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Texturai Analysis for Urban Ciass Dîscrimination
Using IKONOS Imagery

Abstract

High spatial resolution imagery can be a very significant source of detailed land cover

and land use data necessary for better urban planning and management, which is becoming

increasingly important due to the growing human population. However, traditional rnethods,

based on spectral data, used to extract this information from remote sensing imagery have proven

to be unsuitable for high-resolution images. Spatial data, or texture, has been widely investigated

as a supplement to spectral data for the analysis of complex urban scenes. However, the

application of these techniques on high spatial resolution imagery, such as those obtained by the

IKONOS satellites, bas yet to be studied. This research, therefore, focuses on the extraction of

texture features through the use of the Grey Level Co-occurrence Matrix texture analysis

technique, which are then combined with the spectral data in the Maximum Likelihood

Classification approach, as a method for obtaining more accurate urban land cover and land use

information from high spatial resolution IKONOS imagery.

In this sttidy. classifications were done using three datasets: a spatial dataset consisting of

three texture channels (Mean, Homogeneity and Dissimilarity), a spectral dataset consisting of

four spectral channels (Red, Green, Blue and N-IR), and a combination dataset (spatial and

spectral). The results show that the spatial dataset produced an overali classification accuracy of

735 %. The spectral dataset produced a slightly higher overail classification accuracy of 78.9 %,

an increase over the spatial dataset of 5.4 ¾. The combination dataset produced the highest

overali classification accuracy of $6.1 ¾, which is an increase of 7.2 ¾ over the spectral dataset.

These resuits demonstrate great potential for the contribution of texture and high-resolution

images in deriving more accurate and detailed urban information.
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L’analyse texturale pour la discrimination des classes
urbaines sur des images IKONOS

Sommaire

À mesure que la demande augmente pour ue meilleure gestion d’utilisation du sol, à

cause de la croissance continuelle de la population humaine, les images de haute résolution

s’avèrent très utiles à fournir des données urbaines plus détaillées de couverture du sol et

d’utilisation du sol des milieux urbains. Cependant, les organismes publics et privés ont besoin

d’outils efficaces pour l’exploitation de ces images.

Les méthodes traditionnelles de classification pour analyser et cartographier le milieu

urbain présentent quelques obstacles principaux. Les terrains sont composés de matériaux

naturels et artificiels ayant des propriétés spectrales presque identiques pouvant présenter une

grande confusion entre les classes. Cette confusion peut également être provoquée par le fait que

les pixels qui représentent le même type de couverture du sol n’auront pas nécessairement la

même information spectrale due au bruit dans les données, aux effets atmosphériques et à la

variation naturelle dans le type de couverture du sol (Smith and Ftiller, 2001). D’autre part, les

résolutions spatiales de la plupart des données satellitaires précédentes sont trop basses pour

permettre la discrimination efficace des objets urbains, ce qui rend ainsi le processus de

classification bien plus difficile (Kiema, 2002). Un autre désavantage de ces méthodes de

classification conventionnelles est que la précision de la classification d’utilisation du sol peut

diminuer tandis que la quantité de l’information dans l’image augmente avec la résolution

spatiale (Townshend, 1981; Irons et al., 1985; Cushnie, 1987). Cela est dû à une augmentation de

la variabilité spectrale dans les classes, causée par un nombre plus élevé d’éléments discernables

de sous-classes, ce qui est inhérent à des données de résolutions spatiales plus détaillées et plus

élevées (Shaban arid Dikshit, 2001).

Les méthodes conventionnelles employées dans la classification des images

multispectrales utilisent la signature spectrale de l’image. Cela est acceptable dans la

segmentation des classes d’objets qui sont spectralement homogènes puisqu’il est possible de

tracer des sites d’entraînement assez propres et représentatifs. Cependant, les résultats obtenus à

partir de telles méthodes se caractérisent souvent par une précision limitée et une faible fiabilité
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(Haala and Brenner, 1999), en particulier pour la cartographie des paramètres hétérogènes dans

des scènes urbaines complexes. Cest parce que le potentiel d’information spectrale est limité

puisque les objets urbains sont distingués mieux par leurs propriétés spatiales, autrement appelé

texture, plutôt que leurs propriétés spectrales (Zhang, 1999).

Pitisietirs chercheurs ont étudié la texture pour l’amélioration des classifications

spectrales du milieu urbain (Conners et aÏ., 1984), mais on n’a pas encore étudié l’application de

cette approche sur des images de haute résolution spatiale, telles que les images IKONOS. Donc,

le but de ce projet de recherche est d’évaluer l’apport de la texture à la classification urbaine des

images haute résolution spatiale afin de produire des résultats plus précis et d’extraire des

données pitis détaillées.

Les hypothèses proposées par cette étude sont:

• Les canaux de texture combinés avec les canaux spectraux peuvent fournir une

classification plus précise des images de haute résolution IKONOS, particulièrement

si les classes d’intérêt ne peuvent pas être distinguées l’une de l’autre en utilisant

seulement des valeurs de niveau de gris, à cause de la nature hétérogène des objets

urbains.

• Les images de haute résolution IKONOS peuvent produire des données plus

détaillées de couverture du sol et d’utilisation du sol du milieu urbain par rapport aux

images de résolution spatiale plus bas.

Les objectives de ce projet de recherche sont

• Extraire les informations de texture de l’image panchromatique haute résolution

spatiale IKONOS 1 x 1 mètre à partir de la méthode de l’analyse texturale de matrice

de cooccurrence.

• Réaliser des classifications de couverture du sol et d’utilisation du sol des images

IKONOS par la technique de classification de maximum de vraisemblance.

• Évaluer l’apport de la texture aux classifications.

La région d’étude pour ce projet de recherche couvre la section principale de la vieille

ville de Sherbrooke, qui est située dans la zone sud de la province du Québec. Canada. Le centre
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d’intérêt est composé de divers types d’utilisation dti sol, tel que réseau routier, agriculture,

résidentiel, commercial, industriel, institutionnel, et recréation, et de couverture du sol, comme

rivière, sol nu, pelouse, arbustes, et forêt, ce qui fournit une bonne zone d’étude pour l’analyse de

la classification urbaine.

Des images de haute résolution spatiale du satellite IKONOS-2 de Space Imaging ont été

choisies pour ce projet de recherche. Les scènes satellitaires bruts sont multispectrale et

panchromatique de 16 bits, avec une dimension d’image d’environ 11800 x 13200 pixels, acquis

le 20 mai, 2001 à 10:50, heure locale. La projection de carte est le Mercator Transverse

Universelle (UTM) et les paramètres spécifiques sont: hémisphère nordique, zone 1$, NAD$3.

Pour les résolutions spatiales et spectrales des images voir le tableau 1.

Pour réaliser les objectives de cette étude, une méthodologie a été formulée sur les deux

éléments principaux de cette recherche : l’analyse texturale et la classification spectrale-spatiale

(voir la figure 3).

Pour l’étape de l’analyse texturale de cette étude, la méthode de la matrice de

cooccurrence (HaraÏick et al.. 1973), a été utilisée. Il y a quatorze différents paramètres de

texture qui peuvent être extraites de ces matrices. Le succès de la méthode de la matrice de

cooccurrence dépend de la sélection appropriée de trois éléments : la distance entre les pixels, la

direction entre les pixels, et la taille de la fenêtre.

La distance entre les pixels le plus souvent choisie est égale à 1 pixel; on l’a utilisée dans

cette étude puisqu’elle est appropriée autant pour les textures fines que pour celles qui sont

grossières. Pour cette étude la direction de 00 entre les pixels, qui est le choix le plus répandu

dans la littérature, a été utilisée par défaut du système de traitement d’image.

La précision de la classification avec les paramètres de texture dépend aussi de la taille de

la fenêtre utilisée. Si la fenêtre est trop petite ou trop grande par rapport à la structure texturale,

les paramètres ne refléteront pas les vraies caractéristiques du texture (Mather et ut., 199$). Pour

choisir la taille de la fenêtre, le coefficient de variation pour un paramètre donné est calculé pour

chaque classe en fonction de la taille de la fenêtre (Laur, 1989). La taille de la fenêtre appropriée

est celle pour laquelle la valeur du coefficient de variation commence à se stabiliser pour la

majorité des classes, tout en ayant la valeur la plus basse.
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Dans cette étude, le coefficient de variation a été calculé pour le paramètre homogénéité,

qui a été choisi arbitrairement, en fonction de la taille de la fenêtre pour chaque classe. Les

résultats ont démontré que le coefficient de variation a commencé à se stabiliser à la taille de la

fenêtre de 11x11 pixels pour la majorité des classes.

Il faut choisir les paramètres de texture qui sont les plus titiles potir l’éttide car plusieurs

d’entre eux présentent des redondances. Par défaut, le système de traitement d’image permet

d’employer seulement huit paramètres de texture : contraste, corrélation, dissimilarité. entropie,

homogénéité, moyenne, second moment, et variance. À partir de limage panchromatique, des

néo-canaux de texture des huit paramètres différents ont été produits en utilisant une fenêtre

mobile 11x11, qu’on a trouvé la plus appropriée, et avec la direction de 00 et la distance de 1

pixel entre les pixels.

Les paramètres les plus utiles pour une bonne discrimination de classe urbaine ont été

choisis à l’aide des étapes suivantes : l’analyse de la qualité visuelle des images de textures (voir

la figure 7), l’affichage des histogrammes de tous les canaux (voir la figure 8), et le calcul de la

matrice de corrélation (voir le tableau 2). Le résultat de ces étapes était la sélection des

paramètres suivant t moyenne, homogénéité et dissimilarité.

La technique de classification par le maximum de vraisemblance est la plus populaire et

extensivement utilisée parmi toutes les autres méthodes de classification dirigées (Mather et aï.,

1998); elle calcule la plus grande probabilité qu’un pixel appartient à une classe donnée, ainsi

réduisant les fausses classifications des pixels au minimum. C’est la technique qu’on a employée

pour l’étape de la classification dans cette étude.

La méthode la plus répandue pour l’intégration des données de texture avec les données

spectrales consiste à utiliser les données de texture comme des canaux de texture à combiner

avec les canaux spectraux dans le processus de classification (Marceau et aï., 1990; Coulombe et

aï., 1991). Dans cette étude, les images d’entrée qu’on a intégrées ont été mises en trois groupes:

un groupe de données des quatre images multispectrales (rouge, vert, bleu et proche-infrarouge),

un groupe de données spatiales des trois images de texture (moyenne, homogénéité et

dissimilarité) qu’on a produit à partir des étapes du processus de l’analyse texturale, et un groupe

de données combinées composé des deux groupes de données spectrales et spatiales. Le

processus de classification a été réalisé pour chaque groupe de données.
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Létape finale de la classification est l’évaluation de la précision des résultats obtenus.

Une fois que l’espace spectral est segmenté en régions différentes associées à chaque classe

d’objet, les pixels dans les sites de vérification sont assigné l’étiquette de la classe qui les

représente dans l’espace spectral segmenté. Le résultat global de ce processus est présenté dans

une matrice de confusion. À partir de cette matrice plusieurs indices de précision de la

classification peuvent être calculés. Puisque le coefficient de Kappa est l’indice le plus approprié

pour fournir une évaluation exacte de la classification, parce qu’il tient compte de tous les

éléments de la matrice de confusion (Fung and Ledrew, 198$), c’est la méthode qu’on a adoptée

dans cette étude. Les précisions des résultats de la classification des trois groupes de données

sont présentées dans le tableau 4.

Les résultats obtenus par cette étude ont démontré que la classification faite uniquement

avec le groupe de données spatiales (les canaux de texture moyenne, homogénéité et

dissimilarité) a produit des précisions s’étendant de 59.8 ¾ à $4.9 ¾ pour toutes les classes, avec

une précision globale de 73.5 ¾. La classification du groupe de données exclusivement

spectrales (les canaux rouge, vert, bleu et proche-infrarouge) a produit des précisions un peu plus

élevées comparées au groupe de données spatiales, s’étendant de 62.4 ¾ à 87.5 ¾ pour toutes les

classes, avec une précision globale de 78.9 ¾. Les précisions les plus élevées obtenues dans cette

étude sont avec la classification de la combinaison des groupes de données spectrales et

spatiales, qui a produit des précisions s’étendant de 70.6 % à 90.9 ¾ pour toutes les classes et une

précision globale de 86.1 ¾, ce qui indique une amélioration globale de 7.2 ¾ par rapport au

groupe de données spectrales.

Ces résultats ont montré qu’avec la combinaison des données spectrales et spatiales, les

précisions de la classification urbaine sont les plus élevées. Donc, les résultats soutiennent

l’hypothèse formulée pour cette étude que l’application des canaux de texture combinés avec les

canaux spectraux aux images de haute résolution IKONOS peut produire des classifications plus

précises et des données urbaines plus détaillées.
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CHAPTER 1

Introduction

1.1 Thesis Overvïew

The terrn “remote sensing” means the acquisition of measurements of specific objects

from a distance. Early remote sensing consisted of measuring objects and their properties on the

surface of the earth through photo-interpretation of aerial photographs. In the modem study of

remote sensing, this is accomplished through the use of data obtained from sensors onboard

airborne or space borne vehicles, such as aircraft and satellites.

Rernote sensing systems provide valuable information that can be applied to a wide range

of fields. One significant application of this technology is to the dornain of environmental and

land assessrnent, which deals with such areas as urban planning and management, land cover and

land use monitoring, etc. This is an important field of study because the principal factor involved

is the ever-increasing human population.

A variety of rernote sensing systems are available that provide data based on various

parameters, such as spatial resoltition, spectral resolution, and temporal resolution, to suit the

needs of different users. The developrnent of high spatial resolution sensors makes rernote

sensing data a highly potential sotirce of detailed urban land cover and land use information.

However, techniques used to process these images to extract the desired information have to

keep up with the changing technologies. As spatial and spectral resolutions of the rernote sensor

systems increase, image processing algorithms have to be developed in order to determine how

to exploit the raising volume of data as efficiently as possible.

it is in this perspective that the present research study was undertaken. Given that

conventional image classification rnethods based solely on spectral data have proven to be

inadequate for high-resolution irnagery, this sttïdy focuses on the contribution of texture, which

is based on spatial information within the image, for the discrimination of urban objects. Two

useful and comrnonly used image processing techniques, the Grey Level Co-occurrence Matrix
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texture analysis and the Maximum Likelihood multispectral classification, are evaluated as a

combined approach for the extraction of urban land cover and land use information from high

spatial resolution IKONOS satellite scenes.

1.2 Scientifïc and Practical Importance and Contributions

As dernands for better land management and urban monitoring increase dtie to an

exponentialÏy growing global population, land use and land cover information is proving to be a

very significant source of data. Urban land use and land cover are dynamic and change rapidly

with time. To keep this information up-todate, the current land use status needs to be surveyed

periodically. In the past, this information was usually extracted from aerial photography, which

is a costly and time-consuming process.

The arrival of digital remote sensing images has made way for more automated extraction

of urban information. Land cover and land use data derived through computer algorithms provide

more quantitative details that are not possible to obtain through human analysis. As a resuit, the

avaiiabiÏity of IKONOS images at higher spatial resolutions is causing graduai improvements in

urban interpretation and classification, and is becorning a real alternative to aerial photography

(Leckie et aï., 1995; Stoney and Hughes, 199$; Anger, 1999).

The aim of this thesis is to contribute to the understanding of how to effectively derive

more accurate urban data fi’om higher spatial resolution imagery, which will lead to improved

automated classification procedures that will help to overcorne the obstacles in obtaining current

detailed urban land cover and land use information.
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CHAPTER 2

Theoretical Framework

2.1 Problernatic

Land use and land cover information is constantly changing as a resuit of an increasing

human population. Due to conflicting land use demands, this type of information is very

important in different urban applications, such as urban planning. As pressures increase for better

land management, high-resolution satellite imagery is proving to be very promising in providing

more detaiÏed urban land cover and land use data. However, both public and private

organizations are in need of effective and efficient tools for the exploitation ofthese images.

The terms “land use” and “land cover” are oflen used interchangeably as well as

incorrectly. Land use refers to humait employrnent of the land and is of interest mostly to social

scientists. Land cover deals with the physical state of the land and is the affair primarily of

natural scientists (Turner and Meyer, 1994).

In general, there are two types of land cover changes: land cover conversion and land

cover modification. This is an important, although largely unrecognized distinction that bas

significant implications for satellite image analysis. Land cover conversion concerns a shift in

the relative proportions of land cover classes within a given area, such as urban expansion into

forrnerly agricultural land, or clear cutting of forests for transformation into cropÏands or

pastures. It is land cover conversion that has received most notice, as it tends to 5e more

localized and immediate in impact and, therefore, draws greater attention. Land cover

modification involves a shifi within a particular land cover class, such as tree thinning on

forested land. Land cover modification tends to occur more gradually and over a wider area,

making it more difficult to perceive, but no less important (Turner and Meyer, 1994).

Satellite images are objective and spatially comprehensive. As a result, they are very

useful for characterizing land tise and land cover. Changing settlement patterns in both urban

landscapes (Lo and Shipman, 1990; Pathan et aÏ., 1993) and rural landscapes (Nellis et aï., 1990;
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Dimyati et aÏ., 1996) are just examples of the many land use change processes, which have been

successfully quanfified through rernote sensing data (Hudak and Wessrnan, 1998).

The application of remote sensing imagery for future urban planning is thus a very

sensible as weÏÏ as indispensable choice. Arguments in favour of the use of satellite systems are:

fast data access, quick visual interpretation, good representation on a planar surface, and great

cartographic representation afier the process of geometrical correction. A further advantage is the

wide range of possible applications of the qualitative and quantitative image classifications, such

as the analysis ofurban boundaries, layout structures, and building densities (Balzerek, 2001).

Since the launch of the IKONOS satellite in 2000, satellite images with higher ground

resolutions are available, causing graduai improvements in ui-ban interpretation and classification

(Balzerek, 2001). Especially in urban planning, high spatial resolution multispectral imagery,

such as those captured by the sensor on the IKONO$-2 satellite, are becorning a real alternative

to aerial photography (King, 1995; Roberts. 1995; Caylor et aÏ., 1999; Green, 2000; Moskal and

Franklin, 2001). A rnuch greater arnount of information can be extracted from this imagery than

from the previous generation of satellite data, which typically had 10 - 100 meter pixel

resolutions.

Among commercial satellite sensors, IKONOS has state-of-the-art radiometric, spatial,

and temporal resolutions in four traditional spectral bands. With the increasing availability of

imager)1 at these resolutions, there is an expanding need for automated feature extraction.

Artificial intelligence systems are being created to extract specific user-defined features such as

buildings, roads, and other land use classes from high-resolution imagery. These classes oflen

differ from their associated land cover materials and therefore from their per-pixel spectral

signatures. As a resuh, traditional classification methods, which were developed in the era of 10

— 100 meter pixel resolution satellite scenes, are not suitable for higher-resolution imagery tBarr

and Barnsley, 1997).

A significant drawback of these conventional spectral-based, per-pixel classification

approaches is that while the infonTiation content of the imagery increases with spatial resolution,

the accuracy of the land use classification may decrease (Townshend, 1981; Irons et al., 1985;

Cushnie, 1987). This is due to a higher number of detectable sub-class elements resulting in
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increasing spectral variability within the classes, inherent in more detailed, higher spatial

resolution data (Shaban and Dikshit, 2001).

The use of spectral classification techniques for analyzing and mapping the urban

eiwironment presents a few other major obstacles. One is that landscapes are composed of

natural and artificial materials that sornetirnes present close or even identical spectral properties,

which can introduce important confusion between classes. This confusion eau also be caused by

the fact that groups of pixels represdnting the same land cover type will not necessarily have the

same spectral information due to noise in the data, atmospheric effects, and natural variation

within the land cover type (Smith and Fuller, 2001).

Another is that in urban enviro ments. many of the classes of interest are made up of a

collection of diverse features. For example, residential areas are typically seen from above as a

mixture of tree crowns, rooftops. lawns, paved streets, driveways and parking lots. h is the

composite of these features, rather than an inventory of the individual components, that is often

of interest. Operationally, a method is desired that focuses on the pattern of variation, defined by

characteristics such as textttre, shape, size and orientation, rather than or in addition to, the

individtial pixel brightness. 1-luman interpreters can do this easily, but it is still problematic to get

an automated process to perform the task adequately (Carnpbell, 1987).

Conventional approaches used in the classification of multispectral imagery basically

employ the spectral signature of the image. This is acceptable in the segmentation of spectrally

homogeneous obj cet classes since it is possible to delineate fairly clean and representative

training sites. Results obtained from such methods though, are unsatisfactory, particularly in the

case of applications involving the mapping of heterogeneous features in complex urban scenes.

In general, these results are often characterized by limited accuracy and low reliability (Haala

and Brenner, 1999). This is mainly because the potential of spectral information is Ïimited since

urban objects are distinguished better through their spatial properties rather than their spectral

properties (Zhang, 1999; Kiema, 2002).

Many have investigated texture and other spatial frequency patterns as possible sources

of unique information to supplement pixel-based spectra (Jensen, 1996). A potential approach to

overcome the obstacles of spectral classification of higli-resolution imagery is to integrate spatial
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data into the classification process. Texture fearnres have been previously used on remote

sensing images of urban environrnents with varying degrees of success (Conners et aÏ., 1984).

However, land cover classification algorithms based on image spatial characteristics, known as

texture, have neyer been as popular as spectral-based algorithms, althougb significant progress

has been made in using texturai analysis to improve spectral classifications of satellite data

(Franklin and Peddle, 1989; Franklin and Peddle, 1990; Moller-Jensen. 1990; Agbu and

Nizeyimana, 1991; Kushwaha et al., 1994; Hay et aÏ., 1996; Ryherd and Woodcock, 1996;

Hudak and Wessrnan, 199$).

The texture study is based on the analysis of the spatial distribution of the local tonal

variations (Holecz et at.. 1993) that is able to point out linear structures of a remotely sensed

image, which can be used to characterize phenornenon such as urban morphoIogy (Ober et al.,

1 997). Both aerial photograph interpreters (Avery and Berlin, 1992) and digital image analysts

(Franklin and McDermid, 1 993; Jakubauskas, 1997; Bruniquel-Pinel and Gastellu-Etchegorry,

199$) have long since recognized image texture as a powerful source of information in urban

remote sensing analysis (Moskal and franklin. 2001). However, the application of texturai

approaches to high spatial resolution irnagery, such as those captured by the IKONOS satellites,

for the extraction of urban data bas yet to be studied.
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2.2 Hypotliesïs

• Texttire channeÏs can provide a more precise classification of high-resolution

IKONOS irnagery when combined with spectral channels, especially if the classes of

interest cannot be distinguished from each other by using grey-leveÏ values alone, due

to the heterogeneous nature of urban objects.

• High spatial resolution IKONOS imagery eau produce more detailed land cover and

land use data cf the urban enviromuent cornpared to lower spatial resolution images.

2.3 Objectives

• To extract textural information from high spatial resolution IKONOS pauchrornatic

Ï x 1 meter irnagery through the texturai analysis rnethod of the Grey Level Co

occurrence Matrix.

• To perform urban land use and land cover classifications of the IKONOS imagery

using the Maximum Likelihood Classification technique.

• To evaluate the performance ofthe classifications iuvolving spatial data.
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CHAPTER 3

Texture Analysis

3.1 Inttoduction

Each and every grain in any object has a different crystallographic orientation. However,

preferred orientation, which is known as texture and is described by the spatial distribution of the

local tonal variations in a scene, is what is usualÏy observed. Textures can be found in abundance

in the visual world, at ail scales of perception. As soon as there is enough detail in an adequate

visual angle, a texture becomes distinguishable.

Humans have a powerful innate ability to recognize texturai differences. Ahhougb the

compiex neural and psychologicai processes by which this is accomplished have so far evaded

detailed scientific explanation (Hay et aÏ., 1996), studies concerning texture perception by the

hurnan visual system have provided useful insights into the importance of texturai information,

as weIi as the complex nature of texture discrimination.

These notions are very significant in the study of texttire analysis, whicb deals with

various techniques for modeling textures and extracting texture features that can then be applied

to such tasks as, classification, segmentation, texture synthesis and shape extraction. The

concepts of human texture perception are meaningful to other fields as well, such as image

processing and pattern recognition (Julesz and Bergen, 1983), which attempt to soive problems

involving visual data through the use of texture.

A very common method used in discriminating objects is pattern recognition. In order to

recognize different types of objects in the visual world, we can use the texture of an object that

bas its own specific visual pattern as an indication. According to Pickett (1970). the basic

requil-ement for an optical pattern to be seen, as texture, is that there be a large number of

elements (spatial variations in intensity or wavelength), each to some degree visible, and, on the

whole, densely and evenly arrayed over the field of view.
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Texture analysis is one of the most important techniques used in image processing and

pattern ;‘ecognition, mainiy because of the fact that it can provide information about the

arrangement and spatial properties of image fundarnental elernents. Such texturai information is

complementary to multispectral analysis of images aiid is sornetimes the only way in which a

digital image can be characterized. A good understanding or a more satisfactory interpretation of

an image should, therefore, include the description of both spectral and texturai aspects of the

image (He and Wang, 1991).

In fact, HaraÏick et al. (1973) dernonstrated this concept through their studies, which

showed that spectral classification precisions of an image could be increased with the integration

of texturai data. This conclusion caused texture analysis to becorne an extremeiy interesting field

of research, especiaiiy for applications in remote sensing. However, proposed methods were

difficuit to apply or had limited applications due to the low spatial resolution of the satellites at

that time (Kiema, 2002), and due to inadequate computer capacity.

Over the last few years, though, tue Ïatest remote sensing technoÏogy lias greatÏy

advanced in the areas of spatial and spectral resolution. Along witÏi the significant improvements

in digital processing and increased computer capabilities, the study of texture analysis is once

again booming with research interest.

Since texture plays one of the dominant roles in ah types of images, from remotely

sensed, biornedical, and microscopic images to printed documents, texture analysis lias a very

wide range of practical applications that are useful to a variety of domains, from mature fields,

such as remote sensing to more recent disciplines, such as automated inspection and document

processing. As a restilt, the importance of research in the area of texture and its analysis is quite

evident.

3.2 Definïtion of Texture

What is texture? Everyday texture terms - rough, silky, burnpy - refer to touch, but what

about the textures that we sense visuafly? Even though we easiÏy recognize texture when we see

it, describing texture in words can be very difficuit. This difficulty can be well understood by the

number of different texture definitions that researchers have attempted to deveiop. Coggins
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(1982) has compiled a catalogue of texture definitions from computer vision 1 iterature, some

examples ofwhich are given here (Tuceryan and Jain, 1998):

• We may regard texture as what constitutes a macroscopic region. Its structure is

simply attributed to the repetitive patterns in which elements or primitives are

arranged according to a placement rule (Tarnura et al., 1978).

• A region in an image bas a constant texture if a set of local statistics or other local

properties of the picture function are constant, slowly varying, or approxirnately

periodic (Sklansky, 1978).

• The image texture considered is non-figurative and cellular... An image texture is

described by the ntimber and types of its (tonal) primitives and the spatial

organization or layout of its (tonal) primitives... A fundamental characteristic of

texture: it cannot be anaÏyzed without a frame of reference of tonal primitives being

stated or impÏied. For any smooth grey-tone surface, there exists a scale such that

when the surface is examined, it has no texture. Then as resolution increases, it takes

on a fine texture and then a coarse texture (HaraÏick, 1979).

• Texture is defined as an attribute of a field having no components that appear

enurnerable. The phase relations between the components are thus not apparent. Nor

should the field contain an obvious gradient. The intent of this definition is to direct

the attention of the observer to the global properties of the display — i.e., its overali

“coarseness,” “bumpiness,” or “fineness.” Phvsically, non-enumerable (a-periodic)

patterns are generated by stochastic, as opposed to deterministic, processes.

Perceptually, however, the set of ail patterns without obvious enumerable components

will include many deterministic (and even periodic) textures (Richards and Polit,

1974).

• Texture is an apparently paradoxical notion. On the one hand, it is comrnonly used in

the earÏy processing of visual information, especiaÏly for practical classification

purposes. On the other hand, no one has succeeded in producing a comrnonly

accepted definition of texture. The resolution of this paradox will depend on a richer,

more developed model for early visual information processing, a central aspect of
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which will be representational systems at many different levels of abstractions. These

levels will rnost probably include actual intensities at the bottom and will progress

through edge and orientation descriptors to surface, and perhaps volumetric

descriptors. Given these multi-level structures, it seems clear that they should be

included in the definition of, and in the computation of, texture descriptors (Zucker

and Kant, 1981).

• The notion of texture appears to depend upon three ingredients: (i) some local ‘order’

is repeated over a region which is large in comparison to the order’s size, (ii) the

order consists in the non-random arrangement of elementary parts, and (iii) the parts

are roughly uniform entities having approxirnately the sanie dimensions everywhere

within the textured region (Hawkins, 1 969).

• Texture appears as the tonal patterns of an image-obi ect resulting from the spatial

arrangement of the three dimensional objects reflective surfaces. Image-object is the

two-dimensional projected image of a three-dimension real world object, whose

intensity values depend on (j) the geometry of the physical object (ii) the reflectance

of the visible surfaces (iii) the illumination of the scene and (iv) the viewpoint of the

observer (Marr, 1982).

As we eau see from this collection of descriptions, different people define texture

depending upon its particular application, thus there is no generally agreed upon definition.

Some definitions are perceptually motivated; others are based completely on the application in

which it will be used.

For applications in rernote sensing, texture is generally described as the group of

relationships between grey levels of neighbouring pixels that contribute to the overail appearance

and visual characteristics of an image. This description takes into account the forrns and

periodicities contained in the image. There exists, however, a problem concerning this definitiom

it does not provide a rigorous mathematical description for texture with which a quantitative

evaluation of textures present in natural images can be made. Most definitions that have been

developed sirnply enumerate the properties and causes of texture.
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With this in mmd. Haralick et al. (1973) proposed the texture definition that images are

represented by the spatial distribution of objects of a specific size and having refiectance or

emmitance characteristics. The spatial organization and the relationships between these objects

correspond to the spatial distribution of grey levels in the image. Thus, texture can be considered

as die pattern of the spatial distribution of grey levels. Haralick (1979) later took this definition

further and suggested a more structural description, where texture is a spatial occurrence that is

based on two aspects: primitives, which are groups of pixels that are related and characterized by

certain attribtites, and their laws of configuration, which govern their arrangement throughout the

image.

One important factor that is usually overlooked in the definition of texture, however, is

the scale of observation, or resolution, at which die texture is viewed. This is significant because

texture is a complex muÏtiscale phenomenon (Ahearn, 198$); it has a recursive nature. A

primitive at one scale may contain a micro-texture cornposed of primitives defined at a srnaller

scale. For example, consider the texture represented in a brick wall. When viewed at a Ïow

resolution, the texture of the wall is perceived as forrned by primitives, which are individual

bricks. When viewed at a higher resolution, texture is perceived as the cÏetaiÏs present in each

individual brick.

As a resuit, Laws (1980) accounted for this element and developed the following

description: texture is that which remains constant when a window is moved across the image,

but that can change according to the size of the window. This definition, however, is based on

the assumption that the image contains only one texture.

Since the perception of texture is dependent on the observer, Laws formed an additional

definition to explain for this factor. If two regions with the same texture have a difference in

brightness, contrast, colour, size, rotation or geometric distortions, most observers will still

consider these two regions to have the sarne texture even though they have a distinguishable

difference. Thus, texture does not exhibit any important variation when subject to translation.

Therefore. according to Laws, texture is perceived as being invariant to translation.

Unser (1984) formulated a more complete definition of texture founded on the

significance of the human visual system in texture perception. He suggested the definition that
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texture is an area of an image for which there is a window of reduced size, such that an

observation through it resuits in the same visual perception for ail possible translations, within

the area of interest. Based on this, Siimani (1986) also suggested that ail texture definitions

should encornpass important insights on texture perception, as well as a realistic model of our

visual system (Anys, 1995).

3.3 Human Texture Perception

The human visual system is so expert at handhng texturai details that we are rarely

conscious of the way in which texturai information is used in understanding our visual

environment. As a resuit. people generally have a natural idea of what texture means to them.

The exact processes through which we identify or discriminate textures, however, are stiil not

known. Thus, the psychophysics of texture perception continues to be a subj cet of intense

interest.

Take the example of a tiger in the forest. The detection of a tiger arnong the foliage is a

perceptual task that carnes life and death consequences for sorneone trying to stirvive in the

forest. The success of the tiger in camoufiaging itseif is a failure of the visuai system observing

it. The camouflage is successful becatise the visual system of the observer is unabie to

discriminate the two textures: the foliage and the tiger skin. This type of discrimination eau be

based on various eues such as brightness, form, colour, texture, etc. How these eues are used and

what the visual processes are form the basis of the study of texture perception by psychologists

(Tuceryan and Jain, 1992).

Many researchers have speculated about the mechanisrns involved in visual texture

perception, and conducted studies that have provided some important theories on the subject.

These theories are useful, particularly for applications in texture aia1ysis, because they offer

ideas about what image properties are needed for human texttire perception that can be used to

deveÏop mathematical modeÏs, or to improve existing ones, for automated processes. At the least,

these theories can serve as a reference against which proposed computer algorithms for texture

analysis can be evaluated. AÏthough most early theories deveÏoped for the explanation of human

texture perception are basically not very different from one another, some of them have their

own unique speculations, whicÏi stress the complexity ofthis impressive phenomenon.
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3.3.1 The Julesz Paradigm

One psychophysicist who lias studied texture perception by the hurnan visual system

extensively in the context of texture discrimination is Julesz. Through bis pioneering work, lie

developed many theories, which lie continually enhanced, in an effort to explain the elusive

processes of human texture vision.

From bis early studies, Julesz (1962) found that texture discrimination by the human

visual system appears to be accomplished without the use of high-level cognitive processes. 1-le

also found that random dot textures with different statistical properties are effortlessly

distinguishable. This fact prornpted him to the hypothesis that in general, texture discrimination

is based on a very low-level perceptual rnechanism that perforrns a statistical analysis of

intensities in texture fields.

Texture patterns cari be characterized by the joint probabiÏity distributions of their

intensities. These distributions, or their statistics, have associated orders of density:

• First-order (monopole) statistics measure the probability of observing a grey value at

a random location in the texture field of the image. They are derived from the one

dimensional frequency of occurrence (histogram) of pixel intensities. These depend

only on individual pixel values and not on the interaction or co-occurrence of

neighbouring pixel values.

• Second-order (dipole) statistics are derived from the probability of observing a pair of

grey values occurring at the endpoints of a dipole of random length placed in the

texture field of the image at a random location and orientation. These are properties

of pairs of pixel values.

• Third-order (tripole) statistics are derived from the probability of observing intensity

triplets occurring at the vertices of an arbitrary triangle. randornÏy placed in the

texture field of the image.

Julesz discovered that textures with different first-order statistics are effortlessly

distinguishable dtte to perceived average brightness, contrast, etc. He found that textures with

equal first-order statistics but different second-order statistics are also easily distinguishable due
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to perceived differences in granularity. However, Julesz could not find any examples of textures

with equal first-order and second-order statistics, but different third-order statistics that are easily

distinguishable. He therefore hypothesized that textures are flot easily, or preattentively,

distinguishable if their second-order statistics are identical, such as the texture pair in Figure

1(a). Thus. he concluded that second-order statistics are sufficient for human texture perception.

Julesz proved that bis conjecture was valid through subsequent studies (Juesz et aï.,

1973; Julesz, 1975). Contrarily though, he founcÏ a few counterexamples to his theory. JuÏesz

discovered a set of:

• Textures with equal second-order statistics, which are preattentively discrirninable

based on the perceived local geometrical features of collinearity. corner, and closure

of micro-patterns, seen in the texture pair in Figure 1(b).

• Textures with identical third-order statistics that are easiÏy distinguishable based on

perceived differences in granularity.

• Textures that have different second-order statistics, which are not effortlessly

discrirninable.
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Figure 1: Texture Pairs with Equal Second-order Statistics. The lower halves
of the images contain different texture tokens than the top halves. (a) The two
textures are not easily discriminable. (b) The two different textures are effortlessly
detectable (Tuceryan and Jain, 1998).
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Other researchers considered Julesz’s experiments to be inadequate due to the fact that

the textures used in his experiments had rnany limitations. For example, the textures oniy

contained four grey levels, and they were generated une by une, having no vertical correlation,

whereas ail natural textures do. In an effort to rectify this, Pratt et aï. (1978) conducted further

studies on the same theme, with full control over the number of grey levels and spatial

correlations of the textures used, which allowed them to experirnent with samples that are doser

to natural textures. Their resuits confirmed the Julesz conjecture, but could not account for the

counterexamples found by him.

In order to explain the inconsistency of bis initial hypothesis, Julesz developed a

paradigrn for human texture perception that is based on two mechanisms. The first uses low-level

detectors to calculate differences in second-order statistics of image intensities. The second

extracts first-order statistics of local image features using simple feature detectors. The two

rnechanisms work independently, and if the first mechanisrn does flot find rnuch difference in

second-order statistics, discrimination through the second mechanisrn may stiil be accornplished.

Based on the Julesz paradigm, Schatz (1977) conducted studies in order to estabhsh what

amount of full second-order statistics is needed for preattentive texture detection by the human

visual system. He found that effortless discrimination of textures with clifferent second-order

statistics is dependant on a restricted set of statistics. This was determined by experimenting with

textures generatecl by une and point primitives that have a set of statistics based on dipoles

placed on actual unes in the texture as weÏl as on virtual unes between termination points, such

as corners. end points, isolated points, etc. Schatz concluded that the restricted set of statistics

seem to be necessary and. perhaps sufficient for preattentive texture detection.

3.3.2 The Primal Sketch Paradigm

Since Juiesz himseif bas developed an alternate theory for texture vision that is different

from his original conjecture. other researchers, such as Marr, have opposed the Julesz conjecture.

Instead, Marr (1976) proposed a paradigrn for hurnan texture perception that is described by the

primal sketch, where texture discrimination is based on the calculation of first-order statistics of

primal sketch primitives, as well as on the processes which group these primitives.
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The primal sketch is a symbolic representation of an image, correlated with edge and bar

masks of various sizes and directions to detect primitives, such as edges, unes, and blobs, having

attributes such as. orientation, size, contrast, position and termination points. These primitives

are representative of specific local image features, and according to Maii, they characterize all of

the useful information in an image.

If the processes used for grouping these primal sketch primitives perform adequately,

then Marr’s theory seems more adept at extracting significant texturai information from an image

than the Julesz paradigrn. However, the primal sketch paradigrn does not provide a detailed

explanation concerning these grouping processes.

Many researchers have studied the involvement of perceptual grouping in texture

discrimination. Studies conducted by Beck (1983) found that texture perception through

grouping that is based on simiÏarity, is effortÏess and appears to depend on simple elements in the

image such as direction of unes, size, and brightness. In later studies, Beck cl cd. (1987) counter

that discrimination of sorne specific textures is mainly based on the analysis of spatial ftequency

rather than on higher-level symbolic grouping. Zucker and Cavanatigli (1985) performed

experirnents that show how texture perception can be accomplished through the grouping of

subjective features in a texttire field.

3.3.3 Other Models for Human Texture Detection

From the perspective of Laws (Ï9$O), the hurnan visual system employs certain

rnechanisms, such as contour detection, for extracting qualitative texturai information from

images independently of its source. Transformations in the retina of the human eye conserve as

much information as possible in order to discriminate different textures, as well as to overlook

information that may cause two identical textures to appear different.

Texture can be described by its varions apparent qualities. As many as ten different

texturai qualifies have been identified by Laws for this purpose: uniforrnity, density, coarseness,

roughness, regularity, Ïinearity, directionality, direction, frequency, and phase. However, Laws

has not provided details about the rnechanisms used by the human eye, and how these qualitative

characteristics of texture are processed in the discrimination of texture.
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Further studies conducted by Julesz (198 la, 198 lb) resulted in the “theory oftextons” as

an irnproved model for texture perception. Textons are described as visual occurrences, such as

collinearity, closures, terminations (endpoints of une segments or corners), etc., tbat are detected

by the visual system and then used to discriminate texture. For example, the two textures in

Figure 1(a) have the same number of terminations; the texton information is the same, therefore,

preattentive discrimination of the texture pair is flot possible. In figure 1(b), tbe texture in the

upper haif bas a different number of terminations than the texture in the lower haif, resuhing in a

difference in texton information thus making the texture pair distinguishable.

Later on, Julesz and Bergen (1983) extended the texton theory to produce a model for

preattentive texture discrimination. By using textures with differing texton information. they

described how the visual system operates in two modes: the attentive mode and the preattentive

mode. In the process of texture detection, human vision in the preattentive mode instantÏy covers

a large zone in a parallel manner, whereas in the attentive mode, smaller zones are covered in

sequence. Vision in the attentive mode is directed towards zones containing differences in

textons that are detected by vision in the preattentive mode.

3.3.4 Contributions of Psychophysics to Texture Analysis

The different theories presented by psychophysics researchers over the years bave

provided many dues that bave supported and aided the formation of mathematical models for the

quantitative analysis of texture. In the field of remote sensing, some of these models have

already been applied with varying degrees of success.

for example, several ideas extracted from studies done by Julesz, as well as other

research based on the same theme, emphasize the value of statistical methods of texture analysis,

especially those of second-order statistics, such as tue grey leveÏ co-occurrence matrix. Concepts

generated by Marr’s research verify the importance of structural elernents in the texture study of

images, and support approaches that caïculate statistics based on more complex local features

rather than simple intensities.
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3.4 Texture Analysis in Remote Sensing

Texture analysis techniques can generalÏy be divided into two broad categories: structural

methods and statistical methods (Haralick, 1979; Sali and Wolfson, 1992). Structural rnethods of

texture analysis consider texture to be composed of texture primitives that are arraiged

according to a specific placement rule. Different types of primitives, their orientation and shape,

along with other properties are considered to determine the appearance of texture. This type of

analysis includes the extraction of texture primitives in the image, shape analysis of the texture

primitives, and estimation of the placement rule of the texture primitives. Structural texture

analysis approaches can derive much more detailed texturai information and are generaÏly used

for the analysis of coarse macro-textures (Tomita and Tsuji, 1990).

Statistical texturai analysis computes parailel local features at each point in a texture

image, and derives a set of statistics from the distribution of these local features. The local

feature is defined by the combination of intensities, or grey-leveis, at specified positions relative

to cadi point in the image. According to the number of points that define the locai feature,

statistics are classified into first-order, second-order, and higher-order statistics. Various texture

features can then be extracted from these statistics. Ibis type of analysis is usually employed for

fine micro-textures (Tomita and Tsuji, 1990).

Texture is an important property of a reftective surface, which the human visual

perception system uses to segment and classify image-objects in a two-dimensional image. If the

proper image processing algorithms are developed, then the texturai properties of remotely

sensed images will provide valuable information for segmentation and classification techniques.

In digital remote sensing, texture is considered to be the visual impression of coarseness or

smoothness caused by the variability or uniformity of image tone (Avery and Berlin, 1992).

According to Hay and Niemann (1994). texture in a digital forest scene is caused from the

reflective variability of different structural vegetation patterns such as branching patterns, and

crown sizes, shapes, and spatial arrangements.

Texture analysis bas been extensively used to classify remotely sensed images. Structural

analysis based on techniques such as the Fourier spectrum (Matsuyama et aÏ., 1980; D’Astous

and Jernigan. 1984; He et cii., 1987), description of tonal primitives (Tomita et aL, 1982),
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mathernatical morphology (Chen and Dougherty, 1994; Li et aï., 199$; Pesaresi and Bianchin,

2001), cortex transform (Goresnic and Rotman, 1992), image filtering (Voorhees and Poggio.

1987; Blostein and Ahuj a, Ï 989), and the medial axis transform (Tornita and Tsuji, 1990). have

seen various applications. In remote sensing, however, die rnost common techniques used for

texture analysis are usuaÏÏy statistical methods. Tl;is is mainÏy due to tue fact that structural

approaches are too complex for the analysis of landscape images where the spatial organization

of objects is randomly regulated and more easily explained by the laws of probability (Marceau,

198$). Also, the structural texture primitives ofnatural scenes in satellite irnagery are not easily

identifiable (fie and Wang, 1991; Shaban and Dikshit, 2001), and the description of their

placement rules may be extremely complicated (Chellappa and Kashyap, 1985).

There are numerous statistical techniques based on the analysis of texture. The more

common approaches are the Fourier transforrn (Wezska et aï., 1976), autocorrelation functions

(Kaiser. 1995), semivariograms (Miranda et aï., 1996), grey level co-occurrence matrix (Haralick

et al., 1973; Haralick 1986; Haralick and Shapiro, 1992), grey level differences (Unser, 1986),

texture spectrum (Wang and fie, 1990), and texturai signatures (Kourgli and BeÏhadj-Aissa,

2000). Among these techniques, the most popular statistical approach used for texture analysis is

the grey level co-occurrence matrix (GLCM) (Kilpela and Heiki1, 1990; Gong et aï., 1992).

3.5 Grcy Level Co-occurrence Matrix Texture Analysis

A second-order histogram is an array that is formed based on the probabilities that pairs

of pixels, separated by a certain distance and a specific direction, will have co-occurring grey

levels. This array, or second-order histogram, is also known as the co-occurrence matrix. Use of

co-occurrence matrices for the extraction of texturaI information from an image is based on the

hypothesis that image texture can be defined by the spatial relationships between pixel grey

levels of the image. Since the co-occurrence matrix expresses the two-dimensional distribution

of pairs of grey-level occurrences, it can be considered a summarv of the spatial and spectral

frequencies ofthe image.

Let f be a rectangular, discrete image containing a finite number of grey levels. f is

defined over the domain:
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D = ((i,j) : I E [O, ni),] E [O, ni), I,] E I} (1.1)

by the relation:

f= {((i,j), k) : (i,j) E D, k f(i,j), k E [O, 11g), k E I} (1.2)

where I denotes the set of integers, n and n are the horizontal and vertical dimensions off and

flg is the number of grey levels inf

The grey level co-occtirrence matrix (GLCM). G, is a square matrix of dimension ng and

is a function ofboth the image,f and a displacernent vector, d:

ct= [j,]]: (Iii, j) E D, II [i,j] >O } (1.3)

in the image plane (j,]), which constitutes the second-order spatial relation:

Gfd)=[g1(Jd)] (1.4)

Each elernent gij of the matrix represents an estimate of the probability that two pixels

separated by d have grey levels I andj.

Texture analysis based on the method of co-occuiience matrices rareÏy uses individuai

elements of the GLCM. Instead, statistical features are derived from the matrix for the extraction

of texturai information ftom die image. A large number of texture features have been proposed;

as many as fourteen different features that can be derived from these matrices are described by

Haralick et al. (1973), however, only some ofthese are widely used. This is because many ofthe

features are redundant, due to their high correlation. Thus they are not ail useful for describing a

partidular texture. Some of the texture features that can be extracted from the GLCM are as

follows:

• Angular Second Moment • Entropy

• Contrast • Homogeneity

• Correlation • Mean

• Dissirnilarity • Variance
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3.5.1 GLCM and Remote Sensïng

A comparative study conducted by Kilpehi and Heiki1 (1990) reported that for remotely

sensed images, the co-occurrence matrix is more efficient than other methods of texture analysis

such as the Fourier spectrum and fractal dimensions. Another study conducted by Gong et al.

(1992), which compared the GLCM, simple statistical transformation (S$T), and texture

spectrum techniques applied on an urban SPOT image, indicated that some features derived

using GLCM and $$T improved the accuracies of spectral classifications.

Many researchers have used the GLCM method with success in a variety of remote

sensing applications. Conners et at. (1984) obtained higher classification accuracies by

segmenting a high-resolution black and white image of an urban area using GLCM texttire

operators. Franklin and Peddle (1990) found that sorne features of the GLCM such as entropy

and inverse difference moment derived from directional spatial co-occurrence matrices combined

with spectral features improved the global classification accuracy of Spot images. Mather et aï.

(1 998) concluded that of the four methods they used for texture analysis in their study on

lithological discrimination using Landsat TM spectral data and textural data extracted from SAR

imagery. the GLCM and the multiplicative autoregressive random field approaches performed

better than the Fourier and multi-fractal based techniques. Kurosu et ctï. (2001) applied GLCM

texture images and the aggregation technique for the land use classification of SAR images.

Franklin et al. (2001) obtained results that showed that the second-order co-occurrence texture

measure homogeneity out-performed the first-order texture measure variance in their texture

study of IKONOS imagerv for Douglas-fir forest age separability. Kiema (2002) conducted a

study based on GLCM texture analysis and the fusion of Landsat TM irnagery with SPOT data.

Ndi Nyoungui et aï. (2002) evaluated speckie filtering and texture analysis approaches for land

cover classification using SAR images and found that the texture features that perforrned the best

were derived from second-order and third-order GLCM.
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CHAPTER 4

Classification

4.1 Digital Remote Sensing Image Data

There are three major aspects that characterize digital rernote sensing image data: spatial

resolution, spectral resolution and radiometric resolution. The spatial resolution of the data is the

equivalent in kilometres, meters or even centimetres on the ground, of its smallest components

available for processing from the original image: discrete picture elernents, known as pixels, the

size of which varies according to the sensor system. The radiometric resolution of an image

refers to the number of binary digits, or bits, needed to represent the range of available discrete

brightness leveÏs, known as digital numbers (DN), which are the quantized radiance values

recorded for each pixel by the sensor. The spectral resolution of the image data corresponds to

the wavelength bands, or channels, in the electrornagnetic spectrum, in which the image is

acquired. This is usually a measurement of the spatial distribution of reflected, or ernitted,

radiation in the ultraviolet, visible and near-to-short wave infrared range of wavelengths, known

as the solar spectrum. Sometimes, it can be a measurernent of the spatial distribution of energy

emitted by the earth itself in the thermal infrared wavelength region. It can aÏso be a

measurement of the relative backscatter from the earth’ s surface of energy actually emitted from

the remote sensor itself in the microwave band of wavelengths (Schowengerdt, 1997; Richards

and Jia, 1999; Jensen, 2000).

The concept behind multispectral remote sensing is that different materials covering the

earth’s surface, or their spatial properties, can be identified and assessed based on the differences

in their spectral reflectance characteristics. As such, if remote sensors capture data at several

wavelength bands, or channels, then identification of different land cover types should be

possible. Remote sensing systems are therefore designed to gather several samples of the spectral

reflectance in one or more wavelength bands. MtiltispectraÏ rernote sensing systems acquire

image data in several spectral bands. Data recorded in a large number of spectral channels is

referred to as hyperspectral data. When a single spectral band or broadband is used to capture the

image it is calÏed panchromatic data. Analysis of the spectral reflectance samples for each pixel
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can be performed, through visual techniques or automated approaches, to associate the pixel with

a particular land cover type (Schowengerdt, 1997; Richards and Jïa. 1999; Jensen, 2000).

4.2 Image Classification: A Quantitative Analysis

The objective of image classification, as opposed to photo-interpretation, is to improve

the qualitative visual analysis cf image data with a quantitative analysis through automated

identification of features in a rernotely sensed scene. This is desired becatise of the fact that a

computer can discriminate to the limit of the radiornetric resolution available in the imagery; it

can analyse at the pixel level and can examine and identify as many pixels as needed, thus taking

full account of the spatial. spectral and radiometric detail present (Schowengerdt. 1997: Richards

and Jia, 1999).

Automated interpretation of remote sensing images is considered a quantitative analysis

due to its capacity to identify pixels based on their numerical properties and to provide area

estirnates by cotmting pixels. It is also generally called classification, which is a method by

which labels are attached to pixels according to their spectral characteristics by a computer,

which is trained beforehand to recognize pixels with similar spectral properties (Richards and

Jia, 1999). Typically, this process involves the analysis of digital image data and the application

of statistically based decision rules for determining the land cover or land use identity of each

pixel in an image; the pixels are then classified into their respective ground cover classes.

In the process of multispectral classification, pixels are sorted into a finite number cf

individual spectral classes, known as information classes, based on the spectral pattern present

within the data for each pixel. The spectral pattern is composed cf the set of radiance

measurernents, or brightness values, obtained in the various spectral bands for eaci pixel. These

spectral classes are what the computer works with in order to perform the quantitative analysis

(Richards and Jia, 1999).

Pixels are assigned to spectral classes through a specific set of criteria. composed of the

decision rules, which are deveÏoped during the training phase cf the classification. These

decision rules are based on the spectral radiances observed in the data; thus the process is called

spectral pattern recognition, as opposed to spatial pattern recognition. These spectral classes may
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be associated with known features on the ground or they may only represent areas that appear

different to the computer. The intent ofthe classification process is to label ail pixels in a digital

image as belonging to one of several land cover and land use classes, otherwise known as

‘themes.’ The categorized data can subsequentÏy 5e used to create a thematic map of the land

cover and land use present in an image, as well as to produce surnrnary statistics of the areas

covered by each land cover or land use type (Jensen, 1996; Sciowengerdt. 1997; Richards and

Jia, 1999; Jensen, 2000).

4.3 Classification Methods

There are two general approaches to flic classification process: supervised and

unsupervised classification. Supervised classification is closely controlled by the image analyst

and requires extensive knowledge of the data and of the classes desired. Unsupervised

classification is more computer-automated and is dependent upon the data itself for the

determination of the spectral classes; the analyst then identifies these classes afler classification.

This method is typicaily employed when there is no a priori knowledge about the data before

classification, thus it offers an easy, unbiased analysis. Supervised classification introduces

analyst bias, but works better than unsupervised classification when the features of interest are

not clearly discrirninable (Jensen. 1996; Schowengerdt, 1997; Richards and Jia, 1999).

4.3.1 Unsupervised Classification

In the unsupervised classification technique, the inherent structure of image data is

determined by the compttter without the need of external information. Pixels in an image are

classified into spectral classes naturally present in the scene through the use of one of a variety of

clustering algorithms. Clustering is the grouping of pixels in multispectral space according to

their spectral sirnilarities (Jensen, 1996).

To perform the classification, the analyst has to define areas of the image in order to train

the classifier. These areas. however, do not have to be from homogeneous regions of the image.

In fact, it is better to sefect heterogeneous regions so that ail classes of interest and their within

cÏass variabilities are taken into account. The analyst then uses a computer algorithm that locates

the concentrations of spectrally similar pixels in the heterogeneous sample. These clusters are
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considered to represent classes in the image and are used to derive class signatures. As a resuit,

these methods can be used to determine the number and location of the spectral classes, as weÏÏ

as the spectral class each pixel belongs to (Schowengerdt, 1997).

When the clustering process is complete, pixels in each group are given a symbol to show

that they belong to the saine spectral class, or cluster. With these symbols, a cluster rnap can be

created, which corresponds to the image that has been segmented. In the cluster map, the pixels

are represented by their symbol, and not by the original multispectral data. The analyst can then

determine the land cover identity of the spectral classes through interpretation or by associafing a

sample of pixels in each class with available reference data, such as maps or information from

field visits. Ail the pixels with the saine symbol can subsequentÏy be associated with the

corresponding class (Jensen, 1996; $chowengerdt, 1997; Richards and lia, 1999).

As a resuit. unsupervised classifiers do not depend on training data as a basis for

classification, which is advantageous when reliable training data cannot be obtained or is too

expensive to acquire. Therefore, spectrally separable classes are determined before their

informational value is defined. This technique is very different from, yet cornplementary to, the

supervised approach in which useful information categories are defined before their spectral

separability is examined (Jensen, 1996; Schowengerdt, 1997).

4.3.2 Supervised Classification

Supervised classification approaches are the most common techniques used to extract

quantitative information from remote sensing images. In titis type of classification, the anaÏyst

pi-ovides the computer algorithm with numerical descriptors of the various land cover types

present in the scene, which are then used to segment the image (Jensen, Ï 996).

In order to accomplish this the tiser must determine the different land cover types, or

information classes, into which the image is to be segrnented. From each class, a sample of

representative pixels, called training data, is selected. Two approaches foi- obtaining samples of

training data fi-ont an image can be used. The analyst can manuaily detineate areas containing the

prototype pixels using a reference cursor, which is controfled by a track bail, digitizer. mouse,

keyboard strokes, etc. The polygons formed in this process are carefully chosen to avoid pixels
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locatcd along the edges between land cover types. These regions are usually referred to as

training sites (Jensen, 1996).

The more automated seed pixel method, based on region growing algoritlirns, can also be

employed. With this technique a single seed pixel is placed, with the display ctirsor, within a

prospective training site that is thought to be representative of the surrounding land cover class.

Subsequently, pixels with spectral characteristics similar to those of the seed pixel are selected

according to various statistically based criteria. These selected pixels becorne the training data

for that training site. This approach is useful foi’ the delineation of irregular training sites of

difficuli classes such as an asphalt class that is made up of narrow roads, or a shallow water class

extracted from a river. Regardless of the delineation rnetÏiod empÏoyed, a minimum of 1 On to

lOOn (where n is the number of spectral hands) sample pixels will generaÏly be needed to ensure

a good statistical representation of cadi spectral class (Jensen. 1996; Schowengerdt. 1997).

This training stage requires substantial reference data and a thorough knowledge of the

geographic area to which the data apply in order to find suitable representative areas for each

class. This information can be obtained from field visits, maps, aerial photographs, or colour

composites produced from the image data. If the image contains enough distinct visual cues

though, the training fields may be located through visual exarnination. Since tic goal here is to

assemble a set of statistics that describes the spectral response characteristics for cadi land cover

type to be classified in an image, die training data must be both representative and complete; h

must be a homogeneotis sample, yet it needs to cover the range of variabilitv witiin the class. If

an information class lias uniform spectral response characteristics over its entire extent, a single

training site should be sufficient to adequately describe this single spectral class. If, however. an

information class is not uniform, which is usually the case, tien a separate training area will be

needed for cadi of the spectral classes it encompasses. Therefore, the number of training sites

required to adequately represent tic spectral variability in an image can sornetimes be quite higli

(Schowengerdt, 1997; Richards and lia, 1999).

After establisliing the training sites, tic data is used to create a spectral response pattern

for each class based on the distribution of its spectral reflectance in eaci spectral hand of the

image. The training data also allows lie estimation of tic parameters of the particular classifying
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algorithrn to be used. These spectral patterns and parameters form the class signatures. Each

individual pixel in the whole image data is then compared nurnerically to these signatures.

According to the classifier parameters, which constitute the decision mies, the most likely class

the pixel belongs to in the image is deterrnined; the pixel is then labelled or classified

accordingly (Jensen, 1996, $chowengerdt, 1997).

4.3.3 Probabïlity Distributions

Supervised classification techniques can be divided into two categories: parametric and

nonparametric. Parametric approaches are based on assumptions about the form of the

probability distribution for each spectral class in multispectral space, and estimates of the

distribution parameters. Nonparametric algorithrns are not based on such statistical distribution

models or their pararneters, but rather on the spectral distance between classes ($chowengerdt,

1997).

A probability distribution is multidimensional, with as many variables as there are

dimensions of the space. It describes the Ïikelihood of finding a pixel belonging to a certain class

at any given location in multispectral space. This is possible since a multivariable distribution is

designated by the way that most pixels in a distinct cluster or spectral class lie near the centre

and decrease in density away from the centre. The most common distribution model used for

applications in multispectral remote sensing is the multivariate normal, or Gaussian, distribution.

This is due to the fact that it provides tractable mathematical solutions for the analysis of

decision boundaries in the supervised classification process, and because the image samples used

for supervised training usualiy present normal distributions; even if certain distributions are not

normal. the classification accuracy will not be overly affected (Schowengerdt, 1997; Richards

andJia, 1999).

The Gaussian probability distribution is characterized by its two parameters: the mean

vector, which describes the mean position of the spectral ciass, and the covariance matrix, which

describes the directional distribution of the class in mtiltispectral space. As a result, spectral

classes that are modelled by the normal distribution are also described by these two parameters.

Therefore. if these two pararnetems can be calculated for each class, then the set of probabilities

that present the likelihoods of finding a pixel at a particular location belonging to each of those
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classes can also be calculated. The class that indicates the highest probability can then be

considered the class to which the pixel betongs. Thus if the mean position and the covariance

matrix for every spectral class in an image can be calculated, then based on the probabilities of

the specific location of a pixel, every pixel in the image can be examined and labelled according

to the class it rnost likely belongs to. In the supervised classification, these two parameters are

estimated for each class from the pixels representing the training samples (Jensen. 1996:

Schowengerdt, 1997).

4.4 Classification Approaches in Remote Sensing

A number of different supervised and unsupervised strategies have been used in rernote

sensing image classification. Unsupervised classification approaches are usually based on

clustering algorithms such as the migrating means, single pass, aggiornerative hierarchical, and

histogram peak selection clustering techniques. These methods generally employ some process

to measure the similarity between pixels that belong to a partictilar cluster, called similarity

metrics, whïch are usually siniple distance measures. These distance measures are then used to

detennine clusters in the data (Jensen, 1996; Richards and Jia, 1999).

The supervised classification is the rnethod most oflen used for the quantitative analysis

of remote sensing image data. It is based upon the tise of suitable algorithms to label the pixels in

an image as representing particular ground cover types, or classes (Richards and Jia, 1 999). The

method of supervised classification requires a priori knowledge of the objects of interest in order

to create training sites, which are then used to “train” the system in order to generate flic spectral

signatures for these classes. The system thereafter labels ah pixels belonging to each particular

class according to a decision rule.

Supervised classifications consist of numerous different rnethods; each strategy bas its

associated strengths and wealuiesses. Among nonparametric classifiers, the level-siice approach,

also known as the box classifier. is a simple, as welÏ as computationally efficient technique,

which is based on the extraction of upper and lower spectral bounds, through analysis of

histograms of each spectral component of a class, used to indicate the edges of a multi

dimensional box. Pixels within the box are labelled according to that class. It is, however, not a

very appropriate classifier for remote sensing data since pixels that are found outside of the box
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will flot be classified, and pixels that are found in the overlapping regions of the boxes will be

inseparable. A modification of this method, the parallelepiped classifier, is also quite fast and

computationally efficient as well as being sensitive to category variance, although it is

insensitive to covariance. The histogram estimation technique is a fast classifier, but it does not

account for spectral vectors for every class. The nearest-neighbours classification methods assign

labels to unknown pixels based on the labels of the neighbouring training pixels; it is however, a

computationally slow technique. The Mahalanobis classifier is very much like a minimum

distance classifier, but its distance measure is sensitive to direction and can be modified

according to class. A more recent nonparametric classification strategy is the artificial neural

network classifier (ANN). This approach is sirnilar to clustering algorithms. Training of the

ANN is accomplished through the back-propagation algorithrn (Jensen. 1996; Schowengerdt,

1997; Richards and Jia, 1999).

Among the parametric classification methods, the minimum-distance-to-mean classifier

is based on the mean positions of the spectral classes, making it a useful technique in cases of

limited training samples. It is mathematically simple aix! computationally efficient, but it is

insensitive to different degrees of variance in the spectral response data. Because of this, it is not

typically used when spectral classes are close to one another and have higli variance. The

maximum likelihood classifier (MLC), otherwise known as fric Bayes classifier, evaluates both

the variance and covariance of a spectral class when classifying an unknown pixel. If the

underlying probability distributions can be correctly estimated, then this approach can minimize

the total classification error. The principle drawback of this technique is the large number of

computations required to classify each pixel ($chowengerdt. 1997; Richards and Jia, 1999).

4.5 Maximum Likelihood Classification

The maximum likelihood classification (MLC) technique is the most popular and widely

used among all supervised classification methods (Ivlather et al., 199$); it calculates the greatest

probability that a pixel belongs to a given class, thus minirnizing pixel misclassifications.

The IvILC usuaÏly assumes multivariate normal models. This normal distribution is

defined as a function of a vector location in multispectral space by:
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px) = 1 / tt2n)N12 ] exp{- (x- rn)t’ (x- rn)} (2.1)

where x is a vector location in the N dimensional pixel space, in is the mean position of the

spectral class, and is the covariance matrix ofthe distribution. The MLC is originally based on

the Bayes’ classification. In its final form, the MLC for normal distributions is:

g,x) = lnp(w1) — i4 in ZI - ‘ tx-m)’ i1tx-rni) (2.2)

where g1(x) is the discriminant function, w1 is the spectral class of an image. p(w) is the

probability that class w occurs in the image. m is the mean vector and Z is the covariance

matrix of u.

u is represented by: w, f 1, ... M

where I is the total number of classes.

4.5.1 MLC and Remote Sensing

A variety of remote sensing applications have seen the successful employment of the

maximum hkelihood classifier. Using airbomne mtiltispectrai images, Frankiin et ctl. (2000)

incorporated texture into MLC classification of forest species composition. In a case study on the

monitoring, classification and evaluation of the urbanization process in Africa, Balzerek (2001)

applied the MLC on high spatial resolution IKONOS satellite scenes. Kurosu et aÏ. (2001)

conducted a study on land use classification with texturai analysis on SAR images in which they

employed the MLC approach. Shaban and Dikshit (2001) evaÏuated the MLC and GLCM texture

features for the urban classification of SPOT imagery. Kierna (2002) used the MLC and texture

analysis to extract topographic objects from fused Landsat TM and SPOT images.
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CHAPTER 5

Description of $tudy Area and Image Data

5.1 Study Area

The study site for this research project covers the principal section of the old city of

Sherbrooke, which represents the core of urbanization for the area cornrnonly known as “Estrie”.

Two major rivers flow through this region: the Magog River runs in a generally northeast

direction through the site, towards the rniddle of the city where it meets the Saint françois River,

which fiows in the general direction of northwest from tue southeast. The narrow gorge of the

Magog River surges over a short distance in the heart of downtown Sherbrooke. In the

southwestern region of the study area, Mount Bellevue, a natural recreational site, sits on the

outskirts of the city, not far from the Magog River. The University of Sherbrooke grounds are

located just west of Mount Bellevue.

The area of interest for this study consists of various types of land use, such as road

network, agricultural, residential, commercial, industrial, institutional, and recreational uses.

Different land cover types that compose the region are river, bare sou, grass, shrubs and forest.

As such, this site provides a good study area for the purposes of urban land use and land cover

classification analysis.

The old city of $herbrooke is located in the Eastern Townships of the southern region of

the province of Quebec, Canada. It is located between 45018 and 45°27 latitude north, and

71°48’ and 72002 longitude west. The study site of Old Sherbrooke covers an area of

approximately 11 km x 11 km. The topography of the site is generally hilly, with heights ranging

from about 200 meters to 400 meters above mean sea level. The region is abundantly vegetated

with grass and trees, especially towards the outer edges of the city where there are large sections

of dense coniferous and deciduous forests mixed with shrubs and grassy fields, and patches of

agricultural land. Within the city, considerable expanses of forest and grassiand, concentrated

along the two rivers, compose varions recreational areas.
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Geographical Location of Study Area:
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Figure 2: Geographical Location of Study Area



5.2 Research Data

High spatial resolution images obtained by the IKONOS-2 satellite of Space Imaging

were selected for this research project. The 16-bit raw multispectral and panchromatic satellite

scenes ofthe Old Sherbrooke area were acquired on May 20, 2001 at 10:50 am, local tirne. The

scenes have an image dimension of approximately 11800 x 13200 pixels, and were standard

geometrically corrected at the source. The map projection used is Universal Transverse

Mercator the UTM specific parameters are: Northern Hernisphere, zone 18, North American

Datum (NAD) 83.

Bands J Resolutions

Multispectral Spectral Properties Spatial Properties

Red 063-0.69 pm 4 x 4 meters

Green 0.52-0.60 pm 4 x 4 meters

Blue 0.45-0.52 pm 4 x 4 meters

Near lnfrared 0.76-0.90 pm 4 x 4 meters

Panchromatic [ 0.45-0.90 pm 1 x 1 meter

Table 1: Data Description

$upplementary data was used in this study for the creation of training and verification sites,

as well as for the verification of the classifications. These data were obtained from the following

sources: NTDB (National Topographie Data Bank) of the Sherbrooke region, having a scale of

1:50 000, that was produced in 2000 by the Centre for Topographie Information departrnent of

NaturaÏ Resources Canada, black and white aeriaÏ photographs of the area taken in September

1998 and August 2000, at a scale of 1:15 000 and 1:40 000 respectively, obtained from the

Photocartothèque Québécoise of the Ministry of Natural Resources Québec, and in-situ data



collected during field visits. Also used, was a topographie rnap of the Sherbrooke area from

Canadian Topographie Maps. The rnap has a scale of 1:50 000, and was produced in 2000 by the

Centre for Topographic Information division ofNatural Resources Canada.
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CHAPTER 6

Methodology

6.1 Introduction

In order to fulfiil the objectives of this study, a methodology was developed based on the

two major elements of this research: texture analysis and spectral-spatial classification. These

two processes were emp}oyed for the extraction of spatial information, as well as for the creation

of an urban land cover and land use classification map, from the high spatial resolution IKONOS

images.

In the texture analysis phase of the methodology, the grey level co-occurrence matrix

(GLCM) technique was used, which consists of five main stages for the creation of the texture

images to be integrated in the classification process: delimitation of the study site, selection of

the distance between pixels. selection of the direction between pixels, selection of the

appropriate window size, and finaÏly, selection of the most useful texture features.

The classification phase ofthe methodology involves the following six steps based on the

maxinuim likelihood classification (MLC) method, which resulted in the production of a

thematic map of the Old Sherbrooke study site: integration of spectral and spatial data for

classification. creation of training and verification sites, verification of class separability,

creation of pseudo-colour table, post classification filtering, and lastly, estimation of

classification precisions.

These steps. which can be visualized from the methodology ftow chart presented in

Figure 3, are further elaborated for the two techniques throughout the rest ofthis chapter.
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Figure 3: Methodology Flow Chart
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6.2 Delimitation of Study Site

The raw panchromatic and multispectral IKONO$ scenes of the Old Sherbrooke area

were cropped in order to reduce the image matrix to 11000 x 11000 pixels. This delimitation of

the study site resulted in a better representation ofthe objects ofinterest (See Figure 4).

Figure 4: RGB Colour Composite of the Old Sherbrooke Study Site
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6.3 Grey Level Co-occurrence Matrix Parameters

In this study, the Grey Level Co-occunence Matrix (Haralick et ai., 1973) was used as

the method of extracting texturai information from the panchromatic IKONOS satellite scene

(See Figure 5). The success of the GLCM method of texture analysis is directly related to the

appropriate choice concerning three pararneters: the distance between pixels, the direction

between pixels, and the size of the window to be used. The resuits of classifications perforrned

using texturai data are greatly infiuenced by these variables; therefore, many processes have been

developed to facilitate the determination of suitable selections for these factors.

6.3.1 Selection of Distance Bebveen Pixels

In an urban scene, there exist numerous textures with greatiy varying degrees of

smootlrness or coarseness. The choice of the appropriate distance depends on the smoothness or

coarseness of the texture of interest. Therefore. to choose the most suitable distance between

pixels is not easy. However, it has been found that srnall distances produce the best results

(Karathanassi et al., 2000; \Veszka et ai., 1976), since they are appropriate for textures that are

fine, as well as for those that are coarse. As a resuit, a distance equal to 1 pixel, which is also the

rnost commonly used, was chosen for this study.

6.3.2 Setection of Direction Between Pixels

For the direction between pixels, one method that can be used consists of calculating the

features ofthe co-occurrence matrix for the four directions of 0°, 45°, 90° and 13 5°, and to take their

averages (Haralick, 1979). Another study has shown that certain directions can provide a better

discrimination between classes than the method of taking the average of ail the directions (Franklin

and Peddle, 1989). However, the rnost common choice for th direction between pixels found in

literature is 0°, which is what was used in this study by default ofthe image processing system used.

6.3.3 Selection of Appropriate Window Size

The accuracy of the classification process using texture features depends on the size of

the window used. If the window is too srnall, enough spatial information will not be extracted in

order to characterize a certain type of land cover. On the other hand, if the window is too large. it
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will either overlap onto two types of land cover and introduce the wrong spatial information

(Pultz and Brown, 1927), or it will create transition limits that are too large between two types of

neighbouring land cover (Gong, 1990). If the window size is too small or too large relative to

the texture structure, then texture features will flot accurately reflect real textural properties

(Mather et al., 1998).

In order to choose an appropriate size for the window, a method can be used that is based

on the calculation of the variation coefficient for each class as a function of the size of the

window, using a given texture feature (Laur, 1989). The appropriate window size will be that for

which the variation coefficients start to stabilize for the majority of the classes, while having the

lowest value.

In this study, the homogeneity texture feature was randomly ehosen for the calculation of

the variation coefficients for each class according to different window sizes. The variation

coefficients started to stabilize at the 11x11 pixel window for the majority of the classes (See

Figure 6).

Figure 6: Variation Coefficient Curve using the Homogeneity Feature for Seven Classes

As a result, the 11x11 window was chosen for use in the caïculation of the texture

features for the purposes of this study.
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6.3.4 Selection of Texture features

There are as many as fourteen different texture features that may be extracted from co

occurrence matrices (Haralick et aÏ., 1973; Haralick, 1979). The image processing system used

in this study only allows the tise of the following eight texture features: Contrast, Correlation,

Dissimilarity, Entropy, Homogeneity. Mean, Second Moment, and Variance. Many of these

features are redundant and capture similar concepts (Wilson, 1996). Thus, the foliowing process

was employed in order to elirninate the superfluous texture features and to choose the most

usefui features for good urban class discrimination.

From the panchrornatic image, texture neo-channeis of the eight different features were

produced using the 11x11 pixel mobile window that was determined to be the rnost appropriate

window size, with the direction of 00 between pixels, and with the distance of 1 pixel between

iixels.

for the first step in the process of elimination, the visual quality of these texture images

was analysed and three features, Correlation, Entropy, and Second Moment, were initially

considered for discarding due to their poor quality in terms ofvisual information (See Figure 7).

After displaying the histograms of ail the channels, it was confirmed that these three

features, Correlation, Entropy. and Second Moment were to be ehminated due to the small and

narrow peaks they presented. The possible elirnination of another two features, Contrast and

Variance. was also considered from the histogram anaÏysis because of the sarne reason (See

Figure 8).

Finaiiy, through caicuiation of the correlation matrix, it was confirmed that these two

features, Contrast and Variance, as well as the first three features, Correiation, Entropy, and

Second Moment, were to be discarded due to their relatively high correlation with the other

features (Sec Table 1). As a resuit, only three texture features, Mean, Homogeneity, and

Dissimilarity, were selected for use in titis study.
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Correlation

Figure 7: Neo-Channels of the Eight GLCM Texture Features
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Table 2: Calculation of the Correlation Matrix

6.4 Classification through Maximum Likelihood

For the purposes of this study, the maximum likelihood classification approach was used
to extract the urban data from the high spatial resolution IKONOS imagery (Sec Figure 9). This
supervised classification method was used because of its popularity, and due to the proximity
and familiarity of the Sherbrooke area, as weIl as the easy accessibifity of field data.

6.4.1 Integration of Spectral and Texturai Data for Classification

Many researchers have developed different methods of integrating texturai data with
spectral data (Tso, 1997; Franklin et al., 2000; Kurosu et al., 2001). However, the rnost widely
used method is that of using the texturai data as neo-channcis to be cornbined with the spectral
channels in the classification process (Marceau et al., 1990; Coulombe et al., 1991; Mather et aï.,
l998 Shaban and Dikshit, 2001).

In this study, the input images were: the four muitispectrai images (Red, Green, Bluc and
Near Infrared). and the three texturai images (Mean, Homogeneity, and Dissimllarity), which
were produced from the steps in the texturai analysis process. These images were integrated in
the classification procedure.

Band Mean Variance’ Hom Contrast Dis Entropy SM Cor
Mean 1 0.219588 -0.01689 0.202036 0.105681 0.207555 0.002025 -0.236810
Variance 0.219588 1 -0.14096 0.828535 0.68651 0.028310_0.008660 0.113488
Homogeneïty -0.01689 -0.14096 1 -0.15298 -0.52143 -0.095520 0.407330 -0.347840
ontrast 0.202036 0.828535 -0.1 5298 1 0.775256 0.028838 -0.000300 0.104926
Dissimilarity 0.105681 0.68651 Ï-052143 0.775256 1 0.133169 -0.062690 0.337697
Entropy 0.207555 0.02831 -0.09552 0.028838 0.133169 1 -0.007470 0.001700
Second Moment 0.002025 0.00866 0.40733 -0.0003 -0.06269 -0.00747 1 -0.014240
Correlation -0.23681 0.113488]0.34784 0.104926 0.337697 0.00170 -0.014240 1
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for the purposes of comparison, three input datasets were created for classification:

• A spectral dataset consisting of the Red, Green, Blue and N-IR bands.

• A spatial dataset consïsting of the Mean, Homogeneity and Dissimilarity
texture bauds.

• A combination dataset consisting of the spatial and spectral datasets.
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Auxiliary Data Input DataRaw Panchromatic
16-bit IKONOS • NTDB • Spectral Dataset: Red, Green, flueImage • Aerial photographs and N-IR

Topographic Map • Spatial Dataset: Mean, Homogeneity

______________________

and Dissimilarity
Combination Dataset: Spectral and
Spatial Dataset

Creation of training and verification sites

Verification of class separabihty

H Maximum Likelihood Classification

4,
Verification of classification

4,
Pseudo-colour table

Post-classification
Kemel filter 19x19

4.
Estimation of the Precision of Classification

Figure 9: Maximum Likelihood Classification FIow Chart
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6.4.2 Creation of Training and Verification Sites

Since the maximum likelihood classifier used for the supervised classification technique
employed in this study requires a good amount of knowledge about the object characteristics of
the Sherbrooke area, tins information was obtained through field visits, topographic maps. aerial
photographs and NTDB layers of Sherbrooke.

Training sites were selected from several spectrally distinct classes for the generation of
infonnation classes (Kershaw and Fuller. 1992). These training samples were used to “train” the
classifier to recognize the different spectral classes in the image so that each pixel could
subsequently be compared to them in the labelling phase. The verification sites were created for
each class from areas on the image where the training sites were not produced.

In order to avoid poor classifications or inaccurate estirnates of the elements, efforts were
made to choose a sufficient number of training pixels for each class. The classes used for this
study were selected afler careful determination of their adequate representation of the whole
image. Training and verification sites for the following twelve land use and land cover classes
were created for this study:

• Agriculture • Deciduous forest

• Asphait and Parking Lot • Gras s

• Bare Sou • Residential Area

• Commercial Area • Road Networks

• Coniferous Forest • Shallow Water

• Deep Water • Shrubs
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Ï Training Sites Verification Sites
Classes Numbers 0f Number of Numbers of J Number of

pixels Segments pixels Segments
Agricultural 1777437 61 126048 35
Asphaltand Parking Lot 29747 37 29101 41
BareSoil 1022180 32 344993 11
Commercial, Industrial & Institutional 138933 23 4341 1 29
ConiferousForest 110478 17 87200 14
Deciduous Forest 396508 12 290914 9
Deep Water 24620 27 27063 30
Grass 756013 68 148856 21
Residential Area 12130 69 7573 54
Road Networks 7692 44 25192 27
ShallowWater 16453 18 12985 17
Shrubs L 46227 32 20570 j- 29

Table 3: Training and Verification Sites

6.4.3 Verification of Class Separability

In the classification process, the spectral classes produced by the training sites must be
sufficiently separate in order for the classifier to differentiate between the various class
signatures. If the class separabilities are too low, then this will lead to a high number of
misclassified pixels. As a resuit. it is useful to calculate the separability of the spectral classes
before generating the final spectral signatures. This will allow for the improvement of low
separabilities through the creation of better training sites.

The class separabilities for the training and verification sites were calculated using the
Jeffries-Matusita and Transformed Divergence separability measures. These values range from O
to 2.0 and indicate how weII the selected sites are statistically separate. Although a good
separability between the classes is between 1.9 and 2.0, values above 1 .5 are considered
acceptable by some researchers (Anys, 1995). In order to obtain a considerable separability,
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many attempts were made to create sites that produced good values for class separability in this
study ($ee Table 7).

6.4.4 Use of Pseudo-colour Table

The resuits of the classification can be presented in two forrns: a table that summarizes
the ncimber of pixels in the whole image that belongs to each class, or a classified image. The
classified image is a thematic rnap showing the spatial distribution ofthe land cover and land use
present in the region of interest, in which each pixel is assigned a symbol or colour that relates it
to a specific class on the ground. Thematic rnaps are often represented according to a pseudo—
colour table, which provides for a better visualization of the classified data.

In this study. the pseudo-colour table used to represent cadi land cover and land use type
in the final classified image of the combined datasets can be found in Figure 10.

6.4.5 Post-Classification Filterïng of Classified Image

b smooth ont the classified images, a Majority Analysis was applied. The Majority
Analysis is used to change spurious pixels within a large single class to that class by selecting a
kemel size; the centre pixel in the kernel will be replaced with the class valtie that the majority of
tic pixels in the kernel has.

$ince larger kernel sizes produce more smoothing of the classified image, several
attempts were made with different kernel sizes, such as 7x7, 9x9, lix 11, etc. Tic 19x1 9 kernel
size displayed tic smoothest appearance and was thus chosen for this study.

Tic centre pixel weight is the weight used to deterrnine how many tirnes the class of the
centre pixel is counted when determining which class is in the maj ority; in tus study a centre
pixel weight of 5 was used, as it produced tic best resuits.

6.4.6 Estimation of Classification Precision

The final step of the classification is the evaluation of the precision of the results
obtained. This will indicate how well tic classification performed and whether or flot tic
objectives have been achieved. Once the spectral space is segmented into different regions
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associated with classes of objects, each pixel of the verification sites is assigned the label of the
class that represents it in the segmented spectral space. The overali resuit of this process is
presented in the forrn of a confusion matrix. From this matrix many classification precision
indexes can be caiculated. From a comparative study done on the different methods of evaluating
the classification accuracy, it was found that the most appropriate index to provide an exact
classification precision is the Kappa coefficient, because it takes account of ail the elernents of
the confusion matrix (Fung and Ledrew, 192$). This is the rnethod that was adopted in this
study.

NXkk _XkX2k
Kappa Coefficient k k (3.1)

N2 —

where is the sum over ail rows in the matrix, xi is the total of marginal rows, Xk is the total of
marginal columns, and N is the number of observations.
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Chapter 7

Results anti Analysis

7.1 Texture Analysïs Resuits

From the texture analysis phase, the experiment conducted for determining the window
size produced resuits that show the window size of 11x11 pixels as the most appropriate for
capturing the underlying texture in the image for this particular study site. More than 65 ¾ of the
region is cornposed of vast forest, agricultural and grassy areas (See table 5). As a resuit, a large
window is needed in order to extract enough spatial information to accurateiy reflect the texturai
properties ofthese classes.

During the selection of the texture features, analysis of the visual quality of the texture
images revealed that out of the eight features considered, the Second Moment feature is
completely devoid of any information. The Correlation and Entropy features provide some
information, but not enough for adequate discrimination. The texture images of Variance and
Contrast are similar in nature, which indicates redundancy in one of the two. Although they both
present more information than Correlation and Entropy, they do not allow for sufficient texture
distinction. The Mean, Homogeneity and Dissimiïarity texture features ail provide unique
texturai details that are easily discernable in the images (Sec Figure 7).

The histogram analysis of the texture features produced much the same outcorne. The
Second Moment, Variance Contrast, Entropy and Correlation histograms have very iittle or no
peaks, indicating a Yack of texture information and discrimination power. The Mean,
Homogeneity and Dissimilarity histograms presented distinct peaks. which is consistent with the
quality oftheir texture images (Sec Figure 8).

7.2 Classification Resuits

The following two tables present the resuits of the classification process. Table 4 shows
the classification accuracies obtained for each class resulting from the classifications conducted
on each of the three datasets, as well as the overali accttracies and Kappa coefficients produced
for each dataset. Table 5 is the statistical representation of the final classification donc with the
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combination of spectral and spatial data. These final classification resuits are also presented in
the form ofa thematic map in Figure 10.

1 Spectral Data Spatial Data (Mean, Combinatioii Data
(Red, Green, Homogeneity and (Spectral ami Spatial)
Blue and NIR) Dissimilarity)

Kappa Coefflcient 0.74 0.68 0.83
Overall Accuracy (%) 78.9 73.5 86.1

Classes Classification Accuracies (%)
Agriculture Land 73.9 70.6 88.9
Asphalt and Parking Lot 64.3 61.2 86.5
Bare Sou 74.2 73.9 84.3
Commercial, Industrial, Institutional 68.5 59.8 83.1
Coniferous Forest 62.4 61.1 70.6
Deciduous Forest 73.9 67.8 82.7
Deep Water 87.5 84.9 90.9
Grass 77.3 72.5 89.0
Residential Area 65.8 61.4 82.8
Road Network 62.6 82.1
ShallowWater 74.7 70.7 80.9
Shrubs 62.4 61.8 71.9

Table 4: Comparative Accuracies of the Different flataset Classifications
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Agricultural 88.9
Asphait and Parking Lot 86.5
Bare Sou 84.3
Commercial, Industrial, Institutional 83.1

..
Coniferous Forest 706
Deciduous Forest 82.7

Deep Water

j Resudential Area

Overall Accuracy: 86.1 %

Road Network

bs

Kappa Coefficient: 0.23

Figure 10: Classification of Combined Spectral Bands and Spatial Bauds
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Classes Number of Pixels in Whole Image Percentage (%) of Whole Image
Agricultural Land 12292332 10.16
BareSoil 2193414 1.81
Commercial 8 756 036 7.24
Coniferous Forest 9 055 436 7.48
Deciduous Forest 36 916 561 30.51
Deep Water 675 924 0.56
Grass 4315099 3.57
Parking Lot 2 633 992 2.18
Residential Area 15 340 348 12.68
Road Network 9 581 520 7.92
ShaliowWater 1 136 101 0.94
Shrubs 18103237 ] 14.96

Total 121 000 000 100MO

Table 5: Tabular Representation of the Final Combineil Dataset Classification

7.2.1 Spatial Dataset

The resuits obtained from the classification stage of this research study show that the
classification doue with the purely spatial dataset (Mean, Hornogeneity and Dissirnilarity texture
bauds) produced limited accuracies ranging from 59.8 ¾ to 84.9 ¾ for ail classes, with an
overall accuracy of 73.5 ¾. The best accuracies obtained for this dataset are for the Deep Water.
Bare Sou, and Grass classes, which have 84.9 ¾, 73.9 ¾ and 72.5 ¾ accuracies respectively.

The Commercial, Industrial and Institutional class has the lowest classification accuracy
of only 59.8 %. Other classes that produced low accuracies are the Coniferous Forest, Asphait
and Parking Lot, Residential, and $brubs classes, with 61.1 % 61.2 ¾, 61.4 ¾ and 61.8 %
accuracies respectively.

7.2.2 Spectral Dataset

The classification of the purely spectral dataset (Red, Green, Bltie and N-IR bauds)
produced sornewhat higber accuracies for ail ofthe classes compared to the spatial dataset. Here,
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the accuracies range from 62.4 ¾ to 87.5 ¾ for ail classes, with an overali accuracy of 78.9 %.
This means an increase in accuracy ranging from 0.3 % to 6.1 ¾ for each class and an overali
increase of 5.4 ¾. The highest classification accuracies achieved with this dataset was for the
Deep Water (87.5 ¾), and Grass (77.3 ¾) classes. which saw improvernents of 2.6 ¾ and 4.8 ¾,
respectively.

The Asphait and Parking Lot (64.3 %), Coniferous Forest (62.4 %), and Shrubs (62.4 %)
classes once again produced the lowest accuracies, with an increase in classification accuracy
over the texturai classification of 3.1 ¾, 1.3 % and 0.6% respectively.

7.2.3 Combination Dataset

The highest accuracies obtained in this study was with the classification of the
combination of the spectral and spatial datasets, which produced accuracies ranging from 70.6 ¾
to 90.9 ¾ for ail classes and an overall accuracy of 86.1 ¾. The increase in classification
accuracies with this dataset over the spectral dataset ranges from 3.4 ¾ to 22.2 ¾ for each class
with an overail increase of 7.2 ¾. For this dataset also, the Deep Water and Grass classes once
more have the highest classification accuracies at 90.9 ¾ and 89.0 ¾ respectively. The classes
that saw the greatest increase in classification accuracy with the combination dataset is the
Asphait and Parking Lot class, followed by the Commercial, Industrial and Institutional class, the
accuracies ofwhich increased by 22.2 % and 14.6 % respectively.

The classes that obtained the lowest classification accuracies for this dataset are again the
Coniferous forest and the Shrubs classes at 70.6 ¾ and 71.9 ¾ respectively. The addition of
texturai information to the spectral data for this classification restilted in an increase in the
classification accuracies of 8.2 ¾ and 9.5 ¾ for these two classes respectively. A statisfical Z-
test eau be doue in order to determine whether the resuits obtained for the different
classifications are statistically different.

7.3 Interpretation of Resuits

The Deep Water, Bare Soi!, and Grass classes obtained the highest accuracies in the
spatial classification. These accuracies are acceptable when using only one panchrornatic band.
The lowest accuracies in the spatial classification were obtained by the Commercial, Industrial
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and Institutional class, Asphait and Parking Lot, Residential, Coniferous Forest, and Shrubs
classes. The texturai heterogeneity of the Commercial, Industrial and Institutional ciass can be
explained by the irregular structures of the buildings, as well as the presence of more than one
building intermingled with parking areas, such as the case of colleges and universities. The
Asphait and Parking Lot class presents heterogeneous textures possibly because of the presence
of cars, which, especially in the case of parking lots, do not aiways have an even distribution. For
the Residential class, the random mixture of roofs and treetops are likely the cause of the varying
textures. As for the heterogeneity of the textures described by the Coniferous Forest and Shrubs
classes, this may be due to the fact that these two classes, as well as the Deciduous Forest class,
do not occupy distinct areas of the image; rnost of the forests in the images are a composite of
these three classes. The low classification accuracies of ail these classes indicate that they need
the input of spectral information for greater discrimination.

In the spectral classification, the classes that produced the highest accuracies are again
the Deep Water and Grass classes, which means that with either spatial or spectral information,
these classes are highly discriminable. The classes that produced the lowest accttracies are the
Asphait and Parking Lot, Coniferous forest, and Shrubs classes. This means that these classes
are not easily distinguishable from other spectrally sirnilar classes. The inability to produce
representative spectral signatures for these classes may be due to varions reasons. In the case of
the Asphait and Parking Lot class, this is most likely due to the presence of vehicles, which
produce spurious diffuse and specular reflections that degrade the spectral signature of the pixels
in this class. The fact that the forests in the image are generally mixed is probably the reason that
the Coniferous Forest and Shrubs classes failed to produce representative spectral signatures.
Since these classes also produced low accuracies with the spatial dataset, this means that they are
not distinguishable with only spectral or texturai data alone.

The Asphait and Parking Lot class as well as the Commercial, Industrial and Institutional
class showed the most increase in classification accttracy with the combination dataset. Other
classes that also produced comparably high increases in accuracy are the Residential and Road
Network classes. This is the expected performance of the input of texturai data in the
multispectral classification, since these classes obtained relatively poor accuracies with the
spectral and texturai datasets alonc.
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The iowest increases in classification accuracy with the cornbined data were obtained by
the classes that produced relatively high accuracies with the purely spectral and texturai datasets.
The Deep Water class saw an increase in accuracy of only 3.4 % and the Shallow Water class
only 6.2 %. Since these classes are spatially and spectrally distinguishable anyhow, the addition
of texture did not make much of a contribution. This indicates that the combination of texturai
and spectral information is needed for those classes that produce iow accuracies with purely
spectral or texturai data.

The lowest classification accuracies produced for the combination dataset was for the
Coniferous Forest and Shrubs classes. These reiatively iow accuracies are reflected in the low
percentages covered by these two classes in the image, where the Coniferous forest class
comprises only 7.48 ¾ and the Shrubs class 14.96 ¾ (See Table 5). The Deciduous Forest class,
on the other hand, is showii to occupy more than 30 ¾ ofthe whole image. Visual analysis ofthe
images reveals that the Coniferous Forest class should actually make up alrnost half of die total
of the two forest classes. This implies that many pixels belonging to the Coniferous forest class
were probably misclassified as Deciduous forest.

The overall classification resuits. however. seem very promising. Classified images of
selected individual classes were generated in an attempt to evaluate the performance of the
classification on a visual level. A ciassified image of only the Residential class is presented in
Figure 11. For the Deciduous Forest and Coniferous Forest classes, a single classified image was
produced consisting of both, so that combined they represent ail the forest areas in the region in
order to facilitate visual analysis (Sec Figure 12). The classification of the Deep Water ciass is
shown in figure 13. Figure 14(a) shows the classification results for only the Road Network
class; Figures 14(b) and 14(c) are examples ofthis class taken from the final classification shown
in Figure 10, and classification examples of the Shallow Water class, also taken from the final
classified image, are presented in Figure 15.
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Figllre 12: Classifled Image of Coniferous and Deciduous Forest Classes
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Figure 13: Classifled Image ofDeep Water Class
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Figure 14(a): Classified Image of Road Network Class

Figure 14(b): Intersection of Figure 14(c): Jacques-Cartier
Highways 10 and 216 Bridge

Figure 14: Classffled Image and Examples of Road Network Class
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r adjacent to the beach in I

figure 15(b): Section of Saint françois River near Sherbrooke North

Figure 15(c): Irrigation pond on agricultural
plot near Bishop’s University in Lennoxville
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Figure 15(d): Corresponding section of
Figure 15(c) from Panchromatic Image
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_____
_____

figure 15(e): Reserved water in a gravel
production company at the corner of Bel

Horizon and Dunant streets

t): Corresponding section of
Figure 15(e) from Panchromatic Image

Figure 15: Examples of Shallow Water Class from Classified Image
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7.4 Discussion

This study has produced resuits that show classifications based only on texturai
information provide lower accuracies than classifications performed with purely spectral data.
The combination of both types of data for classification, however, produces the highest
classification accuracies. Since the classification of the cornbination dataset in this study
provided higher accuracies even on the level of each individual class, this can be attributed to the
high spatial resolution of the IKONOS images, which allow for considerable texture
discrimination.

These findings are supportive of the hypothesis forrnulated earlier in this study, that both
texture channels and high spatial resolution imagery can provide improved spectral classification
accuracies. which resuit in more detailed urban data. The resuits are also consistent with various
other research studies based on the contribution of texture to spectral classifications, such as that
conducted by Moskal and Franklin (2001) who found that classification accuracies of forests
based on only texture data were rnuch lower than accuracies for spectral bands of their high
resolution CASI images. Tliey also reported high classification accuracies with the combined
data.

From their study using SPOT images, Shaban and Dikshit (2001) also concluded that
purely texture features are flot effective in classifications ofthe urban environment. One fact they
discovered, however. is that with the addition of texturai information, spectral classification
accuracies of spectrally homogeneous and distinct classes such as water reduced substantiaÏly.
The resuits of the present study are slightly inconsistent on this point, as they display an increase
in accuracy for ail classes with the combination dataset, aithough the Deep Water class did
produced the lowest increase at only 3.4 %. This difference may be attributed to the higher
spatial resoiution ofthe IKONOS images.

Kierna (2002) performed a study on SPOT and Landsat TM images in which the results
presented the Hornogeneity feature as the rnost effective co-occurrence matrix texture measure.
The texture analysis results of the present study agree with this since it was fond that Mean,
Homogeneity and Dissimilarity are the best texture features for urban discrimination. However,
these resuits contradict the report hy Kiema that a 3x3 pixel window (30x30 ni) is the most
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suited for urban texture studies, because the rnost appropriate window size was found to be
11x11 pixels (11x11 rn), which is consistent with the work of Moskal and franklin (2001) who
used similar windows (11x11, 17x17, 21x21) to capture the texturai characteristics of forest
stands. This variation in resuits may be caused by the higher spatial resolution of the IKONOS
imagery.

Overail, the resuits of this research work support previous studies in respect to the
improvement of spectral classifications through the addition of texturai data. They differ, though,
in areas that are directly related to the texture analysis stage, and mainly from previous research
conducted with irnagery of a lower spatial resolution. As such, the use of GLCM texture analysis
on high spatial resolution IKONOS irnagery, combined with the MLC approach, for the
improvernent of spectral classifications of urban land cover and land use classes provides some
interesting results.

Although the resuits produced in the frame ofthis work are generaliy quite high, there are
some problem areas. The classification accuracies for two classes, Coniferous Forest and Shrubs,
were persistently lower for ail datasets. This can be an indication of poor texturai representation
related to the large size of the 11x11 pixel window. The texturai characteristics of certain ground
features may require smaller windows. The use of multiple window sizes was not considered due
to the heavy computations required for applications on the whole image. Thus, the fact that only
one window size was used constittites one of the limitations of the texturai analysis phase of this
study. Other limitations of this phase. which may have affected this study, include the use of
only one distance, as well as only one direction, between pixels, which were selected either b)’
default of the image processing sofiware empioyed, or based on their sirnplicity and popularity.
These variables need to be further examined and perhaps can be tested on srnaller samples of
high-resolution imagery in order to eut down on computational costs.

Future studies within the GLCM texture analysis approach eau, therefore, focus on the
use of different pixel distances and directions, as well as various window sizes in order to
examine their reiationship to different types of urban land cover and land use classes for the
determination of their contribution to urban texture discrimination of high spatial resolution
imagery.
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Another study also within the scope of texture analysis that may prove to be very
interesting is the separate assessment of the rnost useful texture features to determine their role in
the classification, which might provide some insight into which ground classes they complement
the most.

As for the classification phase of the present study, it was fotind that the problem classes
also presented difficulties in spectral discrimination. This can be directly related to the selection
of samples for the training and verification sites. Subsequent studies should therefore consider
the application of an unsupervised classification technique to first determine the spectral classes
that exist in the image. followed by the supervised classification.

7.5 Conclusions

The application of GLCM texture analysis and multispectral MLC techniques foi- the
classification of cornbined spatial and spectral data for the urban land use and land cover
classification of high spatial resolution IKONOS irnagery produced very prornising resuits. Sorne
problem areas were encountered, however, related to the limitations ofthis study.

The texture analysis applied in this study was not comprehensive as it relied on the tise of
only one window size, which did not permit good texturai discrimination of certain ground cover
classes, and the use of only one direction and distance between pixels, the effects of which have
not been determined. These aspects need to be further studied, based on srnaller samples to avoid
large computational costs, in order to opfimize their application to high spatial resolution
imagery.

Another future study based on texture analysis that may be condticted consists of the
individuai assessment of suitable texture feattires to determine their relationship to particular
ground cover classes, and their impact on urban classifications.

In the spectral classification part of the study. the range of spectral classes contained in
die site was not adequately represented. In order to overcome this problem, an unsupervised
classification can be performed to detect the existing spectral classes. Then using this
information, samples can be selected for the generation of better training and verification sites.
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Appendix A: Satellite ami Texture Images

Panchromatic Image of Sherbrooke City

UTM Projection: Northern Hemisphere Zone 18 NAD83 Source: Space Imaging
iv

w T

s

Figure 16: Raw Panchromatic IKONOS Image of Sherbrooke City
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Mean Texture Channel
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Figure 17: Mean Texture Channel of Sherbrooke Study Region



$1

Homogeneity Texture Channel
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Figure 1$: Homogeneity Texture Channel of Sherbrooke Study Region
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Dissimilarfty Texture Channel

Author: Shahid Kabir Université de Sherbrooke Winter 2002

Figure 19: Dissimilarity Texture Channel of Sherbrooke Study Region
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Appendix B: $tatistics of Resuits

Filename: Sherbrooke Panehromatïc Image
Texture Method: Co-occurrence Matrix
Window Size: 11x11 pixels

Distance: 1 pixel

Direction: 0 degrees

Dims: Full Baud (121000000 points)

Channels Min Max Mean Standard Devïation
Mean 0.000000 2046.975342 378.633742 93.302780
Variance 0.000000 734680.062500 5934.594641 14027.790953
Homogeneity 0.000000 0.975207 0.035399 0.026361
Contrast 0.000000 1016408.062500 4845.880744 11972.567280
Dissimilarity 0.000000 745.380127 42.114551 22.330366
Entropy 0.000000 4.795791 4.774688 0.21 9402
Second Moment 0.000000 0.904515 0.008423 0.002299
Correlation -9327.056641 0.092787 -23.814306 82.321651

Table 6: Statistics of Texture Bands
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Class Pairs J-M Class Pairs ID
Deciduous Forest & Shrubs 1 49961513 Bare Soit & Parking Lot 1 91528622
Agricuttural Land & Road Network 1.5O5O74l8Coniferous Forest& Road Network 1.95922871
Coniferous Forest & Residential Area 1.51039070 Bare Soit & Agricultural Land 1.96127155
Coniterous Forest& Deciduous Forest 1 51131622 Commercial & DeepWater 1 97004509
Commercial & Parkïng Lot 1.51284186 Grass & Shrubs 1.97124861
Commercial & Residential Area 1.52500401 Bare Soit & Road Network 1.97323637
Coniferous Forest& Shrubs 1 53112276 ShallowWater& Parkmg Lot 197881723
Road Network & Shrubs 1.53280035 Bare Soit & ShatlowWater 1.98120044
Agriculturat Land & Commercial 1.53623525 \gricuttural Land & Coniferous Forest 1.98234294
Shatlow Water & Deep Water J 1 54722153 Grass & Deciduous Forest 1 98763208
Commercial & Shrubs 1.55821074 Deep Water & Residentiat Area 1.98827635
Deciduous Forest & Road Network 1.56099882 Bare Soit & Coniferous Forest 1.99483292
Commercial & Road Network 1.56577646 Bare Soit & Deep Water 1 .9948569 J
Commercial & Deciduous Forest 1.57827307 Bare Soit & Deciduous Forest 1.99506599
Commercial & Coniferous Forest 1.57998630 Deep Water & Parking Lot 1.99581 734
Bare Soil & Commercial 1.61322964 Bare Soit & Shrubs 1.99610998
Grass & Commercial 1.62224905 ShatlowWater& Coniferous Forest 1.99613878
Grass & Agricultural Land 1.63235572 esidential Area & Road Network 1.99644104
Parking Lot & Residential Area 1.63679587 gricuttural Land & Residential Area 1.99729682
Agricultural Land & Shrubs 1.67679256 Grass & Bare Soit 1.99909450
Parking Lot & Shrubs 1.68610948 Grass & Coniferous Forest 1.99988725
Parking Lot & Deciduous Forest 1.72776165 Grass & Residential Area 1.99999149
Coniferous Forest & Parking Lot 1 76505063 Deep Water & Coniferous Forest 1 99999205
Grass & Road Network 1.76936710 Shatlow Water &.Deciduous Forest 1.99999453
Parking Lot & Road Network 1.77642367 Deep Water & Deciduous Forest 2.00000000
Bare Soit & Residential Area 1 81522157 [gricutturat Land & ShattowWater 2 00000000
Agricultural Land & Deciduous Forest 1 .8225344JShallowWater & Shrubs 2.00000000
Agricuttural Land & Parking Lot 1 .82948679 Shallow Water & Road Network 2.00000000
Deciduous Forest & Residentiat Area 1 85226770 Grass & Shallow Water 2 00000000
Residential Area & Shrubs 1.86209483 Deep Water & Road Network 2.00000000
Commercial& ShallowWater 1.86463105 Grass& DeepWater 2.00000000
Shatlow Water & Residential Area 1.87153773 Deep Water & Shrubs 2.00000000
Grass & Parking Lot 1.90480444 gricuttural Land & Deep Water 2.00000000

Table 7: Class Pair Separabilities using Jeffries-Matusita (J-M) and Transformed
Divergence (TD) Measures




