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SUMMARY 

Tumor metastasis is a fundamental property of malignant cancer cells and the major cause 

of death in cancer patients. Recent studies indicate that tumor cell invasion and 

metastasis may be initiated by the formation of the actin-rich cell protrusions with ECM 

degradation activity, invadopodia. However, despite extensive research on the biology of 

invadopodia, very little is known about their specific inducers during tumor progression. 

Autotaxin (ATX) is a secreted lysophospholipase whose expression levels within tumors 

correlates strongly with their aggressiveness and invasiveness. ATX produces 

lyosophosphatidic acid (LPA), a phospholipid with known tumor promoting functions that 

acts through the G-protein coupled receptors, LPAi-6. Recently, overexpression of ATX 

and LPA receptors (LPA1-3) has been linked to increased tumor invasion and metastasis in 



vivo, however, the role of other LPA receptors (LPA4-6) as well as the exact mechanisms 

by which ATX induces tumor metastasis remain poorly characterized. 

In order to determine the involvement of ATX and LPA in invadopodia production, we 

used the fibrosarcoma HT-1080 cells stably transfected with ATX or shRNA targeting 

ATX in fluorescent matrix degradation assays. Our results demonstrate that ATX is 

implicated in the production of invadopodia resulting in an increase in both their 

formation and function. Using LPC or LPA, the substrate and product of ATX, we further 

show that invadopodia production is dependent on the production of LPA from LPC. 

Among the LPA receptors, LPA4 has the highest expression in HT1080 cells. Using LPA4 

shRNA as well as agonists and inhibitors of the cAMP pathway, we provide evidence that 

LPA4 signaling through the cAMP-EPAC-Rapl axis, regulates invadopodia formation 

downstream of ATX. Furthermore, inhibition of Racl, a known effector of Rap 1 and 

invadopodia formation, abolished EPAC-induced invadopodia production, suggesting 

downstream participation of Racl. Finally, results using LPA4 shRNA support the 

requirement of this receptor for in vitro cell invasion and in vivo metastasis formation. 

Our results suggest that ATX through LPA4 is a strong inducer of invadopodia formation 

that correlates with the ability of the cells to invade and metastasize. This study also 

revealed an unexpected signaling pathway for cell invasion involving LPA4-driven cAMP 

production and subsequent activation of the EPAC-Rapl-Racl axis. 

Key words: invadopodia, autotaxin, lysophosphatidic acid (LPA), cAMP, metastasis 



L'AUTOTAXIN INDUIT L'INVASION DES CELLULES CANCEREUSES VIA LE 

RECEPTEUR DE TYPE 4 DE L'ACIDE LYSOPHOSPHATIDIQUE 

RESUME 

La formation des metastases est une propriete fondamentale des cellules cancereuses 

malignes ainsi que cause principale de deces chez les patients atteints de cancer. Des 

etudes recent indique que l'invasion tumorale et la formation des metastases peut etre 

initie par la formation des protrusions riches en actine et capables de degrader la matrice 

extracellulaire, appeles des invadopodes. Cependant, malgre les recherches importantes 

sur la biologie des invadopodes, les informations concernant les initiateurs specifiques de 

ces structures lors de la progression tumorale demeurent limitees. L'autotaxin (ATX) est 

une lysophospholipase secretee dont les niveaux d'expression correlent avec l'agressivite 

et le potentiel invasif des tumeurs. L'ATX produit l'acide lysophosphatidique (LPA), un 

phospholipide implique dans la progression tumorale qui agit par 1'intermediate de 

recepteurs couples aux proteines G, LPAi-6. II a ete recemment demontre que la 

surexpression de l'ATX et des recepteurs LPA1-3 cause une augmentation de l'invasion 

tumorale et de la formation de metastases in vivo, cependant, le role d'autres recepteurs, 

soit les LPA4-6, ainsi que les mecanismes exacts par lesquels l'ATX induit la formation de 

metastases demeurent peu connus. 

Afin d'etudier Pinfluence de l'ATX sur la production d'invadopodes, nous avons 

transfecte des cellules de fibrosarcome, les HT-1080, avec des gene codant soit pour 

l'ATX ou des ARNm interferant. Ces cellules ont ete testees dans des essais de 



production d'invadopodes utilisant de la matrice fluorescente et des techniques 

d'immunofluorescence afin de visualiser de facon simultanee la degradation de la matrice 

et les composantes caracteristiques de ces structures. Nos resultats indiquent que l'ATX 

est impliquee dans la formation et les fonctions des invadopodes . Par l'ajout du LPC ou 

du LPA, le substrat et le produit de l'ATX, nous avons montre que la production 

d'invadopodes est dependante de la production de LPA du LPC. Parmi les recepteurs du 

LPA, le LPA4 possede l'expression la plus elevee chez les cellules HT-1080. Par le biais 

de shARNs specifiques au LPA4 ainsi que d'agonistes et d'inhibiteurs de la voie de 

l'AMPc, nos resultats indiquent que la voie de signalisation AMPc-EPAC-Rapl, induite 

par l'activation du LPA4, regule la formation d'invadopodes en aval de 1'ATX. De plus, 

l'inhibition de Racl, un effecteur connu de Rapl et de la formation d'invadopodes, abolit 

la production d'invadopodes induite par l'activation d' EPAC, suggerant la participation 

de Racl en aval de EPAC. Enfin, les resultats d'experiences utilisant des shARNs du 

LPA4 confirment l'implication de ce recepteur dans l'invasion des cellules in vitro et la 

formation de metastases. 

En conclusion, nos resultats suggerent que l'ATX via le LPA4 est un initiateur puissant de 

la formation d'invadopodes par les cellules tumorales, ce qui correle avec leur habilete a 

former des metastases. Cette etude a egalement revelee l'existence d'une voie inattendue 

de signalisation cellulaire dans l'invasion, impliquant la production d'AMPc dependante 

de LPA4 et l'activation subsequente de l'axe EPAC-Rapl-Racl. 
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1- INTRODUCTION 

1.1 Autotaxin 

1.1.1 Identification and structural characteristics 

Autotaxin (ATX), also known as Nucleotide pyrophosphatase/phosphodiesterase 2 

(NPP2), was originally isolated from the culture medium of human melanoma cells 

(A2058) in 1991 (STRACKE et al, 1992). It was identified as a novel 125-kDa autocrine 

motility stimulating factor with a basic pi of 7.7 +/- 0.2 (STRACKE et al, 1992). 

Following its initial discovery, ATX was identified as one of the seven members of the 

nucleotide pyrophosphatase/phosphodiesterase (NPP) enzyme family due to its homology 

with phosphodiesterases (MURATA et al, 1994). All members of the NPP family have 

structurally related catalytic domains and nucleotide pyrophosphatase/phosphodiesterase 

activity whereby they hydrolyze pyrophosphate or phosphodiester bonds in nucleotides 

and other extracellular molecules. However, the NPP family members have very different 

substrate specificity (JANSEN et al, 2005) and are therefore implicated in diverse 

pathological processes (STEFAN et al, 2005). 

ATX was originally thought to be an integral membrane protein like NPP1 because of 

their overall structural similarity (MOOLENAAR, 2002;STRACKE et al, 1997). 

However, researchers have demonstrated that the N-terminal 27-residue hydrophobic 

domain of ATX is in fact a signal peptide that is removed by a signal peptidase during 

translation (JANSEN et al, 2005). ATX has also been shown to have a more prominent 

1 



cytoplasmic distribution than NPP1, consistent with its N-terminal hydrophobic domain 

being a signal peptide and not a signal anchor as in NPP1 (JANSEN et al, 2005;KOIKE 

et al, 2006). Following the removal of this pre-peptide, the ATX pro-protein follows the 

classical secretory pathway, where proteins are transported outside the cell from the E.R 

via the Golgi apparatus. This was verified by the fact that ATX secretion was arrested by 

brefeldin A, an inhibitor of such transport (JANSEN et al, 2005). These observations 

were consistent with the finding that the majority of ATX is present in the culture medium 

of several cell types such as Glioblastoma Multiforme cells (JANSEN et al, 2005;KISHI 

et al, 2006). ATX is therefore synthesized as a pre-pro-protein and functions as a 

secreted protein (JANSEN et al, 2005;KOIKE et al, 2006). C-terminal to the peptidase 

cleavage site is a consensus sequence for furin, or related pro-protein convertases such as 

PACE4. It is not known whether cleavage by furin occurs before or after secretion, 

however, this cleavage is not required for ATX secretion (JANSEN et al, 2005;KOIKE et 

al, 2006). The removal of an N-terminal octapeptide by furin, however, is associated 

with enhanced motility stimulating activity of ATX in certain reports (JANSEN et al, 

2005). ATX cleaved by furin was shown to have a 30% increase in activity over the non-

furin cleaved form in HEK293 cells (KOIKE et al, 2006). Three ATX isoforms have 

been found in the medium of cells and have been characterized by Giganti et al (2008) as 

ATX a, p, and y. ATX a, originally discovered in A2058 cells, lacks exon 21; ATXp, a 

splice variant reported in human teratocarcinoma (LEE et al, 1996) lacks exons 12 and 

21; and ATXy (PD-1 a), isolated from brain lacks exon 12. The mRNA transcripts of these 

three isoforms were also shown to have different tissue distributions. ATXp mRNA has 

2 



high expression in peripheral tissues while ATXy mRNA has highest expression in the 

brain. The ATXa mRNA isoform had the lowest expression levels in both the brain and 

peripheral tissues. The measured activity of ATXa protein was also very low probably 

due to its cleavage by an unknown factor that results in a protein of 55-66kDa with little 

or no enzymatic activity (GIGANTI et al, 2008). 

Besides its pre and pro protein domains, ATX contains a Modulator of Oligodendrocyte 

Remodeling and Focal adhesion Organization (MORPHO) domain implicated in 

oligodendroglial process network formation and focal adhesion organization (DENNIS et 

al, 2008). It also contains an EF-hand-like motif that contributes to the function of the 

MORFO domain, an inactive nuclease-like domain that is essential for the catalytic 

activity of ATX, and two cysteine-rich somatomedin B domains (YUELLING and FUSS, 

2008). The somatomedin B domain, which is derived from the amino terminus of 

vitronectin, forms a presumed binding site for type 1 plasminogen activator inhibitor 

(PAI-1), and urokinase plasminogen activator receptor (uPAR) (SEIFFERT and 

LOSKUTOFF, 1991;SEIFFERT et al, 1994). This suggests a relationship of ATX with 

extracellular matrix proteins. In fact, ATX has recently been shown to contain an integrin 

binding domain (RGD) within its somatomedin B domains, that may be implicated in 

lymphocyte trafficking (KANDA et al, 2008). Finally, ATX has a catalytic domain, 

structurally similar to that of the NPP family, that functions as a lysophospholipase D 

(UMEZU-GOTO et al, 2002). This will be discussed in more detail in the following 

section. The structural domains of ATX are illustrated in Figure 1. 

3 
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Figure 1: The major structural domains of ATX. ATX contains an N-terminal signal 

peptide that is removed during translation. Following this is a consensus sequence for 

furin cleavage that may result in enhance activity of the protein. ATX also has two 

somatomedin B domains, an inactive nuclease-like domain that contains an EF hand loop 

motif, and an ATP binding site. Finally there is a catalytic domain which functions as a 

lysophospholipase D and a MORPHO domain implicated in oligodendrocyte remodeling. 
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1.1.2 Enzymatic activity 

ATX was originally thought to hydrolyze pyrophosphate or phosphodiester bonds in 

nucleotides due to its inclusion in the NPP family (BOLLEN et al, 2000). However, 

autotaxin, has recently been shown to be molecularly identical to extracellular plasma 

lysophospholipase D (lysoPLD), whose activity was first discovered in human plasma in 

1983 (YAMASHITA et al, 1983). LysoPLD is responsible for catalyzing the production 

of Lysophosphatidic acid (LPA) from Lysophosphatidylcholine (LPC) by hydrolysis 

(UMEZU-GOTO et al, 2002), see figure 2. cPA (cyclic phosphatidic acid), an analog of 

LPA and intermediate in LPA formation, can also be produced from LPC by ATX 

(TSUDA et al, 2006). LPC is the main physiological substrate for ATX/lysoPLD. In 

fact, ATX has a 25-fold lower Km and thus higher affinity for LPC than for nucleoside 

substrates, which are the natural substrates for other members of the NPP family (XIE and 

Meier, 2004). ATX/LysoPLD also has a higher affinity for unsaturated acyl-LPCs as 

compared to saturated or ether-linked species (TOKUMURA et al, 1999). ATX, 

interestingly, does not contain the HKD motifs critical for the catalytic activity of the 

phospholipase D (PLD) superfamily (XIE and MEIER, 2004). The hydrolysis of 

lysophospholipids by ATX is instead a metal-assisted reaction that occurs via a 

nucleotidylated threonine at the same catalytic site used for the hydrolysis of nucleotides 

(GIJSBERS et al, 2003). ATX requires a metal ion, such as Co2+, for optimal lysoPLD 

activity. It can also be enhanced by Ca2+ and Mg2+, which may act by stabilizing the 

structure of ATX, by protecting it from thermal denaturation and proteolysis, or by 

regulating the catalytic activity of ATX (TOKUMURA et al, 1998). Plasma ATX is 
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Nature Reviews | Cancer 

Figure 2: Representation of the production of LPA from LPC by ATX. The lysoPLD 

activity of ATX is responsible for hydrolyzing the bond between choline and the 

phosphate group of LPC. This results in release of choline and LPA. (Modified figure 

from: MILLS and MOOLENAAR, 2003). 
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constitutively active (YUELLING and FUSS, 2008), however, its catalytic activity 

depends on an essential disulfide bridge between the catalytic and nuclease-like domains 

(JANSEN et al, 2009) as well as glycosylation of Asn-524 (JANSEN et al, 2007). 

Human ATX activity can be inhibited by EDTA, phenanthroline and ATP as well as by its 

products LPA, cPA and SIP (BAKER et al, 2006;VAN MEETEREN et al, 2005). LPA, 

generated from LPC, is considered to be responsible for the majority of ATX biological 

effects and will be discussed in the LPA section. 

1.13 Expression and role in normal cells and tissues 

ATX is ubiquitously expressed and is, therefore, synthesized by a variety of normal cells 

and tissues. Particularly high expression of ATX has been found in the brain (MILLS and 

MOOLENAAR, 2003), kidneys and lymph nodes (KANDA et al, 2008). ATX is 

implicated in many processes during normal development such as adipogenesis (SIMON 

et al, 2005), and central nervous system development that includes neurite morphology 

(DENNIS et al, 2005). It is also implicated in intestinal cell motility through activation 

of PLC-gamma and phosphorylation/recruitment of villin (KHURANA et al, 2008). ATX 

has been shown to regulate myelination by controlling cytoskeletal organization and FAK 

phosphorylation in oligodendrocytes (FOX et al, 2004). More recently, ATX has been 

shown to be implicated in immune functions due to the findings that mast cells in 

submucosal connective tissue secrete ATX (MORI et al, 2007) and that ATX was shown 

to promote the entry of lymphocytes into secondary lymphoid organs (KANDA et al, 
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2008). Besides these advancements, the most well known role of ATX is in vascular 

development (KHURANA et al, 2008;SATO et al, 2005). 

ATX has been shown to be essential for blood vessel formation during development. 

ATX deficiency using knockout technology in mice leads to embryonic lethality due to 

impaired vessel formation in the yolk sac and embryo (VAN MEETEREN et al, 2006). 

The vascular defects in ATX deficient mice also resemble those in mice lacking genes 

involved in cell migration and adhesion such as the fibronectin and focal adhesion kinase 

genes. Results of this study indicated that the loss of LPA production and downstream 

GPCR signaling is responsible for the phenotype observed in ATX knockout mice (VAN 

MEETEREN et al, 2006). 

1.1.4 Expression and role in pathologies 

ATX has been implicated in numerous pathologies including Alzheimer's disease, chronic 

hepatitis C, multiple sclerosis, neuropathic pain, obesity and rheumatoid arthritis, but its 

most investigated and presumably most important role is in tumorigenesis (FERRY et al, 

2003;HAMMACK et al, 2004;INOUE et al, 2008a;INOUE et al, 2008b;UMEMURA et 

al, 2006;WATANABE et al, 2007;ZHAO et al, 2008). ATX has been shown to be up-

regulated in malignancies including breast, lung, colon, ovarian, stomach, thyroid and 

brain cancer, correlating with the invasiveness of these cancer cells (KEHLEN et al, 

2004;KISHI et al, 2006;YANG et al, 2002;YANG et al, 1999). ATX has been shown to 

augment cellular characteristics associated with tumor aggressiveness, including cell 
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proliferation, cell survival, cell motility, invasion and angiogenesis. ATX acts 

extracellularly and stimulates the metastatic cascade at multiple levels by acting as a 

tumor cell motility factor as well as a strong inductor of the angiogenic response (NAM et 

al, 2000;NAM et al, 2001). Specifically, ATX-transfected Ras-transformed NIH3T3 

cells were shown to be more invasive, tumorigenic, angiogenic and metastatic than mock-

transfected controls (NAM et al, 2000;NAM et al, 2001). ATX, especially in the 

presence of LPC, has been shown to increase chemotaxis and proliferation in multiple cell 

lines. It has also been demonstrated that several cancer cell lines release significant 

amounts of LPC into the culture medium (UMEZU-GOTO et al, 2002). ATX promotes 

proliferation of A2058, MDA-MB231, CHO-K1 and Edg2-RH7777 cancer cells, but not 

RH7777 cells that lack LPA receptors. Research, therefore, suggests that autocrine or 

paracrine production of LPA via ATX contributes to tumor cell motility, survival and 

proliferation (BRINDLEY, 2004;UMEZU-GOTO et al, 2002). Recently over-expression 

of ATX (or LPA 1-3) has been shown to increase tumor invasion and metastasis of breast 

cancer cells (LIU et al, 2009) while pharmacological inhibition of ATX and LPA 

receptors was shown to decrease cell migration in vitro and cause tumor regression in 

mice (ZHANG et al, 2009) further supporting the role of ATX in cancer progression. 

1.1.5 Regulation of expression 

Although ATX has important roles in tumor progression, mostly due to its aberrant 

expression in various malignant cells (described above), little is known about the factors 
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that regulate its expression in cells. This section will detail the few stimulators and 

inhibitors currently known. 

ATX expression can be induced by retinoic acid in a neuroblastoma cell line with N-myc 

amplification that is responsive to the differentiation inducing effects of retinoic acid 

(DUFNER-BEATTIE et al, 2001). ATX is also one of many genes up-regulated during 

Bmp-2 mediated mesenchymal development (BACHNER et al, 1998) indicating that cell 

differentiation might trigger ATX expression in certain cell lines. Lipopolysaccharide 

(LPS) induces ATX expression in the monocytic THP-1 cells via JNK and p38MAPK, 

resulting in enhanced immune cell migration (LI and ZHANG, 2009). Fibroblast-like 

synoviocytes from patients with rheumatoid arthritis have increased expression of ATX 

that can be down regulated by anti-inflammatory cytokines including IL-ip, IL-4 and 

IFN-y (SANTOS et al, 1996). In thyroid carcinoma cell lines, the growth factors EGF 

and bFGF have been shown to stimulate ATX activity while the anti-inflammatory 

cytokines IL-4, IL-ip and TGF-p reduced its expression (KEHLEN et al, 2004). 

Therefore, pro-inflammatory stimuli seem to increase ATX expression while anti­

inflammatory cytokines have the opposite effect. Expression of a6p4 integrin, which 

correlates with an invasive and migratory phenotype in advanced breast carcinomas, leads 

to increased expression of ATX mediated by up-regulation and activation of NFAT1 that 

binds to the ATX promotor (CHEN and O'CONNOR, 2005). ATX expression is increased 

by more than 100-fold in cells transformed by the viral oncoprotein v-Jun (BLACK et al, 

2004) and Epstein-Barr virus, an oncogenic herpesvirus. Infection of Hodgkin lymphoma 
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cells with EBV also results in induction of ATX (BAUMFORTH et al, 2005). In contrast, 

a candidate tumor suppressor gene for breast cancer, CST6, when expressed in breast 

cancer cells down-regulated the expression of ATX (SONG et al, 2006). Therefore it 

seems that molecular cues associated with cancer progression can induce ATX expression 

while tumor suppressors seem to reduce its expression. Each of the above mentioned 

stimuli have been investigated in very few cell types. Therefore, the precise signaling 

pathways and transcription factors responsible for ATX regulation remain mostly 

unknown so many more studies are needed to define exactly how ATX expression is 

regulated. 

1.2 Lysophosphatidic acid 

1.2.1 Identification 

Lysophospholipids have been known for decades as components in the biosynthesis of 

cells membranes with short half lives that range from seconds to minutes (CHOI et al., 

2010;SHIMIZU, 2009). They were originally thought to act as intracellular messengers 

(GERRARD and ROBINSON, 1984) or to mediate effects due to intrinsic chemical 

properties, such as calcium binding activity (SIMON et al., 1984). However, they were 

later found to have cell signaling roles (VOGT, 1963) and it is now known that most 

bioactive lipids act on cell surface GPCRs to mediate intracellular signaling (SHIMIZU, 

2009). Many lysophospholipids, including LPA, have similar effects on cellular functions 

as polypeptide growth factors (HILL and TREISMAN, 1995). LPA (1 or 2-acyl-sn-

glycerol-3-phosphate), a glycerolysophospholipid, was the first LP to be recognized as a 

major lipid mediator in serum exerting growth factor like activities at submicromolar 
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concentrations (TOKUMURA et al., 1978), including mitogenic and morphological 

effects on many cell types (ISHII et al., 2009). 

LPA has a glycerol backbone, single carbon chain, and a polar headgroup (see figure 2) 

(MEYER ZU HERINGDORF and JAKOBS, 2007). There are multiple molecular species 

of LPA, consisting of acyl- or ether-linked chains with various numbers of carbons and 

degrees of unsaturations. The acyl chain can be esterified at either the sn-1 or sn-2 

position of the glycerol backbone(l-acyl-LPA or 2-acyl-LPA) while ether-linked LPAs 

carry an alkyl or alkenyl linkage at the sn-1 position (1-alkyl-LPA or 1-alkenyl-LPA). 

The biological activities of LPA depend on the carbon chain length and degree of 

unsaturation as well as the position and linkage type of the carbon chain attached to the 

glycerol backbone (MEYER ZU HERINGDORF and JAKOBS, 2007). 

1.2.2 Production and degradation of LPA 

LPA is detected in serum, plasma and many other biological fluids and tissues such as 

saliva (SUGIURA et al., 2002), follicular fluid (TOKUMURA et al., 1999), seminal fluid 

(HAMA et al., 2002), and malignant effusions (WESTERMANN et al., 1998). Major 

cellular sources of LPA include platelets and adipocytes (EICHHOLTZ et al., 

1993;VALET et al., 1998), while postmitotic neurons, lymphoid cells, endometrial cells, 

erythrocytes and cancer cells are also able to produce LPA (AOKI et al., 2008;SMYTH et 

al., 2008;YE, 2008). Therefore, LPA may act as a circulating as well as a locally 

produced paracrine mediator (TAKUWA et al., 2002). LPA is found at a concentration of 

approximately 154pmol in cells, 0.1-6.3 uM in blood and 80-100nM in plasma 
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(HOSOGAYA et al, 2008;KISHIMOTO et al, 2003). As mentioned previously, the 

lysophospholipase D activity of autotaxin is responsible for the majority of LPA produced 

in vivo from the substrate LPC (UMEZU-GOTO et al, 2002). However, other enzymes 

and pathways remain responsible for some LPA production. These other routes of LPA 

synthesis include de novo LPA biosynthesis in cells through intermediate lipid 

metabolism, resulting in intracellular LPA, or liberation and subsequent enzymatic 

conversions of precursor glycerophospholipids, resulting in extracellular LPA (GOETZL 

and An, 1998). Extracellular LPA can be produced by the action of many different 

enzymes including phospholipase Al or A2 (PLA1 or 2), monoacylglycerol kinase or 

glycerol-3-phosphate acyltransferase (PEBAY et al, 2007). PLA1/2 for example 

produce LPA by deacylating phosphatidic acid (PA) that is first generated intracellularly 

from phospholipids or diacylglycerol (AOKI et al., 2008). Figure 3 summarizes the 

pathways of LPA production and degradation. 

LPA has short half-life attributed to its rapid degradation by lipid phosphate phosphatases, 

integral membrane proteins that dephosphorylate LPA to monoacylglycerol (MAG) 

(BRINDLEY et al, 2002), or by acylation of LPA to PA by the action of acyl transferases 

(LPAAT) (YAMASHITA et al, 2001). To counteract these effects, extracellular LPA is 

normally bound to proteins such as albumin, fatty acid binding protein, or gelsolin which 

act to increase the stability and facilitate transport of LPA (AOKI, 2004;GAITS et al., 

1997;MILLS and MOOLENAAR, 2003;PAGES et al, 2001). 
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Figure 3: Production and degradation pathways for LPA. The major producer of LPA in 

vivo is ATX which converts LPC to LPA. Other enzymes that can also produce LPA 

include acylglycerol kinase (AGK) which produces LPA from MAG and PLA1/2 which 

can produce LPA from PA. The two major degradation pathways for LPA are acylation 

by LPA AT resulting in PA and phosphorylation by LPPs resulting in MAG. (Modified 

figure from: MEYER ZU HERINGDORF and JAKOBS, 2007). 
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1.2.3 LPA receptors 

The first evidence of the possible existence of G-protein-coupled receptors (GPCRs) 

specific for LPA was the observation, by van Corven et al. in 1989, that the proliferative 

effects of LPA on fibroblasts were pertussis toxin sensitive and therefore mediated by G-

proteins (VAN CORVEN et al, 1989). GPCRs are 7 transmembrane receptors that 

couple to various trimers of G-proteins to mediate intracellular signaling. Further studies 

also supported the existence of LPA-specific receptors (THOMSON et al., 1994;VAN 

DER BEND et al, 1992). Thomson et al. (1994) found LPA-specific high affinity 

binding sites on cell membranes and suggested that GPCRs could be responsible for 

mediating the LPA binding to membranes and induce a transient increase in intracellular 

Ca2+ levels. Van der Bend et al. (1992) found that a 32P-labeled LPA analog binds to a 

membrane protein of 38-40 kDa in various cells types that was proposed to be a specific 

cell-surface LPA receptor (VAN DER BEND et al, 1992). However, it was not until 

1996 (HECHT et al., 1996) that the first LPA receptor gene was identified in mice during 

the course of studies designed to identify novel GPCR genes associated with the 

production of neurons in mice (CHUN et al, 1999;CHUN, 1999;MASANA et al, 1995). 

LPAi, originally named ventricular zone gene l(vzg-l) due to its increased localization in 

this area of the brain, was also known as endothelial differentiation gene 2 (Edg-2) due to 

its sequence similarity to an orphan receptor called Edg-1 (endothelial differentiation 

gene 1) cloned from endothelial cells (HLA and Maciag, 1990). Edg-2/LPAi was 

subsequently cloned and identified as an LPA receptor in humans in 1997 (AN et al., 

1997). LPAi is a 41 kDA (364 a.a) protein with seven transmembrane domains, in 
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concordance with the structure for GPCRs (CHUN et al, 1999;CONTOS and CHUN, 

1998). In human tissues LPAi is widely expressed in almost all tissues with high 

expression in brain, heart, placenta and digestive tract and lowest expression in liver and 

peripheral blood leucocytes (AN et al., 1998a). Interestingly, LPAi is also expressed in 

several cancers (FURUI et al., 1999) such as HeLa carcinoma, SW480 colorectal 

adenocarcinoma, A549 lung carcinoma, and G361 melanoma, but undetectable in many 

leukemia lines and Burkitt's lymphoma (AN et al., 1998a). 

A second LPA receptor, LPA2, originally known as Edg-4, was subsequently identified 

due to sequence similarity with Edg-2/LPAi (CHUN, 1999;CONTOS and CHUN, 1998). 

In humans, LPA2 is detected in testis, pancreas, prostate, thymus, spleen, and peripheral 

blood leukocytes and is almost undetectable in brain, heart, placenta, and digestive tract 

contrary to LPAi (AN et al., 1998a). Therefore, LPA2 is less widely distributed than LPAi. 

LPA2 has also been found to be expressed in various cancer cell types (AN et al., 1998a). 

A third related gene, Edg-7 now known as LPA3 has 60% amino acid similarity to mouse 

LPAi and 2. LPA3 has a more restricted expression pattern than LPAi and 2, having 

abundant expression only in human testis, prostate, heart and frontal regions of the 

cerebral cortex (IM et al., 2000) as well as pancreas, lung and ovary (BANDOH et al., 

1999;IM et al., 2000). The Edg family has some common structural features such as lack 

of a cysteine residue in the first extracellular loop found in most GPCRs and they share 

50-57% amino acid identity in humans (AN et al., 1998a;ISHII et al., 2009). However, 

signaling induced by these receptors was unable to account for all the cellular effects of 

LPA. The existence of additional receptors was later implied by several reports 
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(CONTOS et al, 2002;HOOKS et al., 2001) due to the fact that cell lines not expressing 

the Edg receptors were shown to have mitogenic responses to LPA. 

Recently, a distinct group of LPA receptors unrelated to the Edg family receptors have 

been identified. In 2003 a fourth LPA receptor (LPA4/p2y9/GPR23) was identified that 

was structurally distant from the Edg receptors (NOGUCHI et al., 2003) (LPA4 will be 

discussed in detail in the LPA4 section). This stimulated the identification of two 

additional LPA receptors, LPA5 and LPA6. These three receptors are more closely related 

to the purinergic receptors (purino-receptor cluster), indicating that they arose from 

different ancestor genes than the Edg family receptors (ISHII et al., 2009). 

LPA5 (GPR92-93) (KOTARSKY et al, 2006;LEE et al, 2006) was an orphan GPCR that 

was identified as an LPA receptor due to its close relation to LPA4 (LEE et al., 2006). 

Low levels of LPA5 mRNA are expressed in embryonic brain, heart, placenta 

(KOTARSKY et al., 2006) and platelets (AMISTEN et al., 2008), while high levels were 

found in small intestine (specifically in the lymphocyte compartment) and moderate levels 

in skin, spleen, stomach, thymus, lung, liver, dorsal root ganglion cells (OH et al., 2008) 

and embryonic stem cells (LEE et al., 2006). 

LPA6 (p2y5), was originally reported in 1996 as an orphan GPCR encoded in an intron of 

the retinoblastoma gene (HERZOG et al., 1996). LPA6 has ubiquitous expression 

including in hair follicle cells, epidermis (PASTERNACK et al., 2008), intestine (LEE et 



al., 2009) and a leukemia cell line (YOON et al., 2006) with high expression in human 

umbilical vascular endothelial cells (HUVECs) (YANAGIDA et al, 2009). 

1.2.4 Signaling pathways 

The major cellular effects mediated by LPA are either growth related or cytoskeletal-

dependent effects (GOETZL and An, 1998). Upon receptor activation, G-alpha subunits 

are separated from G-beta-gamma subunits, which remain together, now in their active 

state bound to GTP (WATTS and NEVE, 2005). The Edg family LPA GPCRs mediates 

effects by coupling to Gi, Gq or G12/13 depending on cell type, receptor expression levels, 

or amounts of available G-proteins (AN et al, 1998b;BANDOH et al., 1999;IM et al., 

2000). LPAi and LPA2 can signal through all three of these G-proteins while LPA3 only 

couples to Gq and Gi (FUKUSHIMA et al, 1998;ISHII et al, 2000)(see figure 4 for an 

overview of the signaling pathways). Signaling by LPA4 will be discussed in further 

detail later and signaling of the newest LPA receptors, LPA5 and LPA6, is less well 

characterized and will not be discussed here. 

Gi, which is pertussis toxin sensitive, mediates inhibition of cAMP production as well as 

stimulation of protein kinases that recruit the ras-raf cascade and activate MAP kinases, 

resulting in proliferation and differentiation. Gi induces FAK (focal adhesion kinase) 

activation leading to focal adhesion formation. PI3K is also activated downstream of Gi 

leading to Akt activation and cell survival or Rac activation and cell migration. Finally, 

tyrosine kinase-dependent induction of tyrosine phosphatases can also be promoted by Gi 

signaling (CHUPRUN etal., 1997;GAITS etal, 1996). 
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Ospoiymerization integrin activation 

Figure 4: Signaling pathways of the LPA receptors. The major LPA signaling pathways 

are illustrated here and include signaling through four different G-protein families, G12/13, 

Gi, Gq, an Gs. Signaling through these G-proteins can activate diverse proteins including 

RhoA, PI3K, Ras, PLC and AC. The major downstream effects of LPA signaling include 

cytoskeletal remodeling, cell migration, stress fiber formation, focal adhesion formation 

and integrin activation. 
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Gq mediates phospholipase C (PLC) activation, liberating inositol triphosphate (IP3) that 

causes mobilization of intracellular Ca2+ that can result in actin depolymerization. PLC 

activation downstream of Gq can also stimulate MAP kinases directly or through 

induction of diacylglycerol (DAG), which activates some PKC isozymes, which in turn 

can activate MAP kinases by activating Raf-1, (GHOSH et al, 1997). Furthermore, 

PKC-6 can activate src kinase activity indirectly through protein tyrosine phosphatase 

alpha (BRANDT et al, 2003). Finally, G12/13 stimulates RhoGTPase pathways that 

contribute to SRE-mediated transcription as well as mediating cytoskeletal dependent 

functions such as stress fiber formation and actin polymerization. G12/13 also promotes 

activation of PLD, PI3K, RhoA and Cdc42 (FROMM et al, 1997). GpY dimers may also 

participate in signaling by recruitment of PLC (BARR et al., 2000;SANKARAN et al., 

1998) and association with PI3K (KUROSU et al, 1997;MAIER et al, 

1999;STOYANOVefa/., 1995). 

1.2.5 Implication in physiological and pathological processes 

LPA signaling is implicated in diverse biological processes that include tissue remodeling, 

wound healing (WATTERSON et al., 2007), angiogenesis, platelet aggregation, 

cardiovascular function, (SMYTH et al., 2008) neurogenesis, myelination, olfaction, 

neuropathic pain, reproduction, adipogenesis, (YE, 2008), and immunomodulation 

(MOOLENAAR et al, 2004;NOGUCHI et al, 2009). For instance, LPA has been 

identified as a main platelet-activating lipid of mildly oxidized LDL and human 

atherosclerotic lesions (SIESS et al, 1999). In platelets, LPA induces human platelet 

shape change and platelet aggregation. LPA signaling is also implicated in neuropathic 
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pain responses and induces neuropathic pain and demyelination of the dorsal root similar 

to what is observed after nerve injury (FUJITA et al., 2007). 

LPA is highly implicated in embryonic development of the nervous system . It is an 

important mediator of physiological and pathological processes in the central nervous 

system and influences all neuronal cell types. Both apoptotic and survival effects of LPA 

have been reported and these opposing effects may be due to concentration differences or 

differential expression of LPA receptors as well as cell maturation and cell density 

(TAKUWA et al., 2002). For example, LPA has been demonstrated to mediate 

proliferative effects and morphological changes in Ventricular Zone neuroblasts 

(CONTOS et al., 2000a;FUKUSHIMA et al., 2000), and to influence neuronal 

differentiation (DOTTORI et al., 2008;SPOHR et al., 2008), including neurite formation 

by differentiating neurons (FUKUSHIMA et al., 2000). LPA was also shown to protect 

Schwann cells from apoptosis (WEINER and CHUN, 1999) and to promote cell survival 

of early postmitotic cortical neurons (KINGSBURY et al., 2003). However, LPA also 

induces growth cone collapse and neurite retraction as well as apoptosis in hippocampal 

neurons (FUKUSHIMA, 2004). Apoptotic effects of LPA are observed in neurons 

cultured for over one week while survival effects are seen in neurons cultured for 1-2 

days (FUJTWARA et al., 2003). 

Another important role of LPA is in reproduction. LPA is found in normal follicular fluid 

suggesting its involvement in normal physiology of ovaries (TOKUMURA et al., 1999). 

LPA may also be involved in male and female reproductive physiology and pathology 
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(TOKUMURA et al., 1999). LPA receptor mediated signaling has been implicated in 

many processes involved in reproduction such as ovarian functions (CHEN et al., 

2008;TOKUMURA et al., 1999), with LPA4 being highly expressed in human and mouse 

ovary (NOGUCHI et al., 2003), spermatogenesis, with degradation of LPA being 

associated with reduced spermatogenesis and LPA1-4 expression in human testis (CHOI et 

al., 2010;NOGUCHI et al., 2003;YE, 2008), fertilization (GARBI et al., 2000), early 

embryo spacing (HAMA et al., 2007;YE et al., 2005), decidualization (SHIOKAWA et 

al., 2000) and pregnancy maintenance (ZIECIK et al., 2008). LPA signaling has also 

been implicated in pathologies of the reproductive system including ovarian, prostate and 

endometrial cancers (LPA2 and MMP-7 implicated) (GUO et al., 2006;HOPE et al., 

2009;SUTPHEN et al., 2004) and endometriosis (WEI et al., 2009;WOCLAWEK-

POTOCKA^a/.,2009). 

These physiological effects of LPA are mediated by signaling through various LPA 

receptors whose effects can be elucidated by use of receptor knockout mice. Knockout 

studies have shown that LPAi is implicated in the initiation of neuropathic pain and is 

important for proliferation of astrocytes. LPAi-null mice display 50% lethality, and 

survivors have abnormal phenotypes such as reduced body size, craniofacial 

dysmorphism and reduced brain mass as well as a suckling defect (CONTOS et al., 

2000a). LPAi, therefore, seems to play an important role in the central nervous system. 

LPA2-null mice show no obvious phenotypic abnormalities and, therefore, might have 

redundant functions with LPAi as they both couple to the same G-proteins (CHOI et al., 

2008). Female LPA3-null mice display delayed embryo implantation, altered embryo 
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spacing, and reduced litter size (YE et al., 2005), suggesting that this receptor is 

implicated in reproductive functioning. 

Finally, the most important role of LPA for this study is in tumor progression. LPA is 

known to be a potent tumor promoting molecule and influences many cellular processes 

implicated in tumorigenesis. LPA has an effect on the cellular motility of cancer cells by 

mediating cytoskeletal rearrangements via the Rho GTPases Rho and Rac (IMAMURA et 

al., 1993;STAM et al., 1998). This leads to stimulation or inhibition of cell migration or 

invasion depending on the cell type. LPA can induce proliferation and mitogenic 

signaling of prostate cancer cells (BUDNIK and MUKHOPADHYAY, 2002). LPA also 

stimulates migration and proliferation of human carcinoma cells (DLD1) as well as their 

adhesion to collagen type I and secretion of endothelial growth factor and IL-8, all of 

which can lead to an increased metastasizing potential of DLD1 carcinoma cells (SHIDA 

et al., 2003). LPA is also present in the ascites from ovarian cancer patients 

(WESTERMANN et al, 1998;XU et al, 1998), and a significant increase in blood LPA 

has been found in patients with ovarian carcinoma at the first stage of this disease, 

suggesting an important contribution of LPA to this pathology (FANG et al., 2000). 

Malignant progression has also been shown to correlate with differential expression of 

various LPA receptor subtypes (CONTOS et al., 2000b). LPAi over-expression in breast 

carcinoma cells leads to metastatic spread to bone (BOUCHARABA et al., 2004), while 

LPAi signaling has been shown to mediate stimulation of motility of human pancreatic 

cancer cells (YAMADA et al., 2004) and induction of metastasis by human colon 

carcinoma cells (SHIDA et al., 2003). LPA2 is over-expressed in invasive ductal 
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carcinoma (KITAYAMA et al, 2004) as well as ovarian cancer (ERICKSON et al, 2001) 

and promotes mitogenic signaling in human colon cancer cells (YUN et al., 2005). 

Finally, LPA3 expression increases the aggressiveness of ovarian carcinoma (YU et al., 

2008). Also, as mentioned in the previous ATX section, over-expression of LPA1-3 

receptors or their pharmacological inhibition results in promotion or inhibition of cancer 

cell invasion, tumor progression, and metastasis (LIU et al., 2009;ZHANG et ah, 2009). 

1.3 LPA receptor 4 

1.3.1 Expression and role in physiological processes 

LPA4/p2y9/GPR23 is widely expressed in embryonic tissues including brain and stem 

cells (LEE et al., 2007). In adults, it is abundant in ovary and is weakly expressed in 

many tissues including pancreas, prostate, spleen, small intestine, colon, skeletal muscle, 

brain, placenta, lung, liver, skin, heart, thymus and bone marrow (NOGUCHI et al., 

2003). Increased mRNA expression has also been documented at implantation sites in the 

uterus (ISHII et al., 2009). The roles of LPA4 in physiology and disease have only started 

to be uncovered. To date, LPA4 has been shown to induce Rho-mediated neurite 

retraction and stress fiber formation as well as cell aggregation and rounding (LEE et al., 

2007;YANAGIDA et al., 2007), AC stimulation leading to increased cAMP levels (LEE 

et al., 2007;NOGUCHI et al., 2003), and Gq and Gi-mediated calcium mobilization (LEE 

et al., 2007;NOGUCHI et al., 2003;YANAGIDA et al., 2007). LPA4 may play a role in 

neuronal development including neurogenesis and neuronal migration as it increases 

cAMP and the transcription factor CREB, which is essential to neuronal differentiation 

(RHEE et al., 2006;YANAGEDA et al., 2007). In a recent study, LPA4, coupled to cAMP, 
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has been found to inhibit osteogenic differentiation reducing bone volume and trabecular 

thickness (LIU et al.,) signifying a role in bone homeostasis. 

1.3.2 Implications in cancer 

There is little information to date on the implications of LPA4 in cancer. One study has 

found that LPA4 expression inhibits motility and invasion of B103 neuroblastoma cells, 

which do not endogenously express LPA4. In this study, knockdown of LPA4 in MEFs 

increased cell migration, and LPA4 expression decreased PI3K reducing Akt and Rac 

activation levels while increasing Rho activation. It is important to note that in the cell 

type studied, LPA4 couples only to Gq and G12/13 (LEE et al., 2008). However, another 

recent study has found that expression of the LPA4 receptor can induce transformation 

and anchorage independent growth in Myc/tbx2 -transformed cells. Myc and tbx2 are 

cooperating partners in cell transformation. The authors found that expression of LPA4 

(or LPAi or LPA2) in Myc/tbx2-MEFs induced a transformed phenotype observed by the 

increased ability of the cells to grow in soft agar (anchorage-independent growth) as well 

as inducing tumor formation in vivo when these cells were subcutaneously injected in 

mice. These effects were found to necessitate Gi signaling and activation of PI3K and 

ERK1/2 pathways, particularly with prolonged activation of ERK (TAGHAVI et al., 

2008). Therefore the role of LPA4 in tumorigenesis is currently unclear and probably 

depends on cell type and G-protein coupling. 

25 



1.3.3 Major signaling pathway 

LPA4 has been shown to be capable of signaling through Gi, activating PI3K and ERK1/2 

(TAGHAVI et al., 2008), G12/13 resulting in Rho activation (LEE et al, 2007) and Gq 

inducing increases in calcium (TAGHAVI et al., 2008). However, the major signaling 

pathway of LPA4, different from those previously discussed for the other receptors, is 

signaling through Gs resulting in the production of cAMP (NOGUCHI et al., 2003). 

1.3.3.1 Production of cAMP 

cAMP (cyclic adenosine 3'.5'-monophosphate) was first identified as a second messenger 

nucleotide found to have a fundamental role in the cellular response to extracellular 

stimuli and, therefore, control a diverse range of cellular processes (ROBISON et al., 

1968). GPCRs appear to be the main receptors responsible for causing an accumulation 

of intracellular cAMP in response to ligand binding. The heterotrimeric G proteins 

coupled to GPCRs regulate ACs (adenylyl cyclases) in response to various cellular 

stimuli. The Gs G-protein activates adenylyl cylclases (as does Gq in some instances) 

while the G; family of G-proteins inactivates ACs (WATTS and NEVE, 2005). These G-

proteins, upon receptor activation, separate from GPy and are converted to their GTP-

bound state in which they can exert their distinctive regulatory functions on ACs (WATTS 

and NEVE, 2005). AC are 12 transmembrane domain proteins which are generally bound 

to the inside of cell membranes. Class HI ACs are responsible for cAMP production 

(WATTS and NEVE, 2005). In humans there are 9 transmembrane AC enzymes (tmAC) 

and one soluble AC (sAC). However, the soluble form occurs primarily in mature 

spermatozoa and will not be further discussed here (JAISWAL and CONTI, 2003;WATTS 
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and NEVE, 2005). Gsa activates ACs by inducing a conformational change in the 

catalytic site upon interaction (SKIBA and HAMM, 1998). Activated AC converts ATP 

(adenosine triphosphate) to cAMP by creation of a cyclic phosphodiester bond with the 

alpha-phosphate group of ATP resulting in increased intracellular cAMP concentrations. 

cAMP can then be converted to AMP by cAMP-specific phosphodiesterases (PDE), see 

figure 5. Growth factors and PI3K can also down-regulate cAMP signaling by activating 

Akt and subsequently PDEs, facilitating the conversion of cAMP to AMP (ROBISON et 

al., 1968; DEGERMAN etal., 1997). 

1.3.3.2 Spatial regulation of effectors 

GPCRs are confined to specific domains of the cell membrane in association with 

intracellular organelles or the cytoskeleton. The ACs that they activate are found anchored 

nearby (JARNAESS and TASKEN, 2007) resulting in targeted cAMP production 

depending on the extracellular ligand and receptor activated. cAMP is further regulated 

through its degradation by cAMP-specific phosphodiesterases (PDEs), the only known 

mechanism of cAMP inactivation (JARNAESS and TASKEN, 2007). The cellular 

localization of PDEs is controlled by anchoring to specific subcellular compartments and 

recruitment into multi-protein signaling complexes, therefore, targeting them to specific 

subcellular locations. This allows increased cAMP concentrations in certain areas of the 

cell and not in others, where it will be degraded instead (JARNAESS and TASKEN, 

2007). The level of intracellular cAMP is, therefore, spatially and temporally regulated 

by the balance between the activities of ACs and cyclic nucleotide PDEs (JARNAESS 

and TASKEN, 2007). 
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cAMP effectors are also spatially regulated. PKA (Protein kinase A/cAMP-dependent 

protein kinase), a major effector of cAMP (to be elaborated in the cAMP effector section) 

is tethered to specific intracellular locations by AKAPs (A-kinase anchoring proteins), 

which anchor the regulatory subunits (see figure 6A). AKAPs are scaffolding proteins 

that form multi-protein complexes to integrate cAMP signaling (SCOTT and 

MCCARTNEY, 1994). There are over 50 members of the AKAP family (WONG and 

SCOTT, 2004) which all have similar functions while being structurally diverse 

(JARNAESS and TASKEN, 2007). These proteins all contain a PKA binding domain and 

a unique targeting domain, with several containing additional interaction sites for 

formation of multivalent signaling complexes (JARNAESS and TASKEN, 2007). Some 

AKAPs are known to interact with both PDEs and PKA for example. Targeting of PKA 

isozymes is important for many physiological processes such as cAMP regulation of ion 

channels in the nervous system, regulation of the cell cycle involving microtubule 

dynamics, steroidogenesis, reproductive function, immune response and numerous 

intracellular transport mechanisms (TASKEN and AANDAHL, 2004). 

EPAC (exchange protein activated by cAMP/cAMP-regulated guanine exchange factor) 

proteins, other effectors of cAMP (see cAMP effector section), are also spatially 

regulated. First these proteins have been shown to also interact with AKAP signaling 

complexes which may be responsible in part for their localization, that requires specific 

anchoring, to various cell compartments such as the cytosol, nucleus, nuclear envelope, 

and plasma membrane, resulting in different cellular functions (PONSIOEN et al., 2009). 

EPAC localization has also recently been found to be directly regulated by cAMP. In a 
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2009 study by Ponsioen et al. the authors found that cAMP binding to EPAC induced 

translocation of EPAC to the plasma membrane due to a conformational change that also 

reveals its catalytic site for Rap activation. The translocation of EPAC was found to be 

due to passive diffusion and depended on its DEP domain and is a dynamic and reversible 

event (PONSIOEN et al, 2009). 

Therefore, cAMP is produced at a specific location, due to receptor and AC 

localization, and its diffusion in the cell is controlled by PDE. This results in targeting of 

increased cAMP to specific effectors, for example, PKA or EPAC, and their associated 

substrates. PKA and EPAC are also anchored close to specific effectors resulting in a 

controlled and specific response to cAMP increases, depending on the receptor activated, 

that will mediate a distinct biological effect. 

1.3.3.3 cAMP effectors and roles in cellular functions 

cAMP has been found to be implicated in virtually all cellular responses such as 

proliferation, differentiation, apoptosis, gene transcription, metabolism, secretion, cell 

division and neurotransmission (CHENG et al., 2008). Therefore, it is also implicated in 

many pathologies including diabetes, heart failure and cancer to name a few (CHENG et 

al., 2008). The response to cAMP is cell type and cell context specific, and in different 

situations can mediate opposing effects. For example, cAMP has been shown to either 

inhibit or stimulate cell proliferation depending on the cell type studied or the stimuli 

used (BEAVO and BRUNTON, 2002;STORK and SCHMITT, 2002). The cAMP effector 

EPAC was shown to induce Akt phosphorylation in WRT cells and macrophages 

increasing gene expression and proliferation (CASS et al., 1999), while in adipocytes 
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EPAC was shown to inhibit Akt phosphorylation thereby reducing proliferation 

(ZMUDA-TRZEBIATOWSKA et al, 2007). cAMP has also been shown to inhibit 

keratinocyte migration (MCCAWLEY et al., 2000) or to enhance it (rWASAKI et al., 

1994), depending on the concentration of cAMP used. The role of cAMP in cancer is 

vague, while it has been shown to inhibit tumorigenesis (O'CONNOR et al., 1998), these 

effects are likely to be cell type and context dependent and it is likely that cAMP can 

mediate opposing effects on tumorigenesis as it does on other cellular processes. For 

example one study has shown that cAMP suppresses MMP-2 activation (LEE et al., 

2006), while another study showed that elevation of cAMP increased the expression and 

activity of MMP-2 (TSURUDA et al., 2004), a molecule known to be implicated in tumor 

cell invasion. The responses to cAMP are mediated by its three main effectors, CNGs 

(cyclic-nucleotide gated ion channel) whose activation by cAMP allows calcium influx, as 

well as PKA and EPAC two intracellular cAMP receptors whose diverse cellular functions 

will be discussed in the following paragraphs. 

PKA is the best known cAMP effector and before the discovery of EPAC it was thought 

to mediate nearly all of the effects of cAMP. PKA is a heterotetramer composed of two 

regulatory subunits that when bound to cAMP dissociate from two catalytic subunits 

releasing the inhibition of PKA activity (KIM et al., 2007). PKA is a broad specificity 

serine/threonine kinase that phosphorylates many different substrates including 

cytoplasmic or nuclear substrates, enzymes and transcription factors (KIM et al., 2007). 

Some of the processes that PKA regulates include metabolism, learning and memory 

(ABEL and Nguyen, 2008), exocytosis (SZASZAK et al, 2008), transcription, cell cycle 
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progression and apoptosis (LORENOWICZ et al., 2008). For example, PKA inhibits the 

interaction of 14-3-3 proteins with BAD and NFAT to promote cell survival (SASTRY et 

al., 2007). It activates KDELR (endoplasmic reticulum protein retention receptor), which 

promotes retrieval of proteins from Golgi to ER therefore maintaining the steady state of 

the cell (CABRERA et al., 2003). Increased cAMP levels promote survival of neuronal 

cells by inactivating GSK3alpha and beta via PKA-dependent mechanisms and thus 

prevents oncogenesis and neurodegeneration (TANJI et al., 2002). PKA also mediates 

ERK activation controlling cell proliferation, and enhances release of stored energy, 

(lipolysis) (CALIPEL et al., 2006). Finally, PKA phosphorylates many transcription 

factors such as CREB, CREM and ATF1, allowing them to interact with transcriptional 

co-activators CBP and p300 to activate transcription (DANIEL et al., 1998). 

EPAC is the newest member of cAMP regulated proteins. EPAC proteins were originally 

identified in 1998 (DE ROOIJ et al, 1998) as having cAMP binding and GEF (guanine 

exchange factor) domains. To date there exist 2 isoforms of the protein, EPAC-1 and 

EPAC-2 also known as RAPGEF3 and RAPGEF4. EPAC1 protein is widely expressed in 

tissues such as blood vessels, kidney, adipose tissue, central nervous system, ovary and 

uterus but not peripheral leukocytes, while EPAC2 has limited expression mainly in the 

central nervous system (DE ROOIJ et al, 1998;KAWASAKI et al, 1998;KILPINEN et 

al., 2008). Like PKA, EPAC has cAMP regulatory binding sites that, when bound to 

cAMP, allow the protein to be active and therefore mediate its GEF activity. EPAC1 

contains a DEP (dishevelled, Egl-10, pleckstrin) domain responsible for membrane 

anchoring, a cAMP binding domain, and a Ras-association domain (RA). For catalytic 
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activity, EPAC1 contains a CDC25-homology domain (CDC25-HD) for GEF activity 

with a high specificity for Rapl and 2 (Ras-proximate-1 and 2), and a Ras-exchange motif 

(REM) required for catalytic function. EPAC2 differs by containing an additional cAMP-

binding domain (DE ROOIJ et al., 2000) see figure 6B. Since its discovery over 10 years 

ago, EPAC has been found to mediate many of the effects previously attributed to PKA. 

EPAC has been shown to play an important role in cAMP-mediated insulin secretion, cell 

adhesion, exocytosis/secretion, cell differentiation, proliferation, gene expression, 

apoptosis, neurotransmitter release, heart functions and circadian rhythm (CHENG et al., 

2008;PONSIOEN et al, 2009). Briefly, some of the other EPAC effectors besides Rap 

(which will be discussed in following section), include R-Ras which is implicated in cell 

proliferation, survival and gene expression (JESUS et al., 2006), Rims, which is 

implicated in exocytosis (WANG et al., 1997) and Rit, which is implicated in neuronal 

signaling (ROSCIONI et al, 2008;SHI et al, 2006). 

1.3.3.4 EPAC and Rapl 

The main effectors of EPAC are Rapl and Rap2, members of the Ras-like small GTPases, 

which are activated by EPACs guanine nucleotide exchange factor (GEF) activity and 

have themselves GEF activity for many other proteins. Rap2 has been less well studied 

than Rapl and will not be further discussed here. Rapl can be activated by a variety of 

stimuli that include activated receptor tyrosine kinases, GPCRs and cytokine receptors. 

They can also be activated by other specific GEFs, besides EPAC, that include calcium-

and diacylglycerol-binding guanine nucleotide exchange factor 1 (CalDAG-GEF) (BOS 

et al., 2001). Rapl is best known for its inside out activation of integrins resulting in 
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integrin-mediated cell adhesion. Over-expression of Rapl results in activation of 

integrins and increased adhesion to fibronectin while expression of Spal, a specific 

GTPase activating protein (GAP) for Rapl that results in inactivation of Rapl, causes 

inhibition of cell adhesion (BOS et al, 2003;TSUKAMOTO et al, 1999). Rapl appears 

to regulate integrins by increasing both their affinity (conformational activation) and 

avidity (redistribution of integrins into clusters) (BOS et al., 2003) and appears to be 

capable of regulating all integrins associated with the actin cytoskeleton (ENSERTNK et 

al., 2004). The main Rapl effector directly linked to integrin activation is RAPL 

(regulator of adhesion and polarization enriched in lymphocytes), which is found mainly 

in lymphocytes and regulates homing and adherence of these cells (BOS, 2005). 

The other major effect of Rapl is the regulation of actin dynamics. Some of the Rapl 

effectors implicated in actin dynamics include afadin, a multidomain adaptor protein 

(BOETTNER et al, 2000); Riam (Rapl-GTP-interacting adapter molecule), which is 

implicated in cell spreading and integrin-mediated adhesion as well as binding to profilin; 

VASP (Vasodilator-stimulated phosphoprotein) which is involved in actin regulation; 

Arap3, which has ArfGAP and RhoGAP domains resulting in inactivation of Arf6 and 

RhoA; and finally the Rac specific GEFs Vav2 and Tiaml (BOS, 2005). The interaction 

of Rapl with Vav2 and Tiaml resulting in Racl activation is the most direct link between 

Rapl and actin dynamics. Racl, to be discussed in the following section on invadopodia, 

is a small GTPase of the RhoGTPase family responsible for actin polymerization through 

activation of WAVEs and the Arp2/3 complex (EDEN et al, 2002). Rapl binds to the PH 

domain of Vav2 and Tiaml resulting in translocation of these GEFs to the plasma 
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membrane at sites of cell protrusion in contact with the extracellular matrix (ARTHUR et 

al., 2004). Arthur et al. (2004) have found that Racl is both required and sufficient to 

mediate Rapl induced cell spreading and is therefore an important mediator of Rapl. See 

figure 7 for an overview of Rap activators and effectors. 

Contrary to the other cAMP mediators, Rapl is known to be involved in malignant 

progression. However, like cAMP, this role is not straightforward and Rapl has also been 

shown in certain instances to inhibit cancer progression. When Rapl was originally 

discovered in 1989, it was identified as a gene product that restored a malignant 

phenotype of K-Ras-transformed fibroblasts (KITAYAMA et al., 1989). Since then, other 

studies have supported the role of Rapl in promoting malignancy. For example mice 

deficient for SPA-1, which would lead to uncontrolled Rapl activation, develop myeloid 

disorders that resemble human chronic myelogenous leukemia ((KOMETANI et al., 

2004). Activation of Rapl has also been shown to promote prostate cancer metastasis 

(BAILEY et al., 2009) while Rapl GAP acts as a tumor suppressor gene for pancreatic 

cancer (ZHANG et al., 2006a). Rapl also regulates migration of melanoma cells (GAO 

et al., 2006). However, loss of function mutations of DOCK4, a specific Rapl activator, 

were found in human and mouse tumor cells and transfection of Wild-type DOCK4 into 

these tumor cells reduced their growth and invasion in vivo (YAJNTK et al., 2003) 

suggesting a role of Rapl in inhibition of tumorigenesis. Therefore, it seems that either 

defective or excess Rapl can lead to malignant phenotypes via different biological effects 

on different cell lines. 
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1.4 Invadopodia 

1.4.1 Structure 

In order for cancer cells to metastasize they first need to degrade surrounding ECM and 

cross the basement membrane to enter blood vessels and travel to distance sites in the 

body (WOODHOUSE et al, 1997). Cancer cells have been shown to generate 

protrusions called invadopodia to facilitate their migration and invasion through tumor 

stroma and the basement membrane of blood vessels during the process of metastasis 

(CHEN, 1989; KELLY et al., 1998; WOLF and Friedl, 2009). Invadopodia can be defined 

as actin rich, ventral cell membrane protrusions with proteolytic activity (MUELLER and 

Chen, 1991). Invadopodia contain cortactin and phosphotyrosines, are not confined to 

cell periphery but rather are in proximity to the Golgi, and are directly associated with 

sites of substrate degradation. Invadopodia structures are stable with a long half-life of 

two hours or more. Some of the important molecules found at invadopodial protrusions, 

which will be discussed in more detail later, are integrins, tyrosine kinase signaling 

machinery, proteases, actin and actin-associated proteins (BOWDEN et al, 

1999;MUELLER et al, 1992;MUELLER et al, 1999;NAKAHARA, 1998). However, 

there is no known single specific marker of invadopodia to distinctively distinguish them 

from other structures such as podosomes. 

Invadopodia structures have been shown, by electron microscopy, to originate from 

profound invaginations of approximately 8 urn in width and 2 u.m in depth 

(BALDASSARRE et al, 2003;CHEN, 1989). From these invaginations extend many 

surface protrusions that penetrate into the matrix (invadopodia), with diameters ranging 
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from 100's of nanometers to a few micrometers and a length of approximately 500 nm 

(BALDASSARRE et al, 2003). The connections between these protrusions and the cell 

body have been shown to be very narrow (BALDASSARRE et al, 2006). Another 

important feature in cells producing invadopodia is a polarization and proximity of the 

Golgi toward invadopodial protrusions, suggesting a possible relationship between 

membrane/protein transport and proteolytic activity (BALDASSARRE et al, 2003). 

While the molecular and physiochemical cues that trigger invadopodia biogenesis are not 

well known, one possible mechanism of invadopodia initiation is the activation of 

integrins by their extracellular substrates ((NAKAHARA et al, 1996;NAKAHARA, 

1998). For example, alpha6betal activation promotes Src-dependent tyr phosphorylation 

of pl90RhoGAP affecting the actin cytoskeleton. This activates membrane-protrusive 

and proteolytic activity leading to invadopodia formation and cell invasion (MUELLER 

et al, 1999). The following sections will detail the various components necessary for full 

functioning of an invadopodium. 

1.4.2 Actin remodeling 

Invadopodia are formed as small clusters consisting of a few large actin-rich dots that 

extend into the matrix substratum. Actin remodeling is therefore essential for the 

formation and stability of invadopodial protrusions and involves coordinated action of 

many proteins such as Arp2/3, N-WASP, cortactin, and cofilin to spatially and temporally 

regulate actin polymerization (POLLARD and BORISY, 2003). These proteins which 

have all been either localized to invadopodia or shown to be essential for invadopodia 
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formation (ARTYM et al, 2006;BALDASSARRE et al, 2006;YAMAGUCHI et al, 

2005) will be discussed in greater detail in the following paragraphs. 

The Arp2/3 complex consists of 7 proteins, two related proteins Arp2 and Arp3 along with 

five unique polypeptides ARPC1-5 (GOLEY and WELCH, 2006). When activated, this 

protein complex initiates the nucleation of a new actin filament from an existing filament 

at a 70 degree angle, known as branched actin polymerization (MULLINS et al, 

1998;WELCH et al, 1998). Arp2/3 is, therefore, responsible for actin rearrangement 

implicated in the formation of lamellipodia, filopodia, invadopodia and cell motility in 

general (GOLEY et al, 2004). N-WASP is part of a family including WASP and WAVEs 

that have a common C-terminal catalytic verprolin-cofilin-acidic (VCA) domain essential 

for functional activation of the Arp2/3 complex (MULLINS et al, 1998;WELCH et al, 

1998). WASP family proteins integrate multiple upstream signals to induce actin 

polymerization through the Arp2/3 complex (MILLARD et al, 2004). Their major 

upstream regulators are Cdc42 and Racl (EDEN et al, 2002) however N-WASP is also 

regulated by phosphorylation by Src family kinases. N-WASP is ubiquitously expressed 

and abundant in the brain (MIKI et al, 1998). Besides affecting actin polymerization 

through Arp2/3, N-WASP is also implicated in endocytic and phagocytic processes and 

may promote internalization of degraded matrix components or recycling of invadopodia 

components (INNOCENTI et al, 2005;LORENZI et al, 2000). It is important to note as 

well that dysfunctions of Arp2/3 are associated with cancer metastasis and Arp2/3 and 

WASP family proteins are found to be up-regulated in some tumors and invasive cells 

(OTSUBO et al, 2004;SEMBA et al, 2006;YAMAGUCHI and CONDEELIS, 2007). 
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For example, WAVE2, regulated by Racl, is a primary regulator of melanoma cell 

invasion and metastasis (KURISU et al, 2005). 

Cortactin is another essential element of invadopodia and is often used as a marker 

because cortactin clusters located at the basement membrane near the center of the cell 

and not in the cell periphery are used to identify invadopodia structures (GIMONA and 

BUCCIONE, 2006). Cortactin is an actin-binding and scaffolding protein that 

coordinates cell migration, cytoskeletal remodeling, and intracellular protein transport 

(AMMER and WEED, 2008). The N-terminal acidic domain (NTA) of cortactin contains 

a DDW motif (aspartic acid-aspartic acid-tryptophan motif) that binds and weakly 

activates the Arp2/3 complex directly through the N-terminal region of Arp2/3, or 

indirectly by binding N-WASP via the SH3 domain of WASP and activating it (LUA and 

LOW, 2005;WEAVER et al, 2001). Cortactin also acts by stabilizing branched actin 

filaments and, therefore, regulates actin assembly mediated by Arp2/3 (URUNO et al, 

2001). Cortactin can also bind to dynamin2, via an SH3 domain, Src, via a proline rich 

region and filamentous actin (F-actin) with the fourth of its cortactin repeats (DALY, 

2004). Cortactin was originally identified as a major substrate of Src (WU et al, 1991) 

and is tyrosine phosphorylated in response to stimuli that induce actin cytoskeleton 

remodeling, such as FGF, EGF, or integrins. Phosphorylation of some of its tyrosines, 

Y421/466/482 in the proline rich domain (PRD) has been shown to be required for 

motility and metastatic dissemination of breast cancer cells (LI et al, 2001). 

Phosphorylation of cortactin by Src might influence the interactions of actin nucleators 

and actin turnover. As well Src phosphorylation of cortactin is important for invadopodia 
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function (ARTYM et al, 2006). Along with its cytoskeletal remodeling functions 

cortactin might also regulate MMP secretion at sites of degradation, another critical 

component of invadopodia to be discussed in the next section (CLARK et al, 2007). 

Cortactin is ubiquitously expressed, however, as with the other proteins discussed thus 

far, cortactin is frequently up-regulated in many cancers including breast, head and neck 

carcinoma, and bladder cancer (SCHUURING, 1995). 

Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family and is a 

small ubiquitous protein (19kDa). Cofilin is able to bind monomeric and filamentous 

actin (PAAVILAINEN et al, 2004). It is an essential regulator of actin dynamics at the 

plasma membrane through its ability to sever actin filaments resulting in disassembly of 

F-actin from the rear of migrating cells and recycling of actin monomers to the leading 

edge for further polymerization (PAAVILAINEN et al, 2004). Depletion of cofilin 

results in small, short-lived and, therefore, poorly degrading invadopodia. Cofilin, 

therefore, seems to have a role in stabilization and/or the maturation process of 

invadopodia (YAMAGUCHI et al, 2005). Cofilin is also implicated tumor cell invasion 

and metastasis (WANG et al, 2007). 

Finally invadopodia are also enriched with integrins, which form bridges between the 

cytoskeleton and ECM potentially linking the two aspects necessary for fully functional 

invadopodia, formation and matrix degrading activity (CHEN, 1990). 
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1.4.3 ECM degradation 

Degradation of the extracellular matrix (ECM) constitutes the function of invadopodia. 

This process requires many proteases to physically degrade ECM proteins. It also needs 

membrane trafficking to sustain prolonged degradation by transporting protease-

delivering carriers from the Golgi to the ECM as well as an appropriate substrate (ECM) 

that can affect the activity of invadopodia depending on its rigidity, matrix density and 

cross-linking (ALEXANDER et al, 2008;CALDIERI et al, 2009a). 

The majority of proteolysis at invadopodial structures is due to the metalloproteinase 

family, which includes matrix metalloproteinases (MMPs) and ADAMs (a disintegrin and 

metalloproteinase). There are over 25 members of the MMP family that are broadly 

divided into membrane and soluble types that together can degrade virtually all ECM 

components (EGEBLAD and WERB, 2002). MMPs are synthesized as inactive 

proenzymes that become activated through proteolytic removal of their pro-domain (VAN 

HINSBERGH et al, 2006). Membrane-type 1 MMP (MT1-MMP), which degrades 

collagen, fibronectin and laminins is one of the most important enzymes for invadopodia 

functions (NAKAHARA et al, 1997). It has been shown to be a master regulator of 

protease-mediated cell invasion through activation of a cascade of proteases including the 

gelatinase MMP-2 (HOLMBECK et al, 2004). MT1-MMP over-expression or 

knockdown results in an increase or decrease of invadopodia formation and function 

(ARTYM et al, 2006;NAKAHARA et al, 1997). Therefore, recruitment of MT1-MMP 

to invadopodia might establish the focused zone of MMP activation around this structure. 

Two gelatinases MMP-2 and MMP-9 have also been localized to invadopodia and are 
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known to degrade type IV collagen, a major component of basement membrane 

(REDONDO-MUNOZ et al, 2006). Interestingly MMPs might also play a role in 

invadopodia formation as broad-spectrum MMP inhibitors abolish formation and not just 

functioning of invadopodia (AYALA et al, 2008;BALDASSARRE et al, 2006). The 

other members of the metalloprotease family are ADAMs. They function as sheddases 

(enzymes that cleave proteins at the cell surface leading to the release of ectodomains) 

and cleave growth factors and cytokine precursors into their active forms while their 

disintegrin domain interacts with integrins especially the betal component (HUOVILA et 

al, 2005). 

Serine proteinases are also implicated in invadopodia-mediated degradation. Seprase and 

DPP4 (dipeptidyl dipeptidase IV) are transmembrane serine peptidases implicated in 

ECM degradation and shown to colocalize with invadopodia (GHERSI et al, 2006). 

These two serine proteases are activated by oligomerization and are also able to bind 

betal integrins in a collagen dependent manner and degrade collagen, fibronectin, and 

laminins (MONSKY et al, 1994). Seprase and DPP4 are also up-regulated in melanoma 

and breast carcinoma cells (CHEN, 2003). The urokinase-type plasminogen activator 

(uPA) proteolytic system has also been implicated in invadopodia (ARTYM et al, 

2002;KTNDZELSKII et al, 2004). uPAR (urokinase-type plasminogen activator receptor) 

is found in a complex with seprase at sites of invadopodia formation and activates 

plasminogen which can subsequently activate various MMPs (LIJNEN, 2001). Matrix 

degrading proteases also activate and release growth factors such as VEGF (Vascular 
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endothelial growth factor) locally from the matrix, which might enable continued 

induction of invadopodia through receptor signaling (EBRAHEM et al, 2010). 

1.4.4 Signaling 

Signaling plays a major role in coordinating the formation and functioning of 

invadopodia. Activation of integrins and receptor tyrosine kinases induces intracellular 

cascades involving PKC, Src, Rho GTPases and tyrosine kinases for invadopodia 

generation. Some of the most important signaling pathways involve tyrosine kinases, 

such as Src and Src-family kinases whose role in invadopodia has been well established. 

In fact, tyrosine phosphorylation is a marker of invadopodia and SFK activity is 

absolutely required for invadopodia formation and degradation (MUELLER et al, 1992). 

Serine/threonine kinases such as ERK1/2 and PAK have also been implicated in 

invadopodia biogenesis possibly playing a role in cortactin phosphorylation (AYALA et 

al, 2008;TAGUE et al, 2004). The ARF-family of GTPases are also involved as they 

control actin rearrangement (AL-AWAR et al, 2000) and have been localized to 

invadopodia (TAGUE et al, 2004). 

Finally, the most important signaling molecules for this study are the Rho family 

GTPases. These are small G-proteins that when activated exchange GDP for GTP 

resulting in a conformational change that allows them to interact with downstream 

effectors. This active state is later terminated by hydrolysis of bound GTP to GDP 

(BISHOP and HALL, 2000). Among their various effector targets are protein kinases and 

actin nucleators allowing them to influence cell shape, morphology, polarization, motility 
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and metastasis formation (HALL, 2005). Most Rho GTPases act on various cellular 

membranes and affect the morphology of these membranes through alterations of the 

associated cytoskeleton. Many also affect specific steps of vesicle trafficking between 

different intracellular compartments (MATOZAKI et al, 2000). They are also usually 

activated on membranes by GEFs (ROSSMAN et al, 2005). Post-translational 

modifications are also critical for RhoGTPase interaction with membranes (ex 

prenylation, palmitoylation) and can enhance their interaction with various cellular 

membranes and define their localization to specific membrane compartments 

(CUSHMAN and CASEY, 2009). Phosphorylation also regulates activity and localization 

of some Rho GTPases such as RhoA (ROSSMAN et al, 2005). 

Racl and Cdc42 can both activate Arp2/3 through their effectors Sra-1 and N-WASP 

respectively. Cdc42 binds WASP specifically through WASPs CRIB domain and Cdc42 

binding results in unfolding of the protein making the VCA domain accessible to Arp2/3 

(CALDIERI et al, 2009a). Cdc42 in particular has been shown to act upstream of 

invadopodia formation with DA mutants inducing dot-like degradation (NAKAHARA et 

al, 2003). RhoA has also been suggested to play a role due to the fact that pl90Rho-

GAP activates membrane protrusive activity (NAKAHARA et al, 1998). All of these 

GTPases require GEFs (stimulate release of GDP allowing GTP to bind), GAPs (catalyze 

GTP hydrolysis converting to GDP) and GDIs to function efficiently and many GEF have 

been identified as oncogenes (ROSSMAN et al, 2005). While Racl has not been directly 

related to invadopodia formation, it can induce actin polymerization through activation of 

Arp2/3 and could be implicated in recruitment of cortactin, both essential to invadopodia 
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formation (BAUMER et al, 2008). ROCK as well as Racl and Cdc42 also activate 

PAKs, which phosphorylate and activate LIMKs which then phosphorylate cofilin to 

permit its role in actin dynamics at invadopodia (AYALA et al., 2008;CALDIERI et al, 

2009a). 

Finally, there are also numerous adaptor molecules and effectors downstream of these 

signaling cascades that are localized to and regulate invadopodia such as cortactin, 

(GIMONA and BUCCIONE, 2006); dynamin2, a large GTPase which regulates actin 

organization via cortactin (KRUCHTEN and MCNIVEN, 2006), and also has a 

specialized function in tubulation and constriction of cell membranes and, therefore, 

affects membrane trafficking (BALDASSARRE et al, 2003); Tks5, a scaffolding protein 

and Src substrate that binds and modulates N-WASP (OIKAWA et al, 2008); IQGAP1, 

which regulates Cdc42 and Racl modulating cytoskeletal architecture (NABESHIMA et 

al, 2002); and Paxillin, a scaffolding protein that coordinates the actions of Rho GTPases 

and forms a complex with cortactin at invadopodia (BOWDEN et al, 1999), to name a 

few. Figure 8 provides an overview of the structure of an invadopodium and many of the 

proteins implicated. 

1.4.5 Implication of invadopodia in metastatic process 

Invadopodia are considered to be an in vitro model for cell invasion due to the fact that 

focal delivery of proteases is crucial for physiological ECM remodeling events and tumor 

cell invasion (BASBAUM and WERB, 1996). Focal ECM degradation requires tight 

coordination between polarized trafficking, signaling events and cytoskeletal/membrane 
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remodeling and invadopodia are likely the place where this integration occurs (GIMONA 

and BUCCIONE, 2006). Furthermore, invadopodia biogenesis correlates highly with 

well-established assays for invasive capability such as invasion through matrigel-coated 

transwell chambers and xenograft metastasis models (BOWDEN et al, 1999;COOPMAN 

et al, 1998;THOMPSON et al, 1992). Invadopodia-like structures formed by migrating 

cancer cells undergoing intravasion have been imaged by multiphoton microscopy while 

whole animal imaging has allowed real-time visualization of invadopodia-like protrusions 

in tumor cells invading through tissues (CONDEELIS and SEGALL, 

2003;YAMAGUCHI et al, 2005). Enrichment of invadopodia markers such as cortactin 

and Tks5 have also been found at the invading front of human tumors in tissue samples, 

consistent with invadopodia-mediated invasion (SEALS et al, 2005;ZHANG et al, 

2006b). In summary, invadopodia are organelles where many functions associated with 

cancer aggressiveness converge such as tyrosine kinase signaling, protease secretion and 

targeting, and cytoskeletal rearrangement and may, therefore, reveal to be good 

therapeutic targets. Also, these structures are not important for cell viability and their 

disruption may, therefore, have less side effects than some of the current treatments 

(WEAVER, 2006). 
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Figure 8: Invadopodium. A plasma membrane protrusion is formed due to excessive 

actin polymerization induced by RhoGTPases signaling. Various molecules are 

implicated in this actin polymerization including N-WASP, Arp2/3 and cortactin. 

Cortactin can be further activated by Src which may be found in focal adhesion 

complexes containing FAK and integrins, in close proximity to invadopodia. 

Metalloproteinases including MMP-2 and MMP-9 are secreted at invadopodia and can be 

activated by MT1-MMP which is enriched at invadopodia membrane protrusions. 

(ARSENAULT, D. Unpublished) 
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1.5 Objectives and pertinence 

Autotaxin has been implicated in the invasiveness and metastatic potential of numerous 

cancer cell lines (KEHLEN et al, 2004;KISHI et al, 2006;YANG et al, 2002;YANG et 

al., 1999). It is responsible for producing the majority of LPA in vivo, which in turn 

signals by activating GPCRs (BRINDLEY, 2004;UMEZU-GOTO et al, 2002). Over-

expression of ATX or LPA receptors has recendy been linked to increased tumor invasion 

and metastasis of breast cancer cells (LIU et al., 2009). Similarly, knockdown of ATX 

and LPA receptors has been shown to inhibit tumor cell migration and cause tumor 

regression in mice (ZHANG et al., 2009). These results suggest an important role for 

ATX and LPA receptors in cancer progression and tumor metastasis, however the precise 

signaling pathways and cellular effects involved remain largely unknown. In order for 

cancer cells to metastasize, they first need to degrade surrounding tissues. Invadopodia 

are invasive subcellular structures formed by cancer cells that are increasingly being 

recognized as important mediators of matrix degradation necessary for cell invasion and 

metastasis (CONDEELIS and SEGALL, 2003;YAMAGUCHI et al, 2005). The 

formation of these structures requires specific signaling events and recruitment of 

effectors, which are slowly being unraveled (YAMAGUCHI et al., 2006). The hypothesis 

of mis research was that ATX, through LPA production and LPAR signaling, induces the 

formation of the invasive structures, invadopodia, leading to metastasis of cancer cells. 

The objectives of this research were to evaluate the implication of ATX and LPA on 

invadopodia production and to determine the receptor and signaling pathways used to 

promote invadopodia and metastasis formation. 



The first objective of the research presented in this memoire was to determine the 

involvement of ATX and LPA in invadopodia production. For this, we transfected cells 

with ATX or shRNA against ATX. We then investigated the response of these cells in 

invadopodia assays. We also studied the effects of LPC and LPA on various cancer cell 

types in invadopodia assays. The second objective of this memoire was to establish 

whether LPA receptors were implicated in invadopodia production and to define the 

receptor(s) implicated. For this, we used a broad-spectrum inhibitor of LPA receptors and 

observed the effects on invadopodia production. We also measured the mRNA expression 

levels of the various LPA receptors in the HT1080 cell line. In addition, we used LPA4 

shRNA to study the requirement of this receptor for invadopodia production. The effect 

of LPA4 knockdown on in vitro cell invasion and in vivo metastasis formation was also 

studied, using a 3D invasion assay and a lung metastasis assay, respectively. The third 

objective of this research was to ascertain the downstream signaling pathways involved in 

ATX-induced invadopodia. As LPA4 primarily couples to Gs, resulting in increased 

intracellular cAMP concentrations, we investigated signaling by the cAMP pathway. For 

this, we evaluated the effect of various activators and inhibitors of cAMP and its 

downstream effectors in the invadopodia assay. 
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2 - ARTICLE 

2.1 Preface 

The manuscript presented in this memoire entitled "Autotaxin Promotes Cancer Invasion 

via the Lysophosphatidic Acid Receptor 4: Participation of the cAMP/EPAC/Racl 

Signaling Pathway in Invadopodia Formation" presents the results of research performed 

in the context of my master's program. This article has been accepted for publication in 

the peer reviewed journal, Cancer Research and will appear in the June issue. The 

authors of this article are Kelly Harper, Dominique Arsenault, Stephanie Boulay-Jean, 

Annie Lauzier, Fabrice Lucien and Claire M. Dubois. The form for authorization of 

integration of an article into a memoire with signatures from all authors is attached. I 

personally performed the bibliographic research, experimental planning and the majority 

of the experiments. I also wrote and participated in the correction of the manuscript. 

Dominique Arsenault, a Ph.D. student, performed the experiments represented in Figure 

6A and 6B as well as helping capture images for figure 1. Stephanie Boulay-Jean, a 

stagiaire, performed the experiment presented in figure 2D. Annie Lauzier, a post­

doctoral student, performed the western blot presented in figure 4D. Fabrice Lucien, a 

master's student, participated in the WB presented in figure 2C. Dr. Claire Dubois is my 

research director. It was with her guidance that I planned the experiments and developed 

this project. 
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2.2 RESUME 

L'habilete des cellules cancereuses a envahir les tissus et former des metastases est la 

cause principale de deces chez les patients atteints de cancer. L'autotaxin (ATX) est une 

lysophospholipase secretee dont les niveaux d'expression correlent avec l'agressivite et le 

potentiel invasif des tumeurs. L'ATX est l'enzyme majeure impliquee dans la production 

de l'acide lysophospatidique (LPA), un phospholipide qui est connu pour agir 

principalement par l'intermediare de recepteurs LPA1-3. L'invasion des cellules tumorales 

et la formation des metastases sont dependantes de la capacite des cellules cancereuses a 

degrader la membrane basale. Ce processus peut etre initie par la formation de protrusions 

riches en actine, appelees invadopodes. Dans cette etude, nous demontrons que l'ATX est 

impliquee dans la formation des invadopodes chez divers types cellulaires cancereux. Cet 

effet est dependant de la production de LPA. De plus, nous montrons que la signalisation 

via le LPA4 chez les cellules de fibrosarcome regule la formation des invadopodes en aval 

de l'ATX, c'est a dire a travers l'activation de EPAC par PAMPc et l'activation ulterieure 

de Rac-1. Les resultats utilisant l'ARN interferent du LPA4 renforce l'idee que le 

recepteur LPA4 est necessaire a l'invasion cellulaire et la formation de metastases in vivo. 

Ce travail suggere que le blocage du recepteur au LPA, LPA4, dans les cellules de 

fibrosarcome pourrait etre une avenue interessante afin d'ameliorer l'efficacite du 

traitement des metastases chez les patients atteints de cancer. Du fait que les recepteurs au 

LPA et l'ATX sont actuellement des cibles therapeutiques pour des essais precliniques, 

ces decouvertes devraient stimuler des etudes ulterieures visant a evaluer le profil 



d'expression et Tissue clinique du LPA4, en conjoncture avec les autres recepteurs au 

LPA, dans plusieurs types de cancers. 
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Abstract 

The ability of cancer cells to invade and metastasize is the major cause of death in cancer 

patients. Autotaxin (ATX) is a secreted lysophospholipase whose level of expression 

within tumors correlates strongly with their aggressiveness and invasiveness. ATX is the 

major enzyme involved in the production of LPA, a phospholipid that is known to act 

mostly through its three first characterized receptors, LPA1-3. Tumor cell invasion across 

tissue boundaries and metastasis are dependent on the capacity of invasive cancer cells to 

breach the basement membrane. This process can be initiated by the formation of the 

actin-rich cell protrusions, invadopodia. In this study, we demonstrate that ATX is 

implicated in the formation of invadopodia in various cancer cells types and this effect is 

dependent on the production of LPA. We further provide evidence that LPA4 signaling in 

fibrosarcoma cells regulates invadopodia formation downstream of ATX, a process 

mediated through the activation of EPAC by cAMP and subsequent Rac-1 activation. 

Results using LPA4 shRNA support the requirement of the LPA4 receptor for cell invasion 

and in vivo metastasis formation. This work presents evidence that blocking the LPA 

receptor, LPA4, in fibrosarcoma cells could provide an additional tool to improve the 

efficacy of treatment of metastasis in patients. Because LPA receptors and ATX are 

currently being targeted in preclinical trials, the current findings should stimulate future 

studies to evaluate the expression pattern and clinical outcome of LPA4, together with 

other LPA receptors, in various cancer patients. 
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Introduction 

Cancer remains a leading cause of death worldwide despite relendess efforts in 

basic research and clinical management of the disease. Autotaxin (ATX), a secreted 

motility stimulating factor that was originally isolated from the culture supernatant of 

human melanoma cells (A2058) (1), has been linked with progression of many types of 

cancer. Up-regulation of ATX in malignancies including breast, lung, colon, ovarian, 

stomach and brain cancer was correlated with invasiveness and metastatic potential (2-4). 

ATX has been found in many biological fluids including blisters, cerebrospinal, peritoneal 

and, synovial, as well as plasma (5-8). Through its extracellular actions, ATX augments 

cellular functions closely associated with tumor aggressiveness and metastasis that 

include proliferation, survival, motility, invasion and angiogenesis (9,10). ATX has 

recently been shown to be molecularly identical to lysophospholipase D, which catalyzes 

the production of the majority of lysophosphatidic acid (LPA) from 

lysophosphatidylcholine (LPC) in vivo (11). Consequently, LPA is thought to be 

responsible for the majority of ATXs effects (12). LPA is a bioactive lipid and a major 

constituent of serum whose effects are similar to those of ATX (11,13). LPA is also 

implicated in many pathophysiological conditions such as atherosclerosis, hypertension, 

ischemia reperfusion injury, and, pertinent to this study, cancer (14). LPA mediates cell 

type-specific responses by engaging high affinity G-protein-coupled receptors (GPCRs) 

(15). 

There are currendy six known LPA receptors. LPAi - LPA3 are members of the 

endothelial differentiation gene (edg) receptor family whereas the more recently de-

orphaned LPA4-LPA6 belong to the purigenic cluster of GPCRs (16-18). Most research 
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has focused on the first identified LPA receptors while the signaling and physiological 

roles of LPA4 -LPA6 have received less attention. LPA signals via at least four distinct G-

protein families, Gi, Gq, G12/13, and Gs and their downstream effectors. The major 

signaling pathways that become activated include the PI3K and Ras pathways which 

depend on Gi, PLC which depends on Gq, Rho GTPases which are associated with G12/13 

signaling and cAMP production downstream of Gs (13,19). Many of these signaling 

routes have been shown to be involved in tumor survival and invasion. (19). Over-

expression of ATX and LPA receptors (LPA1-3) has been recently linked to increased 

tumor invasion and metastasis of breast cancer cells (20). Moreover, pharmacological 

inhibition of both ATX and LPA receptors (mostly LPA1-3) has been shown to decrease 

cell migration in vitro and cause tumor regression in mice (21). These studies uncovered 

an important role for ATX and LPA1-3 receptors in tumor metastasis, a fundamental 

property of malignant cancer cells and the major cause of death in patients. 

Metastatic tumor cells must first degrade the surrounding tissues and reach the 

blood stream to travel to distant sites and form new tumors. Cancer cells have been 

shown to generate protrusions called invadopodia to facilitate their migration and 

invasion through tumor stroma and the lining of the blood vessels during the process of 

metastasis (22,23). Invadopodia are formed by highly invasive cancer cells. They are 

actin-rich ventral membrane protrusions which possess ECM degrading activity (24). The 

formation of these structures necessitates the convergence of many different signaling 

pathways and molecules, which are slowly being unraveled. Besides actin, invadopodia 

contain actin regulatory proteins, adhesion molecules, membrane remodeling and 

signaling proteins and extracellular matrix-degrading enzymes (25). The Rho GTPases, 
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including Racl and Cdc42, have repeatedly been shown to promote invadopodia 

production through their actions on the cytoskeleton (26). Formation of invadopodia is 

enhanced by extracellular matrix rigidity (27), some growth factors such as EGF (22) or 

expression of wild-type or activated forms of the src tyrosine kinase (28). Therefore, 

despite much research on invadopodia biology, very little is known about specific 

inducers and receptors during tumor progression. 

Because of the implications of ATX and LPA signaling in metastasis and their 

activation of pathways, which could be implicated in invadopodia formation, we have 

investigated the involvement of ATX and LPA receptors in invadopodia production. 

Using the invasive fibrosarcoma cell line, HT1080, we observed that ATX through the 

LPA4 receptor is a strong inducer of invadopodia formation that correlates with the ability 

of the cells to invade and metastasize. This study also revealed an unexpected signaling 

pathway for cell invasion involving LPA4-driven cAMP production and subsequent 

activation of the EPAC-Rapl-Racl axis. 
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Materials & Methods 

Reagents. l-oleoyl-s«-glycerol-3-phosphate sodium salt 18:1 (LPA),L-cc-

lysophosphatidyl choline from egg yolk (LPC-egg), l-oleoykw-glycero-3-

phosphocholine 18:1 (LPC-18:1), 2'-0-dibutyryladenosine 3 ' , 5'-cyclic monophosphate 

sodium (dibutyryl cAMP), 8-(4-chlorophenylthio)-2'-0-methyladenosine 3'-5'-cyclic 

monophosphate monosodium hydrate (8-pCPT), 8-bromoadenosine 3'-5'-cyclic 

monophosphate sodium (8-bromo cAMP), H-89 dihydrochloride hydrate, LPAreceptor 

antagonist (KH6425), forskolin, cholera toxin (CTX), and pertussis toxin (PTX) were 

purchased from Sigma-Aldrich (St. Louis, MO). The Racl inhibitor NSC23766 and Rapl 

inhibitor GGTI-298 were from Calbiochem (EMD Chemical Inc, La Jolla, CA) and 

myristoylated PKI (14-22) amide (PKI) was from Biomol International LP (Plymouth 

Meeting, PA). ATX cDNA construct and ATX antibody (84A) were a kind gift from Dr. 

Tim Clair (Center for Cancer Research, NCI, NIH). shRNA against ATX, LPA4, or EPAC 

was from SABiosciences (Frederick, MD). The anti-tubulin antibody was from Sigma-

Aldrich, the anti-cortactin antibody was from Millipore (Temecula, CA), the anti-EPAC 

antibody was from Cell signaling (Boston, MA) and Texas Red phalloidin and all 

secondary antibodies were from Invitrogen (Molecular Probes, Eugene, OR). 

Cell culture and transfections. HT1080 human fibrosarcoma, MDA-MB231 and MCF-7 

human breast cancer, A549 human lung cancer and U87 human glioblastoma were 

obtained from the American Type Culture Collection (ATCC, Rockville, MD). All cell 

lines were cultured in minimal essential medium (MEM) (Wisent, St-Bruno, QC, Canada) 

supplemented with 10% FBS (Gibco BRL, Burlington, ON, Canada) and 40/<g/ml of 
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gentamycine (Shering Canada Inc., Pointe-Claire, QC, Canada) in a humidified 95% air/ 

5% CO2 incubator at 37°C. Stable transfections with ATX cDNA or shRNA against ATX, 

LPA4 or EPAC shRNA, or scramble shRNA (negative control) were performed with the 

Fugene reagent from Roche Diagnostics (Mannheim, Germany), according to the 

manufacturer's protocol. 

Real time RT-PCR. Total RNA was isolated using the TRI-Reagent (Invitrogen, Carlsbad, 

CA) protocol as previously described (29) and quantitative Real-Time PCR was 

performed on a Rotor-Gene 3000 (Corbett Research, Kirkland, QC, Canada). The 

following primer pairs were selected for LPA4: (forward) 5'-AAAGATCATGTACCCAA 

TCACCTT-3', (reverse) 5^-CTTAACAGGGACTCCATTCTGAT-3' and for human acidic 

ribosomal phosphoprotein PO (RPLPO): (forward) 5'-GATTACACCTTCCCACTTGC-

3', (reverse) 5'-CCAAATCCCATATCCTCGTCCG-3'. The cycling program was: initial 

denaturation at 95°C for 15 min, 40 amplification cycles with denaturing T° of 95°C for 30 

s, annealing T° of 55°C for 30 s and final extension at 72°C for 30 s. 

Western blotting. Cells were lysed on ice in RIPA buffer. Supernatant samples were 

recovered by centrifugation (13000rpm for 30min at 4°C) and protein concentration was 

determined using the BCA reagent (Biolynx Inc, Brockville, ON). Immunoblotting was 

performed as previously described (30). 

Invadopodia assays. Coverslips were prepared as previously described (31), using 

Oregon-green gelatin (Invitrogen, ON, Canada). Thirty thousand cells were seeded on 
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each coverslip, allowed to adhere and incubated in MEM with 0.5% FBS. Following 

various incubation times as described within the figure legends, cells were fixed with 1% 

paraformaldehyde for 30 min at 4°C and stained with DAPI (Invitrogen) for 5 min at 

room temperature. Cells were visualized by fluorescence microscopy and cells forming 

invadopodia were counted. Invadopodia were identified by areas of matrix degradation 

characterized by loss of green fluorescence. Three X 100 cells were counted per 

coverslip. 

Fluorescence Microscopy. Cells were grown on gelatin coated coverslips and fixed with 

1% paraformaldehyde in PBS for 30 min at 4°C, permeabilized with 0.05% saponine 

(Sigma-Aldrich) in PBS for 20 min and blocked with 2% BSA in PBS for 30 min. For 

calculation of the number of invadopodia per cell, cells were then incubated with anti-

cortactin antibody for 2 h, secondary antibody 488-conjugated anti-mouse for 1 h at 4°C 

followed by Texas Red phalloidin for 45 min and DAPI for 5 min. Colocalization of actin 

and cortactin was visualized using an Axioskop 2 phase-contrast/epifluorescence 

microscope and 20 cells were counted per condition (Carl Zeiss, Inc., Thornwood, NY). 

Images were taken with a FV1000 scanning confocal microscope (Olympus, Tokyo, 

Japan) coupled to an inverted microscope using a 63x oil immersion objective. To 

quantify the areas of degradation, pictures of fluorescent gelatin were acquired and 

captured into ImagePro imaging software (MediaCybernetics) and degradation areas were 

calculated in pixels for a total of at least 20 cells per coverslip. 



3D invasion assays. The 3D invasion assay was modified from a previously described 

technique (32). Collagen type I matrix was prepared as follows: Aliquots (50 jxL) of 

Agarose containing 10% FBS were deposited in a 96 well culture plate. Aliquots (50 jih) 

of fibrillar collagen type I (R&D Systems, Minneapolis, MN) were then prepared 

following manufacturer's instructions and layered on top of the Agarose. Cells 

(2xl04/100/d of serum-free MEM) were deposited on top of the collagen gel and 

incubated for 36 h. The cells were then labeled with CellTrace™ calcein green AM 

(Invitrogen) lh prior the end of incubation. Cells were then washed with PBS and fixed 

with 3% glutaraldehyde for 30 minutes followed by confocal microscopy analysis using a 

FV1000 Olympus confocal microscope. Collagen matrix pellets were scanned along the 

Z axis. Cells that had invaded the collagen were imaged and quantitated at each 5 }im 

layers within the gel. 

In vivo metastasis assay. Mice were housed and manipulated under pathogen free 

conditions, in accordance with the guidelines of the local institutional animal care facility. 

Experimental metastatic potential of HT1080 transfected cells was measured by the lung 

colonization assay. Briefly, 2 x 105 cells in 0.1 ml of PBS were injected into the tail vein 

of 5- to 7-week-old female CD1 nude mice. Twenty-nine days later the mice were 

sacrificed and the lungs were fixed with Bouin's solution (Sigma-Aldrich). Metastatic 

colonies on the lung surface were counted macroscopically. 
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Results 

Autotaxin induces the formation of matrix degrading invadopodia through the 

production of LPA from LPC. 

Since ATX is upregulated in many cancer cell lines and its expression correlates 

with cell invasion (2-4), we investigated whether ATX is implicated in invadopodia 

production. As shown in Fig. 1A, ATX over-expression in HT1080 human fibrosarcoma 

cells induced a significant 5-6 fold increase in the percentage of invadopodia producing 

cells as compared to parental HT1080 cells. Furthermore, the over-expression of ATX 

resulted in a significant increase of the gelatin degradation area (Fig. IB), as well as the 

number of invadopodia formed per cell identified by colocalization of actin and cortactin, 

two known markers of invadopodia (28) (Fig. 1C). Confocal microscopy analysis of ATX 

degradation areas showed that they were associated with cell membrane protrusions, 

which were characterized by punctate actin cores that extended from the basal membrane 

of the cell into the underlying matrix (Fig. ID). These observations suggested that ATX is 

involved in both invadopodia formation and function. 

To determine whether the impact of ATX was due to the ability of the enzyme to 

produce LPA from LPC, HT1080 cells were incubated in the presence or absence of LPC 

or LPA during the invadopodia assay. Results showed concentration-dependent increases 

in the percentage of invadopodia-producing cells after lOh of incubation (Figs. 2A and B), 

showing that both the substrate and the product of ATX enzymatic activity have the 

ability to induce the production of invadopodia. Next, depletion of ATX by shRNA 

abolished LPC- but not LPA-induced invadopodia formation (Fig. 2C), confirming that 

LPC-derived LPA was a key metabolite in invadopodia production. We further 
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Figure 1. Autotaxin induces invadopodia formation in HT1080 cells 

Parental and ATX-overexpressing HT1080 cells were cultured on fluorescent gelatin for 

10 h (A and B), or on non-fluorescent gelatin for 4 h (C). A, The percentage of 

invadopodia-producing cells are shown; n=3-9. Representative images of parental and 

ATX-transfected cells with associated matrix degradation are shown (10X magnification). 

B, Quantification of ECM degradation area/cell; n=3, with representative images of 

degradation by parental and ATX transfected cells (40X magnification). C, Number of F-

actin (green) and cortactin (red) positive invadopodia per cell; n=2, with representative 

confocal images showing colocalization of actin and cortactin spots (magnification 60X). 

D, A representative confocal image of ATX-transfected cells showing actin-rich 

invadopodia that extend into the matrix substratum (F-actin, red; gelatin, green). 

Columns, mean; bars, SEM; ***,p < 0.0001. 
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investigated whether the findings observed in the HT1080 cell line applied to other 

malignant cell lines. LPC induces invadopodia production in MDA- MB231 (breast 

cancer), A549 (lung cancer), CaCo2 (colon cancer) and U87 (glioblastoma) cell lines. In 

contrast, MCF-7(breast cancer), that has an intrinsic defect in cell invasion, failed to 

respond to LPC (Fig. 2D). These results indicate a role for ATX in the formation of 

invadopodia by a wide range of neoplastic cells. 

LPA receptor 4 is implicated in the formation of invadopodia through the activation 

of the Gs-cAMP-EPAC pathway. 

Since the cellular effects of LPA are due to its binding and activation of various 

LPA-specific GPCRs (15) and some of these receptors have been linked to tumor invasion 

(20, 21), we further investigated the role of these receptors and their downstream 

signaling pathways in mediating the effects of ATX and LPA on invadopodia production. 

Treatment of ATX over-expressing cells with a broad spectrum LPA receptor antagonist 

(Ki 16425) resulted in a significant decrease in invadopodia production (Fig. 3A), 

suggesting an important role for these receptors in transducing the ATX/LPA-dependent 

invasive function. We next assessed the relative expression levels of the most 

characterized LPA receptors (LPA1-4) in HT1080 cells to identify which of the receptors 

were more likely to mediate the effects of ATX/LPA on invadopodia production. In 

agreement with previously published results (2), HT1080 cells expressed high levels of 

LPA4 with only a minimal expression of LPA1-3 (Fig. 3B). Next, to further assess the role 

of LPA4 in invadopodia production, HT1080 cells were transfected with LPA4 shRNA. 

Results showed that LPA4 inhibition abolished invadopodia production induced by LPA or 
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Figure 2. ATX-induced invadopodia production is dependent on LPA production 

from LPC 

A and B, HT1080 cells were cultured for lOh with various concentrations of LPC-18:1 

(A) , or LPA (B) and the percentage of invadopodia-producing cells was calculated; 

n=3-4. C, parental HT1080 or cells transfected with ATX shRNA or ctr shRNA were 

cultured on fluorescent gelatin in the presence or absence (ctr) of LPA(10/*M) or LPC -

egg (10/<M) and the percent of invadopodia-producing cells was determined; n=3. 

Western blot analysis of supernatants (S) and cell lysates (L) with antibodies directed 

against ATX was performed. Ratios of ATX to tubulin are shown. One representative blot 

of 2 is shown. D, Cell lines were cultured in invadopodia assays in the presence or 

absence (ctr) of LPC-egg (10//M) for 10 h (HT1080, A549, MDA-MB231) or 24 h (U-87, 

MCF-7). The percent of invadopodia-producing cells is shown; n=2-4. Columns, mean; 

bars,SEM; *,p<0M ; **,/?<0.001 ; ***,p<0.000l. 
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Figure 3. LPA4 is implicated in invadopodia production by HT1080 cells. 

A, ATX-overexpressing cells were treated with KH6425 (25/<M) for lOh in an 

invadopodia assay; n=3. B, LPA receptors were measured by RT-PCR; n=3. C, Effect of 

LPA4 shRNA on invadopodia production by unstimulated (ctr) or LPA (10uM) or 

LPC-18:1 (lOuM) stimulated cells; n=3-4. D, LPA4 mRNA was measured by RT-PCR; 

n=2. Columns, mean; bars, SEM; *,p<0M ; **,/><0.001 ; ***,p<0.0001. 
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LPC (Fig. 3C), indicating the important contribution of this receptor in ATX-induced 

invadopodia production. 

LPA4 has been shown to couple to the Gs family of G-proteins that triggers the 

activation of adenylyl cyclase resulting in an increase in cAMP accumulation (33). To 

verify the involvement of this pathway in invadopodia formation, ATX over-expressing 

cells were incubated overnight with cholera toxin (CTX) that interferes with Gs function. 

While short-term incubation with CTX is known to activate Gs, prolonged exposure 

ultimately results in its depletion (34). Depletion of Gs resulted in a drastic reduction of 

the percent of cells producing invadopodia (Fig. SI). Consistent with this result, we next 

investigated whether increasing intracellular levels of cAMP would result in increases in 

invadopodia formation. Exposing parental HT1080 cells to forskolin (an activator of 

adenylyl cyclase) or to dibutyryl cAMP (a stable analog of cAMP) resulted in 1.5-to 3-

fold increases in cells producing invadopodia (Fig. 4A). cAMP exerts its effects by 

activating the cAMP-dependent protein kinase A (PKA) and the recendy discovered 

exchange protein directly activated by cAMP (EPAC) (35). To determine which of these 

cAMP effectors was responsible for invadopodia production we took advantage of cAMP 

analogs known to specifically activate PKA (8-bromo-cAMP) or EPAC (8-pCPT). 

Results indicated that EPAC activation induced a 2.5-fold increase in invadopodia-

positive cells whereas PKA activation had no significant effect (Fig. 4B and C). In 

addition the PKA inhibitors H-89 and PKI did not affect ATX-induced invadopodia 

formation (Fig. S2), confirming the lack of involvement of PKA. To further assess the 

role of EPAC in invadopodia formation we transfected HT1080 cells with shRNA against 
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Figure 4. LPA4 signals through Gs-cAMP-EPAC for invadopodia production 

HT1080 cells were incubated with or without (ctr), forskolin or dibutyryl cAMP (A), 8-

pCPT (B), or 8-bromo cAMP (C) for 10 h in invadopodia assays; n=3-5. D, parental 

HT1080 or cells transfected with EPAC shRNA or ctr shRNA were cultured in the 

presence or absence (ctr) of LPA (10/iM) or LPC-18:1 (lOpiM) and the percent of 

invadopodia-producing cells was determined; n=3. Immunoprecipitation of EPAC from 

equal amounts of protein per sample is also shown. Columns, mean; bars, SEM; *, 

p<0.0l ; **,/?<0.001 ; ***,/?<0.0001. 
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EPAC and observed that EPAC inhibition reduced LPA- and LPC- induced matrix 

degradation (Fig. 4D). Taken together, the results suggested that invadopodia production 

by ATX is promoted by a Gs-cAMP-EPAC signaling pathway. 

Racl activation downstream of EPAC is required for invadopodia production. 

EPAC is a nucleotide exchange factor that activates the small G-protein Rapl. 

Selective inhibition of Rapl using GGTI-298 abolished EPAC-induced invadopodia 

production (Fig. S3), suggesting its involvement downstream of EPAC. Rapl has many 

effectors, including the small G-protein Racl (36), which can induce actin polymerization 

by the Arp2/3 complex, an event essential to invadopodia formation (37). We therefore 

used the Racl inhibitor, NSC23766, to investigate whether Racl could be a downstream 

target of EPAC for invadopodia production. Racl inhibition abolished 8-pCPT induced 

invadopodia production, whereas the effects induced by LPC and LPA were decreased by 

approximately 50% (Fig. 5A-C). These results suggested that although Racl appears to 

be the essential downstream mediator of EPAC and Rapl in invadopodia production, LPC 

and LPA might activate additional pathways that are independent of the EPAC-Racl 

interaction. 

LPA4 is implicated in 3D invasion and metastasis. 

After determining the implication of LPA4 in invadopodia formation we further 

investigated the contribution of this receptor in cell invasion through a 3D matrix and 

metastasis formation in vivo. For the invasion assay, parental HT1080 cells or cells 

transfected with LPA4 shRNA were seeded on top of a type I collagen matrix and 
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incubated with or without LPC and LPA. The results demonstrated that cells transfected 

with LPA4 shRNA lost the ability to invade deeply into a 3D matrix in response to LPC or 

LPA (Fig. 6A-B). Also, mice injected with LPA4 shRNA transfected cells developed 

significantly less lung metastasis compared to those injected with control shRNA (Fig. 

6C). These results indicated an essential role for LPA4 in HT1080 fibrosarcoma invasion 

both in vitro and in vivo and further strengthen the relevance of invadopodia formation 

for cancer cell invasion and metastasis. 
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Figure 5. Racl activation downstream of EPAC is required for invadopodia 

production. 

A, B, and C, HT1080 cells were incubated with the Rac-1 inhibitor (NSC23766) for 30 

min prior to stimulation with LPC-18:1 (10//M) (A), LPA (lO^M) (B), or 8-pCPT (50//M) 

(C), in invadopodia assays. The control (ctr) represents unstimulated HT1080 cells; 

n=3-4. Columns, mean; bars, SEM; *,p<0.01 ; **,/x0.001 ; ***,/?<().0001. 
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Figure 6. LPA4 is implicated in cell invasion in vitro and in vivo. 

A and B, Parental HT1080 or LPA4 shRNA-transfected cells were incubated on type I 

collagen in 3D invasion assays in the presence or absence (ctr) of LPA (10^M) or 

LPC-18:1 (10//M). Relative intensity of cell staining according to depth of invasion is 

shown (A), graph represents maximal depth of invasion (B); n=3. Columns, mean; bars, 

SEM; *,/?<0.01; **,p<0.001. C, CD1 nude mice were injected with HT1080 cells 

transfected with control shRNA (n=12) or LPA4 shRNA (n=12). The number of 

metastases counted on the lung surface for each mouse is shown. Results are from two 

separate experiments. Means +/- SEM are shown; *,/?=0.0008. 
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Supplementary Figure SI. Involvement of Gs and Gi in ATX-induced invadopodia 

production. 

A, For Gs depletion HT1080 cells over-expressing ATX were incubated overnight with 

CTX at the indicated concentrations. Cells were then plated on fluorescent gelatin in the 

presence or absence of CTX for lOh and the percentage of invadopodia-producing cells 

was calculated. B, ATX over-expressing HT1080 cells were incubated overnight with 

pertussis toxin (PTX) to inhibit Gi. Cells were plated on fluorescent gelatin in the 

presence or absence of PTX for lOh and the percentage of invadopodia producing cells 

was calculated. Columns, mean; bars, SEM; *,/x0.01 ; ***,/?<0.0001. 

Supplementary Figure S2. PKA inhibitors have no effect on ATX-induced 

invadopodia production. 

A and B, ATX over-expressing HT1080 cells were incubated in the presence or absence 

of PKA inhibitors, PKI (A) or H-89 (B) in invadopodia assays. The percent of 

invadopodia producing cells was calculated. Columns, mean; bars, SEM. 

Supplementary Figure S3. Rapl inhibition suppresses EPAC-induced invadopodia 

production. 

HT1080 cells were incubated with the Rap-1 inhibitor (GGTI-298) in the presence of 8-

pCPT (50//M) in invadopodia assays. The control (ctr) represents unstimulated HT1080 

cells. The percentage of invadopodia producing cells was calculated; n=3-4. Columns, 

mean; bars, SEM; *,p<0.0\ ; ***,/?<0.0001. 
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Discussion 

In this study, we demonstrated that ATX is implicated in the production of 

invadopodia and that this effect is dependent on the production of LPA from LPC, both of 

which can mediate invadopodia production in various cancer cell types expressing ATX 

and LPA receptors. We further provide the first evidence that LPA4 signaling regulates 

invadopodia formation downstream of ATX and LPA in HT1080 cells, a process mediated 

through the activation of EPAC by cAMP and subsequent Rac-1 activation. RNA 

interference experiments further support the requirement of LPA4 for in vitro cell invasion 

and in vivo metastasis. 

ATX and LPA have been shown to be involved in tumor invasion and metastasis 

(20, 21) and expression of ATX was correlated with increased invasion of many 

malignant cell lines (2-4). ATX is also known to augment functions associated with 

tumor progression and metastasis such as proliferation, survival, motility, invasion and 

angiogenesis. (9, 10, 12). A very recent study indicated that LPA can induce the 

formation of actin dots that resembles invadopodia (38). Here, we further showed that 

ATX, through the production of LPA, regulated the formation and function of the invasive 

structures, invadopodia, in tumor cells. Invadopodia are implicated in the first steps of 

mesenchymal invasion due to their ability to make cytoskeletal protrusions enriched in 

matrix degrading proteases (22, 23). The role of ATX in invadopodia production may be 

part of the mechanism to explain how ATX affects tumor cell invasion and metastasis 

LPA receptors have also been implicated in tumorigenesis. LPA has been shown in 

various studies to stimulate cell motility and to modulate tumor cell invasion, mediated 

mainly by LPAi and Gi/0 coupling protein (19, 39). LPA4, that we investigated in this 
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study, has so far been poorly linked to tumorigenesis. LPA4 is widely expressed in 

embryonic tissues and its mRNA expression has been shown to be increased at 

implantation sites in the uterus (33,40), suggesting a role in matrix degradation and 

invasion into the uterus wall. Among the few studies of LPA4 functions in tumor cells, the 

report of Lee et al. (41) suggests that LPA4 signaling inhibits cell motility and invasion by 

over-activation of RhoA and inhibition of PI3K resulting in decreased Racl activation. 

Conversely, LPA4 has been shown to induce cell transformation and anchorage 

independent growth in Myc-transformed cells (42). Our finding that LPA4 is implicated 

in the formation of invadopodia through Gs signaling provides a novel role for this LPA 

receptor and adds an alternative pathway by which ATX and LPA can favor tumor 

invasion. The discrepancy between our results and those of Lee et al. (41), showing a 

negative role for LPA4 in the regulation of motility and invasion, may be due to the fact 

that these authors used a LPA4 over-expressing cell type in which the LPA4 response is 

coupled to Gq and G12/13 but does not mediate effects through Gs as suggested herein with 

endogenously LPA4 expressing HT1080 cells. 

In addition to the role of LPA4 in tumor invasion, one important observation of our 

study is the finding that cAMP and EPAC are involved in invadopodia production. 

Although the role of cAMP in various cell functions has been studied for decades, 

information regarding its contribution to cell invasion is scarce. Increases in cAMP have 

previously been correlated with anti-invasiveness of intestinal cancer cells (43). 

However, many of the effects of cAMP seem to be contradictory and depend on the cell 

types studied. For example, depending on cell context, cAMP either stimulates or inhibits 

cell division. It also causes reversion to a normal phenotype in some transformed cells, 
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while being important for differentiation of many cell types (44). These observations may 

be related to the independent or opposing functions of the two main effectors of cAMP, 

PKA and EPAC (35). Here, we clearly showed that cAMP accumulation led to the 

production of invadopodia structures and that downstream activation of EPAC and Rapl, 

but not PKA, were involved in this function. EPAC is an established GEF for Rap-1, a 

small GTPase, which has been implicated in malignancy (36) mainly through the inside-

out activation of integrins that are associated with cell invasion (45). Invadopodia 

structures are enriched in integrins that interact with the metalloproteinase MT1-MMP to 

trigger cancer cell invasion (46). It is therefore possible that one of the mechanisms by 

which EPAC affects invadopodia formation is through the inside-out activation of 

integrins by Rap-1. 

We also observed that invadopodia formation induced by EPAC was dependent on 

Racl activation. Rapl is know to activate Racl indirectly, through integrin signaling, or 

more direcdy, due to the activation of the Rapl effectors Vav2 and Tiam (45). Recently 

EPAC and Rapl have been implicated in translocation of Racl to the cell membrane, 

resulting in the recruitment of the Rac effector cortactin (47). Because Rapl as well as 

EPAC activities are spatially regulated in cells (48), it is possible that specific activation 

of EPAC-Rapl at sites of invadopodia formation could result in translocation of Racl to 

these sites, leading to the recruitment of cortactin, an essential component of forming 

invadopodia. Our findings that stimulation of the cAMP-EPAC pathways affects 

invadopodia production through Rac-1 activation identifies an alternative pathway for the 

activation of Rac-1 at the sites of invadopodia formation. 
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Whereas Racl inhibition abolished EPAC-induced invadopodia production, the 

effects of LPC and LPA were only reduced by approximately 50%. These observations 

suggested that LPC and LPA triggered the activation of pathways that were independent 

of the EPAC-Racl axis. In support of this, our results further showed a minor role for the 

Gi G-protein in invadopodia formation (SI). It is possible that in addition to Gs, Gi could 

also couple to LPA4 due to Gs/Gi switching, a phenomenon whereby phosphorylation of 

the receptor causes it to switch coupling specificity from Gs to Gi (49). In addition, 

preliminary results from our laboratory (Harper et al. unpublished) indicate that inhibition 

of Rock, a downstream effector of RhoA, but not PI3K, causes a partial decrease in 

invadopodia formation induced by ATX. This would implicate a potential involvement 

of the Rock pathway as well as other LPA receptors such as LPAi or LPA2 in invadopodia 

formation, which remains to be further elucidated. 

To date studies have indicated that LPA is involved in growth and metastasis of 

various cancers including ovarian and breast mainly through its action on LPA1-3 

receptors (20,21, 39). The expression of LPA receptors is cell-specific, and each can 

elicit different and to some extent overlapping responses upon LPA binding (13,19). Our 

work presents evidence that inhibition of the LPA receptor LPA4 could provide an 

additional tool to improve the efficacy of treatment of metastasis. Because LPA receptors 

and ATX are currently being targeted in preclinical trials, (50), the current findings should 

stimulate studies to evaluate the expression pattern and clinical outcome of LPA4, 

together with other LPA receptors and ATX, in various cancer patients. 
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3 - DISCUSSION 

Metastasis is the leading cause of cancer patient mortality and is a complex process that 

involves many steps in order for the cells to reach other parts of the body. One important 

step in the process of metastasis is the degradation of surrounding ECM and basement 

membranes. This allows the tumor cells to leave the original tumor site and enter blood 

or lymphatic vessels in order to travel to distant sites in the body where they will again 

need to degrade surrounding tissues to invade and form a new tumor (WOODHOUSE et 

al, 1997). Invadopodia are invasive structures that are thought to be responsible for this 

degradative capacity of cancer cells and are therefore thought to be implicated in an 

important step of metastasis (BASBAUM and WERB, 1996;CONDEELIS and SEGALL, 

2003). 

In the manuscript presented herein, we have shown that LPA4 is implicated in 

invadopodia production. LPA4 is also important for invasion into a 3D matrix as well as 

metastasis formation in a mouse model, further correlating the relationship between 

invadopodia production and metastasis formation. Furthermore, ATX through the 

production of LPA and downstream signaling through LPA4, was found to be implicated 

in invadopodia biogenesis by cancer cells. Invadopodia are complex structures that 

require the coordinated action of many proteins and signaling molecules in a small 

subcellular space (GIMONA and BUCCIONE, 2006). Therefore the mechanisms that 

promote the specific localization of the proteins and signaling molecules discussed in this 
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paper, including ATX, LPA4 and cAMP-EPAC-Racl, could potentially explain in part 

why ATX is able to promote invadopodia production. 

The effect of ATX on invadopodia biogenesis may be due in part to increased localized 

secretion of ATX towards sites of forming invadopodia. In various studies, the Golgi 

apparatus has been shown to reorient toward and come in close proximity to invadopodia 

(BALDASSARRE et al, 2003). Because ATX follows the classical secretory pathway 

for its secretion, this might allow the concentrated delivery of ATX-containing vesicles 

toward the extracellular space surrounding invadopodia. Another possibility is that 

secreted ATX could remain near invadopodial structures, by binding to integrins, which 

were found enriched at invadopodia (CHEN, 1990). ATX has potential RGD and LDV 

integrin-binding sites (KANDA et al, 2008), and its binding to activated integrins was 

recently shown to be a mechanism that targets secreted ATX to lymphocytes undergoing 

recruitment and promotes their entry into secondary lymphoid organs (KANDA et al, 

2008). Either of these possibilities or both could lead to an increased local production of 

LPA by ATX in the vicinity of forming invadopodia that could then signal via GPCRs to 

promote further invadopodia formation. To determine the implication of integrins on 

ATX localization and its effect on invadopodia, one possibility is to use integrin-directed 

antibodies or integrin blocking peptides in the invadopodia assay, similar to those used in 

the study by Kanda et al. However this approach is non-specific and would likely result 

in reduced cell attachment, among other effects. To increase the specificity, we could 

perform mutagenesis experiments to mutate the RGD and/or LDV binding sites in ATX 

and compare the impact of overexpressed wild type or mutated ATX on invadopodia 
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production. In order to determine if there is directed secretion or binding of ATX to 

invadopodia sites we could also perform fluorescence or confocal microscopy to visualize 

the localization of ATX in cells forming invadopodia in conjunction with secretion/ 

recycling vesicles or plasma membrane markers. We can further use these microscopy 

techniques to determine the effect of the above-mentioned integrin binding site mutations 

on ATX localization. 

LPA might also promote invadopodia formation due to a specific relocalization or 

targeting of LPA receptors to sites of forming invadopodia, resulting in enhanced LPA 

signaling at invadopodia. GPCRs and G-proteins are known to be localized to specific 

lipid domains and lipid rafts are thought to regulate their signaling cascades (ALLEN et 

al, 2007;PATEL and INSEL, 2009). For example, the delta-opioid receptor, when 

activated, is found concentrated in sphingomyelin enriched bilayers (i.e. lipid rafts) 

(ALVES et al, 2005). Gs trafficking has also been shown to be regulated by caveolin-1 

and lipid microdomains (ALLEN et al, 2009). Lipid rafts are specialized lipid 

microdomains enriched in cholesterol, saturated lipids (sphingolipids) and raft-associated 

proteins that include caveolin-1 (BROWN and LONDON, 1998;SIMONS and IKONEN, 

1997). They also contain glycosyl-phosphatidylinositol anchored proteins, are associated 

with the cytoskeleton, and are resistant to detergent extraction (BROWN et al, 2000). 

Lipid rafts have been implicated in signal integration, membrane trafficking, and protein 

sorting (JACOBSON et al, 2007;MAYOR and RAO, 2004;SIMONS and TOOMRE, 

2000). The lipid raft/caveolae domains are thought to compartmentalize proteins 

involved in specific signaling tasks. Cholesterol increases rigidity of the membrane 
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therefore regulating lateral mobility and compartmentalization of proteins. This can 

affect the probability of receptor interaction with downstream signaling partners and 

optimize their spatiotemporal interactions to increase signaling efficiency (SIMONS and 

TOOMRE, 2000). Furthermore, cholesterol may play a role in stabilizing the 

conformation of some GPCRs (ALBERT and BOESZE-BATTAGLIA, 

2005;SCHERTLER and HARGRAVE, 2000). 

Invadopodial structures have recently been associated with increases in cholesterol and 

caveolin. Therefore, invadopodia seem to have specific lipid characteristics similar to 

lipid rafts. Caveolin-1 has been determined to be a regulator of invadopodia biogenesis 

by modulating lipid domains through the transport of cholesterol (CALDIERI et al, 

2009b), while lipid rafts and caveolin-1 were shown to be required for invadopodia 

formation and subsequent ECM degradation by human breast cancer cells 

(YAMAGUCHI et al, 2009). In the study of Yamaguchi et al., lipid rafts were found to 

be enriched, internalized, and dynamically trafficked at invadopodia sites. Furthermore, 

various invadopodia-associated components such as cortactin and MT1-MMP were found 

localized in lipid raft enriched membrane fractions (CALDIERI et al., 

2009b;YAMAGUCHI et al, 2009). Therefore, specific GPCRs, for example LPA4 in the 

case of this memoire, could potentially be localized to, or trafficked in, lipid rafts at 

invadopodia leading to enhanced signaling. This could account for localized cytoskeletal 

rearrangements induced by LPA signaling that are required for invadopodia formation. To 

verify if LPA4 is localized to invadopodia and whether this is dependent on lipid rafts we 

could perform fluorescence microscopy to visualize the localization of LPA4 along with 
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invadopodia markers. We could then use techniques to disrupt lipid rafts, such as 

cholesterol sequestration, and determine the effect on LPA4 localization. 

Spatial regulation of numerous signaling and effector molecules is another important 

aspect of invadopodia formation as it requires the coordinated action of many different 

signaling pathways in a specific cellular space (GIMONA and BUCCIONE, 2006). This 

ties in well with the cAMP-EPAC-Rapl pathway found to be implicated in our work. It is 

well known that cAMP and its effectors, EPAC (PONSIOEN et al, 2009) and PKA, 

undergo tight spatial and temporal regulation (JARNAESS and TASKEN, 2007) to 

promote different cellular functions. As mentioned in the introduction, the EPAC effector 

Rapl influences Racl activation by the re localization of the Racl effectors Vav2 and 

Tiaml to sites of membrane protrusion actively engaging the ECM, in Hela cells 

(ARTHUR et al, 2004). Invadopodia can be considered to be membrane protrusions 

engaging the ECM which leads us to speculate that there could be specific activation of 

Racl by its effectors Vav2 and Tiaml, induced by EPAC-Rapl signaling, at sites of 

invadopodia production. Furthermore, EPAC activation has been shown to induce Racl 

translocation to the cell membrane in microvascular endothelium resulting in recruitment 

of cortactin to the cell membrane, an important component of invadopodia (BAUMER et 

al, 2008). Therefore, the postulated specific localization of either ATX or LPA4 would 

lead to activation of the cAMP pathway in the vicinity of invadopodia. Due to the spatial 

regulation of cAMP and its effectors the signaling induced by the cAMP pathway would 

then be efficiently confined to the area of invadopodia production, specifically the cell 

membrane. 
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In addition to promoting actin rearrangement essential for invadopodia formation, ATX 

may also stimulate invadopodia functions. ATX has been shown to increase the 

expression of uPA through a Gi-PI3K-Akt-NFkB signaling pathway in human melanoma 

cells (LEE et al, 2006). LPA is also capable of increasing uPA activity in ovarian cancer 

cells, through Ras-Raf signaling, as well as in endometrial carcinoma cells (LI et al, 

2005;WANG et al, 2010). As discussed in the introduction section, uPA is a serine 

protease that interacts with uPAR to convert plasminogen to plasmin which degrades 

collagen type IV, fibronectin and laminin as well as activating MMP-2, -3, -9 and uPA 

(DANO et al, 1985;LIJNEN, 2001;SCHMITT et al, 1992). Complexes containing 

uPAR and seprase (another serine proteinase) have been localized to invadopodia with 

this association being dependent on the microtubule cytoskeleton and integrins (ARTYM 

et al, 2002). Interestingly, uPAR is a GPI-linked transmembrane protein and has 

therefore been associated with caveolae and lipid rafts, which are enriched at invadopodia 

(STAHL and MUELLER, 1995). This involvement of uPA in invadopodia function is an 

interesting avenue to further explore. Whether this would imply LPA4 or other LPA 

receptors remains to be elucidated. 

Supplementary results of the manuscript presented herein suggest an implication of other 

receptors in ATX-induced invadopodia production. For example, inhibition of Gi with 

PTX was found to partially inhibit ATX-induced invadopodia production. Inhibition of 

Rock, a downstream effector of G12/13-RI10A, also partially decreased ATX effects. 

Because Gi and G12/13 seem to be partially implicated in invadopodia production, we 
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believe that in addition to LPA4, LPAi and LPA2, which can signal through both of these 

G-proteins, could also be involved. In the article by Taghavi et al., in which LPA4 

expression was found to induce transformation and anchorage independent growth, LPA 

receptors 1 and 2, but not 3, were shown to mediate a similar effect (TAGHAVI et al, 

2008). LPAi and LPA2 have also been highly implicated in tumorigenesis, migration and 

invasion of many cancer cell types. For example, LPAi is involved in promoting motility 

of human pancreatic cancer cells (YAMADA et al, 2004), neoplastic cells (HAMA et al, 

2004) and breast cancer cells (HORAK et al, 2007), as well as metastasis of human colon 

cancer cells (SHIDA et al, 2003) and breast cancer cells (BOUCHARABA et al, 2006). 

LPA2 has been implicated in mitogenic signaling of human colon cancer cells (YUN et 

al, 2005) as well as mediating cell motility of ovarian cancer cells (JEONG et al, 2008). 

Therefore signaling pathways of multiple LPA receptors might also play a role in the 

metastatic cascade by promoting migration following invadopodia-mediated ECM 

degradation. It is important to note that in our study we used HT1080 fibrosarcoma cells 

that have high expression of LPA4 and low expression of LPA1-3. However, any of the 

LPA1-3 receptors could potentially be upregulated by invadopodia signaling events or 

extracellular cues from the degraded matrix during invadopodia-mediated degradation. 

Therefore, LPA4 through Gs-cAMP signaling and Rapl-Racl activation might lead to 

increased invadopodia formation and subsequent activation of other LPA receptors might 

then promote migration of the cell through the matrix that has been degraded. 

In this memoire, we have added both LPC, the substrate, and LPA, the product of ATX 

activity, to invadopodia assays to determine their effects. In our first experiments, we 
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used a natural source of LPC derived from egg yolk, that was prepared by the action of 

phospholipase A on egg L-a-phosphatidylcholine (LPC-egg), that unexpectedly induced 

dramatically more invadopodia production than LPA in the same experiments (Fig. 2C). 

In order to understand these results and to be more rigorous, we changed our source of 

LPC for a synthetic reagent with the same hydrophobic tail length and degree of 

unsaturation as the LPA. Using synthetic LPC (18:1) and LPA (18:1), we observed that 

both LPC and LPA, used at the same concentration, induced similar percentages of cells 

to produce invadopodia. However, in the literature, LPA has been shown to be much 

more potent than LPC in inducing cell migration often measured by a wound healing 

assay. In these publications, LPA was shown to be maximally effective at 0.5 uM, while 

LPC required 5-10 uM concentrations for a similar effect (GAETANO et al, 2009). In 

order to determine why our results differed from those of other authors, we tested the 

effects of LPC and LPA in a wound healing assay. Using this assay, we observed that for 

the same concentration of reagents used, LPA had a stronger impact on cell migration 

than LPC, as measured by the number of cells that had moved into the scratch area 

(Harper et al., unpublished results). Therefore, it seems that the observed discrepancy 

can neither be attributed to the cell type, nor to the source of LPC and LPA, but possibly 

to the biological assay used. One possibility for the strong response to LPC in the 

invadopodia assay could be due to the postulated relocalization of ATX and LPA receptors 

at sites of forming invadopodia (as discussed above). In this scenario, ATX might produce 

LPA from the added LPC in closer proximity to the responding receptor, thereby requiring 

less LPC. 
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In this memoire, we have studied the roles of ATX, LPA and the LPA GPCR LPA4 in 

tumor cell invasion and invadopodia production in HT1080 cells. We have discovered a 

novel role for LPA4 and cAMP-EPAC-Racl signaling in ATX-induced invadopodia 

production. Each of these proteins and signaling molecules can be spatially regulated by 

various mechanisms. It will be interesting to determine in future studies whether ATX 

and molecules involved in the LPA4 signaling pathway are spatially regulated during 

invadopodia formation and to define the mechanisms involved. 

From a more clinical or physiological point of view, finding a way to target and inhibit 

the production of invadopodia by cancer cells could be a good way to prevent the 

metastasis of tumor cells. Without invadopodia the tumor cells should no longer be able 

to cross high-density matrix such as basement membranes and this should therefore 

prevent their migration and invasion to distant sites. Furthermore invadopodia are non­

essential structures that are not formed by normal cells and therefore targeting them 

would likely result in fewer side effects than conventional chemotherapies and should not 

affect non-cancerous cells (WEAVER, 2006). 

In this study we have found that blocking LPA4 or ATX could provide new targets to 

potentially inhibit the production of invadopodia by cancer cells. LPA4 is one of the more 

recently identified LPA receptors and therefore there is little information on the 

implications of this receptor in physiology and disease. LPA4 is highly expressed in 

embryonic tissues while in adults it has low expression in many tissues (LEE et ah, 

2007;NOGUCHI et a!., 2003). Studies so far have found that it has a role in neuronal 
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development and bone homeostasis and possibly during pregnancy (ISHII et al, 

2009;LIU et al, 2010;YANAGIDA et al, 2007). Due to the findings of our current work 

it will be interesting to further investigate the roles of LPA4 and determine if this receptor 

is essential for other biological functions in the adult. It will also be interesting to 

determine why LPA4 is over-expressed in many cancer cell lines and if factors in the 

tumor microenvironment can cause an increase in LPA4 expression levels. As LPA4 is 

highly expressed in a wide range of highly invasive cancers such as ovarian, 

glioblastoma, colon, fibrosarcoma, lung, prostate and melanoma (KISHI et al, 2006), the 

results presented herein can be postulated to apply to a variety of cancers. Further studies 

are needed to determine which cells types are affected by LPA4 knockdown and if the 

cAMP-EPAC-Racl pathway is used by different cell lines to promote invadopodia 

production. 

LPA receptors (1-3) and ATX are currently being targeting in preclinical trials to treat 

cancer (MURPH and MILLS, 2007) so the design and utilization of inhibitors that also 

target LPA4 could be beneficial as it seems to mediate signaling through a different 

pathway than the other LPA receptors. ATX and LPA4 are both highly expressed during 

embryogenesis but in the adult have a lower and more restricted expression. Their over-

expression may therefore be a good determinant for identifying potentially aggressive 

cancers. Early detection of cancer cells that possess metastatic potential could improve 

the treatment and prognosis of this disease. Metastasis is a complicated process yet to be 

fully understood. The results of our study will hopefully help shed some new light on this 

process. 
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