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RESUME 

La resistance a la perforation fait souvent partie des proprietes mecaniques les plus 

importantes pour les vetements de protection, en particulier dans le secteur medical. 

Cependant, les parametres intrinseques du materiau qui controlent la resistance a la 

perforation des materiaux de protection sont encore inconnus. L'objectif de ce travail est done 

d'etudier le mecanisme de perforation et les comportements mecaniques des vetements de 

protection lorsqu'ils sont soumis a divers types de sondes de perforation. Une meilleure 

comprehension de la mecanique de la perforation permettra de developper des methodes 

appropriees pour evaluer la resistance a la perforation des materiaux des vetements de 

protection et predire leur rupture. 

Cette these comprend quatre articles qui decrivent les deux aspects principaux de cette 

etude. Les articles I et II presentent la mecanique et les mecanismes de perforation par les 

sondes coniques et cylindriques utilisees dans les methodes d'essai normalisees (ASTM 

F1342 et ISO 13996). Les resultats montrent que la perforation des membranes elastomeres 

par des sondes coniques et cylindriques est controlee par une deformation locale maximale 

(ou deformation a la rupture en perforation) qui est independante de la geometrie de la sonde. 

Les valeurs de resistance en perforation des membranes elastomeres sont beaucoup plus 

faibles que celles en tension et en deformation biaxiale. De plus, il a ete montre qu'une sonde 

cylindrique plus simple peut etre utilisee a la place de la sonde conique couteuse de la 

methode ASTM, pour fournir une caracterisation quantitative de perforation. De fait, depuis 

2005, une methode alternative B avec une sonde cylindrique de 0,5 mm de diametre a 

extremite arrondie a ete ajoutee au texte de la norme ASTM F1342. 

D'autre part, les sondes de perforation utilisees dans la norme ASTM F1342 sont tres 

differentes des objets pointus reels (aiguille medicale, pointe de couteau...) et ne peuvent pas 

caracteriser de maniere exacte la resistance a la piqure par de vrais objets. Par consequent, 

dans une seconde etape, la mecanique et les mecanismes de piqure par les aiguilles medicales 

ont ete etudies. L'article III montre que la piqure par des objets a pointe coupante tels que les 

aiguilles medicales est tres differente de la perforation par les sondes coniques utilisees dans 

la norme ASTM F1342. Pour les aiguilles medicales, la resistance a la piqure implique le 

phenomene de coupure et l'energie de rupture du materiau. En utilisant la mecanique de la 
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rupture, l'energie de rupture en perforation a ete evaluee a partir de la variation de l'energie 

de deformation creee par une modification de la surface de la fissure. Ce calcul suppose qu'il 

n'y a pas de friction entre la pointe de l'aiguille et la surface de la fissure. Cependant, meme 

avec 1'application d'un lubrifiant sur la surface de l'aiguille, l'effet de la friction sur le 

processus de piqure ne peut pas etre completement elimine, ce qui empeche la determination 

de l'energie de rupture du materiau. Par consequent, l'article IV decrit une methode, similaire 

a celle de Lake et Yeoh pour la coupure, developpee pour evaluer la valeur exacte de l'energie 

de rupture de piqure des caoutchoucs par des objets a pointe coupante. La methode permet 

d'eliminer substantiellement les effets de la friction lors de 1'evaluation de l'energie de rupture 

impliquee dans le processus de la piqure. 

Mots-cles 

Perforation, piqurei elastomere, aiguille medicale, friction, energie de rupture, sonde conique 
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SUMMARY 

Puncture resistance is among the major mechanical properties often required for 

protective clothing, especially in the medical sector. However the intrinsic material 

parameters controlling puncture resistance of protective materials are still unknown. 

Therefore, the purpose of this work is to study the mechanism and mechanical behaviors of 

puncture resistance of protective clothing materials to various probe types. A better 

understanding of puncture mechanics will be helpful to develop suitable methods to evaluate 

the puncture resistance and to predict the failure of protective clothing materials. 

The thesis includes 4 articles which expose two major phases in this study. Article I and 

II studied the mechanics and mechanisms of puncture by conical and cylindrical probes used 

in the standard test methods (ASTM F1342 and ISO 13996). The results show that the 

punctures of rubber membranes by conical and cylindrical probes are controlled by a 

maximum local deformation (or puncture failure strain) that is independent of the probe 

geometry. The puncture strengths of elastomer membranes are much lower than their tensile 

and biaxial strengths. In addition, a simpler cylindrical probe can be used in the place of the 

costly conical probe required by the ASTM standard and still provides a quantitative 

characterization of puncture. Actually, since 2005, an alternative method B had been added to 

F1342 ASTM with 0.5 mm-diameter rounded-tip cylindrical probe. 

Furthermore, the puncture probes used in the ASTM F1342 are very different to the 

actual pointed objects (medical needle, pointed tip of knife...) and cannot accurately 

characterize the puncture resistance to real objects. Therefore, in the second step, the 

mechanics and mechanisms of puncture by medical needles were studied. Article III shows 

that the puncture by sharp-pointed objects like medical needles is very different from the 

puncture by conical probes used in the ASTM standard test. For medical needles, the puncture 

resistance involves cutting and fracture energy of material. Using the fracture mechanics, 

based on the change in strain energy with the change in fracture surface, the fracture energy in 

puncture was estimated. This calculation assumes that there is no friction between the needle 

tip and fracture surface. However, even with the application of a lubricant on the needle 

surface, the effect of friction on the puncture process cannot be totally eliminated, preventing 

iii 



the determination of the material fracture energy. Therefore, Article IV has described a 

method, similar to that of Lake and Yeoh for cutting to access the precise value of fracture 

energy in puncture of rubbers by sharp-pointed objects. The method allows substantially 

eliminating the effects of friction on the evaluation of the fracture energy involved in the 

puncture process. 

Keywords 

Puncture, elastomer, medical needle, friction, fracture energy, conical probe 
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CHAPTER 1 

INTRODUCTION 

Puncture resistance of protective materials has been an important issue for a long time 

in many fields. Especially in the medical sector, health care workers may be infected with 

viruses, diseases, or infectious substances through punctured holes on protective equipment. 

In the United States, according to the Occupational Safety and Health Administration (OSHA) 

estimates, more than 5.6 million workers in health care and public safety occupations could be 

exposed to the human immunodeficiency virus (HIV) and the Hepatitis B virus (HBV). The 

most common type of percutaneous injury was an inadvertent needlestick injury. And overall, 

protective equipment prevented 87% of all skin and face contact [1], 

Puncture resistance is among the major mechanical properties of protective gloves made 

of elastomer membranes, yet the intrinsic material parameters controlling the puncture 

resistance of these materials are still unknown. Various investigations have been performed 

on specific cases involving different materials. However, the reported investigations are either 

qualitative, and do not provide a fundamental understanding of the mechanisms controlling 

puncture, or are not applicable to the highly elastic elastomer membranes. The following 

section outlines the reported works on puncture involving different behaviours in various 

materials. 

The puncture resistance of protective gloves to surgical needle was studied in [1]. In this 

work, 19 commercially available surgical glove liners were ranked according to a 

measurement of the puncture force. The resistance of finger guards, glove liners and thicker 

latex gloves to needle penetration were also measured in order to compare these materials in 

terms of puncture protection with respect to the single latex glove [2]. The effectiveness of 

cut-proof glove liners on cut and puncture resistance, dexterity, and sensibility are discussed 

in [3]. However, the thickness is not taken into account in these works, and the results are 

only qualitative for purposes of comparison. More fundamental investigations on puncture 

have been carried out on rubber blocks by fracture mechanics [4]. With a cylindrical indentor, 

it was has been shown that a starter crack initiates as a ring on the rubber-block surface before 
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puncture occurs. Using fracture mechanics, a method has been developed to calculate the 

fracture energy in puncture. The puncture energy values obtained were found to agree with 

the catastrophic tearing energy obtained from trouser tear tests. However, the rubber-block 

situation involves surface indentation and is not applicable to the case of puncture of 

elastomer membranes. The quantitative characterization of puncture resistance has also been 

developed for geotextiles and geomembranes. In these materials, a correlation was found 

between the puncture force and the tensile strength for probes greater than 20 mm in diameter 

[5-7]. Considering a loading state of pure axisymmetric tension, the puncture resistance of 

geotextile membranes was calculated in term of tensile wide-width strength. To simulate the 

actual application in service, the puncture of pre-strained geotextiles was also analyzed in [8] 

and the relationship between puncture resistance and tensile wide-width strength was 

confirmed. However, the results are only applicable in the case of linearly elastic deformation. 

Thin rubber membranes, for their part, are hyperelastic and highly nonlinear. 

Presently, to evaluate puncture resistance of protective clothing, the standard tests 

ASTM F1342 and ISO 13996 are the most commonly used methods. These tests have been 

developed to evaluate the puncture resistance of thin flexible-materials. The ASTM F1342 [9] 

is designed for any type of protective clothing, including coated fabrics, laminates, textiles, 

plastics, elastomeric films or flexible materials. This test method determines the puncture 

resistance of a material specimen by measuring the maximum force required for a conical 

puncture probe to penetrate through a specimen clamped between two plates with chamfered 

holes of diameter less than 10 mm. However, this method is only qualitative characterization 

and does not provide the intrinsic material properties that control puncture resistance. 

Furthermore, it is clear that the puncture probe used in the ASTM F1342 (Figure 1.1) is 

very different to the actual pointed objects (Figure 1.2) and cannot accurately characterize the 

puncture resistance to real objects. In fact, puncture of protective clothing materials by 
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Figure 1.1: Puncture probe used in ASTM F1342 

1 mm 

a) Medical needle 

b) Pointed tip of a knife c) Sewing needle 

Figure 1.2: Actual pointed objects. 

medical needles (Figure 1.2a) has been studied [1-3] and the puncture resistances are found 

much smaller than those measured by the ASTM F1342. In addition, in these works, the 

thickness is not taken into account hence thicker samples give higher resistance and the 

intrinsic material parameter controlling puncture resistance is still unknown. Therefore, 

additional studies should be carried out on the puncture probes which are similar to real 

objects (e.g. medical needles can be used as puncture probes) and new testing methods should 

be developed for a more realistic characterization of the puncture resistance of protective 

clothing materials. 

16 



In terms of fracture mechanics, puncture caused by sharp objects (Figure 1.2a & 1.2b) is 

a complex phenomenon and may involve the combination of puncture and cut (or tear) that 

may happen simultaneously. In fact, there are few protective materials that can resist multiple 

risks (puncture and cut simultaneously). The studies carried out by IRSST (Institut de 

recherche Robert-Sauve en sante et en securite du travail du Quebec) demonstrated that in 

almost cases, protective materials have very high cut resistance, but low puncture resistance 

and vice-versa [10 - 12]. Recently, the development of a method to study the combined 

puncture and tear of fabrics has been carried out [13]. However, this experimental method is 

still in the primary stage of development and the obtained results only show the parameters of 

the apparatus that affect the tear propagation of woven fabrics. 

Therefore, the purpose of this work is to study the mechanism and mechanical behaviors 

of puncture resistance of protective clothing materials to various probe types. The 

environmental effects on puncture performance, such as temperature, loading rate and 

physical aging effects will be also investigated. A better understanding of puncture mechanics 

will be helpful to develop suitable methods to evaluate puncture resistance and to predict the 

failure of protective clothing materials as well as to develop new protective materials for 

better puncture resistance. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

2.1 Materials for protective clothing 

Common materials for protective clothing are rubbers, flexible thermoplastics and 

polymer fabrics as listed in Table 2.1 [14]. 

TABLE 2.1: COMMON MATERIALS FOR PROTECTIVE CLOTHING [14] 

Material name 

Butyl 
Natural rubber 
Neoprene 
Nitrile 
Hypalon (™) 
Viton (™) 
PE 
PVC 
PVA 
CPE 
EVOH 
Saranex (™) 
Teflon (™) 
Kevlar (™) & Nomex (™) 
UHMWPE 

Other material names 

11 R (rubber) 
N R (rubber) 
Polychloroprene rubber or CR 
Acrylo-nitrile butadiene rubber or NBR 
Chlorosulphonated ethylene rubber 
Fluorocarbon rubber or FPM 
Polyethylene 
Polyvinyl chloride 
Polyvinyl alcohol 
Chlorinated polyethylene 
Ethylene-vinyl alcohol 
PE/Polyvinylidene chloride or PE/Saran 
Polytetrafluoroethylene (TFE or PTFE) 
Polyaromatic amide 
Ultra-high molecular weight polyethylene 

(™) = Trademark 

Various polymer materials mentioned above have different mechanical properties. The 

typical tensile stress-strain curves for different polymers are shown in Figure 2.1 [15]. In the 

case of fibber (polymer fabric), deformation is elastic up to brittle failure point with high 

tensile modulus, low extension at break and high breaking stress (curve 2). Flexible plastic 

has a lower modulus but it is capable of undergoing yield and extensive plastic deformation 

(curve 3). Rubbers have relatively low values of Young's modulus and are capable of 

extending reversibly up to over 500% before eventual failure (curve 4). 
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The polymers are also viscoelastic materials that exhibit a combination of elastic and 

viscous behavior. As known, viscoelasticity behavior is especially prominent in polymers 

with the result that the mechanical properties strongly depend on the time and temperature. 

Mechanical properties of polymers also depend on the molecular structure, the molecular 

weight, and mechanical processing such as roll, draw, and extrude. 

r icr 
fiber 

flexible 
plastic 

10" 

10 

Mo' 

stress 
a (N/cm2) 

- 1 1 1 1 r 
100 200 300 400 500 600 

strain (% elongation) 

Figure 2.1: Sketch of stress-strain curves for various types of polymer [15]. 

Some thermoplastics with good chemical-resistance (PVA) and water-resistance (PVC, 

PP, PE...) are used for protective clothing (Table 2.1). Unfortunately, these materials are 

either uncomfortable to wear, lack good tactility, are fragile or expensive. For example, 

polyvinyl alcohol (PVA) polymer offers excellent resistance against many organic substances 

but is highly sensitive to degradation by water and ineffective for extended use where 

perspiration occurs [14]. Thus, a rubber such as natural rubber, neoprene, nitrile, or butyl 

rubber is employed alternatively. 

Rubber membranes are widely used for medical gloves and protective clothing due to 

their hyperelastic properties, leading to high flexibility and sensibility for operators. Most 

materials obey the Hooke's law under small elastic deformation whereas rubber has a 

hyperelasticity and a highly non-linear behavior. In this case, the Hooke's law cannot be 

applied and the non-linear Mooney-Rivlin equation is appropriate for rubber's deformation 

[16-20]. 
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Rubbers have hyperelastic behavior, good water and oil resistance, but low strengths, 

low cut and tear resistance. Fibers have very high strength and some fibers like Kevlar can 

withstand high temperature. However fibbers have low extension, weak resilience and do not 

have capacity of water or oil resistance. Fiber fabrics and rubber are combined to obtain a 

fiber-reinforced composite that has the properties of both components: flexibility, water-

resistance, high strength and/or withstand high temperature. 

Common commercial composite materials used to make protective clothing are: woven 

cotton fabric, or woven spectra fabric, or woven kevlar fabric embedded in polyisoprene, 

neoprene or nitrile. Many composite structures have been developed for a better cut and/or 

puncture resistance material. For example, Gimbel Gloves have developed a multilayers 

composite pad for better puncture resistance on the fingertips. The protective pads are made 

from an innovative weaving process. Nine layers of puncture-resistant polymer mesh are 

sealed around the edges so each layer moves independently (Fig. 2.2). The pads are sealed 

between two layers of latex providing maximum protection while maintaining manual 

dexterity and tactile feel. These pads have 1800% more puncture-resistance than double 

gloving with standard latex gloves (http://www.cfrd.org). 

Figure 2.2: Puncture-resistant polymer mesh in Gimbel Gloves. 
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2.2 Fracture mechanics of polymers 

Puncture, cutting, tearing are different kinds of failure in polymers that involve fracture 

mechanics. During the deformation and fracture of polymers, the molecules slide past each 

other and tend to uncoil, breaking secondary bonds. Molecular fracture through the scission of 

primary bonds will take place if the flow of molecules passing each other is restricted due to 

the nature of polymer structure such as in a semi-crystalline polymer, in cross-linked polymer, 

in polymer fibbers etc. There are many general approaches to the study of fracture in 

polymers. 

2.2.1 Theoretical strength 

Fracture involves the creation of new surfaces in a body, and in polymer that occurs by 

the breaking of primary (covalent) and/or secondary (e.g., van der Waals or hydrogen) bonds. 

An estimate of the theoretical strength of a solid polymer can be made by the simple analysis 

of Kelly and MacMillan [21, 22] developed for any type of solid. When different values of E 

(Young's modulus of the material), Go (the energy required to create new surfaces) and ao (the 

equilibrium separation of the interatomic planes perpendicular to the tensile axis) are put into 

the above estimate, it is found for most solids that the maximum tensile strength can be 

approximated by [21, 22]:. 

a,h*E/10 (2.1) 

The interest of the 'theoretical strength', ath, is that it gives the upper limit of strength 

expected for the materials. However, the measured values of tensile strength o"f are about 

E/100 - E/30 for most materials because of the presence of flaws acting as stress 

concentrators [21, 22]. 

2.2.2 Fracture mechanics 

It was shown in the previous section that the theoretical strength of a solid is of the 

order of E/10. However, the measured strengths are often well below the theoretical value. 
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Griffith showed that the relatively low strength of a brittle solid could be explained by the 

presence of flaws acting as stress concentrators [23]. This hypothesis has been developed and 

extended by many investigators and is the basic of "fracture mechanics" which is used to 

interpret the fracture of many solids, including polymers. 

Two main approaches are used in fracture mechanics although they are closely related. 

The first is an energy criterion developed by Orowan which supposes that fracture takes place 

when sufficient energy is released during crack growth to supply the energy of the new 

fracture surfaces created [22]. The fracture of a material is thereby characterized by the 

material property Gc known as the 'strain energy release rate' or 'fracture energy': 

- ^ 7 = Gc (2.2) 

where W is the total elastic energy in the sample considered and A the area of one fracture 

surface of the crack. The partial derivative indicates that the sample considered is held at 

constant length 1, so that the applied forces do not move, hence do no work. 

The second approach was developed by Irwin who showed that the stress field around a 

sharp crack in an elastic material could be uniquely defined by a parameter known as the 

'stress intensity factor' K [22]. Fracture then occurs when K reaches a critical value Kc, which 

is material property often called the 'fracture toughness'. The parameters Gc and Kc are 

related for a linear elastic material through the approximate relationship: 

Gc * Kc
2/E (2.3) 

Another approach based on local analysis around a crack tip was developed by Thomas 

[24] for elastomer: nonlinear elastic material. If a suitably averaged strain energy density at 

the tip is Ut and with a model crack having a semicircular tip of diameter d, the approximate 

relation is: 

Gc = Utd (2.4) 
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The confirmation of this relationship by experimental study [24] supports the contention that 

the region surrounding the crack tip where the local dissipation, arising from hysteresis and 

bond rupture mechanisms, is the characteristic of the fracture process. And the value of Gc, 

determined from any particular test method, should be independent of geometrical and 

loading considerations [20, 22, 25]. 

2.3 Reported approaches on puncture of various materials 

Puncture resistance is among the major mechanical properties in many fields, e.g., the 

Occupational Safety and Health, the Geotechnical... Various investigations have been 

performed on specific cases involving different materials. However, the reported 

investigations are either qualitative and do not provide a fundamental understanding of the 

mechanisms controlling puncture, or are not applicable to the protective clothing materials. 

The following sections outline the reported fundamental studies on puncture of various 

materials. 

2.3.1 Puncture of rubber blocks 

For rubbers, conventional tensile and tear tests are not particularly suitable tools for 

investigation of strength-properties of small components (not large enough for tensile and tear 

tests) or over the thickness of a bulky product. An alternative approach, particularly suitable 

for diagnostic work, involves the use of a puncture test [4]. A probe of specified geometry is 

pressed into the component, and the force to cause rupture is measured at specified 

penetration depths. One suitable application is the study of aging across the thickness of a 

bulky product [25]. The effects of aging are stronger at the small depth near the surfaces 

where material contacts with the environment (oxidative agents...). 
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a) Test arrangement b) Top view and section view of ring cracks 

Figure 2.3: Puncture testing of rubber blocks [4]. 

With a sharp cylindrical probe, a starter crack initiates as a ring on the rubber surface 

before puncture takes place. Using fracture mechanics, an equation has been derived for the 

energy of puncture. The puncture force F at rupture is related to the tearing energy Gc by the 

equation: 

G C = F ^ (2.5) 

where Xc is the compression ratio and r0 is the surface crack radius after rupture. Good 

agreement has been reported between tearing energies derived from the test and those from 

trouser tear measurements [4]. 

This approach is for rubber blocks, but it may be useful for the puncture study of rubber 

membranes. Furthermore, for needle diameters which are very small compared to sample 

thickness or puncture of rubber sample on the support (simulating protective clothing in 

wear), the puncture performance may be related to this study of rubber block. 
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2.3.2 Puncture of geotextiles 

For geotextiles and geomembranes in geotechnical applications, there is a sub-domain to 

study puncture behavior and it has been successfully applied to simulate, design and predict 

the failures in the real structures [5-8] . 

In designing with geotextiles, there is a need for an assessment of geotextile resistance to 

objects such as rocks or pieces of wood under quasi-static conditions. Such a test is described 

as the California bearing ratio (CBR) test [5] (devised by the California State Highway 

Association). There is a direct relationship between this type of puncture resistance value and 

the tensile wide-width strength of the geotextile. This is because the geotextile between inner 

edge of the specimen holder and outer edge of the puncturing rod is indeed in state of pure 

axi-symmetric tension. Cazzuffi et al. proposed the following empirical equation as a 

correlation between the breaking force of the CBR test and the wide-width tensile strength for 

isotropic, nonwoven geotextiles [5, 6]: 

Tf=Fp/27ir (2.6) 

where Tf = the tensile force per unit width of fabric, kN/m, and 

Fp = the puncture breaking force, kN 

and r = the puncture probe radius, m. 

The puncture phenomenon of geomembrane when pierced by objects such as rocks or 

pieces of wood is different from that of the protective clothing caused by small needles. 

However, fiber-reinfored composites have the similar structures to geomembranes, therefore 

the puncture approaches of geomembranes may be helpful for the puncture study of fiber 

composites used for the protective clothing. 

2.3.3 Puncture of protective clothing 

Some works on the puncture of protective clothing have been carried out [1-3]. 

However, most of the reported investigations are qualitative and deal only with measurements 
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of the forces required to perforate a thin protective material. The puncture behavior and 

material parameters controlling puncture performance are still unknown. 

Presently, to characterize protective materials, standard test methods have been used to 

evaluate the puncture resistance such as ASTM F1342 and ISO 13996. The ASTM F 1342 

[9] is designed for any type of protective clothing, including coated fabrics, laminates, 

textiles, plastics, elastomeric films or flexible materials. This test method determines the 

puncture resistance of a material specimen by measuring the force required to cause a 

puncture probe to penetrate through the specimen (Fig. 2.4). The specimen is fixed between 

two plates, each plate has three chamfered holes of 6 mm diameter. The open spaces centered 

below 10 mm guide holes should be enough to allow for 25 mm of travel of the probe (see 

Fig. 2.4b). 
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a) Cross-section of puncture probe b) Side view of specimen support 

Figure 2.4: Puncture test probe and specimen support of ASTM F1342 [9]. 

However, this test method is not intended to measure puncture resistance of all types of 

punctures encountered using protective clothing. For example, with sharp medical needles, 

the puncture resistance is much lower than that measured by this test method [1]. 

Furthermore, in the ASTM F1342, the conical probe tip is difficult to reproduce, that lead to 
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difficulty in reproducing the puncture force by different labs [10]. Therefore, the study of 

alternative cylindrical probes to evaluate the puncture resistance of protective clothing 

materials has been carried out at IRSST [10]. In this work, the relations between puncture 

force and puncture probe velocity, probe diameter were also investigated. However, all above 

methods do not provide the material parameters controlling puncture performance or 

governing mechanism that would be used in more general applications. 

As mentioned previously, puncture caused by actual sharp and pointed object (medical 

needle, pointed tip of a knife) is different from that by the conical probe or cylindrical probe 

in the existing test methods. In the case of sharp and pointed object, puncture is a complex 

phenomenon and may involve the combination of puncture and cut (or tear) that happens 

simultaneously. For the determination of combined puncture and tear resistance of flexible 

materials, the existing method is the ASTM D2582. This test method covers the determination 

of the dynamic tear resistance of plastic film and thin sheeting subjected to end-use snagging-

type hazards (Fig. 2.5). In this method, a probe is dropped by a carriage onto the surface of 

the test material that is held in a specimen holder at an angle nearly 90° to the probe (Fig. 2.5). 

Samples are individually mounted in a test fixture and held in place by five clamps. A sharp-

edged probe is mounted onto a weighted drop mass, which falls along guide rails. This mass 

is dropped so that the probe comes in contact with the sample, causing it to puncture and tear. 

However this method is designed for plastic film and thin sheeting, therefore it is not 

suitable for the complex variety of protective clothing materials. The development of a 

method (based on the ASTM D2582) to study the combined puncture and tear of fabrics has 

been carried out recently [13]. However, the method and the device is still in the primary 

stage of development, the work was done to understand only the parameters of the apparatus 

affecting the tear propagation of woven fabrics. 
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//—drop height, mm 
L—tear length, mm 
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H — weight of carnage, kg 

Figure 2.5: Puncture-propagation of tear tester (ASTM D2582). 

Therefore, the studies should be carried out on the puncture probes which are similar to 

real objects (e.g. medical needles can be used as puncture probes) and new testing methods 

should be developed for a more realistic characterization of the puncture resistance of 

protective clothing. Also, it is necessary to study the behavior of materials in the combined 

puncture and cut (or tear) performance (simulating the multiple risks in using of protective 

clothing). 

28 



CHAPTER 3 

METHODOLOGY 

3.1 Objectives and scope of the study 

The purpose of the study is to understand the mechanism and mechanical behaviors of 

puncture resistance of common protective clothing materials to various puncture probe types, 

to find the intrinsic material properties that control puncture resistance and to develop an 

analytical correlation between the puncture resistance and other mechanical properties (such 

as tensile strength, fracture toughness...)- A better understanding of puncture mechanics will 

be helpful to develop suitable methods to evaluate puncture resistance and to predict the 

failure of protective clothing materials as well as to develop new protective materials for 

better puncture resistance. 

• The following experimental and analytical methods are used: 

(a) The puncture tests of protective materials are carried out using test methods proposed 

recently (see Section 2.3.3 and 4.1). 

(b) Tensile and tear tests on the studied materials are performed according to ASTM D412 

and ASTM D624 respectively, for determining the tensile strength and fracture toughness 

of materials (Section 4.1 and 4.2). 

(c) Analyze/determine the criteria (material fundamental parameters) that control the puncture 

failure and to find an analytical correlation between the puncture resistance and other 

mechanical properties (such as tensile strength, fracture toughness) based on the above 

experimental results. 

(d) The effects of test parameters (probe geometry, sample holder size, sample thickness...) 

on puncture resistance are also investigated. 
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3.2 Choice of materials for the proposed study 

Common commercial protective clothing materials used for this study are: 

+ Rubbers: 

- Neoprene sheets with various thickness and hardness from Fairprene Industrial 
Products Co., USA, 

- Nitrile of various thickness cut from gloves of Ansell Edmont Co., England, 

- Natural rubber from gloves of Sandstrahler Co. with various thickness. 

+ Fiber-reinforced composites and Flexible plastics: 

Composites of woven Kevlar and rubber (neoprene or nitrile) from Best gloves and 

Ansell Edmont gloves. 

Puncture tests have been carried out on polyethylene (PE) and composites of Kevlar 

in this study. However, they are only the preliminary results of effects of testing 

parameters on the puncture resistance. 
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CHAPTER 4 

EXPERIMENTAL 

4.1 Puncture test 

The puncture tests are carried out on the same test equipment and procedure developed 

by Lara et al. [10]. Testing apparatus is showed in Figure 4.1. The sample is held between two 

steel plates pressurized by air at 0.8 MPa. The hole of the lower plate is chamfered to avoid 

the stress concentration. Two sizes of the sample holder diameter are available: Dh = 38.0 mm 

and 13.5 mm. 

Figure 4.1: a) Puncture test apparatus. b) Sketch of sample holder. 

The puncture probe is clamped in a pin chuck mounted to loadcell in the test machine 

crosshead (universal-testing machine Instron - Model 1137), which then forced the probe on 

the sample membrane. The force and the vertical displacement during the test are recorded. 

Three types of puncture probe are used: cylindrical probes (flat tip & rounded tip), 

conical probes (flat tip & rounded tip) and medical needles (Figure 4.2). All probes are made 

of stainless steel. 

For the cylindrical probes, probe diameters of the flat tip (Figure 4.2a) are 0.1 mm, 0.2 

mm, 0.5 mm, 1.0 mm, 1.4 mm and 2.5 mm. The diameters of the rounded tip (Figure 4.2b) are 

1.0 mm and 2.5 mm. 
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Figure 4.2: Puncture probes: cylindrical probes: flat tip (a), rounded tip (b), conical probes: 
rounded tip (c), flat tip (d) and medical needle (e). 

For the conical probes with rounded tip (Figure 4.2c), the conical extremities have an 

angle of 26° and 3 probe sizes are used whose rounded end have 0.25 mm ,0.30 mm and 0.50 

mm radius. The first one is correspondent to ASTM F1342 (Section 2.3.3, Fig. 2.4a). The 

conical probes with flat tip (Figure 4.2d) and various tip angles will be used to study the 

effects of tip angle on puncture resistance. 

The medical needles with various tip angles a, different needle diameters (0.2 - 1.0 

mm) and different hole diameters, d' (Figure 4.2e) were also used. 

4.2 Tear test 

As mentioned, with pointed and sharp objects, the combination of puncture and tear (or 

cut) may happen simultaneously. Therefore, it is necessary to determine the tearing energy or 

fracture energy that would be used in the puncture study of these objects. 

The fracture energy or tearing energy, as mentioned in section 2.2.2, is a material 

property and is independent of the test piece geometry. The trouser test piece is chosen in this 

study because it is particularly convenient for calculating tearing energy to give more 

fundamental results. This test method is described in reference [29] and corresponds to the 

ASTM D624 - 91 [40]: Standard test method for tear strength of conventional vulcanized 

rubber and thermoplastic rubbers. The trouser test piece used in this study is designated as Die 

T in the ASTM (Figure 4.3). 
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Figure 4.3: Trouser test specimen: (a) undeformed state; (b) extended state. 

4.3 Tensile test (uniaxial) 

The uniaxial tensile tests were done to evaluate the tensile strength of studied materials 

that would be used later to find out the relations to puncture resistance. This test is performed 

according to the ASTM standard D 412 [30], using the C type dog-bone sample. The test is 

carried out at room temperature, with a crosshead speed of 100 mm/min. The elongation is 

measured by a laser extensometer MTS LX 500 as shown in Figure 4.4. 
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Figure 4.4: Elongation measured by laser extensometer. 

4.4 Biaxial tension test (balloon test) 

The balloon tests are carried out to determine the failure strain and stress in an equi-

biaxial state (Figure 4.5). The pressure is measured and controlled by pressure gauge, the 

maximum diameter of balloon before bursting was recorded by laser extensometer MTS LX 

500. The failure strain and stress are calculated by [31, 32]: 

Engineering strain and stress: 

e = X-\ 

ae = RP/2t (4.1) 

with A, is the stretch ratio, X = Sbaii/So 

where R is the maximum radius of the balloon at burst, P is the maximum pressure, t is the 

initial thickness, Sbaii is the maximum surface area of the balloon at burst, and So is the initial 

surface of the sample. 
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Figure 4.5: Balloon type equi-biaxial extension equipment. 

True strain and stress: 

8 = ln(e + 1) = \nX 

a = X2G£ = r RP/2t (4.2) 
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Abstract 

Puncture resistance is among the major mechanical properties of rubber membranes, yet the 

intrinsic material parameters controlling the puncture of these materials are still unknown. To 

evaluate puncture resistance, the ASTM F1342 standard test is currently the most commonly 

used method. Using a conical puncture probe, this test is designed for any type of protective 

clothing, including coated fabrics, laminates, textiles, plastics, elastomeric films or flexible 

materials. This work aims to investigate the quantitative material parameters that control the 

puncture resistance of thin rubber membranes. Three commercial rubbers commonly used in 

protective gloves are investigated. The results demonstrate that the probe-tip geometry 

strongly affects the results in puncture characterization. The maximum puncture force 

depends on the contact surface between the elastomer membrane and the probe tip. The 

indentation force has been calculated for elastomer membranes with large deformations in the 

absence of friction, using the Mooney strain-energy function. The puncture strengths of 

elastomer membranes are much lower than their tensile and biaxial strengths. The puncture of 

rubber membranes is controlled by a maximum local deformation that is independent of the 

indentor geometry. 
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1. Introduction 

Puncture resistance is among the major mechanical properties of protective gloves made of 

elastomer membranes, yet the intrinsic material parameters controlling the puncture resistance 

of these materials are still unknown. Various investigations have been performed on specific 

cases involving different materials. However, the reported investigations are either qualitative, 

and do not provide a fundamental understanding of the mechanisms controlling puncture, or 

are not applicable to the highly elastic elastomer membranes. The following section outlines 

the reported works on puncture involving different behaviours in various materials. 

The puncture resistance of protective gloves to surgical needle was studied in [1]. In this 

work, 19 commercially available surgical glove liners were ranked according to a 

measurement of the puncture force. The resistance of finger guards, glove liners and thicker 

latex gloves to needle penetration were also measured in order to compare these materials in 

terms of puncture protection with respect to the single latex glove [2]. The effectiveness of 

cut-proof glove liners on cut and puncture resistance, dexterity, and sensibility are discussed 

in [3]. However, the thickness is not taken into account in these works, and the results are 

only qualitative for purposes of comparison. The puncture behaviour of rigid plaques such as 

polycarbonates and acrylics is reported in [4, 5]. In these works, the energy required to 

perforate the plaque and the peak load recorded in the puncture tests were used to characterize 

puncture performance. The maximum load was found to vary linearly with both the plunger 

diameter and the sample thickness, but no quantitative analysis of the results was performed. 

More fundamental investigations on puncture have been carried out on rubber blocks by 

fracture mechanics [6]. With a cylindrical indentor, it was has been shown that a starter crack 

initiates as a ring on the rubber-block surface before puncture occurs. Using fracture 

mechanics, a method has been developed to calculate the fracture energy in puncture. The 

puncture energy values obtained were found to agree with the catastrophic tearing energy 

obtained from trouser tear tests. However, the rubber-block situation involves surface 

indentation and is not applicable to the case of puncture of elastomer membranes. The 

quantitative characterization of puncture resistance has also been developed for geotextiles 

and geomembranes. In these materials, a correlation was found between the puncture force 
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and the tensile strength for probes greater than 20 mm in diameter [7-9]. Considering a 

loading state of pure axisymmetric tension, the puncture resistance of geotextile membranes 

was calculated in term of tensile wide-width strength. To simulate the actual application in 

service, the puncture of pre-strained geotextiles was also analyzed in [10] and the relationship 

between puncture resistance and tensile wide-width strength was confirmed. However, the 

results are only applicable in the case of linearly elastic deformation. Thin rubber membranes 

are for their part hyperelastic, and highly nonlinear. 

Presently, to evaluate the puncture resistance of elastomer membranes, the standard ASTM 

F1342 and ISO 13996 tests are the most commonly used methods. These tests were developed 

to evaluate the puncture resistance of thin flexible-materials. The ASTM F 1342 [11] is 

designed for any type of protective clothing, including coated fabrics, laminates, textiles, 

plastics, elastomeric films or flexible materials. This test method determines the puncture 

resistance of a material specimen by measuring the maximum force required for a conical 

puncture probe to penetrate through a specimen clamped between two plates with chamfered 

holes not less than 10 mm in diameter. The aim of this work is to investigate the material 

parameters that control the puncture resistance of thin rubber membranes in the ASTM 

standard F 1342. Both the test and the mechanisms of puncture are analyzed in order to find 

the intrinsic parameters controlling puncture. The effects of probe geometry, and the 

correlations with other mechanical performances are also investigated. 

2. Experimental 

2.1. Materials 

Three types of commercial rubbers commonly used for protective gloves, neoprene, nitrile, 

and natural rubber, were investigated. Neoprene sheets with three different thicknesses, 0.40, 

0.78 and 1.57 mm, were obtained from Fairprene Industrial Products. The 0.30 mm thick 

nitrile samples were cut from Nitrile Gloves manufactured by Ansell Co. The 1.0 mm thick 

natural rubber samples were cut from NR Gloves, manufactured by Sandstrahler Co. 
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2.2. Puncture test 

The puncture test was carried out on an Instron 1137 universal-testing machine. The puncture 

probes were held by a pin chuck mounted to the load cell. The elastomer sample was clamped 

between two steel plates under pressurized air, as shown in Figure 1. The hole of the lower 

plate was chamfered to avoid stress concentration. 
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Figure 1: Sketch of sample holder 

Conical probes with different cone angles and diameters are investigated in this work, as 

shown in Figure 2. These probes were manufactured from stainless steel. 

= 13° - 60c 

Figure 2: Conical puncture probe 
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2.3. Tensile test 

The uniaxial tensile test was performed according to the D 412 ASTM standard [12], using 

the C-type dog-bone sample. The test was carried out at room temperature, with a crosshead 

speed of 100 mm/min. The elongation was measured by an MTS LX 500 laser extensometer. 

2.4. Biaxial test 

The balloon test [13, 14] was used to determine the failure stress and strain in an equibiaxial 

state (Figure 3). The pressure was measured using a pressure gauge while the maximum 

diameter of the balloon before burst was recorded through an MTS LX 500 laser 

extensometer. 
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Figure 3: Balloon type equibiaxial extension equipment 
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3. Results and discussions 

Figure 4 shows the typical curves of force versus vertical displacement recorded during 

the puncture tests. These curves are not linear, and show a maximum force (F) and a 

maximum vertical displacement (H) at puncture. Figure 5 shows the effect of the probe-tip 

angle on the puncture resistance of the neoprene sheet with a thickness of / = 0.78 mm. The 

conical probes had the same rod diameter d.2 = 1.05 mrn and the same tip diameter, d; = 0.05 

mm, but different probe-tip angles (see Figure 2), which were 6 = 13°, 30°, 45°, and 60°. 
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Figure 4: Typical diagram of force vs. vertical displacement for 0.3 mm thick Nitrile samples. 

The results show that the puncture force strongly increases with the probe-tip angle. The 

same figure also shows the results obtained with two cylindrical probes with diameters of 0.05 

mm and 1.05 mm. These cylindrical probes respectively correspond to the cases of 9 = 0° and 

0 = 90°. The measurements suggest that within the experimental error margin, the maximum 

puncture force obtained with the cylindrical probes fall on the same curve as that obtained 

with the conical probes. 
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Figure 5: Variation of maximum puncture force in 0.78 mm thick Neoprene as a function of 

probe-tip angle. 

Table 1: Failure true stress of tensile and puncture tests (in parenthesis: SD - standard 

deviation) 

Material Nitrile Neoprene NR 

Failure true stress (MPa) 

Tensile 210 (22) 71 (7) 

Puncture 1 2 g (lg) 4 5 (7) 

325 (31) 

104 (11) 

Table 1 shows the comparison between the measured tensile stress and the maximum 

stress in the puncture of elastomer membrane, calculated from maximum puncture force. The 

maximum stress in puncture appears to be much smaller than the maximum tensile stress. 

Observations of the deformations of the sample before puncture revealed that at the top 

surface of the probe tip, the deformation is at a maximum, and is in an equibiaxial state 

(Figure 6). Since puncture involves a biaxial state of stress, it is relevant to verify whether 

these discrepancies can be due to the effect of biaxial stress. To determine the maximum 
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equibiaxial strength, the elastomer membranes were air-inflated until they burst. The pressure 

was measured and controlled using a pressure gauge while the maximum diameter of the 

balloon before burst was recorded through an MTS LX 500 laser extensometer. The true 

failure strain and stress were calculated by [13, 14]: 

^2 = Sbaii/So and a = X2 RP/2t (1) 

where R is the maximum radius of the balloon at burst, P is the maximum pressure, t is the 

initial thickness, Sbaii is the maximum surface area of the balloon at burst, and So is the initial 

surface of the sample. 

Figure 6: Biaxial deformation at probe-tip surface. 

Table 2 shows the comparison between the equibiaxial and the calculated maximum 

puncture stresses of different elastomer membranes. The results show that the puncture 

strength is also smaller than the biaxial strength. 

The comparison between the maximum deformations measured in puncture, tensile, 

and equibiaxial tests is shown in Table 3. The results once again confirm that puncture is 

controlled by a maximum local deformation of the membrane at the probe tip. This 

deformation is much smaller than the maximum tensile and equibiaxial deformations. 

44 



Table 2: Failure true stress of equibiaxial and puncture tests (in parenthesis: SD) 

Material Nitrile Neoprene NR 

Failure true stress (MPa) 

Biaxial 270 (29) 73(9) 311(35) 

Puncture \2S (18) 45(7) 104(11) 

Table 3: Failure engineering strain and true strain of tensile biaxial balloon tests compared to 

puncture tests (in parenthesis: standard deviation) 

Material Nitrile Neoprene NR 

Failure engineering strain (%) 

Tensile 410(22) 376(18) 971(51) 

Biaxial 239(17) 186(76) 493(42) 

Puncture \32 (11) 146(7) 318(23) 

Failure true strain (%) 

Tensile 163(70; 156 (8) 237(14) 

Biaxial 122(9) 105(9) 178(75) 

Puncture B4 (8) 90(5) 143(12) 

Observations revealed that the elastomer membrane adheres to the probe over a 

specific distance from the probe tip before puncture (Figure 7). The measured puncture force 

thus results from the contact force at the probe. From the deformations of the elastomer 
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membrane shown in Figure 7, it could be assumed that the contact force would include both 

normal and tangential forces due to friction. In order to verify the contribution of the 

tangential force due to friction, puncture tests with lubricated probe tips were performed, and 

the results revealed that friction played only a minor role in puncture. The maximum puncture 

force in the presence of a lubricant was only slightly reduced (less than 6%). The maximum 

force measured in the puncture tests was therefore due to the normal pressure of the elastomer 

membrane on the probe tip. 

Figure 7: Deformation of elastomer membranes using puncture. 

Large deformations in the indentations of circular elastic membranes by a spherical 

indentor in the absence of friction have been analyzed in [15]. Using a similar analysis, an 

attempt is made in this work to calculate the theoretical puncture force for the conical probe-

tip geometry. A point P' on the deformed membrane can be described by two coordinates: p, 

the distance from the point to the axis of symmetry, and £, the meridian arc length between 

the centre of the membrane and the point shown in Figure 8. The solution of the deformed 

membrane is in the form: 
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Figure 8: Coordinates in indentation of circular elastic membrane with conical probe. 

% = £, (r) and p = p (r) (2) 

where r is the coordinate of the point P on the undeformed membrane (corresponding to the 

point P' on the deformed membrane). The meridian and circumferential stretch-ratios of the 

deformed membrane are thus, respectively, X\ = d^/dr and A.2 = p/r. There are two distinct 

regions on the deformed membrane, the region which is in contact with the puncture probe, 

called the contact region, and the other, called the non-contact region. 

In the non-contact region, since it has no external load, the equations of equilibrium 

in the meridian and normal directions are: 

dJ\_ 

dp 
+-(r1-r2)=o, K,T}+K2T2=O (3) 

where T) and T2 are respectively the stress resultants per unit edge length in the meridian and 

circumferential directions, and Ki and K2 are the principal curvatures of the arcs in the 
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corresponding directions. Since elastomer membranes are elastic, isotropic and 

incompressible, their mechanical property can be described by the well-known Mooney 

strain-energy function [16]: 

W(I, II) = Ci(I-3) + C 2(H-3) = Ci(I-3 + a(II-3)) (4) 

where the strain invariants are I = X] + A\ + AX
2A2

2, II = \ 2 + A2
2 + A2A2

2, III = 1̂X2̂ 3 = 1, 

and Ci, C2 are material constants, and a = C2/C1. From this function, the stress as a function 

of stretch-ratio, can be derived, respectively: 

dW dW dl dW dll dW ax=—- = _ _ _ _ + _ _ _ _ = —-(2A, -2AX~3A2
2)+ — (-2A"3 + 2A,^) 

dX, dl dXx dll d\ 81 

dW 
dii 

= 2/L A x A*2 

yA2 

V 

dl 2 dll) 

\ 
Ax A2 

\^2 J 

(CX+A2
2C2) (5) 

The stress resultants per unit edge length in the meridian and circumferential directions, are 

respectively: 

Tx = 0 T h deformed = O ^ K = ( T A ~ 

axh 

17 2hC, 
I 

V^2 

/ij A2 

h\A2 A2 

(l + A2
2a) 

and 

cr,/z 
T2=-^ = 2hCx 

\ K 
•Ax

3A2
3\(\ + ^a) 

(III = A.1A.2A.3 = 1 -> A.3 = 1/A,iX.2) 

(6) 

where h is the undeformed thickness of the membrane. 

By introducing three variables x = dp/dr, X\ = d^/dr and X2 = p/r, and substituting these 

equations into Equation (3), the governing differential equations for the variables, x, X\, X2 in 

the non-contact region can be obtained. 
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In the contact region, the membrane conforms to the surface profile of the probe, 

which is a known surface. Hence, £, and p are related by the equation of the probe surface. 

The puncture force includes: F = F] + F2, where Fi is due to the pressure under the probe tip, 

and F2 is due to the pressure between the conical surface of the probe tip and the membrane 

(the region between point 'A' and point 'B ' in Figure 7). F] and F2 are calcculated as follows: 

The contact region under the probe tip is in an equibiaxial stress state: X\ = X2 = ^0, and r at 

the point A (Figure 7) is determined by: ri = RA-o (X2 = p/r = R/r). The pressure distribution 

between the probe tip and the membrane in this region is: 

pn = K,T, + K2T2 

where Ki = K2= 1/R; 

and Tj = T2 = Cx 2h '4 
v Aoy 

(\ + aA2
0) 

(7) 

(8) 

The force Fi can thus be expressed as a function of the stretch ratio Xo under the probe tip by: 

F,=4R2pn= 16R C,/z 
v Aoy 

(l + aA2
0) (9) 

For F2, the vertical force component due to the pressure in the zone AB (Figure 7) is: 

F2 = A pn
 ave' sine = K(R] - R2) pn ' (10) 

where A is the area of the conical surface (zone AB in Figure 7): A = [R2 - R2) 
sin# 

The average pressure pn
 ave in the zone AB is: 

pn ' - KXTX + K2T2 (11) 
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where Kx = 0, K2 = 2cos6/(R2 + R) -> pn
 ave = 2cos9/(R2 + R) T2 

and T2 is the average values of T2 in the zone AB: 

T2 = Cx2h\ 
I 1 

' 3 7 3 
Ar\ A ] A2 

(l + Afc) (12) 

where Xx, X2 are the average values of A, ,A2 in the zone AB (Figure 7). 

In the contact region BC (between point B and point C in Figure 7), there results: 

P = R2 

x = dp/dr = 0 

%2= p / r= R2/r 

Ki = 0 and K2 = 1/R2 

(13) 

The total load at each cross-section remains unchanged, and is equal to the total load F 

exerted by the probe. Since T2 is perpendicular to F, by substituting A,2 = p/r = R2/r, this leads 

to: 

F = 27ip Tj = 27iR22hCj 

where F = Fi + F2. 

K 
f r^ 

\R2J 

( -. \ 
-K 

\R2J 
\ + a 

R, 

v ' J 

(14) 

Figure 9 shows a schematic representation of the variation of X\ and A,2 with r. At r = a, 

the clamping sample holder (Figure 8), A,2 (r = a)
 = 1- The radius r3 in the underformed 

membrane, corresponding to the point C after deformation, can be determined by iteration 

with the continuity conditions: 
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Ai 

(14) 
Eq. (3) 
Non-contact region 

r
2 r 3 

B C 

-P-

.A2 h 

•A2= R/r 
| \ y Eq. (3) 
I ^ ^ Non-contact region 

1 
A B C 

Figure 9: Schematic variation of A/ and ^wi th r. 

Eqs. (14) and Eqs. (3) give: 

Eqs. (13) and Eqs. (3) render: 

l̂0"3)c _ l̂0"3)n (15) 

(16) 

where the c and nc subscripts denote the quantities being obtained from the contact and non-

contact regions, respectively. For an approximate value of Xw (h at r = a), we can find r / 

and ri that satisfy Equations 15 and 16 respectively. If \r" - r^fr? > 0.001, take r3 = (r" + 

r/) /2, recalculate Equations 3 and get the new A;o, the iteration was performed until \r$a -

r3
b\/r3

a< 0.001. 
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_J 
A,ig initial 
(A.iatr=a) 

Continuity conditions 

Eqs. 14 Eqs 3 

Ai(r3)c=Ai(r3)„: 

Bqs. 13 Eqs 3 

No 

^10 

Eqs3 

r3 = |r3
a+r3

b|/2 

When r3 is determined, the radius r2 in the undeformed membrane, corresponding to the point 

B after deformation, and A,, A2 in Equation 9 can be calculated. The correct value of F2 is 

obtained by Equation 10. Then the puncture force can be computed by F = Fi + F2 where Fi 

and F2 are calculated by Equation 9 and 10 respectively or F can be obtained by Equation 14. 

For the conical probes with 9 = 13°, d2 = 2.0 mm, the calculated puncture force and 

experimental results of these probes for Nitrile and NR are shown in Figures 10 and 11 

respectively. 
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Figure 10: Calculated and measured puncture force as a function of probe-tip diameter in 0.3 

mm thick Nitrile sample (Ci = 902 kPa, a = 0.28). 
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Figure 11: Calculated and measured puncture force as a function of probe-tip diameter in 1.0 

mm thick natural rubber sample (Ci = 70 kPa, a = 2.96). 

The calculated puncture force of the conical probes is smaller than that obtained from 

experimental results (7% - 15%). This is probably because the Mooney function is only 

accurate for strains less than about 100% [16]. Figure 12 shows the comparison between the 
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Mooney function and the experimental data of tensile tests on neoprene samples. It can be 

seen that above about 100%, the discrepancy between Mooney's function and experimental 

data strongly increases with stretch ratio. Since the failure strain in the puncture is about 

135% to 320% for the rubbers studied, the error of Mooney's function becomes significant. 

Other material models for rubber are more precise (up to 250% of strain), but they have many 

parameters (> 2), therefore the computation process will be more complicated. In the future 

works, Mooney's model will be replaced by other precise material model. 

12 
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/ 

X 
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yf Mooney Model 

0 1 2 3 4 

Strain 

Figure 12: Stress-strain behavior of neoprene using tensile test. 
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5.4 Conclusion 

It has been demonstrated in this work that the geometry and dimensions of the probe 

used in the F1342 ASTM standard strongly affects the results of the puncture characterization 

of elastomer membranes. The maximum puncture force depends on the contact surface 

between the elastomer membrane and the probe tip. The indentation force has been calculated 

for large deformations in the absence of friction using the Mooney strain-energy function. The 

calculation agrees with experimental measurements within the range of accuracy of the 

Mooney strain-energy function. The puncture strength is much smaller than both the tensile 

and the biaxial stresses. The maximum stress in puncture corresponds to the maximum strains 

measured from the top surface of the probe. The puncture of the elastomer membrane is 

controlled by a local deformation that is an intrinsic material parameter, and is independent of 

the indentor geometry. 
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Introduction 

Regardless of their importance, the intrinsic material parameters controlling the puncture 

resistance of elastomer membranes are still unknown. Various investigations have been 

performed on specific cases involving different materials. However, the reported 

investigations are either qualitative, and do not provide a fundamental understanding of the 

mechanisms controlling puncture, or are not applicable to the highly elastic elastomer 

membranes. The puncture resistance of protective gloves to surgical needles was studied in [1, 

2]. In these works, 19 commercially available surgical glove liners were qualitatively ranked 

according to a measurement of the puncture force, in order to compare these materials in 

terms of puncture protection with respect to the single latex glove. The puncture behaviour of 

rigid plaques such as polycarbonates and acrylics is reported in [3, 4]. In these works, the 

energy required to perforate the plaque and the peak load recorded in the puncture tests were 

used to characterize puncture performance. However, the thickness was not taken into 

account, and no quantitative analysis of the results was performed. More fundamental 

investigations on puncture have been carried out on rubber blocks by fracture mechanics [5]. 

With a cylindrical indentor, it was shown that a starter crack initiates as a ring on the rubber-

block surface before puncture occurs. Using fracture mechanics, a method has been developed 

to calculate the fracture energy in puncture. However, this situation is not applicable to thin 

elastomer membranes. In fact, a quantitative characterization of puncture resistance has been 

developed for geotextiles and geomembranes. Considering a loading state of pure 

axisymmetric tension, a correlation was found between the puncture force and the tensile 

strength for probes greater than 20 mm in diameter [6 - 9]. However, the results are only 

applicable in the case of linearly elastic deformation. Thin rubber membranes are for their part 

hyperelastic, and highly nonlinear. 

To evaluate puncture resistance, the ASTM F1342 standard test is currently the most 

commonly used method. Using a conical puncture probe, the test is designed for any type of 

protective clothing, including coated fabrics, laminates, textiles, plastics, elastomeric films or 

flexible materials. This test method determines the puncture resistance of a material by 

measuring the maximum force required for a conical puncture probe to penetrate through a 
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specimen clamped between two plates with chamfered holes not less than 10 mm in diameter. 

In a previous investigation, it was found that the probe tip geometry strongly affects the 

results in puncture characterization. The maximum puncture force depends on the contact 

surface between the elastomer membrane and the probe tip. The indentation force was 

calculated for elastomer membranes with large deformations in the absence of friction, using 

the Mooney strain-energy function. The puncture strengths of elastomer membranes were 

found to be much lower than their tensile and biaxial strengths. It was also found that the 

puncture of rubber membranes is controlled by a local equibiaxial deformation on the probe 

tip, which is independent of the indentor geometry. To find the intrinsic parameters 

controlling puncture performance, accurate measurements of the equibiaxial deformation on 

the surface of the probe tip, at the onset of puncture, must be performed. Since the conical 

probe used in the ASTM F1342 standard is also very costly to produce, it is interesting to find 

an alternative, simpler, and quantitative measurement not requiring any major modifications 

of this standard. Since the previous result suggested that there would be a unique relationship 

between the puncture force and the probe-tip angle, the focus of this work is concentrated on 

the puncture mechanisms of elastomer membranes by cylindrical probes with both flat and 

rounded tips. 

Three types of commercial rubbers commonly used for protective gloves, neoprene, nitrile, 

and natural rubber, were investigated. Neoprene sheets with three different thicknesses, 0.40, 

0.75 and 1.57 mm, were obtained from Fairprene Industrial Products. The 0.30 mm thick 

nitrile samples were cut from Nitrile Gloves manufactured by Ansell Co, and the 1.0 mm 

thick natural rubber samples were cut from NR Gloves, manufactured by Sandstrahler Co. 

The puncture tests were carried out on an Instron 1137 universal-testing machine. A pin chuck 

mounted on the load cell held the puncture probes. The elastomer sample was clamped 

between two steel plates under pressurized air, as shown in Figure 1 a. The hole of the lower 

plate was chamfered to avoid stress concentration. The cylindrical probes with flat and 

rounded tips are shown in Figures lb & c. 

60 



\s 
(b) (c) 

Figure 1: Sketch of sample holder (a); cylindrical probes with flat tip (b) and cylindrical 

probes with rounded tip (c). 

Results and discussions 

Figure 2 shows the deformations of the elastomer membrane for the cylindrical 

probes, with rounded and flat tips. It can be seen that in all geometries, the elastomer 

membrane always adheres to the probe tip over a certain distance with an equibiaxial 

a) cylindrical probe: rounded tip 

WsSt 4 ^. -, s,. / - l . , * . ^ - ->»"?*,#<& J 

b) cylindrical probe: flat tip 

Figure 2: Deformations of the elastomer membrane for the cylindrical probes: rounded tip (a) 

and flat tip (b). 
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deformation on the probe-tip surfaces. The effect of probe radius on the maximum puncture 

force is shown in Figure 3. The results suggest a linear relationship between the maximum 

puncture forces and the probe radius for the three elastomers tested. Figure 4 shows the 

normalized maximum force F/i as a function of the probe diameter for the neoprene sheets of 

three different thicknesses. It can be seen that the maximum puncture force is proportional to 

the sheet thickness and the probe diameter. 
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Figure 3: Plots of puncture force versus probe tip diameter for various rubbers. 
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Figure 4: Normalized puncture force as a function of probe tip diameter for Neoprene sheets 

at different thicknesses. 

The results seem to suggest that the puncture behavior of elastomers is controlled by the 

same material parameter as that of geotextile membranes. The puncture resistance of these 

materials has been shown to be controlled by their tensile strength, and is given by [5, 6]: 

T/= Fp/'2m (1) 

where 7/is the tensile strength per unit width of fabric (kN/m), r is the radius of the probe (m) 

and Fp is the puncture force (kN). Table 1 shows the comparison between the measured 

tensile and puncture strengths of different elastomers, suggesting that unlike in the case of 

geotextile membranes, the puncture strength is much smaller than the tensile strength, thus 

refuting the criterion controlling the puncture resistance of geotextile membranes. 
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Table 1: Failure engineering stress and true stress of tensile and puncture tests (in parenthesis: 
SD - standard deviation) 

Material Nitrile Neoprene NR 

Failure engineering stress (MPa) 

Tensile A\(4) 15 (2) 30 (3) 

. Puncture 55(7) 18 (2) 25(3) 

Failure true stress (MPa) 

Tensile 210(22) 71 (7) 325 (31) 

Puncture 128 (18) 45(7) 104(11) 

1 mm 

a) Nitrile b) Neoprene 

Figure 5: Cut-out disks of elastomer samples after puncture (optical microscopy: 20x). 

With the cylindrical probes, it is interesting to note that after puncture, a hole in the 

membrane having a specific diameter is always observed, and a small disk is cut out from the 

rubber membrane as shown in Figure 5. The diameter of the cut-out disks, df, depends on the 

probe diameter d, and is always smaller than that of the probe (d/< d). From the deformation 

observed in Figure 2, it is reasonable to consider that puncture would take place around the 

circumferential edge of the cylindrical probe. The diameter of the cut-out disk at the onset of 
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puncture (at maximum equibiaxial deformation) would correspond to the diameter of the 

probe. Since the deformation is axisymmetrical, the radial strain sr and the tangential strain st 

of the cut-out disk can be calculated. The extension ratios Xx, Xt at the radial and tangential 

directions are, respectively: 

Xr = d/df (2a) 

Circumference of cutout disk at puncture nd d 
At = — = = — (2b) 

Circumference of cutout disk at undeformed state 7tdf df 

The corresponding engineering strains and true strains are therefore, respectively: 

er = et = Xt -1 = d/df-1 (3a) 

sr = st = Ln (Xt) = Ln (d/df) (3b) 

Table 2: Relations between probe tip diameter and cut-out disk diameter 

Material 

d (mm) 

df (mm) 

d/df 

er 

£r 

1.0 

0.43 

2.32 

1.32 

0.84 

Nitrile 

1.4 

0.60 

2.33 

1.33 

0.85 

2.5 

1.10 

2.30 

1.30 

0.83 

Neoprene 

1.4 

0.55 

2.54 

1.54 

0.93 

2.5 

1.05 

2.40 

1.40 

0.88 

NR 

2.5 

0.60 

4.16 

3.16 

1.43 

To verify the above assumption, the diameters of the cut-out disks were measured 

with an optical microscope and the results are presented in Table 2. Regardless of the probe 

diameter, the ratio d/df is constant for each material, and is very close to the equibiaxial strain 

measured at the onset of puncture of the elastomer membrane, on the top surface of the probe. 
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In order to verify whether puncture was caused by stress concentration around the 

circumferential edge of the cylindrical probe with a flat tip, puncture tests using a cylindrical 

probe with a semi-hemispherical tip were performed. Table 3 shows the comparisons of the 

maximum force and deformation at the probe tip between flat and hemispherical tips. It can 

be seen that the hemispherical geometry of the probe tip gives the same maximum puncture 

force and equibiaxial strain as the flat tip. It is also interesting to note that the rounded tip 

probe also produces a hole in the elastomer membrane with a dropout disk of the same 

diameter as shown in Figure 6. 

Table 3: Tests results (and their SDs) for two types of puncture probe (d = 1.0 mm) 

Material 

Probe tip type 

Puncture force Fp (N) 

Max. strain 

Neoprene 

Flat 

13.5 ± 

0.4 

1.46 ± 

0.13 

Rounded 

13.6 ± 

0.5 

1.40 ± 

0.17 

Flat 

21.2± 

1.4 

1.32 ± 

0.08 

Nitrile 

Rounded 

22.0 ± 

0.9 

1.35 ± 

0.10 

Flat 

21.0± 

1.1 

3.18 ± 

0.21 

NR 

Rounded 

20.6 ± 

1.6 

3.05 ± 

0.23 

0 

(a) (b) 

Figure 6: Holes observed in the elastomer membrane after puncture: (a) flat tip and (b) 
rounded tip. 
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The result suggests that the puncture in the elastomer membrane is not due to stress 

concentration around the edge of the flat tip. Within the range of probe diameters investigated 

in this work (from 0.1 to 2.5 mm), puncture is controlled by an equibiaxial deformation that is 

independent of the probe diameter and geometry. 

Conclusion 

The above results are quite interesting for the characterization of the puncture resistance 

of elastomeric membranes. Indeed, a simpler cylindrical probe can be used in the place of the 

costly conical probe required by the ASTM Standard and will still provide a quantitative 

characterization of puncture. Furthermore, the rounded-tip probe gives exactly the same result 

as that of the flat-tip probe. Since the latter is much easier to produce, the expensive ASTM 

probe can be replaced by a simple flat-tip cylindrical probe. The cylindrical probe produces a 

hole with a dropout disk, reflecting the characteristic equibiaxial deformation controlling the 

puncture resistance of the elastomer membranes. This probe provides a quantitative and much 

simpler method for the characterization of puncture in these materials. 

67 



References 

1. L. F. LESLIE, J. A. WOODS, J. G. THACKER, R. F. MORGAN, W. MCGREGOR, R. 

F. EDLICH, J. Biomed. Mater. Res. 33 (1996) 41. 

2. DANIEL J. HEWETT, in "Protocol for the puncture resistance of medical glove liners" 

(National Institute for Occupational Safety and Health, USA, 1993) p. 31. 

3. G. R. TRYSON, M. T. TAKEMORI, A. F. YEE., Amer. Soc. Meek Eng. - AMD 35 

(1979)638. 

4. L. M. CARAPELLUCCI, A. F. YEE, Poly. Eng. Sci. 27 (1987) 773. 

5. A. STEVENSON, KAMARUDIN AB MALEK, Rub. Chem. Tech. 67 (1994) 743. 

6. V. P. MURPHY, R. M. KOERNER, Geotech. Test. J. 3 (1988) 167. 

7. D. NAREJO, R. M. KOERNER, R. F. WILSON-FAHMY, Geosyn. Inter. 3 (1996) 629. 

8. R. F. WILSON-FAHMY, D. NAREJO, R. M. KOERNER, Geosyn. Inter. 3 (1996) 605. 

9. TUSHAR K. GHOSH, Geotex. and Geomem. 16 (1998) 293. 

68 



CHAPTER 7: ARTICLE HI 

PUNCTURE RESISTANCE OF RUBBER MEMBRANES BY MEDICAL NEEDLES. 

PART I: MECHANISMS 

Date d'acception: 12 Feb. 2009 

Etat de 1'acceptation: version finale publiee 

Revue: International Journal of Fracture - v. 155 No. 1 (2009) p. 75-81 

1. C.Thang. Nguyen, etudiant au doctorat, Universite de Sherbrooke, Faculte de genie, 

Departement de genie mecanique 

2. T. Vu-Khanh*, professeur, Universite de Sherbrooke, Universite du Quebec / Ecole de 

technologie superieure, Departement de genie mecanique 

3. Patricia I. Dolez, Ph.D, Universite de Sherbrooke, Universite du Quebec / Ecole de 

technologie superieure, Departement de genie mecanique 

4. Jaime Lara, Ph.D, Institut de recherche Robert-Sauve en sante et en securite du travail, 505 

de Maisonneuve Ouest, Montreal, QC, Canada, H3A 3C2 

Reference : Nguyen C T, Vu-Khanh T, Dolez P I, Lara J (2009) Puncture of elastomers 

membranes by medical needles. Part I: Mechanisms. International Journal of Fracture v. 155 

no.l:p.75-81 

Titre francais: Perforation de membranes elastomeres par aiguilles medicaux. Partie I: 
Mecanismes 

* toan.vu-khanh@etsmtl.ca 

69 

mailto:toan.vu-khanh@etsmtl.ca


Abstract 

Resistance to puncture is a critical property for several applications, in particular for 

elastomer materials used in protective clothing. To evaluate the puncture resistance of 

membranes, some methods have been proposed as standard tests. However, the rounded 

puncture probes used in these tests are very different from real pointed objects like medical 

needles, and may not measure the level of material resistance that corresponds to them. In 

fact, puncture by medical needles is shown to proceed gradually as the needle cuts into the 

membrane. This behavior is highly different from puncture by rounded probes which occurs 

suddenly when the strain at the probe tip reaches the failure value. In addition, maximum 

force values are observed to be much smaller with medical needles. A method has been 

developed based on the change in strain energy with the puncture depth to evaluate the 

fracture energy associated to puncture. The results show that the phenomenon of puncture by 

medical needles involves contributions both from friction and fracture energy, in a similar 

way as for cutting. A lubricant was tentatively used to reduce the friction contribution for the 

computation of the material fracture energy. 

Keywords 

puncture, elastomer, medical needle, friction, fracture energy 
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1. Introduction 

Puncture resistance is among the major mechanical properties of elastomer membranes, 

especially in the case of their use in protective clothing. In terms of puncture agents, medical 

needles are becoming an increasingly encountered mechanical hazard, not only in health care 

but also for law enforcement and maintenance occupations, with the associated risk of blood-

borne pathogen transmission. Some investigations have been performed on specific cases 

using medical needles. In two studies, a total of seven commercially available surgical gloves 

and glove liners were tested for resistance to puncture with different types of medical needles 

(Leslie et al. 1996; Hewett 1993). The main goal was to rank the gloves and compare the 

protection efficiency of new materials with regular latex gloves. In another work, the 

influence of various needle characteristics on the resistance to puncture by medical needles of 

materials relevant to protective gloves was investigated (Dolez et al. 2008). However, these 

studies were only qualitative for a comparison purpose and did not provide a fundamental 

understanding of the mechanisms controlling puncture. 

To evaluate the puncture resistance of materials, the ASTM F1342 standard test (ASTM 

F1342 2005) is currently the most commonly used method. This standard test method 

considers the use of one of three alternative puncture probes (see Figure 1); Probe A has a 2 

mm diameter and a conic extremity with an angle of 26° and a rounded tip with a radius of 

0.25 mm; Probe B has a 1 mm diameter and a spherical extremity with a rounded tip radius of 

0.50 mm; Probe C is similar to probe A but with a rounded tip radius of 0.50 mm. The test is 

designed for any type of protective clothing, including coated fabrics, laminates, textiles, 

plastics, elastomeric films or flexible materials. This test method determines the puncture 

resistance of a material by measuring the maximum force required for a puncture probe that 

moves at a speed of 500 mm/min to penetrate through a specimen clamped between two 

plates with chamfered holes not more than 10 mm in diameter. 
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1 mm 

26* 26" 

R = 0.25mm R = 0.5mm R = 0.5mm 

a) b) c) 

Fig. 1 Schematic representation of the ASTM F1342 probes, a) probe A, b) probe B, and c) 

probe C 

In previous studies using rounded probes (Nguyen and Vu-Khanh 2004; Nguyen et al. 2004), 

it was found that the probe tip geometry strongly affects the results in puncture of elastomer 

membranes. The maximum puncture force depends on the contact surface between the 

membrane and the probe tip. Using the Mooney strain-energy function, the indentation force 

was calculated for elastomer membranes with large deformations in the absence of friction. 

The puncture strengths of elastomer membranes were found to be lower than their tensile and 

biaxial strengths. It was also found that the puncture of rubber membranes is controlled by a 

critical local deformation at the probe tip that is independent of the indentor geometry. 

Furthermore, the puncture probes used in the ASTM F1342 standard and other available 

standard test methods are very different from real pointed objects like medical needles. In 

particular, their rounded tip does not bear the cutting edge of medical needles as illustrated in 

Figure 2. 
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Fig. 2 a) Puncture probe A used in ASTM F1342 standard test; b) Medical needle 

Results have also shown that the shape of the force-displacement curves recorded during 

puncture is very different for ASTM-type rounded probes and medical needles (Nguyen et al. 

2005). While puncture by rounded probes occurs suddenly when the strain at the probe tip 

reaches the failure value, medical needles penetrate gradually through the sample. Puncture 

forces measured with medical needles have also been reported to be much smaller (Leslie et 

al. 1996; Hewett 1993; Dolez et al. 2008). 

From a fundamental point of view, the puncture caused by sharp-pointed objects like medical 

needles is a complex phenomenon that may involve various fracture processes. For elastomer 

membranes tearing and cutting are the two major modes of failure that have been investigated. 

While tearing only involves the fracture energy of the material, both the fracture energy and 

the friction caused by the contact between the blade and the material contribute to cutting 

(Gent et al. 1994; Vu Thi et al. 2005). Based on the results obtained during a preliminary 

study carried out with neoprene, it was shown that puncture by medical needles seems to 

involve cutting, which is related to the material fracture energy (Nguyen et al. 2005). By 

comparison, puncture by ASTM-type rounded probes has been related to the material tension 

strength and failure strain. However, it must be noted that a large difference in geometrical 

configuration exists between cutting and needle puncture. Indeed, cutting involves a 

rectangular blade slicing through the whole sample thickness at the same time while moving 

along its length. On the other hand, needle puncture involves an elliptical sharp tip 

penetrating through the sample surface, into its thickness. 
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The aim of this work is to investigate the material parameters that control the puncture 

resistance of thin elastomer membranes to sharp-pointed objects like medical needles. In 

particular, the contributions of intrinsic material parameters to puncture by medical needles 

are verified. An approach is derived to compute the fracture energy associated to puncture by 

medical needles. The contribution of the friction energy to the calculated fracture energy is 

also discussed. 

2. Experimental 

Puncture tests were carried out on an Instron 1137 universal-testing machine. The puncture 

probes are held by a pin chuck mounted on a 167.7N load cell. A setup (see Fig. 3) 

comprising two steel plates bearing 10 mm holes is used to secure the elastomer samples. The 

edge of the hole in the lower plate is rounded to avoid stress concentration. All the tests were 

performed with a displacement rate of 50 mm/min unless specified otherwise. For each 

condition, a minimum of four replicates were produced. 

= S 

i i 
i i 

Probe 

Dh 

Sample 

- C & 

7L.-.-M i i 
i i 

3 \ 
air 

Fig. 3 Sample holder setup 

In addition to the ASTM puncture probe A (see Figure 2a), a series of stainless steel medical 

needles obtained from PrecisionGlide™ Pharma Co were used as puncture probes in this 

study. Their external diameter and tip angle measured as shown in Figure 4 are provided in 

Table 1. 
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Fig. 4 Schematic representation of medical needles 

Table 1: Medical needles used as puncture probes 

Probe diameter: d (mm) 

Probe tip angle: a 

0.35 

13.5° 

0.50 

11.2° 

0.65 

10.4° 

Two types of commercial rubbers commonly used for protective gloves, neoprene and nitrile 

rubber, were investigated. Neoprene sheets with three different thicknesses, 0.40, 0.78 and 

1.57 mm, were obtained from Fairprene Industrial Products. The nitrile rubber samples, 0.83 

mm thick, were cut from nitrile rubber gloves manufactured by Ansell Co (glove model Sol-

Vex 37-165). 

Force-displacement data were recorded for the various puncture tests. Puncture force was 

measured as the maximum of the force-displacement curve. Needles were reused up to five 

times for puncture tests. Indeed, previous work has shown an increase in puncture force of 

less than 7% after ten successive uses of the same needle as puncture probe (Vu-Khanh et al. 

2005). 
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3. Results and discussions 

Puncture tests carried out with the ASTM puncture probe A and the medical needles were 

compared using the same thickness of neoprene. As shown in Figures 5 and 6 and in 

agreement to what has already been reported in the literature (Nguyen et al. 2005; Dolez et al. 

2008), large differences can be observed in the shape of the force-displacement curve. For the 

rounded probes, puncture occurs instantly at maximum load (Figure 5); it has been associated 

to the point where the strain at the probe tip reaches the failure value (Nguyen et al. 2005). 

On the contrary, needles penetrate gradually through the sample thickness (Figure 6); after the 

force reaches a maximum, it diminishes slightly before reaching a plateau. 
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Fig. 5 Typical force - displacement curve for puncture with ASTM conical probe A (0.8-mm 

thick neoprene) 

2 4 6 
Vertical displacement of probe (mm) 

Fig. 6 Typical force - displacement for puncture with medical needles (0.8-mm thick 

neoprene, 0.5-mm diameter medical needle and 0.05 mm/min displacement rate) 
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In addition to the difference in the shape of the force-displacement curves, a strong reduction 

in the values of the maximum force and probe displacement at maximum force is observed 

with medical needles as illustrated in Table 2 for three thicknesses of neoprene. 

Table 2: Puncture test results measured with ATSM puncture probe A and 0.5-mm diameter 

medical needles and three thicknesses of neoprene (coefficient of variation in parenthesis) 

Sample thickness (mm) 0.40 0.78 1.57 

ASTM F1342 conical probe A 

Puncture force (N) 

Probe displacement at puncture (mm) 

Medical needle 0.5 mm 

Puncture force (N) 0.5(8%) 1.4(7%) 2.2(5%) 

Probe displacement at puncture (mm) 2.7 (7%) 3.6 (6%) 5.3 (6%) 

The very slow puncture speed (0.05 mm/min) used for Figure 6 allows a clear observation of 

the puncture process with medical needles. Before label 1 on the graph, the probe produces 

only a deformation of the sample. Label 1 indicates the point where the crack starts being 

initiated as illustrated in Fig. 7a. Between labels 1 and 2, the probe penetrates further into the 

sample thickness. At label 2, the probe has reached the bottom face of the sample, 

corresponding to the situation illustrated in the schematic in Fig. 7b. 

When the needle tip emerges on the bottom surface of the membrane (label 3 on the graph in 

Fig. 6 and schematic in Fig. 7c), the needle tip can widen easily the punctured hole. As a 

consequence, the deformation of the sample under the needle tip is released and the whole 

5.1 (4%) 10.4 (3%) 19.2 (3%) 

14.7(14%) 14.9(12%) 15.3(13%) 
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sample moves upward, with a decline in the force. The plateau observed in Fig. 6 at large 

displacements corresponds to the configuration where the cylindrical shaft of the needle is in 

contact with the sample. The measured force thus relates to the friction between the probe 

shaft and the puncture hole circumference. 

© © ® 

hi < h2 > h3 

(a) (b) (c) 

Fig. 7 Schematic representation of the sample deformation during the puncture process by 

medical needles 

Figure 8 displays a zoom on the interval corresponding to the needle tip first penetration into 

the sample (i.e. between labels 1 and 2 in Fig. 6), with the probe displacement data converted 

to crack depth values (see insert in Fig. 8). It can be seen that, for neoprene, the puncture 

force varies linearly with crack depth. In addition, the slope is independent of the sample 

thickness on the studied range (between 0.4 and 1.5 mm). 
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Fig. 8 Variation of the puncture force with crack depth for three thicknesses of neoprene (0.5-

mm diameter medical needles) 

In Figure 9, the force at crack start, i.e. at the point corresponding to label 1, is expressed as a 

function of the sample thickness in the case of neoprene. An increase in the force with the 

sample thickness can be observed. This result is interesting since at initiation, only the 

sample surface is penetrated and the contact force at the needle tip should be the same. 

Therefore it suggests that, in order for a crack to start, the local strain deformation of the 

sample around the needle tip must reach a critical value. For thicker samples, a larger force is 

needed to create the same level of deformation. 

1 2 3 

Sample thickness (mm) 

Fig. 9 Variation of the puncture force at crack start (Fl) as a function of the sample thickness 

for neoprene (0.5-mm diameter medical needles) 
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Earlier studies have suggested that the puncture process associated with medical needles 

involves a cutting phenomenon (Nguyen et al. 2005). Other studies have related cutting to the 

fracture energy Gc of the material (Lake and Yeoh 1987; Cho and Lee 1998). According to 

the energy balance of fracture mechanics, the energy necessary to create a new fracture 

surface, the fracture energy Gs, can be expressed by (Felbeck and Atkins 1996): 

G, = -
dU 

dA 
* -AU/AA (1) 

where AU is the change in strain energy corresponding to the change in fracture surface AA. 

For the case of needle puncture, the fracture surface created into the sample by medical 

needles is elliptical as shown in Figure 10. 

.- • . . . • " • . • . - -J-Ss 

Fig. 10 Fracture surface created into a neoprene sample by a medical r.eedle (optical 

microscopy: 20x) 

AU can be measured from the loading curves: when the puncture has readied a certain depth 

into the sample, corresponding to a fracture surface Aj, the needle is withdrawn to get the 

return curve. Fig. 11 illustrates how the change in strain energy AU is computed by 
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subtracting the released energies corresponding to the different puncture depths. The changes 

in strain energy -AUy corresponding to the change of fracture surface AAy are thus: 

-AUy = Ut - Uj ; 

AAij=Ai -Aj (2) 

1.5 

2 4 6 

Vertical displacement of probe (mm) 

h 
puncture 
depth d1 

Test No, 1 

h 
*AJ I puncture 

depth d2 

Test No 2 

Fig. 11 Change in strain energy due to different puncture depths 

Similar tests carried out on the same sample and with the same needle at different puncture 

depths provide different values of the released energy: -Ui, -U2..., and the corresponding 

fracture surfaces: Ai, A2... Fig. 12 displays the variation of the measured puncture energy Gs 

as a function of the puncture depth for different neoprene thicknesses. The results suggest a 

slight increase in Gs with the puncture depth, i.e. with puncture propagation. 
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Fig. 12 Measured puncture energy as a function of crack depth for various thicknesses of 

neoprene and a 0.65-mm diameter medical needle. 

A first approximation of the fracture energy at puncture initiation can be provided by the 

extrapolation at crack depth d = 0 of the measured puncture energies shown in Figure 12. 

This energy is displayed in Table 3 for three diameters of the medical needles and two 

thicknesses (0.40 and 1.57 mm) of neoprene. The results seem to suggest a constant value of 

puncture energy at initiation. However, a significant contribution of friction to the fracture 

energy has already been reported for cutting (Vu Thi et al. 2005). 

Table 3: Extrapolated fracture energy of puncture for neoprene by medical needles 

(coefficient of variation in parenthesis) 

Extrapolated fracture 

energy Gs (kJ/m2) 

Probe diameter: d (mm) 

0.35 0.50 0.65 

Sample 

thickness 

(mm) 

0.40 

1.57 

1.7(18%) 1.9(14%) 1.8(17%) 

1.8(15%) 1.7(14%) 1.7(12%) 
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In order to verify the hypothesis of the friction contribution to the puncture energy, a BP 

lubricant was sprayed on the medical needles before their use as a puncture probe. Table 4 

displays the results obtained in terms of extrapolated fracture energy both with and without 

lubricant for three medical needle diameters and two membrane materials, 1.57-mm thick 

neoprene and 0.83-mm thick nitrile rubber. The values of fracture energy seem to be slightly 

reduced by the use of the lubricant even if the difference is not statistically significant. In the 

case of nitrile rubber, the effect of friction does not appear to be totally removed by the use of 

lubricant as shown by the increasing values of the extrapolated fracture energy with the 

needle diameter. 

Table 4: Extrapolated fracture energy for puncture by medical needles with and without 

lubricant (coefficient of variation in parenthesis) 

C/AirdpOldlcU llav^iuic t u t i g ^ VA*"111 ) 

Neoprene 

(1.57 mm) 

Nitrile rubber 

(0.83 mm) 

Without lubricant 

With lubricant 

Without lubricant 

With lubricant 

Probe diameter: d (mm) 

0.35 

1.8(15%) 

1.6(13%) 

3.8(18%) 

3.6 (14%) 

0.50 

1.7(14%) 

1.6(13%) 

4.1 (14%) 

3.7(13%) 

0.65 

1.7(12%) 

1.5(11%) 

4.2 (17%) 

4.0(12%) 
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4. Conclusion 

This work has demonstrated that the puncture by sharp-pointed objects like medical needles is 

very different from the puncture by conical probes like those used in the ASTM standard test 

for resistance to puncture. For elastomer materials, the puncture by conical probes is 

controlled by a local deformation or failure strain. On the other hand, for medical needles, the 

puncture process involves crack growth and fracture energy dissipation. A method based on 

the change in strain energy with the change in fracture surface is proposed for the 

characterization of the crack initiation energy due to puncture. However, even with the 

application of a lubricant on the needle surface, the effect of friction on the puncture process 

was not eliminated, preventing the determination of the material fracture energy. 
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Abstract 

Resistance to puncture by medical needles is becoming one of the most critical mechanical 

properties of rubber membranes, which are heavily used in protective gloves. Yet the 

intrinsic material parameters controlling the process of puncture by medical needles are still 

unknown. In a first paper presenting this two-part study, it has been shown that puncture by 

medical needles proceeds gradually as the needle cuts through the rubber membrane. The 

phenomenon of puncture by medical needles was revealed to involve contributions both from 

friction and fracture energy, in a similar way as for cutting. The use of a lubricant was not 

successful for removing the friction contribution for the determination of the material fracture 

energy corresponding to puncture by medical needles. This paper describes an alternative 

approach based on the application of a prestrain to the sample in a similar way as the work of 

Lake and Yeoh on cutting. A theoretical formulation for the tearing energy is derived from 

the theory of Rivlin and Thomas on the rupture of rubber. It is validated with a model 

extending expressions provided by the linear elastic fracture mechanics (LEFM) to include 

the non-linear stress-strain behavior displayed by rubber. For low values of the tearing 

energy, the total fracture energy, i.e. the sum of the puncture and tearing energies, is constant; 

the material fracture energy is obtained by extrapolation at zero tearing energy. This prestrain 

method allowed a complete removal of the friction contribution. The value obtained for the 

fracture energy corresponding to puncture by medical needles is found to be larger than the 

energy associated to cutting and smaller than that obtained for tearing. This can be related to 

the value of the crack tip diameter, which is, in that case, given by the needle cutting edge 

diameter. 

Keywords: 

Puncture, elastomers, medical needle, friction, fracture energy 
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1. Introduction 

Medical needles have been more and more present as an occupational hazard, not only in 

health care but also for law enforcement and maintenance activities for example, with the 

associated risk of blood-borne pathogen transmission. Therefore, resistance to puncture by 

medical needles has become one of the most critical mechanical properties of rubber 

membranes, which are heavily used in protective gloves. Until now, only a very limited 

number of studies have dealt with puncture by medical needles. In some cases, they were 

evaluating new glove designs and materials (Leslie et al. 1996; Edlich et al. 2003a; Edlich 

2003b). Others were looking into the effect of experimental parameters like needle 

characteristics (Hewett 1993; Dolez et al. 2008). However, the intrinsic material parameters 

controlling the process of puncture by medical needles are still unknown, which limits the 

ability to improve the level of protection available for workers. 

A few fundamental investigations on puncture have been carried out using round and flat 

geometries for the probe tip. In a study involving cylindrical indentors and rubber blocks, it 

has been shown that a ring-shaped starter crack is created on the block surface before 

puncture occurs (Stevenson and Kamarudin 1994). For flat indentors, the value of the 

measured fracture energy associated with puncture agrees well with the energy obtained from 

catastrophic tearing. For elastomer membranes, other studies using flat, spherical and conical 

probes revealed that the probe tip geometry strongly affects the puncture force in elastomers 

(Nguyen et al. 2004; Ngyuen and Vu-Khanh 2004); the maximum puncture force depends on 

the contact surface between the membrane and the probe tip. Using the Mooney strain-energy 

function, the indentation force was calculated for elastomer membranes with large 

deformations. The results showed that the puncture of rubber membranes is in fact controlled 

by a critical local deformation at the probe tip that is independent of the indentor geometry. 

In the case of medical needles, the presence of a cutting edge (see Fig. 1) leads to a different 

mechanism. Preliminary works have shown that the shape of the force-displacement curves 

recorded during puncture is very different for flat or rounded probes and medical needles 

(Nguyen et al. 2005). While in the first case, puncture occurs suddenly when the strain at the 
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probe tip reaches the failure value, medical needles penetrate gradually through the sample. 

Puncture forces measured with medical needles have also been found to be much smaller 

(Leslie et al. 1996; Hewett 1993, Dolez et al. 2008). 

1 mm 

Fig. 1 Medical needle 

In addition, results provided in the first paper of this two-part study have shown that for 

medical needles, the puncture process involves both cutting and fracture energy (Nguyen et al. 

submitted). A method based on the change in strain energy with the change in fracture 

surface was developed for the computation of the fracture energy due to puncture. A 

lubricant was applied on the needle to try to limit the effect of friction. However, the results 

showed that the friction contribution was not eliminated. 

This paper investigates an alternative method for removing the friction contribution from the 

total fracture energy associated with puncture by medical needles. It is based on the 

application of a prestrain on the sample, which moves the sample fracture surfaces apart from 

the probe body and limits the contact only to the probe tip. This technique has been used by 

researchers who combined tearing and cutting or puncture to get access to the exact value of 

the material fracture energy (Lake and Yeoh 1978; Lake and Yeoh 1987; Gent et al. 1994; 

Cho and Lee 1998). In particular, Lake and Yeoh proposed a test method to evaluate the 

cutting energy of rubbers in which the frictional contribution was excluded by pre-straining 

the sample before forcing a razor blade into a crack tip (Lake and Yeoh 1978; Lake and Yeoh 

1987). While cutting is induced by a rectangular blade slicing through the whole sample 

thickness and moving along its length, puncture is made by pushing the needle with an 
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elliptical sharp tip penetrating through the sample surface, into its thickness, and tearing 

involves the propagation of a crack under tensile loading of a pre-notched sample. 

Since puncture by medical needles has been shown to involve friction, the same principles are 

used to try to eliminate friction from the puncture process and thus get access to the true 

material fracture energy associated with puncture of elastomer membranes by medical 

needles. The theoretical treatment involves the determination of the tearing energy, which is 

derived both from the theory of Rivlin and Thomas on the rupture of rubber (Rivlin and 

Thomas 1953) and from an extension of expressions provided by the linear elastic fracture 

mechanics (LEFM) (Felbeck and Atkins 1996) to the case of non-linear stress-strain behavior 

displayed by rubber. The complete removal of the friction contribution from the 

measurement of the fracture energy is further verified by application of a lubricant to the 

needle surface. 

2. Experimental 

A special set-up was designed to apply a prestrain to the sample while it is punctured by a 

medical needle, as illustrated in Figure 2. The sample is extended along its length and a 

puncture force is applied in the direction of its thickness, i.e. perpendicular to the prestrain. 

As already mentioned by Lake and Yeoh (Lake and Yeoh 1978; Lake and Yeoh 1987), this 

configuration may cause an out-of-plane effect. However, it must be minor since puncture 

forces are more than an order of magnitude smaller than the applied prestrains (1-2 N for the 

puncture force compared to 20-40 N for the prestrain force). 

Screw to adjust 
pre-strain Puncture force 

-1 I cfH 
1 

Tearing force 

i (Pre-strain) 

Fig. 2 Schematic representation of the sample holder designed for applying a prestrain on 

samples being subjected to puncture by medical needles 
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The puncture tests with prestrained samples were performed in an Instron 1137 universal-

testing machine. A complete description of the testing configuration can be found in the first 

part of this work (Nguyen et al. submitted). Medical needles from PrecisionGlide™ Pharma 

Co with a diameter of 0.65 mm were used as puncture probes. All the tests were performed 

with a displacement rate of 50 mm/min. For each condition, a minimum of four replicates 

were produced. 

Two types of commercial rubbers commonly used for protective gloves, neoprene and nitrile 

rubber, were investigated. Neoprene sheets, 1.6 mm in thickness, were obtained from 

Fairprene Industrial Products. Nitrile rubber samples, 0.8-mm thick, were cut from nitrile 

rubber gloves manufactured by Ansell Co (glove model Sol-Vex 37-165). 

The force-displacement data were recorded for the various puncture test conditions. The 

puncture force was measured at the maximum of the force-displacement curve. Needles were 

reused up to five times for puncture tests. Indeed, previous work has shown an increase in 

puncture force of less than 7% after ten successive uses of the same needle as puncture probe 

(Vu-Khanh et al. 2005). 

3. Results and discussions 

Figure 3 illustrates the effects of prestrain on the variation of the puncture force as a function 

of the puncture probe displacement. While the general shape of the curve is preserved, the 

values of the maximum puncture force as well as the probe displacement are reduced with 

increasing values of the prestrain. In addition, the feature associated with the point where the 

crack starts being initiated (the shoulder in the right side of the curve (Nguyen et al. 

submitted)) is amplified by the application of a prestrain. 
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pre-strain 40% 

pre-strain 100% 

0 2 4 6 8 

Vertical displacement of probe (mm) 

Fig. 3 Typical force - displacement curves at different prestrain levels (neoprene) 

A technique has been developed for evaluating the fracture energy associated to puncture 

(Nguyen et al. submitted). It is based on the change in strain energy with puncture depth. 

The strain energy release rate is calculated as the area delimited between the puncture and the 

return curve (when the needle is withdrawn). The fracture surface was measured by optical 

microscopy. The fracture energy Gs is given by: 

dU 

dA 
AU 

AA 
(1) 

where AU is the change in strain energy corresponding to the change in fracture surface AA. 

The same- technique was used for the calculation of the puncture energy with an applied 

prestrain. Figure 4 displays the variation of the calculated puncture energy as a function of 

the crack depth for different values of the pre-strain in the case of the 1,6-mm thick neoprene 

membrane and 0.65-mm diameter medical needles. The increase in puncture energy with 
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crack depth, observed for non-prestrained samples, was attributed to the effect of friction 

between the membrane fracture surface and the needle (Nguyen et al. submitted). This effect 

disappears with the use of a prestrain larger than 20%. 
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Fig. 4 Puncture energy as a function of crack depth for neoprene at different pre-strain levels 

Extending the principles proposed by Lake and Yeoh (Lake and Yeoh 1978; Lake and Yeoh 

1987) to this case combining puncture and tearing, the total energy G corresponding to a unit 

increase in the fracture surface area is provided by: 

G = T + P (2) 

with P the puncture energy and T the prestrain or tearing energy. Following what has been 

obtained by Lake and Yeoh for cutting, the total fracture energy G, which depends only on the 
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tested material and probe sharpness (Lake and Yeoh 1978), should be constant in the low 

tearing energy region, i.e. an increase in the tearing energy T should correspond to a decrease 

in the puncture energy P, which has been associated with true cutting. A more complex 

behavior involving tearing is expected at higher tearing energies. 

In order to evaluate the tearing energy T, a theoretical model has been developed based on the 

work of Rivlin and Thomas on cutting (Rivlin and Thomas 1953). They showed that when a 

small cut is made in a test piece stretched in simple extension, the change in the total stored 

energy in the test piece is given by: 

W t -W = /?c2 tS e (3) 

where Wt and W are the total stored energies before and after the cut is made. 2c and t are, 

respectively, the length of the cut and the thickness of the test piece measured in the 

undeformed state (see Figure 5). Se is the stored-energy density corresponding to the 

extension ratio A in the simple extension region and /? is a numerical factor that varies with X. 

When expressed as a function of the fracture surface A {A = 2ct), equation (3) becomes: 

B A2 S 
W, - W = i- e- (4) 

At 
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Fig. 5 Crack geometry for cutting (corresponding to the Rivlin and Thomas description) 

Rivlin and Thomas (Rivlin and Thomas 1953) and Greensmith (Greensmith 1963) determined 

that /? decreases from a value of 3 at low extension to a value close to 2 at X = 3. They also 

showed that the change in the elastically stored energy Se value due to the presence of the cut 

is only minor (a few %). Consequently, Se can be expressed as a function of A by (Rivlin and 

Thomas 1953): 

Se=Cj 
v 
tf+±-3) 

X ) 
+ C, 

U2 + 2X-3 (5) 

in which C/ and C2 are the Mooney-Rivlin coefficients determined from tensile tests and X is 

the extension ratio of the prestrained test piece. 

Using Eq. 4, the tearing energy T can be calculated as: 

T = 
rdW^ 

\dAj 

d(/?A2Se/4t) 2/?,4Se 1 

dA At 2 
(6) 
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For the case of puncture tests on pre-strained samples, the same principle can be used while 

taking into account the difference in the crack geometry, as illustrated in Fig. 5 and Fig. 6. In 

the case of puncture, the crack has the eliptical shape of the needle tip. The crack surface area 

A is thus equal to: 

A = ncd/2 (7) 

With d the puncture depth and 2c the cut length created by the puncture probe (see Fig. 6). 

Fig. 6 Crack geometry for puncture 

In addition, the crack does not go through the whole sample thickness. As a consequence, Eq. 

3 has to be rewritten as: 

W t -W = /?d2cS e = 4 / ? A 2 S e 

Tt1 C 
(8) 

Using the same considerations as for the determination of Eq. 6, the tearing energy for 

puncture is given by the following relationship: 
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T = 
ydAj 

= -/JdSe 

n 
(9) 

The determination of the numerical factor fi(k) can be carried out by adapting the method 

developed by Greensmith (Greensmith 1963), which is based on the measurement of the 

elastic properties of rubber. According to Eq. 8, J3 is provided by: 

d2cS„ 
(10) 

In the case of a partial pre-cut performed with a medical needle in a sample subjected to 

simple tension, the change in the sample total energy is given by: 

Wt-W= \(Ft-F)dl (11) 
lo 

With Ft, the force on the sample in the absence of a cut, and F, the force in the presence of a 

pre-cut of length 2c and depth d. 

When expressed as a function of the extension ratio X = l/l0, Eq. 11 becomes: 

Wt-W=\l0(Ft-F)dX (12) 
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The stored-energy density Se can be calculated according to (Rivlin and Thomas 1953): 

Se = \(Ft/A0)dX (13) 

By combining Eqs. 10, 12 and 13, /? is given by: 

P = -

^[l0(F,-F)/d2c]dA 

\{FtIA0)dX 

(14) 

Values of [l0(Ft - Fy^c] can be extracted from the stress-strain curves obtained for neoprene 

samples with and without pre-cut (see Fig. 7). They are plotted together with the values of the 

total stress F/A0 as a function of the extention ratio X in Fig. 8. 

25 

Sample w ithout cut 

(F.) 

Rupture 

Sample w ith a cut 
( F ) 

1,5 2 2,5 

Extension ratio 

Fig. 7 Stress-strain curves for neoprene with and without pre-cut (pre-cut done with a 0.65-

mm diameter needle) 
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Fig. 8 Values of l0(F, - FJ/cfc and F/A0 displayed as a function of the extention ratio X 

According to Eq. 14, /? is given by the ratio of the areas under the two curves displayed in Fig. 

8. Fig. 9 displays the variation of /? as a function of the extension ratio calculated using this 

method for neoprene and nitrile rubber. 
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Fig. 9 Variation of /? as a function of the extention ratio X for neoprene and nitrile rubber 

calculated using Eq. 14 

Using the data for /? displayed in Fig. 9 and the values of the Mooney-Rivlin coefficients 

provided from tensile tests (Eq. 5), the tearing energy T can be computed according to Eq. 9. 

Figure 10 displays the variation of the tearing energy for 1.6-mm thick neoprene (C/ = 172 

kPa, C2 = 443 kPa) as a function of the extension ratio or prestrain. 
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1,5 2 25 

Extension ratio 

Fig. 10 Variation of the tearing energy as a function of the extension ratio for 1.6-mm thick 

neoprene (C; = 172 kPa, C2 - 443 kPa) computed using Eq. 9 

To further verify the computation of the tearing energy T described above, an alternative 

method has been developed: the linear elastic fracture mechanics (LEFM) is applied to rubber 

by taking into account its non-linear stress-strain behavior. More specifically, it consists in i) 

replacing the stored-energy density a2/2E in LEFM by Se(X) provided by Eq. 5, and ii) using 

the expressions c = cJX112 and d = dofk1 2 respectively for the crack length and the crack depth 

(c0 and d0 in the unstrained state) in order to take into account the shortening of the crack with 

the extension ratio A,. 

For an elliptical crack when applied to rubber and for the case d>c, the stress intensity factor 

K in LEFM is given by (Felbeck and Atkins 1996): 
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K = lA2—J7ud2/c (15) 

with <J> a numerical factor, which is provided by the following relationship: 

0 = — + =- (16) 
8 8c

2 

The expression for the tearing energy T from the LEFM becomes: 

_K2 _ a2d2
 =2YSed

2 

E E c X,/2 c K } 

with Y a geometry factor (Y = 1.2547iAD2 (Felbeck and Atkins 1996)). 

The results obtained for the tearing energy as a function of the extension ratio or prestrain 

using both methods, i.e. the Rivlin and Thomas formalism (Eq. 9) and the extension to rubber 

of the LEFM principles (Eq. 17), are compared in Fig. 11 in the case of 1.6-mm thick 

neoprene. Even if the calculation represented by Eq. 17 is simple, it agrees well with the 

more complex method based on the Rivlin and Thomas formalism. 
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Fig. 11 Comparison of the calculation of the tearing energy T using Eq. 9 (method based on 

the Rivlin and Thomas theory) and Eq. 17 (LEFM extended to rubber) for 1.6-mm thick 

neoprene 

Using Eq. 9 and 17 for the calculation of the tearing energy corresponding to the different 

values of applied prestrain, it is possible to express the data of Fig. 4 for neoprene in terms of 

the variation of the puncture energy as a function of the tearing energy. They are displayed in 

Fig. 12. A good agreement is obtained between the curves calculated using the Rivlin and 

Thomas and the LEFM methods. This demonstrates the validity of the approximations made 

in the computation of Eq. 17 using the LEFM extended to rubber. 

A linear region can be observed at the low values of the tearing energy, corresponding to a 

constant value of the total energy G corresponding to a unit increase in fracture surface area 

(Eq. 2). At high tearing energies, puncture contributes only to the initiation of the crack, 

which propagates under the sole effect of the tearing energy. In that case, the contribution of 

puncture is only marginal. This result indicates that the same principle used by Lake and 
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Yoeh for cutting applies to the case of puncture by needles. As a consequence, the fracture 

energy associated to puncture can be calculated by extrapolating the linear part of the curve in 

Fig. 12 to zero tearing energy. 
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Fig. 12 Variation of the puncture energy with tearing energy calculated using Eq. 9 (method 

based on the Rivlin and Thomas theory) and Eq. 17 (LEFM extended to rubber) for 1.6-mm 

thick neoprene 

In order to verify that all friction has been removed by the use of this prestrain technique, tests 

were performed with combining the application of the prestrain on the sample and of a 

lubricant on the surface of the needle. Fig. 13 displays a comparison of the variation of the 

puncture energy as a function of the tearing energy for the case of nitrile rubber with and 

without the application of the lubricant on the needle. In the linear region and for large 

tearing energies, data points superimpose, which indicates that no further reduction of the 

friction is brought by the lubricant. On the other side, in the zero or very low tearing energy 

region, a small difference seems observable, considering the uncertainty in measurement. It 

could be attributed to the fact that, in that case, the tearing energy is not large enough to 
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eliminate all the influence of the friction. These results suggest that the prestrain technique 

allows complete removal of friction contribution for the determination of the fracture energy 

associated to puncture. 
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Fig. 13 Variation of the puncture energy with tearing energy for 0.8mm-thick nitrile rubber 

Values of the fracture energy associated with puncture by medical needles were calculated for 

neoprene and nitrile rubber using the prestrain technique and the extrapolation to zero 

prestrain. They are displayed in Table 1. Also provided in this table are the values of fracture 

energy for cutting and tearing reported for the same neoprene (Ha Anh and Vu-Khanh 2004) 

and the same nitrile rubber (Vu Thi 2004) as the ones used in this study. In these 

experiments, the cutting fracture energy was measured using the stretched Y-shaped set-up 

and the tearing energy was provided by trouser tests. 
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Table 1 Values of fracture energy associated with puncture by medical needles (0.65-mm 

diameter), cutting and tearing for neoprene and nitrile rubber 

Fracture energy for puncture 

by medical needles (kJ/m ) 

Fracture energy for cutting 

(kJ/m2) 

Fracture energy for tearing 

(kJ/m2) 

Neoprene (1.6-mm thick) 

1.52 

0.7* 

6.2* 

Nitrile rubber (0.8-mm thick) 

3.54 

1.38# 

9.6# 

* from (Ha Anh and Vu-Khanh 2004); * from (Vu Thi 2004) 

The fracture energy for puncture by medical needles is observed to be larger than that 

associated with cutting and smaller than that relative to tearing. This can be explained by 

considering the work of Thomas on rubber fracture (Thomas 1955). He found that the energy 

release rate during fracture is closely related to the strain energy density in the material at the 

tip (where fracture occurs). He proposed a relationship of the form: 

G = Wtd (18) 

where Wt is the average energy density at the tip and d is the effective tip diameter. The 

validity of Eq. 18 was verified by direct and photoelastic measurements of the strain energy 

distribution around a model crack tip (Thomas 1955; Andrews 1961). A good agreement was 

obtained between the tearing energy determined by this way and the value calculated from the 

applied forces. In addition, tear experiments involving tip diameters between 0.1 to 3 mm 

provided consistent values of the tearing energy T, with Wt (derived from Eq. 18) being 

similar to the work to break measured independently from a tensile test (Thomas 1955). 
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The crack tip diameter in cutting for rubbers has been found to be controlled by the blade 

edge radius, about 0.05 urn (Gent et al. 1994; Cho and Lee 1998). In particular, it was shown 

that the cutting energy is much higher than the threshold fracture energy, even in the threshold 

condition of cutting process, due to a restriction in the change of the crack tip diameter by the 

razor blade (Cho and Lee 1998). At threshold conditions, i.e., at low speeds and high 

temperatures, the crack tip for cutting remains blunt; the roughness of the fracture surface is 

attributed to the roughness of the blade tip. On the other side, the dimension of the crack tip 

associated to rubber tearing is much larger, especially when blunting occurs. It has been 

estimated to lie in the range of 0.1 to 1 mm (Gent et al. 1994). 

For the case of medical needles, it can be assumed that the crack tip radius is also controlled 

by the sharpness of the needle penetrating edge. The latter therefore depends on a number of 

manufacturing characteristics, in particular the facet angle, the number of facets, etc. In the 

case of the medical needles used in this study, from optical microscopic observation, we have 

estimated that it is much larger than the blade edge radius involved in cutting and smaller than 

the crack tip radius created by tearing. This difference in crack tip radius may thus explain 

the difference in fracture energy for puncture by medical needles, cutting and tearing for 

neoprene and nitrile rubber shown in Table 1. 

4. Conclusion 

In the continuation of the work reported in a first paper dealing with the mechanisms of 

puncture of elastomer membranes by medical needles, this paper has described the method 

used to measure the fracture energy associated with puncture by medical needles. The 

contribution of friction to the puncture energy was successfully completely removed by the 

application of a prestrain, in a similar way to what had been developed by Lake and Yeoh for 

cutting. The theoretical formulation allowing the calculation of the tearing energy associated 

to this applied prestrain was derived from the theory of Rivlin and Thomas on the rupture of 

rubber. It was validated with a model extending expressions provided by the linear elastic 
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fracture mechanics (LEFM) to include the non-linear stress-strain behavior displayed by 

rubber. 

Values for the fracture energy corresponding to puncture by medical needles have been 

obtained for neoprene and nitrile rubber. They are found to be larger than the energy 

associated to cutting and smaller than that obtained for tearing. This can be related to the 

value of the crack tip diameter, which is, in that case, controlled by the needle cutting edge 

diameter, and is much larger than blade edge diameters and smaller than the crack tip 

dimension associated with tearing in rubbers. 
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CHAPTER 9 

CONCLUSIONS 

The results in this work show that the puncture of the elastomer membrane with the 

probes used in the F1342 ASTM standard is controlled by a local deformation that is an 

intrinsic material parameter, and is independent of the indentor geometry. The puncture 

strength is much smaller than both the tensile and the biaxial stresses. The maximum stress in 

puncture corresponds to the maximum strains measured from the top surface of the probe. 

The results of puncture by cylindrical probes are useful for the characterization of the 

puncture resistance of elastomeric membranes. Indeed, a simpler cylindrical probe can be 

used in the place of the costly conical probe required by the ASTM Standard and still 

provides a quantitative characterization of puncture. Furthermore, the rounded-tip probe gives 

exactly the same result as that of the flat-tip probe. Since the cylindrical probe is much easier 

to produce, the expensive ASTM probe can be replaced by a simple cylindrical probe. 

Furthermore, it has been demonstrated in this work that the puncture of sharp-pointed 

objects (medical needles) is very different from the puncture of conical probe in the ASTM 

F1342. In fact, puncture by medical needles is shown to proceed gradually as the needle cuts 

into the membrane. This behavior is highly different from puncture by rounded probes which 

occurs suddenly when the strain at the probe tip reaches the failure value. In addition, 

maximum force values are observed to be much smaller with medical needles. For medical 

needles, the puncture resistance involves cutting and fracture energy of material. A method 

has been developed based on the change in strain energy with the puncture depth to evaluate 

the fracture energy associated with puncture. The results show that the phenomenon of 

puncture by medical needles involves contributions both from friction and fracture energy, in 

a similar way as for cutting. A lubricant was tentatively used to reduce the friction 

contribution for the computation of the material fracture energy. 

However, the lubricant can not eliminate totally the friction which is dependent on the 

material and lubricant type. Therefore, a method which is similar of Lake and Yeoh for 

cutting, is also described to assess the fracture energy in puncture of rubbers by sharp-pointed 
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objects. The method enables the effects of friction on the evaluation of fracture energy in the 

puncture process to be substantially eliminated. The tearing will separate the fracture surfaces 

from contacting to sharp object, eliminating the friction and allow getting the precise value of 

puncture energy. The theoretical formulation allowing the calculation of the tearing energy 

associated with this applied prestrain was derived from the theory of Rivlin and Thomas on 

the rupture of rubber. It was validated with a model extending expressions provided by the 

linear elastic fracture mechanics (LEFM) to include the non-linear stress-strain behavior of 

rubber. Finally, the fracture energy in puncture is found greater than that of cutting and 

smaller than that of tearing as the crack tip diameters are different for various fracture modes 

(cutting, puncture and tearing). 

For practical outcomes, considering the results of puncture by conical and cylindrical 

probes, since 2005, an alternative method B had been added to F1342 ASTM with 0.5 mm-

diameter rounded-tip cylindrical probe. And with the fact that the puncture mechanics by 

medical needle is different from the puncture by conical and cylindrical probes, a new 

standard test method ASTM WK 15392 for puncture by medical needles is under 

development. 
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