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Abstract

In this thesis, finite element analyses based on a rate-dependent Taylor-type polycrystal

model have been developed to simulate sheet metal forming processes and localized deformation

phenomena. This formulation can be appMed to nonhomogeneous boundary-value problems for

FCC polycrystals subjected to large deformations. The analysis inherently accounts for initial

textures as weU as deformation-induced anisotropies due to texture evolution. Both plane strain

and plane stress finite element (FE) codes incorporating parallel computing algorithms have been

developed so that simulations could be performed for applications requiring fairly large numbers

of elements.

Using the finite element codes which have been developed, instability and localization

phenomena for the rolled aluminum sheet alloy AA3004-H19 under tension have been studied.

The effects of various parameters on the formation of localized deformation bands have been

investigated. These include initial texture and its evolution, strain hardening, material strain-rate

sensitivity, loading direction, mesh sensitivity, geometric imperfections, and boundary conditions

Instability criteria have been defined for both necking and shear banding.

The large strain behaviour of the roUed aluminum sheet alloy AA3004-H19 under planar

simple shear has also been simulated numerically using both the plane strain and the plane stress

polycrystal FE codes. The effects of the shearing direction on the overall shear stress-shear

deformation curves and deformation patterns have been investigated. The initiation and

propagation of shear bands have been studied in detail.

Finally, the plane strain FE code was employed to simulate earing during the deep

drawing of the rolled aluminum sheet aUoys AA6111-T4 and AA5754-0. Simulations based on

both the polycrystal model and a phenomenological constitutive law were performed where only

the flange area of the sheet was analyzed. The effects of these textures were examined, and

comparisons were made with experimental data.
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Resume

Une formulation par elements finis pour les polycristaux, basee sur 1'hypothese de Taylor

pour un materiau sensible au taux de deformation, a ete appliquee pour analyser la mise en forme

des metaux et les phenomenes de localisation. Cette formulation s'applique aux problemes de

conditions aux limites non homogenes des metaux polycristaUins sous grandes deformations. Elle

tient egalement compte des textures mitiales ainsi que des anisotropies induites par la

deformation causee par 1'evolution de la texture. Des codes d'elements finis bases sur les

hypotheses de deformations planes et de contraintes planes incorporant des algorithmes de calcul

paraUele ont ete elabores.

En utilisant les codes d'elements fmis etablis, les instabilites et les phenomenes de

localisation dans PaUiage d'aluminium AA3004-H19 sous tension ont alors ete etudies. Les efifets

de divers parametres tels que la texture mitiale et son evolution, 1'ecrouissage, la sensibilite au

taux de deformation du materiau, la direction du chargement, la sensibUite du maillage, les

imperfections geometriques et les conditions limites sur la formation des deformations locales ont

ete traites. Un critere d'instabilite a ete defmi pour la striction et la formation des bandes de

cisaiUement.

Le comportement a grandes deformations pour 1'alliage d'alumimum AA3004-H19, sous

cisaillement simple, a aussi ete simule numeriquement en utUisant les codes d'elements finis. Les

effets des directions du cisaiUement sur les courbes de contrainte-deformation et les

morphologies des deformations ont ete etudies. L'initiation et la propagation des baades de

cisaiUement ont aussi ete examinees en detaU.

Finalement, Pemboutissage profond des aUiages d'aluminium AA6111-T4 et AA5754-0 a

ete modelise en utilisant a la fois Ie modele polycristaUin et un modele phenomenologique ou

seulement la zone de « flange » a ete analysee. Les effets de ces textures ont ete examines et les

resultats obtenus ont ete compares avec les donnees experimentales.
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CHAPTER 1

INTRODUCTION



1.0 INTRODUCTION

Sheet metal forming has, for a long time, been one of the most common metal processing

operations. In many manufacturing areas such as the automotive, aerospace, packaging and

electronic industries, the optimization of sheet metal processes has become a key factor to reduce

product development time and final cost. In general, sheet metal forming involves large strams

due to stretching, drawing, bending or various combinations of these basic deformation modes.

From the view point of mechanics, the analysis of sheet metal working involves nonlmearities in

geometry, material and contact. In an effort to better understand sheet forming processes, various

research works have been carried out using diverse technologies involving experimental,

analytical and computational methods.

Accurate simulations of sheet metal forming operations requires a good understanding of

the deformation mechanisms involved and the proper use of deformation models of metal

forming. The common metals of industrial practice are polycrystalline aggregates which consist

of single crystals or individual grains with lattice stmctures. The mechanical properties of a

polycrystalline metal depend on many attributes of its microstructure; consequently, considerable

efforts have been devoted to the study ofmicromechanics. These studies indicate that, among the

factors which result in the plastic deformation of single crystals and polycrystals, crystaUographic

slip occurring by the migration across the slip planes of atomic defects, termed dislocations, is the

dominant one.

Crystallographic slip induces lattice rotations which result in a non-random distribution of

the crystal orientations in polycrystals. The textures developed during forming processes is a

macroscopic average of such non-random orientations. Research indicates that texture occurs in

many metal forming processes such as drawing, extrusion, rolling and sheet metal forming.

These textures not only have profound effects on the mechanical and thermal properties of

metals, but also have great influence on subsequent fabrication processes as well as on the quality

of the products. Thus, it is obvious that accurate simulations of sheet metal formmg should

consider initial texture and its evolution, as weU as the anisotropy induced by the evolution of

microstmcture and microscopic properties.



Essentially two classes of models have been developed for numerical simulations of sheet

metal forming operations: phenomenological (macroscopic) models and polycrystal

(microscopic) models. The theory of phenomenological plasticity is generally initiated from

hypotheses and assumptions of a macro scopic character based on certain experimental

observations. In the past, the constitutive laws that were used to model metal forming processes

were ahnost exclusively phenomenological in nature. Although such phenomenological models

are acceptable for many applications, they do not explicitly include the basic physics of plastic

deformation. They are inherently incapable of predicting the effects of material microstructure

and its evolution with deformation on metal performance, nor can they link mechanical properties

to evolving micro structures and textures.

To model processes such as texture evolution and its influence on deformation-mduced

anisotropy, micromechanically based models of plastic behaviour are required. In particular,

constitutive relations formulated on the concepts of crystal plasticity must be adopted. Since

Taylor's pioneering work in 1938, the prediction of the deformation behaviour of polycrystaUine

solids from the response of their single crystal constituents has been the focus of many

investigations. Thus, many crystal plasticity models have been proposed or modified to simulate

the behaviour of polycrystaUine metals during plastic deformation from the response of their

single crystal constituents.

The mathematical modelling of material behaviour is a very effective way of reducing

time and costs involved in optimizmg manufacturmg processes. Indeed, numerous complex

forming operations have been sunulated using numerical methods in order to predict critical

parameters. Among these methods, the finite element method (FEM), has been widely applied to

the study of metal forming because of its flexibility, accuracy and ef&ciency. Considering the

rapid advancement of computer capabilities, the finite element method has become a powerful

tool in modelling metal forming operations.

Up to the 1980's, most applications involving the finite element method have been based

on phenomenological constitutive models since microscopic models involve significantly more

demanding computations. However the introduction of parallel computers has rendered metal



forming modelling based on crystal plasticity feasible since they offer more computational power

and storage than serial computer architectures. With proper paraUeUzation techniques, realistic

applications based on crystal plasticity can be performed on parallel computers such as the IBM

SP3.

The objective of the present work is to develop crystal plasticity based finite element

models to simulate sheet metal forming processes, and to investigate localized deformation

phenomena in metals. A rate-sensitive Taylor-type polycrystal model is implemented in our

nonlinear numerical analyses. Both plane strain and plane stress finite element codes based on a

large-strain Lagrangian formulation have been developed. These codes incorporate parallel

computing algorithms enabUng simulations with realistic models. Various forming operations

and localized deformation phenomena are simulated for rolled aluminum sheets.

In Chapter 2, the deformation characteristics of single crystals and polycrystals, which are

the physical basis of the present work, are first presented and discussed. To date, many models of

the plastic distortion of single crystals and extensions to polycrystals have been developed. For

single crystals, the rate dependent and rate independent models are the two major models. In

general, a polycrystal model can be derived from single crystal deformation models by the

execution of an appropriate averaging scheme for combining smgle crystal properties into

polycrystal behaviour. There are three classical theories concemmg the transition from the micro-

response of the individual grains to the macro-response of the polycrystalline aggregate: Taylor's

theory, Sach's theory and the self-consistent theory. The Taylor polycrystal theory, on which the

present research is based, is described in detail. Its advantages and drawbacks are discussed. In

addition, more recent developments in crystal plasticity theory such as the so-caUed "finite

element per single crystal (FESC)" model, strain gradient plasticity theory, models includmg

backstress, and discrete dislocation plasticity theory are briefly presented.

The polycrystal deformation model and its implementation in the finite element code is

described in Chapter 3. The rate-sensitive crystal plasticity formulation proposed by Asaro and

Needleman (1985) is presented in detail. This model, in which the principal deformation

mechanism is assumed to be rate dependent crystallographic slip, accounts for large



deformations, the rotation of crystal axes, and elastic anisotropy of the grains. In the second part

of this chapter we present a finite element procedure based on a large-strain Lagrangian

formulation of the field equations. Both plane strain and plane stress FE codes are developed and

the rate-sensitive crystal plasticity model is implemented in these codes. The basic idea in this

formulation is that a material point within the domain represents a polycrystal of N grains, and

the constitutive response at the material point is given through the Taylor polycrystal model.

Crystal plasticity based smmlations entail extremely demanding computations since a significant

amount of information at the grain level must be tracked. Thus, parallel computing algorithms are

developed to distribute data at the grain level between the processors of a parallel computer. The

last part of this chapter presents the parallel computing algorithms and their implementation in

the FE codes.

As the first application, simulations of localized deformation m an aluminum sheet alloy

(AA3004-H19) under tension are presented in Chapter 4. Simulations with both the plane strain

and plane stress FE codes are presented. For the plane strain simulations, an initial imperfection

is assumed to trigger localized deformation. However, no initial imperfections are considered for

the plane stress simulations where localized deformation occurs as a result of the so-caUed "built-

in" boundary conditions. The effects of texture evolution, slip rate sensitivity, strain hardening,

mesh sensitivity, and the loading direction on the formation of localized deformations are

discussed in detail. Onsetting criteria are defined for both necking and shear banding.

Smce sheet metal forming operations involve large plastic strains, the proper

understanding and characterization of the large strain behaviour of thin metal sheets is crucial for

controlling product quality. In Chapter 5, the large strain behaviour of the aluminum sheet alloy

AA3004-H19 under planar sunple shear is investigated. Simulations with both plane strain and

plane stress FE codes are presented. For comparison, results based on the Taylor-type

polycrystalline model under the assumption of homogeneous simple shear are also included.

Mesh sensitivity, and the sensitivity of the overall shear stress response and deformation

distribution to the loading direction, are investigated. Furthermore, the initiation and propagation

of shear bands are discussed m detaU. The numerical results are compared with experimental data

found in literature.



Chapter 6 is devoted to simulations of earing during the deep drawing of aluminum

sheets. A simple flange model is presented where only the deformations in the flange area of the

sheet are considered m the analysis. Simulations with the plane strain FE code are performed

both with the polycrystal model and a phenomenological model (Barlat et al., 1991a,b) for the

aluminum sheet alloys AA6111-T4 and AA5754-0. The effects of these textures are discussed,

and the results are compared with experimental data.

Chapter 7 contains a brief summary and the general conclusions of this research. Future

applications and developments to improve metal forming modelling are also discussed in this

chapter.



CHAPTER!

CRYSTAL PLASTICHY THEORY



2.1 Introduction

Metals are crystaUine solids which consist of atoms arranged in a pattern that is repeated

periodically in three dimensions. Such an atomic arrangement can be described completely by

specifying atom positions in some repeating unit ceU of the space lattice. Figure 2.1 illustrates the

unit cells for three typical microstructures of metals: BCC (body-centred cubic), FCC (face-

centred cubic) and HCP (hexagonal close-packed). IVtetals that crystallize in the FCC lattice are

aluminum, copper, brass, nickel, gold, silver, lead, platinum and gamma (/) iron. In the present

research, the focus is on FCC crystals.

Body-Centred
Cubic

Face-Centred
Cubic

Close Packed
Hexagonal

Figure 2.1 The unit cells ofBCC, FCC and HOP crystal structures.

Real crystals are rarely perfect. They usually contain imperfections or defects. Lattice

imperfections can be characterized geometrically according to whether the disruption in a lattice

is at a point, along a line, or over a surface. The most common point imperfections in a crystal are

vacancies, mterstitial atoms, and substitutional impurity atoms. Vacancies play an important role

in deformations at high temperature. The most important is a type of line imperfection, known as

a dislocation.



Plastic deformation in polycrystals occurs primarily by the movement of dislocations.

The basic concept of dislocations was explained ingeniously by Taylor (1934) as the shearing of

different rows of atoms of a crystal in small regions, following their growth through the crystal.

The shear stress along the glidmg direction on the glide plane of the dislocation, known as the

resolved shear stress, supplies the force to cause dislocations to glide. Among the different

mechanisms of plastic deformation m metals, such as slip, twinning, grain boundary sliding and

diffusion, the translation glide (sMp) is the principal one in FCC metals at low and intermediate

temperatures. Only this crystallographic slip mechanism is considered in this study.

Crystallographic slip is anisotropic. It implies the massive movement of dislocations

along certain crystaUographic planes (slip planes) in certain directions (slip directions). Each slip

direction on a slip plane defines a slip system. These slip directions and planes are almost always

those of maximum atomic density, and correspond to those slip systems in which dislocations are

most likely to move. Due to the symmetry of the crystal, there are 12 possible slip systems, {111}

<110>, for an FCC crystal (Fig. 2.2).

g^?

(a) (b)

Figure 2.2 A {111} <110> slip system within anFCC unit cell. (b) The (111) plane j&om (a) and

three <110> slip directions (as indicated by arrows) within that plane comprise possible slip

systems.

Slip deformation mechanics is governed by the critical shear stress law (Schmid, 1924),

which is often referred to as Schmid's law. It serves as an initial microscopic yield criterion for



single crystals. The Schmid law states that extensive glide occurs when the resolved shear stress

attains a critical value; i.e., when

/^=m^.=^ (y= 1,2,3) (2.1)

Here r(a) is the resolved shear stress for the slip system a, o-,- is the stress state acting on the

crystal, r(a) is the yield strength of the system a, and m\f is expressed as

mw=swb(a} (2.2)
'ij "' "J

where s(f and b(a) are the components of the slip vector s(a) and slip plane normal b(a),

respectively, for the sUp system a. In (2.1), and throughout this thesis, the usual summation

convention of tensor calculus, is applied. Using (2.2), the components of the plastic strain-rate

tensor, Dp, can be expressed as

D5 = 1^ (< + <)^a; (2-3)^2

where ly(a) is the shear rate on the slip system a.

2.2 Single crystal deformation models

It is weU known that the properties of polycrystals can be derived from those of smgle

crystals. With the assumption that plastic deformation is due solely to crystallographic sUp, the

description of the deformation of smgle crystals has several versions. Here we discuss two main

theories: the rate independent and rate dependent models.



2.2.1 Rate independent deformation

Let T^} represent the current value of the yield stress associated with the a slip system

and i(a) be the corresponding resolved shear stress. The Schmid law yields the following simple

flow rule for the shear rates y(a) according to the rate independent plasticity theory:

Y(a) = 0 for T(a} <rw,

y(a)=Q for^=T^andTra)<ry^, (2.4)

Y(a) > 0 for T(a) = T(;) and rca) = haftyw,

Here hap are the components of the sUp system hardening matrix, which represent the

components of the increment of flow stress on system a due to an increment of shear on system

P . In (2.4), and throughout this thesis, repeated Greek indices imply summation over the number

of slip systems (12 for FCC crystals) unless indicated otherwise. Equation (2.4) characterizes the

inactive, potentially active, and active slip systems.

Since there is essentially no change of volume for a crystal during plastic deformation,

only five components of the plastic strain rate tensor are independent. Therefore, there are only

five independent equations in Equation (2.3) for the 12 unknowns y(a). This implies that a

geometricaUy possible combination of only five mdependent active slip systems are required to

accommodate five independent strains. For FCC crystals which have 12 slip systems, there exist

384 such geometrically possible combinations of 5 slip systems.

In order to select the active slip systems, Taylor (1938) introduced the hypothesis that the

actual combination of the slip systems is the one for which the sum of the shear rates is a

minimum; i.e.,

10
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0=1

^y(a)=mm (2.5)

This hypothesis has no obvious a priori justification. However, Taylor based it on observations of

single crystals subjected to uniaxial stress and on a postulated analogy with the dynamics ofnon-

conservative mechanical systems.

Bishop and Hill (1951a, 1951b) later recast this theory based on the principle of

maximum work, a version of which they derived for a single crystal. In particular, from the

principle of maximum work they derived inequattties between external work, computed as the

product of macro scopic stress and strain increments, and internal work computed as the integral

over the volumes of grains of the products of crystallographic shear strength, and assumed slip

increments. They then used these to set bounds on the critical stress state required to induce yield.

Indeed the primary aim of the Bishop and HU1 theory was the computation of single and

polycrystal yield surfaces. They discovered that, for most orientations of a single crystal, the

active stress states are on the comers of its yield surface. For FCC metals deformed by {111}

<110> slip and which harden isotropically, there are 56 such comer stress states. More than five

slip systems are activated on these corners of the yield surface because they are the intersection

of at least sbc planes. Among the 56 stress vertices (28 plus their opposites), 24 wiU activate 8

slip systems and 32 will activate 6 slip systems.

The use of a yield surface m connection with "maximum plastic work" seems a more

valid basis as a selection criterion than Taylor's assumption of "minimum sum of shears".

However, Chin and Mammel (1969) proved that the two methods are strictly equivalent. Kocks

(1970) and Renouard and Wintenberger (1976) also arrived at the same conclusion.

2.2.2 Rate dependent deformation

The drawbacks of the rate-independent theory arise essentially from the lack of

uniqueness in the choice of the actively yielding slip systems. This is because the yield surface of

rate-independent single crystals is a polyhedron, and the prescribed strain-rate vector must be

11



perpendicular to the yield surface. As shown in Fig. 2.3, if the prescribed strain-rate vector is

perpendicular to the edge of the yield polygon, it is not possible to uniquely determine the

position of the stress vector on the edge. Under such conditions the stress state is ambiguous.

Furthermore, if the stress vector is on the comer of the yield locus, sbc or eight slip systems could

possibly be simultaneously activated, and the corresponding slips cannot be uniquely determined

from the five equations in Equation (2.3).

dC (D

Figure 2.3 Schematic illustration for the stress and slip ambiguities present in the rate

independent deformation model

In order to resolve the above ambiguities, Asaro and Needeleman (1985) introduced the

rate sensitivity of slip into Taylor-type crystal models. (Details of this formulation will be

presented in Chapter 3.) In this rate dependent model, no strict distinction between active and

inactive slip systems is made and there is no explicit yielding. Instead, aU slip systems slip at a

rate which depends on the current value of resolved shear and the stress hardness properties. It is

because of the direct and unique relation between slip rates and the prevailing stress state (and the

current material state) that the slip rate on each slip system can be determined uniquely, and

hence furnish unique solutions. Thus, the long-standing problem of non-uniqueness in the stress

12



states and in the choice of active sUp systems in the rate independent analysis is overcome by the

rate dependent model.

2.3 Deformation textures

The common metals in industrial practice are polycrystaUine aggregates in which each

grain (crystal) can assume different orientations. In forming processes, where metals undergo

medium or large deformations, the grains in general do not have random orientations; instead,

non-random distributions termed preferred orientations or textures occur.

The actual orientation distribution of the individual grains m a polycrystal is the result of

the manufacturing process. The texture thus reflects the production history of the metal. Textures

have profound effects on the mechanical, thermal and electrical properties of materials, as well as

on the subsequent performance during fabrication and the final quality of products. For instance,

rolling of aluminum, commercial alloys or high-purity materials results in a complex mixture of a

range of texture components which include {112} (ill) (the Cu-component), {123} (412) (the S-

component), and {110} (112) (the brass-component), as well as a variety of other components.

The prediction and simulation of such texture developments are very desirable, since many

fotming operations are carried out on roUed materials and the forming capability of these metals

strongly depend on their textures. Stamping a circular cup from rolled and/or annealed metal

sheets with textures, for example, often results in undesirable waves on the sides of the cup, a

phenomenon known as "earing". Textures are so important that predictmg their development and

evolution during deformation is vital for control purposes in industrial practices.

2.4 General introduction to polycrystal deformation models

In addition to the general capabilities of phenomenological models, a polycrystal

deformation model must possess other advantages. It should be capable of describing some

phenomena which cannot be modelled by phenomenological theories, such as the important

polycrystal deformation characteristic - crystallographic textures. In general such a model can be

13



derived from single crystal deformation models. The issue is how to establish the relationships

between microstructural mechanisms of deformation operating on the smgle crystal level and

overall polycrystal behaviour.

To relate the behaviour of a polycrystaUine aggregate to that of the constituent single

crystals, something must be known or assumed about the stresses or strains of the individual

grains. Usually, assumptions are made about the distribution of stresses and strains in the

polycrystal, and polycrystal response is identified with some appropriate average of the response

of its constituent grains. Several such models have been proposed, which have provided much

useful insight into texture development and polycrystal strain hardening behaviour. These

models, described below, are based on the concept of polycrystal deformation due to

crystallographlc slip at the level of the single crystals. Other deformation mechanisms, such as

grain boundary sliding, diffusion, and twinning, are neglected.

2.4.1 Sach's model

Sach's (1928) model, one of the earliest polycrystal models, is based on the assumption

that each grain is subjected to the same stress state. In this model, the grains are treated as if they

were an array of fi-ee single crystals which can deform independently of each other. Strain and

orientation changes are deduced from the stress in the same way as in the case of a free single

crystal submitted to a known stress. Each grain is subjected to the same stress state which is also

the macroscopic stress. The model was refined by Kochendorfer (1941) who further stipulated

that each grain was subjected to the same stretch.

In this model, because of the assumption that each grain is subjected to the same stress

state equal to the macroscopic stress, the stresses arising from constraints necessary to satisfy an

imposed strain are neglected. As a result, continuity of strain across a grain boundary is violated

(Bishop and Hill, 195 la; 1951b). Also some numerical inconsistencies with experiments exist in

this model (Asaro and Needleman, 1985). In general, this theory was not found to be very

successful in predicting deformation textures.

14



2.4.2 The Taylor crystal theory

In order to overcome the objections to Sach's model, Taylor proposed an alternative

model. There are two aspects in the original Taylor theory: (a) a criterion for selecting the active

slip systems m a deformed smgle crystal (Section 2.2.1), and (b) the assumptions for Unking the

deformation behaviour between the constituent grains, and the polycrystaUine aggregate.

The basic idea underlying the Taylor model rests on experimental observations. By

examining a micrograph of the cross section of a drawn wire, Taylor observed that all the grains

were elongated in the direction of extension, and contracted in the two perpendicular directions.

He concluded that the strain field throughout the polycrystal is homogeneous, implying that each

grain deforms exactly in the same way as the polycrystal. This assumption has served as a tool

for linking the deformation behaviour among all constituent grains, and between individual grains

and polycrystals. It is now known that it is not exactly true, but the assumption has the advantage

of assuring continuity of the strain rate across the grain boundaries so that no voids are created.

With the Taylor assumption the stress state is not continuous, but varies abruptly from

grain to grain, depending on different grain orientations. As pointed out by Bishop and Hill

(195 la, 1951b), each grain satisfies the relation

<W = drlds = M (2-6)

where o- „, and ds are the axial stress in a grain and the macroscopic aggregate strain

increment, respectively, and r and dy are the shear strength and slip-system shear strain

increment, respectively. M is the orientation factor, depending only on the lattice geometry and,

in particular, on the relationship between the loading axis and the slip system of the crystal.

Taylor and Elam (1923) studied the uniaxial tension of aluminum polycrystals. By

assuming that each grain is at the same stage of strain hardening, Taylor predicted that if T is

the yield strength in shear of a single grain, the tensile yield stress of a random aggregate would
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be 3.06 T . Very close agreement was obtained when Taylor tested this theory by comparing the

tensile stress-strain relation {^7 -e) measured on an aggregate with that deduced from the

shear stress-strain (r-y) curve of single crystal, where

^aggre. = MT

(2.7)

s = Y M

and where M , the so-caUed "Taylor factor", may vary from one type of texture to another. Its

value is approximately 3.06 for isotropic polycrystals.

Summarizing, two main points emerge from the Taylor theory regarding the relation

between the deformation of single crystals and that ofpolycrystals:

1. The deformation in each crystal is the same as the macro scopic deformation; the shapes of

the constituent crystals do not enter in the ideaUzation; and

2. The macroscopic stress of a polycrystal is the average of the stresses of all constituent

single crystals.

These concepts are adopted for our numerical analyses.

2.4.3 Relaxed constraint models

In the classical Taylor-type models, five independent slip systems have to be activated to

guarantee deformation compatibility of the whole specimen. Since the number of strain

conditions (the "number of constraints") is as large as five, such models are referred to as "full

constraint" (FC) models.
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More recently, a modification of the Taylor model, the method of "relaxed constraints,"

(RC) has been suggested by Honneff and Mecking (1978) and further developed by Kocks,

Jonas, Canova and co-workers (1984) to account for material texture effects. The idea here is to

assume that when grains re-orient and take on very distorted shapes, characterised by large aspect

ratios of the principal lengths, it is possible to partiaUy relax the strict compatibility requirements

imposed in the Taylor model. Non-unuiform deformations (not accounted for in the model) are

envisaged to occur at the grain boundaries which accommodate the incompatibilities unplied by

the non-imposed strain components. When applied to certain deformation states such as

axisymmetric tension and compression they argue that the dimensionaUty of the problem is

reduced so that less than five independent slip systems are needed.

The methodology of relaxed constraints has been used by the above authors to analyze

deformation textures in FCC polycrystals following several strain histories such as axisymmetric

tension and compression, along with large simple shear. Since the imposed strain increments

differ from those that would be imposed in a full constraint (Taylor) model, the slip modes and

lattice rotations predicted by the two approaches are different. In a few cases the RC method has

been reported to lead to predicted textures that are in better agreement with experiment, for

example as in the analyses ofCanova et al. (1984) of texture development following large simple

shear.

2.4.4 Self-consistent schemes

The self-consistent method (SC), based on Eshelby's (1957) concept, was proposed

mainly by Kroner (1958), Budiansky and Wu (1962), and Hill (1965). Generally, these models

assume a homogenization scheme in which the grain interactions with the matrix are taken into

account. In the homogenization scheme, the material properties of a polycrystal aggregate vary

from grain to grain, and each grain is treated as a local inhomogeneity embedded in a

homogeneous equivalent medium (HEM).

Based on the SC method, Molinari et al. (1987) and Toth et al. (1994, 1997) predicted

texture evolution for FCC and BCC polycrystaUine materials during rolling and torsion,
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respectively. Lebensohn et al. (1993) predicted texture evolution during rolling and axisymmetric

deformation of a zirconium alloy. They also determined the plastic anisotropy of a rolled

zirconium alloy sheet. Recently Choi et al. (2000) also used the SC method to investigate the

effects of crystallographic and morphological texture on the macroscopic anisotropic properties

(r-value and normalized yield stress) for AA5019A sheets in H48 and 0 temper conditions using

the fiiU-constraint Taylor and a visco-plastic self-consistent polycrystal model. They have

presented results where spherical and eUipsoidal grain shapes were analyzed.

For cubic metals, such as FCC polycrystals, textures predicted by the SC models are

rather similar to those obtained with the FC and RC models. Significant differences are observed

in plastically more anisotropic hexagonal metals (e.g., Lebensohn et. al., 1994) although

sometimes the reorientation due to twinning obscures the comparison between the FC and SC

methods.

2.5 Recent developments in crystal plasticity theory

In this section we summarize new developments in crystal plasticity theory and give

examples of their applications.

2.5.1 Finite element per single crystal (FESC) model including the effects of the crystal

shape on texture evolution

Another approach, which is capable of including the effects of crystal shape on texture

evolution, utilizes finite element methodologies to discretize the crystals of an aggregate using

one or more elements for every crystal. In this model, a polycrystalline aggregate is treated as a

continuum where both compatibility and equilibrium among the individual grains are

automatically satisfied.

Asaro and co-workers (e.g., Harren et al., 1988) have conducted some novel experunents

and simulations of shear band formation in Al-3wt% Cu FCC single and polycrystals under plane

strain compression. In their work, they modelled each grain by a number of finite elements to

18



allow for non-uniform deformations within the grains. Their simulations of the deformation

response of a multi-crystal comprising of 27 grains provided good insight into the underlying

micromechanical mechanisms of localized deformation in crystalline materials.

Recently, Mathur et al. (1990) extended the mathematical formulation developed earlier

by Mathur and Dawson (1989) to account for the effects of grain shape on the development of

deformation-induced crystaUographic textures using the relaxed constraints approach of Honneff

and Mecking (1978), Kocks and co-workers (Kocks and Canova, 1981; Canova et al., 1984;

Tome et al, 1984). Within their framework, each grain could no longer be treated independently

nor could the stresses from all grains in an aggregate simply be averaged. Rather, in a restricted

sense the actual continuity requirements from continuum mechanics were enforced across flat

gram boundaries, while the overall deformation of an aggregate was constrained to match the

macroscopic deformation of the material point. They simulated the flat rolling of polycrystalline

aluminum as an application for their model, and compared the predicted deformation textures

with the predictions of an earlier study which were based on a Taylor model. Several detailed

comparisons indicated that the texture predictions made by the new model, which accounts for

the effects of grain morphology, matched the experunental observations more closely.

Kalidindi et al. (1992) developed a finite element polycrystallbe model where each

element represented one crystal and sets of initially "random" grain orientations were assigned to

the elements. As with Taylor model simulations, the macroscopic stress-strain response and

crystaUographic texture were computed as volume averages over the entire aggregate. The

crystaUographic texture was obtained by a direct equal-area projection of the orientations of aU

grains. Their calculations satisfied (in the "weak" finite element sense) both compatibility and

equilibrium in the aggregate. They analysed FCC, polycrystaUine, oxygen-free-high-conductrvity

(OFHC) copper for (i) planar simple shear and thin-walled tubular torsion to large shear strams,

and (ii) a simple plane-strain forging operation. Their results clearly indicated that the new model

nicely captured the major features of the evolved textures.

Bronkhorst et al. (1992) used the model proposed by Kalidindi et al. (1992) to simulate

"nominally homogeneous" deformations of simple compression and tension, plane strain
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compression, and simple shear of a polycrystalline aggregate by using a multitude of single

crystals. They compared their results against those from Taylor-type calculations and concluded

that their model was in much better agreement with the experiments than was the Taylor-type

model. Anand and Kalidmdi (1994) also used the model proposed by Kalidindi et al. (1992) to

sunulate the effects of crystaUographic texture evolution on the process of shear band formation

in plane strain compression of initially isotropic OFHC polycrystalline copper. They computed

deformed textures that are in very good qualitative agreement with the experimental texture after

an axial compressive strain of -1.0.

Beaudoin et al. (1995) developed a finite element model based on a hybrid formulation to

investigate the averaging of crystal microscopic responses developed during the course of a

macroscopic deformation. They simulated channel die compression with one crystal per finite

element and compared their results with simulations obtained from the FC and RC models. Their

hybrid finite element formulation was able to predict the development of the brass texture

component in the 90° section of the crystal orientation distribution (COD), while there was no

evidence of formation of this texture component in their RC simulation. While their FC model

showed texture development in the 90° section, it was away from the brass location indicated by

the experimental data.

The study of a model polycrystal using finite element simulations (Sarma and Dawson,

1996a) showed neighbour interactions to be the main factor in determimag the spread of the

appUed deformation among the crystals. Sarma and Dawson (1996b) presented a viscoplastic

model for distributing the deformation applied to a polycrystal in a non-uniform fashion among

the constituent crystals. Their finite element model was based on the hybrid formulation of

Beaudoin et al. (1995). Polycrystal simulations of crystallographic texture development under

plane strain compression and simple shear were simulated with this model, and the results

obtained were compared to the results of similar calculations using a Taylor model. They

concluded that the model incorporating neighbour interactions improved texture predictions, in

terms of both the intensity levels and the locations of certain texture components.
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Recently, Acharya and Beaudoin (2000) proposed a constitutive model for the prediction

of gram-size dependent hardening in FCC polycrystaUine metals where they considered a purely

viscoplastic response. Later on, Beaudoin et al. (2000) extended this work to include efifects of

temperature and strain rate dependence. Their work has provided detailed comparisons between

their model and experimental compression data, taken at varying temperature and strain rate, for

pure Ag having two different grain sizes.

2.5.2 Strain gradient plasticity

Dislocation theory suggests that the plastic flow strength of a solid depends not only on

strains, but also on strain gradients. Hardening is due to the combined presence of geometricaUy

necessary dislocations associated with a plastic strain gradient and statistically stored dislocations

associated with plastic strain. In general, strain gradients are inversely proportional to the length

scale over which plastic deformation occurs. Thus, gradient effects become important for plastic

deformations taking place at small scales. Experimental evidence suggests that the flow strength

increases with dimimshing size, at length scales on the order of several microns or less.

The most general versions of the theories proposed fit within the Toupin (1962) and

Mindlin (1964) strain gradient framework, which involves all components of the strain gradient

tensor and work-conjugate higher-order stresses in the form of couple stresses and double

stresses. A specialized version deals with only a subset of the strain gradient tensor in the form of

deformation curvatures (i.e., rotation gradients). This is the simpler couple stress framework.

Experimental evidence is accruing for the existence of a strong size effect in the plastic

flow of metals and ceramics. For example, the measured indentation hardness of metals and

ceramics increases by a factor of about two as the width of the indent is decreased from about 10

//m to 1 jum (Stehnashenko et al., 1993; Ma and Clarke, 1995). The weU-known HaU-Petch

(1951) effect states that the yield strength of pure metals increases with diminishing grain size.

Long-standing observations of shear bands in metals have revealed that micro-shear band widths

appear to be consistently on the order of a micron. Simple dunensional arguments lead to the

conclusion that any continuum theory for each of these phenomena based solely on strain
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hardening, with no strain gradient dependence, would necessarily predict an absence of any such

size effect

Gradient effects in an elastic single crystal of pure metal become significant only for

deformation fields with wavelengths on the order of the atomic spacing. However, when plastic

deformation occurs, gradient effects can become important at much larger scales. Fleck and

Hutchinson (1997) used the notions of statistically stored dislocations and geometricaUy

necessary dislocations to provide the physical basis for a continuum theory of single-crystal

plasticity. They assumed that slip occurs on specific slip systems in a continuous manner, and

that the increment in flow strength of any given slip system depends upon the rates of both the

strain and the first spatial gradient of strain. Their crystal theory fits within the framework of

Toupin (1962) and Mindlin (1964, 1965) strain gradient theory.

Following Mindlin (1964) and Fleck and Hutchinson (1997), Shu and Fleck (1997)

presented a formulation where they assumed that the per unit volume internal work rate of a

strain gradient solid consists of two parts: the usual second order stress tensor and a third order

double stress tensor. They used this formulation to investigate the size dependent deformation of

bicrystals. Recently Shu and Barlow (2000) demonstrated the improved modelling accuracy of a

finite deformation strain gradient crystal plasticity formulation over its classical counterpart by

conducting a joint experimental and numerical investigation of the microscopic details of the

deformation of a whisker-reinforced metal matrix composite. They obtained the lattice rotation

distribution around whiskers in thin foils using a transmission electron microscopy (TEM)

technique, and then correlated these results with numerical predictions based on finite element

analyses of a unit-cell of a single crystal matrk containing a rigid whisker. Their strain gradient

formulation accounted for both strain hardening and strain gradient hardening. They found that,

while a classical crystal formulation tends to over-predict the spatial gradient of the deformation,

the stram gradient formulation was able to predict a more smooth field with significantly lower

gradients and thus in better correlation with the TEM measurements.

Acharya and Bassani (2000) developed a simple constitutive model where lattice

incompatibility only enters the instantaneous hardening relations, and thus the incremental
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moduli, which preserves the classical structure of the incremental boundary value problem. Due

to this inclusion of a material parameter with dimensions of length in the hardening response, an

intrinsic length-scale was introduced in their theory. Spatial derivatives of elastic deformation

entered into material response which, at least in the case of single slip, make the sUp evolution

dependent on spatial derivatives of slip. They have discussed the implications of their modified

constitutive stmcture with respect to the incremental boundary value problem of equilibrium for

rate-independent and rate-dependent response.

2.5.3 Models including backstress

PolycrystaUine plasticity formulations to date have neglected explicit effects of

dislocation substructure in the constitutive relations. As a result, symptoms which lack physical

bases arise, such as premature texture development (Harren et al., 1989).

When a metal deforms inelasticaUy, mhomogeneities arise due to mechanisms at several

length scales. These inhomogeneities can arise from single dislocation sources at the lattice, or at

a Mgher length scale via dislocation cell boundaries enclosing equiaxed volumes that contaia few

dislocations. Inhomogeneities can also arise at higher length scales from geometricaUy necessary

boundaries (GNBs) which surround groups of cells in ceU blocks (CBs) (Kuhlman-Wilsdorf,

1989; Hansen, 1990; Leflfers, 1992). Inhomogeneities give rise to internal stresses associated with

local hard and soft regions; hence, macroscale hardening behaviour during inelastic deformation

ensues from dislocations simultaneously interacting throughout a range of length scales. These

inhomo genetics not only generate short range stresses at a local level which induce anisotropy,

but also a£fect the polycrystaUine elastic anisotropy.

The crystal plasticity models that have previously been discussed have been successful in

predicting the elasto-plastic behaviour as well as the texture evolution for crystaUme materials.

However, backstress evolution has been neglected in these models. The backstress is a residual

stress embedded in the polycrystalline or single crystal material at the crystal-lattice level due to

plastic deformation of crystals. Within the context of dislocation resistance, the notion of

backstress was studied by Mughrabi (1983). It has been used in some plasticity models to

describe the Bauschinger effect which has been associated with sequential activation, de-
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activation, and dislocation substructures. The backstress arises as dislocation densities at the

GNBs are high enough to induce a tensile stress state (or forward stress) such that regions

between them experience a compressive stress state. To maintain compatibility at the interface

between the boundaries and interiors of the subgrain, the GNBs serve as barriers to dislocation

motion and give rise to backstress. These backstresses influence the work-hardening rate and

limit the free operation of dislocation sources iti the softer cell interiors when the material is

reloaded. Tensile stresses (or forward stresses) in the boundaries assist the applied stresses to

operate on the sources with shorter dislocation segments.

Horstemeyer and McDowell (1998) introduced a second rank micro-heterogeneity internal

state variable (ISV) tensor mto the elastoviscoplastic polycrystalline framework (Rashid and

Nemat-Nasser, 1990) to represent effects of dislocation substmctures in the form of geometricaUy

necessary boundaries (GNBs). This evolving IS V was resolved onto the slip systems using

Schmid's law to introduce kinematic hardening (i.e., a backstress) in the flow rule. The micro-

heterogeneity ISV tensor that they introduced also affected the intergranular constraint by using a

self-consistent (relaxed constraint) method analogous to that ofBerveiller and Zaoui (1979). This

micro-heterogeneity ISV relates the dislocation substructure evolution to the backstress for

intergranular hardening, and to the grain boundaries for intergranular hardening. By including the

micro-heterogeneity ISV into the elastoviscoplastic polycrystaUine framework relative to the

Taylor model, they improved trends of correlations with experimental compression and torsion

stress-strain curves. Also the trends of their prediction of axial stresses in fixed end torsion tests

were more realistically simulated as second order axial effects were shown to depend on both

texture and dislocation substructure. Two other noteworthy results presented were that the trends

of intensity and distribution (spread) of texture evolution were more realistically predicted, and

that the trends of prediction of polycrystalline elastic moduli for deformed OFHC Cu and 304L

stainless steel were more accurately simulated. Also their elastoviscoplastic calculations with the

micro-heterogeneity ISV model showed that torsion produced a higher degree of amsotropy than

compression since the backstress magnitude for torsion was greater than for compression. Their

results and also other results such as presented by Voyiadjis and Huang (1996) and Dawson et al.

(1999) suggest that residual stresses such as backstresses and their evolution should be

considered for a physically-based polycrystalline framework.
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2.5.4 Discrete dislocation plasticity

As has already been discussed, conventional plasticity theories are length-scale

independent and exclude the effects of strain gradients. However, based on crystal plasticity. Van

Der Giessen and Needleman (1995) have presented a method for solvmg smaU-strain plasticity

problems with plastic flow represented by the collective motion of a large number of discrete

dislocations. Their formulation assumes that the ensuing deformation process is quasi-static and

involves small strains. The process leads to the motion of dislocations, mutual annihilation, the

generation of new dislocations and their pinning at point obstacles. The analysis of Van Der

Giessen and Needleman (1995) of the deformation process is performed in an incremental

manner in time, where the incremental step at any instant t involves three main computational

stages. First, for the current dislocation arrangement, the current stress, and the strain state of the

problem are determined. Secondly, from that state, the so-called Peach-Koehler force, i.e., the

driving force for changes in the dislocation structure, is determined. Finally, the instantaneous

rate of that dislocation structure is computed on the basis of a set of constitutive equations for

motion, annihilation and generation of dislocations.

Van Der Giessen and Needleman (1995) have presented results for monophase and

composite materials with periodic microstructures subjected to simple shear loading. Even

though they were only for a smgle slip system and use assumptions for sources and obstacles, the

results showed a number of noteworthy features; especially for problems of plastic flow near

crack tips, around micro-indentors and in composite materials, at a scale where the collective

motion of large numbers of dislocations and discrete dislocation effects play a role. Their results

indicate that, for the aforementioned microscale problems, continuum plasticity may not give the

desired resolution of stress and strain fields on that scale, and that the discrete nature of

dislocations may need to be accounted for.

2.6 Crystal plasticity numerical analyses

In this section, a brief summary of numerical analyses based on crystal plasticity will be

presented. Before reviewing simulations for polycrystals, we discuss some analyses based on
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single crystal models since these analyses provide a foundation for understandmg the nature of

nonumform deformations in crystals.

Numerical analyses of plane strain tension for single crystals have been presented by

Peirce et al. (1982, 1983). They demonstrated that nonuniform deformations, crystal lattice

rotations, and the evolution of shear bands in single crystals could be modelled usmg the finite

element method. Shear band formation during the plane strain compression of single crystals has

been analyzed by Harren et al. (1987). Subsequently, Deve et al. (1988) investigated shear band

bifarcation strains, shear band angles, as well as lattice orientations within shear bands. Their

predictions were found to be in good agreement with experimentally measured values.

There have been significant advances in implementing single crystal deformation

mechanisms in polycrystal constitutive models as well as in the application of these models. A

pioneering work is that of Asaro and Needleman (1985) who have presented an elastic-plastic,

rate-dependent polycrystalline constitutive model for low homologous temperatures. The global

response of the polycrystal was obtained by employing the Taylor (1938) hypothesis.

Accordingly, the deformations in each grain of the aggregate were taken to be uniform and equal

to the macroscopic deformation, while the macroscopic stresses in the polycrystal were obtained

as the average of the stresses in each crystal. As applications of their formulation, Asaro and

Needleman (1985) analyzed uniaxial tension, plane strain tension, and compression. Furthermore,

they presented sheet necking simulations based on the analysis proposed by Marciniak and

Kuczynski (1967) (referred to as the M-K analysis) both for isotropic and strongly textured

sheets. Finite element predictions based on their formulation for the evolution of texture in plane

strain compression and simple shear in FCC polycrystals have been compared agamst existing

experimental work on copper (Harren et aL, 1988; Harren and Asaro, 1989). It was found that all

of the relevant features of experimentaUy determined textures could be captured by this

formulation.

Using the polycrystal model proposed by Asaro and Needleman (1985), Harren et al.

(1989) presented numerical analyses of large-stram shear in FCC polycrystals. In their work, they

investigated the effects of strain hardening, latent hardening, strain-rate sensitivity, and initial
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textures on texture evolution and constitutive response. However, their analyses were restricted to

conditions of homogeneous simple shear. Neale et al. (1990) presented an accurate analysis of

fixed end torsion of a solid bar using a Taylor-type rate dependent polycrystal model. Their

analysis was based on a special solution procedure in which the solution was obtained from the

response to simple shear. They concluded that the trends for the stresses which develop in solid

bar torsion may differ considerably from those of homogeneous simple shear.

Mathur and Dawson (1989) incorporated a Taylor-type polycrystal model into an Eulerian

finite element procedure. They used this approach to predict the evolution of crystallographic

texture m a steady-state aluminum rolling procedure. A streamline technique was employed to

integrate the evolution equations for the lattice rotations and the slip system hardnesses. As an

extension of this work, Mathur et al. (1990) analyzed the development of deformation-induced

texture during bulk forming processes using the "finite element per single crystal" (FESC) model

discussed in Section 2.5.1. Other applications with the FESC model have already been discussed

in Section 2.5.1 (e.g., Kalidmdi et al., 1992; Bronkhorst et al., 1992; Anand and KaUdindi, 1994;

Beaudoin et al., 1995; Sarma and Dawson, 1996b).

Becker (1992) also employed the Asaro and Needleman (1985) polycrystal formulation to

simulate the development of shear localization in a polycrystaUine sheet subjected to pure

bending. His simulations showed that the predicted bands of localized plastic deformation

occurred at realistic strain levels and at angles which were in agreement with the shear band

angles in a bent sheet. Simulations of earing during the deep drawing of polycrystalline

aluminum sheets have also been presented by Becker et al. (1993). Their analysis was based on a

special flange analysis (which will be discussed in Chapter 6), and the results were m good

agreement with experiments.

Van der Giessen and Neale (1993) extended the polycrystal model employed by Neale et

al. (1990) to include the anisotropic elasticity of the crystals as well as slip system hardening

(similar to that ofAsaro and Needleman, 1985). This work was the first numerical study based on

polycrystal plasticity for the mverse Swift effect. They analyzed free-end twisting, unloading and

subsequent free-twisting extension of solid bars, and concluded that textures produced during
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each of the above stages are of prime importance for the inverse Swift effect. More recently, Wu

et al. (1996) have analyzed the behaviour ofFCC polycrystals durmg reversed torsion.

Using the previously mentioned M-K approach, Tvergaard and Needleman (1993)

investigated the development of localized shear bands in polycrystals subjected to plane strain

tension, biaxial stretching, and large strain shear. In their analyses, which was also based on the

polycrystal model formulation of Asaro and Needleman (1985), they investigated the effects of

variations in imperfection ampUtude and material strain-rate sensitivity on the formation of shear

bands. Zhou and Neale (1995) have directly applied a rate dependent crystal plasticity model in

conjunction with the M-K approach to predict forming limit diagrams (FLDs) for annealed FCC

sheet metals. Subsequently, Wu et al. (1997, 1998) and Savoie et al. (1998) used the Asaro and

Needleman (1985) polycrystal plasticity formulation to compute the FLDs for FCC polycrytals.

They discussed in detail the efifects of various material parameters on the predicted FLDs, and

showed that this analysis leads to very good agreements with experimental trends.

2.7 Discussion and conclusion

In this chapter, the deformation characteristics of single crystals and polycrystals have

been presented. The principles of anisotropy were well understood for single crystals by the

1950s, even for the grossly nonlinear properties of plastically deforming soMds. Predicting the

anisotropy of polycrystals from single crystal properties involves two fundamental steps: (a) the

determination of the texture by measuring the orientations of all crystals of a polycrystal, and (b)

an averaging scheme for combming single crystal properties into polycrystal behaviour which, at

least for mechanical properties, is not a trivial task.

The inherent difficulty with the rate independent formulation; loss of uniqueness of the

"mode of slip", was solved when Asaro and Needleman (1985) introduced the rate sensitivity of

slip into Taylor-type crystal models. In this rate dependent model, sUp rates are directly and

uniquely related to the prevailing stress state allowing the unique determination of the slipping

rate on each sUp system.
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Crystal plasticity models reviewed in Section 2.4 can be classified in two groups: the self-

consistent models and the Taylor-type models. The self-consistent models are more complex than

the Taylor-type models; they explicitly account for the interaction of each grain (or subdomains

in the grain) with its surroundings, for the relative anisotropies of the grains, and for grain shape

effects. As a result, they can be used to analyze problems that cannot be investigated properly

with the simpler Taylor-type models, such as the plastic deformation of highly anisotropic

materials with a limited number of slip systems, or the heterogeneous deformation of polyphase

materials. However, the assumption of an isotropic matrbc may not be valid at large deformations,

and they involve very lengthy and complex calculations for simulations of polycrystal

deformation.

Compared to the self-consistent models, the Taylor-type models are simpler, and the

corresponding calculation procedures are much shorter than the setf-consistent ones. Therefore,

they have been more widely used for simulations of polycrystal deformation, particularly for

predictions of texture development. The Taylor hypothesis can be described as a partitioning

assumption in which the analysis does not require detailed definition of the aggregate topology.

The partitioning of the macroscopic deformation among the crystals of a polycrystalline

aggregate is done without regard to which crystals are neighbour of which.

The evaluation of the validity of Taylor's model has been done exclusively through

comparisons of its predictions with experimental results. Comparisons of predicted textures based

on the Taylor theory with experimentaUy observed textures have been carried out by many

authors. Kocks et al. (1988) concluded that the Taylor model can successfuUy refer aluminum,

copper and silver deformation to large strains by wiredrawing, compression and torsion to one

single work-hardening master curve when the initial textures are included in the model

calculations.

The Taylor assumption sufi&ces for evaluating the mechanical response of an aggregate if

the grains are nearly equiaxed and the strains accumulated over the loading path are not too large.

However, heavily worked grains become distorted with the consequence that the deformation of

individual grains may not be the same as the macro scopic deformation. Rather, even though
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collectively the grains in an aggregate foUow the macro scopic deformation, individual grams may

be more likely to exhibit responses that differ from the mean. In essence, the constraints on one

grain from its neighbours are qualitatively different from those demanded by a Taylor

assumption, and thus different combinations of deformation modes in each grain are activated.

This directly affects subsequent texture development and thereby influences the anisotropy

imparted to the flow and yield properties of the polycrystal. Under these conditions, if grain

shape effects are not included, the predicted textures are not in good agreement with the

experimental textures.

In order to account for the grain shape effects, the so-called "finite element per single

crystal" models were developed where the crystals of an aggregate are modelled by elements,

using one or more elements for every crystal. These finite element calculations furnish detailed

analyses of the plastic behaviour for each individual grain, which in turn provides an

understanding of the mechanisms that contribute to the deformation of the polycrystal. As

discussed in Section 2.5.1, many authors have presented improved predictions of the major and

minor texture components at large strains by including grain shape effects in the analyses.

Another important concept relates to the residual stresses at the crystal level in a

polycrystaUine metal following plastic deformation. Residual stresses exist in polycrystals after

unloading as a consequence of the single crystal anisotropy and gram interactions. One important

residual stress is the backstress embedded in the polycrystaUine or single crystal at the crystal

lattice level. Computations have shown that backstresses can have important effects on the trends

of intensity and distribution of texture evolution (e.g., Horstemeyer and McDoweU, 1998).

Considering all the polycrystal models that have been described in this chapter, it is fair to

conclude that the Taylor model for polycrystalline materials is in very good first-order agreement

with experiments for the evolution of texture and the overall stress-strain response of single

phase FCC materials. It has been regarded as one of the most successful models, and is widely

accepted for analyzing deformation responses and texture evolution in polycrystals. Thus, for the

numerical simulations presented in this study, the rate dependent Taylor type polycrystal model is

adopted.
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CHAPTERS

POLYCRYSTAL DEFORMATION FORMULATION AND

NUMERICAL ANALYSIS



3.1 Formulation

The polycrystal deformation analysis used in the present study is based on Asaro and

Needleman's (1985) Taylor-type formulation. It includes five aspects: (i) the polycrystalline

nature of the metal, (ii) the microscopic deformation mechanism, assumed to be rate-dependent

crystallographic slip, (iii) the evolution of crystallograpMc texture, (iv) anisotropic crystal

elasticity, and (v) finite deformations.

This formulation considers a material point as a collection of a certain number of grains.

The deformation in each grain is taken to be identical to the macroscopic deformation of the

continuum. Furthermore, the macroscopic values of all quantities, such as stresses, stress rates

and elastic moduU, are obtained by averaging their respective values over the total number of

grains at the particular material pomt. In this model, strain compatibility is satisfied from grain to

graiti^ but equilibrium may be violated on the grain boundaries, since the state of stress may vary

among the grains of the aggregate in general. However, the average macroscopic stresses are

required to satisfy equilibrium and balance the external tractions.

The mathematical formulation based on this model, and used in our finite element

procedure^ attempts to simulate any evolvirig^ plastic anisotropy by tracking, all the grains at a

material point, and computing how the grains rotate and how the slip systems of these grains

strain-harden. It is worthwhile to mention that, even though our applications are simulated as 2-D

modes of deformation, the constitutive model and computational procedures incorporate the fuU

3-D sHp structure ofFCC crystals.

3.1.1 Notations

Standard notations are used throughout this thesis. Tensors and vectors are denoted by

bold-faced letters and the symbol 0 denotes the tensor product. The foUowing operations for

arbitrary second-order tensors a and b apply: ab = a^b/g e^e^e^ being a cartesian basis), a . b =

afty, with proper extension to higher order tensors. Superscripts T and -1 denote the transverse
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and inverse of a second order tensor respectively. The trace is denoted by tr. Furthermore, Latin

indices range from 1 to 3.

3.2 Single crystal constitutive model

The total deformation of a single crystal is taken to be the result of two distinct physical

mechanisms: crystallographic slip due to dislocation motion on the active slip systems, and

elastic lattice distortion (e.g.. Rice, 1971; H1U and Rice, 1972). Withm an FCC crystal, plastic

deformation occurs by crystallographic slip on the 12 {111} (110) slip systems where the sUp

planes are the {ill} crystallographic planes with normals b, and the (110) directions are the

shear directions with slip vectors s. Plastic deformation is envisaged to occur as a set of plastic

simple shears along the various slip systems, leaving the lattice and the slip system vectors

( s(a), b(a)) not only essentially undistorted, but also unrotated. (The brackets for the subscripts a

indicate that a is not a tensor index, and its value ranges from one to the total number of slip

systems.) Next, the material and lattice are considered to deform elasticaUy and rotate rigidly

from the plasticaUy deformed state to the current configuration as illustrated in Fig. 3.1.
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Figure 3.1 Decomposition of the deformation gradient F
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As a result of the above deformation mechanism, the deformation gradient F can be

written as:

F=F^FP, (3.1)

where Fp consists solely of crystallo graphic slipping along the specific slip systems, whUe the

elastic deformation and any rigid body rotation are embodied in F". The deformation in (3.1) can

be envisioned as occurring in two stages: material first moves though the undeformed crystal

lattice accordmg to Fp and then the lattice and material deform together giving rise to F . From

(3.1), the spatial gradient of velocity can be written as

L=FF1=L^+LP, (3.2)

where

Z: = Fi'F#~1, Zp = F"(FPFP~l)F1t~1 (3.3)

The vectors s(a) and b(a) are regarded as lattice vectors that remam orthogonal. Accordingly, they

stretch and rotate by

^)^Fi<s(a),bi<(a)=b(a)Fit-1 (3.4)

Taking the symmetric and antisymmetric parts of (3.2) and (3.3) leads to the elastic and plastic

strain rates D* and Dp, the so-called plastic spin Slp, and the spin Q* associated with the rigid

lattice rotation

D=D' +DP, Q=^+OP (3.5)

where
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Dp=y^ [s^w^ + b'(a)®s(a)~^ 2

N

(3.6)

^P=^WI [s'(aWa} - bi'(aWa)]
ff=l

By introducing the following symmetric and skewsymmetric tensors for each slip system a

P(a)=^f)'(cc)®m(a) + b<'(a)®s(a)}

(3.7)

W(a)=^s(aWa) - b'(aWa)\,

the plastic strain rate and plastic spin for the crystal can be written as

Dp= yy , Q^= ^^ (3.8)
a a

respectively, where y is the shear rate on the slip system a.

The elastic constitutive equation for a crystal is specified by

T=T - a\ + T Q*= L2)\ (3.9)

v
where T is the Jaumann rate of the Kirchhoff stress tensor T based on the lattice rotations, and

L is the tensor of the elastic moduU. These moduli are based on the anisotropic elastic constants

of the FCC crystals and thus exhibit the appropriate cubic symmetry.
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In order to express the constitutive law (3.9) in terms of the Jaumann rate a of the

Cauchy stress a~=dei(F)~ r, based on the continuum slip W, we introduce a second-order

tensor R(a)foT each slip system as foUows

R(a)= LP^ + ]^a - a W(a) (3.10)

Using (3.4) - (3.8) and (3.10), the constitutive equation (3.9) caa be rewritten in the form

(T=L2)-ao-a irD

where 6- is a viscoplastic type stress rate defined by

(3.11)

o-fl= ^R(aya(a) (3.12)

The slip rates to be substituted into equation (3.12) are taken to be governed by the power

law expression

/a)-^)SgnT<°)!
-(a)

g (a)

Ym

(3.13)

where y^ is a reference shear rate taken to be the same for all the slip systems, r(a)=p(a): o- is

the resolved shear stress on slip system a, and g(a) is its hardness. The constant m characterizes

the material stram-rate sensitivity, which is taken to be the same for each slip system. For the

limiting case as m —> 0, the analysis becomes rate-insensitive.

For multiple slip, the evolution of slip system hardness is governed by:

sw=L^\rw\ (3.14)
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where g (0) is the initial hardness, taken to be a constant Ty for each S^P system, and h^p^ are

the hardening moduli. The form of these moduli is

h(ap) = q(ap^(p)(^ sum on/?) (3.15)

where h^^ is a single slip hardening rate and q^p^ is the matrix describing the latent hardening

behaviour of the crystaUite. For FCC crystals with 12 sUp systems, we take q^p^, as in Asaro and

Needleman (1985), to be given by

(l(ap)

A qA qA qA
qA A qA qA
qA qA A qA
qA qA qA A

(3.16)

where q is the ratio of the latent hardening rate to self-hardening rate, and A is a 3 x 3 matrbc

fully populated by ones. In the above, slip systems {1,2,3} are coplanar, as are systems {4,5,6},

{7,8,9} and {10,11,12}. Thus, the ratios of the latent hardening rates to the self-hardening rates

for coplanar systems are taken as unity.

Asaro and Needleman (1985), among others, simply take each g(a} to depend on the

accumulated sum, /a, of the slips; i.e.

g<ct)=g(a)(r.) (3.17)

where

•i.=Q¥^t
0 a

(3.18)

Thus, hp is identical for each slip system.
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The most elusive parameters in the constitutive law (3.9) are the elements of the

hardening matrix hcp in (3.14). Each component of hap depends on the deformation history.

Further, the hip need only be homogeneous of degree zero in the shear rates; an increment of

flow stress might as well depend nonlinearly on the increments of slip. In an FCC crystal there

would be 144 elements to specify for a general monotonic deformation, and this number becomes

576 if reverse plastic straining is taken into account. Thus, in order to obtain a tractable

description of crystal hardening, several simple forms for the hardening matrbc have been

assumed in the past. Calculations by Peirce et al. (1981) indicate however that the detailed

description of latent hardening, even within the range suggested by the experiment, may be very

important.

3.2.1 Single slip hardening laws

The simplest single slip hardening law takes the following power-law form for h^:

^^] ' (3.19)

where /?o is the initial hardening rate of the system, and n is the hardening exponent.

Based on measurements of strain hardening of single crystals of aluminium aUoys by

Chang and Asaro (1981), the following slip hardening function was used by Asaro and co-

workers (e.g., Harren et al., 1989):

^ =h.+ (fh-h.) ^2 (^|) Y. (3.20)

where hy and h are the initial and asymptotic hardening rates. If h,=0, then T^ represents the

saturation value of the shear stress.
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Motivated by the work of Brown et al. (1989), Anand and co-workers (e.g., Kalidindi et

al., 1992; Bronkhorst et al., 1992) have considered another power-law form of the hardening

function /?<

^ 1 - g- I (3-21)

where hy, a and T are slip system hardening parameters which are taken to be identical for all

slip systems. Unlike the Asaro (3.20) single slip hardening rate, h^ in (3.21) is directly related to

the current hardness gp of the slip system.

As previously pointed out, the simple form for h^ in (3.15) incorporates only a limited

coupling between slip systems through off-diagonal components that scale by the latent

hardening parameter q with the corresponding diagonal components. When viewed in terms of

observations from umaxial stressing of single crystals including an orientation dependence of

hardening, secondary slips before overshoot and coarse slip band formation, the degree of latent

hardening introduced in (3.15) appears to be too high. By reviewing reported experimental

observations and reinterpreting latent hardening, Bassani and Wu (1991) proposed a particular

multiplicative form in which each diagonal component is taken as the product of a self-hardening

term h and an interactive hardening term G:

h = h {y(a)}G (no sumoncQ (3.22)

The hardening of system j3 due to slip on the system a is simply taken to be a fraction q of the

active modulus, and the off-diagonal components are given by

h(afl)=^(aa)^^(no SUIU OIia) (3.23)

39



It is clear that Asaro and co-workers as well as others have adopted a hardening

description that is a special case of the form (3.22) where G = 1. A form for G that equals unity

when its arguments are all zero and asymptotes to finite values when aU slips y(p) (P^a) are large

is (Bassani and Wu, 1991)

/p)'
G=l+Z/^^r-|> (3.24)

Wa

where Yo represents the amount of slip after which a given interaction between slip system a

and p reaches peak strength. Each f^ represents the strength of the interaction and depends on

the type of dislocation junction formed between slip systems a and P, which in turn, depends

on the geometric relation between the two slip systems. For FCC crystals, Bassani and Wu (1991)

classify f^p into five groups. Table 2 in Bassani and Wu (1991) gives each value of f^ while

the corresponding notations for the slip systems and slip planes are given in their Table 1.

A simple form for the self-hardening liy(a)} that gives a monotonically decreasing

modulus at small strains and a finite rate of hardening at large ^ is (Bassani and Wu,1991)

h ^) = h. + (h,-h.) secH^ (h^ y. , (3.25)

where 7-0 is the initial critical resolved shear stress, z-j is the so-caUed stage I stress and fly is the

initial hardening rate, and \ is assumed to depend on the total accumulated slip y& on all S11P

systems (Bassani, 1994):

h.=h'.+(hm-h'^tanH\^\ (3.26)
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where h[ and hm are the hardening rates during the stage I and III, respectively, and y? is

approximately the accumulated slip at the onset of stage III. It is important to note, for

applications to different loading histories (e.g. reverse loading), that the slip rates y(a) in the

present description in (3.8) - (3.15) can be either positive or negative (contrary to Bassani, 1994).

Therefore, it is implied m the hardening laws (3.23) - (3.26) that ^ is interpreted as the

accumulated shear on the slip system i.e., ^^^. Then, also note that (3.25) is similar m form as

(3.20), but a function of the accumulated shear of the slip system instead of the total accumulated

shear.

3.3 Basic field equations

Many metal forming operations involve large inelastic deformations with severe nonlinear

geometric effects. Although the mathematical formulation of these large-strain plasticity

problems is now a reasonably straightforward matter (except sometimes for the difi&culty of

choosing appropriate constitutive laws), the solution of the governing equations is often a

formidable task.

Numerical techniques are required for the majority of applications since it is generally not

possible to obtain analytical mathematical solutions for problems involving complicated

geometries, loadings, and material properties. Among these numerical techniques the finite

element method offers a numerical means to solve the governing field equations. Finite element

solutions are generally preferred for numerical analyses since they provide the most flexible

means for achieving the degree of accuracy required for a given application. The basic

formulation is usuaUy in incremental or rate form to account for the large-strain history-

dependent features ofinelastic behaviour.

3.3.1 Principle of virtual work

In this study, a finite element procedure based on a large-strain Lagrangian formulation of

the field equations using convected coordinates is employed (Neale, 1981; Needleman and
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Tvergaard, 1984). The initial, undeformed configuration of the body, with volume V and surface

S, is used as a reference. A material point is identified by the convected coordinates x, m the

reference configuration having base vectors g, and corresponding metric tensor gij where

g,=8,-gi,^=g'-8' (3.27)

In the current configuration the base vectors are Gi=Fgiwiih metric tensor Gy where

Gy=G,.G^., GV=G'.GJ (3.28)

The displacement and velocity vectors with respect to the undeformed configuration can be

written as

u = u,gl= ul g,

u=u,gl=ui g,

(3.29)

respectively. The Lagrangian strain tensor components with respect to the initial base vectors g

are given by

T] = riy 8 8j

(3.30)

^u=^uu+uj;'+u,^j)

Here, a comma denotes covariant differentiation with respect to the undeformed metric. The

strain rates T}, are equal to the covariant Eulerian strain-rate components Dy of D on the

deformed base vectors G (D=D,.G Gj), but this correspondence does not hold for the

respective contravariant components.
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The Kirchhofif stress components T'J ( T = T] G/ (7.), conjugate to r/y, are defined in terms of the

Cauchy stress components with respect to the deformed base vectors, o~v (a = au G, Gj), by

Tij=(dQiF)aij (3.31)

The nominal traction vector T = T g, on a surface element dS having unit normal n = n ^ in

the reference configuration has components

Ti=n^riJ+TkJu^ (3.32)

We may now express the conditions of equilibrium in terms of the prmciple of virtual

work (under quasi-static conditions) as

\rv8r]ydV = ^8u,dS (3.33)

In the linear incremental formulation, we suppose the current state of equilibrium to be known at

time t. To determine the equations for the field quantity rates. Equation (3.33) is expanded in a

Taylor series about the time t to yield (Needleman and Tvergaard, 1984)

yj8riy+Tijuk^u^dV = \TSu,dS -\ \rij8^dV-\rSu,dS
v s \_v s

(3.34)

The term in brackets on the right side of Equation (3.34) serves as an equilibrium correction if

equilibrium in the current state is only approximate.
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3.4 Numerical analysis

In this section, we briefly present our finite element formulations (Inal, 1998), for both

plane strain and plane stress assumptions, and the rate tangent modulus method that are used in

our numerical analyses.

3.4.1 Finite element formulation

The basic finite element employed in both the plane stress and plane strain analyses is a

four-node quadrilateral element, consisting of four "crossed" constant strain triangular sub-

elements. In presenting results, the quadrilateral is regarded as the basic element, and when

reporting values of the field quantities, the average value of the triangles is associated with the

centroid of the quadrilateral.

3.4.1.1 Plane strain formulation

We first present the FE formulation for the plane strain case. The continuous displacement

variable u is approximated in terms of its nodal values and shape functions as follows:

u = N u (3.35)

where N is the matrbc of the shape functions and u is the vector ofnodal displacements (in our

formulation, 2 degrees of freedom are assigned per node). By introducing a B matrbc which

contains the partial derivatives of the displacements and the shape functions, the Lagrangian

strain tensor defined in Equation (3.30) can be written as;

77=Bu (3.36)

where
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[B]=
(1+u) 0 Vi 0

0 u. 0 (1+vJ
u^ (1+u,) (l+v^) Vi

N,^ 0 N^, 0 N^ 0
Nl.2 Q ^2.2 ° -^3.2 °

0 N^ 0 N^ 0 ^3,1

0 N,^ 0 A^.2 0 ^3.2

The left side of the virtual work Equation (3.34) can be written in matrbc form as

^Jj8r]y+rjuk,Su^dV = \8u T (BrLB + N^z- N,) u dV

smce,

where

T T»TfSri, =^uTB'LBu

uy'Su,,, = <^u T N/ T N, ii

(3.37)

(3.38)

K]=
N,^ 0 N^, 0 ^3,1 0
^1.2 0 ^2.2 ° -^3.2 0

0 N^ 0 A^.i 0 ^3.1

0 N^ 0 N^ 0 N^

8
s
8
8

";>'

ui
u\
U2

0 A^.i 0 N:
0 N^ 0 N.

3,1JVI,I
2.2 '"' ± v 3.2

0 N,^ 0 A^.i ° ^3.1

0 N,^ 0 A^.2 0 A^3.2

8
8
8
8
8
8

u,

^1
"2

^2
U3
V3

(3.39)

In Equation (3.37), L and T represent the elastoplastic moduli and the Kirchhoff stress tensor

respectively. Similarly, the right hand side of Equation (3.34) becomes

JT'Su,dS -| \TV5riydV-^'i8u,dS \= J^u t dS -| J^u Brr ^-J^u T dS (3.40)
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Considering Equations (3.37) and (3.40), we can construct the global finite element

equations in the form

K li = F (3.41)

where the global stiffhess matrbc K and the vector F become:

K = j(B7LB + N^T N,) dV (3.42)

F = Jt^-| ^TTdV-^dS (3.43)

respectively.

The numerical solution of this system gives the rate of displacement of each node within

the domain. Once the rate of displacement of all the nodes are known, the rates of deformation

are calculated in each element. Furthermore, with the constitutive relations, the rates of stresses

are obtained from the rates of defonnation at each integration point within the solid. Following an

update of all quantities, this procedure is repeated until the analysis is completed.

3.4.1.2 Plane stress formulation

A plane stress based FE code is developed by modifying the plane strain FE code

presented in the previous section, without changing the general structure of the FE formulation.

When modelling with the assumption of plane stress, the stress component in the normal

direction CND) of the sheet is taken as zero; i.e.,

T33 = L33*' %, = 0 (3.44)

Thus, 7/33 can be written as;
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L1133 L2233 3312

%3 = L3333 ^ 3333

L"12

7/22 ~ 2 T 3333 77l2 (3.45)

In order to include the thickness strain into the formulation presented through Equations (3.36)

(3.43), we introduce a reduced constitutive moduli so that the rate ofKirchhoff stress tensor

becomes

11

Ts[=
J2

<=gu ^12 ^]

<^21<^22 ^23

^31^32 <^33

fin
^22
2^

(3.46)

where ^ J are called the so-caUed reduced moduli having as components

<^u=zlm-
(z1133)
T333"

1133 r2233
d 122 ^ ^ ^21

-73333-
Ll

22 rl122y=

<^13=zm2~

z3333"

rll33 r3312

r3333~Ls
31

(3.47)

^
^1233'

33 _ 7-1212
- ^ - ' r3333

MJ

2233 r3312
23 _ 7-2212 L^ L

-7333T
-Z-/

=L32
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3.4.2 Rate tangent modulus method

A direct implementation of the constitutive law (3.11) ia the finite element code leads to

an explicit Euler-time integration scheme which requires extremely smaU time steps to ensure

numerical stability. In this study, we use the semi-implicit, forward-gradient time-integration

procedure developed by Peirce et al. (1983, 1984).

Considering the slip-rate law expressed in Equation (3.13), the slip increment on system

a at time t is given by

A/a)=/a\t+Af)-/a\t) (3.48)

A Ibear interpolation is employed within the time increment to give

4/B)=tW)(0+^> (3.49)

where At is the time increment. The parameter 0 ranges from 0 to 1; 0=0 corresponds to the

simplest Euler integration procedure. A choice of 0 between 0.5 and 1 is recommended (Pierce

et al, 1984). Then the last term in Equation (3.49) can be obtained using a Taylor expansion as

follows:

•-w..--rw,(9rwA^^8rwA^"\~8^Ar"+~8yv(aL.=vw+\ or—AT(a)+o}—A^a)(t+At)-/t ~r\~^a)^1' ~r~^W^ I ^"

where Ar(a) and Ag(a) are the increments of the resolved shear stress and the current hardening

in slip system a within the time increment At, respectively. Finally, the slip increments,

according to Equation (3.49), can be expressed in terms of the quantities at tune / as

Arw=(fw+¥w:D)At (3.51)
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where

fw=^M^, F<«'^X,Q<°>, q^e^-\R<a>
T ' ~T ' \ mr

(3.52)

Here M^ is the inverse ofmatrbc N^ defined by

^sJeAt^
m

^(a).^pW ^_^(p)-^h,(/7^ 'lap_-+senfT(p)}-ap-^ — ^6^1' r^a) (3.53)

It is important to mention that, for the rate-insensitive analysis, N^p is not necessarily

invertible. However, for any m > 0 a sufficiently smaU time step can be chosen so that N^ is

invertible. Thus, for rate-sensitive material behaviour a unique set of slip rates is always obtained

for any prescribed strain rate.

From Equation (3.51), the constitutive Equation (3.11) can be rewritten as

a=CD-d° -a irD (3.54)

where the moduli C are defined by

C = L - J^RW F(o) (3.55)

and the viscoplastic type stress rate term (Equation (3.12)) becomes

d'=y)j-<a} (3.56)
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3.5 Parallel Computing

The implementation of the crystal plasticity based constitutive law in the finite element

modelling leads to significant demands in both computational power and storage, due to the

necessity of tracking an enormous number of so-called internal state variables on the microscopic

level. Classical sequential computations based on workstations, even on vector supercomputers,

are generally unable to supply the computing power required for these applications. However,

with the advent of high-speed computers and massive paraUelization techniques, such demands

are more easily met usmg parallel processing.

Parallel computers perform their calculations by concurrently executing different

computational tasks on a number of processors. The processors within a parallel computer

generally exchange information during the execution of the parallel code. This exchange of

information occurs either in the form of explicit messages sent by one processor to another, or by

different parallel processors sharing a specified common memory resource within the parallel

computer.

The parallel computer used for our calculations is the IBM SP3 at the Universite de

Sherbrooke. It consists of 21 WinterHawk 2 nodes. Each node has 4 IBM POWER3 processors,

and a total memory of 90 Gbytes is distributed amongst these processors. The parallel finite

element formulations have been developed to be executed on this system.

In this section the parallel finite element formulation is presented briefly. The two main

goals in the parallelization of a code are: (1) a decrease m CPU time for the simulations, and (2)

code capacity enlargement. The Taylor-type polycrystal model is ideally suited for the

parallelization of the computational procedures. A detailed parallel formulation to decrease CPU

time was presented by Inal (1998) where simulations where performed with relatively less

memory demanding applications (smaller than 1 Gbytes). For the applications considered in that

work, CPU tune was decreased significantly; the results were very close to the maximum values

of the speed-up that can be achieved by parallel computing.
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We now focus attention on paraUelization for code capacity enlargement. The parallel

algorithms used in our simulations are designed to distribute data (e.g., Beaudoin et al., 1993) on

the microscopic level (crystal data) over the processors of the IBM SP3. To illustrate this,

consider a simulation with a total number N of crystals (Fig. 3.2a). The global crystal data is

distributed between the processors (Fig. 3.2b) such that each processor runs a part of the global

program for N/ A crystals where A is the total number of processors used in the simulation.

(a) (b)

Figure 3.2 (a) Polycrystal aggregate comprised of ^crystals, (b) the distribution of this

polycrystal aggregate between the processors

The macroscopic values of all quantities such as stresses, stress rates and elastic moduli

are obtained by collective communication between the processors using the message passing

interface (MPI) library. As a result, each processor has its own microscopic data; however, all of

the processors have the same macroscopic data. We should mention that the total number of

crystals should be distributed as evenly as possible between the processors. Otherwise the large

difference in the number of crystals per processor afifects the CPU time per processor, and

blocking commands (which are costly in terms of CPU) are required during communication
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between processors. To avoid this the parallel algorithms developed here distribute the crystals as

evenly as possible among the available processors.

The above parallel data distribution enables us to perform simulations using the total

memory of the IBM SP3. Furthermore, the subroutines which have been developed are scalable;

that is, increasing the number of processors (corresponding to increasing the total memory) wiU

proportionately decrease the memory required per processor.

52



CHAPTER 4

INSTABILITY AND LOCALIZED DEFORMATION IN FCC

POLYCRYSTALS UNDER TENSION



4.1 Introduction

In the early stages of tensile straining, crystals of ductile pure metals and alloys exhibit

deformation patterns which, on a macroscopic scale, are essentially homogeneous. With

continued straining, however, the homogeneous deformation pattern is observed to give way to a

non-hom&geneous one, generally through the onset of dififtise necking and/or localized shearing^

Failure usually ensues either by necking down to a "chisel edge" or by rupture within intense

shear bands.

There are two main classes of material behaviour that have been employed for plastic

instability predictions: the rate-insensitive and the rate-sensitive constitutive models. For a rate-

insensitive solid, plastic instability occurs either as a bifarcation from a homogeneous state of

stress and deformation, or as an imperfection-triggered localization. For rate-sensitive materials,

bifurcation is efifectively excluded, but small inhomogeneites (material and/or geometric) can still

result in localizatbn. In the limit of low material rate sensitivity, the locaUzation^ strain predicted

for a given initial inhomogeneity is practically identical to that predicted for the corresponding

rate-insensitive solid, while for high rate sensitivity, locaUzation is retarded considerably

(Hutchinson and Neale, 1977).

Numerous analytical and numerical mvestigations have been carried out to investigate the

onset of necking in metal bars under axial tension, both in terms of bifarcation theory and in

terms of imperfection-sensitivity. For a one-dimensional model, Considere (1885) demonstrated

that instability occurs at the maximum load point. Hutchmson and Miles (1974) have shown that

the occurrence of necking at the maximum load point corresponds to the limit of a long, thin bar,

whereas the first critical bifarcation in a more stubby specimen is delayed to a point somewhat

after the maximum load. Also the subsequent localization of plastic flow in a neck, with a length

of the order of magnitude of the diameter, has been predicted numericaUy (e.g., Needleman,

1972; Norris et al, 1978; Saje 1979).

In metal-forming problems involving thin sheets, the onset of localized necking is an

important failure mode that limits the sheet formability. The concept of a forming limit diagram

54



(FLD), first mtroduced by Keeler (1961) from his investigation of plastic instability and fracture

in sheets stretched over steel punches, has^ proved to^ be extremely useful far representing

conditions for the onset of sheet necking. It is now a standard tool for characterizing materials in

terms of their drawability.

Early calculations of forming limit diagrams were based on HUT s (1952) criterion for

localized necking along a direction of zero-extension. In HiU's btfturcation analysis for rate-

insensitive materials, Jz flow theory was employed together with a power-law stress-strain

relationship and smooth yield surface. His predictions only gave the critical strams between the

uniaxial tension and plane strain states on the FLD. When the sheet is under biaxial stretchmg,

HiU's direction ofzero-extension does not exist.

An alternative plane stress analysis for sheet necking was presented by Marciniak and

Kuczynski (1967) (referred to as the M-K analysis). In the M-K analysis, thickness imperfections

are introduced normal to the principal stress and strain direction in the form of a groove to

simulate pre-existmg defects m. the material. Necking was^ considered to occur when the ratio of

the thickness in the groove to the nominal thickness was below a critical value. For this two-

dimensional view to be appropriate, the length scale of the neck should be long compared to the

sheet thickness but short compared to characteristic in-plane dimensions (Hutchinson et al.,

1977).

Originally developed as a means of describing localized necking in biaxial stretching for

which the minor strain^ >. 0, the M-K analysis was later extended to the negative s^ region

(Storen and Rice, 1975; Hutchinson and Neale, 1978a; Chan et aL, 1984). Furthermore, in

Hutchmson and Neale's (1978a) work, the M-K model, which is based an the flow theory of

plasticity framework and quadratic plastic potentials, was also refined by incorporatmg the Jz

deformadon theory ofplasticity.

Another extension, namely the mclusian of strain-rate effects in studies of sheet metal

formabUity, was initially initiated by Marciniak et al. (1973). Similar analyses were carried out

by Hutchinson and Neale (1978b) and Needleman and Tvergaard (1984) for rate-sensitive
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materials. In these simulations, the effects of various constitutive features on localized sheet

necking were explored.

It is well known that the localization of plastic flow is strongly influenced by

deformation-induced textures and anisotropy (Asaro and Needleman, 1985). In turn, this

localization then affects, to some degree, the texture development in polycrystals. Considering

these factors, polycrystal deformation models cssi be expected to be very efifective for simulatmg

plastic instability processes. A polycrystal model should provide an improved understanding of

the relation of localization to the micro structure of the material, and thus be more successful in

predicting strain localization phenomena than phenomenological models.

Early applications of crystal plasticity concepts in instability analyses were presented by

Bassani et al. (1979) and Barlat and co-workers (Barlat 1987, 1989; Barlat and Richmond, 1987).

These researchers calculated a series of Bishop-Hill yield surfaces of polycrystals corresponding

to various crystallogmphic textures. They used these yield surfaces rather than the conveatianal

phenomenological ones to compute the corresponding FLDs and obtained results which were in

good agreement with corresponding experimental observations (Lege et al., 1989) in certain

cases. However, neither Bassani et al. (1979) nor Barlat and co-workers (Barlat 1987, 1989) have

included the subsequent evolution of the yield surface during deformation. Furthermore none of

these analyses included the effect of elasticity. Based on the simple M-K-type model, Asaro and

Needleman (1985) presented analyses of localized necking in thin sheets subjected to equal

biaxial stretching with their polycrystal model. Their work enabled, for the first time the study of

the effects of texture and path-dependent strain hardening on sheet necking. Later on, Tvergaard

and Needleman (1993) investigated the development of localized shear bands from an initial

material inhomogeneity using the polycrystal model proposed by Asaro and Needleman (1985).

They studied shear band formation in materials subjected to plane strain tension, biaxial

stretching, and large strain shear. Zhou and Neale (1995)^ have directly applied a rate-sensitive

crystal plasticity model in conjunction with the M-K approach to predict FLDs for annealed FCC

sheet metals. Their analyses considered the initial texture and its evolution. However, elasticity

was neglected and the imperfection groove was restricted to be normal to the major principal

stretch direction. Wu et al. (1997) used the Asaro and Needleman (1985) polycrystal plasticity
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model to calculate the FLDs for FCC polycrytals. They have discussed in detail the effects of

initial imperfection mtemity andr ofieirtatian, imtiat di&tribirtiaa of grain orientatianjs, crystal

elasticity, strain rate sensitivity, single slip hardening, and latent hardening on the predicted

FLDs.

It has already been mentioned that the initiation of a neck leads to localized deformation.

With further stretching^ either strain localizes progressively m this neck or necking triggers the

formation of shear bands. In the mathematical description, the formation of localized shear bands

in soUds is quite similar to localized necking in sheets. However shear bands represent a material

instability, and they do not depend on constraints along the boundary of the solid. Such material

instabilities ar& of significance as a- precursor to fbacturey and have been observed in a wide

variety of materials (Needleman and Tvergaard, 1992). The basic phenomenon of shear

localization can be studied using a relatively simple approach similar to the above-mentioned M-

K analysis where localized shearing is assumed to occur in a thin sUce of material, while the

strain fields outside this band are assumed to remain uniform throughout the deformation history.

Pierce et al. (1982) presented finite element calculations for nonuniform deformation

modes in ductib single crystals, based on a rate-independent constitutive model for

crystaUographic slip. Their analysis, however, highlighted inherent limitations of the rate-

independent idealisatioiL of crystalline- slip. Thes^ limitations wera so severe that an analysis of

large strain plastic flow was precluded for a fall range of material properties, in particular for

materials having high strain hardening. As a result. Pierce et al. (1983) adopted the rate-

dependent constitutive-theory for crystaUine^ slip, and were able to simulate large strain tension

tests of single crystals. Their results provided a general understanding of the roles of rate

sensitivity and lattice kinematics in the development of localized modes ofdeformation.

More recently, Zikry and Nemat-Nasser (1990) have studied numerically the phenomenon

of shear banding in an. ECC single- crystal undergoing- plane-strain tensile deformations at high

strain rates. They have demonstrated that shear band formation in single crystals, subjected to

high rates of strain, is a function of the geometrical and thermal softening mechanisms of the
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crystal. The problem of the initiation and growth of dynamic shear bands in a FCC single crystal

deformed in simple compression was also investigated by Zhu and Batra (1993).

This chapter is dedicated to the investigation of tensile instabilities in FCC polycrystals

using our polycrystal model-based finite element code. Numerical simulations of instabilities and

localized deformations m the commercial aluminum sheet aUoy AA3004-H19 under both plane

strain tension and plane- stress tension are carried out. The effects of varbus parameters on the

formation of localized deformation are discussed in detail. The results of these investigations

have been published m Inal et al. (200 la, 200 Ib). In an additional study (Inal et al.^ 2000), wliich

will not be-presented- in this thesis^ the plan<& stress EE code was employed to predict the angular

variations (with respect to the rolling direction) of the R-value (the ratio ofwidth-to-thickness

strain under tensile loading) of this aluminum sheet alloy.

4.2 Instability and localized deformation in polycrystalline solids under

plane strain tension

In this section, the plane strain finite element model which has been developed is

employed- to simulate- localized- deformation in poLycrystals subjected to plane strain tension.

Simulations are performed for a specimen with an initial thickness inhomogeneity. Tlie effects of

texture evolution, sUp-rate sensitivity, and strain hardening on the nonumform locaUzation modes

aser itwestigated:.

4.2.1 Problem formulation

A specimen subjected to tensile loading, along the xi-axis (Fig. 4.1) has been modelled

under the assumption of plane strain conditions in the x^ direction. The initial length of the

specimen is 2 Lo and its initial thickness is Iftig+Mg) where 2 hg is the average thickness and 2

MO is the initial thickness inhomogeneity. When the reference axes x\ and ^3 are assumed to

coincide with the roUing (RD) and normal (ND) directions of the sheet, respectively, the

deformations can be considered symmetric about the central lines x\ = 0 and x^ = 0.

Consequently, only one-quarter of the specimen needs to be considered in the numerical analysis.
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The FE mesh consists of four-node quadrilateral elements, made up of four 'crossed'

constant strain triangular sub-elements. In presenting results, the quadrUateral is regarded as the

basic element and, when reporting values of the field quantities, the average value of the triangles

is assigned to the centroid of the quadrilateral (Wu and Van der Giessen, 1996). A typical finite

element mesh used in the simulations is shown in Fig. 4.1.

Xs(ND)

< >

ho

Xi (RD)

Ln

Figure 4.1 Finite element mesh used in simulations

With the tensile axis aUgned in the xi direction, the boundary conditions become

U3=OalongX3 = 0

Ui^O along xi = 0 (4.1)

Uj == V (applied velocity) along x\ = LQ

The end of the specimen, xi = Zo, is considered to be shear free.

The initial thickness imperfection Ahg is the same as that employed by Tvergaard et al.

(1981), and is given by

Ah0 =h0 \~^lcos [7IX ^LoY^2cos [P7DC /Lo)\ (4-2)
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where ^ and ^ are prescribed imperfection amplitudes and7?(>l) is the wave number.

4.2.2 Results and discussion

The initial texture (represented by 380 crystals) of the aluminum sheet alloy AA3004-H19

is presented in Fig. 4.2 in terms of {111} stereographic pole figures for the x\ - x^ and x\ - ^3

planes, respectively. Here x\, x-z and ^3 refer to the rolling, transverse and the normal directions of

the sheet, respectively.

Figure 4.2 Initial texture of AA30004-H19 represented by {111} stereographic pole figure

The single slip hardening law proposed by Asaro and co-workers (3-20) is used in the

simulations. The material constants in this law are as follows:

TO= 95 MPa, h,/r, = 1.2, T,/To = 1.16, /z^ = 0,q = 1.0 (4.3)

These properties were obtained by fitting the uniaxial stress-strain curve obtained by the

polycrystal plasticity simulation to the uniaxial stress-strain curve measured experimentally (Inal

et al., 2000b). The slip system reference plastic shearing rate /o and the slip rate sensitivity

parameter m are taken as /o = 0.00 Is-1 and m = 0.002, respectively, with the crystal elastic

constants taken as Cu = 206 GPa, Cn == 118 GPa and €44 = 54 GPa.
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The specimen is stretched under plane strain tension by applymg the boundary conditions

defmed in (4.1). The initial aspect ratio of the specimen considered in this study is Lg/hg = 3 as

in Tvergaard et al. (1981), and the finite element discretization is a 16 x 48 mesh, giving a total of

768 quadrilaterals (Fig. 4.1). The initial thickness imperfection is given by (4.2), with

§1=0.42 x 10~2, ^2=0-24 x 10~2, and a wave number p = 2.

The normalized nominal stress (<VNOM^TO) ~ elongation (U/Ly) response is plotted in Fig.

4.3. This curve indicates that the normalized nominal stress reaches a maximum around U/LQ=

0.055, and then starts to decrease. The deformation patterns at various normalized elongations are

shown in Fig. 4.4. Figure 4.4a shows the deformed mesh after the maximum nonnalized nominal

stress, at U/Ly= 0.07, where a very Ught diffuse neck has formed. Evidence of the formation of

shear bands that cross at the specimen centre can be observed in Fig. 4.4b, where U/Ly= 0.10.

These bands are more fuUy developed at U/LQ = 0.13, as shown in Fig. 4.4c.

Normalized Elongation

Figure 4.3 Normalized nominal stress - elongation curve
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(a)

(b)

1 .2

(c)

Figure 4.4 Deformed meshes at: (a) U/Lo = 0.07, (b) U/Lo = 0.10, and (c) U/Lo = 0.13

A more quantitative representation of shear band development is presented in Fig. 4.5,

where contours of true strain s^ are plotted at various deformation stages. Figure 4.5 a

corresponds to Fig. 4.4a, where U/LQ = 0.07. Although the strain pattern is slightly nonuniform,

an inhomogeneity corresponding to the early stages of necking can be observed since the highest

strains are at the specimen centre. A shear band pattern is evident in Fig. 4.5b, which shows

contour plots at U/LQ =0.10. Although little additional straining has occurred towards the end of

the specimen as compared to Fig. 4.5a, strain has begun to concentrate in a well-defined band

(represented by the 0.21 contour) nearer the centre of the specimen. Figure 4.5c shows the fally

developed shear band at U/LQ=: 0.13. The strams in the shear band exceed 0.4 although the
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(a)
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0.14
0.07

(c)

Figure 4.5 True strain s^ at: (a) U/Lo = 0.07, (b) U/Lo - 0.10, and (c) U/Lo = 0.13

overall normalized extension is U/LQ= 0.13. While there is very little defonnation occurring

outside the band, a large amount of shear is accumulating within the well-defined shear band

(represented by the 0.4 contour).

4.2.2.1 The effect of texture evolution

To investigate the effect of texture evolution on the localization modes, the simulation

described above has been carried out once more, but with texture evolution excluded from the

polycrystal model. Thus, the stretching and rotation of the lattice vectors (si'(a), b(a)) according to
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Equation (3.4) are excluded in the analysis. From now on, the model including texture evolution

will be referred to as ITE, and the model excluding texture evolution will be referred to as ETE.

Figure 4.6 shows that the normalized nominal stress - elongation curves for the two models start

to differ after the maximum normalized nominal stress is attained. In the ITE model, the nominal

stress drops more rapidly than that obtained with the ETE model.

The unportance of including texture evolution can be seen by comparmg Fig. 4.4c to the

deformed mesh of Fig. 4.7, which is the result from the ETE sunulation at U/LQ= 0.13. As

discussed earlier, shear bands are fully developed at this stage of the simulation with the ITE

model. However, there are no shear bands formed with the ETE model, although the initiation of

necking is visible. With further loading, strain localizes progressively in the neck area without

any formation of shear bands. Pierce et al. (1982) have shown that, for single crystals, necking

causes nommiform lattice rotations and "geometrical softening" that lead to localized shearing. In

their work, they refer to "geometrical softening" as the increase in the resolved shear stress on the

0.5

•With texture evolution

•Without texture ewlution

0.00 0.03 0.06 0.09

Normalized Elongation

0.12 0.15

Figure 4.6 Comparison between the normalized nominal stress - elongation curves for

simulations with and without texture evolution

64



slip system responsible for the concentrated straining due to its rotation with respect to the

loading direction. We shall adopt this terminology. As the ETE model does not include texture

evolution, necking cannot induce the necessary lattice rotations that produce "geometrical

softening". As a result, although a neck is formed, it cannot act as a triggering mechanism for

shear localization in the form of a band.

Figure 4.7 Deformed mesh at U/Lo =0.13 for the case where texture evolution is excluded

A comparison between the texture evolutions at the centre of the specimen and at the end

of the specimen (away from the neck) are shown in Figs. 4.8 and 4.9 where the pole figures

relative to the rolling (xi) and transverse (xz) directions are given for points at the end and at the

centre of the specimen, respectively. Figures 4.8a and 4.8b correspond to the deformation shown

(a) (b)

Figure 4.8 Texture evolution for U/LQ = 0.07 at: (a) the end of the specimen, and (b) at the centre

of the specimen
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in Fig. 4.4a {U/LQ = 0.07), and they indicate that the initial texture (Fig. 4.2) has evolved slightly.

Note that texture evolution at the end and at the centre of the specimen are very similar at this

elongation. By contrast, Figs. 4.9a and 4.9b (corresponding to Fig. 4.4c and U/I^= 0.13) show

that, in the shear band, the texture has become much sharper than that at the end of the specimen.

(a) (b)

Figure 4.9 Texture evolution for U/LQ =0.13 at: (a) the end of the specimen, and (b) at the centre

of the specimen

Next the texture evolution at two different elements in the shear band (elements land 2 identified

in Pig. 4.4c) are compared. Figures 4.10 a-b present pole figures related to the rolling (^i) and

normal (^3) directions for these when U/L^= 0.13. The differences between these two textures

suggest that the deformation modes are different at the two elements selected. Element 1 is

undergoing tensile stretching, while element 2 is experiencing both shearing and tensile

stretching.
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(a) (b)
Figure 4.10 Texture evolution for U/LQ = 0.13 at elements: (a)l, and (b) 2

The effect of sUp rate sensitivity m on the constitutive response is investigated by

comparing simulations with m= 0.002, 0.01 and 0.02, respectively. Figure 4.11 compares the

4 -[

•m= 0.02

m= 0.01

-m= 0.002

0.00 0.03 0.06 0.09

Normalized Elongation

0.12 0.15

Figure 4.11 Normalized nominal stress - elongation cwves for various values of the rate

sensitivity m
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normalized nominal stress-elongation curves for these simulations. It can be seen that, as

expected, the normalized nominal stress response increases with increasing m value. It is also

observed that, as m increases, the nominal stress falls less rapidly in the later stages of

deformation. In Fig. 4.12 the deformed meshes are presented for the simulation where the rate

sensitivity m is taken as 0.02. The normalized extension in Fig. 4.12a is U/LQ^ 0.11, and the

deformation pattern is quite uniform. Evidence of the initiation of necking can be seen in Fig.

4.12b where U/Ly= 0.16. In Fig. 4.12c, where ?7/Zo= 0.23, the neck is clearly visible. Recall

that, shear bands were fuUy developed at U/LQ= 0.13 (Fig. 4.4c). However, there is no evidence

of shear band formation when the strain rate sensitivity m was taken as 0.02.

(a)

(b)

(c)

Figure 4.12 Deformed meshes for the case where m = 0.02 at: (a) U/LQ = 0.11, (b) U/LQ =0.16

and (c) U/L^O.23

The above results show that, when the rate sensitivity is increased, not only does the

ductility of the metal increase, but that, the localization mode can change from shear bands to
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neckmg if the m value is sufficiently high. This change in the mode of localization was an

expected result considering the results of Section 4.2.2.1 where the importance of texture

evolution on the development of shear bands was clearly demonstrated. Previous studies (Canova

et aL, 1988) have shown that the rate of texture evolution in tension is decreased by an increase in

the slip rate sensitivity. Harren et al. (1989) have shown for sunple shear that, when the stram

rate sensitivity m was high enough (0.5 for their material), there was ahnost no tendency for

textures to form. This can be explained by the near vanishing with increasing m of the plastic spin

np defined in the second part of Equation (3.5). In our simulations, the evolution of texture does

not vanish completely when m is taken as 0.02, but the "geometric softening" produced by this

texture evolution is not sufficiently high to trigger shear band formation.

In Fig. 4.13 the normalized stress o-/cr^^ is plotted as a function of the normalized

elongation. Here, o MAX refers to the maximum of the physical component of the true stress (in

the loading direction) calculated at the end section of the specmien, x\ = Lo. It can be seen that

Figure 4.13 The evolution of neck section area K, the tme strain s^ (at the centre of the

specimen) and the true stress o~jj (at the end of the specimen)
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0- reaches a maximum around U/LQ= 0.09 (point B) and then begins to decrease. The

normalized elongation (U/LQ= 0.058) where the maximum nommal stress is attained is

represented by point A.

The evolution of the neck-section area K (where K = A-^/AQ calculated along the centre of

the specimen, xi = 0) together with the true strain s^ (in the rolling direction) at the centre of the

specimen are also shown in Fig. 4.13. These curves show that the attainment of the maximum

stress at U/Ly= 0.09 identifies the onset of diffuse necking, and beyond this elongation the stram

s ii begins to increase rapidly thus signifying localization. This conclusion was also reached for

other simulations based on phenomenological constitutive laws of plasticity (e.g., Tugcu and

Neale, 1988; Tugcu, 1991), where it was shown that the attainment of the maximum stress at the

end of a round tensile specimen identified the onset of necking.

4.2.2.3 The effect of strain hardening

The effect of strain hardening on the formation of shear bands is investigated by

comparing the results obtained from simulations with three different values of asymptotic

hardening rates: hjry = 0, /?,/T() = 0.02 and ^,7-0 = 0.2. Figure 4.14 depicts the true stress - true

stram curves (for a specunen without imperfection) for these three cases. It can be seen that when

H^TQ > 0 there is strain hardening, while for hjro = 0 there is saturation.

The normalized nominal stress - elongation curves for these 3 cases are compared in Fig.

4.15. The only difference m the normalized nominal stress - elongation curves for the

simulations with \TQ == 0 and ^/Tg = 0.02 is that the normalized nominal stress drops more

rapidly when hy/To == 0. Nevertheless, shear bands are still predicted for both cases. However, no

shear bands are predicted when the strain hardening rate is taken relatively high (^/TO= 0-2),

where the specimen deforms by the strain localizing progressively in the neck.
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Figure 4.14 True stress-strain curves for various asymptotic hardening rates
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Figure 4.15 Normalized nominal stress-elongation curves for various asymptotic hardening rates
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4.3 Instability and localized deformation in polycrystalline solids under

plane stress tension

In this section, the plane stress finite element model that has been developed is employed

to simulate localized deformation in polycrystalline sheets. Simulations are performed with a

specimen without any initial inhomogeneity. The so-caUed "built-m" boundary conditions at the

ends of the specimen are applied, and the resulting inhomogeneous behaviour eventually initiates

localized deformation. Simulations are performed for specimens rotated such that the rolling

direction is at 0°, 1°, 45° and 90° to the tensile axis. The onset of both necking and shear banding

are mvestigated.

4.3.1 Problem formulation

A specimen subjected to tension along the Xi-axis (Fig. 4.16) has been modelled under the

assumption of plane stress conditions. It is assumed that As == ^23 = ^13 = ^23 = 0, where ^13

and W^3 are the components of the skew symmetric spin tensor. 1)33 is determined from the

condition that the average stress component d^ =0. For the orthotropic texture considered, these

conditions imply that the average stress components 0-13 = o-^ = 0.

When xi and xz are assumed to coincide with the rolling and transverse directions of the

sheet, respectively, deformations can be considered symmetric about the central lines x\ = 0 and

X2 == 0. In such cases (e.g., 0° and 90 oriented specimens) only one-quarter of the specimen is

considered in the numerical solutions, as shown in Fig. 4.16. With the tensile axis aligned in the

Xi direction, the so called "built-in" boundary conditions on the quadrant are

uz = 0 along ^2 = 0

u\ = 0 along ^i=0 (4.4)

U2 = 0 along xi = Zo

Uj = V (applied velocity) along x\ = Zo
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Figure 4.16 Finite element mesh used in 0 and 90 degrees rotated specimen simulations

Thus, the end of the specimen, x\ = LQ, in this case is not shear free.

Specimens where the RD is oriented at 1° and 45° with respect to the tensile axis are also

considered. For these cases the assumption of orthotropic material symmetry is no longer valid,

and the entire specimen has to be modelled in the numerical analysis. The finite element mesh

used to model the entire specimen is presented in Fig. 4.17. The boundary conditions for

simulations with the fall mesh are:

U2 == 0 along jci = ± Zo

Uj=: V (appUed velocity) along x\ = Zo

My = -V (applied velocity) along x\ == -Zo

Agam, the ends of the specimen, Xi = ± LQ, are not shear free.

(4.5)
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Figure 4.17 Finite element mesh used in 1 and 45 degrees rotated specimens

4.3.2 Results and discussion

The initial texture for the aluminum alloy AA3004-H19 as presented in Fig. 4.2 and the

material properties for the single slip hardening law (3-20) are as specified by Equation (4.3). The

slip system reference plastic shearing rate YQ and the slip rate sensitivity parameter m are taken

as /o =0.00 Is and m = 0.002, respectively. The initial geometry of the specimen is such that

LQ/WO = 3, and this value is used for all simulations presented in this section.

4.3.2.1 A typical result

A comparison between the simulated and experimental tme stress-strain curves for

uniaxial tension in the RD is presented in Fig. 4.18. It can be seen that the FE simulation is in

reasonably good agreement with the experimental curve. The failure strain has been over-

predicted by our simulation, but this is an obvious result since the simulation is carried out

without any initial imperfection. Also, the crystal plasticity model employed in this study does

not account for microscopic defects, such as voids, which will possibly influence the failure

stram.
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Figure 4.18 True stress-strain curves in RD

4.3.2.2 Mesh sensitivity

Shear band localization phenomena are notorious for sometimes exhibiting a pathological

mesh sensitivity. However, as demonstrated by Needleman (1988), this is not necessarily the case

for our type of simulations where the mherent mesh sensitivity with a rate-independent theory

can be eliminated by a rate-dependent formulation such as the one used in this study.

Nevertheless, the selection of a proper mesh does require attention. Figures 4.19 a-c show the

three different finite element meshes used in this study with 288, 448 and 864 elements

respectively.

The numerical studies show that the overall stress-strain curves for all three meshes are

nearly identical for strain hardening and saturation (Fig. 4.20). Once softening occurs, the finer

meshes demonstrate a stronger softening effect. Figure 4.21 illustrates the contours of true strain

(in the loadmg direction) at an elongation of U/LQ=O.\O for the three meshes considered. These
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Figure 4.19 Initial meshes used m the mesh sensitivity analysis: (a) 288, (b) 448, and c) 864

elements
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Figure 4.20 Nominal stress-normalized elongation curves for three different meshes
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simulations show that the initiation and propagation of shear bands are not sensitive to the

meshes considered; for all cases, localized deformation in the form of two shear bands

intersecting at the centre of the specimen are formed. It is also observed that, the finer is the

mesh, the narrower and stronger are the shear bands, although this does not have a significant

impact on localized deformation. Based on these observations, it was decided that the relatively

fine mesh (16 x 28) was sufficiently accurate. This mesh is therefore used for all simulations with

(a)

(b)

(c)

Figure 4.21 Contour plots of true strain (in loading direction) at U/LQ =0.1 for: (a) 12 x 24, (b) 16

x 28, and (c) 24 x 36 elements

77



one quarter of the specimen, while a mesh of 32 x 56 elements is employed for the simulations of

the complete specimen.

4.3.2.3 Uniaxial tension simulations along the RD, 45° from the RD, and along the TD

We first present results for uniaxial tension simulations along the RD, for the 45°

orientation from the RD, and for tension along the TD. Henceforth, simulations of uniaxial

tension along the RD, 45 from the RD, and along the TD will be referred to as the RD, 45° and

TD simulations, respectively. The nominal stress-strain curves for the RD, 45 and TD

simulations are compared in Fig. 4.22. These simulations show that the nominal stress-

normalized elongation curves for the RD and 45 simulations are quite similar, while the TD

simulation results in a somewhat higher curve. The maximum nominal stresses are obtained at

U/Lo=0.55, U/Lo==0.53 and U/Lo=0.52 for the RD, 45° and TD simulations, respectively. After

saturation, softening occurs for all three orientations, with the 45 simulation exhibiting slightly

stronger softening than the other two.

350 -,

-TD

RD
—45°

0.03 0.06

Normalized elongation

0.09

Figure 4.22 Nominal stress-strain curves for uniaxial tension along the RD, 45° from the

RD, and along the TD
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As already mentioned, the RD and TD simulations are carried on by modelling one

quarter of the specimen with the assumption of orthotropic symmetry. Since that assumption is

not valid for the 45° simulations, the full specimen is modelled for this case. In order to analyse

the sensitivity of the results to the loading direction, we have compared uniaxial tension along the

RD with a slightly rotated specimen, with the RD oriented at 1° with respect to the axis of

loading. The complete specimen has been modelled for both these cases. For the RD simulations,

as expected (due to orthotropic symmetry), two shear bands are predicted, similar to what was

presented in Fig. 4.2 Ib. However, when the specimen is rotated even as slightly as 1 , only one

shear band is predicted as shown in Fig. 4.23.

Figure 4.23 Deformed mesh for 1° simulation at U/Lo=0.09

Results are now presented for the deformed meshes of the RD, 45° and TD simulations.

Figure 4.24a presents the deformed meshes at U/Lo=0.07 (after the maximum nominal stresses

for all three orientations) where very sUght diffused necks have formed in all three orientations.

Shear bands are fully developed for all three orientations at U/Lo^O.09 (Fig. 4.24b). Here the RD

and TD simulations indicate two shear bands intersecting at the centre of the specunen, while the

45 simulation predicts only one shear band.

A more quantitative representation of shear band development is presented in Fig. 4.25,

where contours of true strain (m the loading direction) are plotted at various stages of

deformation. Figure 4.25a corresponds to Fig. 4.23a, where C//Zo=0.07. The strain distribution is

observed to be nonuniform for all orientations indicating localized deformation (Fig. 4.25a). For

the RD simulation, the concentration of strain at the centre of the specimen mdicates early stages

of necking; however, there are no signs of shear banding. By contrast, for the TD and 45°
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Figure 4.24 Deformed meshes for the RD, 45 and TD simulations at: (a) C//Zo=0.07, and

(b)U/Lo=0.09
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Figure 4.25 Contours of true strain (m the loadmg direction) for the RD, 45° and TD

simulations at: (a) U/Lo==0.07, and (b)U/Lo==0.09
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sunulations, shear band patterns are evident with two bands for the TD sunulation and a single

band for the 45 simulation as indicated by the 0.21 stram contours. With further straining, it can

be seen that shear bands also develop with the RD simulation. The strain m the shear bands

exceed 0.35 although the overall normalized extension is U/Lo=0.09 (Fig. 4.25b). Thus, while

there is very little deformation occurrmg outside the shear bands, a large amount of shear is

accumulating within these well-defined shear bands.

4.2.3.4 Onset of localization for 45 simulation

As has already been discussed, numerous analytical and numerical investigations have

been carried out to investigate the onset of necking and shear bandmg. In this section we will

investigate both the onset of necking and shear banding for the 45° simulations.

In Fig. 4.26 the normalized stress o/o^y is plotted as a function of the normalized

elongation. Here, a MAX refers to the maximum of the physical component of the true stress

Figure 4.26 The evolution of the true stram s (averaged at the centre of the specunen) and the

true stress cr (averaged at the end of the specimen)
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(m the loading direction) calculated at the end section of the specimen, x\ = Lo. It can be seen

that <j reaches a maximum around U/Lo==0.052 (point A), and then begins to decrease. The

evolution of the tme strain s (in the loadmg direction) measured at the centre of the specimen is

also included in Fig. 4.26. The results show that the attainment of the maximum stress at

C//Zo=0.052 (point A) identifies the onset of diffuse necking, and beyond this elongation the

strain s begms to increase rapidly thus signifying localization.

It should be mentioned that the nominal stress (calculated at the end section of the

specimen) for the 45 simulation also reaches a maximum around L^Zo=0.052. This is because of

the relatively low stram rate-sensitivity (m = 0.002) used in the analysis. When the strain-rate

sensitivity is increased, there is a significant difference between the elongations that the nominal

and tme stresses reach their maximum, as shown in Section 4.2.2.2 where m was taken as 0.02.

For cases with high stram-rate sensitivity, the elongation value where the true stress a reaches a

maximum is taken as the value for the onset of diffuse necking.

The evolution of the true strains measured at the centre of the specimen are presented m

Fig. 4.27. The deformations are ahnost uniform up to the onset of necking, which corresponds to

the attainment of the maximum true stress at the end of the specimen. With continued stretching,

sharp changes in the strams at the neck section occur, thus signifying localization. Note that - s^

reaches a maximum value at an elongation of C//Zo=0.88 and then remains nearly constant at this

value during farther deformation. Thus, the deformation at the centre of the specimen becomes

in-plane plane strain.

Although an appropriate approximate criterion for the onset of difiuse necking has been

known for some time, quantitative criteria for the initiation of localized shearing are more recent

in origin. Initially, localized shearing was associated with reachmg an ideally plastic state. In fact,

for crystals undergoing single slip and obeying the Schmid criterion (Chapter 2) for continued

yielding, it is necessary for the slip plane work hardening rate to vanish in order for localized

shearing to mitiate. However, m most cases shear band formation is observed in crystals

undergoing multi-slip, often with a double mode of primary-conjugate slip. Employing a planar

idealization of this primary-conjugate sUp mode, Asaro (1979) found that, for single crystals,
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shear band initiation is associated with the attamment of a critically small positive value of the

ratio of slip plane hardening rate to the current stress level.
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Figure 4.27 The evolution of the true strains £„ at the centre of the specimen

In this study, a macroscopic parameter is introduced to define a criterion for the onset of

shear banding. The onset of diffiise necking (Fig. 4.26) has akeady been defined as the

attainment of maximum true stress (at the end of the specimen). To determine the onset of shear

banding, the true stress-strain curve obtained at the centre of the specimen, averaged along line

B-B5 as shown in Fig. 4.28, is examined. The average true stress calculated along line B-B'

reaches a maximum around C//Zo=0.068 as shown by point B in Fig. 4.29. In order to mvestigate

the localization mode, contour plots of true strain in loading direction at points A (defined m Fig.

4.26) and B (defined m Fig. 4.29) are presented in Fig. 4.30. Figure 4.30a corresponds to point A

where C//Zo=0.052. It can be seen that the strain is concentrating towards the centre of the

specimen, thus, indicating the initial phases of neckmg. When Fig. 4.30b (which corresponds to
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Figure 4.28 Deformed mesh for 45 simulation

point B where U/Lo=0.06S) is examined, it can be seen that the strain has begun to localize in the

form of a band (represented by the 0.12 strain contour), thus indicating the initiation of shear

banding. Note that if the localization mode is only neckmg, the stress-stram curve obtained along

line B-B' will always exhibit strain hardening. Thus the attainment of maximum true stress

calculated along line B-B' can be taken as an approximate criterion for the onset of shear

banding.
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Figure 4.29 The evolution of the true stress a (averaged along line B-B')
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(a)

(b)

Figure 4.30 Contours of true strain (in loading direction) for 45° simulation at: (a)

U/Lo=0.052, and (b)?7/Zr=0.068

However, the application of this onsetting criterion during laboratory experiments would

undoubtedly be very difficult smce after the maximum is attained the load drops very abmptly.

By the time the drop is noticed, failure might ah-eady have already occurred.

4.5 Conclusion

In this chapter we have analyzed localized deformation modes in FCC polycrystals usmg

our crystal plasticity based finite element model. The behaviour of the aluminum sheet alloy

AA3004-H19 was investigated under both plane strain tension and plane stress tension.

Our simulations have shown that localization occurs in two modes. For the first mode, a

neck initiates and deformation continues as the strain localizes progressively in this neck. For the

rate dependent analysis considered, the onset of necking is defined as the attainment of the

maximum stress at the end section of the specimen, away from the neck. For the limiting case of

a rate-independent material, this criterion reduces to the attainment of a maximum stram (which

is the onset of the elastic unloading) since for the rate-independent analysis the attainment of
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maximum strain will also correspond to the attainment of the maxunum stress. For the second

localization mode, necking triggers the formation of shear bands. There are several factors that

contribute to the formation and prediction of shear bands such as texture evolution, strain rate

sensitivity, and strain hardening.

Our calculations have shown that it is possible to define an appropriate approximate

criterion for the onset of shear banding. The attainment of the maximum stress at the centre of the

specimen (calculated as an average over line B-B' as shown in Fig. 4.29) corresponded to the

onset of shear banding for all three orientations considered in this study. It is obvious that, when

the localization mode is simply necking without shear banding, the stress calculated at the centre

of the specimen does not pass through a maximum since there will always be strain hardening at

the centre of the specimen.

A significant mesh sensitivity was not observed for the overall stress response, nor for the

initiation and propagation of the localized deformation. Our calculations showed that the finer is

the mesh, the narrower and sharper become the shear bands. It is important to mention that the

mesh sensitivity analysis carried out in this chapter was carried out by refining the mesh without

changing the initial element aspect ratio.

One of the factors affecting localized deformation is the loading direction, since the

overall stress response and deformation pattern is sensitive to this. Even the slightest rotation of

the loading direction was seen to have a significant effect on the deformation pattern; two shear

bands were predicted for uniaxial tension along the RD, while only one single shear band was

predicted for uniaxial tension along 1 from the RD.

Texture evolution was shown to play a very important role in the prediction of shear

bands. If texture evolution is not included to the model, the "geometric softening" effect that

leads to localized shearmg does not occur. As a result, shear band formation is precluded from

the localization mode. The simulations have shown that shear bands were formed for engineermg

strain of about 10%. Although strong textures are not expected to occur at strains of this value,

the evolution of texture at this strain level is still critical to the proper prediction of shear bands.
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This effect of texture evolution also explains the inability of phenomenological plasticity models

with a smooth yield surface to predict shear bands at realistic strain levels (e.g., Tvergaard et al.,

1981).

It is well known that mcreasing the material rate sensitivity mcreases ductility as it will

delay the formation of nonuniform localization modes such as shear bands or necking. In this

regard, our simulations have shown that, when the rate sensitivity was increased to certain values

(corresponding to a decrease in the rate of texture evolution), shear band formation was not only

delayed, but was completely precluded from the localization mode since the resulting "geometric

softening" was not strong enough to form shear bands.

Strain hardening is another important factor in the formation of shear bands. Our results

have shown that strain softening behaviour is not necessarily required to predict shear bands or

other localized modes of deformation. However, the rate of strain hardening plays a key role in

the determination of the localization mode. When a relatively high rate of strain hardening was

considered, shear band formation was completely precluded from the localization mode.



CHAPTERS

LARGE STRAIN BEHAVIOUR OF TfflN ALUMINUM SHEETS

UNDER PLANAR SIMPLE SHEAR



5.1 Introduction

The formability of aluminum aUoys used m sheet-metal forming operations encountered

m packaging and can-making is often limited by plastic strain localization such as necking or

shear banding (as discussed in Chapter 4), which may lead to early failure. Thus, understanding

and characterizing the large stram behaviour of thin rolled aluminum sheets are crucial for

controlling product quality and for progressively down-gauging in the canning industry.

The experimental investigation of the large stram behaviour of thin sheets used in the

canning mdustry is not easy due to their strong rolling texture, high strength, and low hardening

rate. For example, the most commonly used uniaxial tension test can reach only 8% strain before

fracture following localized necking. However, shear deformations are able to achieve large

strains because of the inherent geometric stability of this mode ofdeformation.

The torsion test is more and more frequently used to assess large strain behaviour for

many different engineering materials. For the circular cross sections widely used in the torsion

testing of ductile metals at finite strain, torsion gives rise to inhomogeneous simple shearing,

possibly combined with uniaxial or biaxial stretching. For a thin-walled circular section the

deformations are nearly homogeneous and correspond to combined simple shear and plane strain

extension, provided that the thickness of the tube remains constant. The kinematics of the torsion

test and its relation to sunple shear have been discussed by Shrivastava et al. (1982) for solid

circular bars, and by McMeeking (1982) for thin-walled tubes.

Although the torsion test is a very valuable tool for achieving large strains, its application

to can-body (e.g., AA3004-H19) and can-end (e.g., AA5182-H28) aluminum alloy sheets is not

practical because of the inevitable buckling due to the very thin gauge. Recent researches have

indicated that the planar simple shear test can be used to characterize the plastic behaviour of

very thin sheet metals at large to very large strains (Gaspermi et aL, 1996; Duval et al., 1996;

Legresy et al., 1997). However, very few laboratory shear testing setups are available. These tests

are conducted on flat paraUelepiped samples cut from the sheet specimens.
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Some authors (Rauch et al., 1989; Gaspermi et al., 1996) have reported that localization

by shear banding may occur during the shear tests, due to sample end effects and material

behaviour. For heavily cold-rolled aluminum alloys, Gasperini et al. (1996) showed that the

initial dislocation micro structure and the crystallographic texture influenced the localization and

the post-localization behaviour during shear tests. Their tests were performed using a shear

device mounted on a conventional tensile machine. Their results also showed that there was no

localization during the shear tests of recovered material. They linked this observation to the

relative homogeneity of the substmcture and the absence of strong barriers to dislocation glide

for the second path.

For aluminum can-end sheet AA5182-H28 of gauge 0.27 mm, Legresy et al. (1997) found

that the deformation in the gauge section remained essentially homogeneous, and no macroscopic

localized shear band was detected if the specunen was sheared along the rolling direction (RD).

When the shear deformation was applied at 45 from the RD, very few shear bands appeared, and

a ductile crack initiated in one of the shear bands. Many shear bands were observed on the

sample surface in the case of shearing along the transverse direction (TD).

Recently, Wu et al. (2001) employed a 2-D finite element analysis to sunulate the large

strain planar simple shear of a can body stock (CBS) AA51820-H48 aluminum alloy based on

crystal plasticity theory. They presented results from two models: a model based on a Taylor-type

polycrystal plasticity theory, and a model where a material point or a polycrystal is represented

by an "unit-cell" in which an element of the finite element mesh represents a single crystal. Based

on these two models, they mvestigated the initiation and evolution of shear bands at different

length scales.

In this chapter we analyze numerically the large strain behaviour of the aluminum can-

body sheet AA3004-H19 under planar smiple shear using our polycrystal model-based finite

element code (Inal et al, 2001c). Both plane stress and plane strain analyses are performed to

investigate the validity of either assumption in the modelling of the planar simple shear problem.

Simulations are performed with specunens rotated such that the rolling direction is at 0°, 45° and

90 to the shearing axis. The initiation and propagation of shear bands are investigated. These
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simulations are compared with homogeneous simple shear deformations and expermiental data

published in the literature.

5.2 Problem formulation

The planar simple shear deformation of a parallelepiped solid of initial length L and

height W, as illustrated in Fig. 5.1, is considered. The shear deformation is expressed by the ratio

Y =U I W , where U is the relative displacement of the opposite faces of the parallelepiped. The

conventional nominal shear stress and normal stress are defined by Fs/ L and Fn / L, where Fs and

Fn are the applied shearmg and normal forces per unit thickness, respectively. The dunensions L

and W are assumed to remain constant during the deformation. The vertical sides AD and BC are

assumed to be stress free (Fig. 5.1) as in the real planar simple shear test (Gaspermi et al., 1996;

Legresy et al., 1997), and the sides AB and CD are assumed to remain straight. Thus, the

boundary conditions are:

X2

Xl
>

u-i = 0 along X2 = 0 and along xz = ^F

^i=0 along X2 = 0

Uj= V (applied velocity) along xz = W

(5.1)
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Figure 5.1 Schematic definition of the specimen under planar sunple shear
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The FE mesh used in the simulations consists of four-node quadrilateral elements, constructed

from four 'crossed' constant stram triangular sub-elements as described in Chapter 4.

5.3 Results and discussion

The initial texture (represented by 380 crystals) of the aluminum can-body sheet AA3004-

HI 9 is presented m Fig. 5.2 in terms of a {111} stereographic pole figure. Here Xi and X2 refer

to the rolling and transverse directions of the sheet, respectively.

<^^<I'^.:T>
.••'"^\^ ^

KvY^':**

•» ; «;1> ^ •«» .*^ ^^^^^^^
^« .t *. . .

^*^::. . ..^

::.%^?^
\.-?N^?*•': •:»'*<•'- *.. *T

•*.<<^:*v.

fe^N*^:*^
^®^:.:t/^-:

• •I •* !? >

jiStK X2

••
>.*•{ »*

•.;'. ^

Figure 5.2 Initial texture ofAA30004-H19 represented by a {111} stereographic pole figure

The single slip hardening law used for the sunulations in Chapter 4 is employed for the

simple shear analysis. Accordingly, the material properties are,

TO- 95 MPa, /ZO/FO = 1.2, T,/z-o== 1.16, VTO = 0, ^ - 1.0 (5.2)
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The sUp system reference plastic shearing rate YQ and the slip rate sensitivity parameter m are

taken as YQ = 0.001s and m = 0.002, respectively, with the crystal elastic constants taken as Cn

= 206 GPa, €12 = 118 GPa and €44 = 54 GPa.

5.3.1 Plane strain simulations

In this section, our plane strain finite element model is employed to simulate planar

simple shear for specimens rotated such that the rolling direction is at 0°, 45° and 90° to the

shearing axis. The geometry of the specimen is described by L I W=\5 and this value is used for

all simulations presented in this section.

5.3.1.1 Mesh sensitivity

The importance of mesh sensitivity on localized deformation was discussed m Chapter 4.

Thus, a mesh sensitivity study for the specimen oriented at 45 with respect to the shearing axis

has been performed. Figures 5.3 a-c illustrate the finite element meshes with 10 x 50, 12 x 60 and

20 x 100 elements, respectively.

(b)
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(c)

Figure 5.3 Initial meshes for: (a) 10 x 50, (b) 12 x 60, and (c) 20 x 100 elements

The shear stress-shear deformation curves up to a shear deformation of 0.4 are presented in Fig.

5.4. The results are smiilar to those obtained in Chapter 4; the curves are nearly identical during

the strain hardening and saturation stages. Once there is softening, the finer meshes predict

stronger softening effects.

200

10 x 50 mesh
12 x 60 mesh

•20x 100 mesh

0.1 0.2

Y
0.3 0.4

Figure 5.4 Shear stress responses under simple shear predicted with different finite element

meshes
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Figures 5.5 a-b show contours of a measure of an "equivalent plastic shear strain",

Yp (normalized by the applied shear deformation /) as defined by (Anand et al., 1994)

^)^)
^=^\r , f=^dt (5.3)

where

T=^S,S» (5.4)

is the effective shear stress and Sy and Sy are the co variant and contravariant components of the

deviatoric stress tensor respectively. Regions of enhanced shear appear at the comers of the

specimen in simulations with all three finite element meshes (Fig. 5.5 a). These regions gradually

grow into two nearly parallel shear bands (Fig. 5.5b).

10x50 elements

12 x 60 elements
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20 x 100 elements

(a)

10x50 elements

12 x 60 elements

20 xl 00 elements

(b)

Figure 5.5 Contours of normalized equivalent plastic shear deformation for different finite

element meshes at: (a) / = 0.2, and (b) y = 0.4

Considering the three different meshes used in the analysis, it can be seen that the finer is

the mesh, the narrower and stronger are the shear bands. However, mesh sensitivity (for the

meshes considered) does not have a significant effect on the characteristics of localization. Thus,

the relatively fine mesh (12 x 60) will be used for the rest of the simulations.
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0 AeO5.3.1.2 Simulations of simple shear with specimens rotated at O", 45" and 90" to the shearing

axis

Results of planar simple shear simulations with the plane strain FE code will first be

presented. From now on, simulations ofplanar simple shear with specimens rotated such that the

rolling direction is at 0°, 45° and 90° to the shearing axis wUl be referred to as the RD, 45° and

TD sunulations, respectively. For comparison, results obtained with the assumption of

homogeneous sunple shear are also mcluded.

Figure 5.6 shows the overall shear stress responses for the RD simulations as predicted by

the FE code analysis and from an analysis assuming homogeneous deformation. These curves are

seen to be very close. For both calculations, the overall shear stresses reach a saturation value at a

shear deformation of about 0.3, and neither the homogeneous deformation analysis nor the FE

prediction show any significant softening effects.

Homogeneous

FE simulation

0.2 0.4 0.6

Y
0.8

Figure 5.6 Predicted overall shear stress responses for the RD simulations
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The 45° simulations (Fig. 5.7) show that the results from our FE code and the

homogeneous deformation analysis are very close up to a shear deformation of about 0.25, where

the overall shear stresses reach a maximum. With further shearing, softening is found in both the

homogeneous deformation and FE analyses. Between shear deformations of about 0.25 and 0.45,

the FE analysis shows more significant softening than the homogeneous deformation. After 0.45

shear deformation, both simulations exhibit more or less the same softening effect.

T 100 -{

80 -I

60

40
20 -\

0
0

Homogeneous

FE simulation

0.2 0.4 0.6

Y
0.8

Figure 5.7 Predicted overall shear stress response for the 45° simulations

When the TD simulations are considered (Fig. 5.8), the results from the homogeneous

deformation analysis and our FE code are very close again up to a shear deformation of 0.3,

where they both reach a maximum. After about 0.4 shear deformation, softening occurs m both

simulations. Although the homogeneous deformation continues with slight softening, the

deformation pattern for the FE analysis is different; a strong softening effect up to 0.55 shear

deformation is followed by a hardening up to a shear deformation of 0.8.
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Figure 5.8 Predicted overall shear stress response for the TD simulations
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Figure 5.9 Predicted overall shear stress responses for the RD, 45 and TD simulations
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To compare results from the RD, 45 and TD simulations, the overall shear stress

responses obtained from the FE analyses are shown together in Fig. 5.9. The sunulations show

that all curves exhibit a rapid hardening followed by a decreasing hardening rate leading to a

saturation of the flow stress. The maximum shear stress r^ is higher for the 45° simulation

(z^=184 MPa) than the RD (z-^= 179 MPa) and TD (r^= 179 MPa) simulations. Although

there is no softening effect in the RD simulation, significant softening effects are found both in

the 45° and TD simulations.

In order to investigate the initiation and propagation of shear bands, we present in Figs.

5.10-5.13 contour plots of normalized equivalent plastic shear strain yp at different stages of

2.4

RD simulation

45 simulation

TD simulation

Figure 5.10 Contours of normalized equivalent plastic shear strain y at y = 0-25
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the deformation. At a shear deformation of 0.25, four regions of enhanced shear appear at the

comers of the specimen (Fig. 5.10). With further shearmg, these regions gradually grow into two

nearly parallel shear bands for the 45° and TD simulations at a shear deformation of 0.5.

2.4
2
1.6
1.2
0.8
0.4

RD sunulation

45 simulation

TD simulation

Figure 5.11 Contours of normalized equivalent plastic shear strain yp at /= 0.5

However, for the RD simulation, there remain four shear bands, not linked to each other (Fig.

5.11). Once the shear bands are fuUy formed from end to end, the applied shear strain is mainly

concentrated in these two shear bands which can be observed in Figs. 5.11 - 5.13. These

simulations indicate that the locations of the shear bands are identical for all the shearing

directions considered, with the strongest shear bands occurring in the 45 simulation and the

weakest bands in the RD sunulation.
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RD simulation

45 simulation

TD simulation

Figure 5.12 Contours of normalized equivalent plastic shear strain yp at /= 0.75

RD sunulation
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45 simulation

TD simulation

Figure 5.13 Contours of normalized equivalent plastic shear strain yp at /= 1.0

There are some interesting observations that should be mentioned for the RD and TD

simulations. There is no indication of localized deformation in the shear stress-shear deformation

curve (Fig. 5.9) for the RD simulation. However the contour plots of normalized equivalent

plastic shear strain yp (Figs. 5.10-5.13) show that shear bands occur during the RD simulations.

This observation is in good agreement with the experunental results reported by Gasperini et al.

(1996).

The shear stress-shear deformation curve (Fig. 5.9) for the TD simulation indicates that

the softening which occurs after 0.35 shear deformation is followed by a certain degree of

hardening. However, when the contour plots of normalized equivalent plastic shear strain yp (Fig.

5.10) are investigated, there are no signs of this late stage hardening. The softening corresponds

to the formation of the shear bands and once these shear bands are fully formed, very little

deformation occurs outside these bands. Thus this late stage hardening observed in the TD

simulation is not due to a change m the localized deformation mode. Instead, it might be

explained as an effect of the finite element mesh used in the simulation.

Gasperini et al. (1996) have provided detailed experimental data on the characteristics of

localization for the aluminum can-body sheet AA3004 subjected to shearmg. Their results
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showed that, for the RD, 45 and TD simulations considered in this thesis, two narrow bands

appear at the comers D and B (Fig. 5.1). These bands then rapidly progressed along the whole

length of the specimen, and eventually coalesced. For the RD simulation, after a shear

deformation of 0.2, new shear bands were formed parallel to the first so that the whole specimen

was eventually filled with bands. For the 45 and TD simulation, the previously formed bands

widened slightly, but the bands did not invade the specimen. In our simulations (for all three

orientations of shearing) shear bands start from the four comers of the specimen, and they

gradually grow into two nearly parallel shear bands. This disagreement between our simulations

and the expermiental observations is perhaps partly due to: the coarse mesh that we have used,

the assumption of plane strain, and the basics underlying the Taylor-type polycrystalline model.

5.3.2 Plane stress simulations

In this section, the FE code developed for plane stress analyses is employed for 45

simulations. The numerical results are compared with the corresponding plane strain results and

those from the homogeneous deformation analysis. For the plane stress simulations, the

conventional nominal shear stress and normal stress (Fig. 5.1) are defined by Fs/(Lto) and FJ(Lto)

where to is the initial thickness of the specimen.

The shear stress-shear deformation curves from the plane stress FE analysis, plane strain

FE analysis, and homogeneous deformation analysis are compared in Fig. 5.14. It can be seen

that the FE results obtamed from the plane strain simple shear and plane stress simple shear codes

are very close to each other. Both curves reach a maximum shear stress r^ at a shear

deformation of about 0.25, with the plane strain FE analysis predicting a slightly higher value.

With further shearing, softening is found in both cases with the plane stress FE results exhibiting

a slightly stronger softening.

Figures 5.15 a-c present contour plots of normalized equivalent plastic shear strain y

both for the plane stress and plane strain FE analyses. At a shear deformation of 0.25, it can be

seen that the plane stress FE analysis also shows four regions of enhanced shear originating at the
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Plane strain FE
Plane stress FE
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0.6 0.8

Figure 5.14 Predicted overall shear stress responses for the 45° simulations

comers of the specimen (Fig. 5.15a). However, comers A and C (Fig. 5.1) exhibit stronger

localization than do the comers B and D. The enhanced shearing initiated from comers B and D

have progressed farther into the specimen while localization is mainly concentrated around the

comers A and C.

When shear deformation has reached 0.5, it can be seen that two nearly parallel shear

bands have formed just as in the plane strain FE analyses (Fig. 5.15b). The shear bands from the

plane stress FE analysis are closer to the upper and lower edges of the specimen than those from

the plane strain FE analysis, and the comers A and C exhibit stronger localization than the

comers B and D. With further shearmg, the strain concentrates in these two bands (Fig. 5.11c).

Some studies (e.g., G'Sell, 1986) have shown that variations in thickness during shear

deformation are relevant only to second-order terms in the strain tensor and may thus be

neglected to a first approximation. Our plane stress simulations show that this assumption is

correct within the central parts of the specimen, but is not correct for the comers of the specimen
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Plane stress FE analysis

Plane strain FE analysis

(a)

Plane stress FE analysis

Plane strain FE analysis

(b)
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Plane stress FE analysis

Plane strain FE analysis

(c)

Figure 5.15 Contours of normalized equivalent plastic shear strain yp at: (a) ^=0.25, (b) /=0.5,

and (c) /== 0.75

since the thickness strains are not small enough to be neglected here (Fig. 5.16). While comers B

and D are undergoing compression, comers A and C and mainly the rest of the specimen are

undergoing tension at a shear deformation of 0.25 (Fig. 5.16a). This pattern changes with further

shearing, at a shear deformation 0.5 (Fig. 5.16b) the centre of the top and the bottom edges of the

specunen has changed its deformation mode from tension to compression. Furthermore,

beginning at the comers B and D, compression is progressing towards the centre of the specimen.

This compression initiated from comers B and D continues to progress towards the centre of the

specimen with further shearing (Fig. 5.16c).

It has already been demonstrated that comers A and C were exhibiting stronger

localization than comers B and D (Fig. 5.15). Note that the deformation modes are different for

these two pairs of comers; stronger localization at comers A and C is accompanied by a

deformation mode of tension, while comers B and D are undergoing compression.
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(c)

Figure 5.16 Contours
of thickness strain ^3 at: (a) Y = 0.25, (b) r = 0.5, and (c) y = 0.75

5.4 Conclusion

in this chapter, the planar simple shear test has been simulated with both our plane stram

and plane stress-FE codes for the can-body sheet AA3004-H19. Simulations — Perfomed^

^nsTotated'such that the rolling direction is at 0». 45» and 90» to the sheartog axis. The

initiation and evolution of shear bands were investigated.

The overall shear stres^shear defonnation curves were found to be in good agreemerrt

^th e^ental results presented by Gasperini et al. (1996). For the three orientations of
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shearing considered, all curves presented a rapid hardening followed by a decreasing hardening

rate, leading to the saturation of the flow stress. While softening occurred after this saturation for

the 45 and TD simulations, no softening effect was observed for the RD simulation.

Our simulations based on both the plane stram and plane stress assumptions were able to

predict localized deformations in the form of shear bands. Note that an imperfection was not

necessary to initiate shear bands. Localized deformation started as four regions of enhanced shear

appearing at the comer of the specunens. Durmg continued deformation, these regions gradually

grew into two nearly parallel shear bands for the three orientations of shearing that have been

considered. It is important to mention that for the RD simulation, although the overall shear

stress-shear deformation curve showed no signs of localized deformation, shear bands were

nevertheless still predicted.

Experunental observations presented by Gasperini et al. (1996) indicate that shear bands

mitiate from the two comers of the specimen that are undergoing compression, then they rapidly

progress along the whole length of the specimen, and eventually merge. At this point, our

numerical simulations are m disagreement with these experimental observations. However, this

disagreement might be explained when the following numerical and theoretical concepts are

considered:

The mesh sensitivity analysis that has been performed indicated that there were no

significant differences in the macroscopic features of localization for the three finite

element meshes considered. Still, simulations with more than 2000 elements were not

performed due to the limitations of our computers. It might be possible that refining

the finite element meshes beyond the limits presented m this study might alter the

macroscopic features of localized deformation.

Our simulations have clearly indicated that neither the plane strain nor the plane stress

assumption for modelling sunple shear is valid at the comers of the specimen since the

thickness stresses and strams are not small enough to be ignored for these

assumptions, respectively. This is a very miportant observation and could profoundly
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affect the macro scopic features of localization because shear bands initiate from the

comers of the specimen. Furthermore, 3-D phenomena such as cracking and the

drawing of the material from outside the gauge section, which significantly affect the

overall response at large strains, cannot be taken into account in the 2-D analyses.

The initial texture and the dislocation micro structure are important parameters

governing the behaviour of materials undergoing large deformations. The polycrystal

plasticity model employed in this work can account for the effects of the initial texture

and its evolution on the deformation. However, it cannot account for the dislocation

microstructure. Thus, the effects of some important concepts such as dense

dislocation walls, microbands, or dislocation sheets are not included in our

shnulations.

The 2-D analyses presented in this chapter have provided a very good understandmg of

localized deformation occurring during simple shear. Important observations were made such as

the sensitivity of the overall shear stress response and deformation distribution to the loading

direction and the initiation and development of shear bands. However, the simple shear test is in

fact a 3-D problem: consequently it is likely that a 3-D modelling will provide better correlation

with experimental observations.
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CHAPTER 6

SIMULATION OF EARING IN TEXTURED ALUMINUM SHEETS



6.1 Introduction

Ears which develop during the deep drawing of anisotropic sheets can cause major

problems in the production of deep drawn containers. The cups must be trunmed to produce the

correct container height and to permit the container ends to be attached properly. The trimming

not only involves an extra operation, but it also creates additional scrap which must be handled

and recovered. Better control and reduction of earmg may eliminate these extra operations and

would allow a greater yield from a sheet by permitting smaller blanks to be cut.

It is well known that these ears are initially caused by crystallographic texture; therefore

many models based on the plastic sUp of a single crystal or of a polycrystal have been developed.

Tucker's model (1961) based on Schmid's law for a FCC single crystal, is in reasonable

agreement with experiments. Later on, Kanetake et al. (1983) applied Tucker's approach for

polycrystals.

Barlat et al. (1991) predicted earing for polycrystals with a model m which they analysed

the flange. They made comparisons between plane stram and plane stress cases, and concluded

that the plane strain assumption successfully explained the major trends of earing. Becker et al.

(1993) simulated complete cup drawing for single crystals. They also predicted the initial phases

of earing for polycrystals with a model involvmg only the flange.

Recently Balasubramanian and Anand (1998) provided results for the quantitative

prediction of the punch force versus the punch displacement, the number of ears, their positions

and their heights during the cup drawmg of aluminum alloys. Yoon et al. (1998) studied the

influence of initial back stress on the earing prediction of drawn cups for planar anisotropic

aluminum sheets. Their earing predictions with initial back stress and yield function coefficients

considering tensile and compressive material behaviour were in very good agreement with the

experiments.

In this chapter, a finite element model for earing analysis is developed considering only

the flange area of the sheet. Earing analyses are performed using the flange model, both with a
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polycrystal (Chapter 3) and a phenomeno logical model (Barlat et al., 1991). The earing profiles

are predicted for the aluminum alloys AA6111-T4 and AA5754-0 and these profiles are

compared with experimental data. This work has been published in Inal et al. (2000a, 2000b).

6.2 Phenomenological constitutive model

The phenomenological yield function used in the earing simulations is that proposed by

Barlat et al. (1991). They have developed a sbc component yield function in the form

<P=(3/,)p/2 '20+7T'

6
+ 2cosf2^r + 2CO<^J (6-1)

where

9 = arccosl —^
r2

(6-2)

The stress deviator invariants in equation (6-2) take the followmg form

I. =
{fFY + {gG}2 + {/?^}2 . (aA - cC)2 + (cC - bB)2 + (bB - aA)2

3 54
(6-3)

/. =
(cC - bB\aA - cC\bB - aA)

54
+fghFGH

(cC - bB)[fF]2 + (aA - cC){gG}2 + (bB - aA)[hH}'

(6-4)

where a, b, c, f, g and h are constants and, with the Bishop and HiU (1951a,b) notation for the

stresses, the quantities A, B, C, F, G and H can be presented in the form
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A=0yy-a,

F=a yz

B=a^-<7^

G=o-.

C=a. a yy

(6-5)

H=o-
xy

This anisotropic yield function is orthotropic and shall henceforth be referred to as yield function

Yld91 (Barlat et al., 1997) m this chapter.

6.3 Flange model

Complete cup drawing simulations have shown that, once the sheet enters the die radius,

very little additional earing deformations occur. This suggests that a simple model can be used to

describe the initial phases of earing (Becker et al., 1993). Accordingly, a finite element model

considering only the deformation in the flange area is employed in this chapter. Our model is

based on the plane strain assumption, so that there is no change in the thickness of the sheet. In

addition, the effects of friction are not accounted for. Figure 6.1 shows the actual cup drawing

geometry.

TD,y

Figure 6.1 Cup drawmg geometry
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The finite element mesh used in the flange model simulations is presented in Fig. 6.2.

Assuming orthotropic material symmetry, only one fourth of the circular blank is modelled with

15 rows of elements both radially and circumferentially. The initial ratio of the outer flange

radius to the inner flange radius was taken as two, which corresponds to the experimental cases

used later for comparison. Inward radial displacements on the inner ring of the nodes are

RD, Xi

Figure 6.2 Finite element mesh

prescribed. Once a ring element has passed inside the die radius, these elements are removed

from the analysis. The same boundary conditions are then applied to the nodes at the inside of the

next ring of elements to continue the deformation process.

6.4 Results and discussion

Earing profiles were investigated for the aluminum alloys AA6111-T4 and AA5754-0.

Figures 6.3 a-b present the initial textures of these alloys in terms of {111} stereographic pole

figures, with 476 and 384 crystals respectively. Here Xi and Xi refer to the rolling and transverse

directions of the sheet, respectively.
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The single slip hardening law presented in (3.19) is used in the simulations, and the

relevant material properties are given in Table 6.1. These properties were obtained by fitting the

uniaxial stress-strain curve obtained by crystal plasticity to the uniaxial stress-strain curve

measured experimentally (Wu et al., 1998). The slip system reference plastic shearing rate ^o

and the slip rate sensitivity parameter m are taken as YQ = 0.001s and m = 0.002, respectively,

for the two alloys.

Alloy

AA6111.T4
AA5754.0

Crystal elastic constants
(GPa)

Cn

230
230

Cl2

132
132

C44

60
60

Hardening parameters

TO (MPa)

47
21

V-^o

30
182

n

0.230
0.245

q

1
1

Table 6.1 Material constants for the crystal plasticity model.

(a) (b)

Figure 6.3 Initial texture represented by {111} stereographic pole figure for : (a) AA6111-

T4, and (b) AA5754-0
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Numerical sunulations for the alloys AA6111-T4 and AA5 754-0 predict four ears at

approximately 0 and 90 degrees to the rolling direction. Comparisons between the predicted

earing profiles and the experimental earing profiles for these two aUoys are presented in Figs. 6.4

1.010 -1

1.005

1.000

CS 0.995 ^
Q^

0 45 90 135 180 225 270 315 360

p

Figure 6.4 Comparison of the experimental and simulated (polycrystal model) earing profile for

AA6111-T4

and 6.5 respectively, where v(/ is the angle (in degrees) from the rolling direction and R/Ro is the

ratio of the current flange radius at the angle i|/ to the current flange radius in the rolling

du-ection (0 degrees). All of these simulations were terminated after the surth rmg of elements

was removed from the analysis.

The effect of texture evolution on the mitial earing profile has also been mvestigated.

Simulations show that texture evolution will not have a major effect in the initial phases of

earing. This can be seen in the curves of Fig. 6.6, where a comparison between the earing profiles
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Figure 6.5 Comparison of the experimental and simulated (polycrystal model) earing profile for

AA5754-0

1.015 ^

1.010

1.005 -[

1.000

a 0.995 -|

0.990 ^

0.985 ^

0.980

0.975

Experiment
With texture evolution

Without texture evolution

0 45 90 135 180

p
225 270 315 360

Figure 6.6 Comparison of the earing profile for AA5754-0 predicted by the polycrystal model

with and without texture evolution
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obtained by the polycrystal model with and without texture evolution is presented. Again the

analysis was stopped when the sbrth ring of elements was removed from the flange.

The yield function Yld91 has also been used for the earing simulations of the aluminum

alloys AA6111-T4 and AA5754-0. Hayashida et al. (1995) used the ABAQUS FEM code in

which the yield function Yld91 was implemented as a material user subroutine. They have

sunulated the drawing of a circular cup and predicted the cup height (earing) profile for an Al-5%

Mg sheet sample. Their prediction was not in total agreement with the experiments. By contrast,

the present flange model analysis with the yield function Yld91 was able to predict the initial

phases ofearmg for the alloys AA6111-T4 and AA5754-0.

The material constants for the yield function Yld91 were determined by crystal plasticity

and are presented in Table 6.2. The exponent p used in Equation (6.1) has been computed by

fitting the yield surface obtamed from the yield function Yld91 to the one obtained from crystal

plasticity. Figures 6.7 and 6.8 show that good agreement was obtained when p was taken as 7.5

for the alloy AA611 1-T4 and 8 for the alloy AA5754-0. For these aUoys, our flange model based

on the yield function Yld91 predicted correctly the four ears at approximately 0 and 90 degrees to

the rolling direction, as shown in Figs. 6.9 and 6.10 respectively.

Alloy
AA6111

-T4

AA5754
-0

_p_
7.5

8

A
1.06

0.9802

b
1.003

1.008

c
0.9974

0.9922

J_
0.8385

0.8786

_A_
0.8586

0.88

h
0.8805

0.8945

Table 6.2. Material constants for the yield function Yld91
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Figure 6.7 Comparison of yield surfaces for AA6111-T4 obtained by the yield function Yld91

and crystal plasticity
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Figure 6.8 Comparison of yield surfaces for AA5 754-0 obtained by the yield function Yld91 and

crystal plasticity
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Figure 6.9 Comparison of the experimental and simulated (phenomenological model) earing

profile for AA6111-T4

315 360

Figure 6.10 Comparison of the experimental and sunulated (phenomenological model) earing

profile for AA5754-0

122



6.5 Conclusion

In this chapter we have simulated earing for the aluminum alloys AA6111-T4 and

AA5754-0. Accurate characterization of the material and of the drawing process is essential for

predictive earing models. The flange model presented in this chapter is an adequate geometric

model for earing simulations. The basic assumption underlying the flange model is that ears start

to form in the flange, and the fmal positions of ears coincide with initial positions. This

assumption is weU supported by many experimental observations.

Earing analyses of the flange have been performed based on both the polycrystal and the

phenomenological model (Yld91). Both models were able to successfully predict the number and

position of ears for the aluminum aUoys AA6111-T4 and AA5754-0. However, it is noteworthy

to mention that results obtained using the phenomenological model were found to be somewhat

inconsistent; when different values of the exponent p (Equation 6.1) were used (all providing

yield surfaces with very good agreement to the yield surface obtained from crystal plasticity),

completely different earing profiles were obtained.

The simulations showed that ears develop in the early phases of deformation. As these

ears are caused mainly by the initial texture of the sheet, it was observed that the evolution of

texture does not have a major effect on the mitial earing profiles. Although texture evolution does

not have a major effect on the positions of the ears, it has a prominent effect on the cup heights.

As a result, it is obvious that accurate predictions of the cup heights must include the effect of

texture evolution.

Even though the proposed flange model provides useful information for the initial phases

of earing, it does not include some factors which could influence the earing, such as friction. The

surface of the sheet is textured during the rolling process, and there is no reason to expect that

iriction conditions would be the same in the rolling and transverse directions. Thus, predictions

could probably be improved with fuU cup drawing simulations including the anisotropic friction

conditions. Also the effects of grain shapes, precipitates, and special inter-gram compatibility
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arrangements could be included in the simulations since these kinematic restrictions may also

affect earing predictions.
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CHAPTER 7

GENERAL CONCLUSION



7.1 Finite element modelling ofFCC polycrystals

The overall objective of this research was to incorporate the concepts of crystal plasticity

into fimite element models in order to more accurately simulate sheet metal forming processes

and localized deformation phenomena. For this purpose, both plane strain and plane stress FE

codes were developed based on crystal plasticity theory. These FE codes incorporate parallel

computing algorithms so that simulations could be performed with models containing sufficiently

large numbers of elements.

The numerical simulations presented in this thesis are based on a rate-sensitive Taylor

type polycrystal model. The long standing problem of nonuniqueness in the choice of active slip

systems in the rate independent analysis is overcome by using a rate dependent constitutive

model. The Taylor model has been chosen to obtain the constitutive response of a polycrystal

comprised of many grains since it is in reasonably good agreement with experiments for the

evolution of texture and the overall stress-strain response of single-phase FCC metals. This

model accounts for the initial texture, the evolution of the microstructure and microscopic

properties, such as the slip-induced hardening and the crystallographic texture, and inherently

includes the effects ofdeformation induced anisotropy.

The finite element method offers the capability to simulate deformations that are spatiaUy

heterogeneous, that are governed by nonlinear equations, and that are controlled by properties

that evolve with deformation. Finite element formulations combined with polycrystal plasticity

can provide powerful tools for simulations of complex forming processes. A major factor in the

successful combination of polycrystal plasticity and the finite element method for sheet metal

forming operations is the availability of modem computing resources. Algorithms developed to

take advantage of parallel computing architectures render crystal plasticity based simulations

feasible with realistic models. In general, Taylor type polycrystal models are ideally suited for the

paraUelization of the computational procedures. Especially, when CPU time is considered, the

simulations fall in the category of "embarrassmgly parallel" applications, and they provide

significant computational improvements. However, such "embarrassingly parallel" (e.g.,

Sorensen aad Andersen, 1996) applications are strictly feasible only if the total program size fits
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within a single processor of the paraUel computer. This was not the case for the simulations

presented in this thesis. Data distributing parallel computing algorithms had to be developed in

order to perform simulations with large models. These algorithms distributed grain level data

between the processors, so that each processor was used to its maximum capacity. Thus,

simulations could be performed using the total memory ofaU processors combined.

The defonnation characteristics of single crystals and polycrystals were described &st in

this research. Various polycrystal deformation theories were reviewed and their advantages and

disadvantages were discussed. Special attention was paid to the Taylor polycrystal model since

our simulations were based on this model. Next the rate-sensitive polycrystal plasticity

formulation proposed by Asaro and Needleman (1985) was presented in detail. This was

followed by the development of both plane strain and plane stress FE codes based on a

Lagrangian formulation of the field equations. Parallel computing algorithms developed to

distribute grain level data were presented and both the rate-sensitive Taylor type polycrystal

model and the parallel computing algorithms were implemented to the FE codes. These

numerical models were used to simulate various sheet metal forming processes.

7.2 Instability and localization phenomena

The first application presented was an investigation of instability and localized

deformation phenomena in the rolled aluminum sheet aUoy AA3004-H19 under tension.

Simulations were performed with both the plane strain and plane stress FE codes. For the plane

strain analyses, an initial thickness imperfection was assumed to trigger localized deformation.

No initial imperfection was considered for the plane stress analyses where localized deformation

was triggered as a result of the so caUed "built-in" boundary conditions.

Mesh sensitivity studies were first performed. These studies (where finer meshes were

used without changing the element aspect ratio) have shown that, for the meshes considered,

mesh sensitivity did not have a significant effect on the overall stress-strain curves and

deformation patterns. However, refining the meshes resulted in narrower and sharper shear bands

with a stronger softening effect in the stress-strain curves.
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Simulations of tension have showed that localization during tensUe straining occurs in two

modes. The initiation of a neck is the indication of localized deformation for both modes. For the

rate dependent analysis considered, the onset of necking is defined by the attainment of the

maximum stress at the end section of the specimen, away from the neck. Once a neck is mitiated,

either the deformation continues with strain localizing progressively in this neck, or it triggers the

formation of shear bands. The attamment of the maximum stress at the centre of the specimen

was taken as the onset of shear banding.

The studies presented in this thesis show that there are a number of factors contributing to

the development of localization phenomena. Texture evolution is one of the most important

factors in the prediction of localized deformation. When texture evolution was not included in the

analysis, the "geometric softening" ejSTect that lead to localized shearing did not occur. As a

result, shear band formation was completely precluded from the localization mode. This

observation explains the inability of phenomenological plasticity models with a smooth yield

surface to predict shear bands at realistic strain levels (e.g., Tvergaard et al, 1981).

Another important factor in localized deformation is the sUp-rate sensitivity. It is weU

known that increasing the sUp-rate sensitivity increases the ductility as it will delay the formation

of locaUzation modes such as shear bands or necking. When slip-rate sensitivity was increased,

not only was the formation ofnonuniform deformation delayed, but increasing it to certain values

also completely precluded shear banding.

Simulations have shown that strain softening behaviour is not necessarily required to

predict instabilities and localjzed deformations as necking and shear banding were indeed

predicted in the presence of strain hardening. However, the rate of stram hardening does play a

key role in the determination of the localization mode; increasing the rate of strain hardening

eventually leads to the disappearance of shear banding from the localization mode.

The loading direction did not have any effect on the localization mode; for all loading

directions considered in this thesis, the localization mode was shear banding. However, the

loading direction did have a significant effect on the overall stress response and the shear band

128



pattern. For example, two shear bands were predicted for uniaxial tension along the RD, while

only a single shear band was predicted for uniaxial tension along 1° from the RD.

Understanding and characterizing the large strain behaviour of thin metals is crucial to the

metal forming industry since many forming operations involve large strains. Recent experimental

research has indicated that the planar simple shear test can be used to characterize the plastic

behaviour of thin sheet metals at large to very large strains. Thus, one application considered in

this thesis was the large strain behaviour of the roUed aluminum sheet alloy AA3004-H19 under

planar simple shear.

Simulations were performed for shearing along the RD, 45 from the RD, and along the

TD with both the plane strain and plane stress FE codes. The initiation and evolution of shear

bands were investigated in detaU. In the analysis, an initial imperfection was not necessary to

initiate shear bands. For all orientations considered, localized deformation started as four regions

of enhanced shear appearing at the comers of the specimens. With further shearing, these regions

gradually grew into two nearly parallel shear bands. The shear bands predicted from the plane

stress FE code were closer to the edges of the specimen than those predicted with the plane strain

FE code.

The shearing cUrection relative to the RD affected the overall shear stress-strain curves

and the sharpness of the shear bands. For the three orientations of shearing considered, all curves

presented a rapid hardening followed by a decreasing hardening rate leading to saturation of the

flow stress. Softening occurred after this saturation for shearing along 45° from the RD and TD

indicatmg localized deformation. However, softening was not observed for shearing along the

RD; nevertheless, localized deformation in the form of shear bands was still predicted.

7.3 Modelling of earing in textured aluminum sheets

The last application presented in this thesis was the prediction of earing during the deep

drawmg oftextured aluminum sheets. A simple flange model was developed to simulate the early

phases of earing. Earing simulations with the flange model were performed both with the
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polycrystal model and the phenomenological model proposed by Barlat et al. (1991) for the rolled

sheet aluminum alloys AA6111-T4 and AA5754-0. Simulations performed with both these

models were able to correctly predict the initial phases of earing for the two rolled aluminum

sheet alloys considered.

The numerical analyses showed that ears develop in the early phases of deformation.

Texture evolution had no major effect on the number and positions of the ears; similar earing

profiles were predicted from sunulations where texture evolution was both included and

excluded. It should be mentioned that the main purpose of the deep drawing simulations

presented m this thesis was to predict the initial number and position of the ears, not to predict

accurately the cup heights. It is obvious that accurate simulation of the final heights of the ears in

the fully drawn cups require the modelling of the complete deep drawing process and the correct

representation of the friction conditions.

7.4 Future work

The results presented in this thesis show that many sheet metal forming operations can be

simulated by 2-D models. These models not only provide a better understanding of metal forming

processes, but also provide information that can be used to control product quality. However,

metal forming operations are in reality 3-D problems. For example, it is known that the state of

stress at the neck area during stretching is triaxial. When simple shearing is considered, the

cracking and the drawing of the material from outside the gauge section cannot be taken into

account in the 2-D analysis. Thus, it is expected that metal forming modelling could be improved

by simulations with 3-D models, and an immediate sequel to this thesis work would be the

development of a 3-D FE model. Although aU simulations presented in this thesis were

performed with 2-D models, the constitutive model and computational procedures already

incorporate the full 3-D sUp structure of FCC crystals. Furthermore the parallel computer

algorithms that have been developed need Uttle modification for applications with 3-D models.

As a first application of a 3-D FE code, the metal forming processes presented in this thesis could

be re-simulated. The next step could be the modification of both the crystal plasticity constitutive

law and numerical model to incorporate the effects of various features such as texture gradients,
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back stresses, residual stresses, and friction. Finally, it should be mentioned that although the

numerical analyses presented in this thesis were restricted to FCC polycrystaUine metals, it is not

difficult in principle to adopt these analyses to other types ofpolycrystals, such as BCC and HCP

metals.
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