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ABSTRACT

PET images acquired with a high resolution scaimer based on arrays of small discrète

detectors are obtained at the cost of low sensitivity and increased detector scatter. It bas

been postulated that these limitations can be overcome by using multispectral acquisition

whereby the energy information is registered together with the spatial coordinates of

detected events. This work is an investigation of multispectral data processing methods

for high resolution PET.

A photon spectral dégradation model is proposed to provide theoretical support for

energy-based scatter correction methods. This analytical model supplies a complété

physical description of the photon propagation and détection processes in both the spatial

and spectral domain. It also helps to bridge the gap between a number of heuristic scatter

correction approaches and the underlying physical assumptions. In particular, it is shown

that such methods as the dual energy window and multispectral firame-by-frame scatter

correction techniques have intrinsic defîciencies which may be responsible for their

limited success.

The potential of multispectral acquisition for developing energy-dependent scatter

correction methods is severely impeded by stochastic fluctuations. Two approaches were

investigated to overcome this drawback. In the first one, spectral smoothing is attempted

in combination with multispectral normalization of detector efficiency and optimal data

pre-processing sequence in order to allow truly energy-dependent data processing on a

frame-by-firame basis. In the second approach, a global analysis of the multispectral data

set is performed by the principal component analysis for reducing both the variance and



dimensionality of the multispectral data. Both approaches provide improved data for

furtii@rproççssing.

The multispectral frame-by-£rame convolution scatter correction protocol is ̂ own to

yield inferior performance to that of the convolution scatter correction in one broad

window. It is concluded that the approximations made in each energy frame to

implement the frame-by-firame approach accumulâtes errors in the final resuit

Consequently, the spectral smoothing technique and the implementation of the

dégradation model in the multiple window approach will have to be revisited to

overcome this deficiency.

A data processing protocol which combines the use of bodi spatial and spectral

information into one scatter correction method is proposed to exploit multispectral data

optimally. The method consista of two consécutive steps: first, optimal noise and data

dimensionality réduction, as well as partial suppression of scatter, is achieved by

performing the global analysis of the multispectral data set; second, a spatial scatter

correction technique, the object scatter subtraction and detector scatter restoration

algorithm in this study, is used to correct for the residual scatter contribution in the

ouq)ut of the first step. The relevance of such a correction scheme for multispectral data

is demonstrated by its superior performance as compared to conventîonal spatial scatter

correction methods. This global scatter correction approach is promising to fùlfill the

need for high resolution, high sensitivity and quantitative nuclear medicine imaging.

AU the techniques developed in this woik are readUy applicable to multiple energy

window acquisition in scintigraphic or SPECT imaging.



Résumé

En tomographie d'émission par positrons (TEP), les images de très haute résolution

spatiale acquises à l'aide d'une caméra basée sur de petits détecteurs discrets sont obtenues

au prix d'une faible sensibilité et d'une fraction élevée d'événements difrusés dans les

détecteurs, n est proposé que ces limitations peuvent être surmontées à l'aide de

l'acquisition multispectrale des événements où l'énergie des photons est enregistrée de

concert avec leurs coordonnées spatiales. Cette étude porte donc sur l'étaUissement des

outils nécessaires à l'exploitation de cette information et sur l'exploration de différentes

méthodes de traitement des données multispectrales pour la TEP à haute résolution.

Un modèle de dégradation spectrale des photons est proposé pour fournir un support

théorique applicable aux méthodes de correction du diffusé basées sur l'énergie. Ce

modèle analytique fourni une descrçtion physique conq)lète de la propagation de photon

et des processus de la détection tant dans le domaine spatial que sf>ectraL n permet aussi

de faire le lien entre certaines approches heuristiques de correction du diffusé et les

hypothèses physiques sous-jacentes. En particulier, il est démontré que les méthodes de

correction du diffusé à double fenêtre d'énergie et à fenêtres multçles sont toutes deux

affligées de limites inhérentes qui expliquent probablement leur succès mitigé.

L'acquisition multispectrale offre la possibilité de développer des méthodes de correction

du diffusé dépendante de l'énergie. Deux approches ont été évaluées pour solutionner ce

problème. Dans la première, un lissage spectral des données est utilisé en combinaison

avec l'équilibrage multispectral de l'efQcacité des détecteurs, dans une séquence de pré

traitement optimale, de façon à permettre une véritable analyse dépendante de l'énergie,

fenêtre par fenêtre, des données multispectrale. Dans la seconde îq)proche, un traitement

global de l'ensemble multispectral est effectué a l'aide de l'analyse des coursantes

principales pour à la fois réduire la variance et la dimensionalité des données. Les deux



approches fournissent un ensemble de donnés adéquates pour le traitement ult&ieur du

rayonnement diffusé.

Le protocole de correction du diffusé par convolution dans chaque fenêtre d'âiergie

conduit à des performance inférieures à une correction effectuée dans une seule fenêtre

d'énergie étendue. Nous concluons que les approximations faites dans chaque fenêtre

pour inçlanter une approche dépendante de l'énergie cumulent les erreurs dans le résultat

final En conséquence, les techniques de lissage spectral et l'inplantation du modèle de

dégradation dans le contexte de fenêtres d'énergie multçles devront être revus pour

surmonter cette déficience.

Une méthode globale de correction du diffusé qui comtnne les analyses spatiale et

spectrale en une seule est proposée pour exploiter au maximum les données

multispectrales. Cette méthode se conpose de deux étapes consécutives: pranièrement,

réduction optimale des dimensions, du buit des données, de même que suppression

partielle du diffusé, le tout obtenu en ne conservant que la première conqwsante de

l'analyse des conposantes principales des données multi^>ectrales; deuxièmement, un

nnodèle spatial de correction du diffusé, l'algorithme de soustraction du diffesé-obj^ ̂  de

restauration du diffiisé-détecteur dans cette étude, est ençtoyé pour corriger le résidu de

la conçosante de diffusé présent dans la conq)osante princçale issue de la praiûère étape.

La pertinence de ce schéma de correction pour les données multispectrales est dânontrée

par un meilleur rendement que les méthodes conventionnelles d'analyse q)atiale. Cette

méthode globale semble une avenue prometteuse pour atteindre les objectifs de hante

résolution, grande sensibilité et de quantification précise des images de médecine

nucléaire.

Toutes les techniques développées dans cette étude peuvent être directement étendues aux

acquisitions à fenêtres d'énergie mukçles des modalités d^nageiie scintigraphiqne et de

tomographie monophotonique (SPECT).
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Chapter 1 Introduction

In brief, this work aims to improve the image quality of high resolution PET by

developing more efficient data processing, i.e. multispectral data pre-processing and

scatter correction, methods.

Principles of Positron Emission Tomography (PET)

In contrast with nnost of the other médical imaging techniques which provide anatonrdcal

détails of body organs, PET is a nuclear medicine imaging modality which provides

information about the metabolic and ph)rsiological fiinctions in living subjects such as

human body or animai Con:q)ared to Single Photon Emission Conputed Tomography

(SPECT) which is a competing modality, PET has higher sensitîvity, higher resolution,

higher quantitative accuracy (Sorensen and Phelps 1987), and most inçortantly, it uses

isotopes of the most prévalent elements (carbon, oxygen and nitrogen) found in living

Systems. While there are many excellent textbooks and articles introducing this technology

(Brooks et al 1981, Derenzo 1986a, Eriksson et al 1990, Koeppe and Hutchins 1992,

Mandelkem 1995, Sorensen and Phelps 1987, Ter-Pogossian et al 1980), the princçles of

PET is briefly desciibed below.

Shown in figure 1.1 is a schematic diagram of a conventional PET scanner which consists

of one or nx)re rings of detectors, data acquisition electronics, image formation and

display conputer system. The positron enûtting isotopes required for imaging are

produced by small cyclotrons and are currently synthesized into highly spécifie chemical

agents by automated system. These biologically active conçounds are localized in patients

or other expérimental subjects by injection or inhalation and enters the bloodstream. The



annihilation of the positron, which is emitted by the radioisotope, with an électron gives

rise to a back-to-back 511 keV photon pair which are detected by the PET scanner. By

sequencely relocating the detected events according to their projection direction and

position, the acquired data is rebinned into a data matrix caUed sinogram which is used for

image reconstruction. Visual display of tonwgraphic images provides qualitative

information for subjective diagnosis while modeling provides metabolk parameters firom

these images for quantitative diagnosis (Huanget al 1986).

Annihilafi

DetectOTS
Positroa
emittmg
, radioisotope

X

Signal
processmg

electronics

Data acquisiticHi,
processing &
image recoostirictiai

Image display
&ana]ysis

Figure 1.1. Schematic diagram showing the principle of PET scanner.

Constraint factors on PET imaging

In the last four décades, the enormous achievements in multi-discqilinary fields related

with PET technology have evolved from the initial concept of forming images using

annihilation y-rays (Sweet 1951, Brownell and Sweet 1953) to clinical instruments with

high resolution, high sensitivity and whole body scanning capabOities (GE Advance,

Siemens CTI ECAT HR+). Nowadays, PET is being increasingly used in médical clinics

and research laboratories ail over the world. However, the relatively short history and



high conçlexity of PET make it a still developing technology. Qualitative and quantitative

PET imaging are subject to many linriting factors related to image acquisition and

reconstruction, such as spatial resolution, System sensitivity, atténuation, scatter,

reconstruction and detector dead time. These factors afifect image quality and inpose

constraints on PET performance (Mandelkem 1995, Mazoyer et al 1985, Phe^s et al

1979, 1986, Snyder et al 1987, ̂^^Ison and Tsui, 1993). Although most of the factors

have been studied in the past and many techniques have been irrçlemented with the aim of

minimizing or correcting for their effects, novel data processing techniques and new

System design concepts need to be fùUy investigated to achieve best PET imaging

performance. Below, six major factors influencing PET performance are described and

discussed

Spatial resolution

Increasing the spatial resolution in order to more accurately image smaU structures has

always been a critical issue of PET scanner (Ingvar et al 1991, Marriott et al 1994). An

enpirical formula given by Derenzo et al (1993) summarizes the various con^nents

contributing to spatial resolution dégradation:

r = L25^/^7^T(âÔÔ22BfTi^ + ft̂  (1.1)

where, T is the overall reconstructed image spatial resolution, d is the scintillator crystal

wklth, D is the scanner ring diameter with whîch the acoUinearity of annihilation photon

pair is related, r represents the fuU-width-half-maximum (FWHM) of the positron range

and b the extra uncertainty when block decoding scheme is used. The &ctor 1.25

accounts for the dégradation of resolution due to tomographic reconstruction.



Rgure 1.2 illustrâtes the e£Eects of the various components in équation (1.1). According

to this figure, it is évident that the width of the scintillation crystal is the most det^ninant

con:q)onent of spatial resolution. Most inçortantly, this factor is directly controlled by the

designer. (Tonsidering the high energy of the photons to be detected (511 keV), a high

stopping power material such as Bismuth Germanate (Bi^GejOij, BGO), with the linear

atténuation coefficient of about 0.9 con^ared to 0.33 for Sodium lodide (Nal), must be

used to allow high détection efficiency with narrow crystals (Cho and Farukhi 1978).

When the scintihators are made narrower, the pénétration of obliquely incident gamma

rays through the crystals becomcs the main factor degrading the resolution ofif the center

of the scanner field-of-view. So there is a certain limit for scintillator crystal width d even

with the state-of-art materials.

The loss of accuracy introduced by two intrinsic physical phenomena, the fiill-width-at-

half-maximum (FWHM) of the positron range r in tissues before annihilation (Derenzo et

al 1986b) and the acoUinearity of the annihilation gamma rays, 0.0022D (Debenedetti et

al 1950), also dégradé spatial resolution. The blurring due to the finite positron range can

be reduced by sélection of appropriate emitters. For exançle, the most widely used

isotope "F has a relatively short range (r = 0.54 mni) because of its lower positron

energy. Using small detector ring diameters can reduce the effect due to acoUinearity, the

cost of doing so is the undermined resolution uniformity across the field of view(CarriCT et

al 1988).
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contribution from detector width is 1.25*(d/2). The contribution from
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System sensitivitv

The ultimate goal of a PET scanner designer is to optimize the signal-to-noise ratio (S/N)

in images. The signal is determined by the spatial resolution and détection efOciency of the

tomograph, and by the interaction of the annihilation photons within the objects being

imaged (atténuation and scatter, to be discussed in subséquent paragraphs). The primary



source of noise is the statistical variance which results from limited counts. As long

acquisition times and/or strong radioactive sources are not feasible in clinical practice,

increasing tbe scanner sensitivity is an inçortant way to increase signal, reduce stochastic

noise, and therefore maximize S/N.

As scanner sensitivity dépends primarily on the detector efficiency and effective solid-angk

of radiation détection, the state-of-the art PET Systems enploy detectors optimized for

these factors (Derenzo et al 1993, Lecomte et al 1984) and acquire data in 3D mode

(Michel et al 1991, Spinks et al 1992, Thonçson 1988). In spite of sub-optimal light

output and long photofluorescent decay time, the most common detector material used in

PET scanners today is BGO, because it has the highest stopping power anoong avaîlable

scintillator materials. However, the advent of LSO {LUjSiO^(Ce), Melcher and

Schweitzer 1992), which has a slightly lower stopping power but about 5 times more light

output, is likely to change this situation soon. As using analler scintillators would inprove

spatial résolution but at the cost of détection efficiency, some trade-ofif has to be made to

balance these two requirements. 3D acquisition signifîcantly increases the overall

efficiency as well as the fractions of the scattered events and random coincident events

besides the increased system conplexity and the cost of the System. These two undesired

events have to be corrected correspondingly under the new situation.

Non-uniformitv of detector efficiency

Détection efficiency dépends on the properties of detector (crystal size, scintillation

efficiency, coupling scheme, etc.) and, to some extent, on its operating condition (detector

bias, noise threshold, conversion gain, etc.). For a PET scanner consisting of hundreds to

thousands of detectors, the detector responses are generally non-uniform. The adverse

effects of this phenomenon on images must be rectified by normalization of detector

efficiency. This is usually realized by measuring an idéal uniform geometry source or a
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rotating line source and adjusting the count of ail detector pairs in proportion to their

efficiency (Casey and Hoffman 1986).

Except for some refinenient in adapting the existing method to 3D PET ( Défrisé et al

1991, Hofhnan et al 1989, Stazyk et al 1994), efficiency normalization bas been used as a

standard data pre-processing step. Recent developments in this subject include more

sophisticated normalization procédures with spécial considérations about: 1) simultaneous

spectral and spatial non-uniformity correction for multiple energy PET acquisition (Msaki

et al 1993a); 2) the différence in efficiencies between the scattered and non-scattered

events resulting from their différent energy and incident angle in fiilly 3D PET (OUinger

1994).

Random coincidence

A distinct feature of PET is electronic collimation, which is realized by measuring

coincidence events (Casey and Hoffman 1986). While two photons of an annihilation

event (scattered or not) induce a true coincidence, two photons originating firom two

simultaneous but différent annihilation events can also contribute to coincidence counts.

Such accidentai or random coïncidences shouM be removed, as they do not convey any

usefùl information about the source distribution.

The count rate of random coïncidences is proportional to the duration of the coincidence

time window and to the singles count rates of each coïncident detector (Evans 1955). To

minimize the random coïncidences, the time window should be as small as possilde. But it

must be wide enough, for exanple, larger than twice the FWHM of the system time

resolution, to detect nwst of the true coïncidences. So, the choice of the time window is a

conçromise between these two requirements. IdeaUy, the time window should vary.



depending on the count rate load on the scanner, to provide optimal S/N (Bohm et al

1986, Kourise/fl/1982).

Two widely used correction methods for random coïncidence events are: 1) measuring the

time window and count rates of singles in each detector to calculate the random counts; 2)

measuring the random coinckiences directly by delaying the signais from one of the two

detectors to avoid the true events. The first method requires extra circuits to measure the

singles count rates in each detector and the time window width of each coïncidence pair

must be known with high acciuucy to avoid systemadc errors. Its advantage is less

statistical noise because of the high count rates of single detectors. On the contrary, the

statistical noise of random events for the second method is high because of the low count

rate, but the hardware requirement for implementing tins method is snudler.

Atténuation

Photons arriving at the surface of the detectors are onfy a smaU fraction of the original

annihilation events. AnothCT fraction is lost due to die small solid angle spanned by the

scanner and because of Conqiton scattering and photoelectric absorption of photons within

the médium surrounding the source. This process is atténuation. Since PET records

coïncidence events, the atténuation factor for a coïncida detector pair dépends only on

the length of the corresponding chord within the attenuating médium. By using an

extemal source to make transmission scans with and without the imaged subject in place,

the correction factors for ail chords can be obtained and therefore accurate atténuation

correction can be achieved. This enables PET to jmivide quantitative images, which is an

inqiortant advantage of coïncidence measurement. However, as atténuation correction

factors can be very high, for exairqile, it is about 7 frir a head and as high as about 40 for a

chest, the atténuation correction has to be performed with high accuracy to avoid drastic

quantitative errors.
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There are several problems which han^r accurate atténuation correction method using

transmission scan. Fîrst, scattered events detected in the transmission measurements make

the atténuation appear to be lower than the actual atténuation {buildup ̂ ecf). Second,

the additional stochastîc noise due to counting statistics propagates into the corrected

émission data (Dahlbom and Hoffinan 1987). Third, any movement of the subject between

the émission and transmission scans introduces discrepancies between image pixels and the

corresponding atténuation coefficients. To overcome these problems, valions atténuation

correction methods have been proposed. They include: 1) using a rotating pin source and

a mask ( realized mechanically or electronically) to remove the scatter and random

coincidences (Carson et al 1988); 2) making simultaneous émission and transmission scans

to reduce the total scan time and therefore minimize the registration errors due to subject

movement (Thonçson et al 1989); 3) measuring singles instead of coïncidence events in

transmission scans to inçrove the statistics (deKenq) and Nahmias 1994); 4) smoothing

transmission data to reduce data variance (Chatziioannou and Dahlbom 1996).

It should be noted that the recorded émission data includes scattered events, while the

transmission data may or may not include scatter, depending on the measuring technique.

Hence, correction for scatter in both the transmission and the émission data is a

prerequisite for accurate atténuation correction.

Scatter

When annihilation photons interact within the média through which they travel, there are

three possible interaction types: Rayleigh (coherent) scattering, Conpton (incohérent)

scattering and photoelectric absoiption. In tissue, the Con^ton scattering is prépondérant

and the Rayleigh scattering is negligible because the energy of the annihilation photon is

high (~ 511 keV, Johns and Cunningham 1983).
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When Conpton scattering occurs between a photon and an electron, the photon changes

its direction and loses a part of its energy to the electron. Because of the uncotainty on

the position of interaction, a Conçton scattered photon carries poor information about the

original annihilation location. So if either photon of an annihilation pair is scattered, the

coincidence event being detected generally dégradés image quality. The scattered events

dégradé contrast by smearing counts from high activity régions into low activity régions,

introduce quantitative errors through inaccurate atténuation correction (Gardner et al

1992, Hoffinan and Phelps 1986, Jones et al 1992, Wienhard et al 1992, Henze et al

1983), and reduce the overall spatial resolution by broadening the true distribution

(Lecomte et al 1990, 1991). Scatter has initially received less attention than atténuation

until accurate quantitative imaging is at issue. Using smaller scintillator to inçrove

resolution (Derenzo et al 1993) and removing the septa to increase sensitivity (Spinks et al

1992) in modem PET Systems makes scatter problem more conçlicated (Bentourkia et al

1995) and more inçortant than ever (Thonçson et al 1992). Further discussions of

scatter is presented in more détail below.

Review of existing scatter correction methods

General

The aim of scatter correction is to con^nsate for the effects of scatto* in order to obtain

the best quantitative estimate of the activity distribution within the objecL Studies have

previously shown that scatter distribution is nonstationary and is influenced many

factors: the object geometry and conçosîtion (Frey and Tsui 1990, Bamey et al 1991), the

source distribution (Floyd et al 1984, Bamey et al 1993), the acquisition geometry and the

detector characteristics (Bentourkia et al 1995). Many correction methods have been

developed by exploiting varions aspects of the knowledge about scatt^, but only a few of
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them are widely recognized and even fewer have been tested and accepted for high

resolution PET.

Con:q)ared to PET, nwre SPECT Systems have been inplemented and naturaUy there are

more scatter coirection methods developed for it. As the imaging processes of PET and

SPECT are similar, the same photon propagation model can be derived for the two

Systems by sinçly giving a PET coincidence event the same treatment as the single event

of SPECT. Therefore, the coirection algorithms for the two Systems are to some extent

interchangeable. The différence of émission photon energy for PET and SPECT can be

accommodated by adjusting the relevant energy parameters in the algorithm. So the

methods reviewed hereafter are generally applicable for both PET and SPECT, except as

specified.

According to the way they treat the scattered photons, the existing scatter correction

methods can be classifîed into four catégories: 1) limiting the détection of scattered

photons; 2) coiipensating for the effects of scattered events; 3) weighting the events

detected; and 4) estimating scattered counts and making relevant correction. Briefly, the

princçles and the limitations of the methods in these four catégories are described below.

More detailed discussions can be found in an excellent review article (Buvat et al 199Sa)

and other literature (King et al 1992, Msaki et al 1996, Sorensen and Phelps 1987).

Limiting the détection of scattered photons

Since Conpton scattering changes the energy of the incident photons, energy

discrimination can be used to reject many of the Conçton scattered photons. However,

the limited energy resolution of PET and SPECT Systems prevents a conçlete rejection.

Usually, a window with certain width centered on the photopeak of the radioisotope (for

exan^ile, 126-154 keV for ®*Tc and 350-680 keV for 511 keV annihilation photons) is
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used to préservé the détection efiBciency while scatter is rejected. The center of the

window can be slightly shifted upward to inçrove the performance of scatter

discrimination (Koral et al 1986), but accurate quantification using this method only is

inpossible because the firaction of scattered photons in the photopeak window is

unknown.

Compensating for the effects of scattered events

These methods attempt to remove the efiiects of scattered photons without precisely

estimating their contribution. For exançle, in the efiective atténuation correction, the

buildup effect due to scatter is modeled as an effect fonction h(j:p,yp,JC,y), where

(jCp.y;,) and(x,y) are the positions of the primary event and of the measured event,

respectively. The atténuation process is then expressed as:

n{x,y)= no(x^,yp)b(x^,y^,x,y)e ' (1.2)

-jd')*
where and n are the emitted and detected counts, e ' accounts for atténuation on

chord /, / is the position variable on / and is the atténuation coefBcient at position

t. If a proper function h(jf,,y,,x,y) is avaflable, it is évident from équation (1.2) that

projection data free of the influence of scattered events can be obtained. HowevCT,

obtaining h(xp,yp,JC,y) for varions acquisition conditions is unrealistic and a too

conplicated problem to be cakulated accurately for every spécifie cases (Wu and Siegel

1984, Ljungberg and Strand 1990a). Using a sirtçlifîed buildup fiinction makes

inplementation easier, but introduces quantification errors in the corrected data (GiDand et

al 1991).
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There aie other simple conpensating correction methods for scatter, such as multiplying

tbe to be corrected image data by a scale factor related to the scatter fraction (King et al

1991), processing image data by fOters (Metz filter, Wiener filter, etc.) related with the

response function of the imaging System (Frey and Tsui 1993), and performing scatter

(King et al 1988) and other corrections simultaneously with reconstruction using a

conprehensive a priori détection probability matrix (Floyd et al 1985a, Bowsher and

Hoyd 1991, Frey et al 1993). While the assunptions made for these methods are

straightforward, their inplementation is conplicated because many factors must be

modeled at the same time. Usually these methods end up with introducing approximations

which damage their potentiaL

Weightlng the detected events

Weighting methods acquire data within a wide energy range. Each detected event is

relocated by multiplying the event coordinates with a predetermined weighting matrix

related to event energy (Halama et al 1988). Since the weighting matrix dépends on many

parameters, such as radioisotope, coDimator and especially the object being imaged, using

a predetermined weighting matrix seriously linûts the inplementation of these methods

(Devito et al 1991, Jaszczak et al, 1991). The ignorance of scatter nonstationarity and the

requirement for extra signal processing electronîcs represent additional disadvantages.

Estimating scattered events

The contribution of the scattered photons can be estimated either from the energy

spectrum or the spatial distribution of scattered events. Figure 1.3 illustrâtes how this is

done. The estimated scatter conponent is then subtracted from the original data or

lestoied to contribute to the image formation. Methods aiming at estimating scatter have

three évident advantages. Rrst, scatter problem is studied independently from atténuation

and reconstruction, this makes the estimation process simple to formulate. Second, the
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scatter con^onent can be estimated from measured data and a priori knowledge about the

acquisition systenx Se it is more flexible than weighdng niethods. Third, using the

physical description of the photon propagation process, varions scattCT correction schemes

can be formulated explicitly (Msaki et al 1996). According to the woric space where the

scatter distribution is estimated (figure 1.3), estimating methods can be further classified

into spatial convolution and spectral analysis catégories.

Line source projection profile

Spatial domain

Line responae
without flcatte Scatter re^xaiM

Figure 1.3a. The scatter conponent (shadowed) of a line source projection is obtained

by extrapolating the long tails on each side of the line source. This is an

example of using spatial distribution information to estimate scatter.

Photopeak window

K  H

Spectral domain

Scatter m

photopeikie^ao

Enagy

Figure 1.3b. Exanple of spectral scatter correction methods. The contribution of the

scatt^ed events to the photopeak is estimated by the shaded area which is

obtained by modeling the Compton continuum spectral informatioiL

Methods based on spatial convolution
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The data acquired by an imaging System can be considered as a nnxture of primary events

and blurring contributions due to Q)n:ipton scattering. Negkcting the contribution firom

random events and atténuation effects for sinplicity, the data acquired at one point in the

projection can be wiitten as:

p{x) = J t(x,)h(xp,x)dx, (1.3)

wherc p(x) is the counts measured at position x, /(a:,) is the primary projection of the

soim:e distribution, and is the System response function at jc for a source at x^.

The System response consists of a géométrie channel and a blurring channel

such that h{x^,j^ = + is also known as the

Scatter Re^nse Function (SRF). As the géométrie (primary photon) channel does not

have blurring effects other than the System intrinsic resolution, h^\x^,x^ can be replaced

by a delta function (King et al 1991). Representing by

h„{Xf,x-x^, Le. dépends on the source position and the distance between the

source and measurement position, équation (1.3) can be written as:

p(x) = jt(x,)l^x,,x-x,)clx,

= t(x,)(S>h(x^,x)

= t(x)+r(x,)0A^(x,,x)

There are several ways for obtaining SRF, iidiich inchide Monte-Carlo simulation (Beck et

al 1982, Floyd et al 1985, Acchkçpati et al 1989, Bendriem et al 1987), mathematkal

modeling (Egbert and May 1980), and phantom measurements (BaQey and Meikle 1994,

Bentourkia et al 1995a, Bergstrôm et al 1983, Prati et al 1993, Shao and Kaip 1991).

Varions assunçtions about , for exançle, assuming it as stationary or piece-wise
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nonstationary, have been made to achieve an approximated solution of équation (1.4) by

performing convolution or deçonvolution (Axelsson et al 1984, Bentovffya et al 1995a,

Bergstrom et al 1983, Msaki et al 1987). By explicitly distinguishing the difr(^nt scatta

coiTqK)nents corresponding to each sub-system (object, detector etc.), it is also possible to

process these conponents selectively according to their relevance to image formatioa

Varions scatter correction schemes can be devised (Msaki et al 1996) depending on the

choice to préservé or remove scatter in the image formation process (Links 1995).

Convolution Subtraction (CS) algorithm

Convolution subtraction (Axelsson et al 1984, Bergstrdm et al 1983, Msaki et al 1987) is

the most commonly used scatter correction algorithm for both PET and SPECT. In this

^proach, scatter is considered as detrimental to the image and should be removed. The

primary projection t is assumed to be formed only by the annihilation photons which are

transmitted through the object and stopped in the detector without undergoing Conçton

interactions. The scatter contribution is estimated by an intégral transformation of the

measured projection using the SRF and then sutoacted (Allard et al 1987, Bergstrôm et al

1983, Hoverath et al 1993, King et al 1981, Paans et al 1989, Prati et al 1993, Shao and

Karp 1991, Townsend et al 1989). From équation (1.4), we have:

tix) = p(x) - t(x^) 0 K[x,,x) (1J)

Using the approximation « p(:c)0A'jc(jrp,Jc), where is

obtained by fitting measured data (Bergstromcr al 1983), then

/(j:) = p{x,)0[<5(jf-x,)-/i;,(jc,,x)] (1.6)
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In this algorithm, both nonstationary and statîonary SRFs can be used. It should be noted

that the scatter coirected projection t(x) is the scatter-free distribution but stiU blurred by

the fînite resolution of the détection subsystem (Bentourkia et al 199Sa). Even though this

convolution subtraction procédure does not anplify noise, the statistical noise in t(x) is

relatively higher because of the réduction in total counts.

Deconvolution Restoration (DR) algorithm

Both the primary and scatter conq>onents are assumed to be useful to image formation for

this algorithm. The response of each sub-system is included in the overall System response

fiinction to form an inverse filter to restore the efifects of ail dégradation

processes in the measurement (Links et al 1990, 1992, Shao et al 1994a). A pre-requisite

for doing this is that the SRF must be symmetric and shift-invariant. Le.

h{xp,x^ = hl^x-Xp^. From équation (1.4), the primary projection distribution t(x) can be

obtained by deconvolution in Fourier domain:

t(x) = p(acj0FFr-'
FfT[A(ï-i,)]

(1.7)

Restoration methods can inq)rove the image contrast and resolution without significantly

degrading S/N because they preserve counts. However, the ançlifîcation of high

frequency noise has to be linûted. Methods using Metz and ̂ ^ner filters have been

proposed to restore only the low frequency scatter conçonent (Unks et al 1992, Kng et

al 1991). The assunption of symmetrical and shifr-invariant SRF can kad to significant

quantitative errors. In addition, the inclusion of object scatter in images would finaUy

reduce resolution and complicate atténuation correction (Msaki^/ al 1996).

Convolution Subtraction & Deconvolution Restoration algorithm
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After studying the characteristics of each conponent of the sj^tem response function in

high résolution PET, Bentourkia et al (1996) have developed a subtraction & restoration

method which subtracts object scatter and restores detector scatter without altering the

géométrie response. In this way, the undesirable scatter events from the object can be

removed while the useM scatter events from the detector are recovered. So this method

has some advantages over pure subtraction or restoration methods. When the detector

scatter intensity is small, such as the case for low resolution PET Systems, the effect of

restoration disappears and the algorithm is identical to the convolution subtraction

algorithm. This is the most relevant algorithm for the System used in this woric

Stationary and nonstationary SRF

Stationary SRF is defîned as h^[xj„x^ = Le. it is spatially shift-invariant

Most earfy works have been using spatially stationary SRF for scatter correction (Âxelsson

et al 1984, Floyd et al 1985b, 1985c, Msaki et al 1987, Mukai et al 1988). However,

neglecting the dependence of SRF on object and acquisition geometry makes accurate

estimation of scatter in several acquisition configurations inpossitde (Ljungberg et al

1990b, Msaki et a/1993b).

The nonstationary nature of scatter must be taken into consid^ation for accurate

quantification of PET and SPECT images. Several methods have been suggested to obtain

nonstationary SRF, which include measuring a line source placed at varying positions

within a suitable phantom (Bergstrôm et al 1983, Bentourkia et al 1995a) or using Monte

Carlo simulation (Ljungberg and Strand 1990, OUinger et al 1992, Waterson et al 1995).

A model using Singular Value Deconposition (SVD) has also been proposed to address

this problem (Lewitt et al 1994). Despite of the promising preliminary results rqwrted,

obtaining the nonstationary SRF routinely in the chnical settings still remains a major

problem to be resolved.
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Methods based on spectral analvsis

The investigation on energy-based scatter correction methods have been going on for

seme time. For exançle, the availabOity of a second window on imaging Systems has led

to the development of the dual window scatter correction in SPECT (Jaszczak et al 1984)

and more recently in PET (Grootoonk et al 1991). As more accurate energy information

spanning a broader energy range becomes available in SPECT (Koral et al 1988, Waggett

et al 1978) and PET (Lecomte et al 1992) imaging Systems, novel energy-based scatter

correction methods for these Systems have been proposed. The anticçation of a more

widespread use of such Systems has stimulated simulation studies providing more detailed

description of the energy characteristics of scattered events (Bentourkia et al 1995b,

1995c, Floyd et al 1984, Lecomte et al 1992, Thonçson et al 1992). These studies were

usefiil in formulating improved scatter correction techniques, whkh include the Trçle

Energy Window (TEW, Shao et al 1994), the Notched Energy Window (NEW,

Thonçson and Picard 1993) spectral fîtting (Koral et al 1988. Wang and Koral 1992),

Princçal Conçonent Analysis (PCA, Gagnon et al 1989) and Factor Analysis (FA, Mas et

al 1990, Buvat et al 1993). These methods differ in the assunptions made about the

energy characteristics of the true and scattered events. Their performance dépends on

how such assunçtions are used in the dérivation of the correction algorithms. Below, the

main catégories of spectral analysis methods for PET and/or SPECT are described. The

methods specially related to PET are highlighted.

Pixel-by-pixel spectral analysis methods

In these nœthods, the spectrum of scattered photons is estimated using the data acquired in

multçle energy Windows. Pixel-by-puel, the scatter contribution in the main data

acquisition window, which can be the photopeak window or a wider range, is rennoved.

Only primary events are left for image formation. Several methods using two or three
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energy Windows are based on the assunçtion that the scatter spectrum in the noain window

has a sinçle shape which can be estimated (King et al 1992, Pretorius et al 1993, Logan

and McFarland 1992). Although such techniques are easy to inplement, the rough

spectrum estimation can cause significant inaccuracies. Some other metluxls try to

deconpose the spectrum using a priori information about the system energy response

(East et al 1982, Koral et al 1988, Wang and Koral 1992, Maor et al 1991). However,

factors such as the spatially variant nature of scatter, make it difScult to obtain the relevant

a priori knowledge.

Global spectral analysis methods

By recording the spectrum of events over a wide energy range, a data set with both spatial

and spectral information is obtained. Shown in figure 1.4 is a schematic diagram of the

multispectral PET data set The coincident energy Windows of each line of response

(LOR) form a 2D energy spectrum (Lecomte et al 1992) as shown in figure 1.5. Like in

conventional PET, the set of LORs associated with each window pair (k,/) can be rebinned

into a sinogram in the projection space, which is called SDenergyframe.

Using existing mathematkal data processing tools, such as Principal Con^nents Analysis

(PCA, JoUifîé 1986) or multivariate analysis (Seber 1984), the corrélation between energy

fi'ames can be exploited to reduce the dimensionality of the data set The first few

conponents, which contain nx)st of the correlated structure information in the original

data set, are preserved for fiuther data processing. Depending on the physical assumptions

about these conçonents, certain transformation or spectral décomposition can

subsequently be performed to yield the scatter corrected data. Factor Analysis of Médical

Imaging Sequences ( FAMIS, Buvat et al 1993, Di Paola et al 1982, Mas et al 1990) and

Holospectral Imaging (HI, Gagnon et al 1989) are îçproaches based on this concept
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Due to the lack of theoretical support for the underlying physical hypothèses about the

piincçal con^nents, the effectiveness of the method HI remams to be proved. By

contrast, t^roaches based on FAMIS avoid hypothèses about the physical processes

involved by ençloying the factor analysis only as a step for reducing noise tainting the

data. Subsequently, pixel-by-pixel spectral decouq)osition is performed to extract a

scatter-fipee conçonent (Mas et al 1990, Buvat 1992). The need for a priori system

energy response information for each pixel inçoses significant difficulties to inçlement the

technique in cËnical applications (Buvat et al 1993). Till recently, almost ail the tests

dealing with the FAMIS methods have used simulated data (Buvat et al 1993, 1995b). No

^plication in PET bas been reported yet for either HI or FAMIS.

LOR
u

Energy k

\ Enargy«pao«

Prp}acilon spaoa

Hgure 1.4. The multispectral data set records both the spatial and spectral information of

detected events. Each projection point LORij in the projection space is

associated with a 2D energy spectrum in the spectral domain.
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Figure 1.5 An example showing the energy distribution (spectrum) of a line of response

(LOR) element in spatial domain.

Existing PET spectral analysis methods

Most scatt^ correction methods for PET are based on spatial convolution. It is only

recently that spectral analysis methods, such as Dual Energy l^ndow (DEW, Bendriem et

al 1993, Grootoonk et al 1991), Triple Energy Window (TEW, Shao et al 1994b) and

Notched Energy Window (NEW, Thonçson and Picard 1993) have appeared. In

princçle, ail these methods belong to the pixel-by-pixel spectrum analysis category

discussed above. Because of the conplexity of multispectral acquisition Systems for PET

and the difticulty of handling large dimension multispectral data set, no global spectral

analysis method has yet been tested in PET.

DEW is the only PET spectral analysis method which has been inpkmented in commercial

Systems and wttich, thus, has received continuons attention (Cutler and Hofihnan 1993,

Hairison et al 1992, Sossi et al 1995). It uses two energy Windows: an upp^ window

enconpassing the 511 keV positron annihilation photopeak, and a lower window
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accepting coincidences in which one or both photons dqwsit energy in a lower energy

range (200 keV - 380 keV). The true event count in the upper window is derived from

the knowledge of two pre-determined, unscattered and scattered event ratios in the two

Windows. The main problems with DEW technique include noise anplification (Bamey et

al 1994) and the difficulty in obtaining appropriate a priori ratios for varions imaging

object (Cutler and Hoffinan 1993, Harrison et al 1992, Sossi et al 1995). This method

will be analyzed further in Chapter 2.

New scatter correction methodology: multispectral PET
(MSPET)

Rationale

As mentioned earlier, most modem PET scanners use very small detectors to inprove

spatial resolution (Bloomfîeld et al 1995, Cherry et al 1996, Cutler et al 1992, Daghighian

et al 1994, Watanabe et al 1992). For exanq)le, the PET scanner in Sherbrooke is based

on 3x5x20 mm' individual BGO scintiHators (Lecomte et al 1993, 1994). The main

drawbacks of using small scintiHators are: 1) the decreased sensitivity resulting from the

lower intrinsic détection efOciency and the poorer packing fraction (Lecomte et al 1996,

Murthy et al 1994); 2) the increased statistical noise resulting from the lower counts in the

smaller pixels; 3) the increased inter-crystal scatter which reduces system sensitivity and

resolution (Bentourkia et al 1995b, Lecomte et al 1991, Moses et al. 1993, Murthy et al

1994, Shao et al 1996). However, it has been dennonstrated recently that by using a broad

energy window Gowering energy threshold), it is possible to preserve the usefiil

information resulting firom detector scatter and, therefore, to recover the system sensitivity

(Bentourkia et al 1996, Bentourkia and Lecomte 1996).
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As shown in figure 1.4, another advantage of MSPET is that it increases the degrees of

fi"eedom for data man^ulation. The eno-gy dependence of the multispectral data provides

valuable insight into the underlying physical processes. Using MSPET, it is easy to

acquire data for ail energy frames and study the energy dependence of varions scatter

parameters as presented in a recent work of Bentourkia and Lecomte (1996). Such

additional information about scatter can be used to design new, more efficient scatter

correction methods for PET.

When using broad window acquisition, the increased fraction of scattered events in the

acquired data requires more efficient scatter correction methods. HI and FAMIS methods

in SPECT have shown that multispectral acquisition provides more conçlete information

on the detected events and allows for more flexible data man^ulation. It is reasonable to

postulate that MSPET has the potential for improving scatter correction efficiency as welL

Maior problems

R-om the discussions about the existing scatter correction methods, it is évident that,

conçared to the methods based on spatial convolution which have relied explicitly on

photon spatial dégradation model (Msald et al 1996), there has not been a model which

includes the energy variable to describe the photon propagation process. This lack of

theoretical guidance causes diffîculties in developing spectral correction approaches.

Another common problem is that most existing scatter correction methods are confined to

information either in the spatial or q)ectral domain only, few methods developed up to

now has used both. Although such global considération would be the logical way to

optimally e}q>loit information in data. In fact, both the spatial and spectral information
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have inhérent characteristics of the measured photon events, they must be conskiered

together to ensure a more complété description of the physical détection process.

Several techniques oroposed

To fulfiU the need for theoretical guidance with energy-based scatter correction methods,

the energy variable will be introduced into the conventional photon spatial dégradation

model (Msaki et al 1996) to formulate a photon spectral dégradation modeL Energy-

dependent scatter correction methods such as DEW will be analyzed by this modeL

Multispectral Frame-by-frame (MF) convolution scatter correction, wherely spatial scatter

processing is conducted in each individual energy frame, is proposed as a method which

errçloys both the spatial and spectral informatioiL Anticçated problems for thîs approach

include higher statistical fluctuations due to multiple energy Windows, larger data storage

requirements and heavier conputatîon load. If the statistical noise in individual energy

frame can not be conpletely resolved, the potential benefit of the method might be

overwhelmed by the cumulated errors from each individual energy frame.

In order to advance the MF approach and to take fùU advantage of the spectral analysis

capability and data processing flexibility offered by multispectral PET, it is essential to

minimize the statistical fluctuations and systematic errors in multispectral data due to using

multçle energy Windows. By analyzing the origins of data variances, multispectral data pre-

processing techniques which consist of q>ectral smoothing, normalization for detector

efGciency and optimal data pre-processing sequence are proposed and studied to enhance

the statistical signifîcance of multispectral data.
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Princçal Conçonent Analysis (PCA) is proposed as an alternative noise suppression

technique using the concept of extracting correlated information anx>ng energy frames.

To unify the spatial and spectral analysis, the resuh of PCA will be subsequently processed

by the consécutive subtraction-restoration algorithm in the spatial domain to produce the

final resuit The essence of this method, referred to as Global Scatter Correction (GSQ

method, is to thoroughly exploit the information in data.
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Chapter2 Theory

Standard photon dégradation model & correction algorithms

Définitions

A high resolution PET System is considered as having two components in sériés (figure

2.1): the object (o) and détection (d) sub-systems. The response of each sub-system /

(i = o,d) to a point source of unit radioactivity is assumed to bave géométrie (h,^) and

scatter (h^^) channels in parallel which transmit unscattered and scattered photons,

respectively. As the intensity of the component(s) to be preserved for image formation in

each sub-system is to be normalized to unity, the géométrie and scatter responses are

expressed as and respectively. The weight factors and are the

géométrie and scatter fractions in the sub-syst^ total response, such that

fit + /if =1» i = o,d; and are the corre^nding response functions normalized to

unity.

idsal Projection

t

Object Detector

fcK+fJ
Measured Projection

Figure 2.1. Photon dégradation model for a System consisting of object (o) and

detector (d) sub-systems in sériés. Each sub-system bas a géométrie (g)

and a scatter (s) channel in paralleL The overall re^nse to the idéal

projection t produces the measured projection p^.

Model

Die data acquisition process can be expressed as::

Pm=t ® (fotKt + 0 + f^h^) (2.1)
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wherc the ̂ atial variables have been omitted for clarity. This model can be shown to be

the basis of most existing spatial convolution scatter correction niethods. The choice to

reform or remove scattered photons emerging from each sub-system forms varions scatter

correction schemes and déterminés the intensity of the true component in the measured

projection at the output of the System (Msaki et al 1996). We will limit the following

discussion to two algorithms. One is the widely accepted Convolution Subtraction (CS)

method; another one is the most relevant method for the high resolution PET used in this

woik (OSDR, Bentourkia et al 1996).

Convolution Subtraction (CS) algorithm

As mentioned in Chapter 1, only the géométrie channels are assumed to contribute usefùl

photons for image formation in this algorithm. Accordingly, each of these channel

responses should be re-normalized to unity. As the annihilation photons transmitted

through the object are not degraded by blurring, is sinçly a delta fimction. Adding

the normalization factors to équation (2.1) and replacing h^hy ô,

= '«{/A+/A+/A}

where the imaging system's response h = is the sum of géométrie

=A^), detector scatter object scatter

^foK- components. Following équation (2.2), the

measured projection can be e^ressed as the sum of three independent components:
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P- = + (2.3)

where 9 = Sj - and = fj%^. The scatter-free projection ̂  is simply obtained

by direct subtraction of the scatter distribution:

= Pm - Sj - s,

=p--'®{/A+/A} (2-4)

= [VùA'AVfy}

Since the primary projection t is not known a priori, one might just approximate

toK and = /0 by f^ti^ and fjh'j respectively, where

fl andhj are obtained by fitting the line source measiuement (King et al 1981,

Bentouikia et al 1995a). Then

Poa = P- - P« ® - P. ® fX

= p„ ® (<y-/X-/X)

However, this approach would be inconsîstent with the formulation of the model since

the detector scatter 10 [(%>•] in équation (2.4) does not have any dependence on
the object sub-system and, therefore, it ^ould not be estimated from the measured

projection which includes the dégradation effects of the object sub-system. In order to

overcome this difficulty, the object scatter-free projections p„ must frrst be obtained by

the convolution-subtraction,

Po = Pm-So = Pm® [S-fXo) (2.6)
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to remove ail events formed by photons which pass through the channeL One can

dien proceed U) remove die detector scatter using similar approximations to estimate

by Po ®fdKf(}~fo)y where the factor ]/(l-/j) is required to normalize the detector

scatter response to the intensity of a line source in air (without the object). This

reasoning leads to:

<P= P0-S4

= {p. ®(s-fX)}

According to équation (2.7), the CS algorithm seeks to obtain the scatter-free distribution

ç> which is still blurred by the finite resolution of the détection sub-system , instead of

the primary projection t.

Obiect scatter Subtraction & Detector scatter Restoration (OSPR)

algorithm

It has been shown that the benefîts of removing Sj are only marginal in terms of image

contrast, but are obtained at the expense of a substantial loss of scattered events which

reasonably résolve the source (Bentourkia et al, 1995a). Such events could be included

in image formation (Bentourkia et al, 1996). In order to incorporate a distinct treatment

of selected scatter components, the OSDR algorithm in which object aiui detector scatt^

are segregated as undesirable and usefùl events, respectively, has been established. In

this case, the idéal projection t is formed by ail aiuiihilation photons transmitted through

the object The dégradation process producing the measured projection is then given by:
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p. = 0 (f^h^+f^h^)

= t®{ft\+féK+foK}

where the géométrie (f^h^ =hj^), detector scatter UdK - /***) ̂ nd abject scatter

UoK = components are defîned sîmilar to diose in

équation (2.2). As both detector géométrie and scatter chaimels are consideied to

contribute useful events to image formation, the detector sub-system te^xHise fonction is

normalized to 1. Using the convolution subtraction algorithm in equatit» Q^6) to r^ove

the object scatter and rewriting équation (2.8):

P, = Pm-So

= P«®(5-/X) (2.9)

= t®(f,hf+fA)

Mthout attempting to recover fuUy resolution (Links et al 1992, Shao et al 1994a), the

restoration for the blurring effects of the detector scatter conqxxient to repoâtian events

in the géométrie component can be realized by solving équation ÇSt) using

deconvolution (Bentourkia et al 1996):

where the approximation 0 has been us«l; FT and FT^ are tiic forwaid and

inverse Fourier transforma, respectively. To implement dûs algoddun, die detector

response parameters, and are required. If they are obtaîned by fitting the line
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source projections in the presence of object scatter (Bentourkia et al 1995a), a

normalization factor -n—rrr is needed for the two scale factors. Equation (2.10)
(1-/0

becomes:

ç = p„®FT-1 (1-/0
/,+TT(fX)

= p.®(j-/>;)0n~'

(2.11)

Photon spectral dégradation mode!

The spatial scatter dégradation modei (Msaki et al 1996) has provided theoretical

foundation to the question of which scatter component in terms of its origin (object,

detector) should be preserved in or removed from image formation (Links et al 1995). A

similar question, i.e. which event in terms of its energy. shoidd be preserved in or

removed from image formation, arises in high resolution imaging Systems where the

lower energy threshold can no longer be a critical dividing line between predominantly

low energy scattered photons and predominantly high energy unscattered (primary)

photons (Bentourkia et al 1995b). To answer this question, the energy characteristics of

scattered and unscattered events have to be studied theoretically and experimentally.

Définition of energy variables

In order to keep track of the photon energy in the propagation process, sub-system

responses will be considered to have multiple energy channels transmiting photons over a

broad energy range. These multiple energy channels form what has been referred to as

the energy space (figure 2.2). Since PET has a two dimensional energy ̂ ace, a point in
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this space (e ) corresponds to an event detected with energy falling in a certain window

pair. In addition, two energy variables are needed to characterize photons traveling

through each sub-system: the input and the ou^ut photon energy. The primary photon

energy is denoted by e, and the resulting energy from a sub-system i ii = o,d) by e,.

Since the sub-systems are in sériés, the object will receive primary photons from the

source while the detector will receive a mixture of transmitted (e^) and scattered photons

(e„) from the objecL

Global définition of response fonctions

For multispectral System, sub-system responses dépend on the energy and position of

input events. For instance, the complété expression of the object response fiinction is

fcM^ot{^pyXo',ep,eg^, where and e, are the input position and energy of primary

photons, x„ and the position and energy of emerging photon from the object, and /„

the object scatter fraction of the sub-system response. Similarly, the detector géométrie

response fiinction can be expressed as: fdfhj^{x„,x/,e„,ej). Note that the parametos

and/i, (/ = o,d) are also fonctions of spatial and energy variables, which were omitted

for clarity. The semicolon in these expressions is used to separate the spatial and energy

variables.
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ij Cijk
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Figure 2.2. Schematic diagram showing the structure of multispectral data set A 2D

energy spectrum in the energy space is deHned for every LORij between

pairs of opposing detectors in the projection space.

Sub-svstem géométrie channel response functions

Since the annihilation photons transmitted through the object do not interact with the

médium, is simply a delta fimction in both the spatial and energy domains, such that

ho, - ̂-*0 -Cp). The detector géométrie response fimction can be assumed

to be a delta function in the spatial domain, but it has a complex spectral distribution in

energy ^ace which is determined by the détection characteristics of the detector

(Bentouikia et al 1995c), i.e.

hj, = hj,(x,,x/,e„,ej) = S{xj-x„\(e„e^)
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This is so because the géométrie channel of the detector sub-system does not change the

spatial distribution of incident photons whereas the events may be registeied at an energy

lower than that of the incident photon due to escape of the Compton scattered photons.

Sub-svstem scatter channel response functions

As have been reported by many groups (Adam et al 1996, Bergstrôm et al 1983, Bamey

et al 1991, Bentourkia et al 1995b, Thompson et al 1993), the object scatter channel,

outputs a smooth and broad distribution in both the spatial and the energy domains. Due

to the difficulty of locating the position of émission from object scattered events

measured, photons passing through the h„ channel have relatively little useful

information.

The detector scatter response hj, is formed by photons scattered in the primary detector

and detected by neighboring detectors. Because of the high stopping power of detector

materials, the spatial distribution of is narrow and centœd about the primary photon

incidence location (Adam et al 1996, Bentourkia et al 1995a). Its energy distribution

dépends on the source energy and acquisition geometry.

Model

Using the global définition of sub-system responses and rewriting équation (2.1), the

measured projection at point e^ in the energy space is:

Using the knowledge of sub-system response functions described above, we can expand

équation (2.12) as:
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Pm{x/ye^) = t{x,\e,)®[f^f^s[x,-x,\e,-e,)®[s{x,-x,)h^{e„e^"^
+fctf*S(x, -x,\e,-e^®hj^„x^\e„e^

^Lh,,(x,,x,\e,,e,)®[f^S{x,-x,%{e.,e,)+f^h^{xMe,,e,)^
= t{x/,e,)®[f„J^S(x, -x,)h^(e,,e,)

+fotf*K(xp,x/,e,,ej)

+fcfdt[K(xp,x/,e^,eJ)®h^(e„e^)\+f^f^[h„[x^,x,;e,,e,)®hj,(x„xy,e,,ej)^

+ fo,fd.hj.(x,,x/,e^,e^)

+fc^h^(xp,x/,e^,ej)]

(2.13)

wherc

fc^h^(xp,x/,e,,ej) =

fo,f^i[f^cM(xp,x/,e^,e,)®hj^ie^,e^)]+f„f^[h„(x^,x,;e^.e,)®h^{x,,x/,e,,ej)]

(2.14)

Equation (2.13) can be rewritten as:

P«fc)=ÇKO+^^(0 + ̂o(0 (2.15)

where ç)(ej) = ï(j:,,e,) 0 [/o,4A4f

and

= fc^tix/,e,)<S> h^(x,,x/,e^,e^)].
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Equation (2.15) describes the spectral photon dégradation process by expressing the

System response in a certain eno-gy framc. Its first term g>{ej) corresponds to the

annihilation photons transmitted through die object and detected by primary detectors: it

is a delta fonction in the spatial domain with a characteristic spectral distribution in

energy space. The second term is the detector scatter channel response whereby

photons transmitted through the object get scattered in the detector array before being

detected. This component is a slightly blurred projection of the source distribution. It is

therefore plausible to preserve and restore this component for image formation. But

before the restoration opération, this tam still falls into the scattered event category. The

third term is formed by object scattered photons detected by primary (A^) or

neighboring detectors (h^). As the distribotion of the object scattered photons is already

broad, the further blurring effect of the detector sub-syston does not significantly change

the characteristics of the measured object scatter component s„(ej). This third term is

considered to retain little information abont the source.

Because of the limited energy résolution of détection Systems, the detector lesponses,

and hj,j are in fact blurred by the system energy resolution fonction r[ej,e). The

projection measured in an energy window becomes:

= [pÀe,)®r{e,,e)]

=  + Sjiej) + (ej]®

The formula described above can be used to investigate energy-based scatter correction

methods and to guide the development of new q>ectral scatter correction techniques.

Multispectral scatter correction methods

Analvsis of the Puai Energy Window (DEW) method
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The spectral information obtained through multiple energy window acquisition holds the

promise of more sélective discrimination of sçattered and unscattcrcd photons and moïc

accurate correction for scatter in images ( Benali et al 1993, Gagnon et al 1989, Lecomte

et al 1992, Yao et al 1996a). The Dual Energy Window (DEW) scatter correction

method which represented the initial attempt to exploit the spectral information has been

implemented in toth SPECT (Jaszczak et al 1984, King et al 1992, Pretorius et al 1993)

and PET (Grootoonk et al 1991, Spinks et al 1992). Its simple implementation makes the

approach attractive. In addition, it is claimed to take into considération the scatter

originating from outside of the field of view (Grootoonk et al 1991, Naudé et al 1996).

However, the validity of DEW method has been questioned from time to time when

results showing its poor performance were reported. No rigorous explanation has yet

been given for the unsatisfactory results obtained by this method (Harrison et al 1992,

Cutler and Hoffrnan 1993).

The DEW technique in both SPECT and PET uses two energy Windows with the upper

one containing the photopeak (e^) and the lower one placed on the Compton région of the

spectrum (e,). The true (unscattered) event counts in the upper window T(e^) is derived

frrom a knowledge of the two pre-detomined ratios of scattœd (R^) and unscattered

events (R^) between the upper and lower energy Windows.

) = lEfe!ltiz£W (2.17)

where C(e„) and C(e,) are the total counts measured in each window. The DEW

method assumes that R^ and R^ are constant or simple functions of position for

difrerent configurations. This approximation facilitâtes the détermination of R^ and

values.
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It is évident that the quality of the conection technique gieatly dépends on the relevancc

of the pre-determined ratios and R to the actoal nieasurement conditions. By

definiticn of and R^ and équation (2.15), we have:

p  _ Cuntci^l)

{qKej)®r{ej,e)]
*=*t

{^e^)0r(e^,c)]

t(x^\e^)®h^{e,)

(2.18)

R

" CM

Me,)+sXej)]®r(e,,e\^

_ t(x/,e^)®h„(e,)
t(x,;e^)®h„(e,)

wheie C and are the unscattered and scattœd counts acquired fitom a phantom

measur^nent, and and are the unscattered and scattered channel responses of tiie

System:

(2.20)

Substituting and in équation (2.18) and équation (2.19), then
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{fosfdg[(.x/,e^)®h,^[x ;e e,)®r(e„e)V>
-  (2.21)

(2.22)
Li équation (2.21), r{e^,e) and t{Xp\ep) are common to both numerator and denumerator,

is determined by the distribution of h^^{Xp\ep,e^) in energy space, which is

spatially invariant In addition, hjgixy,ep,e^) dépends only on the détection sub-system

and is fiee of the influence from the object Therefore, is relatively stable for a given

System and the assumption about in DEW is reasonable. This conclusion is in

agieement with the observation made by Sossi et al (1995) and bas been used in

developing a modified DEW scatter correction method (Bendriem et al 1993).

Li équation (2.22), t{Xp',ep) and r{e^yé) are distributions with fîxed position and a smail

energy range, respectively. So is mainly dépendent on the scatter channel response

fiinction of the System h^. As shown in équation (2.20), is spatially variant

Therefore, R^ is a complicated fonction of position and object characteristics which is

contrary to the assumption of DEW. This feature of R^ has been noted by Hairison et al

(1992) as well as Cutier and Hoffman (1993).

As a spécial case, let us assume an idéal System with perfect system energy resolution

measuring a point source, i.e. t{Xp',ep) = h[x-xQ',e-ep) and r{ej,e) = h{e-e^), xO

being a constant. Then équation (2.22) becomes:
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fo,fj^f*^(xO,x/,e,,e^)+f^h^(xO,x/,e^,e,)
(2.23)

In accordance with works reported by several groups (Bamey et al 1991, Bentouikia et al

1995, Hairison et al 1992, King et al 1981) and considering only the object scatter

component for sin^licity, the scatter distribution in window e^ can be approximated by:

(2.24)

where and are the amplitude and shape parameters of the scatter distribution,

(xj - j:0) is the distance between the source and position on the projection. Combining

équation (2.23) and équation (2.24), we have:

R^ =
A^(;cO,e,)exp S^{xO,e,Xxj-xO)
i4^(*0,c,)exp

H

1

O

= K(jcO,e,)//4„(;cO,c„)]exp{[s^(xO,e,)- -xO)]
(2.25)

Because 5^(x0,c,) is not the same as 5^(;cO,e„), and A^(xO,e,) does not necessarily

have a simple relationship with A^(xO,e^) (Bentourkia et al 1995b), it is concluded that

is a complicated function of source position, object geometry and energy window

setting even for this simple configuration.

The above conclusion is unlikely to be changed if the former configuration is redefined to

include the source distribution and the energy resolution factor. Furthomore, since no

assumption has been made regarding the acquisition geometry, the conclusion generally

applies to Systems with différent detector assemblies, such as small individual detectors.
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continuous or block detectors. In other woids, the difîiculty of the DEW method

originntes only from its Mevant assumpUons. To make Uie technique applicable, a

systematic évaluation of the influence of varions factors, including source position, object

and detector characteristics, would be required to otoin families of curves describing

a wide range of object and System configurations.

As mentioned earlier, considération about scatter from Outside Field Of View (OFOV)

was an important feature of the DEW technique. This considération can be easily

incorporated into the proposed dégradation analysis. Assuming the OFOV source

distribution is then its contribution to detected events can be described as

object scattered photons detected by the detector. The only différence of this term from

that of équation (2.14) is the source distribution. Easy to see, the contribution of OFOV

scatter only further increases the complexity of R^.

Multispectral Frame-bv-frame (MF) scatter correction

& data pre-processing

MF convolution algorithm

The objective of this method is to perform scatto* correction more accurately in terms of

energy. The method consista of two steps: first, a selected spatial convolution scatter

correction algorithm such as CS is applied to each energy frame; second, ail the scatt^

corrected frames are summed together to give the final resuit Various spatial scatter

correction models can be used, but the OSDR model was chosen in this work. The

algorithm of the method is then expressed as:

(2.26)
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where the variable indicates an energy frame, the expressions about projection and

scattcr functions are the same as used in équation (2.11). The resolution factor and

spatial variables as used in équation (2.15) are neglected here for simplicity. llie

assumptions used to dérivé this algorithm are closed related with those used for the BW

OSDR method:

P. fX (^j) '(c,) ® (O (2.27)

and

« <e,)0 /j, (e,)® [fXeM /-fcKfe)]

(2.28)

Comparing the MF method and its approximations (équations 2.26-28) with that of the

standard single window mode OSDR algorithm (équation 2.11), we can see clearly that

MF method has the advantage of more accurate energy discrimination abillty over

algoritfams using only one wide window. However, it also has the disadvantage of having

lowCT statistics in practice, because data are processed in each oiergy firame. Since the

scatter corrected data are summed together to give the final resuit, the errors introduced

in each energy 6ame may accumulate.

To reduce the enoT introduced by the low statistics in individual energy frames,

multispectral data pre-processing techniques must be developed to reduce the exaggerated

data variance due to using multiple energy Windows and should be applied to measured

data before performing MF. Compared with the conventional single window scatter
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correction method, the combination of pre-processing and multiq)ectral MF scatter

correction would resuit in much heavier calculation load and data storage requireinent.

Multispectral data pre-processing

The additional degree of freedom provided by the multispectral acquisition facilitâtes the

design of variance reducing techniques firee of these drawbacks. By smoothing data

directly in the energy space, the spatial distribution of the measured events is not altered

since counts are not moved across the lines-of-response (LORs). Hence, it is plausible

that such spectral smoothing could reduce the overall variance of PET data without

degrading the spatial resolution, thereby overcoming the inhérent drawbacks of spatial

domain smoothing. Because the smoothing and normalization procédures are conducted

in the energy and spatial domains, respectively, the réduction of stochastic variances and

systematic errors is likely to be achieved independently. Moreover, since spatial

distributions are not changed, statistical fluctuations of random and émission data can be

reduced by smoothing the distributions indq>endently before or collectively after

correction of random events.

These postulâtes have been tested by comparing the ability of four smoothing techniques

in the energy space, which utilize varions amounts of prior spectral information to restore

distortions due to statistical fluctuations in both the energy and spatial domains. The

effects of the sequence in which smoothing, normalization of detector efticiency and

subtraction of random events are performed on the overall variance réduction have also

been investigated. The effectiveness of the spectral smoothing and pre-processing

sequences will be assessed by comparing the processed data, in both the spectral and

spatial domains, with reference data obtained in high statistics.

Définitions
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In most PET Systems, including the Sherbrooke PET Simulator (Lecomte et al 1990,

1993), detectors are grouped in set f in coincidenee with o^Josite set j. The collection of

lines-of-response joining detectors i and j forms a subset in the spatial domain which

will be referred to as the projection space. In conventional PET, this ̂ ace holds the data

sets Cfj formed by photons detected in coincidenee and R^j obtained &om an independent

measurement of random coincidences. The projection space forms a natural data set for

noise réduction techniques in the spatial domain (Casey and Hoftinan 1986). In

multispectral acquisition, events are further classified according to their energy. This

additional information adds another dimension to the acquired data, as shown in figure 2.2.

In this multidimensional space, each point is formed by the intersection of energy Windows

k and / of detectors i and J, respectively. The sériés formed by the energy coordinates is

the energy space which, upon acquisition, becomes occupied by data ̂ ijkl and Rijja. The

energy space forms yet another natural data set in which noise réduction techniques in

multispectral PET can be performed.

Origins of data fluctuations

Low statistics is the principal factor which compromises much of the potential high

resolution PET with multispectral acquisition capability can offo*. The statistical

fluctuations inherent in measured multispectral data can be given by:

where T and P stand for the true coincidences Qncluding scatter) and the prompt random

events, respectively. Their statistical déviations firom the expected values marked by * are

indicated by £. Since scatter and atténuation corrections are conducted in subséquent

processing steps, their variance génération potential will not be considered here. For this

47



reason, the sum of true and scatter coincidence events have been collectively denoted by T.

The net true coincidence counts T', obtained by subtracting r^donis estimated by m

independent measurement, is given by:

ij'yU i ̂{f)jU i ̂jU)~ {^IjU i )

where e* represents the fluctuations in the independently measured random counts R about

the expected value R*.

In order to explicitly include the systematic errors due to variations of detector efficiency

in variance estimation, the global mean counts in the projection space for true émission,

prompt and measured randoms vvill be denoted by and respectively. After

random correction, the overall variance of coimts acquired from a plane or uniform source

in one energy window pair (Jt,/) is given by

—  2 51 ~ (2.30)
iJMi

where the detectors in opposing arrays vary from j=0,lA...,wi-l and /=0,l,2,..,,in-l.

Expanding équation (2.30) and neglecting higher order £ terms, the variance in the

projection space due to uneven detector efficiency, low statistics and subtraction of random

events becomes:

0-31)
"* iJM) rn ij-o m ijM) ij^

where the systematic error due to variations in detector efficiency is:
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By définition, équation (2.31) can be written as the sum of the vaiiance due to systematic

crror (0%)^ and counting statistics of émission data , prompt random coincidences

(o^ and subtracted random events (0^ :

+ K)'+K)' (2.32)

Random subtraction is usually the first data correction in conventional PET. The

contribution of (crj,)^ can be neglected if the random distributions are estimated from

single event rates since the correction is then almost noiseless (Brooks et cU 1980). This is

not the case when random distributions are estimated from an independent measurement in

a delayed coincidence channel wha:e Attempts to reduce this variance by

smoothing random data in the projection space have beoi made (Casey and Hoffinan 1986,

Dahlbom and Hoffinan 1987, Sashin et al 1992) but these approaches are only valid if the

systematic variance resulting from différences in détection efficiency is low. This

condition is neither satisfied when acquisition is based on block detectors (Qieny et al

1995, Dahlbom and Hofhnan 1988) nor when the shs^ and intensity of multispectral data

acquired by différent detector pairs are significantly différent (Msaki et al 1993a). In these

situations, normalization for detector efficiency should be applied to both émission and

delayed random data before smoothing is conducted in the projection ̂ ace.

Variance réduction in the energy space

Variance réduction techniques performed in the energy space are introduced in this section

to overcon^ the limitations described above. In multispectral acquiâtion, each en^gy

frame is confined to one LOR. Since smoothing within an enm'gy ffame does not move

counts across LORs, the variance réduction is expected to be achieved without degrading
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spatial resolution. For the same reason, the émission and random data sets can be

processed independently. Yariance reduction by such spectral smoothing can be performed

in a number of ways using various degrees of a priori information.

Prior Constrained (PQ smoothing;

The most straightforward method to suppress statistical noise in energy ^ace is to

redistribute counts using a priori spectral information derived from idéal, high statistics,

error free distributions. For a given detector pair, the corrected distribution is calculated

according to the expression (Msaki et al 1994):

m

ijti

05 (2.33)
XT* se

kJ='L

where D refers to either the measured émission data the delayed randoms or the

random corrected data TiU' The data acquired in Windows below some cutoff L where no

useful signal is présent should be discarded. The idéal distributions taken as

references must be derived from a suitable high statistics measurement The underlying

assumption of this approach is that after suppression of statistical fluctuations, the spectral

shapes of émission or random data acquired in low and high statistics measurements would

be identical. Thus, the variance of distributions with low statistics can be reduced by

imposing the shape of the idéal distributions. The success of this method dépends on the

relevance of the chosen idéal distribution to a given study.

Weighted Smoothing (WS):
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Weighted smoothing is the simplest and most widely used direct method for reducing

variancc. Smooth distributions are obtained in the energy space by weighted sununaticns

of the form:

ÎZ? tzs

ojll = 2: I a-34)
t*a l*a

I I
K*k-a vs/'Hi

where 2a+l is the size of the smoothing kernel W^. The choice of the kernel size dépends

on the dimensions and the characteristics of the data to be processed. Since the useful size

of the energy space for the multispectral PET data used in this work is typically limited to

13x13, a kernel size of 3x3 (a=l) was used. The smoothing kernel W is thus given by:

W

b

h  b

1  b 1

(2.35)

The resolution of W can be adjusted by assigning a suitable weight to the paramet^ b.

Thus, the effectiveness of this technique can be adapted to reach a compromise between

noise réduction in régions with low count densities and q>ectral shape integrity of the

photopeak. In practice, the sélection of b will be based on statistics and, for this reason,

the WS technique is considered partially a priori.

Idéal Low-pass FiltCT (ILF):

For a given detector pair (ij), the réduction of statistical fluctuations in the energy matrix

Dij of one LOR can be achieved by scaling its 2-D Fourier Transform (FT) by an idéal

low-pass fîlter and finding the inverse of the resuit:

= /T-»{[Fr(D^)]/LF} (2.36)
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ILF is idéal since its intensity is 1.0 below some cutoff frequency The choice of this

cutoff frequency is idso a compromise between noise réduction and photopeak shape

distortion which can be adapted to the measured data.

Mean Médian (MM) smoothing:

This is an adaptive smoothing technique which preferentially provides significant

smoothing in uniform régions and selective noise réduction in régions containing edges

and other structural information. The processed distribution is given by (Maeda and

Murata 1987, Furuie and Mascarenhas 1992, Mascarenhas et al 1993):

+  (2.37)

where ^ tbe ratio of local variance in a moving window relative to the maximum
A

variance in the data set (k.l), is the local médian and Dijy is the local mean in the

moving window. For the same reason mentioned above, a window size of 3x3 was chosen

in this work. Except for the window size, no other a priori assumption needs to be made

when using the MM smoothing technique.

Variance réduction in the projection space

Normalization can be considered as a variance reducing technique in projection space since

it suppresses the systematic error resulting from non-uniform detector effîciencies.

Normalization in multispectral acquisition is effected by multiplying the measured data

Dij!^ by factors compensating for the variations of détection effîciency in projection

space and of spectral symmetry in energy space (Msaki et al 1993a):

(2.38)
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where: = 0.5^

are counts derived from a suitable effîciency measurement Note two important

features of the normalization procédure: fïrst, it is expected to have little or no effect on the

statistical variance, since the factors are usually derived from blank measurements

(e.g. plane source) with high counting statistics (Stearns and Wack 1993); second,

application of the équation (2.32) can be done independently on émission (C,yju) and

random (/î,yy) data or coUectively on the random event subtracted distribution (C,yy-/Î,yjy)

since the multiplicative factors are common to both distributions. Furthw réduction of

the statistical variance by smoothing in the projection space was not attempted in this work

because of its potential dégradation effects on spatial résolution.

Variance réduction by optimal pre-processing sequence

Permutation of R, N and S opérations:

In conventional PET, pre-processing procédures normally consist of subtraction of random

events (R) foUowed by normalization of detector efficiency (N). Since collective OW) and

independent (NR) normalization of the émission and random data sets are équivalent, the

question of an optimal sequence has not arisen in the pasL Howev», the introduction of

energy space data smoothing (S) applied to both émission and random data in multispectral

PET imaging gives rise to several possible pre-processing sequences. As in conventional

PET, the order in which R and N are performed is not important since normalization is

multiplicative. Similarly, as long as the same smoothing fonction is applied to both the

émission and random data sets, the ordra in which S and R are performed. Le. indepradent

(SR) and collective (RS) smoothing, is only important from the computational point of

view, since smoothing is équivalent to a convolution. The combination of these properties

leads to two distinct protocols in which the variance reducing opérations (N and S) are

permuted about the noise geno^ting opération (R): SNRsSRNsRSN and NSfeNRSs
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RNS. Only the order in which the variance réduction in the energy space (S) and the

projection space (N) is peiformed distinguishes the two protocols. Note that the

computational burden is increased whenever N or S occurs before R in the sequences, since

the N and S processes have then to be performed in parallel on both the émission and the

random data sets. Assuming that no smoothing is an alternative correction, then only the

collective RN, RSN and RNS sequences, shown in figure 2.3, need to be investigated.

Pieferential smoothing

Applying the same smoothing fimction (S) to both random and émission data neglects the

statistical différences which exist between the two distributions. Since statistics of the

random data set is usually poorer than that of the émission data set (" 16%), the use of a

preferential smoothing function may be bénéficiai. Smoothing of the random data set

alone (S^ and distinct smoothing of the émission and random data sets (S") have been

considered as variants of S in the pre-processing sequences shown in figure 2.3 and their

results were investigated in this woïk.

N RNR

Measured
SR N

Data

R N

RNS

RSN

Figure 2.3. Permutations of three data pre-processing procédures: random subtraction

(R), normalization (N) and spectral smoothing (S). S also holds for

protocols involving smoothing random data only (S^ and distinct smoothing

of the émission and random data set (S").
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Global Scatter Correction (GSC) method

Définition of data set

For a System with multispectral acquisition cq)ability, the energy is an additional variable

besides the conventional position index for the acquired data. The complété multispectral

data set can be expressed as a matrix P ci K rows and L columns. K is the total number

of Line Of Responses (LORs) in each energy frame and L the total number of energy

frames. Correspondingly, the row and column indices are spatial and energy variables.

A row of the matrix corresponds to the energy qjectrum of the LCR at the position of the

row index. A column corresponds to an energy frame obtained by rearranging the LORs

in the sinogram of a given energy window into lexicogr^hic order (figure 2.4).

Assuming that the energy firame measured at the point e, (/ = 1^,...,L) is written as a

column vector the multispectral data matrix P can be expressed as:

P = [p{^i) • • p{eL)] (2.39)

where each energy frame p(e,^ is the collection of LORs measured at energy e,.

IDW

cokimn

D

20 Energy spectrum o( a LOR
ri lexicographie order

LORs In one energy frame
ordered lexicographicaDy

Rgure 2.4. Multispectral data set teorganized in a 2D matrix.
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According to équation (2.15), pS^) = (p{e)+s^{e) + s^{e)^ so P can aise be written as

the summation of géométrie, detector and object scattered components;

p=r+s,+5,

where T, and are the data matrices coiresponding to the géométrie <p{e), deteetor

seatter s^{é) and objeet seatter s„(e) eomponents. Let 5 = 5^ + to represent the total

seatter eomponent, then P = T + S. In nuelear medieine measurements, the quantum

noise N is an important faetor whieh affeets the quality of measured data. It was not

ineluded in the energy dépendent seatter dégradation model in ordCT to simplify the

model and fœus on the energy dependenee problem of seatter eomponents. In faet, the

quantum noise or statistieal fluctuations for data aequired in multispectral mode is even

more eritieal beeause the eounts are distributed in the energy spaee. Ineluding the noise

term N in the data formation, then

P = ̂+5+^ (2.40)

Principal Component Analysis (PCA)

PCA is the spectral analysis step of the GSC method. Originally, this is a technique for

redueing the dimensionality of a data set in whieh there is a large numb^ of eorrelated

variables, while retaining as mueh as possible of the information presenting in the initial

data set (Jolliffe 1986). In this work, the réduction of data dimensionality is aehieved

along with the suppression of noise and seatter.

PCA is realized by fîrst transforming the original energy firames into a new set of

eomponents whieh are orthogonal to eaeh other and elassifîed in deereasing ord^ in

terms of information content Then only the fir^ few eomponents, the principal

eomponents, are preserved as représentative of the original data. Computation of the

56



principal components has been formulated as the solution of an eigenvalue-eigenvector

problem for a positive-semidefinite symmetric matrix by Pearson (1901) and Hotelling

(1933).

Singular Value Décomposition (SVD)

There are several algoritiims and commercial programs available for performing PCA.

The algorithm and program used in this work are Singular Value Décomposition (SVD,

Wilkinson, 1965) and the library function of PV_WAVE Qjmmand Language (Précision

Visuals Inc. 1991, Press et al 1990). Decomposing the multispectral data set P by SVD,

we have:

(2.41)

where = [^i is a vector orthogonal matrix, (/ = 1,2,..,L) are column

vectors of length K. A =

'«iX

is a LxL orthonormal matrix. It is

the matrix which performs the transformation between the original en^gy frames and the

new components. Assuming A„,(0 = ,then A = [A^(1) A^(2) • • A„,(L)];

Xi1/2

X^

Xt

is a LxL diagonal matrix, X,'s ordered such
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that ... and var[PA^(/)] = A,, where var( ) represents variance.

Rewriting équation (2.41) as;

f=[p{^>) p(^i)

where

P(^z.)]
(2.42)

M

(2.43)

These two équations are the SVD algorithm used in this work. Figure 2.5 shows the

structure of one principal componenL

ilh transformation vectf»'

4-(0

□ itfatransformedconqjonent

Figure 2.5. Illustration of the ith principal component of the multispectral data set
obtained by performing Singular Value Décomposition (SVD).

Spectral Décomposition Theorem (SDT)

Assuming that P has a known covariance matrix, Z = P'P, the (/j)th element of Z is the
covariance between /^e.) and when i ̂ j, and the variance of pifi) when i = j.

Then A, corresponds to the ith eigenvalue of 2, the corresponding ith eigenvector is
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A^(i), such that ^A^(i) = XjA^Q) (Jolliffe, 1986). According to the Spectral

Décomposition theorem (Mardia et al 1979),

I = (2.44)
M

Since A is an orthonormal matrix, i.e. A'^,(l)A^{l) = 1, then

traceÇL) = ̂^,trac^A^(l)Al^(l)]
1=1

= ̂X,trac^À^(l)A^(l)]. (2.45)
M

= 1^,

The variance A, represents the relative importance of the /th principal component as

the A, 's are ordered from large to smalL If the frames of P have substantial corrélation

among them, then the first few principal components will account for most of the

variation in the original data set F. Hence forth the first few principal components form

the best estimate of the original data set (Chapter 1, Jolliffe 1986, Mardia et a/, 1979).

The dimensionality réduction is thus achieved by keeping only the first few principal

components of P as its estimate (P):

M

Maximum dimensionality réduction for MSP ET

As P=r+S+N vaiiance-covariance matrix for P is wiitten as;
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I=p>

= (r+S+N)'(r+S+N) ^247)
=rT+s'5+iv'A^+sT+r'5

+N'T + r'N + N'S + S'N

Since statistical fluctuation is isotropically distributed in space and bas a zéro average,

the covariance between F and N, S and N can be neglected. Thus we bave:

Z = rT S'S+N'N+S'Y+r'S (2.48)

Using varO and covO to represent variance and covariance terms, then équation (2.48)

becomes:

var(P) = var(r)+var(S)+var(iV)
(2.49)

+cov(r ,s)+cov(s ,r)

As mentioned earlier, var[/'i4^(/)] = X,, wbere X, is tbe /tb maximum eigenvalue of X

and var[/M^(/)] conesponds to tbe variance of tbe /tb principal component Se tbere

is:

var[fti:^(l)) = A, (2.50)

Since A, = var[/'A„,(l)] = A^,(l)var(P)A^(l), using knowledge of équation (2.49), we

bave:

= 'la,/(lXvar(r) + var(S) + var(/V)
.  1 (2.51)+cov(r, S)+cov(S ,r)]A«,,(l)
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As r is the géométrie component, ail the energy frames of it must have the same

structure. In other words, F is only one component distributed over energy space. This

can be expressed as:

r = (2.52)

where is a column matrix similar to A^Q), it corresponds to the relative proportion

of in energy space. So the first component in équation (2.51) is:

(2-53)

and ûrA^,(l) are both scale factors and equal to the inner product of

A„,(l)andflr.

r  . 12 (2.54)
= ̂r[^«.(lK]

As A^(l)A„,(l) = ûrflr =1 and =1. therefore

^l»/(l)var(r)A^(l) = where 0^kr= A^(l)ap ̂  1 (2.55)

Similar to équation (2.42), S and N can be decomposed by SVD:

=  whereX = S,W
M
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Since the columns of A, A^,(i)i = l,2,-"Ly form a basis for L-dimensional space,

therefore

^X-colQ) ~ ̂̂ X-jl^ee{(j)
j-i

(2.57)

where C^_j, (X = S, N; j = 1^, .. L; 7 = 1,2, .. L) are appropriately defined constants.

Now équation (2.56) becomes:

M

^^X-il^colU) (2.58)

Using the knowledge that is orthonormal vector and A orthonormal matrix, the

second or third components in équation (2.51) is:

<„(l)var(X)4„,(l)

Yi^X-i^X-= ̂io/(l)var

-t^x-^Cl.X-

M

^^y-a^co/0) ^^(1) (2.59)

il

M

The right side of équation (2.59) can be explained as the variance of the X weighted by

the projections of A^_^(l) (/ = 1,2, ... L) on >4^(1). Similarly the covariance term in

équation (2.51) is:
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and

A»,(l)coy(r-.s)4^(l)

M LM
A-(i) (2.60)

A:^(l)cov(S-,r>4„,(l)= | (2.61)

So the two covariance components are the inner product oi T and S wdgjited by the

projection of Ag_^(l) (/ = 1,2, ... L) on A„,(l). Replacing die tains in équation (2.51)

by corresponding expressions obtained in équations (2.55-61), we bave:

Aj — ApÀrp +5)Aj_,Cj_j, +5L
M  M

(2.62)

IM

When the variance of the scatter and noise components is mnch kss than that of

géométrie component (Bentourida et al 1995a, 1995b, BergstrSm et al 1983, (3ian et al

1983, King et al 1981), the first principal component of P (4i^X is re^onsible

for the largest variance among the components of the new data set, will be mainly

determined by the géométrie component F. So the vectors and ̂ j., and equivalendy

^eoi(l) tij-, have very close direction in multi-dimensional ^lace, and the

approximation: ̂  = >l^(l)flr ® 1 can be made. So there is:

63



Aj - Aj. + X
M

+2A'?-
L

M

(2.63)

Lw

This is to say that the contains ail information related to the primary structure in data

set P, thus maximum dimensionality réduction can be achieved by preserving this

component only. As an example, the relative importance of the principal components for

a line source is shown in figure 2.6.
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Figure 2.6. The relative importance of the principal components in terms of their

variance for a line source located at S cm from the center of a acrylic

cylinder, AJ(total var ia/ice) = 97%.

In the case where the géométrie component F is not prévalent, the scatira' and noise

components contribute a non-negligible proportion to the total variance and the
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approximation: = i4^(l)ar « 1 is not valid anymore. However, if the variance of the

is dominant in the total variance and no other component contains a significant

fraction of the total variance. Le. ail the other components have about the same variance

intensity, the maximum dimensionality réduction can still be achieved by preserving tire

only. The reason is that the less correlated scatter and noise contributions are

distributed over ail the components, whereas most of the géométrie component is

concentrated in the because of its strongly correlated nature. Under this situation,

the r may not be fully preserved as in équation (2.63), but the benefit is the higher data

quality achieved by removing more scatter and noise at the cost of small amount of F.

This is illustrated in figure 2.7 where the relative importance of the principal components

is plotted for hot spot phantom measurement
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Figure 2.7. Same as figure 2.6 for hot spot phantom measuiemrat,

Xy ligotai varwnce) = 88%.

65



If several principal components cany significant fractions of the total variance, they

should ail be preserved in order to retain useful information. However, this was not the

case observed in our measurements.

Calculation of the

The sum of ail energy frames equals to the data set acquired in a broad window. From

équation (2.42), we have:

= P(BW) = X
/=1

(2.64)

This équation reflects one important feature of the spectral décomposition theorem with

respect to the physical meaning of the new principal components: the recombination of
new components forms the original data set in broad window, the coefficient

each component is from the conesponding transformation vector ( A^Q)).

As the constitutes the best replacement of the whole data set P, accoiding to

équation (2.46),

P = (2-65)

here is a KxL matrix. Each column of corresponds to its fraction in the

corresponding energy frame and ail the columns have the same structure (^,). Since

multispectral acquisition and analysis is a means to process data, the final image

formation data does not need energy information. So there is no need to ke^ distributing

^\pc individual energy window after PCA, which we believe has achieved
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optimal extraction of useful information in data. The can be regrouped into the

broad energy window:

L

(2.66)
(-1

Spatial convolution scatter correction

The projections of the and the corresponding original BW data of the centered line

source are presented in figure 2.8. It is clear that although preserving only the

reduces scatter background (projection tails) efficiently, scatter component still exists in

^\pe ( see also équation 2.62). Further processing in the spatial domain is required to

correct the scatter residue. The scatter kemel obtained from the of a line source

measurement is used for this puipose.

Various scatter correction algorithms based on spatial analysis (Msaki et al, 1996) can be

applied to the The most current approach is to process the projections individually.

Methods such as Convolution Subtraction or Deconvolution Restoration can be applied

depending on the System configuration to give the optimal results. For instance, the

Object scatter Subtraction and Detector scatter Restoration (OSDR) algorithm used for

the high resolution PET System has been implemented as following:

/;+fT(/>;) (2.67)

Statistical noise
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The additional component N in équation (2.40) usually only cames a small proportion of

the total image information in terms of variance. Because of its zéro average value,

quantum noise contributes to the without covariance contribution with F or 5

(équation 2.51). As statistical noise is unstructured in the sense that Poisson noise is

isotropic and less correlated, it is expected that ail the components obtained by

decomposing N are more or less equal. In other words, there is no spécial structure

which contains dominant component as is the case for highly correlated F component

Therefore, the component of N projecting on should have an intensity of about

1/Vl the initial intensity of N. This means preserving only the first principal

component can efficiently remove stochastic noise.

10

3W oiig

*»»•

2 ...5
£ 10

10
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-60 -30

Position (mm)

Figure 2.8. Comparing the original centered line source projection (BW orig) with its

obtained by decomposing the oringinal data by SVD. Both

projections are the sum of ail incidences.
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Chapter 3 Materials & Methods

A high resolution MultiSpectral PET (MSPET) scanner Simulator has been developed in

Sherbrooke (Lecomte et al 1990, 1992, 1993, 1994) to simulate a small animal PET

imaging systenL One inçortant objective of this System is to achieve more eÉBcient scatter

correction by taking advantage of the energy information of the measured events. Unlike

conventional PET, where the energy threshold décidés if the event should be registered or

rejected, MSPET registers coincident events in a sériés of 16 contiguous energy Windows

for each detector and thus defines a 2D energy spectrum for each line of response between

coincident detectors.

Expérimental setup

The schematic diagram of the Simulator is shown in figure 3.1. Two lead slice collimators

of 87.5 mm long were used to define a port diameter of 135 mm. TTie width of the

shielding gap was adjusted at 10.5 mm to include two layers of detectors. Two opposite

detector arrays, each consisting of eight dual-channel detector modules (Lecomte et al

1989,1990), constitute the basic détection units of the System. One array rq)resents 1/32

of a fiill animal ring tonrograph having 310 mm in diameter. The modules consist of two

individual detectors which can be operated independently. Each detector is made of one 3

mm X 5 mm x 20 mm BGO scintillator, coupled to one silicon Avalanche Photo Diode

(APD) with a 3 mm X 3 mm active area. The scintillator center-to-center distance in slice

is 3.8 mm and 5.5 mm axially. No into^lke collimator was used. In multispectral mode,

the data firom only one layer of detectors could be acquired. The signal fi:om the detectors

were processed using purposely developed electronics (Lecomte et al 1993) and data were
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recorded using a PC-based muldspectral analyzer (PC/MCA MCard, APTEC,

Downsview, Ontario) employed as an histogramming memory.

LORs

D
D1=0,1=7

1=1 j»1

Phantom

Lead
collimator

Rgure 3.1. Schematic diagram of the Sherbrooke multispectral PET Simulator. Each

of the two opposing detector arrays consista of eig^it detectors. Each

detector is capable of acquiring data in sixteen eno^ Windows. One

detector array and the phantom are rotated in a pre-determined sequence

for tomographic data acquisition.

Rxed measurements were made using the opposite detector arrays set up as shown in

figure 3.1. The projection space of the measured data in this case is a 8x8 matrix formed

by the 64 coincidence LORs (see figure 2.2). Tomographic data were collected by

scanning one of the detector arrays and by rotating the phantom in a soies of 144 différent

positions. For a fixed ring size and field-of-view, the sequence of positions is

predetermined (Héon et al 1993). The data acquiied in each energy window were

rebinned into projections and interpolated to a sançle distance of 0.95 mm before

reconstruction by Rltered Back Projection (FBP). A ramp filter was used for ah image
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reconstruction. Atténuation correction was not performed for several reasons. Rrst,

atténuation correction must be made after scatter correction, it shouid not influence the

conçarison of scatter correction methods. Second, the measurements of contrast,

recovery factors were made at about the same distance from the center of the hot spot

phantom, the différence of atténuation effect on différent spots is negligible. Third, the

phantom is relatively small (11 cm acrylic cylinder), the atténuation effect is kss significant

than large size objects.

Each set of measurements was repeated under the same conditions and for the same length

of real time to measure the randoms by the delayed time window method. With the source

activities used in this work, the random fraction (random / total) was about 16%. Since

detector signais were processed in parallel (Lecomte et al 1990, 1993), dead tinae losses

were negligible even at the highest count rates encountered. Because of the .qgnifinflnt

dependence of APD gain on tençerature, the System had to be operated in a tonp^ture

controUed environment in order to ensure a very stable (maximum variatioiKl°C )

température at the detector site.

Multispectral acquisition was realized by digitizing the energy signais from each detector

into 16 energy Windows and storing them simultaneously with the LOR address d^ned by

any two coincident detectors. Each contiguous energy window spans a range of about 43

keV with the threshold levels indicated in Table 3.1. The photopeak of each detector was

centered between window 11 and 12.

A conçlete data set consists of 16x16 energy frames, which corresponds to kj = 0,15 in

figure 1.4. Only data with energy higher than 129 keV (k4 >=3) were kqrt for image

formation considering the low signal-to-noise ratio at lower energy. The data acquiied in
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multispectral mode provkled the flexibility for grouping the data into any desired window

mode, such as Broad Window (BW), Conventional Window (CW) etc.

Phantom measurements

Several sets of measurement were made for testing the techniques proposed in this work.

The acquisitions with fixed detector arrays were made for assessing the effectiveness of

the energy space smoothing techniques and data pre-processing sequences. The

tomographic measurements were used mainly for testing scattCT correction methods.

Table 3.1. Lower and upper thresholds of multiple energy Windows (each window is

about 43 keV wide).

Window number ThresholdOceV)

0 0-43

1 44-86

2 87-129

3 130-172

4 173-215

5 216-258

6 259-301

7 302-344

8 345-387

9 388^30

10 431-473

11 474-516

12 517-559

13 560-602

14 603-645

15 646-688

Fixed acquisitions

Plane source
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The émission scan from which the efficiency normalization fsictcrs were evaluated was

acquired with a high activity (42 ̂iCi/cn^) plane source of 22Na in air for 12 bouts. From

experience, this acquisition time is sufficiently long to consider statistical fluctuations in

the normalization measurement negligible Le. about 3% or less relative standard déviation

(Msaki et al 1993a).

Flood source

The émission measurement and the associated delayed random coincidences wCTe obtained

from a cylindrical flood source of ̂ ^Na, having a diameter of 110 mm and an activity

concentration of 9.1 |iCi/cc, for varions acquisition times ranging from 2.5 minutes to 12

hours. This measuren)ent was used to assess the effects of spectral snx)othmg on low

statistics data in the energy and the projection spaces.

Line source

Measurements were obtained from a line source of ̂^Na (0.84 mm effective diameter, 2.8

|iCi/mm) placed at the center of an acrylic cylinder of diameter 110 mm. In this

configuration, the LORs which pass through the source are such that /=y. The acquired

data were rebinned into 15 parallel projection bins for each window pair. This

measurement was used to evaluate the effects of spectral smoodiing on spatial distribution.

Tomographic acquisitions

Line source measurements

Measurements were made using the same ̂ Na line source at the cent» and at 50 mm firom

the center of a cylindrical phantom of diameter 110 mm and height 25.4 mm fiUed with

water. Stationary and position-dependent scatter kernels were derived from the centered

and off-centered line source projections, respectively (Bentourkia et al 1995a).

Considering the low random contribution and the added statistical noise that would be

introduced by random subtraction, no random correction was performed on these data
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sets. Data were also acquiied with the line source placed at 10 mm firom the center of the

cylindrical phantom in order to test the effects of the scatter corrections on spatial

resolution.

Hot spot phantom measurements

The effects of scatter corrections on image quality in terms of relative sensitivity, contrast

and activity recovery were evaluated from measurements performed with a hot spot

phantom made of acrylic and having eight hoUow cylinders of diameters varying from 2.0

to 22.7 mm fiUed with a water solution of ̂^Na, as shown in figure 3.2. Conçared to the

very high spatial resolution of the system ( » 2.1 mm), the largest hot spot is big enough to

produce significant amount of scatter events for assessing scatter correction methods.

Unit: mm Acrylic
22

20 3.4

><
22 bMhgmndROl
Na

V 33.5
lO
C4

15
13.0

110.0

Figure 3.2. Hot spot phantom used to assess image quality with the various scatt^

processing methods. The eight hoUow cylinders have their axes located at a

distance of 28 mm from the center of the disk and were filled with a water

solution of ̂ ^Na. The shown background Région Of Inteiest (ROI) is the

cold région used for image évaluation.

These tomographic measurements were also used to test data pre-processing techniques.
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Data pre-processing techniques

Choice of smoothlng narameters
Prior Constrained (PC) smoothing
MM ^

The idéal distributions taken as the référencé energy spectrum for the émission and

random data in équation (2.33) were derived from the 12-hour plane source measurement

While not typical of ail cases, these spectral distributions were assumed to represent

suitable estimâtes for nwst common situations. In the S smoothing protocols, the émission

distribution C,yjy was used as Dp, to process both the émission and random data. In the

protocols involving S'or S", the random distribution from the same 12-hour plane

source measurement was used as Dp, in snwothing the random data sets. The Hgtfl

acquired in Windows below the cutoff L=3 where Cyi^j and Rij/d become conparable were

discarded. According to équation (2.29), this condition is satisfîed when the data consists

of no signal.

Weighted Smoothing (WS)

For consistent results, it was found necessary to adjust the value of the & parameter as a

fonction of statistics in the weighting kernel of équation (2.35). Using the flood source

measurements, the energy frames of each of the 64 LORs were smoothed by équation

(2.34). The b parameter was aUowed to vary from 1 to a maximum value such that the

photopeak height in the high statistics spectra was reduced by no more than 5% afitCT

smoothing. The relative déviation between the smoothed energy data and the expected

spectra derived from the 12-hour flood source measurement was estimated by the

normalized mean-square error (NMSE), described below. Plots of NMSE vs b were made

and the optimum b determined from the lowest NMSE value. The mean of these optinuim

b parameters as a fiinction of statistics are shown in figure 3.3 for the émission and the

random data from the flood source. For similar acquisition times, the energy spectrum of

the randoms has more statistical fluctuations, but is also less sharply peaked around 511
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keV. This is why the mean optimum b values for random data are sometimes lower than

for émission data. The same b value deiived from the émission data was used to process

the émission and random spectra in the S protocol, while the optimum b value for randoms

was used in die S'and S" protocols to smooth random coincidence spectra.

'f Q - ,-JfniMion data
^ ̂  ̂Random data

fr l'jytT

/

/

5 -

—

/i
/ t
/ /
/  /

/
/

A

10 IC^
Counts/LOR

10'

Rgure3.3. Optimum b paramet» of the Weighted Smoothing (WS) kernel as a

fùnction of statistics for émission and random data.

Idéal Low-pass lUter (ILF)

In order to détermine the optimum cutoff frequency of the ILF filter, the 2D energy

spectra were first strçped of energy Windows below the threshold L=3 and then 2D

Fourier transformed. For typical intermediate and high statistics data, more than 90% of

the Fourier spectrum is concentrated into the lower frequency range corresponding to

v^3 mndow^y as can be observed in figure 3.4 {top right). Eliminating higher

fiiequencies with an ILF of cutoff frequency =3 window^ successfully suppresses

statistical fluctuations in the 2D enCTgy spectrum while preserving the photopeak shape

(see figure 3.4, bottom left). Further investigation using NMSE showed that
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Vj = 3 window'^ was the optimum choice in ail cases, except for spectral smoothing of low

statistics random data (< 8 counts/LOR) where a k)wer cutoff fiequency was found more

advantageous. The ILF cutoff fiequency was set at v, = 3 window^ in ail S protocols and

was reduced to = 2 window^ as needed for random data distributions based on S'and

S" smoothing.

Evaluation of variance réduction

The smoothing techniques and pre-processing sequences are expected to reduce variance

by producing snx)other distributions with shapes similar to that of corresponding reference

distributions obtained in high statistics. The performance of the varions protocols was

evaluated by conçaring the processed low coimt distributions, in both the energy and

projection spaces, with the high statistics (ejpected) distributions using the foUowing

validation criteria.

Energy space

Ideally, spectral smoothing would remove statistical fluctuations in the 2D energy spectra

associated with each LOR, thereby producing smootho' distributions with
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Rgure 3.4. Illustration of the ILF smoothing algorithm for low statistics émission data

from the flood source. Clockwise: 2D energy spectrum; Fourier spectrum of

the 2D energy spectrum obtained by 2D Fourier transform; ILF fîltered

Fourier spectrum using V, = 3 wndow^\ ILF smoothed 2D energy spectrum

obtained by inv^se 2D Fourier transform.

shape approaching that obtained in high statistics. The normalized mean-squaie error

given by (Mascarenhas^/ al 1993)

NMSEij (3.1)

kJmL
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was used to assess the extent to which the smoothed distributions (where S holds for

PC, WS, ILF and MM) in the energy space matched the shape of the e}q)ected energy

spectra D*jf^ obtained in high statistics. These référencé distributions were obtained from

the corresponding 12-hour flood source measurement and normalized to the number of

counts in the smoothed distributions.

Projection space

In principle, the corresponding index NMSEi^i can be used to assess similar effects in

projection space. However, in the case of a uniform phantom where the same count

density is expected for ail LORs, a measure of the fluctuations about the mean is preferred.

For a given window pair (k.l), such fluctuations about the mean count in the

projection space is simply given by the relative standard déviation:

%SDu=m^ (3.2)

Spatial distribution

In order to assess the effects of spectral smoothing on the event spatial distribution in

projection space, the data acquired from the line source with the fixed detector arrays were

rebinned into 15-bin parallel projections for each window pair (k,l). The expected

projection is a sharp peak aligned to the source location and surrounded by a flat

background. Due to the limited number of points in these projections, the fuU-width-at-

half-maximum (FWHM) is not appropriate for estimating resolution. A more suitable

index which is less sensitive to statistical fluctuations and which takes the whole spread

function into considération is the auto-correlation width, detined as:

/yo (3.3)
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where is thc count number in projection bin p and energy window index w,

w = (16 - L) * (/: - L) + (/ - L), assuming a lower energy threshold such that This

concept of auto-correlation width was used previously to measure the width of line spread

function in projections (Lecomteeta/1984, Schmitte/a/1986).

Another index which is more sensitive to changes in the background is the weighted

projection déviation Q/VPD):

H'ra = E{(P-P.)*C,.}7X<^'-' (3.4)pw ! pw

The central projection bin corresponds to the location of the source in the projection.

A successful variance réduction protocol is expected to yield WPD values doser to the

limit obtained in hîgh statistics.

Scatter correction

Scatter kernels

Nonstationary kernels for object and detector scatter in aU window modes were extracted

from the off-center line source measurement (Bentourkia et al 1995a). The stationary

scatter kernels were extracted from the projections of the centered line source summed

over ail incidence angles. The energy dependence for both stationary and nonstationary

kernels was obtained by deriving the kernels in each individual energy window, as

described elsewhere (Bentourkiad al 1995b).

Scatter correction protocols

Window modes
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In order to evaluate tbe proposed Muldspectral Frame-by-frame (MF) convolution and

Global Scatter Correction (GSQ methods, the acquired nsiltispectral data were regrouped

into four window modes: Conventional Window (CW), Broad Wîndow (BW), MuM-

Frame (MF) and MultiSpectral (MS) modes. The CW mode was acconplished by

summing ail acquired data within the energy range 344 - 658 keV. In the BW mode, the

sum was extended to include data down to the lower threshoki of 129 keV. The

Multispectral Frame-by-frame (MF) mode was inçlemented differently for stationary and

nonstationary scatter corrections in order to conçensate for tbe effect of low statistics in

individual energy frames: in the stationary correction, ail multçle enCTgy Windows over

the same energy range as for BW were used; in the nonstationary correction, only two

energy Windows set to 129 - 429 keV and 430 - 658 keV were used. When MF was

performed in combination with multispectral data pre-processing technique (RNS), tbe

multispectral data set were first smoothed in the energy q>ace and then regrouped into

four designated energy frames (two energy Windows for each detector). The raw

multispectral data forms the MS mode.

Protocols

AU acquired data were corrected for random coïncidences and normalized for détection

efficiency (Msaki et al 1993a) unless otherwise specified. The four eoo'gy window modes

(CW, BW, MF and MS) and the two sets of scatter kernels (stationary and nonstationaiy)

formed eight major scatter correction protocols. The comlnnation of data pre-processing

( including spectral smoothing) with stationary and nonstationary MF formed another

protocoL The data in the CW and BW modes without scatto* correction, as weU as the

MS data after spectral analysis (PCA), were evaluated as reference.

Indices for assessing image aualitv
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The ability of the techniques to inçrove iirage quailty was assessed by indices of

résolution, contrast, quantitative accuracy and noise characteristics.

Resolution

The FWHM (fuU-width-at-half-maximum) and FWTM (fuU-width-at-tenth-maximum) of

the reconstructed image of a line source at 10 mm from the center was used to evaluate

the image resolution recovery. The resolutions were obtained by averaging over the

radial and tangential profiles through the line source.

Relative sensitivity

The gain in sensitivity by using différent window modes and scatter correction schemes

was estimated as the ratio of overall counts in the processed to the corresponding CW

images of the hot spot phantom.

Contrast

The percent image contrast was calculated from the reconstructed images of the hot spot

phantom as:

CP. (D)-CP^
IC(D) = 100 X—2 (33)

CP^(D)

where CPh is the average counts/pixel in selected region-of-interest (ROI) of the hot spots

of diameter D and CPc is the mean background counts4>b(6l in the background ROI at the

center of the phantom (figure 3.2).

Relative recovery factor
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The relative recovery factor is a measure of the loss of quantitative accuracy due to

spillover effects resulting from scatter. It is evaluated with the hot spot phantom

according to the formula:

RF(D) = 100x^ (3.6,

where the largest hot spot {Dmaid is assumed to be free of errors associated with the

partial volume effect. This index of activity recovery shouM not be confused with the

Recovery coefficients extracted to correct for partial volume effects (Hoffinan and Phe^s

1986).

Relative standard déviation

The relative standard déviation (%STD) was evaluated as:

Jî(c,-My
I — innJL^%SrD = 100 (3.7)

M

where C, is the number of counts in pixel i and N the total number of pixels in the ROL

This index was used to estimate the anplifîcation of statistical noise resulting from the

scatter corrections. The mean counts^ixel (M) and %STD were evaluated in ROIs

defîned in the second largest hot spot and in the background ROI (figure 3.2) of the hot

spot phantom image.

83



Chapter4 Results

Multispectral Frame-by-frame (MF) scatter correction

& data pre-processing

Multispectral data pre-processing

Yariance réduction in energy space

Smoothing methods

The performance of the différent smoothing techniques was assessed by evaluating NAfSE^j

as a fùnction of statistics for the flood source measurement, using the émission and random

energy spectra obtained in the high statistics 12-hour measurement as the expected

distributions. Results from detector pair (5,5) are presented in figure 4.1. Sekcted 2D

energy spectra from the same detector pair, before and after MM smoothing, are conpared

in figures 4.2 and 4.3 for émission and random data, respectively. The choice of this

detector pair was purely arbitrary and the conclusions reached below equalfy apply to other

detector pairs.

As expected, the energy distributions are severely distorted in low statistics and the NMSE

is high. These distortions become moderate in intermediate and absent in high statistics.

The PC smoothing is observed to produce the best results since it fufly recovers the

expected spectral shapes irrespective of the counting statistics (NMSE^). Ail otho-

smoothing techniques are successful at reducing the stochastic fluctuations in low to

intermediate statistics émission data (<2000 counts/LOR), thereby producing smoothed

distributions which are doser to the expected distributions. We also note that these

techniques are more efficient at reducing variance in random data. This is a conséquence of

the flatter spectral distribution of the random data which suffers kss distortions fix)m the

smoothing process than the émission data. These results suggested that independent
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smoothing of the random and émission data would be a better option than collective

smoothing. ILF smoothing is the most efficient overall, whDe MM anoothing converges to

a higher value than the other methods in high statistics.
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Rgure4.1 Normalized mean-square error (NMSE) as a function of statistics for

différent smoothing algorithms. Tlie émission and random data from the

flood source measured by detector pair (5^ were used. The high statistics

émission and random spectra were taken as the e]q>ected distributions in

Computing NMSE.
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2.5 min
232 counts

MM smoothing

20 min
1514 counts

•sT

12 hours
53800 counts

.y

y

Rgure4.2. Variation of spectral shape and texture of the measured (/eft) and MM-

smoothed (right) émission data acquired from the flood source by detector

pair (5,5) in low (above), intermediate (middle) and high statistics Qwttom).
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2.5 min
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MU smoothing
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Figure 4.3. Same as figure 4.2 for random data.

Effect of spectral distribution

In order to investigate the effects of spectral distributions on variance réduction, the

smoothing methods were applied to data acquired from the line source. The spectral shape
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is significantly différent when the LX3R passes through (P4 4) or misses (D4 J1) the

source, as can be observed from the distributions shown in figure 4.4. It is also évident

from this figure that PC smoothing is accurate in the &st case, but fails to restore the

correct distribution in the latter case. This is because the idéal distribution used for PC

smoothing, which was derived from the plane source measurement, is inadéquate to

process data from LORs off the source position. Similar évaluations (not shown) have

indicated that the other three smoothing techniques, which do not require a priori

knowledge of the spectral distribution, do not suffer from this drawback.

Pre-processing sequence

The same data acquired from the flood source by detector pair (5,5) were pre-processed

following the three sequences shown in figure 2.3, with and without preferential

smoothing of the random data. Selected low statistics data smoothed using the WS

technique are compared to the RN high statistics data in figure 4.5. The NMSE

evaluated as a function of statistics for the différent pre-processing protocols is

presented in figure 4.6.

The conparison of the RN processed data of figure 4.5 with the corresponding

émission and random data in figures 4.2 and 4.3 indicates that the subtraction of

random events and the normalization for efficiency cause substantial noise

anplification and spectral shape distortions in low statistics. The conventional RN

sequence would thus be of Uttle value with typical multispectral PET data where

distributions are expected to have very few counts. Preferential smoothing of the

random data set (S*) in either the RS'N (not shown) or RNS' sequences leads to

insignificant variance réduction and negligible improvements of NMSE. The need for

•  • • • • • *

nunimizmg statistical fluctuations in both the random and the émission data is clearly

demonstrated by the results obtained with the protocols involving S or S".
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Figiire 4.4. Energy spectra acquired from a line source by détecter pair (4,4) whose

LOR passes through the source and detector pair (4,3) which misses the

source. Left: Distributions obtained from high statistics measurement (24

hours) and normalized to a 20-minute acquisition time. Right: PC-

smoothed distributions of the 20-minute measurement obtained using the

plane source measurement as the idéal distributions.
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Rgure 4.5. Conparison of spectral shape and texture for selected data pre-processing

sequences. The data are from low (2 J min) and high statistics (12 hours)

measurements of the flood source acquired by detector pair (5,5). WS

smoothing was used. The high statistics RN corrected distribution (top

right) was used as the expected distribution for conputing the NMSE values

leported in figure 4.6.
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processing of the randoms in the S" protocol also showed no ̂ parent benefit. Irrespective

of statistics, the RNS sequence appears nx)re successful at reducing variance. The sKght

shape distortions observed with the RSN sequence suggest that, for best results, the

systematic conponent of the variance needs to be reduced by normalization of detector

efBciency before attenpting to reduce the statistical con^nents by energy space

snx)othing. Other évaluations by using the ILF and MM snnoothing techniques have led to

sûnilar conclusions.
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Figure 4.6. Normalized mean-square error (NMSE) as a fiuiction of statistics for

différent data pre-processing sequences. Results for the energy data

measured firom the flood source by detector pair (5,5) and smoothed by the

technique are shown.

Variance réduction in projection space

Smoothing methods
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the detector configuration used in this work, a flood source is expected to generate

approximately the same count number in every LOR between the two fixed arrays of

opposite detectors. The indirect effect of ̂ïectral smoothing in the spatial dontain was

thus assessed by the relative standard déviation of the projection data. Results are

presented in figure 4.7 for window pair it=/=ll. As no normalization for detector

efficiency was made, the 24% and 17% SD values for the high statistics émission and

random data before smoothing should be attributed solely to the systematic errors of

detector efficiency. These are natural limits whkh energy q)ace smoothing aims to

achieve for this window pair.

AU spectral smoothing techniques were capable of reducing %SD in projection space. PC

and WS smoothing techniques converged nicely to a plateau at the targeted %SD values.

The other two snnoothing techniques reduced %SD down to about 21% and 13% at high

statistics for émission and random data, respectively. This is beUeved to be a conséquence

of the overcorrecting effect of these techniques on the photopeak value in the energy space,

as pointed out above. Similar efiects bave been observed in lower energy Windows,

although %SD values weie higher.

Fre-processing sequence

The same data acquired fix)m the flood source by window pair Â:=/=ll is shown in figure

4.8 after pre-processing by several différent sequences. A short acquisition with an average

of less than 10 counts/LOR is conpared to a long acquisition having more than 2000

counts/LOR. The %SD as a function of average counts/LXDR is plotted in figure 4.9 for the

différent pre-processing sequences. The ILF smoothing method was used througbout for S,

S'and S".
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The plot in figure 4.9 indicates that the contribution of systematic error to the variance is

prominent if the average counts/LX)R is larger than about 100. The noimalization in RN

makes this contribution to %SD drop firom 26% (after random subtraction) to a few percent

only with high statistics. Smoothing of the émission and random data in the RSN or RNS

protocols decreases %SD by an approximately constant amount (~20%), irrespective of

statistics. Preferential smoothing of the random data in the RNS" (and RS"N) protocols

reduces %SD fiirther slightly, while smoothing of the random data set only (S) is inefBcient

These results confirm that spectral smoothing in energy space can be successfùl at reducing

the statistical variance as the systematic errors are suppressed indq)endentty by

noimalization in projection space. Similar tiends were noted in ail energy Windows.

I  I I I I I I—I—I I I I I  I I I 1 I I

60
I I I I

0 1)Wvndow Ofmt Rccw

PC

50 wsA-

ILFA-

MM

ARan Raw

40 PC

ws

ILF/y

uuA-

30

A.

20

% <r

10 ■  * ■ I  1 1,1

10 100 1000

Average counts/LOR
10000

Hgure 4.7. Relative standard déviation (%SD) of the projection ̂ ace distributions for

émission and random data acquired from the flood source in window pair
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(11,11) as a fùnction of average counts/LOR for the four smoothing

algorithms.

RN
min

RN
12 hours

RSN
2.5 min

fl» /

RNS
/f 2.5 min

RNS" RNS"
2.5 minmm

Fîgure4.8. Corrçarison of projection space distributions from a flood source for

différent data pre-processing sequences. Low (2J min) and high (72 hours)

statistics data acquired by window pair (11,11) are displayed. ILF

smoothing was used.
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Rgure4.9. Relative standard déviation (%SD) of the projection space data from the

flood source m window pair (11,11) as a function of average counts/LOR for

différent pre-processing protocols.

Effects on spatial distribution

Multispectral projections of a line source after RN and RNS, where S is either PC, WS, ILF

and MM smoothing, were studied. The effect of ILF snooothing can be assessed visualfy in

figure 4,10. RNS protocols using other smoothing tetdmiques produced simOar t^pearance.

The overall spread of these line source distributions was evaluated as a function of total

counts by the average autocorrélation width, AAW (figure 4.11) and the weighted projection

déviation, WPD (figure 4.12).

Although it is clear that statistical fluctuations indnce noise in the distributions about

source location in low statistics measurements (figure 4.10, left), the resulting distortions

do not affect resolution significantly, on the avoage (curve RN in figure 4.11). The WPD,
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which is more sensitive te noise in the background away from the source location,

decreases steadily as statistics increases (curve RN in figtne 4.12). As statistical

fluctuations within the energy space (along the w axis in figure 4.10) are nnostly

responsible for these effects, spectral smoothing overcomes these effects by suitably

rearranging counts according to the expected energy distributions. A significant réduction

of the background noise (as measured by WPD) and some inçrovement of resolution is

obtained with ail techniques except the PC smoothing, for which s)^tematic déviation

pattems occur (see figures 4.11 and 4.12). This is an indirect conséquence of aberrations

induced by this technique when the prior assunptions are not vaM, as this was shown to

be the case with a line source. The event repositîonîng along the energy axis which leads

to some minor ejfects on the width of the line spread fonctions is observed to be roughly

independent of statistics and smoothing techniques (excludingPC smoothing).

Yariance réduction in images

Ejfect on spatial resolution

The FWHM and FWTM evaluated fi"om the reconstructed line source images are

presented in Table 4.1 for selected energy Windows in the Conçton (window 6: 259-301

keV) and the near photopeak (window 11: 474-516 keV) régions of the spectrum. The

FWHM of RNS corrected data inçroved in the lower energy firames while the FWTM

remained almost the same for both RN and RNS sequences. These results verify the

hypothesis that smoothing in the energy space would have little detrimental effect on

spatial resolution. It is noticed that spectral smoothing reduces the FWHM and FWTM

for low statistics energy frame.
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Rgure 4.10. Multispectral projection data acquired from the line source processed by RN

and RNS for a low statistics (2 J min) uieasurement Projections are shown

as a function of the window pair numberw = \3*(k-3)+(l-3) for k,I>3.
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Rgure 4.11. Average Autocorrélation Wdth (AAW) of the line source projection

distributions as a function of total counts for the RN and RNS processed
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data. Only Windows it,/=9~14 were used to avoid AAW from being

dominated by low energy profiles.

i
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Rgure 4.12. Same as figure 4.11 for Weighted Projection Déviation ̂ PD) index (k,l ̂

3).

Table 4.1. FWHM and FWTM evaluated from the images of the line source at 20 mm

from center. Q)nventional (RN) and multispectral (RNS) data pre-

processing techniques were applied on data.

FWHM (mm) FWTM (mm)

RN RNS RN RNS

(6.6) 3.8 3.2 7.7 7.6

(6.11) 3.1 3.1 6.4 6.5

(11.11) 2.7 2.7 5.2 5.2
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Table 4.2. Average counts and standard déviations in the largest bot qwt and

background ROI in the hot spot phantom intage after being processed by

conventional (RN) and multispectral (RNS) data pre-processing protocols.

Hot spot Background

RN RNS RN RNS

(6.6) 8±5 9±3 15±15 14±7

(6,11) 33±9 33±4 9±11 8±4

(11,11) 120±17 109+12 4±7 4±2

Table 4.3. Contrast evaluated for the largest hot spot of the hot ̂ t phantom image

after being processed by conventional (RN) and multispectral (RNS) data

pre-processing protocols.

RN RNS

(6,6) 0.14 0.32

(6,11) 0.31 0.61

(11,11) 0.51 0.76

Effect on multispectral images

A Visual inspection of the images shown in figure 4.13 clearly demonstrates that data

smoothing in the energy space in conjunction with normalization in projection space

significantly inproves statistical accuracy and shaipness of the multispectral image sériés.

As we move fi-om window 6 to window 11, the statistics increases fixim 21,791 counts to

179,125 counts, in proportion of the energy distribution. The effects of spectral

smoothing were to suppress fluctuations in both the hot spots and background (see Table
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4.2) and to inçrove image contrast by 49% to as much as 129% in the Windows with low

counts (see Table 4.3). A sinûlar tzend was obsmed for other Windows.
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Rgure4.13. Images of hot spot phantom acquired in selected en^gy frames and

processed by the RN and RNS sequences. Windows 6 and 11 correspond

to the energy ranges [252 - 293] and [462 - 503] keV, respectively.

Multispectral Frame-bv-frame (MF) scatter correction

The first multispectral scatter correction method proposed, the MF method, was conçaied

with the methods using CW and BW acquisition modes. Both statîonary and

nonstationary scatter kernels were tested with the OSDR scatter correction algorithm.

The conventional and multispectral data pre-processing protocols, RN and RNS

respectively, were performed in combination with MF scatter correction. The smoothing

algorithm (S) used is the Idéal Low-pass FîltCT (ILF)- The CW and BW data without

scatter correction performed are presented as references.
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Table 4.4. Conçarison of the effects of the différent scattcr correction protocols on

spatial resolution, relative sensitivity and relative standard déviation.

%Sen. is the sensitivity relative to the CW mode for each scatter correction.

%STD(H) and %STD(C) are the relative standard déviations calculated

from second largest hot spot and background ROI, respectively. The RN

data pre-processing protocol was used in ail cases and spectral smoothing

was used for MF (RNS), where S is the lU algorithm. The scatter

correction algorithm for ail scatter correction protocols is OSDR.

No scattCT

correction

Stationary kernel Nonstationary kernel

CW BW CW BW MF MF

(RNS)
CW BW MF MF

(RNS)
%Sen. 100 172 100 157 175 168 100 159 160 166
FWHM 2.88 2.91 2.82 2.81 2.84 2.83 2.82 2.80 2.84 2.84
FWTM 5.36 5.35 5.48 5.51 5.36 5.10 5J3 5.63 5.55 5.13
%STD(H) 10.4 10.4 11.2 11.5 13.8 14.2 11.7 12.1 13.0 12.6
%STD(C) 44.9 32.3 83.6 78.3 80.8 87.3 106.5 106.8 102.5 81.4

Table 4.4 shows the results of relative sensitivity, spatial résolution and relative standard

déviation obtained from processed data. M scatter correction protocols with the BW and

MF modes inçroved sensitivity by over 50% relative to CW without significant

dégradation of spatial resolution. When combined with the multispectral data pre-

processing (RNS), the MF protocols apparently yield smallCT FWTM than other protocols.

This is in accordance with the observation in figure 4.11 and 4.12, whereby the AAW and

WPD were reduced aftCT ençloying spectral smoothing. If the corresponding CW FWTM

is used as the staiulard, then this smaller FWTM can be considœd as an déviation induced

by spectral simothing. The %STD in the hot région of the hot q)ot phantom image, ie.

%STD(H), is higher for MF protocols conpared to CW and BW mode, which might be

the resuit of accumulated variances in energy fiâmes. The q>ectral smoothing slightly
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aggravate this effect when many energy frames. Le. too little counts in each energy frame

(thc stationaiy MF protoçois), were used. Thé s revwsed when less energy firames (the

nonstationaiy MF protocols) were used.

Images processed by the scatter correctioD protocols using stationary kernels are

presented in figure 4.14. As it is hard to visually perceive différences between these

images, the profiles through the 15.8, 13.0 and 9.7 mm hot spots (see figure 4.14) are

provided in figiu'e 4.15. The effects of stationary and nonstationary scatter correction on

contrast and relative activity recovery are evaluated quantitatîvely and compared in figures

4.16-17 for ail the protocols.

Cl^ orig BW orig MF OSDR

mm

Cïï OSDR BW OSDR

m
m,

MF OSDR
(RXS)

•Â-

Rgure4.14. Hot spot images conparing the ̂ fect of Multispectral Rame-l^-fiame

Object scatter Subtraction and Detector scatter Restoration (MF OSDR)

with that of Conventional Window (CW) and Broad "Wndow (BW) modes.
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M protocols excq>t the one indicated RNS used tbe conventional data pre-

processing technique (RN) and stationaiy scatter kernel S in RNS is the

ILF spectral smoothing algorithm. Tbe CW and BW Hata without scatto:

correction (orig) are shown as refoences.
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Rgure4.15. Profiles through the 15.8, 13.0 and 9.7 mm hot spots in the images of

figure 4.14. The position of the profile is indicated in the top-left image of

figure 4.14.
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While ail scatter correction protocols with the BW and MF are shown to inçrove contrast

and activity recovery, using nonstationary scatter kernels consistently achieves better

results. The nonstationary BW OSDR method is the most successM at inçroving

contrast (figure 4.16) and recovering activity (figure 4.17) in small ROIs. The

performance of MF protocols, whether using RN or RNS data pre-processing techniques,

is consistently inferior to that of BW mode in terms of contrast, activity recovery and noise

characteristics (table 4.4). This resuit suggests that: 1) the postdate of MF is inherently

déficient in terms of accumulated errors firom making approximations in each energy

frame; and 2) the smoothing algorithm and the data pre-processing protocol are not

efficient enough in practical measurement situation.

Relative to the CW and BW protocols, the MF protocol using conventional data pre-

processing technique (RN) is observed to be more sensitive to the nonstationarity of the

scatter fiinctions. The mdtispectral data pre-processing (RNS) procédure amended the

performance of stationary multçle window MF method but degraded that of the

nonstationary two window mode in terms of contrast and activity recovery. As a resuit,

the MF protocol became less sensitive to the nonstationarity of scatter fonctions when it

was combined with RNS. This observation clearly demonstrates the two sides of the

snwothing technique: inçroving statistics and introducing déviations. When statistics is

low, as is the case of using mdtiple Windows for stationary MF, the benefit of smoothing

is dominant; When statistics is relatively high, as is the case with the two energy Windows

used for nonstationary MF, inposing a pre-determined filter on data introduces déviations

without tninging much inçrovement of the statistical significance. In these situations, the

benefit of smoothing is overwhelmed by its disadvantage.

Global Scatter Correction

106



Results of spectral anaivsis

Prindpal components

The first six principal components obtained by applying Singular Value Décomposition

(SVD) to a multispectral hot-spot phantom data set are shown in figure 4.18. The

relative intensities of the images can be deduced from the quantitative information given

in table 4.5. It is évident that the first principal component carries most of the

information of the original data seL Although the hot spot pattera in the third principal

component is clearly recognizable, its intensity is very low. The other components

simply do not have the structure of original data. The components with higher ord^

(«th principal component, « S 7, not shown) are similar to the case of sixth conqmnent

.  ..

FC2li

i ,, . y '■ .

PC4i

<:• ». v-

'  A-

Figure 4.18. The images of the first six princqial conçonents of the multiqiectral hot

spot phantom data obtained by Singular Value Décomposition (SVD).
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Table 4.5. Quantitative information on the six principal components in figure 4,18.

The maximum pixel values and total counts are given.

Max. value Total counts

K 1863.34 4959160

PC2 0.028 53

PC3 0.037 24

PC4 0.042 53

PC5 0.028 36

PC6 0.042 51

Variances of principal components

The component variances for the hot spot phantom data are plotted in figine 4.19.

Assuming that the image structure information is well represented by the variance of the

data matrix, the dominant importance of is évident

flx/o

fîx/o

'< 4y.10' -

2x10

100010 100

Component index
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Rgure 4.19. Variances (or eigenvahie) of the princçal con^nents obtained by

decomposing thç hot phantom multispectr^ data with S VD.

Transformation coefficients

Figure 4.20 présents the transformation coefficient vectors, A„,(IX / = 1^...6, for the

principal components shown in figure 4.18. The coefficients are plotted in the 2D energy

space where the two energy axis correspond to the energy of each coincidence event

^ee/(0 coefficients can be interpreted as the weight of the original energy fiâmes to

the principal components. The transformation coefficients of (top left image) has a

high degree of similarity with the high statistical émission energy spectrum presented in

figure 4.5 (top right). This is in accordance with the physical interprétation that most of

the photopeak région are true events which give usefiil structure information about the

imaged object We note that the coefficients of the third principal component aie

exclusively concentrated in the photopeak région, which explains why the hot-^t

pattem in the corresponding component image is clear even though it has very low

statistics (figure 4.19 and table 4.5). The coefficients have features which are difficult to

interpret physically.

of the line source measurements

The effects of PCA on off-centered line source data set are. presented in figure 4.21. The

projections for the off-centered line source were chosen at one arbitrary incidence angle.

Qearly, the PCA reduces the intensiQ^ of scatter tails. It is also observed that the peak

régions were not changed and there are still scatter component left in the J.
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Figure 4.20. The transformation coeffïciait matrices for the first six principal

components plotted as the function of 2D energy variables.
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Figure 4.21. Corrçaring the original off-centered line source projection (BW orig) with

its obtained 1^ deconposing the original Hata by SVD. Both

projections are firom a incidence angle randomly sdected.

of the bot-spot measurement

The projections shown in figure 4.22 was taken firom one aibitrary angle of the hot spot

phantom sinogram. Sunilar to the case of line sources, PCA significantly reduced the

counts in the background and the hot spot régions remains abont the same. While the

cold région of the projection indicates that scatter was noc removed completely, it is

necessary to use spatial scatter correction techniques to obtain the optimal resuit
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Figure 4.22. Conparing the projections of the Broad Window original (BW orig) data

with the of the hot spot phantom measurement The incidence angle

was selected arbitrarily.

Comparison of GSC and other methods

The performance of the GSC method is assessed by comparing it with the OSDR scatter

correction in both stationary and nonstationary modes with the Conventional Window

(CW) and Broad Window (BW) settîngs. The scatter kernels extracted from of the

multispectral line source measurement Figure 4.23 shows hot spot phantom images

processed by varions correction protocols. The results from the original (orig) data in

CW and BW modes are also shown as references. Since it is not easy to see différences

from these images, the corresponding profiles at the location indicated in figure 4.23 are

shown in figure 4.24. Several image indices will be ^ployed for performance

comparison.
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Rgurc 4,23. Conçaiison of the effects of various spectral and spatial scatter correction

protocols on hot spot phantom data. Nonstationary k^iel extracted firom

BW line source data was used for GSC Normal BW and CW scatter

kernels were used respectively for BW and CW OSDR algorithns. The

original CW and BW images are shown as référencés. The image of the

is also presented to show the resuit of spectral analysis by SVD.
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Kgure 4.24. Image profiles through the 22.7 and 13.0 mm hot spots in the images of

figure 4.23.
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Spatial resolution, relative sensitivity and relative standard déviation

Table 4.6 shows the spatial lesoluticn (FWHM and FWTM) evaluated by averaging ovct

the radial and tangential profiles through the image of the line source at 10 mm from the

center of the acrylic cylinder. It is apparent that ail the scatter correction methods have

about the same effect on resolution, the différences are negligible.

The effect of scatter correction protocols on sensitivity is also summarized in table 4.6.

Similar to what reported in the MF protocol section, using events over a broader energy

range in high resolution PET improves System sensitivity more than 50% before and after

scatter correction. Similar results are obtained if the calculation is made by using the

counts in the largest hot spot of the hot spot phantom image.

As one of the objective of this study was to test the effect of scatter correction on spatial

resolution, the images were reconstructed using a ramp fîlter without low-pass fîlter.

This has resulted in some amplification of the noise in the original images which amounts

to relative standard déviation of about 7% in the 20.3 mm hot spot and 44% in the central

cold région. These contributions add up to that generated by the scatter corrections. The

total effects of reconstruction and scatter correction on the statistical noise were

investigated by inspecting the changes in the texture of the noise in the 20.3 mm hot spot

and the backgroimd ROI (see figure 3.2) in the images. It is observed that SVD slightly

amplified noise in both hot and cold région because of its structure extraction feature.

The nonstationary scatter correction schemes generally increased noise more than that of

stationary schemes, but the GSC method shows about the same noise performance as the

CW and BW OSDR algorithms. Looking at profiles of the largest hot spot in figure 4.24,

we can see that the GSC causes less data fluctuation than the BW OSDR technique.
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Table 4.6. Comparing the effect of GSC and conventional scatter correction methods

on resolution, sensitivity and noise characteristics. Resolution (in mm)

were measured from the reconstructed images of the line source at 10 mm

from the center. The line source was in a scattering média of 110 mm

diameter. The Relative sensitivity (%Sen, in percent) were obtained by

comparing the hot spot phantom image of each data processing protocol

with that of the corresponding CW protocol. The relative standard

déviation (%STD) is calculated from the second largest hot spot (H) and

the background ROI (Q of the hot spot phantom image.

IS[oOSDR Stationary GSDR Nonstationary OSDR

CW BW SVD CW BW GSC CW BW GSC

FWHM 2.87 2.90 2.86 2.82 2.81 2.80 2.81 2.78 2.81

FWTM 5.21 5.26 5.19 5.22 5.23 5.24 5.23 5.19 5.24

%Sen 100 172 161 100 157 163 100 159 163

%STD(H) 7.3 6.5 7.5 8.8 8.7 8.9 9.5 9.9 9.4

%STD(C) 44.4 33.0 41.7 84.0 81.4 82.9 108.4 111.2 1062

Contrast

According to the profiles passing through the hot-spots of diameters 22.7 and 13.0 mm

shown in figure 4.24, using BW acquisition increases counts in both the hot and cold

régions compared to C!W mode. The SVD enhances the counts in the hot région

and removes counts in cold région. The OSDR step in GSC method removes coimts in

both the hot and cold région.
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Figure 4.25 shows the contrast of the hot-spot phantom images evaluated according to

(3.5) as a function of hot-^ot diametçr. Using nonstationary scattw correction

consistently produces better results than using stationary kernels. While acquisitions by

BW without scatter correction dégradé contrast compared to CW, all the scatter

correction protocols recovered the loss to a certain degree. The curves for CW original

data and data are quite overlapped. This indicates that SVD improves data quality

acquired in broad energy window to that of photopeak window acquisition. The GSC

method finally achieves the contrast the same as using CW mode with a pure gain of

sensitivity.

Activity Recovery

Similar to figure 4.25, the percentage activity recovery factors of hot spots calculated by

(3.6) are presented in figure 4.26. Observation indicates that the effect of scatter

correction is more efficient for middle sized spots and nonstationary kemels show better

performance the their stationary counterparts. The SVD raises the count levels in hot

régions compared to CW and BW original, GSC approaches the highest activity recovery

ability among all the protocols. Because of amplifying the ditch on the plateau of the

largest hot spot (figure 4.24), CW and BW OSDR scatter correction methods resulted in

less counts in this région than in the second largest hot spot This phenomenon is not

seen for and GSC results.
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ChapterS Discussion

Instrumentation and pre-processing considérations

The multispectral data acquisition imposes serions constraints on the détection System

since photons over a broad energy range must be registered For consistency of the

multispectral data set, a nximber of technical problems must be addressed First, the

conversion gain for energy must be made identical in ail detectors in order to have the

photopeak in the same window for aU detectors. To achieve this, the tuning of the puise

height and analog-to-digital conversion gain of ail detectors is crucial (Cadorette et al

1993). Second, non-uniform detector efficiency as a function of energy must be

compensated to have identical energy spectra in ail detectors. The multispectral

efficiency normalization (Msaki et ai 1993) was developed to aUocate photons to the

proper energy window and correct for spectral symmetry before further processing the

image data. This procédure ensures that the System re^nse faithfully reflects the

underlying physical interaction processes. A third requirement is that spatial distortions

resulting firom non-uniform detector ena-gy responses must be avoided. Le. the same

pnmary image must be obtained in ail Windows. Needless to say that this last

requirement is difflcult to achieve with light sharing detector Systems using array

detectors. Therefore, utilizing independent individual detectors has been a defînite

advantage in assuring the integrity of multispectral data.

The number of Windows is anoth^ important paramet» to be considœd for MSPFT

System. This number must be large enough for data acquisition to provide a sufficiently

complété descnption of image behavior along the energy axis (Nyquist theorem). Too

many Windows, however, increase statistical uncertainty by distributing a limited number
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of events over too many firames. In practice, a smaller number of energy Windows

leduces the requirements for data storage and calculation load. The Sherbrooke MSPET

System uses 16 energy Windows for each detector, thus generating a 256 2D energy

spectrum for each coincidence detector pair. Due to electronic noise, only 13 Windows

above the noise threshold are used, thus reducing the useful energy space to 169

Windows.

Photon spectral dégradation model

The spectral photon dégradation model was derived from its spatial counterpart, which

can be used as a model for most spatial convolution scatter correction methods. On one

hand, the more sophisticated energy-dependent expressions reflect the increased

complexity of Systems based on spectral analysis. On the oth» hand, it shows that the

chance of successfiilly developing heuristic approaches without theoretical guidance is

very smalL Even so, as have been demonstrated by the analysis of the DEW and MF

methods, the combination of the model and knowledge about the System response

fùnctions leads to deeper understanding of the acquisition and scatter correction

processes. For example, it has been shown that in the DEW method can be

considered as a constant, independent of the imaging geometry, while R^isa. fimction of

several object and imaging System parameters. Using the additional knowledge provided

by the spectral dégradation model, approaches similar to the DEW technique but

involving more relevant physical parameters can be derived. Such a model helps to

bridge the gap between heuristic energy-based scatt^ correction hypothèses and the

underlying physical assumptions, which is certainly critical in the development of new

methods.

Multispectral Frame-by-frame (MF) scatter correction
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& data pre-processing techniques

Multispectral data pre-processlng
Requirements for variance réduction in multispectral data

The low statistics associated with multispectral data makes réduction of the statistical

variance mandatory for subséquent efficient energy-dependent processing of multispectral

PET images. Smoothing in the spatial domain is undesirable for this purpose since the

process moves counts across LORs and would dégradé spatial resolution. It is possible to

overcome this drawback by processing the data in the energy space where count

populations are associated with single LORs. However, the pre-processing algorithms

must satisfy additional requirements if their ability to reduce variance is to be achieved

without generating artifacts in the multispectral image sériés. Smoothing techniques must

restore the spectral shape distortions due to low statistics and have little or no effect on the

shape of distributions obtained in high statistics. This requirement was the basis for using

high statistics distributions as reference. The second requirement is that the spectral

variance suppression should be achieved without distorting the ̂ atial distribution of the

data within individual energy frames. As a third requirement, the above two conditions

should be satisfied irrespective of the source distribution being processed. Fînally, the

variance reducing algorithms must have the abUity to reduce ail the sources of variance

detailed by équation 2.32. In other words, the statistical variances as well as the systematic

errors must be decreased concurrently.

Besides the spectral smoothing approach which works on a point-by-point basis in flie

projection space. Principal Component Analysis (PCA) is another way to realize noise

réduction. Since PCA is initially designed for multidimensional data processing, it bas

great potential to be exploited.

Comparison of smoothing techniques
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Four spectral smoothing techniques with différent levels of constraints were evaluated in

this woric AU four techniques were capable of reducing substantiaUy the ̂ }ectral and the

spatial variances of low statistics data, thereby producing distributions more comparable to

the expected distributions obtained in high statistics (see figures 4.1,4.7 and 4.12).

The MM smoothing technique involves no prior constraints. As a resuit, it has a tendency

to overcorrect the photopeak value which causes some flattening of the distributions in

energy space (see figures 4.1-3). Propagation of these spectral shape distortions into the

spatial domain also results in some over correction of the statistical noise components

(figure 4.7). By incorporating some prior information, the PC and WS techniques can be

more successful in reducing the statistical variance, but they need to be used more

cautiously. The relevance of the idéal distributions used as references in the PC technique

is critical for its success. Inadéquate references have been shown to be the source of

aberrations in the energy space and artifacts in the multiq>ectral projections. Since the

relevance of the idéal distribution is not easy to meet in practice, the method is disgiialifïpH

for its lack of reUabUity and high sensitivity to artifacts. The performance of WS

smoothing is relatively good over the whole range of statistics. This was expected since

the characteristics of the smoothing kernels were adjusted accordingly. Howevo:, the

procédure to détermine the kernel parametor b is not straightforward and is time

consuming as it requires several prior acquisitions. Ih addition, the relevance of the prior

acquisitions used to extract the optimum b values as a function of statistics cannot be

guaranteed. In spite of its good performance, this lack of flexibility makes tiiis technique

unsuitable for the multispectral application.

The ILF technique is relatively insensitive to the q>ectral and source distributions. The

cutoff ficquency which is the only adjustable parameter is relatively easy to détermine.

In terms of simplicity, accuracy and modest computational time, the ILF snK>othing was
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considered as the method of choice for reducing the statistical variance in multispectral

data. We note, however, that this technique would be difficult to ÛTipIement with a sniîdla:

number of energy Windows than used in this study.

Pre-processing protocols

The permutations of the pre-processing opérations N, R and S in multispectral PET

imaging leads to the three basic sequences and their variants shown in figure 2.3. The

conventional RN (or NR) sequence is inefficient at reducing the overall variance of low

statistics multispectral data in both the energy and projection spaces (see figures 4.6 and

4.9). Spectral smoothing was demonstrated to have the ability to reduce the statistical

components of the variance in both the energy and spatial domains, while the systematic

eiTor component can be suppressed by normalization for detector efficiencies in the

projection space. The trends observed in figure 4.9 suggest that these two sources of

variance are weakly dépendent on each other, as predicted by équation 2.32. For instance,

spectral smoothing which is intended to reduce statistical variance is dépendent on

statistics, while normalization is noL Consequenûy, it should be possible to carry out these

two processes independently. However, the discrepancies between results obtained with

protocols involving the NS and SN sequences in figure 4.6, and to a less extent in figure

4.9, indicate that they are not completely independent The latter sequence in which

smoothing is performed before normalization appears to be affected by some systematic

errors. The multispectral normalization procédure, which was designed to also restore

spectral symmetry in the energy space as it compensâtes for detector efficiencies (Msaki et

al 1993), is responsible for this disparity. Such spectral symmetry restoration was found

necessary because it is virtually impossible to select and tune ail detectors to have exactly

the same output response in each window pair (Cadorette et al 1993). It is obvious that the

correction for these ^ectral asymmetries which resuit from systematic difierences in

detectors should be carried out before further processing of the energy spectra. Therefore,
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the NS sequence in which normalization for systematic fluctuations précédés spectral

^oothing should be retained.

The use of optimized filters to smooth the random data set makes the réduction of

statistical variance in random distributions very efficient (figures 4.1 and 4.7). This

approach should be considered when the random contribution to total variance is

dominant (e.g. first pass study after bolus injection, high rate dynamic studies). The

marginal benefits observed in this study when using the S' and S" smoothing protocols

resuit from the low fraction of randoms in data and, hence, the rather small contribution

to variance resulting from the random subtraction. In such situations, the use of a

différent smoothing filter for the random data set is not necessary. G)nsequently, the

RNS sequence in which the random corrected data is subsequently normalized and

smoothed is the most convenient from the computational point of view.

MF convolution scatter correction

It has been pointed ont that BW and MF methods are fundamentally différent by

comparing équation 2.11 and équation 2.26. A simple, woïkable MF algorithm has beai

derived by making approximations in each energy firame to incorporate spectral

information into scatter correction scheme. This is in contrast with the BW approach,

where the différence among energy frames is neglected. Considering the approximations

made in each energy frame, it is not sure that the MF can achieve betto- resuit than using

one window only. Although spectral smoothing alleviates the influence of low statistics,

as shown by the performance of MF with RNS pre-processing, the MF approach yields

inferior results than the CW and BW counterparts. Even reducing the numbers of energy

Windows to two in order to improve statistics, as was made for the nonstationary MF,

does not produce better results than conventional scattor processing in a single CW or

BW window.
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It can be conjectured £rom these observations thati 1) the basic postulate of the

multispectral frame-by-frame convolution scatter correction method may be déficient in

the sense that the disadvantage of lower statistics overwhelms the advantage of more

accurate energy discrimination; 2) the accumulated errors due to making approximation

in each energy frame severely affect the accuracy of the final resuit; 3) the data pre-

processing protocol developed is not efficient enough to fully remove noise. Considering

the extra computation burden, it would appear to be more appropriate to consider

différent, global spectral scatter correction methods, such as principal component analysis

(Gagnon et al 1988) and factor analysis (Buvat et al 1993, Mas et al 1990) in order to

fully exploit the advantages of multispectral data.

Global Scatter Correction (GSC) method

Attempts at using Principal Component Analysis (PCA) or Factor Analysis (FA) to

exploit the corrélation which exists between dynamic image sequences (Barber 1980,

Cavailloles et al 1987, Di Paola et al 1982) or spectral image sériés (Buvat et al 1993,

Mas et al 1990, Gagnon et al 1988) have already been made by several groups. What

distinguishes the GSC method proposed in this woik from the others is: 1) only (first

principal component) is preserved for further processing, ail other components being

discarded because they are shown to be negligible and/or to retain no useful information;

2) spatial analysis is introduced following the PCA spectral analysis; 3) ail the processing

are based on a photon spectral dégradation model which provides for the physical

justification for each processing step.

The justification for preserving only and the assumption of scatter and noise

residuals in this component, has been analyzed in section 2.3. In summary, it is
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postulated that the spectral information in multispectral data can be optimally extracted

by PCA and that no further spectral manipulation is thus required on the As

demonstrated theoretically (équation 2.62) and experimentally (figure 2.8), scatto*

component still exists in , which can be best further processed with spatial scattCT

correction techniques. With most of the non-useful information removed, is doser

to the desired primary data ç than the measured raw data . So starting from the bettCT

quality data (^ip^). further spatial convolution scatter correction methods (équation 2.11)

should achieve a better resulL The results presented in figmes 4.22-26 demonstrate that

the combination of spectral and spatial processing improves image quality and yields the

best results.

One disadvantage of the GSC method is the increased data processing time introduced by

the extra spectral analysis (PCA) step. Using the SUN SPARC H in our lab, it spends

about 40 minutes to obtain the first prindpal commuent while the spatial scatter

deconvolution and restoration uses about 5 minutes. From the experience of processing

the cylinder phantom measurement data, the performance of the technique has been stable

and reproducible. However, to prove its genoal applicabiUty and superiority for more

complicated acquisition situation, extensive tests for phantoms with irregular geometry,

nonsymmtric density and source distribution should be made. In addition, the source

dependency of the scatter kernel used for spatial analysis needs to be investigated.

Comoarison with other methods

Principal Component Analysis and Factor Analysis are powerful tools for multi-

dimensional data analysis and have been widely used in many fields. One common

difficulty to most of the existing applications is the physical interprétation of the ouq)uL

In the case of GSC, a physical interprétation of can be given within the framewoik of
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scatter dégradation model (see section 2.3). However, it is more difficult to relate otha

components to a physical phenomenon.

Gagnon et al (1989) have also proposed an interprétation of PCA. They assumed that

is the sum of primary and the scatter events and the second component is the sum of

scatter and noise. This interprétation was used to deduce scatter and noise contributions

in the data seL The scatter is then removed by subtracting a fraction of the second

principal component from (Gagnon et al 1990). In this way, no further processing

(spectral or spatial) is needed. However, no sound theoretical ground nor convincing

expérimental evidence has been provided to support the postulate.

Based on the application of factor analysis of médical image sequences (FAMIS), Mas et

al (FADS, 1990,1990b) and Buvat et al (FAMIS-TAS, 1993,1995b) considered a purdy

mathematical orthogonal décomposition of the factor analysis. Since the resulting

vectors of the décomposition can not be physicaUy interpreted directly, this step is only

used as a noise réduction algorithm. Further analysis is performed to détermine the

oblique vectors which convey the physical information such as the photopeak componoit

and scatter components. As a few (typically two to four) vectors are preserved for

ensuring no loss of usefùl information, the effîciency of tiie noise réduction is limited.

To search for the physical factors from the orthogonal vectors, the spécifie knowledge

about the factor fonctions is a prerequisite. This greatly restricts the applicability of the

method. Most results reported to date are based on simulated data, and the approach has

not received, as yet, confirmation from expérimental data.

Physical interprétation of the third principal component

Since orthogonality among Principal components is only mathematical, the physical

meaning of the higher order Principal components gets by transformation. It is
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interesting, however, to observe the images of principal components (figure 4.18) and the

corresponding transformation coefficients in différent energy francs (figure 4.20), The

third principal component bas a very weak, but still bot-spot patton. It can be

conjectured tbat tbe event quality forming tbis component is very bigb, so even witb very

limited counts tbe image structure is still clear. Tbis is furtber demonstrated by tbe

corresponding transformation coefficients wbicb are well concentrated in tbe pbotopeak

région (figure 4.20). It would appear tbat tbis component is, in fact, a fia;tion of tbe

géométrie component Tbe reason for being separated can be explained by tbe

ortbonormabty of tbe PCA vectors. Due to tbe oblique relationsbip between tbe

géométrie and scatter components, in tbe L dimensional space is a vector deviating

from tbe original géométrie vector. Tbe projection of tbe géométrie component on tbe

first principal component constitutes its most prominent contribution, as discussed in

Œapter 2. Anotber fraction of tbe géométrie component, wbicb is popendicular to tbe

^ipe^ naturally forms anotber basis vector in tbe Principal component ̂ ace. Depending

on tbe relative proportion of scatter, géométrie and noise con^nents in tbis

measurement, tbis perpendicular component is tbe tbird one in tbis case. Tbe low

intensity of tbe tbird principal component independently confirms tbat tbe loss of primary

information due to PCA is very smalL

Nonuniformitv considération for scatter kernel

It bas been sbown tbat tbe nonstationary OSDR algoritbm used is successful in

recovering contrast and activity. However, one important factor wbicb bas not been

tested in tbis study is tbe object nonuniformity: tbe pbantom used for extracting tbe

scatter kernels was sunilar to tbe object to be corrected. As tbis condition is usually not

satisfied in reahstic situations, tbe discrepancies between kernels derived from a uniform

pbantom and tbe scatter cbaracteristics of an arbitrary object can be tbe source of

significant inaccuracies wbicb tbe use of BW is e}q>ected to exacraiïate. MS data
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acquisition and PCA processing are expected to be less sensitive to such effects since the

energy information is available to help scatter correction. Considering that the

covariance between primary and scatter varies greatiy with the object characteristics and

source distribution, more phantom tests will be needed to warrant the relevance of the

scatter kernel.
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Chapterô Conclusion

Photon spectral dégradation mode!

By introducing the energy variable into the conventional photon spatial dégradation

model, a new spectral dégradation model is estabUshed. The model provides a complété

spatial and spectral description of the physical processes of émission, scattering and

détection in multispectral détection Systems. It constitutes the theoretical basis for scatter

correction methods exploiting the energy information and helps to bridge the gap

between several heuristic spatial and spectral scatter correction approaches and the

underlying physical processes. As the model describes physical acquisition process of

multispectral System analytically, it opens opportunities in developing new enorgy-based

scatter correction algorithms.

Using the model and knowledge of the energy dépendent sub-system (object, detector

etc.) response fonctions, the deficiency of the Dual Energy Window (DEW) method is

analyzed. It is demonstrated that the ratio of scatter components in two energy Windows,

a key factor used by DEW, is dépendent on many parameters such as source position,

object geometry, source distribution, etc. The over-simplified hypothesis made for

DEW, i.e. assuming is constant or a simple function of source position, makes the

method inaccurate in most real situations. To improve the performance and the

applicability of the method, extensive expérimental or simulation work will be needed to

establish a suitable empirical ratio for varions acquisition conditions.

The analysis of the multispectral firame-by-firame (MF) convolution scatter correction

method is another example of the modeTs application. By comparing the approximations

131



made in the MF and BW convolution scatter algorithms, it is clearly shown that thc MF

dgorîthm allows the energy dependence of PET data to be used to improve scatter

correction. On the other hand, the cumulative errors resulting from statistical noise in

each energy firame and from the approximations of the MF algorithm still limit the

accuracy of this approach, Results tend to demonstrate that the disadvantage of MF

overwhelms its advantage even when used in combination with the spectral smoothing of

multispectral data.

Multispectral data pre-processing and frame-by-frame scatter
correction

Multispectral (MS) acquisition System provides an environment for studying the energy

characteristics of PET data and for developing energy-dependent data processing

techniques in high resolution PET. However, the use of multiple energy Windows

spreads data in a multidîmensional space and dramatically increases systematic errors and

statistical fluctuations. Furthermore, correction for efficiency and subtraction of random

coincidence events augment statistical variance to a point where data is not usable

anymore. Therefore, some pre-processing is mandatory to reduce the variance or the

dimensionality of MS data. Suppression of the spectral variance was demonstrated to

improve the statistical and systematic characteristics of data without detrimental effects

on spatial resolution thereby making data smoothing in the energy space an additional

necessary pre-processing procédure for further multispectral ôame-by-firame processing

of the data. The proposed pre-processing sequence, in which subtraction of random

coincidence events (R), normalization of detector efficiency (N) and spectral smoothing

(S, the ILF smoothing algorithm) are performed sequentially, successfully reduces

variance from statistical and systematic origins in multispectral data and provides
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improved data for energy dependence study and further cnergy-dependent image

processing in PET.

Since making approximations in each energy firame accumulâtes eirors in the final resuit,

the energy-dependent multispectral fî e-by-finme convolution scatter correction

protocol shows inferior performance to that of BW mode. The multispectral data pre-

processing technique developed in this work improves the statistical characteristics of

data set to a certain level, but it can not fuUy recover energy spectrum shape for very low

statistics data and introduces artifact for high statistics data. For this reason, the protocol

which combines multispectral data pre-processing and MF techniques yields some

performance improvement in scatter correction for multiple window acquisition, but

dégradés the performance for two energy window compared to using conventional data

pre-processing technique. And most importantly, no matter with or without spectral

smoothing, the MF protocols are not as good as using BW mode. Considering the heavy

calculation burden of smoothing energy q>ectrum and making convolution in each energy

frame, it is concluded that more suitable multispectral variance réduction and scatto*

correction concepts should be investigated in order to fiiUy exploit the advantages of

multispectral data. The data pre-processing protocol includîng the energy space

smoothing technique can be used in studying the characteristics in certain energy fi'ames.

Global Scatter Correction (GSC)

As indicated by its name, this method introduces the concept of combining spatial and

spectral analysis in one scatter correction method. This method involves two steps. lûrst,

maximum noise and data dimensionality réduction is achieved by preserving only the

first principal component ) of the ouq>ut of the Singular Value Décomposition

(SVD). While preserving most of the useful correlated information, this st^ removes
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large amounts of non-correlated noise and some of the scatter contributions in the data.

Second, a relevant spatial convolution scatter correction algorithm, the Object scatter

Subtraction and Detector scatter Restoration (OSDR) model in this study, is used to

correct the residue of scatter componenL The theoretical basis of the method is

demonstrated, including the rationale for preserving only the fîrst component of PCA to

achieve the maximum benefit from spectral analysis and the considération of performing

further spatial scatter correction. Results of processing multispectral hot spot phantom

and line source measurement data show that the GSC method has superior performance in

terms of image contrast and activity recovery, and has about the same effect on spatial

resolution and noise characteristics compared to the conventional spatial convolution

methods. To fulfUl the need for high resolution, high sensitivity and high quantitative

accuracy in nuclear medicine images, this method represents a promising direction of

investigation.

It is worth noting that aU the techniques developed in this work are readUy applicable to

multiple energy window acquisition in scintigraphic or SPECT Systems.
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