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Abstract 

The oxidation of energy substrates during healthy aging. 

Erika Brita Leah Freemantle, Department of Physiology and Biophysics, Universite 

de Sherbrooke. 

Introduction: Glucose and ketones are important energy substrates in the human 

body and brain. Their use is highly regulated depending on energy status which can 

vary according to multiple factors such as type of cell, fed or fasted state, type of diet, 

or health state. Use of either substrate is also subject to multiple homeostatic 

feedback loops. Energy substrate availability has implications in several disorders 

including declining cognitive function in the elderly. While glucose availability is 

known to decrease in elderly with cognitive deficits, it is unclear whether this also 

occurs in healthy elderly, either in the body or brain. Also unknown is whether, in 

healthy elderly, the use of ketones as energy substrates is affected, and whether 

ketones could be used as an alternative energy substrate in situations of a decline in 

glucose availability. A clearer understanding of the use of glucose and ketones in 

aging is necessary to determine whether declining energy 

substrate availability that may occur in the elderly is a contributing factor to cognitive 

deficits, a result of cognitive pathology, or simply a feature of the physiological aging 

process. 



Objective The overall goal of the laboratory where this research was carried out is to 

ascertain whether alternate energy sources to glucose, i.e. ketones, may help 

alleviate the risk of declining cognitive function during aging. The specific objective of 

the research project presented in this thesis was to evaluate the metabolism of 

glucose and ketones in the healthy elderly compared to young or middle age subjects 

during mild, short-term ketosis induced by a ketogenic breakfast. 

Results Elderly people in relatively good health have a similar capacity to produce 

ketones and to oxidize 13C-glucose and 13C-(3-hydroxybutyrate as middle-aged or 

young adults. 

Discussion The results of this project encourage further exploration of whether 

ketones could be used as and alternative energy substrate to glucose as, at least in 

healthy elderly, there is no impedance of raising plasma ketones in response to a 

ketogenic intervention. 

Keywords Energy substrates, glucose, ketones, healthy elderly, carbon-13 stable 

isotope tracers 

Master's thesis presented to the Faculty of Medicine and Health Sciences, in order to 
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Resume 

L'oxydation des substrats energetiques au cours du vieillissement sain. 

Erika Brita Leah Freemantle, Departement de Physiologie et Biophysique, Universite 

de Sherbrooke 

Introduction Le glucose et les cetones sont des substrats energetiques importants 

pour le corps et le cerveau humain. Leur utilisation est specifiquement regulee selon 

I'etat energetique qui varie en fonction du type de cellule, de I'etat nourrie ou a jeun, 

du type de diete, de I'etat de la sante. [.'utilisation est egalement regulee par des 

voies de retrocontrole homeostatique. La disponibilite des substrats energetiques est 

impliquee dans plusieurs desordres dont le declin des fonctions cognitives chez les 

personnes agees, ou une diminution de la disponibilite du glucose est demontree. 

Cependant, il n'est pas encore connu si cette diminution est presente chez les 

personnes agees en bonne sante; soit dans le corps ou le cerveau. La capacite 

d'utiliser les cetones comme substrats energetiques chez les personnes agees 

saines et la possibility d'utiliser les cetones comme substrat energetique alternatif 

dans le cas d'un declin de la disponibilite de glucose sont inconnu. Une meilleure 

comprehension de I'utilisation du glucose et des cetones sera necessaire pour 

clarifier si une diminution de la disponibilite des substrats energetique contribue au 

declin cognitif, se manifeste a la suite des pathologies cognitives, ou encore est 

simplement une caracteristique du processus physiologique du vieillissement. 

Objectif L'objectif principal du laboratoire est de determiner si les sources d'energies 

alternatives au glucose, c'est-a-dire les cetones, pourraient ralentir le declin cognitif 



chez les personnes agees. L'objectif du projet de recherche de ce memoire etait 

d'evaluer le metabolisme du glucose et des cetones chez les sujets ages, d'age 

moyen, et jeune apres la prise d'un dejeuner induisant une faible cetogenese de 

courte duree. 

Resultats Les personnes agees en sante ont une capacite similaire aux sujets d'age 

moyen et jeunes a produire des cetones et a oxyder le 13C-glucose et le 13C-|3-

hydroxybutyrate. 

Perspectives Les resultats de ce projet incitent a continuer a explorer si les cetones 

pourraient §tre utilisees comme substrats energetiques afin de contoumer le 

probleme d'un declin de I'utilisation du glucose, car il n'y a aucun obstacle dans la 

production des cetones suite a une intervention cetonique chez des sujets agees en 

bonne sante. 

Mots cles substrats energetiques, glucose, cetones, vieillissement sain, traceur 

d'isotope stable carbone-13. 

Memoire presente a la Faculte de medecine, en vue de I'obtention du grade de 

mattrise sciences (M.Sc.) en Physiologie et Biophysique 19 decembre 2007 

Membres du jury de revision 

Stephen C. Cunnane, Directeur, Departement de Physiologie et Biophysiques) 

Jean- Patrice Baillergeon, Departement de Physiologie et Biophysiques 

Martin Brochu, Faculte d'£ducation Physique et Sportive, Departement de 
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Introduction 

Bioenergetics 

Living cells depend on a complex, highly regulated system of energy 

producing and energy utilizing chemical reactions referred to as metabolism. The 

functioning of a cell depends on its ability to extract and use the chemical energy in 

organic molecules (VANDER et al., 2001). This energy is trapped in the bonds of 

adenosine tri-phosphate (ATP). ATP is generated by the tricarboxylic acid cycle (TCA 

cycle) which, coupled with the electron transport chain, will ultimately form ATP from 

acetyl coenzyme A (acetyl CoA). The TCA cycle is the terminal oxidative pathway for 

most metabolic fuels. Acetyl CoA can be obtained from different substrates (DEVLIN 

2006). In humans, glucose is the primary substrate, mainly made available from the 

breakdown of dietary carbohydrates. In times of glucose shortage, humans can also 

utilize either proteins or ketones as an energy substrate, available from the 

breakdown of fats. The supply of these energy substrates is summarized in Figure 1 

(MURRAY et al., 2006). 
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Figure 1 Summary of nutrient supply of energy substrates from fat, proteins, or 

carbohydrates and subsequent conversion through acetyl CoA, the TCA cycle, and 

the respiratory chain to ATP. 
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It should be noted that both glucose and ketones are not only important 

directly as energy substrates but also as a precursor molecules in glycolysis, 

glycogenesis and lipogenesis, and that the roles of both depend highly on the energy 

state of the organism (ie. cell type, fed or fasted, type of diet, healthy or diseased, 

etc) which is discussed in more detail later. Furthermore these are not the only 

energy substrates used in humans, as proteins may also be used. However, the 

focus of this thesis will mainly be the use of glucose and ketones as energy 

substrates in a non-pathological/physiological situation in liver and brain cells. 

Glucose and ketones as energy substrates 

Glucose is taken up into the cell by glucose transporters (GLUT). Liver cells 

use GLUT2, brain cells use GLUT3, and GLUT1 transports glucose across the blood 

brain barrier. GLUT1 is insulin-dependent while GLUT2 and 3 are insulin-

independent. The metabolism of glucose to acetyl CoA upon entry into liver cell is 

well characterized. It is generally referred to as the glycolytic pathway and begins 

with the entry of glucose into the cell by GLUT in response to stimulation by insulin. 

When utilized for energy, glucose is converted first into pyruvate via several steps. 

Pyruvate is then broken down to acetyl CoA, which enters the TCA cycle to produce 

ATP (Figure 2) (DEVLIN 2006). 

3 



glycolysis / \ 
glucose > 2 pyruvate > 2 Acetyl CoA —f | e J—> 4 C 0 2 

Figure 2 Conversion of glucose to acetyl CoA via the glycolysis pathway during 

glucose availability. 
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Ketones are taken up into cells by the monocarboxylate transporter (MCT). 

The MCT1 isoform is required for ketones to cross the blood-brain barrier (MORRIS 

2005). The term -ketone- refers collectively to three molecules: p-hydroxybutyrate (P-

OHB), Acetoacetate (AcAc), and Acetone (Ac), shown in Figure 3. Ac is produced 

mainly from the spontaneous decarboxylation of AcAc, and secondarily from the 

enzymatic conversion of AcAc by AcAc decarboxylase (KOOREVAAR and VAN 

STEKELENBURG 1976). Ac is volatile and excreted in the breath. p-OHB is 

produced from AcAc by the enzyme p-OHB dehydrogenase, and found in 

measurable levels in the plasma. AcAc is first converted to acetoacetyl CoA and then 

acetyl CoA, which then enters the TCA cycle (SWINK et a/., 1997). AcAc is the only 

ketone that can be used directly by the TCA cycle. 

However, p-OHB can readily be taken up across the blood-brain barrier, 

subsequently converted into AcAc by p-OHB dehydrogenase, and then used as an 

energy substrate in brain cells (Figure 4) (MITCHELL era/., 1995). 
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Figure 3 Conversion and interconversion between the three ketones: 

acetoacetate, acetone and beta- hydroxybutyrate. 
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Figure 4 Ketones produced in the liver can be taken up into brain cells and 

converted to acetyl CoA to be used by the TCA cycle to produce ATP. 
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Ketones are capable of supplying a large amount of energy. p-OHB oxidation 

yields a net total of 12.7 kg of ATP per 100 g, while AcAc yield 11.4 kg per 10Og, 

compared to 10.7 kg per 100g of glucose (SWINK etai, 1997). In fuel terms, this 

energy yield equals 9 kCal per 1 g of fatty acid, though conversion to ketones and via 

direct oxidation, compared to 4 kCal per 1 g of carbohydrates. 

As mentioned, the energetic balance between use, storage or synthesis of 

glucose and ketones is highly regulated and very complex. It is organ, tissue and cell 

type dependent, contingent on the presence of necessary enzymes for uptake and 

utilization of both substrates. It is status-dependent; meaning the use of either 

substrate can vary with nutritional intake. To further complicate matters, the energy 

metabolism pathways are subject to regulation by multiple homeostatic feedback 

loops, shown in Figure 5 (DEVLIN 2006). 
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Figure 5 a and b During glucose availability (5a) glucose is converted to 

triacylglycerol circulates to tissues requiring energy. In times of glucose shortage 

(5b), reserves of fatty acids can be converted to ketones in the liver. Ketones 

produced in the liver can be taken up into brain cells and converted to acetyl CoA to 

be used by the TCA cycle to produce ATP. 
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Implications in aging 

The body and brain's capacity to metabolize energy substrates has 

considerable physiological and pathological ramifications. Glucose availability and 

use has been implicated in various aging-related diseases. It was first shown several 

decades ago that there is a decrease in glucose uptake in the brains of Alzheimer's 

patients compared to controls measured by positron emission tomography (PET) 

using 18fluorodeoxyglucose, a radioactive molecule to study glucose uptake in tissue 

(FOSTER et al., 1984). This decrease in glucose uptake in Alzheimer's patients has 

been replicated in several studies (BOOKHEIMER et al., 2000; DAMASIO et al., 

1983; HOYER etal., 1988; KALARIAand HARIK 1989). Furthermore, the decrease 

in brain glucose uptake occurs decades before the onset of cognitive decline, as 

shown in subjects genetically at risk for developing Alzheimer's pathology indicated 

by the presence of the Apolipoprotein E e4 allele (REIMAN etal., 2004). Poirier et al. 

(1996) found that as much as 80% of Alzheimer's disease patients are Apolipoprotein 

E e4 carriers. The decrease in brain glucose uptake in those at risk for developing 

Alzheimer's suggests that glucose decline may be a causative factor in development 

of the pathology (REIMAN etal., 2004). 

While glucose is the brain's main energy source, ketones compliment or 

supplement glucose, by as much as 30% under conditions of fasting (OWEN etal., 

1967; SOKOLOFF 1991). In theory, ketones would be a rational alternative to 

potentially alleviate the pathology that may stem from a decline in the brain's ability to 

use glucose. An intriguing field of research is emerging to determine if, in fact, 

11 



ketones as energy substrates alternative to glucose may be beneficial in helping to 

alleviate declining cognitive function. There are some indications to encourage this 

avenue of research. First, it has been shown in humans that raising the ketone 

concentration in the peripheral circulation by infusion of p-OHB, correspondingly 

increases the ketone concentration in the brain (HASSELBALCH et al., 1995; 

HASSELBALCH etal., 1996; PAN et al., 2001). Another study, though in rats, 

showed that administration of a ketogenic diet for 6 weeks resulted in up-regulation 

not just of MCT1, the brain ketone transporter, but also in GLUT1 glucose 

transporters in the brain (LEINO etal., 2001). Pertaining to cognitive function in 

humans, one study of 20 patients with cognitive impairments, determined by the Mini-

Mental State Examination (MMSE) were given in two separate visits, either an 

emulsion of medium chain triglycerides, which induces ketosis, or long chain 

triglycerides, as a control. The patients then underwent several cognitive tests 

including the Alzheimer's disease Assessment scale-Cognitive subscale (ADAS-cog), 

the MMSE, and the Stroop Color Word Interference, tasks designed to test selective 

attention and paragraph recall. Results showed that an increase in plasma P-OHB 

concentrations was related to significantly improved scores on cognitive test 

parameters, specifically on ADAS-cog scores and paragraph recall (REGER et al., 

2004). 
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Thesis objectives 

The first article in this thesis, a review article, provides an introduction to the 

theory of declining energy substrate use and availability in aging and how this relates 

to brain function. It describes the role of glucose in brain function and of ketones as 

an alternative energy substrate. It illustrates the approaches of inducing ketosis 

safely and effectively in humans, the difficulties associated with it, and the techniques 

for studying it in terms of brain function. The article provides a summary of the 

association between cognitive decline, in particular in Alzheimer's disease, and 

intake of omega-3 fatty acids, and finally the hypothetical link between cognitive 

function, glucose use, ketones, and omega-3 fatty acids. 

Before investigating in depth in clinical research trials whether alternate 

energy sources may alleviate some of the consequences in the brain of reduced 

glucose use, there are still many unanswered questions: Is this decline in energy 

function a feature of a disorder or a part of the physiological process of aging, and 

does this decrease in energy use extend to other energy substrates such as 

ketones? It remains quite unclear what occurs to energy metabolism during healthy 

aging. Thus in order to study age-related disorders, it is first necessary to better 

understand energy substrate metabolism during healthy aging. This is the purpose of 

the second article included in this thesis. 
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The second article describes a clinical research project carried out at the 

Research Center on Aging at the Universite de Sherbrooke, which was the subject of 

this master's thesis. Overall, the purpose of the study was to better understand the 

systemic response in healthy elderly, middle-aged, and young adults to a nutritional 

intervention designed to induce mild, acute ketosis. Specifically, the objective of this 

study was to determine if there was any change in ketone production in response to a 

ketogenic meal in elderly subjects in good health, and to study the oxidation of 

glucose and (3-OHB using carbon-13 stable isotope tracers, a valuable tool in 

nutritional research given that they allow for the study of metabolism in vivo in a non

invasive safe approach to the subject. Following this was to determine if there was 

any discernible difference in the oxidation of the two energy substrates in healthy 

subjects of three age groups composed of subjects of 18 to 25 years, 40 to 55 years, 

and over 70 years of age. The final objective was to discern if parameters relating to 

the oxidation of these two substrates, specifically, non-esterified fatty acids, insulin, 

cholesterol, triglycerides, and apolipoprotein E genotype differ in a situation of 

healthy aging. The intention of this project was to provide a base of knowledge about 

metabolism in healthy elderly for future studies targeted more to elucidating the 

contribution of energy substrate use to pathological states and to determine if 

alternate energy sources, may alleviate some symptoms of aging, including declining 

cognitive function. 
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Article 1: Omega-3 fatty acids, energy substrates, and brain 
function during aging. 

Published in Prostaglandins, Leukotrienes, and Essential Fatty Acids 75 (2006) 213-

220. 

By Erika Freemantle, Milene Vandal, Jennifer Tremblay- Mercier, Sebastien 

Tremblay, Jean-Christophe Blachere, Michel E. Begin, J. Thomas Brenna, Anthony 

Windust, and Stephen C. Cunnane 

The Students contribution to the first article included in this thesis entitled 'Omega-3 

fatty acids, energy substrates, and brain function during aging' was in an editing 

capacity and contribution to some of the data and ideas described. 
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Resume du premier article en Frangais 

Acides gras omega-3, substrats energetiques et fonctionnement du cerveau 

pendant le vieillissement 

Erika Freemantle, Milene Vandal, Jennifer Tremblay-Mercier, Sebastien Tremblay, 

Jean-Christophe Blachere, Michel E. Begin, J. Thomas Brenna, Anthony Windust, 

Stephen C. Cunnane 

Resume 

Lors du vieillissement, le maintien de la cognition est primordial afin de vieillir 

sainement et de maintenir une autonomie. Cependant, cette periode de la vie est 

accompagnee de perturbations au niveau de la captation du glucose ayant pour effet 

de deteriorer les fonctions cognitives. Les causes de cette deterioration sont peu 

connues de meme que les solutions pour la corriger ou la contourner. Cependant, il 

semble que les acides gras omega-3 puissent etre relies au maintient des carburants 

pour le cerveau et ce, de plusieurs facons. En effet, une consommation d'acides gras 

omega-3 elevee, et plus specifiquement d'acide docosahexaenoTque (DHA), est 

associee a une moins grande prevalence de declins cognitifs comme la maladie 

d'Alzheimer chez les personnes agees. De plus, les niveaux de DHA dans le cerveau 

pourraient affecter I'activite de certains transporters de glucoses du cerveau mais 

non pas tous les types de transporters de glucose. Ainsi, le DHA pourrait etre un 

regulateur important de la captation du glucose par le cerveau. La synthese du DHA 

a partir de I'acide alpha-linolenique (ALA) ou de I'acide eicosapentaenoique (EPA) 

est tres faible chez I'humain laissant presager que ces precurseurs sont 
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possiblement impliques differemment dans le maintient de la cognition lors du 

vieillissement. Leur role ne serait pas lies a leur conversion en DHA mais a des 

fonctions differentes assurant le maintient de la cognition. Par exemple, I'ALA 

alimente efficacement la cetogenese tandis que I'EPA augmenterait la (3-oxydation 

des acides gras. Ainsi, I'ALA et I'EPA pourraient etres utiles dans la production de 

substrats energetiques alternatifs visant a promouvoir la production et I'utilisation des 

cetones afin de contourner le probleme de captation du glucose par le cerveau 

vieillissant. Ainsi, les differents omega-3 pourraient avoir des roles distincts mais 

complementaires afin d'assurer le maintient de la cognition lors du vieillissement. 
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Abstract 

The maintenance of optimal cognitive function is a central feature of healthy aging. 

Impairment in brain glucose uptake is common in aging associated cognitive deterioration, 

but little is known of how this problem arises or whether it can be corrected or bypassed. 

Several aspects of the challenge to providing the brain with an adequate supply of fuel during 

aging seem to relate to omega-3 fatty acids. For instance, low intake of omega-3 fatty acids, 

especially docosahexaenoic acid (DHA), is becoming increasingly associated with several 

forms of cognitive decline in the elderly, particularly Alzheimer's disease. Brain DHA level 

seems to be an important regulator of brain glucose uptake, possibly by affecting the activity 

of some but not all the glucose transporters. DHA synthesis from either a-linolenic acid 

(ALA) or eicosapentaenoic acid (EPA) is very low in humans begging the question of whether 

these DHA precursors are likely to be helpful in maintaining cognition during aging. We 

speculate that ALA and EPA may well have useful supporting roles in maintaining brain 

function during aging but not by their conversion to DHA. ALA is an efficient ketogenic fatty 

acid, while EPA promotes fatty acid oxidation. By helping to produce ketone bodies, the 

effects of ALA and EPA could well be useful in strategies intended to use ketones to bypass 

problems of impaired glucose access to the brain during aging. Hence, it may be time to 

consider whether the main omega-3 fatty acids have distinct but complimentary roles in brain 

function. 
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1. Introduction 

The proportion of elderly people in most developed countries is increasing and is 

expected continue to do so for at least 20-30 years. Healthcare costs increase significantly for 

the elderly, largely as a function of declining health and autonomy. Loss of memory and 

alterations in behaviour accompany declining brain function associated with aging, and are 

key symptoms of degenerative brain diseases such as Alzheimer's disease and other forms of 

dementia. 

The dementias are but one of several forms of chronic debilitating brain disorder. One 

estimate suggests that on a global basis, the burden of illness caused by the full spectrum of 

brain disorders now matches and may well surpass that of cardiovascular disease and cancer 

combined [1]. Hence, one of the imperatives of biomedical research over the next 20 years 

will be to better understand how to maintain optimal brain function and cognition in middle 

aged and elderly adults. 

Several nutrition-related factors heighten the risk of declining cognition, including insulin 

resistance, Type 2 diabetes, and intentional or non-intentional marked declines in body weight 

and total body fat. Given the increasing recognition of the important link between energy 

substrate supply and brain function, research is beginning into the role of nutrition and other 

lifestyle factors, such as exercise, in at least some forms of cognitive decline associated with 

aging [2-6]. Our group's research strategy in this field is focused on developing a better 

understanding of whether deteriorating access of energy substrates to the aging brain 

contributes to an increased risk of declining cognitive function. Indeed, we wonder if this 

deterioration may reach the point that it is appropriate to ask whether brain 'energy starvation' 

could be present in certain conditions like the dementias. 

This paper reviews several aspects of the case that unfavourable nutritional status 

conspires to increase the risk of energy starvation in the aging brain. We also present evidence 
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suggesting that the three main omega-3 fatty acids may have complimentary yet distinct ways 

of helping maintaining optimal brain function by their actions on brain energy substrate 

supply. 

2. Brain Glucose Uptake, PET and Brain Function 

The brain's principle fuel is glucose, which it consumes at about 25 umol/lOOg/min or 

about 100 g/d [7]. Ketone bodies (or simply ketones) are the brain's principle alternative 

energy substrate to glucose, especially during fasting or illness. However, glucose always 

supplies a minimum of 25-30% of the adult human brain's energy requirement, even during 

prolonged fasting or starvation [7]. 

Regional changes in brain glucose uptake are readily studied using positron emission 

tomography (PET), a minimally invasive technique that monitors the presence of positrons 

produced by a short-lived gamma radiation-emitting nuclide injected into the subject. For 

brain glucose uptake studies fluorine-18 is the preferred gamma-emitting tracer and is 

incorporated into a glucose analogue - 18fluorodeoxyglucose. 18Fluorodeoxyglucose is 

transported into tissues at the same rate as glucose itself but is not metabolized further, so it 

specifically represents glucose uptake unaffected by its subsequent metabolism. 

PET studies have shown for over 20 years now that brain glucose uptake is impaired in 

Alzheimer's patients [8-10]. The impairment in glucose uptake is most affected in the 

temporal and parietal association cortices where it may be reduced by up to 20%. This effect 

is independent of and in addition to the usual age associated decline in brain size and blood 

flow [11]. 

Until recently, it was unknown whether decreased brain glucose uptake is caused by or 

may contribute to the pathology of Alzheimer's disease [12]. Clearly, seriously damaged or 

dead neurons have low to negligible glucose uptake so a disease-driven decline in cognition 
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can potentially impair brain glucose utilization. However, long before any decline in brain 

function can be detected clinically, a mild but significant decrease in brain glucose uptake has 

recently been reported in individuals genetically susceptible to Alzheimer's disease [13,14]. 

This patchy 'pre-clinicaP deterioration in glucose uptake occurs in the same areas of the 

temporal and parietal cortex where glucose uptake is most impaired in Alzheimer's disease. 

Hence, impaired brain glucose uptake now appears to be a potentially significant contributing 

factor to at least some types of declining brain function later in life [12-14]. 

3. Omega-3 Fatty Acids, Aging and Brain Function 

One of the well-established deleterious effects of dietary deficiency of omega-3 fatty acids 

is on cognitive and behavioural development during infancy. Spurred by the interest in the 

role of omega-3 fatty acids in brain development, research has begun into the possible 

implications of low omega-3 fatty acid intake for brain function in the elderly. Thus far, the 

main observation is that the elderly consuming lower amounts of omega-3 fatty acids, 

particularly fish [15-23], have an elevated risk of Alzheimer's disease. However, this 

relationship is not always observed [24]. Post-mortem samples of Alzheimer's brain have 

decreased age-adjusted docosahexaenoic acid (DHA, 22:6D3) content [25]. Collectively, 

these studies implicate lower brain DHA in the pathogenesis of Alzheimer's disease. Whether 

lower brain DHA in Alzheimer's disease is caused by lower DHA intake or by lower DHA 

synthesis (or by a combination of the two) remains to be determined. 

While a relationship between low DHA intake and higher risk of Alzheimer's disease 

seems plausible based on studies of the role of omega-3 fatty acids in supporting normal brain 

function in infants and animals, there are as yet only preliminary and inconclusive reports of a 

therapeutic effect of omega-3 fatty acid supplementation on cognition or memory in elderly 

people without dementia [23]. Given the long time course before cognitive defects become 
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clinically detectable and the variable rate of cognitive deterioration, intervention studies using 

DHA supplementation to prevent or treat cognitive decline will probably need to be large and 

lengthy if they are to be conclusive. It is also not yet clear whether the connection between 

low DHA and cognitive decline is causal (higher DHA intake protects against cognitive 

function) or is an effect of the disease process (neurodegeneration destroys brain DHA). 

4. DHA and Glucose Metabolism 

Rats made deficient in DHA by severe depletion of total omega-3 fatty acid intake have 

80-90% lower brain DHA, as well as 30-40% lower brain uptake of glucose and 

concomitantly lower cytochrome c oxidase activity in several brain regions [26,27]. Given the 

key role of glucose in brain function, suboptimal brain function in omega-3 fatty acid 

deficient animals could be due at least in part to impaired brain glucose uptake linked to lower 

expression of the glucose transporter, GLUT 1, in blood vessels or astrocytes of the brain. 

Nevertheless, in these two studies [26,27], expression of GLUT 3 in neurons was unaffected, 

as was the concentration of GLUT protein and GLUT activity in brain microvessels or 

astrocytes. Hence, more work needs to be done to ascertain whether the defects in brain 

glucose transport that have been reported in DHA deficient rats [26,27] can actually account 

for suboptimal brain function in rats made omega-3 fatty acid deficient. The relevance to 

cognitive decline associated with aging of this model of impaired glucose supply to the brain 

in omega-3 deficient rats also remains to be determined. 

In several species including humans, glucose tolerance varies directly with the DHA 

content of skeletal muscle [28-31]. Insulin resistance and Type 2 diabetes develop in part due 

to less efficient uptake and processing of glucose by skeletal muscle, so these reports, 

particularly by Borkman et al [28], make it is plausible that low DHA status contributes to a 

heightened risk of insulin resistance in humans. Since insulin resistance is a common problem 
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in the elderly and contributes significantly to the risk of Alzheimer's disease [2-6], we 

speculate that low omega-3 fatty acid intake, low tissue DHA (brain and elsewhere, especially 

muscle), impaired brain glucose uptake, insulin resistance and risk of Alzheimer's disease are 

all potentially linked. 

5. Marked Differences in 13C-ALA and I3C-DHA Metabolism: Preliminary Data 

Whether optimal health in adult humans necessitates intake of pre-formed DHA or 

whether sufficient DHA can be made endogenously remains controversial in several fields 

ranging from cardiovascular disease to immunology, neurology, and psychiatry. 

Biochemically, the complete 'desaturation-chain elongation' pathway converting the parent 

omega-3 fatty acid - a-linolenic acid (ALA; 18:3co3) - to DHA exists in humans. However, in 

comparison to results from animal models or even human infants, adult humans have a very 

low capacity to convert ALA to DHA. This low capacity is clear in dietary supplementation 

studies with ALA, in which plasma DHA does not change significantly even in relation to 

high intakes of ALA (9-21 g/d for up to 6 weeks; reviewed by Cunnane 2003 [32]). The low 

capacity to convert ALA to DHA in humans is also apparent in stable isotope tracer studies, 

which generally show that <0.1% of carbon-13 (13C)-ALA is found as 13C-DHA in plasma for 

periods of up to four weeks after dosing with the tracer [33-35]. 

We have published a detailed assessment of the metabolism of 13C-ALA in healthy young 

women [35] and, as have others [34], we concluded that part of the reason 13C-ALA is so 

poorly converted to 13C-DHA in humans is because it is readily P-oxidized. Despite inefficient 

conversion of ALA to DHA, dietary supplementation with ALA nevertheless reduces the risk 

of cardiovascular disease and cancer [37-39]. This suggests that not all the actions of ALA are 

necessarily dependent on conversion to DHA and that a more detailed assessment of both 

ALA and DHA metabolism in the elderly is warranted. 
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With the exception of one abstract suggesting 13C-ALA conversion to 13C-DHA is even 

lower in the elderly than in young adults [36], there are no full reports of the metabolism of 

13C-ALA in humans as they age. There are also no reports of the metabolism of 13C-DHA 

given to humans of any age because this tracer has only recently become available. We have 

begun a comparison of the metabolism of 13C-DHA and 13C-ALA and will soon be extending 

it to the healthy elderly. Women in their mid-twenties consumed 50 mg of the tracer (13C-

DHA or 13C-ALA) in yogurt at breakfast. Subsequent appearance of the tracer in breath !3CC>2 

and in plasma total lipids was monitored over eight days by isotope ratio mass spectrometry 

(Figure 1). The small quantity of 13C-DHA available to us at that time limited us to two 

subjects but there were 6 subjects in the 13C-ALA group. Despite the preliminary nature of the 

13C-DHA part of this study, it appears that 13C-DHA is much better retained in the plasma and 

is much less P -oxidized than 13C-ALA, something that has long been assumed but we are 

now in a position to quantify and compare over different age strata. Results of this study 

should clarify whether the healthy elderly have altered synthesis or metabolism of DHA. It 

will then be useful to evaluate whether pathologies associated with aging that impact on 

cognition, eg. insulin resistance, are associated with changes in DHA synthesis or metabolism. 

7. Ketones: Key Alternative Energy Substrates to Glucose 

Ketones (P -hydroxybutyrate, acetoacetate and acetone) enter on several levels into the 

discussion of the link between omega-3 fatty acids, energy substrates and brain function 

during aging. First and foremost, they are the principal alternative brain fuel to glucose. This 

is clear both from their ability to supply as much as 65-70% of the adult human brain's fuel 

needs during prolonged fasting [7,40] and from their key role in supplying both fuel and lipid 

substrates to the brain during fetal and neonatal development [41-45]. This role of ketones as 

crucial structural and fuel substrates for the developing brain is supported by the observation 

25 



that healthy, well-fed infants are in a constant state of mild ketonemia [46]. Thus, mild 

ketonemia is physiologically important for normal human development and, unlike in adults, 

is not necessarily a sign of energy or insulin deficit. 

Second, whether given by intravenous infusion or produced endogenously in response 

to intake of medium chain triglycerides, ketones protect the brain in acute models of 

experimental stroke [47] and hypoglycaemia [48,49]. They are also associated with very 

short-term improvement in cognitive function in dementia patients [50]. Medium chain 

triglycerides were chosen for Reger's study [50] because they readily access mitochondria 

where they are p -oxidized without the need for transport via carnitine palmitoyl transferase 

(CPT), thereby becoming effective substrates for ketone production. 

Most studies reporting the protective effects of ketones on the brain have been short term 

(<1 week), but the efficacy of moderate ketonemia (2-5 mM) lasting over periods of 1-3 years 

in mitigating refractory epileptic seizures in children supports the view that mild to moderate 

ketonemia is not only beneficial to the brain but can be well-tolerated and effective in the 

long-term [51;52]. The potentially beneficial effects of mild to moderate ketosis on the brain 

do not diminish the challenge of achieving and maintaining mild to moderate ketonemia, a 

condition almost incompatible with normal 'western' dietary habits that involve near constant 

stimulation of insulin by dietary carbohydrate. 

Medium chain triglycerides are perhaps the most efficient way to produce mild 

ketonemia in humans but their gastrointestinal side effects in many individuals limit their 

utility on a large scale. Long chain fatty acids are major fuels in the body but their P -

oxidation is dependent on CPT so they are less efficient ketogenic substrates than are medium 

chain triglycerides. Amongst the most common long chain fatty acids in the diet, one of the 

omega-3 fatty acids - ALA - is a 5-6 fold better substrate for CPT than is stearate and is a 3 

fold better substrate than palmitate (Figure 2) [53]. ALA is also more easily oxidized than 
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linoleate or oleate [53]. In isolated rat hepatocytes, ALA is preferred by 2-3 fold over either 

linoleate or oleate as a substrate for ketogenesis [54]. Very high fat diets (~80% fat) enriched 

in ALA can lead to moderately higher ketonemia in rats than diets based on saturated fats 

[55]. Collectively, these studies suggest that ALA could be beneficial in producing mild 

ketonemia aimed at retaining or restoring cognitive function in the elderly. The use of ALA as 

a mildly ketogenic fatty acid would have the additional beneficial effect of producing a small 

trickle of DHA, which might help the functionality of neurons now better supported by the 

additional brain fuel supply. 

8. nC-Acetoacetate: A New PET Tracer 

Strategies employing ketogenesis aimed at more efficiently supplying fuel to the aging 

brain would benefit from imaging methodology that provides a window on brain uptake of 

ketones. Although in vivo NMR spectroscopy may be applicable for this purpose, PET is 

probably the technique of choice, its utility having been clearly demonstrated by its 

widespread clinical use in the assessment of brain glucose uptake. The PET tracer needed for 

studies of brain ketone uptake is carbon-11, an isotope with a half-life of just 20.5 minutes. 

Blomqvist and colleagues [56,57] demonstrated the feasibility of making n C - p -

hydroxybutyrate for human studies of brain ketone uptake in diabetes. In planning our own 

PET studies of brain ketone uptake have followed up the pioneering work of Blomqvist et al 

[56,57] but have found it easier to make nC-acetoacetate, the methodology for which we will 

be publishing soon. 

The key question such methodology could answer is whether brain uptake of ketones 

changes (overall or regionally) either in the healthy elderly with intact cognitive function or in 

those experiencing cognitive decline. In other words, is brain ketone transport susceptible to 

the pathology of aging in a manner analogous to the deterioration in brain glucose transport? 
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At least in a single short term experiment, cognitive function in individuals with Alzheimer's 

disease is modestly improved by mild ketonemia [50], which implicitly suggests that ketones 

must still be able to access the Alzheimer's brain or they wouldn't be able to improve 

cognition. This supposition is testable using PET analysis of brain ketone uptake using either 

nC-acetoacetate or UC- P -hydroxybutyrate. Furthermore, since brain ketone uptake is 

mediated by a monocarboxylic acid transporter [58], PET methodology would be suitable to 

quantify the efficacy of nutritional or pharmacological strategies aimed at stimulating this 

transporter. 

9. Insulin Resistance: A Key Factor in Brain Starvation? 

The problem of insulin resistance during aging is an implicit part of any discussion of 

strategies to improve energy substrate availability to the brain. Insulin resistance is common 

during aging and appears to be a major, if not the main, risk factor for cognitive decline 

during aging [2-6]. Insulin resistance is the precursor state to Type 2 diabetes mellitus and 

involves inefficient tissue uptake of glucose, which, in turn, leads to more compensatory 

insulin production, impaired insulin efficacy, and insulin resistance. Skeletal muscle is the 

main site of glucose utilization in the body and so declining muscle mass in the elderly 

appears to be a factor potentially contributing to the increased risk of insulin resistance in the 

elderly. 

Normally, i.e. in the absence of insulin resistance, low carbohydrate intake or fasting 

decreases plasma insulin, which allows the liberation of free fatty acids from adipose tissue. 

When insulin is low, tissues capable of using fatty acids as energy substrates (skeletal muscle, 

heart) do so, while those dependent more on ketones produced by fatty acid |3 -oxidation 

(brain) have access to an increased supply produced primarily in the liver. When insulin rises 
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after a carbohydrate meal, this immediately shuts off free fatty acid mobilization and glucose 

takes over again as the principle fuel. 

In insulin resistance, transport of glucose into peripheral tissues is impaired yet plasma 

free fatty acids are frequently elevated [3]. Elevated plasma free fatty acids should promote 

ketonemia but this works only when insulin is low, eg. late in the postprandial period in 

people with normal insulin sensitivity. However, the chronic hyperinsulinemia of insulin 

resistance blocks ketone production [59]. Hence, insulin resistance not only impairs tissue 

uptake of glucose but also impairs production of ketones, which are the main alternative fuels 

to glucose. It is unclear whether insulin resistance affects free fatty acid uptake but the brain is 

unable to meet its energy needs from fatty acid P -oxidation, so whether insulin resistance 

affects free fatty acid uptake elsewhere is somewhat irrelevant to the brain's fuel supply. 

Thus, when brain glucose uptake is impaired, inhibition of ketogenesis by insulin resistance 

[59] blocks at least some areas of the brain from getting sufficient amounts either of the 

primary brain fuels (glucose and ketones). We hypothesize this situation of impaired access of 

both the brain's major fuels leads to a heightened risk of brain starvation in insulin resistance. 

Brain glucose uptake is widely considered to be independent of insulin so insulin 

resistance should not affect this process. Nevertheless insulin resistance is a key factor in 

cognitive deterioration so, on the surface, these observations seem inconsistent. Insulin 

resistance could potentially impair cognition through mechanisms independent of brain 

glucose transport so this topic still needs further research to clear these uncertainties. We 

believe stable isotope and PET methodology are well suited to addressing how insulin 

resistance changes energy substrate metabolism and impacts on cognitive function during 

aging. 
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10. Eicosapentaenoic Acid: A Mediator of Ketone Production? 

So far, this review into links between energy substrates and brain function during 

aging implicates two omega-3 fatty acids - ALA and DHA - on several levels: (i) DHA seems 

important for normal brain glucose uptake and is commonly inadequately consumed by the 

elderly [15-23]. (ii) DHA also seems important for glucose uptake by skeletal muscle [28] so 

it may be an important mediator of body's overall ability to use glucose, i.e. it's insulin 

sensitivity, (iii) DHA is important for optimal neuronal function, a link that probably involves 

multiple mechanisms including effects on brain glucose uptake, (iv) ALA is a very poor 

precursor to DHA but nevertheless has a potentially important supporting role in brain 

function as ah efficient and well-tolerated substrate for fatty acid oxidation and ketogenesis. 

The intermediate omega-3 fatty acid, eicosapentaenoic acid (EPA, 20:5 D3), may also be 

implicated in brain function during aging. However, the negligible changes in plasma DHA 

reported in studies with moderately high intakes of EPA [60,61] suggest any beneficial effect 

of EPA is unlikely to depend exclusively on DHA. Aside from its well-known role as a 

precursor to the 3 series eicosanoids and related peroxy-fatty acids [62,63], little is known 

about whether EPA has other functions in the body. However, we speculate that EPA may 

well facilitate fuel supply to the brain. Evidence is emerging to show that EPA is an activator 

of one or more of the classes of peroxisome proliferator activated receptors (PPARs) that 

promote long chain fatty acid oxidation [64,65]. We hypothesize that as a PPAR activator, 

EPA could stimulate ketogenesis. If so, EPA would facilitate the effect of ALA as an efficient 

ketone substrate and both would help support the role of DHA as a key structural element in 

membrane phospholipids. 

ALA and EPA both appear to be poor precursors to DHA in adult humans, so it seems 

imprudent to expect that sufficient DHA can be produced endogenously from either ALA or 

EPA to meet the brain's needs during aging. Hence, just as thirty years of research has 
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gradually led to legislation of DHA in infant formula in many countries, it now seems 

appropriate to rigorously assess whether a dietary source of DHA is advisable in adults, 

especially the elderly. 

12. Omega-3 Fatty Acids: Distinct but Complimentary Roles? 

Because of the poor conversion of ALA and EPA to DHA yet beneficial effects of all 

three omega-3 fatty acids on different aspects of energy metabolism that impinge on the brain, 

brain function in adults should not be thought of as dependent on DHA alone. We suggest that 

the distinct roles of omega-3 fatty acids in energy metabolism and brain function are 

complimentary and that optimal retention of cognitive function in the elderly probably 

depends on a blend of all three roles (Figure 3). Whether therapeutic avenues exist in which 

impaired brain function can be corrected by one or more omega-3 fatty acids remains a 

tantalizing question. 
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Figure Legends 

Figure 1. Different Metabolism of 13C-ALA and 13C-DHA in Humans. 

Preliminary evidence for marked differences in the plasma levels (A) and P-oxidation (B) of 

13C-docosahexaenoic acid (13C-DHA; solid line) compared to 13C-oc-linolenic acid (13C-ALA; 

dotted line) in young healthy adults. Oxidation of 13C-glucose is also shown (X—X in Panel 

B). For each tracer, healthy young women were given a 50 mg oral dose and follow-up was 

for 168 h (8 days). The p-oxidation data represent a cumulative oxidation of about 24% over 

24 h for 13C-ALA, as compared to <5% for 13C-DHA, and about 37% for 13C-glucose. Data 

are based on n=6 for I3C-ALA, n=6 for 13C-glucose and n=2 for 13C-DHA. 

Figure 2. 

Differential p-oxidation of long chain fatty acids. 

These data normalized to values for linoleic acid (LA; 100%). are summarized from a variety 

of models reported in the literature and are described in full elsewhere [53]. The comparison 

is normalized because of the different units used to express fatty acid oxidation in the various 

studies cited. SA - stearic acid, PA - palmitic acid. OA - oleic acid, EA - elaidic acid, ALA -

oc-linolenic acid. 

Figure 3. 

Distinct yet complimentary roles of omega-3 fatty acids in brain function during aging: a 

proposal. The dotted arrows indicate the weak level of conversion connecting a-linolenate to 

eicosapentaenoate and docosahexaenoate. The solid arrows indicate ways in which each of 

these omega-3 fatty acids is proposed to have potentially important effects on brain function 

distinct from their interconversion. 
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a-LINOLENATE EICOSAPENTAENOATE DOCOSAHEXAENOATE 

• ketogenic substrate 
• weak precursor to 
LC 0)3 PUFA 

Stimulation of fatty 
acid (3-oxidation and 
ketogenesis 

• Neurotransmission 
• Learning and memory 
• Brain glucose uptake 

Optimal brain function and 
neuroprotection during aging 
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Link between the two articles 

The two articles are related by the subject matter of glucose and ketones. The 

first article provides a more solid basis into the rationale for studying and 

understanding the implications of glucose and ketones in terms of brain function, 

while the second article is more focused on the peripheral systemic metabolism of 

glucose and ketones, and includes in more detail the role of other metabolites related 

to the use of these energy substrates such as insulin, triacylglycerol, cholesterol, and 

non-esterified fatty acids. 
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Article 2: Metabolic response to a ketogenic breakfast in 
the healthy elderly 

Submitted to The American Journal of Clinical Nutrition December 4, 2007. 

By Erika Freemantle, Milene Vandal, Jennifer Tremblay-Mercier, Melanie Plourde, 

Judes Poirier, and Stephen C. Cunnane. 

The Students contribution to the second article included in this thesis entitled 

'Metabolic response to a ketogenic breakfast in the healthy elderly' was collection 

and analysis of the data presented as part of the Master's research project presented 

in this thesis, writing, editing, corrections and submission of the article for publication. 
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Resume du deuxieme article en Frangais 

Reponse metabolique a un dejeuner cetogene chez les personnes agees en 

sante. 

Erika Freemantle, Milene Vandal, Jennifer Tremblay-Mercier, Melanie Plourde, Judes 

Poirier and Stephen C. Cunnane 

Resume 

Problematique Le glucose est la source principale d'energie chez I'humain. Lors 

d'apports insuffisants de glucose, les cetones compensent le besoin energetique et 

ce meme pour le cerveau. Chez des personnes agees atteintes de declins cognitifs, 

les cetones pourraient ralentir certains de leurs symptomes. Cependant, le 

metabolisme des substrats energetiques lors du vieillissement sain est actuellement 

inconnu. 

Objectif: Determiner le metabolisme du glucose et des cetones chez les sujets ages, 

d'ages moyens ou jeunes apres la prise d'un dejeuner induisant une cetogenese 

courte et douce. 

Protocole: Dix sujets dans chacun des trois groupes d'age (23 ± 2, 50 ± 4 et 76 ± 5 

ans) ont ete recrutes et ont consomme un dejeuner cetogene. Le P-hydroxybutyrate, 

le glucose, I'insuline, les triacylglyceroles, le cholesterol total et les acides gras non 

esterifies du plasma ainsi que I'acetone de I'haleine ont ete mesures chez les sujets 

pendant 6h. Chaque sujet a complete le protocole a deux reprises afin de determiner 

la p-oxydation de deux traceurs sur une periode de 24 h; soit le glucose et le p-

hydroxybutyrate marques au carbone 13 (13C). 
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Resultats: Le glucose plasmatique a diminue au cours de la periode de 6h de suivi 

tandis que le (3-hydroxybutyrate, I'acetone et I'insuline ont augmente et ce, dans les 

trois groupes d'age. Les niveaux de cholesterol, triacylglycerols et acides gras non 

esterifies n'ont pas ete modifies. L'oxydation du 13C-glucose et du 13C-(3-

hydroxybutyrate a atteint un sommet entre deux et trois heures apres la prise de I'un 

ou I'autre des traceurs dans les trois groupes. L'oxydation cumulative du 13C-glucose 

pendant 24h etait significativement plus elevee chez les sujets ages 

comparativement aux sujets d'age moyen tandis qu'il n'y avait pas de difference pour 

l'oxydation cumulative pour le 13C-(3-hydroxybutyrate. L'Apolipoproteine E e4 etait 

associee a des niveaux de cholesterol plus eleves sans toutefois affecter les autres 

parametres metaboliques. 

Conclusion: Les personnes agees en sante ont une capacite similaire aux sujets 

d'§ge moyen et jeune a produire des cetones et a oxyder le 13C-glucose et le 13C-(3-

hydroxybutyrate 
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Abstract 

Objective: t o determine whether the metabolism of glucose or ketones differs in the 

healthy elderly compared to young or middle-aged adults during mild, short-term 

ketosis induced by a ketogenic breakfast. 

Design and participants: Healthy subjects in three age groups (23±1, 50±1 and 

76±2 y old) were given a ketogenic meal and plasma p-hydroxybutyrate, glucose, 

insulin, triacylglycerols, total cholesterol, non-esterified fatty acids and breath acetone 

were measured over the subsequent 6 h. Each subject completed the protocol twice 

in order to determine the oxidation of a tracer dose of both carbon-13 (13C) glucose 

and 13C-p-hydroxybutyrate. The tracers were given separately in random order. 

Apolipoprotein E genotype was also determined in all subjects. 

Results: Plasma glucose decreased and P-hydroxybutyrate, acetone and insulin 

increased similarly over 6 h in all three groups after the ketogenic meal. There was 

no significant change in cholesterol, triacylglycerols or non-esterified fatty acids over 

the 6 h. 13C-glucose and 13C-p-hydroxybutyrate oxidation peaked at 2-3 h post-dose 

for all age groups. Cumulative 13C-glucose oxidation over 24 h was significantly 

higher in the elderly but only versus the middle-aged group. There was no difference 

in cumulative 13C-P-hydroxybutyrate oxidation between the three groups. 

Apolipoprotein E (£4) was associated with elevated fasting cholesterol but was 

unrelated to the other plasma metabolites. 

Conclusion: Elderly people in good health have a similar capacity to produce 

ketones and to oxidize 13C-P-hydroxybutyrate as middle-aged or young adults, but 

oxidize 13C-glucose a little more rapidly than healthy middle-aged adults. 

Keywords: ketones, glucose, healthy elderly, 13C stable isotope tracers. 
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Introduction 

In humans, glucose is the brain's primary energy substrate and ketone bodies 

(ketones) are it's primary replacement fuel during fasting or low carbohydrate intake 

(1). Ketones refers collectively to three molecules: acetoacetate (AcAc), (3-

hydroxybutyrate (p-OHB), and acetone (2). During ketogenesis, AcAc is formed first 

and is the only ketone metabolized by the tricarboxylic acid cycle as an energy 

substrate. After being converted back to AcAc by p-OHB dehydrogenase, p-OHB can 

also serve as an energy substrate (3). Acetone is produced by decarboxylation of 

AcAc and is exhaled in the breath in proportion to plasma ketone concentrations (2). 

Impaired availability of energy substrates to the brain may be implicated in the 

progression towards Alzheimer's disease (4, 5). Raising blood ketones with a 

ketogenic meal shows preliminary potential to alleviate some features of the cognitive 

deficit in Alzheimer's disease (6). Given this potentially important clinical application, 

but the relative scarcity of information about how energy substrates are utilized 

during healthy aging, i.e. during aging minimally confounded by symptomatic 

degenerative disease, our primary objective was to evaluate glucose and ketone 

utilization in the healthy elderly compared to young and middle-aged adults. 

Insulin inhibits ketone production so to achieve short-term ketogenesis 

subjects were given a very low carbohydrate breakfast composed of medium chain 

triacylglycerol (MCT), heavy cream, protein powder and water. MCT efficiently induce 

mild to moderate ketosis in humans (7) because they are rapidly absorbed and pass 

directly via the hepatic portal venous circulation to the liver where they are p-oxidized 

with some of the resulting acetyl CoA being captured in ketones. MCT do not require 

a carnitine-dependent transport system to enter the inner mitochondrial space, and 

are thus more readily available for oxidation and at a lower energetic cost than long 
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chain triacylglycerol (LCT) (8). Although the present study was not designed or 

powered for analysis of the effect of genotype, apolipoprotein E genotype of our 

subjects was determined since it affects both post-prandial fat metabolism (9) and 

risk of Alzheimer's disease (10, 11). 
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Materials and Methods 

Subjects: Subjects were recruited in three age groups: 18-25 y old (young: Y), 40-55 

y old (middle-aged: M), and 70-85 y old (elderly: E). This distribution maintained a 

minimum 15 y gap between age groups and also avoided the increasing impact of 

frailty beyond 85 y old (12). All subjects were non-smokers and determined to be in 

relatively good health by a medical evaluation and blood screening done after a 12 h 

overnight fast. Fasting glucose and hemoglobin HbA1c were used to rule out the 

presence of overt diabetes. A complete blood cell count was used for blood 

disorders; electrolyte profile; AST and ALT for renal and liver function; HDL and LDL 

cholesterol; triglycerides; albumin for nutritional status; C-reactive protein as a marker 

of inflammatory processes; and TSH for thyroid function. Anthropometric parameters 

such as height, weight, body mass index (BMI), and fasting plasma metabolites did 

not differ significantly between age groups (Table 1). Approval for the study was 

obtained from the Research Ethics Committee of the Health and Social Services 

Center - Sherbrooke University Geriatrics Institute, which oversees all human 

research done at the Research Center on Aging. 

Tracer protocol and sample collection: Subjects arrived at 7:30 a.m. after having 

fasted overnight for 12 h. An intravenous forearm catheter was installed and baseline 

blood samples taken. The catheter was kept patent by flushing hourly with non-

heparinized saline. The stable isotope tracer was then consumed (13C-glucose or 

13C-p-OHB), followed immediately by the ketogenic breakfast drink, which was 

consumed within approximately 30 mins. After consuming the ketogenic breakfast, 

blood samples were taken hourly over 6 h using a 5 ml latex-free syringe (Becton 

Dickinson, Franklin Lakes, NJ) and transferred immediately to a 5 mL K2-EDTA-
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coated tube (Becton Dickinson, Franklin Lakes, NJ). Tubes were stored on ice at 4°C 

until the conclusion of the study period at which point they were all centrifuged at 

3500 rpm for 18 min at 4°C. The separated plasma was stored at -20°C until further 

analyzed. During the 6 h study period, water was available ad libitum and subjects 

were asked to remain in a resting position as much as possible with short walks if 

necessary. 

Each subject participated in two identical metabolic study days, one to test 

13C-glucose metabolism and the other to test 13C-p-OHB metabolism. The tracers 

were U-13C6 D-glucose or 2,4-13C2 sodium D-3-hydroxybutyrate (50 mg each; 

Cambridge Isotope Laboratories, Andover, MA) were consumed in 15 mL nanopure 

water and in randomized order. The two study days were separated by one to three 

weeks. Breath samples for 13C02 and acetone analysis were collected in triplicate at 

baseline and every 30 min afterwards using a breath collection device (Easysampler, 

Quintron Instrument Company, Milwaukee, Wl) and 10 mL evacuated glass tubes 

(Exetainer, Labco Ltd, Buckinghamshire, UK). The first ~150 mL of exhaled air is 

dead space (13), so to collect a true alveolar breath sample, the subjects exhaled for 

3 sec before breath sample collection. For acetone analysis, 1 mL of breath was 

transferred from one of the three Exetainer tubes to a glass gas-tight syringe 

(Hamilton Company, Reno, NV). 

Ketogenic breakfast drink: The ketogenic breakfast drink consisted of a blend of MCT 

(Mead Johnson, Ottawa, ONT, CA), 35% heavy cream (Quebon Ultra Creme, 

Longueuil, QC, CA), raspberry-flavored milk protein powder (Davisco Foods 

International, Inc., Eden Prairie, MN, courtesy of Agropur Cooperative, Granby, QC, 

CA) and water (Table 2). The fatty acid composition of the ketogenic breakfast is 
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shown in Table 3. This ketogenic breakfast was designed to give a ratio of total fat to 

protein plus carbohydrate of 4.5:1, which is sufficient to induce mild, short-term 

ketosis in young adults (2). The total carbohydrate content of the drink was limited to 

the carbohydrate already in the cream (3.2%). Total protein content was calculated to 

be 1/3 of the subject's daily protein requirement as determined by the Harris-Benedict 

equation and the Canada Food Guide (Health Canada, Ottawa, ON, CA). Total fat 

was then adjusted to be equivalent to 4.5 times the protein plus carbohydrate 

content. Subjects received an average of 1104 kCal, 90% of which was fat. In the 

breakfast drink, the amount of total fat (g), MCT (g), fat/body weight (g/kg), or fat/BMI 

(g/kg/m2) did not differ significantly across the three study groups. 

Isotope ratib mass spectrometry: Enrichment of 13C in breath CO2 following the 

ingestion of the 13C tracer was analyzed by isotope ratio mass spectrometry (Europa 

20-20, Sercon Ltd, Crewe, Cheshire, UK) as previously described (14). 5% C02/N2 

was the reference gas and He was the carrier gas (Praxair Canada Inc. Mississauga, 

ON, Canada). Atom percent (AP) is the relative abundance of 13C in the sample 

calculated by the following equation: 

(1) 
AP= 100 

1/[(5/l000 + l)13Cref+1] 
13C data in delta notation (8) is the ratio of 13C to 12C calibrated against the reference 

gas and the international standard, Peedee Belemnite (15). The percent dose 

recovered (PDR) of the tracer administered to the subjects was calculated as in 

equation (2), 

(2) PDR= APE x VCQ2 x100% 

mmol 13C-tracer administered 
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In which atom percent excess (APE) is calculated using of the value obtained in 

equation (1) for time t minus the value obtained at time 0. Taking into account the 

chemical purity, the isotopic enrichment of the tracer, and the natural abundance of 

13C, the quantity of 13C excreted on breath (mmol) was calculated as shown in 

equation (3): 

(3) mmol 13C= mg tracer x chemical purity x ([99% #13C] + [1% total # C]) 
molecular weight 

The chemical purity of both tracers was 98% and their isotopic purity was 99%. The 

C02 production constant of 300 mmol/h was used as determined by Schofield (16) 

and previously validated for healthy adults (17). VCo2 was then calculated by 

multiplying the C02 production constant (300 mmol/h) by body surface area, 

calculated according to Gehan and George (18). 

Gas chromatographic analysis of acetone: Triplicate 0.3 ml samples of breath 

collected into gastight syringes were injected directly on to a capillary gas 

chromatograph equipped with a flame ionization detector (Agilent model 6890, Palo 

Alto, CA) and 30 m DB-WAX column (0.25 mm i.d.; Agilent J&W Scientific Santa 

Clara, CA). The temperature of the oven was set at 30°C and held for one minute 

and then increased at a rate of 5°C/min to 60°C where it was held for 2 min. The 

carrier gas was He and the flow rate was 7 mL/min. The injector temperature was 

150°C and the detector temperature was 250°C. Acetone peak areas were calibrated 

against an aqueous acetone standard. A 0.2 mL of the aqueous standard was then 

injected into the gas chromatograph. 
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Other analyses: Plasma glucose, (3-OHB, cholesterol, triacylglycerols (TG), and non-

esterified fatty acids (NEFA) were measured by colorimetric assay using an 

automated clinical chemistry analyzer (Dimension XPand Plus, Dade Behring Inc., 

Newark, DE) and commercially available reagent kits from the same company, 

except for (3-OHB (RX Daytona kit; Randox Laboratories Ltd., Antrim, UK), and NEFA 

(Wako Diagnostics, Richmond, VA). Insulin was analyzed by ELISA (Mercodia, 

Upssala, Sweden) and a microplate reader (model 3550, BioRad, Hercules, CA). 

ApoE genotype was analyzed at the McGill University Center for Studies in Aging 

(19). 

Fatty acid composition of the ketogenic breakfast, MCT, and cream was 

analyzed by extraction of the total lipids into 2:1 chloroform/methanol with 0.02% 

BHT, using triheptadecanoin as the internal standard (20). The total lipids were then 

saponified with 1 M methanolic KOH followed by derivitization of the fatty acids to 

fatty acid methyl esters using 14% BF3 methanol. Fatty acid methyl esters were 

analyzed using a gas chromatograph (Agilent model 6890) equipped with a 50 m 

BPX-70 fused capillary column (0.25 mm i.d. x 0.25 urn film thickness; J&W Scientific, 

Folsom, CA). Splitless injection and flame ionization detection were performed at 

250°C. The oven temperature program was 50°C for 2 min, increasing to 170°C at a 

rate of 20°C/min, held for 15 min, increased to 210°C at a rate of 5°C/min and held 

there for 7 rnin. The inlet pressure of the carrier gas (He) was 233 kPa at 50°C. The 

identity of individual fatty acids was determined by comparing retention times with 

standard mixtures of fatty acids (NuChek 68A, 411, 455; NuChek Prep, Inc., Elysian, 

MN) and a custom mixture of saturated fatty acid standards. 
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Statistical analysis: Results are given as mean ± SEM. Comparisons during the 

metabolic study period are shown from baseline (time 0 h; T0) up to 6 h later (T6), and 

again 24 h later (T24)for tracer oxidation. To determine if tracer oxidation differed over 

time or between age groups, a repeated measures two-way ANOVA was performed 

followed by a Bonferroni post-hoc test to determine where significant differences 

existed. The Pearson test was used to test the significance of correlations between 

plasma and breath metabolites. Ketogenic breakfast composition was analyzed by 

one-way ANOVA. Statistical analysis of tracer oxidation data, differences in ketogenic 

meals composition and fatty acid profile between groups, and correlations were 

performed with Prism software (version 4.0, GraphPad Prism, San Diego, CA). An 

independent variables ANOVA test for time and age was performed to determine if 

any of the plasma metabolites differed between age groups or by ApoE e4 genotype. 

Statistical analysis of plasma metabolites was performed with SPSS software 

(version 12.0, SPSS Inc, Chicago, IL). Significance was set at p<0.05. 
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Results 

Plasma and breath metabolites: From baseline (T0) to 6 h after taking the ketogenic 

breakfast drink and tracer (T6), plasma glucose was mostly stable in all three groups 

but between T3 and T6, glucose was 12% higher in the E compared to the Y group 

(p< 0.05; Figure 1). In all three groups, plasma insulin peaked at 90-105 pmol/L at Ti 

to T2. Except at T2 in the M group, the M and E groups had a similar post-prandial 

insulin response to the Y group. Between T0 and T6 and in all three groups, plasma p-

OHB rose from -0.1 to -1.3 mmol/L and breath acetone rose from -13 to -87 nmol/L 

(Figure 1). Breath acetone was higher at T6 in the M and E groups versus the Y 

group (p< 0.05). For all subjects, there was a significant positive correlation between 

plasma p-OHB and breath acetone at T0 and T6 (p< 0.001; Figure 2). 

13C Tracer oxidation: In all subjects and with both tracers, 13C02 excretion on breath 

peaked at 2-4 h post-dose and returned close to baseline within 24 h of tracer 

administration. In all three age groups, 13C-glucose oxidation peaked at 6.4 to 7.4 % 

dose/h between T25and T3 (Figure 3). At T4.5, T5 and T6,
 13C glucose oxidation was 

significantly higher in the E compared to the M group (p< 0.05). Cumulative 13C 

glucose oxidation 24 h after dosing was 72%, 62%, and 77% of dose for Y, M and E 

subjects, respectively (Figure 3). From T5 to T24, cumulative oxidation of 13C glucose 

was significantly higher in the E versus M group (p<0.05), but not compared to the Y 

group. In all three groups, 13C p-OHB oxidation peaked at -7.5 % dose/h at T2. 

Cumulative 24 h 13C p-OHB oxidation was 65%, 74%, and 77% of the dose 

administered in Y, M and E subjects, respectively, with no significant differences 

between groups (Figure 3). 
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Other measurements: There was no significant effect of the ketogenic breakfast on 

plasma TG, NEFA, or total cholesterol over the 6 h study period (Figure 4). However, 

from T3 to Tg, plasma TG and total cholesterol were significantly elevated in the E 

group compared to the Y group (p< 0.05). 

Genotype distribution could only be determined for 27 of the 31 subjects 

(Table 4). For statistical comparisons, genotypes were grouped according to 

presence or not of the ApoE s4 allele. As expected, E4 carriers had significantly 

elevated plasma cholesterol, but had no significant differences in other metabolites 

(data not shown). 
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Discussion 

Overall, we found that for 6 h after consuming a ketogenic breakfast drink, 

elderly, middle-aged and young adults in good health had comparable changes in 

plasma p-OHB and breath acetone. To our knowledge, previously published studies 

of ketone levels in the elderly have not reported their production after a ketogenic 

meal. For instance, higher plasma p-OHB was reported for the elderly, but only after 

an 18 h fast (21). Our study confirms the previously reported short term ketogenic 

effect of a very low carbohydrate breakfast (2), and shows that the healthy elderly 

achieve a level of ketosis (plasma P-OHB and breath acetone) and 24 h oxidation of 

P-OHB that is comparable to or slightly above what is observed in healthy young and 

middle-aged subjects. In the absence of differences in plasma P-OHB or p-OHB 

oxidation, whether the doubling of breath acetone at the end of the 6 h metabolic 

study day is physiologically meaningful remains to be determined. 

Our elderly group had statistically significant but very modest differences in 

glucose metabolism compared to the middle-aged our young adults. Although fasting 

glucose was not statistically different between the three groups, plasma glucose (but 

not insulin) was statistically higher in the elderly towards the end of the metabolic 

study period. Cumulative glucose oxidation over 24 h was 24% higher in the elderly 

but only versus the middle-aged group; the glucose oxidation did not differ 

significantly between the elderly and young groups. Without further experimentation, 

these data are difficult to interpret because although higher plasma glucose could be 

due to various mechanisms related to emerging insulin resistance, one would not 

expect a concomitant rise in glucose oxidation (Figure 3) if, in fact, glucose 

metabolism was impaired. 
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Statistically significant differences between age groups in cholesterol and TG 

also emerged 3-6 h after taking the breakfast meal. Issa et al. have also reported 

somewhat slower TG clearance after consuming a meal containing 40 g of fat (22). 

Several studies have suggested that slower post-prandial clearance of an oral fat 

load may contribute to aging-associated pathology such as coronary heart disease 

(23, 24) and may be influenced by declining insulin sensitivity (25-27). Post-

prandially, the plasma cholesterol response of both the M and the E groups was 

elevated compared to the Y group. This could be attributed to the presence of four 

subjects in the M group who were ApoE e4 carriers, as this polymorphism is known to 

elevate cholesterol levels (28). In fact, when the e4 carriers were removed, 

cholesterol data for the M group fell between the Y and E groups (data not shown). 

Although baseline plasma TG was non-significantly higher in the elderly, none 

of the subjects showed a significant post-prandial TG response between T0 - T6. 

Given that the ketogenic breakfast contained approximately 50% LCT (Table 3), a 

post-prandial increase in plasma TG would have been anticipated. Seaton et al. 

found that in comparison with LCT, there was no significant change in plasma TG 

and even a slight decrease during the first hour after a single dose of 48 g of MCT 

(29). Hill et al. observed an increase in fasting TG but no change over 6 h after giving 

a single dose of MCT following a 6 day diet in which MCT represented 40% of daily 

energy requirements (30). MCT are clearly absorbed differently from LCT but, in our 

study, it is still not clear whether MCT or the low carbohydrate content of the meal 

could have suppressed the plasma TG response to the LCT in the cream. 

By design, the ketogenic breakfast given to our subjects was not strictly 

isoenergetic across groups. Rather, using the Harris-Benedict equation, the energy 

content of the ketogenic breakfast was calculated in terms of percentage of basal 
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energy needs, which takes into account several parameters including gender, age, 

and anthropometric parameters. Other methods to match meals across groups with 

different anthropometry include normalizing to only one parameter such as fat in the 

meal to body weight, BMI, or hip-to-waist ratio. Recent studies suggest a stronger 

relation of parameters such as insulin resistance to body fat mass rather than to age 

itself (31, 32). As such, determining % body fat distribution, fat mass, or indirect 

calorimetry for energy use might have helped us more accurately compare subjects. 

Regardless, neither the calculated values for basal energy expenditure nor the total 

fat content (g), MCT content (g), fat content/body weight (g/kg), or fat content/BMI 

(g/kg/m2) differed significantly between the three age groups (P>0.05). 

Another possible limitation to this study was the number of subjects included. 

Due to insufficient published data implicating the parameters under study, power 

calculation was not performed. Hence our data must be considered preliminary. 

However, in similar published research evaluating metabolism in the healthy elderly 

(12), we anticipated that 8-13 subjects per group was likely to be sufficient to 

determine whether significant differences would be likely to be observed. 

Our main objective was to assess the short-term ketone response to a 

ketogenic breakfast during healthy aging and we conclude that the ability to produce 

ketones appears to be fully functional during healthy aging. Hence, these results 

support emerging strategies aiming to use physiological levels of ketones to correct 

or bypass deteriorating brain glucose uptake in the elderly. 
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Table 1 

Anthropometric characteristics and fasting plasma constituents. 

Anthropometry: 

Age (y) 

Height (m) 

Weight (kg) 

BMI (kg/m2) 

Fasting plasma measures: 

p-Hydroxybutyrate (mmol/L) 

Glucose (mmol/L) 

Insulin (mUl/L) 

Triacylglycerol (mmol/L) 

Non-esterified fatty acids (mmol/L) 

Cholesterol (mmol/L) 

Young 

(n = 11) 

23 ±1 

1.74 ±0.03 

77.4 ±4.9 

25.3 ±1.1 

0.07 ±0.10 

5.4 ±0.6 

6.8 ±4.4 

0.9 ±0.3 

0.6 ±0.3 

4.2 ±0.4 

Middle-aged 

(n = 12) 

50 ±1 

1.65 ±0.03 

74.2 ±4.6 

27.2 ±1.6 

0.09 ±0.13 

5.3 ±0.4 

4.5 ±3.9 

1.1 ±0.5 

0.5 ±0.1 

5.3 ±1.1 

Elderly 

(n = 9) 

76 ±2 

1.67 ±0.08 

72.3 ± 3.7 

25.7 ±1.3 

0.07 ± 0.04 

5.7 ±0.7 

4.0 ±2.6 

1.5 ±0.5 

0.6 ±0.2 

5.3 ±0.7 

Mean ± SEM. No significant difference in any parameter except age 

(PO.0001). 
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Table 2 

Ketogenic breakfast meal composition1 

(9) (%) 

Components: 

protein powder 25 ± 1 10 

cream 100±0 41 

medium chain triacylglycerol 71 ± 4 29 

water 46 ± 2 20 

Macronutrients: 

protein 25 ± 1 18 

carbohydrate 3 ± 0 2 

fat 110 ±4 80 

1 Calculated to give a ratio of 4.5:1 parts fat to protein plus carbohydrates 

based on 1/3 of the subject's daily protein requirements according to basal 

energy expenditure. Meal components and macronutrients are given as mean 

+ SEM (n = 32). Meal content did not differ significantly between age groups. 
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Table 3 

Fatty acid composition (%) of the ketogenic breakfast and its fat components1 

Breakfast MCT Cream 

n = 32 n = 3 n = 3 

8:0 14.4 ±1.5 39.8 ± 0.4 N/D 

10:0 31.3 ±0.8 58.6 ± 0.3 5.9 ±0.1 

12:0 4.0 ±0.1 1.6 ±0.1 8.9 ±0.1 

14:0 9.8 ±0.4 N/D 21.9 ±0.2 

16:0 20.4 ±0.7 N/D 31.9 ±0.1 

18:0 4.9 ±0.3 N/D 6.5 ± 0.2 

Total Saturates 84.7 ±1.3 100.0 ±0 75.0 ±0.2 

14:1ni5 1.3 ±0.6 N/D 2.3 ± 0.0 

16:1nf7 1.0 ±0.1 N/D 2.4 ±0.1 

18:1n-9 11.0 ±0.6 N/D 18.1 ±0.2 

Total Monounsaturates 14.0 ±0.6 N/D 22.8 ±0.2 

18:2n-6 1.1 ±0.2 N/D 2.3 ±0.1 

Total Polyunsaturates 1.1 ±0.2 N/D 2.3 ±0.1 

1 Meal composition, given as mean ± SEM. Meal energy content did not differ 

significantly between age groups. N/D = not detected. 
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Table 4. 

Apolipoprotein E genotype of the subjects. 

2/2 3/2 3/3 4/3 4/4 4/2 total 

Young 

Middle-aged 

Elderly 

% Frequency 

0 

1 

0 

4 

4 

3 

0 

26 

5 

3 

6 

51 

0 

3 

1 

15 

0 

0 

0 

0 

0 

1 

0 

4 

9 

11 

7 

100 

Apolipoprotein E genotype is shown as the combinations of Apolipoprotein E s 

2, 3, or 4 variant alleles. 
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Figure Legends 

Figure 1. 

Plasma glucose (upper left), insulin (lower left), p-hydroxybutyrate (upper 

right), and breath acetone (lower right) over 6 h following consumption of a 

ketogenic breakfast at time 0 (mean ± SEM; *P<0.05). Symbols represent 

young ( • ) , middle-aged (O) and elderly (A) subjects. 

Figure 2. 

Correlation between breath acetone and plasma p-hydroxybutyrate before 

and 6 h after consuming a ketogenic breakfast. 

Figure 3. 

Oxidation of 13C glucose (lower left - % dose/h; upper left - cumulative 

oxidation/24 h) and 13C p-hydroxybutyrate (lower right - % dose/h; upper right 

- cumulative oxidation/24 h) following consumption of a ketogenic breakfast 

and the respective tracer at time 0 (mean ± SEM; *P<0.05). Symbols 

represent young ( • ) , middle-aged (O) and elderly ( ) subjects. 

Figure 4, 

Plasma triacylglycerols (TG), non-esterified fatty acids (NEFA), and 

cholesterol (CHL) over 6 h following consumption of a ketogenic breakfast at 
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time 0. Symbols represent young (•), middle-aged (O) and elderly (A) 

subjects (mean ± SEM; *P<0.05). 



Discussion and conclusions 

Brain energy substrate use is a very important part of the functioning of 

the brain as an organ. This is evident given how many regulatory feedback 

controls over cellular energy supply and alternative pathways exist in the 

brain, and the preferential diversion of energy substrates to brain tissue by the 

body during environmental stressors. Glucose and ketones account for the 

majority of the brain energy supply, and are also very important in energy 

reserves. The oxidation of glucose has been implicated in age-related 

disorders, in particular in cognitive disorders, such as Alzheimer's disease. 

Aging is characterized by a decrease in the number of cells in the body 

due to a combination of increased cell death and decreased cell division. 

There are several cellular theories on aging. The telomerase hypothesis 

states that cells have a finite predetermined lifespan and that with every round 

of cell division, the telomeres (segments on the ends of DNA) get shortened 

until it begins to cut into the genetic code and can no longer replicate, cell 

division cannot occur. The free radical hypothesis posits that the free radicals 

produced during oxidative metabolism and other reactive oxygen species 

damage macromolecules in the cell, that accumulate and either impair cell 

functioning or trigger apoptosis (VANDER etal., 2001). 
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The physiological manifestations of aging are a general gradual 

deterioration in the function of tissues and organ systems and in the capacity 

of the body's homeostatic control systems to respond to environmental 

stressors (VANDER etal., 2001). Aging, though, is not a disease and must be 

studied distinct from disease states. It is an element of the physiological 

process of human development. 

The overall purpose of this thesis was to better understand the 

utilization of glucose and ketones as energy substrates. Glucose and ketones 

can be used as an energy substrate in both the body and the brain. While 

ketones show potential to alleviate deficits seen in a decline in glucose 

availability, such as cognitive deficits, the efficacy of inducing mild ketosis to 

increase brain energy availability requires further exploration. Specific 

objectives of this research project were to evaluate the oxidation of glucose 

and ketones in the human body, under conditions of mild, acute ketosis in 

healthy subjects. This was achieved by administering in 30 healthy young, 

middle-aged, and elderly subjects a nutritional intervention designed to induce 

ketosis and then evaluating the oxidation of glucose and ketones using 

carbon-13 stable isotope tracers for glucose and p-OHB in two separate 6 

hour study days. Levels of glucose, acetone, p-OHB, cholesterol, 

triacylglycerol, insulin and non-esterified fatty acids were also measured. The 

results of the research project in this thesis indicate that healthy elderly are as 
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capable as of producing and oxidizing ketones as healthy young subjects. 

This illustrates the fact that aging must be studied not viewed in terms as 

pathology but as a physiological process. Furthermore, when studying age-

related disorders and trying to understand age-related pathology, it is 

recommended to assess pathology in comparison to an elderly population of 

healthy subjects, it may not be adequate to use a control group of adult 

subjects. 

The question of energy substrate use and production in the brain is far 

from answered. However, the results of this project are very encouraging. 

They indicate that if ketones could be used as an energy substrate to offset 

declining glucose use in the brain, there is no peripheral systemic impediment 

in the elderly to suggest that they cannot produce the ketones necessary to 

be available to the brain. 

From this, it will be important to determine if there are any differences 

in brain uptake of ketones in elderly. This is now possible due to the 

development by our laboratory of a new carbon-11 tracer for acetoacetic acid 

(TREMBLAY era/., 2007). Research is now underway to determine using this 

tracer if there is any change in brain uptake of ketones using positron 

emission tomography. Preliminary experiments will focus on brain uptake of 

ketones in rats given a ketogenicdiet. This will help elucidate if there are 
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changes in ketone uptake during ketosis. Subsequent research will involve 

studying brain ketone uptake in persons with cognitive deficits. 

Also, there will be a need to examine methods and techniques of 

inducing ketosis in a safe and efficient manner. Several projects are in 

development or in progress to help address the issue of inducing ketosis. 

These include supplements and metabolism of eicosapentaenoic acid (EPA) 

as a ketogenic substrate in both young and elderly subjects. Preliminary 

results of a supplement study shows that healthy elderly have a similar 

response of plasma EPA and Docosahexaenoic acid (DHA) to omega-3 

supplementation, indicating no physiological change in omega-3 fatty acid 

metabolism during healthy aging (VANDAL etai, unpublished data). Although 

the role of omega-3 in cognitive disorders is still controversial (PLOURDE er 

a/., 2007), evidence indicates that EPA may be an important constituent in 

augmenting ketone production, likely by activation of the peroxisome-

proliferator-activated receptor a (PPAR a) (CHAMBRIER etal., 2002). Further 

research is in progress to determine if direct stimulation of PPAR production 

by a class of pharmaceutical agents known as fibrates may also result in 

increased ketone levels. 

These studies will provide, in the coming years, clarification of this 

very exciting and promising line of research into alternative brain energy 

substrates and hopefully will ultimately help develop a better treatment for the 

devastating problem of cognitive dysfunction in elderly. 

80 



Acknowledgements 

The author would like to thank first and foremost Stephen C. Cunnane 

for his patience, support, inspiration, and understanding. This work would not 

have been possible without his encouragement. The author would also like to 

thank for their technical assistance, scientific discussion, and general 

guidance and support Milene Vandal, Jennifer Trembiay-Mercier, Melanie 

Plourde, Sebastien Tremblay, Michel Begin, Mary Ann Ryan, Julie Desgagne, 

and Melanie Fortier. Finally, the author would like to thank the Natural 

Science and Engineering Research Council of Canada, Canadian Foundation 

for Innovation, Canada Research Chairs Secretariat (SCC), Universite de 

Sherbrooke, and the Research Center on Aging for the funding that made this 

project possible. 

81 



References 

Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, 
Mazziotta JC, Small GW. 2000. Patterns of brain activation in people at 
risk for alzheimer's disease. N Engl J Med 343(7):450-6. 

Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, 
Therond P, Hainque B, Riou JP, Laville M, Vidal H. 2002. 
Eicosapentaenoic acid induces mRNA expression of peroxisome 
proliferator-activated receptor gamma. Obes Res 10(6):518-25. 

Damasio H, Eslinger P, Damasio AR, Rizzo M, Huang HK, DemeterS. 1983. 
Quantitative computed tomographic analysis in the diagnosis of dementia. 
Arch Neurol 40(12):715-9. 

Devlin TM. 2006. Textbook of biochemistry : With clinical correlations. 6th ed. 
Hoboken, N.J.: Wiley-Liss. 

Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G. 
1984. Cortical abnormalities in Alzheimer's disease. Ann Neurol 
16(6):649-54. 

Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson 
OB. 1995. Blood-brain barrier permeability of glucose and ketone bodies 
during short-term starvation in humans. Am J Physiol 268(6 Pt 1):E1161-
6. 

Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, 
Paulson OB. 1996. Changes in cerebral blood flow and carbohydrate 
metabolism during acute hyperketonemia. Am J Physiol 270(5 Pt 1):E746-
51. 

Hoyer S, Oesterreich K, Wagner O. 1988. Glucose metabolism as the site of 
the primary abnormality in early-onset dementia of Alzheimer type? J 
Neurol 235(3):143-8. 

82 



Kalaria RN and Harik SI. 1989. Reduced glucose transporter at the blood-
brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem 
53(4): 1083-8. 

Koorevaar G and Van Stekelenburg GJ. 1976. Mammalian acetoacetate 
decarboxylase activity, its distribution in subtractions of human albumin 
and occurrence in various tissues of the rat. Clin Chim Acta 71 (2): 173-83. 

Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR. 2001. Diet-induced 
ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. 
Neurochem Int 38(6):519-27. 

Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, 
Ashmarina L, Lambert M, Lapierre P, Potier E. 1995. Medical aspects of 
ketone body metabolism. Clin Invest Med 18(3): 193-216. 

Morris AA. 2005. Cerebral ketone body metabolism. J Inherit Metab Dis 
28(2):109-21. 

Murray RK, Granner DK, Rodwell VW, Harper HA. 2006. Harper's illustrated 
biochemistry. 27th ed. New York ; Toronto: Lange Medical 
Books/McGraw-Hill, Medical Publ. Division. 

Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF.Jr. 
1967. Brain metabolism during fasting. J Clin Invest 46(10): 1589-95. 

Pan JW, Telang FW, Lee JH, de Graaf RA, Rothman DL, Stein DT, 
Hetherington HP. 2001. Measurement of beta-hydroxybutyrate in acute 
hyperketonemia in human brain. J Neurochem 79(3):539-44. 

Plourde M, Fortier M, Vandal M, Tremblay-Mercier J, Freemantle E, Begin M, 
Pifferi F, Cunnane SC. 2007. Unresolved issues in the link between 
docosahexaenoic acid and Alzheimer's disease. Prostaglandins Leukot 
Essent Fatty Acids . 

Poirier J, 1996. Apolipoprotein E in the brain and its role in Alzheimer's 
disease. J Psychiatry Neurosci 21(2):128-34. 

83 



Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson GS, Hyde 
K, Chapman D, Craft S. 2004. Effects of beta-hydroxybutyrate on 
cognition in memory-impaired adults. Neurobiol Aging 25(3):311-4. 

Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, 
Saunders AM, Hardy J. 2004. Functional brain abnormalities in young 
adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad 
SciUSA101(1):284-9. 

Sokoloff L. 1991. Measurement of local cerebral glucose utilization and its 
relation to local functional activity in the brain. Adv Exp Med Biol 291:21-
42. 

Swink TD, Vining EP, Freeman JM. 1997. The ketogenic diet: 1997. Adv 
Pediatr 44:297-329. 

Tremblay S, Ouellet R, Rodrigue S, Langlois R, Benard F, Cunnane SC. 
2007. Automated synthesis of 11 C-acetoacetic acid, a key alternate brain 
fuel to glucose. Appl Radiat Isot 65(8):934-40. 

Vander AJ, Sherman JH, Luciano DS. 2001. Human physiology : The 
mechanisms of body function. 8th ed. Boston, Mass.: McGraw Hill. 

84 



Appendix 

/ Authorization form to include Freemantle E, et al. 
Omega-3 fatty acids, energy substrates, and brain function 
during aging. Prostaglandins Leukot Essent Fatty Acids 
2006;75:213-20. 

85 



// Authorization form to include Freemantle E, et al. 
Metabolic response to a ketogenic breakfast in the healthy 
elderly. Submitted to Am J Clin Nutr. 4 Dec 2007. 

89 


