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Abstract 

Ill-posed problems are a topic of an interdisciplinary interest arising in remote 

sensing and non-invasive imaging. However, there are issues crucial for successful 

application of the theory to a given imaging modality. Positron emission tomography 

(PET) is a non-invasive imaging technique that allows assessing biochemical processes 

taking place in an organism in vivo. PET is a valuable tool in investigation of normal 

human or animal physiology, diagnosing and staging cancer, heart and brain disorders. 

PET is similar to other tomographie imaging techniques in many ways, but to reach its 

full potential and to extract maximum information from projection data, PET has to use 

accurate, yet practical, image reconstruction algorithms. Several tapies related to PET 

image reconstruction have been explored in the present dissertation. The following 

contributions have been made: 

~ A system matrix model has been developed using an analytic detector response 

fonction based on linear attenuation of y-rays in a detector array. It has been 

demonstrated that the use of an oversimplified system model for the 

computation of a system matrix results in image artefacts. (IEEE Trans. Nucl. 

Sei., 2000) 

~ The dependence on total counts modelled analytically was used to simplify 

utilisation of the cross-validation (CV) stopping rule and accelerate statistical 

iterative reconstruction. It can be utilised instead of the original CV procedure 

for high-count projection data, when the CV yields reasonably accurate images. 

(IEEE Trans. Nucl. Sei., 2001) 

xii 



>- A regularisation methodology employing singular value decomposition (SVD) 

of the system matrix was proposed based on the spatial resolution analysis. A 

characteristic property of the singular value spectrum shape was found that 

revealed a relationship between the optimal truncation level to be used with the 

truncated SVD reconstruction and the optimal reconstructed image resolution. 

(IEEE Trans. Nucl. Sei., 2001) 

>- A novel event-by-event linear image reconstruction technique based on a 

regularised pseudo-inverse of the system matrix was proposed. The algorithm 

provides a fast way to update an image potentially in real time and allows, in 

principle, for the instant visualisation of the radioactivity distribution while the 

object is still being scanned. The computed image estimate is the minimum-

norm least-squares solution of the regularised inverse problem. 



Résumé 

Les problèmes mal posés représentent un sujet d'intérêt interdisciplinaire qm 

surgires dans la télédétection et des applications d'imagerie. Cependant, il subsiste des 

questions cruciales pour l'application réussie de la théorie à une modalité d'imagerie. La 

tomographie d'émission par positron (TEP) est une technique d'imagerie non-invasive qui 

permet d'évaluer des processus biochimiques se déroulant à l'intérieur d'organismes in 

vivo. La TEP est un outil avantageux pour la recherche sur la physiologie normale chez 

l'humain ou l'animal, pour le diagnostic et le suivi thérapeutique du cancer, et l'étude des 

pathologies dans le cœur et dans le cerveau. La TEP partage plusieurs similaiités avec 

d'autres modalités d'imagerie tomographiques, mais pour exploiter pleinement sa capacité 

à extraire le maximum d'information à partir des projections, la TEP doit utiliser des 

algorithmes de reconstruction d'images à la fois sophistiquée et pratiques. Plusieurs 

aspects de la reconstruction d'images TEP ont été explorés dans le présent travail. Les 

contributions suivantes sont d'objet de ce travail: 

);> Un modèle viable de la matrice de transition du système a été élaboré, utilisant 

la fonction de réponse analytique des détecteurs basée sur l'atténuation linéaire 

des rayons y dans un banc de détecteur. Nous avons aussi démontré que 

l'utilisation d'un modèle simplifié pour le calcul de la matrice du système 

conduit à des artefacts dans l'image. (IEEE Trans. Nucl. Sei., 2000) 

);> La modélisation analytique de la dépendance décrite à l'égard de la statistique 

des images a simplifié l'utilisation de la règle d'arrêt par contre-vérification 

(CV) et a permis d'accélérer la reconstruction statistique itérative. Cette règle 



peut être utilisée au lieu du procédé CV original pour des projections aux taux 

de comptage élevés, lorsque la règle CV produit des images raisonnablement 

précises. (IEEE Trans. Nucl. Sei., 2001) 

);- Nous avons proposé une méthodologie de régularisation utilisant la 

décomposition en valeur propre (DVP) de la matrice du système basée sur 

l'analyse de la résolution spatiale. L'analyse des caractéristiques du spectre de 

valeurs propres nous a permis d'identifier la relation qui existe entre le niveau 

optimal de troncation du spectre pour la reconstruction DVP et la résolution 

optimale dans l'image reconstruite. (IEEE Trans. Nucl. Sei., 2001) 

);- Nous avons proposé une nouvelle technique linéaire de reconstruction d'image 

événement-par-événement basée sur la matrice pseudo-inverse régularisée du 

système. L'algorithme représente une façon rapide de mettre à jour une image, 

potentiellement en temps réel, et permet, en principe, la visualisation 

instantanée de distribution de la radioactivité durant l'acquisition des données 

tomographiques. L'image ainsi calculée est la solution minimisant les 

moindres carrés du problème inverse régularisé. 



Introduction 

In 1956, Allan M. Cormack, a nuclear physicist involved with radiotherapy 

treatment planning hypothesised that X-ray beams projected through the human body at 

different angles but along a single plane, would provide a better view of the body's 

interna! structure than the procedures utilised at the time (Cormack, 1980). At that time a 

state-of-the-art diagnostic X-ray examination implied the transmission of X-rays through 

tissue resulting in a planar projection image on a film. During the next several years, he 

had been intermittently working on a reconstruction method that could convert the data 

collected at several angles into an image representing the cross-section of a body. In 

1963, Cormack performed testing on a simple head phantom applying the results of his 

studies in reconstruction theory. Two papers on the subject were published in the Journal 

of Applied Physics in 1963 and 1964 (Cormack, 1963; Cormack, 1964), but received 

almost no attention. Ironically, it was not until 1970 that Cormack leamed that the 

problem of determining a fonction from its line integrals was first solved by Johann 

Radon in 1917 (Cormack, 1980; Cormack, 1992). 

In 1967, unaware of the work by Cormack, Godfrey N. Hounsfield also took on a 

goal of utilising measurements of X-ray transmission, taken from all possible directions 

through a body, for revealing its interna] structure. After a series of computer simulations 

and experimental efforts with an improvised scanner, encouraging results had been 

obtained (Hounsfield, 1976; Hounsfield, 1980). Unlike Cormack, Hounsfield was 

successful in generating interest in his research. In 1971, the first clinical prototype brain 



scanner was installed at the Atkinson Morley's Hospital, Wimbledon, England 

(Hounsfield, 1973). 

For their pioneering efforts, Hounsfield and Cormack were awarded the 1979 

Nobel Prize in Medicine for the "development of computer assisted tomography". 

Several navel tomographie imaging modalities have emerged as a result of intensive 

research during the past four decades. Positron emission tomography (PET), which has 

set a new standard in functional medical imaging, was one of them. 

The present work makes a contribution on several tapies of PET image 

reconstruction. Accommodation of an adequate PET system response model and the 

issue of a stopping rule for iterative reconstruction termination are considered. A 

reconstruction approach using the theory of pseudo-inverse matrices, which was 

considered at the early stages of theoretical developments but was left out of the 

mainstream for more than two decades, is shown to be feasible today. A regularisation 

technique based on the systematic spatial resolution analysis and singular value spectrum 

truncation is developed. Finally, a list-mode image reconstruction algorithm based on the 

latter approach is proposed. 

The manuscript is organised as follows. A brief introduction into PET principles 

and the corresponding inverse problem are given in Chapter 1. Existing image 

reconstruction approaches are put into perspective m Chapter 2. Limitations of the 

existing techniques are discussed and issues of research interest are pointed out in 

Chapter 3. Our results are summarised in Chapter 4 in the form of four articles. Chapter 

5 contains discussion and possible directions for future work. 
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Chapterl. Background 

PET is a non-invasive imagmg technique that allows assessmg biochemical 

processes taking place in a living organism in vzvo. PET is a valuable tool in 

investigation of normal human or animal physiology, diagnosing and staging cancer, 

heart and brain disorders. A brief overview of PET can be found in (Mandelkern, 1995; 

Raichle, 1998). 

1.1. Principles of PET 

A radiopharmaceutical is a substance containing very small amounts of radioactive 

nuclei, called radiotracer or simply tracer, used to follow the course of a chemical or 

physiological process without perturbing it significantly. In PET, a subject 1s 

administered a radiopharmaceutical which is used either for perfusion, metabolic or 

receptor-binding imaging (Saha et al., 1992). 

The radiopharmaceuticals used in PET are labelled with radionuclides that decay by 

emitting a positron, which subsequently annihilates with an electron of the surrounding 

body tissue. Two photons of 511 ke V each are produced as a result and propagate in 

approximately opposite directions. This physical process is described by the following 

symbolic sequence: 

(1.1.1) 

where p + - proton, n - neutron, fJ+ - positron, v - neutrino, e - electron, and y -

annihilation photons. 

3 



A pair of detectors placed along the photons' path outside the subject being imaged 

may register the annihilation photons. Usually the subject is positioned within a ring of 

detectors. Any two opposite detectors in the ring are electronically collimated to signal a 

virtually simultaneous detection, which is called a coïncidence event. The two signalling 

detectors define a line-of-response (LOR). In contemporary PET scanners, there are tens 

of thousands LORs ready to register photons emitted at different angles along a single 

plane, i.e. in a two-dimensional (2-D) mode. Multiple rings of detectors may be stacked 

together as a hollow cylinder to allow three-dimensional (3-D) sets of LORs to be 

acquired. Coincidence events collected with a given set of LORs are called projection 

data. 

There are several phenomena related to PET data acquisition that must be tak:en 

into account. They may be divided into two categories: those related to the basic physics 

of positron emission and high energy photon interaction in matter, and those introduced 

purely by the presence of an imperfect (though state-of-the-art) detection instrument. 

The first group includes positron range after emission (Levin and Hoffman, 1999; Cho et 

al., 1975), non-collinearity of the two annihilation photons (Muehllehner, 1976), 

photoelectric absorption of photons in matter, Compton scattering of photons, and 

gradua! decrease of the radioisotope concentration over time due to decay of the positron 

emitter (Sorenson and Phelps, 1987). The second group includes random coïncidences 

(Hoffman et al., 1981), non-uniform efficiency of different detectors (Casey and 

Hoffman, 1986), photon scatter in detectors (Msaki et al., 1996), spatial response non-

uniformity due to detector arrangement (Hoffman et al., 1982), and system dead time due 
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to the inability to handle high rates of incident photons (Budinger, 1998; Germano and 

Hoffman, 1991; Daube-Witherspoon and Carson, 1991). 

As a result of all mentioned factors, PET data represent corrupted information on 

the actual physical phenomenon of the radiotracer decay within a subject. Much research 

effort has been devoted to overcoming the limitations of PET by searching for better 

scintillation crystals (Melcher, 2000), improving scanner electronics and design (Derenzo 

et al., 1993; Links, 1998) and taking into account relevant phenomena during image 

reconstruction, which is an estimation of the unobserved radioactive decay density 

[Bq/cc] given the observed projection data. 

The maps of radioactive decay density are analysed either by a human observer 

visually or with the help of a computer using dedicated mathematical models in order to 

find anomalies or yet unknown patterns of radiotracer distribution. These valuable 

diagnostic or research data shed light on organism functioning (Hoh et al., 1997; Saha et 

al., 1992). 

Unlike X-ray computed tomography (CT), which probes tissue density and yields 

anatomical information, PET provides data characteristic to molecular function and 

makes monitoring of the physiological processes possible in vivo. The ability to detect 

very low concentrations of the tracer (on the order of 10-12 M) is a clear advantage of 

PET (Volkow et al., 1997). The feasibility of accurate correction for photon attenuation 

in tissue and higher spatial and temporal resolution render PET superior to Single Photon 

Emission Computed Tomography (SPECT), an imaging technique utilising radiotracers 

decaying by single y-ray emission (Budinger et al., 1979). Since PET and SPECT are 

based on related principles, sometimes they are collectively referred to as emission 
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computed tomography (ECT) as opposed to transmission X-ray CT. Additionally, ECT 

in volves the problem of determination of the radioisotope distribution and the distribution 

of attenuation coefficient that is necessary for accurate quantification whereas X-ray CT 

is concemed solely with the distribution of attenuation coefficient. 

1.2. PET inverse problem 

Tomographie data are object "views" or "projections" at different angles. Given 

PET projection data, one has to obtain the underlying emission density that could have 

been the source of acquired projections (see figure 1). This would be an approximation 

to the actual tracer distribution in the subject. The emission density map is also called an 

image since it is common to have it visualized after reconstruction. 

Measured integral projections 
at given angles 

8 
t Tracer distribution 

(Unknown image) 

Figure 1. Simple case of radiotracer distribution and two idealized continuous 

projections at selected angles. Projections are shown as if they were not corrupted by the 

factors inherent to PET data acquisition. Note that projections at angles e and e ± 180° 

are identical. 
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In a broad sense, an inverse problem arises when making inference about a quantity 

that cannot be observed directly. In tomography, acquired data are used to determine 

characteristics of a physical phenomenon that cannot be followed otherwise. PET 

scanners provide projections of the tracer distribution given sufficient time to collect 

enough coincidence events, which are also referred to as counts. The most likely tracer 

distribution within the subject being imaged must be derived with dedicated 

mathematical methods using acquired projection data. 

Solution of a tomographie inverse problem is the subject of image reconstruction 

and provides an image estimate. There are a number of different image reconstruction 

approaches that have been developed to date including many minor variations. This will 

be clarified further in Chapter 2, but first let us briefly outline the apparatus of image 

reconstruction, starting with the PET inverse problem, i.e. the mathematical problem that 

has to be solved. 

1.2.1. Radon transform model 

The first published work elaborating on the inverse problem similar to that of CT 

was by Radon in 1917 (Radon, 1986). He found a solution to the problem of determining 

a function of two variables from a set of its straight-line integral values. 

Let x = (xl' xz) E R 2 be a point, line Lp,e be g1ven by equation 

X1 cos e + X2 sine = p ' and the line integral of a real fonction f ( X1 'X2) along Lp,8 be 

given by 

= 

R8 (p) = f f (p cos B - s sin B, p sin () + s cos e) ds . (l.2.1) 
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With some assumptions Radon proved that the fonction f could be uniquely determined 

from the complete set of integral projections, i.e. when R8 (p) is known for all possible 

lines L 8 , i.e. with infinitely fine sampling at all possible angles. The problem posed in p, 

the Radon's paper is not applicable to PET directly, since a complete (infinite) set of 

projections is not available in practice and infinitely thin LORs are not best suited for 

robust modeling of system response, but his approach became the basis for a number of 

practical image reconstruction techniques. Integral fonctional (1.2.1) is known as the 

Radon transfonn of the fonction f . When XE Rn and L is any line in Rn ' the integral 

RL = J J(x)dx, (1.2.2) 
L 

of which (1.2.1) is a special case, is known as the X-ray transform (Louis and Natterer, 

1983). 

1.2.2. Functional semidiscrete model 

Though an idealized problem formulation based on the Radon (and the X-ray) 

transform was adopted in PET first, better modeling of underlying physical processes 

requires replacing it with a more sophisticated photon detection model. The following 

continuous-to-discrete mapping involving a set of simultaneous integral equations can be 

appropriate (e.g. Baker et al., 1992): 

n(d) = J r(d,x)J(x)dx, d = 1,N. (1.2.3) 
Q 

where x E .Q c Rn is a point of an Euclidean n-dimensional space ( n = 2 or n = 3 ), the 

support region .Q, associated with the PET scanner field-of-view (FOV), is bounded and 
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compact, J(x) is the unlmown emission density, r(d,x) is the kemel specified by a 

model of PET detection process - a spatially varying system response to a source located 

at point x for the detector pair having index d, n(d) is the number of counts acquired 

with the detector pair having index d, and N is the total number of active detector pairs. 

We assume that all N detector pairs are ordered so that a unique pair is referred to by 

specifying a unique index d. This is in contrast to a more conventional way of having 

projection angle e and bin position p in a projection n(p,e) as two separate 

parameters. Single equations in (1.2.3) are varieties of the first-kind Fredholm integral 

equation, if strict equalities are assumed (Hansen, 1992). 

Qui te generally an image may be viewed as a vector in the Hilbert space" L 2 (Q), 

where L 2 (Q) denotes the space of square-integrable functions ** defined over Q (Louis 

and Natterer, 1983). L 2 (Q) would be the image space in this case. 

The dynamic aspect of PET sometimes reqmres time as the fourth image 

dimension, i.e. J(x,t), where tE [a,b] and 0 ~a< b < 00 • 

1.2.3. Stochastic extension ofthefunctional model 

It is intuitively clear that the true continuous emission map is impossible to recover 

using the finite number of projections, and one faces a problem that is characterized as ill 

posed. "An ill-posed experimental problem is one for which there is not as much 

information in your experimental data as you really need to find out what you want to 

Hilbert space is a complete vector space in which a norm and a scalar product are defined. 
** Function J(x) issquare-integrableover .Q if flf(x)l2tb:< 00 

.Q 
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know" (Wahba, 1987). By a more rigorous definition of Hadamard, a problem is well 

posed if the solution exists, is unique, and depends continuously on the data, otherwise, a 

problem is ill posed (Franklin, 1970). 

True projections are not available due to the physical nature of emission scanning. 

Many factors contribute to the corruption of projections as mentioned in section l.l. 

Thus, having equality in (l.2.3) would be next to impossible. An additional zero-mean 

error vector e(d), d = l,N is introduced into the deterministic model (l.2.3) to bring it 

to equality: 

n(d)= J r(d,x)J(x)dx+e(d), d =l,N. (l.2.4) 
Q 

It is also commonly assu111ed that the noise e(d), d = l,N can be represented with 

uncorrelated stochastic variables having some (probably unknown) probability 

distribution. 

1.2.4. Stochastic model 

The process of measuring tomographie "projections" in ECT is stochastic in nature. 

It is widely accepted that the Poisson distribution* describes the counting statistics for 

large quantities of radioactive nuclei. The importance of taking into account the 

stochastic data errors during image reconstruction was pointed out as early as in mid-

1970s (Rockmore and Macovski, 1976). Thus, a statistical model of the PET inverse 

problem has been proposed (Shepp and Vardi, 1982; Vardi et al., 1985): 

* Poisson distribution gives the probability of observing x events given the average number of events µ per 

time interval according to P(x;µ) =Le-µ. 
x! 
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E[77(d)] = J p(djx)l(x)dx, d = 1,N, (1.2.5) 
Q 

where l(x) is the unknown emission density at point x and is assumed to be the mean of 

an independent random variable (r.v.) having the Poisson distribution, p(djx) is the 

probability of an emission at point x being registered by the detector pair d, E[77(d)] is the 

expected value of r.v. 77(d). The number of counts acquired with the detector pair d 

gives one sample n(d) of 77(d), and l(x) has to be estimated. 77(d),d=l,N are 

independent Poisson r.v. as well. 

1.2.5. Poisson vs. Gaussian data 

In practice one records data that are limited by the properties of detection system as 

well as contaminated by the non-negligible effects of the associated physical phenomena 

mentioned in section 1.1. A practical conclusion is that PET data are not expected to be 

purely Poisson. Indeed, it was shown that data precorrected for random coïncidences 

may be approximated by the Gaussian distribution* (Fessler, 1994). Moreover, it is 

known that the Poisson distribution could be hard to tell from the Gaussian distribution 

for large values of the mean. This "large" mean is not that large in practice, e.g. 

(Bevington and Robinson, 1992) advises that "for values of the mean greater than about 

10, the Gaussian distribution closely approximates the shape of the Poisson distribution." 

This provides an option of assuming the normal data error distribution, at least under the 

* Gaussian (or normal) distribution gives the probability of obtaining value x according to the following 
(x-µ)' 

law: P(x; µ,a)= ~ e - 2 "
2 

, where µ is the mean and a is the standard deviation. 
0'"\/21l 
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mentioned conditions. Therefore, the left-hand side of (1.2.5) could be changed to 

accommodate these two cases: 

w(d)= J p(dlx)/l,(x)dx, d = l,N. (l.2.6) 
.Q 

The expectation m(d) could correspond to either Poisson or Gaussian distribution and 

this choice may be made based on the analysis of the data sample at hand. The 

applicability range could be derived and the validity of the resulting solution would 

depend on the fulfilment of the underlying assumption on the data nature. It should be 

noted that a Poisson distribution is easier to describe as it is fully defined by its mean, 

which is equal to its variance. However, the Gaussian distribution is somewhat more 

convenient and a considerable number of mathematical methods developed for other 

applications have been (or could be) transferred to tomography. See Appendix A for an 

additional explanation. 

1.2.6. Deterministic vs. stochastic modeling 

Equations (1.2.3) and (l.2.6) have seemingly similar appearance, but they are 

distinct conceptually and the major difference is in the assumptions on the measured data 

vector. The former is considered deterministic, whereas the latter represents the 

stochastic model of PET. Equation (1.2.4) is the bridge connecting the two. Note also 

that /l,(x)E L 2 (.Q) since the support is bounded and the r.v. mean is finite in any practical 

situation. The system response r(d,x) may be easily translated to probabilities p(dlx) 

with an appropriate normalization. 
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A model of PET data acquisition must be set forth as it entails the logic of getting a 

reasonable solution to the inverse problem. Based on the adopted formulation of the PET 

inverse problem, (approximate) solution of the set of simultaneous equations (1.2.3) or 

(1.2.4) or (1.2.6) is the subject of PET image reconstruction. The symbols A and f will 

be used hereafter to denote an image to emphasise its statistical or functional properties, 

respecti vel y. 

Image reconstruction is just an intermediate step in deriving definitive knowledge 

from PET data. Therefore, it is pointless to argue which model is the best one when 

detached from the context. The assessment could be performed by comparing 

reconstruction results on the basis of objective (quantitative) image estimation parameters 

as well as based on the subjective suitability for providing reliable and conclusive results. 

Minor objective improvements in image quality do not always lead to improved 

subjective interpretation of reconstructed images. It is known that the change of inverse 

problem formulation accompanied by the appropriate change of the image reconstruction 

method does not necessarily yield clinically important changes in the image estimate. 

Therefore, either model may be justified if respective assumptions on the data nature are 

closely satisfied. 

1.3. Discrete image and quadrature options 

The space L 2 (Q) is separable, i.e. any object g(x)E L 2 (Q) can be represented as 

an infinite series (Barrett, 1999): 

= 

g(x)= Lg1ljf;(x), (1.3.1) 
1~1 
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where { l/f; (x )} is the orthonormal basis for L 2 (.Q), i.e. 

(1.3.2) 

where snm is the Kronecker delta function: 

Ônm = ' {
1 n =m 
0, n :f. m 

(1.3.3) 

The coefficients in the series are given by the scalar product 

(1.3.4) 

A number of image reconstruction techniques use discrete image representation 

right from the start, i.e. with the inverse problem formulation. Remembering that an 

image can be represented as an infinite series (1.3.1), one may choose to approximate it 

with a finite number of basis vectors for simplicity. lt is possible to use a non-orthogonal 

basis as well, e.g. functions ~; (x ), i = 1, M spanning some space <I>(Q). It is preferable 

to have <I>(Q)c L 2 (Q), which is automatic if ~;(x)E L 2 (Q) for all i. <I>(Q) is the image 

representation space. The linear approximation to the image in this case would be 

M 

J(x)= L/;~;(x), (1.3.5) 
i=l 

where ~; (x) are not necessarily normalized and orthogonal, M is the total number of 

these functions. The functions ~; (x) are called expansion functions to distinguish them 

from the basis in L 2 (Q) featured in (1.3.1). 
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A common practical method of obtaining a set of expansion functions involves 

representing the support Q with a set of smaller compact regions Q 1 , called pixels in 2-

D and voxels in 3-D case. The unity U of ail pixels• must con tain Q : 

(1.3.6) 

A pixel Q; may serve as the support for an expansion fonction f/J; (x) in the simplest case, 

and the value of f/J; (x) is assumed constant over Q;. This simplistic approach Jacks 

theoretic justification and poses the problem of pixel grid optimization, however, the set 

of expansion functions would be automatically orthogonal if defined on non-overlapping 

pixels. These can be conventional square pixels of the same size, or a more complicated 

set of polar pixels may be used (Kearfott, 1985; Kaufman, 1987), see figure 2 below for 

an illustration. 

fl 1 fl, ··"'·· ····· '• 
" 

n 
.· 

Figure 2. From left to right: a) an example of the support region Q, which is the ellipse 

interior; b) a set of conventional square pixels; c) a set of polar pixels. 

A grid of square pixels is very suitable for subsequent image visualisation with digital 

displays, therefore it is most widely utilised in practice. Another attractive alternative is 

• The description given hereafter will be limited to the 2-D case to simplify examples but without loosing 
generality. 
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the grid of natural pixels (Buonocore et al., 1981) that is easy to appreciate from the 

following explanation. Any two opposite detectors in the ring can register annihilation 

photons originating only from a compact region which is usually significantly smaller 

than the support Q but large enough to be poorly represented by a single infinitely thin 

line connecting two detectors as the Radon transform model implies. A compact region 

that actually represents the FOV of two given detectors is called a tube-of-response 

(TOR). An example of a strip TOR model is shown in figure 3. 

Detector pair 

Figure 3. Tube-of-response for a given detector pair. It is assumed that the two detectors 

in the ring are able to register coïncident annihilation photons originating from any point 

of the tube-of-response. The model may be applied in 2-D image reconstruction. 

TOR is a more realistic detection model for PET as compared to LOR. The inverse 

problem can be written using the TORs. The model (1.2.6) becomes, for instance: 

m(d)= J p(dlx)A(x)dx, d =l, ... ,N, (1.3.7) 
sd 

where S d is the TOR corresponding to the detector pair d. The intersection of a TOR 

with the PET scanner FOV yields a natural pixel and is shown in figure 4. An 

orthonormal pixel basis based on natural pixels has been proposed in (Baker et al., 1992). 
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Detector pair 

t\Jatural pixel 

PET scanner field-of-vlew 

Figure 4. Natural pixel defined as an intersection of the tube-of-response shown in the 

previous figure and the PET scanner field-of-view. 

It is possible, however, to define a convenient set of expansion functions to 

facilitate the problem solution and expand the solution in another set afterwards if need 

arises. A multitude of candidates for expansion functions are feasible, e.g. a set of 

spherically symmetric volume elements (blobs) was proposed (Lewitt, 1992; Matej and 

Lewitt, 1996) to simplify calculation of image projections and to have contrai over image 

smoothness properties. 

The choice of a pixel grid is an important one, especially when a system with 

unconventional geometry is used for data acquisition. An improper choice would result 

in unnecessary complications aggravating the issues of solution stability and uniqueness. 

Irrespective of the choice of expansion fonctions, however, the final image is remapped 

to conventional square pixels to facilitate image display and sharing in digital form. 



1.4. Image projection 

An idealized illustration of continuous object projections in 2-D was given already 

in figure 1. Actual raw PET data are a finite set of numbers representing the number of 

counts acquired in a given TOR over time. This set of values, arranged in a 2-D matrix 

with one matrix dimension representing 

projection angles and another one bins in a 

projection (within a tomographie plane), is 

usually called a sinogram due to the 

sinusoïdal trace that an off-centred point 

source leaves in this matrix (see figure 5). A 

sinogram row usually represents a single 

object projection at a given angle. Then, 

elements of the row represent different 

projection bins that this discrete object 

projection is comprised of. 

(/) 
Q) 

O> c:: 
CU 
c:: 
0 ·g 
Q> ·e-
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Figure 5. The sinogram of an off-

centre "point" source (scanned 

through a line source extending 

axially). 

PET imaging may be quite generally modelled with the continuous-to-discrete 

mapping P : L 2 (Q )---7 RN as discussed in section 1.2. The linear operator P is bounded, 

i.e. there exists a positive number c such that llPJll < cilJll for ail f. However, its 

inverse is unbounded and P is often substituted with its discrete counterpart 

P0 : <I>(Q)---7 RN for practical purposes. When computed for a given PET system, P0 is 

represented with a N x M matrix P = { P;j; i = 1, N, j = 1, M }. Then, the systems of 
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integral equations (1.2.3) and (1.2.4) can be reduced to the following matrix forms, 

respectively: 

n=.Pf. (1.4.1) 

and 

n =Pf +E. (1.4.2) 

where n is an N-dimensional vector of projection data; the matrix P is comprised of 

probabilities, i.e. 

N LPu =l, j=l,M, (1.4.3) 
i=l 

which are obtained by the normalization of the system response model, and 

f = {f; : i = 1, M} is the set of expansion coefficients characteristic for the image 

approximation expressed as the finite series (1.3.5). 

The statistical model (1.2.6) can be represented as the system of linear equations 

just the same way: 

(J)=PA, (1.4.4) 

where m is an N-dimensional vector of expectation of a Poisson or Gaussian r.v. as 

discussed in section 1.2.5, and A= {;t;: i = l,M} is the set of expansion coefficients 

representing the image. 

One should keep in mind that the actual incarnation of operator P is determined by 

the physical modeling for a particular scanner and the chosen image representation. 

Different photon detection models as well as other relevant physical phenomena 
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associated with the system response model will, generally, yield distinct matrices P. 

The modeling of the system response is called the direct problem, and is an essential part 

of solving the inverse problem. The matrix P, approximating operator P, is called 

either the system matrix or the transition matrix*. The system matrix is usually very 

sparse, i.e. has many zero entries. This is mainly due to the modeling that assumes that 

TOR covers a finite space region, which is much smaller than the FOV (see figure 4); 

hence, a given TOR might see only a fraction of the set of local expansion functions. 

That happens if expansion functions are localized. Image projection becomes as simple 

as mapping R M into RN with the help of the system matrix if P <1> is set. 

1.5. Backprojection 

Another essential operation has yet to be introduced, which is refeITed to as the 

backprojection. It is the adjoint of image projection described in the previous section and 

maps from the finite dimensional projection space to the infinite dimensional image 

space, i.e. pt: RN -7 L 2 (.Q) (Natterer, 1980): 

N 

(ptg)(x)= Lg;X;' (1.5.1) 
i~l 

where g; are the weights and 

( ) {
1, XE Sd 

X X= 
' 0, otherwise 

(1.5.2) 

* The term "projection matrix" can be met as well. However, one should not think of the system matrix as a 
projector, in terms of the theory of matrix operators. A real valued projector must be symmetric and 
idempotent, i.e. P =PT and P 2 = P, respectively, and the system matrix generally does not qualify. 
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The discrete counterpart of the backprojection operator P~ : RN --7 <I>(Q) is 

employed if one has chosen to use practical image approximations. Therefore, assuming 

that the same image representation is used for backprojection as for projection, the 

backprojection operator will be approximated by the transpose of the system matrix pT, 

since for a real matrix the adjoint and transpose are synonymous. Thus, with the image 

approximation given in <I>(Q), image backprojection is as simple as mapping RN back 

into RM. 

1.6. System matrix properties and inverse problem analysis 

The challenges of the inverse problem solution can be directly associated with the 

properties of the respective projection operator P. Getting rid of the problem ill-

posedness could be a sufficient reason for representing a continuous image as a finite 

series, however this approximation does not necessarily convert the inverse problem into 

a well posed one in the sense of Hadamard. Sorne insight can be gained by examining 

the projection operator or its discrete approximation - matrix P. 

Several important definitions have to be recalled first. The set of all vectors that 

the operator P act upon is called the domain of P . The range of operator P is defined 

as the set of all vectors g that can be reached by applying P to the members of a given 

functional space, i.e. :o/i(P) = { g : g = Pf, for some f from the domain of P }. The 

nullspace of operator P is defined as the set of all fonctions that are mapped to zero, i.e. 

cJf/(P) = {f : Pf = 0}. The same definitions are applied to matrices that are considered in 

the case of discrete-to-discrete mapping. The operator P is injective, or one-to-one, if 

each vector of the original functional space is mapped to a single vector in :o/i(P) . The 
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operator P would be surjective, or onto, if all vectors of the target space would be in the 

range 9't(P). The operator P is invertible if it is injective and surjective. The nullspace 

of an invertible operator is trivial, i.e. G/V(P) = { 0}. The operator that is not invertible is 

said to be singular. The real-world imaging operators are always singular (Barrett, 

1999). 

A powerful approach to inverse problem analysis involves the singular value 

decomposition (SVD) of the projection operator. Here we will describe the discrete case 

only since it is directly relevant for the following presentation. The application of SVD 

to the analysis of continuous-to-continuous mapping may be found in (Davison, 1983; 

Louis, 1986; Caponnetto and Bertero, 1997). 

It is well known that any NxM matrix P can be decomposed into a product of three 

special matrices (Strang, 1980): 

P=UDVT, (1.6.1) 

w here D = diag (µ1 , µ 2 , ••• , µ M ) is a diagonal matrix of singular values, 

U = (uij ti.N; j=l,M is an NxM matrix with orthonormal columns, that are referred to as the 

left singular vectors u1. = u.1 = (u;;} - , V = (v;;) - . - is an MxM matrix with 
, r=l,N , r=l,M; J=l,M 

orthonormal columns, that are referred to as the right singular vectors v j = v.j =(vu )i=l,M. 

The factored representation (1.6.1) is known as the matrix SVD. The left singular vectors 

u j corresponding to the non-zero singular values form an orthonormal basis spanning the 

range of P. The right singular vectors v j corresponding to the zero singular values form 

an orthonormal basis for the nullspace of P. The left and right singular vectors are 

22 



related via 

Pv. =µ u. 
J .! J (1.6.2) 

and 

(1.6.3) 

The set of singular values is called the singular value spectrum. The singular 

values are usually ordered so that 

(1.6.4) 

The decay rate of the singular values is an important indicator of information content for 

the inverse problem (Gilliam et al., 1990; Wahba, 1980). In case of continuous mapping, 

the problem is mildly ill posed if the singular values decay slowly and there is a good 

chance of finding a stable (approximate) solution. The problem is severely ill posed and 

calls for a dedicated solution technique if the singular value spectrum drops towards zero 

rapidly. The ratio 

(1.6.5) 

is referred to as the matrix condition number and is a simple measure of the degree of 

inverse problem ill-posedness. A matrix is singular if CP = oo. If the matrix is not 

singular but the condition number is significantly large, the matrix is said to be ill 

conditioned. The inverse matrix p-i would have a very large norm in that case, which 

would result in huge amplification of minor perturbations. The singular values are also 

directly related to the eigenvalues* ai of the self-adjoint matrix pT P (hence, ppT as 

*The eigenvalues A and eigenvectors x corresponding to a given matrix A satisfy the equation Ax = À.x. 
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well), which appears in the normal equations*, and 

(1.6.6) 

The problem (1.4.1) could have an exact solution if n E :c?ll(P). Unfortunately, that 

is usually not the case and one has to settle with an approximate (generalized) solution 

f+, which can be chosen according to some optimality criterion. 

1. 7. Regularisation 

The presence of noise in projection data is not the only challenge inherent to the 

PET inverse problem as we have seen already. Special methods have to be employed 

when handling severely ill posed (or ill conditioned) problems that involve replacing the 

initial problem with another one having more favourable properties. This technique is 

called regularisation. Following (Bertero et al., 1988), we define a regulariser for our 

inverse problem. 

Let p+ be an operator that gives a generalized solution to (1.2.3) or (1.2.4): 

(1.7.1) 

A family of linear operators { P; L>o, P; : RN -7 L 2 (Q) constitute a regulariser for an 

operator p+ if the following conditions are satisfied: 

(i) for any w > 0, :c?ll(P;) c <l>(Q); 

Normal equations arise with the least-squares approach to approximate solution of an optirnization 
problem. 
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(iii) lim P; =P+. 
W->0 

Thus P; is a regularised approximation of p+ and the variable w is called the 

regularisation parameter. Choosing the most appropriate value of w is one of the main 

problems of regularisation theory. A useful overview of the image reconstruction 

problem and regularisation can be found in (Demoment, 1989). 
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Chapter 2. Image Reconstruction Techniques 

Various inverse problem models could describe PET imaging as has been discussed 

in section 1.2. A variety of established mathematical tools and numerical algorithms can 

be utilised to derive a reasonable solution - a feasible image approximation, even if the 

inverse problem formulation stays the sarne. Thus, a great number of image 

reconstruction algorithms have been conceived. An overview given in the present 

chapter will clarify current state-of-the-art. The reviews given in (Natterer, 1999) and 

(Leahy and Qi, 2000) cover somewhat different perspectives and may be a brief 

introduction to the subject as well. 

2.1. General Classification 

The primary differences among reconstruction techniques stem from the adopted 

formulation of the PET inverse problem. This leads to two broad classes of algorithms, 

namely deterministic and statistical, based on the respective inverse problem models 

discussed in section 1.2. The choice of discrete or continuous image model differentiates 

series-expansion from transform methods, respectively. Yet another fundamental 

distinction arnong algorithms exists: they may be classified in one-step and iterative 

groups. One-step reconstruction methods aim at solving the inverse problem at a single 

(though complex) step, thus providing a "final" image estimate, whereas iterative 

methods attempt to reach a solution by successive improvement of an image estimate 

starting with some initial guess. 

This classification clarifies underlying concepts, but image reconstruction 

algorithms might fall into several categories at the same time as the corresponding 
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classification reflects different and non-exclusive properties. Moreover, the boundaries 

between the opposite groups are sometimes vague. A deterministic model having no 

solution in the sense of Hadamard, for instance, may be solved approximately in the 

least-squares sense* and may involve statistical interpretation of data errors. A solution 

expanded into the set of eigenvectors of the system matrix can be related to conventional 

Fourier techniques (Llacer, 1979). A similar relationship has been studied in (Anastasio 

et al., 2001) for the continuous case. 

Another perspective onto the image reconstruction problem is presented in figure 6. 

Two alternative routes that employ regularisation atone stage or another may be taken to 

derive a "solution". Either the operator P is replaced by its discrete counterpart P which, 

in turn, is replaced by a regularised version 

Pw, or the operator P is idealized (the 

Radon's approach 1s an example) and its 

regularised version Pw is studied completely 

m functional spaces and a numerical Figure 6. Diagram showing two 

approximation is developed that involves alternative routes that could be 

discretisation Pw of the regularised operator taken when solving an inverse 

after that. problem approximately. 

Function f is a least-squares solution of Pf = n if inf {jjPu - njj : u E X}= lift - njj . The solution 
depends upon the choice of the norm. 
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It should be mentioned that the idealisation of P with the help of the Radon 

transform was studied first and the most. The powerful set of transform methods is the 

widely used result of developments with the Radon (or X-ray) transform. However, the 

series expansion approach employing early image discretisation is used more often in 

current research. 

2.2. Summation Method 

The easiest tomographie reconstruction method is the one called summation or back 

projection, due to the simple superposition of projections by spreading them back across 

the reconstruction plane. This would involve a single operation of backprojection 

introduced in section 1.5. The summation method yields image estimates that are blurred 

and the degree of blurring in the case of an infinite number of angles and the line integral 

measurement model is proportional to 1/ r, where r is the distance from the point source 

of radioactivity. For more details see e.g. the review in (Gordon and Herman, 1974). 

Though it is hardly used as a standalone reconstruction method in practice, the 

backprojection operation is an essential part of most practical image reconstruction 

techniques. Efforts have been made to improve backprojection algorithms (Peters, 1981; 

Cho et al., 1990; Egger et al., 1998) along with designing special hardware for 

backprojection (Thompson and Peters, 1981; Hartz et al., 1985; Jones et al., 1990) to 

accelerate reconstruction. 
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2.3. Transfonn Methods 

A distinct set of image reconstruction techniques 1s based on the Fourier 

transfonn*, which in 2-D is defined as: 

1 = = . 
oY{f = [~J ](u, v) = - J J f(x, y )e-i(ux+vy)dxdy, 

2n -=-= 
(2.3.1) 

where f (x, y) is the image fonction, and i2 = -1. A single projection at angle e, when 

subject to the one-dimensional (1-D) Fourier transform 

(2.3.2) 

yields a central section of the 2-D Fourier transformed image at angle e : 

[@2 f ](wcosB, wsinB) =[~Re ](w ), (2.3.3) 

This relationship is referred to as the projection slice theorem, or the central slice 

theorem, or the Fourier slice theorem (Kak and Slaney, 1988). 

A number of techniques employing Fourier transforms have been described. 

Reconstruction may be accomplished by transferring projections into the Fourier space, 

interpolating in the frequency domain to get the sampling on a square grid, and then 

transferring the resulting frequency estimate back into the image space with the inverse 

Fourier transform, which in 2-D will yield: 

* The Fourier transform is defined as ](ç) = [~J Kç) =(2;rtN12 J J(x)e-;çdx; the inverse Fourier 
RN 

transform is defined as l~-1] Jx)=(2;rr12 f j(Ç)é'dÇ. 
RN 
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f (x, y)= o~-l J @;R0 d(} . (2.3.4) 
27t 

This approach is referred to as direct Fourier method (DFM). The major problem with 

DFM is the robust interpolation in the Fourier space to resample the points from polar to 

Cartesian grid, which results in image artefacts if a simplistic interpolation strategy is 

employed. For the latest developments with DFM see (Waldén, 2000; Gottlieb et al., 

2000). 

Another approach is termed the convolution method and is based on the fact that the 

Fourier transform of the convolution of two functions * equals the product of their 

indi vidual Fourier transforms 

(2.3.5) 

This leads to practical reconstruction techniques, since the measured emission data 

represent "ideal" projections convolved with the system point spread function (PSF)**. 

One popular algorithm starts with transferring each measured projection into the Fourier 

space, applying an appropriate filter to de-convolve the effect of image blurring 

( observed with the summation method), then transfers the result back into the projection 

space, and finally, backprojects the filtered projections onto the image grid. This 

technique is called filtered backprojection (FBP). The following equation can be an 

illustration: 

jFBP(x, y)= L:Backproject{@;-1 [ c(w)x@;R8; ]}. (2.3.6) 
B; 

* Convolution of 1-D fonctions çt>(v) and ip(v) is defined as [çt> * q> ](v) = f çt>(u )ip(v - u )du . 

** Not to be confused with PSF estimated from a reconstructed image. 
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It is customary to put a hat over f , to recognise the fact that this is an approximate 

solution, i.e. an image estimate. In (2.3.6), R8 is the projection at angle B; sampled at a 
1 

finite number of points, i.e. R8; is a single row of the sinogram (as discussed in section 

1.4), and c(w) is a 1-D fonction, a sampled version of a window of the ramp filter c(w) 

which arises as a correction for non-uniform sampling in the Fourier domain and is given 

by 

c(w) = {1 wl, lwl::; Wmax . 

0, 1 wl > Wmax 

(2.3.7) 

Here wmaxis the eut-off frequency, which is determined from the given sampling with the 

Radon transform. This relationship stems from a result of the sampling theory that is 

known as the Nyquist sampling rate, which states that a signal must be sampled at least 

twice during each cycle of the highest frequency of the signal. 

Extensive treatment of FBP theory and implementation is given in (Rowland, 1979; 

Budinger et al., 1979; Kak and Slaney, 1988). FBP is currently the algorithm of choice 

in most practical applications due to its overall acceptable performance and relative 

computational simplicity, due to availability of efficient implementations of the fast 

Fourier transform and 1-D operations involved. Another ordering of backprojection, 

filtering and the Fourier transform is possible and would result in a different algorithm: 

(2.3.8) 

See (Rowland, 1979) or (Budinger et al., 1979) for more detail. 
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Transform algorithms are computationally inexpensive but need a set of projections 

with angular sampling over 2n as well as high total counts in order to produce a high 

quality image. They are deterministic in nature; improvements in image quality have 

been attained by designing data dependent (adaptive) convolution filters to smooth the 

effect of measurement noise (Rowland, 1979; Budinger et al., 1979). This intermediate 

filtering is equivalent to regularisation of the original problem. Pre-processing data to 

account for the system response has been explored as an additional option (Karuta and 

Lecomte, 1992; Liang, 1994). For more details on the mathematics of transform methods 

see (Lewitt, 1983; Herman, 1980). 

2.4. Series Expansion Methods 

Another class of methods, collectively called the series expansion methods, is based 

on the parametric image representation with expansion functions (1.3.5) right from the 

outset. An early overview of series expansion methods can be found in (Censor, 1983; 

Herman, 1980). Series expansion approach includes techniques developed for the 

deterministic as well as statistical PET models. Sometimes the representation of an 

image with (conventional) pixels (voxels) is understood as the essence of the approach, 

but this is an oversimplification since an image could be expanded in a variety of 

different orthogonal or non-orthogonal series as we mentioned already in section 1.3. 

2.4.1. Orthogonal series 

The tomographie image reconstruction based on orthogonal series expansion was 

among the first theoretically solid results. The structure of the Radon transform acting 

upon L 2 (0) can be established with the help of a basis in this space. It has been known 

32 



that a complete set of orthogonal fonctions in L 2 (Q) can be formed with Zernicke 

polynomials (Cormack, 1964; Louis, 1986). Marr reported that the Radon transform of 

this basis is closely related to the Chebyshev polynomials of the second kind and showed 

a procedure to construct the solution as a polynomial, such that its Radon transform fits 

the data in the least-squares sense (Marr, 1974). Recently, a practical and 

computationally efficient algorithm for 2-D image reconstruction based on the 

Chebyshev polynomials of the second kind have been shown in (Bortfeld and Oelfke, 

1999). The Chebyshev polynomials of the second kind coupled with the natural pixel 

image decomposition have been used in (Kazantsev et al., 2000) to derive an image 

estimate as a function of continuous variable, which allows, at least in principle, image 

visualization on an arbitrary grid. 

2.4.2. Direct matrix method 

Direct matrix inversion was considered early for image restoration in radionuclide 

imaging (Cahill and Blau, 1970). This method yielded compensation for image blur 

inherent in observations with real systems having finite spatial resolution (Iinuma and 

Nagai, 1967). A direct matrix approach has been described as an image reconstruction 

method in nuclear medicine as well and employed matrix pseudo-inverse p+ but was 

intractable at the time (Budinger and Gullberg, 1974). Later, a maximum likelihood 

approach has been applied in emission imaging, taking into account the stochastic data 

nature and assuming that the measurements can be described by the Poisson process 

(Rockmore and Macovski, 1976). The latter approach involved pseudo-inverse matrix 

but stopped short of taking into account severe ill conditioning of the image 

reconstruction problem. 
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The minimum-norm least-squares solution of (1.4.2) may be found with the 

pseudo-inverse p+ based on the SVD of the system matrix P: 

(2.4.1) 

where D+ is the diagonal matrix containing the reciprocals of the respective positive 

singular values, i.e. 

D + _ d. ( -1 -1 -1) < M - zag µ! ,µ2 , ... ,µz ' z - ' (2.4.2) 

and z is the total number of non-zero singular values. 

The use of SVD enables explicit regularisation by spectral filtering which 

potentially improves the inverse problem conditioning. A simple regularisation approach 

employs truncation of the singular value spectrum at some non-zero value having index 

T (also referred to as the truncation level) and yields a "truncated" SVD (TSVD) 

solution: 

(2.4.3) 

An "optimal" truncation level can be derived with a number of approaches. The 

generalized cross-validation* was used in (Vogel, 1986). An application of the 

discrepancy principle ** was studied and an alternative criterion was suggested in (Defrise 

and De Mol, 1987). The L-curve*** approach was shown to assist in choosing the 

If the variance of the noise is unknown, one can use a technique called generalised cross-validation to 
get an approximate value of the regularisation parameter. See (Golub and von Matt, 1997) for the form 
of the fonction that must be minimised in this case. 

** The discrepancy principle states that solution should not fit noisy data with the precision greater than 
that of the measurement, i.e. the fonction fis a solution if llPJ -nll = E , where E is the given noise 
level. 

*** L-curve is a plot, for al! valid regularisation parameters, of the size (in certain metric) of the regularised 
solution versus the size of the corresponding residual. 
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truncation level (Hansen and O'Leary, 1993; Hansen, 1992). Several optimality criteria 

for SVD truncation have been studied in (Xu, 1998) and the minimisation of the mean 

squared error was recommended. 

In PET, image reconstruction based on SVD has been attempted using special black 

circulant structure of matrix ppT arising for rotationally invariant systems; an 

approximate SVD was computed with a supercomputer using these symmetries (Baker et 

al., 1992). Image reconstruction based on matrix SVD has been applied in SPECT as 

well (Smith et al., 1992; Gullberg et al., 1996; Smith, 1996; Hsieh et al., 1996). Despite 

these several attempts, the SVD approach has never been in the mainstream of medical 

image reconstruction due to the size of the system matrix and the time necessary to 

calculate the SVD. 

2.4.3. Algebraic methods 

The algorithm used by Hounsfield for image reconstruction in his prototype scanner 

was algebraic in nature and has been successfully applied in early practical 

implementations. A reconstruction method using the set of linear algebraic equations 

(1.4.1) and pursuing an iterative solution to the inverse problem is called an algebraic 

reconstruction technique (ART). Several ART variations were proposed that update the 

current pixel values in a different fashion (Gordon, 1974; Herman, 1980). Special data-

access ordering was also investigated (Herman and Meyer, 1993). The algorithm 

convergence to a unique approximate solution is not guaranteed in general, since the 

exact solution does not exist in the presence of statistical errors in data. However, there 

is a version of ART that is claimed to converge to a regularised least-squares solution, see 

discussion in (Herman and Meyer, 1993). ART is not the only algorithm capable of 
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"solving" (l.4.1). To name a few, the steepest descent, Landweber iteration and the 

conjugate gradient method (Kawata and Nalcioglu, 1985) can be employed in iterative 

solution. Xu et al. have shown the generalized form of the iterative algebraic 

reconstruction, which includes several popular algorithms as special cases (Xu et al., 

1993): 

(2.4.4) 

where j(k) is the image estimate after iteration k, P~ is a backprojection operator 

specific to a given algorithm, and ris a positive relaxation parameter. 

If the method is convergent and the inverse problem solution is known to exist, 

making an infinite number of iterations would ensure reaching the solution. However, 

iterating to full convergence is certainly not practical and is often meaningless, therefore, 

a reasonable rule to stop iterations has to be employed. V arious criteria for estimating the 

solution feasibility, the so-called stopping rules, have been devised (Gordon, 1974; 

Defrise and De Mol, 1987). 

2.4.4. Statistical methods 

An image reconstruction approach involving the principle of maximum likelihood 

estimation and based on stochastic assumptions of the measurement process was 

proposed for ECT in mid-1970s (Rockmore and Macovski, 1976). The analytic 

maximum likelihood approach de1ived by Rockmore and Macovski was guaranteed to 

yield an unbiased and efficient* image estimate with Poisson data, but it did not take into 

* Efficient estimate is the one that has the minimum variance. 
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account the severe ill conditioning of practical problems. More important, it was hardly 

tractable for the reconstruction problems of practical interest using that day' s computers. 

Therefore, an iterative solution taking into account statistical data errors (Shepp and 

Vardi, 1982) got the most attention. 

The likelihood of the observed data is estimated as 

N An; 
L(A.) = P(njA.) = TI e -,<, -' . 

i=l n; ! 
(2.4.5) 

The log-likelihood 

(2.4.6) 

is considered afterwards for convenience and its global maximum is sought to solve the 

problem. Shepp and Vardi used an established mathematical technique for computing a 

maximum likelihood estimate (MLE) from incomplete data* known as the expectation 

maximization (EM) algorithm (Dempster et al., 1977; Wu, 1983). The maximum 

likelihood (ML) estimation via EM, the ML-EM algorithm, is simple and elegant: 

(2.4.7) 

The particularly attractive properties of ML-EM include natural incorporation of 

the image non-negativity and proven algorithm convergence (Lange and Carson, 1984; 

V ardi et al., 1985). EM is but one algorithm to compute a maximum likelihood estimate. 

As noted in (Vardi et al., 1985), EM is a gradient-type algorithm and (2.4.7) can be 

* Incomplete datais understood in the sense that the mapping from <D(n) to '?!J((P) is not injective, i.e. it 
is many-to-one. 
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written as 

j'(k+l) = _,î(k) + j_(k) x az(»k) ), . 1 M 
/1,1 1 1 a;i,. 1 = ' . 

.1 

(2.4.8) 

Based on this fact, it was proposed to accelerate ML-EM convergence by introducing an 

overrelaxation parameter into the iterative update equation, which yields additional 

multiplicative change of the correction item in the sum above (Lewitt and Muehllehner, 

1986). However, this could potentially inhibit convergence and an occasional decrease in 

likelihood was indeed mentioned by Lewitt and Muehllehner for relaxation parameter 

values larger than 4 in their numerical experiments. ML-EM is a non-linear algorithm 

and the rate of recovery of smaller image detail is lower than that of larger structures 

(Liow and Strother, 1993). In an effort to malœ the convergence more uniform for an 

arbitrary image pattern, a way to improve algorithm' s frequency response has been 

suggested in (Tanaka, 1987). 

Despite its useful properties, the widespread application of the ML-EM algorithm 

was hindered by its high computational requirements, slow rate of convergence and, 

especially, by the "noise" artefact, i.e. increasingly speclded image appearance, which 

develops with the higher iteration numbers and destroys the appealing estimates attained 

with the previous iteration. Many efforts have been devoted to overcorning this artefact. 

Snyder and Miller applied the Grenander' s method of sieves to suppress the artefact 

(Snyder and Miller, 1985). Terminating iterations early with a stopping rule has been 

studied as another way of avoiding the artefact (Llacer and Velderov, 1989; Hebert, 

1990; Coaldey and Llacer, 1992). Initialising estimate j_(o) with a smooth fonction is also 

important in avoiding early artefact development, since all the discontinuities present in 
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the initial estimate usually stay with the subsequent iteration (Kaufman, 1987). The 

"mechanics" of statistical iterative image reconstruction is better understood using the 

idea of feasibility applied to the ECT imaging (Llacer and Veklerov, 1989; Veklerov and 

Llacer, 1990; Llacer, 1990). In short, an image is presumed to be feasible if it "could 

have caused or produced the observed data by the known statistical process that govems 

the measurement." See figure 7 for a graphie illustration. Being improved iteratively, 

the image estimate usually passes through the feasibility region, which contains a set of 

"desirable" images. As the image is moved towards the MLE point with additional 

iterations, it becomes excessively noisy. 

€~ Feasibility region 
fi) ::J c:: 0 
Q) () 
c~ I 
·- 0 E-
~ .8 .E oi Preferable expectation 
·- c c:: ·-
:::J 'E 
-8 0 () rn ro , 
Q) "O 
O> <1> 
~ ài Lines of constant likelihood E'E -o -

MLE 

Direction of image variance increase 

Figure 7. The schematics of the ML-EM image reconstruction and an example of the 

feasibility region are shown. The algorithm takes an image of uniform intensity as an 

initial estimate. ML-EM aims at the estimate having the maximum likelihood given 

measured data, which is theoretically reachable with an infinite number of iterations. 

Regularisation techniques were applied to stabilize iterative image recovery. It was 

shown that utilisation of a priori information helps achieving more appealing images 
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(Lange et al., 1987; Geman and McClure, 1987; Levitan and Herman, 1987). This so-

called Bayesian approach allowed algorithmic enforcement of spatial correlation 

between pixels in the image estimate using the Bayes' theorem: 

(
1 j )= p(n!A)p(A) 

P"' n p(n) . (2.4.9) 

The a posteriori probability p(A j n) explicitly takes into account a probabilistic model of 

one's expectations on image properties or structure, incorporated as the a priori 

probability distribution p(A ) , and leads to a maximum a posteriori (MAP) problem 

formulation. This is equivalent to penalized maximum likelihood estimation (Geman and 

McClure, 1987) that combines the log-likelihood l(A) with the penalty term U(A) into a 

joint objective function: 

Zu,p(A) = l(A)- /3U(A). (2.4.10) 

The factor fJ sets a balance of sensitivity between the data and the prior information. 

This objective function has to be maximized in order to solve the regularised problem: 

,-Î = arg max Zu,p (A). 
À 

(2.4.11) 

The optimization problem (2.4.11) is usually solved with numerical iterative 

techniques, but a non-iterative Bayesian solution has been considered as well in (Phillips, 

1989). Various priors have been investigated, e.g. the use of a multivariate Gaussian 

probability distribution with the mean equal to a smoothed FBP reconstruction was 

proposed in (Levitan and Herman, 1987), the use of priors based on Markov random field 

model of the form 
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(2.4.12) 

where a is the normalization constant, was suggested in (Geman and McClure, 1987), a 

statistical model of the a priori probability expressed as a multinornial law was 

developed in (Liang et al., 1989), the entropy prior has been employed in (Nunez and 

Llacer, 1990), even anatornical information obtained with other imaging modalities has 

been suggested to be used as a prior, see e.g. (Sastry and Carson, 1997). However, the 

choice of a prior and its optirnization remain crucial for maintaining quantitative accuracy 

of the reconstructed images (Mumcuoglu et al., 1996). 

The log-likelihood for the Poisson case is not the only measure appropriate for 

solution derivation. As discussed in section 1.2.5, the normal distribution could be an 

adequate model for PET data. In this case, a weighted least-squares (WLS) objective 

function could be employed (Kaufman, 1993; Fessler, 1994): 

ZwLs(À) == (n -PÀyL-1(n -PÀ), (2.4.13) 

where L == diag(cr1
2 

, ••• ,a~) is the covariance matrix, which is diagonal since the 

measurement errors are assumed uncorrelated. A prior (or penalty) U(À) can be utilised 

as well yielding a penalized weighted least-squares (PWLS) objective (Fessler, 1994): 

ZPwLs(A) == (n - PÀ)TL-1(n -PÀ) + fJU(,1,). (2.4.14) 

The image estimate is then obtained by 

(2.4.15) 
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Obviously, various numerical algorithms could be employed for solving (2.4.15), the 

major consideration being the computational efficiency, resulting in rapid convergence 

(Pan and Yagle, 1991). 

It is beyond doubt that a sophisticated statistical iterative reconstruction has the 

potential to outperform the transform methods, especially in low count situations, but the 

distinction from algebraic techniques becomes vague when the WLS approach is 

involved. 

2.4.5. lterative reconstruction acceleration 

The computational cost of an iterative image reconstruction technique is 

significantly higher than that of a transform method. The efforts to accelerate iterative 

reconstruction can broadly be classified in two categories: 

1) Algorithmic acceleration; 

2) Parallel processing techniques. 

A number of techniques falling in the first category was mentioned already, e.g. the 

use of a relaxation parameter or the choice of a faster numerical optirnization algorithm. 

Preconditioning of the gradient-based methods was studied to accelerate convergence rate 

of iterative reconstruction (Chinn and Huang, 1997). Very fast versions of iterative 

algorithms can be obtained by rearranging them into a block iterative form (Soares et al., 

2000). The interest in block iterative acceleration was sparked by the OS-EM technique 

proposed in (Hudson and Larkin, 1994). OS-EM stands for EM with ordered subsets. It 

was a modification of the ML-EM algorithm that involved image updates based on data 

subsets Sm comprised of partial projection data. The procedure is then as follows: 
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(2.4.16) 

and is repeated for all subsets Sm sequentially, yielding a single iteration of OS-EM. 

Unfortunately, while gaining speed, it lost the convergence properties of ML-EM at the 

same time. A particular form of OS-EM that uses as many subsets as there are 

projections, was shown to converge to MLE after ma.king certain assumptions on the 

relaxation parameter that are met by the training for a particular reconstruction task; this 

technique was named the row-action maximum likelihood algorithm (RAMLA) (Browne 

and De Pierro, 1996). The reduction of necessary computations by automatic truncation 

of the projection set based on data analysis, thus limiting reconstruction to a region-of-

interest (ROI) within the FOV was considered as a simple but efficient acceleration 

technique (Gregor and Huff, 1997). 

Another acceleration approach is the algorithm restructuring suitable for parallel 

computing and subsequent optimization for the dedicated computing hardware (Chen et 

al., 1991; Johnson et al., 1995; Chen and Lee, 1995; Cruz-Rivera et al., 1995). ART-

type algorithm parallelisation was investigated as well and reported in (Rajan et al., 

1997). An interesting alternative to dedicated parallel processors is the idea of distributed 

computing with a network of low-cost workstations, which has been explored in (Olesen 

et al., 1996). 

2.5. 3-D image reconstruction issues 

Extending 2-D image reconstruction algorithms to 3-D PET may seem 

straightforward but it is hardly so in practice (Bendriem and Townsend, 1998). First of 
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all, a 3-D reconstruction problem calls for special computing approaches due to its size. 

Parallel or distributed computing as well as the utilisation of dedicated computing 

hardware have been in the focus of attention primarily fuelled by the needs of fully 3-D 

reconstruction. Parallel implementation of 3-D reconstruction algorithms has been 

considered using a number of computing topologies. In addition to the list of relevant 

references given in the previous section, the use of a network of transputers coupled with 

non-iterative image reconstruction techniques can be found in (Atkins et al., 1991) and 

(Comtat et al., 1993). 

Severa! additional limitations render the 3-D case special. These include the 

significantly increased scatter background (Thompson, 1993), the need to cope with 

higher count rates (Mazé and Lecomte, 1990), unavailability of the full set of projections 

of the 3-D object (a similar case in 2-D is referred to as a limited angle problem), and the 

two orders of magnitude increase in the data set size may strain computing resources 

beyond capabilities. 

The benefit of 3-D data acquisition for more efficient utilisation of the given 

amount of the radiotracer is obvious. The annihilation photons are not lirnited to any 

plane and are emitted isotropically in all directions. Thus, the sensitivity of a PET 

scanner would be significantly higher with the same radiotracer concentrations if 

coïncidences were registered in oblique TORs also. The signal-to-noise ratio (SNR) 

could be improved as well (especially in the FOV centre) if the lower energy threshold is 

high (Karp et al., 1991). Increasing lower energy threshold may not be practical, 

however, with scintillators having low energy resolution. 
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Reconstruction of true volumetric data requires special algorithms that are capable 

of handling truncated projections and varying axial acceptance angle within the FOV 

(Colsher, 1980). The reprojection method proposed in (Kinahan and Rogers, 1989) is a 

popular extension of FBP to 3-D imaging. However, a combination of data rebinning 

reducing the 3-D data to planar sets followed by 2-D reconstruction algorithms has 

gained most recognition to date as a practical approach to 3-D image reconstruction for 

whole-body tomographs (Defrise et al., 1997; Comtat et al., 1998). A limitation of this 

latter approach is the possible discrepancy of photon detection models used during 

rebinning and reconstruction. Line integrals are exploited during rebinning whereas 

integrals defined on tubes may be used with 2-D iterative image reconstruction. 

The fully 3-D iterative reconstruction for state-of-the-art whole-body scanners has 

been a daunting task until recently. However, the constant progress in computing 

hardware gradually helps bridge the gap between the algorithm requirements and the 

computing platform capabilities. In the case of smaller animal scanners, fully 3-D 

Bayesian iterative reconstruction has been successfully demonstrated (Qi et al., 1998a). 

The same method has been adapted for ECAT EXACT HR+ whole-body PET scanner 

avoiding tremendous memory requirements by exploiting the symmetries present in the 

system matrix (Qi et al., 1998b). 
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Chapter 3. Research uestions 

The problem of image reconstruction for computerized tomography, and for PET in 

particular, has had extensive exposure to date, but the research in devising practical and 

robust algorithms and techniques is far from being over. The research is multifaceted and 

extends in various directions as we have observed in chapter 2. A broad picture of 

current approaches to the PET inverse problem solution has been presented but is not 

meant to be exhaustive. Many interesting details are scattered in the applied literature 

covering image reconstruction and restoration techniques tuned for certain imaging 

modalities as well as in the special mathematical literature on inverse problems and 

numerical analysis, since the state-of-the-rui in applications stems from the same 

mathematical concepts. 

We have identified several areas that lacked significant details or possessed the 

potential that has not been developed to date. These observations yielded related 

questions building sequentially upon our findings. The points of interest that led to the 

new developments presented in this dissertation are critically discussed below. 

3.1. System matrix 

It is a common knowledge that the statistical iterative reconstruction techniques 

have exhibited the greatest potential to date. Advocating the superiority of statistical 

foundation of the PET inverse problem, Leahy and Qi say: "While the analytic * 

approaches result in fast reconstruction algorithms, accuracy of the reconstructed images 

* The term "analytic" refers to deterministic transform methods in this context. 
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1s limited by the approximations implicit in the line integral model on which the 

reconstruction formulae are based. In contrast, the statistical methods . . . can adopt 

arbitrarily accurate models for the mapping between the source volume and the 

sinograms." (Leahy and Qi, 2000) The statement is appealing but success of the 

mentioned methods is based on several details that are implicit and are not obvious at 

first sight. 

It is clear that the statistical inverse problem model could be preferable, especially 

when the counting statistics is the dominant source of data errors. This situation is 

present at the start of the data acquisition and lasts for a prolonged period of time until 

the properties of the projection data may be safely approximated by the normal 

distribution (recall section 1.2.5). However, the superior theoretical basis may or may 

not be translated into significant advantages when applying statistical methods. The 

detail that is often overlooked is the "arbitrarily accurate model for the mapping between 

the source volume and the sinogram". This mapping given by the system matrix is 

preferably as accurate as possible. "How accurate is enough" and "what are the inherent 

trade-offs" are the questions that we were not able to find documented answers to. 

System modeling is a broad subject that, in principle, should account for every 

known phenomenon related to data acquisition. The starting point can be found in 

several papers. The relationship between an X-ray beam and image pixels that yields a 

matrix of weights is described in (Gordon, 1974) and was used with ART 

reconstructions. Same ideas were exploited in (Shepp and Vardi, 1982) when deriving a 

matrix of probabilities for the ML-EM algorithm. Shepp and V ardi mentioned that 

precomputing the matrix would be an ideal solution but thought that it was "somewhat 
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inconvenient", which is not surpnsmg taking into account the state-of-the-art in 

computing for 1982. Instead, they calculated online the width of the intersection of the 

circle inscribed into a pixel and the strip defined by a given TOR. They also claimed that 

the choice of weights was not critical. 

There are reports that elaborated on the system response modeling for high 

resolution PET (Lecomte et al., 1984; Schmitt et al., 1988). It was found that the point 

spread function is asymmetric across the FOV for a system with small discrete detectors 

and this effect can be approximately described analytically. Huesman and colleagues 

proposed a data correction procedure involving inversion of the "blurring" matrix to 

account for crystal penetration before applying the FBP algorithm (Huesman et al., 

1989). While accounting for the effect of crystal penetration, this approach resulted in 

noisier images. The sinogram correction techniques yielding redistribution of counts 

across the projection are popular and may be considered the standard approach (Hoffman 

et al., 1989; Liang, 1994). This is the only way to prepare the projection data for the 

transform algorithms, but the same approach is practised with other techniques that allow, 

in principle, for more sophisticated system modeling methods, which could improve the 

quality of reconstruction results (Terstegge et al., 1997). One solution was proposed in 

(Brix et al., 1997) where a blurring kernel was used to account for the actual measuring 

process. The detector response was assumed variant radially but invariant tangentially, 

moreover the model was included as a part of forward projection only, leaving some 

ambiguity in the issue of optimality of the proposed procedure. 

It has been noted in (Llacer and Veklerov, 1989) that if the transition matrix is not 

accurate enough, the image estimation process appears to bypass the feasibility region. 
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Despite several hints as to the possible optimal modeling procedure, a practical yet 

accurate approach to model tubes and the system response at the same time was, 

nevertheless, not found in the literature. This brought the first issue that had to be 

clarified: 

);> How should the transition matrix be constructed in order to reflect the 

PET scanner properties adequately and to be used in a statistical iterative 

image reconstruction efficiently? 

3.2. Stopping rule 

The natural and theoretically solid choice among the statistical iterative image 

reconstruction methods has been the ML-EM algorithm. Despite long computations 

involved, it is convergent and is guaranteed to yield the ML solution. There are several 

ways to remedy the inherent noise artefact as we mentioned in section 2.4.4. Terminating 

iterations with a stopping rule seems an acceptable solution (Gooley and Barrett, 1992) 

that would not result in the potential loss of resolution, which is hard to escape with 

Bayesian regularisation and would yield less iterations than would otherwise be 

performed, i.e. it would potentially require less computations. However, the stopping 

rules that are based on statistical hypothesis testing (Veklerov and Llacer, 1987; Llacer 

and Veklerov, 1989; Hebert, 1990) might not find a solution given real data sets. 

Promising results have been obtained with the procedure described by Coakley who used 

the concept of cross-validation (CV) (Coaldey, 1991). Successful applications of this 

procedure have been reported in (Llacer et al., 1993; Falcon et al., 1998). The CV 

procedure of Coakley is rather time consuming, which can potentially limit its practical 
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usefulness. It is known that hundreds of iterations have to be performed in order to 

recover an image of fine structure with good accuracy. High accuracy is possible only 

when many coincidences have been acquired. Otherwise the early onset of the noise 

artefact prevents from getting a smooth looking image without explicit regularisation. 

Thus, there is an unknown dependence of the feasibility region on total registered counts. 

Uncovering the properties of feasible images obtained with a stopping rule may be 

essential for handling dynamic series of images as well. These considerations triggered 

the second issue explored in this dissertation: 

~ Are there ways to accelerate and simplify the CV stopping rule and make it 

more appealing and robust for routine application? What are the 

consequences of applying a stopping rule, especially in the case of dynamic 

PET series that are assessed visually yet subject to quantitative analysis? 

3.3. SVD potential 

The modeling of the relationship between the image representation space and the 

space of projections is the comerstone of many image reconstruction algorithms. A 

technique of computing the system matrix using analytical expressions is a valuable tool. 

We have observed in section 1.6 that matrix SVD is useful in diagnosing limitations 

inherent to a given inverse problem. This certainly is an asset especially if an adequately 

accurate projection model is built into the system matrix and the matrix SVD is available. 

Moreover, image estimates may be obtained with a regularised pseudo-inverse of the 

system matrix. The regularisation, which is certainly a major issue with any 
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reconstruction technique, is somewhat simpler with SVD since it may be limited to 

singular value spectrum modification in a systematic manner. 

There are few reports of practical image reconstruction in CT exploiting SVD as we 

observed in section 2.4.2. The lack of mainstream interest is mainly due to the 

"prohibitively" large size of the system matrix. SVD is an extremely useful tool of linear 

algebra and matrix analysis. Robust algorithms to compute SVD of an arbitrary matrix 

are available (Press et al., 1992). The regularisation optimality, however, is a subject of 

research currently pursued in many SVD applications. This brought us to the third set of 

questions considered in this manuscript: 

>- Is practical PET image reconstruction based on the SVD of the system 

matrix currently feasible? How should the optimal truncation level be 

derived if TSVD regularisation is applied? 

3.4. Accurate image reconstruction in real time 

The fourth and final issue on which this dissertation makes a contribution is derived 

from our success in solving the previous issue. The severe il1 conditioning of the inverse 

problem arising from the geometry of conventional PET set-up has been isolated by the 

systematic TSVD regularisation. The TSVD image reconstruction which is an attractive 

alternative to Fourier transform based methods and which is already fast as it is, lends 

itself to a potentially faster implementation, that may utilise the availability of the list-

mode data. Thus, we propose a procedure that allows 

>- PET image reconstruction of the list-mode data potentially in real time! 

(Canadian patent pending) 
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Chapter 4. Results 

The research results and the data analysis methods as well as the immediate 

discussion of the issues explored are given in the following articles included as an 

integral part of the present dissertation: 

[4.1] Selivanov V V, Picard Y, Cadorette J, Rodrigue S, and Lecomte R 2000 Detector 

response models for statistical iterative image reconstruction in high resolution 

PET IEEE Trans. Nucl. Sei. 47 1168-75 

[4.2] Selivanov V V, Lapointe D, Bentourkia M, and Lecomte R 2001 Cross-validation 

stopping rule for ML-EM reconstruction of dynamic PET series: Effect on image 

quality and quantitative accuracy IEEE Trans. Nucl. Sei. 48 883-9 

[4.3] Selivanov V V and Lecomte R 2001 Fast PET image reconstruction based on 

SVD decomposition of the system matrix IEEE Trans. Nucl. Sei. 48 761-7 

[4.4] Selivanov V V and Lecomte R 2001 Real-time PET image reconstruction based on 

regularized pseudo-inverse of the system matrix (to be submitted in revised form to 

IEEE Trans. Med. Imag.) 

Later in the text, except within the articles themselves, these papers are referred by 

their respective numbers in square brackets. 
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ABSTRACT 

One limitation in a practical implementation of statistical 
iterative image reconstruction is to compute a transition 
matrix accurately modeling the relationship between 
projection and image spaces. Detector response fonction 
(DRF) in positron emission tomography (PET) is broad and 
spatially-variant, leading to large transition matrices taking 
too much space to store. In this work, we investigate the 
effect of simpler DRF models on image quality in maximum 
likelihood expectation maximization reconstruction. W e 
studied 6 cases of modeling projection/image relationship: 
tube/pixel geometric overlap with tubes centered on detector 
face; same as previous with tubes centered on DRF 
maximum; two different fixed-width Gaussian fonctions 
centered on DRF maximum weighing tube/pixel overlap; 
same as previous with a Gaussian of the same spectral 
resolution as DRF; analytic DRF based on linear attenuation 
of y-rays in detector arrays weighing tube/pixel overlap. We 
found that DRF oversimplification may affect visual image 
quality and image quantification dramatically, including 
artefact generation. We showed that analytic DRF yielded 
images of excellent quality for a small animal PET system 
with long, narrow detectors and generated a transition matrix 
for 2-D reconstruction that could be easily fitted into the 
memory of current stand-alone computers. 

1. INTRODUCTION 

An issue that needs carefol consideration in a practical 
implementation of iterative image reconstruction methods is 
the construction of a transition matrix that accurately models 
the relationship between projection and image spaces. In 
high resolution positron emission tomography (PET) where 
long and narrow detectors are used, the effect of inter-
detector penetration is of great importance and leads to 
spatially-variant coïncident detector response fonctions 
(DRF) (1]. Spatially-variant DRFs have been used in filtered 
backprojection image reconstruction to mode! [2,3] and to 
restore [4,5] the point spread fonction of PET scanners. In 
statistical iterative image reconstruction, DRFs should be 
incorporated into the computation of the transition matrix 
rather than be applied as a pre-correction of projection data 
in order to preserve the Poisson nature of input data. To date 
Monte Carlo simulation has been the major means to 
accurately model DRF spatial dependence [6]. However, by 
including more physical factors into such a simulation, DRFs 

are made broader and more complex, resulting in a much 
larger transition matrix. Thus, simple DRF models are 
commonly being used in derivation of the transition matrix 
[7-9], but the consequences of the mismatch between these 
simple DRF models and the real detector response are poorly 
understood and have received little attention up to date 
[10,11]. In this study, we used analytic DRF models instead 
of the Monte Carlo approach for matrix computation to 
compare effects of different DRF approximations and, thus, 
of different transition matrices on reconstructed image 
quality. A model suitable for a 2-D statistical iterative image 
reconstruction is proposed. It can be applied with any 
iterative method using a matrix of weights to state the 
relationship between measured projections and an image 
being reconstructed. 

Il. MA TERIALS AND METHODS 

A. PET scanner 
The Sherbrooke animal PET scanner was used to acquire 

data. The system consists of 2 ring layers of 3x5x20 mm 
BGO crystals, 256 per layer, individually coupled to 
avalanche photodiodes. Data can be acquired in either 
stationary (without "clam-shell" motion) or double sampling 
mode (with "clam-shell" motion). Without "clam-shell" 
motion, the set of parallel tubes-of-response between 
opposing detectors defines a projection of 32 bins at 256 
angles. With the double sampling, 257 angles (with the 
imaginary detector in the clam opening space) of 32-bin 
projections are added to the tubes-of-response set. Detailed 
description of the scanner performance characteristics can be 
found in [12,13]. 

b) 

9.7mm~ 
6.7mm@ 

2mmo 

e 
3.4mm 

Figure 1: Phantoms used to acquire data with the Sherbrooke 
animal PET scanner: a) resolution phantom; b) contrast phantom. 
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Table 1 
Notations used in the paper 

Symbol 1 Definition 

d 
b 
n*(d) 

p(b,d) 

tube-of-response index 
image pixel index 
number of coincidences detected in the tube-of-response d 
transition matrix elements: probability of an annihilation 
event in pixel b being registered in the tube-of-response d 

P, •. ,(b,d) probability p(b,d) corrected for the attenuation and relative 
detector efficiency in the tube-of-response d 

,\(b) estimate of the mean number of annihilations in pixel b after 

A(d) 
E(d) 

l(d) 

8 

M, 
X 

e,( (}) 

g(x;8) 

j(x,e;8) 

o(8) 

R(8) 

iteration k 

attenuation correction factor in the tube-of-response d 
detector efficiency factor in the tube-of-response d 
binary fonction: 1, if the tube dis reliable; 0, if the tube dis 
considered unreliable due to an abnormal detector efficiency 
(outside of a given value interval) 
distance of the point for which the DRF is estimated from 
detectors # 1 and #2 of a given detector pair 
photon incidence angle (assumed to be the same within a 
given tube-of-response) 
width of an intrinsic aperture fonction at a given angle 8 
point of the tube-of-response cross-section for which the 
coincident detector response is estimated 
intrinsic detection efficiency of a detector embedded in an 
array when irradiated at an angle 8 
eccentricity in the position of the source relative to the 
coincident detectors 
detector intrinsic aperture fonction calculated from linear 
attenuation of y-rays in the detector array 
analytic coincidence detector response fonction 

standard deviation of a Gaussian fonction at angle 8 
spectral resolution of DRF mode! at angle 8 

N, total number of pixels in the i-th hot spot of the contrast 
phantom 

M, mean value within the i-th hot spot of the contrast phantom 
M~, mean value in the hot spot of the contrast phantom having the 

largest count density 

B. Phantoms 
PET data were acquired with two phantoms. The first 

one was a resolution phantom made of a 110 mm diameter 
Lucite cylinder having six sections with holes of diameter 1, 
1.25, 1.5, 2, 2.5, 3 mm at a distance of 4 times the hole 
diameter center-to-center (Figure la). A total of 5.37 
million coïncidence events were recorded in double sampling 
mode with this phantom for the two planes used in 
reconstruction (3.03 million for the upper plane and 2.34 
million for the lower one). This phantom was used for visual 
inspection of reconstructed images. 

The second one was a contrast phantom of 110 mm 
diameter also made of Lucite and having ho les of diameter 2, 
3.4, 6.7, 9.7, 13, 15.8, 20.3, 22.7 mm located on a 
circumference at a distance of 28 mm from the center 
(Figure lb). A total of 1.78 million coïncidence events were 
recorded in stationary mode with this phantom for the two 
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planes (0.95 million for the upper plane and 0.83 million for 
the lower one). 

C. Reconstruction Method 
Images were reconstructed on a grid of 128xl28 pixels 

(0.95-mm pixel side) with maximum likelihood expectation 
maximization (ML-EM) method [14]. Iterative equation 
with corrections for detector efficiency and attenuation was 
the following: 

À (b)= Àk(b) L n*(d)Pcorr(b,d) 
k+I LPcorr(b,d) d LÀk(b')Pcorr(b',d) 

(1) 

d b' 

where 

( )- p(b,d) 
Pcorr\b,d -f(d) A(d)E(d) (2) 

See Table 1 for the explanation of notation used in the 
equations. 

D. Detector Response Function 
Analytic DRF approximation introduced in [1,2] was 

used. The following equation defines detector response in 
any point of the field-of-view (FOV), as illustrated in Fig. 2: 

f (X ,e,() )= (l +; ~ f g(x;B)x g((l + e )x -ex;B)dx (3) 
eM oeo x 

where 

(4) 

(5) 

In order to check accuracy of the 
analytic DRF, experimental 
measurement of the in-plane DRFs 
was performed. A line source of 22Na 
having an active diameter of 0.84 
mm was placed axially in the FOV 
and moved radially from the center 
to the edge of the FOV in steps of 
0.2185 mm to yield a total of 350 
samples covering slightly more than 
one FOV radius. Complete 
projection data were acquired at each 
source position. Data for all detector 

g(x;0) 
·-···-r 

Figure 2: Geometric 
mode! used for the 
calculation of the 
analytic DRF (eq. 3). 

pairs orthogonal to the radial line along which the source 
moved were plotted as a fonction of distance from FOV 
center. These are referred to as the experimental DRFs. 

E. Transition Matrix 
Severa! transition matrix modifications were derived as 

follows. Contribution of a given pixel into a tube-of-
response was computed as a sum of linear integrals of DRF 
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approximation along the tube over the pixel, at a distance of 
0.1 mm. It was, therefore, proportional to the pixel and the 
tube intersection area weighed by a fonction approximating 
DRF. The contributions of a given pixel to all tubes-of-
response were normalized to yield probabilities p(b,d). Six 
different DRF models of increasing complexity were 
investigated: 
IA-c: intersection area of a pixel and a tube-of-response 

without any weighing, tubes were set to a fixed 
width of 3 mm (equal to a detector width) and 
aligned with the faces of coïncident detectors; 

IA-p: same as Case IA-c, but tubes were aligned with the 
corresponding analytic DRF peak; 

G-3: same as Case IA-p, but a depth-invariant Gaussian 
fonction with 3 mm foll-width at half-maximum 
(FWHM) was used to weigh pixels within a tube; 
tube width was set equal to the Gaussian's full-width 
at tenth-maximum (FWTM); 

G-2: same as Case G-3, but the FWHM of a Gaussian 
fonction was set to 2 mm (equal to the scanner 
intrinsic resolution in the FOY center); 

G-var: same as Case IA-p, but a Gaussian fonction of the 
same spectral resolution [l] as the corresponding 
analytic DRF with e=l was used to weigh pixels 
within a tube, i.e. Gaussian resolution varied 
radially but was constant tangentially 

10 

41 

-Exp. DRF 
-··- IA-c 
--- IA-p 
"-·G-3 
····· G-2 
-·-· G-var 
-DRF·a 

12 14 16 18 
Distance from the field-of-view center {mm) 

b) -Exp. DRF 
-··- IA·c 
--- IA·p 
-·G-3 

·····G-2 
-·-·G-var 
-DRF·a 

43 45 47 49 
Distance from the field-of-view center (mm) 

20 

51 

Figure 3: Two examples of six different DRF models in comparison 
to the experimental DRF when t::=l: a) 0:::4.9°; b) 0=16.2°. 

[ ]

2 J f(x,1;8)dx 

R(e)= J == 20-(e')fi f (x,1;8) 2 dx 
(6) 

X 

tube width was set equal to the Gaussian's FWTM; 

DRF-a: analytic DRF was used to weigh intersection area of 
a pixel and a tube-of-response; tubes of variable 
width extend over the entire projected width of 
detectors (see Figure 2). 

Two examples of fonctions used to approximate detector 
response when r1=r2 and photon incidence angle 0=4.9° and 
0=16.2° are presented in comparison to the experimental 
DRF in Figure 3. 

The transition matrices were pre-computed and stored in 
files. Each matrix element was encoded using 6 bytes (2 
bytes for the column index and 4 bytes for the value). Matrix 
size for each case and the two sampling modes of the 
Sherbrooke animal PET scanner is given in Table 2. During 
reconstruction matrix elements were corrected for detector 
efficiency, including preventing unreliable tubes of response 
from taking part in reconstruction. Finally, the matrices were 
corrected for attenuation in a cylindrical water phantom 
using analytical attenuation coefficients (0.098 cm·1

). Scatter 
and random coïncidences were ignored. 

Table2 
Transition matrix size (non-zero elements only), MB 

Case Stationary mode 

DRF-a 33.44 

F. Stopping Rule 

Double sampling 
mode 

66.92 

Since the goal of this study was to show the dependence 
of reconstruction results on DRF, it was chosen to use a 
reconstruction procedure with as little assumptions as 
possible. In particular, regularization (through penalty or 
priors) which may have acted as a low-pass filter smoothing 
the image and masking artefacts was avoided. Rather, two 
series of image reconstruction were performed that used 
different strategies to stop iterations. The cross-validation 
procedure [8,15] was used in the first one (Section III-A). 
Two adjacent planes acquired simultaneously were 
reconstructed as two independent data sets drawn from the 
same radioactivity .distribution. This could be done given the 
axial structure of the phantom. Poisson nature of the 
measured samples (the two planes) was preserved, since data 
from the PET scanner were not pre-corrected. 
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Reconstructing one of the two samples, log-likelihood of the 
image estimate was checked, as if another sample was the 
source of the image. Iterations were terminated for this 
plane, if the log-likelihood decreased after the current 
iteration. This ensured that both samples of projections 
could be drawn from the same map of emission intensities 
given the same probability distribution of photon counting 
statistics. The two image estimates were added to obtain the 
final image. 

Only the contrast phantom was reconstructed in the 
second series (Section III-B). A region-of-interest (ROI) was 
placed over the largest hot spot of the phantom and standard 
deviation was evaluated within the ROI after each iteration. 
Iterations were terminated when the same level of noise was 
reached. The two planes mentioned above were 
reconstructed separately and the two resulting image 
estimates were also summed to yield the final image. The 
two planes were used in order to assess the. results of 
reconstruction on exactly the same data as in the first series. 
Sinograms for the two planes were not summed into a single 
data set in order not to compromise the detector efficiency 
correction step, since it is different for the two planes. In the 
third series (not reported here), a fixed number of iterations 
was also used with every DRF model for a given phantom 
[16]. 

G. Image Evaluation 
Quantitative estimates of relative recovery factor RF; and 

relative standard deviation STD, were calculated from the 
reconstructed images of the contrast phantom according to 
the formulae: 

M 
RF =100x-'-

' Mmax 

1 
STD. = lOOx-x , M; 

(7) 

be ROI; (8) 

See Table 1 for the explanation of notation used in the 
equations. Values of N1 (total number of pixels in the i-th hot 
spot of the contrast phantom) were the following, for 
different hot spot size: 4, 9, 37, 69, 137, 225, 349 and 421. 

III. R.ESULTS 

A. First Reconstruction Series 
In this series two coplanar data sets were reconstructed 

independently and the stopping point for ML-EM iterations 
was defined by the cross-validation procedure [8,15]. 
Versions of ML-EM exploiting different transition matrices 
performed different number of iterations (see Table 3). 
Resolution phantom needed almost twice the number of 
iterations with the transition matrix of Case G-3 than the 
other cases to satisfy the stopping rule. Therefore, 
reconstruction time was longer due to larger number of 
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iteration and because matrix size was one of the largest in 
this case. 

Use of different matrices, i.e. DRF models, yielded 
visible differences in reconstructed images. Resolution 
phantom images are preserited in Figure 4. Note, that the 
one reconstructed with the matrix of case IA-c showed the 
poorest rendering of radioactivity distribution due to activity 
shift in the image towards the FOV center introduced by the 
tube-of-response definition (see Figure 3). Round spots of 
the phantom appeared of irregular shape in the image (Figure 
4, IA-c). The region containing spots of 1-mm diameter was 
distorted and did not reproduce phantom structure (Figure 5, 
IA-c). Tube alignment with the DRF maximum helped to 
produce a more realistic image (Figure 4, IA-p). But a 
rectangular DRF approximation resulted in non-round hot 
spots. Using the 3 mm FWHM Gaussian DRF model, round 
spots are obtained in the image, but of less diameter than that 
expected from the phantom dimensions (Figure 4, G-3). The 
stopping rule allowed significantly more iterations for the 
resolution phantom image when the transition matrix of case 
G-3 was used (see Table 3). The recovery of the size of large 
spots and low noise at the same time are remarkable. But the 
region with the finest details appeared very close to the 
background relative to the peak values found in the image 
(Figure 5, G-3) and is, therefore, almost invisible on a 
standard gray-scale image (Figure 4, G-3). Image processing 
allowed visualization of the 1-mm spots, but the structure of 
this phantom region was not reproduced, some spots were 
washed out during iterations. Use of the 2 mm FWHM 
Gaussian yielded an artefact visible near the FOY periphery 
(Figure 4, G-2). Spots of 2 mm in diameter and more 
appeared elongated towards the center. The shape of these 
spots resembled that observed in case IA-p (Figure 4, IA-p). 
Similar for these two cases was the artificial reduction of the 
radial extent of the peripheral tubes-of-response introduced 
by the DRF approximations (see Figure 3). No artefact 
(found in resolution phantom images of cases JA-p and G-2) 
was present in the reconstructed image when the Gaussian 
model took into account radial resolution change (Figure 4, 
G-var). But noise on the background appeared very 
pronounced in this case. Apparently, it was the result of 
narrowing artificially the central tubes-of-response, hence the 

Table 3 
Number of iterations suggested by the cross-validation stopping rule 

Case Contrast pbantom Resolution phantom 

DRF-a 144 129 387 393 
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Figure 4: Resolution phantom reconstructed using six different 
DRF approximations and the cross-validation procedure to stop ML-
EM iterations (first reconstruction series); arrows show the line 
along which the profile presented in Figure 5 was taken. 
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Figure 5: Profiles of the resolution phantom (first reconstruction 
series); direction marked with arrows in Figure 4. 
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Figure 6: Contrast phantom reconstructed using six different DRF 
approximations and the cross-validation procedure to stop ML-EM 
iterations (first reconstruction series); arrows show the line along 
which the profiles presented in Figures 7 and 11 were taken. 
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Gaussian approximation from the measured DRF was large 
(see Figure Ja), whereas the Gaussian in the peripheral 
tubes-of response was a good match of the measured DRF 
(Figure Jb). Finally, the analytic DRF ensured the best match 
of reconstructed resolution phantom image to the known 
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Figure 8: Relative recovery factor as a fonction of hot spot size, 
calculated from the contrast phantom images reconstructed using 
six different DRF models (first reconstruction series). 
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Figure 9: Relative standard deviation as a fonction of hot spot 
size calculated from the contrast phantom images reconstructed 
using six different DRF models (first reconstruction series). 
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phantom geometry with reasonably Jow noise in the image 
(Figure 4, DRF-a). 

Comparing quantitative data drawn from the 
reconstructed images of the contrast phantom (Figure 6), we 
found that in two cases unstable activity concentration 
recovery was present due to an artefact which amplified 
intensity at the edge of a region with uniform radioactivity 
concentration (Figures 6, 7; IA-c, G-3 ). Recovery factor 
appeared to be a non-monotonie fonction of the hot spot 
diameter in these cases (Figure 8, IA-c and G-3). 
Reconstructed image of the contrast phantom also exhibited 
the poorest noise properties when the simplest DRF model 
was exploited (Figure 9, IA-c). The best recovery of small 
spots was obtained when using analytic DRF (Figure 8, 
DRF-a). Only case G-2 was superior to case DRF-a in 
producing a smooth image estimate in this series (Figure 9). 

B. Second Reconstruction Series 
Only the contrast phantom was reconstructed in this 

series. Iterations were stopped at 26% relative standard 
deviation within the largest hot spot of the phantom (see 
Figure JO). Significantly different number of iterations was 
performed, ranging from 44 using the DRF approximation of 
case IA-c to 291 with the DRF of case G-3. Note that at the 
local minimum at around 30 iterations, case IA-c had much 
higher noise level than the rest of the cases. 

Contrast phantom images in this series also showed the 
edge artefact in two cases (Figure 11, IA-c and G-3), though 
it became Jess severe in case JA-c due to early termination of 
iterations in the present series. Due to the small number of 
iterations in this case recovery of small spots was very poor 
(Figure 12, IA-c) as opposed to improved recovery factors 
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Figure 11: Profiles of the contrast phantom illustrating the edge 
artefact in Cases IA-c and G-3 (second reconstruction series); 
direction marked with arrows in Figure 6. 
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for the small hot regions in case of the 3-mm Gaussian DRF, 
which was allowed iterating longer (Figure 12, G-3). A non-
monotonic recovery factor variation with the spot size as in 
the previous series was observed (Figure 12, G-3). 

Noisy estimation of small structures using the simple 
DRF of case IA-c was observed when comparing the noise 
Ievel in the hot spots of different size. The Iowest Ievel of 
noise appeared in cases using the 2-mm Gaussian function 
and the analytic detector response models (Figure 13; G-2, 
DRF-a). 

IV. DISCUSSION 

The transition matrix used in statistical iterative image 
reconstruction should properly include the instrument 
features, such as resolution variations throughout the field-of-
view. Use of measured DRF is very unlikely (at least for our 
scanner) for two reasons. First, this fonction extends far 
beyond the projected width of detectors, hence the resulting 
matrix size would be impractical. Second, if one tries to use 
functions measured on a particular tube-of-response set (it' s a 
non-trivial engineering task to measure detector response 
everywhere in the field-of-view) the small deviations from 
ideal position in the ring will most probably result in 
misalignment of the rest of the tubes (unmeasured). A priori 
this will degrade the results of reconstruction if compared to 
the ones obtained with the perfect ring geometry. 

Analytic DRF based on linear attenuation of y-rays in a 
detector array is a good approximation of experimental 
detector response asymmetry while it has a finite base equal 
to the radial detector projection. Due to this fact the DRF 
mode! is very attractive for high precision simulation of the 
transition matrix that describes a high resolution PET system 
with long and narrow detectors. We have shown that using 
this analytic mode!, artefact free images exhibiting 
reasonably Iow noise can be obtained. 

It has been shown that the use of an inappropriate 
detector response model for the transition matrix 
computation can generate artefacts. Hence close 
reproduction of radioactivity distribution in the reconstructed 
images is not possible. This happened when the DRF models 
of cases IA-c, IA-p and G-2 were used. The edge artefact 
observed in cases IA-c and G-3 and reported in the literature 
[17] was previously attributed to fondamental properties of 
unconstrained maximum likelihood reconstruction. It 
appears from our study that a more realistic DRF mode! 
should be used to cure the problem. The complexity of the 
DRF model and the computation Joad arising from that is not 
an issue at stake if a pre-computed matrix of probabilities is 
used in reconstruction. Therefore, an adequate attention 
should be given to a proper description of a PET scanner 
through the transition matrix. 

Presented results were based on two different ways to 
terminate iterations. The third one was used in an earlier 
presentation of this work [16], when the same number of 
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Figure 13: Relative standard deviation as a function of hot spot 
size calculated from the contrast phantom images reconstructed 
using six different DRF models (second reconstruction series). 

iterations was performed for a given phantom with every 
DRF model. In practice, explicit regularization can be used 
to control noise effectively in the form of a prior or penalty 
fonction instead of stopping iterations at a specific point. In 
that case the reconstructed image would be forced to exhibit 
properties introduced by the prior, among them convergence 
to a special class of solutions, bias and reduced resolution. 
Therefore, regularization has been avoided in this study. 
Otherwise, the effect of a DRF model would have been 
coupled with that of a prior and would be hard to analyze. 
Only after ensuring the best resolution recovery through 
physical modeling should regularization be employed. Tuen 
its sole purpose would be to control noise and not to mask 
artefacts created by an inappropriate DRF mode!. 
Remarkably, it was observed that the simplest possible DRF, 
case IA-c here, which is not uncommon in practical 
implementations, would inevitably yield images with 
resolution far poorer than the intrinsic scanner resolution. 

It is known that ML-EM is a nonlinear algorithm, i.e. 
small details are recovered at later iterations as compared to 
large image structures [18]. DRF model incorporated into 
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the transition matrix has an impact on the convergence of 
ML-EM as well. It was observed in [16) that, for the same 
iteration number, the described analytic DRF mode! ensured 
superior contrast and recovery of small structures at the limit 
of scanner resolution (2 mm), at the same time ensuring the 
Jowest noise level as compared to the other DRF models 
studied here. In fact, very similar artefacts and relative 
differences in reconstructed images were observed using the 
different ways to stop ML-EM iterations, which gives us 
confidence that the observed results followed from the used 
DRF mode! and were fairly insensitive to the stopping points. 
Needless to say that a proper DRF, such as the analytic 
mode! proposed in this work, could be implemented together 
with a regularization scheme for practical reconstruction of 
medical images. 

V. CONCLUSION 

It has been shown that the use of an oversimplified 
detector response mode! in an iterative reconstruction can 
generate artefacts in reconstructed images. The analytic 
function based on linear attenuation of y-rays in a detector 
array used as a detector response approximation helps to 
obtain reconstructed images of significantly better quality as 
compared to conventionally used models. This analytic DRF 
takes into account resolution variation in the field-of-view 
and is easy to compute from the geometry and the attenuation 
properties of the detectors. 
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Abstract-A major shortcoming of the maximum likelihood ex-
pectation maximization (ML-EM) method for reconstruction of 
dynamic positron emission tomography (PET) images is to decide 
when to stop the iterative process for image frames with largely dif-
ferent statistics and activity distributions. A widespread practice to 
overcome this problem involves overiteration of an image estimate 
followed by smoothing. In this paper, we investigate the qualita-
tive and quantitative accuracy of the cross-validation procedure 
(CV) as a stopping rule, in comparison to overiteration and post-
tiltering, for the reconstruction of phantom and small animal dy-
namic 18 F-fluorodeoxyglucose PET data acquired in two-dimen-
sional mode. The CV stopping rule ensured visually acceptable 
image estimates with balanced resolution and noise characteristics. 
However, quantitative accuracy required some minimum number 
of counts per image. The effect of the number of ML-EM iterations 
on time-activity curves and metabolic rates of glucose extracted 
from image series is discussed. A dependence of the CV defined 
number of iterations on projection counts was found that simpli-
fies reconstruction and reduces computation time. 

Index Terms-Cross validation, image reconstruction, image se-
quence analysis, iterative methods, maximum likelihood estima-
tion, positron emission tomography (PET), stopping rule. 

l. INTRODUCTION 

T HE USE of maximum likelihood via expectation maxi-
mization (ML-EM) image reconstruction [1] is not very 

popular nowadays due to the common belief that it is intrinsi-
cally unstable and inevitably results in images exhibiting high 
variance. Bayesian framework [2], [3] and other regularizing ap-
proaches [4], [5] were studied to avoid excessive noise ampli-
fication during the iterative statistical estimation. Criteria were 
proposed to stop iterations before noise artifact develops [ 6], [7]. 
Another concern is the slow convergence of the ML-EM algo-
rithm when compared to the proposed acceleration techniques 
[8], [9], which results in relatively long reconstruction time. The 
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ordered subset acceleration, abbreviated OS-EM, has become 
very popular even with the lack of proven convergence for the 
real-world noisy data [9]. Unfortunately, the performance and 
quantitative accuracy of these new methods depend on newly 
introduced parameters (prior, penalty fonction, number of sub-
sets, or relaxation factor) that require optimization, which still 
does not guarantee unbiased estimation. Therefore, it is relevant 
to address the issues of unconstrained likelihood maximization 
since it has the attractive property of being asymptotically un-
biased. 

This paper addresses the issue of choosing the number of it-
erations in ML-EM image reconstruction automatically in order 
to ensure diagnostically useful image appearance and quanti-
tatively accurate measurements of radiotracer concentration. A 
widespread practice to overcome this problem involves overiter-
ation of an image estimate and its subsequent smoothing, which 
eliminates to some extent the need for a stopping rule and re-
duces the effect of the noise artifact. However, this procedure 
reduces the contrast and the spatial resolution. In the case of 
dynamic positron emission tomography (PET) studies, series of 
frames with significantly different statistics and radiotracer dis-
tributions must be reconstructed. It is obvious that an arbitrary 
number of ML-EM iterations is not optimal; thus, visually ac-
ceptable and quantitatively reliable image estimates are hard to 
obtain at the same time. Yet, it is important not to iterate longer 
than really necessary for providing suitable image estimates in 
order to minimize the reconstruction time. In this paper, we in-
vestigate the robustness of the cross-validation (CV) procedure 
[7] as a stopping rule for ML-EM reconstruction of dynamic 
PET image series. 

II. MATERIALS AND METHODS 

A PET Scanner 

PET scans were performed with the Sherbrooke high-resolu-
tion animal tomograph. The system consists of two ring layers 
of 3 x 5 x 20 mm BGO crystals, 256 per layer, individually 
coupled to avalanche photodiodes. Two direct planes and one 
cross-plane can be acquired simultaneously. The transaxial 
field-of-view (FOV) diameter is 118 mm, and reconstructed 
image resolution in the FOV center is 2.1 mm. A sinogram 
consists of 32 bin projections at 256 angles in the acquisition 
mode without sampling motion used in this study. A detailed 
description of the scanner can be found in [ 10] and [ 11]. 

0018-9499/01$10.00 © 2001 IEEE 
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51 mm 

Fig. !. Phantom modeling the left ventricle of a rat heart used to acquire data 
for assessing quantitative accuracy of different reconstruction protocols. 

B. PET Data 

Data were acquired with a phantom modeling the left ven-
tricle of a rat heart (Fig. 1). The asymmetric annular compart-
ment shown in gray in Fig. 1 was filled with a water solution 
of 18F-fluorodeoxyglucose (FDG). A series of 27 frames with 
duration from 3 s to 40 min were acquired. 

Dynamic PET scan of the heart region was also performed 
with a normal 300-g rat injected with a bolus of 8.14 x 107 Bq 
(2.2 mCi) of FDG over 19 s. The following series was acquired 
for 51 min, starting at the beginning of injection (seconds x 
frames): 5 x 24, 180 x 8, 300 x 5. 

C. Reconstruction Method 

Images were reconstructed with the ML-EM method on a grid 
of 128 x 128 pixels with pixel size ofü.95 mm. The following 
iterative equation was used to compute the image estimate: 

• ~k(b) D 
Àk+ 1 ( b) = _D _ ___:_:.__ L n*(d)Pcorr(b, d) 

B 
" ( ) d=l L,.,Pcorr b, d L ~k(b')Pcorr(b', d) 
d=l b' ==l 

b = 1, ... , B (1) 

where 

I(d) 
Pcorr(b, d) = E(d) p(b, d). (2) 

See Table I for the explanation of notation used in the equations. 
Relative detector efficiencies were applied to weigh the tran-

sition matrix elements. A model of the spatially variant detector 
response specific to the scanner was also included into the tran-
sition matrix. Analytic detector response fonctions based on 
linear attenuation of ')'-rays in a detector array were used to 
weigh intersection area of a pixel and a tube-of-response (TOR). 
Tubes had a variable width extending over the entire detector 
projection onto a radial line perpendicular to the respective TOR 
[12]. Attenuation, scatter, and random events were not included 
in the mode! in this study. 

The cross-validation procedure was applied using two new 
data sets ni ( d) and n2 ( d) created by the process of thinning 
from the measured sample of projections n*(d) for the two di-
rect planes [13]. The process involved taking each count in each 
projection bin and assigning it to one or another of the new data 
halves ni ( d), according to the outcome of a random process of 
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Symbol 

d 

b 

D 

B 

n '(d) 

p(b,d) 

N 

c, 

f, 

Definition 

TABLE l 
NOTATION USED 

tube-of-response index 
image pixel index 
total number of tubes-of-response 
total number of image pixels 
number of coincidences detected in the tube-of-
response d 
elements of the transition matrix: probability of an 
annihilation event in pixel b being registered in the 
tubed 
probability p(b,d) corrected for the relative detector 
efficiency [see (2)] 

estimate of the mean number of annihilations in 
pixel b after iteration k 

detector efficiency factor in the tube-of-response d 

binary function: 1, if the detector pair dis reliable; 0, 
if it has an abnonnal detector efficiency 
sample of projections after the process of thinning 
(i=l,2) 
natural logarithm of the likelihood function for 
image estimate ik [see (3)] 

forward projection of an image estimate for the tube-
of-response d [see (4)] 

parameters of a power function found by fitting a 
curve (i=l,2) [see (5)] 

estimate of the value of image pixel b after 
reconstruction completion 
total number of pixels in a given ROI of phantom 
image 
decay corrected count rate in the ROI for phantom 
image [see (6)} 

normalization factor accounting for F-18 decay and 
time frame length [see (7)) 

F-18 half-life (in seconds) 

equal probability for each of the two outcomes. It resulted in 
two Poisson distributed data sets, with means that are one-half 
of the mean of the original set. For the cross-plane, data split-
ting was not necessary, since the scanner already provides two 
independent data sets. Recon_:itructing one of the two samples, 
e.g., ni(d), log-likelihood l(Àk) of the image estimate ~k was 
checked as if another sample n2 ( d) was the source of the image, 
i.e., 

D 

z(~k) = 2= ( -n(d) + n2(d) in n(d) - in [n2( d)!]) (3) 
d=l 

where forward projection n( d) of the image estimate ~k for 
tube-of-response d was 

B 

n(d) = L ~k(b)Pcorr(b, d). (4) 
b==l 64 
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The iterative process was terminated for the sample if the 
log-Iikelihood started to decrease. This ensured that bath sam-
ples of projections, ni(d) and n2(d), could have been drawn 
from the same map of emission intensities given the same prob-
ability distribution of photon counting statistics. Log-likelihood 
analogous to (3) was traced, while reconstructing n2( d), but as 
if ni ( d) was the source of the image. The two image estimates 
obtained after reconstructing ni ( d) and n2 ( d) were added to 
yield the final image. 

The number of iterations was also computed using an analytic 
dependence (later referred to as CVF) represented as a power 
function 

Iterations = ai x (Total counts in projectionst2 . (5) 

Parameters ai and a 2 in the above equation were fitted to the 
CV defined number of iterations with the Levenberg-Marquardt 
method [ 14]. 

Images were also reconstructed with a fixed number of 
ML-EM iterations. Postreconstruction filtering/smoothing was 
performed by 

1) convolving image estimate with a Gaussian mask of 7 x 
7 pixels, 2.2 mm full-width at half-maximum, which is 
equal to the scanner resolution close to the field-of-view 
center (GAUSS); 

2) filtering with a Butterworth low-pass filter of the first 
order with cutoff frequency locus at 33% of the frequency 
range (BWl); 

3) filtering with a Butterworth low-pass filter of the first 
order with cutofffrequency locus at 67% of the frequency 
range (BW2). 

For comparison, images were also reconstructed with filtered 
backprojection (FBP) using a ramp filter with cutoff frequency 
satisfying the Nyquist criteria. Detector response mode! was not 
included into FBP reconstruction and data were precorrected for 
detector efficiency. 

D. Image Analysis 

Two regions-of-interest (ROI) were drawn on images recon-
structed with 75 iterations on the basis of phantom dimensions: 
one covering the hot ring that represented the myocardium (see 
Fig. l) and another one centered on the inner region representing 
the blood pool and covering 50% of it. The decay corrected 
count rate Ct in the ROI was evaluated as 

1 1 ""' A 

Ct = T X N X L.., >..(b) 
· t l>ERO! 

(6) 

where 

ft = ! e-(ln2/T1;2)Xr dT (7) 

is a norrnalization factor accounting for 18F decay and time 
frame length (in seconds). See Table I for the explanation of 
notation used in these equations. 

Contrast in the phantom images was computed as 

Contrast = Ct(myocardium) - Ct(blood pool) 
c1(myocardium). 

(8) 
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Fig. 2. Number of ML-EM iterations, defined by the automatic CV procedure, 
as a function of the total counts in phantom projections (three planes together). 
The fitted power fonction (CVF) was a reasonably accurate approximation to 
the CV results. 

Rat images were corrected for the radionuclide decay and an-
alyzed using ROis drawn manually in the last image frame of 
the series. ROis were placed on the left ventricular blood pool, 
as well as on anterior, septal, inferior, and lateral regions of the 
myocardium. The same ROis were used afterreconstructing im-
ages with ML-EM, but ROis were adjusted for use with FBP im-
ages since visible differences in image geometry were observed 
due to the absence of a detector response mode! in FBP recon-
struction. The input curve was extracted from the blood pool 
ROI of the respective image series. 

The three-compartment FDG model [ 15] was used to fit every 
ROI of the heart muscle, and estimates of the rate constants K 1, 
k2 , k3 , and k4 were obtained with the Levenberg-Marquardt 
algorithm [ 14]. Regional metabolic rate of glucose consumption 
(rMRGlc) was estimated as follows: 

A. Phantom Study 

Kik3 rMRGlc ,..., ---
k2 + k3 

III. RESULTS 

(9) 

Visual assessment of images confirmed that the stopping rule 
invariably ensured low-noise images. But iterations were termi-
nated prematurely for images containing less than 105 events, 
based on the expected lev el of details in the reconstructed image, 
i.e., proper thickness of the "myocardium wall" and low esti-
mated radioactivity in the "blood pool." The number of iter-
ations defined by the CV for phantom reconstruction and the 
fitted power function (CVF case) are presented in Fig. 2. 

The decay-corrected count rate Ct within the "myocardial" 
ROI as a fonction of the number of events in projection data is 
given in Fig. 3. Different reconstruction approaches produced 
different absolute values. A constant value was expected for a 
given reconstruction method irrespective of the input data sta-
tistics. lt was found that a fixed number of ML-EM iterations 
with or without postreconstruction smoothing, as well as FBP, 
produced more uniform values. Decrease in recovery accuracy 
was obvious with the stopping rule with low-count data. This 
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Fig. 4. Ratio of,., for ML-EM with the cross-validation to ci. for 200 ML-EM 
îterations (phantom, three planes together). CV stopped iterations to preserve 
image smoothness, but signal recovery suffered in low-count cases. 

trend is illustrated in Fig. 4, where the ratio of Ct after ML-EM 
with CV to Ct after 200 ML-EM iterations is reported. The ratio 
presented in Fig. 4 gives a clue about how far from the asymp-
totic value the cross-validation procedure stopped, since the in-
crease in regional activity was marginal even after 75 iterations. 
The difference was not statistically significant when more than 
l 05 counts were reconstructed with the CV. Curve fitting proce-
dure yielded real numbers that had been rounded to integers to 
represent iteration numbers. Therefore, rounding to an equal or 
greater number was performed, yielding marginally better quan-
titative results in the CVF case. Low estîmates of regional ac-
tivity with FBP may be explained by the Jower rcsolutîon and 
by the streak artifact, which captured some counts outside of the 
ROis. 

The contrast was best with high iteration number. But postre-
construction filtering reduced it significantly (see Fig. 5). Con-
trast recovery was better with the CV than wîth overiteratîon 
followcd by filtering in high-count images and worse with low 
total counts. FBP images had the poorest contrast. 
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Fig. 6. Dependence of the number of ML-EM iterations, defined by the 
automatic CV procedure, on the total counts for the rat series (CV stopping 
point). The power fonction fitted to the CV stopping points (CVF) is compared 
to the fonction derived for the phantom (CVF for phantom), given as well in 
Fig. 2. 

B. Animal Study 

Similar dependence of the iteration number on the number of 
registered events exhibitcd by the CV stopping rule in phantom 
reconstruction was observed in the case of dynamic rat series. 
It is presented in Fig. 6 togcther with the fitted power fonc-
tion (CVF) and the fonction fitted previously for the phantom 
data. With the animal data, FDG was gradually redistributed 
throughout the regions. The phantom did not mode! this dy-
namic aspect. Therefore, a close match of the two fonctions ex-
tracted for the given range of counts from two different recon-
structed sequenccs is remarkablc. 

Visual image quality was judged upon the contrast and detail 
resolution versus noise. For a dynamic series, the preferred re-
construction strategy was the one that satisfied those criteria for 
high- and low-count images. Selected images of the rat series are 
presented in Fig. 7. The first column gives a low-count image 
15-20 s after FDG injection. It corresponds to the peak of ra-
diotracer concentration in plasma. Hence, the two ventricles of 
the heart are expectcd to be visible. But since the activity is dis-
tributed in the entire vascular system early after injection, lungs 
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Fig. 7. Selected frames from the dynamic rat scan, reconstructed with 
different techniques. (Left) 15-20 s after injection (::::: LO 000 events), peak of 
FDG concentration in the blood plasma, two ventricles of the heart visible. 
(Right) 46-51 min after injection(::::: 200 000 events), FDG accumulated in the 
myocardium. 

are also visible as a large area of activity below the ventricles in 
this slice. The second column shows an image at the latest stage 
of scanning, 50 min after FDG injection, when the radiotracer 
accumulated in the myocardium. 

Very different image quality was observed after different 
number of iterations and with different postreconstruction 
filters. Two reconstruction strategies resulted in the most 
acceptable low- and high-count images as judged visually: the 
CV procedure and the analytically defined number of iterations 
(CVF). The rest of the cases yielded either a well-defined 
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25 iter. 
- - - 75 iter. 
- - 75 iter. + GAUSS 
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Fig. 8. Early part of the blood pool time-activity curves. Nonfiltered images 
obtained with 75 iterations exhibit the highest curve variations due to the 
increased noise in the low-count image frames. Image filtering increased TAC 
smoothness. CV and CVF yielded reasonably accurate TACs. 

blood pool at the beginning of the seau or a good definition 
of the myocardium with little spillover from the heart muscle 
to the blood pool, but not both at the same time. Nonfiltered 
or mildly filtered images showed noisy activity distribution in 
early frames, whereas heavily filtered images yielded reduced 
resolution and blurring of structural details in late images. It 
should be noted that the choice of a filter and its parameters 
played a more important role than the number of iterations with 
later high-count frames when a postreconstruction filter was 
applied, whereas these were equally important with low-count 
images. 

The early part of the left ventricular blood pool time-ac-
tivity curve (TAC) obtained from the reconstructed rat series is 
shown in Fig. 8 with the logarithmic time scale for better peak 
visualization. The late part of the TAC is presented in Fig. 9. 
Fifty iterations + filter and 75 iterations + filter yielded sim-
ilar results. Therefore, only the latter was reported. Bounces in 
the curves are attributed to statistical frame-to-frame variations 
due to noisy reconstructed images and possible rat movement 
that may have changed heart position slightly. Nonfiltered im-
ages obtained with high iteration number exhibited the lowest 
spillover from the myocardium to the blood pool later in the 
series but the highest variations in early frames. Filtering am-
plified the spillover effect, making the TAC extracted from the 
blood pool ROI less reliable. An extemal blood sampling would 
be necessary to obtain an input function for these images of 
suboptimal resolution. The cross-validation yielded better TAC 
than postfiltering, but the activity spillover later in the series was 
still significant as compared to 75 iteration images. It is inter-
esting that the early TAC part around the peak was not very dif-
ferent for all studied reconstruction cases except FBP. 

The various reconstruction schemes not only produced visu-
ally different images but yielded significantly different rMRGlc 
values as well (Fig. 10). The pattern of values across the four 
myocardial ROis was somewhat similar in most cases. An in-
teresting finding was that rMRGic absolute value constantly in-
creased as a function of the number of ML-EM iterations in the 
tested iteration range. This is illustrated with 25, 50, and 75 iter-
ations in Fig. 1 O. This fact was a result of improved image reso-
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Fig. 9. Late part of the blood pool time-activity curves. Nonfiltered images 
obtained with 75 iterations exhibited the lowest activity spillover from the 
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yielded more accurate TACs than 75 iterations + filtering, but the estimated 
blood pool activity concentration was still higher than after 75 iterations. 

1111 anterior ROI Cl inferior ROI 
D lateral ROI lllllseptal ROI 

1 1 1 

Fig. 10. rMRGlc estimates computed for myocardial ROis using TACs of 
the blood pool as input functions. rMRGlc absolute value constantly increased 
as a fonction of the number of ML-EM iterations (without image filtering). 
Changes in the rMRGlc value and, more important, in the inter-ROI pattern 
were significant if heavy image filtering was applied to the image series. 

lotion and contrast with higher iteration number. Changes in this 
pattern were obvious after image filtering, e.g., estimated glu-
cose consomption for the septum was significantly lower after 
image filtering than in nonfiltered cases. The CV and CVF cases 
yielded values in between those produced after 25 and 50 itera-
tions. It was not surprising since the maximum number of iter-
ations with CV and CVF did not exceed 50 (see Fig. 6). But the 
reduced contrast with early low-count frames resulted in notice-
ably lower estimate of glucose consomption in the septal ROI 
relative to the other myocardial segments. Estimates of rMRGlc 
values in the FBP case were low due to poor image contrast and 
lower level of estimated regional radioactivity concentration, as 
illustrated in Fig. 3. 

IV. 0JSCUSS10N 

Quantitative reliability of images was limited by the total 
registered counts. Statistical variations in low-count data sam-
ples resulted in some uncertainty of regional image quantitation 

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 3. JUNE 2001 

(Figs. 3 and 5). The CV stopping rule was found to optimize di-
agnostically useful signal-to-noise ratio (SNR), but at the same 
time to compromise regional recovery accuracy with low-count 
data . 

Overiteration followed by filtering did not handle low-count 
and high-count data equally well. Either the noise artifact was 
still significant in low-count images or the resolution in the im-
ages that had more counts was seriously compromised. Mild 
filtering could not mask the noise artifact completely when a 
low-count image was significantly overiterated, whereas heavy 
filtering yielded poor resolution in high-count images. An adap-
tive filtering similar to the approach reported in [16], where the 
filter is to be chosen for each particular image instead of ap-
plying a single filter to the sequence, could probably have been 
more helpful. Sophisticated regularization within iterative re-
construction could have been advantageous also. But it would 
obviously affect quantitation as well. 

The number of iterations as a parameter of unconstrained 
ML-EM is important to optimize in making the method applica-
tion successful, since it has an effect on the reconstruction time 
and on qualitative and quantitative image analysis. The CV stop-
ping rule could be helpful with high-count dynamic series, but 
in a low-count situation it tends to sacrifice quantitative accu-
racy in favor of low-noise images. Whether the sacrifice of ac-
curacy would be significant with compartment modeling if just 
a small fraction of frames had low total counts is not clear. It is 
possible that optimization of the frame length (after data acqui-
sition if list-mode data are available) could reduce inaccuracy of 
the glucose consumption estimates and make the CV an accept-
able reconstruction strategy for quantitative image analysis. 

Postreconstruction image filtering also profoundly affects 
quantitative accuracy, and the effect of a fixed iteration number 
is still not negligible. Smoothing PET image sequences for 
compartment modeling after reconstructing with a fixed 
number of iterations changes the outcome of model fitting 
due to image contrast reduction. Moreover, this effect does 
not seem to be consistent for all ROis (Fig. 10). Though the 
simple phantom study showed consistency of the applied filters 
with respect to activity and contrast recovery, the subsequent 
model analysis exhibits nonlinear dependence. Therefore, it is 
questionable whether image filtering should be performed at 
all before compartment modeling, apart from helping at the 
ROI delineation step. 

The reconstruction time was reduced when using the stop-
ping rule as compared to the overiteration accompanied by fil-
tering even with the data splitting step, since the number of it-
erations adapted to the image statistics. Applying the analytic 
dependence exhibited by CV further reduced the reconstruction 
time, since the data splitting and reconstruction of the two data 
sets corresponding to the same image were eliminated. 

Given the current popularity of iterative image reconstruc-
tion methods and the large variations in values describing me-
tabolism when varying parameters of the reconstruction method 
(ML-EM in this study), there is a need for standardization in this 
field. The reconstruction technique should be compared to an 
acknowledged "standard" that would reveal the dependence of 
clinically useful quantitation on the technique parameters that 
can be varied. lt is worth noting that even the widely accepted 
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FBP has several parameters that affect image quantitation, e.g., 
filter type, cutoff (or rolloft) frequency, applied data corrections, 
and data rebinning. 

V. CONCLUSION 

Results of this study showed the importance of optimizing 
the number of iterations when ML-EM reconstruction is used. 
The CV stopping rule was superior to overiteration and filtering 
ensuring balanced resolution, noise and quantitative accuracy 
of image estimates with projection sets having more than some 
minimal total counts. No image filtering was necessary after 
reconstruction to improve visual image perception in this case. 
But quantitative signal recovery was compromised in favor of 
diagnostically useful SNR in images with low total counts. 

The described analytic dependence on total counts (CVF) 
simplified utilization of the stopping rule and accelerated re-
construction. It can be used instead of the original CV proce-
dure for high-count data, when the CV yields reasonably accu-
rate images. In a dynamic series with many low-count frames, 
CV is not recommended for the whole series, but reconstruc-
tion of several high-count frames at the end of the series can 
give a clue as to the minimum fixed number of iterations re-
quired to provide suitable images for ROI delineation without 
filtering/smoothing. 

CV application is not limited to dynamic series only. In the 
case of a single-frame static emission scan, e.g., for standard 
uptake value calculation, CV can be used to avoid subjective 
decision-making at the image reconstruction step (if ML-EM is 
the algorithm of choice ), since it would ensure optimal SNR and 
quantitative accuracy, provided the image has sufficient total 
counts. 
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Abstract-Data filtering based on matrix pseudo-inverse is a 
well-known but not yet appreciated means of tomographie image 
reconstruction. In the present work, the feasibility of image re-
construction based on singular value decomposition (SVD) of the 
system matrix for animal two-dimensional positron emission to-
mography is demonstrated. Analytic detector response function ac-
counting for the noninvariant spatial system response is explicitly 
included into the system matrix. Regularization of the SVD-based 
solution with the singular spectrum truncation (TSVD solution) 
derived from spatial resolution analysis is proposed. TSVD recon-
struction is fast except for the matrix decomposition step, which 
is performed once for a given scanner geometry. Reconstructed 
image quality and quantitation are compared to those obtained 
with filtered backprojection (FBP) and iterative maximum likeli-
hood technique. With the constant progress of computing power, 
TSVD image reconstruction may become a viable alternative to 
FBP for routine clinical applications. 

Index Terms-Image reconstruction, positron emission tomog-
raphy, singular value decomposition. 

I. INTRODUCTION 

D ATA filtering based on matrix pseudo-inverse is a 
well-known means of image reconstruction. An early 

treatment applied to the problem of image reconstruction in 
emission imaging can be found in [l]. Image reconstruction 
based on pseudo-inversion of matrices with singular value 
decomposition (SVD) has been applied to x-ray computed 
tomography by Shim and Cho, though their principal interest 
was in imaging with a limited number of projections [2]. Other 
attempts met with the insufficient computer power of the day 
to solve the problems of practical size and the shift of interest 
toward iterative solutions [3], [4]. The matrix pseudo-inversion 
step is very demanding in terms of the numerical precision and 
power of computing hardware. A large condition number of the 
system matrix in tomography reflects the ill-posed nature of the 
tomographie image reconstruction problem. Thus, the solution 
using system matrix pseudo-inverse would be very sensitive 
to noise in the experimental data, and explicit regularization 
is essential [5], [6]. In recent years, the usefulness of the 
matrix pseudo-inverse approach with singular value spectrum 
modification has been evaluated in SPECT [7], [8]. In positron 
emission tomography (PET), image reconstruction has also 
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been attempted using special formulation of matrix SVD 
with the matrix decomposition step performed online with a 
supercomputer [9]. In the present work, the feasibility of fast 
image reconstruction based on the SVD of the system matrix 
is demonstrated with animal two-dimensional (2-D) PET. 
The system matrix is derived using the analytical model of 
spatially varying detector response, and matrix decomposition 
is performed once for a given scanner geometry and image 
grid. A systematic analysis of image resolution as a function of 
the number of singular values included in the solution based on 
SVD has been performed. The regularization with the singular 
value spectrum truncation based on spatial resolution analysis 
is proposed. 

II. THEORY 

PET imaging may be modeled by a set of the following Fred-
holm integral equations of the first kind: 

bi = L Ti(x)f(x)dx, i = 1, ... , N (1) 

where 
XE n c Rn 

f (x) 
b· ' 

N 

point of Euclidean n-dimensional space 
(n = 2 or n = 3), support region n is asso-
ciated with the PET scanner field-of-view 
(FOV); 
unknown tracer distribution; 
projection of the tracer distribution, an ap-
proximation of which is actually measured 
by the detector pair i; 
spatially variant point response fonction, 
which may also be considered (after ap-
propriate normalization) as the probability 
for an event originating at point x being 
registered in detector pair i; 
total number of tubes-of-response (active 
detector pairs). 

It is customary to solve the inverse problem numerically uti-
lizing discrete representations of n, thus, it may be written in 
the matrix form 

where 
p = 

Pf = b 

{P;1: i = 1,. .. , N; j = 1, ... , M} 

(2) 

system matrix that 
includes the model 
of the point response 
fonction for a given 
scanner; 
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b = { bi: 't = 1, ... , N} vector-column of 
projections actu-
ally measured by 
the scanner and 
commonly modeled 
using Poisson dis-
tributed random vari-
ables; 

f = {fi: i = 1, ... , M} vector-column 
(image defined on 
pixels) that has to be 
found; 

M total number of 
image pixels. 

The system of linear equations (2) has no solution in the strict 
sense due to the imperfect system modeling, the discrete nature 
of acquired PET projections, hence, inconsistency of (2), and 
due to the noise in experimental data. The situation may be, in 
principle, complicated by the improper choice of the image grid 
if it results in rankP < M. Thus, only an approximate solution 
is feasible. 

One may argue that the least squares solution is appropriate 
when measured projections are precorrected for accidentai co-
incidences and the statistical errors are no longer Poisson [10]. 
Altematively, we may take into account the results of Rock-
more and Macovski [11] who have shown that assuming the 
Poisson nature of the underlying physical process the maximum 
likelihood estimate of an image may be found using the matrix 
pseudo-inverse. The only conflicting assumption used in [11] is 
that the system matrix has the full rank and its pseudo-inverse 
may be found directly which is hardly practical. Fortunately, 
there is another approach to matrix pseudo-inversion. 

Any matrix P can be decomposed [12] into 

P = UDVT (3) 

where U {'n;.i: i = 1, ... , N; j = 1, ... , M} and 
V {nij: i, j = 1, ... , M} are orthogonal matrices and 
D = {µ;i: i,j = 1, ... , M; µ.;j = 0 if if:. j} is a diagonal 
matrix containing singular values µi = µ;;, 't = 1, ... , M. 
This factored matrix representation is known as the SVD. 

One may find the minimum norrn least squares solution of (2) 
using 

j = p+[; (4) 

where 

(5) 

is the pseudo-inverse of P [12]. The range of singular values 
for a real-world system matrix can be very wide. Sorne singular 
values (they are presented as a nonincreasing sequence called 
singular value spectrum) can be very small (or even zeros). 
Thus, the condition number 

c= 
min;µ; 

(6) 

of the system matrix can be very high ( even infinity if the ma-
trix is singular). This ill-conditioning of the system matrix is 
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the main reason why the pseudo-inverse can hardly be found di-
rectly even if P has the full rank. Moreover, the solution directly 
exploiting the pseudo-inverse would be very sensitive to noise. 
One simple regularization approach is the truncation of the sin-
gular value spectrum at some index T and removal of very small 
valuesµ.;, i = T + 1, ... , M from the solution, leaving 

k ~ !, ... , M; 1' ~ M} 
(7) 

which is known as the TSVD solution. The TSVD solution may 
be viewed as a special case of a general regularization approach 
involving singular value spectrum modification given by 

k ~ 1,. . ., M} (8) 

where, in the TSVD case, g(µ;) is set to 

{ 

-1 

g(µi) = ~: ' 
i 'ST, 
i > T 

Ill. MATERIALS AND METHODS 

(9) 

PET data were acquired with the Sherbrooke high-resolution 
animal tomograph [13]. There were 8192 active tubes-of-re-
sponse per slice in the acquisition mode used in this paper, i.e., 
N = 8192. A set of measurements was performed with a line 
source of 22 Na having an active diameter of 0.84 mm. It was 
placed axially within the field-of-view (FOV) and moved radi-
ally across the FOV in steps of 5 mm covering almost one FOV 
diameter. More than 1.5 x 106 coïncident events were registered 
at each source position. A phantom of 110-mm diameter made 
ofLucite and having holes of diameter 2, 3.4, 6.7, 9.7, 13, 15.8, 
20.3, and 22.7 mm located on a circumference at a distance of 
28 mm from the center was also scanned. A total of 3.6 x 106 co-
incident events were recorded. Data were corrected for random 
coïncidences, detector efficiency, and, in the phantom case, for 
attenuation. 

The matrix P was derived based on geometrically modeled 
tubes-of-response (intersection of which with the FOV is some-
times referred to as natural pixels [14]) and took into account 
the spatially variant analytical detector response model derived 
from the linear attenuation of ')'-rays in a detector array [15]. 
The contributions of a given square pixel of the image grid to 
all tubes-of-response were normalized to yield probabilities 

N 

2.:>kj=l, j=l, ... ,M (10) 
k=l 

that ensured the global count preserving property of TSVD re-
construction. 

Grids of 64 x 64, 80 x 80, and 96 x 96 pixels were utilized 
for comparison, the limit being defined by the maximum 
available amount of fast random access memory (RAM) on the 
workstation (512 MB) in order to ensure a reasonably fast SVD 
of the system matrix. SVD decomposition was performed w~th 
64-bit floating-point arithmetics using the approach given in 
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[16]. Only pixels within a circle inscribed into the square FOY 
were taken into account. Matrices of 8 l 92x3332, 8 l 92x 5180, 
and 8192 x 7 400 were decomposed for the above-mentioned 
image grids, respectively. 

The truncation index T was defined after the spatiai resolu-
tion analysis performed with the "point" sources reconstructed 
with TSVD according to the following methodology. T took 
values from 1 to M sequentially and a profile of the point 
source image reconstructed with a given T was fitted with a 
Gaussian fonction by the Levenberg-Marquardt method [17] in 
two in-plane directions: radial and tangential. These estimates 
will be called local resolution estimates. Negative values were 
replaced with zeros in the profile before the fitting procedure. 
Global resolution estimates were obtained by fitting the local 
resolution estimates sampled at regular intervals along the FOY 
diameter (a total of 21 points with 5-mm steps in this study) to a 
straight Jine assuming that the dependence on the distance from 
the FOY center is linear. Matching radial resolution (global 
estimate), given by the full-width at half-maximum (FWHM) 
at the FOY center, to the intrinsic scanner resolution (l.9 mm) 
yielded fixed T. Only radial estimates were used to derive the 
truncation index here since the radial and tangential global 
reconstructed resolution estimates are highly correlated at the 
FOY center. 

For comparison phantom data were also reconstructed with 
the filtered backprojection (FBP) method [18] using a ramp 
filter with eut-off frequency satisfying the Nyquist criteria. The 
iterative maximum likelihood with expectation maximization 
(ML-EM) technique [19] was used as well to reconstruct the 
phantom data. A 128x 128-pixel grid was used with FBP and 
ML-EM. ML-EM utilized the system matrix P described above. 
FBP obviously had to use the conventional Radon transform 
PET model. 

Relative recovery factors were calculated from the hot spot 
mean density in the phantom images 

F - [li ();1 R i - ----X 10010 . Hrnax (11) 

where fli is the mean density value within the ith hot spot of 
the phantom, and fl max = max; fl;. 

IV. RESULTS 

The singular value spectra of the system matrix P for the 
Sherbrooke animal PET scanner and image grids of 64 x 64, 
80x80, and 96x96 pixels are reported in Fig. 1. The condi-
tion number c of the system matrix was (approximately) 4442, 
51 784, and 15 585 310 with the above-mentioned image grids, 
respectively. Even more instructive is the log-log plot displayed 
in Fig. 2, which shows the existence of a "plateau" of singular 
values and an abrupt turning point revealing the spectrum tail re-
sponsible for the severe ill conditioning of the reconstruction in-
verse problem. The inclusion of this tail in the matrix pseudo-in-
verse solution results in enormous noise amplification. 

An example of the local resolution analysis obtained by 
varying truncation index T is reported in Fig. 3. The point 
source was located in the FOY center and the image was 
reconstructed with TSVD on a 96 x 96 pixel grid in this case. 
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Fig. 1. Singular value spectra of the system matrix for the Sherbrooke animal 
PET scanner and three different image grids. 
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Fig. 2. Same as Fig. 1 on a log-log scale showing the existence of a "plateau" 
of singular values and an abrupt drop-off of the spectrum tail responsible for the 
severe ill-conditioning of the reconstruction inverse problem. 

A very small percentage of the points was excluded from the 
chart since the fit was not found for a few indexes T or the 
uncertainty in the computed local resolution estimate was very 
high (actually, estimates having standard deviation higher than 
1 % of the estimated value were dropped). Matching radial 
(local or global) resolution in reconstructed images to the 
intrinsic scanner resolution in the FOY center suggested using 
only a fraction of the singular value spectrum. The values 
of truncation index T derived using the spatial resolution 
analysis are summarized in Table I. The numbers shown in 
Table I should not be considered the solution for any measuring 
instrument but rather serve as guidance. There are associated 
errors, first due to the nature of PET data acquisition, then 
due to the image reconstruction method, and finally due to the 
fitting procedure. In addition, the imaging geometry, the mode! 
of detector response, and the structure of the image grid are 
also important factors, since they are explicitly accounted for in 
the system matrix. Only spatial resolution analysis performed 
with a particular imaging geometry is able to provide the valid 
answer in each case. 
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Fig. 3. Radial FWHM local resolution estimates of a point source in the FOY 
center, reconstructed with TSYD with varying truncation index T, 96 x 96 -pixel 
image. 

TABLE I 
TRUNCATION INDEX T BASED ON SPATIAL RESOLUTION ANALYSIS (USING 

GLOBAL RESOLUTION ESTIMATES) 

Image grid 

64x64 
80x80 
96x96 

Active pixels 

3332 

5180 

7400 

Optimal T 

822 

1053 

1217 

TSVD reconstruction using small T yielded low-resolution 
images, which exhibited a severe ringing artifact [Fig. 4(a)]. 
In general, point source image quality and resolution did not 
change noticeably when picking T from the middle of the sin-
gular value spectrum [Fig. 4(b)] and making small deviations 
t:,.T. Therefore, it was feasible to set the reconstructed image 
resolution somewhat higher than the intrinsic scanner resolu-
tion (1.9 mm) by increasing index T obtained with the spatial 
resolution analysis if some moderate noise amplification was 
tolerated. Inclusion of most of the singular values into the solu-
tion resulted in very noisy images resembling the point source 
very little, and the noise artifact was dominant [Fig. 4(c)]. 

Global and local resolution estimates across the FOY de-
rived using point source images reconstructed with TSVD (T = 
1217, 96x96-pixel image) are reported in Fig. 5. 

Phantom images reconstructed with FBP, ML-EM, and 
two cases of TSVD are presented in Fig. 6. TSVD images 
(96x96 pixels) were enlarged to show them at the same 
size as FBP and ML-EM images (128x 128 pixels). TSVD 
images have a distinct appearance exhibiting a streak-like 
artifact resembling the one observed with the FBP image. But 
at the comparable resolution level [Fig. 6(c)] the nonactive 
background is somewhat cleaner with TSVD as compared to 
that of the FBP image. 

Image profiles through the largest holes of the phantom are 
shown in Fig. 7. The FBP image. had the lowest variance within 
the uniformly hot regions and the blurriest appearance at the 
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Fig. 4. Point source in the FOY center reconstructed with TSYD, 96 x 96 pixel 
image: a) T = 100; b) T = 1211; and c) T = 4000. Estimated global radial 
FWHM resolution in the FOY center: a) 8.7 mm; b) 1.9 mm; and c) 1.6 mm. 

same time. This may be attributed in part to the data rebinning 
and interpolation that reduced resolution and correlated data 
noise. Note that the projection data interpolation has not been 
performed except with FBP. ML-EM after 100 iterations ex-
hibited the developing noise artifact, which was possibly aggra-
vated by the system matrix rank deficiency in this case. Image 
resolution after 100 ML-EM iterations was visibly higher than 
with the other methods. TSVD yielded rather noisy hot spots as 
well, which was in part the result of the sampling limitations. 

Recovery factor analysis performed using reconstructed 
phantom images (shown in Fig. 6) is reported in Fig. 8. TSVD 
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Fig. 5. FWHM resolution estimates (local and global), derived using point 
source images reconstructed with TSVD, T = 1217, 96x96 pixel image. 

yielded consistent recovery coefficients that were lower than 
with ML-EM after 100 iterations, but higher than with FBP 
reconstruction. 

V. DISCUSSION 

The SVD of the system matrix in PET, apart from precise nu-
merical diagnostics of the tomographie reconstruction ill-con-
ditioning with a given detection system and image grid, pro-
vides a linear and very fast reconstruction means. AH the fac-
tors related to PET system configuration are accounted for once 
during the system matrix derivation. One should distinguish be-
tween the factors depending on the day-to-day system perfor-
mance as well as the object being imaged and the factors specific 
to a given scanner that do not change (detector bank geometry, 
crystal properties as well as image grid used for reconstruction). 
The latter may be taken into account in the system matrix, and 
there is no point in correcting data for these latter factors on-
line, i.e., every time the reconstruction is launched. Therefore, 
the time-consuming step of system matrix decomposition needs 
to be performed only once for a given system and image grid. As 
a result, necessary data corrections for detector efficiency, ran-
doms, object scatter, and attenuation should be performed using 
approaches widely adopted with FBP reconstruction. 

Despite its high computational requirements, the SVD of a 
huge matrix for astate-of-the-art PET system operating in 2-D 
mode is within the reach of current state-of-the-art computing 
platforms. A workstation based on a single Intel Pentium III 
(500 MHz) processor running under a Windows NT Worksta-
tion operating system was used to successfully perform matrix 
SVD decomposition. The workstation had 512 MB of RAM and 
took days to complete calculations in the case of 96 x 96-pixel 
image (8192x7400 system matrix), but was hardly the optimal 
platform for such a task. Note that one needs to perform this of-
fline matrix SVD calculation only once as long as the same de-
tection system configuration and FOY pixelization are utilized. 
Thus, the manufacturer of commercial PET systems may per-
form matrix decomposition using special computing hardware 

a) 

b) 

c) 

d) 

• • 

• 
• • 

·-••••• 

·-• . 
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Fig. 6. Phantom images reconstructed with: a) FBP; b) ML-EM (100 
iterations); c) TSVD, matching FBP (global) resolution (T = 950); and d) 
TSVD, matching global reconstructed image resolution to the intrinsic scanner 
resolution in the FOY center (T = 1217). TSVD images (96x96 pixels) 
were enlarged to show them at the same size as FBP and ML-EM images 
(128x 128 pixels). The line in d) represents the direction of the profile shown 
in Fig. 7. 

covering at once all the similar systems. Necessity to cope with 
the large total size of the three resulting SVD pieces (or one 
combined pseudo-inverse-like matrix) is the price for the sim-
plicity and speed of the online reconstruction. 

Proper truncation of the singular value spectrum sets the 
meaningful balance between the signal and noise compo-
nents in the image estimate. It should be noted here that the 
ill-conditioning of the tomographie inverse problem aggravates 
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Fig. 7. Image profiles through the two largest ho les of the phantom along the 
line shown in Fig. 6(d): a) FBP; b) ML-EM, 100 iterations; c) TSVD, T = 950; 
and d) TSVD, T = 1217. 

difficulties in handling the statistical noise of the measured 
data. Therefore, perfect statistical algorithms working in theory 
(ML-EM is an example) do not work as expected with real data 
and explicit regularization becomes mandatory. One is able to 
get rid of ill-conditioning in an explicit manner with TSVD by 
not using the smallest singular values. 

Index T, as we have shown, also sets the tradeoff between 
noise and resolution. Results on the preferred singular value 
spectrum truncation obtained with the spatial resolution anal-
ysis correlate strongly with the shape of the spectrum revealed 
by the graph in Fig. 2. The spectrum tail responsible for the se-
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Fig. 8. Recovery factors calculated using reconstructed phantom images 
shown in Fig. 6. 

vere ill-conditioning, which is clearly seen in Fig. 2, has to be 
truncated (or modified if another regularizing approach is pre-
ferred) in order to produce meaningful images. The presence of 
the abrupt turning point in the spectrum which was found to cor-
relate with the optimal reconstructed image resolution suggests 
that the truncation index may also be found approximately with 
spectrum analysis only. Here by optimal resolution we mean the 
equality of reconstructed image resolution to the actual intrinsic 
resolution delivered by a given scanner with all the inherent res-
olution nonuniformity within the FOV. 

The TSVD reconstruction shares some drawbacks with FBP: 
negative values in the image estirnate and streak-like artefact 
with low-count images. But it also has very attractive benefits. 

• The commonly used mathematical model of PET data 
acquisition using the Radon transform may be replaced 
with a model utilizing tubes-of-response or natural pixels, 
which has stronger physical grounds. 

• The detector response can be easily included in the recon-
struction, which elirninates the assumption of a spatially 
invariant system response exploited by FBP. 

• Data rebinning within the imaging plane is not necessary 
since the actual geometry of a given system is utîlized. 

• One may set the resolution of reconstructed images based 
on the prior resolution analysis by changing the truncation 
index T or based on another regularization technique in-
volving singular value spectrum modification. 

• TSVD reconstruction is potentially faster than FBP and 
is definitely faster than any iterative image reconstruction 
technique, as it cornes to just one matrix to vector multi-
plication if the regularization approach by singular value 
spectrum truncation (or modification) is set once for the 
routine utilization. 

VI. CONCLUSION 

Linear and fast image reconstruction based on the system 
matrix SVD is an attractive reconstruction approach. The 
computational burden and numerical stability of SVD de-
composition of huge matrices may be overcome with current 
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state-of-the-art computing platforms. In this work the feasibility 
of TSVD image reconstruction was demonstrated for small 
animal high-resolution 2-D PET. 

A regularization methodology was proposed based on the 
spatial resolution analysis. The peculiarity of the singular value 
spectrum shape was found which revealed the relationship be-
tween the optimal spectrum truncation to be used with TSVD 
and the optimal reconstructed image resolution. This relation-
ship suggests that the spectrum truncation index may also be 
derived based on the analysis of the singular value spectrum. 

TSVD reconstruction has a number of benefits that are uti-
lized in iterative image reconstruction techniques but are hard 
to account for using FBP. TSVD utilizing the proposed regular-
ization approach delivered images of comparable visual quality, 
but somewhat higher quantitative accuracy than FBP. Based on 
the results of this work, TSVD may be a viable alternative to 
FBP image reconstruction for routine clinical applications. 
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Abstract 

The feasibility of tomographie image reconstruction by projection data filtering based on 

the pseudo-inverse of the system matrix has recently been demonstrated in high-

resolution animal positron emission tomography (PET). A regularisation approach using 

truncation of the singular-value spectrum based on the systematic spatial-resolution 

analysis has been proposed and successfully applied. In the present paper, we show how 

list-mode image reconstruction can be achieved using the regularized pseudo-inverse of 

the system matrix. An update of the current image estimate can be obtained using one 

column of the regularized pseudo-inverse matrix to account for the next registered event, 

thus allowing, in principle, for instant visualization of the radioactivity distribution while 

the object is still being scanned. The reconstruction process involves just one vector-to-

vector addition in the simplest case, or one scalar-to-vector multiplication followed by 

the vector addition if data corrections are performed online. Computed estimates 

converge to the minimum-norm least-squares solution of the regularized inverse problem 

when sufficient total counts are acquired to fulfill the assumption of the normal 

(Gaussian) data error distribution. Only the total number of pixels in the discrete image 

determines the computational expenses of image updating for a single registered event. 

Algorithm data storage requirements are discussed. Limited-angle tomography and non-

traditional detection geometry may be handled using the described reconstruction 

approach as well. The proposed method was tested with the list-mode PET data. 
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1. INTRODUCTION 

Image restoration using matrix inversion was applied early on for radionuclide 

imaging [l], but was considered impractical for tomographie image reconstruction at the 

time [2]. Later, a maximum likelihood approach was proposed for emission imaging, 

taking into account stochastic data nature and assuming measurements are described by a 

Poisson process [3]. The latter approach involved matrix pseudo-inverse but did not take 

into account the severe ill-conditioning of the image reconstruction problem. Matrix 

pseudo-inversion via Singular Value Decomposition (SVD) has also been investigated in 

x-ray computed tomography [4]. The use of SVD enables explicit regularisation by 

spectral filtering, which potentially improves conditioning of the inverse problem. There 

are a number of regularisation approaches involving SVD, and optimization of the 

regularisation parameter is always required [5]-[9]. 

Image reconstruction based on the matrix SVD has been applied in single-photon 

emission computed tomography (SPECT) [10]-[12] and in positron emission tomography 

(PET) [13], but a practical reconstruction technique bas not been shown. Recently, the 

feasibility of fast tomographie image reconstruction by projection data filtering based on 

the regularized pseudo-inverse of the system matrix has been demonstrated in high-

resolution animal PET. A regularisation approach based on systematic spatial resolution 

analysis and truncation of the singular value spectrum was proposed and successfully 

applied [14]. 

Previous attempts at reconstructing tomographie data in real time were based on the 

principle of superposition of filter functions for individual events derived from the 

filtered-backprojection (FBP) algorithm. Several variants of such "real-time" 
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reconstruction algorithms were considered for conventional two-dimensional (2-D) image 

reconstruction [15], time-of-flight positron emission tomography (TOFPET) [16), and 3-

D PET [17]-[19]. The implementations usually involved simplifying assumptions, such 

as reordering of filtering and backprojection, and required special dedicated hardware to 

cope with the computational load of backprojection onto a grid of voxels online [20)-

[22]. System modelling was not considered and was not feasible in real time with the 

proposed techniques. 

In this paper, we show how potentially real-time PET image reconstruction can be 

achieved using a regularized pseudo-inverse of the system matrix that includes a proper 

model of the system response. The proposed method was successfully tested with list-

mode 2-D PET data. 

Il. BACKGROUND THEORY 

A. Inverse Problem 

The process of measuring tomographie "projections" in emission tomography is 

stochastic in nature. It is widely accepted that Poisson distribution adequately describes 

the counting statistics for large quantities of radioactive nuclei. Thus, the following 

model may describe an idealized PET imaging process [23]: 

b;* = J P;(x)f(x)dx, i = l, ... ,N, (1) 
Q 

where 

xE Q c Rn point of a Euclidean n-dimensional space (n=2 or n=3), Q is the 

support region associated with the PET scanner field of view (FOV); 
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f (x) unknown tracer distribution that is described by the means of 

Poisson point processes; 

expected value of the counter (in the probabilistic sense) 

corresponding to the detector pair i (yielding a single bin of a 

discrete projection of the tracer map at a given angle); a sample of 

the N-dimensional random variable b having expectation vector 

b * = (b; ,b; , .. .,b~ r is measured; under ideal conditions, components 

of the random variable are considered independent and Poisson 

distributed (this assumption will be discussed in more detail below); 

p;(x) spatially varying point response fonction, which, after appropriate 

normalization, becomes the probability of an event originating at 

point x being registered by detector pair i; 

N total number of tubes of response (active detector pairs). 

System (1) is a set of Fredholm integral equations of the first kind [7] incorporating 

stochastic assumptions. In order to facilitate numerical solution, f (x) is usually 

represented as 

M 

J(x)= Lf;ç];(x), (2) 

where 

{çV; (x ), i = 1, ... , M} expansion fonction set spanning the desired fonctional space; in the 

absence of additional constraints on the smoothness of f (x), the 

space Lz (.Q) of square-integrable fonctions defined on .Q would be 
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{Ji' i == l,. .. ,M} 

M 

relevant, but one has to resort to a narrower space of finite 

dimensionality, a subspace of Li (n), to ensure computational 

tractability; 

scalar expansion coefficients; 

total number of expansion fonctions. 

Taking into account (2), the system (1) is reduced to a simple matrix form: 

b* =Pf 

where 

p 

(3) 

vector of the coefficients in expansion (2), which 1s 

conventionally referred to as the image; 

NxM real-valued system matrix incorporating the model of 

spatially varying system response derived by mapping 

p; ( x) onto the image grid and translating to probabilities. 

In practice, one has to estimate f based on a single realization of b . This yields 

the following problem: 

be= Pf +é. (4) 

Here be is the measured data (sinogram), and é = (el' ... ,éN Y is a vector of measurement 

errors. It is known that a sample drawn from the Poisson distribution having a large 

mean would be hard to distinguish from one extracted from the Gaussian (normal) 

distribution. The "large" mean is not so large in practice, e.g. [24] advises that "for 

values of the mean greater than about 10, the Gaussian distribution closely approximates 

the shape of the Poisson distribution." Therefore, it may be appropriate to assume that 
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data are drawn from the Gaussian distribution if the mean is large enough. lt has been 

shown also that statistical errors are no longer Poisson if measured projections are pre-

processed to correct for accidental coincidences, scanner sensitivity, or dead time before 

reconstruction. In this case, a weighted least-squares solution [25] or transformation into 

noise equivalent counts followed by maximum-likelihood reconstruction [26] was 

proposed. We assume that ê; - N(ü,aJ, i.e. the errors are drawn from normal 

distribution. At this point we assume that errors ê;, i = 1, ... , N are identically distributed 

by assigning a single variance a 2 =max Œ;2 • This allows for easy solution but 
i 

potentially worsens the resulting image variance estimates. Let us give extreme 

examples, e.g. a few point sources scattered across the FOV would result in emission data 

that would be reconstructed with suboptimal precision due to this latter assumption, and a 

flood source occupying the whole FOV would be the best candidate to produce emission 

data satisfying the latter assumption. Given the assumptions introduced above, the model 

(4) would be a valid approximation of (3) for high total counts. 

B. Solution Using the Pseudo-inverse Matrix 

A well-known solution of (4) that is unique is the minimum-norm least-squares 

estimate: 

(5) 

where p+ is the Moore-Penrose pseudo-inverse. If P has full rank, pseudo-inverse may 

be computed directly as: 

(6) 

where T stands for transpose. However, it is more general to take an approach that does 
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not assume the invertibility of pT P. 

It is well known that any matrix P can be decomposed into a product of three 

special matrices [27]: 

P=UDVT, (7) 

where 

D = diag (µ1'µ2, ... ,µM) diagonal matrix of singular values, which are usually 

is referred to as the condition number of matrix P and 

measures the inverse problem conditioning; 

U=(u) . 11 z=l, ... ,N; J=l, ... ,M 
NxM matrix with orthonormal columns, the columns 

corresponding to the non-zero singular values form an 

orthonormal basis spanning the range of matrix P; 

V= (v.) . 
IJ 1=1, ... ,M; J=l, ... ,M 

MxM matrix with orthonormal columns, the columns 

corresponding to the zero singular values (if any) form 

an orthonormal basis for the nullspace of matrix P. 

This matrix representation is known as the SVD, and the set of singular values is 

called the singular-value spectrum. The minimum-norm least-squares solution (5) may 

be found with the pseudo-inverse based on the SVD of the matrix P: 

(8) 

where D+ is a diagonal matrix containing the reciprocals of the respective positive 

singular values, i.e. 
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D + - d' (d+) d+ -{µi-l' - zag ; ' ; - 0 
' 

if µi > 0. (9) 
if µi = 0 

Let k be the total number of non-zero singular values. The minimum variance of 

the resulting image estimate obtained with the pseudo-inverse based on the SVD can be 

given by [28]: 

o-2(ÎJ=±[vij]2, i=l, ... ,M. (10) 
j=l µj 

The variance estimate given in (10) describes the uncertainty coming frorn the inverse 

problem conditioning, which may dominate the total variance estirnate (with the data 

variance included) for moderately or severely ill-conditioned cases, i.e. when the 

condition number of the system matrix is high. 

Truncation of the singular value spectrum at some non-zero value having index T 

(for regularisation) results in a "truncated" SVD (TSVD) solution: 

(11) 

A more general regularisation approach of which (11) is a special case, is 

modification of the singular spectrum in order to diminish the effect of inverting very 

small singular values (and zeros if any). The solution then can be written as: 

(12) 

where g(µ;) is the fonction used to modify the singular value spectrum. Such a solution 

is referred to as the modified SVD (MSVD) solution. An example of MSVD can be 

found in [12]. The choice 
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g(µ,) = {~, if i ~ T 
otherwise 

(13) 

yields equation (11). Another well-known exarnple is the Tikhonov-Phillips filter 

function [29]: 

(14) 

where 1J is a free parameter 

An SVD-based solution can be used to reconstruct data acquired with an arbitrary 

2-D as well as 3-D system geometry. A major limitation however is the numerical 

decomposition of huge matrices, which becomes feasible with the current general-

purpose computing hardware, as reported recently [14]. Note that the matrix SVD 

calculation has to be performed only once as long as the sarne detection system 

configuration and the chosen image expansion with finite series or voxels are utilized. 

Object independent factors such as the spatially varying system response utilizing models 

of positron emission and photon detection should be explicitly included during the 

computation of the system matrix. Other factors such as normalization for detector 

efficiency and corrections for attenuation in tissue can be accounted for by multiplying 

the columns of the regularized pseudo-inverse matrix with the appropriate correction 

factors [30]. 

III. LIST·MODE IMAGE RECONSTRUCTION 

Rearranging the summation order in (11), one gets 
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Let p+ be the "truncated" pseudo-inverse: 

p+ ={pkj: pkj = i>k;µ;-1uji; k=I,. .. ,M; J=I, ... ,N}, (16) 
i=I 

then (11) becomes 

(17) 

Let b(t) be a sinogram containing a total of t counts, i.e. 

b(t) = {b;(t) = b;: f bj = t; i = l, ... ,N}. (18) 
j=l 

Let Ab(s) ={Ab;: i = l, ... ,N} be the data update vector such that 

and 

{

O, i = 1, ... , s -1 
Ab.= 1, i = s 

' 0, i = s + l, ... ,N 
(19) 

(20) 

In other words, b (s) (t) = { bi•) (t): i = 1, ... , N} is the sinogram that diff ers from b(t -1) by 

only one count in a bin having index s, i.e. 

(21) 

The respective solution given by (17) for b(s)(t) 

(22) 

may be found as follows: 
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N s~ N 
Jk(•)(t)= LPkjb)'l(t)= LPkibi(t-1)+ Pks[b,(t-1)+1]+ LPkjbi(t-1)= 

.i=l j=I j=s+ 1 

N 
(23) 

= L Pkjbi (t-1)+ Pks; k = 1, ... ,M 
.i=l 

Thus, the new image estimate is simply a sum of the previous image estimate and one 

column of the matrix p+, i.e. 

The event-by-event reconstruction process using the regularized pseudo-inverse 

matrix is illustrated schematically in Fig. 1. A blank image can be used to initialize 

reconstruction f = {Jk = O; k = 1, ... ,M} and (24) is applied afterwards to obtain the 

current image estimate in real-time by adding one column of p+ to the previous image 

estimate. The column index corresponds to the index of the tube of response where the 

last event was registered. The resulting image estimate is the same as the TSVD solution 

given by (11). 

Solution involving the system matrix SVD and a different regularisation approach 

(independent of the data) can be obtained via updating as well using (24) and taking into 

account that the entries of the regularized pseudo-inverse p+ in this case will be given by 

M 

PkJ = LVk;g(µ;)uji; k =1, ... ,M; j =1, ... ,N .(25) 
i=l 

The proposed approach is general and can be applied to any estimation problem in 

which data are obtained by counting or by incremental measurements and that is 

amenable to the solution exploiting a (pseudo-)inverse matrix. As mentioned, abject 

independent factors such as a spatially varying system response are already explicitly 

included in the elements of p+, while other factors such as the normalization for detector 
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efficiency and the object-dependent corrections can be accounted for by multiplying the 

columns of p+ with the correction factors. With the proposed real-time image 

reconstruction approach, such data corrections can be applied on the fly. To do this, the 

following update equation would be used instead of (24 ): 

J}sl(t)= Jk(t-l)+Cs Xpks' k =1, ... ,M. (26) 

Here Cs is the correction factor assigned to the tube-of-response s. 

In a similar manner, random coincidences can be corrected for by the subtraction of 

one column of the matrix fi+ (scaled with Cs if corrections on the fly are performed) 

from the previous image estimate, or simply by skipping the next image update given by 

(24) or (26) if a random coincidence has been registered (but not corrected for) in the 

same tube of response. 

IV. MATERIALS AND METHODS 

PET data were acquired with the Sherbrooke high-resolution animal tomograph 

[31]. A prototype real-time acquisition and reconstruction system is being developed in 

Sherbrooke [32], [33] but is not yet operational. Therefore, conventional data acquisition 

was used in this study and processing was started when a scan was complete. A phantom 

of 110 mm diameter made of Lucite and having holes of diameters 2, 3.4, 6.7, 9.7, 13, 

15.8, 20.3, and 22.7 mm located on a circmnference at a distance of 28 mm frorn the 

center of the phantom was filled with a solution of 18F and scanned. A total of 9.5x105 

coincident events were recorded with the plane used in the reconstruction experiments. 

The acquired sinogram was rearranged with a filter using a random number 
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generator to mimic a sequence of events, as it would have been produced in the list-mode 

acquisition. A "list-mode" sequence of single events yielding the acquired sinogram was 

produced as a result. Another "list-mode" sequence has been produced to mimic the 

acquisition with a bank of detectors registering counts at a single angle only, yielding, 

after full rotation, a sequence of all angles attainable with the full detector ring. 

The matrix P that takes into account the spatially varying system response was 

computed for the Sherbrooke animal PET scanner and image grids of 64x64 and 96x96 

pixels. This step involving system modeling is crucial for adequate representation of the 

continuo us distribution f (x) with the chosen set of expansion fonctions. In this work, 

analytic fonctions based on linear attenuation of y-rays in a detector array rnapped onto 

the grid of square pixels were used [34]. The details of numerical SVD computation and 

the systematic singular value spectrum truncation approach were described elsewhere 

[14]. Corrections for detector efficiency, random counts, and attenuation were applied 

according to (26). 

The expected pixel-wise standard deviation in the image estimate was calculated for 

TSVD as: 

O"(l,;T )= t[ :J i = 1, ... ,M . (27) 

V. NUMERICAL EXPERIMENTS 

The progress of the phantom image reconstructed with the proposed incremental 

TSVD approach and the complete ring of detectors is shown in Fig. 2. Low image 

statistics results in poor images as expected, but as the number of total counts grows the 
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image estimate improves gradually. Finally, in the last few frames, acceptable estimate 

of the radioactivity map are observed. If such an image sequence is made available 

during acquisition, it could be used to decide when a scan might be terminated. 

Images obtained with the proposed method and the (simulated) rotating banks of 

detectors acquiring data at one projection angle at a time are shown in Fig. 3. This 

sequence of images has a very distinct appearance. These results with the limited number 

of angles confirm that the proposed method might be useful with rotating gamma 

cameras as well. 

The expected standard deviation map with the TSVD reconstruction was calculated 

using (27). It was computed for several truncation levels and for the grids of 64x64 and 

96x96 pixels. For these estimates to be meaningful, the measured data have to satisfy the 

i.i.d. normal error assumptions. The radial cross-sections of the two grids are shown in 

Fig. 4 and Fig. 5, respectively. The calculated maps exhibit rotational symmetry and are, 

therefore, fully described by the presented profiles. These charts give an idea of the 

baseline of uncertainties that are expected in the image estimate, since these "intrinsic" 

standard deviations will be increased by the statistical uncertainty calculated from the 

measured data. Note the progressive growth of the standard deviation as the truncation 

index T grows. This illustrates the effects of increased inverse problem ill conditioning 

and confirms the necessity of regularisation [14]. The values of the standard deviation 

appear large, e.g. they fall in the range of 4 to 7 counts (for the 64x64 image and the 

optimal truncation level of T=822) as shown in Fig. 4. However, when applied to the 

example presented in Fig. 2 and compared to the estimated number of counts per pixel 

within the six largest hot spots of the phantom (which is in the range of 6000 to 8000 in 
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the last frame of Fig. 2), it is clear that the relative standard deviation is not high. 

Estimated value of the standard deviation is lower for TSVD reconstructed images 

representing the same FOV but having a larger number of pixels, as we see by comparing 

Fig. 4 and Fig. 5. This is not surprising since for the same input data the estimated 

absolute pixel values are usually higher in images of lower dimensions, which 

compensates for higher estimated variance. 

VI. DISCUSSION 

Image reconstruction performed using the proposed algorithm can allow for the 

instant visualization of an image estimate while a patient is being scanned. This would 

make early identification of problems related to data acquisition easier. Subject 

positioning would be facilitated, thus ensuring that the desired region-of-interest (ROI) is 

completely in the FOV. This is particularly useful for scanners with limited axial fields 

of view, such as the original microPET [35] and the Sherbrooke animal PET scanner 

[31]. If one has an image online, one can stop scanning as soon as the data statistics are 

sufficient to provide answers to given questions, or one can extend data acquisition as 

needed. One result might be increased patient throughput. 

All image reconstruction methods make a number of assumptions on the nature of 

the data and, hence, yield emission density estimates having predictable properties only 

with the data satisfying (at least approximately) those assumptions. FBP is a 

deterministic method and is derived ignoring the statistical data nature, which becomes a 

clear disadvantage in the case of emission image reconstruction. FBP employs low-pass 

filtering, trading resolution for improved image variance. W e note that the FBP 

algorithm can be converted into matrix forrn and be adapted to process individual events. 
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Doing this would yield essentially the same algorithm as the one proposed in this paper, 

with the exception of the content of the matrix p+. The columns of the matrix p+ for 

the FBP case would approximate the inverse Radon transform and would be obtained by 

calculating the backprojection of a single filter fonction (in spatial domain representation) 

properly centered on a given line-of-response. The precursor of this procedure was 

suggested in [15], but pre-calculation of the backprojected filter fonctions was not 

considered, since sufficient data storage was not available 20 years ago. Emphasis was 

put on developing hardware for fast online backprojection instead [20]-[22]. The 

equivalence of FBP and backprojection filtering was utilized in the proposed 

implementations [16,19,22]. However, the usefolness of the latter approach is limited, as 

the image has to be filtered in the Fourier domain every time prior to display. Pre-

computing the intersections of the lines-of-response with voxels used by Di Sciascio et 

al. [18,19,22] reduces the amount of online computation. We pre-compute the system 

matrix as well but our approach based on modelling of the detector response fonction 

[34] is more general than the Radon transform model exploited with the Fourier based 

techniques. Application of the system model in real time would be challenging with the 

previously described "real-time" image reconstruction techniques since it has to be 

limited to rebinning the data. This would involve additional computation if FBP 

adaptation was used for event-by-event reconstruction. The image reconstruction method 

based on the system matrix SVD, on the other hand, has the ability to include complex 

system models, if it utilizes an appropriately pre-computed system matrix. The resulting 

image is free of spatial distortions if the spatially varying system response has been 

accounted for [34]. 
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Regularisation with truncation of the singular value spectrum implies that the 

calculated solution is limited primarily by the scanner and its ability to acquire data 

having high information content, the latter reflected in the respective singular value 

spectrum. This may result in sub-optimal image reconstructions with arbitrary (low 

count) data sets as noted by Demoment [36], but it becomes an additional safeguard 

during decision making when image is monitored in real-time. One should keep in mind 

that the goal of emission scanning is to obtain a definitive answer to a given question, be 

it diagnostic or research. It would be naive to expect a meaningful estimate of the 

unknown emission density based on a few counts with any reconstruction technique. 

Whether there exist a minimum number of counts that would be sufficient for a given 

situation remains unknown. The authors are not aware of a universal criterion that would 

be robust in practice with arbitrary emission densities, except "the more counts the 

better". The proposed method utilizing TSVD is capable of real-time image 

reconstruction and provides a way of monitoring data statistics sufficiency. 

The goals of fast (but safe) scanning and image reconstruction integrity are always 

m conflict. One could introduce some a priori assumptions or constraints on the 

estimated emission map that would yield a solution with favorable prope1ties, but the 

quantitative accuracy would be questionable unless the data outweigh the constraints. 

With the proposed real time TSVD reconstruction, poor images with low total counts 

would improve gradually yielding feasible estimates as the data statistics tends toward the 

normal distribution. More robust image estimation could be achieved by taking into 

account the variance of the error distribution derived from the data. This leads to the 

weighted least-squares method. 
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It is worth noting that the computational expenses of image updating for a single 

plane will be the same for a small animal scanner as for a whole-body scanner as long as 

the same image grid size is used and the total counting rate is the same. Only the size of 

the matrix to be stored in the fast random access memory (RAM) would be different, due 

to the differences in the total number of tubes-of-response involved. Examples of the 

system matrix sizes for three diff erent image sizes and a single plane of the Sherbrooke 

animal PET scanner and of the ECAT EXACT HR+ scanner are given in Table I. It is 

assumed that matrix entries are represented with the standard four-byte floating-point 

numbers. The square grid of pixels is assumed truncated so as to leave only relevant 

pixels within the circular FOV in order to eliminate the corners of the square image from 

solution computation [34]. Thus, only about 80% of the pixels contained within the 

useful FOV are used during calculations. The size of RAM (in bytes) required for the 

data segment during SVD computation would be higher than the number reported in 

Table I and could be easily calculated as 

D=Mx(N+M+l)xx' (28) 

where X is the number of bytes used for the floating point number representation. 

Somewhat higher amounts of RAM than given by these estimates will be used in real 

implementations since additional RAM would be necessary for bookkeeping purposes. 

A simple way to reduce the data storage requirements and the number of 

calculations would be to reconstruct a ROI instead of the whole FOV. An efficient way 

of reducing the size of the pseudo-inverse matrix would be to use natural pixels for image 

representation [37], which would yield the complete rotational symmetry of the system 

matrix in 2-D and most likely of the pseudo-inverse matrix as well. If that is the case, 
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then only the data set corresponding to a single projection angle could be stored and the 

rest may be restored online easily. This complete rotational symmetry is lacking with 

conventional square pixels, but even then there are a few symmetries that could be 

exploited [38]. Having the image estimate expanded in another set of pixels (voxels) 

would require remapping onto the conventional grid for image display. 

Needless to say real-time reconstruction could be followed by a more conventional 

offline reconstruction technique to confirm or verify the results of the online 

reconstruction if need arises and the complete data set is available. However, the 

proposed reconstruction technique based on the regularized pseudo-inverse of the system 

matrix has the potential to outperform the conventional FBP in speed, image quality, and 

quantitative accuracy [14] as long as the computational resources used for image 

reconstruction are sufficient to accommodate the former. 

TSVD image reconstruction is linear, i.e. yields images that are the linear 

combinations of the data. This is an advantage if image quantification is required. For 

example, a challenging issue with ML-EM is the non-linear convergence rates when 

recovering high and low frequency image components. As a result, images of 

questionable quantitative accuracy are obtained, unless a sufficiently high number of 

iterations is performed [39] and the impact of the regularisation approach is known 

exactly. To date, the high computational cost has limited practical application of iterative 

techniques, in spite of their ability to produce images with higher contrast and improved 

variance for data sets with low total counts. 

This paper is concemed primarily with image reconstruction for PET, but the 

proposed reconstruction algorithm, as given in section III, is valid for SPECT as well. In 
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the case of SPECT, a specific challenge would be the calculation of the system matrix 

based on the appropriate system model. However, the usefulness of the proposed real 

time method for SPECT is notas clear as in PET, since the set of projections remains 

incomplete until the end of data acquisition. This can be overcome by adjusting the 

acquisition protocol, e.g. by speeding-up the rotation to make several full turns instead of 

a single one, or by increasing the angular steps at which measurements are performed and 

completing the data set during additional rotations. Nevertheless, the matrix pseudo-

inverse approach may prove worthwhile since its qualitative performance is not worse 

than that of the conventional FBP, which is currently the workhorse of computerized 

tomography. 

Finally, we note that sequential projection data acquisition in the case of rotating 

PET tomographs or SPECT gamma cameras lends itself to another image reconstruction 

approach referred to as concurrent reconstruction [40], [41]. The image estimation may 

be started before the data collection is complete in these special cases. Therefore, 

reconstructed images are obtained earlier than with conventional reconstruction 

protocols. However, the described TSVD technique is fast whether it is performed in the 

event-by-event scheme as proposed in this paper or by simple matrix multiplication [14]. 

VII. CONCLUSION 

A navel event-by-event linear image reconstruction based on the regularized 

pseudo-inverse of the system matrix bas been proposed. The algorithm provides a fast 

way to update an image potentially in real time. It also allows for the possibility of instant 

visualization of a radioactivity distribution during PET data acquisition. Current image 
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estimates are updated with one column of the regularized pseudo-inverse matrix to 

account for the next registered event. The process involves just one vector-to-vector 

addition in the simplest case, or one-scalar-to vector multiplication followed by the 

vector addition if data corrections are performed on the fly. The computed image 

estimate is the minimum-norm least-squares solution of the regularized inverse problem. 

The quality of the image improves gradually as more total counts are acquired. The 

proposed reconstruction method provides a way to quickly check subject positioning and 

to monitor data statistics sufficiency. Limited-angle tomography and tomography using 

non-traditional detection geometries might be handled using the described real-time 

image reconstruction approach as well. 
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New coïncidence events registered while imaging 
a cylinder uniformly filled with a radiotracer 

-+ p 

TIME 

New image estimates computed by updating previous image 

Fig. 1. Schematic of the event-by-event reconstruction process using the regularized 

pseudo-inverse matrix. The incoming coïncidence events trigger image update. The 

update is perfonned by adding a single column of p+ to the current image estimate. 

Tubes of response have unique indexes, and the index of the tube of response where the 

event was registered is also the index of a column of p+ that has to be used for the 

update. 
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Fig. 2. Sequence of images demonstrating the use of the incremental TSVD 

reconstruction for a system having a complete ring of detectors. From left to right and 

from top row to the bottom, consecutive estimates of the radioactivity distribution are 

shown as approximately 23800 additional coincidences were registered (64x64 pixel 

images). Data acquired with the Sherbrooke animal PET scanner were used in this 

experiment. See section IV for the description of data acquisition and processing. 
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Fig. 3. Sequence of images demonstrating the use of the incremental TSVD 

reconstruction for rotating banks of detectors, an incomplete ring, acquiring data at one 

projection angle at a time. From left to right, consecutive estimates of radioactivity 

distribution are shown when 8 additional adjacent projection angles (out of 256 angles 

total) having approximately 29200 additional counts are included in the reconstructed 

image (64x64 pixel images). See section IV for the description of data acquisition and 

processing that yielded the list mode data characteristic of a scanner with rotating banks 

of detectors. 
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Fig. 4. Radial profiles through the expected standard deviation maps with the TSVD 

reconstruction for three different truncation levels and the image of 64x64 pixels. Data 

have to satisfy i.i.d. normal error assumptions for these estimates to be valid. The 

calculated maps exhibit rotational symmetry and are, therefore, fully described by the 

presented profiles. Note the progressive growth of the uncertainty in pixel value 

estimation as the truncation index T grows. T=822 was found optimal based on the 

spatial resolution analysis reported earlier [14]. 
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Fig. 5. Radial profiles through the expected standard deviation maps with the TSVD 

reconstruction for three different truncation levels and the image of 96x96 pixels. 

T=l217 was found optimal based on the spatial resolution analysis reported previously 

[14]. Comparable level of ill conditioning is attained with higher T for images 

representing the same FOV but having larger number of pixels. This yields lower 

variance for a gi ven pixel when comparing two optimal truncation levels for different 

image grids (see estimates for T=822 shown in Fig. 3 and T=1217 in this figure). 
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TABLEI 

EXPECTED SIZE OF THE (REGULARIZED) PSEUDO-INVERSE MATRIX FOR V ARIOUS 

SINOGRAM SIZE (FOUR-BYTE FLOATING POINT NUMBER REPRESENTATION IS ASSUMED, 

CORNERS OF THE SQUARE IMAGE GRID ARE OMITTED) 

~ Sinogr~ Sherbrooke animal PET ECAT EXACT HR+ SIZe scanner 

Image~ 256 X 32 513 X 32 288 X 144 576 X 144 s1ze 

64x64 104.1 MB 208.7MB 527.1 MB l.OGB 

96x96 231.3 MB 463.4 MB 1.1 GB 2.3 GB 

128xl28 409.5MB 820.6MB 2GB 4.1 GB 
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Chapter 5. Discussion 

Ill-posed problems are a topic of an interdisciplinary interest. The non-exclusive 

list of applications includes mathematical physics, geodesy, geomagnetism, geophysics, 

seismology, non-destructive evaluation and medical imaging. The theory developed for 

certain applications could be relevant in other fields. However, there are issues specific 

to the application and crucial for success. PET is similar to other tomographie imaging 

techniques in many ways, but to reach its full potential and to extract maximum 

information from the data, PET has to use precise, yet practical, algorithms and 

techniques. 

In the present work we were concerned primarily with the image reconstruction 

problems arising in high resolution PET, which is currently represented with state-of-the-

art animal scanners. Animal scanners are the instruments dedicated to imaging small 

animals and are at the forefront of radiopharmaceutical and clinical research (Hichwa, 

1994; Tomai et al., 1999). Severa! issues have been covered that range from the direct 

problem analysis to the robust solution of the inverse problem allowing near real-time 

image reconstruction. 

5.1. Detector response as a system model 

The system response is a combination of factors. The geometric system design 

together with the physical properties of the scintillation and detector packing materials 

define the intrinsic point spread function of the system. These features fundamentally 

limit the tomograph spatial resolution. It is essential to model the system, hence solve the 
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direct problem, to set an adequate basis for the inverse problem solution. Reconstruction 

methods using the system matrix have an advantage over the transform methods as the 

model can be incorporated into the precomputed matrix instead of rearranging or filtering 

the sinogram on-the-fly. The time to compute a matrix is not a primary limiting factor, 

since such computation is performed once and the matrix can be reused until the system 

configuration changes, which is not a frequent occurrence if a stationary detection system 

is used. Thus, an accurate model of the system response, which would require hours or, 

maybe, days of computation can be used instead of data rebinning techniques. A 

program in C used to compute the system matrix and perform ML-EM reconstruction is 

given in Appendix B. 

The absence of the system response model in the basic transform methods 

necessitates additional online computing in order to perform a series of corrections for 

geometric image distortions that result from the mispositioning of the TORs relative to 

their actual physical presence. A consequence of several overlaid approximations is the 

compromised geometric accuracy that contributes e.g. to the difficulties of multi-

modality image registration (Kops et al., 1999). The suboptimal representation of fine 

detail off the FOV center, i.e. the decreased image resolution, is another possible effect of 

image distortion. 

The possible refinement of the system response model based on the analytical DRF, 

used for the system matrix calculation in the present work, may be the inclusion of the 

models of detector scatter, positron range as well as the non-collinearity of the y-rays. 

The same technique of weighting the intersection of the TOR with a pixel can be utilised 

to superimpose additional models. This would certainly broaden the TOR's spatial 
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coverage that would potentially entail additional computation overhead diminishing the 

system matrix sparseness. Potential benefits would be based on the accuracy and the 

limitations of those models as we have shown in [4.1]. 

5.2. To stop or not to stop ... 

In [4.2] we have found an interesting dependence that approximates the cross-

validation stopping rule and makes it easier to obtain an image estimate belonging to the 

feasibility region. This technique can be very useful in static PET applications or when 

quantitation is not required since it tends to optimise the signal-to-noise ratio and yields 

visually appealing images. However, conventional tracer kinetic modeling should not be 

used with the CV stopping rule, because the basic assumption of constant measurement 

volume is violated with dynamic images having variable spatial resolution over time. 

The stopping rule attempts to mask a limitation that cannot be ignored. It is related to the 

effect of temporal data "binning". Changes in the intensity of radioactive decay in time 

are averaged within a frame if the data are assembled in a sequence of time frames. For 

an experimentalist, it is tempting to decrease frame duration in order to increase temporal 

resolution. However, it results in low count data as fewer events are counted during a 

shorter time interval given that all other experimental parameters are the same, and image 

estimation is affected when lowering total counts as statistical noise becomes dominant. 

Dynamic PET studies are based on sequences of images that are currently 

reconstructed frame-by-frame, but treating the data as a 4-D spatio-temporal problem has, 

probably, a brighter future. Several approaches have been investigated lately. A MAP 

algorithm was derived applying the 4-D prior (Lalush et al., 1997). A PWLS spatio-
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temporal criterion was optimised in (Wemick et al., 1999), with the Karhunen-Loève 

(KL) transformation first applied along the time axis, reconstruction performed in the KL 

domain, and then performing an inverse KL transformation. The KL transform is tightly 

related to the eigenvector problem applied to the covariance matrix of the time behaviour 

of the image sequence. The resulting eigenvalue analysis yields a regularisation problem 

analogons to singular value spectrum filtering. These approaches have been compared to 

4-D Fourier filtering in (Lalush et al., 2000). Another promising approach is to employ 

the list-mode data, which are collected using an age-old acquisition mode (Snyder and 

Politte, 1983) that was rebom recently as it is more efficient for fully 3-D data 

acquisition. There are a few reports on continuous time image estimation with statistical 

iterative methods using list-mode data (Reader et al., 1998; Nichols et al., 1999). 

Conventionally, image reconstruction and kinetic modeling are performed sequentially. 

An alternative approach involving the direct calculation of parametric images was 

investigated recently, see e.g. (Matthews et al., 1997; Meikle et al., 1998). 

An important reminder can be drawn from the experiments with the stopping rule. 

An image reconstruction algorithm does not create any information; it is simply a tool to 

recover information present in the data. The best an algorithm can dois to extract nearly 

all information, in the form of an image, but if the data do not contain much information, 

there is little an algorithm can do without additional guidance. If reliable extemal 

information was indeed available, then its inclusion as a prior would help, but in the 

absence of additional information two logical assumptions have to be utilised: the image 

is expected to be a (more or less) smooth fonction and the statistical errors are 

(approximately) Poisson. The cross-validation stopping rule does a perfect job in the 
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latter case. However, it is the responsibility of an experimentalist to obtain as much 

projection data, i.e. coincidence counts, as necessary to produce a reliable image 

estimate. Otherwise, subjective assumptions rather than objective data would dominate 

the image estimation process and the resulting image might be of little value. 

5.3. Regularisation is the key 

The problem of image reconstruction m PET is generally ill posed. A few 

assumptions could transform it to a well posed one, and expanding an image with finite 

series could be one of those. However, special attention has to be paid to find out if the 

problem remains severely ill-conditioned or not. The noise artefact, developing with the 

unconstrained ML-EM, is a well-known example of the undesirable effect of severe ill-

conditioning. The ill-posedness of the PET inverse problem in general or the severe ill-

conditioning in some discrete-to-discrete cases are the main reason for explicit 

regularisation. In the absence of the a priori information about the solution and the 

variance of error, the most attractive approach for choosing a regularisation parameter 

often employs cross validation in one form or another (Vogel, 1986; Coakley, 1991; 

Golub and von Matt, 1997). 

The non-linearity of the iterative reconstruction techniques and resulting 

quantification issues are sometimes a drawback and a linear reconstruction approach may 

be preferable. Though it is believed that there is no closed form solution of the ML 

problem for the Poisson likelihood, the solution that stands closest has been shown in 

(Rockmore and Macovski, 1976). Its obvious limitation is the inability to handle ill-

posed problems, which makes the proposed method impractical. An ideal test of problem 
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conclitioning is via examination of the singular value spectrum of the system matrix. A 

direct approach to image reconstruction becomes possible when having the matrix SVD 

at hand. It is interesting to see the link between the MLE solution for Poisson data and 

the pseudo-inverse matrix, which was derived by Rockmore and Macovski. See 

equations (A9-A10) in (Rock.more and Macovski, 1976). Remember that the pseudo-

inverse is easily obtained given matrix SVD. 

Most regularisation methods may be represented as special cases of the 

approximate inverse studied in (Louis, 1996). TSVD is an approximation to the Moore-

Penrose pseudo-inverse p+ . Regularisation with TSVD limits the dimensionality of the 

solution space. This is equivalent to projecting the solution onto a "significant" subspace 

spanned by the remaining right singular vectors. TSVD has a number of undesirable 

properties. It produces image estimates containing negative values, which do not have 

physical interpretation. The extension of TSVD solution incorporating the non-negativity 

of the true sought-for parameters has been suggested in (de Villiers et al., 1999). Another 

limitation is the ringing artefact that becomes more obvious as fewer basis vectors are 

used in the solution; see figures 4a and 4b in [4.3]. Despite these inconveniences 

optimised TSVD appears to be a viable alternative at least to the conventional FBP and 

coupled with the proposed list-mode reconstruction described in [4.4] can be useful for a 

number of clinical tasks. 

5.4. How prohibitive is the SVD computation? 

The direct SVD computation is feasible with the relatively small 2-D problems. An 

example of the combined size of the SVD pieces is listed in Table I in [4.4]. The time to 
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perform matrix decomposition would increase in a non-linear fashion as well. It is 

possible to trade the size of the image grid for reducing the system matrix size to 

acceptable limits. Nevertheless, proposed list-mode reconstruction might be useful for 

real-time monitoring, even if the resulting image estimates would be less than optimal in 

terms of resolution and detailed distribution visualisation. Another important 

consideration is the matrix ill conditioning, which, combined with the finite precision of 

digital computing, leads to the accumulation of the numerical errors. Therefore, it is 

essential to increase the mantissa size, if the condition number is close to the precision 

limit of the digital number representation. 

The real challenge is to obtain the matrix SVD for huge 3-D problems that arise 

with scanners dedicated to whole body imaging of humans. It is beyond doubt that 

further progress in computing hardware as well as parallel and distributed computing 

techniques would render such problems much easier. In the meantime, one has to employ 

some ingenuity to reduce the problem size and, hence, the amount of computation. One 

solution may be in the computation of partial SVD, i.e. finding singular vectors with the 

corresponding large singular values only, as suggested e.g. in (Vogel and Wade, 1994). 

Equipped with the knowledge of the singular value spectrum shape shown in figure 2 in 

[4.3], which is characteristic for optimal regularisation as we have observed, one can 

terminate the matrix decomposition as soon as the plateau of singular values has been 

recovered. Another approach discussed e.g. in (Fierro and Hansen, 1995) involves rank-

revealing decompositions that allow obtaining approximations to the TSVD solution. On 

the other hand, if the matrix product approach to system modeling is utilised 
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(Mumcuoglu et al., 1997), then recent results of Golub and colleagues may be helpful for 

computing the SVD of a product (Golub et al., 2000). 

5.5. Real time PETimaging prospects 

There have been several attempts to reach the ambitious goal of real-time image 

reconstruction. Fourier based techniques were the basis of these developments. 

Backprojection on an event-by-event basis has been utilised in (Mclntyre, 1981; Hartz et 

al., 1985). The high speed implementation of DFM has been addressed by developing 

capable hardware and a claim has been made that this DFM implementation was two 

orders of magnitude faster than convolution based algorithms (Brantner et al., 1997). 

However, the use of a Fourier transform based algorithm yields all the drawbacks 

inherent to this reconstruction method. The associated difficulties of system modeling 

are hard, if possible, to overcome especially if the real-time implementation is the goal. 

The accurate system model explicitly built into the system matrix as shown in [4.1] 

was the basis of our approach. TSVD is certainly a capable image reconstruction 

technique as we have shown in [ 4.3]. The observation that the same image estimate can 

be obtained incrernentally with the list-mode data yields a very fast image reconstruction 

approach described in [4.4]. The benefit of performing the incremental image update 

proposed in [4.4] as opposed to just matrix to vector multiplication with TSVD [4.3] 

would be appreciated if the counting rate is lower than the threshold which can be 

derived for a particular system matrix and the speed of computing hardware. For 

example the nurnber of updates x corresponding to individual events using equation (25) 

118 



in [ 4.4] that would produce the same computation load as the direct matrix to vector 

multiplication would be as follows: 

x = M x(Dxzx + [D-l]xx+) = Dx(Xx +lJ-l, 
Mxx+ X+ 

(5.5.l) 

where Xx and X+ are the time necessary to perform a single operation of multiplication 

and addition, respectively. A similar estimate for the update performed according to (27) 

in [4.4] yields a more complicated relationship: 

x=Dxxx+Mx(Dxzx+[D-l]xx+)=Dx( Xx +lJ- X+ 
Mx~+L) Mx~+L) L+L 

(5.5.2) 

The equations (5.5.l) and (5.5.2) give a rough estimate assuming that all operations are 

performed sequentially and the matrix multiplication is not optimised, e.g. operations are 

performed for all the TORs even if they had no counts, which could, in principle, be 

avoided. On the other hand an optimised implementation of the algorithm using a finely 

tuned data acquisition system serving data to the image reconstruction engine in real time 

would be a prerequisite for real-time imaging (Lepage et al., 2001). 

Statistical iterative image reconstruction techniques exploiting the availability of 

list-mode data have been proposed as well (Snyder and Politte, 1983; Reader et al., 1998; 

Parra and Barrett, 1998; Nichols et al., 1999). The resulting algorithms are not targeted 

for real-time implementations since there is a fondamental issue with the number of 

iterations, which we have explored with the help of a stopping rule in [4.2]. It should be 

remembered that there exists no single recipe for the fastest yet most accurate image 

reconstruction that would be equally useful in any situation. First and foremost, a 
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practical algorithm must provide a reliable basis for definitive answers to clinical 

questions. TSVD applied for real-time image monitoring can be useful in a number of 

situations, e.g. ability to address the issue of data sufficiency objectively cannot be 

overemphasized. It is needless to say that a post-acquisition image reconstruction 

method might be invoked to validate the findings of online estimation. 
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Conclusion 

Several topics in PET image reconstruction have been explored. The following 

contributions have been made in the course of the work presented in this dissertation: 

>- A viable system matrix model has been developed that incorporated the 

analytic detector response fonction based on linear attenuation of y-rays in a 

detector array. It has been demonstrated that the use of an oversimplified 

system model for the computation of the system matrix results in image 

artefacts. 

>- The dependence on total counts was modelled analytically which simplified the 

utilisation of the cross-validation stopping rule and accelerated reconstruction. 

It can be utilised instead of the original CV procedure for high-count projection 

data, when the CV yields reasonably accurate images. In a dynamic series with 

many low-count frames, the CV is not recommended for the whole series. 

However, the reconstruction of several high-count frames at the end of the 

series can help determine the minimum fixed number of iterations required to 

provide suitable images for ROI delineation without smoothing or filtering. 

>- A new regularisation methodology based on the SVD of the system matrix was 

proposed based on the spatial resolution analysis. A characteristic property of 

the singular value spectrum shape was found that revealed the relationship 

between the optimal truncation level to be used with the TSVD reconstruction 

and the optimal reconstructed image resolution. 

121 



);> A novel event-by-event linear image reconstruction based on the regularised 

pseudo-inverse of the system matrix has been developed. The algorithm 

provides a fast way to update an image potentially in real time and allows, in 

principle, for the instant visualisation of the radioactivity distribution while the 

object is still being scanned. The computed image estimate is the minimum-

norm least-squares solution of the regularised inverse problem. 
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Appendix A 

Are the data Poisson or Gaussian distributed after all? 

It has been commonly assumed that a Poisson model is appropriate for PET data 

(Rockmore and Macovski, 1976; Snyder et al., 1981; Lange and Carson, 1984; Vardi et 

al., 1985). No doubt, this is true with ideal data. As far as the practice is concerned, the 

Poisson law may well be replaced by the normal distribution for some "real" data sets, as 

has been discussed in section 1.2.5. Fortunately, there are stronger grounds for this 

empirical assertion. 

The theory of probability contains a remarkable result called the central limit 

theorem (CLT). CLT is a set of results unified by common principles, the in depth 

probabilistic analysis may be found e.g. in (Araujo and Giné, 1980). In a simple form 

exploited in mathematical statistics, the theorem states that the sum of a large number of 

independent observations from the same distribution has, under certain conditions, an 

approximate normal distribution. The normal approximation steadily improves as the 

number of observations increases. This has important implications for statistical PET 

data analysis. 

For example, let 1J be a Poisson distributed r.v. having E[17] = 20. It may be 

thought of as the sum Y of twenty random samples drawn from a Poisson distribution 

with the mean equal to 1. The following random variable, 

W _ (Y-20) 
- Eo (A.1) 
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can be characterized approximately with the standard normal distribution, i.e. 

W ~ N(0,1). In general, if Y has a Poisson distribution with the mean A, then the 

distribution of 

W - (Y-A) - .JA (A.2) 

is approximately N(0,1) if A is sufficiently large (Hogg and Tanis, 1988). Thus, Poisson 

distributed random variables can be approximated with specially chosen Gaussian 

distributed random variables for image reconstruction with high total count data. 
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Appendix B 

/* 

*/ 

mlem-v3.c 

9 July 1998 Selivanov Vitali 

ML-EM image reconstruction (sinogram 32*257, image 128*128). A tube is 
the space between two detectors within their geometric boundaries. Any 
number of frames (n) in the sinogram. 

Syntax: mlem-v3 NumberOfiterations < sinogram(n*32*257) > outfile 

Compile: cc -0 -o mlem-v3 mlem-v3.c -lm /usr/local/hips/lib/libhips.a 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <string.h> 
#include <sys/mode.h> 
#include "/hosts/russia/batch/hipl_format.h" 

/* Parameters of a PET ring and reconstructed image */ 

#define sqrtB 
#def ine BTotal 

128 
16384 

/* square root of total number of pixels */ 
/* total number of pixels in image 

#define DTotal 
#define TTotal 
#def ine RRadius 
#define WDet 
#define LDet 

(sqrtB*sqrtB) */ 
/* total number of detector units */ 
/* number of tubes */ 
/* radius of a detector ring in mm */ 
/* detector width in mm*/ 
/* detector length in mm */ 
/* field of view radius */ #def ine FOVRadius 

#def ine FOVDiameter 

256 
8192 
157.0 
3.0 
20.0 
60.0 
120.0 /* field of view diameter (2*FOVRadius) */ 

/* Parameters for tubes simulation */ 

#def ine NumOfBins 32 /* number of bins in a sinogram 
#def ine Startl 48 /* number of the first detector 

forms the first tube */ 
#def ine Start2 208 /* number of the second detector 

forms the first tube */ 

/* Parameters for CAF simulation */ 

#define IAFlen 33 /* max number of different IAFs 
#def ine MRowLen 600 /* max matrix row length */ 
#def ine noIAFinmem -3 /* \\no IAF in memory" flag */ 
#def ine CrossStepint 0.1 /* step in computing CAF */ 

typedef unsigned short IForrnat; /* format for representing tube 

/* structures for data storage */ 

typedef struct { float Xe; float Yc; float XRin; float XRout; 
float XLin; float XLout; float YRin; float YRout; 
float YLin; float YLout; float A; } DetectorXY; 

typedef DetectorXY PETRing[DTotall; /* set of detectors */ 

typedef struct { float Ac; float Be; float Cc; 

*/ 
that 

that 

*/ 

index */ 

float Ain; float Bin; float Cin; float Aout; float Bout; float Cout; 
int Dl; int D2; int IAFpnt; float IncAng; } TubeLine; 

typedef TubeLine PETTubes[TTotal]; /* set of tubes */ 

typedef struct int N; !Format *index; float *value; } SparseVector; 

typedef struct float *X; float *F; char *IncAng; float EO; 
int N; } sirnIAF; /* a sirnulated IAF */ 

typedef sirnIAF IAFset[IAFlen]; /* Intrinsic Apperture Function set */ 

typedef enum {Inside,Outside} Check; 
typedef Check Irnage[BTotal]; 

/* advance functions' definition */ 
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void 
void 
void 
void 
void 
int 
float 
int 
int 
float 
int 

process_param(int argc, char **argv); 
my_exit(int err); 
CreateMatrix(char *fn); 
WriteMatrix(SparseVector *m, char* fn, int npix); 
CreateRingClosed(PETRing *Ring); 
CreateTubes(PETRing *R, PETTubes *PT, int *NIAF); 
Responseint(); 
Section(float C,float *xl,float *yl,float *x2,float *y2); 
CreateIAF(float angle, int n); 
CAF(float x, float E, simIAF *iaf); 
CreateGrid(Check* Grid, Check* mask); 

/* public variables */ 

char 
int 
int 
int 
int 
int 
int 
float 

"/hosts/data/ml-em/probl28x12 8-v3"; / * matrix filename * / 
sizeof (float); 

*fname = 
fltSize 
IFSize 
intSize 
Numiter; 
NumOfFrames; 
boxinrnat; 
XL,XR,YU,YD; 

sizeof(IFormat) ;/* ideally should be checked in matrix */ 
sizeof(int); 

PETRing *D; 
TubeLine *T; 
char 
struct 
IAFset 

* Prognarne; 
header im; 
RespFCTlcC; 

void main{int argc, char **argv) 
{ 

FILE 
int 
int 
int 
int 
IFormat 
float 
float 
float 
float 
float 
float 
float 
SparseVector 
SparseVector 
int 
Image 
Image 
float 
float 
float 
float 

*f; 
i,j,k,l; 
it; 
linewidth; 
xor,yor,x3h; 
RLen; 

*Pic; 
*Piel; 
*n _t; 
*del; 
*n; 
*ntale; 
CTotal; 

*Mat; 
*V; 
AffPix; 
ImageGrid; 
Mask; 
total; 
artifact; 
correct; 
Picj; 

process_param{argc,argv); 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

/* number of iterations to perform */ 
/* number of frames in the sinogram */ 
/* sqrt of number of boxes in matrix */ 
/* coordinates of a box being processed */ 
/* reference to a set of detectors in use */ 
/* reference to a tube being processed */ 

/* input HIPS file header */ 
/* set of IAF for clam shell closed */ 

transition matrix file reference */ 
counters */ 
current iteration nurnber */ 
number of affecting tubes for a given box */ 
coordinates of pixel when turning image */ 
length of matrix row */ 
image estirnate */ 
final image */ 
result of lst matrix multiplication */ 
image correction vector */ 
measured data (sinogram) */ 
tale of the frame which has no data */ 
total number of counts in the sinogram */ 
matrix of probabilities */ 
current line of matrix */ 
nurnber of pixels in circular image */ 
image grid defining participating pixels */ 
mask for the edge artifact elimination */ 
total number of counts in image estimate */ 
counts captured by edge artifact */ 
correction factor for artifact elimination */ 
temporary variable */ 

/* open and read transition matrix */ 

f = fopen(fname,"rb"); 
if (f==NULL) { 

fprintf ( stderr, "Matrix %s not found\n", fname) ; 
CreateMatrix(fname); 
f = fopen(fname, "rb"); 

AffPix = CreateGrid(&ImageGrid[O] ,&Mask[O]); 
fprintf(stderr, "Reading matrix %s ... ",fname); 
fread(&boxinmat,intSize,l,f); 
if (boxinmat!=sqrtB) my_exit(S); 
Mat= (SparseVector *) calloc(AffPix,sizeof(SparseVector)); 
if (Mat==NULL) my_exit (1); 
for (i=O;i<AffPix;i++) 
{ 

if (fread(&RLen,IFSize,1,f) !=ll my_exit(2); 
V= &Mat(i]; 
(*V) .N = (int) RLen; 
(*V) .index= (!Format *) calloc(RLen,IFSize); 
if ((*V) .index==NULL) my_exit(l); 
(*V) .value= (float *) calloc(RLen,fltSize); 
if ((*V) .value==NULL) my_exit(l); 
if (fread((*V) .index,IFSize,RLen,f) !=RLen) my_exit(2); 
if (fread((*V) .value,fltSize,RLen,f) !=RLen) my_exit(2); 
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fclose (f); 
fprintf (stderr, "Done\n" J; 

/* allocate memory space */ 

n_t = (float *) calloc(TTotal,fltSize); 
del= (float *) calloc(AffPix,fltSize); 
n = (float *) calloc(TTotal,fltSize); 
ntale = (float *) calloc(NumOfBins,fltSize); 
Pic= (float *) calloc(AffPix,fltSize); 
Piel= (float *) calloc(BTotal,fltSize); 
if ( (n_t==NULL) 11 (del==NULL) 11 (n==NULL) 11 

(Pic==NULL) f 1(Picl==NULL)11 (ntale==NULL)) my_exit(l); 

/* reading a sinogram */ 

for (l=O;l<NuroOfFrames;l++) 
{ 

if (pread(O,n,TTotal*fltSize) !=TTotal*fltSize) my_exit{3); 
if (pread(O,ntale,NumOfBins*fltSize) !=NumOfBins*fltSize) rny_exit(3); 

/* filling the image estimate */ 

CTotal = 0; 
for (i=O;i<TTotal;i++) CTotal += n[i]; 
if (CTotal==O) fprintf (stderr, "Null number of counts in frame #%d! \n", 1); 

/* could skip reconstruction part if CTotal==O ! but not today! */ 

Picj = CTotal / AffPix; 
for (i=O;i<AffPix;i++) Pic[i] 

/* iterations */ 

for (it=D;it<Nuroiter;it++) 
{ 

Picj; 

/* multiply image estimate to the transition matrix */ 

for (i=O;i<TTotal;i++) n_t[i] = 0.0; 
for (j=O;j<AffPix;j++) 
{ 

V=&Mat[j]; 
linewidth = (*V) . N; 
Picj = Pic [j]; 
for (k=O;k<linewidth;k++) n_t[(*V) .index[k]J += (*V) .value[k]*Picj; 

/* divide measured data by the above obtained vector */ 

for (i=O;i<TTotal;i++J 
n_t[iJ = n[i] / n_t[i]; 

/* multiply transition matrix to the correction vector */ 

for (j=O;j<AffPix;j++) 
{ 

V=&Mat[j]; 
linewidth = (*V) .N; 
del[j] = 0.0; 
for (k=O;k<linewidth;k++) 

{ del[j] += (*VJ.value[k] * n_t[(*V).index[k]];} 

/* multiply image estimate to the correction vector */ 

for (i=O;i<AffPix;i++) Pic[i] *= del[i]; 
fprintf(stderr, "Frame %d: Iteration %d of %d done \r", 

1, it+l,Numiter); 

} /* next iteration */ 

/* turn image clockwize 3 h and write to output */ 

j = 0; 
for (i=O;i<BTotal;i++) 

xor i % sqrtB; 
yor = i / sqrtB; 
x3h = sqrtB - yor - 1; 
Picl[sqrtB*xor+x3h] = (ImageGrid[i]==Inside) Pic[j++] 0.0; 
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/* elimination of the edge artifact */ 

total = artifact = 0.0; 
for (i=O;i<BTotal;i++) { 

total += Picl[i]; 
if (Mask[i]==Inside) { 

artifact += Picl[i]; 
Picl[i] =0; 

correct = total / (total-artifact); 
total = 0.0; 
for (i=O;i<BTotal;i++) 

Picl[i] *=correct; 
total += Picl[i]; 

if (write(l,Picl,BTotal*fltSize) !=BTotal*fltSize) my_exit(4); 

fprint f ( stderr, "\n") ; 

/* free allocated memory */ 

free(n_t); 
free(del); 
free(n); 
free(ntale); 
free(Pic); 
free(Picl); 
for (i=O;i<AffPix;i++) 
{ 

V= &Mat[i]; 
free ( (*V) . index) ; 
free ( (*V) . value); 

free(Mat); 
exit(O); 

/* processing input parameters */ 

void process_param(int argc, char **argv) 
{ 

char *szBuff; 

if (argc!=2) { 
fprintf(stderr, 

"\nSyntax: %s NumberOfiterations < sinogram(n*32*257) > outfile\n\n", 
argv[O]); 

exit (0); 

Progname = strsave(*argv); 
Numiter = atoi(argv[l]); 
if (Numiter<=O) Numiter = l; 
read_header(&im); 
if (im.pixel_format!=PFFLOAT) my_exit(6); 
if (im.cols!=32j jim.rows!=257) my_exit(7); 
NumOfFrames = im.num_frame; 
szBuff=malloc(130); 
sprintf(szBuff,''%s grid: %d x %d frames: %d",argv[O],sqrtB,sqrtB, 

im.num_frame); 
im.cols = sqrtB; 
im. rows ;::;: sqrtB; 
update_header(&im,1,&szBuff); 
write_header(&im); 
free(szBuff); 

/* emergency exit */ 

void my_exit(int err) 
{ 

switch (err) { 
case 1: 

fprintf (stderr, "\nNot enough memory ! \n"); 
break; 

case 2: 
fprintf ( stderr, "\nError reading matrix ! \n") ; 
break; 
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case 3: 
fprintf(stderr, "\nError reading sinogram!\n"); 
break; 

case 4: 
fprintf(stderr, "\nError writing to output!\n"); 
break; 

case 5: 
fprintf(stderr, "Matrix isn't for %d*%d image!\n",sqrtB,sqrtB); 
break; 

case 6: 
fprintf(stderr,"Data must be float!\n"); 
break; 

case 7: 
fprintf (stderr, "Not a 32*257 sinogram! \n"); 

exit (err); 

/* CreateGrid() marks pixels of image grid that should not be used in 
calculations; returns number of pixels in circular image to reconstruct */ 

int CreateGrid(Check* Grid, Check* mask) 
{ 

float step,xl,xr,yu,yd,sFOV,sFOVm,sxl,sxr,syu,syd,tmp; 
int j,ix,iy,TPix; 

TPix 0; 
step (float) FOVDiameter / sqrtB; 
sFOV (float) FOVRadius * FOVRadius; 
tmp = FOVRadius - step*sqrt(2.0); 
sFOVm = tmp * tmp; 

/* side of a box in the image */ 

for (j=O;j<BTotal;j++) 
{ 

ix % sqrtB; 
iy / sqrtB; 
xl FOVRadius + ix * step; 
xr xl + step; 
yu FOVRadius - iy * step; 
yd yu step; 
sxl xl * xl; 
sxr 
syu 
syd 
if ( 

xr * xr; 
yu * yu; 
yd * yd; 

( (sxl+syu-sFOV)>O) && ( (sxr+syu-sFOV)>O) && 
((sxl+syd-sFOV)>O) && ( (sxr+syd-sFOV)>O) ) 

Grid(j] 
mask[j] 

else { 
Grid(j] 
TPix++; 
mask(j] 

outs ide; 
Outside; 

Inside; 

( ( (sxl+syu-sFOVm)>O) && ((sxr+syu-sFOVm)>O) && 
((sxl+syd-sFOVm)>O) && ((sxr+syd-sFOVm)>O) ) ? Inside 

return TPix; 

/* create matrix for exact detectors' position */ 

void CreateMatrix(char *fn) 
{ 

PETTubes 
PETRing 
float 
int 
int 
char 
SparseVector 
FILE 
int 
Image 
Image 

TubesC; 
RingClosed; 
stepXY,weight,xx,gx,eO; 
t,r,i,j,k,cnt,tmp,eq; 
NumOfTubesC,NumOfIAFC; 
*name, *s; 

*m2; 
*p; 
APix; 
IGrid; 
AMask; 

fprintf(stderr,"Simulating ring and tubes ... "); 
APix = CreateGrid(IGrid,AMask); 
CreateRingClosed(&RingClosed); 
for (i=O;i<IAFlen;i++) { RespFuncC[iJ .IncAng = (char *) malloc(9); 
NumOfTubesc = CreateTubes(&RingClosed,&TubesC,&NumOfIAFC); 

Outs ide; 
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/* reading RFs */ 

s = (char*) malloc(2); 
sprintf(s, "%d",fltSize); 
for (i=O;i<NumOfIAFC;i++) 
{ 

name = (char*) malloc(20); 
strcpy(name,RespFuncC[i] .IncAng); 
strcat(narne, ".iaf."); 
strcat (narne, s); 
p = fopen(name, "rb"); 
if (p!=NULL) 
{ 

fread(&tmp,intSize,1,p); 
RespFuncC[i] .N = trop; 
RespFuncC[i] .X = (float *) calloc(tmp,fltSize); 
if (RespFuncC[i] .X==NULL) fprintf(stderr, "Memory allocation problem\n"); 
RespFuncC[i] .F = (float *) calloc(tmp,fltSize); 
if (RespFuncC[i] .F==NULL) fprintf (stderr, "Memory allocation problem\n"); 
fread(RespFuncC[i] .X,fltSize,tmp,p); 
fread(RespFuncC[i] .F,fltSize,tmp,p); 
fclose (p); 
eü = gx = xx = 0; 
for (j=O;j<tmp;j++) 
{ 

eO += (gx+RespFuncC[i] .F[j]) * (RespFuncC[il .X[j]-xx) /2; 
XX RespFuncC[i] .X[j]; 
gx = RespFuncC[i] .F[j]; 

RespFuncC[i] .EO = eO / RespFuncC[i] .X[tmp-1]; 

el se 
{ 

fprintf(stderr, "[CreateMatrix] Can't find file %s",name); 
exit(Ü); 

free(name); 

/* end of reading RFs */ 

stepXY = (float)FOVDiameter / (float)sqrtB; 
fprintf(stderr,"Done (%d different IAFs used)\nCreating matrix for ring closed :\n",NumOfIAFC); 
m2 = (SparseVector *) calloc(APix,sizeof(SparseVector)); 
if (m2==NULL) my_exit(l); 
for(j=O;j<APix;j++) 
{ 

m2[j] .index= (unsigned short*) calloc(MRowLen,sizeof(unsigned short)); 
m2[j] .value= (float*) calloc(MRowLen,sizeof(float)); 
if ((m2[j] .index==NULL) 11 (m2[j] .value==NULL)) my_exit(l); 
m2[j].N = 0; 

cnt = k = 0; 
D = &RingClosed; 
for (j=O;j<sqrtB;j++) 
{ 

YU = FOVRadius - j * stepXY; 
YD = YU - stepXY; 
for (i=O;i<sqrtB;i++) 
{ 

if (IGrid[k++l==Inside) 
{ 

XL = -FOVRadius + i * stepXY; 
XR = XL + stepXY; 
for (t=O;t<NumOfTubesC;t++) 
{ 

T = &TubesC [t]; 
weight = Responseint(); 
if (weight>O. 0) 
{ 

m2[cnt] .value[m2[cnt] .N] weight; 
m2[cnt] .index[m2[cnt] .N++l = (unsigned short) t; 

fprintf ( stderr, "pixel %d 

fprintf ( stderr, "\nDone 
WriteMatrix(m2,fn,APix); 

\n"); 

\r", ++cnt); 
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for (i=O;i<APix;i++) 
( 

free (m2 [ i J . index) ; 
free(m2 [iJ .value); 

free(m2); 
sprintf(s,"%d",fltSize); 
name = (char*) malloc(20); 
for (i=O;i<NumOfIAFC;i++) 
{ 

strcpy(name,RespFuncC[i] .IncAng); 
strcat(name, ".iaf."); 
strcat(name,s}; 
remove (name); 

for (i=O;i<IAFlen;i++) free(RespFuncC[i] .IncAng); 
free (name); 
free(s); 

/* write matrix to disk */ 

void WriteMatrix(SparseVector *m, char* fn, int npix) 
{ 

IFormat N; 
float sum; 
int i,j,Grid; 
FILE *p; 

fprintf (stderr, "Writing to file %s ... \n", fn); 
Grid = sqrtB; 
p = fopen(fn, "wb"); 
fwrite(&Grid,intSize,1,p); 
for(i=O;i<npix;i++) 
{ 

N = (IFormat) m[i] .N; 
sum = O; 
for(j=O;j<N;j++) { sum += m[i] .value[j]; 
for(j=O;j<N;j++) { m[il .value[j] /= sum; 
fwrite(&N,IFSize,1,p); 
fwrite(m[i] .index,IFSize,N,p); 
fwrite(m[i] .value,fltSize,N,p); 

fclose (p); 

/* simulate detector ring */ 

void CreateRingClosed(PETRing *Ring) 
{ 

float CurAng,AngStep,xl,x2,yl,y2,cosA,sinA,a,b; 
int i; 

AngStep = 2.0 * M....PI / (float) DTotal; 
CurAng = AngStep / 2.0; 
for (i=O;i<DTotal;i++) 
{ 

cosA = cos(CurAng); 
sinA = sin(CurAng); 
xl (float) RRadius * cosA; 
yl (float) RRadius * sinA; 
x2 (float) (RRadius + LDet) * cosA; 
y2 (float) (RRadius + LDet) * sinA; 
(*Ring) [il .Xe = xl; 
(*Ring) [il .Yc = yl; 
a= -sinA * (float) WDet / 2.0; 
b = cosA * (float) WDet / 2.0; 
(*Ring) [il .XRin (*Ring) [il .Xe a; 
(*Ring) [il .YRin (*Ring) [il .Yc b; 
(*Ring) [il .XLin (*Ring) [il .Xe + a; 
(*Ring)[il.YLin (*Ring)[il.Yc + b; 
(*Ring) [i] .XRout x2 a; 
(*Ring) [il .YRout y2 b; 
(*Ring) [il .XLout x2 + a; 
(*Ring) [il.YLout y2 + b; 
(*Ring) [il .A= CurAng; 
CurAng += AngStep; 
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/* simulate tubes of response */ 

int CreateTubes(PETRing *R, PETTubes *PT, int *NIAF) 
{ 

DetectorXY 
TubeLine 
float 
int 

*Ri,*Rj; 
*PTk; 
dl,d2,a,b,B_A; 
i,j,k,l,m,n,flag,shiftl,shift2,res; 

k = n = flag = shiftl = shift2 = O; 
for (l=O;l<DTotal;l++) 
{ 

for (m=O;m<NumOfBins;m++) 
{ 

if (k>=TTotal) 
{ printf{"[CreateTubes] TTotal exceeded !\n"); exit(l); } 

i = Startl + m + 
if (i>=DTotal) i 
j = Start2 - m + 
if (j>=DTotal) 
Ri = &(*R) [i]; 
Rj = &(*R) [j]; 

shiftl; 
= i % DTotal; 
shift2; 
= j % DTotal; 

a = (*Ri) .XRin {*Rj) .XLin; 
b = {*Ri) .YRin {*Rj) .YLin; 
dl = a * a + b * b; 
a = {*Ri) .XLin (*Rj) .XRin; 
b = (*Ri) .YLin (*Rj) .YRin; 
d2 = a * a + b * b; 
PTk = &{*PT) [k]; 
(*PTk) .Ac (*Rj) .Yc 
(*PTk) .Be (*Ri) .Xe 

(*Ri). Yc; 
( *Rj) . Xe; 

(*PTk) .Cc {*Rj) .Xe * (*Ri) .Yc - (*Ri) .Xe * (*Rj) .Yc; 
{*PTk) .Dl i; 
{*PTk) .D2 j; 
if (dl==d2) 
{ 

(*PTk) .Ain 
{*PTk) .Bin 
{*PTk) .Cin 
{*PTk) .Aout 

/* parallel detectors */ 

(*Rj). YLin 
{*Ri) .XRin 
{*Rj) .XLin * 

(*Ri). YRin; 
{*Rj) .XLin; 
{*Ri). YRin - (*Ri) .XRin * (*Rj) .YLin; 

( *PTk) . Bout = 
( *PTk) . Cout = 
(*PTk). IncAng 

(*Rj) .YRin 
(*Ri) .XLin -
(*Rj) .XRin * 
= 0.; 

(*Ri). YLin; 
(*Rj) .XRin; 
(*Ri) .YLin - (*Ri) .XLin * (*Rj) .YRin; 

el se 
{ 

if (dl>d2) 
{ 

/* detectors close with left and right (Dl-D2) sides */ 

{*Rj) .YLin - {*Ri) .YRin; 
{*Ri) .XRin - {*Rj) .XLin; 

(*PTk) .Ain 
( *PTk) . Bin 
(*PTk) .Cin 
(*PTk) .Aout 
(*PTk) .Bout 
( *PTk) . Cout 

(*Rj) .XLin * (*Ri) .YRin - (*Ri) .XRin * (*Rj) .YLin; 
(*Rj) .YRout (*Ri) .YLout; 
(*Ri) .XLout (*Rj) .XRout; 
{*Rj) .XRout * (*Ri) .YLout -
(*Ri) .XLout * (*Rj) .YRout; 

el se 
{ 

/* detectors close with right and left (Dl-D2) sides */ 

(*Rj) .YRin - {*Ri) .YLin; 
{*Ri) .XLin {*Rj) .XRin; 

('PTk) .Ain 
( 'PTk) . Bin 
('PTk) .Cin 
('PTk) .Aout 
(*PTk) .Bout 
{*PTk) .Cout 

(*Rj) .XRin * {*Ri) .YLin - (*Ri) .XLin * (*Rj) .YRin; 
(*Rj) .YLout {*Ri) .YRout; 
(*Ri) .XRout (*Rj) .XLout; 
{*Rj) .XLout * {*Ri) .YRout -
(*Ri) .XRout * (*Rj) .YLout; 

B_A = fabs((*Rj) .A - {*Ri) .A); 
(*PTk) .IncAng = (B_A<M_PI) ? (M_PI-B_A)/2 

res = CreateIAF( (*PTk) .IncAng,n); 
(*PTk) .IAFpnt = (res==noIAFinmem) 
k++j 

if ( flag==O) 
el se 

*NIAF = n; 
return k; 

flag 
flag 

l; shiftl++; 
O; shift2 ++; 

n++ res; 

(B_A-M_PI)/2; 
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/* Responseint() computes the impact of a given box on tube counts 
(sum of unweighed lengths of intersection of sample lines imposed 
through the tube at a distance of 'CrossStepint' from each other); 
uses public variables XL,XR,YU,YD,T,D 

input 
return code 

reference to a detector set 
weighted value of intesection of tube with box 

float Responseint() 
( 

float 
float 

I,x,y,xl,yl,x2,y2,rl,r2,r,x3,y3,tmp,tmpl,tmp2,CstepX,CstepY; 
El,E2,Erl,Er2,D1Xc,D2Xc,DlYc,D2Yc,c,c3,CO,dl,pntl,pnt2; 

int secN, i; 
simIAF *iaf; 

I = 0; 

/* compute distance between the centers of detector faces */ 

DlXc (*D) [ (*T) .Dl] .Xe; 
D2Xc (*D) [(*T) .D2] .Xe; 
DlYc (*D) [ (*T) .Dl] .Yc; 
D2Yc (*D) [(*T) .D2] .Yc; 
rl = DlXc - D2Xc; 
r2 = DlYc - D2Yc; 
r = sqrt(rl • rl + r2 * r2); 
iaf = &RespFuncC[(*T) .IAFpnt]; 

if (fabs((*T) .Bc)<0.01) 
{ 

/* line through detectors "parallel" to Y */ 

xl = -(*T) .Cin ! (*T) .Ac; 
x2 = -(*T) .Cout / (*T) .Ac; 
tmp = (xl>x2) ? xl - x2 : x2 - xl; 
CstepX = (xl>x2) ? -CrossStepint : CrossStepint; 
secN = (int) (tmp / CrossStepint); 
Erl = fabs(DlYc - YU); 
Er2 = r - Erl; 
El = (Erl<Er2) Erl/Er2 Er2/Erl; 
Erl = fabs(DlYc - YD); 
Er2 = r - Erl; 
E2 = (Erl<Er2) Erl/Er2 Er2/Erl; 
for {i;l;i<secN;i++) 
{ 

x3 = xl + i * CstepX; 
if ((x3>=XL)&&(x3<=XR)) 
{ 

dl = (xl>x3) ? xl - x3 x3 - xl; 
pntl = CAF(dl,El,iaf); 
pnt2 = CAF(dl,E2,iaf); 
I += (pntl + pnt2) / 2; 

I *= YU - YD; 

el se 
{ 

if (fabs((*T) .Ac)<0.01) /* line through detect. "parallel" to X */ 
{ 

yl = -(*T) .Cin / (*T) .Be; 
y2 = -(*T) .Cout ! (*T) .Be; 
tmp = (yl>y2) ? yl - y2 : y2 - yl; 
CstepY = (yl>y2) ? -CrossStepint : CrossStepint; 
secN = (int) (trop / CrossStepint); 
Erl = fabs(DlXc - XR); 
Er2 = r - Erl; 
El = (Erl<Er2) Erl/Er2 Er2/Erl; 
Erl = fabs(DlXc - XL); 
Er2 = r - Erl; 
E2 = (Erl<Er2) Erl/Er2 Er2/Erl; 
for (i=l;i<secN;i++) 
{ 

y3 = yl + i • CstepY; 
if 1 (y3>=YD) && (y3<=YU)) 
{ 

dl = (yl>y3) ? yl - y3 y3 - yl; 
pntl = CAF(dl,El,iaf); 
pnt2 = CAF(dl,E2,iaf); 
I += (pntl + pnt2) / 2; 

*/ 
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I *= XR - XL; 

el se 
{ 

/* line through detectors not "parallel" to X or Y axes */ 

if ( (*T) .Bc>S) 
{ 

x (float)RRadius/2.0; 
y -((*T).Ac*x+(*T).Cin) / (*T).Bc; 

el se 
{ 

y (float)RRadius/2.0; 
X= -((*T) .Bc*y+(*T) .Cin) (*T) .Ac; 

c = (*T) .Ac * y - (*T) .Be • x; 
y2 ( (*T) .Ac * c - (*T) .Be * (*T) .Cout) 

( (*T) .Ac * (*T) .Ac + (*T) .Be * (*T) .Be); 
x2 ((*Tl .Ac * y2 - c) / (*T) .Be; 
tmpl =y - y2; 
tmp2 = x - x2; 
tmp = sgrt(tmp2 • tmp2 + tmpl * tmpl); 
secN = (int) (trop / CrossStepint); 
CstepX fabs(CrossStepint * r2/ r); 
CstepX (x>x2) ? -CstepX : CstepX; 
CstepY fabs(CrossStepint * rl / r); 
CstepY (y>y2) ? -CstepY : CstepY; 
for (i=l;i<secN;i++) 
{ 

x3 x + i * CstepX; 
y3 y + i * CstepY; 
CO -((*T) .Ac* x3 + (*T) .Be* y3); 
if (Section(C0,&xl,&yl,&x2,&y2) !=0) 
{ 

/* project (xl,yl) onto the "central" line of the tube */ 

c3 (*Tl .Ac * yl - (*T) .Be * xl; 
y3 ( (*T) .Ac * c3 - (*T) .Be * (*T) .Cc) 

((*Tl.Ac* (*T).Ac + (*T).Bc * (*T).Bc); 
x3 ((*Tl .Ac * y3 c3) / (*Tl .Be; 
trop = DlXc - x3; 
tmpl = DlYc - y3; 
Erl = sqrt(tmp * tmp + tmpl * tmpl); 
Er2 = r - Erl; 
El (Erl<Er2) ? Erl/Er2 : Er2/Erl; 

/* project (xl,yl) onto the inner line of the tube */ 

c3 (*T) .Ain * yl - (*T) .Bin * xl; 
y3 ( (*T) .Ain * c3 - (*T) .Bin * (*T) .Cin) 

((*T) .Ain* (*T) .Ain+ (*T) .Bin * (*T) .Bin); 
x3 ((*Tl.Ain* y3 - c3) / (*T).Bin; 
tmp = xl - x3; 
tmpl = yl - y3; 
dl = sqrt(tmp * tmp + tmpl * tmpl); 
pntl = CAF(dl,El,iaf); 

/* project (x2,y2) onto the "central" line of the tube */ 

c3 (*Tl .Ac * y2 - (*T) .Be * x2; 
y3 ( (*T) .Ac * c3 - (*Tl .Be * (*T) .Cc) 

((*T).Ac * (*T).Ac + (*T).Bc * (*T).Bc); 
x3 ((*T).Ac * y3 - c3) / (*T).Bc; 
trop = DlXc - x3; 
tmpl = DlYc - y3; 
Erl = sgrt(tmp * tmp + tmpl * tmpl); 
Er2 = r - Erl; 
E2 (Erl<Er2) ? Erl/Er2 : Er2/Erl; 

/* project (x2,y2) onto the inner line of the tube */ 

c3 (*Tl .Ain * y2 - (*Tl .Bin * x2; 
y3 ((*Tl .Ain * c3 - (*T) .Bin * (*T) .Cin) 

((*T) .Ain* (*T) .Ain+ (*T) .Bin * (*T) .Bin); 
x3 ((*Tl.Ain* y3 - c3) / (*T).Bin; 
tmp = x2 - x3; 
tmpl = y2 - y3; 
dl = sqrt(tmp * tmp + tmpl * tmpl); 
pnt2 = CAF(dl,E2,iaf); 
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return Ii 

/* calculate the distance between (xl,yl) and (x2,y2) */ 

tmp = xl - x2; 
tmpl = yl - y2; 
dl = sqrt(tmp * tmp + tmpl * tmpl); 
I += dl * (pntl + pnt2) / 2; 

/* Section() finds points of intersection of a given line with a given box; 
uses public variables XL,XR,YU,YD,T 

return code: 0 if there is no such points (xl,yl,x2,y2 undefined) 
1 if there are such points (xl,yl,x2,y2 returned) */ 

int Section(float C,float *xl,float *yl,float *x2,float *y2) 
{ 

/* 

*/ 

float x,y; 
int flag; 

flag = O; 
X= -((*T).Bc *YU+ C) / (*T).Ac; 
if ((x>=XL)&&(x<=XR)) { *xl = x; *yl 
X= -((*T).Bc * YD + C) / (*T).Ac; 
if ( (x>=XL) && (x<=XR)) 
{ 

if (flag==O) 
el se 

*xl 
*x2 

Xi *yl 
Xi *y2 

YD; 
YD; 

flag++; 

if (flag==2) { return l; } 
y= -( (*T) .Ac* XL+ C) / (*T) .Be; 
if ( (y>=YD) && (y<=YU)) 
{ 

if (flag==Ü) 
el se 

flag++; 

*xl 
*x2 

XL; *yl 
XL; *y2 

if ( flag==2) { return 1; } 
y= -((*T).Ac * XR + C) / (*T).Bc; 
if ( (y>=YD) && (y<=YU)) 
{ 

if (flag==Ol 
el se 

flag++; 

*xl 
*x2 

XR; *yl 
XR; *y2 

y; 
y; 

y; 
y; 

YU; flag++; } 

if (flag==2) ( return l; } else { return 0; } 

simulation of intrinsic aperture function for a given detector and incidence 
angle (adaptation of FORTRAN program SIMLIN) , contains settings for phisical 
parameters inside; different IAF saved in different files; 
sets and uses public variables RespFuncC 

input 

return code 

incidence angle; 
number of defferent IAF encountered up to the moment 
error code noIAFinmem or index of the element in array 
RespFuncC or RespFuncO that contains the IAF already 

int CreateIAF(float angle, int n) 

float ddmu[2] ,dx1[512],bcent[512] [2] ,prof[2] ,dmu[2]; 
float proft,detect,septa,ecasep,xlarge,epeint,x,tgp,cp,smu; 
float dbx,xbo,deca,reg,ssmu,dyep,dysep,yntl,h,y,xmu,dy,dify; 
int nreg,i,numbc,npl,j,js,go; 
char *nom,*narne,*s; 
FILE *p; 

name = (char •) malloc(9); 
nom= (char *) malloc(l5); 
s = (char *l malloc(2); 
sprintf(name, '%.3f" ,angle); 
strcpy(nom,name); 
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strcat (nom,". iaf. "); 
sprintf(s,"%d",fltSize); 
strcat (nom, s); 
p = fopen (nom, "r"); 
if (p!=NULL) 
{ 

fclose (p); 
free(nom); 
free(s); 
i = 0; 
while ( (strcmp(RespFuncC[i] .IncAng,nameJ !=OJ && (i<n) J { i++; J 
if (i>=n) 
{ 

strcpy(RespFuncC[n] .IncAng,name); 
free (name); 
return noIAFinrnem; 

el se 
{ 

free(name); 
return i; 

p = fopen(nom, "wb"); 
dmu[OJ=0.697; /* Lineare attenuation coefficient (cm-1): inner layer */ 
dmu[l]=.9581; /* Lineare attenuation coefficient (cm-1): outer layer*/ 
smu=0.697; /* Lineare attenuation coefficient (cm-1) of septa */ 
numbc = 2; /* IAF for inner layer = 1, for outer layer = 2 */ 
proft = 21; / * Total depth of the layer (mm) * / 
prof [ 0 J = 1; / * Depth of inner layer (mm) * / 
prof[l] = 20; /* Depth of outer layer (mm) */ 
xlarge = 3.8; /* Inter-detector distance (mm) */ 
epeint = 0.05; /* Width of air between septa and crystal (mm) */ 
septa = 0. 7; / * SEPTA thickness (mm) * / 
ecasep 0; / * SEPTA gap (mm) * / 
dmu[OJ = -dmu[OJ / 10.; 
dmu[l] = -dmu[l] / 10.; 
smu = -smu / 10.; 
ddmu[OJ = dmu[OJ * 10.; 
ddmu[l] = dmu[l] * 10.; 
ssmu = smu * 10.; 
cp = cos(angle); 
tgp = sin(angle) / cp; 
if (tgp==O) { tgp = .0001; }; 
dbx = (xlarge / 32.) / cp; 
xbo = proft * tgp + xlarge; 
detect = xlarge - septa - 2 * epeint; 
deca = detect - .99 * dbx; 
npl = xbo / dbx; 
for (i=O;i<npl;i++) 
{ 

bcent[i][OJ =O.; 
bcent [il [1] = 0.; 
reg= deca / xlarge +75.; 
nreg = reg; 
x = (reg - nreg) * xlarge; 

/* ************ it was subroutine discon ************************************ */ 

dyep = epeint 
dysep = septa 

yntl = 1.; 
h = 0.; 
j = 1; 
js = l; 
if (septa==O.) 
{ 

do 
{ 

go = l; 
y = h; 
j = j s; 

tgp; 
tgp; 

if (y<proft) 
{ 

if (x>=detect) 
{ 

nreg += 1; 
h y + (xlarge - x) / tgp; 
X ::; O; 
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el se 
{ 

do 
{ 

if (h>=prof[O]) 

if (go!=O) 
{ 

xmu = dmu[j-1]; 
if (j==2) 
{ 

js 2; go 

dy = (detect - x) / tgp; 
h = y + dy; 
x = detect; 

O; } 

if (h>=proft) { dy proft - y; } 
js = l; 

el se 
{ 

dy = (detect - x) / tgp; 
h = y + dy; 
if (h>=prof [ 0 J) 
{ 

dy = prof[OJ - y; 
X += dy * tgp; 
h = y + dy; 
js = 2; 

el se 
{ x detect; } 

dify = yntl * (1 - exp(xmu*dy/cp) ); 
yntl -= dify; 

if (nreg!=75) { go 
if (go!=O) 
{ 

O; } else { if (x==Ü) { go 

bcent[i-1] [j-1] = dify; 
if ( j ! =2) { go = O; J 

while (go==Ü); 

go = l; 
y = h; 
j = js; 
if (y<proft) 
{ 

if (x>=detect) 
{ 

nreg += l; 
h = y + (xlarge - x) / tgp; 
X = Ü; 
if (h>=prof[OJ) { js = 2;} 
if ( (h<= (ecasep+dyep)) 11 (h>=proft)) 
{ go = 0; } 
el se 
( 

el se 
{ 

xmu = smu; 
dy = h - ecasep - dyep; 
if (dy>dysep) { dy = dysep; 

xmu = dmu[j-1]; 
if (j==2) 
{ 

dy = (detect - x) / tgp; 
h=y+dy; 
x = detect; 
if (h>=proft) { dy proft - y; } 
js = l; 

el se 
{ 

dy = (detect x) / tgp; 
h = y + dy; 
if (h>=prof[O]) 

O; } l 
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dy = prof[OJ - y; 
X += dy * tgp; 
h = y + dy; 
js = 2; 

el se 
{ X 

if (go!=Ol 
{ 

detect; } 

dify = yntl * (1 - exp(xrnu*dy/cp)); 
yntl -= dify; 

if (nreg!=75) { go 
if (go!=O) 
{ 

0; } else { if (x==O.) [ go 

bcent [i-1] [j-1] = dify; 
if ( j ! =2) { go = 0; } 

while (go==O); 

0; } } 

/* ************************************************************************** */ 

/* 

*/ 

deca -= dbx; 

for (i=O;i<npl;i++) 
{ 

dxl[i] = cp * dbx * (i + 1); 

fwrite(&npl,intSize,l,p); 
fwrite(&dxl[OJ ,fltSize,npl,p); 
for (i=O;i<npl;i++) { fwrite(&bcent[i][numbc-1],fltSize,l,p); 
strcpy(RespFuncC[n] .IncAng,name); 
fclose (p); 
free (name); 
free(nom); 
free (s); 
return noIAFinmern; 

computes the coincidence response function for a given tube and position 
in the tube using simulated IAF 

input 

return code 

distance from the point being evaluated to the inner line 
of tube; 
ratio of distances from the point being evaluated to lines 
crossing center of detector faces and perpendiculare to the 
tube E (E<=l, E=l when the point is half-way between 
detectors); 
ref erence to IAF 
value of coincedence response function for the point 

float CAF(float x, float E, simIAF *iaf) 
{ 

float min,max,iv,g,gl,g2,t; 
int dim,j,first,k; 

dim (*iaf) .N; 
min (*iaf) .X[OJ; 
max (*iaf) .X[dim-1]; 
iv ;;; O; 
first = 0; 
for (j=O;j<dim;j++) 
{ 

t = X + E * (x - ( * iaf) . X ( j l ) ; 
if ((t>=min) && (t<=rnax)) 
{ 

k = O; 
while ( ( (*iaf) .X(k]<=tl && (k<dim)) { k++; } 
k--; 
g = (t==(*iaf) .X[k]) (*iaf) .F[k] 
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(*iaf) .F[k] + ( (*iaf} .F[k+l] - (*iaf} .F[k]) * 
(t - (*iaf} .X[k]) / ( (*iaf) .X[k+ll - (*iaf) .X[k]); 

if (first==O) 
{ 

first++; 
gl = (*iaf) .F[j] * g; 

el se 
{ 

g2 = (*iaf} .F[j] * g; 
iv += (gl + g2) / 2 * ((*iaf} .X[j] 
gl = g2; 

(*iaf) .X[j-1]); 

iv *= (l+E) * (l+E) / (E*max*max* (*iaf) .EO* (*iaf) .EO); 
return ivi 
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