectra and the flexibility involved in the 

synthesis of phthalocyanines. Diverse applications such as those proposed for 

phthalocyanines require compounds with distinct and well-defined physical, chemical 

and electronic properties in some cases. This necessitates synthetic methods with control 

of regioselectivity and with access to assorted types of substituents. Current synthetic 

approaches often corne up lacking and as such new methods are needed in order for 

phthalocyanines to fulfill their promise. 

A notorious disadvantage of phthalocyanines is the extreme insolubility of their 

unsubstituted derivatives. This can be primarily traced to the extreme hydrophobicity of 

the aromatic core and planarity of the phthalocyanine, which leads to a tendency to stack 

upon themselves and results in highly stable crystal structures with high molecular lattice 

energies. The solubility of unsubstituted phthalocyanines in the more uni versai organic 

solvents like sulpholane, dimethyl sulphoxide (DMSO), tetrahydrofuran (THF) and N,N-
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dimethylformamide (DMF) is negligible1
• Even higbly aromatic solvents such as 

quinoline and 1-chloronaphthalene rarely give solutions of concentrations exceeding l 0·5 

M. The only effective solvent is sulphuric acid at concentrations greater than 8 M. 

However, this induces solubility via protonation of the azanitrogens, thus modifying the 

properties of the macrocycle and severely limiting the use:fulness ofthese solutions. For 

instance, protonation of the aza nitrogens causes a strong bathochromic shift of up to 80-

120 nm of the Q band.1 

While the use of phthalocyanines as pigments relies on their insolubility to ensure 

fixation to material and durability against light, heat and chemicals to avoid fading, most 

Pc applications require solubility in water or a common organic solvent. ln order to 

induce solubility, a number of functional groups have been added to the Pc framework 

via attachment to the benzene rings on the periphery of these macrocycles. The physical, 

chemical and electronic properties of phthalocyanines can also be fine-tuned via the 

addition of appropriate substituents and functional groups to the molecule. Simple 

functional groups such as alkyl chains and higher order aromatics to ethers, amines, 

thiols, halides and various acid groups have been used to improve the overall properties 

of phthalocyanines. More exotic substituents including crown ethers, dendrimers, 

ferrocenes and tetrathiafulvalenes lend other characteristics to the macrocycle that 

increase their utility. Polynuclear phthalocyanine systems have also been prepared with 

novel organic materials, new chemical catalysts and high temperature polymers in mind. 

Ether, amine, thiol and new carbon-carbon bonds have been used among countless other 

possibilities in order to add a variety of substituents to the Pc framework. Overall, this 
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rich chemistry is the driving force behind the tremendous versatility of phthalocyanines 

and their value in such a wide array of fields. 

Substitution onto a phthalocyanine can essentially be accomplished by one of two 

basic methods. The first involves the direct substitution onto a pre-existing 

phthalocyanine. An example of this is the sulphonation of phthalocyanines,46 which can 

be accomplished by heating a phthalocyanine macrocycle in oleum ( concentrated 

sulphuric acid containing 20-30% free 803). While direction substition is the preferred 

method for adding functionality to Pc for the colorant industry, 18
•
19 the harsh reaction 

conditionsgenerally employed result in complex isomeric mixtures and varying degrees 

of substitution, with substituents added at any or ail of the sixteen available positions on 

the phthalocyanine (Figure 2). Obviously, the resulting phthalocyanine mixture lacks a 

distinct structure and isolation and purification of the desired product is extremely 

difficult. This greatly limits the utility of this methodology in applications calling for 

well-defined phthalocyanines such as those needed in more high-tech fields. 

The second basic method involves condensation of substituted precursors. This 

leads to far cleaner reactions in tenns of the degree of substitution, with, for example, 

monosubstituted precursors leading to tetrasubstituted phthalocyanines. Furthermore, the 

basic position of these substituents is known as, for instance, 4,5-disubstititued 

phthalonitriles condense to form 2,3,9,10,16,17,23,24-octasubstituted phthalocyanines 

(see Figure 2 for the numbering scheme used in phthalocyanine nomenclature). 

However, while the number of substituents and their relative position is known, this 

method still leads to constitutional isomers for unsymmetrically substituted precursors 

(Figure 3). This is primarily due to the symmetry involved in the condensation reaction 
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Figure 2. Potential sites for phthalocyanine substitution. Note that the numbering scheme 

used is that traditionally used for phthalocyanine nomenclature. 
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Figure 3. The four constitutional isomers possible for a tetrasubstituted phthalocyanine. 

The geometry indicated is for the phthalocyanine macrocycle itself with overall 

molecular geometry depending on the nature of the substituent. 
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used in phthalocyanine synthesis. While it is theoretically possible to separate these 

isomers due to their differing geometries, it has only been accomplished for very specific 

phthalocyanines using specially designed HPLC columns.47
-
50 O:ften, even in these cases, 

the best results possible give only enriched isomeric fractions. While an isomeric 

mixture is usually suitable for most applications, high tech fields such as non-linear 

optics require distinct molecular geometries. This has led to research on new synthetic 

protocols and specially designed phthalocyanine precursors for the preparation of single 

isomers. Nevertheless, while this method has clear drawbacks, it is still the highly 

preferred method for adding substituents to phthalocyanines and as such, the synthesis of 

substituted precursors is vital in the preparation of new phthalocyanine derivatives with 

improved properties and designed chemical structures. 

Further complicating the syntheses of phthalocyanines are mixed condensations 

where phthalocyanines substituted with different functional groups are desired. This is 

the case for several applications. Langmuir-Blodgett films require different substituents 

in order to achieve the molecular orientations necessary to ensure that transferred films 

have similar orientations.26•
51 In addition, more amphiphilic phthalocyanines bearing 

both hydrophobie and hydrophilic moieties have been shown to be more potent as 

photosensitizers for photodynamic therapy.42 Generally, unsymmetrically substituted 

phthalocyanines are synthesized by a statistical condensation of appropriately substituted 

precursors followed by chromatographie isolation of the desired products. Although this 

method, via trial and error, can lead to reaction mixtures enriched with the product with 

the desired substitution pattern, it still leads to six differently substituted phthalocyanines 

(Figure 4), not including constitutional isomers when they are possible. Column and 
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Figure 4. The six differently substituted phthalocyanine possible from a mixed 

condensation reaction of two differently substituted precursors. A and B represent two 

differently substituted isoindoline units. 
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HPLC chromatography can be use.cl to isolate the desired substitutoo product in most 

cases. However, this is often very tedious and difficult and can lead to contamination 

with differently substitute.d phthalocyanines. As such, new synthetic procedures would 

be advantageous in order to synthesize phthalocyanines with exact composition and of 

pure isomeric distribution and a number of novel synthetic approaches have been 

designed to accomplish this. Among these is the use of axial ligands on the central metal 

ion of the phthalocyanine complex to impart the desired physical and chemical properties 

to the molecule while leaving the periphery unsubstituted, thus eliminating the problem 

of isomers. Among the more promising phthalocyanines for photodynamic therapy is 

Pc4, an unsubstituted silicon phthalocyanine with an alkylsilyl axial ligand bearing a 

terminal amine and this compound entered clinical trials in 2001.42 Attempts have also 

been made to break the symmetry inherently found in the synthesis of phthalocyanines by 

using designed phthalocyanine precursors. 52-
56 Such precursors seek to force the 

condensation reaction to occur in one direction, thus producing exclusively a single 

isomer or substitution pattern. In a similar fashion, polymer-supported precursors57
-60 

and boron subphthalocyanines61-65 have been investigated as starting materials for the 

synthesis of 3: 1 unsymmetrically substituted phthalocyanines with varying success. 

While these methodologies have displayed some promise in specific cases, further 

research remains to be done in this area ofphthalocyanine synthesis. Clearly, however, 

the preparation of new phthalocyanine precursors and the addition of novel functional 

groups to these molecules remains an important goal. 
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II. Phthalocyanine Precursors 

Unlike metalloporphyrins, phthalocyanine complexes are seldom obtained from 

an available phthalocyanine ligand. More often, the complex is formed from precmsors 

via a metal-templated cyclotetramerization reaction. As was mentioned previously, the 

addition of substituents to phthalocyanines in order to improve their properties is also far 

easier to control using appropriately substituted starting materials rather than adding them 

to a pre-existing macrocycle. Moreover, free phthalocyanine ligands (or metal-free 

phthalocyanines) tend to be prepared via demetalation of labile alkali and alkali earth 

metal complexes, which themselves are formed by the reaction of phthalonitriles and 

other phthalocyanine starting materials with metal alcoholates.1•66 The mechanism of this 

condensation reaction has been extensively examined and probably involves a stepwise 

polymeriz.ation of phthalocyanine precmsors or reactive intermediates followed by 

coordination of the central metal ion and ring closure to the macrocycle.1
·66-70 Ring 

closure is driven not only by the template e:ffect of the metal ion and the inherent 

stabilization this coordination implies but also by the thermodynamic stabiliz.ation and 

added aromaticity involved in formation of the phthalocyanine macrocycle. The aromatic 

character of the phthalocyanine system is clearly demonstrated by its magnetic 

anisotropy, which is 15 times larger than that for benzene. 71 

Phthalocyanines can be prepared from aromatic ortho-dicarboxylic acid 

derivatives and these include phthalic acids (2), phthalonitriles (3), phthalic anhydrides 

(4), phthalimides (5), diiminoisoindolines (6) and o-cyanobenz.amides (7) (Figure 5). 

Ortho-substitution is a definite prerequisite. The carboxylic acid or related functional 

group may not be separated from the aromatic system by a saturated atom or by extended 
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Figure 5. Basic phthalocyanine precmsors. 
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unsaturation. There also must be a double bond between the atoms carrying these 

functional groups or there must be the possibility for a rearrangement to fonn such a 

double bond during the condensation reaction. As such, compounds such as isophthalic 

acid (13), terephthalonitrile (14), 1,2-bis(cyanomethyl)benzene (15), 2-

carboxyphenylacetonitrile (16) and l,2-dicyanohexane(17) fail to give complex 

formation (Figure 6). On the other band, compounds like 1-cyclohexene-1,2-

dicarboxylic anhydride (8) do yield tetracyclohexenetetraaz.aporphyrins, which can be 

dehydrated by sublimation at 300-320 °C, heating with sulphur, boiling with palladium in 

chloronapthalene or treating with DDQ to yield the phthalocyanine.72•73 In addition to the 

phthalic acid derivatives already mentioned, o-halobenzonitrile and o-dihalobenzenes 

also give phthalocyanines when heated in the presence of cuprous cyanide, probably via 

the in situ generation of phthalonitrile. Phthalocyanine-like complexes can be 

synthesized with extended aromatic systems as well and starting materials for such 

macrocycles including 2,3-naphthalenedicarbonitriles (9). However, the same rules apply 

as 1,8-naphthalenedicarbonitriles (18) fail to give a Pc macrocycle under condensation 

reaction conditions. 74 Finally, a number of specially designed precursors, based on 

phthalimide, have been prepared. Iminothioamides (10), dithioamides (11) and 1,3,3-

trichloroisoindolines (12) attempt to control the cyclotetrameriz.ation reaction by altering 

the geometry of the cyclotetramerization reaction. 52-56 Nevertheless, these more 

sophisticated starting materials are still based on o-dicarboxylic acid derivatives. Clearly, 

the nature and structure of phthalocyanine precursors is qui te restricted, substantially 

limiting modification of the core phthalocyanine structure although az.a derivatives and a 

few non-Hückel systems have been prepared. Notwithstanding this, the comparative ease 
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Figure 6. Examples of compounds with molecular structures incompatible with the 

phthalocyanine cyclotetrameriz.ation reaction. 
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with which phthalocyanines undergo substitution on their four benzene rings and the 

synthetic possibilities involved in adding substituents to phthalonitriles and other 

phthalocyanine precursors lend incredible structural flexibility to phthalocyanines. 

Despite the restrictive prerequisites implicated in phthalocyanine synthesis, a rich and 

varied chemistry for the preparation of appropriate precursors and addition of interesting 

and beneficial functional groups and chemical moieties has been developed. 

III. Phtbalonitriles 

The most useful of the phthalocyanine precursors are phthalonitriles (3). These 

compounds readily yield phthalocyanine complexes in good yields with most metals 

except silver and mercury.1 Reactions often involve simply heating the phthalonitrile in 

the presence of a metal ion source as either a melt of reagents or in a suitable high boiling 

solvent Conversely, syntheses using precursors like phthalic anhydrides (4)and 

phthalimides (5) require the presence of a nitrogen source such as urea and a catalyst 

such as ammonium molybdate or borie acid in order to get phthalocyanine macrocycle 

formation. Moreover, phthalimides (5) and some of the other phthalic acid derivatives 

give far more erratic results. These factors greatly limit the usefulness of these 

compounds as precursors, especially by restricting the nature of the functional groups that 

can be present during the condensation reaction. However, phthalic anhydrides (4) are 

used extensively for the large scale production of phthalocyanine by industry mainly due 

to the inexpensive cost of such starting materials. 11
-16 Phthalonitriles (3), on the other 

band, lead to higher purity and since phthalonitriles are generally more expensive, their 

use tends to be restricted to high~technological applications and small scale syntheses 
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where quality and not cost are the main considerations. Beyond this, phthaloni1riles are 

generally the precursor of choice for most phthalocyanine syntheses as these compounds 

can be readily prepared via a number of synthetic pathways and their condensation 

reaction generally proceeds more smoothly and with improved yields as compared to 

other o-phthalic acid derivatives. 

As previously described, phthalonitriles are transformed into phth8locyanines via 

a metal template assisted cyclotetramerization reaction. In general, these reactions are 

carried out at elevated temperatures in either a melt of reagents or in a high boiling 

solvent such as chlorobenzene, quinoline, nitrobenzene or 1-chloronaphthalene. 

Phthalocyanine macrocycle formation can also be accomplished in refluxing 1-pentanol 

or another similar alcohol in the presence of an organic base such as DBU, piperidine or 

cyclohexylamine.66•75•76 The presence of the strong organic base permits the reaction to 

proceed under more mild reaction conditions by acting as an electron acceptor, thus 

promoting formation of the alcoholate. This in turn adds to the cyano groups of the 

dinitrile with formation of an alkoxyisoindoline, which rapidly cyclizes to the Pc. While 

not strictly necessary, urea and ammonium molybdate are added on occasion to the 

reaction to help promote cyclization.14
"
16 Metal-free phthalocyanine can also be prepared 

from phthalonitriles via the reaction with hydrogen in dioxane or with ammonia in 2-

N ,N-dimethylaminoethanol. 66·76 Compounds ofmolybdenum, titanium and iron are 

known to catalyze the cyclotetramerization reaction, greatly decreasing reaction times 

and reaction temperatures in certain cases. 16 

Phthalonitriles readily react with various metal sources including metals 

themselves along with their salts, oxides, sulphates and halides to form 
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metallophthalocyanine complexes. Such metal complexes have been reported for most 

metals with the most obvious exceptions being silver and mercury. Note that metal 

halides can give halogenated phthalocyanine contaminants via an in situ halogenation of 

the aromatic system and are thus generally avoided. Reactions involving phthalonitriles 

are generally much cleaner than those using other phthalocyanine precursors and give the 

best yields, typically in the range of 30-50% and occasionally as high as 90%. However, 

cyclotetramerization reactions involving phthalonitriles have been shown to be somewhat 

sensitive to solvent, temperature and metal ion source. 1 Still, they tend to be the 

preferred starting material for phthalocyanine synthesis and as such, most research 

encompassing phthalocyanines and their preparatidn bas involved phthalonitrile starting 

materials. Numerous methods have been developed for their preparation and 

functionaliz.ation. Below is a brief resume of each of the main synthetic methods used to 

synthesize phthalonitriles along with an extensive list of substituents that have been 

added to these molecules and the protocols used for their addition. While far from 

complete, these di eussions clearly demonstrate the wide array of potential functional 

groups that have been added to phthalocyanines and hopefully will act as a guide for 

phthalocyanine chemist. 

A) Ammonolysis/Dehydration of Phthalic Acid Derivatives 

Phthalonitriles can be synthesized from the other phthalic acid derivatives by a 

stepwise progression from the dicarboxylic acid through to the anhydride, imide and 

diamide and finally to the desired phthalonitrile. Overall, the reaction pathway is a 

reductive ammonolysis and involves ammonolysis of the dicarboxylic acid followed by 
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dehydration of the resulting diamide to give the corresponding nitrile. An excellent 

example ofthis was employed in the synthesis of 4,5-dichlorophthalonitrile (23) from the 

inexpensive commercially available l,2-dichloro-3,4-benzenedicarboxylic acid (19) 

(Figure 7).77 

Phthalic acids (2) readily form the corresponding anhydrides ( 4) by refluxing in 

acetic anhydride with yields usually being nearly quantitative.77-79 This dehydration 

reaction to form anhydrides can be accomplished using a number of other dehydrating 

agents such as methoxyacetylene, dicyclohexylcarbodiimide (DCC) or diphosphorus 

pentoxide.80•
81 However, reaction rates and yields are sufficient using acetic anhydride in 

the case of phthalic acids. The conditions used are also very mild and the resulting 

phthalimide precipitates from solution upon cooling, leading to a simple workup. Of 

course, ring closure to the cyclic anhydride drives the reaction towards anhydride 

formation81 and leads to the excellent yields and high purity obtained in these reactions. 

Transformation of the phthalic anhydride (4) to the phthalimide (5) is usually 

accomplished by refluxing in formamide. Formamide partially decomposes into carbon 

monoxide and ammonia beginning at l 80°C82 and therefore acts as both the solvent and 

the source of ammonia for this reaction. Urea acts in a very similar fashion, 

decomposing to ammonia, biuret and cyanuric acid above its melting point of 132. 7°C82 

and as such, has been used in the conversion of phthalic anhydrides to phthalimides as 

well. However, the byproducts ofthis reaction are somewhat harder to eliminate. An 

example of a reaction where urea is used is in the synthesis of 4-t-butyl and 4-

trimethylsilylphthalimide (30) (Figure 8).78-79 Other nitrogen sources that have been 

employed include ammonia gas and ammonium hydroxide, carbonate or cyanate, 
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Figure 7. Synthesis of 4,5-dichlorophthalonitrile from its phthalic acid derivative77 
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although most of these utilize extremely high reaction temperatures and harsh reaction 

conditions and often lead to unsatisfactory yields.81
•83 

The basic reaction mechanism here entails a two step procedure, the first being a 

nucleophilic addition of the ammonia to one of the carbonyl carbons with subsequent 

opening of the cyclic anhydride to give an o-carboxybenz.amide or phthalamic acid (32). 

The second slower step is a second nucleophilic attack by the amide nitrogen on the 

carboxylic acid carbon, with loss of water and resulting in the ring closure to the 

phthalimide. 84•
85 In the case of unsubstituted phthalic anhydride, at lower temperatures, 

the reaction is known to proceed via ammonium phthalamate (31), which upon 

acidification gives phthalamic acid (32) (Figure 9).85
•86 However, these compounds 

readily transform into the analogous phthalimide upon heating and under the elevated 

reaction temperatures used with refluxing formamide, the phtbalimide is formed directly. 

As is the case for the phthalic anhydrides, the resulting phthalimide usually 

precipitates from solution upon cooling and after washing to remove the formamide 

solvent, is generally sufficiently pure to be used in the next step. lt should be noted that it 

is possible to obtain the imide directly from the dicarboxylic acid. One method of 

accomplishing this is via the monoammonium sait formed by neutralizing the phthalic 

acid with ammonium hydroxide. Following concentration to give the crystalline sait, 

pyrolysis is induced by heating, giving the final phthalimide product. Such a 

methodology has been used to prepare 3- and 4-nitrophthalimide (40)87 from the 

corresponding phthalic acids with yields of 68-82%, which is highly satisfactory 

considering the number of steps that are avoided. 
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Figure 9. Synthesis ofphthalimide from phthalic anhydride passing via ammonium 
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Transformation of the phthalimide to the corresponding phthalamide can be 

achieved by reacting in concentrated aqueous ammonium hydroxide or ammonium 

carbonate. The reaction temperature depends on the phthalimide involved and these 

reactions are at times prolonged. In the case of 4,5-dichlorophthalimide (21), the reaction 

is carried out over 48 hours at room temperature with fresh addition of ammonium 

hydroxide after 24 hours (Figure 7). 77 4-t-Butylphthalimide requires 24 hours at room 

temperature. 78 On the other hand, 4,5-diiodophthalimide (33) reacts at 50-60°C with 

concentrated aqueous ammonia with a 81 % yield of the resulting phthalamide (36) being 

acquired after only 1.5 hours (Figure 10).88
•
89 Interestingly, despite ammonium 

hydroxide being a potential reagent for both the preparation of phthalimides from 

phthalic anhydrides and phthalamides from phthalimides, the two reactions involved are 

completely different The synthesis of phthalamide requires aqueous ammonium 

hydroxide and is accomplished at temperatures ranging from 20-60 °C. Phthalimide, on 

the other band, encompasses the removal of aqueous solvent and extremely elevated 

temperatures, occasionally as high as 290 °C. 

An extremely interesting variation of the classic protocol has been used during the 

preparation of 4-nitrophthalamide (41) from 4-nitrophthalimide (40) (Figure 11). It 

utilizes THF as the solvent and induces the reaction by adding excess concentrated 

ammonium hydroxide and bubbling ammonia gas through the reaction at only 40 °C for 2 

hours. 54 Even with these much milder conditions, yields are comparable to the tradition 

conditions employing simple aqueous ammonia. Other potential methods for 

synthesizing these or/ho-diamides often give disappointing results, with, for instance, the 

reaction of phthaloyl chloride with ammonia leading to only the monoamide. 87 There 
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Figure 1 O. Synthesis of 4,5-diiodophthalonitrile. a) h, 30% fuming H2S04, 75-80 °C, 24 

h; b) Nl40H, 50-60 °C, 1,5 h; c) (CF3C0)20, pyridine, dioxane, 0-5 °C, 24 h.88 
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also appears to be steric effects involved as tetrabromo- and tetraiodophthalimide fail to 

give the corresponding phthalamide under traditional conditions while the 

tetrachlorinated compounds gives only small yields of the desired product (persona! 

observation). Altogether, while the earlier steps in the overall reaction scheme towards 

phthalonitrile synthesis from phthalic acids often give near quantitative yields, the 

synthesis of phthalamides tends to produce roughly 80% yields although higher yields are 

obtained in some cases. 78•90 Note that after initially dissolving, these reactions tend to 

become very thick and effective and vigorous stirring is often needed to ensure 

satisfactory results. 

The most delicate of the reactions involved in this method of synthesizing 

phthalonitriles is the final dehydration. While the dehydration of amides to the 

cotresponding nitriles are most commonly carried out with phosphorus pentoxide, a wide 

range of dehydrating agents can been employed. 81.91 In terms of phthalonitrile synthesis, 

a number of different protocols have been used in order to accomplish this reaction. 

Among the more popular are trifluoroacetic anhydride in dry dioxane/pyridine (Figure 

10)88,89,92,93 and thionyl chloride in DMF (Figure 7).54'77.94 For thionyl chloride in DMF, 

it is important to first prepare the highly reactive dimethylformiminium chloride 

(Vilsmeier reagent)95
•·96 via the dropwise addition of the thionyl chloride in either DMF 

or a solution of DMF in another appropriate sol vent at 0°C prior to adding the 

phthalamide (Figure 12).81
•
97 Oxalyl chloride can be used to form the reactive Vilsmeier 

reagent as well. As an example, oxalyl chloride and DMF were reacted in acetonitrile at 

0°C prior to addition of 4,5-bis(benzyloxyethoxy)phthalamide and gave excellent yields 

of the corresponding phthalonitrile.90 It has been observed that the Vilsmeier reagent 
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Figure 12. Preparation ofVilsmeier reagent (Dimethylformiminium chloride).81.95-97 
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tends to give the purest dinitriles in the highest yields. 54 Other dehydrating conditions 

that have been used include phosphorus oxychloride in pyridine (Figure 8)78-79 and acetic 

anhydride either neat or in chlorobenzene.87•93.98.99 In the case of the synthesis of 

pyromellitonitrile (1,2,4,5-tetracyanobenzene ), harsher reaction conditions were 

necessary in order to get complete dehydration, calling for the addition of thionyl 

chloride to a stirred solution of pyromellitamide in DMF at 60°C and a six hour 

reaction.100 Note that when this reaction is carried out at slightly higher temperatures in 

an excess ofthionyl chloride, 4,5-dicyanophthalimide was obtained. Using phosphorus 

pentachloride, phosphorus pentoxide and benzenesulphonyl chloride as the dehydrating 

agent yielded only starting material in this case. In general, however, yields for 

dehydration reactions of phthalamides tend to be very good, often in the 70-90% range 

although earlier reactions using acetic anhydride gave much inferior results. During the 

synthesis of 3-nitrophthalonitrile, the use of Vilsmeier reagent as the dehydrating agent 

leads to a 89% yield94 while acetic anhydride in chlorobenzene only resulted in a 26% 

yield, although this yield was not optimized.87 Similarly, phosphorus oxychloride proved 

to involve a laborious protocol with marginal yields for this example.94
•
101 This clearly 

demonstrates that while this reaction can lead to excellent yields of the desired 

phthalonitrile, it depends greatly on the conditions used and it would appear that the 

Vilsmeier reagent is the better dehydrating agents to use for this reaction. 

Mechanistically, this reaction may be formally looked at as a ~-elimination from 

the enol form of the amide (RC(OH)=NH).81
•
91 In some cases, the dehydrating agent 

forms an ester with the hydroxyl group, forcing the formation of the enol and inducing 

elimination by a El or E2 mechanism.81
•
102 Whether this elimination proceeds via a 
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Figure 8. Synthesis of 4-trimethylsilylphthalonitrile. a) CH3SiCl, sodium, benzene, 
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bimolecular E2 mechanism or via a carbocation (El mechanism) depends on the overall 

reaction conditions and has not been fully determined. However, evidence exists that 

would seem to point towards the mechanism depending on the dehydrating agent used.102 

The transformation of phthalic acid derivatives into phthalonitriles is an extremely 

useful method for forming these valuable phthalocyanine precursors and has several 

important advantages. It involves reactions with readily available and inexpensive 

starting materials, be it the phthalic acid (2), phthalic anhydride (4), phthalimide (5) or 

phthalamide. In fact, this reaction pathway can be initiated from the corresponding o-

xylenes as well since these compounds can be oxidized to the corresponding o-

benzodicarboxylic acids (Figure 8). Trimethylsilyl- (30) and 3- and 4-t-

butylphthalonitrile have been prepared from the corresponding o-xylenes in a multistep 

synthetic pathway where sodium permanganate-induced oxidation of the o-xylenes (25) 

giving rise to the phthalic acids (26). 78
•
79 o-Phthalaldehydes can also be transformed into 

phthalonitriles by treating with hydroxylamine salts in the presence of base followed by 

reaction with acidic dehydrating agents.103 Overall, such multi-step reaction pathways 

are not limited to phthalonitrile synthesîs as az.a derivatives including 4,5-

dicyanopyridazine can be prepared following a similar ammonolysis/dehydration 

pathway.104 

Several vitally important phthalonitriles are formed by this methodology. These 

include both 3- and 4-nitrophthalonitrile (42), which are synthesized either following 

nitration of phthalimide with nitric acid in concentrated sulphuric acid (Figure 11 )54
•
93 or 

from commercially 3-nitrophthalic anhydride. 94 These two phthalonitriles are extremely 

valua.ble due to the reactivity of aromatic nitro groups towards nucleophilic displacement 
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and the potential for transformation into a diazonium salt. This truly makes these two 

compounds the parent for a large majority of monosubstituted phthalonitriles and as such, 

for tetrasubstituted phthalocyanines (see below). In addition, 4,5-dihalophthalonitriles 

are also prepared in this manner, with starting material derived from the iodination88
•
89 or 

bromination92 of phthalimide in 30% fuming sulphuric acid (Figure 10) or from 

commercially available l,2-dichloro-4,5-benzenedicarboxylic acid (19) (Figure 7).77 

These starting materials are highly utilized in the preparation of 4,5-disubstituted 

phthalonitriles and are thus important in the synthesis of octasubstituted phthalocyanines. 

Another intriguing 4,5-disubstituted compound recently synthesized by this methodology 

is 4-bromo-5-nitrophthalonitrile (47) whose synthesis entails successive bromination of 

phthalic anhydride (4), imidi:z.ation of 4-bromophtbalic acid (43), nitration of 4-

bromophthalimide (44), amidi:z.ation of 4-bromo-5-nitrophthalimide (45) and dehydration 

of 4-bromo-5-nitrophthalamide (46) (Figure 13).105 

Despite the advantages of this overall synthetic scheme, it does have drawbacks 

as well. lt is often a multi-step process and while each step gives adequate to excellent 

yields, overall yields are decreased due to the number of steps involved. For instance, 

despite excellent yields for each step in the pathway, the overall yield for the synthesis of 

4,5-dichlorophthalonitrile (23) from l,2-dichloro-4,5-benzenedicarboxylic acid (19) is 

only 49%. 77 Furthermore, the deijydration reaction to yield the final phthalonitrile 

involves rather harsh reaction conditions, litniting the functional groups that can be 

present during this step. As such, this restricts the nature of the phthalonitriles that can be 

formed using this procedure, although it is used to prepare phthalonitriles bearing some 

extremely versatile functional groups. Nevertheless, in general, this stepwise synthetic 
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pathway for the preparation of phthalonitriles is very important for its ability to transform 

less effective phthalic acid derived starting materials into the preferred phthalonitrile 

precursor. 

With phthalonitrile being a principal intermediate for phthalocyanine production 

by industry, a number of processes for the continuous catalytic production of 

phthalonitrile from phthalic acid derivatives have been developed.16
•
17

•
106

•
107 While of 

little synthetic use as they tend to use extremely elevated temperature and harsh reaction 

conditions, they are of some interest. Examples include passing the vapor of one of the 

phthalic acid derivatives, together with ammonia, over a selected catalyst such as 

aluminum phosphate, silicate, arsenate or borate. Phthalonitrile has also been prepared 

industrially by catalytic dehydration of phthalimide or ammonium phthalate using a basic 

aluminum phosphate catalyst at 300-550°C. Phthalamides have also be dehydrated under 

pressure with an acid halide, an acylated secondary amide and if necessary, a tertiary base 

and a solvent. Thus, a sample protocol that has been used employs phosgene, thionyl 

chloride or phosphorus trichloride and N-ethyl-formanilide. A final example passes 

ammonia at 340°C through molten phthalic anhydride. The resulting vapor is then heated 

to 400-430°C and led over a bauxite catalyst. Following rapid cooling, phthalonitrile is 

obtained in 91-92% yields with a overall purity ofroughly 90%. Due to the exceptional 

amount of phthalocyanine product by industry, with the production of phthalocyanine-

based dyes and pigments exceeding 80 000 tons per year,37 attempts to upgrade these 

reactions, especially in terms of improved catalytic activity and decreased cost, are 

constantly underway.108 Furthermore, in addition to the traditional phthalic acid 

derivatives, metbods for the ammoxidation of o-xylene have been and continue to be 
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developed.109
-
112 In one such method, tetrachlorophthalonitrile, an important precursor 

for other tetrasubstituted phthalonitriles, has been prepared by oxidative ammonolysis of 

tetrachloro-o-xylene. 113 The synthetic transformation of phthalic acid derivatives is th.us 

not only a valuable methodology for the detailed synthesis of important phthalonitriles 

but also for the industrial preparation of important dye and pigment precursors as well. 

As an interesting aside, it has been observed that phthalonitrile can also be 

synthesized from 1,4-dichlorophthalazine and 1-chloro-4-alkoxyphthalazine (48) by a 

two electron reduction (Figure 14).114 This two electron reduction involves the transfer 

oftwo electrons, the cleavage ofthree cr bonds (two C-Cl bonds and an N-N bond) and 

the formation of two new 7t bonds. Ail stages of this reaction are rapid. Polarography 

indicates that the resulting phthalonitrile can th.en undergo a one electron reduction to the 

phthalonitrile radical anion (49), which can th.en itselfundergo a two electron reduction 

in the presence of a hydrogen donor to the benzonitrile radical anion (50). Interestingly, 

while 1,4-dichlorophthalazine gives a 5-electron reduction wave, the 1-chloro-4-

alkoxyphthalazine (48) only gives a 3-electron wave. This is because these compounds 

are reduced at the same potential range as phthalonitrile. 

B) Rosenmund-von Braun reaction 

A highly popular method of synthesizing phthalonitriles is by a cyano-

dehalogenation reaction known as the Rosenmund-von Braun reaction.115 In this method, 

aryl halides are converted into the corresponding aryl nitriles using cuprous cyanide. 

Other cyanides such as KCN or NaCN do not react with aryl halides, even activated ones, 

in the same manner. However, alkali cyanides do covert aryl halides into nitriles in the 
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presence of certain nickel, cobalt and palladium complexes. 81•115"119 To date, this 

transition metal..catalyzed synthesis of aryl nitriles has not been fully exploited in the 

synthesis of phthalonitriles, with only rare examples present in the literature. One 

potential drawback is that an o-cyano or o-halogen group greatly reduces the reactivity of 

aryl halides towards this transition metal catalyzed reaction.115 One literature example of 

this transition metal-catalyzed procedure utilizes NaCN and 

tris(triphenylphosphine)nickel as reagents for preparing phthalonitrile from 1,2-

dichlorobenzene. While the identical conditions gave the 1,3 and 1,4-dicyanobenzene in 

excellent yields, minimal amounts of phthalonitrile were obtained by this method. 120 

Likewise, while 5,6-diphenylpyrazine-2,3-dicarbonitrile can be synthesized using 

Pd(Ph3P) and KCN in a 16% yield, the 2,6-derivative is obtained in a 68% yield. 121 As 

such, the traditionally used cuprous cyanide and Rosenmund-von Braun conditions have 

been employed almost exclusively in preparation of o-dinitriles from aryl halides. 

However, cases do exist of the successful use of other cyanodehalogenation reactions. 

One example is the synthesis of 2,3,6,7,10, 11-hexacyanotriphenylene. 122 In this case, the 

hexanitrile was prepared using KCN and (Ph3P)J>d in the presence of the dibenzo-18-

crown-6. More traditional Rosenmund-von Braun conditions gave only partial exchange 

of the halo gens by cyanide anions. With results such as these, transition-metal assisted 

cyanodehalogenation reactions may still become important in the synthesis of 

phthalonitriles as new catalytic systems are ~veloped. 123 

While the Rosenmund-von Braun reaction has been extensively utilized and 

studied ever since it was first described in 1927,115•124 the mechanism behind this 

cyanodehalogenation using CuCN is not fully understood. It is known that reactivity 
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varies in the order 1 > Br > Cl > F, which would seem to rule out a SNAr mechanism. 81 

The reaction also has unusual kinetics, with a second order rate constant that increases as 

the reaction progresses and tends to become constant later on.125
•
126 It would appear that 

the reaction with CuCN involves either an electron-transfer process or a 1t-complex, 

which is formed between the copper (1) cyanide and the aryl halide. 115
•
126 In the electron-

transfer process, there is formation of a complex such as ArCu(X)CN that leads to the 

momentary formation of an arene radical or arene radical ion. These radical species 

would not be able to escape the immediate vicinity of the reacting species as radical traps 

do not affect this reaction.126 The second possibility requires the formation of an 18-

electron 1t-complexed organocuprate (52) (Figure 15). Intermolecular attack of the 

cyanide ion on the aryl halide carbon would give a tetrahedral intermediate (53) and is 

followed by the rate-determining elimination of the halide and rapid formation of the 

final product (55).126 Whether the cyanation of aryl halides occurs via electron-transfer, 

1t-electron complexation or a mixture of the two in the synthesis of phthalonitriles has 

sti.11 not been resolved in spite of significant research. 

While the Rosenmund-von Braun reaction has previously been achieyed in the 

absence of solvent or in a basic solvent such as quinoline or pyridine, studies have 

indicated that DMF is superior as the reaction medium.127 Clearly, this is the case for the 

synthesis of phthalonitriles as it is used also exclusively as the reaction sol vent. Cases do 

exist however where pyridine is added as a catalyst. 128
"
130 This catalytic activity is a 

result of complex formation between the cuprous cyanide and pyridine, which facilitates 

the interaction of the CuCN with the aryl halide. 131 Reaction conditions used for 

phthalonitrile synthesis using Rosenmund-von Braun conditions are extremely uniform, 
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with the reaction most commonly being carried out at reflux or near reflux, though 

slightly lower temperatures have been used on occasion. One inconvenience experienced 

during the experimental protocol of Rosenmund-von Braun reactions is that the resulting 

nitriles are known to form complexes with the cuprous halide byproducts. One of the 

main advantages of using DMF as a solvent is that such complexes remain in solution.127 

These complexes must be decomposed in order to obtain the desired nitrile and a number 

of methods have been developed in order to accomplish this.115 In most cases, 

phthalonitriles are obtained from the cuprous halide complexes by treating with 

concentrated ammonium hydroxide, often concurrent with bubbling of air or oxygen.115 

A second method that has been shown to be very effective involves treating with ferric 

chloride and hydrochloric acid, which oxidizes the cuprous ion and frees the nitrile. 127 

This methodology has been used successively in order to obtain certain phthalonitriles 

from their cuprous halide complexes.132"134 In some cases, the complexes appear to be 

slightly unstable and the desired phthalonitriles can be obtained by extraction with 

dichloromethane.135"136 Overall, aryl dihalides have been converted into phthalonitriles in 

the presence ofnumerous functional groups including alkyl, alkoxy, alkylthio, hydroxy, 

acyl, formyl, carboxy, carboxy ester, nitro and amines. However, the reactivity of the 

aryl halide and the resulting yield of the Rosenmund-von Braun reaction are 

pronouncedly affected by the substituents present during the reaction.137 For instance, 

5,6-dibromobenzimidazole (60) cannot be converted to the 5,6-dicyanobenzimidazole 

using the Rosenmund-von Braun reactlon conditions unless the imidazole nitrogen is 

alkylated (62...+63).138 The unalkylated form (60) leads to the mono exchange product 

exclusively (61) (Figure 16). Attempts using solvents such as DMSO or HMPA only 
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Figure 16. Synthesis of 1-alkyl-5,6-dicyanobenzimidazoles. a) TsCl, pyridine, 95%; b) 

Br2, NaOAc, 95%; c) H2S04, 900/o; d) HCOiH, 80%; e) CuCN, DMF, A, 70%; t) KOH, 

TBAB; g) RX, 68-98%; h) CuCN, DMF, A, 57-59%.138 
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yielded starting material. Note however that unalkylated 5,6--dicyanobenzimidazole has 

been synthesized starting from 4,5-diaminophthalonitrile. 139 

lt is readily apparent that the synthesis of phthalonitriles necessitates the 

corresponding 1,2--dihalo compounds. While it is known that aryl iodides react 40-1 OO 

times more readily than aryl bromid~, 115
•
126 phthalonitrile synthesis is generally 

accomplished using the corresponding aryl bromides and the general ease of their 

synthesis. This is primarily due to the ready availability of brominated precursors. 

Nevertheless, it was observed during the synthesis of 4-triphenylmethylphthalonitrile that 

the diiodinated precursor reacted much more effectively under Rosenmund-von Braun 

conditions than the corresponding 1-bromo-2-iodo-4-triphenylmethylbenzene.140 3,4,5-

Trimethylphthalonitrile has also been prepared from the aryl iodide using CuCN in 

hexamethylphosphorous triamide (HMPT).141 Other aryl dihalides other than bromides 

and iodides have also been used in order to add the necessary functionality to the 

molecule. A case in point being 4,5-didodecylphthalonitrile, which has been synthesized 

by palladium-catalyzed addition of dodecylmagnesium bromide to 1,2-dichlorobenzene 

followed by bromination to the dibromide and Rosenmund-von Braun 

cyanodehalogenation to the dinitrile.142 

While a large number of 1,2-dibromobenzene derivatives have been transformed 

into phthalonitriles using Rosenmund-von Braun conditions, a few take on special 

significance due to the large number of substituted phthalonitriles derived from them. 

l,2-Dibromo-4,5-di(bromomethyl)benzene (65) is prepared from o-xylene by a two step 

reaction (Figure 15). Bromination of the aromatic core in the 4,5 position is 

accomplished using bromine in the presence of iron and iodine.143
"
146 This is followed by 
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free radical bromination of the methyl groups using NBS and a radical chain initiator to 

give the desired brominated product 135
•
146 l ,2-Dibromo-4,5-di(bromomethyl)benzene 

(65) undergoes various reactions on the benzylic bromomethyl groups with ether135
•
146

"
148 

and amine bond formation129
•
149-151 predominating. Following cyanodehalogenation by 

the Rosenmund-von Braun reaction, 4,5-disubstituted phthalonitriles are obtained (67) 

(Figure 17). Furthermore, 1,2-dibromo-4,5-dimethylbenzene (64) also undergoes the 

Rosenmund-von Braun reaction effectively135.i52
•
154 and the methyl groups can be 

brominated using NBS to yield 4,5-di(bromomethyl)phthalonitrile (69).153-155 This 

compound is a valuable starting material for other 4,5-disubstituted phthalonitriles 

including phthalonitriles appended to tetrathiafulvene (71), glycoluril (73) and 

phosphonates (74) (Figure 18).153
•
154

•
156 The particular advantage of performing the 

Rosenmund-von Braun reagent before the addition of the desired functional group is that 

it allows addition of more labile functional groups to the phthalonitrile molecule by 

avoiding their presence during the harsh cyanodehalogenation reaction. 

A second valuable starting material is 4,5-dibromocatechol (77), which is 

involved in the synthesis of 4,5-disubstituted phthalonitriles bearing ether and crown 

ether substituents. Functional group addition via ether bond formation has been 

accomplished both before and a:fter bromination of the catechol aromatic ring (Figure 

19). However, these 4,5-disubstituted 1,2-dibromobenzenes (78) are more often than not 

prepared from 4,5-dibromocatechol (77) in order to avoid bromination of the ether side 

chains.157 This is despite potential contamination by tribrominated products that can be 

formed during the bromination of catechol using bromine in acetic acid.157,iss Either 

way, the resulting compounds undergo the Rosenmund-von Braun reaction to give a large 
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Figure 17. General synthesis of 4,5-disubstituted phthalonitriles from l ,2-dibromo-4,5-

bis(bromomethyl)benzene (X = 0 or N). a) Br2, 12, Fe; b) NBS, CC4, radical chain 

initiator; c) RONa or RR'NH and K2C02; d) CuCN, DMF; e) CuCN, DMF; f) NBS, 

CC4, radical chain initiator. 
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Figure 18. Examples of 4,5-disubstituted phthalonitriles prepared from 4,5-

bis(bromomethyl)phthalonitrile.153-156' 
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Figure 19. Synthesis ofvarious benzyl protected 4,5-dihydroxyphthalonitriles.157 
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number of 4,5-diether-substituted phthalonitriles and phthalonitriles extended by crown 

ether substituents (Figure 19-21). Examples include protecting benzyl groups (79),157 

simple alkyl and long chain ethers (81)142.159
•
160 and polyethers, 161

•
162 alkyl ethers with 

tenninal ester134•
163 and amide (84)164-

168 and various crown (90,91) and aza crown 

ethers.128
•
130

•
169

•
170 4,5-Dihydroxyphthalonitrile can also be synthesized via the 

Rosenmund-von Braun reaction using a suitably protected 4,5-dibromocatechol followed 

by deprotection. 169
•
171

•
172 The corresponding hydroxylated phthalocyanines can be 

prepared from protected 4,5-dicyanocatechols.157 However, the electron withdrawing 

cyano groups greatly hinder alkylation of the phenolic hydroxy groups, limiting the 

potential of 4,5-dihydroxyphthalonitriles towards the synthesis of novelly substituted 

phthalonitriles.169 

In addition to phthalonitriles, a number of substituted 2,3-

naphthalenedicarbonitriles and other dinitriles with extended conjugation have been 

prepared using the Rosenmund-von Braun reaction (Figure 22). The conditions used are 

identical to those used for phthalonitriles in most cases. Naphthalonitriles substituted 

with 1,4-dialkyl (99),173 S,8-dialkyl174
•
175 and 6,7-diether groups176 have been prepared in 

this manner along with others. In addition, synthetic procedures towards various 6,7-

dicyano-1,4-diepoxynaphthalenes utilize the Rosenmund-von Braun reaction to introduce 

the nitrile functionlity into the molecule as well.177
•
178 1,2-Naphthalenedicarbonitrile 

(102) has been prepared from 2-amino-1-naphthalenesulphonic acid (100) using a 

modified procedure, with cyanation by a Sandmeyer reaction at the 2 position followed 

by cyanodesulphonation using potassium ferrocyanide (Figure 23).179
•
180 A similar 

stepwise procedure, with a Sandmeyer reaction followed by a Rosenmund-von Braun 
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Figure 20. Examples of 4,5-disubstituted phthalonitriles synthesized from 4,5-

dibromocatechol.134
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Figure 21. Synthesis of a crown-ether substituted phthalonitrile from 4,5-

dibromocatechol. a) THPO(CH2)20(CH2)2Cl, A, 16 h, 49°/o; b) TsCl, pyridine, -10 °C, 24 

h, 93%; c) l,2-bis(decoxy)-4,5-bis(acetoxy)benzene, NaOH, 1-butanol, 16 h, 58%; d) 

CuCN, DMF, A, 40 h, 75%; e) NH3, NaOMe, MeOH, A, 30%.130 
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Figure 22. Synthesis of l,4-diheptyl-2,3-naphthalenedicarbonitrile. a) C1H1sMgBr; b) 

Br2, h; c) furan, n-BuLi, toluene; d) Zn, TiC4, THF; e) CuCN, DMF.173 
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cyanation, has been used to synthesize 3,5-di-t-butylphthalonitrile :from 2-bromo-1-

cyano-3,5-di-t-butylbenzene.181 The synth~sis of 2,3-naphthalenedicarbonitrile can 

proceed via the Sandmeyer reaction with transformation of commercially available 2-

amino .. 3-naphthaloic acid into the corresponding imide.179 This can then be turned into 

the dinitrile via amidiz.ation and dehydration. Somewhat interestingly, 2,3-dicyano-1,4-

dihydroxyanthracene can be prepared in a moderate yield by treating 2,3-

dichloroanthracene-1,4-dione with an excess of KCN in hot ethanol.182·183 The more mild 

reaction conditions are the result of the adjacent carbonyl groups ofthis quinone 

derivative. l,4-Dihydroxy-2,3-dicyanonaphthalene is synthesized taking advantage of 

this increased reactivity as well and this compound is an important starting material for 

l ,4-dialkoxynaphthalonitriles.173 

The Rosenmund-von Braun reaction is a well-established method for preparing 

nitriles such as phthalonitriles :from readily available and easily synthesized halogenated 

starting ~rial. As can be seen in the examples mentioned above, it has been used 

successfully in the preparation of a rather wide-range of substituted phthalonitriles. 

However, this reaction is often less than satisfactory. The harsh reaction conditions and 

the oxidative workup probibit the presence of a large number of functional groups. 

Furthermore, the elevated reaction temperatures and the use of cuprous cyanide, an 

obvious source of cuprous ions, often result in the production of the corresponding 

copper phthalocyanine as a byproduct. 90•93• ln fact, copper phthalocyanines can be 

directly synthesized from the 1,2-dibromo compounds by increasing the temperature of 

the reaction and changing solvents to tetramethylurea (TMU).149-151J 7o On occasion, 

product mixtures obtained using the Rosenmund von-Braun reaction are extremely 
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complex and are very difficult to purify.90•
131 This is the case for cyanodehalogenation of 

4-nitro-1,2-dibromobenzene using traditional conditions. 93 Overall, yields for the 

Rosenmund-von Braun reaction, though often acceptable, can be very low and often 

depend greatly on the substituents on the starting material and can fail to give the desired 

product in some cases.14° Finally, it is known that substrates containing more than one 

halogen usually react to give the polycarbonitrile, as is desired in the synthesis of 

phthalonitriles.115•
184 However, one halogen may remain unaffected or may even be 

lost.115
•
185

•
186 This inability to drive the reaction to completion bas been observed in the 

synthesis of several phthalonitriles.122•138•154•1851187•188 Cyanodehalogenation of 2,3-

dichloronitrobenzene using CuCN in refluxing DMF only gave 2-chloro-6 

nitrobenzonitrile187 while l ,2-dibromo-4,5-bis[ 4' ,5' -bis(hexylthio )tetrathiafulvalen-4-yl-

methoxymethyl]benzene (104) gave a roughly 50:50 mixture of the mono- and dinitrile 

compounds (105,106) (Figure 24).154 Such incomplete reactions are highly undesirable 

and isolation of the dinitrile from the mononitrile is very difficult Still, despite these 

important problems, the Rosenmund-von Braun reaction is a highly successful and 

eminently used methodology for the preparation of phthalonitriles. 

C) Palladium-catalyzed cyanation of aryl trifl.ates 

While the Rosenmund-von Braun reaction has been used successfully in the 

synthesis of a large number of phthalonitriles, in particular 4,5-disubstituted derivatives, 

its drawbacks have lead to the development of other procedures for procuring the ortho 

dinitrile functionality. A recently developed technique involves the transition metal-

catalyzed cyanation of aryl triflates and aryl nonaflates. 122•134•189 Although halides are 
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Figure 24. Synthesis of 4,5-bis[ 4' ,5' -bis(hexylthio )tetrathiafulvalen-4-yl-

methoxymethyl]phthalonitrile.154 Note that the conversion of the dibromo compound to 

the corresponding phthalonitrile leads to a roughly 50:50 mixture of the mono- and 

dinitrile. 

305 



common leaving groups in nucleophilic substitution reactions, for instance in the 

Rosenmund-von Braun reaction, it is often more convenient to use alcohols. Since the 

hydroxyl group is a poor-leaving group, a number of methods have been used to convert 

them into a more labile substituent. The most popular of these is conversion to a reactive 

ester, most commonly a sulphonic ester. While a tosylate sulphonic ester is commonly 

used, it is known that perfluoroalkanesulphonic esters are much better leaving group$ and 

therefore, are starting to become extensively used in organic chemistry. 190 For instance, 

tritlates are 2 x 104 to 2 x 105 times more reactive towards nucleophilic substitution than 

comparable tosylates while nonatlates are slightly more reactive still. Hence, the superior 

leaving ability and low nucleophilicity of these pertluoroalkanesulphonates makes them 

important functional groups and synthetic tools in organic chemistry and they have been 

widely used in both preparative and mechanistic investigations. 

Aryl triflates and nonatlates are readily synthesized from the appropriate phenols 

or their metal phenoxides using the anhydride, halide or another derivative of the 

pertluorosulphonic acid.190 Like halogens, these perfluoroalkanesulphonic ester groups 

are deactivating ( electron withdrawing) and yet are ortho-para directing towards 

electrophilic aromatic substitution. In addition, they are highly stable, resulting in a 

relatively low reactivity. Nonetheless, they have been shown to undergo nucleophilic 

displacement, for instance, using dimethyl malonate anion. 191 Reaction with 

R2Cu(CN)Lh, 192 RZnX193 and R3A1194 all lead to alkylation of the aromatic ring. Using 

certain palladium catalysts, carboxylic acid derivatives can also be synthesized from aryl 

triflates in a reaction with carbon monoxide and either water, alcohols or amines.195 
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Palladium and nickel catalysts have also been used in the cyanation of aryl 

triflates.196
•
197 The premise behind this method is based on the fact that aryl triflates are 

easily synthesized from phenols and their carbon-oxygen bonds are readily cleaved by 

traditional metals to form oxidative adducts.190 The basic synthetic procedure for this 

reaction involves a reagent system composed of a source of cyanide anion, usually either 

KCN or Zn(CN)z, and a palladium(0)197
•
198 or nickel (0) catalyst. 196

•
199 The nickel 

catalyst is customarily Ni(Ph3P)4 and is generated in situ from nickel(IQ complexes and 

metallic zinc in the presence of excess phospbine. 196 In the case of palladium(O) catalyst, 

1, 1 '-bis( diphenylphosphino )ferrocene ( dppf) is often used as the ligand as it improves the 

catalytic efficiency to a great extent 197 This is because cyanide anion forms highly stable 

tetracyano-metal complexes with palladium and these complexes do not participate in the 

catalytic cycle. 119
,1

89
•
197 Hence, the catalyst must be shielded by a strongly chelating 

ligand while the concentration of free cyanide anion must be diminished as much as 

possible. Dppf is a suitable ligand as it can effectively protect the palladium catalyst 

while stabilizing the intermediate cationic species formed during the reaction.189 

Concentration of free cyanide anion are minimized in the reaction mixture by both adding 

the cyanide sait portionwise to the reaction mixture over a prolonged period and by using 

solvents such as DMF, acetonitrile and l-methyl-2-pyrrolidinone (NMP) in which 

cyanide salts have only a slight solubility.122
•
189 Yields for this reaction are often 

exceedingly good. 

The mechanism of this reaction can be described best as a series of individual 

reactions.189.2°0-
202 The initial step is the oxidative addition of the transition metal into the 

aryl triflate bond to form an arylmetal triflate. In polar solvents, a subsequent 
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dissociation of the triflate leaving group gives a positively charged, coordinatively 

unsaturated metal complex. 202 The free coordination site is then filled with a cyan.ide 

anion and this is followed by reductive elimination of the transition metal to give the 

desired aryl cyan.ide with regeneration of the zero-valent metal species. The palladium 

catalytic system bas been used successfully with functional groups such as alkyl, aryl, 

chloro, acyl, alkoxycarbonyl, cyano and nitro substituents present in the starting 

material.197 However, electron-donating groups including alkoxyl and acylamino tend to 

retard the reaction, requiring more severe conditions and lead to incomplete conversion 

of the starting material. The nickel catalyst has the disadvantage that halogen 

substituents and certain other functional groups cannot be present due to side reactions 

involving the catalyst.199 

The availability of catechols and the ease of converting them into the 

corresponding triflates190 makes this procedure an attractive pathway for the synthesis of 

phthalonitriles. A number of phthalonitriles have been prepared from the corresp0nding 

aryl triflates134
•
189 and the more reactive aryl nonaflates.122 

Tris(dibenzylideneacetone)dipalladium [Pd2(dba)3] and dppf is the preferred catalytic 

system as attempts to use nickel(O) complexes have given unsatisfactory results.189 In all 

cases, the reaction is carried out in DMF and the Zn(CNh is added portionwise in order 

to keep the concentration of free cyan.ide to a minimum. When the Zn(CN)2 was added 

in one portion, no phthalonitrile is formed. 189 Note that the more reactive nonaflates gave 

the desired product in good yields despite not adding the protective dppf ligand to the 

reaction mixture.122 Phthalonitriles bearing alkyl (126,127), alkoxycarbonyl (128), 1-

carboxyalkyl (129,131,132) and amino acid (130) functional groups have been prepared 
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by tbis method (Figure 25)134
•189• Furthennore, 2,3-naphthalenedicarbonitrile (133)189 

and 2,3,7,8,12,13-hexacyanotribenzylene122 have also been synthesized from the 

corresponding perfluoroalkanesulphonates. Yields for these cyanation reaction are in the 

80-90% range although, as expected, electron-donating substituents decrease the yields 

somewhat. While reports indicate that the reaction is not affected by ortho 

substituents, 196 steric hindrance in the case of catechols requires higher reaction 

temperatures for compounds bearing functionality in the 3-position.189 Interesting, the 

synthesis of 4,5-bis[2-ethyloxycarbonyl)ethyl]phthalonitrile (131) and 4,5-bis[2-

ethyloxycarbonyl)propyl]phthalonitrile (132) commenced with 4,5-dibromocatechol (77) 

(Figure i6), 134 an important starting material in the preparation of phthalonitriles using 

the Rosenmund-von Braun reaction. However, in these cases, the role of the halide and 

hydroxy functional groups are reversed, with the bromides used to add the desired 

substituents and the catechol employed to add the ortho dinitriles. An advantage of this 

inversion of roles is the altered reactivity of the starting material. For instance, the strong 

electron-donating effect of phenolic hydroxyl groups makes it possible to metallate the 3-

position of a protected catechol with n-butyl lithium.134 This can then be alkylated with 

alkyl halides, allowing the addition of new functionality to the compound, even in the 

harder to access 3 position. 3-( 4-Methoxycarbonyl)butyl-1,2-benzenedicarbonitrile (146) 

was synthesized taking advantage ofthis point (Figure 27). 

While only being recently exploited in the synthesis of phthalonitriles, the 

palladium-catalyzed cyanation of aryl triflates is a highly advantageous method for 

preparing this class of compounds. The ready availability of catechols, including 

naturally occurring and biologically important compounds, greatly increases the potential 
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Figure 25. Phthalonitriles prepared from aryl triflates. a) Tf20, Et3N, CH2Ch, -20 °C, 72-
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ofthis methodology. Dopa or 3-hydroxytyrosine, whose L-isomer is the biological 

precursor of catecholamines including dopamine and is used as an anti-Parkinsonian,82 

has been protected and transformed into the corresponding dinitrile (130). 134 In addition 

to their availability, catechols are easily converted to the corresponding triflates.190 

Despite the difficulties with the catalytic system, this reaction would appear to have an 

important future in phthalonitrile synthesis. In addition, other reactions involving aryl 

triflates, such as those mentioned above, may provide a method for adding other new and 

important functional groups to the molecule through the catechol moiety of 4,5-

dibromocatechol (77) while using the Rosenmund-von Braun reaction to add the dinitrile 

via the bromides. Overall, this synthetic route represents an important alternative to the 

Rosenmund-von Braun reaction. The mild reaction conditions involved in forming the 

aryl triflate and the subsequent transformation to the dinitrile tolerates numerous 

functional groups, which makes this method extremely useful for preparing substituted 

phthalonitriles. Several of the disadvantages of the Rosenmund-von Braun reaction, in 

particular the product of copper phthalocyanine as a byproduct is avoided while yields for 

this method are generally significantly better. 

D) Diels Aider and other cycloaddition reactions 

A seemingly obvious method of forming phthalonitriles, naphthalonitriles and 

other higher order aromatic ortho dinitriles is via Diels Aider and other cycloaddition 

reactions. While not extensively used for this goal, Diels Aider reactions have numerous 

advantages that would be beneficial for the synthesis of phthalonitriles. They are well 

suited for the synthesis of multiply substituted six-membered rings such as phthalonitriles 
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and the versatility and generality of these reactions make it possible to place a variety of 

substituents onto the molecule in a controlled and predictable fashion. Whether induced 

thermally or photochemically, the W oodard-Hoffman rules can be used to predict the 

nature and stereochemistry of the relevant products.203 These 4+2 cycloadditions 

involving a diene and a dienophile have been shown to proceed almost exclusively via a 

concerted mechanistic pathway with the simultaneous formation of both new a bonds. 

However, both a diradical and diionic mechanism can not be ruled out in some very 

specific cases. S2,204,20S Overall, the reaction can be understood by orbital symmetry 

principles, the three most popular theories being the Frontier Orbital Method,206 the 

Mobius-Hückel method81 and the correlation diagram method.203 

While nearly all conjugated dienes undergo cycloaddition reactions, ethylene and 

simple olefins make poor dienophiles. This is overcome by adding electron-withdrawing 

functional groups to the molecule, which activate the dienophile by drawing electron 

density away from the reacting carbon centers. The most important of these in terms of 

phthalonitriles is clearly CN. By far the most popular dienophile used in the synthesis of 

phthalonitriles is fumaronitrile (NCCH=CHCN) (151 ). Following cycloaddition, the 

resulting six membered rings bear the desired 1,2-dinitrile functionality needed for 

phthalocyanine synthesis. 

Cycloaddition reactions have not been extensively utilized in the synthesis of 

phthalonitriles. However, Diels Aider reactions have been used to prepare phthalonitriles 

with important functionality in novel positions on the molecule. For instance, 3,6-

dialkylated phthalonitriles (153) have been successfully prepared using such 

cycloaddition reactions.201
-
209 Fwnaronitrile (151) was used as the dienophile while the 
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dienes were 2,5-dialkylthiophene-l, 1-dioxides (150). These starting materials were 

prepared by dialkylation ofthiophene (147) via its dilithiated derivative (148) and 

subsequent oxidation (Figure 28). While the oxidation of the dialkylated thiophene (149) 

to the sulphones (150) proved problematic, this was not insurmountable with conditions 

varying depending on the length of the alkyl chains and thus on the steric hindrance in the 

molecule.209 Cycloaddition using fumaronitrile (151) was followed by in situ extrusion 

of sulphur dioxide and dehydrogenation to give the corresponding 3,6-

dialkylphthalonitrile (153). Alkyl chain lengths ranging from methyl to octadecyl have 

been affixed to phthalonitriles in the 3,6-positions using this procedure.201
-
209 In addition, 

terminal alkenes, phenyl, bis orthoesters and alkoxycarbonyl groups are permitted.207 

Attempts to carry out the reaction using dialkylated furans instead of the sulphones 

proved more problematic, with difficulties encountered in both the cycloaddition and in 

the dehydration of the isolated oxygenated adduct 207 However, both 3,6-bis( 6-

hydroxyhexyl)- and 3-hydroxyalkyl-6-methylphthalonitriles (157) have been synthesized 

starting from furan and 2-methylfuran (154) respectively (Figure 29).210 The alkylation 

reactions in these cases were very slow, with conversion to the desired product being 

only 50% after several days. Dehydtation of the isolated oxygenated adduct was done 

using lithium bis(trimethylsilyl)amide (175) in both cases. Yields starting from furans 

were low, being around 20-30%. 

Despite the difficulties encountered above, substituted furans have been used 

successfully as dienes in the synthesis ofphthalonitriles. For instance, both 3-heptyl- and 

4-pentylphthalonitrile were prepared via the Diels Aider reaction of fumaronitrile (151) 

and the appropriately substituted furan.211 Dehydration was again accomplished using 
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lithium bis(trimethylsilyl)amide (175) at -40°C. The reaction of furfural 

dimethylhydrazone and fumaronitrile leads to 2,3-dicyanobenz.aldehyde with dehydration 

induced using diphosphorus pentoxide in this case.212 Using a somewhat similar 

protocol, a series oftetrasubstituted phthalonitriles have also been synthesized in a 

cycloaddition reaction (Figure 30). In this case, tetrasubstituted cyclopentadienones 

(158) were reacted with chloromaleonitrile (159).213 This reaction involves the extrusion 

ofcarbon monoxide and the loss ofhydrogen chloride to give the final product. 3,5-

Dialkyl-4,5-diphenyl substituted phthalonitriles (161) were obtained along with 

tetraphenylphthalonitrile and 7, 10-diphenyl- and 7, 1 O-dimethyl-8,9-

fluoranthenedicarbonitrile. Interestingly, tetrachlorocyclopentdienone acetal (162) was 

quite unreactive under the same conditions and unexpectedly gave 3,4,5-trichloro-6-

alkoxycarbonylphthalonitrile (165) via the loss ofHCl and CH3Cl (Figure 30). 

With its ability to form six membered rings and to extend conjugation, Diels 

Aider reactions have been extensively used in preparing dinitriles ofhigher order 

aromatics, in particular 2,3-naphthalenedicarbonitriles (naphthalonitriles) (9). While 

isobenzofurans have been used, for instance, in the synthesis of l,4-diphenyl-2,3-

naphthalenedicarbonitrile,214 such furans are not the most popular dienes in the synthesis 

ofnaphthalonitriles directly. Furan and substituted furans are more highly used in the 

preparation of substituted 2,3-dibromonaphthalenes (98) via the 1,4-epoxy derivative 

(97) (Figure 22).173
•
175.215 Zinc and titanium tetrachloride is used to invoke dehydration. 

Subsequently, the dinitrile is formed by the Rosenmund-von Braun reaction. Note that in 

some cases, the 1,4-epoxy derivative is not dehydrated, allowing for the synthesis of 

dienophilic phthalocyanine precursors such as 6, 7-dicyano-1,4-dihydro-5,8-dialkoxy-l ,4-

318 



Cl 
0 + r-==< 

NC CN 

158 159 

Cl 

C~OC~ Cl 
+ r-==< C :::-- OCH3 NC CN 

Cl 

162 159 

-HCI 

160 

c -HCI 
~ • 

163 

c 

CN 

CN 

161 

164 

1-CH3CI 

Cl 

C~CN 
C~CN 

C02CH3 

165 

Figure 30. Synthesis oftetrasubstituted phthalonitriles using Diels Aider chemistry.213 R 

319 



diepoxynaphthalenes. 178 These compounds were introduced into phthalocyanines, 

hemiporphyrazines and other phthalocyanine derivatives and the resulting macrocycles 

were used to synthesize oligomeric ladders by repetitive Diels-Alder reactions. 55•56•177·178· 

In Diels Aider reactions involving 1,2,4,5-tetrabromobenzene, the dienophile is formed in 

situ using n-butyllithium. This results in the formation of a dehydrobenzene or benzyne, 

a powerful dienophile that is trapped by the furan derivative in a Diels Aider reaction. A 

number of highly substituted naphthalonitriles have been prepared using this reaction 

pathway. These include 1,4- and 5,8-dialkylated 2,3-naphthalenedicarbonitriles (99),173-

175.215-217 synthesized using substituted 1,2,4,5-tetrabromobenzenes and substituted furans 

respectively. Additionally, 6,7-dialkoxynaphthalonitriles have been formed from l,2-

dibromo-4,5-dialkoxybenzene174 6,7-Dialkoxynaphthalonitriles (176) have also been 

synthesized using an elaborate scheme starting from catechol (Figure 31 ). The in situ 

generation of the appropriate dialkoxy-substituted isobenzofuran (173), followed by 

reaction with fumaronitrile (151) and subsequent dehydration gives the coveted 

dialkoxylated product. 174 

An important source of dienes for the synthesis of naphthalonitriles is 1,2-

bis( dibromomethyl)benzenes (177b-192b). Treatrnent ofthese compounds with sodium 

iodide in DMF yields l,2-bis(bromomethylene)cyclohexa-3,5-dienes (177c-192c) in situ, 

which then reacts in the presence of a dienophile in the manner of a Diels Aider 

cycloaddition reaction.218 As such, generation of l,2-bis(bromomethylene)cyclohexa-

3,5-dienes in the presence offumaronitrile (151) leads to the correspond.ing substituted 

2,3-naphthalenedicarbonitriles (177e-192e) in one step (Figure 32). In addition to the 

synthesis ofunsubstituted 2,3-naphthalenedicarbonitrile,74.216.219-222 a number of 
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6, 7-dialkoxy-2,3-naphthalenedicarbonitrile. 174 R=(CH2)sCH3 

321 



R1XXc~ NBS RnCHBr2 Nal RnCHBr .. .. 
hv DMF ~ ~ R2 ~ CH3 R2 ~ CHBr2 R2 CHBr 

177a-192a 177b-192b 177c-192c 

rlc H Br R CN 
NC R CN -2 HBr 

151 .. 
CN 

CN 

H Br 

177d-192d 177e-192e 

RI R2 RI R2 

177 H H 185 CN H 

178 t-butyl H 186 NHC(O)CH3 H 

179 OH H 187 Cl H 

180 OCH3 H 188 Br H 

181 OCJI13 H 189 C10H21 C10H21 

182 OC(O)CJ!s H 190 CuHn CuHn 

183 COOH H 191 Cl Cl 

184 N02 H 192 Br Br 
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substituted naphthalonitriles have been prepared using this methodology. 

Bis( dibromomethyl)benzenes have been primarily synthesized by free radical 

bromination of substituted 1,2-dimethylbenzenes. Functional groups such as alkyl, 176.218 

carboxylic acids,223 halogen,216.218 ni1ro, cyano,218 amides and ethers216.221 can be present 

during this free radical reaction and the ensuing cycloaddition. Amino and hydroxyl 

groups, on the other hand, must be protected as the corresponding acetylamine221 or 

benzoyl ester.174 2,3-Dicyanoanthracene has also been prepared via the reaction of 

fumaroni1rile with the corresponding bis( dibromomethyl)naphthalene. 74 Note that 

te1rabromination of 3-substituted I ,2-dimethylbenzenes is sometimes problematic. 

However, the corresponding 2-(bromomethyl)-3-( dibromomethyl)benzenes can be used 

as diene sources using chlorofumaroni1rile (159) as the dienophile.174 Finally, l,4-

dialkyl-2,3-naphthalenedicarboni1riles (198) are obtainable using a slight modification of 

this general protocol (Figure 33). It is possible to brominate 1,2-dialkylbenzenes (194) 

using free radical conditions at the benzyl position. Treatment of these a,cx' -

dibrominated compounds (195) with Zn in THF led to in situ generation of the diene 

(196), which reacted with fumaroni1rile (151) to give l,4-dialkyl-2,3-dicyanotetralins 

(197). Aromatization to the desired l,4-dialkylnaphthaloni1rile (198) is then 

accomplished by a bromination/elimination reaction sequence.176 

Hetero Diels Aider reactions involving 4,5-dicyanopyridazine104 (199) provide a 

straightforward complementary route to substituted phthaloni1riles. The pyridazine 

system behaves as an excellent azadiene and displays a remarkable reactivity with 

dienophiles, even unactivated ones.224-226 The 4+2 cycloaddition reactions of 4,5-

dicyanopyridazine with alkynes and enamines (200) are followed by nitrogen extrusion 
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or sequential loss ofnitrogen and amine to give the desired dinitriles (202) (Figure 34).227 

Alkyl, amine, silyl, phenyl and carboxy substituents have been successfully incorporated 

into the final phthalonitriles. Increasingly forcing conditions are required on going from 

the more reactive enamines to the less reactive acetylenes. Cyclic enamines give 

phthalonitriles bearing saturated ring systems including 5,6-dicyano-2,3-dihydroindene, 

2,3-dicyano .. 5,6, 7 ,8-tetrahydronaphthalene and 2,3-dicyano-6, 7 ,8,9-

tetrahydrobenzocycloheptane.226 Using 1,2-diphenyl- or 1,2,3-triphenylcyclopropene 

(203,204) as the diene affords the corresponding 1,6-diphenyl- and l,6,7-triphenyl-3,4-

dicyanocycloheptatriene (207,208) (Figure 35)226.229 and these compounds have recently 

been used to prepare novel seven-membered carbon ring-fused phthalocyanine 

analogs.229 Cyclopropenone, on the other band, affords a mixture of bicyclic products.226 

A potentially interesting method of preparing naphthalonitriles and other acene 

dinitriles is the Bergman cycloaromatiz.ation reaction, especially as described by Bowles 

and Anthony as it provides 2,3-dibrominated products.230 However, this interesting 

possibility for the synthesis of dinitriles has not been investigated to date. Another 

interesting series ofhigher order aromatic compound, the iptycenes,231 have been 

prepared bearing dinitriles using Diels Aider chemistry.220.232~234 Initial preparation of the 

iptycene involves cycloaddition of a diene such as quinone (210) to an appropriate 

aromatic dienophile. The resulting quinone can then be halogenated and transformed into 

the corresponding dinitrile using conditions similar to those reported above for 2,3-

dicyano-1,4-dihydroxyanthracene (Figure 36).182·183.234 In addition to the few literature 

examples, a large number of other iptycenes have been prepared that could be 

transformed into dinitriles as useful synthons for triptycene synthesis generally involve 
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aryl dibromides.231 Overall, while naphthalonitriles have been extensively examined and 

their synthesis using Diels Aider cycloaddition reactions have been exploited, higher 

order aromatic systems have not been so highly examined. This is most likely due to the 

greatly decreased stability of the resulting phthalocyanine-based complexes. 

The usefulness of Diels Aider cycloaddition reactions in the synthesis of 

phthalonitriles and phthalonitrile derivatives is self-evident. In addition to the reactions 

examined above, Diels Aider chemistry has been implicated in the synthesis of acetylenic 

phthalonitriles (217) using dicyanoacetylene (215) as the dienophile and cross-conjugated 

dimethylenehexadiynes (214) as dienes (Figure 37).235.236 Diels Aider approaches have 

likewise been turned to in order to prepare 4,5 .. disubstituted phthalic acid derivatives in 

an attempt to avoid the use of the Rosenmund-von Braun reaction during the synthesis of 

4,5-dialkoxyphthalonitriles.90 A series of 4-carboxy-5-aryl-substituted phthalîc acids 

(222) have likewise utilized the Diels Aider reactions of 2,3-dimethyl-1,3-butadiene 

(219) and various cinnamic acid derivatives (218) for their synthesis (Figure 38).15 These 

phthalic acids have been used in the fabrication of phthalocyanine dyes by fusion in 

excess urea in the presence of ammonium molybdate. In a novel synthetic approach, 

Diels Aider reactions have been used to prepare 3,4-dialkyl-1,2-dimethylphthalates, 

which are subsequently transformed to the o-phthalic aldehyde.176 The o-phthalic 

aldehydes can be brominated to the bis( dibromomethyl) compounds artd then reacted 

with fumaronitrile or directly converted into the naphthalonitriles by reacting with 

succinonitrile. Note that the same phthalaldehydes can be synthesized from 1,2-

dialkylbenzene in a reaction scheme involving chloromethylation and oxidation using 

potassium benzeneselenite. 176 In a different pericyclic reaction, photocyclization of cis-
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and trans-1,2-bis(3,4-dicyanophenyl)ethene produced the corresponding 

tetracyanophenanthrenes.237 Finally, substituents have even been added to a pre-existing 

phthalonitrile using Diels Alder reactions. An excellent example is the synthesis of 

polyphenylated phthalonitriles, which have been prepared via the cycloaddition reaction 

of 2,3,4,5-tetraphenylenecyclopentadiene-1-one (230) and 4-phenylethynylphthalonitrile 

(229) (Figure 39).238 With all these examples, it is clear that the versatility of the Diels 

Aider reaction has been extensively profited in order to synthesize phthalonitriles and 

other dinitriles useful in the preparation of phthalocyanines, naphthalocyanines and other 

phthalocyanine derivatives. 

E) Modification of substituted phthalonitriles 

The protocols discussed above describe the major methods used in the addition of 

the ortho dinitrile functionality into phthalonitriles and have been invaluable in attaching 

important functional groups onto these phthalocyanine precursors in distinct locations. 

However, these methods often involve multi-step and sophisticated reaction pathways 

and give poor overall yields. A more simplistic approach to preparing substituted 

phthalonitriles encompasses the modification of pre-existing phthalonitrile molecules. A 

number of substituted phthalonitriles bearing chemically versatile functional groups are 

commercially available. Others can be easily synthesized from inexpensive 

commercially available starting materials using one of the classic methods discussed 

above in good yields and in large quantities. It is truly beyond the scope of this review to 

probe every reaction used to modify phthalonitriles and every substituent that has been 
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added to these important compounds. However, a brief overview of the more important 

and interesting of these reactions is in order and could be extremely useful. 

i) Nucleophilic Aromatic Substitution 

Far and away the most highly used reactions employed in the modification of 

substituted phthalonitriles are nucleophilic aromatic substitution reactions. Wbile the 

high electron density of the aromatic system attracts positive species and tends to favor 

electrophilic substitution reactions, nucleophilic aromatic substitution reactions are 

successful when appropriate leaving groups are present in the molecule. In the case of 

phthalonitriles, the molecule is particularly susceptible to nucleophilic attack due to the 

electron-withdrawing capability of the dinitrile functionality. These reactions are known 

to proceed almost exclusively via three basic mechanism:81.239.24o 1) an SNAr mechanism, 

which passes via a tetrahedral intermediate containing a delocalized negative charge that 

is stabilized by electron withdrawing groups such as nitriles, 2) an SNl mechanism 

where, in a two step reaction, the leaving group (almost exclusively Na from a diazonium 

sait) departs, giving an aryl cation as an intermediate, which then reacts with the 

nucleophile, 3) a benzyne mechanism that involves a strong base that induces the loss of 

the leaving group and production of the highly reactive benzyne intermediate. Ail three 

of these mechanisms have been employed in the production of substituted and modified 

phthalonitriles. Of course, a benzyne intermediate as a diene was described above in the 

preparation of naphthalonitriles from 1,2,4,5-tetrabromobenzenes. 173
-
175.215 Furthermore, 

the Rosenmund-von Braun reaction can be seen as nothing more than a transition metal-

assisted nucleophilic substition of halide by cyanide and it has been proposed that this 
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reaction may proceed by a tetrahedral intermediate (see Figure 15). Numerous 

nucleophiles and leaving groups have been utilized in the general reaction pathway 

towards substituted phthalonitrile synthesis. Below is a brief description of the use of 

nucleophilic aromatic substitution reactions for the synthesis of substituted phthalonitriles 

in terms of the leaving group and nucleophile used. 

a) Nitro group as leaving group 

N02 is a surprising good leaving group for nucleophilic aromatic substitution 

reactions. This is despite the fact that N02 is generally not lost in aliphatic substitution 

reactions and that halogens has been shown to act preferentially as a leaving group in 

certain nucleophilic aromatic substitution reactions involving both N02 and Cl such as in 

the synthesis of pi cric acid. Overall, the approxima.te order of Ieaving group ability is: F 

> N02 > OTs > SOPh > Cl, Br, 1 > NJ > NR3 + > OAr, OR, SR, NH2. 81
,2

41 However, this 

order greatly depends on the nature of the nucleophile employed during the reaction. The 

explanation for fluoro and nitro being such good leaving groups in nucleophilic aromatic 

substitution reactions lies in the mechanism involved. Under the SNAr mechanism, the 

rate determining initial step involves formation of a tetrahedral intermediate and its 

formation is promoted by leaving groups having strong -/ effects such as F and N02. 81 

The popularity of the N02 leaving group in terms of the preparation of monosubstituted 

phthalonitriles is directly linked to the commercial availability ofboth 4- and 3-

nitrophthalonitrile ( 42,235) and/or their facile synthesis via nitration of phthalimide and 

subsequent conversion to the phthalonitrile (Figure 11).54.93 Furthermore, other potential 
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leaving groups such as halogens are generally prepared from the nitro compound via a 

diazonium sait (253). 

a-1) Alcohols as nucleophiles 

An exceptional amount of work has been carried out using the N(h group ofboth 

4- and 3-nitrophthalonitrile (42,235) as the leaving group and various alcohols as the 

nucleophile. The resulting aryl ethers are readily synthesized, with the reaction generally 

being carried out in a dry polar aprotic solvent such as DMSO or DMF using sodium or 

potassium carbonate as a base. Frequently, the dry potassium carbonate is added 

portionwise over time. Other solvents that have been used include dioxane, N-methyl-2-

pyrrolidone and N,N-dimethylacetamide. The use of aqueous DMF has been reported as 

well, with these conditions allowing the reaction to be carried out under homogeneous 

conditions. 105 It has been observed that the kinetics of the nucleophilic substitution of the 

nitro group of 3· and 4-nitrophthalonitriles with arylhydroxy groups are dependent on the 

water content when aqueous DMF is employed as the solvent 242.243 However, more 

often than not, such protogenic conditions fail to give an.y reaction except for highly 

activated cases. In the meanwhile, it has been observed that using lithium hydroxide as 

the base instead of potassium carbonate can be a useful modification to reported 

procedures in some instances. 54 Alcohols of weaker nucleophilicity sometimes call for 

slightly modified conditions including higher reaction temperatures, more polar solvents 

and stronger bases. For instance, sodium 2,2,2-trifluoroethoxide is added to 4-

nitrophthalonitrile in anhydrous hexamethylphosphortriamide (HMP A) while other 

fluorinated alcohols were added using NaOH, KOH or 
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tris(diethylamino)phosphazomethane as the base.244 A modified procedure has also been 

used to attach phthalocyanine precursors to a polymer support (Figure 40). 57-59 The 

nucleophilic aromatic substitution reaction was induced using 25% KOH and Adogen 

464 in nitrobenzene in a modification of Fréchet's three-phase reaction and resulted in 

attachment of the phthalonitrile to the polymer support via a long alkyl spacer chain 

(233).57.58 These polymer bound precursors can also be prepared from polymer-bound 

trityl chloride and (6' -hydroxyalkoxy)phthalonitrile (232) and other terminal alcohols 

(Figure 40), which are themselves synthesized by the reaction of 4-nitrophthalonitrile 

(42) with monoprotected dialcohols such as the monotetrahydropyranyl ether of 1,6-

hexanediol.57"59 Interestingly, the first method with the nucleophilic displacement ofN02 

using phase transfer conditions gave 0.26 mmol of phthalonitrile per gram of polymer 

while the second method gave 0.53 mmol per gram.58 Such polymer bound 

phthalocyanine precursors have been used in the preparation of 3: l unsymmetrically 

substituted macrocycles. 

Both aliphatic48·49·54.245·250 and phenolic alcohols51•54·94,223,24S,24B,2S0·261 (237) have 

added to phthalonitriles successfully via nucleophilic displacement of the nitro groups of 

both 3- and 4-nitrophthalonitrile. In addition, poly(oxyethylene)ethers,261"263 poly(aryl 

ether) dendrimers (234a·c) (Figure 41)264-269 and crown ethers270.271 have been introduced 

into phthalonitriles via this method. Other interesting functional groups attached to 

phthalonitriles via an ether bond include cyclic phosphazenes, 135 pentose and hexose 

rings,272 alkylsilyloxy groups273 and l,3-bis-(dimethylamino-2-propyloxy) substituents.274 

The free 2,3- and 3,4-dicyanophenols are available as well, by treating the corresponding 
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Figure 40. Synthesis of polymer-bound phthalonitrile. a) 25% KOH, Adogen 464, 

nitrobenzene, 60 °C, 22 hr; b) KOH, DMF, 100 °C, 15 hr; c) 4 N HCI; d) polymer bound-

TrCl, pyridine, CH2Ch, DMAP.58 
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nitrophthalonitrile with sodium nitrite in DMSO or NMP in the presence of base in a 

reaction that proceeds via the nitrous acid ester.275
"
277 

The nitro group of 6-nitro-2,3-dicyanonaphthalenedicarbonitrile (240) has also 

been substituted with sterically hindered aryl alcohols using K2C03 and DMF.258 Using a 

halogen-leaving group, 6-fluoro-2,3-dicyanonaphthalenedicarbonitrile gave better yields 

of the desired product in some cases although more sterically hindered phenols gave no 

reaction.258 Note that the more steric hindered 2,6-di-t-butylphenol (238) did not react via 

nucleophilic addition with 6-nitro-2,3-dicyanonaphthalenedicarbonitrile (240) either. 

Instead, an interesting oxidative coupling was observed to give 5-(3 ',5' -di-t-butyl-4' -

hydroxyphenyl)-6-nitro-2,3-naphthalenedicarbonitrile (241) (Figure 42). In a somewhat 

similar reaction with 2,6-di-t-butylphenol (238), the nitro groups of both 3- and 4-

nitrophthalonitrile (42,235) were replaced by a 3 ',5' -di-t-butyl-4' -hydroxyphenyl group 

(239) with the anion of2,6-di-t-butylphenol acting as an effective carbon nucleophile. 

The ability of the anion of 2,6-di-t-butylphenol to actas a carbon nucleophile has 

precedents, with tetrachlorophthalonitrile reacting to give a similar monoaddition 

product. 21s-219 

Modification of the alkyl and aryl ether substituents added to the phthalonitriles 

via the nucleophilic displacement of the nitro group remains a possible strategy for 

adding novel functional groups to the molecule as well. A previous mentioned example 

is with polymer-bound phthalonitrile, where (6' -hydroxyalkoxy)phthalonitriles (232) are 

used to attached the phthalocyanine precursor to a polymer support (Figure 40). 57•59 In a 

like manner, 4-(3,4-dicyanophenoxy)benzoic acid has been prepared and attached to 

modified silica by the reaction of its acid chloride with free amine groups on the modified 
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Figure 42. Nucleophilic aromatic substitution reactions of sterically hindered phenols 
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silica.60 ln another instance, 2,3-dicyanophenol was synthesized from 3-

nitrophthalonitrile and this was in tum reacted with (chloromethyl)trimethylsilane in 

DMF in the presence ofK2C03 to give 3-(trimethylsilylmethoxy)phthalonitrile.277 The 

vinyl group in 4-(o-allylphenoxy)phthalonitrile has been applied to the addition of 

polymethylsiloxane to the phthalonitrile molecule.280 And finally, 3-

propargyloxyphthalonitrile derivatives (243) prepared by this methodology have been 

shown to undergo cyclization reactions to the corresponding dicyanobenzopyran (244) 

along with some dicyanobenzofuran (245) (Figure 43).281
,2

82 

In addition to the synthesis of phthalonitriles substituted through ether bonds, 

these nucleophilic aromatic substitution reactions have been instrumental in the 

preparation of polynuclear phthalonitriles. Simply by using polyalcohols, this reaction 

readily leads to bis- and tetranuclear phthalonitriles that are extremely useful in preparing 

both polynuclear phthalocyanines and phthalocyanines with controlled geometries 

(Figure 44). Binuclear phthalonitriles have been prepared using catechols283 and simple 

alkyl diols,283'287 while a novel optically active bisphthalonitrile has been synthesized 

using (S)-(-)- or (R)-(+)-2,2'-dihydroxy-l,l '-binaphthyl as the alcohol.288,2
89 Alkyl-, 

fluoroalkyl-, oxy-, alkylenedioxy- and arylenedioxy-bridged bisphthalonitriles59,2St,286,290. 

292 (246a-h) along with phthalonitrile end-capped poly(ether sulphone)s293 and multiple 

aromatic ethers294 (246i-j) have implemented similar reactions in their formation. 

Similarly, tetranuclear phthalonitriles based on pentaerythritol nuclei can be synthesized 

and provide access to capped295 and tetranuclear phthalocyanines. 2% 4-

Aminophtïnoxyphthalonitriles, formed by a nucleophilic aromatic substitution reaction, 

has been reacted with 4,4 '-bismaleimidodiphenylmethane to give a dimeric species. 297 
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Figure 43. Cyclization of3-propargyloxyphthalonitrile derivatives to the corresponding 
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Numerous other bridged and polymer linked phthalonitriles have been prepared and their 

use in the preparation of phthalocyanine-containing polymers bas been recently 

reviewed.36.37 

a-2) Thiol as nucleophiles 

Thiols are also effective nucleophiles in nucleophilic aromatic substitution 

reactions and numerous monosubstituted phthalonitriles have been prepared via the 

nucleophilic substitution reaction of nitrophtalonitriles with thiols (Figure 45). Simple 

and long chain thiols298"300 and thiophenols301 (247) have been used as nucleophiles. 

Among more interesting functional groups added via a thiol bondis cysteamine,302 N,N-

dialkyldithiocarbamates303 and triethyleneoxysulphanyl groups.304 Selenophenols yield 

the corresponding selenium-substituted phenyl phthalonitrile ethers in good yields.251 

lmportantly, mercaptophthalonitrile can be prepared by the decomposition ofN,N-

dialkyldithiocarbamates and this free thiol functional group can be alkylated or 

alkoxylated with alkyl or alkoxy halides.303 Phthalonitriles equipped with alkyl- and 

arylsulphonyl groups have been prepared by oxidation of the thioethers (249) using m-

chloroperbenzoic acid (MCPBA) (Figure 45).299"301 Note that carrying this oxidation out 

at lower temperatures gave access to the arylsulphinyl compounds (250) as well.301 

Finally, thioether-linked bisphthalonitriles can be synthesized by nucleophilic 

substitution ofN02•
251 The basic reaction proceeds via the nitrous acid ester275 and 

involves treating the nitrophthalonitrile with sodium nitrite in DMSO followed by 

reaction with sodium monosulphide. It was very important to adhere to completely 

anhydrous conditions in this reaction to avoid the bisphthalonitrile ether from becoming 
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Figure 45. Synthesis of phthalonitriles bearingp-tolyl ,p-tolylsulphinyl, andp-

tolylsulphonyl groups. a) K2C03, DMSO, rt, 12 h, 90%; b) MCPBA, CH2Cli, 0 °C tort, 

30 min, 96%; c) MCPBA, CH2Ch, ·78 °C, 94%.301 
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the major product. Using the same basic protocol and sodium selenide gives the 

bisphthalonitrile selenoether. 

a-3) Amine as nucleophiles 

Despite the fact that activated nitro aryl compounds such as 3- and 4-

nitropbthalonitrile ate known to react quite well with ammonia and primary and 

secondary amines to give the corresponding aryl amines, little attention has been given to 

amine nucleophiles for the synthesis of monosubstituted phthalonitriles from 

nitrophthalonitriles. Perbaps this is because 3- and 4-aminophthalonitriles are easily 

synthesized from the nitro compounds and can readily be transformed into phthalonitriles 

bearing amine and amide substituents. Among compounds mentioned in the literature 

that have been prepared using amine nucleophile are 4-(phenothiazin-l O-

yl)phthalonitrile305 (251c) and a series of heterylphthalonitriles where heterocyclic N-

nucleophiles were used (Figure 46).305.306 These include benzotriazole (251a), 3,5-

diphenyl-1,2,4-triazole (2Slb), phthalazine (251d) and 4-quinazolinone (251e). As with 

both alcohol and thio nucleophiles, amine-linked bisphthalonitriles have been formed 

using amine nucleophiles. One particular example is butane-1,4,7-tri-p-tolylsulphonyl-

l,4, 7-triamine. 307 

b) Nt as the Leaving Group 

Both 3- and 4-nitrophthalonitrile (42,235) are readily hydrogenated to the 

corresponding aminophthalonitrile (252a,b) using varions catalysts, primarily 10% 

palladium/carbon.89.93.237.233 This reduction Càn also be accomplished using iron metal or 
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Figure 46. Examples of phthalonitriles substituted with heterocycle substituents 

synthesized using amine nucleophiles.305,306 
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stannous chloride in concentrated HCI/MeOH.214
,23

8 The resulting amino group can be 

protected and used to synthesize amino-substituted phthalocyanines.214 It can also be 

used to add other functional groups to the molecule such as in 4-( octanoylamino )- and 4-

[N-(methyloctanoyl)amino ]phthalonitrile.308 Nevertheless, the primary application of 3-

and 4-aminophthalonitrile is to form substituted derivatives via diazonium salts (2S3a,b ). 

Diazotiz.ation of these compounds is accomplished using traditional conditions by 

treating the aminophthalonitrile (252a,b) with sodium nitrite in acidic media. 283 Note 

that 3-aminophthalonitrile requires slightly more forcing conditions, probably a result of 

increased steric hindrance. 

The diazonium group is an excellent leaving group and can be replaced by a large 

number of possible substituents. Sorne of these reactions are indeed nucleophilic 

aromatic substitution reactions and proceed via the dissociative SNI mechanism. In fact, 

the diazonium group is almost the only leaving group for aryl SNI reactions. The only 

other example is aryl triflates where bulky groups occupy both ortho positions.3® 

Reaction via the diazonium sait have been used to add interesting groups to the 

phthalonitrile molecule, one of which is ferrocene.310 A primary reaction of diazonium 

salts in preparing substituted phthalonitriles is in the addition of iodide to the molecule 

(228a,b) (Figure 47). This is simply accomplished by reacting the diazonium sait with 

potassium iodide in water.237.233 Similarly, 5-iodonaphthalonitrile has been prepared via 

the diazonium sait of 5-aminonaphthalonitrile.237 Aryl iodides are versatile and are 

useful in reactions that add a number of different functional groups to phthalonitriles, 

especially via palladium-catalyzed reaction. Also of importance is the preparation of 3-
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and 4-chlorosulphonylphthalonitriles (317),311 useful precursors in the synthesis of 

sulphonated phthalocyanines (see below).65.312 

The analogous monochlorinated and monobrominated phthalonitriles can also 

prepared from the diazonium sait using cuprous chloride or cuprous bromide via the 

Sandmeyer reaction.92 However, the Sandmeyer reaction does not proceed via 

nucleophilic aromatic substitution but via a free radical mechanism that is initiated by 

reduction of diazonium sait by the cuprous ion.81 This is followed by halogen abstraction 

from the resulting cupric halide, resulting in the desired aryl halide and regeneration of 

the cuprous ion. Overall, however, the reaction conditions are very similar to the 

preparation of3- and 4-iodophthalonitrile (228a,b). For instance, 3-bromophthalonitrile 

is prepared via mixing 3-aminophthalonitrile with 48% hydrobromic acid and reacting it 

with a solution of sodium nitrite. The resulting diazonium sait is then treated with freshly 

prepared anhydrous cupric bromide.92 Using a similar protocol, 5-chloro- and 5-bromo-

2,3-naphthalenedicarbonitriles (102) have been synthesized from corresponding amino 

compound. 214 The Sandmeyer reaction is also useful in adding cyanide to aromatic 

compounds and its use has been described above in the preparation of 1,2-

naphthalenedicarbonitrile and 3,5-di-t-butylphthalonitrile.179
"
181 Another example is the 

synthesis of 4-methylphthalonitrile, which can be prepared from p-amino-m-toluonitrile 

using the Sandmeyer reaction. 313 

e) Halogen as the Leaving Group 

While the commercial availability of 3- and 4-nitrophthalonitrile (42,235) make 

them the precursor of choice for the synthesis of monosubstituted phthalonitriles, similar 
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clinitro compounds are not so readily available. In this case, dihalogenated precµrsors 

such as 4,5-dichlorophthalonitrile (23) are easily prepared (Figure 7) and as such, 

halogen-leaving groups have been extensively used in the preparation of disubstituted 

phthalonitriles. In addition, halogenated precursors have been used in some cases for the 

synthesis of other substituted phthalonitriles and phthalonitrile derivatives. Reaction 

conditions are quite similar to those used with nitro leaving groups, though solvents such 

as THF and dimethylacetamide are also common. Both alcohols314-316 and amines317"319 

have been used as nucleophiles in these halogen substitution reactions. However, unlike 

in the case of nitro leaving groups, alcohols are not as extensively used as nucleophiles. 

The majority of the work has been accomplished using thiols, in part because they are 

superior nucleophiles compared to alcohols and amines and give higher yields of the 

desired products. 

Simple mercaptophthalonitrile, available from both nitrophthalonitrile303 and its 

diazonium salt,311 can also be prepared from the 3- and 4-iodophthalonitrile (228a,b) 

using thiourea as a nucleophile in the presence of a nickel(O) catalyst. 320 Simple 

thiols299.314.JIS.3il·323 and thiophenol?.316 have been added to 4,5-dichloro- (13) and 4,5-

diiodophthalonitrile (38). Steric effects do influence this reaction to some extent as the 

bulky 2-(2-pyridylmethylamino )benzenethiol and 2-(2-pyridylethylamino )benzenethiol 

lead only to substitution of one of the two chloro groups of 4,5-dichlorophthalonitrile 

(Figure 48).324 Tbioethers synthesi.zed in this manner can be oxidized to the 

corresponding alkyl- and arylsulphonyl groups using MCPBA- or hydrogen 

peroxide.299·323 Disubstituted phthalonitriles containing polyethers such as 1-mercapto-

4,7,10-trioxaundecane304 (257) (Figure 49) and 3,6-dioxa-l-decylthiol321 have also been 

352 



+ 

23 

(XSH 

lyÜ 
R 

254 255 

Figure 48. Steric effects in the nucleophilic displacement of chloro groups in 4,5-
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synthesized. In the second example, the thiol was transfonned to the thiolate ion, with 

the nucleophilic substitution promoted by copper(I) mdde. A similar procedure was used 

with butylmercaptan.321 Among novel monosubstituted phthalonitriles prepared using 

nucleophilic displacement of halogen are phthalonitriles bound to adamantane via ether 

and thioether bonds.314•315 In addition to phthalonitriles, halogenated naphthalonitriles 

can also undergo nucleophilic displacement of their halogen group by various 

nucleophiles. For instance, alkyl thiols and polyether thiols have ~n added to 6, 7-

dibromo-2,3-naphthalenedicarbonitrile using Cu20 to promote the addition of the 

corresponding thiolate ion. 175,215.321 In other cases, the bromides of 6, 7-dibromo-2,3-

naphthalenedicarbonitrile were substituted with 1-dodecanethiol using DBU as the 

base217 and by benzenethiolate, benzeneselenolate and benzenetellurolate ions by simply 

heating in DMF.325 

Phthalonitriles fitted with oxygen-, nitrogen- and sulphur-containing crown 

ethers317.326.327 and dioxa-dithia macrocycle-bridged dimeric phthalonitriles328.329 have 

been prepared by nucleophilic displacement of the cbloro groups of 4,5-

dichlorophthalonitrile (23). In addition, metal chelators have been added to 

phthalonitriles and ultimately phthalocyanines using such nucleophilic substitution 

reactions as well. Examples are based on 2-me:rcaptoethanol330 (Figure 50) and 2-

aminothiophenol.316 lt is definitely worth noting that when the reaction of2-

mercaptoethanol with 4,5-dichlorophthalonitrile (23) was carried out using sodium 

carbonate, both chloro groups were replaced.328.329 However, when potassium or cesium 

carbonate was used as a base, only one of the chloro groups was replaced by 2-

mercaptoethanol while the second was replaced by a hydroxyl group.328 The differing 
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Figure 50. Synthesis of dioxa-dithia- and tetrathia macrocycle-bridged bisphthalonitriles. 

a) 2-mercaptoethanol, K2C03, DMF; b) 2-mercaptoethanol, Na2C03, DMF c) TsCl, 

pyridine; d) K2C03, DMF; e) TsCl, DMF; e) 1,3-dimercaptoacetone, DMF; f) SOC!i, 

DMF; g) 1,3-dimercaptoacetone, DMF or 1,2-dimercaptoethane, Na2C03, DMF. 176
•330 

356 



template effects ofNa+, K+ and Cs+ ions was used to explained tltis outcome. The 

resulting 2-hydroxy-1-mercaptoethanol-phthalonitrile (260) was transformed to its 

tosylate and then readily underwent dimeriz.ation to give tetracyanodibenzo-[1,7-

dithia(12 crown-4)] (261).328 The completely substituted l,2-bis(hydroxyethylmercapto)-

4,5-dicyanobenzene (258) could also be made into its tosylate or its chloride.329 Attempts 

to close the ring to the crown ether with 1,3-dimercaptoacetone or 1,2-dimercaptoethane 

failed, leading exclusively to the 1,4,7,10-tetrathia-(12-crown-4)-bridged bisphthalonitrile 

(259). 

In addition to phthalonitriles and naphtha.lonitriles, substituted pyrazine 

dicarbonitriles have been prepared via nucleophilic aromatic substitution reactions using 

chloro leaving groups. In particular, 2,3-dichloro-5,6-dicyanopyrazine (264) is easily 

synthesized in high yields using diaminomaleonitrile (262) as a starting material (Figure 

51 )331.332 and is in fact commercially available. This compound readily reacts with 

alcohol,333 thiol,332 and amino nucleophiles331.334.335 to give the corresponding 

disubstituted 5,6-dicyanopyrazine. Reaction conditions vary, with alcohols added using 

triethylamine, thiols using pyridine in acetone and amines using sodium hydride in 

dioxane. Note that at least in the case of alcohols, the mono-substitution is clearly 

evident in the reaction mixture by TLC and the monosubstituted product can be obtained 

by carrying the reaction out at lower temperature or for shorter times. 333.336 Among the 

more interesting groups added are morpholine (265), thiomorpholine, piperidine and 

pyrrolidine through amine linkages334
•
335 and ethyl-, benzyl-,p-tolyl- and (5-methyl-

1,3,4-thiadiazol-2-yl)sulphonyl groups by thiol linkages.332 Unfortunately, the aromatic 

S-substituents are less useful as they are less stable and tend to decompose during the 
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Figure 51. Synthesis of 2,3-dichloro4,5-dicyanopyrazine and its reaction with various 

nucleophiles.331.334 (R1 = CH2CH3, Ph, CH2Ph; R2 = CH3, OCH2Ph, Cl, Br, N02).331 
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condensation reaction. One final interesting synthesis involves the reaction of 2,3-

dichloro-5,6-dicyanopyrazine (264) with 2-aminopyridines (269).331 This simple reaction 

generates 2,3-dicyanopyrido[l ',2':1,2]imidazo[ 4,5-b ]pyrazine triheterocyclic ring 

systems (270) (Figure 51 ). This heterocyclic compounds are formed under mild 

conditions (dioxane at 20-80 °C). However, these ortho dinitriles have not been 

investigated as precursors to phthalocyanines. Similarly, reactions with amines, 

ethylenediamines (267), propylenediamines and o-phenylenediamines give amine .. 

substituted dicyanopyrazine along with six (268) and seven membered heterocyclic 

substituents. 334 These disubstituted 2,3-dicyanopyrazines were reacted with hydrazine 

hydrate to form nitrogen-rich heterocycles and were not examined as precursors for Pcs. 

While the 4,5-dichlorophthalonitrile (23) is an extremely useful precursor for the 

synthesis of disubstituted phthalonitriles, tetrafluorophthalonitrile (271) is vital in the 

preparation of tetrasubstituted derivatives. Fluoride is far and away the best of the 

halogen leaving groups and is in fact, depending upon the nucleophile, superior to even 

N02 in terms of being a leaving groups for nucleophilic aromatic substitution reactions. 

Moreover, the addition of four strong electron-withdrawing fluorine groups further 

activates the phthalonitrile aromatic system towards nucleophilic attack. As such, 

nitrogen, oxygen, sulphur and phosphorus nucleophiles readily effect nucleophilic 

displacement of fluoride ion from tetrafluorophthalonitrile to give mono-, di- and 

tetrasubstitution products. 

Tetrafluorophthalonitrile is commercially available and can be prepared by the 

reaction of tetrachlorophthalonitrile337 with excess anhydrous potassium fluoride at 200-

250 °C or via the Rosenmund-von Braun cyanodehalogenation of 1,2-
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dibromotetrafluorobenzene.132 This tetrasubstituted compound is particularly susceptible 

to nucleophilic attack at the four position. Dimethylformamide ( dimethylamino ), sodium 

1-naphthaloate, aniline, N•methylaniline and ammonia ail replace fluoride at the 4-

position to give the corresponding trifluoro-monosubstituted phthalonitriles (272a-e) 

(Figure 52).338 This chemistry has been extensively used in a number of Japanese patents 

to form trifluorinated phthalonitriles with amino, alkoxy and thioalkoxy bonded 

substituents at the four position.339-345 Even diethyl malonate has been successfully 

added to the four position simply by using K2C03 in DMF.346 This functional group can 

be hydrolyzed to 2-(3,4-dicyano-2,5,6-trifluorophenyl)acetic acid (274) using 

hydrochloric acid in acetic acid (Figure 53). Interestingly, while the reaction of 

tetrafluorophthalonitrile (271) with lithium chloride in refluxing NMP gives 

tetrachlorophthalonitrile in good yields, the corresponding reaction in refluxing DMF 

yields 3,5,6-trichloro-4-dimethylaminophthalonitrile.338 The same product can be 

obtained by refluxing tetrachlorophthalonitrile in DMF although the reaction is much 

slower, indicating that the overall reaction oftetrafluorophthalonitrile with LiCl in DMF 

proceeds via an initial displacement of fluorine by the dimethylamino group prior to 

chlorine substitution. 

Despite the 4-position being the most susceptible to nucleophilic attack, the other 

fluoride ions can be replaced, with the extent depending on the nature of the nucleophile 

and the molar ratios used. For instance, as was stated above, tetrafluorophthalonitrile 

reacts with an excess of lithium chloride in refluxing NMP to give 

tetrachlorophthalonitrile. 338 However, using a 1 : 1 ratio of reagents leads to a mixture of 

4-chlorotrifluoro and 4,5-dichloro-3,6-difluorophthalonitrile (272t) (Figure 52). Similar 
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Figure 52. Nucleophilic displacement of fluorine atoms in tetrafluorophthalonitrile by 

various nucleophiles.338 
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Figure 53. Synthesis of2-(3,4-dicyano-2,5,6-tritluorophenyl)acetic acid.346 
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observations have also been observed in the reaction oftetrafluorophthalonitrile and 

lithium bromide. In the same fashion, equimolar quantities of sodium benzenethiolate 

and tetrafluorophthalonitrile in methanol give 62% 3,6-difluoro-4,5-

bisphenylthiophthalonitrile (272h) and 8% tetrakisphenylthiophthalonitrile with the rest 

being unreacted starting material (Figure 52). Higher molar quantities of the thiolate 

results in the tetrasubstituted product exclusively. As such, a wide array of mixed 

tetrasubstituted phthalonitriles is possible. Perfluoro-( 4,5-diisopropyl)- (275), perfluoro-

(3,6-diisopropyl)- (276) and perfluoro(3,4,6-triisopropyl)phthalonitriles (277) have been 

prepared by the reaction oftetrafluorophthalonitrile (271) with perfluoropropene in the 

presence of cesium fluoride in acetonitrile at-78 °C (Figure 54). The 4,5-disubstituted 

derivative is obtained in the highest yield.347 4-Monophenoxy- and 4,5-dithiophenoxy-

substituted tluorophthalonitriles bearing sulphonate groups on the phenoxy and 

thiophenoxy benzene rings have presumably been prepared by nucleophilic displacement 

oftluoride ions as well.348.349 Similar compounds substituted with benzene rings 

containing alkyl, alkoxy and ester groups have also been reported.350 Other multiple 

substitution of fluorinated phthalonitriles has been accomplished, with the extent of 

substitution depending on the nucleophile involved.318.319 Finally, a number of 

tetraalkoxyphthalonitriles (278a-e) have been synthesized from tetrafluorophthalonitrile 

(271) by reaction with the corresponding alcohol in DMF using potassium carbonate as 

the base.351.352 Among the alcohols added were 1-hexanol, 2,2,2-tritluoroethanol, 

2,2,3,3,3-pentatluoropropanol and 3,5-di-t-butylphenol (Figure 55). 
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Figure 54. Reaction oftetrafluorophthalonitrile with perfluoropropene in the presence of 
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Figure 55. Synthesis of tetraalkoxyphthalonitriles by the nucleophilic aromatic 

substitution of the fluorine atoms of tetrafluorophthalonitrile.351.352 
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d) N02 and Br as the Leaving Groups 

4-Bromo-5-nitrophthalonitrile (47) has been recently synthesized105 and provides 

an excellent starting material for the preparation of 4,5-disubstituted phthalonitriles 

(Figure 13). Both the bromo and the nitro groups are extremely mobile Ieaving groups in 

SNAr reactions and thus, can be substituted with various nucleophiles. Importantly, these 

leaving groups exhibit different mobilities with the bromo group easier to eliminated. 

This is due to the fact that the nitro group, due to its electron-withdrawing effect, acts as 

an activator of nucleophilic attack on its ortho positions, thus activating the bromine 

carbon atom. Bromine, on the other hand, does not induce this effect. This difference in 

mobility enables the synthesis of asynunetric disubstituted phthalonitriles depending on 

the nucleophile and the conditions used. For instance, 4-bromo-5-nitrophthalonitrile (47) 

readily reacts with various phenols using potassium carbonate as the base under 

homogeneous (aqueous DMF) or heterogeneous (anhydrous DMF) conditions at 90 °C to 

give the 4,5-diphenoxyphthalonitriles (279) (Figure 56).105 However, when the reaction 

temperature is lowered to 30 °C, only the bromide ion is replaced, giving rise to the 4-

phenoxy-5-nitrophthalonitrile derivatives (280). This can th.en be reacted with a different 

phenol at 90 °C to give novel asymmetrically substituted phthalonitriles (281). 

The mobility of the bromide ion is so high that it allows the nucleophilic 

substitution reactions with primary and secondary amines, substituted anilines and 

diamines to be carried out using protogenic solvents such as isopropanol and 

triethylamine as a base.105 Under similar conditions, both 4-nitrophthalonitrile and 4-

bromophthalonitrile give no reaction although reactions do proceed in aprotic solvents 
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Figure 56. Synthesis of novel phthalonitriles from 4-bromo-5-nitrophthalonitrile. 105.354 
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like DMF. Amines such as 3-aminomethyltetrahydrofuran, 4-chloroaniline and 

morpholine have replaced the bromide ion using protogenic solvents while leaving the 

nitro group unchanged. Furthermore, some bisphthalonitriles linked by 4,4 '-diamino-

biphenyl and 2,2 '-diaminodiphenylether have also been prepared. On the other band, 

reactions with 2-(2 '-hydroxyphenyl)phenol, 1-(2-hydroxynaphth-1-yl)naphth-2-ol, 4,5-

dihydroxynaphthalene-2, 7-disulphonic acid (Figure 56) and quinoxaline-2,3-diol under 

both homogeneous and heterogeneous conditions at 90 °C gave the corresponding 

oxygen-containing heterocyclic ortho dinitriles.354 Interestingly, no reports exist using 

the phthalonitriles synthesized using 4-bromo-S-nitrophthalonitrile to prepare 

phthalocyanines. 

ii) Palladium-catalyzed reactions 

Palladium-catalyzed reactions such as the Heck, Stille and Suzuki reactions have 

several features that make them extremely useful and versatile synthetic tools in organic 

chemistry. Palladium offers numerous possibilities for carbon-carbon bond formation 

and the addition of novel functional groups to the molecule. The mild conditions 

generally required for palladium-catalyzed organic synthesis mak:e these methodologies 

extremely valuable in the addition of new functional groups to the molecule as 

palladium-based reactions can tolerate different and diverse functionalities. High 

chemical yields, facile reaction procedures and short synthetic sequences are among the 

many advantages of these important reactions. The accessibility of appropriate starting 

materials and the extreme versatility of these transition metal-assisted reactions also 

make them highly useful in the preparation ofboth substituted phthalonitriles and 
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phthalocyanines and the use of palladium catalysis to this end bas been recently 

reviewed. 354 

a) Heck reaction 

Palladium-catalyzed coupling ofhaloarenes and alkenes was first observed in the 

late 1960's and has come to be known as the Heck reaction.355 This well established 

reaction and other mechanistically related palladium-catalyzed transformations between 

haloarenes and alkene or alkynes are indispensable reactions in the arsenal of synthetic 

organic chemists and have been used in vital steps towards the synthesis of compounds 

such as crinan and morphine.356 The basic protocol tends to involve the reaction of 

terminal alkene or alkyne with an aryl halide (I > Br>> Cl)356 in the presence of a 

palladium catalyst such as (Ph3P),J>d, (Ph3P)iPdCh and Pd(OAc)i. More often than not, 

Cul is used as a co-catalyst and an organic base such as diethyl- or triethylamine is 

added. Mechanistically, this reaction, much like most transition metal-catalyzed 

reactions, involves oxidative addition of the palladium to the aryl halide bond followed 

by transmetalation and a reductive elimination of the palladium to give the desired 

product. 356,357 

In terms of phthalonitrile synthesis, extensive studies have been undertaken in 

order to add terminal alkynes to the molecule. Appropriate halogenated starting materials 

include 3- and 4-iodophthalonitrile (228a,b), 4,5-dichloro- (23) and 4,5-

diiodophthalonitrile (38) and 3,4-dibromophthalonitrile. For an example oftheir use in 

Heck reactions, a series of alkynyl-substituted phthalonitriles (283a~e) have been 

prepared using copper-free palladium(II) catalysis starting from 4,5-diiodophthalonitrile 
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(38) (Figure 57).88.92 More sterically strained terminal alkynes such as 3,3-dimethyl-l-

butyne and t-butyldimethylsilylethyne required more forcing conditions using Cul as a 

co-catalyst. In a similar fashion, 3,4-dibromophthalonitrile has been successfully coupled 

with 3,3-dimethyl-1-butyne using (Ph3P)iPdC12 and Cul in triethylamine/DMF.92 While 

this reaction does not go to completion due to steric effects, leaving some 

monobrominated product, good yields of the desired 3,4-bis(3,3-dimethyl-l-

butynyl)phthalonitrile were obtained. Reactions of terminal alkynes with 4,5-

diiodophthalonitrile (38) can also lead to incomplete coupling when a 1 : 1 ratio of 

phthalonitrile and terminal alkyne is used. 88 Monoprotected acetylenes can be added to 

halogenated phthalonitriles using Heck chemistry and can be used in the synthesis of 

ethynyl-substituted phthalocyanines.92•358 The protecting group can also be removed 

from the phthalonitrile, with, for example, the silyl groups of 4,5-bis(t-

butyldimethylsilylethynyl)phthalonitrile (284f) being removed using 

tetrabutylammonium fluoride (TBAF) to give the unprotected terminal alkynes (285) 

(Figure 57).92 

Long alkyl chains88 have been added to phthalonitriles using this method as the 

alkyne group can be reduced using hydrogen and palladium on carbon (Figure 57). This 

is a very much desirable alternative to other multistep preparations of 4,5-

dialkylphthalonitriles, which utilize the Rosenmund-von Braun reaction.133.359•361 Other 

interesting disubstituted phthalonitriles synthesized using this coupling procedure include 

4,5-bis(ferrocenylethynyl)phthalonitrile362 and 4,5-bis[2-( 4-

nitrophenyl)ethynyl]phthalonitrile.323 In the meanwhile, some novel alkyl-substituted 

phthalonitriles have been prepared via selective coupling of l ,2-dibromo-3,6-diiodo-4,5-
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283a R = n-propyl 

283b R = t-butyl 

283c R = n-butyl 

283d R = n-pentyt 

284e R = n-hexyl 

R 
NC 

NC Pd/C 

R 
283a-e 

283f R= 
TBAF Si(CH3)2C(CH3}3 

H 
NC 

NC 
H 

285 

NC R' 

NCX)CR' 
284a,b 

Figure 57. The use of the Heck reaction in the synthesis of substituted phthalonitriles (R 

= n-hexyl, n-pentyl, n-butyl, n-propyl, t-butyl; R' = n-propyl, t-butyl).88 Note that for R = 

Si(CH3)2C(CH3)3, the Heck reaction utilizes Cul as a co-catalyst.92 
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dimethylbenzene (286) and 1,2-dibromo-3,6-diiodo-4,5-dihexylbenzene (287) with 1-

hexyne and 1-heptyne using (Ph3P)PdCh and Cul as catalysts in triethylamine (Figure 

58). 363 This coupling gave dibromobenzenes substituted with two alkyl chains and two 

alkynyl chains. Following conversion to the phthalonitrile using the Rosenmund von 

Braun reaction, catalytic hydrogenation gave novel mixed tetraalkylphthalonitriles 

(290,291). 

A number of monosubstituted phthalonitriles have been prepared using the same 

methodology, primarily starting from 4-iodophthalonitrile (228a) (Figure 39). Simple 

alkynes such as phenylacetylene,238 4-nitrophenylethyne,323 2-methylbut-3-yn-2-ol,358 

tert-butylacetylene and trimethylsilylacetylene283 have been coupled successfully to 4-

iodophthalonitrile using Heck conditions. Note that again, the silyl group can be 

removed to give ethynyl-substituted phthalonitriles.283 In addition, novel functional 

groups have been added to the molecule using palladium-based chemistry. For instance, 

alkyl carboxylic acids have been added using Pd(OAc)2 catalyzed coupling ofbenzyl 

pent-4-enoate to a halogenated phthalonitrile. Following hydrogenation of the double 

bond and hydrogenolysis of the benzyl-protecting group, the free alkyl terminal 

carboxylic acid is obtained.212 Palladium-catalyzed alkynation of 4-iodophthalonitrile 

(228a) with propyn-1-ol and 5-hexyn-1-ol followed by catalytic hydrogenation gave 4-

(propylhydroxy)phthalonitrile and 4-(hexylhydroxy)phthalonitrile, both ofwhich can 

easily be transformed into the corresponding hydroxylated phthalocyanines.364.365 The 

terminal hydroxy group has also been used in a Michaelis-Arbuzov reaction to prepare 

phosphonated phthalonitriles (297) (Figure 59).365 Interestingly, aryl phosphonates can 
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Figure 58. Mixed alkylated phthalonitriles prepared via palladium-catalyzed coupling of 

alkynes to the iodo group of 1,2-dibromo-3,6-diiodo-4,5-dialkylbenzene followed by a 

hydrogenation and a Rosenmund-von Braun reaction.363 a) Hsl06. h, H2S04; b) i) HgO, 

CF3C02H, ii) Nal, h; c) alkyne, (Ph3P)2PdCh, Cul, Et3N, DMF; d) CuCN, DMF; e) H2, 

Pd. R1 = CH3 or (CH2)sCH3, R2 = (CH2)3CH3 or (CH2)4CH3 
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Figure 59. Synthesis ofphosphonated phthalonitriles153,365"369 and their conversion of 

vinyl groups by the Wittig-Horner reaction.369 a) HCCCH2CH20H, (Ph3P)2PdCh, Cul, 

Et3N, DMF; b) H2, 10% Pd/C, THF; c) (Et0)2P(O)Cl, pyridine; d) (Et0)2P(OH), 

(Ph3P).tPd, Et3N, toluene; e) NBS, CC4; f) P(OEt)3; g) RCHO, H20. 
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also be prepared using a palladium(O) catalyst and 4-diethyoxyphophinylphthaloni1rile 

(298) has been synthesized by means ofthis methodology (Figure 59).366 Other 

phthalonitrile phosphonate esters have been prepared via the Arbuzov rearrangement 

starting from 4-bromomethyl- (300) and 4,5-dibromomethylphthalonitrile (69) (Figure 

18,59).153.367.368 The Wittig-Homer reaction between aryl phosphonates and carbonyl 

compounds has been exploited to add substituted alkenes to such phthalonitriles (Figure 

59), indicating the utility ofphosphonated phthalonitriles.369 

Coupling of 4-iodophthalonitrile (228a) with acetylene by way of identical Heck 

conditions gives phthalonitrile dimers linked by an alkyne bridge. 73.233 Partial370 or 

complete78.283 hydrogenation of the triple bond gives interesting linked phthalonitriles. 

Similar linked naphthalonitriles have also been prepared from 5-iodo-2,3-

naphthalenedicarbonitrile.237 ln addition, butadiyne-linked phthalonitrile dimers have 

also been prepared from 4-(2-trimethylsilylethynyl)phthalonitrile (following removal of 

the trimethylsilyl group) by the copper-assisted coupling of terminal alkynes. 283 

Hydrogenation ultimately led to butane-bridged phthalonitriles. 

b) Suzuki reaction 

The Suzuki reaction or Suzuki-Miyaura coupling involves the palladium-

catalyzed cross coupling of organoboron compounds and organic halides or triflates and 

has been used extensively since its development in the mid 1990's in synthetic schemes 

towards important organic molecules.371
"
373 ln general, the reaction employs a palladium 

(0) catalyst such as (Ph3P)J>d and a base, typically potassium or sodium carbonate. The 

availability of the necessary reagents and the mild reaction conditions ail contribute to the 
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versatility of this reaction. The Suzuki coupling reaction off ers several important 

advantages including toleration of a broad range of functional groups, lenience for water 

in the reaction mixture and the ability to control regio- and stereoselectivity.371
•
373 

While the· Suzuki-Miyaura coupling has not been highly investigated in 

phthalonitrile synthesis, it has recently started to gain attention as a valuable method for 

adding functionality to these molecules. Starting with 4-iodophthalonitrile (228a) and 3-

trimethylfluoromethanesulphonyloxyphthalonitrile (303), phenyl-substituted 

phthalonitriles (305,306) were synthesized in high yields based on the Suzuki-Miyaura 

cross coupling reaction (Figure 60).374 The necessary phenyl boronic acids (304) were 

readily prepared from bromobenzene derivatives via a Grignard reagent The coupling 

reaction with the appropriate phthalonitrile precursor was carried out at 90 °C in 1,2-

dimethoxyethane using tetrakis(triphenylphosphine)palladium(O) and potassium 

hydroxide. Phenyl groups both unsubstituted and substituted with methyl and methoxy 

groups were successfully introduced. Yields were roughly 80%. Disubstitution with 2-

thienyl substituents has also been accomplished via a Suzuki coupling (Figure 61).375 In 

this case, thiophene-2-boronic acid (308) was coupled to 4,5-dibromophthalonitrile (307) 

using (Ph3P)~d as the palladium catalysis and gave the desired product (309) in a 62% 

yield. As an indication of the versatility of the Suzuki coupling and the range of reaction 

conditions available, this reaction was carried out using tolueneffHF/EtOH as the solvent 

mixture and employed 2 M aqueous Na2C03 as the base. Work is also be undertaken 

towards the synthesis of phthalonitrile boronic acid derivatives in the hope of using them 

to prepare a large range of substituted phthalonitriles (unpublished results). 
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Figure 60. Synthesis of phthalonitriles substituted with phenyl substituents using the 

Suzuk:i coupling reaction.374 
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Figure 61. Use of the Suzuki coupling reaction to prepare 4,5-di-2-

thienylphthalonitrile. 375 
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c) Stille coupling 

The Stille coupling of organotin reagents with a variety of organic electrophiles 

using palladium catalysis provides a novel method for generating carbon-carbon bonds 

and is becoming an important reaction in organic synthesis. 376:377 Like most palladium-

catalyzed reactions, Stille coupling reactions are mild and extremely versatile and tolerate 

a wide variety of functional groups in either coupling partner. They also exhibit stereo-

and regioselectivity and give high yields of the desired product. Compared to other 

cross-coupling reactions including those of organomagnesium, organozinc, organoboron 

and organosilicon reagents, the Stille reaction bas a wide scope mainly due to the stability 

and low cross reactivity of organotin compounds. Like in Heck reactions, the mechanism 

employs a palladium (0) catalyst and involves an oxidative 

addition/transmetalation/reductive elimination pathway.378 Unfortunately, the low 

reactivity of organostannanes also bas drawbacks, with high reaction temperatures and 

resulting side reactions limiting its usefulness. However, recent attempts to improve the 

reaction by increasing the rate of the transmetalation step (the rate-determining step) 

using various different ligands for the palladium catalyst and employing copper co-

catalyst have refined the situation immensely.378 

lt bas only been recently that the versatility of the Stille coupling reaction bas 

been taken advantage of in the preparation of novel phthalocyanines. One such example 

employed the Stille coupling in the preparation of arylated phthalonitriles. 93 4-

Phenylphthalonitrile, 4-(2,5-dimethoxyphenyl)phthalonitrile and 2-(3,4-dicyanophenyl-4-

methylpyridine (312) were synthesized in good yields from 4-iodophthalonitrile and 
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appropriate organotin reagents (Figure 62). The organotin compounds were simply 

acquired from aryl bromides by treating with n-butyl lithium to form the anion followed 

by treatment with trimethyltin chloride. It was found tbat (Ph3P).J>d was not an ideal 

catalyst for this reaction with coupling occurring only in certain cases. 

Dibenzylideneacetone (dba) proved to be a superior ligand for the Pd(O) and gave 

satisfactory results. Stille coupling was also employed in the preparation of 

bisphthalonitriles and bisnaphthalonitriles coupled by a alkene bridge.237 Trans-1,2-

bis(tri-n-butylstannyl)ethene was coupled with 3-iodophthalonitrile (228b) and 5· 

iodonaphthalonitrile to give the corresponding trans bridged compounds using (Ph3P).J>d 

as the catalyst. Coupling of 4-iodophthalonitrile (228a) with both the cis and trans- l ,2-

bis(tri-n-butylstannyl)ethene214,237 proceeds smoothly as well and these compounds were 

photocyclized to tetracyanophenanthrene derivatives. Finally, in a interesting series of 

reactions, 4-vinylphthalonitrile (313) was synthesized via the Stille coupling of 4-

iodophthalonitrile (228a) with tributyl(vinyl)tin induced by (Ph3P).J>d at 100 °C in 

toluene (Figure 62). 379 The same compound was also prepared by the reaction of 

vinylzinc in the presence of the same Pd(O) catalyst though yields were significantly less 

in this case.379 Dehydration of3,4-dibromo-a-phenyl ethyl alcohol followed by the 

Rosenmund-von Braun cyanodehalogenation also gives the same product 380 Oxidative 

cleavage of the resulting 4-vinylphthalonitrile (313) by ozonolysis gave rise to 4-

formylphthalonitrile (314).379 This precursor reacted with fullerene (C60) and sarcosine to 

yield the phthalonitrile fulleropyrrolidine derivative. 
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Figure 62. Examples of the use of the Stille coupling reaction in the synthesis of 

substituted phthalonitriles. a) i) nBuLi, THF, -78 °C, ii) CH3SnCI, 1HF, -78 °C to RT, 

85%; b) Pd2dba3, DMF, 80-85 °C, 66%; c) (PhJ>),J>d, toluene, 100 °C, 97%; d) i) 

(Ph.iP),J>d, THF, 45 °C, 70%; e) 03, CH2Ch, -78 °C, 90%.93.379 
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d) Other transition metal-catalyzed coupling reactions 

Other phthalonitrile dimers have also been formed using transition metal 

catalysis. The synthesis of directly linked phthalonitriles and ones linked by a 

naphthalene bridge utilize nickel{O) catalyzed coupling of aryl iodides.381 Anthracene-

bridged phthalonitrile dimers require transformation of 1,8-dichloroanthracene to its 

arylzinc derivative prior to palladium-catalyzed coupling with 4-iodophthalonitrile. This 

is primarily due to the lack of reactivity of chloro groups towards the nickel(O) coupling 

reaction and the fact that 1,8-diiodoanthracene is unknown. 

iii) 2,3-Dieyanohydroquinone derivatives 

An important series of precursors for the preparation of 3 ,6-

dialkoxyphthalonitriles are 2,3-dicyanohydroquinone derivatives. These include 2,3-

dicyanohydroquinone (or lA-dihydroxyphthalonitrile) (315) itself along with 2,3-

dichloro-4,5-dicyanohydroquinone and 2,3-dicyanonaphthalene- l ,4-diol. 2,3-

Dicyanohydroquinone (315) is commercially available while 2,3-dichloro-4,5-

dicyanohydroquinone can be easily prepared by sodium metabisulphite reduction of the 

corresponding quinone. 382 The synthesis of 2,3-dicyanonaphthalene-1,4-diol has already 

been mentioned and involves the reaction of 2,3-dichloronaphthoquinone with potassium 

cyanide. 173
•
182

•
383 These compounds provide access to important 1,4-

dialkoxyphthalonitriles and l,4-dialkoxy-2,3-naphthalenedicarbonitriles. The necessary 

ether bond is simply formed by the reaction of these diols with alkyl halides under basic 
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conditions (usually potassium carbonate). While reactions tend to be prolonged, good 

yields of the desired alkoxy compounds are obtained. 

A whole series of 1,4-dialkoxyphthalonitriles has been prepared with alkoxy 

chains ranging from methyl through to dodecyl (316a-k) (Figure 63).276 In addition, 

alkene (pent-4-enyl) (3161) and phenyl (3-phenylpropyl) (316m) functional groups have 

been included as well, Other 3,6-dialkoxyphthalonitriles that bave been synthesized in 

this manner include 3,6-bis(isopropyloxy)phthalonitrile,384 3,6-bis(2-

hydroxyethoxy)phthalonitrile, 385 3 ,6-bis[ (trimethylsilyl)methoxy ]phthalonitrile277 and 

3,6-bis[ methoxy( oligoethyleneoxy)]phthalonitrile.263 Alkylation of 2,3-

dicyanonaphthalene-l ,4-diol has led to simple l,4-dialkoxy-2,3-

naphthalenedicarbonitriles as well. 173:276 Of particular interest however are 4,5-dichloro-

3,6-dialkoxyphthalonitriles276 as such chlorinated phthalonitriles are susceptible to 

nucleophilic attack. Numerous nucleophiles including thiols386-389 and amines386 have 

been used in preparing novel tetrasubstituted phthalonitriles with mixed substitution. In 

some cases, this nucleophilic attack can be accomplished stepwise, allowing the addition 

oftwo different substituents to the molecule.386,387 Furthermore, heterocyclic 

phthalonitrile derivatives can be synthesized using nucleophiles such as 2-

aminothiophenol. 286 Note that in addition to the simple alkoxy groups mentioned above, 

other alkoxyalkyl, dialkylaminoalkyl, and alkylene heterocyclic substituents are also 

possible functional groups that can be added via an ether bond to these phthalonitrile 

derivatives. 386,387,389 

4,5-Dialkoxyphthalonitriles, though generally prepared from catechols using the 

Rosenmund-von Braun reaction , can also be synthesized from 4,5-
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Figure 63. Series of 1,4-dialkoxyphthalonitrile synthesized by the alkylation of2,3-

dicyanohydroquinone.276 
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dihydroxyphthalonitrile via ether bond formation. Dithioalkoxyheterocycle-substituted 

phthalonitriles are examples ofphthalonitriles synthesized in this fashion.390 

iv) Halogenation 

Halogenated phthalonitriles are clearly extremely important starting materials in 

the preparation of novel substituted phthalonitriles, especially via nucleophilic 

substitution and palladium-catalyzed reactions. Simple monohalogenated phthalonitriles 

are prepared from the corresponding amino compound via the diazonium sait as has been 

previously mentioned (Figure 47). However, polyhalogenated phthalonitriles are not so 

easily accessible and require more forcing conditions in their synthesis. Generally, such 

reactions proceed by an electrophilic aromatic substitution pathway. The synthetic 

pathway towards 4,5-diiodophthalonitrile (38), for instance, begins with the iodination of 

phthalimide (S) with iodine in fuming sulphuric acid (Figure 12).88•89 This results in the 

formation of primarily 4,5-diiodophthalimide (33) with both 3,4-diiodophthalimide (34) 

and 4,5-diiodophthalic acid (35) as byproducts. Increased amounts of 3,4· 

diiodophthalimide (33) can be obtained when the iodination is canied out at higher 

reaction temperatures. The desired products can then be isolated, with the phthalic acid 

removed by Soxhlet extraction and the 3,4- and 4,5-diiodo derivatives separated 

following ammonolysis and dehydration to the corresponding phthalonitriles. Note that 

the 4,5-diiodophthalimide (33), even at the higher reaction temperatures, is obtained in an 

80% yield compared to only 10% of the 3,4-diiodo derivative. The corresponding 

tetraiodophthalimide can be obtained by iodination of phthalimide or phthalonitrile with 

iodine and periodic acid in concentrated sulphuric acid.391 However, attempts to 
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transform the resulting tetraiodophthalimide into tetraiodophthalonitrile have failed, 

possibly due to steric hindrance. A number of other iodinated phthalic acids and oxidized 

iodinated phthalic acids have also been prepared.392 Attempts to transform these into 

phthalonitriles have not been undertaken. 

Bromination of phthalimide can be accomplished in the manner akin to the 

preparation of 4,5-diiodophthalimide (33) using bromine in fuming sulphuric acid using 

iron as a catalyst.92 4,5-Dibromophthalimide is obtained with 4,5-dibromophthalic acid 

as an important byproduct that can be relatively easily removed. The corresponding 4,5-

dibromophthalonitrile (307) is then obtained following ~onolysis and dehydration as 

seen above. In addition, phthalonitrile can be brominated using N,N-dibromoisocyanuric 

acid (DBI) in 8% fuming sulphuric acid.89·92 These rather harsh conditions lead to a 

mixture of mono- and dibrominated phthalonitrile along with traces of tri- and 

tetrabrominated compounds as well. The primary product is 4-bromophthalonitrile 

(45.2%) with significant amounts of3,6-dibromophthalonitrile (7%), 4,5-

dibromophthalonitrile (6.7%) and 3,4-dibromophthalonitrile (5.9%). Each ofthese could 

be isolated using column chromatography. 3-Bromophthalonitrile could not be isolated 

from unreacted starting material however. As has been mentioned before, the 

tetrabrominated phthalonitrile can also be obtained from tetrafluorophthalonitrile by 

nucleophilic exchange338 

The bromination of 2,3-dicyanohydroquinone has also been accomplished using 

N-bromosuccinimide (NBS) in t-butyl alcohol, giving rise to 2,3-dibromo-4,5-

dicyanohydroquinone.393 Unlike above, alkoxylation with 1-butanol was accomplished 

using triphenylphosphine and diisopropylazodicarboxylate in dry THF. Using potassium 
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carbonate and N,N,N-tributyl-1-butaninium bromide in 2-butanone with 1-iodobutane led 

to Joss of one of the bromine atoms and gave 4-bromo-3,6-dibutoxyphthalonitrile. These 

compounds have both been used to prepare phthalocyaninodehydroannulenes. 

Much less work has been done on the synthesis of chlorinated phthalonitriles. 

However, with tetrachlorophthalonitrile being an essential precursor to 

tetrafluorophthalonitrile (271), much work has been done on the preparation ofthis 

compound. One method that bas been developed utilizes vaporized phthalonitrile and 

treats it with chlorine gas in the vapour phase over various catalysts.394 A second 

possîbility involves chlorination of o-xylene and inducing phthalonitrile formation via 

reductive ammonolysis.113 Note that the corresponding trichlorinated and tribrominated 

phthalonitriles can be obtained by reaction of the tetrahalogenated compound with solid 

metals in water and solvents incompatible with water.395 The trifluorophthalonitrile can 

also be obtained by heating these trihalogenated compounds with a fluorinating agent. 

Other halogenation reactions of interest include the bromination of catechol and 

its alkoxy derivatives, which is generally done using bromine in acetic acid. The free 

radical benzylic bromination of 4-methyl- (299) and 4,5-dimethylphthalonitrile (68) and 

1,2-dibromo-o-xylene (64) is accomplished using NBS and a free radical initiator (Figure 

17, 59).157
•158 A somewhat similar reaction that proceeds via an electrophilic aromatic 

substitution mechanism is nitration of phthalimide and 2,3-naphthalenedicarbonitrile, 

which utilizes nitric acid in sulphuric acid (Figure 11).54.93,2•4 This reaction occurs in 

nearly identical fashion as the halogenation of the aromatic compounds. 

v) Reactions of sulphonated phthalonitriles 
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Sulphonated phthalocyanines are extremely important compounds in a number of 

applications, in particular in the photodynamic therapy of cancer. 3842 While these 

compounds are often synthesized from 4-sulphoph~ic acid46 and sulphonated 

phthalocyanines are often modified following macrocycle formation,396 a number of 

sulphonated phthalonitriles have been prepared and are used in the synthesis of 

phthalocyanines. 311 Am.ong appropriate precursors for the synthesis of sulphonated 

phthalocyanines are 3- and 4-chlorosulphonylphthalonitrile (317a,b) (Figure 64), 3- and 

4-mercaptophthalonitrile (320a,b) and bis(2,3-dicyanophenyl) disulphide (321) (Figure 

65).311 3- and 4-Chlorosulphonylphthalonitriles (317a,b) can simply be prepared by the 

reaction of the diazonium sait of the corresponding aminophthalonitrile (2Sla,b) with 

sulphur dioxide in acetic acid in the presence of cuprous chloride (Figure 64).311 

Reaction of the same diazonium salts with thiourea followed by reflux at pH 10-12 gives 

the mercaptophthalonitriles (320a,b ), which are simply transformed to the sulphonic acid 

(322a,b)by oxidation using hydrogen peroxide in formic acid.311 The sulphonic acid 

(322a) can be prepared from the aminophthalonitrile (2Sla,b) via an intennediate 

dithiocarbonate (319) as well. Note that attempts to synthesize the sulphophthalonitriles 

(322a,b) from halogenated 1,2-dicyanobenzenes with sodium sulphite in 500/o aqueous 

dioxane in the presence of copper sulphate led to low yields of the desired products. 

Protected N,N-dialkyl-3,4-dibromobenzenesulphonamides provide another starting 

material for sulphonated phthalonitriles. The phthalonitrile is prepared using the 

Rosenmund-von Braun reaction as previously discussed with phenyl, pyrrole and indole 

protecting groups proving adequate for the protection of the sulphonic acid functional 

group while being cleavable to free the desired sulphonic acid after Pc formation. 136 A 
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Figure 64. Synthesis of 4-chlorosulphonylphthalonitrile and its reactions to form 

sulphonyl-, sulphonylamido- and polyfluoroalkoxysulphonyl-substituted 

phthalonitriles.311 .312.393 Note that 317b refers to the corresponding 3-

chlorosulphonylphthalonitrile. 

389 



b 

0 

euJl~cN 
~CN 

319 

320 

NC~ ~CN 

NC~S-S~CN 
321 

d .. 

y 

Figure 65. Reaction of the diazonium sait of 4-aminophthalonitrile with various sulfur 

nucleophiles and the conversion of the reaction products to the 4-sulfophthalonitrile.311 

that 320b refers to the corresponding 3-mercaptophthalonitrile and 332b to the 

corresponding 3-sulphophthalonitrile. 
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number of other N,N-dialkyl-3,4-dibromobenzenesulphonamides have been prepared for 

use in phthalonitrile and phthalocyanine synthesis in which the sulphonamide groups are 

not readily cleaved to the free acid.397 Forming the protected sulphonated phthalonitrile 

( example being 3181) from 4-chlorosulphonylphthalonitrile (317a) gives decidedly better 

results by avoiding the Rosenmund-von Braun reaction (Figure 64) and has been used to 

prepare a number of novel trisulphonated phthalocyanines. 312 These protected sulphonic 

acids greatly ease the purification of the phthalocyanines, especially those formed via 

mixed condensations by imparting solubility in organic solvents. Furthermore, they 

allow for modification of the substituents on unsymmetrically substituted 

phthalocyanines, for instance via palladium-catalyzed reactions. 

Of these sulphonated precursors, it is clearly the 3- and 4-

chlorosulphonylphthlonitriles (317a,b) are the most interest due to their reactivity. A 

number of important sulphonated phthalocyanines have been prepared using these 

starting materials. For instance, sulphonated boron subphthalocyanine has been 

synthesized from 4-chlorosulphonylphthalonitrile (317a) in a manner that cannot be 

accomplished using the traditional 4-sulphophthalic acid due to cross reactivity between 

the Lewis acid boron source and the carboxylic acids of the starting material. From this 

subphthalocyanine, several trisulphonated Pcs bave been synthesized via a ring expansion 

reaction. 65 In addition, these chlorosulphonyl groups readily react with amines to form 

sulphonylamido substituted phthalonitriles (318a-g).311 Amines such as diethylamine, 

aniline, N-methylpiperazine and pyridine have been attached to the sulphonate group in 

this fashion (Figure 64). Furthermore, various polyfluorinated sulphonyl esters (318h-I) 
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have been reported, prepared by the reaction of 4-chlorosulphonylphthalonitrile with 

various polyfluorinated terminal alcohols in triethylamine and dichloromethane.398 

While these few examples only give a brief glimpse into the enormous number of 

substituted phthalonitriles that have been prepared, it clearly shows the rich chemistry 

employed to prepare novel substituted phthalonitriles and from them, novel substituted 

phthalocyan\nes. Overall, it is this ability to add and control the substituents on 

phthalocyanine precursors that will be extremely important in the preparation of 

important phthalocyanines and will be of vital importance if phthalocyanines are to reach 

their full potential as important organic materials. 

IV) Diiminoisoindolines 

As can be clearly seen in the discussion above, the vast majority of 

phthalocyanine synthesis involves phthalonitriles as starting materials and their synthesis 

and modification bas been vital in the preparation of novel phthalocyanines. However, a 

number of other starting materials can be used in the synthesis of the phthalocyanine 

macrocycle. Among these, the most highly used are diiminoisoindolines (6) (Figure 5). 

This reactive phthalocyanine precursor has been in fact proposed as key intermediates 

formed during the synthesis of phthalocyanines from other precursors including 

phthalonitriles.1,3·16,399 Evidence showing the plausibility of diiminoisoindolines 

intermediates cornes from the reaction of diiminoisoindolines with diamines.400 The 

stable 2: 1 adduct formed. would seem to indicate the pathway for imidine-imidine 

condensation and the relevance of such diiminoisoindoline intermediates in the synthesis 

of phthalocyanines. Others have concluded that during the condensation of o-
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cyanobenz.amide, iminophthalimidine could be an intermediate and it should have to pass 

via the diiminoisoindoline on the way towards phthalocyanine formation.399 Proof of this 

iminophthalimidine intermediate in the condensation of various phthalic acid precursors 

cornes from the synthesis of Pcs using phthalic anhydride as the precursor and urea as an 

amminating agent (Figure 66). In this case, 14C-labeling experiments indicate that the 

urea provides the nitrogen for the macrocycle but none of the carbon.401 As such, the 

phthalic anhydride must have been converted to the iminophthalimidine and then to the 

diiminoisoindoline prior to Pc formation. In fact, both of these intermediates have been 

isolated from the reaction mixtures and their conversion to Pcs has been demonstrated.402 

Other isolated intermediates such as the sodium sait of methoxyiminoisoindoline would 

also seem to show that the cyclotetrameriz.ation reaction passes through a 

diiminoisoindoline intermediate. 403405 

Diiminoisoindolines (6) are almost exclusively formed from the corresponding 

phthalonitrile (3) by reacting it with ammonia gas in the presence of sodium methoxide in 

methanol (Figure 67). Another method that has been developed undertakes the reaction 

in an amide solvent such as formamide or acetamide in the presence of a base other than 

an alcoholate (such as sodium hydroxide).406 Overall, the mild reaction allows the 

presence of halo, nitro, and linear and branched alkyl, alkoxy and aryl groups on the 

reacting phthalonitrile. On the other band, az.a derivatives of diim.inoisoindolines have 

been prepared in a stepwise fashion. 335 The initial reaction is carried out in an alcohol at 

room temperature and involves ammonia gas and sodium hydride and leads to a 

monocarboximidate. Conversion of this carboximidate to the diiminoisoindoline is then 

accomplished by a second reaction with ammonia and sodium hydride at reflux. Similar 
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Figure 67. Synthesis of diiminoisoindoline. 
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stepwise reactions were observed using ammonia in methanol with a catalytic amount of 

sodium methoxide. 

Being a key intermediate in the cyclotetrameriz.ation reaction, diiminoisoindolines 

naturally display an increased tendency towards cyclization and readily react to form 

phthalocyanine even at room temperature. They are particularly useful in the synthesis of 

metal-free phthalocyanines as they readily cyclize under the milder conditions employed. 

In fact, cases exist where phthalonitriles that are resistive towards condensation or give 

low yields of Pc have been transformed into the corresponding diiminoisoindoline in 

order to induce Pc formation and improve yields. Others have invoked the increased 

yields of Pc formation using diiminoisoindolines to increase the efficiency of the 

cyclotetramerization reaction in order to avoid unnecessary loss of precursors that were 

prepared via a multistep pathway. Crown ether substituted phthalonitriles (Figure 21 ), 

130·169.326.327 crown ether bridged bisphthalonitriles328.329 and other phthalonitrile 

dimers283.237.28S.2%.J70.J31 have all used this reasoning in order to increase the overall 

efficiency of their total synthesis. 

Overall, abundant monosubstituted and disubstituted diiminoisoindolines have 

been prepared from the analogous phthalonitrile. Substituents such as simple 

alkyl, 56,283,301,407,408 alkoxy,49,52-54,306,409,410 thioalkoxy,301,302,315 aryl, 406 nitro,408 

silyl,78.283:i77 silyloxy273 and iodo groups358can be present during the synthesis of 

diiminoisoindolines as they can endure the basic conditions used. Phthalonitriles bearing 

other functional groups such as vinyl and alkene groups,369.380 heterocycles,314 long chain 

amide groups166•168 and polymer-bound phthalonitriles57-59 have also been transformed 

into the corresponding diiminoisoindolines. Even tetracyanobenzene can be transformed 
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to dicyanodiiminoisoindoline under the right conditions.411 The analogous benzene and 

naphthalene bis-diiminoisoindolines can also be prepared with slightly more forcing 

conditions.100•412•413 In addition, naphthalene-based diiminoisoindolines214,216.217.22o.m. 

and various 6,7-dicyano-1,4-diepoxynaphthalene-based diiminoisoindolines55
•
177

·
178 are 

obtainable using the same protocol. Finally, az.a derived diiminoisoindolines have been 

prepared, not only stepwise as previously mentioned but also by using the traditional 

conditions.414416 Note, however, that few examples exist oftetrasubstituted 

diiminoisoindolines. Tetrafluorophthalonitrile (271) is one of the primary source of 

tetrasubstituted phthalonitriles and this compound is extremely reactive towards 

alcoholates. Clearly the key drawback of using diiminoisoindolines as phthalocyanine 

precursors is the reaction conditions involved in their preparation, which limits the 

functionality that can be present in the molecule. Furthermore, their parent 

phthalonitriles generally tetramerize to the corresponding phthalocyanine in good yields 

and are de:finitely more stable. As such, phthalonitriles are the precursor of choice. 

However, diiminoisoindolines play important roles in Pc synthesis due to their higher 

reactivity and have been eminently used as Pc precursors as well. 

V) Novel designed phthalocyanine precursors 

The general synthesis of phthalocyanines is a very highly symmetrical one, with 

the condensation reaction occurring in any number of possible orientations. It is this 

symmetry that leads to the production of the constitutional isomers seen for 

tetrasubstituted phthalocyanines (Figure 3) and the difficulties encountered in the 

synthesis of unsymmetrically substituted phthalocyanines (Figure 4 ). As such, novel 
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phthalocyanine precursors have been designed that will eJiminate this symmetry and 

force the condensation to occur in only one direction, thus producing only one isomer or 

one unsymmetrically substituted product. 

One such method of breaking the symmetry of cross condensation reactions led to 

a rare bonafide synthesis of pure disubstituted phthalocyanine. When 5-phenyl-1,3-

diiminoisoindoline is reacted with 1,3,3-trichloroisoindoline (12) (Figure 68)417 at room 

temperature in the presence of an organic base like triethylamine and reducing agent like 

hydroquinone, pure 2,16/17-diphenylphthalocyanine is produced in a 7% yield.418 When 

the temperature is raised however, the reaction leads to a mixture of substituted 

products.419 Such 1,3,3-trichloroisoindolines are well-known phthalocyanine precursors, 

having been used in the preparation of phthalogen dyestuffs. 17 In fact, they have been 

extensively used as intermediates in the preparation of diiminoisoindolines from 

phthalimides by their reaction with ammonia. They are prepared by the reaction of 

phthalimides with phosphorus pentachloride in a solvent such as 1,2-dichlorobenzene 

(Figure 68).17·54-56 A number of substituted derivatives have been synthesized, including 

617-nitro-l,3,3-trichloroisoindoline (325),54 617-t-butyl-l,3,3-trichloroisoindoline, 6,7-

dihexyl-l,3,3-trichloroisoindoline56 and tetrachloro-l ,3,3-trichloroisoindoline17 among 

others. 

The basis behind their controlled reaction lies with lower reaction temperatures 

used along with the steric hindrance in the 1,3,3-trichloroisoindoline (12).54-56 At the 

lower reaction temperatures, the diiminoisoindolines used for this condensation reaction 

do not self-condense while the steric hindrance of the chlorine atoms of the 1,3,3,-

trichloroisoindoline prevents self-condensation of these more reactive precursors. Thus, 
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only condensation between the düminoisoindoline and the 1~3,3-trichloroisoindoline (12) 

is possible, leading to pure trans disubstituted products. Note that in some cases, 

trisubstituted products are also obtained. 55
•
56

•
419 lt has been proposed that this is due to 

traces of water in the reaction mixture, which results in partial hydrolysis of some of the 

1,3,3-trichloroisoindolines.55 This slight loss of the reactive precursor would upset the 

stoichiometric balance of the two reagents and under conditions where the 

diiminoisoindoline is in excess, trisubstituted products would be expected to be formed. 

Also note that some of these 1,3,3-trichloroisoindolines are extremely reactive and 

unstable. For example, 6,7-dihexyl-1,3,3-trichloroisoindoline cannot be fully purified, 

even under an inert atmosphere, due to its high reactivity. ss This results in poor yields in 

its condensation reactions. While this controlled condensation reaction generally leads to 

metal-free phthalocyanines, it has also been extended to the synthesis of 

metallophthalocyanines by carrying out the condensation in the presence ofNiClz(py)4 or 

ZnCh and tetrabutylammonium bromide as a phase transfer catalyst 55•56 However, in 

reality, this procedure involves condensation of the two reagents to the macrocycle, 

followed by metal insertion in situ. Overall, while these reactive precursors have been 

successfully in preparing pure trans disubstituted phthalocyanines, their difficult 

synthesis and instability limits their usefulness. 

An symmetry-based approach towards the synthesis of a pure tetrasubstituted 

phthalocyanine isomer has also been examined. Iminothioamides (10) have been 

envisioned as precursors that could be used in the synthesis of isomerically pure 

phthalocyanines.420 It has been shown that dithioamides (11) readily form 

phthalocyanines at relatively low temperatures ( around 80-90 °C). 52 As such, it has been 
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proposed that using substituted im.inothioamides (328) would induce the tetrameri2.ation 

to occur in only one direction, with the alkylthiol functionality of one molecule being 

selectively displaced by the im.ino group of another molecule, especially at the reaction 

temperatures employed. Iminothioamides (328) are synthesized by the r~tion of 

phthalonitriles with hydrogen sulphide (Figure 69).53•
420 The resulting l-imino-3-

thioisoindolines (327) are then methylated with dimethyl sulphate or iodomethane as the 

non-alkylated derivative failed to condense to the desired phthalocyanine. Note that 

while monosubstituted phthalonitriles give rise to two isomers, they are separable by 

flash chromatography. Importantly, these S-methylated derivatives readily condense to 

the desired phthalocyanine at room temperature. Unfortunately, the 5-or 6-substituted l-

imino-3-thioisoindoline (328) self-condense at room temperature notas a single isomer 

as expected but as a mixture of isomers. 53 However, if the condensation is carried out at 

-20 °C in DMF using zinc acetate as a template, small-scale reactions over a prolonged 

time do lead to a single isomer. It should be noted that the statistical condensation of a 

substituted diiminoisoindoline leads to a different isomeric distribution as that obtained 

using these iminothioamides (328). As such, a different reaction pathway must be at 

play. These precursors also result in a series of isoindigo byproducts at room 

temperature, perhaps indicating that a metal ion template may be useful. 

Attempts to use dithioimides (11) in the synthesis of pure unsymmetrically 

substituted phthalocyanines have also been undertaken. 52 Substituted dithioimides (330) 

are prepared from the corresponding phthalimide (329) using Lawesson's reagent (Figure 

70). This gives rise to the desired dithioimide (330) along with thiophthalimides (331). 

These reagents also condense at low reaction temperature and it was proposed that 
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Figure 69. Synthesis of l-imino-3-methylthio-5/6-neopentoxyisoindoline.53 
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carrying out a mixed condensation involving dithioimides (330) and diiminoisoindolines 

at Iow temperature would result in condensation only between the thio groups and the 

imino groups, muchas is the case with 1,3,3-trichloroisoindolines (325). Unfortunately, 

a mixture of substituted products was obtained, most likely due to self-condensation of 

the dithioimides at the reaction temperatures used. 

VI) Other phthalic acid derivatives 

As has been previously indicated, any number of phthalic acid derivatives can be 

used as starting materials in the synthesis of phthalocyanines (Figure 5). While 

phthalonitriles and diiminoisoindolines are clearly the most popular and most highly used 

of this class of compounds, others such as o-dibromobenzenes, phthalic acids, phthalic 

anhydrides and phthalimides are also appropriate precursors for phthalocyanines. Of 

course, reactions of o-dibromobenzenes require a source of cyanide ion, typically cuprous 

cyanide and most likely proceeds via an in situ Rosenmund-von Braun reaction to 

generate the phthalonitrile. The other phthalic acid derivatives necessitate the use of 

amminating agents and catalyst in order to invoke cyclotetramerization to the 

phthalocyanine. While not extensively utilized in the delicate synthesis of 

phthalocyanines for technological purposes, the economical cost of these reagents and the 

ease in their preparation make them the most used precursors in the dye and pigment 

. d try 14-19 mus . 

By virtue of this, most phthalic acid derivatives other than phthalonitriles and 

diiminoisoindolines that have been used in the synthesis of phthalocyanines are readily 

available, either commercially or via simple organic transformations. A number of 
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simply substituted phthalocyanines such as tetrasulphonated46 and 

tetracarboxyphthalocyanine421 are synthesized for the readily available 4-sulphophthalic 

acid and trimellitic anhydride (4-carboxyphthalic anhydride) respectively. Other 

important precursors like 4-nitrophthalimide ( 40) can be easily prepared by nitration of 

the proper starting material (Figure II ).93 Additional substituted phthalic acids can be 

synthesized by Diels Aider reactions using dimethyl-1 ,3-butadiene (219) as the diene 

followed by potassium permanganate oxidation of the resulting substituted o-xylenes 

(221) as described in the Diels Aider section (Figure 38).15 For instance, the Diels Aider 

reaction between cinnamic acid (218) and dimethyl-1,3-butadiene (219), followed by 

dehydration and oxidation with KMn04 gives 4-carboxy-5-phenylphthalic acid (220) and 

this precursor is used in the synthesis of the copper Pc dye Sirius Light Green FFGL. 4-

Sulpho-5-acylaminophthalic acid can be procured from 4-chloro-5-sulpho-o-xylene 

following a series of steps including K.Mn04 oxidation, amination and acylation. Other 

interesting disubstituted phthalic acids can also be achieved via modification of 

substituted o-xylenes or by using other dienophiles in the Diels Aider reaction with 

dimethyl-1,3-butadiene (219). An additional example is 4-sulpho-5-phenylphthalic acid 

(227) whose starting material is 4-carboxy-5-phenyl-o-xylene (221) (Figure 38). o-

Dicarboxyphenylphosphonous and phosphonic acids along with diphenylsulphone-3,4-

dicarboxylic acid have also been described and used in the preparation of 

phthalocyanines. 16 

Other important starting materials for industry are phthalic anhydrides, which are 

extensively used in the production of dyes. Industrially important halogenated 

phthalocyanines, for instance, are sometimes prepared from the appropriately substituted 
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phthalic anhydride16 although hexadecachlorophthalocyanine is also available by 

chlorination of a pre·existing phthalocyanine molecule.18
•
19 In addition, substituted 

phthalocyanine is usually synthesized by the dye and pigment industry using substituted 

phthalic anhydrides as starting materials.16
•
18

•
19 Overall, there is an endless list of 

substituents that have been added to various phthalic acid derivatives in attempts to 

develop better dyes and pigments. On the whole, while the 1.lSe of phthalic acid 

derivative other than phthalonitriles and diiminoisoindolines is not prominent in the 

detailed synthesis of phthalocyanines in research, they are used extensively by industry. 

Precursors such as those mentioned above should not be ignored as they provide access to 

a multitude of rediscovered and important functional groups that can be added to 

phthalocyanines in order to improve their physical and chemical traits for more high tech 

applications. 

VII) Aza derivatives 

Numerous phthalocyanine analogs have been developed in order to improve the 

characteristics of these macrocycles for various applications. Among these are the aza 

analogs where the peripheral benzene rings are replaced by nitrogen-containing aromatic 

heterocycle. Such aza phthalocyanine analogs have several interesting properties and 

their synthesis along with their chemical and physical characteristics have been 

extensively reviewed.414
•
422 

The most predominate members of this family of phthalocyanine analogs are 

tetrapyrazinoporphyrazines and are based on 2,3-dicyanopyrazines. For the most part, 

substituted 2,3-dicyanopyrazines are synthesized by the reaction of 1,2-diketones and 
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diaminomaleonitrile (DAMN) (262) (Figure 71 ). DAMN itself has a very rich and high 

studied chemistry423425 and can be used to create various 1,2-dinitriles that can be used to 

prepare phthalocyanine-like macrocycles. A large number of diketones have been 

investigated and the synthesis of such diketones has been accomplished with a wide array 

ofmethods.236 While their preparation is beyond the scope ofthis review, their 

importance in the synthesis of az.aphthalocyanine derivatives cannot be underestimate. 

Among some of the diketones used are oxalyl chloride (332),331 diethyl dioxosuccinate426 

and various alkyl,415,427,428 alkyne (333) (Figure 71 ),236,429 aryl414,430 and heterocyclic4Jl,4J2 

substituted diketones. Note that the use of oxalyl chloride (332) leads to the formation of 

a cyclic diketodicyanodiamine (263) and this must be reacted with thionyl chloride to 

yield the desired l,2-dichloro-5,6-dicyanopyrazine (264) (Figure 51).331.332 

Symmetrically disubstituted 2,3-dicyanopyrazines bearing chlorine, carboxylic ester, 

alkanes, alkynes and furan, thiophene and pyridine heterocycles including polythiophene 

substituents have been prepared.431 Unsymmetrically substituted 2,3-dicyanopyrazines 

are conceivable as well.236·414 As mentioned before, the 1,2-dichloro-5,6-

dicyanopyrazine (264) offers access to other substituted pyrazine derivatives by 

nucleophilic displacement of the chlorine atoms (Figure 51 ). In addition, numerous 

higher order aromatics (335)have been transformed into o-quinones (336) and reacted 

with DAMN (262) to give dinitriles (3j7) (Figure 72).433438 A particular interesting 

example of these higher order aromatic aza analogs include those fused with 

[7]helicenes.437·438 Other possible reactions for the preparation of2,3-dicyanopyrazine 

derivative include the reaction ofDAMN (262) with a.-hydroxyiminoketones and 

diamines.414 Note that the reaction of diketones with 4,5-diaminophthalonitrile gives 2,3-
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Figure 71. Synthesis of acetylenic 2,3-dicyanopyrazines. a) (CH3)2CHSi=CH, BuLi, 
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Figure 72. Synthesis of di-t-butyl-substituted 9,10-phenanthro-2,3..dicyanopyrazines. a) 

CH3COCI, AICIJ, toluene; b) Cr03, AcOH; c) DAMN, EtOH, AcOH, A (Azamacro-3 + 
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disubstituted 6, 7-quinoxalinedinitriles, which are slightly different aza analogs as the 

nitrogen containing aromatic ring is seperated from the dintrile functionality by a benzene 

ring.236 This should greatly alter the properties of the resulting macrocycle as compared 

to other aza compounds. 

Work has also been done on pyridine-based aza analogs using both 2,3-dicyano-

and 3,4-dicyanopyridine molecules.416
•
422

•
434

•
439

•
440 In addition, quinolinedicarbonitriles 

and other mono- and polynitrogen-containing aromatic dinitriles have been 

prepared.414
•
441 In the case of2,3-dicyanoquinoline (342), the synthesis commences with 

the reaction of 2-aminobenzaldehyde (338) with dimethyloxaloacetate (339) ensued by 

ammonolysis and dehydration (Figure 73).441 The seven membered 5,7-diphenyl-2,3-

dicyano-6H-l,4-diazepine ring system can be made as well, in this case from 

dibenzoylmethane and DAMN (262).430 In reality, vast arrays of aza phthalonitrile and 

phthalocyanine analogs have been prepared, with both varying nitrogen-containing 

heterocycles and differing substituents. Moreover, numerous bridged analogs have also 

been prepared.414 Aza substitution is a promising method for structural modification of 

phthalocyanines along with modulation of their electronic properties. As such, work 

continues in this area in efforts to design new phthalocyanine-based materials With fine-

tuned absorption maxima and the ability to modify their characteristics to enhance the 

macrocycles perfonnance in a given application. 

VIII) Other phthalocyanine precursors 

ln addition to az.a analogs, a number of other phthalocyanine-like macrocycles 

have been designed. Linstead originally investigated several in order to fully study 
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Figure 73. Synthesis of2,3-dicyanoquinoline.441 
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phthalocyanines and phthalocyanine-like macrocycles. Others were developed by 

industry in attempts to design and fabricate new and improved dyes with improved 

colors. More sophisticated examples have been recently prepared in order to control 

macrocycle formation and to adjust the characteristics of the molecule. These all require 

the synthesis of novel 1,2-dinitriles and it is outside the intent of this review to go into 

each in detail. Suffi.ce it to give a few important examples (Figure 74). A variety of 

nitrogen, oxygen and sulphur containing 1,2-dinitriles have been prepared, a large 

number of these being maleonitrile derivatives (343). Compounds such as 

dialkylmaleonitrile, 334•
442.443 bis( dimethylamino )maleonitrile,384 

bis(benzylthio )maleonitrile384
•444 and dispiromaleonitrile384•

443
•
445 (356) (Figure 75) can be 

included in these. Other sulphur-containing maleonitrile derivatives are obtained from 

disodium maleonitriledithiolate (Na2mnt), which itself is synthesized in two steps from 

sodium cyanide and carbon disulphide.446448 Reaction ofNa2mnt with various alkyl 

halides results in bis(alkylthio )maleonitriles.17•444•448
-4

5° Furthermore, chalogen atom 

substituted dinitriles such as 3,7-dithiocycloheptamaleonitrile (344 X= CH2) and 3,7-

dithia-5-oxocycloheptamaleonitrile (344 X= 0) can also be prepared using the necessary 

alkyl dihalides (Figure 74).451 The corresponding 3,5,7-trithiacycloheptamaleonitrile 

(344 X = S) however requires the more labile (BU4N)2[Zn(mnt)2] as the starting material 

(Figure 74). Condensation of any of these maleonitrile derivatives gives porphyrazines 

or tetraazaporphyrins while examples also exist where these starting materials were 

employed in mixed condensations to give porphyrazine-phthalocyanine derivatives. 384 

Sulphur containing phthalocyanine derivatives have also been realized using 

different dicyanothiophene derivatives.430•
440

•452
-4

55 Amid these are 2,3- and 3,4-
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R J:CN rJcCN S;cCN s:::CCN X 1 
R CN \_S CN CN CN 

R 
Maleonitriles Chalcogen Atom 3,4-Dicyanothiophenes 3,4-Dicyanothiadiazole 

Substituted 
343 Maleonitriles 345 346 

344 

2,6-Diaminopyridines 2 ,5-Diaminopyrroles 3,5-Diamino-1,2,4-triazoles 

347 348 349 

2, 7-Diaminonaphthalene m-Phenylenediamine 4,4'-Diaminodiphenylamine 

350 351 352 

Figure 74. Examples of some precursors for phthalocyanine-like macrocycles. 
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353 354 355 

c 

0 

356 

Figure 75. Synthesis of dispiromaleonitrile. a) bis-DHP, HCl, Et20, 0 °C, 60%; b) i) 

lithium 2,2,6,6-tetramethylpyperidine, THF, -78 °C; îi) I2, THF, -78 °C, 53%; c) i) NH3, 

MeOH, rt; ii) (CF3C0)20, pyridine, -30 °C tort, 77%.443
,
445 
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dicyanothiophenes440
•
452

•
455 (345) and 3,4-dicyanothiadiazole430 (346) (Figure 74). 

Substituents such as 2,5-amino453
•
454 and alkyl groups455 have been added onto the 3,4-

dicyanothiophene. Note that the corresponding selenophenes,452 selenodiazole430 and 

2,3-dicyanothionaphthalene440 are also available as is N-alkyl-4,5-dicyanoimidazoles.456 

ln most cases, these compounds are prepared via the Rosenmund-von Braun reaction of 

the parallel dibromide.452 However, synthetic pathways from the dicarboxylic acid also 

are possible.440 In the case of the thiadiazole and selenodiazole derivatives, their 

synthesis commences with DAMN (262) and inexpensive thionyl chloride and selenium 

oxide.430 The cyclotetramerization ofthese compounds tend to involve mixed 

condensations to the tribenzoporphyrazines. Along with tribenzoporphyrazines formed 

from the precursors mentioned above are thiophenotribenzoporphyrazines and 

pyridino[3 ,4]tribenzoporphyrazines. 457
'
458 

Other interesting precursors that lead to pigments related to phthalocyanines are 

fairly simple organic molecules (Figure 74). For example, 2,6-diaminopyridines (347) 

can be used as precursors in mixed condensation reactions to form 

hemiporphyrazines107
•
178

•
459 and similar compounds can be obtained when replacing the 

diaminopyridine with 2,5-diaminopyrrole (348),402 3,5-dl.amino-1,2,4-triazole (349 R = 

H) and 3,5-diamino-1-phenyl-1,2,4-triazole (349 R = Ph). 107 In addition, reacting 

diiminoisoindoline with 2,7-diaminonaphthalene (350) or m-phenylenediamine (351) 

give hemiporphyrazines lacking two of the donating nitrogen atoms.107
•
460 Comparable 

macrocyclic compounds can be obtained by reacting phthalonitriles with diamines such 

as 4,4'-diaminodiphenylamine (352).107 Note that many ofthese compounds are non-

Hückel systems and therefore have significantly different physical, chemical and spectral 
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characteristics. Of particular interest is the previously mentioned 3,5-cliamino-1,2,4-

triazoles (349), which has been used quite extensively in the synthesis of 

triazolephthalocyanines.140
•
169 It turns out that a three unit phthalocyanine-like precursor 

can be prepared from these molecules and a subsequent condensation with 

diiminoisoindolines gives a controlled synthesis of mixed phthalocyanine systems.461 An 

identical procedure has been applied to the synthesis of thiacliazolephthalocyanines as 

well.462 

While a number of interesting and singular phthalocyanine-like macrocycles and 

their prerequisite precursors have been mentioned above, various other examples do 

exist. Clearly, this indicates the rich and important chemistry ofphthalocyanine 

macrocycles and their value in several important applications. Much more attention 

needs to be paid to these unusual phthalocyanine-like macrocycles as they could provide 

the key to unlocking the potential of phthalocyanines. 

IX) Conclusion 

Phthalocyanines have a rich and varied chemistry and an immense potential in a 

vast array of widely diverging fields. They owe this not only to their unique physical, 

chemical and spectral properties but also to the high degree of versatility displayed in 

their synthesis. The variety of possible starting materials for phthalocyanine synthesis 

and the diversified methods for their preparation essentially opens the door for 

phthalocyanine to fulfill some oftheir promise. Not only do countless possibilities exist 

for adding significant and original substituents to the molecule, novel phthalocyanine 

precursors exist that change the very nature of the macrocyclic system. The key to 
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phthalocyanine reaching their potential lies not in developing specific systems where 

phthalocyanines will work but in the design, preparation and modification of their 

precursors so that phthalocyanines ideal for a specific application can be synthesized. 
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Abstract: 

Palladium catalysts offer a rich and highly versatile chemistry for the synthesis of 

novel porphyrins and phthalocyanines. These mild and flexible reactions have been used 

extensively in the preparation of interesting porphyrins and phthalocyanines, either in the 

synthesis of substituted precursors or the modification of pre-existing macrocycles. For 

these tetrapyrrolic compounds, metal-mediated reactions such as these offer extensive 

advantages, which have been ta.ken advantage of in order to add novel substituents, 

synthesize naturally occurring molecules and prepare multi-macrocyclic arrays. This 

review gives an overview of the use of palladium catalysts in the synthesis of porphyrins 

and phthalocyanines along with the applications of some of the compounds prepared. 

Keywords: porphyrins, phtbalocyanines, palladium catalysts, Heck reaction, Suzuki 

reaction, Stille coupling, multiporphyrin arrays 
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Introduction 

Tetrapyrrolic macrocycles are found throughout nature and serve a number of 

essential biological functions. Porphyrins such as haem and chlorins including the 

macrocycles found in chlorophylls not only serve to transport oxygen through our bodies 

and transform light into useful energy but have also been extensively studied due to their 

unique physical, chemical and spectral properties, Synthetic tetrapyrrolic analogs such as 

phthalocyanines have also been examined in great detail due to their increased stability 

and improved spectroscopie features. 

In addition to their traditional applications as dyes, photoconducting agents in 

photocopying devices and catalysis for numerous chemical reactions [1,2], the 

importance of phthalocyanines is rapidly growing in man.y other fields. These include 

chemical sensors [3], electrochromism [4], molecular metals [5], liquid crystals [6], 

photosensitizers for photodynamic therapy [7-10] and non-linear optical applications 

[11]. Wide-ranging applications such as these call for new synthetic methods with 

greater control of regioselectivity and access to diverse types of substituents. 

The unique properties of porphyrins lead to their importance in the development 

of molecular optoelectronic gates and switches [12], molecular wires [13], 

photoinducable energy [14) or electron-transfer systems [15,16), light-harvesting arrays 

[17], unidimensional conductors [18) and semiconductors [19), enzyme models [20,21) 

and photosensitizers for photodynamic therapy [10,22]. Of particular importance is the 

preparation of multiporphyrin arrays as they may provide insight into the mechatùsms of 

photosynthesis and energy transfer processes. In addition, the synthesis of substituted 

porphyrins is of considerable chemical interest as slight changes in the substituents can 
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significantly alter the fundamental properties of the porphyrin macrocycle. Attachment 

of unusual organic moieties and novel functional groups to the porphyrin periphery often 

involves elaborate and multistep synthetic strategies and tedious purification procedures. 

Furthermore, potential incompatibility between a component in the synthetic strategy and 

the conditions used for cyclization greatly limits the functional groups that can be present 

during synthesis. 

Transition metal-catalyzed reactions are powerful tools in organic synthesis. 

Palladium-catalyzed reactions (23) such as the Heck (24,25), Stille (26,27) and Suzuki 

reactions (28-30] in particular have several features that make them extremely useful and 

versatile. Palladium offers a number of possibilities for carbon-carbon bond formation 

and can tolerate many different functional groups such as carbonyl and hydroxyl groups. 

The mild reaction conditions required for these reactions make them ideal for the 

synthesis of substituted porphyrins and phthalocyanines. Other advantages include high 

chemical yields, facile reaction procedures, readily accessible starting materials and short 

synthetic sequences. 

Palladium in Porphyrin Synthesis 

Palladium-catalyzed reactions have been used extensively in the preparation of 

novel porphyrins. ln addition to the above-mentioned advantages, these reactions 

provide for the special needs in porphyrin synthesis. The mild, non-forcing reaction 

conditions prevent metalation or transmetalation from occurring. Furthermore, palladium 

does not insert into porphyrins unless high temperatures are employed [31]. Finally, 

palladium-catalyzed reactions can be carried out at low concentrations, an important 

requirement with the low intrinsic solubilities of porphyrins. These reactions have been 

452 



used to synthesize novel precursors for traditional porphyrin synthesis along with the 

preparation of naturally occurring porphyrins, porphyrins bearing novel substituents and 

oligomeric conjugated porphyrin arrays. 

a) Synthesis of Porphyrin Precursors 

Traditional synthesis of porphyrins usually involves the acid-catalyzed 

condensation of aldehydes with pyrroles [32]. While most of the work done with 

palladium catalysis involves the modification of pre-existing macrocycles, some attention 

has been given to the use of this chemistry to form novel aldehydes and pyrroles for 

porphyrin synthesis. In a study concerning the stepwise synthesis of porphyrin 

bioorganic model systems [33,34), 2,6-dimethyl-4-bromobenzaldehyde was treated with 

trimethylsilylacetylene in triethylamine using tetrakis(triphenylphosphine)palladium(O) 

(Pd(Ph3P)4) as a catalyst to afford the ethynyl-substituted benz.aldehyde (Figure l ). 

Condensation of the protected alkynyl aldehyde with pyrrole lead to symmetric meso-

tetraarylporphyrins while asymmetric porphyrins were formed via a mixed aldehyde 

condensation. The resulting alkynyl-substituted porphyrins can be readily deprotected to 

give terminal alkynes, which can be coupled to form oligomeric porphyrin arrays as is 

described below. In addition, novel furyl-, thienyl- and dipyrromethane precursors have 

been prepared in order to synthesize porphyrin building blocks containing one sulfur or 

oxygen atom in place of nitrogen in a designated site in the porphyrin core [35]. This 

allows fine-tuning of the properties of the porphyrin macrocycle, possibly optimizing 

their usefulness in preparing biomimetic energy transduction systems. 

Palladium-catalyzed carbonylation was used to form novel pyrrole diesters in a 

two step protocol in fair yields (Figure 1) [36). Condensation of the resulting compound 
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MeOH 

Figure 1. Examples of the use of palladium-mediated reactions in the synthesis of 

porphyrin precursors [33,36] 
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with parafonnaldehyde in the presence of boron trifluoride etherate gave octasubstituted 

porphyrins. Novel dodecasubstituted porphyrins were also prepared using appropriately 

substituted aldehydes during the condensation. The yields of these porphyrins were low 

due to their inherent instability caused by the steric strain and resulting non·planarity of 

the porphyrin core. These porphyrins were investigated for their mesogenic properties 

and their ability to self-organize in well-ordered fluid structures. 

b) Modification of Porphyrin Macrocycles 

Even with these examples, the majority of the studies done encompassing the 

synthesis of porphyrins have involved the modification of the porphyrin periphery using 

palladium-catalyzed reactions to either prepare naturally occurring porphyrins or add 

novel functionality to the macrocycle. The readily availability and controlled synthesis 

of halogenated and tritolylated porphyrins [37-42] along with the stability of porphyrins 

towards mercuration [37,43] give the porphyrin the necessary functionality for 

palladium-catalyzed reactions. As was mentioned previously, the controlled reactivity 

along with the neutral, mild conditions involved prevents metalation and maintains the 

porphyrin macrocycle intact. Both ~- and meso-positions along with meso-aryl 

substituents can be modified by this procedure in good yields, arriving at novel functional 

groups on the porphyrin that can greatly influence the properties of this macrocycle. 

Naturally occurring porphyrins are usually synthesized using synthetic routes 

starting from pyrroles. Such schemes, while avoiding the necessity of regioselectively 

adding substituents to cyclized macrocycles, preclude the preparation of a large number 

of porphyrins due to the length and complexity of the synthetic procedure. Modification 

of pre-existing porphyrins to prepare naturally occurring porphyrins avoids these 
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problems and allows ready access to several porphyrin analogs that would otherwise be 

difficult to prepare. The controlled mercuration of de-qteroporphyrin IX was shown and 

the resulting mercurated compounds were used in the synthesis of coproporphyrin III, 

harderoporphyrin, isoharderoporphyrin and S-411 porphyrin [44] using the chemistry 

developed by Heck [45]. For instance, treatment of 2,4-dimercurated zinc(Il) 

deuteroporphyrin IX (formed by reacting zinc(II) deuteroporphyrin IX dimethyl ester 

with mercuric acetate in methanol, followed by addition of aqueous sodium chloride) 

with methyl acrylate in the presence of triethylamine and LiPdCh (generated in situ from 

PdCh and LiCI) followed by catalytic hydrogenation and demetalation lead to 

coproporphyrin III as its tetramethyl ester in a 37% overall yield (Figure 2) [44]. Similar 

chemistry has been exploited in the syntheses of both novel substituted porphyrins and 

chlorins [43]. ~-Substitution was accomplished by either mercurating the macrocycle or 

by adding arylmercurials to unsaturated substituents on the porphyrin. Substituents 

added include methoxystyryl, nitrostyryl, carbomethoxystyryl and sulphonylstyryl groups 

along with ferrocene. Finally, after numerous attempts using various conditions and 

some difficulty in preparing the necessary precursors, zinc complexes of various 

vinylporphyrins and chlorins were successfully reacted with an acetyl-protected 5-

chloromercuriuridine catalyzed by LiPdCh to give fair yields of the corresponding 

nucleoside adducts [46]. Note that the desired trans-vinyl isomer was obtained surprising 

with equal arnounts of a gem-isomer. Recently, porphyrins coupled with nucleosides 

have attracted attention owing to their strong tumouricidal activity and potential as 

inhibitors of HIV replication. While yields were not great in this study, the 

pharmaceutical potential of such compounds makes them of extreme importance. 
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CIHg CH3 H3CC02CH2CH2 CH3 

H3C HgCI H3C CH2CH2C02CH3 

a,b,c ... 

H3C CH3 HJC CH3 

CH2 CH2 CH2 CH2 
1 1 1 1 

CH2 CH2 CH2 CH2 1 1 1 1 
C~CH3 C~CH3 C02CH3 C~CH3 

a= methyl acrylate, PdCl2 , LiCI, DMSO, THF, EtaN, b = TFA 

c = 10% Pd/C, 97% fonnic acid, 35% perchloric acid 

Figure 2. Synthesis of coproporphyrin III tetramethyl ester using palladium catalyst [44] 
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a,b,c 
Toi ---.,11o- Toi 

Toi Toi 

OCH3 

~I ~ B(OHl:! 
a = y , Pd(P1l:3P)4, K:!C~. toluene, 90°C 

OCH3 

Figure 3. Synthesis of quinonylporphyrins via palladium-catalyzed cross-coupling 

reaction [49,50] 
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Numerous other functional groups have been added to the porphyrin macrocycle 

at both the (3- and mesa-positions using a wide variety of palladium-catalyzed reactions. 

The Suzuki reaction between organic halides and organoboranes was taken advantage of 

in order to add (3-aryl substituents [47,48]. (3-Monobromo-, (3-tetrabromo, and 13-

octabromoporphyrins all underwent smooth Suzuki cross-coupling with various p-

substituted aryl boronic acids to give the corresponding aryl substituted porphyrins in 

excellent yields. Electron-donated and withdrawing groups were introduced equally as 

well with the only prerequisite being completely anhydrous conditions. The 13-

brominated porphyrins are easily obtainable by controlled bromination, thus providing 

easy access to aryl-substituted porphyrins without the need for the tedious 

chromatographie separation of regioisomers needed when using a mixed condensation of 

porphyrin precursors. Analogously, palladium-catalyzed cross-coupling reactions 

between (2,5-dimethoxyphenyl)boronic acid and porphyrin meso-aryl meta and para 

triflates were carried out using catalytic amounts of Pd(Ph3P)4 and 2 equivalents of 

anhydrous potassium carbonate in toluene at 90°C for 2 hours under an inert atmosphere 

[49,50]. Following deprôtection with boron tribromide and oxidation with DDQ, the 

corresponditl-g quinonylporphyrins were obtained (Figure 3). Both mono- and 

tetraquinonylporphyrins were synthesized. These compounds may possibly be used as 

electrocatalysts where the reducible quinones can serve as electron reservoirs to facilitate 

multi-electron transfer reactions. In addition, chlorophyll and quinones are precisely 

positioned in photosynthetic reaction centers, making this new quinonylporphyrins 

models for the reactions involved in photosynthesis. 
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Ph 
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Figure 4. Example ofHeck alkynylation in the synthesis ofunsymmetrically meso-

substituted porphyrins [ 41] 
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f3- and meso substituents have also been added to the porphyrin core using the 

Heck alkynylation reaction between aryl halides and terminal alkynes. f3-Substituents 

were added by reacting various brominated porphyrins with terminal alkynes [ 51]. 

Reaction rates and conversion ratios were dependent on steric effects, which can become 

prominent in f3-substituted porphyrins. Typical reaction conditions involved catalytic 

quantities of bis(triphenylphosphine)palladium(ll) chloride (P(Ph3P)2Ch) and copper(I) 

iodide (Cul) in a mixture of triethylamine and dimethylformamide (DMF). Nickel and 

zinc 3(8)-monoiododeuteroporphyrin IX dimethyl ester was also modified using this 

methodology. Similarly, this work was extended to meso-p-phenyl groups, giving high 

yields on the resulting meso-alkynyl-substituted products. Meso-p-phenyl groups were 

also modified with [4-(N,N-dimethylamino)phenyl]ethyne to give novel push-pull 

porphyrins with interesting nonlinear optical properties [52]. In the meanwhile, Stille and 

Heck reactions between meso-aryl substituents fitted with triflate leaving groups and 

either organostannes or terminal alkynes gave a secondary method towards such meso-p-

alkynylaryl-substituted porphyrins [53]. 

Selective monoiodination with bis(trifluoroacetoxy)iodobenzene-iodine (1.2: 1) 

followed by Heck alkynylation gave access to asymmetrically meso-substituted 

porphyrins [41]. Similar reaction conditions as those mentioned above were used, with 

Pd(Ph3P)2Clz and Cul serving as catalysts and the reaction carried out in the presence of 

the organic base triethylamine, which scavenges the acid formed, thus protecting the 

palladium catalyst from degradation. Terminal alkynes such as 1-octyne, 

trimethylsilylacetylene, 3-butyn-1-ol, 17 a.-ethynyltestosterone and 17 a.-ethynylestradiol 

were used with yields ranging from 50-90% (Figure 4). Metalated porphyrins were 
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necessary to avoid potential metalation by the copper(I) catalyst and demetalation could 

be accomplished using traditional conditions. 

Palladium-mediated cross coupling reactions can be used to add an endless list of 

substituents and functional groups to both the 13- and meso-positions of porphyrins. 

DiMagno et al., for instance, used variations of the Stille coupling reaction to add alkyl, 

vinyl, aryl and pyridyl functional groups to both 13- and meso-halogenated porphyrin 

macrocycles [54,55]. Using an organostannes or organozinc reagents and either 

Pd(PPh3)4 or Pd( dppf) as the catalyst, excellent yields (isolated yields are greater than 

90%) of the substituted porphyrin were obtained (Figure 5 and 6), including high yields 

of perfluoroaryl substituents, which are absence elsewhere in the literature. It was noted 

that the reaction rate depended only on the catalyst used, with the Pd( dppf) reactions 

occurring under much more mild conditions with complete conversion of the starting 

material happening much more rapidly in most cases. Thus, this reaction would appear to 

be unimpeded by steric constraints with substrate electronic features playing the key role 

in determining the reactivity of the halogenated porphyrin template [55]. 

Palladium-catalyzed carbonylation reactions have also been shown to be useful in 

the modification of pre-existing porphyrins [56]. Similar to the reaction used to form 

pyrrole diester precursors, this reaction involves the use of a palladium(O) catalyst to 

mediate the alkoxycarbonylation of zinc meso-aryl btominated porphyrins. In this case, 

yields and conversion ratios depended greatly on the solvent and organic base used, most 

likely due to the limited solubility of the starting porphyrins. However, complete 

conversion of zinc-meso-{p-bromophenyl)porphyrin could be achieved using 

triethylamine as the base and n-butanol as both the nucleophile and the solvent. While 
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longer reaction times were needed, catalytic carbonylation of the dibrominated porphyrin 

can the corresponding octaalkoxycarbonylporphyrin in good yield. In addition, zinc 

te1rabutoxytetrabenzoporphyrin was also prepared using the same chemistry and it was 

thought that after transmetalation with palladium, the complex could be quantitatively 

deesterified, giving the tetracarboxylated derivative, a novel water-soluble near-IR 

phosphorescent dye. 

c) Synthesis of Multiporphyrin Arrays 

Perhaps of more importance than the addition of novel substituents is the use of 

palladium-catalyzed reactions in the formation of oligomeric porphyrin arrays. The 

preparation of porphyrin arrays is an important area of research, not only for their 

possible application in the eluciclation of natural photosynthetic mechanisms but also for 

probing the funclamental physical and chemical properties of the porphyrin chromophore. 

Furthermore, such arrays are vital in the development of molecular electronic devices for 

applications such as optical sensors and other optoelectronic materials. Porphyrin-based 

catalysts, magnetic materials and photosensitizers for photodynamic therapy also partly 

rely on incorporation of porphyrins into supramolecular systems and polymers. A 

common objective in the fabrication of man y of these macromolecular arrays is the facile 

organization of individual porphyrin molecules into a multichromophoric assembly in 

order to achieve maximal electronic and excitonic interactions. 

Palladium-catalyzed coupling reactions provide a number of desirable features for 

the synthesis of such arrays. They allow for the coupling reaction to be carried out in 

dilute solutions and form the desired product in extremely high yields and high purity. 

Using the appropriate catalyst, these reactions are compatible with both free base and 
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metalloporphyrins. This is particularly important in synthesizing artificial photosynthetic 

arrays where it is desirable to incorporate both free base and metalloporphyrins in distinct 

arrangements. The readily accessible ethynyl and oligoethynyl bridges are ideal linkages 

that enable unusually high excitonic and electronic coupling between the chromophores 

while providing the appropriate molecular rigidity. Finally, this synthetic protocol allows 

for the stepwise formation of multi-porphyrin arrays using molecular building blocks, 

greatly increasing the degree of control possible in their formation, thus allowing for the 

design of distinct chromophore arrangements. 

With these important and highly desirable characteristics, palladium-catalyzed 

cross-coupling reactions have been extensively used in the synthesis of multi-porphyrin 

arrays and novel molecular geometries. Using the chemistry developed for the addition 

of alkynyl substituents to the porphyrin framework, Therien and collaborators 

synthesized an extended family of acetylenyl porphyrins (Figure 7) from brominated 

(5,15-diphenylporphinato)zinc (ZnDPP) [57]. Trimethylsilylacetylene was added to both 

the J3- and meso positions with a di-meso ethynyl porphyrin was also prepared. These 

porphyrins displayed interesting electronic spectra, the di-meso-ethynyl porphyrin 

showing a distinct splitting of the Soret band due to an incre3$C in conjugation along the 

C2 molecular axis. Bis[(2,2',-5,10,15,20-tetraphenylporphinato)zinc(II)]butadiyne was 

prepared by the Eglinton reaction and this dimer revealed electronic and electrochemical 

properties characteristic of the porphyrin having essentially decoupled ground states. 

These suggest that the two porphyrin macrocycles lie approximately orthogonal to each 

other in this array. On the other hand, bis[S,5',-10,20-diphenylporphinato)zinc(Il)]ethyne 

(the meso-linked dimer) and 5, 15 [bis{ [ (5 ',-10,20-diphenylporphinato )-
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Figure 7. Examples of acetylenyl bridged porphyrins prepared using palladium-catalyzed 

coupling reaction [57] 
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zinc(II)]ethynyl}[l0,20..Wphenylporpbinato] zinc(ll) (the meso linked trimer) was 

prepared by the palladium-catalyzed coupling of desilylated mono and di-meso-ethynyl 

porphyrins with (5-bromo-10,20-diphenylporphinato)zinc. The resulting dimer and trimer 

show significant broadening and usual splitting of the Soret band with a progressive and 

strong red-shift in the Q band with the trimer displaying a broad, strong Q-band 

absorbance centered at 802.2 nm. Such optical characteristics would be indicative of 

strong ground-state electronic interactions between the chromophores and suggest that 

the ethynyl-linked porphyrins are essentially co-planar. Electrochemical results also 

point towards strongly interacting ground-state redox centers and seem to indicate that 

the resulting charge accumulated during the reduction of the porphyrin rings is 

delocalized over the entire oligomer. 

The suitability of these highly coupled porphyrins and thus the immense value of 

ethynyl-bridges and palladium-catalyzed cross-coupling reactions becomes ready 

apparent in the trimeric porphyrin array. This complex is the first synthetic system that 

accurately models the spectroscopie characteristics of specific subunits of a number of 

purple photosynthetic bacteria. Furthermore, the unusual photophysical and 

electrochemical properties of these acetylenyl-bridged porphyrins lend themselves to a 

number of other possible applications including the development of optical sensors, non-

linear optic materials and new photosensitizers for photodynamic therapy. 

Palladium-catalyzed cross-coupling reactions have also been used by Lindsey and 

his group to build ethyne- and butadiyne-linked porphyrins via meso-aryI substituents 

[13,17,31,33-35,58-62]. Such porphyrin oligomers have been extensively used to study 

energy and electron transfer process in such conjugated arrays. Molecular building block 
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strategies were employed to prepare the necessary ethynyl- and iodo-substituted 

porphyrins usually via a mixed condensation of appropriate precursors [33]. These 

porphyrin build blocks were then used to construct multiporphyrin anays (Figure 8). 

Meso-iodoaryl-substituted porphyrins were used due to the increased reactivity of the aryl 

iodides towards the coupling reaction. Solvent mixtures varied depending on the 

solubility of the porphyrins involved and still required an organic base such as 

triethylamine. lnitially, the synthesis of the ethyne-linked porphyrins were carried out 

using Pd(Ph3P)4 as the catalysis, which gave good yields of the desired product along 

with small amounts of the butadiyne-linked porphyrin and other higher molecular weight 

materials. Lower reaction temperatures and inert atmospheres lowered the amounts of 

these impurities. Finally, under these mild conditions, no metalation was observed, 

allowing this procedure to be used to form arrays containing both free base and 

metalloporphyrins, thus allowing the insertion of energy donors (metalloporphyrins) and 

energy acceptors (free base porphyrins) in the same oligomer. 

Cross coupling reaction involving palladium are greatly enhanced by the presence 

of copper(I) halides [23,25,63]. Such co-catalysts are highly undesirable in forming 

multi-porphyrin arrays due to the potential for metalation of free base porphyrins within 

the array. However, it has been shown that reaction rates can be greatly accelerated using 

tri-2-furylphosphine and triphenylarsine as ligands for the palladium catalyst used [64]. 

lt has been demonstrated that optimal ethyne-linked porphyrin trimer formation can be 

achieved using an in situ generated palb1dium catalyst from 

tris(dibenzylideneacetone)dipallaclium(O) (Pd2(dpa)3) and triphenylarsine under an inert 

atmosphere [31,34]. Superior yields were obtained for the butadiyne-linked porphyrins 
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Figure 8. Porphyrin-based building blocks for the molecular construction of 

multiporphyrin arrays [24] 

470 



using tri-2-furylphosphine as the catalytic ligand under aerated conditions. This 

oxidative coupling could also be accomplished using stoichiometric amounts of a 

palladium(ll) compound such as palladium diacetate or bis(triphenylphosphine) 

palladium(ll) chloride. Enyne-linked porphyrins were obtained using Pd(PPha)4 at more 

elèvated temperatures and anaerobic conditions. 

A number of multiporphyrin arrays have been prepared using this chemistry 

having various geometries and functional groups in order to examine factors influencing 

energy-transfer and electronic communication process in oligomeric porphyrins 

[34,35,58-62]. For instance, molecular squares containing four mutually coplanar 

porphyrins were synthesized in order to study the effect of porphyrin geometry on energy 

transfer process [62]. The molecular square was easily synthesized from the 

corresponding cis-substituted diethynyl and diiodo porphyrin building blocks using 

palladium-catalyzed coupling reactions as described above in acceptable yields. Free 

base or zinc porphyrins were placed on altemate corners of the square (Figure 9). The 

absorption spectrum of the molecular square was essentially the sum of the spectra of the 

individual components, indicating a relatively weak electronic interaction among the 

porphyrins. However, illumination of the square at 550 nm, a wavelength absorbed 

primarily by the zinc porphyrin afforded emission almost exclusively from the free base 

porphyrin, th.us indicating an effective energy transfer between the energy donor and 

acceptor. In fact, the yield of energy transfer was 99.5% with the rate of energy transfer 

being identical to that of a free base-metalloporphyrin dimer where there is free rotation 

of the porphyrin rings [59,60]. As such, the molecular orientation of the porphyrin rings 

matters little in the energy transfer processes involved. ldentical results were obtained 
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Figure 9. Porphyrin molecular square used to study the effect of porphyrin geometry on 

energy transfer processes in multiporphyrin array [62] 

472 



using a multiporphyrin array with a free base porphyrin surrounded by four zinc 

porphyrins linked by ethynyl groups [17]. Rapid and efficient energy transfer was 

observed and shown to involve through-bond processes. Conversely, it was determined 

that the nature and symmetry of the HOMO orbital greatly influenced the rate of energy 

transfer processes despite similar through-bond processes being involved [61]. Water-

soluble amphiphilic porphyrin dimers and trimers have also been prepared to enable 

studies of transmembrane charge separation, electron transport and signal transduction 

through membrane bilayers (Figure 8) [58]. ldentical palladium-catalyzed chemistry was 

employed with modification of the oligomer periphery leading to hydrophilic groups on 

the ends of the porphyrin arrays while the array itself is extremely hydrophobie. Thus, 

amphiphilic array was obtained and can be easily incorporated into vesicles. 

Molecular photonic wires have also been prepared using identical palladium· 

catalyzed cross-coupling reactions [13,34]. ln this case, linear arrays of zinc porphyrins 

are linked by ethyne bridges with terminal positions fitted with an optical input (a boron 

dipyrromethene dye) and an optical output (a free base porphyrin) (Figure 10). 

Illumination at 485 nm, the input dye absorbs the majority of the light while emission is 

92% due to the free base porphyrin, indicating again a very effective energy transfer 

through the ethyne linkages. 

A number of studies have involved the use of bis(phenylethynyl)arylene-linked 

porphyrins, either in the preparation of soluble conjugated metalloporphyrin polymers 

[ 65] or in the synthesis of porphyrin dimers for the study of intramolecular energy 

transfer [66,67]. ln these cases, linkage involved the coupling of meso-alkynylaryl-

substituted porphyrins with various iodobenzene derivatives. These reactions can either 
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Figure 10. A porphyrin-based molecular wire [13,34] 
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be done stepwise, progressively adding each component [67] or in a one-step process to 

form a conjugated porphyrin-based polymer (65]. In addition, 

bis(phenylethynyl)phenylene linkers can be synthesized onto protected aldehydes, which 

following deprotection, can be used to synthesize the desired ortho, meta and para-

bis(phenylethynyl)phenylene-bridged zinc-free base porphyrin dimers directly, using 

traditional porphyrin synthetic techniques (66]. Soluble conjugated metalloporphyrin 

polymers displayed high electron coupling along the conjugation of the polymer 

backbone and displayed strong red-shifted Q bands that were highly solvent dependent 

(65]. Such strong dependence opens the opportunity to use these polymers as optical 

sensors and molecular switches. Copper-free palladium-catalyzed cross-coupling of aryl 

iodides and terminal alkynes was used for the stepwise formation of porphyrin dimers 

linked diethynylphenylene bridges involving benzene, naphthalene and anthracene (67]. 

Triphenylarsine was used as a ligand for the palladium(O) catalyst to improve yields and 

rates of reaction. In the meanwhile, the preparation of ortho, meta and para-

bis(phenylethynyl)phenylene-bridged porphyrin dimers allowed for the examination of 

the e:ffect of molecular geometry on the energy transfer mechanism involved [66]. Using 

picosecond time-resolved fluorescence spectroscopy, the decay of the zinc porphyrin 

fluorescence was shown to correspond to an increase in the free base porphyrin 

fluorescence. Furthermore, it was shown that the 1,4-substituted bridge (para) has 

stronger electronic interactions than the 1,2- (ortho) and the 1,3-substituted ones (meta). 

Finally, similarities between calculated rates of energy transfer between the ortho and 

meta bridges clearly demonstrates that energy transfer entails through-bond interactions 

since the center-to-center distance is much shorter in the meta-bridge, and thus larger 
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rates would be expected if dipole-dipole interactions were involved. Similar bridged 

compounds were prepared using palladium(ll) chloride and triphenylphosphine in 

triethylamine using nickel meso-ethynyloctaethylporphyrin and 1,2- and 1,4-

diiodobenzene [68]. This procedure lead to important yields of the corresponding 

butadiyne bridges porphyrins, which could be removed using extensive chromatography. 

Reactions with 1,2-diiodobenzene were also complicated by much slower reaction rates, 

due to steric hindrance and the decomposition of the product into more polar compounds, 

potentially via a known cis-enediyne rearrangement. Finally, butenyne-linked porphyrins 

were also prepared via the palladium-catalyzed coupling of an alkynylporphyrin and 

nickel meso-(p-bromovinyl)octaethylporphyrin. This was the first example of such a 

linked porphyrin dimer. 

Porphyrin dimers and trimers have also been synthesized using bridges linked to 

the P-position. Either linking P-alkynyl porphyrins with iodinated benzenes [69] or via 

oxidative coupling [70] or attaching of J3-halogenated porphyrins with vinyl benzenes 

[71] or a.,J3-unsaturated carbonyl compounds [72] have been accomplished. Phase 

transfer conditions were used for palladium-catalyzed coupling of zinc(Il)-

monobromodeuteroporphyrin dimethylester with 1,4-divinyl- and 1,3,5-trivinylbenzene 

[71]. Coupling was accomplished in DMF using tetra-n-butyl-ammonium bromide, 

potassium carbonate, lithium chloride and palladium(II) acetate. Of interest is that the 

Soret band of the porphyrin dimer is further red-shifted than that of the trimer, indicating 

less conjugation in the meta-Iinked bridge. Similar conditions were used for the coupling 

reaction of zinc(Il)-monobromodeuteroporphyrin dimethylester with varions a.,J3-
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unsaturated carbonyl compounds [72]. This reaction is plagued by low yields of the 

coupled product and increased yields of the corresponding monomer. 

Oxidative coupling of (3-ethynylmetalloporphyrins can be achieved using 

Pd(Ph3P)4 and copper iodide as catalysts in the presence of triethylamine [70]. While the 

electronic spectra of these dimers show some perturbation, it is far less than that observed 

above, seeming to indicate that meso-connection leads to greater electronic coupling 

between the individual porphyrin macrocycles. Such (3-ethynylmetalloporphyrins can 

also be coupled to p-iodotoluene to form novel porphyrins, or to o-diiodobenzene and 

1,3,5-triiodobenzene to form porphyrin dimers and trimers [69]. Traditional conditions 

(Pd(Ph3P)4, Cul, Et3N, toluene) were used. Note that both of the 13-

ethynylmetalloporphyrins used were prepared via modification of formylated porphyrins. 

A large number of other novel porphyrin oligomeric geometries have been 

prepared using palladium-catalyzed cross-coupling reactions. Gossauer and this group 

have successfully prepared porphyrin trimers and oligomers starting from 1,3,5-

triiodobenzene [73]. Substitution of the iodo groups with trimethylsilylacetylene using 

traditional palladium-catalyzed Heck conditions gave poly(phenylacetylene )linkers 

capable of coupling with iodinated porphyrins following deprotection. Longer 

poly(phenylacetylene )linkers can be added either to the benzene core or to the iodinated 

porphyrins, providing the terminal phenyl groups contains an iodo leaving group. 

Furthermore, selective alkynylation of the starting 1,3,5-triiodobenzene can lead to 

unsymmetrical trimers where the individual porphyrin macrocycles are separated from 

the benzene core by different lengths. Note that the opposite approach in which the 

reactive terminal ethynyl groups are located on the porphyrin and the iodine leaving 
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groups in the core was discarded due to the formation of butadiyne-linked porphyrin 

dimers as byproducts. This group has also prepared dentritic porphyrin hexamers [73] 

along with tripodaphryins (Figure 11 ), which are tetrahedral assemblies in which a 

porphyrin macrocycle situated on the top of the molecule is supported by three legs 

consisting of linear arrays of covalently linked rigid constitutive elements usually with a 

terminal porphyrin molecule [74]. These compounds are based on tetrakis(4-

iodophenyl)methane and are synthesized via the palladium-catalyzed coupling of 

tetrakis( 4-ethynylphenyl)methane with 5-( 4-iodophenyl)-l 0, 15,20-triphenylporphine or 

the metalated equivalent Elongation of the legs of the molecule can be accomplished by 

using phenylacetylene units as spaces, either attached to the methane core or to the 

porphyrins as describe above. Ali of these compounds were synthesized via the stepwise 

addition of phenylacetylene linkers using various palladium catalysts. Addition of 

phenylacetylene linkers to the tetrakis( 4-iodophenyl)methane or 5-( 4-iodophenyl)-

10, 15,20-triphenylporphine was accomplished using Pd(Ph3P)2Ch and Cul. Addition of 

further linkers onto this core, along with to the 1,3,5-triiodobenzene core involved 

Pd(Ph3P)4 and Cul. Coupling of these cores to 5-(4-iodophenyl)-10,15,20-

triphenylporphine also used Pd(Ph3P)4 and Cul. However, in cases where mixed 

metalation was desired in the final oligomer, Cul was not used and it was shown that 

triphenylarsine greatly increased the reaction rates and the overall yields of the reaction 

[73]. In fact, it was found that the use of triphenylarsine greatly increased the overall 

efficiency of the coupling reaction. Finally, note that owing to the dimensions of the 

molecules, no intramolecular interactions between the chromophores were observed 

[73,74]. Other unsymmetrically cyclized porphyrin oligomers have also been synthesized 
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using palladium-catalyzed cross-coupling reactions and have been shown to be useful as 

cavities for molecular recognition [75]. 

Palladium in Phthalocyanine Synthesis 

Unlike the case of porphyrins where palladium-catalyzed reaction were 

extensively utilized on pre-existing macrocycles, palladium-catalyzed reactions involving 

phthalocyanine synthesis have primarily involved the preparation of precursors. Only 

recently have attempts been made to take advantage of these mild and highly versatile 

reactions in modifying phthalocyanine macrocycles themselves. There are probably a 

number of reasons for this. Phthalocyanines are notoriously insoluble as compared to 

porphyrins, making the coupling reaction difficult in a number of potential cases. While 

the necessary porphyrin precursors, in particular the halogenated porphyrins, are readily 

available via controlled reactions and facile purification, such phthalocyanine-based 

precursors are not so easily obtained, generally leading to complex isomeric mixtures 

from which the desired product can be difficult to isolate and purify. Furthermore, most 

of the palladium-based chemistry involving porphyrins bas been directed towards the 

preparation of multiporphyrin arrays, either in the synthesis of precursor, porphyrins or in 

the coupling of porphyrins. Such arrays, while of interest, are not nearly so important in 

the case of phthalocyanines, helping to explain the lag in the use of palladium-catalyzed 

reactions in modifying pre-existing phthalocyanine macrocycles. 

a) Synthesis of Phthalocyanine Precursors 

Leznoff and his group have done extensive work using palladium-catalyzed 

reactions in forming new precursors for the synthesis of phthalocyanines. For instance, 

multisubstituted phthalonitriles, naphthalenedicarbonitriles and phenanthrene-
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tetracarbonitriles were synthesized using multistep reaction procedures involving 

palladium catalyzed coupling reactions [76]. Ethyne and ethene linked phthalonitriles 

were synthesized via the Heck and Stille coupling of 3-iodophthalonitrile with either 

acetylene with Pd(Ph3P)2Ch and triethylamine or trans-1,2-bis(tri-n-butylstannyl)ethene 

with Pd(Ph3P)4. Similarly, 4-iodonapthalonitrile was coupled using identical procedures. 

Finally, the cis and trans-ethene-linked phthalonitriles were induced to cyclize 

photochemically to produce the corresponding 2,3,5,6- and 2,3,6,7-

tetracyanophenanthrene. 

4,5-Diiodophthalonitrile was synthesized and used to prepare a series of alkynyl-

substituted phthalonitriles using copper-free palladium(II) catalysis [77,78]. Note that the 

more steric strained 3,3-dimethyl-l-butyne required more forcing conditions using Cul as 

a co-catalyst [77]. The copper co-catalyst was also used to form 4,5-bis(t-

butyldimethylsilylethynyl)phthalonitriles [78]. Simple phthalonitriles were cyclized 

using lithium pentoxide to the corresponding octaalkynyl-substituted phthalocyanines 

[77]. The 4,5-bis(t-butyldimethylsilylethynyl)phthalonitrile was cyclized by heating in 

N,N-dimethylaminoethanol under continuous bubbling of ammonia gas [78]. In addition, 

3,4-dibromophthalonitrile was synthesized and was successfully coupled with 3,3-

dimethyl-l-butnyne using the same conditions are used for the 4,5-diiodophthalonitrile 

[78]. While the reaction did not go to completion, good yields of the desired 3,4-di(3,3-

dimethyl-l-butynyl)phthalonitrile were obtained. This phthalpnitrile readily cyclized 

when treated with lithium 1-pentoxide to give the first known l,2,8,9,15,16,22,23-

octasubstituted phthalocyanine. Metalation of the octaalkynyl-substituted 

phthalocyanines with zinc acetate in refluxing DMF was unsuccessful, with incomplete 
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metalation and some bleaching of the dye. Zinc was inserted by Q'eating the dilithium 

phthalocyanines in situ with zinc acetate at 60°C [77]. The resulting phthalocyanines 

exhibited strong red-shifts in their Q-band by as muchas 1 eV wr alkynyl group as 

compared to unsubstituted phthalocyanines. NMR analysis of these phthalocyanines 

were undertaken and clearly demonstrated important dependences on the temperature and 

the concentration of phthalocyanine used [77]. Electrochemical and 

spectroelectrochemical analysis of [2,3,9, 10, 16, 17 ,23,24-octa(3,3-dimethyl-1-

butynyl)phthalocyaninato }cobalt(ll) complex showed unusual electrochemical behavior, 

presumably due to the high solubility of these complexes and thus, their high degree of 

aggregation [79]. 

Coupling of 4-iodophthalonitrile with acetylene using the same Heck conditions 

as described above followed by either partial or complete hydrogenation of the triple 

bond gave phthalonitrile dimers. Following transformation into the corresponding 

diiminoisoindolines, binuclear phthalocyanines were synthesized using traditional 

procedures [80,81]. In addition, butadiyne-linked dimers were also prepared and 

hydrogenation ultimately gave butane-linked phthalocyanines [80]. The electronic 

spectra of the resulting ethynyl and ethene-linked phthalocyanine dimers were examined 

[81 ]. Interesting, the trans-ethene binuclear phthalocyanine had the spectra of a typical 

mononuclear phthalocyanine. On the other hand, the cis isomer has a blue-shifted Q-

band, consistent with extensive intramolecular coupling. Cobalt complexes of these 

phthalocyanines were deposited as monolayer films on graphite electrodes and tested 

against the reduction of oxygen. Unfortunately, the expected four-electron reduction was 

not observed [81]. In the meanwhile, the spectroscopie properties of the ethane and 

482 



butane-link binuclear phthalocyanines were typical of phthalocyanine aggregates while 

their NMR spectra display a strong concentration dependence [80]. 

Palladium-catalyzed reactions have also be used to synthesize nove! alkyl 

substituted phthalocyanines. Selective coupling of l ,2-dibromo-3,6-diiodo-4,5-

dimethylbenzene and l,2-dibromo-3,6-diiodo-4,5-dihexylbenzene with 1-heptyne and 1-

hexyne using Pd(Ph3P)2PdCli, Cul, and triethylamine gave dibromobenzene substituted 

with two alkyl chains and two alkynyl chains. [82]. Following conversion to the 

phthalonitrile in a Rosenmund von Braun reaction with CuCN and catalytic 

hydrogenation gave tetraalkylphthalonitriles. Subsequent cyclization gave novel 

hexadecaalkyl-substituted ruthenium phthalocyanines. Other novel alkyl substituted 

phthalonitriles have been prepared bearing trimethylsilylethane, and 3,3-dimethylbutane 

substituents [80] while the 4,5-dialkynylphthalonitriles can be readily hydrogenated to 

give 4,5-dialkylphthalonitriles as well [77]. Furthermore, alkynyl-substituted 

phthalonitriles have been used to synthesize half-phthalocyanine intermediates for the 

synthesis of adjacent di-substituted phthalocyanines [83]. Stille coupling between 4-

iodophthalonitrile and various aryl organostannanes has also been used to prepare 

phthalonitriles bearing novel aryl substituents [84], including phenyl, dimethoxybenzene 

and methylpyridine. In this case, Pd2( dpa)3 was found to be the most acceptable 

palladium(O) source. 

Our own group has worked extensively on the synthesis of novel water-soluble 

phthalocyanines and has used palladium-catalyzed reactions to add functional groups that 

will enhance the solubility of these macrocycles in aqueous conditions. 4-

Diethoxyphosphinyl phthalonitrile was prepared [85] using well-known palladium 
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chemistry [86] by reacting 4-iodophthalonitrile with diethyl phosphite in the presence of 

Pd(Ph3P)4 and triethylamine under an inert atmosphere. Complexation was accomplished 

by heating in the presence of a metal ion using quinoline or imidazole as a solvent. 

Hydrolysis of the diethylphosphinyl group was accomplished by heating the complex in 6 

N HCI. The resulting phthalocyanines were highly water-soluble and display interesting 

aggregation properties. On the other hand, the Michaelis-Arbuzov reaction was used to 

synthesize 4-( diethylmethylphosphonato )phthalonitrile [87 ,88] while phosphonate 

derivatives with butyl spacer chains were prepared by treatment of 4-iodophthalonitrile 

with but-3-yn-l-ol under Heck conditions to yield 4-(1-hydroxybut-3-ynyl)phthalonitrile. 

Catalytic hydrogenation gave 4-(1-hydroxybutyl)phthalonitrile, which readily reacted 

with diethyl chlorophosphate to give the corresponding phosphonated phthalonitrile [89], 

which could be simply cyclized to the phthalocyanine. Similarly, palladium-catalyzed 

alkynation of 4-iodophthalonitrile with propyn-1-ol and hex-5-yn-l-ol, followed by 

catalytic hydrogenation gave 4-(propylhydroxy)phthalonitrile and 4-

(hexylhydroxy)phthalonitrile, both of which could easily be transformed into the 

hydroxylated phthalocyanine [90]. 

b) Modification of Phthalocyanine Macrocycles 

As was mentioned above, very few examples exist in the literature for the 

modification of pre-existing phthalocyanines using palladium-based chemistry. 

However, the immediate benefits of this methodology were readily apparent. In attempts 

to synthesize tetraethynylphthalocyanines, it was observed that cycliz.ation of 4-

ethynylphthalonitrile [80] in N,N-dimethylaminoethanol lead to a complex mixture of 

higher molecular weight compounds [91 ]. Protecting this terminal alkyne with a 
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trimethylsilyl protecting group still gave significant yields of oligomeric material, 

probably due to partial removal of the protecting group under the harsh conditions used 

for cycliz.ation. Alkynation of metallotetraiodophthalocyanine with 2-methyl-but-3-ynol 

in the presence of Pd(Ph3P)iCh and Cul in diethylamine, on the other hand, gave high 

yields of the protected tetraalkynylphthalocyanines (Figure 12). Metal-free 

phthalocyanines were prepared using Pd2( dpa)3 and triphenylarsine as the catalyst for the 

reaction as it was observed that introduction of a copper ion occurred when Cul was 

present in the reaction mixture. Conversely, acceptable yields were obtained for the same 

phthalocyanines via the cyclotetrameriz.ation of 4-(3-hydroxy-3-methyl-1-

butynyl)phthalonitrile [92]. Removal of the dimethylcarbinol-protecting group was 

achieved by treatment with sodium hydroxide. The resulting tetraethynylphthalocyanines 

were scarcely soluble in organic solvent, pointing out one problem when working with 

phthalocyanines. However, the utility ofpalladium-catalyzed techniques was obvious. 

Our group has used palladium-catalyzed cross-coupling reactions to synthesize 

novel unsymmetrically substituted phthalocyanines [93]. Zinc(II) tri(t-butyl)-4-

iodophthalocyanine was used as a starting material and was prepared via a mixed 

condensation. Treatment of this phthalocyanine with trimethylsilylacetylene in the 

presence of Pd(Ph3P)iCh and Cul in toluene containing triethylamine readily gave the 

trimethylsilylacetylene-substituted phthalocyanine. The acetylene derivative was 

obtained by removing the trimethylsilyl-protecting group with dilute aqueous sodium 

hydroxide in methanol. This terminal alkyne could be used as starting material for the 

preparation of dimeric phthalocyanines using the same reactions used for porphyrins. 

Furthermore, other terminal alkynes can be used to add phenyl, pyridinic, purinic and 
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Figure 12. Synthesis oftetraethynylphthalocyanines using palladium-mediated coupling 

reactions [91] 
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Figure 13. Synthesis ofmonofunctionalized phthalocyanines using Heck, Stille and 
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estrogenic groups to the macrocycle (Figure 13). Similar products were obtained from 

the Heck reaction of a monoiodobenzonaphthaloporphyrazine with alkynes. Heck 

reaction conditions can also be used to add alkenes to the phthalocyanine framework and 

this has been used to add diethylvinylphosphonate to the macrocycle. Using 

palladium(II) acetate as a catalyst allowed for the coupling with methyl acrylate, thus 

adding carboxylic esters to the list of substituents that can be added. Moreover, Stille 

coupling reactions of organotin reagents such as vinyltributyltin offered another 

technique for preparing phthalocyanine-styrene derivatives (Figure 13). Finally, 

phthalocyanines bearing aryl substituents could readily be synthesized using Suzuki 

cross-coupling with arylboronic acids (Figure 13). Ali this reactions lead to novel 

unsymmetrically substituted phthalocyanines and demonstrate that palladium-catalyzed 

coupling methodologies greatly simplify the preparation of novel phthalocyanine 

derivatives. 

Palladium-catalyzed reactions have also been used to prepare dimeric 

phthalocyanine arrays with extended conjugation [92], much like in the case of 

porphyrins. 4-(3-hydroxy-3-methyl-1-butynyl)phthalonitrile was synthesized by reacting 

4-iodophthalonitrile with 2-methyl-but-3-yn-2-ol in the presence of Pd(Ph3P)2Ch and 

Cul. The mixed condensation of this phthalonitrile with excess 4-tert-butylphthalonitrile 

in the presence of metal(II) chlorides followed by extensive purification gave the 

corresponding monoalkynylated zinc and nickel phthalocyanines in good yields. 

Deprotection with sodium hydroxide gave the desired temtlnal alkyne. Oxidative 

homocoupling to give butadiyne-linked phthalocyanine dimers was achieved in the same 

way as porphyrins using copper(II) acetate (Eglinton reaction) (Figure 14). Ethynyl-
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linked phthalocyanine dimers were formed by cross-coupling of the terminal alk:yne with 

monoiodophthalocyanine (zinc tri(t-butyl)-4-iodophthalocyanine) (Figure 14). Pd2(dpa)3 

and triphenylarsine were used for the in situ generation of the desired palladium(O) 

catalyst and gave superior yields in shorter reaction times as comparai to Pd(Ph~)2Ch 

and Cul. AH the resulting dimers~ either the homometallic butadiyne-linked 

pbthalocyanines or the homometallic and heterometallic ethynyl-bridged binuclear 

compounds, showed red-shifting and splitting of the Q-band in the electronic spectrum. 

This is presumably due to in increased conjugation and loss of symmetry in the dimers. 

As in the example of porphyrins, such phthalocyanine building bloclcs will allow for the 

stepwise synthesis of multiphthalocyanine arrays with different central metals and 

distinct substituent patterns and could be of interest in nonlinear optical applications. 

Palladium-mediated cross-coupling of alkynes has also been applied 

subphthalocyanines as well. These lower homologs to phthalocyanines display a Hückel 

aromatic delocalized system and their non-planar cone-shaped geometry mak:e these 

molecule attractive targets for nonlinear optical applications. Attempts to extend the 

cortjugation of subphthalocyanines have centered on using palladium-catalyzed coupling 

reactions [94]. Boron triiodosubphthalocyanine readily reacted with terminal alkynes 

such as trimethylsilylacetylene, 1-pentyne, 3-methoxy-1-propyne and p-

nitrophenylacetylene in the presence of Pd(Ph3P)Clz and Cul in triethylamine under an 

inert atmosphere, allowing for the synthesis of highly conjugated trialkynyl 

subphthalocyanines (Figure 15). Q-band absorptions for this highly conjugated 

macrocycles were strongly red-shifted as would be expected. Our lab is presently 

attempting to extend this work to hexaiodosubphthalocyanines. ln addition, we have 
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recently employed the well-known ring enlargement reaction on both the boron triiodo-

and hexaiodosubphthalocyanines, successfully preparing the corresponding 
\ 

phthalocyanines (unpublished results) and are using these phthalocyanines to extend 

palladium-catalyzed reactions to these macrocycles as well. 

Conclusion 

In conclusion, the rich chemistry of palladium catalysts has lead to the preparation 

of vast array of novel porphyrins and phthalocyanines. The mild reaction conditions 

involved and the compatibility with most functional groups make palladium-mediated 

reactions extremely versatile procedures for the synthesis of novel porphyrins and 

phthalocyanines. Moreover, utilizing palladium-mediated methodologies on pre-existing 

macrocycles have several synthetic advantages. 1) A catalytic, quantitative conversion of 

reactants to products in high yields allows for highly functionalized macrocycles. 2) 

Facile reaction conditions permit the addition of sensitive organic functional groups. 3) 

Decoupling of the ring cyclization from the elaboration of the macrocyclic periphery 

facilitates syntheses of target macrocyclic molecules. It is evident that palladium-

catalyzed reactions hold immense promise in preparing new porphyrins and 

phthalocyanines that may well allow them to fulfill a variety of roles in a wide-range of 

applications. 
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1 Abbreviations: AIPcS4, aluminum tetrasulphonated phtbalocyanine; CRM, 

CremophorTM EL; DDQ, 2,3-dichloro-5,6-dicyano-l,4-benzoquinone; DMF, N,N-

dimethylformamide; DMSO, dimethylsulfoxide; FBS, fetal bovine serum; HPLC, high 

performance liquid chromatography; HPPI, 3~-hydroperoxy-l ,2,3,3~8,8a

hexahydropyrrolo[2,3~]indole-2-carboxylic acid; LD50, light dose required for 50% cell 

inactivation; LD90, light dose required for 90% cell inactivation; LDL, low density 

lipoproteins; MgPc, magnesium phthalocyanine; MIT, 3(4,5-dimethylthiazol-2-yl)-2,5-

(diphenyltetrazolium bromide); NLO, non-linear optics; NMP, I-methyl-2-pyrrolidinone; 

PBS, phosphate buffered saline; PEG, polyethylene glycol; Pc, phthalocyanines; PS, 
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ABSTRACT. 

A series of asymmetrically substituted dodecafluorinated phthalocyanines has been 

synthesized via the Kobayashi ring expansion reaction of the corresponding 

dodecafluorinated boron subphthalocyanine with differently substituted 

diiminoisoindolines. The mild reaction conditions employed during this ring expansion 

reaction gave rise exclusively to 3: 1 asymmetrically substituted dodecafluorinated 

phthalocyanines. Metal insertion into the metal-free phthalocyanines was accomplished 

by heating at 40°C in DMF in the presence of zinc bromide. The resulting zinc 

dodecafluorophthalocyanines were formulated as Cremophor™ EL (CRM) oil-water 

emulsions and evaluated as photosensitizers in vitro against EMT-6 mouse mammary 

tumor cells. As compared to the previously studied zinc hexadecafluorophthalocyanine, 

these new asymmetrical zinc dodecafluorophthalocyanines exhibited improved 

photodynamic activity. 

KEYWORDS: Fluorinated phthalocyanines, SAR, photosensitizer, photodynamic 

therapy, cancer 
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INTRODUCTION 

Tetrapyrrolic macrocycles such as porphyrins represent one of the most important 

and more interesting ligand systems, not only due to their ubiquitous presence in Nature 

but also because of their unique physical, chemical, biological and spectral properties. 

Phthalocyanines (Pc) are azoporphyrin derivatives and have been extensively studied in 

order to examine structure-active relationships and to improve upon some of the unique 

characteristics of the tetrapyrrolic chromophore (1). Ever since their serendipitous 

discovery and identification (2-4), phthalocyanines have been used extensively as dyes 

and pigments in the paint, printing, textile and paper industries due to their intense blue-

green color, high dyeing power, photostability, insolubility in most solvents and chemical 

inertness (4). In addition, phthalocyanines have found industrial applicability as 

photoconducting agents in photocopying devices and as catalyst for important industry 

reactions (1,5). In fact, cobalt phthalocyanine derivatives are used in the Merox process 

for the oxidation of sulfur compounds in gasoline fractions (6). More recently, 

phthalocyanines have found high-tech applications in electrophotography (7), ink jet 

printing (8) and data storage (9,10). Even with these important industrial and high-tech 

applications, the potential of phthalocyanines remains relatively untapped. Due to their 

unique chemical and physical properties, the importance of phthalocyanines is rapidly 

growing in a number of other :fields. These fields include chemical sensors (11), 

electrochromism (12), molecular metals (13), liquid crystals (14), Langmuir-Blodgett 

films (15), functional polymers (16), semiconductors (17), non-linear optical applications 

(18) and photosensitizers for photodynamic therapy (19,20). 
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Diverse applications such as those proposed for Pcs require compounds with 

distinct and well-defined physical, chemical and electronic properties. These necessitates 

synthetic approaches for the preparation of single isomers or well-defined isomeric 

mixtures of substituted Pcs and for the preparation of Pcs bearing novel substituents. ln 

addition, for a number of these applications, the physical and chemical properties of Pcs 

are enhanced when the Pcs are asymmetrically substituted. For instance, while 

symmetrically substituted Pcs exhibit large optical nonlinearities and third order 

harmonie generation due to their extensively delocalized l 8-1t electron system, second 

order nonlinear optical effects are only present in non-centrosymmetric molecules and are 

enhanced by electron-donating, electron withdrawing push-pull systems (18). In light of 

this, the synthesis of unsymmetrically substituted Pcs bearing both electron-donating and 

electron-withdrawing functional groups has been investigated (21,22). In addition to the 

potential utility in NLO applications, it has been established that asymmetrically 

substituted phthalocyanines often exhibit increased potential as photosensitizers for 

photodynamic therapy (23,24). 

A number of different strategies have been investigated in order to prepare 

asymmetrically substituted non-centrosymmetric Pcs. The most commonly used 

synthetic approach is the statistical mixed condensation of differently substituted 

phthalocyanine precursors (25). While the yield of the desired substitution pattern have 

been enhanced by carefully selecting the substituents on the phthalocyanine precursors, 

the molecular proportions of the individual precursors and the reaction conditions used, 

the statistical mixed condensation method involving two differently substituted 

phthalocyanine precursors does lead to a mixture of six differently substituted 
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phthalocyanine products which must be separated, usually by chromatography. If the two 

Pc precursors used differ in their solubility significantly in a given solvent, separation of 

the differently substituted Pcs may be relatively simple due to the different solubility of 

the resulting Pcs. However, in most cases, this separation has proven troublesome. 

Another method investigated is a polymer-support route where one of the 

phthalocyanine precursors is covalently attached to a polymer support prior to the 

synthesis of the Pc (26). Following the synthesis of the macrocycle, the polymer bound 

Pc is obtained by filtration and the bond to the polymer is cleaved to yield pure 3: 1 

unsymmetrically substituted Pc. While this method bas been used successfully to prepare 

pure unsymmetrically substituted Pcs, it is limited by the number of functional groups 

that can be covalently bonded to the polymer support. Furthermore, yields are less than 

satisfactory due to the low bonding capacity of the polymer support. 

The Kobayashi ring expansion reaction of boron subphthalocyanines provides an 

efficient method for preparing 3:1 unsymmetrically substituted Pcs (27). Boron subPc 

are the Iower homologs of phthalocyanines, consisting of a tripyrrolic macrocycle (28). 

The loss of an isoindoline unit causes a hypsochromic shift in the Q band of the 

electronic spectra to around 560-580 nm, lending a reddish purple color to solutions of 

these subPcs. While Pcs are extremely stable molecules exhibiting a high degree of 

planarity in their central aromatic core, subPcs have a cone-shaped structure, with the 

boron coordinated in a tetrahedral geometry with a single axial ligand. Their extensively 

delocalized 14-1t electron system and their cone-shaped structure have led to 

investigations in the utility of subPcs in non-linear optical applications (29). In light of 

this, a number of substituted subPcs have been prepared (27-34). In addition, attempts 
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have been made to alter the properties of subPcs by varying the axial ligand coordinated 

to the boron (32,35,36). It has been demonstrated that the less stable subPcs readily react 

with 1,3-diiminoisoindolines in a ring enlargement reaction to yield 3:1 unsymmetrically 

substituted Pcs (27,37). First disclosed by Kobayashi in 1990, this ring enlargement 

reaction unfortunately may lead to a mixture of differently substituted Pcs and it has been 

proposed that the ring enlargement reaction of subPcs is a non-selective multistep 

reaction which depends greatly on the nature of the substituents on the subPcs, the 

reactivity of the 1 ,3-diiminoisodoline, the solvent and the reaction conditions used 

(21,38,39). While this greatly limits the general synthetic utility of this reaction, this 

reaction protocol has been shown to be useful in a number of examples, giving the 

desired 3: 1 unsymmetrically substituted Pc in good yields and as a pure single 

phthalocyanine product (27,37,40-43). 

In order to further investigations carried out by our group using zinc hexadeca-

fluorophthalocyanine and zinc dodecafluorophthalo-4-sulphophthalocyanine, the 

Kobayashi ring expansion reaction of boron dodecafluorosubphthalocyanine (2) has been 

examined. We have found that subPc 2 readily reacts with 1,3-diiminoisoindolines under 

extremely mild conditions to give the corresponding 3: 1 unsymmetrically substituted 

phthalocyanine in good yields and without contamination with phthalocyanines with 

differing substitution patterns. Furthermore, we have found that the starting boron subPc 

2 can be prepared under much more mild conditions than those described in the Iiterature 

(34). The photodynamic activity, both in terms of singlet oxygen generation and in vitro 

photocytotoxicity, of some of the resulting unsymmetrically substituted 

507 



dodecafluorinated Pcs has been determined and has indicated that asymmetry, even in 

lipophilic photosensitizers, improves the photodynamic efficacy of these compounds. 

EXPERIMENTAL PROCEDURES 

Ali solvent were HPLC grade and were used without further purification unless 

otherwise stated. Tetrafluorophthalonitrile, 3-nitrophthalonitrile and 4-tert-

butylphthalonitrile were purchased from TCI America (Portland, Oregon). 1-Dodecyne, 

1,2-dicyanobenzene, 1,2,4,5-tetracyanobenzene, 4-nitrophthalonitrile, 1,3-

diiminoisoindoline, dichlorobis(triphenyl-phosphine )palladium(II}, 10% palladium on 

carbon, 1 M boron tribromide in dichloromethane and zinc bromide were purchased from 

Aldrich (Oakville, Ontario, Canada). 4-Iodophthalonitrile (44), 3-iodophthalonitrile (45) 

and 4,5-diiodophthalonitrile (46), 5-tert-butyl-1,3-diiminoisoindoline, 5-nitro-1,3-

diiminoisoindoline, 5-iodo-1,3-diiminoisoindoline, 4-iodo-1,3-diiminoisoindoline, 5 ,6-

diiodo-1,3-diiminoisoindoline, 5 ,6-dicyano-1,3-diiminoisoindoline and 2,3-dihydro-l ,3-

diimino- l H-benz[ f]isoindole (47-50), ZnPcF16 (51), ZnPcF12S1 (52) and AIPcS4 (53,54) 

were prepared by using modified literature procedures. UV-visible spectra were recorded 

with a Hitachi U-2000 spectrophotometer. 1H and 19F NMR were obtained on a Brucker 

AC-300 spectrometer. F AB-MS were obtained on an LG Autospec Q mass spectrometer. 

4,S-(1-Dodecynl)phthalonitrile: 4,5-Diiodophthalonitrile (2.61 g; 6.87 x 10-3 

mol) was dissolved in 50 mL oftriethylamine and 5 mL ofDMF. To this was added 300 

mg of dichlorobis(triphenylphosphine}palladium(II). The reaction mixture was stirred at 

l 00°C under an inert atmosphere and 6.4 mL of 1-dodecyne (2.99 x 10-2 mol; 4.35 

equiv.). The reaction was monitored by TLC (10% diethyl ether in hexanes). After two 
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hours, the reaction was cooled, filtered and the filtrate was evaporated to dryness under 

reduced pressure. The resulting solid was purified by column chromatography on silica 

using 10% diethyl ether in hexanes as eluant. The desired product was obtained in a 

yield of2.66 g (84.7%). C321iwN2MS (El) mie 456 {M), 385 ~-CH3(CH2)4), 371 ~

CH3(CH2)s}, HR MS (El) mlz calculated for C32f4iN2 456.3504, found, 456.3522. 

4,5-(Dodecyl)phthalonitrile: 4,5-(1-Dodecynl)phthalonitrile (2.5 g; 5.47 x 10-3 

mol) was dissolved in 200 mL of THF. To this solution was added 500 mg of 10% 

palladium on carbon. The suspension was stirred at room temperature and hydrogen gas 

was bubbled through the reaction mixture. The reaction was monitored by TLC (10% 

diethyl ether in hexanes). After 6 hours, the reaction mixture was filt~red to remove the 

catalyst and the filtrate was evaporated to dryness under reduced pressure. The resulting 

solid was purified by column chromatography on silica using 10% diethyl ether in 

hexanes as eluant. The desired product was obtained in a yield of 2.42 g (95.2%). 

C32Hs2N2 MS (El) mie 464 (M), 449 {1("-CH3), 435 ~-2 CH3), 421 {1("- CH3, 

CH3CH2), HR MS (El) mlz calculated for C32Hs2N2 464.4130, found, 464.4122 

5,6-Didodecyl-1,3-düminoisoindoline (3g): Sodium metal (68.5 mg; 2.98 x 10·3 

mol) was dissolved in 30 mL of methanol. Ammonia gas was bubbled through the 

reaction mixture for 5 minutes prior to the addition of 4,5-(dodecyl)phthalonitrile (919 

mg; 1.98 x 10-3 moles). The mixture was stirred at 60°C with periodic bubbling of 

ammonia. The reaction was monitored hy TLC (20% methanol in toluene ). After 10 

hours, the mixture was cooled to 0°C, saturated with ammonia gas, sealed and stirred at 

4 °C overnight. The reaction mixture was then warmed to room temperature and the 

solvent was removed under reduced pressure. The resulting solid was washed with 
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concentrated NRJCI, water and ice cold methanol and dried. The desired product was 

obtained in a yield of938 mg (98.5%). C32H55N3 MS (El) mie 482 (W+H), HR MS (El) 

mlz calculated for C32HssN3 481.4396, found, 481.4401 

Dodecafluorosubphthalocyanato boron(III) bromide (SubPcF 11) (2). 

Tetrafluorophthalonitrile (1) (518 mg; 2.59 x 10-3 mol) was dissolved in a minimum 

amount of chlorobenzene (1.8 mL). The resulting solution was stirred at room 

temperature and 1.8 mL of lM BBr3 in dichloromethane (1.80 x 10-3 mol of BBr3; 0.7 

equiv.) was added. After 5 minutes, the reaction mixture was heated to 60°C and after 1 

hour cooled to room temperature. The solvent was removed by rotary evaporation at 

reduced pressure and the resulting solid. was dissolved in 30% THF in hexanes. This 

solution was filtered and purified by column chromatography over neutral alumina using 

30% THF in heJÇ:anes as eluant. The desired product was obtained in a yield of 402 mg 

(67.4%). C24N6BBrF12 MS (FAB) mie 692 {W+H), 612 {W-Br}, 19F NMR 

(dichloromethane) ô -59.76, -59.81, -70.18, -70.23 (ô = 0 for TFA}, UV-vis Â. 

(dichloromethane) (log s) 577 nm (4.93), 532 nm (2.01). 

Synthesis of dodecafluorinated phthalocyanines. 

1,2,3,4,8,9,10,11,15,16,17 ,18-dodecafluorophthalocyaninate (H1'cF 11) (4a): To 

a stirred solution of ( dodecafluorosubphthalocyanato )boron(III) bromide (2) ( 400 mg; 

5.78 x 10-4 mol) in 4 mL of DMSO was added a solution of 1,3-diiminoisoindoline (3a) 

(451 mg; 3.11 x 10-3 moles; 5.4 equiv.) in 6 mL of DMSO at room temperature. The 

reaction mixture instantly lost its intense purple color and gradually became blue. After 

2-4 hours, the reaction mixture was added to a large excess of methanol (50 mL). The 

suspension was left at 4°C overnight and then the green solid was collected by 
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centrifuging. The desired product was obtained in a yield of244 mg (59.5%). MS (FAB) 

mie 731 ~+H), HR MS (FAB) mlz calculated for C32"6NsF12 730.0524, found, 

730.0572, UV-vis Â(DMF) 671nm,601 nm. 

The following dodecafluorinated phthalocyanine derivatives were prepared using 

the same synthetic procedure described above. Note that for 5,6-didodecyl-l,3-

diiminoisoindoline (3g), the reaction was accomplished using a 1: 1 sol vent mixture of 

DMSO and chlorobenzene. 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecaftuoro-23-t-butylphthalocyaninate ( 4b ). 

Yield 40.5%. MS (FAB) mie 186 {W+H) UV-vis Â(DMF) 673nm, 606 nm. 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecafluoro-23-nitrophthalocyaninate ( 4c ). 

Yield 20.7%. MS (FAB) mie 776 {W+H), UV-vis Â(DMF) 684 nm, 667 nm, 635 nm. 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecafluoro-23-iodophthalocyaninate ( 4d). 

Yield 25.9%. MS (FAB) mie 857 {W+H), UV·vis Â(DMF) 671nm,607 nm. 

1,2,3,4,8,9,10,11,15,16,17,18-Dodecafluoro-22-iodophthalocyaninate (4e). 

Yield 18.7%. MS (FAB) mie 851 {W+H), UV-vis Â(DMF) 680 nm, 612 nm. 

1,2,3,4,8,9,10,11,15,16,17,18-Dodecaftuoro-23,24.-düodophthalocyaninate (4f). 

Yield 30.3%. MS (FAB) mie 983 (W+H), UV-vis Â(DMF) 669 nm, 612 nm. 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecaftuoro-23,24-didodecylphthalocyaninate 

(4g). Yield 11.7%. MS (FAB) mie 1067 ~+H), UV-vis Â.(DMF) 676 nm, 613 nm. 

1,2,3,4,8,9,10,11,15,16,17,18-Dodecafluoro-23,24-dicyanophthalocyaninate 

(4h). Yield 28.8%. MS (FAB) mie 780 ~.UV-vis Â.(DMF) 689nm, 661 nm, 636 nm. 
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(1,2,3,4,8,9,10,11,15,16,17,18-Dodecafluoro)tribenzo[b,g,l)napthalo[2,3-q]-

porphyrazine (4i). Yield 51.8%. MS (FAB) mie 780 (Ml, UV-vis Â(DMF) 700nm, 675 

nm, 620 nm, 604 nm. 

Synthesis of dodecafluorinated zinc phthaloeyanines. 

1,2,3,4,8,9,10,11,15,16,17 ,18-DodecaOuorophthaloeyaninato zinc (Sa). 

l,2,3,4,8,9,10,l l,15,16,17,18-Dodecafluorophthalocyaninate (4a) (lOOmg; l.37 x 104 

mol) was suspended in 5 mL of DMF. To this was added zinc bromide (72 mg; 3.20 x 

104 ; 2.3 equiv.). The reaction mixture was heated to 40°C for 2 hours and was then 

cooled to room temperature. The solvent was removed by rotary evaporation under 

reduced pressure and the resulting solid was washed twice with 1.2 M hydrochloric acid 

(25 mL each) and twice with 95% ethanol (25 mL each). The solid was dried and then 

dissolved in tetrahydrofuran and purified by column chromatography on silica gel ( 40% 

THF in hexanes). The desired product was obtained in a yield of 105 mg (96%). MS 

(FAB) mie 193 (W+H), HR MS (FAB) mlz calculated for C32~sF12Zn 791.9659, 

found, 791.9648, UV-vis Â.(THF) (loge) 674 nm (5.13), 604 nm (4.38), 356 nm (4.57). 

The following dodecafluorinated zinc phthalocyanine derivatives were prepared 

using the same synthetic procedure described above. 

l,2,3,4,8,9,10,11,15,16,17,18-Dodecatluoro-23-t-butylphthalocyaninato zinc 

(ZnPcF12(t-butyl)) (Sb). Yield 98%. MS (FAB) mie 849 {W+H, UV-vis Â(THF) (loge) 

663 nm (5.16), 629 nm (4.91), 355 nm (4.89). 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecatluoro-23-nitrophthalocyaninato zinc 

(ZnPcF12(N02)) (Sc). Yield 91%. C32H3N902F12Zn MS (FAB) mie 838 (W+H), UV-vis 
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Â. (THF) (log e) 678nm (4.92), 667 nm (4.88), 620 nm (4.55), 601nm (4.53), 340 nm 

(4.89). 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecaftuoro-23-iodophthalocyaninato zinc 

(ZnPcF11(4-I)) (Sd). Yield 95%. C32H3Nsf'121Zn MS (FAB) mie 919 ~+H), UV-vis Â. 

(THF) (log&) 671nm(5.10),640 nm (4.66), 608 nm (4.48) 357 nm (4.66). 

1,2,3,4,8,9 ,10,11,15,16,17 ,18-Dodecaftuoro·22-iodophtbalocyaninato zinc 

(ZnPcF11(3-I)) (Se). Yield 92%. C32H3NsF12IZn MS (FAB) mie 919 ~+H)) UV-vis Â 

(THF) (loge) 680 nm (5.19), 612 nm (4.54), 344 nm (4.66). 

1,2,3,4,8,9,10,11,15,16,17 ,18-Dodecafluoro-23,24-düodophthalocyaninato zinc 

(ZnPcF11(11)) (Sf). Yield 97%. C32H2NsF12hZn MS (FAB) mie 1045 ~+H), UV-vis Â. 

(THF) (log&) 676 nm (5.21), 643 nm (4.69), 355 nm (4.91). 

1,2,3,4,8,9,10,11,15,16,17,18-Dodecaftuoro-23,24-didodecylphthalocyaninato 

zinc (ZnPcF11(C11)1) (5g). Yield 88%. CsJls2NsF12Zn MS (FAB) mie 1129 ~+H) UV-

vis Â(THF) (loge) 683 nm (4.90), 664 nm (4.86), 359 nm (4.61). 

1,2,3,4,8,9,10,11,15,16,17,18-Dodecaftuoro-23,24-dicyanopbthalocyaninato 

zinc (ZnPcF11(CN)1) (Sb). Yield 90%. C3JfiN10F12Zn MS (FAB) mie 843 ~+H), 

UV-vis Â(THF) (loge) 675 nm (5.11), 620 nm (4.75), 359 nm (4.88). 

(1,2,3,4,8,9,10,11,15,16,17 ,18-dodecafluoro )tribenzo(b,g,l)napthalo(2,3-q)-

porphyrazine zinc (ZnPcF12nap) (Si). Yield 98%. C3Jl6N&f12Zn MS (FAB) mie 843 

~+H), UV-vis Â(THF) (loge) 710 nm (4.96), 679 nm (4.92), 352 nm (4.55), 337 nm 

(4,39). 
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Drug formulation. In order to impart water-solubility, phtbalocyanines Sa-Si 

were formulated as Cremophor™ EL emulsions as previously published (55). Briefly, 

the Pcs were dissolved in THF and 1 mL of Cremophor™ EL and 0.3 mL of 1 ).-

propanediol were added to the solutions. The solutions were then sonicated for thirty 

minutes, followed by removal of the THF solvent by rotary evaporation under reduced 

pressure. Phosphate buffered saline (PBS) (8.7 mL) was added to the viscous liquid and 

the mixture was sonicated for 30 minutes. The resulting emulsion was filtered (0.45 µm., 

Millipore). Concentrations were determined by serial dilution of the stock preparation 

with THF. 

L-Tryptopban photooxidation (56). A solution of 5 µM Pc and 5 mM L-

tryptophan in PBS (1 mL total volume) was irradiated using a high intensity xenon light 

source (model IL 302) equipped with a CermaxR xenon short arc 300 W lamp (model 

LX300F) (ILC Technology, Sunnydayle, CA). A liquid guide fiber-optic (model 77556, 

Oriel Corp., Stratford, CT) was used to deliver the light Two filters, a LS-700 and a LL-

600 (Corion, Holliston, MA), were used to allow transmission of light in the 600• 700 nm 

range (Note that the LS-700 filter was removed when (1,2,3,4,8,9,10,l l,15,l6,l7,18-

dodecafluoro )-tribenzo[b,g,l]napthalo[2,3-q]-porphyrazine zinc was used). The fluence 

rate was 150 m W cm·2• After 2 and 4 minutes of irradiation, 80 µL samples were 

removed from the photooxidation reaction and were analyzed by HPLC to quantify the 

characteristic hydroperoxide products of singlet oxygen tryptophan peroxidation (3a-

hydroperoxy- l ,2,3,3a,8,8a-hexahydropyrrolo[2,3-b ]indole-2-carboxylic acid; HPPI 

isomers) (tR = 5.8 and 8.6 minutes, fR for tryptophan = 15.7 minutes). The relative HPPI 

yield was measured from the HPPI chromatogram peak areas using a Shimadzu HPLC 

514 



system (Kyoto, Japan) composed of an LC-600 pump, SP-6A V UV-visible detector, a 

DGV-4A degasser, a LPM-600 low pressure mixing system, a rheodyne iajector and 

EZChrom chromatography data acquisition and analysis system. During this analysis, a 

C18 Radial Pak cartridge (10 x 0.8 cm) filled with 4 µm Nova Pak C18 reversed phase 

packing was eluted at 1.5 mL min"1 with 0.1% trifluoroacetic acid (fFA) in water and a 

linear gradient over 25 minutes from 1to30% methanol (0.1% TFA). The wavelength of 

a UV-visible detector was set at 280 nm. The relative HPPI yield was evaluated by 

comparing the peak areas corresponding to the HPPI isomers to the total tryptophan peak 

area and then arbitrarily comparing this ratio to the ratio obtained using AIPcS4 in PBS. 

In vitro photocytotoxicity. A suspension of approximately 1.5 x 104 EMT-6 cells 

per well in 100 µLof Waymouth, 15% FBS were incubated overnight at 37°C, 5% C02 

in 96 well microtitration plates (Falcon). The FBS solution was supplemented with 1 % 

L-glutamine and 1 % Penicillin"."Streptomycin. The first column (8 wells) served as a 

blank control (no cells) while the second and third columns (16 wells) served as a control 

(no phthalocyanine added, 100% cell survival). The celis were rinsed twice with PBS 

and then 50 µL of Pcs Sa, Sb and Sg were added at concentrations of 1 µM and 5 µM in 

Waymouth, 1% FBS. The plates were incubated at 37°C, 5% COi for 1 or 24 hours. 

Before irradiation, the cells were rinsed twice with PBS and then re-fed with 1 OO µL of 

Waymouth, 15% FBS. Irradiation consisted of illuminating the microtitration plates with 

red light (660-700 nm) at graded fluences of 0 to 54 J cm·2 at a fluence rate of 100 m W 

cm·2• The light source consisted of two 500 W tungstenlhalogen lamps (GTE Sylvania, 

Drummondville, Quebec, Canada) fitted with a circulating refrigerated filter containing 
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aqueous rhodamine B (Sigma, Ontario, Canada) (ODsso = 1.25). Cell survival was then 

assessed by means of the colorimetric MIT assay (23). 

A MIT (Aldrich Canada LUI., Oak.ville, Ontario, Canada) stock solution of 5 mg 

mL"1 was prepared and kept at 4°C in the dark. Upon a five-fold dilution in Waymouth, 

15% FBS, 50 µL of the MIT solution was added to ail the wells of the microtitration 

plate and the cells were incubated for four hours at 37°C, 5% C02. Acidic sodium 

dodecyl sulfate (SDS) solution (10% SDS in O.OlN HCl) (100 µL) was then added to 

each well and the cells were incubated for 24 hours at 37°C, 5% C02. Following this 

incubation, the microtitration plates were àgitated at room temperature for 10 seconds 

and the absorbance at 595 nm was read on a microplate reader (BioRad, Ontario, 

Canada). The percent cell survival was determined as follows. The average absorbance 

of the blank cells containing only MIT solution was subtracted from the average 

absorbance obtained from the wells of identical treatment as well as subtracted from the 

average absorbance measured from the control wells containing untreated cells (which 

represent 1000/o cell viability). The percent cell survival was calculated by dividing the 

absorbance of the treated cells by the absorbance of the non-treated cells and multiplying 

by 100. Eight replicates were run and experiments were repeated three times. 

RESULTS 

Synthesis of boron dodecafluorinated subphthalocyanine (2). The 

tetrafluorophthalonitrile readily reacts with the stronger Lewis acid boron tribromide in 

chlorobenzene at temperatures of 40°C - 60°C, with the reaction mixture rapidly adopting 
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Figure 1. Synthesis of dodecafluorinated phthalocyanines 4a-i via the Kobayashi ring 

expansion reaction of dodecafluorosubphthalocyanato boron(III) bromide (2). 

517 



the characteristic intense purple col or of the corresponding subPc (Figure 1 ). ln fact, the 

reaction proceeded relatively smoothly in dichloromethane at room temperature, though 

yields of the desired tripyrrolic macrocycle were significantly Iower and reaction times 

were longer. The use of chlorobenzene instead of the higher boiling 1-chloronaphthalene 

greatly eased the purification of the dodecafluorosubphthalocyanine 2. The latter product 

was purified by column chromatography on neutral alumina in the dark (70% yield). 

At Iower reaction temperatures (0 °C) in either dichloromethane or chlorobenzene 

a transient blue intermediate which absorbed around 660 nm was obtained, instead of the 

desired intensely purple subPc 2. This transient blue intermediate transformed into the 

purple subphthalocyanine product upon heating. Interestingly, treatment of a solution of 

the transient blue species with DDQ lead to a short-lived absorption around 660 nm in the 

electronic spectra Furthermore, treatment of a solution of the dodecafluorinated subPc 

with NaBH4 resulted in the loss of the characteristic Q band at 577 nm and the formation 

of a broad transient absorption around 660 nm. 

Kobayashi ring expansion reaction of the boron dodecaOuorinated 

subphthalocyanine (2). SubPc 2 readily reacted with various 1,3-diiminoisoindolines 

(3a-3i) in DMSO to give the corresponding 3:1 unsymmetrically substituted 

dodecafluorinated phthalocyanines ( 4a-4i) (Figure 1 ). The reaction proceeded 

exceptionally rapid, being complete after 1 hour, with an immediate loss of the intense 

purple color of the subPc solution. In the case of 5,6-didodecyl-1,3-diiminoisoindoline 

(3g), the 1,3-diiminoisoindoline was only marginally soluble in DMSO, necessitating the 

use of a 1: 1 mixture of DMSO and chlorobenzene as reaction solvent. The metal-free Pc 
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Figure 2. UV ~visible spectra of Sa, Sb and 5g in THF. 
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4a-4i prepared by tbis reaction were typically insoluble in the reaction solvent and 

precipitated from solution in yields ranging :from 10-600/o. In cases where the Pc product 

was slightly soluble in the reaction solvent, the product could readily be isolated by 

adding the reaction mixture to a large excess of methanol. The resulting green precipitate 

could be isolated by centrifugation or filtration. Mass spectra of ail final Pc products 

exhibited intense peaks corresponding to the molecular ion ~ or ~ + 1. The metal-

free dodecafluorinated phthalocyan.ines 4a-4i were practically insoluble in most common 

organic solvents but slight solubility in DMF. Electronic absorption spectra in DMF 

displayed characteristic Q band absorptions around 670-680 nm with a weaker satellite in 

the range of 600-620 nm (Figure 2). The extended conjugation of 

(l,2,3,4,8,9,lO,ll,15,l6,17,l8-dodecafluoro)tribenzo (b,g,l]napthalo[2,3-q]-porphyrazine 

( 4i) shifted the absorption to a longer wavelength (700 nm, 675 nm) as would be 

expected. Metal ion insertion was accomplished in nearly quantitative yield by 

suspending the metal-:free dodecafluorinated Pcs 4a-i in DMF at 40-60°C in the presence 

of zinc acetate (Figure 1 ). Other reaction solvents such as NMP failed to give the 

corresponding ZnPc and led to important macrocycle degradation. Attempts were 

undertaken to prepare the corresponding dodecafluorinated ZnPc directly by adding zinc 

ions to the Kobayashi ring expansion reaction. However, while the reaction appeared to 

give the desired 3: 1 unsymmetrically substituted Pc, yields were greatly decreased. In 

addition, the ZnPcs exhibited higher solubility in the reaction solvent, leading to 

significant difficulties in isolating and purifying the final phthalocyanine product. 

Tryptophan pbotooxidation. The asymmetrically substituted dodecafluorinated 

ZnPcs 5a-i formulated as Cremophor™/PBS emulsions were exposed to red light in the 
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Table 1. Relative hydroperoxide (HPPI) yields as a result of L-tryptophan 

pbotooxidation 

Photosensitizer" Â.nax(mn) Relative peroxide yields 
A1PcS4 (in PBS)b 680mn 1 

A1PcS4 678mn 1.15 

ZnPcF16 678mn 1.40 

ZnPcF12S 674mn 1.82 

ZnPcF12 (Sa) 674mn 1.38 
ZnPcF12(t-butyl) (Sb) 663mn 1.49 
ZnPcF12(N02) (Sc) 678 nm, 667 nm 2.30 
ZnPcF12(4-I) (Sd) 671mn 2.43 
ZnPcF12(3-I) (Se) 680mn 2.31 
ZnPcF 12(h) (St) 676mn 2.00 

ZnPcF 12(C12)2 (Sg) 683 nm, 664 nm 1.17 
ZnPcF12(CN}i (Sh) 675mn 1.64 

ZnPcF 11nap (Si) 710 nm, 679 nm 1.85 

a Fonnulated as 0.5% Cremophor™ EL emulsions unless otherwise noted. b The singlet 

oxygen yield for A1PcS4 in phosphate buffer (1 % Triton X) has been reported to be 0.43 

(72). 
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presence of L-tryptophan. The relative yield of HPPI isomers was then determined by 

HPLC and compared to that of AIPcS4 in PBS, whose yield was arbitrarily set at 1 (Table 

1 ). The CRM emulsions of Sa-i exhibited improved yields of the HPPI isomers as 

compared to AIPcS4 in PBS. Formulation of AIPcS4 in CRM also led to slightly improve 

L-tryptophan photooxidation, most likely as a result of decreased aggregation of the 

chromophore. The most significant photooxidation of L-tryptophan was obtained using 

the iodinated Pc derivatives, with relative HPPI yields of 2.43, 2.31 and 2.00 obtained for 

Pcs Sd, Se and Sf, respectively. The nitro-substituted derivative Sc also provide L-

tryptophan photooxidation that was over two times higher than that observed for AIPcS4 

in PBS. On the other hand, the dodecafluorinated ZnPc substituted with two long alkyl 

chains (Sg) gave HPPI yields comparable to AIPcS4 in 1 % CRM. 

In vitro photodynamic activity. Using a constant dye concentration of 1 µM or 

5 µM, the photocytotoxicity of dodecafluorinated zinc phthalocyanines Sa, Sb and Sg on 

EMT-6 murine mammary tumor cells was measured after illumination for various 

amounts oftime at a fluence rate of 100 mW/cm2 as calculated over the range of the Q 

band of phthalocyanines (660-700 nm). The light doses required to induce 500/o and 90% 

cell death (LD50 and LD90) were extrapolated from the resulting cell survival curves. 

No significant dark toxicity was observed for any of the photosensitizers examined at 

either concentration. Figure 3 shows histograms reporting the LD50 and LD90 after 1 

hour and 24 hour incubations with photosensitizers Sa, Sb and Sg and for 

hexadecafluorinated ZnPc (ZnPcF16), a photosensitizer that has already been extensively 

studied (55,57-59). The asymmetrically substituted photosensitizers Sa, Sb and 5g were 

more phototoxic than the symmetrically substituted ZnPcF16 at both dye concentrations. 
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10 
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Figure 3. Photocytotoxicity of asymmetrically substituted fluorinated phthalocyanines. 

Phototoxic activity of a 1 µM (top) and 5 µM (bottom) solution of zinc dodecafluorinated 

phthalocyanines 5a, 5b and 5g towards EMT-6 murine mammary tumor cells. 
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The improved photocytotoxicity was more pronounced for the photosensitizers 

substituted with a t-butyl group (Sb) and was even more prominent for the 

dodecafluorinated phthalocyanine substituted with two dodecyl groups (Sg). The 

difference in photocytotoxicity between these two photosensitiz.ers and ZnPcF16 is 

appreciably more important after incubating for 24 hours. 

DISCUSSION 

Dodecafluorosubphthalocyanato boron(III) bromide (2) was successfully 

synthesiz.ed by the cyclotrimeriz.ation reaction of tetrafluorophthalonitrile with BBr3 in 

chlorobenz.ene at 40-60°C. Yields as high as 70% were obtain~ which compare to 26% 

yield previously reported by the reaction of boron trichloride and tetrafluorophthalonitrile 

in benzene or 1-chloronaphthalene at elevated temperatures (34). It has been established 

that the reactivity of trisubstituted boron compounds towards the cyclotrimerization 

reaction is B(Alkyl)3 < BPh3 < BF3 < BCh < BBr3, an order that is closely related to the 

Lewis acidity of the boron compounds (29). In addition, the presence of four strongly 

electron-withdrawing fluorine atoms on the tetrafluorophthalonitrile starting material will 

activate the nitrile groups towards the cyclotrimerization reaction. A combination of the 

increased reactivity of the boron source and the activation of the nitrile groups of 

tetrafluorophthalonitrile towards the cyclotrimerization reaction results in the possibility 

for the reaction being carried out under more mild reaction conditions, thus ensuring a 

higher yield of the desired boron dodecafluoro subPc. No exchange of fluorine for 
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bromine was observed. This is despite the strong Lewis acidity of the boron tribromide 

and the lmown reactivity oftetrafluorophthalonitrile towards exchange reactions (60). 

The resulting dodecafluorinated tripyrrolic macrocycle was purified by flash 

column chromatography on neutral alumina in the dark. It has been reported that subPcs 

bearing bromine axial ligands are fairly unstable with respect to axial ligand exchange 

and that purification of bromosubPcs via column chromatography resulted in an 

appreciably amount of replacement of the bromine axial ligand by OH (29). To 

overcome this, it has been suggested that these labile subPcs can be purified by 

precipitation or Soxhlet extraction with an appropriate solvent (33). However, in the 

curtent study, it was observed that addition of the chlorobenzene reaction mixture to 

excess hexanes lead to degradation of the macrocycle. This is despite reports that subPcs 

are stable in apolar solvents (61). On the other hand, it has been reported that 

dodecafluorosubphthalocyanato boron(III) chloride undergoes thermal decomposition in 

hexanes (62). Soxhlet extraction with dry dichloromethane of either the solid obtained by 

precipitation from excess hexanes or by evaporation of the dichlorobenzene from the 

reaction mixture also led to degradation of the subPc, significantly decreasing the yield of 

the desired product Purification by flash column chromatography using 30% THF in 

hexanes or using dichloromethane proved to be the most efficient method of purifying 

dodecafluorosubphthalocyanato boron(ITI) bromide (2). 

When attempts were made to prepare 2 at 0°C, a labile blue product was obtained. 

Interestingly, we observed similar labile blue products when the cyclotrimerization of 

other phthalonitriles substituted with electron-withdrawing groups (such as 4-

nitrophthalonitrile, 4-iodophthalonitrile and 4,5-dicyanophthalonitrile) was carried out at 
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O°C (results not presented). While the identity of this labile species has not be fully 

elucidated, identification of this species may help detennine the mechanism of the 

cyclotrimemation reaction, which in tum may help investigators in improving the 

synthesis and the utility of subPcs. The prior art describes that 

dodecafluorosubphthalocyanato boron(lll) chloride undergoes thermal decomposition in 

hexanes to yield a light blue product whose structure was not determined (62). We 

attempted to prepare Pc by reacting the transient blue complex with various 1,3-

diiminoisoindolines. However, no green/blue product corresponding to phthalocyanines 

was obtained. 

There are a number of possible identities for this transient blue species. lt is well-

known that boron trihalides readily form charge transfer complexes with nitrile functional 

groups (63) and one would expect that some type of charge transfer complex between the 

boron atom and dinitrile functionality of phthalonitriles would form at some point during 

the synthesis of subPcs. However, it was observed that this transient blue intermediate 

transformed into the desired subPcF 12 upon heating of the reaction mixture. Furthermore, 

treatment of subPcF12 with NaBH.i resulted in a loss of the characteristic Q band at 577 

nm and the formation of a broad absorption around 660 nm while treatment of the blue 

intermediate with DDQ led to a broad transient absorption centered near 580 nm. Since 

the bromide 2 absorbs at 577 nm and the transient blue species exhibits a broad 

absorption centered approximately at 660 nm, these results imply that the transient blue 

species requires oxidation in order to form the subPc. The bathochromic shift of the 

absorption from the subPc to the incompletely oxidation blue intermediate would not be 

unexpected. A loss of conjugation in tetrapyrrolic macrocycles is known to Ied to red 
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sbifts in the ~ax· For instance, while the completely conjugated protoporphyrin IX 

absorbs at 630 nm, the incompletely conjugated verteporfin absorbs at 690 nm (64). It 

has been reported that the singlet excited state of dodecafluorosubphthalocyanato 

boron(III) chloride is a strong oxidant (62) with a one-electron reduction potential 

estimated to be approximately l. 7 V, suggesting that the relationship between the subPc 

and the blue species may pass via a photoexcited state of the subPc. 

In the current study, the Kobayashi ring expansion reaction of the subPc 2 with 

various 1,3-diiminoisoindolines (3a-i) selectively yielded the desired 3: 1 asymmetrically 

substituted dodecafluorinated Pcs ( 4a-i). Yields for the dodecafluorinated Pcs ranged 

from 18% to as high as 60%, although lower yields were obtained using 4-iodo-1,3-

diiminoisoindoline (3e), probably a result in steric effects. Lower yields of Pc were also 

obtained using 5,6-didodecyl-l,3-diiminoisoindoline (3g). Both steric effect and 

solubility of 3g may have played a part in the lower yields obtained for 

2,3,4,8,9,10,l l,15,16,17,18-dodecafluoro-23,24-didodecylphthalocyaninate (4g). While 

the other 1,3-diiminoisoindoline derivatives employed could be solubilized in DMSO 

upon sonication, 3g required the use of a 1: 1 mixture of DMSO and chlorobenzene in 

order to obtain a solution. Interestingly, prior studies have indicated that the Kobayashi 

ring expansion reaction of (2,9,16(17)-tri-t-butylsubphthalocyanato)boron(III) bromide 

fails when DMSO is used as the reaction solvent and requires a mixture of DMSO and an 

aromatic solvent for the reaction to proceed (37). Conversely, the use of DMSO as a 

solvent allowed for the selective preparation of trisulphonated phthalocyanines via the 

Kobayashi ring expansion reaction (42,43). With its mild oxidant properties, the use of 

DMSO as the reaction solvent in the current study may promote the selectivity and 
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improved yields observed. On the other band, molecular orbital calculations suggest the 

the initial step in the Kobayashi ring expansion reaction consist of loss of the axial ligand 

(37). In light of the decreased bond energy of a B-Br bond compared to a B-Cl bond, the 

Kobayashi ring expansion reaction involving subphthalocyanines with bromine axial 

ligands should initiate and proceed Wider milder reactions conditions, perhaps promoting 

selectivity. Along those lines, most literature examples detailing selective ring expansion 

reactions have utilized subPcs with bromine axial ligands (27,37,42,43). However, the 

increased solubility of the subPcF 12 along with the electron-withdrawing properties of the 

fluorine substituents almost certainly play a role as well. 

Due to the known tendency of tetrafluorophthalonitrile to Widergo an exchange 

reaction with DMF (60), attempts to insert metal ions such as Zn +2 into the metal free 

dodecafluorinated phthalocyanines using solvents such as NMP were Widertaken. 

UnfortWiately, these metal ion insertion reactions were sluggish and gave unacceptable 

yields. In order to avoid any possible reaction between DMF and the perfluorinated 

macrocycle, reaction temperatures between 30 and 50°C were employed and led to the 

corresponding zinc dodecafluorinated phthalocyanines in nearly quantitative yields. 

Singlet oxygen is believed to be the most important reactive species generated 

during PDT and is capable of inducing important characteristic oxidative damage to a 

number of biologically important molecules including amino acids (65). L-Tryptophan 

photooxidation was used to evaluate the photodynamic potential of the asymmetrically 

substituted zinc dodecafluorinated phthalocyanines by comparing the relative HPPI 

yields obtained using these Pcs to the yield obtained using AIPcS4 in PBS (which was 

arbitrarily set as 1) (56). In light of the heavy atom effect, it is not Wiexpected that these 
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dodecafluorinated photosensitizers exhibit improved HPPI yields as compared to AlPcS4 

with the iodinated derivatives giving the highest singlet oxygen yields. The heavy atom 

effect dictates that the exchange of hydrogen atoms with heavier atoms (such as fluorine 

atoms) on a chromophore increases intersystem crossing from the singlet to the triplet 

excited state by increasing spin-orbital coupling, thus allowing otherwise forbidden 

changes in the spin state (S1 -+ T1) (66). Accordingly, the exchange of hydrogen atoms 

for fluorine atoms of the periphery of phthalocyanine photosensitizers improves the 

photodynamic potential of the photosensitizer by improving triplet state yields. 

Interestingly, for a series of zinc tetrahalogenated Pcs (ZnPcX. where X is Cl, Br 

or 1), it was observed that increases in triplet state formation and decreases in triplet state 

lifetimes increased in the order Cl < Br < 1, as would be expected in terms of spin-orbital 

coupling theory (67). However, the production of singlet oxygen was only slightly 

increased by the nature of the halogen atom. While these results were not fully 

explained, it was noted that the tendency of these macrocycles to aggregate was in the 

order Br > 1 > Cl > H. As such, the improved photodynamic potential that results from 

the heavy atom effect may be somewhat counteracted by the tendency of Pcs to aggregate 

in solution. lt has been shown that amphiphilic unsymmetrically substituted 

phthalocyanines bearing long alkyl chains exhibit decreased HPPI yields in the L-

tryptophan photooxidation assay (24), even as CRM emulsion, due to important 

aggregation of the macrocycle, with the long alkyl chains increasing the lipophilicity of 

the Pcs. While the zinc dodecafluorinated phthalocyanines are ail lipophilic 

photosensitizers, it is believed that the longer alkyl chains promote aggregation of the 
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phthalocyanine Sg, even in CRM emulsions, resulting in decreased HPPI yields under 

these experimental conditions. 

Most lipophilic Pcs, including unsubstituted ZnPc and AIOHPc, are highly 

insoluble in most common solvents. Thus, despite important photodynamic activity, the 

utility of such lipophilic Pcs is rather Iimited. Fluorine is very similar in atomic radius to 

hydrogen and can mimic hydrogen in biological environments. In addition, exchange of 

hydrogen atoms for fluorine atoms increases Iipid solubility and thus may lead to 

enhanced interactions with biological membranes. Our group has extensively examined 

ZnPcF16 and ZnPcF12S1 and have found that ZnPcF16 is effective in inactivating EMT-6 

tumour cells with selective tumour uptake and improved pharmacokinetics (55,57-59). A 

number of water-soluble amphiphilic fluorinated zinc phthalocyanines have also been 

synthesized and shown to have enhanced properties for photodynamic therapy (68,69). 

Additionally, a novel three-dimensional zinc perfluorinated phthalocyanine comprising 

64 fluorine atoms has been synthesized from a novel non-planar perfluorinated 

phthalonitrile and has been shown to have improved PDT efficiency as compared to 

ZnPcF16 (70). 

Preliminary in vitro PDT against EMT-6 tumor cells indicate that asymmetrically 

substituted dodecafluorinated phthalocyanines Sa, Sb and Sg are more photodynamically 

active than the symmetrically substituted ZnPcF 16 in CRM emulsions after incubations of 

1 or 24 hours (see Figure 3). Asymmetrically substituted ZnPcF12S1 is 50 titnes more 

photoactive than ZnPcF16 against EMT-6 tumour cells in vitro (59) .. Unfortunately, in 

vivo photodynamic therapy induced mortality, indicating a small therapeutic window. 

The current asymmetrically substituted fluorinated phthalocyanines exhibit increased 
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photoactivity and may have an increased therapeutic window. Intriguingly, despite lower 

HPPI yields in the L-tryptophan photooxidation assay, Sg was the most photodynamically 

active Pc examined. While it was proposed that the lack of an appreciable activity of 

ZnPcF16 and ZnPcCl16 against M6 melanoma cells was due to aggregation of the PS even 

in the complicated environment of cells (71 }, the current study indicates that aggregation 

becomes less important in such biological systems, possibly due to interaction of proteins 

and lipoproteins with the planar Pc reducing the extent of aggregation. 

CONCLUSION 

DodecafluorosubPc boron(III) bromide (2) was prepared under milder conditions 

and shown to react readily with numerous 1,3-diiminoisoindolines in DMSO (Kobayashi 

ring expansion reaction) leading to the selective preparation of 3:1 unsymmetrically 

substituted dodecafluorinated phthalocyanines. Upon chelation to Zn+2, the resulting 

asymmetrically substituted dodecafluorinated ZnPc were shown to be effective 

photosensitizers for the production of singlet oxygen in an aqueous environment. 

Preliminary in vitro photodynamic therapy against EMT-6 murine mammary tumor cells 

indicate that these compounds have potential as photosensitizers for PDT. 
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Phthalocyanines, 9, 651-658. 



A new procedure for the synthesis of water-soluble trt-cattontc and -antontc 
phthalocyanlnes 

Wesley M. Sharman and Johan E. van Lier 

The Kobayashi ring expansioo reactiœ of iodinated subphthalocyanines with 1,3-diiminoisoindolines lcad exclusively to the 
correspœding 3:1 asymmetrically substituted iodinated phthalocyanines. These iodinated Pcs proved to be ideal building blocks 
for the synthesis of nove! asymmetrically substituted water-soluble Pcs, with palladium-catalyud cross-coupling reacüoos with 
appropriatc terminal alkynes ultimatcly leading to borh aniooic and catiœic Pcs. 
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ABSTRACT: A series of water-soluble tri-anionic and -cationic substituted phthalocyanines bas been 
synthesiz.ed via iodinated boron subphthalocyanines. The latter were opened with differently substituted 
diiminoisoindolines via the Kobayashi ring expansion reaction followed by metal insertion to exclusively 

yield the asymmetrically 3:1 substituted iodinated zinc phthalocyanines. These iodinated phthalocyanines 
readily underwent palladium-catalyz.ed coupling reactions with tenninal alkynes such as 5-hexynoic acid 
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INTRODUCTION 

Phthalocyanines and related tetrapyrrolic macrocycles have n~us properties that lend applicability in numerous 

important technological fields [1-3). While the utility of unsubstituted Pcs is limited due to the extr(me insolubility of 

the macrocycle, Pcs substituted with various functional groups have been prepared in order to improve their solubility 

and to increase their effectiveness in many of these potential applications. Asymmetrlcally substituted phthalocyanines 

exhibit improved properties compared to their unsubstituted and symmetrically substituted derivatives in a number of 

these applications. For instance, the extensively delocalized 18-x electron system of phthalocyanines imparts large 

optical nonlinearities and third order harmonie generation to symmetrically substituted Pcs [4,5]. However, second 

order nonlinear optical effects are only present in non-centrosymmetric molecules such as asymmetrically substituted 

Pcs and these effects are increased in systems characterized by both electron-donating and electron-withdrawing 

functionalities [4-7]. Furthennore, the amphiphilicity exhibited by Pcs bearing both hydrophilic and hydrophobie 

functionalities has been demonstrated to enhance their photodynamic potential (8-11). In light of these factors, 

asymmetrically substituted Pcs remain important synthetic targets. 

Despite attempts to use a polymer support (12,13] or novel phthalocyanine precursors [14-16] to control the 

cyclotetrameriz.ation reaction and thus develop superior methods for preparing asymmetrically substituted Pcs, the 

traditional employed method of preparing asymmetrically substituted Pcs by the condensation of two differently 

substituted phthalocyanine precursors remains the most widely used methodology [17]. However, even though careful 

selection of the substituents on the phthalocyanine precursors, the molecular proportions of each individual precursors 

and the reaction conditions used can help to control the relative amounts of each substituted pattern, these mixed 

condensations lead to a mixture of six differently substituted Pc products from which the isolation of the desired 

asymmetrically substituted Pc remains tedious and difficult. The prearrangement of three isoindoline units in boron 

subphthalocyanines make them extremely attractive reagents in the preparation of 3:1 asymmetrically substituted Pcs. 

Despite the early promise demonstrated by Kobayashi [18,19], the ring enlargement reaction ofthese lower homologs 

with 1,3-diiminoisoindolines has been shown to proceed by a non-selective multistep mechanism which depends to a 

great extent on the substituents on the subPc, the solubility and reactivity of the 1,3-diiimoisoindoline, the reaction 

solvent and the reaction conditions employed [6,20,21]. While this multistep mechanism may lead to a mixture of 

substituted Pcs, it has been established that the ring expansion reaction of subPcs does indeed give rise to the selective 

preparation of 3:1 asymmetrically substituted Pcs in certain cases [18,19,22). Interestingly, even though intuitively the 

driving force behind the ring expansion reaction of subPcs would be expected to be based on the known distortion in the 

cone-shaped structure of subPcs, molecular orbital calculations suggest that this distortion is not a major reason for the 

ring expansion reactivity of subPcs and that the lack of donor-acceptor stabilization in the boron-nitrogen bonds 

destabilizes subPcs towards expansion [19]. These calculations also indicate that the first step in these ring expansion 

reactions is the Joss of the halogen axial ligand. 

We previously demonstrated methods for the synthesis of monofunctionalized Pc [23,24]. However to our knowledge 

no reports to prepare tri-cationic and -carboxylic substituted Pc have appeared In the current study, the Kobayashi ring 

expansion reaction of iodinated boron subPc followed by palladium-catalyzed cross-coupling reactions provide a new 

method for the synthesis of nove! asymmetrically substituted anionic and cationic phthalocyanines. 

EXPERIMENTAL 
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Materials 

Ail solvent were HPLC grade and were used without further purification unless otherwise stated. 3-

Nitrophthalonitrile and 4-tert-butylphthalonitrile were purchased from TCI America (Portland, Oregon, USA). l,2-

Dicyanobenz.ene, 2.3-dicyanonaphthalem; 4-nitrophthalonitrile, 1,3-diiminoisoindoline, dichlorobis(triphenyl-

phosphine)palladium(II), copper iodide, lM boron tribromide in dichloromethane, zinc bromide, 5-hexynoic acid, 10-

undecynoic acid, 2-ethynylpyridine and 3-ethynylpyridine were purchased from Aldrich (Oakville, Ontario, Canada). 4-

lodophthalonitrile (25], 3-iodophthalonitrile (26] and 4,5-diiodophthalonitrile [27] were prepared using modified 

literature procedures. 5-Tert-butyl-1,3-diiminoisoindoline, 5- and 2,3-dihydro-1,3-diimino-lH-benz(f]isoindole were 

prepared by reacting the corresponding phthalonitrile or 2,3-dicyanonaphthalene with sodium methoxidt: and ammonia 

gas in methanol at reflux as disclosed in the literature (28,29]. UV-visible spectra were recorded with a Hitachi U-2000 

spectrophotometer. FAB-MS were obtained on an LG Autospec Q mass spectrometer. 

Synthesis 

Preparation of (2,9,16(17)-trüodosubphthalocyanlnato)boron(III) bromide 2a 

1.02 g of 4-iodophthalonitrile (la) (4.02 x 10·3 moles) was dissolved in a minimum amount of chlorobenz.ene (1.1 

ml). The resulting solution was stirred at room temperature and 3 ml of lM BBr3 in dichloromethane (3.00 x 10·3 moles 

ofBBr3) (0.75 equiv.) were added. After 5 minutes, 500 µl ofTHF were added and the reaction mixture was heated to 

60°C. The reaction mixture was maintained at 60°C for 1 hour and was cooled to room temperature. The solvent was 

removed by rotary evaporation at reduced pressure and the resulting solid was dissolved in CH2Cl2• This solution was 
filtered and purified by column chromatography over neutral alumina using CH2Cl2 as eluant. The desired product was 
obtained in a yield of 706 mg (61.8%). 4tff~JJBrh MS (FAB): mie 853 (M1+H), 773 (M'-Br). UV-vis À 

(dichloromethane) (loge) 573 nm (4.67). 

Preparation of (1,8,15(18)-triiodosubphthalocyaninato)boron(Ill) bromide 2b 

The same procedure as disclosed above was employed using 568 mg of3-iodophthalonitrile (lb) (2.24 x 10·3 moles) 

and 1.75 ml of lM BBr3 in dichloromethane (1.75 x 10·3 moles of BBr3) (0.78 equiv.). Yield: 221 mg (35.00/0). 

C:z,Jl~JJBrh MS (FAB): mie 853 (M++H), 77'3 (M'-Br). ). UV-vis l(dichloromethane) (loge) 577 nm (4.63). 

Preparation of (2,3,9,J 0,16,17)-hexalodosubphthalocyaninato)boron(Ill) bromide 2c 
The same procedure as disclosed above was employed using 785 mg of 4,5-diiodophthalonitrile (le) (2.07 x 10·3 

moles) and 2.00 ml of lM BBr3 in dichloromethane (1.75 x 10·3 moles ofBBr3) (0.88 equiv.). Yield: 514 mg (60.5%). 

~Ji~JJBrl6 MS (FAB): mie 1230 (M'+H), 1150 (M+·Br). ). UV-vis À(dichloromethane) (loge) 583 nm (4.71). 

Preparation of iodinated phthalocyanlnes 4a-4g 
2,9,16(17)-triiodophthalocyaninate (4a). To a stirred solution of 506 mg of la (5.93 x 10-4 moles) in 3 ml of 

DMSO was added a solution of 910 mg (6.27 x 10·3 moles, 10.6 equiv.) of 1,3-diiminoisoindoline (Ja) in 6 ml of 

DMSO at room temperature. The reaction was heated at 60°C. After 24 hours, the reaction mixture was added to a 

large excess of methanol (50 ml). The suspension was left at 4°C overnight and then the green solid was collected by 

centrifuging. The desired product was obtained in a yield ofl 75 mg (43.1%). MS (FAB): mie 892 (M'+H). 

lodinated phthalocyanine derivatives 4b-4g were prepared using the same synthetic procedure described above. 

Selective spectral data for compounds 4b-4g: 4b Yield 36.5% MS (FAB): mie 949 (M'+H); 4c Yield 38.9% MS 

(FAB): mie 943 (M'+H) 4d Yield 21.3% MS(FAB): mie 892 (M'+H) 4e Yield 22.7% MS (FAB): mie 949 (M'+H) 4f 

Yield 19.6% MS (FAB): mie 943 (M'+H) 4g Yield 14.6% MS (FAB): mie 1271 (M'+H). 

Preparatlon of iodinated dlf(: phthalocyanlnes 5a-5g 

(2,9,16(17)-triiodopbthalocyaninato)zinc (Sa). 100 mg of 4a (1.12 x 10-4 moles) was suspended in DMF (5 ml). 
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To this was added 144 mg of zinc bromide (6.40 x 104
) (5. 7 equiv.). The reaction mixture was heated to 60°C for 2 

hours and was then cooled to room tetnperature. The solvent was removed by rotary evaporation under reduced 

pressure and the resulting solid was washed twice with 1.2M hydrochloric acid (25 ml each) and twice with 95% ethanol 

(25 ml each). The solid was dried and then dissolved in tetrahydrofuran and purified by column chromatography on 

silica gel (40% THF in hexanes). The desired product was obtained in a yield of 106 mg (99%). MS (FAB): mie 955 
~+H) UV-vis À(THF) (loge) 671nm(5.37),606 nm (4.59), 350 nm (4.88). 

lodinated zinc phthalocyanine Sb-Sg derivatives were prepared using the same synthetic procedure described above 

with near quantitative yields. 

Selectlve spectral data for compounds 5b-5g: Sb MS (FAB): mie 1011 (~+H), UV-vis À (THF) (loge) 673 nm 

(5.31), 607 nm (4.56), 352 nm (4.89). Sc MS (FAB): mie 1004 ~.UV-vis À(THF) (log E) 708 nm (4.93), 680 nm 

(5.00), 650 nm (4.50), 616 nm (4.39), 349 nm (4.71). Sd MS (FAB): mie 955 ~+H) UV-vis À(THF) (loge) 678 nm 
(5.21), 611nm(4.45),339 nm (4.63). 5e MS (FAB): mie 1011 (~+H), UV-vis À(THF) (loge) 679 nm (5.26), 611 nm 
(4.52), 339 nm (4.72). SfMS (FAB): mie 1004 ~),UV-vis À(THF) (loge) 708 nm (5.01), 680 nm (5.08), 650 nm 

(4.54). 616 nm (4.44), 349 nm (4.80). Sg Yield 98.7% MS (FAB): mie 1331 (M'), UV-vis À (THF) (loge) 677 nm 
(5.31), 612 nm (4.61), 355 nm (4.90). 

Preparation of asynunetrically substituted anlonJc dnc phthalocyanines 6a-6j 

6a: 100 mg of Sa (1.05 x 104
) was dissolved in a 1:1 mixture ofDMF and triethylamine (6 mL). To this solution 

were added 50 mg of dichlorobis(triphenyl-phosphine)palladium(Il) and 10 mg of copper iodide. The reaction mixture 

was stirred under nitrogen and a solution of 200 µL of 5-heyxnoic acid in 2 ml of DMF was added. The reaction was 

heated to 70°C and stirred overnight in the dark.. The reaction mixture was then filtered and the solvent removed under 

vacuum. The resulting solid was purified by column chromatography on silica gel (2:1 THF/hexanes). The desired 

product was obtained in ayield of78 mg(81.2%) MS (FAB): mie 907 (~+H). UV-vis À(THF) (loge) 678 nm (5.34), 

612 nm (4.62), (0.1NNaOH)623 nm (br). The corresponding water-soluble sait was readily obtained by dissolving the 

Pc in 1 N NaOH, neutralizing the resulting solution and precipitating the sait by adding the solution to a large excess of 

cold acetone. 

Asymmetrically substituted anionic zinc phthalocyanine derivatives 6b-6j were prepared using the same synthetic 

procedure described above. 

Selective spectral data/or compounds 6b-6j: 6b Yield 75.5% MS (FAB): mie 1017 (~+H) UV-vis À(THF) (loge) 

679 nm (5.33), 612 nm (4.61), (0.1 N NaOH) 633 nm (br). 6c Yield 83.5% MS (FAB): mie 963 (~+H) UV-vis À 

{THF) (loge) 680 nm (5.25), (0.1NNaOH)638 nm (br). 6d Yield 61.5% MS (FAB): mie 1173 ~+H) UV-vis À 

(THF) (loge) 683 run (5.33), 614 nm (4.60), (0.1NNaOH)623 nm (br). 6e Yield 88.4% MS (FAB): mie 957 ~+H) 

UV·vis À (THF) {log E) 713 run (5,00), 688 nm (5.07), (0.1 N NaOH) 643 nm (br). 6f Yield 88.8% MS (FAB): mie 

1167 ~+H) UV-vis J..(THF) (loge) 716 nm (5.09), 689 nm (5.16), (0.1NNaOH)628 nm (br). 6g Yield 81.5% MS 

(FAB): mie 907 (~+H) UV-vis À(THF) (log E) 679 nm {5.29), 612 nm (4.60), (0.1NNaOH)640 nm (br). 6h Yield 

89.2% MS (FAB): mie 963 ~+H) UV-vis J..(THF) (log E) 681 run (5.28), 614 nm (4.54), (0.1NNaOH)643 run (br). 

6i Yield 88.5% MS (FAB): mie 957 (M'+H) UV-vis J..(THF) (loge) 717 nm (4.99). 689 nm (5.01), (0.1NNaOH)631 

run (br). 6j Yield 78.7% MS (FAB): mie 1237 (~+H) UV-vis À(THF) (log E) 687 nm (5.33), (0.1NNaOH)632 nm 
(br). 

Preparation of asymmetrically substituted zinc phthalocyanines 7a-7n and asymmetrically substituted cationic 

zinc phthal.ocyanines Ba-Bn 

7a, 8a: 100 mg of Sa (1.05 x 104 moles) was dissolved in a 1:1 mixture of DMF/triethylamine (8 mL). To this 

solution were added 50 mg of dichlorobis(triphenyl-phosphine)palladium(II) and 10 mg of copper iodide. The reaction 
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mixture was stirred under nitrogen and a solution of 165 mg of2~ynylpyridine in 4 mL ofDMF was added. The 

reaction was heated to 60°C and stin'ed overnight in darkness. The reaction was then cooled and added to a large excess 

of water. The resulting solid was obtained by filtration and washed extensively with 0.1 N NaOH, diethyl éther and 

acetone. The desired product was obtained by dissolving the remaining solid in pyridine, filtering and removing the 

pyridine under vacuum. The resulting product 7a was suspended in DMF (5 mL) and l mL of dimethyl sulfate was 
added. This reaction was stirred at 70°C in the dark overnight. The reaction mixture was then added to a large excess 

of cold acetone (1 L). After leaving to stand at 4°C, the resulting precipitate was collected (8a). 

Asymmetrically substituted zinc phthalocyanine derivatives 71>-7n and asymmetrically substituted cationic zinc 

phthalocyanines 8b-8n were prepared using the same synthetic procedure as described above. 

Selectedspectral data: 7a MS (FAB): mie 880 (M'+H) UV-vis À(DMF) (logs) 681nm(5.31),617 nm (4.57). 8a À 

(DMF) 712 nm (sh), 695 nm, (H20) 636 (br). 7b MS (FAB): mie 880 (M'+H) UV-vis À(DMF) (log 6) 687 nm (5.28), 

622 nm (4.57). Sb À(DMF) 696 nm, 682 nm, (H20) 628 (br). '7c MS (FAB): mie 936 (M'+H) UV-vis À(DMF) (log 6) 

696 nm (5.32). Sc Â.(DMF) 714 nm, 689 nm, (H20) 650 (br). 7d MS (FAB): mie 936 (M++H) UV-vis Â.(DMF) (log 6) 

700 nm (5.34) 8d Â.(DMF) 700 nm, 685 nm (sh), (H20) 648 (br). 7e MS (FAB): mie 930 (M'+H) UV-vis 1(DMF) (log 

6) 727 nm (4.99), 693 nm (5.05), 627 nm (4.51). 8e À.(DMF) 742 nm, 702 nm, (H20) 636 (br). 7f MS (FAB): mie 930 

{M'+H) UV·vis Â.(DMF) (log s) 732 nm (5.07), 699 nm (5.13), 632 nm (4.53). 8H(DMF) 730 nm, 695 nm, (H20) 633 

(br). 7g MS (FAB): mie 880 (M'+H) UV-vis l(DMF) (log 6) 686 nm (5.27). Sg l(DMF) 691nm,679 nm (sh), (H20) 

628 (br). 7h MS (FAB): mie 880 (M'+H) UV-vis À(DMF) (log 6) 691nm(5.33),620 nm (4.59). 8h À.{DMF) 698 nm, 

684 nm (sh), (H20) 636 (br). 7i MS (FAB): mie 936 (M'+H) UV-vis À.(DMF) (log 6) 685 nm (5.29), 615 nm (4.58). 81 À 

(DMF) 700 nm (sh), 688 nm, (H20) 620 (br). 7j MS (FAB): mie 936 (M'+H) UV-vis À(DMF) (log 6) 692 nm (5.24), 

622 nm (4.54). 8j Â.(DMF) 698 nm (sh), 689 nm, (H20) 627 (br). 7k MS (FAB): mie 930 (M'+H) UV-vis À.(DMF) 

(log s) 717 nm (4.94). 689 nm (4.99). SkÀ(DMF) 722 nm, 691nm,(H20)636 (br). 71 MS (FAB): mie 930 {M'+H) UV-

vis À(DMF) (log 6) 724 nm (5.00), 695 nm (5.02). 81 À.(DMF) 718 nm, 689 nm, (H20) 623 (br). 7m MS (FAB): mie 

1939 (M'+H) UV-vis À (DMF) (log s) 696 nm (5.31). 8m À (DMF) 736 nm (sh), 703 nm, (H20) 644 (br). 7n MS 

(FAB): mie 1939 (M'+H) UV-vis À(DMF) (log s) 702 nm (5.30), Sn l(DMF) 726 nm (sh), 700 nm, (H20) 648 (br). 

RESULTS AND DISCUSSION 

Boron subPcs are generally synthesiz.ed by the cyclotrimerization reaction of phthalonitriles with boron trichloride at 

elevated temperatures [21). In the current study, the iodinated subPcs 2a-c could in fact be prepared by reacting the 

appropriate iodinated phthalonitrile la-c in chlorobenz.ene with lM boron tribromide in dichloromethane at 60°C 

(Figure 1 ). This represents much milder reaction conditions than those traditionally employed, the milder conditions be 
at least in part due to the use of the stronger Lèwis acid boron tribromide. These conditions allowed for improved yields 

of the macrocycles. White the corresponding triiodinated subPcs bearing chloride axial ligands have been prepared in 

yields of 45% and 11.00.4 respectively [21,30], subPcs 2a and 2b were prepared in yields of 61.8% and 35% following 

purification by column chromatography on neutral alumina in the dark using dichloromethane as elu~t. The 

hexaiodinated subPc 2c was obtained in a yield of 60.5%. Unexpectedly, the addition of a smalt amount of THF into 

the reaction mixture increased the reaction rate and the resulting yields. F AB-MS spectral data was 
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Fig. 1. The synthesis of (2,9,16(17)-triiodosubphthalocyaninato)boron (III) bromide (2a), (1,8,15(18)-

triiodosubphthalocyaninato)boron(llI) bromide (2b) and (2,3,9,10,16,17-hexaiodosubphthalocyaninato)boron(llI) bromide (2c). la 

and 2a X== I, Y = H, Z = H; lb and 2b X= H, Y= H, Z = I; le and 2c X= 1, Y= 1, Z = H. Note that both 2,9,16(17)-

triiodosubphthalocyaninato)boron (III) bromide (2a) and (l,8,15(18)-triiodosubphthalocyaninato)boron(Ill) bromide (2b) are 

obtained as a mixture oftwo constitutional isomers having either C1 or C3 geometries (not depicted in the current figure). 
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consistent with the proposed structures of subPcs la-c and did not reveal any evidence of bromination of the 

macrocycles. which is a common side reaction in the preparation of subPcs due to the strong Lewis acidity of the boron 

sources. The Q band in the UV -visible spectra of subPcs la-c was typîcal for these lower homologs of Pcs, with 

absorptions at 573 nm, 577 nm and 583 nm respectively. 

Iodinated subPcs 2a-c readily underwent a ring expansion reaction with various 1,3-diirninoisoindolines using 

DMSO as the reaction solvent (Figure 2). F AB-MS spectral data confinn that these ring expansion reactions proceed 
selectively to yield the desired 3:1 asymmetrically substituted iodinated Pcs 4a-g, with m/z values corresponding to the 

expected molecular ion (M' + 1) and no m/z peaks corresponding to the other possible substitution patterns. Yields 

obtained ranged from 14.6% to 43.1%, which are exceeding good considering that only the 3:1 asymmetrically 

substituted iodinated Pcs were obtained. White the Kobayashi ring expansion reaction typically is accomplished in a 

mixture ofDMSO and either chlorobenzene, o-dichlorobenzene, 1-chloronaphthalene or 2-chloronaphthalene [19), the 

ring expansion reaction of the iodinated subPcs proceeded smoothly in DMSO. It has been observed that the use of 

DMSO as the reaction solvent in similar ring expansion reactions allows the reaction to selectively yield the desired 3:1 

asymmetrically substituted Pc [22). lt is possible that the mild oxidant DMSO helps control the reaction towards the 

necessary selectivity. On the other hand, if the loss of the axial ligand is the initial step in the ring expansion reaction, 

one would expect subPcs bearing bromide axial ligands to react under more mild reaction conditions, perltaps allowing 

the reaction to proceed selectively since the bond energy for a B-Br bond is 396 kJ/mol compared to 536 kJ/mol for a B-

Cl bond [24). Notably, a number of the literature examples detailing selective Kobayashi ring expansion reactions 

employed subPcs with bromine axial ligands [18,19,22). 

Metal insertion into the resulting metal-free Pcs was readily acoomplished by heating a suspension of the metal-free 

Pcs in DMF to 60°C in the presence of zinc acetate in near quantitative yields. Contrary to previous reports (20), the 

asymmetrically substituted iodinated zinc Pcs could also be obtained selectively by a templated Kobayashi ring 

expansion reactlon wherein zinc ions added to the reaction act as a template for Pc ring closure. However, yields were 

significantly reduced in these templated reactions white isolation and purification of the Pc was complicated by the 

higher solubility of the zinc Pcs in the reaction solvent. 

The asymmetrically substituted iodinated Pcs 4a-g are ideal building bloçks for the preparation of novel 3:1 

asymmetrically substituted Pcs bearing novel functionality. Palladium-catalyzed cross-coupllng reactions have been 
extensively used in the preparation of novel porphyrins and phthalocyanines [31 ], in particular in order to add new 

substituents to both iodinated subPcs [32] and Pcs [33), including asymmetrically substituted iodinated Pcs that were 

prepared by a mixed condensation (24,34]. It bas been established that amphiphilic water-soluble photosensitizers 

exhibit enhanced photodynamic activity [8-11 ]. With that in mind, iodinated Pcs 4a-g were used as building blocks for 

the preparation of novel water-soluble asymmetrically substituted Pcs. Iodinated Pcs 4a-g readily reacted with tenninal 

alkynes such as 5-hexynoic acid and 10-undecynoic acid in the presence of dichlorobis(triphenyl-

phosphine)palladium(II) and copper iodide in DMF/Et3N to give novel 3:1 asymmetrically substituted anionic 

phthalocyanines 6a-j (Figure 3). The salts of these Pcs were readily soluble in water at physiological pH. However, 

they were highly aggregated in aqueous solution as exemplified by their visible spec1ra, with a broad Q band centered 

between 620 and 640 nm. When dissolved in DMF, the corresponding acids displayed the typical sharp Q band in the 

region around 680 nm. As expected, the lack of symmetry in 6e, 6f and 6i lead to a splitting of the Q band of the 

phthalocyanines along with a shift of the absorbance to a longer wavelength. 

White less extensively studied titan their anionic counterparts, cationic Pcs have important properties that make them 
extremely attractive PS for PDT. Not only do cationic PS exhibit water-solubility, high singlet oxygen yields and 

excellent accumulation in target tissue [35-38], their cationic charge allows them to target important subcellular 
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2 

Fig. 2. The Kobayashi ring expansion reaction ofiodinated boron subphthalocyanines with various 1,3-diiminoisoindolines. 4a R1 == 
li. R2 =H.X=1, Y"' H. Z == H; 4b R1 = H, R2 == t-butyl. X== 1. Y= H, Z = H; 4c R1 = R2 =-CH=CH-CH-=CH-,X=1, Y= H. Z = H; 
4d R1 =H. R2 =H, X =H, Y =H,Z =I; 4e R1 =H, R2 =t-butyl, X=H. Y=H,Z=I; 4fR1 =R2 =-CH=CH-CH=CH-,X=H, Y= 
H. Z = I; 4g R1 = H, R2 = H, X = I. Y = 1, Z = H. Note that the ring expansion reaction of both 2.9,16(17)-
triiodosubphthalocyaninato)boron (Ill) bromide (2a) and (l,8,15(18)-triiodosubphthalocyaninato)boron{III) bromide (2b) leads to a 
mixture of constitutional isomers (not depicted in the cum:nt figure). 
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Fig. 3. Asymmetrically substituted phthalocyanines comprising carboxylic acid moieties. 6a R1 = H, R2 = H. X = -C=C-

(CH2hCOOH, Y = H. Z = H; 6b R1 = H, R2 = H, X= -{)5C-(CH2)aCOOH, Y = H, Z = H; 6c R1 = H, R2 = t-butyl, X= -

C=C.{CH2)3COOH, Y = H, Z = H; 6d R1 = H, R2 = t-butyl, X = -C=C-(CH2) 8COOH, Y = H, Z = H; 6e R1 = R2 = -

CH=CH-CH=CH-, X= -C=-C-(CHi)3COOH, Y = H, Z = H; 6f R1 = Rl = -CH=CH-CH=CH-, X= -C=C-(CH2) 8COOH, 

Y= H,Z = H; 6gR1 =H; R2 = H, X=H, Y =H, Z=-C=-C-(CH2)3COOH; 6h R1 =H, R2 =t-butyl,X=H, Y=H,Z=-

C=-C-(CHi)3COOH; 6i R1 = R2 = -CH=CH-CH=CH-, X= H, Y = H, Z = -C=-C-(CH2)3COOH; 6j R1 = H, R2 = H, X = Y 

= -C=G-(Cfü)3COOH, Z = H. 
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Fig. 4. Asymmetrically substituted cationic phthalocyanines comprising 2-ethynylpyridinyl and 3-ethynylpyridinyl 

moieties. Sa R1 = H, R2 = H, X= -2-py+, Y= H, Z = H; Sb R1 = H, R2 = H, X= -3-py+, Y= H, Z = H; 8c R1 = H, R2 = 

t-butyl, X= -2-py+, Y= H, Z = H; Sd R1 = H, R2 = t-butyl, X= -3-py+ , Y= H, Z = H; Se R1 = R2 = -CH=CH-CH=CH-, 

X= -2-py+, Y= H, Z = H; SfR1 = R2 = -CH=CH-CH=CH-, X= -3-py+, Y= H, Z = H; 8g R1 = H, R2 = H, X= H, Y= 

H, Z = -2-py+; Sb R1 = H, R2 = H, X= H, Y= H, Z = -3-py+; Si R1 = H, R2 = t-butyl, X= H, Y= H, Z = -2-py+; Sj R1 = 

H, R2 = t-butyl, X= H, Y= H, Z = -3-py+; 8k R1 = R2 = -CH=CH-CH=CH-, X= H, Y= H, Z = -2-py+; 81 R1 = R2 = -

CH=CH-CH=CH-, X= H, Y= H, Z = ·3-py+; Sm R1 = H, R2 = H, X= Y= -2-py+, Z = H; Sn R1 ""H, R2 = H, X= Y= -
3-py+,Z=H. 
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Fig. 5. UV-visible spectra of asymmetrically substituted cationic phthalocyanines 8a, 8b, lk and 8e in DMF. 
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targets such as the mitochondria (39,40) and ONA [41) along with bacteria and other infectious agents [42-46). 

Interestingly, comparative studies of three different charged (anionic, cationic and neutral) structurally similar zinc 

phthalocyanines have shown that the cationic phthalocyanine is the most effective photosensitizer (42,47-50). In 

addition, asymmetrically substituted cationic photosensitizers are more efficient in destroying melanoma cells than the 

corresponding symmetrically substituted photosensitizers [ 51] white phthalocyanines substituted on only one benzo ring 

with cationic groups or protonable groups are particularly photodynamic active with impressive activities against fungi, 

Gram-positive and Gram-negative bacteria (52]. 

Asymmetrically substituted iodinated Pcs 4a-g underwent palladium-catalyzed cross-coupling reactions with 2-

ethynlpyridine and 3-ethnylpyridine (Figure 4). The FAB mass spectral data for the resulting Pcs 7a-n was consistent 

with the proposed structures while the UV-visible spectra gave typical sharp Q bands around 680 run. Pcs 7a-n reacted 
readily with methyl iodide or dimethyl sulfate in OMF at 70°C to give the corresponding asymmetrically substituted 

cationic Pcs 8a-n. In aqueous SQ)ution, cationic Pcs 8a-n are highly aggregated, exhibited a broad Q band centered 

between 620-640 nm. However, N-methylation in Pcs 8a-n lead to significant splitting of the Q band in OMF along 

with impressive shifts of the ÀmaX to longer wavelengths (Figure 5). Such shifts are advantageous as light penetration of 

tissue increases with increasing wavelengths. In a studies involving a series of zinc complexes of 

benzonaphthaloporphyrazines bearing positively charged methylpyridinium substituents on the benzo rings, it was 
determined that the 3:1 asymmetrically substituted Pc containing one naphthalo ring and three benz.o rings bearing 

positively charged methylpyridinium substituents (akin to Pcs 8f and 81 with the methylpyridinium group bound to the 

Pc by a ether bond instead of an ethynyl bond) are the most photodynamically active [ 53 ,54 ], thus making Pcs Se, 8f, 8j 

and 81 of particular interest In addition, shifting the quarternized nitrogen from the 3 to the 2 position in the pyridine 

moiety may also have interesting properties for POT. 

In conclusion, the Kobayashi ring expansion reaction of iodinated subPcs 2a-c selectively yielded the corresponding 

3:1 asymmetrically substituted iodinated Pcs 4a-g. These 3:1 asymrnetrically substituted iodinated Pcs are ideal 

building blocks for the preparation of novel 3: 1 asymmetrically substituted Pcs bearing navel functionality and will be 

useful in the synthesis of Pcs with improve properties for numerous applications. In terms of POT, palladium-catalyzed 

cross-coupling reactions have been successfully employed to prepare novel 3: 1 asymmetrically substituted water-soluble 

anionic and cationic photosensitizers. Of particular interest are the novel asymmetrically substituted cationic Pcs since 

cationic photosensitizers have been shown to have a number of interesting properties in the photodynamic treatment of 

numerous conditions. ln addition, the lipophilic/hydrophilic balance in these PS can be further moditled by altering the 

number of carbon atoms in the side chains of the quarternized nitrogens. 
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Chapter 9. 

The Discussion 



9. Discussion 

As disclosed in the introduction, phthalocyanines have immense potential in an 

array of widely diverging fields. While these impressive macrocycles have found 

tangible utility as dyes and pigments, as photoconducting agents in photocopying devices 

and laser printers, as catalysts for important chemical reactions with environmental 

consequences and as the active element in optical data storage, the true potential of 

phthalocyanines can only be realized with macrocycles with distinct physical structures 

and well-defined chemical and electronic properties. With this in mind, new synthetic 

procedures and modification and adaptation of established synthetic protocols continue to 

be scrutinized in order to prepare phthalocyanines with the required physical, chemical 

and spectral properties for application in a given technical field. 

Among pre-existing synthetic protocols, the Kobayashi ring expansion reaction of 

boron subphthalocyanines provides means for preparing novel 3:1 asymmetrically 

substituted phthalocyanines while retaining sufficient synthetic versatility to incorporate 

diverse substituents into the final phthalocyanine product. While it has been 

demonstrated that the ring expansion reaction does not proceed via a concerted, one-step 

mechanism and is thus not universally applicable (Figure 1.26) (Sastre et al., 1995; 

Weitemeyer et al., 1995; Geyer et al., 1996; Sastre et al., 1996), this synthetic procedure 

has been revealed to be valuable in a number of specific cases. In particular, our group 

has successfully used the Kobayashi ring expansion reaction of boron tri(4-

sulfo )subphthalocyanine to synthesize novel trisulphonated zinc phthalocyanine 

derivatives (Figure 1.27) and has exl:µllÏned the photodynamic activity of these water-
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soluble macrocycles (Kudrevich et al., 19%, Kudrevich et al, 1997; van Lier et al., 1999). 

Taking this successful use of the Kobayashi ring expansion reaction into consideration, 

halogenated boron subphthalocyanines were targeted as precursors for the synthesis of 

novel 3: l asymmetrically substituted phthalocyanines. Our group has demonstrated that 

fluorinated phthalocyanines are efficient photosensitizers for photodynamic therapy 

(Allémann et al., 1995; Allémann et al., 1996; Boyle et al., 1996b; Allémann et al., 1997; 

Bench et al., 2002) and it is assumed that the asymmetrically substituted fluorinated 

phthalocyanines potentially obtained via the ring expansion reaction of the corresponding 

fluorinated subphthalocyanines will have important advantages as photosensitizers. In 

the meanwhile, iodinated subphthalocyanines provide useful precursors for the 

preparation of asymmetrically iodinated phthalocyanines. In turn, by employing 

palladium-catalyzed reactions, these iodinated macrocycles provide access to novel 

asymmetrically substituted phthalocyanines bearing interesting functionality. Such 

reactions have been extensively used to prepare novel porphyrins and phthalocyanines 

(Ali et al., 1994; Boyle et al., 1995; Sharman et al., 1996; Ali et al., 1997; Maya et al., 

1998; Vinogradov et al., 1998; Aranyos et al., 1999; Lemoff et al., 1999; Maya et al., 

2000; Sugimori et al., 2000; Tian et al., 2000; Khan et al., 2001; Khan et al., 2003; 

Cauchon et al., 2005) (àlso see Chapter 6). 

Boron subphthalocyanines were first serendipitously synthesiz.ed in 1972 during 

attempts to prepare boron phthalocyanines by the condensation reaction of phthalonitrile 

with boron trichloride in chloronaphthalene at 200°C (Meller et al., 1972). It was not for 

another twenty years that subphthalocyanines started to receive attention as more than 

just the smaller analogues of phthalocyanines. Their unique physical, chemical and 
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structural properties have led investigators to propose their utility as building blocks for 

the synthesis of 3: 1 asymmetrically substituted phthalocyanines (K.obayashi et al., 1990; 

Kasuga et al., 1992; Musluoglu et al., 1992; Dabak et al., 1994; Kudrevich et al., 1996; 

Kudrevich et al, 1997; Kobayashi et al., 1999; van Lier et al., 1999) and as materials for 

nonlinear optics (Diaz-Garcia et al., 1995; Sastre et al., 1996; Rojo et al., 1997; del Rey et 

al., 1998; Kang et al., 1999; de la Torre et al., 2004; Claessens et al., 2005). However, 

despite intense investigation into the synthesis, properties and reactivity of 

subphthalocyanines, the synthetic procedure employed during their first serendipitous 

synthesis remains the only basic method for obtaining their unique tripyrrolic 

architecture. The only method to date for preparing subphthalocyanines remains the 

cyclotrimerization of phthalonitriles in the presence of a boron source. While this boron 

source is typically a boron trihalide, other boron sources such as triphenylboron have 

been successfully employed though yields have been significantly decreased in most 

cases. 

(Dodecatluorosubphthalocyaninato )boron(III) bromide, 

subphthalocyaninato )boron(III) bromide, 

(2,9,16(17)-triiodo-

(l,8, 15(18)-

triiodosubphthalocyaninato )boron(III) bromide and (2,3,9, 10, 16, 17-

hexaiodosubphthalocyaninato )boron(III) bromide have ail been successfully synthesized 

by the cyclotrimerization reaction of the corresponding halogenated phthalonitrile with 

1 M boron tribromide in dichloromethane using chlorobenzene as a solvent at a reaction 

temperature of 40-60°C (Figure 7.1 and 8.1). Yields ranged from 35% for the reaction 

with 3-iodophthalonitrile to 70% for tetrafluorophthalonitrile. These reaction conditions 

are much milder than those traditionally used in the preparation of subphthalocyanines 
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and even give improved yields. For instance, the corresponding 

( dodecafluorosubphthalocyaninato )boron(III) chloride has been previously synthesized 

via the reaction oftetrafluorophthalonitrile and boron trichloride (IM solution in hexane) 

in 1-chloronaphthalene at elevated temperatures (Kipp et al., 1998; Ohno-Okumura et al., 

2002). Under these conditions, yields were decreased to 26%. (2,9,16(17)-

Triiodosubphthalocyaninato )boron(III) chloride and (1,8, 15(18)-triiodosubphthalo-

cyaninato )boron(III) chloride have also prepared under harsh conditions ( condensed 

boron trichloride, 1-chloronaphthalene, 120-240°C) in yields of 45% and 11% 

respectively (Geyer et al., 1996; del Rey et al., 1997; Claessens et al., 2000a). 

Interestingly, the addition of small amounts of tetrahydrofuran was found to increase 

reaction rates and the resulting overall yield. While the reason for this is unclear, it may 

involve improved solubilization of the reagents. 

lt is known that the reactivity of trisubstituted boron compounds towards the 

cyclotrimerization reaction is closely related to the Lewis acidity of the boron compound 

and follows the order B(Alkyl)3 < BPh3 < BF3 < BCh < BBr3 (Claessens et al., 2002). 

Thus, the increased reactivity of boron tribromide compared to boron trichloride may 

lead to the possibility of employing milder reaction conditions in the formation of these 

halogenated boron subphthalocyanines, therefore ensuring enhanced yields. However, 

the presence of four strongly electron withdrawing fluorine atoms will also activate the 

nitrile groups of the tetrafluorophthalonitrile towards the subphthalocyanine formation. 

Furthermore, the relative stability of boron subphthalocyanines depends on the nature of 

the peripheral substituents with (2,9, 16(17)-triiodosubphthalocyaninato )boron(III) 

chloride being the most stable subphthalocyanine studied (Claessens et al., 2002). Thus, 
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the halogen substituents increase the reactivity of the phthalonitrile and stabilize the final 

boron subphthalocyanine produc4 leading to improved yields while employing milder 

reaction conditions. As confirmed by mass spectroscopy, the use of milder reaction 

conditions also seems to prevent the bromination of the iodinated subphthalocyanines, a 

common side reaction due to the Lewis acidity of the boron source. Furthermore, no 

exchange of fluorine for bromine is observ~ in the preparation of dodecafluorinated 

subphthalocyanine, this despite the strong Lewis acidity of boron tribromide and the 

well-established reactivity of tetrafluorophthalonitrile towards exchange reactions 

(Birchall et al., 1970). 

Boron subphthalocyanines bearing a bromine axial ligand are quite unstable with 

respect to axial ligand exchange with bromosubphthalocyanines readily undergoing 

nucleophilic substitution while chlorosubphthalocyanines require harsher reaction 

conditions (Claessens et al., 2002). This observation has been exploited for the 

preparation of subphthalocyanines bearing novel axial ligands (Kasuga et al., 1996; Engel 

et al., 1997; Yanagiba et al., 1997). However, this property ofbromosubphthalocyanines 

also makes their purification and characteriz.ation difficult and only a small number of 

examples are described in the literature (see for instance Kobayashi et al., 1990; Kasuga 

et al., 1996; Kudrevich et al., 1997; Kobayashi et al., 1999; Wang et al., 2000; Cao et al., 

2002). Use of column chromatography may lead to axial ligand exchange with free OH 

groups in the stationary phase (Claessens et al., 2002) and purification of these labile 

compounds is preferably accomplished by precipitation or Soxhlet extraction with 

appropriate solvents (Cao et al., 2002). However, it was found that the halogenated 

subphthalocyanines, in particular the dodecafluorinated subphthalocyanines, degraded 
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significantly when the chlorobenzene reaction mixture was added to excess hexanes. 

This is despite reports that subphthalocyanines are stable in aprotic solvents (del Rey et 

al., 1998). Furthermore, (2,9, 16(17)-triiodosubphthalocyaninato )boron(III) chloride is 

the most stable subphthalocyanine that has been investigated (Claessens et al., 2002). 

On the other hand, ( dodecafluorosubphthalocyaninato )boron(III) chloride is known to 

undergo thermal decomposition in hexanes (Kipp et al., 1998). Soxhlet extraction of the 

halogenated subphthalocyanines with dry dichloromethane also led to decreased yields of 

the macrocycles. Purification by flash column chromatography on neutral alumina in the 

dark using 30% THF in hexanes or using dichloromethane as eluant proved to be the 

most efficient method of obtaining the desired halogenated tripyrrolic macrocycles. 

Using neutral alumina decreased the amount of axial ligand substitution while avoiding 

light prevented photodegradation of the subphthalocyanines on the column. The resulting 

halogenated subphthalocyanines exhibited typical electronic spectra, with a sharp, strong 

Q band around 580 nm. 

In view of the observation that lowering the reaction temperature and employing 

milder reaction conditions increased yields, attempts were undertaken to prepare 

(dodecafluorosubphthalocyaninato)boron(llI) bromide at 0°C. Under these conditions, a 

labile blue product absorbing at 660 nm was obtained instead of the desired purple 

subphthalocyanine (with its characteristic absorption at 577 nm) (Figure 9.1). A similar 

labile blue product was observed when the cyclotrimerization reaction was undertaken at 

0°C using other phthalonitriles substituted with electron-withdrawing substituents 

(including 4-iodophthalonitrile, 4,5-diiodophthalonitrile, 4-nitrophthalonitrile and 
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Figure 9 .1. The absorption spectra of ( dodecafluorosubphthalocyaninato) boron(III) 

bromide (573 nm) and of the blue intermediate species (660 nm) in THF. 

1,2,4,5-tetracyanobenzene ). (Dodecafluorosubphthalocyaninato )boron(III) chloride has 

been reported to undergo thermal decomposition to yield a Iight blue product whose 

structure was not determined (Kipp et al., 1998). While the identity of these labile blue 

species has not been fully elucidated, determination of the nature of these species would 

aid in the determination of the mechanism of the cyclotrimeriz.ation reaction. This would 

in tum allow investigators to improve the synthesis and ultimately the utility of 

subphthalocyanines. 

Although the nature of the transient blue species has not been fully elucidated, 

speculation leads to a number of possibilities. Boron trihalides are known to form charge 

transfer complexes with nitrile functional groups (RC=N:BCh) (Gerrard et al., 1958) and 

a charge transfer complex with the two nitrile groups of the phthalonitrile would be 
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Figure 9 .2. The absorption spectra of the reaction of ( dodecafluorosubphtbalocyanato) 

boron(III) bromide (2) with NaBR.. 

expected to fonn during the cyclotrimerization reaction. It bas been observed that 

heating a solution of the labile blue species leads to fonnation of the desired 

subphthalocyanine in decreased overall yield. Furthennore, treatment of the blue species 

with the oxidant DDQ leads to a broad transient absorption in the UV-visible spectra 

centered around 580 nm. On the other han~ addition of reductant such as NaBR. to a 

solution of ( dodecafluorosubphtbalocyaninato )boron(III) bromide results in a Joss of the 

absorption at 577 nm and the fonnation of a broad transient absorption at 660 nm (Figure 

9.2). These results suggest that the transient blue species requires an oxidation step in 

order to fonn the subphtbalocyanine and that this oxidation step occurs late in the 

cyclotrimeriz.ation reaction pathway. A bathochromic shift in the Q band as one goes 

from an incompletely oxidized species to the completely oxidized subphtbalocyanines is 
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Protoporphyrin IX 
À.max= 635 nm 

Verteporfin 
Âmax=690nm 

Figure 9 .3. Protoporphyrin IX and Verteporfin and the bathchromic shift in the Ârnax with 

incomplete conjugation. 

not unexpected. A loss of conjugation jn tetrapyrrolic macrocycles is known to lead to a 

red shift in the Ârnax· For instance, while the completely conjugated protoporphyrin IX 

absorbs at 630 nm, the structurally similar incompletely conjugated verteporfin absorbs at 

690 nm (Figure 9.3) (Mody, 2000). The singlet excited state of 

( dodecafluorosubphthalocyaninato )boron(Ill) chloride has also been shown to be a strong 

oxidant with a one electron potential estimated to be 1. 7 V (Kipp et al., 1998), suggesting 

that the connection between the subphthalocyanines and the blue intermediary species 

pass via a photoexcited state of the subphthalocyanine. 

Due to their cone-shaped structure, subphthalocyanines are less prone to 

aggregate in solution compared to planar phthalocyanines. Furthermore, 

subphthalocyanines fluoresce with quantum yields around 0.25 (which is lower than 

typical quantum yields for phthalocyanines) and have larger triplet state quantum yields 
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than phthalocyanines with triplet state lifetimes in the range of 1 OO µs (del Rey et al., 

1998). As such, subphthalocyanines can effectively sensitize molecular oxygen to singlet 

oxygen upon illumination, with quantum yields ranging from 0.23 to 0.75. Wbile these 

properties are exceptional for photosensitizers in tenns of photodynamic therapy, 

subphthalocyanines absorb around 580 nm where tissue penetration of light is minimal. 

With this in mind, unsubstituted boron subnaphthalocyanine has been prepared and its 

optical absorption and photophysical properties have been investigated (Nonell et al., 

2000). In a homogenous environment using toluene as a solvent, it was determined that 

this photosensitizer has excellent triplet state and singlet oxygen quantum yields (Cl>-r = 

tl>A = 0.68) which are substantially higher than those of phthalocyanines or 

naphthalocyanines. Since (subnaphthalocyaninato)boron(III) bromide absorbs at 663 nm 

with an absorption coefficient of 7.94 x 104 M'1cm·1, these photophysical properties, 

along with their synthetic availability, high solubility and low tendency to aggregate, has 

led to the suggestion that subnaphthalocyanines may represent a new class of 

photosensitizers for photodynamic therapy that warrant further investigation. 

To ascertain the photodynamic potential of subnaphthalocyanines in a more 

biological relevant environment, a series of boron subnaphthalocyanines have been 

prepared from known 2,3-naphthalenedicarbonitrile derivatives and purified using the 

same methodologies as the one employed for the halogenated subphthalocyanines (Figure 

9.4) (see Chapters 7 and 8 for the procedure employed in their synthesis). While these 

compounds have not yet been fully characterized, they provide an excellent opportunity 

to determine the relevance of boron subnaphthalocyanines as photosensitizers for 

photodynamic therapy. 
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CN 
1 MBBr3 
inCH2Cl2 

chlorobenzene N 
R2 CN 

THF 
Ri 60-80°C 

15-35% 

R1 

9a Ri = H, R2 = H R2 
9b R1 =N(h, R1 = H 
9c Ri= Cl, R1 = H 
9d Ri = I, R2 = H 
9e Ri = H, R2 = t-butyl 

Figure 9.4. Synthesis ofboron subnaphthalocyanines (consititutional isomers not 

depicted) 

In order to determine if these compounds could effectively generate singlet 

oxygen and induce oxidative damage in an aqueous, biologically relevant environment, 

thee (naphthalosubphthalocyaninato )boron(III) bromide derivatives were formulated as 

Cremophor™ EL (CRM) emulsions (see Chapter 7 for the procedure used for drug 

formulation). A solution of 5 µM boron subnaphthalocyanine (0.5% CRM) and 5 mM L-

tryptophan in PBSwas irradiated with light between 600 and 700 nm at a fluence rate of 

150 mW cm-2 using the L-tryptophan photooxidation protocol described in Chapter 7. 

Singlet oxygen is believe to be the single most important reactive species generated 

during photodynamic therapy and is ultimately responsible for most of the biological 

damage observed during PDT(see Chapter 2). Singlet oxygen induces characteristic 
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Âmax Relative Photobleaching Âmax Relative Photobleaching 
(nm) HPPI rate constant (nm) HPPI rate constant 

Yields (sec-1) Yields (sec-1) 
AlPcS4 680 1 - 9b 655 1.51 l.OlxlO-..: 
(PBS) (R1=N02, 

R1=H) 
AlPcS4 678 1.15 - 9c 657 1.55 2.23xl0-:z 

(R1=Cl, 
Ri=H) 

AlPc 671 0.25 - 9d 659 1.68 2.50xl0-..: 
(R1=I, 
R1=H) 

9a 659 1.18 2.14xl0-..: 9e 660 1.38 2.34xl0-..: 
(R1=R2=H) (R1=H, 

R1=t-
butyl) 

Table 9.1. Q band absorption, relative L-tryptophan photooxidation and photobleaching 

rate constant of boron subnaphthalocyanines (0.5% CRM solution unless otherwise 

noted) 

oxidative damage to biologically important molecules including amino acids and DNA 

(Singh, 1982; Langlois et al., 1986; Ferraudi et al., 1988; Halliwell et al., 1991; Langlois 

et al., 1993; DeRosa et al., 2002). For instance, L-tryptophan oxidation by singlet oxygen 

yields characteristic hydroperoxide isomers (HPPI) which can be quantified by HPLC 

(Langlois et al., 1986; Langlois et al., 1993) and as a result, relative singlet oxygen yields 

can be inferred from the measurement of the yield of HPPI isomers relative to a known 

standard. 

Table 9.1 discloses the relative tryptophan photooxidation after two minutes of 

irradiation for the series of boron subnaphthalocyanines examined. Bach example is a 
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Figure 9.5. Photobleaching of9a (R1 = R1= H) at a fluence rate of 150 mWcm-2 

0.5% CRM emulsion unless otherwise noted. The yield for AlPcS4 in PBS is arbitrarily 

set as 1 (with the singlet oxygen quantum yield for AlPcS4 in PBS (1% Triton) reported 

as 0.43 (Redmond et al., 1999)). Formulating AlPcS4 in 0.5% CRM slightly increases 

hydroperoxide yields, most Iikely due to slightly decreased aggregation of the 

photosensitizer. Unsubstituted aluminum phthalocyanine, on the other hand, gives 

significantly less hydroperoxide, a result of important aggregation of the chromophore 

under these conditions. In contrast, unsubstituted boron subnaphthalocyanine yields 

similar hydroperoxide yields as AlPcS4 in the same formulation. Obviously, the cone-

shaped structure of these macrocycles prevents aggregation, leading to the important 
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difference between unsubstituted phthalocyanines and subnaphthalocyanines. As 

expected, the most effective of the boron subnaphthalocyanines are the halogenated 

derivatives, most Iikely a result of the heavy atom effect that increases spin..arbital 

coupling and facilitates intersystem crossing to the excited triplet state. 

Subphthalocyanines and by extension subnaphthalocyanines are known to be 

considerably less photostable than phthalocyanines (del Rey et al., 1998; Kobayashi et 

al., 1999; Claessens et al., 2002). Figure 9 .5 represents a graph of the absorbance of a 

15µM solution ofunsubstituted boron subnaphthalocyanine versus the time of irradiation 

with light between 600 and 700 nm at a tluence rate of 150 m W cm-2• As can clearly be 

seen, these boron subnaphthalocyanines are rapidly photobleached, with most of the 

chromophore being destroyed a.fier 2 minutes of irradiation. The improved tryptophan 

photooxidation by the trinitro-substituted derivative disclosed in Table 9.1 is most likely 

due to the slightly decreased rate of photobleaching observed for this photosensitizer. 

The strongly electron-withdrawing nitro functionality most likely draws electron density 

away from the macrocycle, protecting the trinitro-substituted derivative from photo-

induced destruction. Table 9.1 discloses the photobleaching half-life of this series of 

boron subnaphthalocyanines at a fluence rate of 150 m W cm-2 with light of a wavelength 

between 600-700 nm. While photobleaching may decrease the photodynamic efficiency 

of the photosensitizer by decreasing the overall concentration in the irradiated target, 

photobleaching in vivo may be advantageous in terms of improved target selectivity 

(MacRoberts et al., 1989) and decreasing photosensitization (Bonnett, 1995; Bonnett, 

1999). Furthermore, decreased photostability increases the therapeutic depth of laser 

light penetration into tissue because photosensitizer molecules in the upper cellular Iayers 
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photobleach more rapidly than those in deeper cellular layers (Wôhrle et al., 1998). 

Thus, the decreased shielding by photobleached photosensitizer in upper Iayers allows 

deeper light penetration during photodynamic therapy. 

The ring expansion reaction of subphthalocyanines was first demonstrated by 

Kobayashi et al. in 1990 with the reaction of (2,9,16(17)-tri-t-

butylsubphthalocyaninato )boron(III) bromide with 1,3-diiminoisoindolines of increasing 

aromaticity (Figure 1.25) (Kobayashi et al., 1990). The advantages of this ring expansion 

reaction were immediately recognized. Yields ranged from 8-20%, which are especially 

good in view of the fact that only the 3: 1 asymmetrically substituted phthalocyanine 

derivatives were obtained. Furthermore, purification was deemed facile as only two 

easily separated bands existed, one for the reddish-purple unreacted subphthalocyanine 

and one for the green 3: 1 asymmetrically substituted phthalocyanine. The initial promise 

of this reaction protocol for the synthesis of asymmetrically substituted phthalocyanines 

seemed to be verified by the synthesis of pure monosubstituted phthalocyanines fitted 

with crown ether substituents (Musluoglu et al., 1992) and with dipropoxy functionality 

(Kasuga et al., 1992) and by the synthesis of hexakis(alkylthio)-substituted 

phthalocyanines (Dabak et al., 1994). 

In light of these promising initial studies and the important utility of 3: 1 

asymmetrically substituted phthalocyanines, extensive studies have been undertaken 

using this methodology in order t-0 prepare novel phthalocyanine derivatives (Sastre et al., 

1995; Weitemeyer et al., 1995; Geyer et al., 1996; Sastre et al., 1996; Kudrevich et al., 

1996; Kudrevich et al., 1997; Ali et al., 1999; Kobayashi, 1999; Kobayashi et al., 1999; 

van Lier et al., 1999; Claessens et al., 2002). U~ortunately, success varies greatly, 
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depending on the substituents on the boron subphthalocyanine, the natme of the 1,3-

diiminoisoindoline and the reaction conditions employed. In a number of reactions, the 

Kobayashi ring expansion reaction of boron subphthalocyanines led to a mixture of 

differently substituted phthalocyanines (Sastre et al., 1995; Weitemeyer et al., 1995; 

Geyer et al., 1996; Sastre et al., 1996; Claessens et al., 2002). In order to explain these 

results, it has been suggested that the ring expansion reaction must not be a concerted 

process (Sastre et al., 1995; Weitemeyer et al., 1995; Sastre et al., 1996). The reaction 

must proceed by a 1,3-diiminoisoindoline-catalyzed cleavage of the boron 

subphthalocyanine into different fragments that subsequently condense to give 

phthalocyanines with varying substitution patterns (Figure 1.26). Proceeding via such a 

mechanism greatly limits the universal applicability and the general synthetic utility of 

the Kobayashi ring expansion. However, in spite of these less than favorable results, this 

synthetic approach to the synthesis of 3: 1 asymmetrically substituted phthalocyanines has 

proven valuable in specific cases where the substituents on the subphthalocyanine, the 

nature of the 1,3-diiminoisoindoline and/or the reaction conditions employed have 

allowed the reaction to proceed smoothly to yield only the desired 3: 1 asymmetrically 

substituted product (Kobayashi et al., 1990; Musluoglu et al., 1992; Kasuga et al., 1992; 

Dabak et al., 1994; Kudrevich et al., 1996; Kudrevich et al., 1997; Ali et al., 1999; 

Kobayashi, 1999; Kobayashi et al., 1999; van Lier et al., 1999). 

(Dodecafluorosubphthalocyaninato )boron(III) bromide, 

subphthalocyaninato )boron(Ill) 

triiodosubphthalocyaninato )boron(III) 

bromide, 

bromide and 

(2,9,16(17)-triiodo-

(l ,8, 15(18)-

(2,3,9,10, 16, l 7-

hexaiodosubphthalocyaninato )boron(Ill) bromide ail readily underwent the Kobayashi 
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ring expansion reaction with various diiminoisoindolines using DMSO as a reaction 

solvent (Figures 7.1 and 8.2). FAB-MS data confirm that these ring expansion reactions 

proceeded selectively to yield only the desired 3: 1 asymmetrically substituted 

halogenated phthalocyanines. While m/z values corresponding to the expected molecular 

ion {W or (M+l)) were observed, no m/z peaks corresponding to the other possible 

substitution patterns were obtained. For instance, Figures 9.6 and 9. 7 depict the F AB-MS 

spectra of l,2,3,4,8,9,10,l l,15,l6,l7,18-dodecatluorophthalocyaninate (Compound 4a in 

Figure 7.1) and 2,9,16-triiodo-23(24)-t-butylphthalocyaninate (Compound 4b in Figure 

8.2). While the (M+l)+ is present for the desired 3:1 asymmetrically substituted product, 

no ions represents in other substitution patterns are observed (514, 586, 658 and 802 for 

the unsubstituted, tetratluorinated, octafluorinated and hexadecatluorinated 

phthalocyanines and 738, 808, 878, 1018 for tetra-t-butyl-substituted, tri-t-butyl-

monoiodo-substituted, di-t-butyl-di-iodo-substituted and tetraiodo-substituted 

phthalocyanines respectively). Yields for the dodecafluorinated phthalocyanines ranged 

from 18-60% while those obtained for the iodinated phthalocyanines ranged from 15-

43%. It should however be noted that these yields were obtained for small scale reactions 

with increases in the scale of the reaction often leading to critical decreases in the overall 

yield of the phthalocyanine product. Lower yields were obtained for the reaction of the 

dodecatluorinated subphthalocyanine with 4-iodo-1,3-diiminoisoindoline, most likely the 

result of steric effects. Decreased yields were similarly obtained for Kobayashi ring 

expansion reactions of the more sterically involved (1,8, 15(18)-

triiodosubphthalocyaninato )boron(III) bromide. Reactions of the dodecafluorinated 

subphthalocyanine with 5,6-didodecyl-1,3-diiminoisoindoline also led to lower yields. 
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While steric effects may play a role in the lower yields with the long alkyl chains 

interfering with the reaction of the subphthalocyanine with the l ,3·dîiminoisoindoline, 

the solubility of 5,6-didodecyl-1,3-diiminoisoindoline undoubtedly is involved as well. 

Wbile the other 1,3-diiminoisoindoline employed could be solubilized in DMSO upon 

sonication, 5,6-clidodecyl-l,3-diiminoisoindoline require a 1:1 mixture of DMSO and 

chlorobenzene. The chlorobenzene in the reaction solvent may possibly interfere in some 

manner with the ring expansion reaction, resulting in lower phthalocyanine yields. 

Interestingly, the Kobayashi ring expansion reaction traditionally uses a mixture of 

DMSO and either chlorobenzene, o-dichlorobenzene, 1-chloronaphthalene or 

chloronaphthalene as the reaction solvent In fact, it has been reported that the Kobayashi 

ring expansion reaction of (2,9,16(17)-tri-t-butylsubphthalocyaninato)boron(lll) bromide 

with unsubstituted 1,3-diiminoisoindoline failed to give any phthalocyanine when pure 

DMSO was used as the reaction solvent (Kobayashi et al., 1999). Reaction of 2,9,16(17)-

tri-t-butylsubphthalocyaninato )boron(III) bromide with 5-t-butyl-1,3-diiminoisoindoline 

in pure DMSO led to a small yield of the tetra-t-butylphthalocyanine. On the other hand, 

DMSO has been used successfully as the reaction solvent for the Kobayashi ring 

expansion reaction of (2,9, 16(17)-tris( chlorosulfonyl)subphthalocyaninato )boron(III) 

bromide, allowing for the preparation of novel 3:1 asymmetrically substituted water-

soluble phthalocyanines (Figure 1.27) (Kudrevich et al., 1996; Kudrevich et al., 1997; 

van Lier et al., 1999). As such, there is the possibility that the use of DMSO, a mild 

oxidant, as the solvent may be responsible for the selectivity and the enhanced yields 

observed in the Kobayashi ring expansion r~ction of the halogenated 

subphthalocyanines studied. However, the increased solubility of the halogenated boron 
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subphthalocyanines and the more important polarity of the reaction solvent most certainly 

plays a role as well. 

Intuitively, it seems logical that the reactivity of the subphthalocyanines towards a 

ring expansion reaction would be due to the steric strain present in the distorted 

molecular structure, with the cone-shaped geometry of boron subphthalocyanines leading 

to ine:ffective p-orbital overlap and loss of aromatic stabilization. However, molecular 

orbital calculations comparing the bond energies of unsubstituted boron 

subphthalocyanine with unsubstituted magnesium phthalocyanine indicated little 

deviation in the calculated C-N bond energies between the two macrocycles (Kobayashi, 

1999; Kobayashi et al., 1999). This implies that the distortion is nota major cause of the 

ring expansion reactivity. Similar calculations suggest that the lack of electron-accepting 

orbitals in boron result in a lack of donor-acceptor stabilization in the B-N bonds, which 

in part explains the decreased stability of boron subphthalocyanines. More importantly, 

these calculations indicate that the loss of the axial ligand alters the shape of the main 

skeleton of subphthalocyanines from a shuttlecock to a more planar form, with a 

corresponding stabiliz.ation of approximately 1 OO kJ/mol. Furthermore, the resulting 

cationic charge on the central boron atom can be e:ffectively delocalized over the entire 

macrocycle. In view of these calculations, it appears likely that the initial step in the 

Kobayashi ring expansion reaction consist of a dehalogenation reaction, causing the loss 

of the axial ligand. 

In light of these molecular orbital calculations, the Kobayashi ring expansion 

reactions of (dodecafluorosubphthalocyaninato)boron(III) bromide, (2,9,16(17)-triiodo-

subphthalocyaninato )boron(III) bromide, ( 1,8, 15(18)-
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triiodosubphthalocyaninato )boron(Ill) bromide and (2,3,9,10,16,17-

hexaiodosubphthalocyaninato )boron(Ill) bromide may have proceeded with the desired 

selectivity and with important yields at least in part due to the use of boron 

subphthalocyanines bearing a bromine axial ligand in lieu of a chlorine axial ligand. The 

bond energy of a B-Br bondis 396 kJ/mol compared to 536 kJ/mol for a B-Cl bond 

(Lide, 1992). Therefore, if the loss of the axial ligand is the initial step in the ring 

expansion reaction, it would be expected that subphthalocyanines bearing bromine axial 

ligands would react under milder reaction conditions, perhaps allowing the reaction to 

proceed selectively. Notably, a number of literature examples detailing selective 

Kobayashi ring expansion reactions employ subphthalocyanines with bromine axial 

ligands (Kobayashi et al., 1990; Kudrevich et al., 1996; Kudrevich et al., 1997; 

Kobayashi et al., 1999; van Lier et al., 1999). It is also a possibility that the electron-

withdrawing nature of the halogen functional groups on the boron subphthalocyanines 

examined and the lower overall reaction temperature play arole in the selectivity. 

Metal insertion into the resulting metal-free phthalocyanines was readily 

accomplished by heating a suspension of the halogenated metal-free phthalocyanines in 

DMF to 30-60°C in the presence of zinc bromide. FAB-MS again indicate that the 

Kobayashi ring expansion reaction proceed with exclusive production of the desired 3: 1 

asymmetrically substituted phthalocyanine. For example, Figure 9 .8 depicts the F AB-

MS spectra of ( (2,9, 16( 17)-triiodo )tribenzo[b,g,l]napthalo[2,3-q]-porphyrazine )zinc 

(Compound 4c in Figure 8.2 after reaction with Zn +2), with the ~ ion present for the 

desired 3: 1 asymmetrically substituted zinc phthalocyanine and no ions observed for the 

other possible substitution patterns (774, 852, 928 and 1080 for the substituted zinc 
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Figure 9.8. F AB-MS spectra of ((2,9, 16(17)-triiodo )tribenzo[b,g,l]napthalo[2,3-q]-

. porphyrazine )zinc (Compound Sc in Figure 8.2 a.fier reaction with Zn +2) 
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naphthlaocyanine, monoiodo-trinaphthalo derivative, 4iiodo-dinaphthalo derivative and 

the tetraiodinated zinc phthalocyanine respectively). Yields were nearly quantitative for 

ail phthalocyanines. The metal insertion reaction for the dodecafluorinated 

phthalocyanines was also attempted using solvents such as NMP due to the known 

reaction of tetrafluorophthalonitrile with DMF (Birchall et al., 1970). Unfortunately, 

metal insertion reactions using NMP were sluggish and gave unacceptable yields and 

incomplete reactions. Thus, in order to avoid any possible reaction with the DMF 

solvent, the reaction temperatures were maintained between 30-50°C. In the meanwhile, 

contrary to previous reports (W eitemeyer et al., 1995), the asymmetrically substituted 

iodinated zinc phthalocyanines could be obtained selectively by a templated Kobayashi 

ring expansion reaction wherein zinc ions are added to the reaction mixture to act as a 

template for phthalocyanine ring closure. In these reactions, yields were signifièantly 

reduced while isolation and purification of the desired iodinated zinc phthalocyanines 

was complicated by important increases in the solubility of the macrocycle in DMSO, the 

reaction solvent. 

The zinc dodecafluorinated phthalocyanines (Figure 7.1) were significantly more 

soluble, exhibiting important solubilities in common organic solvents such as TIIF. This 

allowed purification by column chromatography on silica gel using solvent mixtures of 

THF or ethyl acetate in hexanes or toluene. Electronic spectra of these phthalocyanine 

derivatives were characteristic by a sharp Q band absorption between 663 nm and 683 nm 

(Table 7.1). The extended conjugation of the tribenzo[b,g,l]naphthalo[2,3-

q]porphyrazine derivative Si (Figure 7.1) caused a red-shifted and split Q band (710 nm 

and 679 nm) (Figure 7.2). Similar splitting of the Q band was observed for 
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phthalocyanines Sc and Sg while t-butyl-substituted phthalocyanine Sb exhibited a Q 

band with a prominent shoulder at longer wavelength (Figure 7.1). Those 

phthalocyanines that did not have a distinct shoulder on the Q band showed evidence of 

slight broadening. These results clearly demonstrate the decreased symmetry in these 

novel asymmetrically substituted zinc phthalocyanines with this decreased symmetry 

causing a loss in the degeneracy of the LUMO orbital (Figure 1.8). This e:ffect was not 

nearly as prominent for the asymmetrically substituted iodinated zinc phthalocyanines, 

suggesting that the strong electron-withdrawing properties of the fluorine substituents 

promote this effect. 

Palladium-catalyzed reactions have been extensively used in the preparation of 

novel porphyrins and phthalocyanines (see Chapter 6). In particular, palladium-catalyzed 

cross-coupling reactions have been employed to add novel substituents and 

functionalities to iodinated subphthalocyanines (del Rey et al., 1997) and phthalocyanine 

(Maya et al., 1998), including asymmetrically substituted iodinated phthalocyanines that 

had been prepared by a mixed condensation (Ali et al., 1997; Tian et al., 2000; Cauchon 

et al., 2005). Reactions such as the Heck, Stille and Suzuki reactions with 

asymmetrically substituted iodinated phthalocyanines allow for the preparation of novel 

monofunctionalized phthalocyanines (Ali et al., 1997). Amongst novel functionalities 

added to these phthalocyanines were phenyl, pyridyl, purinyl, phosphonates, carboxylic 

esters and estrogenic groups. In the meanwhile, novel water-soluble asymmetrically 

substituted trisulphonated zinc phthalocyanines with increased amphiphilicity and 

functionalized with novel substituents were synthesized by palladium-catalyzed cross 

coupling reactions such as the Heck reaction and Buchwald amination (Figure 1.17) 
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(Tian et al., 2000). ln these reactions, the sulphonate groups of the starting phthalonitrile 

and the resulting trisulphonated zinc phthalocyanine were protected as an indole (Li et 

al., 1999), pennitting the solubiliz.ation of the monoiodinated trisulphonated zinc 

phthalocyanine in most polar organic solvents. This allowed for easy purification by 

silica gel column chromatography and pennitted the palladium-catalyzed reactions to be 

accomplished in organic solvent Deprotection of the indolylsulphonate was readily 

accomplished by hydrolysis using lithium methoxide in methanol and THF to give novel 

asymmetrically substituted trisulphonated zinc phthalocyanines. A series of these 

photosensitizers have been examined in terms of their photodynamic efficiency and it has 

been found that trisulphonated zinc phthalocyanines bearing hexynyl and nonynyl 

substituents (Figure 1.17, n = 3 or 6) exhibited high cellular uptake with important 

localization at the mitochondrial membranes, with coinciding effective photocytotoxicity 

toward EMT-6 tumour cells (Cauchon et al., 2005). 

The asymmetrically substituted iodinated zinc phthalocyanines prepared by the 

Kobayashi ring expansion reaction of iodinated boron subphthalocyanines are ideal 

building blocks for the preparation of novel 3: 1 asymmetrically substituted 

phthalocyanines substituted with novel functionalities. As disclosed in the introduction, 

amphiphilic water-soluble phthalocyanines exhibit enhanced photodynamic activities 

(Paquette et al., 1988; Margaron et al., 1996; Allen et al., 2002; Cauchon et al., 2005). ln 

light of this, the 3: 1 asymmetrically substituted iodinated zinc phthalocyanines were used 

as building blocks for the preparation of novel asymmetrically substituted amphiphilic 

water-soluble photosensitizers. The iodinated zinc phthalocyanine readily reacted with 

terminal alkynes such as 5-hexynoic acid and 10-undecynoic acid in the presence of 
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Figure 9 .9. UV-visible spectra of asymmetrically substituted anionic phthalocyanines in 

THF (see Figure 8.3 for structures of 6d, 6g, 6i and 6j) 

dichlorobis(triphenylphosphine)palladium(II) and copper iodide in DMF/Et3N to give 

novel asymmetrically substituted anionic phthalocyanines (Figure 8.3). The sodium salts 

of these phthalocyanines were readily soluble in water at physiological pH. 

Unfortunately, these photosensitizers are highly aggregated in aqueous solution as 

exemplified by their UV-visible spectra with a broad Q band centered between 620 and 

640 nm. When dissolved in organic solvent such as DMF, the corresponding acids 

display a typical sharp, strong Q band in the region around 680 nm (Figure 9.9). The 
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tribenzomononaphthalo derivatives exhibit a split Q band as expected due to the 

decreased symmetry in these molecules. The isolation of the functionality responsible for 

water solubility from the phthalocyanine macrocycle by long alkynyl chains may provide 

novel properties to these photosensitizer. Novel water-soluble tetra[l-(0-

ethylphosphatobutyl)]zinc phthalocyanine where the phosphonate group, responsible for 

water solubility, is isolated from the phthalocyanine macrocycle by a butylene aliphatic 

chain, has been demonstrate to be an effective photosensitizer in vivo (Boyle et al., 1995). 

High biological activity has also been observed for zinc phthalocyanines substituted with 

short aliphatic chains terminated with hydroxyl groups (Boyle et al., 1993). Furthermore, 

inrracellular cleavage of the alkynyl group by cellular enzymes would result in a loss in 

solubility, effectively trapping the photosensitizer within the cell. A comparable in vivo 

hydrolysis of the butoxy-phosphorus bonds in tetra[l-(0-ethylphosphatobutyl)]zinc 

phthalocyanine has been hypothesized as playing a role in the photodynamic activity of 

this photosensitizer (Boyle et al., 1995). 

In spite of being far less extensively studied, cationic porphyrins and 

phthalocyanines exhibit a number of notable properties that make them attractive 

photosensitizers for photodynamic therapy. Cationic porphyrins and phthalocyanines are 

water-soluble, exhibit high singlet oxygen quantum yields, are less aggregated in solution 

and possess good tumour-localizing properties (Verlhac et al., 1984; W6hrle et al., 1990; 

Villanueva, 1993; Villanueva et al., 1993; Femandez et al., 1997; Spiller et al., 1998; De 

Filippis et al., 2000). Furthermore, cationic photosensitizers such as meso-tetra(4N-

methyllpyridyl)porphine exhibit preferential tumor uptake compared to surrounding 

normal, healthy tissues (Villanueva et al., 1993). In addition, their cationic charge 
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permits these photosensitizers to target important subcellular sites including cellular 

membranes (Villanueva et al., 1994), the mitochondria (Leznoff et al., 1989; Moan et al., 

1989; Dummin et al., 1997), lysosomes (Wood et al., 1997), the nucleus (Villanueva et 

al., 1994) and DNA (Gantchev et al., 1993; Villanueva et al., 1993). It has however been 

determined that meso-tetra( 4N-methyl-pyridyl)porphine induces cell death by both direct 

tumour cell kill and vascular shutdown (Villanueva et al., 1994). lncreased 

photodynamic efficiency of cationic photosensitizers may also be due to tighter binding 

and higher capability for intercalation with biological targets (Wôhrle et al., 1990). 

lnterestingly, comparative studies of three different charged (anionic, cationic and 

neutral) structurally similar zinc phthalocyanines have shown that the cationic 

phthalocyanine is the most effective photosensitizer (Wood et al., 1997; Ball et al., 1998; 

Ball et al., 1999; Bremer et al., 1999). Furthermore, the cationic phthalocyanine was 

more effective than established photosensitizers mTHPC and polyhaematoporphyrin 

(Ball et al., 1998). This improved photodynamic activity of the cationic phthalocyanine 

may be due to increased cellular uptake (Ball et al., 1999), important relocali7.ation to 

more important photosensitive subcellular sites upon irradiation (Wood et al., 1997; Ball 

et al., 1999), different plasma protein binding characterisitics (Ball et al., 1999), 

improved photophysical properties and decreased aggregation (Ball et al., 1998) and 

increased indirect vascular e:ffects (Bremner et al., 1999). However, the cationic 

phthalocyanine has an average of two pyridinium charged groups per phthalocyanine 

(Wood et al., 1997). Thus, as well as being a function of charge, the improved 

photodynamic activity of this photosensitizer may also be the result of the number and 

distribution of the charge with the molecule. Cationic phthalocyanines with the two 
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pyridinium charged groups on adjacent benzo groups would be similar to 

phthalocyanines substituted on adjacent benzo groups with sulphonate groups, with the 

amphiphilicity of these molecules leading to improved photodynamic activity (see 

introduction). 

It is well-established that certain bacterial cell walls have a high degree of 

negative charge and therefore, cationic photosensitizers may bind to and penetrate these 

cell wall barriers more readily (Chenet al., 2001). This makes cationic porphyrins and 

phthalocyanines valuable photosensitizers in the photodynamic treatment of microbial 

infections. In fact, photodynamic therapy using cationic porphyrins and phthalocyanines 

is effective in treating infections caused by both Gram-positive and Gram-negative 

bacteria (Merchat et al., 1996; Minnock et al., 1996; Marti et al., 2000; Minnock et al, 

2000; Roncucci et al., 2001; Soncin et al., 2002; Roncucci et al., 2003; Dupouy et al., 

2004) including biofilms (Wood et al., 1999). Importantly, careful selection of 

photodynamic therapy protocols allows for selective inactivation of the microbe while 

leaving potential host tissues, including fibroblast and keratinocytes, unaffected (Soncin 

et al., 2002). 

Studies have indicated that while anionic phthalocyanines can efficiently 

photoinactivate Gram-positive bacteria, Gram-negative bacteria became photosensitive 

only after modification of the permeability of their outer membrane (Merchat et al., 

1996). Interestingly, while cationic tetra(4N-methylpyridyl)porphine tetraiodide and 

tetra( 4N,N,N-trimethylanilinium)porphine efficiently photoinactivated Gram-negative 

bacteria such as Vibrio anguillarum and Escherichia coli, structurally similar anionic 

tetra( 4-sulphonatophenyl)porphine exhibit no appreciable photosensitizing activity. This 
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is despite similar subcellular distribution patterns and similar photodynamic activity 

against Gram-positive bacteria Entorecoccus seriolicida. In a comparative studies of 

three different charged (anionic, cationic and neutral) structurally similar zinc 

phthalocyanines, it was found that the cationic phthalocyanine effectively 

photoinactivated both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and 

Gram-positive bacterium (Enterococcus seriolicida) under conditions where neither the 

neutral or anionic phthalocyanine induced photoinactivation (Minnock et al., 1996). 

Although uptake studies indicate that the Iack of activity of the anionic phthalocyanine 

was due to the fact that it has very low affinity for these bacteria, the neutral and cationic 

phthalocyanines had similar overall cellular uptakes. Thus, localization and subcellular 

distribution must be a critical factor in photoinactivation of bacterium. Interestingly, 

incubation of B. coli cells with the cationic phthalocyanine in the dark causes alterations 

in the outer membrane penneability barrier of the cells, rendering the bacteria much more 

sensitive to hydrophobie compounds (Minnock et al., 2000). Furthermore, the presence 

of Mg2+ in the medium prior to incubation prevents these alterations and prevents the 

photoinactivation of the bacteria. This suggest that the cationic phthalocyanine gains 

access across the outer membrane of the bacteria via a self•promoting uptake pathway as 

has been suggested for the uptake of other cationic compounds. Along these lines, a 

synergistic effect between cationic phthalocyanine photosensitizers and metal chelating 

agents has been observed, with the corresponding pharmaceutical compositions have 

enhanced photoinactivation properties against Gram negative bacteria (Roncucci et al., 

2003). 
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Cationic porphyrins and phthalocyanines have also proven useful in the 

photodynamic sterilization ofred blood cells (Ben-Huret al., 1995; Roncucci et al., 2001; 

Roncucci et al., 2003; Trannoy et al., 2004). With red blood cells, it was found that 

cationically charged Zn(II) tetramethylpyridinoporphyrazinium sait and the 

corresponding neutrally charged Zn(II) tetrapyridinoporphyrazine both produced similar 

photohemolysis (Dupouy et al., 2004). However, the cationic photosensitizer produced 

significantly higher photoinactivation of the bacteria E. coli, resulting in the potential to 

use lower doses and achieving an enhanced therapeutic effect. Other cationic porphyrins 

give lower hemolysis under conditions that result in 5 log-kill of extracellular vesicular 

stomatitis virus (Trannoy et al., 2004). Certain cationic phthalocyanines also render the 

HIV virus non-infectious, with these compounds having potential as microbiocides that 

might provide protection against sexually transmitted HIV (Vzorov et al., 2003). 

In view of the known and established photodynamic potential of cationic 

photosensitizers, the asymmetrically substituted iodinated zinc phthalocyanines were 

used as templates for the preparation of novel asymmetrically substituted cationic 

photosensitizers. These templates readily reacted with 2-ethynylpyridine and 3-

ethynylpyridine in palladium-catalyzed cross-coupling reactions (Figure 8.4). The F AB 

mass spectra data for the resulting phthalocyanines was consistent with the proposed 

structure. UV-visible spectra of the macrocycles in DMF were characterized by sharp Q 

bands around 680-700 nm. As would have been expected, the tribenzomononaphthalo 

derivatives exhibited a split Q band due to the lack of symmetry in these molecules. 

These pyridyl substituted phthalocyanines readily reacted with methyl iodide or 

dimethyl sulfate in DMF at 70°C with methylation of the pyridyl nittogens, thus giving 
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the corresponding asymmetrically substituted cationic zinc phthalocyanines (Figure 8.4). 

While these compounds failed to give well resolved NMR spectra, complete methylation 

of the pyridyl nitrogen atoms was indicated by HPLC analysis of representative examples 

8a, 8d, 8k and 8n, ail of which exhibit a single peak. Furthermore, slab gell 

electrophoresis of tricationic examples 8a and 8d indica~ that these compounds moved 

roughly the same distance towards the cathode as AIPcS3 moved towards the anode. This 

demonstrates that these compounds have the identical but opposite charge as AIPcS3 and 

are thus completely alkylated. It has been demonstrated that asymmetrically substituted 

cationic photosensitizers are more efficient in destroying melanoma cells than the 

corresponding symmetrically substituted photosensitizers (Haylett et al., 1995). In 

addition, unlike anionic phthalocyanines in which two sulphonate groups on adjacent 

benzo rings lead to the most important photocytotoxic properties, most like a result of 

optimal cellular uptake, phthalocyanines substituted on only one benzo ring with cationic 

groups or protonable groups are particularly photodynamic active with impressive 

activities against fungi, Gram-positive and Gram-negative bacteria (Roncucci et al., 

2001 ). It is suggested by extension that such phthalocyanines would also be useful in the 

photodynamic treatment of tumours, pre-cancerous and proliferative pathologies and for 

blood and blood derivative sterilization. In light of these observations, asymmetrically 

substituted cationic phthalocyanines 8a-8n (Figure 8.4) may have interesting 

photodynamic potentials. In aqueous solution, these cationic phthalocyanines are highly 

aggregated, exhibiting a broad Q band centered between 620-640 nm. However, in 

DMF, the macrocycle was monomerized, exhibiting a significant splitting of the Q band 

accompanied by an important red shift in the wavelength (Figure 8.5). Such shifts to 
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longer wavelength are advantageous as light penetration of tissue increases with 

increasing wavelength, thus increasing the therapeutic depth. As in the case of the 

fluorinated phthalocyanines, splitting of the Q band is indicative of decreased symmetry 

in the molecule with the cationic pyridine groups altering the electronic character of the 

molecule sufficiently to degenerate the symmetry of the aromatic electronic system. 

Monomeriz.ation of cationic phthalocyanines has been achieved using AOT reversed 

micelles (Chenet al., 2001) and in CRM emulsions (Peeva et al., 2001). Furthermore, in 

biological environments, the cationic charge of these photosensitizers should lead to 

tighter binding with biologically relevant molecules and serum proteins, effectively 

monomerizing the photosensitizer in vivo. Comparative studies involving a series of zinc 

complexes of benzonaphthaloporphyrazines substituted with positively charged 

methylpyridinium groups on the benzo rings (Figure l.18) indicate that the 3:1 

asymmetrically substituted mononaphthalotribenzo derivative having three 

methylpyridinium groups was the most photodynamically active (Michelsen et al., 1996; 

Peeva et al., 2001). The structurally similarities between this photosensitizer and 

phthalocyanines Se, 8f, 8j and 81 (Figured 8.4) make these compounds of particular 

interest. In addition, the amphiphilicity of this mononaphthalotribenzo derivative suggest 

the asymmetrically substituted cationic phthalocyanines prepared in this case should have 

important properties for photodynamic therapy. The overall hydrophilicnipophilic 

balance of these photosensitizers can also be fine-tuned by changing the nature and 

length of the alkyl chains on the pyridyl nitro gens. For instance, for zinc phthalocyanines 

tetrasubstituted with 3-pyridyloxy groups or (2-dimethylamino )ethoxy groups, alkylation 

of the nitrogen atoms by longer aliphatic chains (1-hexyl or 1 .. dodecyl) lead to 

593 



photosensitizers with increased photodynamic activity as compared to alkylation with 

only methyl groups (Wôhrle et al., 1990). This is most likely the result of increased 

cellular uptake due to the increasing lipophilicity of the compounds. Similar results 

showing increased photodynamic activity with increasing lipophilicity of the alkyl groups 

on the nitrogen atoms have been reported for other cationic phthalocyanines (Dummin et 

al., 1997). 

Although they have been shown to have important photodynamic activities, the 

utility of most lipophilic phthalocyanines for photodynamic therapy is limited by the 

extreme insolubility of these compounds in most common solvents. Fluorine is very 

similar to hydrogen in terms of atomic radius and as such, compounds containing fluorine 

often mimic the corresponding compounds containing hydrogen in biological 

environments. Exchange of hydrogen atoms with fluorine atoms in molecules also 

significantly increases lipid solubility and may in fact lead to enhanced interactions with 

biological membranes and biologically relevant molecules. The increased atomic weight 

of the fluorine atoms will also improve the photophysical properties of photosensitizers 

due to the heavy atom effect. The heavy atom effect dictates that exchange of lighter 

atoms (such as hydrogen) with heavier atoms (such as fluorine) on a chromophore 

increases spin-orbital coupling. This in tum facilitates intersystem crossing from the first 

excited singlet state to the first excited triplet state (Figure 1.12) by allowing otherwise 

forbidden changes in the spin state of the molecule (S1-+ T1). In terms of photodynamic 

therapy, the exchange of hydrogen for fluorine on the periphery of phthalocyanines 

improves the photodynamic potential of the compound by increasing triplet state yields 
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and ultimately increasing singlet oxygen quantum yields. Finally, the presence of 

fluorine in the phthalocyanines offers the potential for F-MRI imaging. 

The Kobayashi ring expansion reaction of ( dodecafluorosubphthalocyaninato )-

boron(III) bromide allowed for the synthesis of novel asymmetrically substituted 

dodecafluorinated phthalocyanines (Figure 7 .1 ). This allows an extension of studies 

accomplished in our lab on the photodynamic activity of fluorinated phthalocyanines 

(Allémann et al., 1995; Boyle et al., 1996; Allémann et al., 1995; Allémann et al., 1997; 

Bench et al., 2002). Initial investigation of the photodynamic potential of these 

photosensitizers was achieved by the L-tryptophan photooxidation assay using 

Cremophor™ EL emulsions. In Iight of the heavy atom effect, it is not unexpected that 

these dodecafluorinated phthalocyanines exhibited increased HPPI yields compared to 

A1PcS4 (Table 7.1), with the singlet oxygen quantum yield of AIPcS4 in phosphate buffer 

(1% Triton X) known to be 0.43 (Redmond et al., 1999). Substitution with iodine on the 

fourth benzo ring led to further increases in the HPPI yields. In previously studies 

involving tetrahalogenated zinc phthalocyanines, singlet oxygen production was only 

slightly increased by the nature of the halogen atom (Zhang et al., 1993). This is despite 

the expected increases in triplet state formation with increasing atomic mass of the 

halogen (Cl < Br < 1). lt was also noted that the tendency of these phthalocyanines to 

aggregate was in the order Br > 1 > Cl > H. Therefore, it seems that any increases in the 

photodynamic potential that is caused the heavy atom effect and the resultant increases in 

triplet state formation may be negated to some extent by increased aggregation of the 

phthalocyanine in solution. Upon illumination, aggregated photosensitizers dissipate 

their energy through internai conversion rather than via the intersystem crossing to the 
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first excited triplet state with subsequent formation of singlet oxygen (see Chapter 2). 

The extent of aggregation is dictated in large part by the ring substituents and the axial 

ligands on the central metal ion. The extent of aggregation is an important factor in 

determining the overall photodynamic efficiency of a given photosensitizer (Wagner et 

al., 1987). In the current study, aggregation was avoided to a certain extent by 

formulation of the dodecafluorinated zinc phthalocyanines as CRM emulsion, with the 

emulsion somewhat preventing interactions between individual chromophores. This is 

evident from the slightly improved HPPI yield obtained using AlPcS4 when fonnulated as 

a 0.5% CRM emulsion in comparison to PBS solution. However, despite formulation as 

CRM micelles, aggregation still led to significantly lower HPPI yields for the 

dodecafluorinated phthalocyanine substituted with two long dodecyl alkyl chains as 

compared to the other fluorinated phthalocyanines. Amphiphilic tetrasulphonated 

phthalocyanines substituted on one of the sulphonate groups by long chain alkyl groups 

via a sulfonamide bond (Figure 1.16) exhibit decreased HPPI yields in the L-tryptophan 

photooxidation assay, even when formulated as CRM emulsions, due to important 

aggregation of the macrocycle (Allen et al., 2002). The decrease in HPPI yields was 

directly related with the length of the alkyl chain with longer alkyl chains increasing the 

lipophilicity of the molecule and enhancing aggregation. While the zinc 

dodecafluorinated phthalocyanines are Jipophilic, it is suggested that the longer alkyl 

chains of (1,2,3,4,8,9,10,ll,l5,l6,17,18-dodecafluoro-23,24-didodecylphthalocyaninato) 

zinc promotes aggregation in the CRM emulsions, resulting in the decreased HPPI yields 

observed under the experimental conditions employed. 
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The results of the L·tryptophan photooxidation assay clearly indicate that the 

asymmetrically substituted dodecafluorinated zinc phthalocyanines are capable of 

generating singlet oxygen in an aque9us environment upon illumination. This, however, 

is not necessarily indicative of the photodynamic potential of these photosensitizers. 

Many factors play key roles in the determination of the utility of a given photosensitizer 

for photodynamic therapy. These include cellular uptake, subcellular localization, 

selective target tissue accumulation and the degree of in vivo aggregation (Bonne~ 1995; 

Oschner, 1997; Dougherty et al., 1998) (also see Chapters 2 and 3). Our group has 

extensively studied water-soluble phthalocyanines and has repeated found that their 

photodynamic efficiency is related to the amphiphilicity of the compound (Paquette et al., 

1991a; Allen et al., 1995; Margaron et al., 1996b; Kudrevich et al., 1997; Edrei et al., 

1998; Allen et al., 2002; Cauchon et al., 2005). It is believed that amphiphilicity 

upgrades cellular uptake due to better membrane penetrating properties of the Iipophilic 

portion of the molecule. Overall, however, cellular uptake of phthalocyanines has been 

shown to increase with increasing lipophilicity of the molecule, a result of better affinity 

of lipophilic photosensitizers for cell membranes (Brasseur et al., 1988; Berg et al., 1989; 

Paquette et al., 1991a; Margaron et al., 1996b; Dougherty et al., 1998; Decreau et al., 

2001 ). Furthermore, serum proteins are predominantly responsible for the transportation 

of photosensitizers throughout the body, with lipophilic photosensitizers partitioning to 

LDLs in the blood stream (Reddi et al., 1990; Jori et al., 1993; Versluis et al., 1994; 

Reddi, 1997) (also see Chapter 4). Many tumour types have increased LDL receptor 

expression as compared to normal healthy cells (Ho et al., 1978; Gal et al., 1981; 

Lombardi et al., 1989; Gueddari et al., 1993). Therefore, the interaction of lipophilic 
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phthalocyanines with LDL particles may lead to improved targeting and enhanced 

tumour-to-healthy tissue ratios (Urizzi et al., 2001; Allen et al., 2002b). Thus, despite the 

need for an appropriate vehicle in order to solubilize water-insoluble Iipophilic 

photosensitizers in biologically relevant solvents, lipophilic photosensitizers may provide 

means for augmenting the efficiency of photodynamic therapy. In addition, selection of 

appropriate vehicles may further improve the properties of the phannaceutical 

preparations used for photodynamic therapy (Allen et al., 2002b) (also see Chapter 4). 

Figure 9.7. ZnPcF64, a novel three-dimensional non-planar zinc perfluorinated 

phthalocyanine comprising 64 fluorine atoms 

In light of the potential of lipophilic photosensitizer and in order to take advantage of the 

heavy atom effect and the improvement in solubility, hexadecafluorinated zinc 

phthalocyanine (ZnPcF16) has been prepared (Haszeldine, 1966; Birchall et al., 1970; 

Boyle et al., 1996) and its effectiveness as a photosensitizer for photodynamic therapy 
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has been evaluated using varions delivery vehicles (Allémann et al., 1995; Boyle et al., 

1996; Allémann et al., 1995; Allémann et al., 1997; Decreau et al., 2001). Enhanced 

photodynamic activities have also been observed for a number of water-soluble 

fluorinated zinc phthalocyanines (Fukushima et al., 1998; Oda et al., 2000; Tabata et al., 

2000). In addition, a novel three~ensional non-planar zinc perfluorinated 

phthalocyanine comprising 64 fluorine atoms has been synthesized (Figure 9. 7) (Bench et 

al., 2002; Gorun et al., 2003) from a novel non-planar perfluorinated phthalonitrile 

(Gorun et al., 1998). As a CRM emulsion, this perfluorinated phthalocyanine has 

improved photodynamic activity as compared to ZnPcF 16, at least partially due to the 

three-dimensional non-planar structure and the resulting lack of aggregation. A number 

of other fluorinated phthalocyanines are known and may have important potential for 

photodynamic therapy, particular in light of their absorption at near IR wavelengths 

(Birchall et al., 1970; Ito et al., 1996; Sato et al., 1996; Aoki et al., 1997; Kondratenko et 

al., 1997; Tian et al., 1997;; Aoki et al., 1998; Kaieda et al., 1998; Okumura et al., 1998; 

Kondratenko et al., 1999; Narizuka et al., 1999; Schlettwein et al., 2000; Gao et al., 

200 l ). Of particular interest are polysubstituted zinc phthalocyanines prepared by the 

nucleophilic substitution of zinc hexadecafluorophthlaocyanine with a variety of oxygen, 

nitrogen, carbon and sulfur nucleophiles (Lemoff et al., 2004). The resulting narrowly 

defined mixture of polysubstituted zinc phthalocyanines are often completely 

inaccessible by classical phthalonitrile condensation reactions and may be useful as 

photosensitizers for photodynamic therapy. 

Despite observations that ZnPcF16 and ZnPcCI16 are not phototoxic against M6 

melanoma cells under standard experimental conditions (1 h incubation, 20 minutes 
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irradiatio~ 12 J/cm2 light dose) (Decreau et al., 2001), CRM emulsions of ZnPcF16 are 

effective in photoinactivating EMT-6 tumour cells (Allémann et al., 1995; Allémann et 

al., 1996; Boyle et al., 1996; Allémann et al., 1997). Biodistribution studies indicate that 

CRM emulsions of ZnPcF16 exhibit a degree of selective tumour uptake while having 

improved pharmacokinetics. The action mechanism of photo-induced tumor necrosis 

mimics that of Photofrin®, with tumour regression primarily due to vascular stasis 

(Boyle et al., 1996). In light of the increased photodynamic activity of amphiphilic 

photosensitizers, zinc dodecafluoro4-sulfophthalocyanine (ZnPcF12Si) was prepared by 

a modified Meerwein reaction (Kudrevich et al., 1994). This amphiphilic photosensitizer 

was shown to be almost 50 times more photoactive than ZnPcF16 against EMT-6 tumour 

cells in vitro while having improved pharmacokinetics in mice with lower liver and 

spleen retention and higher tumour to non-target tissue ratios (Allémann et al., 1997). 

Unfortunately, in vivo photodynamic therapy of EMT-6 tumours on BALB/c mice with 

red light either 24 or 48 hours post-injection of 1 µmol/kg of ZnPcF12S1 caused mortality. 

This is likely a result of an acute phototoxic shock attributed to extensive cellular damage 

followed by a fatal biochemical response. Although similar conditions may result in 

tumour control in larger animais, this mortality is indicative of a smalt therapeutic 

window. Results suggest that a small therapeutic window may also limit the utility of 

ZnPcF16 (Allémann et al., 1995; Allémann et al., 1996; Boyle et al., 1996; Allémann et 

al., 1997). 

The Kobayashi ring expansion reaction of ( dodecafluorophthalocyaninato )-

boron(Illl) bromide provides means to prepare asymmetrically substituted 

dodecafluorinated phthalocyanines that may exhibit similar increases in photoactive as 
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ZnPcF12S1 while avoidirtg PDT-induced mortality and increasing the therapeutic window. 

Furthennore, while it has been clearly established that asymmetrically substituted 

amphiphilic photosensitizers have improved properties for photodynamic therapy, it is 

unclear whether asymmetry in lipophilic photosensitizers may also increase 

photodynamic potential. As representative examples, (l,2,3,4,8,9,10,ll,l5,16,17,l8-

dodecafluorophthalocyaninato)zinc, (l,2,3,4,8,9,10,l l,15,16,17,18-dodecafluoro-23-t-

butylphthalocyaninato)zinc and {l,2,3,4,8,9,10,l l,15,16,17,18-dodecafluoro-23,24-

didodecylphthalocyaninato )zinc ( compounds Sa, Sb and 5g in Figure 7.1) were 

formulated as Cremophor™ EL emulsions and their in vitro photodynamic activity was 

evaluated against EMT-6 cells (Figure 7.3). These preliminary studies demonstrate that 

CRM emulsions of these dodecafluorinated phthalocyanines are more photodynamically 

active than symmetrically substituted ZnPcF16 after either 1 or 24 hour incubations. 

Intriguingly, despite lower HPPI yields in the L-tryptophan photooxidation assay, the 

didodecyl derivative was the most photodynamically active phthalocyanine examined. 

While it was proposed that the lack of appreciable activity of ZnPcF16 and ZnPcClt6 

against M6 melanoma cells was due to aggregation of the photosensitizer, the current 

study suggest that aggregation become less important in the more complicated cellular 

environment, with the multitude of cellular components possibly interacting with the 

planar phthalocyanine and thus reducing the extent of aggregation in vitro. It is also 

known that subcellular localiz.ation to more sensitive organelles is a vital factor in the 

overall photodynamic efficiency of a given photosensitizer (Dougherty et al., 1998). The 

presence of two long dodecyl alkyl chains in (l,2,3,4,8,9,10,ll,15,16,17,18-

dodecafluoro-23,24-didodecylphthalocyaninato)zinc (5g in Figure 7.1) may lead to 
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improved cellular uptake and trafficking to more photosensitive cellular organelles. In a 

study of the efficiency of a series of asymmetrically substituted sulphonated 

phthalocyanines for blood product sterilization, it was suggested that the addition of a t-

butyl group may act as an anchor for the phthalocyanine to attach to the cellular 

membrane, thus leading to improved photodynamic activity (Allen et al., 1995). As 

previously mentioned, amphiphilic tetrasulphonated phthalocyanines substituted on one 

of the sulphonate groups by long chain alkyl groups via a sulfonamide bond (Figure 1.16) 

exhibit decreased HPPI yields in the L-tryptophan photooxidation assay with the decrease 

HPPI yield directed related to the length of the alkyl chain (Allen et al., 2002). However, 

biological activity decreased in the order AIPcS4(C16) > AIPcS4(C12) > AIPcS2ac1j > 

AIPcS4(C8) > A1PcS4(C4). Biological activity correlated with the cell uptake of the 

given phthalocyanine, suggesting that the longer alkyl chain promoted cell uptake and 

that aggregation in the cellular environment was negated. On the other hand, 

trisulphonated zinc phthalocyanines bearing long alkynyl chains gave contrary results 

(Figure 1.17) (Cauchon et al., 2005). While hexynyl- and nonynyl-substituted derivatives 

exhibited high cellular uptake with important localization at the mitochondrial 

membranes which coincided with effective photocytotoxicity toward EMT-6 tumour 

cells, further lengthening of the alkynyl chains to dodecynyl or hexadecynyl did not 

further increase photodynamic activity. It was suggested that the longer alkynyl chains 

promoted aggregation, with this causing reduced cell uptake. The effect of loading LDL 

with AIPcS4(Cl2) was evaluated in a separate study. While in vitro photodynamic 

activity was significantly improved by incubating the AIPcS4(C12) with LDL (leading to 

insertion of the long alkyl chain into the lipid portion of the LDL) prior to treatment, in 
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vivo results were equivalent for AIPcS4(C12) and AIPcS4(C12) inserted into LDL prior to 

administration. This is due to the AlPcS4(C12) naturally redistributing to LDL upon 

administration to the blood and thus, leading to in vivo formation of the AIPcS4(Cl2)-

LDL conjugate. 

With the known increase in photodynamic potential of amphiphilic 

photosensitizers, it has been hypothesized that the results using the aluminum 

phthalocyanines bonded to long alkyl chains via a sulfonamide bond (Figure 1.16) were 

the result of increased amphiphilicity, with the longer alkyl chains increasing the 

importance of the lipophilic portion of the molecule. As a result, increasing the length of 

the alkyl chain will increase the amphiphilicity of the photosensitizer and will thus result 

in improved photodynamic activity. IJowever, the current study seems to indicate that 

the presence of long alkyl chains may also increase the photodynamic efficiency of 

lipophilic phthalocyanines, thus suggesting that long alkyl chains act as an anchor for 

attachment of the photosensitizer to the cellular membrane. This promotes cellular 

uptake and perhaps subcellular trafficking to more susceptible subcellular sites. Along 

these lines, it is pointed out that in the present study, the improvement in photodynamic 

activity of (l,2,3,4,8,9,10,l l,15,l6,17,18-dodecafluoro-23-t-butylphthalocyaninato)zinc 

and (l,2,3,4,8,9,10,l l,15,16,17,18-dodecafluoro-23,24-didodecylphthalocyaninato)zinc 

(compounds Sb and 5g in Figure 7.1) as compared to ZnPcF16 was more prominent after 

long incubations (Figure 7.3). This implies that cell uptake probably plays arole in the 

increased photodynamic activity. 

While CRM emulsions have been previously used to solubilize hydrophobie 

photosensitizers for intravenous administration and may promote tumour uptake, clinical 
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use of CRM has been associated with anaphylactic reactions (Dye et al., 1980), 

hyperlipidemia and abnormal electrophoretic lipoprotein patterns (Bagnarello et al., 

1977). The improved solubility of tluorinated phthalocyanines fortunately allows for the 

incorporation of this type of photosensitizer into vehicles other than CRM emulsions. 

This may further improve the pharmaceutical characteristics of the lipophilic 

photosensitizer compositions. For instance, formulation of ZnPcF16 in PEG-coated 

poly(lactic acid) nanoparticles result in compositions that display a delayed blood 

clearance, reduced liver uptake and an improved tumour response compared to CRM 

emulsions of the same photosensitizer (Allémann et al., 1995; Allémann et al., 1996). 

Furthermore, these nanoparticle preparations make it possible to prolong the delay 

between dye injection and light treatment while maintaining similar tumour responses. 

This increased time period helps to enlarge the therapeutic window of ZnPcF16· The 

characteristics of fluorinated phthalocyanine-based pharmaceutical compositions may 

also be enhanced by using other vehicles such as liposomes (Morgan et al., 1989; Richter 

et al., 1993; van Leengoed et al., 1994; Love et al., 1996; Renno et al., 2001; Derkycke et 

al., 2004, microspheres (Bachor et al., 1991), polymeric micelles (Taillefer et al., 2000; 

van Nostrum, 2004) and cyclodextrins (Ruebner et al., 1997; Ruebner et al., 1999) 

among others. Chapter 4 reviews the use of receptor-mediated delivery systems for 

targeted photodynamic therapy and such methodology may be useful in targeting 

fluorinated phthalocyanines to target tissue and infections. 

Asymmetrically substituted dodecafluorinated zinc phthalocyanines substituted 

with iodine on the fourth benzo ring provide the opportunity to alter the characteristics of 

these phthalocyanines via palladium-catalyzed reactions (see Chapter 6). Such reaction 
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will allow the addition of novel functionality to the molecule as was accomplished in the 

study described in Chapter 8. For instance, addition of 1-alkynes via palladium-catalyzed 

reaction will permit the control of the length of the cbains attached to the phthalocyanine 

while the presence of the triple bond will increase conjugation in the macrocycle and will 

push the Q band absorbance further towards the near infrared. Coupling to 1-alkynes 

with terminal carboxy groups will add anionic charge to the molecule while also lending 

a function group to the molecule that can be used to couple the phthalocyanine to 

biologically important molecules such as proteins, peptides and antibodies by amide bond 

formation. Finally, 1-alkynes with pyridine groups permits addition of cationic charge to 

the molecule, with such molecules potentially have interesting properties in numerous 

fields including photodynamic therapy. 

In conclusion, since their fortuitous beginnings a century ago, the field of 

phthalocyanines bas grown exponentially. Beyond their use as dyes and pigments, 

phthalocyanines have found utility in fields such as chemical catalysis, 

electrophotography, photoreproduction and optical data storage. The potential of 

phthalocyanines still remains relatively unrealized however, with phthalocyanines being 

heralded as valuable and functional in an incredible list of widely divergent technological 

fields. The potential of phthalocyanines to be adapted to widely divergent applications 

originates with their singular chemical structure, high degree of aromaticity, unique 

electronic spectra and the flexibility involved in their synthesis. Diverse applications 

such as those proposed for phthalocyanines require compounds with distinct and well-

defined physical, chemical and electronic properties. This necessitates synthetic methods 

with control of regioselectivity and with access to assorted types of substituents and to 
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well-controlled substitution patterns. Current synthetic methods often are lacking and 

new methods are thus needed for phthalocyanines to fulfill their immense promise. 

The studies herein described indicate the potential of the Kobayashi ring 

expansion reaction in the preparation of 3: 1 asymmetrically substituted phthalocyanines. 

Furthermore, the importance of combining synthetic approaches is readily apparent, with 

the combina.tion of the Kobayshi ring expansion reaction and palladium-catalyzed cross-

coupling reaction leading to the synthesis of novel amphiphilic water-soluble 

phthalocyanines with interesting potential as photosensitizers for photodynamic therapy. 

Overall, despite not being a uni.versai approach for the synthesis of 3: 1 asymmetrically 

substituted phthalocyanines, the Kobayashi ring expansion reaction of halogenated boron 

subphthalocyanines with varions 1,3-diiminoisoindolines proceeded smoothly to 

exclusively give the desired 3:1 asymmetrically substituted phthalocyanines in good 

yields. The starting halogenated boron subphthalocyanines themselves were synthesized 

using much milder reaction conditions than those previously reported, allowing for 

improved yields and purities while permitting the observation of an unidentified 

intermediate in the synthesis ofboron subphthalocyanines. 

Unsubstituted boron subnaphthalocyanines has been shown to be effective in 

generating singlet oxygen in a homogeneous organic solvent. In the current study, a 

series of boron subnaphthalocyanines were prepared using the same protocol as the one 

employed for the preparation of the halogenated boron subphthalocyanines. Formulated 

as CRM emulsion, these photosensitizers effectively generated singlet oxygen in a 

biologically relevant media as determined by the L-tryptophan photooxidation assay. 

These compounds however underwent extremely rapid photobleaching under the 
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irradiation conditions used. Wbile this photobleaching may limit their potential as 

photosensitizers for photodynamic therapy due to rapid destruction of chromophore, 

photobleaching may be desirable in certain situations. Thus, determination of methods to 

photostablize these compounds remains an important goal. 

Changing the hydrogen atoms on the phthalocyanine macrocycle with fluorine 

atoms significantly increases the solubility of phthalocyanines, greatly improving their 

utility. In addition, the heavy atom effect leads to increased triplet state yields, an 

important consideration for applications such as photodynamic therapy. The ring 

expansion reaction of dodecafluorinated boron subphthalocyanine opens the door to a 

new series of fluorinated phthalocyanines with enhanced properties. Upon chelation with 

Zn+2 and fonnulation as CRM emulsions, illumination of the dodecafluorinated 

phthalocyanines with light of the appropriate wavelength readily led to an increased 

production of singlet oxygen as compared to AlPcS4. Preliminary studies of in vitro 

photodynamic activity of selected asymmetrically substituted zinc 

dodecafluorophthalocyanines against EMT-6 tumours indicate that these compounds 

have potential as photosensitizers for photodynamic therapy. In particular~ the addition 

of long alkyl chains to dodecafluorinated phthalocyanines improves the photodynamic 

efficiency as compared to symmetrically substituted ZnPcF16· Wbile it has been 

demonstrated that asymmetry in water-soluble photosensitizers with the resulting 

increase in amphiphilicity improves the photocytotoxicity, the present results suggest that 

asymmetry in lipophilic phthalocyanines, despite not altering the hydrophilic/lipophilic 

balance in the molecule, also enhances the efficiency of photosensitizers. 
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ln the meanwhile, the ring expansion reaction of iodinated boron 

subphtbalocyanines provides exceptional building blocks for the preparation of novel 

asymmetrically substituted phthalocyanines. The use of palladium-catalyzed cross-

coupling reactions of the resulting iodinated phthalocyanines provide means for adding 

novel functionality to these phthalocyanines while altering their characteristics for 

applications such as photodynamic therapy. The use of palladium catalysis in the 

coupling of the 3:1 asymmetrically substituted iodinated phthalocyanines with 5-

hexynoic acid and 10-undecynoic acid results in novel amphiphilic anionic water .. soluble 

phthalocyanines wherein the functional group responsible for the water-solublity is 

separated from the chromophore by long alkynyl chains. Furthermore, the triple bond of 

the alkynyl group increases the conjugation of the molecule and pushes the Q band 

absorption to longer wavelength. Of particular interest however are asymmetrically 

substituted water-soluble cationic phthalocyanines prepared by the palladium-catalyzed 

çoupling of the 3: 1 asymmetrically substituted phthalocyanines with 2-ethynylpyridine or 

3-ethynylpyridine. Following methylation with methyl iodide or dimethyl sulfate, 

solutions of the resulting cationic phthalocyanines in DMF exhibit important shifts in the 

Â.inax to longer wavelengths along with significant splitting fo the Q band. Though less 

extensively studied, cationic phthalocyanines have been shown to have a number of 

interesting properties for the photodynamic treatment of numerous conditions. ln 

addition, the lipophilic/hydrophllic balance of these phthalocyanines can be further 

moclified and adjusted by altering the size and nature of the aliphatic group bound to the 

quarternized nitrogen atoms. 
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