
f - f l UNIVERSITE DE 

BJ SHERBROOKE 
FACULTE DE GENIE 

DEPARTEMENT DE GENIE MECANIQUE 

GEOMETRIC CHARACTERIZATION AND SIMULATION OF CELL-MEDIATED 

RESORPTION FOR POROUS BONE SUBSTITUTES USING MICRO COMPUTED 

TOMOGRAPHY AND ADVANCED FUZZY METHOD 

CARACTERISATION GEOMETRIQUE PAR LA LOGIQUE FLOUE ET 

SIMULATION DE LA RESORPTION CELLULAIREMENT ASSISTEE DE 

SUBSTITUTS POREUX POUR TISSUS OSSEUX PAR MICROTOMOGRAPHIE A 

RAYONS X 

By 

Mahdieh Bashoor Zadeh 

A Dissertation Submitted in Partial Fulfillment of the requirement for the degree of Doctor of 

Philosophy 

Speciality: GENIE MECANIQUE 

Jury committee: 

1 - Gamal Baroud (directeur) 4- Said Elkoun 

2- Stephan Becker 5- Hassan Serhan 

3- Marc Bohner 

Sherbrooke (Quebec), Canada January, 2011 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
OttawaONK1A0N4 
Canada 

Your We Votre reference 
ISBN: 978-0-494-75057-5 
Our file Notre reference 
ISBN: 978-0-494-75057-5 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1*1 

Canada 



This thesis is dedicated to my beautiful daughter, Kiana, and my husband, Ali, 

for their love, support and patience, 

And 

to my parents for their unconditional love and encouragement. 



PUBLICATION DISSERTATION OPTION 

This dissertation consists of the following three manuscripts that have been accepted or 

prepared for submission as follows: The third chapter presented the first manuscript that it 

has been published in Acta Biomaterialia 6 (2009), p. 864-875. The fourth and the fifth 
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journals. The first one is entitled "Geometric analysis of porous bone substitutes using micro-
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of subvoxel process on non-destructive characterization of bone substitutes". 



Summary 

Repairing of large bone defects with the use of scaffolds has received significant attention 

from both the medical and scientific communities because of its potential to accelerate the 

bone healing process. From the literature, it is known that the scaffold architecture is a key 

factor in the biological response of the bone to the substitute. The architectural properties 

include, among others, the pore and interconnection sizes. 

Pores provide the space for cells to reside and form new bone tissue while pore 

interconnections are crucial for cell migration, vascularization and transport of waste 

products and nutrients. It is therefore important to provide accurate characterization of the 

porous structure of the scaffold to better understand its biological response. With this 

understanding, a better design of bone substitute becomes possible. 

Generally, an efficient characterization method should be accurate and non-destructive and 

provides comprehensive information of scaffold architecture. Micro-computed tomography 

as a non-destructive technique provides access to 3D structure of scaffold, but there are 

limitations such as how to extract the relevant information from large amount of data. 

Various methods have been established to quantify the architectural properties from micro-

computed tomography data. The main goal of these methods is to enhance the precision of 

geometric characterization. 

The broader objective of this thesis is to provide an improved characterization of the porous 

scaffolds. A more focused objective is to provide a computational model simulating the cell 

mediated resorption process of resorbable bone substitutes. Therefore, this study combined 

both novel image treatments and algorithms to meet these objectives. 

The thesis is structured in three scientific manuscripts. The first manuscript used fuzzy-based 

image treatment methods to analyse images generated by micro-computed tomography. From 

the literature, it is known that the fuzzy-based method helps to improve the accuracy of the 

characterization, in particular for scaffolds featuring a relatively small pore size. In addition, 

a new algorithm was introduced to determine both pore and interconnection sizes. The 
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surface area of bone substitutes was quantified by using marching cube algorithm. Besides, 

the so-called Lattice Boltzmann method was used to characterize the permeability of the 

investigated scaffolds. Scaffolds made of P-tricalcium phosphate ((3-Ca3(P04)2) and 

presenting a constant porosity and four variable pore sizes were examined. The average pore 

size (diameter) of the four bone substitute groups (denominated with a letter from group A to 

D) was measured to be 170.3±1.7, 217.3±5.2, 415.8±18.8 and 972.3±10.9 urn. Despite this 

significant change in pore size, the pore interconnection size only increased slightly, in the 

range of 61.7 to 85.2 urn. The average porosity of the four groups was 52.3±1.5 %. The 

surface density of scaffolds decreased from 11.5 to 3.3 mm"1, when the pore size increased. 

The results revealed that the permeability of scaffolds is in the same order of magnitude and 

increased from 1.1 TO"10 to 4.1-10"10 m2 with increasing the pore size. 

The second manuscript was devoted to the use of subvoxelization algorithm and high-

resolution scanner, in an attempt to further improve the accuracy of the results, in particular, 

of the small pore scaffolds. As expected, an increase of the image resolution from 15 to 7.5 

[im significantly eased the segmentation process and hence improved scaffold 

characterization. Subvoxelization also improved the results specifically in terms of 

interconnection sizes. Specifically, much smaller interconnection sizes were yielded after 

applying the subvoxelization process. For example, the mean interconnection size of small 

pore size groups, group A and B, dropped from 63 to 20 and 30 urn, respectively. 

Furthermore, due to more details obtained from subvoxelization and high-resolution 

scanning, additional effects so called "boundary effects" were observed. The boundary 

effects can yield misleading results in terms of interconnection sizes. The means to reduce 

these effects were proposed. 

The third manuscript focused on the simulation and understanding of cell mediated 

resorption of bone graft substitutes. A computer model was developed to simulate the 

resorption process of four bone substitute groups. nCT data and new "image processing" 

tools such as labelling and skeletonization were combined in an algorithm to perform the 

steps of resorption simulation algorithm. The proposed algorithm was verified by comparing 

simulation results with the analytical results of a simple geometry and biological in vivo data 

of bone substitutes. A correlation coefficient between the simulation results and both 
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analytical and experimental data, was found to be larger than 0.9. Local resorption process 

revealed faster resorption in external region specifically at earlier resorption time. This 

finding is in agreement with the in vivo results. Two definitions were introduced to estimate 

the resorption rate; volume resorption rate and linear resorption rate. The volume resorption 

rate was proportional to accessible surface and decreased when the pore size increased, while 

the linear resorption rate was proportional to thickness of material and increased with 

increasing the pore size. In addition, the simulation results revealed no effect of resorption 

direction on resorption behaviour of substitutes. However, the resorption rate of small pore 

size samples was decreased with increasing the minimum interconnection size required for 

cell ingrowth, to 100 um. 

This thesis combined novel "image processing" tools and subvoxelization method to improve 

the characterization of porous bone substitutes used in the bone repair process. The improved 

characterization allowed a more accurate simulation process. The simulation data were 

consistent with previously obtained biological data of the same group and allows 

understanding the local resorption process. The available tools and results are expected to 

help with the design of optimal substitute for bone repair. 

Keywords: Bone substitutes, scaffold, ^-computed tomography, image analysis, 

subvoxelization, image resolution, resorption simulation, resorption rate 
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Resume 

L'utilisation de greffons osseux synthetiques pour reparer les defauts osseux prononces est 

un procede qui a recu de plus en plus Pattention de la part de la communaute scientifique, 

etant donne qu'il present un potentiel d'acceleration du processus de guerison des os. II est 

mentionne dans la litterature que I'architecture du greffon osseux synthetique est un facteur 

cle dans l'acceptation de l'os biologique a son substitut. Ces proprietes architecturelles 

incluent, entre autres, la taille des pores et des interconnexions. 

Les pores constituent un espace dans lequel les cellules peuvent se regenerer pour former de 

nouveaux tissus osseux, alors que les interconnexions sont cruciales pour la migration des 

cellules, la vascularisation et le transport des dechets produits et des nutriments. Dans le but 

de mieux comprendre la reponse biologique de l'os a son substitut, la caracterisation de la 

microstructure poreuse est done indispensable. 

Generalement, une methode de caracterisation ideale se doit d'etre precise, non-destructive et 

de fournir une information complete sur I'architecture du greffon osseux synthetique. La 

tomographic assistee par ordinateur est non-destructive et conduit a une caracterisation 

tridimensionnelle du greffon osseux. Toutefois, cette technique a quelques limitations dont 

l'extraction de 1'information utile depuis une grande quantite de donnees. Diverses methodes 

ont ete mises au point afin de quantifier les proprietes architecturales a partir des donnees 

issues de la tomographic assistee par ordinateur. 

L'objectif general de cette these est de fournir une methode amelioree de caracterisation du 

greffon osseux poreux. Un des objectifs specifiques consiste a proposer un modele de 

caracterisation de la structure poreuse capable de simuler la resorption des cellules par les 

substituts osseux. Afin d'atteindre cet objectif, un modele combinant a la fois des traitements 

d'images et des algorithmes novateurs est propose. 

La these est structured autour de trois articles scientifiques. Le premier manuscrit a utilise 

une methode de traitement d'images dite « fuzzy-based » pour l'analyse d'images generees 

par tomographie assistee par ordinateur. Dans la litterature, il est dit que la cette methode 
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ameliore la precision de la caracterisation, particulierement pour une greffe osseuse 

presentant des pores relativement petits. La surface de substitut osseux a ete quantifiee en 

utilisant l'algorithme «marching cubes». De plus, la methode dite 

«Lattice Boltzmann» a ete utilisee pour caracteriser la permeabilite de la structure poreuse de 

la greffe. Dans cet article, des resultats de caracterisation de differents substituts osseux en 

phosphate de p-tricalcium (P-Ca3(PC>4)2) d'une meme porosite mais de quatre tailles de pores 

differentes ont ete presentes. La taille moyenne (diametre) des pores pour chacun des quatre 

groupes de substituts testes (identifies de A a D) etait de 170,3±1,7, 217,3±5,2, 415,8±18,8 et 

972,3±10,9 urn. Malgre cette variation importante de la taille des pores, celle des 

interconnexions entre les pores n'a que legerement augmente, passant de 61,7 a 85,2 \im. La 

porosite moyenne des quatre groupes se trouvait a 51,3±1,5%. Lorsque la taille des pores 

augmente, la densite surfacique est reduite passant de 11,5 a 3,3 mm"1. Les resultats ont 

montre que la permeabilite des structures poreuses etaient du meme ordre de grandeur : de 

1,1-KT10 a4,l-10"10 m2 avec l'augmentation de taille des pores. 

Dans le but d'ameliorer la precision des mesures pour des greffes qui presentent des pores de 

taille relativement petite, le second manuscrit a ete dedie a l'utilisation d'un algorithme dit de 

sous-voxelisation et d'un analyseur haute resolution. Tel qu'attendu, 1'amelioration de la 

resolution de 15 a 7,5 \im a facilite le processus de segmentation des images et a ainsi 

ameliore la caracterisation des greffons. La sous-voxelisation a notamment ameliore les 

resultats au niveau de la taille des interconnexions. Plus specifiquement, des tailles 

d'interconnexions beaucoup plus petites ont ete obtenues suite a l'application de la sous-

voxelisation. Par exemple, la taille moyenne des interconnexions mesuree pour les groupes A 

et B s'est trouvee reduite de 60 a 20 et 30 urn respectivement. De plus, l'augmentation de la 

resolution obtenue par l'utilisation de l'analyseur haute resolution et de la sous-voxelisation a 

revele l'existence « d'effets de bord ». Ces effets de bords peuvent mener a des mesures de 

taille d'interconnexion erronees. Des moyens de reduire ces effets ont ete proposes. 

Le troisieme manuscrit est consacre a la simulation et la comprehension du processus de 

resorption assistee par les cellules pour des substituts de greffe osseuse. Un modele a ete 

developpe pour simuler le processus de resorption de quatre groupes de substituts osseux. 

Les donnees (jCT ainsi que des nouveaux outils de traitement d'images tels que 
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P identification des pores et la squelettisation ont ete combines dans un premier algorithme 

qui effectue les increments destines a un deuxieme algorithme de simulation de la resorption. 

L'algorithme propose a ete verifie en comparant les resultats simules aux resultats 

analytiques d'une geometrie simple et aux resultats biologiques in vivo de substituts osseux. 

Un coefficient de correlation superieur a 0,9 a ete obtenu entre les resultats simules, 

analytiques et experimentaux. Le processus de resorption locale s'est revele plus rapide dans 

la region externe, particulierement au debut du processus. Cette decouverte est en accord 

avec les resultats in vivo. Pour estimer la resorption, le taux de resorption volumique et le 

taux de resorption lineaire ont ete introduits. Le taux de resorption volumique est 

proportionnel a la surface accessible et inversement proportionnelle a la taille des pores. 

Quant au taux de resorption lineaire, il est a la fois proportionnel a Pepaisseur du materiau et 

a la taille des pores. D'un autre cote, la simulation revele que la direction de resorption n'a 

aucun effet sur le comportement des substituts. Cependant, le taux de resorption pour les 

echantillons a petits pores a diminue avec Paugmentation de la taille minimale 

d'interconnexion requise pour la croissance des cellules. 

Cette these propose de combiner un nouvel outil de traitement d'images a la methode de 

sous-voxelisation dans le but d'ameliorer la caracterisation des substituts poreux utilises pour 

la reparation des defauts osseux. Cette caracterisation precise a donne lieu a des simulations 

plus realistes qui se revelent coherentes avec des donnees biologiques prealablement prises 

pour un meme groupe de substitut. Les outils de caracterisation et de simulation mis en 

oeuvre dans ces travaux apportent, d'une part, une modelisation realiste du phenomene de 

resorption et, d'autre part, ouvrent des perspectives dans la conception et Poptimisation des 

substituts pour la reparation osseuse. 

Mots cles : Substitut osseux, greffon osseux synthetique, micro tomographie (uCT) par 

rayons X, Traitement d'images, subvoxelization, resolution d'une image, taux de resorption 

osseuse, simulation de la resorption osseuse. 
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Introduction 

CHAPTER 1 

Introduction 

1.1 Context of the doctorate 

Bone as a living tissue is able to restore its functionality and health. However, in large 

bone defects, where a critical size of bone is missing or damaged, the bone repair 

mechanism fails to repair the defects. Large bone defects caused by pathological 

conditions (e.g. cancer) or rapid degradation because of age and disease (i.e. 

osteoporosis) or massive trauma as well as diseases of bone quality itself, such as 

osteoporosis, are still a major problem in orthopedics [Mastrogiacomo et al., 2005; -Celil 

et al., 2007]. In these cases, patient comfort and bone functionality can be surgically 

restored by reconstructive surgery and bone augmentation. Bone grafting has been 

considered as a successful therapy for treatment of large bone defects [van Gaalen et al., 

2008]. Bone grafting is a surgical procedure to replace missing bone with bone graft or 

substitutes [Hing, 2005 a]. Due to complications of traditional allografts and autografts, 

such as pain, morbidity, disease transform and limited availability, there was a great 

demand for developing synthetic bone substitutes to overcome these complications 

[Hing, 2004a; Hing, 2005a; Goldberg, 1992; Parikh, 2002]. 

The bone substitute should not only replace the missing bone, but it should favour the 

new bone formation and provide an adequate framework for bone ingrowth and 

vascularization into the substitute [Hing, 2005a; van Gaalen et al., 2008]. Therefore, the 

geometric parameter and the materials used for fabrication of porous bone substitute 

should provide the biological and biomechanical properties to enhance the functionality 

of bone substitute. 

Metallic porous bone substitutes show excellent mechanical properties. However, their 

application is limited due to their lack of degradation and limited tissue adhesion 
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[Karageorgiou and Kaplan, 2005]. In the other hand, the polymeric biomaterials are 

biocompatible and biodegradable. Natural polymers are highly biodegradable and used in 

composite biomaterials to improve their degradation rate. The synthetic polymers can be 

fabricated with controllable degradation rate. Nevertheless, the poor mechanical 

properties of polymeric biomaterials limit their application [Karageorgiou and Kaplan, 

2005; Yang et al., 2001]. Ceramic biomaterials, such as calcium phosphate ceramics, 

show biocompatible and bioactive properties. Bioceramics are mechanically resistant 

under compression but week and largely brittle under tension and shear loads [Moore et 

al., 2001; Khang et al., 2007]. Hydroxyapatite ceramics exhibits low resorption rate 

whereas other composition of calcium phosphate ceramics such as p-tricalcium phosphate 

ceramics are resorbed readily [Ruhe et al., 2007, Wagoner Johnson and Herschler, 2010]. 

It should be noticed that the rate of degradation can be affected by several factors such as 

crystallinity and crystal perfection [Karageorgiou and Kaplan, 2005; Yang et al., 2001]. 

Calcium phosphate ceramics have been considered as promising material for bone 

substitute due to their excellent biocompatible, bioactive, bioresorbable, osteoconductive 

and osteointegrative properties [Grynpas et al., 2002; Yuan et al., 1998; Ohura et al., 

1996; Dong et al, 2002; Daculsi et al.,2003]. However, they are still in development to 

enhance their functionality. 

Besides the material property, the structure of bone substitute plays an important role in 

cell attachment, penetration depth and vascularization. There is a common agreement that 

bone substitutes should have an interconnected porous matrix (so-called 'scaffold') to 

allow new bone ingrowth and vessel formation [Lu et al., 1999; Mastrogiacomo et al., 

2006; Gauthier et al., 1998]. The scaffold properties and characteristics, such as porosity, 

pore size, interconnection size and surface area, have been considered to be critical 

factors in functionality of bone substitute [Ho and Hutmacher, 2006; Ma et al., 2006]. In 

such porous material, pores provide a space for cells to reside and form new bone tissue 

while the interconnections provide the ways for cell migration, vascularization and 

transport of waste products and nutrients [Lu et al., 1999; Mastrogiacomo et al., 2006]. It 

is therefore important to characterize the structure of scaffolds to better understand the 

biological response. With this knowledge, a better design of scaffold becomes possible. 

For this purpose, an effective scaffold assessment is required at initial steps of research 
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and development to select and design scaffolds with appropriate properties [Ho and 

Hutmacher, 2006]. Various characterization techniques have been developed to evaluate 

geometric parameters of scaffold. An effective characterization method should be fast, 

accurate and non-destructive, while providing comprehensive information of all 

morphological and architectural properties [Ho and Hutmacher, 2006]. 

Micro-computed tomography (uCT) has been introduced to provide access to 3-D 

structure of scaffold and allow for precise quantification of geometric parameters. 

Moreover, the use of |uCT is non-invasive and non-destructive [Ho and Hutmacher, 2006; 

van Lenthe et al., 2007]. \iCT also provided an accurate measurement of bone ingrowth 

inside the scaffold and evaluation of resorption kinetics [van Lenthe et al., 2007; Jones et 

al., 2009]. Various methods and algorithms have been developed to quantify the 

geometric parameters from |iCT images. 

The first focus of this thesis is to improve the characterization of geometric parameters of 

calcium phosphate bone substitutes. This study combines novel image treatment 

techniques and algorithms to support more precise characterization of the porous 

scaffolds. For this purpose, the fuzzy-based methods are applied on |iCT images to 

improve the accuracy of the characterization [Saha et al. 2002; Saha and Wehrli, 2004]. 

Fuzzy-based methods consider the fuzzy nature of |̂ CT images and preserve more 

information from original \iCT images and therefore allow accurate characterization, in 

particular, when the resolution of images is relatively low [Sladoje et al., 2005; Saha and 

Wehrli, 2004]. In addition, a new algorithm has been developed to determine both pore 

and interconnection sizes and their corresponding distributions. In an attempt, to further 

improve in the accuracy of geometric parameters, this study also mentions to decrease the 

voxel size of [iCT images using subvoxelization algorithm and high resolution scans. 

Decreasing the voxel size provides more structural information and leads to precise 

characterization. Moreover, a well-established Lattice Boltzmann method is used to 

simulate the fluid flow in complex porous structure and measure the permeability of 

scaffolds. 
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Furthermore, the calcium phosphate bone substitutes are resorbable. The resorption rate 

of the calcium phosphate scaffolds should be controlled to match bone ingrowth in vivo 

and repair process. The resorption rate can be controlled by structural design. A few years 

ago, an analytical model was proposed by Bohner and Baumgart [Bohner and Bumgart, 

2004] to predict the effect of geometric parameters on cell mediated resorption of 

ceramic bone substitutes. This thesis also aims to study the resorption behavior of 

resorbable bone substitutes and fulfill the analytical model presented in previous study 

[Bohner and Bumgart, 2004] by simulating the in vivo behavior of porous bone 

substitute. Therefore, a numerical algorithm is presented to simulate the resorption 

process of calcium phosphate bone substitutes. The simulation algorithm uses uCT 

images and fuzzy image processing tools to enhance the precision of simulation. 

1.2 Questions of research 

Q. Scientific 

How to improve the characterization of the pore and interconnection sizes of the micro-

porous bone substitute? 

Is subvoxelization a valid method to improve characterization? 

What is the effect of geometric parameters on permeability and fluid flow analysis of 

bone substitute? 

What is the effect of geometric parameters on resorption behavior of bone substitute? 

Does interconnection size have any influence on resorption rate of bone substitutes? 

Does the resorption direction effect on resorption rate? 

Q. practical 

How can we enhance the characterization precision of geometric parameters? 

What is the relation between the voxel size and segmentation/thresholding of uCT 

images? 
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What is the optimum resolution for analysis of structural parameters? 

What is the effect of voxel size on characterization of structural parameters? 

Does voxel size have any effect on numerical methods used for quantification of 

structural parameters? 

What is the effect of resolution on resorption analysis of bone substitutes? 

Q. biomechanics 

How can we explain the biological behavior of porous bone substitute based on its 

geometric properties? 

How can we predict the biological behavior of bone substitute based on its geometric and 

fluid flow properties, in order to design an efficient scaffold for bone substitute? 

1.3 Hypothesis 

The main hypothesis in this study is related to the definition of pore size and 

interconnection size. Due to the shape of pores in the structure of calcium phosphate bone 

substitutes, it was hypothesized that the fuzzy distance transform (FDT) value of local 

maxima in FDT map is an appropriate value to represent the pore size. It would be 

corresponding to the diameter of the largest spheres that was located inside the pores 

(Figure 1-1). Also, because of the shape of interconnections in the structure of calcium 

phosphate bone substitutes, it was hypothesized that the FDT value of local saddles in 

FDT map could be suitable value to define the interconnection size. It would be 

corresponding to the diameter of the spheres that blocked the fenestration between two or 

more pores (Figure 1-1). 

A second hypothesis relates to the resorption process in that I assume that the pore and 

interconnection sizes are the key determinants of the cell mediated resorption process. 

Specifically, an algorithm and a simulation model are to be developed to help understand 

the resorption process as a function of the pore and interconnection sizes. Therefore, the 
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skeleton of the structure is used to define the accessible pores and interconnections for 

resorbing cells. 

Figure 1-1 (a) 2-D fuzzy image and (b) 2-D FDT map, local maxima as a representative 

of pore size are shown with white points and local saddles as a representative of 

interconnection size are shown with black point. The diameter of corresponding circles is 

equal to the pore and interconnection sizes. 

1.4 Objectives 

The main objective of this thesis is first to improve the characterization of porous bone 

substitutes and second to provide a computational model to simulate the cell mediated 

resorption process of resorbable bone substitutes. Toward the ultimate target, this study 

combines both novel image treatment and algorithm to reach the objective of the thesis. 

Specifically, this study aims to apply the fuzzy image processing technique and 

developed algorithm to enhance the accuracy of the pore and interconnection size 

characterization. In addition, subvoxelization algorithm and high resolution ĵ CT scans 

will be used to further investigate the accuracy of geometric analysis. 

Moreover, this study aims to establish a computer model to simulate the resorption 

process of resorbable bone substitutes. The effort will be paid to better understand the 

cell mediated resorption process of calcium phosphate bone substitute. Calculation of 

resorption rate and investigation of resorption at various locations will be also the targets 

of this study. 

1.5 Block diagram of the doctorate work 
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Literature survey 

CHAPTER 2 

Literature survey 

2.1 Bone defects and repair procedure 

The bone defects can be caused by "missing" or "defective" bone tissue [Celil et al., 

2007]. Celil and his colleagues classified the bone defects into two types. First type is the 

deformities in which tissue elements are not missing, and the defect is caused by 

abnormal anatomy, like fracture malunion. This case can be repaired by rearranging or 

augmenting the defected tissue. Second type of defects is occurred by the damage or 

missing of bone tissue, like cancer. In this case the repair is possible by tissue 

replacement [Celil et al., 2007]. 

Generally, as a living tissue, bone is able to restore its functionality and health. For small 

size fracture (like a crack), after initial stabilization, the healing process begins based on 

bone repair mechanism [Hing, 2004a]. Simple bone break fractures are usually treated by 

external or internal fixation of the fracture site using splints and casts or plates and pins, 

respectively [Hing, 2004a]. These methods provide the local stability required for bone 

regeneration. However, according to the material used for internal fixation, second 

surgery is often required to remove the metallic device used for fixation. Spinal fragility 

fractures, as a result of aging and diseases, such as osteoporotic vertebral fractures, are 

repaired by injecting acrylic or calcium phosphate cements into weakened vertebrae to 

augment them [Baroud et al. 2004; Baroud et al. 2005; Baroud et al. 2006]. In large bone 

defects, where a critical size of bone is missing or damaged [Hing, 2004a], bone repair 

mechanism fails to restore the defects as a result of fracture size or infection [van Gaalen 

et al., 2008]. Reconstructive orthopedic surgery highly demands for bone replacement to 

repair the large bone defects and treat relative diseases such as spinal fusion, bone cancer, 

accidental trauma cases and hip fracture. Bone grafting has been introduced as a 

successful therapy for treatment of such large bone defects [van Gaalen et al., 2008]. 
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2.2 Bone substitute and its role in bone healing 

Bone reconstructive surgery is the procedure of replacing missing bone with bone grafts 

or bone substitutes. The bone substitutes should not only fill the bone defects, but also 

must stimulate the body to repair itself and facilitate the healing procedure [van Gaalen et 

al., 2008]. Typically, a bone substitute consists of the scaffold (matrix), viable cells and 

bioactive agents [Hutmacher et al., 2008; Langer and Vicente, 1993]. A scaffold acts as a 

temporary 3-D support for cells to adhere, proliferate, differentiate and form new bone to 

restore the functionality of tissue, while the bioactive cells manage the healing process 

[Yarlagadda et al., 2005; Wozniak and El Haj, 2007]. Thus, a scaffold should provide the 

biochemical, biomechanical and structural properties to accelerate healing process. 

2.2.1 Ideal scaffold for bone substitute 

A scaffold is meant to be invaded by cells and should provide chemical and physical 

properties to ensure adequate bone ingrowth. An ideal scaffold should fulfill specific 

requirements. Ideally, the biomaterial used for bone substitute application should provide 

the following biological characteristics [Moore et al., 2001; Celil et al., 2007]: 

(i) Biocompatibility, the ability to match with living cells and tissues without 

eliciting any undesirable effects in those cells; 

(ii) Osteogenesis, 'the formation of new bone by osteoblastic cells present within 

the graft material' [Moore et al., 2001]; 

(iii) Osteoinduction, 'the ability to induce differentiation of pluripotential stem 

cells from surrounding tissue to an osteoblastic phenotype'[Moore et al., 

2001]; 

(iv) osteoconduction, 'the ability to support the growth of bone over its surface' 

[Moore et al., 2001]; 

(v) Osteointegration, 'the ability to chemically bond to the surface of bone 

without an intervening layer of fibrous tissue' [Moore et al., 2001]. 
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Furthermore, many studies have demonstrated that the geometry and architecture of 

scaffolds also affect their biological response and their ability to remodel to their 

environment. Therefore, an ideal scaffold should also possess the following properties 

[Hutmacher, 2000; Agrawal and Ray, 2001]. 

(vi) The scaffold structure should be 'three dimensional and highly porous with 

interconnected pore network' to allow cells ingrowth and transport of 

nutrients and waste products; 

(vii) The pores in the porous structure should have adequate size for cells; 

(viii) The scaffold should have a surface conductive for cell attachment, 

proliferation, and differentiation; 

(ix) The scaffold should be bioresorbable with controllable resorption rate to mach 

the bone repair or regeneration process. The resorption rate can be controlled 

by biomaterial or structural design. 

In addition an ideal scaffold should provide specific mechanical and physical properties. 

(x) It should possess adequate mechanical properties like those of the tissue at 

implantation site; 

(xi) It should have high permeability to allow cell penetration. 

At macroscopic level (mm-cm), the shape and composition of scaffold will affect its 

toxicity, cell penetration and differentiation into the structure. At intermediate level (100 

\xm), the geometric parameters in terms of pore and interconnection sizes, orientation and 

surface chemistry will determine the ability of cells to penetrate inside the structure and 

affect the transport of nutrient and waste products. At microscale level (10 urn), the local 

surface texture and porosity will affect the protein adsorption and cell adhesion [Griffith, 

2002]. Therefore, a comprehensive assessment of scaffold characteristics at each level is 

critical for understanding its biological behavior. 
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In the following sections, the current materials used for bone substitute will be reviewed. 

It will be followed by important geometrical parameters of porous structure and the bone 

substitute paradigms available in literature. 

2.3 Bone substitute material 

The bone grafts which are directly derived from real bone are classified into three types; 

autograft, allograft and xenograft [Baksh, 1999; Wozniak and El Haj, 2007; Laurencin et 

al., 1999]. In contrary to these types of grafts, the synthetic bone substitutes are produced 

from biocompatible materials. The properties of each type of grafts and biomaterials used 

for bone reconstruction are discussed subsequently. 

2.3.1 Autografts 

Autografts are obtained from the patient's body and transplanted to the damage organ. 

This type of grafts is still considered as the "gold standard" in bone replacement due to 

their excellent osteogenic, osteoinductive and osteoconductive properties [Wozniak and 

El Haj, 2007; Finkemeier, 2002; Hing, 2004a; van Gaalen et al., 2008]. However, their 

application is limited because of the following reasons: (a) The amount of harvested bone 

required for defect site is limited [Hing, 2004a; Baksh, 1999; Wozniak and El Haj, 2007; 

Wozniak and El Haj, 2007], (b) The autograft harvesting lengthens the surgery procedure, 

[van Gaalen et al., 2008 ], (c) Post operative complications due to donor-site morbidity, 

pain, infection and structural weakness [Polly and Kuklo, 2002] and (d) Inability to form 

the harvested bone shape for optimal function [Goldberg, 1992; Goldberg, 1993; Parikh, 

2002]. 

2.3.2 Allografts 

Allografts are harvested from human donor and stored in tissue banks [Wozniak and El 

Haj, 2007]. Although, using allografts overcomes the autografts limitation, there is still 

some restriction related to their application. Despite using very strict preparation 

procedure, there is the possibility of infection, transmission of disease and 

immunogenicity of the grafts [van Gaalen et al., 2008; Laurencinet al., 1999]. Also in this 
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case, the blood vessels form very slowly and less extensive than in autografts [van Gaalen 

et al., 2008; Barriga A, 2004]. 

2.3.3 Xenografts 

Xenografts as another alternative to autografts, are harvested from a species other than 

human (e.g. Bovine clef bone) [Baksh, 1999; van Gaalen et al., 2008]. These materials 

are mainly used as mechanical filler to inhibit ingrowth of soft tissue [Baksh, 1999]. The 

tissue rejection due to immunological problem is the application risk associated with their 

use [Charalambides et al., 2005; Charles-Harris, 2007]. 

2.3.4 Synthetic bone graft substitutes 

Due to the limitation and complication of the abovementioned grafts, there is an 

increasing demand for development of synthetic bone graft substitute that would be free 

from the problems associated to donor site morbidity, disease transfer and inadequate 

supply of material [Hing, 2004a; Hing, 2005a]. Synthetic bone graft substitutes, 

fabricated from metals, polymers, ceramics and composites, have been introduced as an 

alternative to the previous types of grafts. The first generation of synthetic materials for 

use in the human body was introduced in 1960s and 1970s [Hench and Polak, 2002]. The 

earlier biomaterials were mainly designed to 'achieve a suitable combination of physical 

properties to match those of the replaced tissue with a minimal toxic response in the host 

tissue' [Hench, 1980]. These materials were 'nearly inert' and were separated from the 

host tissue by growing a thin, fibrous capsule [Hench, 1980]. Finally, due to non-

integration between the implant and surrounding tissue, the implants often loosen [Hench, 

1980]. In 1980s, the second generation biomaterials were developed to be either bioactive 

or bioresorbable [Hench and Polak, 2002]. The significant advantage of bioactive 

materials is forming strong bonds to host tissue [Hench, 1998]. Another advantage of 

second generation was developing resorbable materials that are replaced by regenerated 

tissue [Hench and Polak, 2002]. Development of bioactive and bioresorbable material has 

been a great improvement in orthopedic application. However, the implants' life time 

analysis revealed that a third to half of implants fail within 10-25 years and revision 

surgery will be required [Hench and Polak, 2002]. The third generation biomaterials were 
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designed to motivate specific cellular responses. They were developed to interact with 

cells and activate certain genes to, specifically, stimulate regeneration of living tissue 

[Hench and Polak, 2002]. For this type of biomaterials, the bioactive and resorbable 

properties have been combined to help the body repair itself in a good and rapid way. 

Potential materials used as bone substitutes can be divided into: metals, polymers, 

ceramics and composite materials. 

2.3.4.1 Metal 

Typical metallic implants used for bone reconstruction are stainless steel, titanium alloys 

and cobalt alloys. An excellent mechanical property is the main advantage of metallic 

implants. Due to their mechanical stability, they have been widely used as implant 

material for bone repair (e.g. hip replacement device). However, the lack of degradation 

and non-integration to surrounding tissue limit their application and second surgery will 

be required to remove the implant, or in the case of permanent implantation there is the 

risk of toxicity/ allergic reaction [Karageorgiou and Kaplan, 2005; Yang et al., 2001]. 

2.3.4.2 Polymer 

Polymers are known as the largest group of biomaterials [Charles-Harris, 2007]. Both 

natural and synthetic polymers are used in orthopedic applications. The natural polymers, 

such as collagens, glycosaminoglycan, chitosan, etc. [Yang et al., 2001; Meyer and 

Wiesmann, 2006] offer the advantage of biocompatibility, biodegrability and easy 

processing [Karageorgiou and Kaplan, 2005; Khang et al., 2007]. However, their 

application is limited due to their high rate of degradation [Karageorgiou and Kaplan, 

2005], poor mechanical properties [Karageorgiou and Kaplan, 2005; Yang et al., 2001] 

and low reproducibility [Charles-Harris, 2007]. 

The synthetic polymers, such as polylactic acid and poly (lactic-co-glycolic acid), have 

been developed to overcome the limitation of natural polymers. They provide a large 

range of bone substitutes with controlled degradation rate and different geometrical and 

mechanical properties [Karageorgiou and Kaplan, 2005]. They also have the advantage of 

high reproducibility and can be fabricated in large-scale [Charles-Harris, 2007]. Synthetic 
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polymers based on biodegradable polyhydroxyacids, such as poly-lactic-glycolide, have 

been widely used for bone replacement due to their excellent cell adhesion and cell 

proliferation [Meyer and Wiesmann, 2006]. The limitations associated with use of 

synthetic materials are their low mechanical properties (even in solid form) 

[Karageorgiou and Kaplan, 2005] and their acidic degradation products that may reduce 

biocompatibility [Yang et al., 2001]. 

2.3.4.3 Ceramics 

Ceramics have been specifically used as artificial matrix for bone repair applications 

[Yang et al., 2001; Charles-Harris, 2007]. The ceramic biomaterials can be classified into 

three groups based on their chemical activity [Charles-Harris, 2007; Yang et al., 2001; 

Khangetal., 2007]. 

(a) Bioinert ceramics, such as alumina and zirconia, have the great advantage of 

biocompatibility and high mechanical properties such as excellent compressive strength 

and high resistance to wear [Thamaraiselvi and Rajeswari S, 2004]. However, they do not 

show ionic interaction with the surrounding tissue, in other word they have weak 

osteointegration properties. A relationship between the implant and host bone is formed 

due to mechanical bonds which are created by the stresses on the implant [Moore et al., 

2001]. 

(b) The second type of bioceramics is the surface bioactive group. This group includes 

bioglasses, glass-ceramics and synthetic hydroxyapatite ceramics [Charles-Harris, 2007; 

Yang et al., 2001]. The bioglasses and glass-ceramics show excellent mechanical 

properties, bioactivity, biocompatibility and no toxicity [Thamaraiselvi and Rajeswari S, 

2004]. The hydroxyapatite ceramics have a composition similar to the mineral component 

of bone. They exhibited excellent biointegration properties and have been used to coat 

metal implants to improve their osteointegration [Moore et al., 2001]. Hydroxyapatite 

ceramics are mechanically resistant under compression, but they are week and brittle 

under tension and shear loads [Moore et al., 2001; Khang et al., 2007]. 
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(c) The third group of ceramics is bioresorbable ceramics such as, coralline, tricalcium 

phosphate (TCP), soluble biocompatible glasses, a and P tricalcium phosphate (a-TCP, p-

TCP), etc [Khang et al., 2007; Charles-Harris, 2007; Yang et al., 2001]. Calcium 

phosphate family has the advantages of biocompatibility, osteointegrativity, 

osteoconductivity and no toxicity [Moore et al., 2001]. The calcium phosphate ceramics 

are brittle under tensile and shear and strong under compression loads [Moore et al., 

2001]. P-TCP ceramics in porous form have compressive strength and tensile strength 

similar to cancellous bone [Moore et al., 2001; Jarcho, 1981; Miranda et al., 2008]. 

Although, these ceramics are mechanically brittle and fragile, they should preserve their 

structure and mechanical stability of their structure during the initial period of 

implantation [Charles-Harris, 2007; Hing, 2005]. Therefore, the degradation rate must be 

controlled to mach new bone formation [Charles-Harris, 2007]. 

2.3.4.4 Composites 

Composite materials are introduced as the combination of two or more individual 

materials that are able to act synergistically to enhance the properties provided by each 

material alone [Thamaraiselvi and Rajeswari S, 2004]. Composites made from bioinert 

and bioactive ceramics are fabricated to attain bioactive material with mechanical 

strength. Coating porous titanium scaffolds with calcium phosphate led to earlier and 

greater bone ingrowth and improved mechanical properties [Tache et al., 2004]. Biphasic 

calcium phosphate ceramics composed of tricalcium phosphate and hydroxyapatite 

ceramics were developed to achieve resorbable ceramics with controllable resorption rate. 

Table 2-1 summarizes the common polymers, ceramics and composites used for bone 

repair application [Di Silvio, 2007]. 
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Table 2-1 Common biomaterial used for bone repair [Di Silvio, 2007] 

Polymer 

• Polylactic acid 
• Polyglycolic acid 
• Polycaprolactone 
• Polyanhydrides 
• Polyphosphazenes 
• Polymethylmethacrylate 
(PMMA) 
• Polytetrafluoroethylene 
(PTFE) 

Ceramics 

• Bioglass 
• Sintered hydroxyapatite 
• Glass-ceramic A-W 
• Hydroxyapatite (HA) - calcium 
phosphate-based ceramic 
• Bioactive glass 
• Sol-gel-derived bioactive glass 

Composite/natural 

• Poly(D,Lactide-co-glycolide) 
+ bioactive glass 
• Extracellular matrix (ECM) 
• Hyaluronan - linear 
glycosaminoglycan (GAG) 
• Demineralized bone matrix 
(DBM) 
• Collagraft - commercial graft 
= HA + tricalcium phosphate 
ceramic + fibrillar collagen 

2.4 Bone substitute and structural parameters 

2.4.1 Definition of porous structure 

A porous medium is defined as 'solid body that contains pores', the pores are void spaces 

which are frequently distributed through the porous media [Scheidegger, I960]. Pores or 

void spaces are classified into two groups, interconnected or effective pore space and 

non-interconnected or isolated pores [Scheidegger, 1960; Dullien, 1979]. Non-

interconnected pores are not able to contribute in fluid transport through porous structure. 

Fluid flow is possible, only if the pores are connected [Scheidegger, 1960; Dullien, 

1979]. The dead-end pores are only interconnected from one side [Dullien, 1979; 

Kaviany, 1995]. 

2.4.2 Geometrical characteristics of porous structure 

A porous medium can be quantified by different geometrical parameters. 'Porosity', the 

volume fraction of void space, is one of the important parameter in characterization of 

porous medium. It is calculated as the ratio of void volume to the total volume occupied 

by solid and void spaces. The porosity is expressed in percent or as a fraction of one 

[Scheidegger, 1960; Kaviany, 1995]. If the porosity is calculated based on the volume of 

interconnected pores instead of total pore space, it is entitled as effective porosity. 
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Other important parameters in the characterization of porous medium are 'pore size' and 

'pore size distribution'. There are various definitions of pore size. In general, pore size at 

any point within the pore space is defined as the diameter of the largest sphere which 

contains this point and is completely inside the pores [Scheidegger, I960]. The pore size 

distribution is also determined as the fraction of total pores which have sizes between 5 

and 8+d8 [Scheidegger, I960]. When a pore network is interconnected, the pores are 

linked together by smaller voids. It can be introduced as a 'neck' or 'interconnection' 

between the pores [Dullien, 1979] (Figure 2-1). The interconnection size and distribution 

are other geometric parameters of the porous structure, which allow the fluid flows 

through the structure. 

Interconnection 
"size 

Pore size 

Figure 2-1 2-D image as representative of pores and interconnections 

'Specific surface' is another geometric parameter of porous medium and is defined as the 

ratio of the internal surface area of pores to the bulk volume [Scheidegger, I960]. 

Specific surface plays an important role in different application of porous media; for 

example, it is related to cell adhesion and osteointegration into porous scaffold. Finally, 

tortuosity of porous structure is introduced as another geometric parameter [Scheidegger, 

I960]. Tortuosity is defined as a kinematical property equal to the ratio of the actual flow 

path to the length of the straight line between its starting point and ending point. 

Tortuosity of porous bone substitute can help understanding how much easy the fluid 

(nutrient and blood cells) can pass through the scaffolds. 
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2.5 Bone substitute paradigms 

2.5.1 Biological paradigms 

Vascularization: The penetration of oxygen and nutrient supplies through bone is highly 

dependent on the existence of blood vessels [Hing, 2004a, Hing, 2005a]. Vascularization 

is known as the prerequisite and the preceding step for bone repair and new bone 

formation [Street et al., 2002]. Specifically, for repair of bone defects with porous 

biomaterials, formation of a vascular network is significantly important at early stage of 

implantation [Otsuki et al., 2006]. Vascularization enhances the nutrients transport, waste 

removal and cells migration. [Klenke et al., 2007]. High porosity and high degree of 

interconnectivity between pores are essential requirements for vascularization of scaffold 

and bone formation [Mastrogiacomo et al., 2005]. 

Further, there is a relation between vascularization and interconnection size. Narrow 

interconnections inhibit vessel formation inside the porous scaffold [Otsuki et al., 2006]. 

The degree of interconnectivity between the pores strongly affects the rate and extent of 

vascularization [Rubin et al., 1994]. The interconnections sizes also influence the quality 

of vascularization. Two phenomenon due to larger interconnection size have been 

reported: (a) the formation of multiple blood vessels [Chang et al., 2000] and (b) the 

formation of larger blood vessels [Mastrogiacomo et al., 2006]. 

Bone ingrowth: Bone formation is assured by growth of blood vessels inside the pores. 

Structural features, such as porosity, pore size and interconnectivity between the pores, 

play critical role in bone formation [Jones et al., 2009; Klenke et al., 2007]. The volume 

of bone ingrowth and the rate of osteointegration are relying on the available surface for 

the new bone cells [Mastrogiacomo et al., 2006]. The size of pores that are accessible 

from the scaffold periphery has a strong correlation with bone ingrowth [Jones et al., 

2009]. Furthermore, it was shown that the pore interconnectivity is the controlling factor 

at the earlier implantation time [Hing et al., 2004b]. Hing et al. demonstrated that the rate 

and the volume of bone apposition initially depend on pore interconnection rather than 

the pore size [Hing et al., 2004b]. 
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2.5.2 Structural paradigms 

The rate and quality of vascularization, bone formation and degradation inside the 

scaffold can be affected by structural feature of porous scaffold. Several studies have 

been done to find optimum geometric parameters to improve scaffold functionality. 

However, there is no consensus regarding the optimum porosity, pore size and 

interconnection size. In the following paragraphs, the current paradigms in terms of 

geometric parameters will be reviewed. 

Porosity: Higher porosity is expected to improve osteogenesis. This hypothesis has been 

proved by many studies [Karageorgiou and Kaplan, 2005]. Roy et al. used polylactic-co-

glycolic acid (PLGA) and P-tricalcium phosphate (P-TCP) scaffolds with pore size of 

125-150nm and porosity gradient of 80-87.5%, then they implanted the samples in rabbit 

cranium [Roy et al., 2003]. They observed the presence of more bone formation in area 

withhigher porosity. In another study, Kruyt et al. implanted the hydroxyapatite scaffolds 

with different porosity (70% and 60%) and pore sizes (800um and 400um, respectively) 

in bilateral paraspinal muscles of goat. More bone formed in samples with higher 

porosity and pore size (i.e. 70% and 800|am) [Kruyt et al., 2003]. 

There are a few articles that report no effect of porosity on the amount of bone formation. 

For example, Gauthier et al. implanted macroporous biphasic calcium phosphate 

scaffolds in distal femoral site of rabbits [Gauthier et al., 1998]. The samples were 

designed with different pore sizes (300 and 565 \im) and porosities (40 and 50%). They 

observed no significant differences in newly formed bone inside the implants with similar 

pore sizes (565 urn) and different porosities (40 and 50%). The absence of any reports 

indicating the positive effect of lower porosity on biological results, confirms the 

necessity of highly porous scaffold for bone formation [Karageorgiou and Kaplan, 2005]. 

In addition, the rate of degradation of scaffold material should be considered when 

porosity is studied. Scaffolds made from biomaterials with high degradable rate should 

not be highly porous, since rapid reduction of material lead to mechanical and structural 

instability before replacement by new bone cells. Conversely, scaffolds made from 

19 



Literature survey 

biomaterials with low degradable rate and good mechanical properties should have high 

porosity [Karageorgiou and Kaplan, 2005]. 

Generally, there is no optimal porosity to ensure rapid bone formation inside the porous 

scaffold, but a level of porosity larger then 50%-60% was widely advised [Hing, 2005a]. 

Pore size: Pore size would directly affect bone formation, since it provides surface and 

space for cell attachment and bone formation [Mastrigiocomo et al., 2006; Jones et al., 

2009; Lu et al., 1999]. Hulbert et al. proposed the pore size of 100 um as the minimum 

size required for osteoconduction, and the pore size of 150 [im as the optimal size for 

bone ingrowth [Hulbert et al, 1972]. Many studies have explored pore sizes over 100 um 

as optimum size for bone ingrowth. Gauthier et al. found that a pore size of 80-100 um is 

the minimal size to promote bone formation in the porous HA/p-TCP scaffolds [Gauthier 

et al., 1998]. In another study, Kuboki et al. compared honey-comb hidroxyapatite blocks 

with different pore sizes (106-212, 212-300, 300-400, 400-500 and 500- 600 um) when 

subcutaneously implanted in the backs of rats [Kuboki et al., 2001]. They observed that 

the pore size of 300-400 um was the optimum size for bone ingrowth. 

There are a number of articles that report no effect of pore size on the amount of bone 

formation. For example, Ayers et al. observed no statistical difference in bone ingrowth 

in nitinol blocks with different pore size (353, 218, 179 um) and porosities (43%, 54%, 

51%, respectively) when implanted in cranial defect of rabbits [Ayers et al., 1999]. A 

similar effect was found in the study of Kujala et al. when compared nickel-titanium 

scaffolds implanted in distal femoral of rat, with porosities of 66.1%> and 46.6% and pore 

sizes of 295 um and 505 um, respectively [Kujala et al., 2003]. In another study, [3-TCP 

blocks of four different pore sizes (150, 260, 510 and 1220 um) and constant macro-

porosity (-50%) were implanted in bone defect in sheep, there was no significant effect 

of the pores on bone, ceramic and soft tissue fraction [von Doernberg et al., 2006]. 

Other factors, such as accessibility to pores and pore shape should be taken into account 

when pore size is studied. Local pore size does not affect on bone ingrowth. Many 

unreachable pores have poor accessibility to the periphery of scaffold; however, they 

have large local pore size [Jones et al., 2007]. In their study, Jones AC et al. showed that 
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the cells could penetrate to all accessible pores which are connected to the periphery of 

scaffold with accessible size of 100 um [Jones et al., 2007; Jones et al., 2009]. Longer 

and curved pores decrease the rate of cell penetration and delay bone formation 

[Karageorgiou and Kaplan, 2005]. 

It is well defined that the rate and volume of bone formation is significantly influenced by 

macropore size and macroporosity. However, recent studies have reported that 

micropores and micro porosity in the structure of ceramics can further support the bone 

ingrowth inside the structure [Lan Levengood et al., 2010; Habibovic et al., 2006; Hing et 

al., 2005b]. 

Interconnection size: Pore interconnections are known as the controlling factor for rapid 

and efficient vascularization and bone formation [Hing et al., 2004b], Pore 

interconnections provide the path for cell migration, nutritional diffusion and blood 

vessel formation [Lu et al., 1999; Mastrogiacomo et al., 2006; Li et al 2007; Jones et al., 

2009]. Some researchers have explored minimum interconnection size of 50 urn as 

adequate size for cell penetration [Lu et al., 1999; Outsuki et al., 2007]. However, some 

reports in the literature have suggested that a minimum interconnection size of 100 um is 

required for bone formation [Jones et al., 2007; Jones et al., 2009]. 

Outsuki et al. studied the effect of interconnection on bone and tissue differentiation 

inside the porous titanium blocks with different porosities (50% and 70%) and pore sizes 

(250-500 [im and 500-1500 um) [Outsuki et al., 2007]. They demonstrated that the 

existence of narrow interconnections in the shortest routes from the pores to the outer 

surface may prevent tissue differentiation. 

In another study, HA and p-TCP porous scaffolds with constant porosity (50%), pore size 

(100-300 um) and interconnection size (30-100 |im) were compared when implanted in 

rabbit femurs [Lu et al., 1999]. The results revealed that: (i) interconnection size larger 

than 50 |im allowed bone formation, (ii) due to the in vivo degradation of p-TCP, deeper 

vascular penetration occurred more frequently in p-TCP than HA blocks. They also 

mentioned that 'in resorbable materials, pore and interconnection densities (the number 

of pores and interconnections per volume) play a more important role than the pore and 
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interconnection sizes; because sizes are modified by degradation, while in unresorbable 

material the sizes and densities are equally important' [Lu et al., 1999]. 

2.5.3 Physical and mechanical paradigms 

Permeability: Generally, permeability is quantified as the ability of porous structure to 

transmit the fluid through its structure. More specifically, the scaffold permeability can 

be defined as 'a measure of the ease at which fluid passes through the scaffold pores' [Ho 

and Hutmacher, 2006; Karande et al., 2004]. Hui et al. measured the permeability of 

cancellous bone grafts before implantation and found that a permeability of-3x10-11 m2 

was required for vascularization and bone formation to occur within the implant [Hui et 

al. 1996]. 

A high permeability enhances the diffusion within the scaffolds which promotes the 

inflow of biological cells, nutrients and waste products [Karande et al., 2004]. The 

scaffold permeability is influenced by the geometric features. A positive correlation 

between porosity and permeability could exist when the pores are highly interconnected 

[Karande et al, 2004]. Agrawal et al. showed that the scaffolds with similar porosity may 

have different permeabilities [Agrawal et al., 2000]. Highly porous scaffolds with non-

connected pores decrease the diffusion efficiency [Ho and Hutmacher, 2006]. 

The scaffold permeability has been introduced as a representative and comprehensive 

parameter in describing macroporous scaffolds [Li et al., 2003]. It could reflect a 

combination of five important parameters of scaffold: (1) porosity, (2).pore size and 

distribution, (3) interconnectivity, (4) interconnection size and distribution, and (5) 

orientation of pores [Li et al., 2003, Chor and Li., 2007]. 

Since mechanical properties are not improved by increasing the porosity, Li Sh et al. 

proposed that the permeability/porosity ratio as an indication of 'the percolative 

efficiency per unit porous volume' is a better parameter for characterization of porous 

scaffolds [Li et al., 2003]. 

Mechanical properties of material: The mechanical properties of a scaffold should be 

compatible with the biomechanical properties of the tissue to be replaced [Hollister et al., 
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2002; Lin et al., 2002; Moroni et al., 2006]. Specifically, a scaffold should have adequate 

mechanical strength in reconstruction of load bearing tissue (e.g. bone) [Yang et al., 

2001]. 

The scaffold must allow load distribution and should not be very stiff to produce load 

concentration [Hing, 2005a]. Stress analysis investigations revealed that the anisotropic 

structures reduce the stress concentration in comparison with isotropic ones when loaded 

in one direction [Hing, 2005a]. Therefore, appropriate macroporous structure can 

improve load distribution and reduce stress concentration. 

Mechanical properties are closely related to the porosity of porous structure. Increasing of 

porosity leads to a reduction in mechanical properties, because high porosity decreases 

the quantity of material and structural integrity of porous scaffold [Will et al., 2008; 

Moroni et al., 2006; Huec et al., 1995; Ma et al., 2006; Karageorgiou and Kaplan, 2005]. 

Dense hydroxyapatite has a compressive strength of 430-920 MPa, significantly higher 

than that of cortical bone (100-230 MPa), whereas the compressive strength of porous 

hydroxyapatite samples fabricated by 3D printing, was found to be reduced to 30 MPa at 

a porosity of 50% [Will et al., 2008]. Dynamic mechanical analysis of copolymer 

(polyethyleneoxide-terephtalate and polybutylene-terephtelate) scaffolds fabricated by 

3D fiber deposition revealed that increase of porosity caused a decrease of elastic 

properties (e.g. dynamic stiffness and equilibrium modulus) and an increase of viscous 

properties (e.g. damping factor and creep unrecovered strain) [Moroni et al., 2006]. Bone 

ingrowth and vascular formation are favored by more porous structures, whereas 

mechanical strength and stability during the initial period of integration are favored by 

low porous structures. These conflicting requirements can be balanced by fabricating 

suitable biomaterials for the scaffold [Karageorgiou and Kaplan, 2005; Hing, 2005a]. 

Micro mechanical environment: When porous bone substitutes are used to repair load 

bearing tissues like bone, the interaction with mechanical environment should be 

considered as an important factor. Bone is a complex tissue that changes its form, mass 

and internal structure under mechanical loads [Cehreli et al., 2004]. In other words, 

mechanical loads can influence bone response [van Cleynenbreugel et al., 2006; 
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Sikavitsas et al., 2001]. Mechanical signals affect the development and differentiation of 

bone tissue [Cehreli et al., 2004, Sikavitsas et al., 2001]. 

There is a consensus that bone modeling is based on the ability of bone cells to sense the 

mechanical loading and adopt accordingly [Cehreli et al., 2004; Jaecques et al., 2004; 

Liebschner and Wettergreen, 2003]. Biomechanical signals, received by the 

mechanosensing bone cells (osteocytes), would determine weather bone is resorbed by 

osteoclasts or deposited by osteoblasts. Bone modeling and remodeling theories specified 

that the dynamic strain levels that exist in bone are the main reason for bone modeling 

and remodeling process [Liebschner and Wettergreen, 2003; Huiskes et al., 2000]. The 

dynamic strains can be generated externally by the load or internally by resorption 

cavities [Huiskes et al., 2000]. In addition, the frequency of mechanical loads can also 

affect the bone formation, higher frequency loading stimulates bone ingrowth 

[Liebschner and Wettergreen, 2003]. Experimental results and computational models 

have revealed that the bone formation will occur in the dominate stress direction 

[Liebschner and Wettergreen, 2003, Huiskes et al., 2000]. 

Once the cells colonize the scaffold, they should begin proliferation or differentiation in 

order to produce the new bone cells. Cells attach onto the scaffold surface and apply 

traction forces on the attached surface. The interaction between bone cells and bone 

substitute affects bone cell viability, attachment and penetration [Sikavitsas et al., 2001]. 

Therefore, due to the effect of bone mechanical environment on new bone formation, the 

bone substitutes should be considered both biological and mechanical aspects of bone 

tissue. The scaffolds should also distribute forces at a desirable level of induced strains 

[Cehreli et al., 2004]. Frost proposed that the bone substitutes used for load bearing 

application should keep the strain of supporting bone below its micro damage level 

[Frost, 1994]. 

2.6 Characterization of structural parameters 

According to the above mentioned paradigms, the structure and architecture of scaffolds 

are considered as crucial factors that affect scaffold functionality. Therefore, effective 
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characterization methods are required to measure the structural parameters to design a 

scaffold with appropriate properties. Various techniques have been developed to evaluate 

these important features. In this section, a brief review of some techniques used for 

assessment of scaffold properties is presented. 

2.6.1 Traditional methods to measure Porosity and Pore size 

Gravimetry: Gravimetry method measures the porosity using the following equation: 

P wtai =*~ dKajfold I dmatenal (2 . 1) 

Where dmateriai is the density of scaffold material and dSCaffoid is the apparent density of 

porous scaffold calculated from weight and volume of scaffold (weight/volume of 

scaffold) [Karageorgiou and Kaplan, 2005; Hu et al., 2002]. 

Mercury intrusion porosimetry: This method was used to quantify both porosity and 

pore size. The scaffolds are placed in a penetrometer and infused with mercury under 

increasing pressure. The relation between the pressure, P, and the radius of pores, r, is 

determined by Washburn's equation [Ho and Hutmacher, 2006]: 

P = 2acos0/r (2.2) 

Where a is the surface tension of Hg and 6 is the contact angle. The open porosity 

(porosity accessible to mercury) is given as: 

ropen intrusion scaffold v * ^ 

Where Vmtrusion and Vscaff0id are the total intrusion volume and scaffold volume 

respectively. Then the closed porosity can be measured as follow [Maspero et al., 2002]: 

r close ir total reopen ^ * * 

Liquid displacement: The open porosity can be calculated by liquid displacement 

method. The scaffold is submerged in a graduated cylinder containing a known volume 

(VI) of liquid that is not a solvent for the scaffold. The cylinder is then placed in vacuum 

to force liquid into the pores of the scaffold. Then V2 is appointed as the total volume of 
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liquid and liquid-impregnated scaffold. The volume difference (V2-V1) is the volume of 

the scaffold skeleton. When the liquid-impregnated scaffold is removed from the 

cylinder, the removing liquid volume is recorded as V3 (Figure 2-2). The void volume of 

the scaffold is equal to V1-V3 and the total volume of the scaffold is equal to V= (V2-

VI) + (VI-V3) = V2 -V3, thus, the open porosity of scaffold is determined as [Karande 

et al., 2004; Ho and Hutmacher, 2006; Moore et al., 2004]: 

P«„=<rx-V3)/<y2-V3) (2.5) 

Step 1 Step 2 Step 3 

Figure 2-2 Schematic representation of Liquid displacement method. 

Optical techniques: Scanning electron microscopy (SEM) as an optical method is widely 

used for assessment of scaffold structure [Gauthier et al., 2005]. The scanning electron 

microscopes use electrons rather than light to acquire images of high resolution (Figure 

2-3). These images are analyzed with various computer software to measure porosity and 

particularly pore size [Karageorgiou and Kaplan, 2005; Hu et al., 2002; Moore et al., 

2004]. The SEM method is limited to 2D measurements on relatively small fields of 

view. Therefore, only a small part of the sample can be viewed at each images and it may 

become difficult to identify pores from interconnections [Moore et al., 2004]. 
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Figure 2-3 Representative SEM images of scaffolds with different pore sizes, the white 

bar corresponds to 0.5 mm [Bohner et al., 2005] 

2.6.2 Recent methods to measure Porosity and Pore size 

2.6.2.1 Micro Computed tomography (u€T) 

uCT is considered as a more recent method for assessment of scaffold morphology. This 

method provides accurate qualitative and quantitative information of internal structure of 

scaffold in 3-D. The internal structure of porous scaffolds can be studied in detail without 

any physical sectioning or chemical process. Therefore, uCT is known as a non

destructive method, the samples remain intact and can be used for additional investigation 

[Ho and Hutmacher, 2006; van Lenthe et al., 2007]. The non-destructive aspects of uCT 

provide the ability to study the scaffold internal structure before implantation. Thus, the 

scaffolds that fulfill certain criteria will be selected for bone replacement. 

The "Desktop |aCT" systems is a validated technique [Muller and Hildebrand, 1996; 

Balto et al., 2000] which has been widely used for investigation of scaffold micro 

structure [Zeltinger et al., 2001; Bohner et al., 2005], bone ingrowth [Guldberg et al., 

2004; Tanck et al, 2001] and vascularization [Bentley et al., 2002]. These systems 

provide high resolution images ranging from 5-100 u.m. The samples with the size 

ranging from few millimeters to 100 mm can be scanned by this system [van Lenthe et 

al.,2007]. 

uCT allows studying the bone tissue formation in scaffolds. It provides relevant 

information of the newly formed bone, remaining biomaterial and soft tissue [van Lenthe 

et al., 2007, Gauthier et al., 2005]. This methodology is useful to control the scaffold 

structure and architecture and to study the scaffold resorption kinetics. 
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In addition to assessment of scaffold structure and biological in vivo response, \iCT is 

used to optimize fabrication process to produce a scaffold with appropriate geometry for 

bone replacement [Mathieu et al., 2006, Lin et al., 2003, Ho and Hutmacher, 2006, van 

Lenthe et al., 2007]. Quantification analysis of \id data let biomaterial scientists to 

assess the effects of fabrication parameters on structural features. Based on ^CT data, Lin 

et al. found a correlation between the structural parameters of polymer-based scaffold and 

fabrication parameters [Lin et al., 2003]. 

Mechanical tests are usually destructive; finite element modeling, as an alternative to 

mechanical test, can be performed to simulate the mechanical analysis of structure 

nondestructively. Accurate information of 3D structure and architecture of scaffold can 

be obtained from ^CT data to perform mechanical analysis by finite element model 

[Jaecques et al., 2004, Sandino et al., 2007]. For example, structural and mechanical 

properties of three porous scaffolds made from stainless steel, hydroxyapatite and 

titanium were quantified based on uCT data and finite element analysis [van 

Cleynenbreugel et al., 2006]. 

Figure 2-4 (a) Sketch of u-Computer Tomography 

During the scanning, the sample rotates over 180 or 360 degrees with a fixed rotation 

step. At each angular position, a transmission image will be acquired by X-ray radiation 

(Figure 2-4). All these radiographic images will be saved as TIFF files on the disk. The 

number of radiographic images is depending on the rotation step and the total rotation 
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degree (180 or 360 degree) which are set before acquisition. Assuming, a rotation step of 

0.4 degree is selected, for a 360 degree rotation, there will be 900 images acquired. After 

acquisition the radiographic images, the reconstruction algorithms are applied to generate 

a raw data cross section which is floating point matrix (i.e. each pixel represents the 

attenuation value in floating point format). The next step is generating 2-D cross sectional 

images from raw data cross section. The cross sectional images are generated as 256 gray 

level images in the format of BMP or TIFF [SkyScan 1172 Manuel, 2005]. Figure 2-5 

shows all the steps to generate 2-D cross section images [SkyScan 1172_Manuel, 2005]. 

Acquisition 

16 Bit TIFF 

radiographic 

images 
Reconstruction 

Raw data cross 

section are 

reconstructed in 

floating point 

Transforming 
cross sectional 
data to images 

Cross sectional 

images with 256 

gray values 

Figure 2-5 The steps to generate 2-D cross section images from radiographic images. 

There are associated limitations regarding the uses of uCT. Specifically, |aCT measures 

the radiopacity of all the small volumes, called voxels. So, the smaller the voxel size is, 

the larger the volume of data is. As a result, large amounts of data often need to be 

produced for adequate accuracy. Accordingly, one main difficulty of the \iCT technique 

consists of extracting the relevant information from large data files. Furthermore, image 

thresholding is a critical step that has to be performed before 3-D analysis. Image 

thresholding can affect the subsequent analysis and visualization. The conventional 

thresholding is based on gray level histogram and visual inspection [Ho and Hutmacher, 

2006]. The problem arises when the resolution of the images is relatively low and when 

the samples composes of different materials or phases whose thresholding ranges overlap. 

Therefore, significant research activities have been done in the field of numerical 

morphology and segmentation techniques to overcome these shortages. In the following 

sections, some developments in the field of image analysis will be reviewed. 

2.6.2.2 Thresholding 

Thresholding of gray level images is a process of identifying a value in gray level as 

object or background [Rajagopalan et al., 2005]. In other words, during the thresholding 
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process, individual pixels in an image are specified as "object" pixels or as "background" 

pixels. Image thresholding is a crucial step that has to be performed prior to structural 

analysis. Accurate thresholding of gray level images is required for precise geometric 

analysis. Rajagopalan et al. showed that geometric parameters in terms of porosity and 

the number of connected component were highly sensitive to threshold value 

[Rajagopalan et al., 2005]. Visual inspection seems to be a preferred approach to select 

the threshold value [Lin et al., 2003]. However the reliability of visual thresholding is 

limited by several factors such as room lighting, monitor brightness, contrast setting, 

randomness in pore solid distribution and other factors [Rajagopalan et al., 2005]. 

Therefore, different methods were developed to select the appropriate threshold values. 

Based on the characteristics used for segmentation of images, Rajagopalan et al. 

classified the thresholding methods as follow [Rajagopalan et al., 2005]: 

Histogram shape-based methods: In this method, the thresholding is based on the 

analysis of gray level histogram of images. For example, Rosenfeld and Torre selected 

threshold value based on the analysis of concavity points on the convex hull of the image 

histogram [Rosenfeld and Torre, 1983]. Accordingly, the deepest concavity points of 

convex hull were selected as threshold value. The iterative thresholding method of Ridler 

and Calvard was also based on the histogram analysis [Ridler and Calvard, 1978]. In this 

method, the gray level histogram was modeled by two Gaussian distributions, 

corresponding to object and background regions, and then an iterative method was 

established to find optimum threshold value. 

Clustering-based methods: In this method, the gray level images are clustered into object 

and background. For example, the clustering thresholding method of Otsu minimizes the 

intra-class variance which is defined as a weighted sum of variances of the object and 

background, to find appropriate threshold value [Otsu, 1979]. 

Entropy-based methods: In this method, the optimum threshold value is selected based 

on the entropy of object and back ground regions. The entropy-based thresholding 

method of Kapur et al. selects the optimum threshold value when the sum of the object 

entropy and background entropy reaches the maximum level [Kapur et al., 1985]. 
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Global and local methods: the global methods use the correlation between pixels on 

global scale, whereas the local methods adopt the local threshold value based on the local 

image characteristics. In the non-linear dynamic thresholding of White and Rohrer, the 

gray level value of individual pixel is compared with the average grey level values of 

neighboring pixels and then the pixel is assigned as object or background accordingly 

[White and Rohrer, 1983]. 

Fuzzy thresholding methods: The aforementioned thresholding techniques create binary 

images. In reality, due to the fuzzy nature of uCT images, the fuzzy segmentation can 

improve the assessment of porous structure. Specifically, a significant improvement has 

been found at low resolution images [Sladoje et al., 2005]. In the fuzzy thresholding 

methods, the area coverage of a pixel is used to determine its belongingness to the object 

(i.e., its membership value). Based on these methods, the gray level values can be used 

directly to define the membership value of pixels. Then each pixel is assigned a value in 

the interval [0, 1]. The pixels which certainly belong to object, are assigned 1, the pixels 

which certainly belong to background, are assigned 0, and the pixels between these two 

region make the fuzzy border of object and are assigned a value between 0 and 1. Such 

segmentation is usually easier to obtain than the binary segmentation. 

2.6.2.3 Distance transform (DT) 

A distance transform (DT), also known as distance map or field, is a measure of the 

shortest distance between an object's voxel to the background. It is applied on the binary 

images that consist of object and non-object (background) voxels [Borgefors and 

Svensson, 2002]. Thus, DT is suitable for high resolution images that can be easily 

segmented into object and non-object voxels [Saha and Wehrli, 2004]. The distance 

between two adjacent voxels can be calculated exactly by using Euclidean distance 

function or approximately by using chessboard or city block. The DT map looks similar 

to the input image except that the gray level values of voxels inside the object are 

changed according to their distance from the background (Figure 2-6). Considering the 

Euclidean distance function, the distance transform of voxel p is defined as: 
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DT(p) = mm(D(q) + \\p-q\\) (2 6) 

Where p is the evaluated voxel, DT(p) is the distance transform value at p, D(q) is the 

previously determined distance of an adjacent voxel q to p (26 adjacent neighbor in 3-D 

and 8 adjacent neighbor in 2-D), || p - q || is the Euclidean distance between p and q. 

Figure 2-6 2-D representative of (a) original u€T image, (b) binary image and (c) DT 

map. 

2.6.2.4 Fuzzy distance transform (FDT) 

In reality, u€T images are fuzzy; therefore, the object/background segmentation (binary 

segmentation) can be inaccurate way for further analysis. Recently, fuzzy technique has 

been developed, as an alternative to DT, to analyze gray level medical images [Saha et 

al., 2002, Wehrli et al., 2006]. FDT is an extended shape of DT and takes into account 

both distance and pixel gray levels, or membership values, to compute the shortest 

distance from each object's voxel to the background [Darabi et al., 2009, Saha et al., 

2002]. This technique does not require any binarization step. It has been demonstrated 

that FDT allows more accurate geometric analysis than the traditional DT [Saha and 

Wehrli, 2004, Darabi et al., 2007]. 

The FDT calculation usually includes the fuzzification process. As considered above, the 

u€T images are gray scale with 256 different levels. Therefore, a membership function is 

applied to match a gray level value of voxels to the real domain [0, 1]. An upper 

membership value describes a strong belonging to object and a lower membership value 
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describes a week belonging to object. [Sladoje et al., 2004]. The fuzzy set is used to 

compute the FDT values. 

Thus, based on the fuzzy set or the object's voxel membership, the following FDT map 

was initially introduced by Saha et al. [Saha et al., 2002]: 

FDT(p) = mm(Dfq + -(ju(p) + ju(q))x\\p-q\\) ( 2 7 ) 

Where p is the evaluated voxel, FDT(p) is the fuzzy distance at p, Dfq is the previously 

determined fuzzy distance of an adjacent voxel q to p (26 adjacent neighbor in 3-D and 8 

adjacent neighbor in 2-D) and || p - q || is the Euclidean distance between p and q and u(x) 

is the membership value of object's voxel x. The FDT map calculated based on Saha 

method is in real space. 

In addition, the FDT map can be defined in an integer space [Darabi et al. 2009]: 

FDT(p) = mm{Dfq + max(ju(p),^i(q)) + S(p - q)) ( 2 .8) 

The new parameter, 5(p-q) being an integer weight associated to membership values and 

the Euclidean distance between p and q ((1, V2) in 2-D and (1, V2, V3) in 3-D). 

The second FDT equation (Eq. (2.8)) applies the 'max' determination that is fuzzy in its 

very nature. This procedure was introduced by Darabi et al. to improve the computational 

performance [Darabi et al., 2009]. 

In digital space, a dynamic programming-based algorithm was developed to compute the 

FDT map of fuzzy images [Saha et al., 2002]. Before FDT computation, the input images 

should be modified to avoid errors caused by even/odd number of voxels across the 

object thickness. This error misleads the calculation of geometric parameters. Saha et al. 

proposed the use of modified images to solve this problem [Saha et al., 2002]. The 

modification is done in two steps [Saha et al., 2002]: 

Let /be the input images and / ' be the modifies images, 
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Stepl. Set jur(2i+l,2j+l)= jui(ij) for all pixels of image /. These points, in /', are called 

primary points. 

Step2. For non primary points, if p(i'J') is adjacent to non-object primary points, set 

[ir(i'j')=0, otherwise set jur (i'j") = the mean of membership of all adjacent primary 

object points. 

FDT computation Algorithm 

1. For all background voxels, set Df(p) = 0; 

2. For all object voxels, set Df(p) = co; 

3. Push the object contour pixels to queue Q; 

4. While Q is not empty: 

a. Remove a point p from Q; 

b. Find fuzzy_distmin= minqeN(p) (Dfq + 0.5 x (u(p) + u(q)) x || p-q ||), or 
fuzzy_distmin= minqeN(p) (Dfq + max (|x(p) , u(q)) x || p-q ||); where N(p) 
denotes adjacent neighbors of voxel p; 

c. If fuzzy_distmjn < D(p) then: 

d. Set D(p) = fuzzy_distmjn; 

e. Push all voxels q e N(p), which are object voxels and currently not in Q, 
intoQ 

2. Output the FDT of image; 

To sum up, it was demonstrated that the FDT is a suitable means for image analysis and 

generate more accurate geometric characterization [Saha et al., 2002]. In addition, it 

allows the user to select a range of thresholds for fuzzy border instead of a single 

threshold value. 

2.6.2.5 Skeletonization 

The skeleton of an object plays an important role in the morphological analysis and 

reconstruction of the porous structure [Moon et al., 2002]. Skeleton or medial axis is a 
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compact shape description of an object [Zhou and Toga, 1999] and skeletonization is a 

process that reduces the object into a union of surfaces or curves which preserves the 

topology and the shape of the original object [Saha and Wehrli, 2004]. Basically, the 

skeleton should be connected, centered and thin [Niblack et al., 1992]. Many algorithms 

have been developed to extract the skeleton; the most common skeletonization algorithms 

are discussed below. 

Thinning methods: This method repeatedly peels off the border of an object in series of 

images [Niblack et al., 1992]. Finally, certain points, which are end points, are left 

unchanged to preserve useful information about the shape of object. Thinning algorithms 

ensure connected skeletons (Figure 2-7) [Gagvani and Silver, 1997]. In this method the 

boundary of the object has to be well defined. 

Figure 2-7 Thinning skeleton, the darkest pixels represent the skeleton of object. 

Voronoi methods: In this method, a set SP of n points in the plan is given (generating 

points); the Voronoi polygon of a point Pi is the polygon enclosing all points in a plan 

that are closer to Pi than to any other point in SP. The Voronoi diagram is the collection 

of the Voronoi polygons of all the points in SP. This method can provide connected and 

centered skeleton (Figure 2-8, reproduced based on diagram presented in [Palagyi, 2008]) 

[Gagvani and Silver, 1997; Ogniewics and Kubler, 1995]. Voronoi method is only 

applied on binary images. 
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Figure 2-8 Voronoi skeleton, (a) Some border points of a rectangle form the set of 

generating points, (b)The Voronoi diagrams are displayed as dashed lines and the 

skeleton (black lines) is estimated based on the Voronoi diagrams. 

Distance Transform methods (Ridge of DT map): Distance Transform skeletonization 

methods are sequential and noniterative methods [Niblack et al., 1992]. The skeleton is 

requisite to be centered with respect to object boundary, considering that the points 

located at the center of the object have maximal distance transform; therefore, the 

skeleton or medial surface/axis can be defined as the locus of the center of maximal disks 

(2-D) or spheres (3-D) that are set into the object (Figure 2-9)[Gagvani and Silver, 1997]. 

Figure 2-9 2-D representative of distance transform skeleton (dotted line), as the locus of 

maximal disks (2-D) or spheres (3-D) which are set into the object. 

The set of extracted point does not guarantee to be connected; hence Niblack et al. 

introduced saddle points to get a connected skeleton of 2D images [Niblack et al., 1992]. 

Figure 2-10 shows a 2-D binary image and the corresponding ridge points of DT map. 

The ridges have been depicted as bright points, because they have higher DT value than 

their neighboring pixels. 
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(b) 

Figure 2-10 (a) The original binary image and (b) The DT map of binary image, the 

bright points are local maxima in DT map and considered as skeleton of object. 

FDT Ridge-based methods: For the skeletonization based on FDT ridges, it is required to 

define ridge voxels on FDT map. The ridge voxels are the ones at which the first 

derivative of the FDT map is zero at least in one direction and the second derivative of 

the FDT map is negative in the same direction [Darabi et al., 2009]. Assuming VDf and 

V .VDf are gradient and Hessian of FDT map respectively, the skeleton points based on 

ridge detection method are extracted by extending Haralick's idea [Haralick and Shapiro, 

1992] to N dimension [Lopez et al., 1999]; therefore, ridge points of the FDT map can be 

characterized as follow: 

VDrv, =0 and X, < 0 i=l,2,...N (2.9) 

Where X, are eigenvalues and v, are eigenvectors. This is the set of local maxima, saddle 

and peak points in FDT map. Since the images are represented in digital space so 

localization of ridge point by Eq. (2.9) is impossible, Darabi et al. presented an algorithm 

to detect the ridge points in FDT map [Darabi et al., 2009]. It includes two steps; in the 

first step, some primary ridge points are detected, then in the second step, the local 

maxima points detected in the first step are connected by the steepest uphill climbing path 

[Niblack et al., 1992 Gagvani and Silver, 1997]. 

The FDT method based on 'max' determination, introduced by Darabi et al. [Darabi et 

al., 2009], and skeletonization method based on FDT ridge detection voxels have been 
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used in this project because of their higher compatibility to the fuzzy nature of images 

and efficient computational performance. 

2.6.2.6 3-D Geometric analysis of fiCT images: The Hildebrand 

Method 

Accurate measurement of morphological parameters is of significant interest in the field 

of trabecular bone and bone substitutes. The imaging technologies such as |iCT provide 

access to 3-D structure and require more elaborate techniques for measuring 

morphological parameters. 

Hildebrand and Ruegsegger proposed a model-independent approach to calculate the 

mean structure thickness and thickness distribution of a 3-D object [Hildebrand and 

Ruegsegger, 1997]. This method was initially applied to characterize trabecular bone 

thickness, and then widely used for characterization of scaffold pore size. The great 

concept introduced by Hildebrand was volume-based approach, in which they used the 

definition of maximal inscribed spheres to characterize geometric parameters. 

Accordingly, the local size of object (void or solid space) at any location was defined as 

the diameter of the largest spheres containing that location. Assuming that p is an 

arbitrary point in the structure Q. (Figure 2-11), then based on Hildebrand method 

[Hildebrand and Ruegsegger, 1997], the local thickness at p, x(p), is defined as follow: 

r(p) = 2 x max({r | p e sph{x,r) cz Q,x e Q}) (2.10) 

Where sph(x,r) is the set of points in a sphere with center x and radius r. Once the local 

size is defined for all points in the structure, then the average size is calculated as follow: 
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Figure 2-11 Local thickness x (p) of a structure Q determines by fitting maximal spheres 

to the structure [Hildebrand and Riiegsegger, 1997]. 

To extend this methodology from continues space to discrete space, Hildebrand provided 

a discrete implementation based on distance transform and distance ridge methods. 

Therefore the local size, x(p), is defined based on distance transform, as follow: 

r(/?) = 2x max (Dmap(q)) (2]7) 

Where the Dmap is the distance map and X(p) is the set of center points of all spheres with 

a radius equal to their corresponding DT value and including the point p. 

X(p) = {x G a | p G sph(x, Dmap (x))} (2.13) 

The implementation of this step leads to 'massive computational overhead' if performed 

directly based on X(p) definition. Therefore, Hildebrand defined the distance ridge as a 

set of central points of all non-redundant spheres, QR. 

QR = {s G Q | spr(s,Dmap(p)) <Z spr{x,Dmap{x)),s *x,xeQ} {2.U) 

And thus redefined the set X(p) as follow: 
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X{p) = {xeQR\pe sph{x, Dmap (*))} ( 2 . 1 5 ) 

Hildebrand also noted that 'the distance ridge correspond to medial axis of a structure 

does not represent a topological skeleton when derived from a voxel image' [Hildebrand 

and Ruegsegger, 1997]. In addition, the accuracy of this method depends on the 

resolution of images. It is well suited for high resolution images; however, in the case of 

low resolution images, it misleads the results in terms of local and average size of object 

[Saha and Wehrli, 2004]. 

Saha and Wehrli introduced a new method based on fuzzy segmentation and FDT map 

that can effectively overcomes the limitation of low resolution images, in particularly, 

when the voxel size is comparable to the size of object [Saha and Wehrli, 2004]. The 

distribution of local thickness over an object was then calculated using the FDT values 

along its skeleton. The skeleton of object was extracted using the thinning method 

described in Ref. [Saha et al., 1997] to preserve a topological skeleton. The mean size of 

object was then calculated as follow: 

^2xFDT(p) 
_ _ peskelet(Q) 
%~ \skelet{Q)\ (2-16) 

Where skelet(Q) is the skeleton of object and |skelet(Q)| is the number of points in the 

skeleton. 

It would be clearly desirable to generate the skeleton of an object directly from its fuzzy 

representation. This thesis will introduce skeletonization method which extracts the 

skeleton points based on FDT map and ridge detection algorithm. The porous bone 

substitutes that will be characterized in this study consist of round pores with side 

interconnections (Figure 2-12). Therefore, due to the shape of pores in the structure of 

substitutes, this study introduces a new methodology to calculate the size of pores and 

interconnections. Accordingly, the local maxima and saddle voxels of the FDT map are 

extracted as representative of pores and interconnections, respectively. These are the 
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critical voxels of the skeleton. Therefore, extracting only the critical voxels instead of all 

skeleton voxels to measure the mean pore and interconnection sizes significantly reduced 

the computational time without disturbing the accuracy of geometric analysis. 

Figure 2-12 Typically u€T reconstructed structure [Bohner et al., 2005] 

Furthermore, due to the shape of pores, one or more maxima are found in the pores, so as 

illustrated in Figure 2-13, in some pores, the corresponding circles overlap each other 

(Figure 2-13b). This study therefore introduces volume-base and number-base averaging 

measures for pore size. The number-base average pore size is equal to the arithmetic 

average FDT value of maxima voxels (Eq. (2.16)), whereas the volume-base pore size 

measurement calculates the average value by considering the volume that each pore 

occupied in the structure. 

(a) I 

Figure 2-13 (a) 2D FDT map, local maxima as a representative of pore size are shown 

with dark points.(b) Corresponding circles at local maxima with radius equal to their 

FDT. 
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2.6.3 Methods to measure specific surface 

Optical methods: These methods use photomicrographs of polished sections of sample. 

The specific surface is measured by statistical methods [Scheidegger, 1960; Dullien, 

1979]. There are several statistical method; for example, in one of them, a needle with the 

length 1 falls many times on the picture, then the number of times that two ends of the 

needle fall inside of the pores (h) and the number of times that the needle intersect the 

perimeter of the pores (b) are counted, after a large number of throws the following 

relation is assumed: 

. volume of pores Ih 
4 7 7 = T (2.17) 

surface oj pores b v 

If the magnification of the picture is n and V is the volume of pores, the specific surface, 

S, is equal to S = 4Vbn/lh [Scheidegger, 1960; Dullien, 1979]. 

Adsorption method: The specific surface is evaluated based on the adsorption of the 

vapor by the surface of the solid phase [Scheidegger, 1960; Dullien, 1979]. 

Fluid flow method: Specific surface can be calculated by fluid flow formula such as 

Kozeny and Kozeny-carman equations which relate the flow rate of fluid through porous 

media to their specific area [Scheidegger, 1960; Dullien, 1979]. 

Marching cube method: Marching cube method provides a solution to quantify the 

volume surface using 3D image processing tools. In digital space, the structure is divided 

into many cubical parts called voxels. Each voxel contains 8 vertices, and each vertex has 

two positions (inside or outside of the void space), thus, there are 2 =256 ways a surface 

can intersect the cube, these cases can be reduced to 15 by removing the repeated cases 

(Figure 2-14). Then the algorithm finds the surface edge intersection via linear 

interpolation and forms one to four triangles in cube. Finally, the marching cube 

algorithm calculates a unit normal for each triangle surface. The algorithm uses these 

normal vectors to produce a smooth surface that estimates the volume surface of object 

[Lorensen and Cline, 1987]. 
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Figure 2-14 15 unique cube configurations 

2.7 Fluid flow analysis and lattice Boltzmann method 

2.7.1 Methods to measure permeability 

The scaffold must be permeable to allow the cells and nutrients to penetrate and diffuse 

into its structure. There are different theoretical methods to measure the permeability of a 

porous media at various Reynolds number. The valid methods for laminar flow (low 

Reynolds number) are Darcy's law and Kozeny-Carman law. 

Darcy's law: Darcy's law is the most important relation to describe the fluid transport 

through porous media at low Reynolds numbers. It relates the volumetric flow rate and 

induced pressure difference to calculate permeability of porous structure. This relation 

was introduced as follow: 

K = - -
qL£ 

ApA (2.18) 

Where K is the permeability, q is volumetric flow rate, L is the length of the sample, JU is 

dynamic viscosity, Ap is the pressure drop across the specimen and A is the cross 

sectional area of the samples [Karande et al., 2004; Agrawal et al., 2000, Li et al., 2003]. 

Darcy's law was introduced initially as an empirical relationship based on experiments on 

steady flow in beds of particle. Then it has been found that Eq. (2.18) is applicable for 
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different types of porous media [Aaltosalmi, 2005]. When the flow rate is low, the inertia 

effect of a flow can be neglected and the relationship between the induced pressure and 

the flow rate remains linear as described by Darcy's law. For a high flow rate, the 

nonlinear inertia effect of flow may not be neglected [Chor and Li, 2007]. Therefore, a 

mathematically model is required to describe both the linear and nonlinear fluid 

behaviors through a porous media. 

Kozeny-Carman law: Kozeny law and Kozeny-Carman law relate permeability to the 

structural characteristics of the porous media. They have been derived analytically for 

capillary tube model [Scheidegger, 1960; Bear, 1972]. The Kozeny law expresses the 

permeability as: 

K = 
£

3 

— 2 ~ T (2-19) 

Where S is the pore surface area in unit volume and C is the Kozeny constant that 

depends on the geometry of the porous sample and T is tortuosity. In terms of specific 

surface So=S/(l- e) the Eq. (2.19) can be rewrite in the form of Kozeny-Carman law as 

follow [Aaltosalmi, 2005, Dullien, 1979]: 

e3 

K = 2 2 (2-20) 

Where s is porosity and C'=Ct2. Carman proposed that the best value for the factor C' to 

fit most experimental data on packed beds is equal to 5 [Dullien, 1979]. Equations (2.18) 

and (2.19) can be used to predict the qualitative permeable behavior of many porous 

media, but the accuracy of these relations is generally not very good over an extended 

interval in s [Aaltosalmi, 2005]. 

Theoretical methods include parameters such as pressure drop and velocity which can be 

measured based on experimental methods or numerical simulations. In this project, 

Lattice Boltzmann method (LBM) is used to simulate fluid flow in porous scaffolds. 

LBM is an efficient tool for investigating flow in highly complex porous structures 

[Bernsdorf et al., 2000]. During last decade, the LBM was developed as an alternative to 
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classical Navier-Stockes solvers for the numerical simulation of fluid flow [Donath, 

2004]. 

2.7.2 Lattice Boltzmann Method 

Historically, the LBM method was developed from the method of lattice gas automata 

[Donath, 2004; Yu et al., 2003]. The conventional 'computational fluid dynamic' (CFD) 

methods are based on discretization of macroscopic differential equations (in particular 

Navier-Stokes equations), whereas the LBM follows a bottom-up approach by calculating 

the evolution of a particle distribution function [Zeiser et al., 2004]. Conventional CFD 

methods compute relevant flow fields, such as velocity u and pressure p, by numerically 

solving the Navier-Stokes equations in space x and time t. However, the Boltzmann 

equation deals with the single particle distribution function f(x, £ t), where ^ is the 

particle velocity, in phase space (x, g) and time t [Mei et al., 2000]. 

One popular kinetic model is the Boltzmann equation with the single relaxation time 

approximation. This equation is also known as Bhatnagar-Gross-Krook (BGK) [Yu et al., 

2003]: 

3 , / + W = - l [ / - / ( 0 ) ] (2.21) 
A 

Where £ is the particle velocity, /® is the equilibrium distribution function (Maxwell-

Boltzmann distribution function), and X is the relaxation time. 

To solve/numerically, as a first step, Eq. (2.21) is discretized in the velocity space using 

a finite set of velocity vectors et (i=0,...,N) which leads to the velocity discrete Boltzmann 

equation, 

^ / , + ^ . V / , = - ^ - [ / I - / l
( e , ) ] (2.22) 

Where/ (x, t) =f(x, et, t) is the distribution function of the i-th velocity et, and f/eq) = 

f0)(x , e,, t) is the equilibrium distribution function of the i-th discrete velocity e,.f/eq) 

depends only on the macroscopic values of the fluid density p and the flow velocity u. 
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Both can be easily obtained as the first moments of the particle distribution function 

[Wellein et al., 2006]. 

A typical set of velocities for 3D simulations is D3Q19 model. It consists of 18 different 

directions and the center which stands for particles with velocity zero (Figure 2-15). 

Compared to other common 3D models like D3Q15 and D3Q27 model, the D3Q19 

model is a good compromise in terms of stability and computational effort [Mei et al., 

2000]. 

Figure 2-15 Discrete velocity set for the D3Q19 model. 

For all these models, a suitable equilibrium distribution function//2*1 is 

3 9 . , 2 3 
-jelM + —J(el.u) fl^

){p,u)=pwl[\ + ̂ -el.u + -^T{el.uy ^—u.u] (2.23) 
c~ 2c^ 2c' 

Where wi is a weighting factor for the different directions and c=Ax/At is so-called lattice 

speed (Ax and At are the cell size and time step). 

The D3Q19 model has the following set of discrete velocities: 

e=< 

(0,0,0) 

(±l,0,0)c,(0,±l,0)c,(0,0,±l)c 

(±l,±l,0)c,(0,±l,±l)c,(±l,0,±l)c 

/ = 0 

/ = 2,4,6,8,9,14 

7 = 1,3,5,7,10,11,12,13,15,16,17,18 

(2.24) 

The weighing factor wi depends on the direction: 
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1/3 kl2 = ° 

w,=-{l/18 k P = 1 (2-25) 

1/36 k | 2 = 2 

To obtain the main equation of the lattice Boltzmann approach, Eq. (2.22) is discretized 

numerically in a very spatial manner. The discretization of space and time is 

accomplished by an explicit finite difference approximation and leads to: 

fl(x + eiAt,t + At)-fi(x,t) = --[fl(x,t)-/r( P,u)J (2.26) 
T 

Where r=A/At is the dimensionless relaxation time which determines the rate of approach 

to locale equilibrium and is related to kinematic viscosity (u) of the fluid as follow: 

v = (r-\/2)c]At (2.27) 

Where cs is speed of sound and defined as cs= c/^3. 

Each time step (t —* t+At) consists of the following steps which are repeated for all cells 

[Welleinetal.,2006]: 

> Calculation of the local macroscopic flow quantities p and u from the distribution 

N N 

functions, p = ̂ f, mdpu = Y,fiei-

> Calculation of the equilibrium distribution from the macroscopic flow quantities 

and execution of the "collision" (relaxation) process, 

/ , (x,t')-fi(x,t) = - — [f,(x,t)-fl
e(,(p,u)] where the superscript * denotes the 

r 

post-collision state. 

> "Propagation" of the i=0, ...,N post-collision states f, (x,t) to the appropriate 

neighboring cells according to the direction of e,, resulting 'mft/x+e, At,t+At), i.e. 

the values of the next time step. 
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Since the LBM is a kinetic method, macroscopic boundary conditions are not defined as 

direct values. They have to be replaced by appropriate microscopic rules which induce 

the desired macroscopic behavior. Therefore, to introduce solid walls boundary condition 

(i.e. a no-slip), another step called "bounce back" rule is incorporated as additional part of 

the propagation step [Wellein et al., 2006; Mei et al., 2000]. The bounce back step 

reflects distribution functions at the interface between fluid and solid cells as: 

f*{x,t) = f- (x,t) With x e wall (2.28) 

Where <?,- = - e, andfi(x, t) =f(x, e-lt t)=f(x, -e,, t). This rule rotates the distribution 

functions on the wall nodes and therefore they return back to the fluid with opposite 

momentum in the next time step. This leads to zero velocities at the wall and ensures that 

there is no flux across the wall. This is corresponding to the macroscopic boundary 

condition [Zeiser et al., 2004; Wellein et al., 2006; Korner et al., 2005]. 

Finally the pressure is given by a simple equation of the state of an ideal gas: 

P = pc] (2.29) 
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3.1 Abstract 

There is an increased interest in resorbable bone substitutes for skeletal reconstruction. 

Important geometric design measures of bone substitute include pore size, 

interconnection size, porosity, permeability and surface area of the substitute. In this 

study, four substitute groups with variable geometric features but with constant porosity 

were scanned using a micro-computed tomography (nCT) and their geometric measures 

were determined using an advanced image-processing algorithm based on fuzzy distance 

transform and new pore size definition. The substitutes were produced using the calcium 

phosphate emulsion method. The geometric analysis revealed that the reproducibility of 

the emulsion method was high, within 5%. The average porosity of the four groups was 

52.3±1.5. The pore diameter of the four bone substitute groups was measured to be 

170±1.7, 217±5.2, 416±19, and 972±11 urn. Despite this significant change in pore size, 

the interconnection size only increased slightly with an increase of pore size. The specific 

surface decreased with increasing pore size. The permeability increased with the pore size 

and was inversely proportional to the specific surface. The combination of uCT and the 

fuzzy image-processing tool enables accurate geometric analysis, even if pore size and 

image resolution are in the same range such as in the case of the smallest pore size. 

Moreover, it is an exciting tool to understand the structure of the substitute with the hope 

of designing better bone substitutes. 

Keywords: Bone substitutes, pore size, scaffold, image analysis, calcium phosphates 

3.2 Introduction 

Bone grafting is a surgical procedure consisting of filling a bone defect with a bone graft 

or substitute. The graft should favour the formation of new bone while providing an 

adequate surface for cell attachment [1, 2]. New bone formation strengthens the grafted 

area by creating bonds between existing bone and graft material. 

In the research community, there is a common agreement that bone grafts should have an 

interconnected porous structure to allow for tissue regeneration, vascularization and cell 

ingrowth [3-8]. In such porous structures, pore interconnections act as pathways for cells 
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transport while pore space provides a location for tissue growth and formation [3, 4]. 

However, the optimal value of pore size and interconnection size are still open to debate. 

Generally, it is accepted that the interconnection size must be larger than 50-100 \im to 

enable blood vessel ingrowth and hence cell invasion, as well as enhanced biological 

response [3, 4]. Values of ideal pore diameters have been reported between 100 and 500 

um [5-7]. 

Due to the importance of 3-D scaffold structure on bone formation, great efforts have 

been made to analyse the geometry of bone substitutes [8-10]. Characterization 

techniques include gas pycnometry and Archimedes' method to determine the porosity, 

mercury intrusion porosimetry, gas adsorption, and optical microscopy to estimate the 

pore size, and more recently, micro-computed tomography (|iCT) to quantify 3-D 

geometric parameters. Among these techniques, \iCT is the most advanced tool in that it 

provides access to the 3-D architecture and hence allows for a more detailed geometric 

analysis [11-15]. Moreover, the use of \iCT is non-invasive and non-destructive [15-16]. 

This technique has a discrete spatial resolution (linear resolution >l/2000 of the sample 

size, i.e. >5x5x5^m for a lOxlOxlOmm cube), and generates very large amounts of data, 

particularly if the resolution is high. 

Specifically, nCT measures the radiopacity of all the small volumes, called voxels, 

constituting a 3-D structure. So, the higher the resolution (or the smaller the voxel size), 

the larger the volume of data. For example, a twofold increase in the linear resolution 

increases the amount of data eightfold. As a result, large amount of data often need to be 

produced for adequate accuracy. Accordingly, one main difficulty of |uCT consists of 

extracting the relevant information from large data files. This fact explains why 

significant research activities have been done in the field of numerical morphology for 

accurate measures and characterization. Further, it has been shown that 2-D analysis 

leads to overestimation of the characteristic pore sizes and thus the treatment of the 3-D 

data remain essential for accurate characterization [17]. 

Two approaches can be used to improve the 3-D analysis of the scaffolds: (i) increasing 

the resolution, leading to more data and higher scanning costs; and (ii) improving the 
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numerical segmentation/thresholding algorithm used for the analysis. In addition, readers 

are advised to pay attention to the definition of the pore size for adequate comparison, as 

several different methods were used by established authors to define pore and 

interconnections. Subsequently, corresponding to each definition specific algorithm was 

developed to calculate pore and interconnection size. Jones et al. [9, 18] used watershed 

method to divide the void space into individual pores then the diameter of a sphere with 

the same volume as an individual pore was calculated as a measure for pore size. They 

also defined each interconnection as the grouped voxel with the same two neighbouring 

pores and measured the interconnection size as the diagonal of bounding box of that 

interconnection. For arbitrarily shaped pores; Hildebrand and Ruegsegger [19], referred 

to the volume-weighted average size. To achieve a unique average size for such irregular 

shapes, the local thickness (size) was weighted by volume of the pore. Otsuki et al. [10] 

used a different algorithm to block the narrow interconnections by dilation of material 

voxels. The spaces larger than the blocked interconnections were defined as pores and the 

spaces blocked with a certain number of dilations were defined as interconnections. 

Mueller et al. [20] computed the average pore size in two and three dimensions by using 

average distance map values. Peyrin et al. [21] developed their own implementation of a 

model-independent method to measure the geometric parameters of ceramic scaffolds. 

According to this method, the average pore size and its distribution were obtained based 

on the methodology introduced in Ref. [22], in which the 3-D discrete chamfer distance 

and skeleton of an object were used for geometric analysis. Fierz et al. [17] and Moore et 

al. [13] did not focus on pore and interconnection definition, but emphasized the 

interconnectivity of pores or accessibility of scaffold network. The accessible pore 

volume was estimated using a certain size of a virtual geometry shape, such as a sphere 

[17] or cube [13]. They defined and calculated the interconnectivity by the regions that 

were accessible by the virtual geometry. According to these studies, introducing exact 

definition for pore and interconnection is not an easy task because of the complex shape 

of pores in a scaffold structure. 

In a recent article [8], the distance transform (DT) method introduced by Hildebrand and 

Ruegsegger [19] was used for geometric analysis of bone substitutes. In this method, the 

pore size distribution was obtained by averaging the diameter of non-redundant maximal 
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spheres which were completely inside the pores [19]. The sphere diameter is defined by 

DT value of sphere's centre point. It should be noted that DT algorithm applies to the 

binary images of object and non-object voxels, which requires the segmentation of the 

images into object and non-object voxels before calculating the DT, which is often a 

demanding task for the user because of the fuzzy nature of the CT scans [23]. Saha et al. 

[24] proposed to use a "fuzzy distance transform" (FDT) algorithm to improve the image 

analysis. The added value reported by Saha et al. [24, 25] on the use of fuzzy distance 

transform compared to regular distance transform was that it allowed for accurate 

geometric analysis, even if the resolution of the images was relatively low. Unlike the 

DT, the new algorithm does not require a binarization of the images and the algorithm 

uses both distance and gray level values to calculate the shortest distance from each 

object voxel to the non-object. Darabi et al. [26] proposed a slightly modified FDT 

algorithm for the computational performance. 

In a recent study, four types of (3-TCP bone substitutes varying in pore size were 

implanted in a sheep model [27]. The goal of this study was to assess the validity of a 

model describing the geometrical changes sustained by a ceramic bone substitute during 

its cell-mediated resorption [28]. To allow the application of the model on the data, all 

samples were scanned by uCT before and after implantation. During the analysis of the 

uCT data it appeared that the chosen resolution (30x30x30um3) was inadequate to 

analyse the structure of the scaffolds presenting the smallest mean pore size (170 urn). 

Moreover, the interconnection size was not determined. As the geometric analysis of 

these blocks is particularly relevant to interpret their biological performance [27], the 

present work continues the earlier research effort of Bohner et al. [8] by introducing a 

fuzzy technique for the distance transform method combined with a novel algorithm to 

analyse the uCT data which is based on geometrical concepts of 3-D elements. This new 

approach was expected to allow the analysis of scaffolds with small pores (relative to the 

\iCT resolution), as well as quantification of the size and distribution of interconnections. 

Furthermore due to the characteristic properties of the pore, we introduce volume-based 

and number-based averaging measures for pore size. 
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To summarize, this study aims at using the advanced image processing algorithms for the 

analysis of pore size, interconnection size, specific surface area and permeability. 

Specifically, pore size is defined by the diameter of the maximum sphere that can be 

completely inscribed in a pore, the interconnection size denotes the bottleneck diameter 

of interconnections and the surface is defined as the interface surface between the pores 

and the substitute material. A detailed mathematical definition is given in the next 

section. 

3.3 Material and Method 

3.3.1 Scaffold production and preparation 

Four groups of porous p -tricalcium phosphate (P -TCP) substitutes of varying pore size 

but constant porosity were fabricated using calcium phosphate emulsions method [8, 29]. 

The production method has been described extensively in Ref. [27]. Briefly, a calcium 

phosphate cement paste was mixed with an oil and an emulsifier, so that small oil 

droplets were dispersed in the calcium phosphate cement paste. The resultant paste was 

then poured into a mould and, after hardening; the samples were cleaned, dried and 

sintered at 1250 °C. The samples were then machined to produce cylinders (diameter = 

8mm; height = 13mm). Finally, these cylinders were rinsed in an ultrasonic bath using 

ethanol to remove small wear particles, and were calcified at 900°C. In this 

manufacturing method, varying emulsifier concentration led to different pore sizes while 

maintaining the volume fraction. More specifically, higher emulsifier concentration 

resulted in smaller pore size [29]. Six specimens were randomly taken from each of the 

four size groups and their geometric parameters were analysed using FDT tools. 

3.3.2 Micro-computed tomography 

The |iCT images of the 24 specimens were acquired on a Scanco Medical AG uCT 40 

(Bassersdorf, Switzerland) scanner at 30 um isotropic resolution [8]. Further, the images 

of a cylindrical core (diameter = 7mm; height = 10.5mm) of the samples were selected as 

volume of interest and the geometric parameters were calculated using the algorithms 

described in the next sections. 
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3.3.3 Geometric analysis 

The main steps in geometric analysis algorithm are as follow: 

(1) FDT computation; 

(2) analysis of pore size and interconnection size; 

(3) skeletonization and reconstruction. 

For geometric analysis, the scanned images were fuzzified and FDT map is determined 

for each voxel of the pore space. The geometric measures (e.g. pore and interconnection 

size) are defined by applying the max-min detection algorithm to distance map. 

Specifically, the average pore size and interconnection size corresponds to the local 

maxima and saddle point of the FDT map, respectively. In a subsequent separate step, the 

skeleton of the pore space is determined and then used to reconstruct the 3-D structure of 

the substitute. In the following sections, each step is discussed. 

3.3.4 Fuzzy Distance Transform computation 

To compute FDT values, as a first step, the images are fuzzified by a sigmoidal function 

(Figure 3-1) which is characterized as follow: 

Hip)' 
\-2{f(p)-THc)

2 /(THM-THC)2 -> THC < f(p)<(THc+ THM)/2 

f(p)*THc 

(3.1) 
2(f(p)-THM)2/(THM-THc)

2 -> (THC+THM)/2Z f(p)<THM 

0 -» THM<f(p) 

Where f(p) is the intensity of voxel p, THM and THc are the material and cavity 

thresholds, respectively, and ju(p) is defined as the membership value of voxel p, which is 

a measure of the grey value of said voxel. In this study thresholding ranges for each 

group of scaffolds are selected via histographics (histogram of images) and visual 

estimation. 
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Figure 3-1 Sigmoidal fuzzy membership function 

Thus by applying membership function, the fuzzy set S of any set X can be expressed as 

{(*, ju(x)) \xeX,M:X^>[0,l]} (3.2) 

The fuzzy set or the object's voxel membership is used to compute the FDT values. For 

this purpose, it is assumed that the path P from object voxel;? to non-object voxel q is a 

sequence (p = pi, pi,..., pn=q) of voxels in which all consecutive voxels are adjacent. 

The length of the path is defined as follow: 

n-\ 
LP = Xm a^Mp/) + MA+i)) + ^(p/>A+i) 

1=1 
(3.3) 

Where 5(pi, p,+i) is an integer weight associated with membership values and the 

Euclidean distance between pi and p,+i ((1, V2) for two dimensions and (1, V2, V3) for 

three dimensions) [26]. This leads to a number of paths between voxel/? and q. The FDT 

value at a voxel p is defined as the shortest fuzzy distance between p and the background 

(i.e., a set of voxels with zero membership value): 

FDT(p) = min L 
Pepaths (p,q) P (3.4) 
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Once the FDT of each voxel has been calculated, an integer number is assigned to each 

voxel. Using post-processing tools, a colour map, often referred to as a distance map or, 

in this case, a fuzzy distance map becomes available. Once the FDT map is determined, 

the next focus point will be characterization of pore size and interconnection size. 

3.3.5 Analysis of pore size and interconnection size 

Pore size and interconnection size are computed by the so-called max-min detection 

algorithm, which finds the local maxima and saddle voxels of the FDT map. More 

specifically, maxima and saddles are particular voxels of the so-called "skeleton". The 

voxels are maxima with respect to the FDT value among their neighbours in all direction 

(maxima voxels) or are at least maximum in one direction and minimum in other 

directions (saddle voxels). The FDT value at a local maximum corresponds to the radius 

of the largest spherical sphere that can be placed in that location without impinging on the 

neighbouring solid structure. In other words, a maximum value of the FDT skeleton is by 

definition the radius of a pore. Additional conditions, called exclusion criteria, are applied 

to eliminate the effect of truncated pores at the sample boundaries. Based on these 

criteria, maxima voxels located in the outer layer of all boundaries with thickness equal to 

average pore size are examined and then the maxima voxels with an FDT value less than 

average FDT are excluded. Similarly, the FDT value at a saddle voxel corresponds to the 

radius of the largest spherical sphere that can be placed at this voxel without impinging 

on the neighbouring solid structure, i.e. to the interconnections radius. The average pore 

size is obtained using two definitions: arithmetic average value (number-base) and 

volume-weighted average value (volume-base). The number-base average pore size is 

equal to the arithmetic average FDT value of maxima voxels. The volume-base average 

pore size is computed using the following equation: 

2 2>(/>)™X/>) 
p e pe Maxima 
psvb = v ~ 7 ^ (3-5) 
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Where PSvj, is volume-base average pore size and co(p)is volume of the sphere at voxel p 

The average interconnection size is obtained by calculating the average FDT value of 

saddle voxels. 

3.3.6 Skeletonization and Reconstruction 

Skeletonization describes the process during which the central voxels of an object (cavity 

in our study) are extracted. Here, skeletonization was achieved using the so-called ridge 

detection method which is mainly based on the method and definitions described in Refs. 

[30, 31]. The ridge peak is found when the first directional derivative is equal to zero and 

the second derivative has a negative value in the same direction [31]. Analytically, by 

assuming VD^ and V .VDf to be the gradient and Hessian of FDT map, respectively, 

the 3-D skeleton can be extracted as ridge voxels by extending Haralick and Shapiro's 

idea [31] to N dimension [32]. 

VDf.v, = 0 and X, <0 i=l,2,...N (N=3 for 3-D space) (3.6) 

Where X, are eigenvalues and v, are eigenvectors of FDT Hessian matrix. In practice, a 

dynamic programming-based algorithm was developed to extract ridge voxels on the 

basis of ridge definition [26]. Details of the algorithm are presented in the following. 

Consider 26 adjacent neighbours of any voxel p. The directions are defined as direct 

paths which link three voxels and connect two neighbours of p by assuming p is the 

middle voxel of the path [26]. 

The algorithm for extracting the skeleton of object is summarized as follows: 

(1) compute the FDT of the object; 

(2) push object's voxels into Q (i.e. the voxels with non-zero FDT value); 

(3) repeat steps 4-8 while Q is not empty: 

(4) remove a point p from Q; 

(5) if FDT(p) is maximum in all directions, then p is labelled as a peak; 
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(6) if FDT(p) is maximum in one direction and minimum in perpendicular direction then 

p is labelled as a saddle; 

(7) if FDT(p) is maximum in at least one direction and equal in one or more direction 

then p is labelled as a flat ridge; 

(8) if FDT(p)is maximum in at least one direction and is not equal in any direction, then p 

is labelled as a non-flat ridge; 

(9) mark the obtained local maxima voxels (peak, saddle, flat and non-flat ridge) as 

skeleton voxels; 

(10) output the skeleton of object; 

After extracting the skeleton of object, binary images were reconstructed by a union of 

spheres centred at each skeleton voxel with radius equal to FDT value of that voxel [33]. 

The skeleton is then used for the reconstruction of scaffolds. Once done, the specifics 

surface can be determined. 

3.3.7 Computing specific surface by marching cube algorithm 

The reconstructed images were then used as input for the CT-Analyser software (Version 

1.5.0.0, SKYSCAN, Belgium). This software computes the surface area of the porous 

bone substitutes by applying the so-called marching cube algorithm. In this algorithm the 

interface surface between the cavities and solid phase (volume surface) is covered with 

triangles. Consequently, the algorithm smoothens the surface and enables an estimation 

of the volume surface [34]. 

3.4 Results 

Six samples of each of the four scaffold groups were analyzed (Table 3-1). The 

reconstructed structures of bone substitutes indicate that pore size varied substantially 

among substitutes as a result of changing the emulsifier concentration (Figure 3-2). 
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Figure 3-2 Four 3-D reconstructed structure of bone substitutes produced by different 

emulsifier concentrations. These structures were extracted from the middle of the 

samples. 

The porosity of bone substitutes remains in the range of 48-55% (Table 3-1), which 

proves the primary hypothesis of fabricating the scaffolds with constant porosity that 

provides reproducible scaffolds. Specific details on the variability are given in Table 3-1. 

Figure 3-3 shows examples of the thresholded images in 2-D and the threshold values 

used for each bone substitutes. The two threshold values, Thc and ThM, were slightly 

changed between the substitutes, mainly because of the different histograms of each bone 

substitute group. 
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Figure 3-3 2-D fuzzified images selected from first specimen of each group, the threshold 

values, The and ThM, are (a) sample A, Thc=35 and TIIM=50, (b) sample B, Thc=30 and 

ThM=55, (c) sample C, Thc=30 and ThM=55 and (d) sample D, Thc=30 and T1IM=50. 

FDT map of scaffolds are depicted in Figure 3-4. In FDT maps, the colour at one voxel of 

the pore reveal the shortest distance from this given voxel (in the pore or object) to the 

pore walls (material or non-object) in voxel units. As the scaffold pore size varies from 

group A to group D, the maximum FDT value changes for each type of scaffold. The 

colour scale was adapted accordingly, with the goal of having maximum FDT values in 

red for all scaffolds. The FDT range is changing from 2-7 voxels for sample A to 2-8 

voxels for sample B, 2-14 voxels for sample C and 2-33 voxels for sample D (Figure 

3-4). The voxel size was 30x30x30 um. 
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(a) (b) 

Figure 3-4 FDT maps of (a) Sample A, (b) Sample B, (c) Sample C and (d) Sample D. 

The FDT values are in voxel unit. 

The results of pore size distribution of the four groups based on their frequency are 

shown in Figure 3-5. For the two smallest pore sizes, groups A and B, the distribution of 

pore size was narrow, with average diameters of 128±3 and 195±3 urn, respectively. For 

the two largest pore sizes, group C and D, the pore size distribution was wider, with 

average diameters of 364±5 and 871±7 urn, respectively. The small ratio between the 

standard deviation of the pore size and the average pore size shows how small the 

variation between the samples of each group was (variability < 2.5%). 
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Figure 3-6 shows the pore size distributions after applying exclusion criteria. The 

sensitivity of the average pore size and pore size distribution to truncated pores at the 

boundaries change among the samples. For a constant sample size, due to the number of 

pores, samples with large pore sizes are more affected by truncated pores than those with 

small pore sizes. The pore size distributions of samples A and B do not change 

significantly by excluding the truncated pores. The pore size distributions of samples C in 

Figure 3-6 show that, most of truncated pores are less than 300 urn in size, while most of 

those in sample D are less than 500 um. 

Figure 3-7 shows the pore size distribution of all samples based on their volume-weighted 

values. The volume-based distribution of pore size for samples C and D show almost 

normal distribution. The average volume-based pore size for each sample is listed in 

Table 3-1. Average volume-based pore size increased from 128 to 170 um for sample A, 

195 to 217u.m for sample B, 364 to 416 (am for sample C and 871 to 972 (am for sample 

D. 

The interconnection size distributions of the bone substitutes are depicted in Figure 3-8. 

Similar to the pore size distribution, the interconnection size distribution hardly varied 

within each size group. The average size of interconnections of samples A, B and C were 

in the range of 61-65 u,m but this value increased to 85 urn for sample D (Table 3-1). The 

interconnection size variability seems to increase with larger pores, reaching up to 8.8%. 

The resulting surface density, defined by the surface area divided by the total volume, 

decreased from 11.5±0.2 mm"1 for samples A to 3.3±0.1 mm"1 for samples D (Table 3-1). 

63 



Geometric Analysis of Porous Bone Substitutes 

16 

14 

1 * 

1 » 
3 
o 

I' 
5. 
§ 6 
I 4 

2 

P 

-

-

- J 

4 

i'f 

100 

1 
1 1 

NK 

soo 
Pore Size ( m) 

— -

300 

1 
- SsfnpisA 1 

SefTtpUsA 2 
SsmpfeA* 

~ SsmpiaA S 

400 

(a) 

400 

Pore Sue (nm) 

(b) 

200 300 

Po« Sne ( m) 

JS 

20 

„ 

4 
c IS 

8 
E 

S? io 
5 
X 

5 

0 

r 

3? 

500 

# 

/ 

fi 

Pete Sae { 

\ \ 

1000 

"0 

_JIL™ 

* 

m 

$*rep»CM 
S9mpf*D-2 
SafB08D-3 j 
$3rfipE*£M ' 

' Sampf»&-5 
- SampfaO 6 

1800 

(c) (d) 

Figure 3-5 Number-based pore size distribution of bone substitute structures (before 

applying exclusion conditions) derived from max-min operation and FDT values, (a) 

Group A; (b) Group B; (c) Group C; (d) Group D. 
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Figure 3-6 Number-based pore size distribution of bone substitute structures after 

applying exclusion criteria, (a) Group A; (b) Group B; (c) Group C, (d) Group D. 
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Table 3-1 Geometrical properties of bone substitutes obtained from introduced image processing tools. 

Sample 

Sample A 

averaae 
SD 

variability 

Sample B 

averaae 
SD 

variability 

Sample C 

averaae 
SD 

variability 

Sample D 

averaae 
SD 

variability 

Speciment 

SamDleA-1 
SamDleA-2 
SamDleA-3 
SamDleA-4 
SamDleA-5 
SampleA-6 

SamoleB-1 
SamoleB-2 
SamoleB-3 
SamoleB-4 
SamoleB-5 
SamoleB-6 

SamoleC-1 
SamDleC-2 

SampleC-3 
SamDleC-4 
SamDleC-5 
SamDleC-6 

SamDleD-1 
SamDleD-2 
SamDleD-3 
SamDleD-4 
SamDleD-5 
SamDleD-6 

average 
pore size ( 

iim) 

128 
124 
131 
129 
131 
126 

128.1 
2.6 
2.1 
193 
195 
191 
204 
191 
195 

194.8 
4.8 
2.5 
364 
357 

360 
372 
363 
367 

363.7 
5.1 
1.4 
875 
860 
876 
871 
867 
877 

871.1 
6.7 
0.8 

SD pore size 

42 
42" 
41 
43 
40 
43 

38 
38 
38 
39 
37 
37 

81 
81 

81 
94 
80 
85 

198 
199 
225 
190 
205 
185 

average pore 
size (urn) 

volume base 

171 
168 
169 
172 
170 
172 

170.3 
1.7 
1.0 
219 
217 
213 
227 
213 
215 

217.3 
5.2 
2.4 
408 
402 

406 
452 
406 
420 

415.8 
18.8 
4.5 
972 
967 
993 
965 
973 
963 

972.3 
10.9 
1.1 

average 
Interconnection size ( 

61 
61 
62 
62 
62 
62 

61.7 
0.5 
0.9 
62 
66 
62 
70 
64 
65 

64.9 
2.9 
4.4 
65 
66 

64 
72 
62 
64 

65.5 
3.4 
5.1 
93 
79 
87 
76 
81 
94 

85.2 
7.6 
8.9 

SD 
Interconn
ection size 

28 
28 
28 
29 
28 
28 

28 
30 
27 
33 
29 
29 

40 
41 

37 
45 
37 
39 

84 
87 
95 
84 
81 
98 

Porosity 

(%) 

50 
48 
52 
51 
52 
48 

50.2 
1.6 
3.2 
52 
54 
51 
55 
52 
53 

52.7 
1.3 
2.5 
54 
53 

53 
55 
54 
54 

53.7 
0.7 
1.2 
52 
53 
53 
52 
53 
53 

52.4 
0.6 
1.1 

Solid Phase 
surface/volume ratio 

(BS/BV) 1/mm 
23 
21 
24 
23 
24 
21 

22.6 
1.2 
5.2 
21 
22 
21 
21 
21 
22 

21.4 
0.2 
1.1 
14 
14 

14 
14 
15 
15 

14.3 
0.3 
2.1 
7 
7 
7 
7 
7 
7 

7.1 
0.1 
1.6 

surface density 
(BS/TV) 1/mm 

12 
11 
12 
12 
11 
11 

11.5 
0.2 
1.5 
10 
10 
10 
9 
10 
10 

10.0 
0.3 
2.8 
7 
6 

7 
6 
7 
7 

6.5 
0.2 
2.6 
3 
3 
3 
3 
3 
3 

3.3 
0.1 
2.5 
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3.5 Discussion 

The objective of this paper was to use the fuzzy image processing tools to analyse the 

pore structure of porous bone substitute, in addition, an algorithm was developed to 

calculate the average substitute interconnection size and distribution. The results obtained 

from the algorithm were first used to examine the reproducibility of the substitute 

fabrication. 

Specifically, the emulsion method used allowed a large degree of design control, which is 

of interest to biomaterial scientists. For example, among the substitutes characterized in 

this paper, which all had a porosity of approximately 52%, the pore size varied by a 

factor of 7, interconnection size by a factor of 1.4 and specific surface by a factor of 4. 

This method could thus be a useful approach with which to investigate the interaction 

between the biological response to implantation and geometric features of the substitute. 

As shown in Table 3-1, the small standard deviations showed little variation between the 

samples of each group. The variability (percentage ratio of the standard deviation to the 

mean value) in the geometric parameters of specimens within the groups was lower than 

5.5% except for interconnection size of group D, which increased up to 8.9%. These 

small values and deviations between pore size and interconnection size distribution of 

specimens in each group (Figure 3-5 to Figure 3:8) are evidence of the reproducibility of 

fabrication method. 

The algorithm increases the usefulness of U.CT to biomaterial scientists. By using u,CT, 

biomaterial scientists are now in position to acquire geometric parameters with good 

accuracy. The recent publication by van Lenthe et al. [15] describes this approach 

extensively. Our novel contribution in this field is the introduction of the FDT method, 

which enhances the accuracy of results due to the fuzzy nature of u.CT [24, 35]. 

Moreover, different approaches have been used to determine the pore size distribution 

and these different approaches and the corresponding results are discussed herein. 

Particular attention is also paid to the link between the threshold values and the results. 
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The main added value is the new thresholding technique, which provides a method to 

recognize the fuzzy border of objects by allowing for more accurate segmentation. FDT 

does this specifically by using, instead a single threshold for segmentation, as in DT, a 

lower and an upper threshold value for the fuzzy zone. Intelligent methods can then be 

used to segment this zone and calculate an FDT map. For small pore size samples where 

the pore size is in the same size range as the voxel size, selecting single threshold value 

based on grey value histogram to distinguish between an object (pore space) and a non-

object (material) is particularly difficult, whereas selecting two threshold values enables a 

fuzzy interval to be shown between the object and non-object. The new FDT algorithm 

then calculates the shortest distance from each object voxel to non-object by considering 

the fuzzy interval or fuzzified values. Group A, which is the group with the smallest pore 

size, was sensitive to the threshold values. For example, reducing the lower threshold 

value of group A, The, to a grey value of 30 led to a reduction in the average porosity of 

group A from 52±2% to 40±1% and of the pore size from to 125±3 to 108 ±1.9 urn. 

Further, we applied to two samples of the small-size substitute groups A and B a well-

established subvoxelization technique designed for accurate measurement of the limited-

resolution trabecular bone images [36]. The principal strategy consists of subdividing 

voxels and assigning voxel intensities to each subvoxel on the basis of local 

neighbourhood criteria and strict mass conservation. Accordingly, the changes in 

porosity in both groups after subvoxelization are less than 5% (Table 3-2). However, the 

local measures of pore and interconnection size are reduced more substantially (Table 

3-2). The reason for this reduction is that subvoxelization makes smaller pores and 

interconnections visible [36]. 

In addition to the introduction of fuzzy mapping of the pores, we applied a new 

algorithm, the so called max-min operator, which can identify individual pores and their 

interconnections; this is a new method to recognize pores and interconnections. Also it 

should be noted that by using the advance image-processing tools the results are 

reasonable for small pore sizes. 
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Table 3-2 Geometric properties before and after subvoxelization process. 

Group 

A 

B 

Sample 

Name 

Sample A-1 

Sample A-3 

Sample B-1 

Sample B-2 

Before subvoxelization process 

Average maximum 

pore size (urn) 

127.74 ±42.01 

131.43 ±41.05 

193.29 ±38.20 

195.32 ±37.71 

Average interconnection 

size (urn) 

61.49 ±27.91 

62.19 ±28.11 

62.38 ± 27.56 

65.86 ±30.10 

Porosity (%) 

50.37 

51.62 

51.93 

53.54 

After subvoxelization process 

Average maximum pore 

size (urn) 

110.96 ±36.09 

113.93 ±35.43 

170.62 ±43.23 

172.31 ±42.06 

Average interconnection size 

(Mm) 

50.52 ± 30.43 

51.39 ±30.70 

51.39 ±32.01 

55.12 ±34.37 

Porosity (%) 

52.49 

53.60 

52.84 

54.33 
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Truncated pores at sample boundaries can affect the distribution and average pore size 

[37]. This effect is significantly increased when the volume of sample is limited in 

comparison with the pore size. In other words, by increasing the ratio of average pore size 

to sample size, the error resulting from the truncated pores raised, comparison of the 

average pore size before and after exclusion shows the different of 13%, 7%, 3% and 2% 

for average pore size of samples D, C, B and A respectively. As expected for the same 

sample size, the truncation effect is considerably increased for samples D and C and 

needs to be corrected. The exclusion criteria that are a part of our image processing 

algorithm make this correction to produce a reliable estimate of the average pore size. 

Beside the geometric analysis, image processing tools allow the determination of the 

transport properties of the substitute which are often quoted to be very important for 

tissue engineering [8]; more details of this are provided in Ref. [38]. Specifically, the 

transport properties of our substitutes were calculated using the Lattice-Boltzmann 

simulation, the results of which are shown in Table 3-3. Figure 3-9 shows the velocity 

map resulting from fluid transport simulation. The stream lines which indicate the 

direction of flow through the structure are also shown in the same figure. Extracting the 

stream lines help us to estimate the tortuosity of a structure and thereby understand how 

much easily the fluid (nutrient and blood cells) can pass through the bone substitute. 

Table 3-3 Summary of average, standard deviation and variation of permeability values 

of samples in each group 

Permeability *10"lu(m2) 

Average 

Standard deviation 

Variation (%) 

Sample A 

1.14 

0.19 

17.10 

Sample B 

2.20 

0.39 

17.85 

Sample C 

3.67 

0.44 

12.04 

Sample D 

4.07 

0.75 

18.38 
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Figure 3-9 Velocity map of bone substitute (sample D-l) with stream lines show the flow 

direction through the bone substitute structure 

Interestingly, for the substitutes with larger pore sizes (group C and D), a relatively large 

variation in pore size and distribution can be seen. In addition, several populations exist 

within their pore size distribution: for group C, there is one population around 250 urn 

and another one around 400 um, while for group D these populations are around 250 urn 

and 900 um. It is clear that the number of populations decreases the homogeneity of the 

structure. The distribution of pores in the case of substitutes with smaller pore size is 

narrower than that of the larger pore size samples and it is similar to normal distribution. 

These observations demonstrate that substitutes in group A and B have a more 

homogenous structure while the homogeneity is less in group C and D. 

In order to compare the results based on FDT with results obtained from DT and 

Hildebrand method, which is based on the weighting the local size according to their 

volume fraction the volume-based average pore size was calculated. A close correlation 

was found between our results and earlier results presented in Ref. [8]. The distribution of 
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volume-based pore size presented in Figure 3-7 shows the volume-based calculation 

results in almost normal distribution of pore size among all samples. 

The size of interconnections is assumed to have an important impact on nutrient 

transport, vascularization and bone migration. According to Lu et al. [3], an 

interconnection size of over 50 u.m is suitable for bone formation inside the pores. The 

results of interconnection size distribution (Figure 3-8) indicate that more than 60% of 

interconnections in specimens of group D and 50% of interconnections in specimens of 

groups A, B and C are larger than 50 urn. 

One of the important parameters reported to enhance the functionality of bone substitutes 

is surface area because it allows for cell interaction. A large surface to volume ratio 

would assist bone ingrowth. Peyrin et al. [21] observed that samples with larger surface-

to-volume ratio and connectivity showed greater bone ingrowth. According to the results, 

the surface density of the substitutes decreased by increasing pore size (Figure 3-10). 

Also increasing the pore and interconnection sizes increased permeability (Figure 3-10). 

Both surface density and permeability are effective factors in bone substitute study, so 

designing bone substitutes with sufficient surface density and permeability needs to 

consider the geometry of bone substitute that shows the value of geometric 

characterization. 

The characterization tools presented in this study to determine geometric parameters can 

be helpful in the design scaffolds. They can also help us to better understand the 

biological response and resorption behaviour of substitute [28], this will be our follow-up 

investigation. 
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different bone substitute groups, (b) Bone substitute permeability and surface density 

versus four different bone substitute groups. 
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The characterization tools presented in this study to determine the geometric parameters, 

can be helpful to design scaffolds and to better understand the biological response and 

resorption behaviour of substitute [28], this will be our follow-up investigation. 

3.6 Reference 

[1] Hutmacher DW, Scaffolds in tissue engineering bone and cartilage. Biomaterials 

2000;21(24):2529-43. 

[2] Agrawal CM, Ray RB, Biodegradable polymeric scaffolds for musculoskeletal tissue 

engineering. J Biomed Mater Res 2001,55(2):141-50. 

[3] Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, et al. Role of 

interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J 

Mater Sci Mater Med 1999;10(2):111-20. 

[4] Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, et 

al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium 

phosphate bioceramics. Biomaterials 2006;27(17):3230-7. 

[5] Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium 

phosphate ceramics: influence of macropore diameter and macroporosity percentage on 

bone ingrowth. Biomaterials 1998;19(l-3): 133-9. 

[6] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. 

Biomaterials 2005;26(27):5474-91. 

[7] Li Sh, de Wijn JR, Li J, Layrolle P, de Groot K. Macroporous biphasic calcium 

phosphate scaffold with high permeability/porosity ratio. Tissue Eng 2003;9(3):535-48. 

[8] Bohner M, van Lenthe GH, Gruenenfelder S, Hirsiger W, Evison R, Mueller R. 

Synthesis and characterization of porous P-tricalcium phosphate blocks. Biomaterials 

2005;26(31):6099-105. 

76 



Geometric Analysis of Porous Bone Substitutes 

[9] Jones JR, Poologasundarampillai G, Atwood RC, Bernard D, Lee PD. Non

destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials 

2007;28(7): 1404-13. 

[10] Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat 

size and connectivity determine bone and tissue ingrowth into porous implants: three-

dimensional micro-CT based structural analyses of porous bioactive titanium implants. 

Biomaterials 2006;27(35):5892-900. 

[11] Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA. 

Architecture and properties of anisotropic polymer composite scaffolds for bone tissue 

engineering. Biomaterials 2006;27(6):905-16. 

[12] Ruegsegger P, Koller B, Mu" Her R. A microtomographic system for the 

nondestructive evaluation of bone architecture. Calcif Tissue Int 1996;58(l):24-9. 

[13] Moore MJ, Jabbari E, Ritman EL, Lu L, Currier BL, Windebank AJ, et al. 

Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-

computed tomography. J Biomed Mater Res 2004;71(2):258-67. 

[14] Lin ASP, Barrows ThH, Cartmell SH, Guldberg RE. Microarchitectural and 

mechanical characterization of oriented porous polymer scaffolds. Biomaterials 

2003;24(3):481-89. 

[15] van Lenthe GH, Hagenmueller H, Bohner M, Hollister SJ, Meinel L, Mueller R. 

Nondestructive micro-computed tomography for biological imaging and quantification of 

scaffold-bone interaction in vivo. Biomaterials 2007;28(15):2479-90. 

[16] Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in 

the characterization of scaffolds. Biomaterials 2006;27(8): 1362-76. 

[17] Fierz FC, Beckmann F, Huser M, Irsen SH, Leukers B,Witte F, et al. The 

morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 

2008;29(28):3799-806. 

77 



Geometric Analysis of Porous Bone Substitutes 

[18] Atwood RC, Jones JR, Lee PD, Hench LL. Analysis of pore interconnectivity in 

bioactive glass foams using X-ray microtomography. Scripta Mater 2004;51(11):1029-

1033. 

[19] Hildebrand T, Riiegsegger P. A new method for the model-independent assessment 

of thickness in three-dimensional images. J Microscopy 1997;185:67-75. 

[20] Muller B, Beckmann F, Huser M, Maspero F, Szekely G, Ruffieux K, et al. 

Nondestructive three-dimensional evaluation of a polymer sponge by micro-tomography 

using synchrotron radiation. Biomol Eng 2002;19:73-8. 

[21] Peyrin F, Mastrogiacomo M, Cancedda R, Martinetti R. SEM and 3D synchrotron 

radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering 

applications. Biotechnol Bioeng 2007;97(3):638-48. 

[22] Martin-Badosa E, Elmoutaouakkil A, Nuzzo S, Amblard D, Vico L, Peyrin F. A 

method for the automatic characterization of bone architecture in 3D mice 

microtomographic images. Computerized medical imaging and graphics 2003;27:447-58. 

[23] Borgefors G, Svensson S. Fuzzy border distance transform and their use in 2D 

skeletonization. IEEE 2002;1:180-83. 

[24] Saha PK, Wehrli FW, Gomberg BR. Fuzzy distance transform: theory, algorithms 

and applications. Comput Vis Image Understanding 2002;86(3): 171 -90. 

[25] Sladoje N, Nystrom I, Saha PK. Measurements of digitized objects with fuzzy 

borders in 2D and 3D. Image Vis Computing 2005;23(2):123-32 

[26] Darabi A, Chandelie F, Baroud G. Thickness analysis and reconstruction of 

trabecular bone and bone substitute microstructure based on fuzzy distance map using 

both ridge and thinning skeletonization. Can J Elect Compt Eng 2009;34(l-2):57-62. 

[27] von Doernberg MC, von Rechenberg B, Bohner M, Gruenenfelder S, van Lenthe 

GH, Mueller R, et al. In vivo behavior of calcium phosphate scaffolds with four different 

pore sizes. Biomaterials 2006;27(30):5186-98. 

78 



Geometric Analysis of Porous Bone Substitutes 

[28] Bohner M, Baumgart F. Theoretical model to determine the effects of geometrical 

factors on the resorption of calcium phosphate bone substitutes. Biomaterials 

2004;25(17):3569-82. 

[29] Bohner M. Calcium phosphate emulsions: possible applications. Key Eng Mater 

2001;192-195:765-8. 

[30] Niblack CW, Gibbons PB, Capson DW. Generating skeletons and centrelines from 

the distance transform. Graphical models and image processing 1992;54(5):420-37. 

[31] Haralick RJVI, Shapiro LG. Computer and robot vision. Addison Wesley Pub. Co. 

1992-1993. 

[32] Lopez AM, Lumbreras F, Serrat J, Villanueva JJ. Evaluation of methods for ridge 

and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 

1999; 21(4):327-35. 

[33] Gagvani N, Silver D. Parameter-controlled volume thinning. Graphical models and 

image processing 1999;61(3):149-64. 

[34] Lorensen WE, Cline HE. Marching cubes: a high resolution 3D source construction 

algorithm. Comput Graphics 1987;21(4):163-9. 

[35] Darabi A, Chandelier F, Baroud G. Morphometric analysis of trabecular bone 

thickness using different algorithms. Can J Elect Comput Eng 2007; 32(3): 157-63. 

[36] Hwang SN, Wehrli FW. Subvoxel processing: a method for reducing partial volume 

blurring with application to in vivo MR images of trabecular bone. Magnetic Resonance 

in Medicine 2002;47(5):948-957. 

[37] Munch B, Gasser P, Holzer L, Flatt R. FIB-nanotomography of particulate systems -

part II: particle recognition and effect of boundary truncation. J Am Ceram Soc 

2006;89(8):2586-2595. 

79 



Geometric Analysis of Porous Bone Substitutes 

[38] Zeiser T, Bashoorzadeh M, Darabi A, Baroud G. Pore-scale analysis of Newtonian 

flow in the explicit geometry of vertebral trabecular bones using lattice boltzmann 

simulation. J Eng Med 2008;222(H2): 185-94. 

80 



Effect of Subvoxel Process on Geometric Analysis 

CHAPTER 4 

Effect of subvoxel process on non-destructive 

characterization of bone substitutes 

M. Bashoor-Zadeh1, G. Baroud1, M. Bohner2 

(1) Laboratoire de Biomecanique, Departement de Genie, Universite de Sherbrooke, 

Sherbrooke, QC, Canada J1K 2R1, (2) Dr Robert Mathys Foundation, Bettlach, 

Switzerland 

To be submitted to one of the field journals 

Corresponding author: 

Gamal Baroud, Ph.D., Tenured Professor 

Canada Research Chair in Skeletal Reconstruction and Biomedical Engineering 

Director, Biomechanics Laboratory 

Tel.: (819) 821-8000 ext. 61344 

Fax:(819)821-7163 

U N I V E R S I T E DE S H E R B R O O K E 

Faculte de genie - Departement de genie mecanique 

2500 boul. Universite, Sherbrooke, QC, Canada J1K 2R1 

81 



Effect ofSubvoxel Process on Geometric Analysis 

4.1 Abstract 

Bone substitute are increasingly the gold standard in the bone repair and spinal fusion 

surgeries. Important geometric features of the bone substitute include pore size and 

interconnection between the pores. Calcium-phosphate Substitutes of four different pore 

sizes and interconnection, yet of constant porosity, produced by the emulsion method, 

and scanned with micro-computed tomography device, were the focus of this study. In 

the previous study, we introduce fuzzy-based image treatment methods to enhance the 

characterization accuracy. The fuzzy methods particularly improved the characterization 

accuracy for substitute featuring small pore sizes. This study resorts to numerical and 

hardware subvoxelization methods to further improve the characterization of bone 

substitutes in terms of the pore and interconnection sizes. Furthermore, we have observed 

some boundary effects due to the details obtained with the subvoxelization that can yield 

misleading results in the characterization process of the pore interconnection sizes. We 

also present in this article the approach to eliminate the boundary effects. Further, the 

hardware subvoxelization, i.e. the higher resolution scanning, significantly improves the 

histograms and therefore allowed for adequate segmentation and accurate pore size and 

interconnection characterization. Comparing the results obtained from numerical and 

hardware subvoxelization datasets revealed a minor difference of less than 2.5% for the 

porosity values. The difference for the pore sizes increased up to 10%. Considerable 

difference of up to 35-50% was found for interconnection sizes of samples. The results 

demonstrated significant improvement using both numerical and hardware 

subvoxelization. In particular, the subvoxelization yielded interconnection sizes 

significantly below 50 micron and yet in-vivo biological results of our earlier studies 

showed that these substitute showed adequate bone ingrowth. Material scientists should 

be aware of the complexity of pore sizes measurements and characterization and future 

work will show whether or not the 50-micron interconnection size is a pre- requisite for 

adequate bone repair. 
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4.2 Introduction 

Geometric features of bone substitutes have been reported to have a great impact on the 

biological response of bone in the healing process. The accurate characterization of the 

substitute microstructure has therefore received significant attention for designing an 

effective scaffold for clinical application. 

The use of micro-computed tomography (uCT) has grown significantly for the non

invasive study of trabecular bone and porous bone substitutes [1-3]. Literature shows that 

the image resolution has a significant impact on accuracy of structural analysis [4]. In 

particular, when the voxel size is relatively large compared to the structure of interest, it 

becomes difficult to obtain accurate geometric information. Therefore, there is increased 

interest in studying the effect of resolution and segmentation methods on the accuracy 

geometric parameters of substitute. 

In the following paragraphs, we briefly review the researches on the relation between 

voxel size and geometric parameters. A number of studies focused on the impact of voxel 

size on trabecular bone characterization using \LCT and/or magnetic resonance (MR) 

images [5-12]. In these comparative studies, the accuracy of trabecular bone structural 

parameters obtained from MR images were compared with high-resolution uCT images 

as reference images [5-7]. Specifically, Majumdar et al. [5] scanned trabecular bone 

specimens with MR scanner at 156x156x300 urn voxel size and high resolution X-ray 

topographic microscopy scanner at 18um isotropic voxel size. They showed that 

structural parameters such as trabecular thickness and volume fraction tend to be 

increasingly overestimated with lower resolution. In the study of Last et al. [6], the 

architectural parameters of calcaneus specimens were measured by using MR images of 

66um voxel size and high-resolution micro tomography images of lOum voxel size. The 

results showed that the parameters quantified from MR images were biased towards 

overestimation as compared to their corresponding values from micro tomography data. 

Another approach taken in trabecular bone resolution studies has been often to acquire 

the high-resolution images by scanning the samples and then to subsequently produce 
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low-resolution images by artificial image degradation methods. The artificial image 

degradation methods combine a group of neighboring voxels into one voxel with 

intensity equal to the mean intensity of voxel group [8-11]. Tabor [8] studied the error of 

estimating the trabecular bone structural parameters as a function of pixel size. In this 

study, the original binary images with resolution of 30 um were artificially degraded to 

larger pixel size of 150 \im. In the study of Kothari et al. [9] the original scanned images 

of 40 um resolution were degraded in all direction to create low resolution images with 

isotropic and non-isotropic voxel size and then the dependency of bone structural 

parameters on slice thickness were investigated. Consistent with other studies [5-7], this 

study showed that trabecular thickness increased with increasing the slice thickness. 

Muller et al. [11] used trabecular bone images scanned at 14 um and then artificially 

increase the voxel size by the factors ranging from 2 to 20. They have shown the same 

trends of overestimation of trabecular thickness and size separation compared to Kothari 

[9]. The above-mentioned studies demonstrated that the index resolution significantly 

affect the evaluation of structural parameters of bone. Specifically, when using \iCT at 

higher resolution, the effect of partial volume blurring is decreased and more accurate 

structural and geometric information is possible to obtain. 

In addition to the use of fuzzy-based segmentation, two approaches can be used to 

improve the characterization of the structure of scaffolds: (i) scanning the sample directly 

at a higher resolution, leading to higher scanning cost and (ii) decreasing the voxel size 

artificially by using subvoxelization algorithms, in which the high resolution images are 

subsequently generated by dividing voxels into subvoxels. This does not cause any 

changes to the histograms in the images. 

There exist a number of algorithms in the literature to decrease the voxel size. For 

example, the linear interpolation method calculates the material-volume fraction (MVF) 

of a voxel located between two adjacent voxels as the average MVF of the two voxels 

[4]. In addition the Bayesian subvoxel approach classified the subvoxels based on Gibbs 

prior distribution. According to this method the output is binarized image, in other words 

the subvoxels are assigned to object or non-object [13]. Hwang and Wehrli [4] also 
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developed the "subvoxel processing" algorithm to divide voxels into subvoxels. The 

intensity of each subvoxel is then calculated based on local neighboring intensities with 

due attention to conservation principles. The output of this algorithm is fuzzy images 

because the subvoxel processing assigned partial fraction to each subvoxel [4]. They also 

showed this method is superior to the interpolation method and therefore it is adopted in 

this study. 

The previous studies have mainly investigated the impact of voxel size on quantification 

of trabecular bone structure. To our knowledge, no study has shown the relation between 

the voxel size and geometric parameters of bone substitutes, particularly the pore and 

interconnection size. 

Generally, in porous bone substitutes, pores provide space for bone formation and cell 

attachment, while pore interconnections act as a path for cell movement, nutrient 

transport and vascularization [16, 22, 23]. The clinical observation showed that the cells 

could not penetrate to the pores that have narrow interconnections toward the periphery 

of scaffold [16]. Hence, an effective bone substitute should have interconnected structure 

with adequate interconnection size. 

Therefore, due to significant effect of pore and interconnection size of a substitute on 

bone formation and cellular resorption, this article focused on improving the 

characterization of these parameters. 

Further, in this study four classes of porous bone substitutes of variable geometric 

features were analyzed at different resolutions (generated artificially or by direct high 

resolution scanning) to examine the effect of spatial resolution on the pore size and 

interconnection size. 

In our pilot studies, the subvoxel process algorithm of Hwang and Wehrli [4] was applied 

to the four classes of bone substitutes. Overall, the pore size decreased with decreasing 

the voxel size. However, we have observed surprising and confusing behaviour with 

respect to the interconnection size in that it showed different trends among classes. 

Specifically, the interconnection size appeared to reduce for small pore size samples with 
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a transient change towards high interconnection size for large pore samples. Therefore, 

the authors have decided to examine this observation by comparing the algorithm results 

with direct scanning results using of higher resolution, to further examine the 

interconnection size dependency upon voxel size. Our underlying hypothesis has been 

that some of the geometric features such as surface irregularities of the substitutes that 

may appear at higher resolution cause this conflicting result. 

We follow these additional effects to clarify the confusion that is the interest of many 

material scientists to reach accurate pore size and interconnection characterization. 

4.3 Material and Method 

4.3.1 Scaffold fabrication and preparation 

Four classes of porous P-tricalcium phosphate (p-TCP) bone substitutes were fabricated 

by the calcium phosphate emulsion method [18, 19]. Based on this method, the calcium 

phosphate cement pastes were produced by mixing the cement components, and then the 

oil droplets were dispersed in the resulting paste to form the pores and interconnections. 

Variations in emulsifier concentration led to different macropore sizes, while the volume 

fraction was constant. The resulting paste was then moulded, after hardening; the samples 

were cleaned, dried and sintered at 1250 °C. The samples were then machined to produce 

the cylinders with 8mm diameter and 13 mm height. Four samples of calcium phosphate 

bone substitutes with variable geometric features were randomly selected and analyzed at 

different resolutions to examine the effect of special resolution on the evaluation of 

structural parameters. 

4.3.2 Image acquisition 

Four cylindrical samples of P-TCP bone substitutes were scanned with SKYSCAN1172 

uCT scanner (Desktop x-ray micro tomography, Aartselaar Belgium). Each sample was 

scanned at three different resolution level to generate the 7.5, 15 and 30 urn isotropic 

voxel size. 
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For all configurations the x-ray tube voltage and current were fixed at 55 Kv and 181 uA, 

respectively. A cupper plus Aluminum filter was used to cut the soft x-rays and 

consequently reduce the beam hardening effects. Also, a frame average of four and 

rotation step of 0.4 degree were set within an angular range of 360 degree, therefore, a 

total of 900 radiographic images were acquired for each sample at different resolution 

level. The total scanning time varied approximately from 30 to 100 min, depending on 

the resolution level. As the resolution increased, the acquisition time increased. 

After acquiring the images, NRecon software (VI5.1.5) was used to reconstruct 3D 

structure from 2D radiographic images and generate 2D cross sectional images. 

4.3.3 Subvoxelization process 

The low-resolution images (30 urn) were submitted to a subvoxel-processing algorithm 

established by Hwang and his colleagues [4]. The basic assumptions used to define this 

algorithm are: (a) subvoxels can be assigned to higher volume fraction and (b) continuing 

of material phase [4, 20]. According to this algorithm, each reference voxel was divided 

into eight subvoxels and the allotted grey value of each subvoxel is determined by 

adjacent neighbouring values and strict conservation principles. The detail of the 

algorithm has been described in Ref [4]. Specifically, each subvoxel is weighted based on 

the value of adjacent voxels then the total value of original voxel is distributed between 

the subvoxels according to their normalized weight value. In agreement with the 

conservation principles, the average of the subvoxels' material volume fraction (in this 

study ceramic volume fraction, CVF) will be equal to the CVF of the original voxel. 

Based on this process, the images of 15 urn resolution were artificially generated and 

then analyzed for the pore and interconnection sizes. The results obtained from artificial 

15 \im images compared with ones obtained from 15 \im scanned images. 

4.3.4 Thresholding 

In general manner, the threshold values were selected using the histogram of images and 

visual inspection and comparison to the porosity values of substitute that are known to us 

prior to the thresholding process. Furthermore, the shape of histograms is changed 
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between the samples and resolution levels and therefore establishing a general rule to find 

the threshold values of all cases was difficult. 

When increasing the resolution, the bimodal histograms show distinct phase of calcium 

material and void space as separate peaks. The valley between the two peaks is known as 

fuzzy zone which is corresponding to the intensities of voxels in the border of material 

and pores. The threshold values were selected around the minimum value of fuzzy zone 

to provide the appropriate porosity which is comparable to one measured experimentally. 

Therefore, in the high resolution scanning the threshold values were approximately set in 

the interval of ±30-40% of minimum value of fuzzy zoon. 

The threshold values of unimodal histograms were selected with respect to subjective 

visual inspection based on roundness and sphericity of pores and comparable porosity to 

the one measured experimentally. 

4.3.5 Geometric analysis and verification 

The method used for determining pore and interconnection has been described 

extensively in an earlier article of the authors [15]. Briefly, as a first step, the scanned 

images were fuzzified by a sigmoidal function with two threshold values for the calcium 

material and void space. Specifically, the two thresholds were selected via histographics 

and visual inspection of the fuzzing border between calcium material and void space. By 

applying the sigmoidal function, each voxel, x, of set X will be assigned by a value 

between 0 and 1 which called its membership value, u{x). 

{(x, j i (x)) |xeX,n:X-»[0, l]} (4.1) 

The membership value of voxel determines the fraction of its volume belonging to the 

object. Therefore, the volume of object is obtained as the sum of the membership values 

of all voxels in volume of interest (VOI). Since in this study the object of interest is void 

space, the summation of membership values is defined as the volume of void space. 

Hence the porosity was calculated as the ratio of volume of void space over the total 

number of voxels in VOI [21]. 
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The object's voxel membership was also used to compute the fuzzy distance transform 

(FDT) map. The FDT value at each voxel is defined as the shortest fuzzy distance 

between that voxel and the background. For this purpose, we used the FDT algorithm 

published in Ref. [14]. 

Once the FDT map was determined, the next step is the determination of geometric 

parameters, e.g. pore and interconnection size. Generally, the pore size was defined by 

the diameter of the maximum sphere that can be completely inscribed in a pore and the 

interconnection size was defined as the diameter of opening between two pores [15] 

(Figure 4-1). 

Pore size and interconnection size were then obtained by applying the max-min detection 

algorithm to FDT map. With respect to FDT values, the algorithm finds the local maxima 

and saddle voxels of the FDT map. According to this algorithm, the maxima voxels have 

the largest FDT value among their neighbours and the saddle voxels have at least 

maximum FDT value in one direction and minimum value in the other directions. The 

FDT value at local maxima and saddles corresponds to the radius of pores and 

interconnection, respectively. The average pore size is then calculated using two 

definitions, arithmetic average value (Number-based) and volume weighted average 

value (Volume-based). The average interconnection size is calculated by arithmetic 

averaging the FDT value of saddle voxels. 

When verifying the 2D image produced with high resolution we have noticed that 

decreasing voxel size leads to the detection of local irregularities on pores surface. The 

local surface irregularities affect on FDT values and consequently result in finding extra 

saddle voxels as representative of new interconnections. The extra saddle voxels which 

have a size in the range of local neighbouring maxima are known as virtual 

interconnections (Figure 4-2). Additional conditions have been applied to eliminate the 

effect of such virtual interconnections and modify the average interconnection size based 

on the real interconnections. These conditions exclude saddles which specific percentage 

of their sphere volume (overlapping volume) overlapped by a maxima sphere. The 

overlapping volume of 60, 70, 80 and 90 % were examined. 
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Figure 4-1 (a) Fuzzified image of an individual void space, (b) 2-D fuzzy distance 

transform map; The pore size and interconnection size is defined as the diameter of 

circles in 2-D (or spheres in 3-D) centered at local maxima (white points) and saddle 

voxels (black points), respectively 
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Figure 4-2 (a) Representative illustration of 2-D fuzzified image (left) and fuzzy distance 

transform (FDT) map (right) of individual void space extracted from images of 30 am 

resolution. The local maximums are shown as white points in FDT map. (b) 

Corresponding illustration of 2-D fuzzified image (left) and FDT map (right) after 

applying subvoxel process. The surface irregularities are appeared by decreasing the 

voxel size. These irregularities caused generating local saddle point as representative of 

virtual interconnections in FDT map (black point). 

4.4 Results 

Four samples of different geometric features were analyzed. Figure 4-3 shows 

representative 2D cross sectional images of samples scanned at 30, 15 and 7.5 am 

resolution. Visual comparison of 2D images showed that by decreasing the voxel size, 

pores achieve sharper and more spherical boundary, specifically for samples with small 
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pores (e.g. samples A and B). Hence providing more detail of structure leads to accurate 

measurement of structural parameters. 

The gray-level histograms of samples obtained from scanned images of different 

resolutions are shown in Figure 4-4. The histograms of samples A and B show that the 

scan resolution had considerable impact on distinguishing of two phases (pore and 

material). By increasing the voxel size, the effect of partial volume blurring increased, 

specifically for samples A and B (with small pore size). These artificial effects caused 

two peaks of histogram get closer and /or merge together and the histogram became 

unimodal, Figure 4-4, histograms of samples A and B at 30 \im resolution. The 

histograms of samples C and D illustrated the existence of two peaks corresponding to 

pore and material phase for all configurations even for the 30-micron resolution. 

The gray level histogram of images before and after applying subvoxel process were 

similar, in other words the intensity histograms of 30 um scanned images and 15 um 

artificially generated images presented similar manner. Due to this similarity, the same 

threshold values were used for analysis of both cases (Table 4-1). 

The threshold values and geometric parameters of substitutes for different voxel size and 

methods are summarized in Table 4-1. 

Generally, for all samples, the number-based (N-b) average pore size decreased as the 

voxel size decreased (Table 4-1). Comparing the pore size values calculated at 15 um 

resolution exhibited small difference between the scan and artificial subvoxel process 

results (<10 %) (Table 4-2). 
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Figure 4-3 2-D representative uCT slices of samples A, B, C and D scanned at 30, 15 and 

7.5 um resolutions. 
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Table 4-1 Geometrical properties of bone substitutes presented as a function of resolution and method 

Sample 

< 

"a, 
B 
eS 
(Si 

CQ 

B a 
tSi 

U 

"a, 
1 
C/J 

Q 

B a 

Resolution 

30 

15 

15 

7.5 

30 

15 

15 

7.5 

30 

15 

15 

7.5 

30 

15 

15 

7.5 

Method 

Scan 

Artificial(subvoxel) 

Scan 

Scan 

Scan 

Artificial(subvoxel) 

Scan 

Scan 

Scan 

Artificial(subvoxel) 

Scan 

Scan 

Artificial(subvoxel) 

Artificial 

Scan 

Scan 

Threshold 

values 

55-80 

55-80 

40-90 

40-80 

50-100 

50-100 

45-85 

45-80 

55-100 

55-100 

50-90 

40-75 

50-110 

50-110 

30-80 

Porosity 

50 

52 

54 

55 

52 

53 

54 

54 

52 

54 

54 

55 

53 

53 

54 

Number-based pore 

size (|im) 

135 ±42 

118 ± 37 

107 ±25 

94 ±34 

193 ±39 

170 ±45 

181 ±53 

165 ±64 

365 ± 94 

330 ±108 

353 ±109 

337±125 

909 ± 226 

890 ±236 

899 ±221 

Volume-based 

pore size (|im) 

175 ±52 

152 ±47 

129 ±46 

138 ±67 

217 ±44 

204 ± 48 

220 ± 48 

223 ± 52 

435 ±119 

428 ±134 

438 ±122 

439 ±124 

1030 ±173 

1019± 176 

1015 ±172 

Interconnection 

size (\xm) 

63 ±29 

54 ±32 

40 ±19 

22 ±13 

63 ±28 

52 ±33 

36 ±23 

30 ±29 

62 ±41 

66 ±70 

47 ±53 

66 ±89 

99 ± 106 

234 ± 284 

154±217 
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Table 4-2 Comparing voxel size dependency of structural parameters obtained from scan 

and artificial datasets. Arrows (A, T) indicate direction of change in parameters as voxel 

size decreased. 

Sample 

Sample A 

Sample B 

Sample C 

Sample D 

Method 

15micron-Scan 

15micron-Artificial 

(subvoxel) 

15micron-Scan 

15micron-Artificial 

(subvoxel) 

15micron-Scan 

15micron-Artificial 

(subvoxel) 

15micron-Scan 

15micron-Artificial 

(subvoxel) 

Difference between actual scan results 

and artificial subvoxel process results 

Porosity 

• 

A 

A 

A 

A 

A 

A 

< 2.5% 

Pore size 

T 

T 

T 

T 

T 

T 

T 

T 

< 10% 

Interconnection 

size 

T 

T 

T 

T 

T 

A 

A 

A 

35-50% 

Figure 4-5 shows the pore size distribution of all samples at different scan and artificial 

resolutions. For the two smallest pore sizes (Samples A and B), the pore size distribution 

obtained from high resolution images demonstrated more detail of structure by appearing 

two peaks corresponding to different population of size inside the structure. Pore size 

distributions of sample A (7.5 (am), Figure 4-5a, reveals the two populations of pore size 

around 60 and 120 |im. In addition pore size distribution of sample B, Figure 4-5b, 

displays two populations of pores with two equal peaks at 15 and 7.5 um resolutions. 

Decreasing the voxel size from 15 to 7.5 urn moves the first peak, as representative of 
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smaller pores, from 120 to 90 um Also as demonstrated in Figure 4-5c and Figure 4-5d, 

pore size distribution of samples C and D, the main peaks did not change with resolution 

for these samples. 

The volume-base (V-b) average pore size values showed various trends when the voxel 

size decreased (Table 4-1). 

The average interconnection size showed contrary pattern between the samples. 

Decreasing the voxel size decreased the interconnection size in samples A and B but 

increased the size of interconnection in sample D. 

For sample C, interconnection size obtained from scan and artificial datasets showed 

opposite trends, increasing with artificial dataset and decreasing with scan dataset. In 

addition, for scan dataset, the average interconnection size was dropped down to 47 \im at 

15 nm resolution and then elevated to 66 urn at 7.5 um resolution (Table 4-1). 

The interconnection size distributions of samples (Figure 4-6) show that all main 

interconnections are below 60 |im and also the main peaks shift to the left with 

decreasing the voxel size which made the average interconnection size got smaller. The 

interconnection size distribution of sample D (Figure 4-6d) also shows that the main 

peaks moved to smaller values with subvoxelization (scan and artificial). This means that 

the main features, here being interconnection, get smaller. On the other hand, the average 

interconnection value got larger for sample D, this could be because of the newly 

appearing the large interconnections (interconnections larger than 200 (am). 

98 



Effect ofSubvoxel Process on Geometric Analysis 

V 
3 

F 

% 
£ 

20 

1«i 

m 

<i 

n . -8^ 

\ * 
1 , t 
i ' 

> ) r 1 V ; 
i • n / 
, /'/' 
i r r 
' / / 
* / / 
' V 
,df yt, 

•» 

A 

*\ 
' . \ > ? 

\ S^ 

\* 
* 

b. 

- • * -

v\ 
\ "k 

i 
Ml ~ 

— 30 micro metr res (Scan) 

— 15 micro meter res (Artificial) 
15 micro meter res (Scan) 

7 5 micro meter res (Scan) 

. 

^•^N-^ 

- *— 30 micro metr res (Scan) 

•a—15 micro meter res (Artificial) 
A 15 micro meter res (Scan) 

•*— 7 5 micro meter res (Scan) 

50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 450 
Pore Size (micro meter) Pore Size (micro meter) 

(a) (b) 

100 200 300 400 500 600 700 800 900 
Pore Size (micro meter) 

(c) 

—*—3D micro metr res (Scan) 

— o — 15 micro meter res (Artificial) 
* 15 micro meter tes (Scan) 

4 
// 
if 
l 

h * * ^ Vi i r i 1 i n-r*~ n . M 

(d) 

200 400 600 800 1000 1200 1400 1600 1800 
Pore Size (micro meter) 

Figure 4-5 Number-based pore size distributions of (a) Sample A, (b) Sample B, (c) 

Sample C and (d) Sample D derived from max-min operation and FDT values at different 

scan and artificial resolutions. 
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Figure 4-6 Interconnection size distributions of (a) Sample A, (b) Sample B, (c) Sample 

C and (d) Sample D derived from max-min operation and FDT values at different scan 

and artificial resolutions. 
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Additional conditions were applied to eliminate boundary effects appeared by decreasing 

the voxel size. Accordingly, the virtual interconnections with overlapping volume larger 

than X% (X: 60, 70, 80, 90%) were removed and average interconnection size were 

recalculated. In Figure 4-7, we show the modified average interconnection size versus 

various overlapping volume. Comparing the data of samples A and B (Figure 4-7a and 

Figure 4-7b) with similar results of samples C and D (Figure 4-7c and Figure 4-7d) show 

that the average interconnection size of samples A and B were less influenced by 

boundary effect at small voxel size. 

For all overlapping volume (60-90%), the average interconnection size of sample C 

decreased as the voxel size decreased (Figure 4-7c). In addition, Figure 4-7d show that 

the average interconnection size of sample D (15 urn) (scan and artificial) considerably 

decreased after removing virtual interconnections (with decreasing the overlapping 

volume). Interconnection size distribution of sample D (15 urn) scan and artificial 

dataset, Figure 4-8a and Figure 4-8b, indicate the distributions of interconnections larger 

than 300 urn were mainly affected by removing the overlapping interconnections. In 

other words most of large interconnections were generated by boundary effect or surface 

irregularities. The interconnection size distributions of sample D(30um) (Figure 4-8c) 

show more stability in distribution of interconnections for all cases (60-90% 

overlapping). 
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Figure 4-8 Continue 
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Figure 4-9 presents the difference between the pore size of each sample in terms of 

percent error from 7.5 and 15 um scan. Small pore size samples with higher voxel / pore 

size ratio revealed larger differences. 
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Figure 4-9 Percent errors relative to high resolution datasets versus four different bone 

substitute samples. Voxel size/pore size ratio calculated based on voxel size of 30 um and 

corresponding computed pore size. El (30-15): represent the percent error between the 

pore size analysis at 30 um and 15 um. E2 (15-7.5): represent the percent error between 

the pore size analysis at 15 um and 7.5 um. E3 (30-7.5): represent the percent error 

between the pore size analysis at 30 um and 7.5 um. 
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4.5 Discussion 

The objective of this study was to improve the characterization of pores and 

interconnections size of bone substitutes. Pore and interconnection size are reported to 

have a great impact on vascularization and new bone formation. In such porous material, 

pores provide a location for new bone cells and interconnections provide the ways for cell 

transports [22, 23]. In this study, we focused on the accurate characterization of the 

substitute structural parameters. The effort was to improve the characterization results by 

increasing the voxel resolution using both numerical methods and high-resolution scans. 

Previous studies in the field of trabecular bone [4, 11, 12] demonstrated that the structural 

parameters are highly influenced by the voxel size. In particular, it was shown that higher 

resolution scans result in smaller and well defined features. Since the P-TCP bone 

substitutes have a porous structure, the structural parameters of substitute could be also 

affected by resolution of scanned images. For this purpose, the subvoxel algorithm [4] 

was applied to low resolution (30 um) images of four types of bone substitutes to 

artificially generate the 15-um resolution images. Analysis of artificially generated high 

resolution images indicated unexpected results with respect to the interconnection size in 

that the interconnection size has increased for samples C and D. This finding led us to 

scan the four samples at higher resolutions (15 and 7.5 um) and to compare the results 

obtained from artificial and scanned datasets. We showed that decreasing the voxel size 

can lead to detect more features of structure and these new boundary features can be 

misleading with respect to interconnection size calculation. Furthermore, we have 

demonstrated how to overcome these boundary effects. The readers are advised that these 

effects do not influence the pore size characterization because the unique methods 

applied to find interconnections. 

We have expanded our analysis and examined both the volume and number based 

averages. Both provide complementary information. The number based average is 

provided by the arithmetic mean. The volume based average takes into consideration the 

volume of each pore and thus the smaller pores are less important when calculating the 

mean. 
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Generally, due to inability to detect smaller pores in low-resolution images [11], the N-b 

average pore size increased with increasing the voxel size. Larger N-b average pore size 

can be also related to the loss of detecting smaller material parts, which result in larger 

void space in the structure [11, 12, 17]. Furthermore, the N-b average pore size showed 

the similar trend in relation to voxel size for all samples. However, the V-b average pore 

size showed inconsistent trends among the samples (Table 4-1). This unclear trend can be 

attributed to the definition of V-b averaging in which the pore sizes were weighted using 

the volume of respective sphere in order to calculate the average. It is evident that a small 

pore has less contribution in calculating V-b average pore size. Therefore depending on 

the size and number of small pores detected in high-resolution images the V-b average 

pore size showed various trends when voxel size reduced. The readers are strongly 

advised to review the pore distribution and to appreciate how the mean values are being 

calculated. 

Furthermore, due to detecting small structures when using higher resolution images, 

particularly between pores [11], the interconnection size was expected to decrease, 

accordingly. The opposite direction of change in interconnection size of sample D (15 

urn) and sample C (7.5 urn) were therefore surprising to us. It was hypothesized that the 

increasing of interconnection size of samples C and D was caused by the local 

irregularities and boundary effects appeared on the material surface in high resolution 

images. It is clear that detecting more details on the surface provides sharper and more 

irregular material surface [12]. These irregularities on the surface affect the FDT values 

and change the FDT map slightly. 

According to the max-min algorithm, the saddle voxels were locally extracted based on 

the FDT values (Figure 4-7). Changes in FDT map affect the local numerical detection 

and result in finding new saddle voxels that represent new virtual interconnections. As 

shown in Figure 4-2, the sizes of these virtual interconnections are in the range of 

adjacent pores, therefore leading to an increase in the interconnection size. Intensive 

visual and numerical inspection of the images and related FDT maps made us believe that 

these irregularities and boundary effects are the cause for the increasing interconnection 

size in the high resolution images. 
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In order to examine the hypothesis, additional conditions were applied to eliminate the 

boundary effects and the distributions were carefully analyzed. In these added conditions, 

interconnections, which overlap with adjacent pores, were removed. As illustrated in 

Figure 4-7c and Figure 4-7d, removing interconnections overlapping with adjacent pores 

in samples C (7.5 urn) and D (15 um), scan and artificial dataset, led to considerable 

decrease of the average interconnection size. These results confirm that removing of new 

overlapping interconnections significantly decreases the mean interconnection size and 

produces results that are consistent with the literature. 

Analysis of interconnection size using the high-resolution images demonstrated that for 

samples A and B, the average interconnection size dropped from 63 fxm to 21 and 29 um, 

respectively. According to existing paradigms, a minimum interconnection size of 50 um 

is generally required for bone ingrowth [22, 24, 25]. Accordingly, our results related to 

samples A and B may imply that these samples do not allow cell migration inside the 

structure. However the biological in-vivo outcomes obtained from implanting these 

samples in bone defects of sheep [26] revealed positive results in terms of good 

osteoconduction and bone formation in these samples. The discrepancy between 

biological results and interconnection size can be interpreted mechanisms following 

mechanisms. First, the properties of scaffold material and second, the effect of 

micropores on bone formation. Due to bioresorbability of scaffold material, the size of 

pores and interconnections are modified in the in vivo environment, over time. This fact 

leads to enlarge small interconnections or create new interconnections between pores. It 

is also in agreement with the description of Lu et al [22], in which they mentioned that 

"in resorbable material the density of pore and interconnection is more important than 

their size because the sizes are enlarged by degradation". 

In addition, a number of recent studies have shown that micropores (typically defined as 

pore sizes less than 10 um) in the structure of CaP-based scaffolds can indeed support the 

bone ingrowth [27, 28, 29]. Levengood et al. [27] observed the presence of bone, osteoid 

and osteogenic cells in micropores. The migration of osteoprogenitor cells inside the 

micropores and the subsequent bone formation leads to ingrowth of bone through the 

scaffold material [27]. These findings indicate the development of bone inside micro size 
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void features. Consequently, the biological results of Samples A and B can be related to 

the combination of aforementioned mechanisms, including the bioresorbability of CaP 

components of scaffold material and development of bone ingrowth into micro size void 

space. 

There is a third potential mechanism for explaining the biological results. Specifically the 

interconnection size distributions of samples A and B (Figure 4-6a and Figure 4-6b) show 

that 5% of all interconnections were above 50 um and this can be sufficient to provide an 

interconnected network for bone cells to migrate into the structure. As a matter of fact the 

permeability estimation of the samples investigated in this study shows that the 

permeability values of all substitutes are in the same order of magnitude as published in 

Ref. [15]. 

Since the pore size and interconnection size of sample D at 30 um and 15 um resolution 

exhibited similar distributions and the average pore size and porosity were almost the 

same, we didn't examine the analysis of sample D at 7.5 um. 

The parameters calculated from scan and artificial dataset at 15 um resolution exhibited 

similar pattern of resolution dependency between the samples. However the values 

obtained from each method (scan and artificial) were not identical. The error presented 

between the scan and artificial results (Table 4-2) can be described by the inability of 

subvoxelization process to present the details which were not detected in original low 

resolution images. 

4.6 Conclusion 

Micro-CT based scaffold characterization became an important mean for material 

scientists to understand the complexity of bone repair. Accuracy of the geometric 

characterization is a key in the process because of the existing paradigms interrelating 

microstructural features such as pore and interconnection size with bone repair and 

formation process. We have applied both numerical and physical subvoxelization to 

improve the characterization accuracy. Subvoxelization, in particular when using high 

resolution scanners, allows for more accurate descriptions but also can lead to undesired 
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boundary effects. We would like to draw the attention of the readers to this boundary 

effects that can influence the calculation of mean values. We have provided a mean to 

understand the boundary effects. Using the higher resolution images showed that the 

interconnection size in the scaffolds A and B reduced to around 20 urn and our in vivo 

data showed that these resorbable substitutes provided adequate vehicle for bone 

ingrowth. The paradigm of 50 um being essential for adequate bone ingrowth needs to be 

evaluated in future research in the light of the results of this study and a new related 

literature in the field. 
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5.1 Abstract 

A computer model was established to simulate the resorption process of calcium 

phosphate bone substitutes. The resorption simulation algorithm had two main steps: (1) 

colonization of pores by resorbing cells in which, the pores and interconnections are 

enlarged to enable ingrowth of blood vessels and (2) resorption of bone substitute 

material at interface surface which is accessible for blood vessels. Since the scaffold 

architecture was complex, |iCT data and novel fuzzy imaging techniques were combined 

to reconstruct the precise scaffold geometry and then new image processing operators 

such as labelling and skeletonization were developed to perform the resorption simulation 

steps. The proposed algorithm was verified by comparing its results with the analytical 

results of a simple geometry and experimental in-vivo data of P-TCP bone substitutes 

with more complex geometry. A correlation coefficient between the simulation results 

and both analytical and in-vivo data, was found to be greater than 0.9. Moreover, the 

resorption rate was measured in two ways; (1) ceramic volume fraction rate (volume 

resorption rate) in which the resorption rate has been calculated using prony's series to do 

fit the resorption data curve and (2) total resorbed thickness rate (linear resorption rate) 

which was measured by calculating the total thickness resorbed over time. In order to 

study the resorption process from the periphery to the center of substitutes, the resorption 

rate was calculated at different regions of scaffolds. Faster resorption in external region 

specifically at earlier resorption time was in agreement with the clinical outcomes. In 

addition, the effect of different conditions, including type of resorption (unidirectional or 

pluridirectional), minimum interconnection size required for cell ingrowth (50 or 100 

urn) and resolution of |aCT images (15 or 30 (am), on prediction of model were studied. 

5.2 Introduction 

Porous ceramic bone substitutes have been widely used in orthopaedic applications to 

support healing of large bone defects [1-3]. Among the various materials that can be 

used, calcium phosphate ceramics have a special position for their similarity to bone 

mineral composition and their excellent biocompatibility, bioactivity, osteoconduction 

and osteointegration properties [1, 4-8]. However, there is still a need to improve these 
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ceramics to enhance their functionality and their ability to support the healing of large 

bone defects. One particular field of interest is the determination of the optimum porous 

architecture, for example for an effective bone ingrowth (formation) and ceramic 

resorption [3, 9-16]. Despite a large number of in vivo studies, there is still a large 

confusion even though a consensus seems to emerge that the level of porosity should be 

larger than 50-60%, the minimal interconnection size should be larger than 50-100 um 

and the mean pore size should be between 100-500 \im [3, 8, 9, 17, 18]. 

So far, most approaches used to determine the optimum architecture have been 

pragmatic: samples were implanted and the biological response was analyzed. However, 

there has been a trend towards theory driven approaches: a model is proposed, samples 

are produced and characterized - for example using free form fabrication approaches [19] 

and micro-computed tomography [36, 39], an in vivo study is performed, and the 

biological response is evaluated based on the model [19-21]. For example, Bohner and 

Baumgart [22] proposed a few years ago a model to predict the impact of morphological 

parameters on cell mediated resorption of bone substitutes. The comparison between this 

model and in vivo results gathered with dense cylindrical or spherical bone substitutes 

demonstrated the model adequacy [22]. However, since most bone substitutes are porous 

and hence allow cell invasion into the bone substitute, it would be more relevant to test 

the model on the in vivo behaviour of porous bone substitutes. The aim of this manuscript 

is to fulfill this task by simulating the in vivo behaviour of 4 different P-tricalcium 

phosphate (P-TCP) scaffolds varying in mean macropore size [23, 24]. The latter 

scaffolds were implanted in a sheep model for 6, 12 and 24 weeks [15]. 

The details of the novel algorithm are described in the next section and followed by the 

results obtained from simulation analysis of four groups of p-TCP scaffolds. The 

simulation results were then compared with both analytical and in vivo experimental data 

inRef[15]. 
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5.3 Material and Method 

5.3.1 Scaffold fabrication and Image acquisition 

Four p-TCP bone substitutes varying in macropore size (a macropore is defined here as a 

pore with a mean diameter superior to 50 micrometers) were produced by the so-called 

calcium phosphate emulsion method [23, 25]. According to this method, variations in 

emulsifier concentration led to various macropore sizes (Figure 5-1) while the micropore 

size (a micropore is defined here as a pore with a mean diameter in the range of 100 

nanometers to 50 micrometers) and porosity were constant (Figure 5-2). For all 

macropore sizes, the macroporosity, microporosity and total porosity were close to 21%, 

54% and 75%, respectively [23]. Macropores were spherical and mostly interconnected 

[23], and had a mean diameter of 128, 196, 345 and 871 \im (as determined by uCT; 

[24]). The samples were cylinderical with a diameter of 8mm and a hight of 13 mm. Six 

samples of each macropore size were randomly selected and analyzed for resorption 

simulation. 

For 3D non-destructive geometric and simulation analysis, the samples were scanned 

with a Scanco Medical AG |aCT 40 (Bassersdorf, Switzerland) scanner at 30 um isotropic 

resolution [23]. The images of cylindrical core of 7 mm diameter and 10.5 mm height 

were then selected as volume of interest. 
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Figure 5-1 Representative SEM photos of the macropore structure of four groups of B-

TCP scaffolds with different macropore sizes, (a) group A, (b) group B, (c) group C and 

(d) group D. The scale bar corresponds to 0.5 mm [23]. 
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Figure 5-2 Representative SEM photos of the micropore structure of four groups of p-

TCP scaffolds with different macropores sizes, (a) group A, (b) group B, (c) group C and 

(d) group D. The scale bar corresponds to 50 urn [23], 

5.3.2 Application of the model on the in vivo data 

Before going into the details of the simulation procedure, a few details must be given on 

the resorption model and the procedure used to apply the model on the in vivo data. 

The two main assumptions of the model that are relevant here are that (a) material 

resorption occurs at a constant linear rate (i.e. one layer resorbed in each iteration) from 

the material surface, (b) provided the surface can be reached by blood vessels of 50 urn in 

diameter [14]. 

119 



Simulation of Cell-Mediated Resorption of Porous Bone Substitutes 

Since the scaffold architecture was complex and macropores were not fully 

interconnected, complex numerical algorithms had to be used. Specifically, uCT data and 

novel fuzzy imaging techniques were combined to reconstruct the explicit and precise 

scaffold geometry. New image processing operators such as labelling and skeletonization 

were developed and introduced to perform the resorption simulation steps. In more 

details, the pores that could be colonized by resorbing cells had to be identified using the 

pores and interconnections analysis, and then resorption in those pores had to be 

simulated. The same procedure had to be applied after each iteration step until the entire 

material was resorbed. The simulated results could then be compared to the in vivo data 

to determine the adequacy of the model. The two parameters that could be varied were 

the minimum interconnection size that allows blood vessel ingrowth and the linear rate of 

(surface) resorption (material thickness resorbed in a time increment). The details of this 

approach are described in the next sections. 

5.3.3 Geometric analysis 

The geometric analysis algorithm is extensively described in Ref. [24]. Briefly, for 

geometric analysis, two threshold values corresponding to material and void space were 

selected via intensity histogram and visual inspection. To determine what was void (or 

object) and what was material (or non-object), the scanned images were fuzzified by a 

sigmoidal function based on the two pre-selected threshold values. 

The latter results were then used to compute the fuzzy distance transform (FDT) map. 

The FDT value at each object's voxel was defined as the shortest fuzzy distance from that 

voxel to the non-object. In this study, the FDT algorithm introduced by Darabi et al. [26] 

was performed to calculate the FDT map. Once the FDT map was determined, the next 

step consisted in characterizing macropore and interconnection size by applying the max-

min algorithm to FDT map [24]. This algorithm detects the local maxima (= pore size) 

and minima (= pore interconnection) of the FDT map. 
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5.3.4 Skeletonization and Reconstruction 

The process of extracting central voxels of object (here is void space) is called 

skeletonization. In this study, a ridge detection algorithm was performed on FDT map to 

obtain the skeleton of void space of porous structure. 

The algorithm mainly follows the theory and definition described by Niblac et al. [27] 

and Haralic and Shapiro [28]. The steps of skeletonization algorithm have been already 

described in Refs. [24, 26]. The skeleton is used to reconstruct the scaffolds. The void 

spaces are reconstructed by letting spheres grow around skeleton voxels with radius equal 

to their FDT value [29]. The main purpose of creating two phase sample based on 

skeletonization and reconstruction was to reserve more information by considering the 

fuzzy nature of scanned images. 

The reconstructed samples were then used for resorption simulation. The skeleton is also 

used to control the size of void space and detect the accessible spaces for resorbing cells. 

5.3.5 Creating models with FCC lattice of pores 

The first step of this study was to validate the simulations presented here by comparing 

simulation with analytical results. In the cell-mediated resorption model proposed by 

Bohner and Baumgart [22], macropores were piled according to a face-centered cubic 

lattice (Figure 5-3). Therefore, in order to compare the simulation with analytical results 

[22], 3D cubical structures of pores were created by using image processing tools. A 

voxel size of 10 um was set to form porous structures. 

The block size, L, and the inter-pore distance, d, were set to be constant for all blocks and 

pore radius was increased from 100 to 500 um. 
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Figure 5-3 (a) Porous blocks with isolated spherical pores that are ordered in FCC lattice, 

(b) Schematic representation of blocks resorption. Resorption occurred from both sides of 

the blocks with perpendicular direction to block surface (arrows direction). The large 

circles, which were drawn by break lines, represent the pores that have been enlarged by 

resorption, r is the pore radius, d is the inter-pore distance and Dmin is defined as the 

minimum interconnection size required for vascularization and migration of the cells into 

the porous structure. 

5.3.6 Resorption simulation analysis 

The resorption simulation was performed in two steps: (a) colonization of a pore by 

resorbing cells and (b) resorption of the bone substitute material. 

Since vascularization inside the porous structure is essential for cellular resorption, some 

pores and pore interconnections had to be enlarged by resorption to enable blood vessels 

ingrowth. So, Dmln was defined as the minimum interconnection size required for 

vascularization or in other words for the migration of the cells into the porous structure. 

To determine which macropore was invaded by cells, the algorithm looked at the size of 

pores and interconnections at each skeleton point and compared these values to the 

minimum interconnection size, Dmin. This allowed the detection of all the pores that could 

be accessed by resorbing cells. Once defined, the walls of these pores and pore 
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interconnections were "resorbed" by one voxel size, i.e. the first voxel layer was moved 

from the "material" to the "void" space. This resorption enlarged all existing 

interconnections and created new interconnections. This procedure was repeated until all 

the material had been resorbed. 

In the following, the specific steps of the resorption simulation algorithm are presented in 

detail. 

1. Input the reconstructed structure and the skeleton voxels of void space (Skel) with 

corresponding FDT values; 

2. Label the connected pores in the reconstructed structure (Figure 5-4a); 

3. Find the skeleton voxels with FDT value less than (Dmm / 2) (Figure 5-4b); 

SE = {S € Skel | FDT(S) < (£>min / 2)} (5.1) 

Where, S is a skeleton point. 

4. Block the sample at SE by growing the spheres (in 3D) centered at SE with the 

radius equal to FDT value of that point (Figure 5-4c); 

5. Find the pore which are accessible from outside, for this step the algorithm finds 

the skeleton branches corresponding to open pores with a diameter larger than 

Dmin (Figure 5-4d); 

6. Colonization of the accessible pores by resorbable cells, (Figure 5-4e); 

7. Resorbing one layer of bone substitute material at interface surface, (Figure 5-4f); 

8. Output the resorbed structure at corresponding iteration; 

9. Repeat step 5 to 8 for each pore until the structure is fully resorbed. 
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Figure 5-4 2-D representative of resorption steps, (a) Pores are labeled, (b) The skeleton point are extracted, SE are skeletons with 

FDT value less than Dmm/2, (c) Pores and interconnections with diameter less than Dmm are blocked by growing the circles (or spheres 

in 3D) centered at SE with the radius equal to FDT value of that point, (d) Skeleton branches corresponding to open pores with 

appropriate FDT value (i.e. larger than Dmin/2), are detected (f) Pores that can be accessed from the outside are defined, (g) One voxel 

layer is "resorbed" or "removed" from the accessible surface. (The red lines " ", in figures (b), (d) and (f), are the skeleton voxels 

of non-resorbed pores) 
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5.3.7 Prony Method and Resorption Rate 

The ceramic volume fraction (CVF) was calculated after each iteration. To compare with 

experimental data [15], the CVF decay was expanded in time until full ceramic resorption 

was achieved. The CVF decay results were fitted with the so-called Prony method which 

is based on a sum of exponential functions (Eq. 5.2): 

/ (0 = 5 > « e 4 ' 1=1,2,3 (5.2) 

Where f(t) is the percentage of CVF, t represents time (or iteration no.), Ki and Ai are 

constant and rate coefficients respectively. The rate of decreasing CVF as resorption rate 

was estimated using derivative of Prony-series (f (t)) with respect to time (an example is 

given in Figure 5-5). 

60 

A - ' 
•A-

-Q— Exponential series 

-A- - rate 

Simulation date 

10 15 20 

Time (Week) 

25 

0 

-1 

-2 

-3 

-4 V 

-5 * 

-6 

-7 

-8 

-9 

30 

Figure 5-5 The left axis presents the simulation data (0) and the exponential series 

approximation (Prony-series) of the simulation results (•). The right axis presents the 

resorption rate data (A) which was obtained from the first derivative of Prony-series with 

respect to time. 
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5.3.8 Study design 

As previously mentioned, the cell-mediated resorption algorithm of Bohner and 

Baumgart [22] has two variables: the minimum interconnection size required for blood 

vessel ingrowth (Dm;n) and the linear resorption rate. Whereas the latter value was 

determined by experimental data fitting, the former value was set to a given value. Since 

authors generally consider that this value should be in the range of 50 to 100 um [9], Dmin 

was either set at 50 um or at 100 um. Beside this parameter, resorption was assumed to 

proceed from two directions. Since a cylinder consist of three surface areas (side, bottom 

and top surface), the resorption direction was either set to be (a) unidirectional, i.e. the 

samples were resorbed through the cylindrical circular side or (b) pluridirectional, i.e. the 

samples were resorbed through all sides. Combination of Dmjn values and resorption 

directions resulted in a total number of four simulation analysis for each sample. 

Furthermore, in order to study the resorption from the periphery to the center of 

substitutes, the resorption rate was calculated at different regions of scaffolds. 

Accordingly, the scaffold was divided into three cylindrical zones (ROIl, ROI2 and 

ROD) with an increasing radius (Figure 5-6). 

5.3.9 Effect of voxel size on resorption simulation 

To study the effect of voxel size on resorption simulation, one block of each group was 

selected and scanned at 30 urn and 15 um resolution and the resorption behavior of block 

was analyzed for both cases. These blocks were scanned with a SKYSCAN1172 |aCT 

scanner (Desktop x-ray micro tomography, Aartselaar, Belgium). In order to compare the 

simulation results, the CVF at each resorption iteration of low resolution blocks (30 um) 

were compared with the CVF of corresponding even iteration number of high resolution 

blocks (15 um). 
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Figure 5-6 Schematic representation of three zones in cylindrical scaffold, ROI1: outer 

zone, ROI2: middle zone and ROB: inner zone. 

5.3.10 Computational platform 

We used reconstructed images for resorption simulation analysis. All computations were 

performed on Mammouth supercomputers at "Reseau quebecois de calcul de haute 

performance" as a part of "Compute Canada" facilities. Estimating the memory and the 

time required for analysis depend on the size of input data and complexity of analysis. 

5.3.11 Provided in vivo data 

The biological results used in this study were provided in collaboration with another 

research group in Switzerland (Dr Robert Mathys Foundation, Bettlach, Switzerland). 

The details related to the in vivo test, animal and implantation location were extensively 

described in Ref. [15]. Briefly, they used adult female Swiss Alpine sheeps of 3-4 years 

old with a body weight of 64-75 kg. The P-TCP blocks were implanted in long bones of 
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sheep (left and right proximal humerus, proximal femur, proximal tibia, and distal femur) 

for 6, 12 and 24 weeks [15]. 

5.4 Results 

The results obtained from resorption simulation algorithm have been compared with the 

analytical results of FCC lattice geometry [22] and experimental data of more complex 

substitute structure [15]. 

Figure 5-7 shows and compares the simulation results of the resorption algorithm with 

those of the analytical model [22]. The porous blocks had a width of 5mm and an inter-

pore distance of 22 um (L=5mm, d=22 urn). The right axis shows the number of 

iterations required to achieve full resorption. This parameter was obtained by applying 

the simulation model to the various scaffold designs. The left axis presents the total layer 

thickness that has to be resorbed for to achieve full ceramic resorption. This parameter 

was calculated according to the analytical equations presented in Ref. [22], as follow: 

r 4l Jrjl+(2r + d-^r2-rl
2)2-r 

thtot = r{4l - 1) + d{±-) + -5L! V L 
2 4r + 2d 

for d>-2{r-]r1-rf) (5,3) 

Where r is pore radius, d is the distance between the pores, ri is the radius of 

interconnection (equal to Dmin/2), L is the width of the block. 

As depicted in Figure 5-7, , the discrepancy between simulation and analytical model 

decreased when the macropore size increased, and the data convergence was observed for 

blocks with macropore radii larger than 300 um (i.e. 300, 400 and 500 um). The 

correlation coefficient (R2) between experimental and simulation data was superior to 0.9. 
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Figure 5-7 (A)Analytical and (•) simulation results of FCC lattice of pores with various 

pore radius ranging from 100 to 500 um. The porous blocks had a width of 5mm and 

inter-pore distance of 22 um. A voxel size of 10 urn was set to create the blocks. 

The mean macropore and interconnection size of the four scaffold types investigated in 

this study are summarized in Table 5-1 [24]. The porosity and interconnection size are 

rather constant from scaffold to scaffold since scaffold porosity is in the range of 50 to 

54% and interconnection size lies between 62 and 85 um. Contrary, the mean pore size 

varies sixfold between the smallest and largest size. 

The resorption simulation analysis of the four scaffold types or groups showed the 

resorption direction had no effect on resorption time of the samples (Figure 5-8). Also for 

groups B, C and D, the total resorption duration was not affected by increasing Dmm. 

However for group A, the resorption rate decreased with increasing Dmin to 100 um. In 

subsequent calculations, Dmm is set to 50 um. 
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Table 5-1 Geometrical parameters of bone substitutes obtained from uCT data. The pore 

size calculated according to two definitions, number-base and volume-base. The surface 

density was calculated as the ratio of material surface to total volume, this parameter was 

computed by using CT-Analyzer software (CTAN). 

Substitute 

group 

A 

B 

C 

D 

Pore size number-

base (um) 

128.1 ±2.6 

195.8 ±4.8 

364.7 ±5.1 

871.1 ±6.7 

Interconnection 

size (um) 

61.7±0.5 

64.9 ±2.9 

65.5 ±3.4 

85.2 ±7.6 

Pore size 

volume-base 

(um) 
170.3 ±1.7 

217.3 ±5.2 

415.8 ± 18.8 

972.3 ± 10.9 

Porosity 

(%) 

50.2 

52.7 

53.7 

52.4 

Surface density 

(MS/TV) 

(mm-1) 

11.5 ±0.2 

10.0 ±0.3 

6.5 ±0.2 

3.3 ±0.1 

To compare the simulation and biological results [15], the iteration numbers were 

matched to the period of times reported for completely resorption of ceramic bone 

substitute [15]. Figure 5-9 illustrates the simulation results and experimental data of the 

four bone substitute groups. The small standard deviation of simulation data (i.e. CVF) at 

each point of time shows how small the variation between the resorption behaviours of 

samples of each group was (SD of group: A<2.1%, B<1.3%, C<0.7%, D<0.6%). As 

depicted in Figure 5-9, the resorption data of the computational model compares well 

with the in vivo results, in particular for groups C and D where r2 > 0.99. 
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Figure 5-8 Resorption simulation of the four groups of scaffolds have been presented 

based on different setting conditions, (a) group A, (b) group B, (c) group C and (d) group 

D. Depending on the minimum interconnection size required for blood vessel ingrowth 

and the resorption direction, the resorption process of each group was analyzed four 

times. Dmin was either set to be 50 \im or 100 um. the resorption direction was either set 

to be unidirectional or pluridirectional. 
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Figure 5-9 Simulation data of four scaffold groups were compared to experimental data. 

The experimental data were obtained from uCT analysis of samples implanted in bone 

defects of sheep for 6, 12 and 24 weeks, (a) group A, (b) group B, (c) group C and (d) 

group D. 

For more quantitative data, the simulation results were fitted with using the Prony 

method. Table 5-2 summarizes these results for the four bone substitute groups at three 

different remaining CVF values (30%, 20% and 10% - the initial value was close to 46-

50% since macroporosity was comprised between 54 and 50%).). The volume resorption 

rate decreased with an increase of resorption time and was faster for group B and the 

slowest for group D. Contrarily, group D (largest pores) had the fastest linear resorption 

rate, followed by group C (Table 5-2). The two groups with the smallest pore size (group 

A and B) presented the lowest linear resorption rate. 
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Table 5-2 Volume and linear resorption rate at different remaining ceramic volume 

fractions (CVF), to investigate the pattern of resorption rate over time the resorption rate 

was calculated at different CVFs (30%, 20% and 10%). The calculation was done on 30 

urn resolution images. 

Scaffold 

group 

A 

B 

C 

D 

Resorption function 

f(t)=(50 03) *e-°'6' 

f(t)=(47 49) *e-'"7' 

f(t)=(46 65)*e-<"5< 

f(t)=(48 44) *e-°Nl 

Volume resorption rate 

(1/Week) 

CVF=30 

% 

4.65 

5.03 

4.45 

4.11 

CVF=20 

% 

3.10 

3.35 

2.97 

2.74 

CVF=10 

% 

1.55 

1.68 

1.48 

1.37 

Linear resorption rate 

(urn / Week) 

CVF=30 

% 

3.13 

3.13 

4.38 

9.38 

CVF=20 

% 

3.13 

3.13 

4.38 

9.38 

CVF=10 

% 

3.13 

3.13 

4.38 

9.38 

Figure 5-10 shows the resorption rate at different regions of scaffolds. For all groups, the 

volume resorption rate was slightly faster in the external zone(ROIl) than in the internal 

zones (ROI2 and ROD) at early resorption time. At later time points, the volume 

resorption rates of the different zones reached identical values. In other words, the 

sensitivity of resorption rate to local regions decreased by time. However, the time to 

reach equivalence was increasingly long with a decreasing pore size. For example, the 

resorption rates of different zones in group D were almost similar after 6 weeks, whereas 

this time lasted approximately 10, 15 and 20 weeks for groups C, B and A, respectively. 

All results presented so far are based on the assumption that the u£!T resolution (30 um) 

is good enough to detect scaffold architecture. To get an idea of the validity of this 

assumption, one block of each pore size was scanned at a higher resolution (15 um) and 

the evolution of the ceramic volume fraction was calculated (Figure 5-11). The results 

show that there is only a difference for group A (smallest pore size) (Figure 5-1 la). Table 

5-3 summarized the volume and linear resorption rate of four blocks scanned at 15 um 

resolution. Except for sample A which showed the fastest volume resorption rate at three 

different remaining CVF values, other samples presented the same pattern of change as 

30 um resolution blocks (Table 5-2). In addition, similar to 30 um resolution blocks, the 

linear resorption rate increased with an increase of pore size (Table 5-3). 
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Figure 5-10 Volume resorption rate (CVF1) at three different zones (ROIl, ROI2 and 

ROD), of scaffold groups, (a) group A, (b) group B, (c) group C and (d) group D. The 

CVF'_ROI represents the volume resorption rate as a function of time for various 

location of scaffold. 
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Figure 5-11 Resorption simulations of substitutes were processed based on two different 

voxel sizes (15 ^m and 30 |nm), (a) Sample A, (b) Sample C, (c) Sample D. The 

resorption simulation of small pore size samples, A and B, were affected by voxel size at 

earlier resorption time. The resorption simulation of samples C and D were not 

influenced by voxel size.. 
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Table 5-3 Volume and linear resorption rate at different remaining ceramic volume 

fractions (CVF). To investigate the pattern of resorption rate over time the resorption rate 

was calculated at different CVFs (30%, 20% and 10%). The calculation was done on 15 

um resolution images. 

Scaffold 

group 

A 

B 

C 

D 

Resorption function 

f(t)=(46.42)*e-°-20' 

f(t)= (45.97) *e-017' 

f(t)= (46.87) *e-0'7' 

f(t)= (47.05) *e-0"" 

Volume resorption rate 

(1/Week) 

CVF=30 

% 

6.01 

5.07 

5.05 

4.30 

CVF=20 

% 

4.01 

3.38 

3.37 

2.87 

CVF=10 

% 

2.00 

1.69 

1.68 

1.43 

Linear resorption rate 

(um / Week) 

CVF=30 

% 

2.50 

2.81 

5.00 

10.00 

CVF=20 

% 

2.50 

2.81 

5.00 

10.00 

CVF=10 

% 

2.50 

2.81 

5.00 

10.00 

5.5 Discussion 

The objective of this study was to assess the validity of a recently-proposed resorption 

model to simulate the cell-mediated resorption of four different groups of bone 

substitutes consisting of [3-TCP and varying in macropore size. The model assumes that 

(a) material resorption occurs at a constant linear rate (i.e. one layer resorbed in each 

iteration) from the material surface; (b) provided the surface can be reached by blood 

vessels of 50 îm in diameter [14]. The proposed assumptions are mainly based on the 

paradigms obtained from in vivo data [14]. Since the architecture of all tested scaffolds 

was complex, all scaffolds had to be scanned by u.CT prior to implantation and after 

explantation. Also, since not all macropores were interconnected, complex algorithms 

had to be used to test the model validity and hence simulate the in vivo data. The 

resorption simulation algorithm was performed according to two main steps: (1) detection 

of the pores that can be reached by resorbing cells and (2) resorption of the pore surfaces 

which are accessible to resorbing cells, this resorption leading to a change of macropore 

and interconnection size. Prior to using the algorithm to apply the resorption model on in 

vivo data, the proposed algorithm was first tested by comparing its predictions with the 

analytical results obtained on scaffolds presenting a simple geometry (Figure 5-3). 
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Comparing the analytical and simulation results associated to blocks with different pore 

sizes showed that the iteration number was consistent with total layer thickness resorbed. 

The blocks with the largest pore size revealed a small difference between the data 

obtained from both methods however the data diverged for small pore size blocks (Figure 

5-7). The discrepancy among the results can be justified by limitation of voxel size and 

resolution particularly for blocks with small pore radius (e.g. 100 urn and 200 um). In 

other words, a voxel size of 10 um is insufficient to perfectly depict the contour of 100 

um large macropores. This appears plausible in that the voxel size should be sufficiently 

small compared to the pore size and noticeable difference will be described below for the 

simulation of sample A. In addition we compared the simulation results of substitute 

groups with the experimental data obtained from replacing samples into the bone defects 

of sheep [15]. 

The comparison revealed that the simulation analysis compares well with the in vivo 

resorption behaviour of CaP substitutes. In particular, the correlation coefficient (R ) 

between the experimental and simulation data of the two largest pore size groups (C and 

D) was above 0.99, whereas, this value was 0.92 and 0.94 for samples A and B, 

respectively.. For samples A and B the simulation data deviated from the experimental 

data beyond 6 weeks of implantation. The discrepancy between the results is likely 

related to some biological mechanism which can not be predicted by the algorithm. 

According to experimental data related to samples A and B, Figure 5-9a and Figure 5-9b, 

respectively, there was no significant changes in the amount of ceramics at weeks 6 and 

12, whilst the simulation analysis showed a continues decrease of ceramics by time. 

We also calculated the resorption rate of samples. The resorption rate was measured in 

two ways; (1) ceramic volume fraction rate (volume resorption rate) (2) total resorbed 

thickness rate (thickness or linear resorption rate). The volume resorption rate has been 

calculated using prony's series to do fit the resorption data curve. The linear resorption 

rate has been measured by calculating the total thickness resorbed over time. 

Two different observations were obtained. The prony's method showed that the volume 

resorption rate was proportional to the accessible surface for resorbing cells. Samples 
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with small pore size had larger surface area than big pore size samples [24]. More surface 

area provides more cell adhesion [29, 30]. Therefore, according to surface accessibility of 

samples, groups B and A exhibited higher volume resorption rate than groups C and D. 

This observation is consistent with the clinical results presented in Ref. [31] in which the 

authors observed that the samples with higher surface area provided more bone ingrowth 

at the earlier implantation time. Moreover, due to decrease of surface area by time, the 

volume resorption rate decreased for all samples (Table 5-2). 

The second method revealed that the linear resorption rate was proportional to the 

thickness of material. This observation could be attributed to the structure of sample. 

Since the porosity was constant between the samples (-50%), the ceramic thickness 

decreased with decreasing the pore size (thickness data not presented here) (Figure 5-1). 

Also considering that to resorb the constant ceramic volume, the amount of thickness 

resorbed from the interface surface of samples increased when the accessible surface 

decreased. Consequently, by decreasing the pore size, the linear resorption rate dropped 

down. In addition, due to the fact that the resorbed thickness is proportional to the 

resorption time [22], the linear resorption rate did not change by time for each sample 

(Table 5-2). 

Moreover, although the simulation results were not identical between the samples, both 

methods (simulation and experimental) have demonstrated that resorption process did not 

considerably vary by pore size. Generally, the simulation and experimental data revealed 

no effect of pore and interconnection size on the resorption process of samples. In fact, 

for such ceramic substitutes, it didn't matter how much big the thickness were, the 

amount of material was important, so the resorption process was the same for large and 

small pore size. This observation could be related to the statement of Lu et al. [14] in 

which, for resorbable scaffolds, the density of pores and interconnections play more 

critical role than their size, because the sizes are changed by resorption. 

Furthermore, we studied the effect of resorption direction and minimum interconnection 

size on resorption behaviour of bone substitute samples. According to the position of 

sample inside the bone, it could be colonized from different directions. Two resorption 
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directions were simulated; the samples were resorbed through (a) cylindrical circular side 

and (b) all sides. The simulation analysis exhibited no effect of resorption direction on 

simulation data (Figure 5-8). This fact could be attributed to the interconnectivity of 

macropores inside the structure. 3-D reconstructed structure of samples [23, 24] and 

interconnectivity analysis [23] demonstrated that the structures were mostly 

interconnected. Therefore, the resorption process should not be affected by colonization 

direction as long as the pores are interconnected and the interconnections sizes are large 

to allow movement of cells. 

The formation of vascular network is important for the repair of bone defects with porous 

biomaterials [32, 33]. Particularly vascularization is known as prerequisite factor for bone 

formation and cellular resorption [22, 33]. The structural parameters affect on the degree 

of vascularization. Most specifically there has been relation between vascularization and 

interconnection size [31, 34]. Some studies [14, 35] have proposed a minimum 

interconnection size of 50 |am is adequate size whilst other authors [36, 37] mentioned a 

pore interconnection size of 100 um According to these studies we examined the effect 

of minimum interconnection size (Dmin) on the resorption process of bone substitute 

samples. 

The simulation analysis data did not show notable differences between the resorption 

behaviour of groups B, C and D with increasing Dmin from 50 |am to 100 um (Figure 5-8). 

However, increasing Dmin reduced the resorption rate of group A (Figure 5-8a). This 

finding could be related to the 3D geometry of samples. The details of geometric 

parameters of substitutes used in this study have been presented in previous work of our 

group [24]. Geometric parameters indicated that the average interconnection size of all 

groups was in the range of 62-85 [im (Table 5-1); however the percentage of pores which 

had a size less than 100 urn is variable between the samples. The pore distribution of 

samples [24] showed that for groups B, C and D, only 0.1-4.5% of pores had a size less 

than 100 um, while in group A 49-57% of pores were less than 100 \im in size. 

Therefore, according to the number of small pores and interconnections, the resorption 

simulation was influenced by geometric parameters. In other words, if the pore size and 

interconnection size are less than Dmin, more iteration number is required to open or 
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enlarge the pores. This fact was more obvious for group A, due to the large number of 

small pores available in the structure. However for other groups most of the pores were 

larger than Dmm and could be accessible after enlarging the narrow interconnections, so 

increasing Dmm did not considerably affect on resorption simulation of these samples. 

The volume resorption rate was found to be faster in the external zone (ROI1) than 

internal zones (ROI2 and ROI3) at the earlier resorption time (Figure 5-10). In vivo 

results revealed that bone formation occurred initially at the periphery of substitute and 

decrease toward the center [3,36]. Mastrogiacomo et al. [38] also demonstrated that there 

is an interrelationship between bone ingrowth and cellular resorption. In accordance with 

these studies, the simulation results in terms of faster resorption on the outside are 

consistent with biological results. 

However, the difference between the resorption rate of various locations progressively 

decreased by time. For samples that have large pore and interconnection size such as 

sample D, the resorption rate of internal zones has been similar to the external zone after 

6 weeks. This could be attributed to the size of pores and interconnections which provide 

fast accessibility to the center of substitutes. Hence, because the size of pores and 

interconnections and accessibility to pores grows over the resorption process, the 

resorption rate of various locations reached the same level towards the end of the process. 

Moreover, decreasing the voxel size from 30 to 15 urn varied the resorption behaviour of 

sample A (Figure 5-11). Also sample A presented the fastest volume resorption rate and 

the slowest linear resorption rate at higher resolution, 15 um (Table 5-3). This 

observation could be related to the effect of voxel size on geometrical parameters of 

sample A in which the average pore and interconnection sizes were highly influenced by 

resolution. 

Our simulation model assumes that the resorbing cells move instantly into the pores and 

interconnections with size larger than Dmm. In reality, this assumption is not correct and 

might limit the validity and accuracy of simulation model. Therefore, a new condition 

which describes the movement of cells into the structure should be considered in 
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simulation model to modify the effect of instant colonization. This is the goal of future 

studies in development of resorption simulation model. 

In this study, we used a global approach by looking at the mean resorption rate of four 

various blocks, to assess the model validity. The local approach can be also used to 

directly compare the resorption of one block at one location to the in vivo results. Since 

the later approach provides much more detail, we are going to consider it in our future 

works. 

5.6 Conclusion 

The resorption simulation algorithm helps understand the resorption behaviour of calcium 

phosphate bone substitutes. With this strengthening tool, we can determine resorption rate 

and follow the biological behaviour. The resorption rate was assessed in two ways, 

volume resorption rate and linear resorption rate. Two different observations were 

obtained; the volume resorption rate was proportional to accessible surface and decreased 

when the pore size increased, whereas the linear resorption rate was proportional to 

thickness of material and increased with increasing the pore size. 

The resorption simulation data revealed no effect of resorption direction on resorption 

behaviour of samples as long as the pores are interconnected and the interconnection 

sizes are large to allow movement of cells. It was also found that the number of small 

pores and interconnections affect the resorption behaviour. For example resorption rate of 

group A with large number of small pores was more influenced by increasing Dmin to 100 

urn The results in terms of the fastest resorption rate on the outside are consistent with 

the biological results. Some differences between experiments and theory require further 

investigations to better understand the bone repair process. 

The algorithm can also be used as a design tool to improve the geometrical parameters of 

bone substitutes. 

141 



Simulation of Cell-Mediated Resorption of Porous Bone Substitutes 

5.7 Reference 

[1] Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi M, Dumitriu M. Porous 

calcium polyphosphate scaffolds for bone substitute applications in vivo studies. 

Biomaterials 2002;23(9): 2063-70. 

[2] Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, Hardouin P. 

Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, 

cortical, and medullar bone sites in rabbits. J Biomed Mater Res 1998;42(3): 357-67. 

[3] Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium 

phosphate ceramics: influence of macropore diameter and macroporosity percentage on 

bone ingrowth. Biomaterials 1998;19(l-3):133-9. 

[4] Yuan H, Yang Z, Li Y, Zhang X. Osteoinduction by calcium phosphate biomaterials. 

J. Mater. Sci. - Mater. Med. 1998;(9): 723-726. 

[5] Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of, 

and bone formation from, new btricalcium phosphate-monocalcium phosphate cements: 

an in vivo study. J Biomed Mater Res 1996;30:193-200. 

[6] Dong J, Uemura T, Shirasaki Y, Tateishi T. Promotion of bone formation using 

highly pure porous b-TCP combined with bone marrow-derived osteoprogenitor cells. 

Biomaterials 23 (2002) 4493-4502. 

[7] Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium 

phosphate bioceramics. J. Mater. Sci. - Mater. Med. 2003, 14(3): 195-200. 

[8] Li Sh, de Wijn JR, Li J, Layrolle P, de Groot K. Macroporous biphasic calcium 

phosphate scaffold with high permeability/porosity ratio. Tissue Eng 2003;9(3):535-48. 

142 



Simulation of Cell-Mediated Resorption of Porous Bone Substitutes 

[9] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. 

Biomaterials2005;26(27):5474-91. 

[10] Uchida A, Nade SM, McCartney EF, Ching W. The use of ceramics for bone 

replacement. A comparative study of three different porous ceramics. J Bone Joint Surg 

Br 1984;66(2): 269-75. 

[11] Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachement of load 

bearing internal orthopedic applications. J Biomed Mater Res Symp 1971 ;2(1):161—229. 

[12] Eggli PS, Mueller W, SchenkRK. Porous hydroxyapatite and tricalcium phosphate 

cylinders with two different macropore size ranges implanted in the cancellous bone of 

rabbits. Clin Orthop 1988;232:127-38. 

[13] Chang B-S, Lee C-K, Hong K-S, Youn H-J, Ryu H-S, Chung S-S, ParkK-W. 

Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 

2000;21:1291-8. 

[14] Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role 

of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J 

Mater Sci Mater Med 1999; 10:111-20. 

[15] von Doernberg MC, von Rechenberg B, Bohner M, Gruenenfelder S, van Lenthe 

GH, Mueller R, et al. In vivo behavior of calcium phosphate scaffolds with four different 

pore sizes. Biomaterials 2006;27(30):5186-98. 

[16] Navarro M, Valle SD, Martlinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra 

MP. New macroporous calcium phosphate glass ceramic for guided bone regeneration. 

Biomaterials 25 (2004) 4233-4241 

143 



Simulation of Cell-Mediated Resorption of Porous Bone Substitutes 

[17] Flatley TJ, Lynch KL, Benson M. Tissue response to implants of calcium phosphate 

ceramic in the rabbit spine. Clin Orthop 1983;179:246-52. 

[18] Hulbert SF, Morrison SJ, Klawitter JJ. Tissue reaction to three ceramics of porous 

and non-porous structures. J Biomed Mater Res 1972;6:347-74. 

[19] Hollister SJ. Porous scaffold design for tissue engineering. Nat. Mater 2005; 4 (7): 

518-524. 

[20] Sandino C, Checa S, Prendergast PJ, Lacroix D. Simulation of angiogenesis and cell 

differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling 

approach. Biomaterials. 2010; 31(8):2446-52. 

[21] Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ. Simulation of tissue 

differentiation in a scaffold as a function of porosity, Young's modulus and dissolution 

rate: application of mechanobiological models in tissue engineering. Biomaterials. 2007; 

28(36):5544-54. 

[22] Bohner M, Baumgart F. Theoretical model to determine the effects of geometrical 

factors on the resorption of calcium phosphate bone substitutes. Biomaterials 

2004;25(17):3569-82. 

[23] Bohner M, van Lenthe GH, Gruenenfelder S, Hirsiger W, Evison R, Mueller R. 

Synthesis and characterization of porous b-tricalcium phosphate blocks. Biomaterials 

2005;26(31):6099-105. 

[24] Bashoor-Zadeh M, Baroud G, Bohner M. Geometric analysis of porous bone 

substitutes using micro-computed tomography and fuzzy distance transform. Acta 

Biomaterialia 2010; 6(3); 864-875. 

144 



Simulation of Cell-Mediated Resorption of Porous Bone Substitutes 

[25] Bohner M. Calcium phosphate emulsions: possible applications. Key Eng Mater 

2001; 192-195:765-8. 

[26] Darabi A, Chandelier F, Baroud G. Thickness analysis and reconstruction of 

trabecular bone and bone substitute microstructure based on fuzzy distance map using 

both ridge and thinning skeletonization. Can J Elect Compt Eng 2009;34(l-2):57-62. 

[27] Niblack CW, Gibbons PB, Capson DW. Generating skeletons and centerlines from 

the distance transform. Graph Model Image Process 1992;54(5):420-37. 

[28] Haralick RM, Shapiro LG. Computer and robot vision. Reading, MA: Addison 

Wesley; 1992-1993. 

[29] Gagvani N, Silver D. Parameter-controlled volume thinning. Graph Model Image 

Process 1999;61(3):149-64. 

[30] Yang Sh, Leong KF, Du Z, Chua ChK. Review, the design of scaffolds for use in 

tissue engineering, part I. traditional factors, Tissue Eng. 2001; 7 (6): 679-89. 

[31] Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, et 

al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium 

phosphate bioceramics. Biomaterials 2006;27(17):3230-7. 

[32] Klenke FM, Liu Y, Yuan H, Hunziker EB, Siebenrock KA, Hofstetter W. Impact of 

pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo, 

J. Biomed. Mater. Res. Part A 2008; 85 (3): 777-786. 

[33] Hing KA, Bioceramic bone graft substitutes: influence of porosity and chemistry, 

Int. J. Appl. Ceram. Technol. 2005; 2 (3): 184-199 (2005). 

145 



Simulation of Cell-Mediated Resorption of Porous Bone Substitutes 

[34] Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, 

de Groot K, Bone ingrowth in porous titanium implants produced by 3D fiber deposition, 

Biomaterials 2007;28:2810-282. 

[35] Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat 

size and connectivity determine bone and tissue ingrowth into porous implants: three-

dimensional micro-CT based structural analyses of porous bioactive titanium implants. 

Biomaterials 2006;27(35):5892-900. 

[36] Jones AC, Arns Ch H, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt 

MA, Assessment of bone ingrowth into porous biomaterials using MICRO-CT. 

Biomaterials 28 (2007) 2491-2504. 

[37] Jones AC, Arns ChH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt 

MA, The correlation of pore morphology, interconnectivity and physical properties of 3D 

ceramic scaffolds with bone ingrowth, Biomaterials 2009; 30 (7): 1440-1451. 

[38] Mastrogiacomo M, Papadimitropoulos A, Cedola A, Peyrin F, Giannoni P, Pearce 

SG, Alini M, Giannini C, Guagliardi A, Cancedda R, Engineering of bone using bone 

marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: Evidence 

for a coupling between bone formation and scaffold resorption, Biomaterials 2007;28 (7): 

1376-1384. 

[39] van Lenthe GH, Hagenmuller H, Bohner M, Hollister SJ, Meinel L, Muller R. 

Nondestructive micro-computed tomography for biological imaging and quantification of 

scaffold-bone interaction in vivo. Biomaterials. 2007; 28(15), 2479-2490. 

146 



General Discussion and Conclusion 

CHAPTER 6 

General discussion and conclusion 

This research work has been concerned with an in-depth study of the accurate 

characterization and resorption assessment of P-TCP bone substitutes. |̂ CT images and 

novel fuzzy image processing techniques were combined and used for characterization 

and resorption simulation analysis. 

This chapter discusses the findings and limitations, concludes the study, and makes 

suggestions for future research. 

6.1 Image processing and geometric analysis 

The \iCT images are fuzzy images and presented in gray levels. The assessment of porous 

structure based on uCT images can be improved when fuzzy segmentation is performed. 

In particular, a significant improvement is found at low resolution images [Sladoje et al., 

2005]. In this thesis, the introduced thresholding technique provided a method to identify 

the fuzzy border of objects and performed a fuzzy segmentation and subsequently 

increased the accuracy of structural analysis. Specifically, instead of single thresholding 

for binary segmentation, two threshold values were defined as representative of fuzzy 

interval between the object and non object. This can be very useful in segmentation of 

low resolution images where the voxel size is in the range of pore size. In such cases, 

single thresholding based on grey level histogram is a tough work and leads to inaccurate 

findings for further analysis. The threshold values were mainly selected based on gray 

level histogram of images, visual inspection and in comparison to the porosity values. 

Moreover, the fuzzy distance transform technique was introduced to enhance the 

accuracy of results. Unlike the traditional distance transform method, the fuzzy distance 

transform does not require a binarization of the images and uses both distance and gray 

level values to calculate the shortest distance from the object's voxel to the background. 
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The added value reported by Saha and Wehrli [Saha and Wehrli, 2004] on the use of 

fuzzy distance transform compared to traditional distance transform were that it allowed 

for accurate geometric analysis, even if the resolution of the images was relatively low. 

In addition to the introduction of fuzzy distance transform, this study used a new 

algorithm so called Max-Min operator to identify pores and their interconnections. This is 

a new method to recognize pores and interconnections. The Max-Min operator identified 

pores and interconnections based on FDT map and geometric definitions. The pore size 

and interconnection size were defined as the FDT value of the local maxima and saddle 

voxels in FDT map, respectively (Figure 6-1). The local maxima and saddle voxels were 

critical voxels of the so called 'skeleton'. Therefore, extracting only critical voxels 

instead of all skeleton voxels to measure the mean pore and interconnection sizes 

significantly reduced the computational time. 

Figure 6-1 (a) 2D FDT map, local maxima as a representative of pore size are shown with 

dark points, (b) 2D FDT map, local saddles as a representative of interconnection size are 

shown with dark points. 

In addition, this study used a new skeletonization method developed by the same group 

[Darabi et al., 2009; Bashoor-zadeh et al., 2009]. This method combined both fuzzy 

distance transform and ridge detection skeletonization. It should be mentioned that in this 

study, the skeletonization was not used for characterization of scaffold structure. The 

main goal of the skeletonization was to reconstruct the samples and create a binary model 

based on the fuzzy nature of images. The reconstructed model was generated by union of 

spheres centered at each skeleton voxels with radius equal to their FDT value. The 

accuracy of created binary model was examined by comparing the porosity of 
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reconstructed model with the porosity of fuzzified model. The difference between 

porosities of reconstructed and fuzzified models was found to be less than 5% (Table 

6-1). The reconstructed models were utilized for fluid flow analysis, surface density 

calculation and resorption simulation. 

Table 6-1 The porosity calculated based on fuzzified images and reconstructed images. 

Sample 
Sample A 
Sample B 
Sample C 
Sample D 

Porosity-fuzzy (%) 
50.2 ±1.6 
52.7 ±1.3 
53.7 ±0.7 
52.4 ± 0.6 

Porosity-reconstruct (%) 
51.5±2.0 
54.9 ±1.6 
55.5 ±0.7 
54.4 ± 0.6 

The surface area and surface density of scaffolds were measured based on marching cube 

algorithm. The results demonstrated that for scaffolds with constant porosity (52.3±1.5 

%), the surface density of samples decreased from 11.5 to 3.3 mm"1 when the pore size 

increased and revealed an inverse relation with permeability. 

The geometric analysis revealed that the reproducibility of the fabrication method was 

high. The small variability, within 5-9%, between the geometric parameters of samples in 

each group confirmed this fact. In addition, the calcium phosphate emulsion method 

provided a high degree of design control. The porosity and pore size could be controlled 

by the amount of emulsifier concentration. The characterization of four groups of 

substitutes revealed that the samples with a constant porosity could be fabricated with 

different pore sizes varied by a factor of 7, interconnection sizes varied by a factor of 1.4 

and surface densities varied by a factor of 4. 

6.2 Fluid flow analysis 

In collaboration with Regionales RechenZentrum Erlangen (RRZE), Germany, a well 

established Lattice Boltzmann method was performed to simulate the flow of a 

Newtonian fluid on pore scale level of the bone substitutes' structure. Lattice Boltzmann 

has already demonstrated to be useful and efficient for simulation of flow in complex 

porous structure [Succi S, 2001]. The transport properties of substitutes including the 
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pressure drop, local velocity and permeability were extracted from the results of the 

Lattice Boltzmann simulation. The permeability of samples was in the same order of 

magnitude and increased from 1.14xl0~10 to 4.07xl0"10 m2 with increasing the pore size. 

Therefore, all samples exhibited permeabilities larger than 3xl0"n m2 which was 

demonstrated to be adequate for vascularization and mineralization inside a porous 

implant [Hui et al. 1996]. 

6.3 Effect of voxel size on geometric parameters 

fj,CT is an advanced tool to quantify geometric parameters of porous bone substitutes in 

3-D. However, image resolution has a significant impact on accuracy of structural 

analysis. In particularly, when the voxel size is relatively large compared to the structure 

of interest, it becomes difficult to obtain good geometric information. Therefore, 

decreasing the voxel size is the approach to attain the precise geometric characterization. 

Specifically, the gray level histograms were significantly improved when the voxel size 

decreased. The histogram of samples revealed the significant effect of voxel size on 

identification of different phases (e.g. material and void space) (Figure 6-2). The bimodal 

histograms with two separate peaks, corresponding to material and void space, were 

obtained by decreasing the voxel size. Therefore the thresholding process was simplified 

when using bimodal histograms instead of unimodal histograms. 
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Figure 6-2 Gray level histograms of sample A (the small pore size sample) at (a) 30 urn 

resolution and (b) 7.5 urn resolution 

Depending on the resolution of images and structural features of samples (pore size and 

interconnection size), the characterization of geometric parameters became sensitive to 

150 

Histogram 
Cumulative 

100 

- 80 , 

60 ! 

40 ] 

c 

20 

0 

70 -

60 

i 5 0 -
S 40-

§ 3 0 -
00 

S 20-
X 10 -

00 -

XlO" 7T^-

Histogram 
Cumulativ 

(b) 
100 150 

Gray scale 



General Discussion and Conclusion 

threshold values. Increasing the ratio of voxel size to pore size caused more sensitivity to 

threshold values. For example, at 30 um resolution, the geometric analysis of small pore 

size samples showed that if the lower threshold value decreased from 35 to 30, the 

porosity and pore size would decrease 20% and 16%, respectively. Sensitivity analysis of 

porosity to threshold values also indicated rapid decrease in porosity of small pore size 

samples (samples A and B) when the threshold domain decreased (Figure 6-3). 

+5%AGV ±10%AGV ±15%AGV ±20%AGV 

Threshold domain 

Figure 6-3 Sensitivity of samples' porosity to threshold values, AGV is the average gray 

level value. The threshold domains were selected as ±5%, ±10%, ±15% and ±20 % of 

AGV. 

The results demonstrated the high effect of voxel size on quantification of pore and 

interconnection sizes. Generally, due to detecting small structures when using high 

resolution images, the average pore and interconnection sizes were expected to decrease 

accordingly. However, an opposite trends were observed with respect to interconnection 

size. Specifically, the interconnection size appeared to reduce for small pore size samples 

with a transient change towards high interconnection size for large pore samples. It was 

shown that the increasing of interconnection size was caused by the local irregularities 

and boundary effects appeared on the material surface in high resolution images. 

Additional conditions were applied to eliminate the boundary effects and the distributions 

were carefully analyzed. In these added conditions, interconnections, which overlap with 

adjacent pores, were removed and therefore led to considerably decrease of average 

interconnection size. It should be noted that these effects did not influence the pore size 

characterization because the unique methods applied to find interconnections. 
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There was a remarkable decrease of interconnection size for small pore size samples 

when voxel size decreased. Specifically, analysis of interconnection size using high 

resolution images demonstrated that for small pore size samples, the average 

interconnection size decreased to 20-30 um. According to existing paradigms, a 

minimum interconnection size of 50 urn is generally required for bone ingrowth [Lu et 

al., 1999; Chang et al., 2000; Otsuki et al. 2006]. However, biological in vivo data of 

implanted scaffold revealed positive behaviour of these samples [von Doernberg et al., 

2006]. This findings and related literatures, showing effect of micropores on bone 

formation [Lan Levengood et al., 2010; Habibovic et al., 2006], allow for new debates in 

the future to evaluate the existing paradigms. 

6.4 Cell-mediated resorption process 

The resorption simulation algorithm presented in this study predicts the resorption 

behavior of calcium phosphate bone substitutes and helps to understand the biological 

results. With this tool, we can determine resorption rate and follow the biological 

behavior. The algorithm can also be used as a design tool to improve the geometric 

parameters of bone substitutes. The proposed algorithm was verified by comparing 

simulation results with the analytical results of a simple geometry and biological in vivo 

results of implanting (3-TCP bone substitutes [von Doernberg et al., 2006]. A correlation 

coefficient between the simulation results and both analytical and experimental data was 

found to be larger than 0.9. 

Skeletonization was shown to be a useful tool to perform the resorption steps. The 

skeleton points allowed comparing the size of void space, including pores and 

interconnections, with the minimum size required for migration of cells and finally found 

the accessible pores for cell invasion. 

The resorption rate was calculated in two ways; (i) volume resorption rate in which the 

resorption rate was calculated using prony's series to do fit the resorption data curve and 

(ii) linear resorption rate which was measured by calculating the total thickness resorbed 

over time. Two different observations were obtained; the volume resorption rate was 
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proportional to accessible surface for cells and decreased when the pore size increased, 

while the linear resorption rate was proportional to thickness of material and increased 

with increasing the pore size. 

In order to study the resorption process from periphery to the center of substitute, the 

volume resorption rate was calculated at various location of scaffold. The volume 

resorption rate was found to be faster in the external zone than internal zones at earlier 

resorption time. This finding was in agreement with in vivo observation. However, due to 

increasing the size of pores and interconnections, the accessibility to the center of 

substitute increased over time. Therefore the resorption rate of various locations reached 

the same level towards the end of the process. 

The resorption simulation results revealed no effect of resorption direction on resorption 

behavior of samples as long as the pores were interconnected and the interconnection 

sizes were large to allow movement of cells. In addition, the effect of minimum 

interconnection size required for cell ingrowth (Dmjn) on prediction of model was studied. 

The resorption simulation of samples in group A (with the smallest pore size), was more 

influenced by Dmin, as the resorption rate decreased with increasing Dmjn to 100 um. The 

analysis of pore size distribution showed that 49-57% of pores in these samples are 

smaller than 100 um. Therefore, it was found that the number of small pores and 

interconnections can also affect the resorption behaviour. 

The resolution of images also affected the resorption simulation analysis of small pore 

size samples (sample A). Decreasing the voxel size from 30 to 15 um changed the 

resorption behaviour of this sample. This observation can be related to the effect of voxel 

size on geometrical parameters of sample A in which the average pore and 

interconnection sizes were highly influenced by resolution. 

Moreover, the results of both methods (simulation and experimental) have demonstrated 

that resorption process did not considerably vary by pore size. In fact, for such ceramic 

substitutes, it doesn't matter how much big the thickness are, the amount of material is 

important, so the resorption process is the same for large and small pore size. 
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6.5 Methodology-synthesis diagram 

The following diagram (Figure 6-4) shows how different methods and analysis, used in 

this study, were combined together to create a methodology for accurate geometric, fluid 

flow and resorption simulation analysis of porous bone substitutes. 
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Figure 6-4 Methodology-Synthesis diagram, combination of methods and algorithm used 

for accurate geometric, fluid flow and resorption simulation analysis of bone substitutes 
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6.6 Contributions 

Our contribution in this field is introducing fuzzy techniques in characterization of bone 

substitutes, which enhance the accuracy of results due to fuzzy nature of \iCT images. 

The fuzzy methods were combined with novel characterization algorithm to measure the 

structural parameter of bone substitutes. 

Moreover, due to the important role of pore and interconnection sizes in vascularization 

and bone formation, this study mainly focused to provide accurate characterization of 

pore and interconnection sizes. The improvement was achieved using novel image 

treatment, developed algorithm and high resolution images. 

The resorption model based on image processing tools is a novel contribution in the field 

of resorbable bone substitutes, which can help to predict and understand the biological 

response. Finally, it can be used as a tool to design an effective scaffold with appropriate 

properties. 

6.7 Current limitation 

Beside the advantage of introduced methods, there are some limitations to this study 

which should be considered for future investigations. 

High resolution scanning provides more details of structural features; however, the 

scanning time significantly increases when the voxel size decreases. Also there is a 

challenge for data storage and data processing at high resolution scanning. It should be 

also noted that increasing the resolution will limit the field of view and reduce the 

scanning domain. 

Increasing the resolution of \iCT images allows for more accurate characterization of 

geometric features, however, the amount of data is significantly increased. Extracting the 

relevant information from large data files is time extensive. Furthermore, computational 

limitation such as time and memory required for analyzing data is another restriction 

related to high resolution images. 
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According to Max-Min operator, the pore and interconnection sizes were defined as 

diameter of spheres which centered at local maxima and saddle voxels, respectively. 

Depending on the pores shape (spherical or semi-spherical), one or more maxima were 

found in the pores which their corresponding spheres overlapped each other. Therefore, 

due to the shape of pores, introducing an exact definition to measure average pore size 

and cover all condition, was not easy task. Therefore, this study introduced two 

definitions (Number-base and Volume-base) to calculate the average pore size and 

compared the average values. In addition, number of pores and interconnections can not 

be directly calculated based on the number of maxima and saddle points and need 

additional analysis. 

Normally, the calculation methods used to analyze the uCT data contain some error. 

Since there was not an exact geometric reference for characterization of pore and 

interconnection sizes, it was not possible to estimate the calculation error of the 

characterization tools utilized in this study. 

Moreover, the characterization method introduced in this study is able to characterize the 

geometric parameters of porous structure with spherical or semi-spherical pores and may 

not be applied to characterize the geometric parameters of porous structures with 

different pore shape. 

Decreasing the voxel size led to detect more details of the structure and caused some 

boundary effects that misled the results in terms of interconnection size. The 

characterization algorithm showed to be sensitive to these boundary effects. Therefore, 

additional condition was required to eliminate the boundary effects and modify the 

characterized parameters. 

The gray level histograms of images become unimodal when the voxel size is in the range 

of pore and interconnection sizes, Thresholding and segmentation of unimodal 

histograms where the two peaks of histograms are merged together is very difficult and 

limits the accuracy of quantification analysis. 

156 



General Discussion and Conclusion 

In order to compare the resorption simulation results with biological in vivo results, it is 

required to perform the in vivo tests. The biological results used in this study were 

provided in collaboration with another research group in Switzerland. Performing more 

animal experiments to investigate the effect of geometric parameters on biological 

response and study the prediction of simulation model is very expensive and time 

extensive task. 

Micro mechanical environment including the stress and strain induced within tissue have 

been demonstrated to influence the cell penetration and bone formation [Jaecques et al. 

2004; van Cleynenbreugel et al., 2006]. Mechanical signals affect the development and 

differentiation of bone tissue, the sign of strain will determine whether bone is resorbed 

or deposited. This thesis was devoted to study the effect of geometric parameters on 

resorption simulation and did not consider the mechanical environment which has 

significant effect on bone repair procedure. 

The resorption model assumes that the resorbing cells instantly invade the accessible 

pores and interconnections. This assumption is not certainly correct. The movement and 

proliferation of cells depend on biological and mechanical environment. Therefore, 

movement of cells inside the porous structure should be considered to achieve more 

accurate resorption model. 

6.8 Future work 

The conclusions of this PhD thesis are not meant to be final; rather they are an outline of 

the significant results obtained from the research performed during the period of the 

thesis. There remain, some suggestions for future work following this project. 

• Resorption model, proposed in this study, supposed that resorbing cells move 

instantly into the accessible pores and interconnections. In reality, the resorbing cells 

fill the pores gradually. Therefore, a new condition which describes the movement of 

cells into the structure should be considered in simulation model to modify the effect 

of instant colonization. This could be the subject of future work. 
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• Beside the geometry of scaffold, there are some biological mechanisms related to 

activity of biological cells such as osteoclasts, osteoblasts, growth factors and etc. that 

affect resorption kinetics. Considering such biological mechanisms in modeling of 

resorption process can develop the prediction of model. 

• Mechanical environment and strain induced within the bone tissue have significant 

effect on the cell penetration inside the porous structure; these effects were eliminated 

in this study. Future work can be devoted to study the effect of both geometric and 

mechanical environment on bone formation and resorption behaviour of porous bone 

substitute. 

• Decreasing the voxel size leads to detect more features of structure and creates some 

boundary effects. These boundary effects can be misleading with respect to 

interconnection size calculation. The characterization algorithm showed to be 

sensitive to these boundary effects. Therefore, developing an intelligent computer 

model which can be less affected by microstructures appeared in high resolution 

images, can be considered in future. 
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6.9 Discussion et conclusion (Francais) 

Ce travail de recherche s'est penche sur l'etude approfondie de la caracterisation et 

1'evaluation de la resorption de substituts osseux P-TCP. Des images |iCT et une nouvelle 

methode de traitement d'images « fuzzy-based » ont ete combinees et utilisees pour 

caracteriser l'analyse de simulations de resorption. 

Ce chapitre comprend une discussion generate des decouvertes et les limitations des 

methodes utilisees, les resultats obtenus, et la conclusion de l'etude ainsi que des 

recommandations pour les travaux ulterieurs. 

Traitement d'image et analyse geometrique 

Les images ^CT sont des images floues (« fuzzy ») en niveau de gris. L'analyse de la 

structure poreuse decoulant de ces images peut etre amelioree en effectuant une 

segmentation floue de 1'image. Une amelioration significative est observee surtout pour 

les images basse resolution [Sladoje et al, 2005]. Dans cette these, la technique de seuil 

limite presentee a fourni une methode d'identification des contours flous d'objets et 

effectue une segmentation floue, ameliorant la precision de l'analyse structurelle. Ainsi, 

au lieu d'utiliser un seul seuil limite pour une segmentation binaire, deux seuils limites 

ont ete definis, representant Pintervalle flou entre I'objet et le non objet. Ceci peut se 

reveler utile dans la segmentation d'images basse resolution, ou la taille d'un voxel est de 

l'ordre celle d'un pore. Dans ce cas, la technique a un seul seuil limite avec un 

histogramme a niveaux de gris rend 1'interpretation difficile et mene a des resultats 

imprecis. Les seuils limites ont ete determines via l'histogramme en niveaux de gris de 

l'image, une inspection visuelle et la comparaison avec les valeurs de porosite. 

Par la suite, la technique dite de transformee de distance floue (« Fuzzy Distance 

Transform» - FDT) a ete introduite afin d'ameliorer la precision des resultats. 

Contrairement a la methode traditionnelle de transformee de distance, la transformee 

floue ne requiert pas la binarisation des images, et utilise deux parametres, soit la 

distance et le niveau de gris, pour calculer la plus courte distance entre le voxel de I'objet 

Parriere plan. La conclusion rapportee par Saha et Wehrli [Saha and Wehrli, 2004] sur 
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l'utilisation de la transformee de distance floue versus la methode traditionnelle est la 

possibilite d'obtenir une analyse geometrique precise et ce, meme avec des images de 

resolution relativement faible. 

En plus de 1'introduction de la transformee de distance floue, cette etude utilise un nouvel 

algorithme nomme operateur Max-Min afin d'identifier les pores et leurs 

interconnexions. L'operateur Max-Min identifie les pores et interconnexions en se basant 

sur la carte FDT et des definitions geometriques. La taille des pores et interconnexions 

ont ete definies respectivement comme la valeur FDT du maximum local et des voxels 

points de selle dans la carte FDT (Figure 1). Les maxima locaux et points de selle sont 

des points critiques de la structure nommee « squelette ». Par la suite, afin de mesurer la 

taille moyenne des pores et interconnexions, on n'extraire que les voxels critiques au lieu 

de tous les voxels du squelette a grandement reduit le temps de calcul numerique. 

0 5 10 15 20 25 30 35 40 

Figure 1. (a) Carte FDT 2D, les maxima locaux representant la taille de pore sont montres 

par des points fonces. (b) Carte FDT 2D, les points de selle representant la taille des 

interconnexions sont montres par des points fonces. 

De plus, cette etude a mis en oeuvre une nouvelle methode de squelettisation developpee 

par le meme groupe [Darabi et al, 2009, Bashoor-zadeh et ah, 2009]. Cette methode 

combine la transformee de distance floue et la squelettisation de detection d'arete. II est a 

noter que dans cette etude, la squelettisation n'a pas ete utilisee pour caracteriser la 

structure de greffe osseuse. Le but principal de la squelettisation etait de reconstruire des 

echantillons et de creer un modele binaire base sur la nature floue des images. Le modele 

de reconstruction a ete genere par 1'union de spheres centrees a chaque voxel du 

squelette, avec un rayon egal a leur valeur FDT. La precision du modele binaire cree a ete 
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examinee en comparant la porosite du modele reconstruit avec le modele flou. La 

difference de porosite entre les deux modeles a ete evaluee sous 5% (Tableau 1). 

Tableau 1. Porosite calculee pour le modele flou et les images reconstruites. 

Sample 
Sample A 
Sample B 
Sample C 
Sample D 

Porosity-fuzzy (%) . 
50.2 ±1.6 
52.7±1.3 
53.7 ± 0.7 
52.4 ± 0.6 

Porosity-reconstruct (%) 
51.5±2.0 
54.9 ±1.6 
55.5 ±0.7 
54.4 ± 0.6 

La surface totale et la densite de surface des substituts osseux ont ete mesurees par un 

calcul base sur Palgorithme « marching cube ». Les resultats montrent que pour des 

substituts osseux de meme porosite (52,3±1,5 %), la densite de surface des echantillons 

diminue de 11,5 a 3,3 mm"1 lorsque la taille des pores augmente, revelant une relation 

inverse entre la taille des pores et la permeabilite. 

L'analyse geometrique a revele que la reproductibilite de la methode de fabrication est 

elevee. La petite variability, de 5 a 9%, des parametres geometriques de chaque groupe le 

confirme. De plus, la methode d'emulsion de phosphate a produit un haut degre de 

control du design. La porosite et la taille des pores ont ete controlees via la concentration 

d'emulsifiant. La caracterisation des quatre groupes de substituts a revele que les 

echantillons de meme porosite peuvent etre fabriques avec comme taille de pores 

possibles variant d'un facteur 7, la taille des interconnexions variant d'un facteur 1,4 et 

une densite de surface variant d'un facteur 4. 

Analyse d'ecoulement de fluide 

En collaboration avec le Regionales RechenZentrum Erlangen (RRZE), la methode bien 

connue de Lattice Boltzmann a ete utilisee pour simuler l'ecoulement d'un fluide 

Newtonien a I'echelle des pores de la structure d'un substitut osseux. Cette methode s'est 

montree utile et efficace pour la simulation d'ecoulement dans une structure poreuse 

complexe [Succi S, 2001]. Les proprietes de transport de substituts, incluant la chute de 

pression, la vitesse locale et la permeabilite, ont ete extraites des resultats de simulation 
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Lattice Boltzmann. La permeabilite des echantillons est restee du meme ordre de 

grandeur, augmentant de l,14xl0"10 to 4,07xl0~10 m2 lorsque la taille des pores est 

augmentee. Ainsi, tous les echantillons ont demontre une permeabilite superieure a 3x10" 
11 m2, limite minimale demontree pour la vascularisation et la mineralisation dans un 

implant poreux [Hui te ah, 1996]. 

Effet de la taille de voxel sur les parametres geometriques 

La nCT est un outil avance permettant de quantifier les parametres geometriques de 

substituts osseux en 3D. Cependant, la resolution a un impact majeur sur la precision de 

l'analyse microstructurale. II devient difficile d'obtenir de bonnes informations 

geometriques particulierement lorsque le voxel est relativement large par rapport a la 

structure observee. Ainsi, reduire la taille de voxel est l'approche privilegiee pour obtenir 

une caracterisation geometrique precise. Plus specifiquement, les histogrammes en 

niveaux de gris ont ete grandement ameliores avec la diminution de taille des voxels. 

L'histogramme des echantillons revele I'important effet de la taille de voxel sur 

1'identification des phases (materiel et vide) (Figure 2). L'histogramme bimodal avec 

deux pics separes correspondant au materiel et au vide, ont ete obtenus en reduisant la 

taille de voxel. Ainsi, I'utilisation de seuils limites a ete simplifiee par I'utilisation d'un 

histogramme bimodal au lieu d'un monomode. 
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Figure 2. Histogrammes en niveaux de gris de l'echantillon A (petits pores) a (a) 

resolution de 30 |j.m et (b) resolution de 7.5 jam. 

La caracterisation des parametres geometriques est devenue sensible aux valeurs de seuils 

limites dependamment de la resolution des images et de la structure de l'echantillon 
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mesure. Une augmentation de la proportion «taille de voxel » sur «taille de pore » a 

augmente la sensibilite. Par exemple, pour un echantillon a petits pores mesure a une 

resolution de 30 um, reduire le seuil limite bas de 35 a 30 a eu pour effet de reduire la 

porosite et la taille de pore de 20% et 16% respectivement. L'analyse de sensibilite de 

porosite par rapport aux seuils limites a aussi indique une rapide diminution de porosite 

pour les echantillons a petits pores (A et B) lorsque le domaine de seuils limites diminue 

(Figure 3). 

±5%AGV ±10%AGV ±15%AGV +20%AGV 

Threshold domain 

Figure 3. Sensibilite de la porosite des echantillons par rapport aux seuils limites. AGV 

est la valeur grise moyenne (Average Gray Value). Les domaines choisis pour les seuils 

sont ±5%, ±10%, ±15% and ±20 % de AGV. 

Les resultats ont demontre que la taille de voxel a un effet important sur la quantification 

de la taille de pore et d'interconnexions. Generalement, en detectant de petites formes en 

haute resolution, il est attendu que la taille des pores et des interconnexions diminue. 

Toutefois, 1'inverse est observe pour la taille d'interconnexions. Effectivement, leur taille 

a paru diminuee pour les echantillons a petits pores, mais une variation vers les grandes 

tailles d'interconnexion est notee pour les echantillons a grands pores. II a ete montre que 

l'augmentation de la taille des interconnexions est causee par des irregularites locales, et 

que des effets de bord apparaissent a la surface du materiau dans les images haute 

resolution. Des conditions additionnelles ont ete appliquees pour eliminer les effets de 

bord, et les distributions ont ete analysees avec precaution. II est a noter que ces effets 

n'ont pas influence la caracterisation de taille de pores car la methode utilisee ne 

s'applique que pour les interconnexions. 
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Une importante reduction de taille des interconnexions a ete notee lors d'une diminution 

de taille de voxel pour les echantillons a petits pores. Effectivement, Panalyse de la taille 

des interconnexions avec des images haute resolution a montre que pour les echantillons 

a petits pores, la taille moyenne d'interconnexions diminue a 20-30um. Selon les 

paradigmes existants, une taille minimale de 50um est generalement necessaire pour la 

vascularisation adequate et la formation d'os [Lu et al., 1999, Chang et al, 2000, Otsuki 

et al. 2006]. Cette decouverte permettra de nouveaux debats pour evaluer les paradigmes 

existants. 

Processus de resorption assist.ee par les cellules 

L'algorithme de simulation de resorption presente dans cette etude predit le 

comportement de resorption du substitut d'os en phosphate de calcium, et aide a la 

comprehension des resultats biologiques. A l'aide de cet outil, il est possible de 

determiner le taux de resorption et de le faire correspondre au comportement biologique. 

L'algorithme peut aussi etre utilise comme outil de conception afin d'ameliorer les 

parametres geometriques des substituts osseux. L'algorithme propose a ete valide en 

comparant les resultats de simulations a des resultats analytiques de geometries simples, 

ainsi qu'aux resultats in vivo de substituts osseux P-TCP implantes [von Doernberg et al, 

2006]. Un coefficient de correlation superieur a 0,9 a ete obtenu entre les resultats 

simules, analytiques et experimentaux. 

La squelettisation s'est revele un bon outil pour effectuer les pas de simulation de 

resorption. Les points du squelette ont permis de comparer la taille des espaces vides, 

incluant les pores et interconnexions, avec la taille minimale requise pour la migration 

des cellules, et ont enfin permis de trouver les pores accessibles a 1'invasion cellulaire. 

Le taux de resorption a ete calcule de deux manieres; (i) via le taux de resorption 

volumique, en utilisant les series de Prony pour ajuster le modele a la courbe de donnee et 

(ii) via le taux de resorption lineaire, mesure en calculant l'epaisseur resorbee totale en 

fonction du temps. Deux observations differentes ont ainsi ete obtenues, le taux de 

resorption volumique etait proportionnel a la surface accessible aux cellules et diminuait 
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avec Paugmentation de taille des pores, alors que le taux de resorption lineaire etait 

proportionnel a Pepaisseur du materiel et augmentait avec l'augmentation de la taille des 

pores. 

Dans le but d'etudier le processus de resorption de la peripheric vers le centre du 

substitut, le taux de resorption volumique a ete mesure a differents endroits de substitut 

osseux. II a ete determine qu'apres de faibles temps de resorption, le taux de resorption 

volumique etait plus eleve en peripheric que vers le centre. Cette observation est en 

accord avec les resultats in vivo. Toutefois, Pacces au centre du substitut a augmente avec 

le temps puisque la resorption augmente la taille des pores et interconnexions. Ainsi, vers 

la fin du processus, le taux de resorption volumique a differents sites de l'echantillon 

s'est vu nivele. 

Les resultats de simulation de resorption n'ont revele aucun effet de la direction de 

resorption sur le deroulement du processus, tant que les pores etaient interconnectes et 

que les interconnexions etaient suffisamment larges pour permettre la migration 

cellulaire. De plus, I'effet sur le modele predictif de la taille minimale d'interconnexion 

requise pour la migration cellulaire et formation d'os (Dmin) a ete etudie. La simulation de 

resorption d'echantillons du groupe A (les plus petits pores) a ete de plus influencee par 

Dmm, car le taux de resorption etait reduit avec un Dmin augmentant jusqu'a lOOum. 

L'analyse de la distribution de taille des pores a montre que 49-57% des pores de cet 

echantillon etaient plus petits que 1 OOum. II a done ete determine que le nombre de petits 

pores et interconnexions peut aussi avoir un effet sur le comportement de resorption. 

La resolution des images obtenues a aussi modifie l'analyse de la simulation de 

resorption pour l'echantillon a petits pores (A). Reduire la taille de voxel de 30 a 15um a 

change le comportement de resorption de cet echantillon. Cette observation peut etre 

reliee a I'effet de la taille de voxel sur les parametres geometriques de l'echantillon A, 

pour lequel la taille moyenne de pore et interconnexion etaient hautement influencee par 

la resolution. 

Ensuite, les deux methodes, simulation et experience, ont demontre que le processus de 

resorption ne variait pas considerablement avec la taille de pore. En fait, pour ce genre de 
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substitut en ceramique, l'epaisseur n'a pas d'importance, alors que la quantite de 

materiau Test, done le processus de resorption est semblable pour des pores petits ou 

grands. 

Diagramme de synthese de la methodologie 

Le diagramme suivant (Figure 4) montre comment les differentes methodes et analyses 

utilisees dans cette etude ont ete combinees de facon a creer une methodologie pour une 

analyse precise de substituts poreux pour l'os quant a la geometrie, l'ecoulement de 

fluides et la simulation de resorption. 
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Figure 4. Diagramme de synthese de la methodologie, combinaison de methodes et 

algorithmes utilises pour une analyse precise de substituts poreux pour l'os quant a la 

geometrie, I'ecoulement de fluides et la simulation de resorption. 
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Contributions 

Notre contribution a ce domaine introduit les techniques de flou dans la caracterisation de 

substituts osseux, ameliorant la precision des resultats etant donnee la nature floue des 

images \iCT. Les methodes de flou ont ete combinees a des algorithmes de caracterisation 

novateurs afin de mesurer les parametres structuraux de substituts osseux. 

Ensuite, etant donne 1'important role de la taille des pores et interconnexions dans la 

vascularisation et la formation d'os, cette etude a principalement concentre ses efforts sur 

la caracterisation precise des tailles de pores et interconnexions. Cette amelioration a ete 

obtenue en utilisant un traitement d'image novateur, en developpant un nouvel 

algorithme ainsi que des images haute resolution. 

Le modele de resorption base sur des outils de traitement d'image est une contribution 

originale dans le domaine de substituts osseux resorbables, ce qui aide a la prediction et 

la comprehension de la reponse biologique. Enfin, le modele peut etre utilise pour la 

conception d'un greffe osseuse efficace, avec les proprietes optimales. 

Limitations actuelles 

Au-dela des avantages avances pour les methodes presentees, certaines limitations de 

cette etude devraient etre considerees lors de recherches ulterieures. 

Les mesures haute resolution fournissent plus de details structurels; toutefois, les temps 

d'acquisition augmentent significativement lorsque la taille de voxel est reduite. Aussi, il 

existe un defi au niveau de l'emmagasinage et le traitement des donnees haute resolution. 

II est aussi a noter que Paugmentation de resolution limite le champ visuel et le domaine 

spatial mesurable. 

Augmenter la resolution des images |aCT permet une plus grande precision de 

caracterisation des proprietes geometriques, au prix d'une augmentation significative de 

la quantite de donnees. L'extraction des donnees pertinentes depuis de lourds fichiers de 

donnees devient couteuse en temps. Ainsi, des limitations de traitement informatique 
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telles le temps et la memoire requise pour Panalyse des donnees devient une nouvelle 

restriction liee aux images haute resolution. 

Selon 1'operateur Max-Min, la taille des pores et interconnexions ont ete defmies comme 

le diametre de spheres centrees au maxima locaux et voxels de selle respectivement. 

Dependamment de la forme des pores (spherique ou semi-spherique), plus d'un 

maximum peut se trouver dans un pore, avec leur sphere respective tel que defini, qui se 

recouvrent mutuellement. Ainsi, a cause de la forme des pores, il a fallu introduire une 

definition exacte pour mesurer la taille moyenne des pores, une tache non triviale. 

Ensuite, cette etude a introduit deux definitions (« number-base » et « volume-base ») 

pour calculer la taille moyenne d'un pore et comparer les valeurs moyennes. De plus, la 

taille de plusieurs pores et interconnexions ne peut etre calculee directement en se basant 

sur le nombre de maxima et points de selle, necessitant une analyse supplemental. 

Normalement, les methodes de calcul utilisees pour 1'analyse d'images uCT engendrent 

certaines erreurs. Puisqu'il n'y avait aucune reference geometrique exacte pour la 

caracterisation de taille de pore et d'interconnexion, il etait impossible d'estimer l'erreur 

de calcul generee par l'outil de caracterisation utilise dans cette etude. 

Ensuite, la methode de caracterisation introduite dans cette etude permet de caracteriser 

les parametres geometriques d'une structure poreuse ayant des pores spheriques ou semi-

spheriques, done ne peut pas etre appliquee a la caracterisation de structures ayant des 

pores de forme differente. 

La reduction de la taille de voxel a mene a une detection plus detaillee de la structure, et a 

cause l'apparition d'effets de bords qui deroutaient les resultats au niveau des 

interconnexions. L'algorithme de caracterisation a montre une sensibilite a ces effets de 

bord. Ainsi, des conditions supplementaires ont ete necessaires a l'elimination des effets 

de bord et a la modification des parametres caracterises. 

Les histogrammes en niveaux de gris deviennent monomodes lorsque la taille de voxel 

est de l'ordre de la taille des pores et interconnexions. L'utilisation de seuils limites et de 
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la segmentation d'histogrammes monomodes ou les deux pics sont confondus est tres 

difficile et limite la precision de l'analyse quantitative. 

Dans le but de comparer les resultats de simulation de resorption aux resultats 

biologiques in vivo, il faut effectuer des tests in vivo. Les resultats de tests biologiques 

utilises dans cette etude ont amene une collaboration avec un autre groupe de recherche 

en Suisse. Effectuer plus d'experiences animales pour etudier l'effet des parametres 

geometriques sur la reponse biologique et l'etude de prediction du modele de simulation 

est tres couteux en argent et en temps. 

II a ete demontre que fenvironnement micromecanique, incluant la contrainte et la 

tension dans le tissu, influence la penetration des cellules et la formation d'os [Jaecques 

et al. 2004, Van Cleynenbreugel et al., 2006]. Les signaux mecaniques affectent le 

developpement et la differentiation du tissu osseux, le signe de la tension determinera si 

f os est resorbe ou depose. Cette these a ete dediee a l'etude de l'effet des parametres 

geometriques sur la simulation de resorption, et n'ont pas pris en compte fenvironnement 

micromecanique qui a un effet significatif sur le processus de reparation de fos. 

Le modele de resorption considere que les cellules resorbant le tissu envahissent 

instantanement les pores et interconnexions accessibles. Cette consideration n'est pas 

necessairement correcte. Le mouvement et la proliferation des cellules dependent de 

fenvironnement biologique et mecanique. Ainsi, le mouvement des cellules dans une 

structure poreuse devrait etre prise en compte afin d'obtenir un modele plus realiste. 

Travaux ulterieurs 

Les conclusions de cette these de doctorat n'ont pas pour but d'etre definitives; elles font 

plutot office de profil des principaux resultats obtenus en recherche effectuee durant la 

periode de ce projet. Voici done quelques suggestions concernant le travail faisant suite a 

ce projet. 

• Le modele de resorption propose dans cette etude suppose que les cellules resorbant 

le tissu envahissent instantanement les pores et interconnexions accessibles. En 
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realite, les cellules remplissent les pores graduellement. Ainsi, une nouvelle condition 

decrivant le mouvement des cellules dans la structure devrait etre considered dans le 

modele de simulation pour modifier l'effet de la colonisation instantanee. Ceci 

pourrait etre le sujet d'un travail ulterieur. 

• Au-dela de la geometrie de la greffe osseuse, certains mecanismes biologiques lies a 

l'activite cellulaire biologique tels les osteoclastes, osteoblastes, facteurs de 

croissances, etc., ont un effet sur la cinetique de resorption. Considerer ce genre de 

mecanismes biologiques dans la modelisation du processus de resorption permettrait 

d'ameliorer le caractere predictif du modele. 

• L'environnement mecanique et la tension induite dans le tissu osseux ont un effet 

significatif sur la penetration des cellules dans la structure poreuse; ces effets ont ete 

ignores dans cette etude. Un travail ulterieur pourrait cibler l'etude simultanee de 

l'effet des parametres geometriques et de l'environnement mecanique sur le 

comportement de la formation osseuse et de la resorption du substitut poreux d'os. 

• La reduction de la taille de voxel mene a une detection plus detaillee de la structure, 

mais genere des effets de bord. Ces effets de bord peuvent tromper les calculs de 

taille d'interconnexions. L'algorithme de caracterisation a montre une sensibilite a ces 

effets de bord. Ainsi, le developpement d'un modele numerique intelligent, moins 

affecte par les microstructures apparaissant dans les images haute resolution parait 

interessant comme travail futur. 
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