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Abstract

In this thesis, finite element analyses based on a rate-dependent Taylor-type polycrystal
model have been developed to simulate sheet metal forming processes and localized deformation
phenomena. This formulation can be applied to nonhomogeneous boundary-value problems for
FCC polycrystals subjected to large deformations. The analysis inherently accounts for initial
textures as well as deformation-induced anisotropies due to texture evolution. Both plane strain
and plane stress finite element (FE) codes incorporating parallel computing algorithms have been
developed so that simulations could be performed for applications requiring fairly large numbers

of elements.

Using the finite element codes which have been developed, instability and localization
phenomena for the rolled aluminum sheet alloy AA3004-H19 under tension have been studied.
The effects of various parameters on the formation of localized deformation bands have been
investigated. These include initial texture and its evolution, strain hardening, material strain-rate
sensitivity, loading direction, mesh sensitivity, geometric imperfections, and boundary conditions

Instability criteria have been defined for both necking and shear banding.

The large strain behaviour of the rolled aluminum sheet alloy AA3004-H19 under planar
simple shear has also been simulated numerically using both the plane strain and the plane stress
polycrystal FE codes. The effects of the shearing direction on the overall shear stress—shear
deformation curves and deformation patterns have been investigated. The initiation and

propagation of shear bands have been studied in detail.

Finally, the plane strain FE code was employed to simulate earing during the deep
drawing of the rolled aluminum sheet alloys AA6111-T4 and AA5754-0. Simulations based on
both the polycrystal model and a phenomenological constitutive law were performed where only
the flange area of the sheet was analyzed. The effects of these textures were examined, and

comparisons were made with experimental data.



Résumé

Une formulation par éléments finis pour les polycristaux, basée sur I’hypothése de Taylor
pour un matériau sensible au taux de déformation, a été appliquée pour analyser la mise en forme
des métaux et les phénomeénes de localisation. Cette formulation s’applique aux problémes de
conditions aux limites non homogénes des métaux polycristallins sous grandes déformations. Elle
tient également compte des textures initiales ainsi que des anisotropies induites par la
déformation causée par I’évolution de la texture. Des codes d’éléments finis basés sur les
hypothéses de déformations planes et de contraintes planes incorporant des algorithmes de calcul

parallele ont été élaborés.

En utilisant les codes d’éléments finis établis, les instabilités et les phénoménes de
localisation dans Palliage d’aluminium AA3004-H19 sous tension ont alors été étudiés. Les effets
de divers paramétres tels que la texture initiale et son évolution, I’écrouissage, la sensibilité au
taux de déformation du matériau, la direction du chargement, la sensibilit¢ du maillage, les
imperfections géométriques et les conditions limites sur la formation des déformations locales ont
été traités. Un critére d’instabilité a été défini pour la striction et la formation des bandes de

cisaillement.

Le comportement 4 grandes déformations pour I’alliage d’aluminium AA3004-H19, sous
cisaillement simple, a aussi été simulé numériquement en utilisant les codes d’éléments finis. Les
effets des directions du cisaillement sur les courbes de contrainte—déformation et les
morphologies des déformations ont été étudiés. L’initiation et la propagation des bandes de

cisaillement ont aussi été examinées en détail.

Finalement, ’emboutissage profond des alliages d’aluminium AA6111-T4 et AA5754-0 a
été modélisé en utilisant a la fois le modéle polycristallin et un modele phénoménologique ou
seulement la zone de « flange » a été analysée. Les effets de ces textures ont été examinés et les

résultats obtenus ont été comparés avec les données expérimentales.
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CHAPTER 1

INTRODUCTION



1.0 INTRODUCTION

Sheet metal forming has, for a long time, been one of the most common metal processing
operations. In many manufacturing areas such as the automotive, aerospace, packaging and
electronic industries, the optimization of sheet metal processes has become a key factor to reduce
product development time and final cost. In general, sheet metal forming involves large strains
due to stretching, drawing, bending or various combinations of these basic deformation modes.
From the view point of mechanics, the analysis of sheet metal working involves nonlinearities in
geometry, material and contact. In an effort to better understand sheet forming processes, various
research works have been carried out using diverse technologies involving experimental,

analytical and computational methods.

Accurate simulations of sheet metal forming operations requires a good understanding of
the deformation mechanisms involved and the proper use of deformation models of metal
forming. The common metals of industrial practice are polycrystalline aggregates which consist
of single crystals or individual grains with lattice structures. The mechanical properties of a
polycrystalline metal depend on many attributes of its microstructure; consequently, considerable
efforts have been devoted to the study of micromechanics. These studies indicate that, among the
factors which result in the plastic deformation of single crystals and polycrystals, crystallographic
slip occurring by the migration across the slip planes of atomic defects, termed dislocations, is the

dominant one.

Crystallographic slip induces lattice rotations which result in a non-random distribution of
the crystal orientations in polycrystals. The textures developed during forming processes is a
macroscopic average of such non-random orientations. Research indicates that texture occurs in
many metal forming processes such as drawing, extrusion, rolling and sheet metal forming.
These textures not only have profound effects on the mechanical and thermal properties of
metals, but also have great influence on subsequent fabrication processes as well as on the quality
of the products. Thus, it is obvious that accurate simulations of sheet metal forming should
consider initial texture and its evolution, as well as the anisotropy induced by the evolution of

microstructure and microscopic properties.



Essentially two classes of models have been developed for numerical simulations of sheet
metal forming operations: phenomenological (macroscopic) models and polycrystal
(microscopic) models. The theory of phenomenological plasticity is generally initiated from
hypotheses and assumptions of a macroscopic character based on certain experimental
observations. In the past, the constitutive laws that were used to model metal forming processes
were almost exclusively phenomenological in nature. Although such phenomenological models
are acceptable for many applications, they do not explicitly include the basic physics of plastic
deformation. They are inherently incapable of predicting the effects of material microstructure
and its evolution with deformation on metal performance, nor can they link mechanical properties

to evolving microstructures and textures.

To model processes such as texture evolution and its influence on deformation-induced
anisotropy, micromechanically based models of plastic behaviour are required. In particular,
constitutive relations formulated on the concepts of crystal plasticity must be adopted. Since
Taylor’s pioneering work in 1938, the prediction of the deformation behaviour of polycrystalline
solids from the response of their single crystal constituents has been the focus of many
investigations. Thus, many crystal plasticity models have been proposed or modified to simulate
the behaviour of polycrystalline metals during plastic deformation from the response of their

single crystal constituents.

The mathematical modelling of material behaviour is a very effective way of reducing
time and costs involved in optimizing manufacturing processes. Indeed, numerous complex
forming operations have been simulated using numerical methods in order to predict critical
parameters. Among these methods, the finite element method (FEM), has been widely applied to
the study of metal forming because of its flexibility, accuracy and efficiency. Considering the
rapid advancement of computer capabilities, the finite element method has become a powerful

tool in modelling metal forming operations.

Up to the 1980’s, most applications involving the finite element method have been based
on phenomenological constitutive models since microscopic models involve significantly more

demanding computations. However the introduction of parallel computers has rendered metal



forming modelling based on crystal plasticity feasible since they offer more computational power
and storage than serial computer architectures. With proper parallelization techniques, realistic
applications based on crystal plasticity can be performed on parallel computers such as the IBM
SP3.

The objective of the present work is to develop crystal plasticity based finite element
models to simulate sheet metal forming processes, and to investigate localized deformation
phenomena in metals. A rate-sensitive Taylor-type polycrystal model is implemented in our
nonlinear numerical analyses. Both plane strain and plane stress finite element codes based on a
large-strain Lagrangian formulation have been developed. These codes incorporate parallel
computing algorithms enabling simulations with realistic models. Various forming operations

and localized deformation phenomena are simulated for rolled aluminum sheets.

In Chapter 2, the deformation characteristics of single crystals and polycrystals, which are
the physical basis of the present work, are first presented and discussed. To date, many models of
the plastic distortion of single crystals and extensions to polycrystals have been developed. For
single crystals, the rate dependent and rate independent models are the two major models. In
general, a polycrystal model can be derived from single crystal deformation models by the
execution of an appropriate averaging scheme for combining single crystal properties into
polycrystal behaviour. There are three classical theories concerning the transition from the micro-
response of the individual grains to the macro-response of the polycrystalline aggregate: Taylor’s
theory, Sach’s theory and the self-consistent theory. The Taylor polycrystal theory, on which the
present research is based, is described in detail. Its advantages and drawbacks are discussed. In
addition, more recent developments in crystal plasticity theory such as the so-called “finite
element per single crystal (FESC)” model, strain gradient plasticity theory, models including

backstress, and discrete dislocation plasticity theory are briefly presented.

The polycrystal deformation model and its implementation in the finite element code is
described in Chapter 3. The rate-sensitive crystal plasticity formulation proposed by Asaro and
Needleman (1985) is presented in detail. This model, in which the principal deformation

mechanism is assumed to be rate dependent crystallographic slip, accounts for large



deformations, the rotation of crystal axes, and elastic anisotropy of the grains. In the second part
of this chapter we present a finite element procedure based on a large-strain Lagrangian
formulation of the field equations. Both plane strain and plane stress FE codes are developed and
the rate-sensitive crystal plasticity model is implemented in these codes. The basic idea in this
formulation is that a material point within the domain represents a polycrystal of N grains, and
the constitutive response at the material point is given through the Taylor polycrystal model.
Crystal plasticity based simulations entail extremely demanding computations since a significant
amount of information at the grain level must be tracked. Thus, parallel computing algorithms are
developed to distribute data at the grain level between the processors of a parallel computer. The
last part of this chapter presents the parallel computing algorithms and their implementation in
the FE codes.

As the first application, simulations of localized deformation in an aluminum sheet alloy
(AA3004-H19) under tension are presented in Chapter 4. Simulations with both the plane strain
and plane stress FE codes are presented. For the plane strain simulations, an initial imperfection
is assumed to trigger localized deformation. However, no initial imperfections are considered for
the plane stress simulations where localized deformation occurs as a result of the so-called “built-
in” boundary conditions. The effects of texture evolution, slip rate sensitivity, strain hardening,
mesh sensitivity, and the loading direction on the formation of localized deformations are

discussed in detail. Onsetting criteria are defined for both necking and shear banding.

Since sheet metal forming operations involve large plastic strains, the proper
understanding and characterization of the large strain behaviour of thin metal sheets is crucial for
controlling product quality. In Chapter 5, the large strain behaviour of the aluminum sheet alloy
AA3004-H19 under planar simple shear is investigated. Simulations with both plane strain and
plane stress FE codes are presented. For comparison, results based on the Taylor-type
polycrystalline model under the assumption of homogeneous simple shear are also included.
Mesh sensitivity, and the sensitivity of the overall shear stress response and deformation
distribution to the loading direction, are investigated. Furthermore, the initiation and propagation
of shear bands are discussed in detail. The numerical results are compared with experimental data

found in literature.



Chapter 6 is devoted to simulations of earing during the deep drawing of aluminum
sheets. A simple flange model is presented where only the deformations in the flange area of the
sheet are considered in the analysis. Simulations with the plane strain FE code are performed
both with the polycrystal model and a phenomenological model (Barlat et al., 1991a,b) for the
aluminum sheet alloys AA6111-T4 and AA5754-0. The effects of these textures are discussed,

and the results are compared with experimental data.

Chapter 7 contains a brief summary and the general conclusions of this research. Future
applications and developments to improve metal forming modelling are also discussed in this

chapter.



CHAPTER 2

CRYSTAL PLASTICITY THEORY



2.1 Introduction

Metals are crystalline solids which consist of atoms arranged in a pattern that is repeated
periodically in three dimensions. Such an atomic arrangement can be described completely by
specifying atom positions in some repeating unit cell of the space lattice. Figure 2.1 illustrates the
unit cells for three typical microstructures of metals: BCC (body-centred cubic), FCC (face-
centred cubic) and HCP (hexagonal close-packed). Metals that crystallize in the FCC lattice are

aluminum, copper, brass, nickel, gold, silver, lead, platinum and gamma (y ) iron. In the present

research, the focus is on FCC crystals.

Body-Centred Face-Centred Close Packed
Cubic Cubic Hexagonal

Figure 2.1 The unit cells of BCC, FCC and HCP crystal structures.

Real crystals are rarely perfect. They usually contain imperfections or defects. Lattice
imperfections can be characterized geometrically according to whether the disruption in a lattice
is at a point, along a line, or over a surface. The most common point imperfections in a crystal are
vacancies, interstitial atoms, and substitutional impurity atoms. Vacancies play an important role
in deformations at high temperature. The most important is a type of line imperfection, known as

a dislocation.



Plastic deformation in polycrystals occurs primarily by the movement of dislocations.
The basic concept of dislocations was explained ingeniously by Taylor (1934) as the shearing of
different rows of atoms of a crystal in small regions, following their growth through the crystal.
The shear stress along the gliding direction on the glide plane of the dislocation, known as the
resolved shear stress, supplies the force to cause dislocations to glide. Among the different
mechanisms of plastic deformation in metals, such as slip, twinning, grain boundary sliding and
diffusion, the translation glide (slip) is the principal one in FCC metals at low and intermediate

temperatures. Only this crystallographic slip mechanism is considered in this study.

Crystallographic slip is anisotropic. It implies the massive movement of dislocations
along certain crystallographic planes (slip planes) in certain directions (slip directions). Each slip
direction on a slip plane defines a slip system. These slip directions and planes are almost always
those of maximum atomic density, and correspond to those slip systems in which dislocations are
most likely to move. Due to the symmetry of the crystal, there are 12 possible slip systems, {111}
<110>, for an FCC crystal (Fig. 2.2).

(2) (b)

Figure 2.2 A {111} <110> slip system within an FCC unit cell. (b) The (111) plane from (a) and
three <110> slip directions (as indicated by arrows) within that plane comprise possible slip

systems.

Slip deformation mechanics is governed by the critical shear stress law (Schmid, 1924),

which is often referred to as Schmid’s law. It serves as an initial microscopic yield criterion for



single crystals. The Schmid law states that extensive glide occurs when the resolved shear stress

attains a critical value; i.e., when
t® = mPo, =7 (ij=1,2,3) 2.1

Here 7@ is the resolved shear stress for the slip system a, o is the stress state acting on the

crystal, 7(? is the yield strength of the system «, and mf? is expressed as
(@) _ (@@
=S 22)

where s and b® are the components of the slip vector s@ and slip plane normal b,

respectively, for the slip system «. In (2.1), and throughout this thesis, the usual summation
convention of tensor calculus, is applied. Using (2.2), the components of the plastic strain-rate

tensor, D?, can be expressed as
D= Z% (mg.*) + mj‘:))y(“) (2.3)

where 7@ is the shear rate on the slip system «.

2.2  Single crystal deformation models

Tt is well known that the properties of polycrystals can be derived from those of single
crystals. With the assumption that plastic deformation is due solely to crystallographic slip, the
description of the deformation of single crystals has several versions. Here we discuss two main

theories: the rate independent and rate dependent models.



2.2.1 Rate independent deformation

Let rg‘”) represent the current value of the yield stress associated with the « slip system
and 7@ be the corresponding resolved shear stress. The Schmid law yields the following simple

flow rule for the shear rates #® according to the rate independent plasticity theory:

7@ = 0for @ <V,

7@ =0 for 2@ = % and ¢¥ < B7yP, 24)

7@ >0 for 7@ = 7% and ¢ = K*yP,

Here h* are the components of the slip system hardening matrix, which represent the
components of the increment of flow stress on system due to an increment of shear on system
B .In (2.4), and throughout this thesis, repeated Greek indices imply summation over the number
of slip systems (12 for FCC crystals) unless indicated otherwise. Equation (2.4) characterizes the

inactive, potentially active, and active slip systems.

Since there is essentially no change of volume for a crystal during plastic deformation,
only five components of the plastic strain rate tensor are independent. Therefore, there are only
five independent equations in Equation (2.3) for the 12 unknowns 7@ . This implies that a
geometrically possible combination of only five independent active slip systems are required to
accommodate five independent strains. For FCC crystals which have 12 slip systems, there exist

384 such geometrically possible combinations of 5 slip systems.
In order to select the active slip systems, Taylor (1938) introduced the hypothesis that the

actual combination of the slip systems is the one for which the sum of the shear rates is a

minimum; i.e.,

10



5
> @ =min (2.5)
a=1

This hypothesis has no obvious a priori justification. However, Taylor based it on observations of
single crystals subjected to uniaxial stress and on a postulated analogy with the dynamics of non-

conservative mechanical systems.

Bishop and Hill (1951a, 1951b) later recast this theory based on the principle of
maximum work, a version of which they derived for a single crystal. In particular, from the
principle of maximum work they derived inequalities between external work, computed as the
product of macroscopic stress and strain increments, and internal work computed as the integral
over the volumes of grains of the products of crystallographic shear strength, and assumed slip
increments. They then used these to set bounds on the critical stress state required to induce yield.
Indeed the primary aim of the Bishop and Hill theory was the computation of single and
polycrystal yield surfaces. They discovered that, for most orientations of a single crystal, the
active stress states are on the corners of its yield surface. For FCC metals deformed by {111}
<110> slip and which harden isotropically, there are 56 such corner stress states. More than five
slip systems are activated on these corners of the yield surface because they are the intersection
of at least six planes. Among the 56 stress vertices (28 plus their opposites), 24 will activate 8
slip systems and 32 will activate 6 slip systems.

The use of a yield surface in connection with “maximum plastic work” seems a more
valid basis as a selection criterion than Taylor’s assumption of “minimum sum of shears”.
However, Chin and Mammel (1969) proved that the two methods are strictly equivalent. Kocks

(1970) and Renouard and Wintenberger (1976) also arrived at the same conclusion.
2.2.2 Rate dependent deformation
The drawbacks of the rate-independent theory arise essentially from the lack of

uniqueness in the choice of the actively yielding slip systems. This is because the yield surface of

rate-independent single crystals is a polyhedron, and the prescribed strain-rate vector must be

11



perpendicular to the yield surface. As shown in Fig. 2.3, if the prescribed strain-rate vector is
perpendicular to the edge of the yield polygon, it is not possible to uniquely determine the
position of the stress vector on the edge. Under such conditions the stress state is ambiguous.
Furthermore, if the stress vector is on the corner of the yield locus, six or eight slip systems could
possibly be simultaneously activated, and the corresponding slips cannot be uniquely determined

from the five equations in Equation (2.3).

ac

Figure 2.3 Schematic illustration for the stress and slip ambiguities present in the rate

independent deformation model

In order to resolve the above ambiguities, Asaro and Needeleman (1985) introduced the
rate sensitivity of slip into Taylor-type crystal models. (Details of this formulation will be
presented in Chapter 3.) In this rate dependent model, no strict distinction between active and
inactive slip systems is made and there is no explicit yielding. Instead, all slip systems slip at a
rate which depends on the current value of resolved shear and the stress hardness properties. It is
because of the direct and unique relation between slip rates and the prevailing stress state (and the
current material state) that the slip rate on each slip system can be determined uniquely, and

hence furnish unique solutions. Thus, the long-standing problem of non-uniqueness in the stress

12



states and in the choice of active slip systems in the rate independent analysis is overcome by the

rate dependent model.
2.3 Deformation textures

The common metals in industrial practice are polycrystalline aggregates in which each
grain (crystal) can assume different orientations. In forming processes, where metals undergo
medium or large deformations, the grains in general do not have random orientations; instead,

non-random distributions termed preferred orientations or textures OCCur.

The actual orientation distribution of the individual grains in a polycrystal is the result of
the manufacturing process. The texture thus reflects the production history of the metal. Textures
have profound effects on the mechanical, thermal and electrical properties of materials, as well as
on the subsequent performance during fabrication and the final quality of products. For instance,

rolling of aluminum, commercial alloys or high-purity materials results in a complex mixture ofa

range of texture components which include {112} <1 1 T> (the Cu-component), {123} (415) (the S-

component), and {110} <1 T2> (the brass-component), as well as a variety of other components.

The prediction and simulation of such texture developments are very desirable, since many
forming operations are carried out on rolled materials and the forming capability of these metals
strongly depend on their textures. Stamping a circular cup from rolled and/or annealed metal
sheets with textures, for example, often results in undesirable waves on the sides of the cup, a
phenomenon known as “earing”. Textures are so important that predicting their development and

evolution during deformation is vital for control purposes in industrial practices.
2.4 General introduction to polycrystal deformation models

In addition to the general capabilities of phenomenological models, a polycrystal
deformation model must possess other advantages. It should be capable of describing some
phenomena which cannot be modelled by phenomenological theories, such as the important

polycrystal deformation characteristic — crystallographic textures. In general such a model can be

13



derived from single crystal deformation models. The issue is how to establish the relationships
between microstructural mechanisms of deformation operating on the single crystal level and

overall polycrystal behaviour.

To relate the behaviour of a polycrystalline aggregate to that of the constituent single
crystals, something must be known or assumed about the stresses or strains of the individual
grains. Usually, assumptions are made about the distribution of stresses and strains in the
polycrystal, and polycrystal response is identified with some appropriate average of the response
of its constituent grains. Several such models have been proposed, which have provided much
useful insight into texture development and polycrystal strain hardening behaviour. These
models, described below, are based on the concept of polycrystal deformation due to
crystallographic slip at the level of the single crystals. Other deformation mechanisms, such as

grain boundary sliding, diffusion, and twinning, are neglected.
2.4.1 Sach’s model

Sach’s (1928) model, one of the earliest polycrystal models, is based on the assumption
that each grain is subjected to the same stress state. In this model, the grains are treated as if they
were an array of free single crystals which can deform independently of each other. Strain and
orientation changes are deduced from the stress in the same way as in the case of a free single
crystal submitted to a known stress. Each grain is subjected to the same stress state which is also
the macroscopic stress. The model was refined by Kochendorfer (1941) who further stipulated

that each grain was subjected to the same stretch.

In this model, because of the assumption that each grain is subjected to the same stress
state equal to the macroscopic stress, the stresses arising from constraints necessary to satisfy an
imposed strain are neglected. As a result, continuity of strain across a grain boundary is violated
(Bishop and Hill, 1951a; 1951b). Also some numerical inconsistencies with experiments exist in
this model (Asaro and Needleman, 1985). In general, this theory was not found to be very

successful in predicting deformation textures.

14



2.4.2 The Taylor crystal theory

In order to overcome the objections to Sach’s model, Taylor proposed an alternative
model. There are two aspects in the original Taylor theory: (a) a criterion for selecting the active
slip systems in a deformed single crystal (Section 2.2.1), and (b) the assumptions for linking the

deformation behaviour between the constituent grains, and the polycrystalline aggregate.

The basic idea underlying the Taylor model rests on experimental observations. By
examining a micrograph of the cross section of a drawn wire, Taylor observed that all the grains
were elongated in the direction of extension, and contracted in the two perpendicular directions.
He concluded that the strain field throughout the polycrystal is homogeneous, implying that each
grain deforms exactly in the same way as the polycrystal. This assumption has served as a tool
for linking the deformation behaviour among all constituent grains, and between individual grains
and polycrystals. It is now known that it is not exactly true, but the assumption has the advantage

of assuring continuity of the strain rate across the grain boundaries so that no voids are created.

With the Taylor assumption the stress state is not continuous, but varies abruptly from
grain to grain, depending on different grain orientations. As pointed out by Bishop and Hill

(1951a, 1951b), each grain satisfies the relation
O grain|T = dy[ds = M (2.6)

where o

grain

and de are the axial stress in a grain and the macroscopic aggregate strain

increment, respectively, and 7 and dy are the shear strength and slip-system shear strain

increment, respectively. M is the orientation factor, depending only on the lattice geometry and,

in particular, on the relationship between the loading axis and the slip system of the crystal.

Taylor and Elam (1923) studied the uniaxial tension of aluminum polycrystals. By

assuming that each grain is at the same stage of strain hardening, Taylor predicted that if 7, is

the yield strength in shear of a single grain, the tensile yield stress of a random aggregate would
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be 3.067,. Very close agreement was obtained when Taylor tested this theory by comparing the

tensile stress—strain relation (o;,gg,e,—g) measured on an aggregate with that deduced from the

shear stress—strain (z—y) curve of single crystal, where
O.aggre. = H T
Q.7
e=y/M

and where M , the so-called “Taylor factor”, may vary from one type of texture to another. Its

value is approximately 3.06 for isotropic polycrystals.

Summarizing, two main points emerge from the Taylor theory regarding the relation

between the deformation of single crystals and that of polycrystals:

1. The deformation in each crystal is the same as the macroscopic deformation; the shapes of

the constituent crystals do not enter in the idealization; and

2. The macroscopic stress of a polycrystal is the average of the stresses of all constituent

single crystals.
These concepts are adopted for our numerical analyses.
2.4.3 Relaxed constraint models

In the classical Taylor-type models, five independent slip systems have to be activated to
guarantee deformation compatibility of the whole specimen. Since the number of strain

conditions (the “number of constraints”) is as large as five, such models are referred to as “full

constraint” (FC) models.
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More recently, a modification of the Taylor model, the method of “relaxed constraints,”
(RC) has been suggested by Honneff' and Mecking (1978) and further developed by Kocks,
Jonas, Canova and co-workers (1984) to account for material texture effects. The idea here is to
assume that when grains re-orient and take on very distorted shapes, characterised by large aspect
ratios of the principal lengths, it is possible to partially relax the strict compatibility requirements
imposed in the Taylor model. Non-unuiform deformations (not accounted for in the model) are
envisaged to occur at the grain boundaries which accommodate the incompatibilities implied by
the non-imposed strain components. When applied to certain deformation states such as
axisymmetric tension and compression they argue that the dimensionality of the problem is

reduced so that less than five independent slip systems are needed.

The methodology of relaxed constraints has been used by the above authors to analyze
deformation textures in FCC polycrystals following several strain histories such as axisymmetric
tension and compression, along with large simple shear. Since the imposed strain increments
differ from those that would be imposed in a full constraint (Taylor) model, the slip modes and
lattice rotations predicted by the two approaches are different. In a few cases the RC method has
been reported to lead to predicted textures that are in better agreement with experiment, for
example as in the analyses of Canova et al. (1984) of texture development following large simple

shear.

2.4.4 Self-consistent schemes

The self-consistent method (SC), based on Eshelby’s (1957) concept, was proposed
mainly by Kréner (1958), Budiansky and Wu (1962), and Hill (1965). Generally, these models
assume a homogenization scheme in which the grain interactions with the matrix are taken into
account. In the homogenization scheme, the material properties of a polycrystal aggregate vary
from grain to grain, and each grain is treated as a local inhomogeneity embedded in a

homogeneous equivalent medium (HEM).

Based on the SC method, Molinari et al. (1987) and Toth et al. (1994, 1997) predicted
texture evolution for FCC and BCC polycrystalline materials during rolling and torsion,
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respectively. Lebensohn et al. (1993) predicted texture evolution during rolling and axisymmetric
deformation of a zirconium alloy. They also determined the plastic anisotropy of a rolled
zirconium alloy sheet. Recently Choi et al. (2000) also used the SC method to investigate the
effects of crystallographic and morphological texture on the macroscopic anisotropic properties
(r-value and normalized yield stress) for AASO19A sheets in H48 and O temper conditions using
the full-constraint Taylor and a visco-plastic self-consistent polycrystal model. They have

presented results where spherical and ellipsoidal grain shapes were analyzed.

For cubic metals, such as FCC polycrystals, textures predicted by the SC models are
rather similar to those obtained with the FC and RC models. Significant differences are observed
in plastically more anisotropic hexagonal metals (e.g., Lebensohn et. al, 1994) although
sometimes the reorientation due to twinning obscures the comparison between the FC and SC

methods.

2.5 Recent developments in crystal plasticity theory

In this section we summarize new developments in crystal plasticity theory and give

examples of their applications.

2.5.1 Finite element per single crystal (FESC) model including the effects of the crystal

shape on texture evolution

Another approach, which is capable of including the effects of crystal shape on texture
evolution, utilizes finite element methodologies to discretize the crystals of an aggregate using
one or more elements for every crystal. In this model, a polycrystalline aggregate is treated as a
continuum where both compatibility and equilibrium among the individual grains are

automatically satisfied.
Asaro and co-workers (e.g., Harren et al., 1988) have conducted some novel experiments

and simulations of shear band formation in Al-3wt% Cu FCC single and polycrystals under plane

strain compression. In their work, they modelled each grain by a number of finite elements to
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allow for non-uniform deformations within the grains. Their simulations of the deformation
response of a multi-crystal comprising of 27 grains provided good insight into the underlying

micromechanical mechanisms of localized deformation in crystalline materials.

Recently, Mathur et al. (1990) extended the mathematical formulation developed earlier
by Mathur and Dawson (1989) to account for the effects of grain shape on the development of
deformation-induced crystallographic textures using the relaxed constraints approach of Honneff
and Mecking (1978), Kocks and co-workers (Kocks and Canova, 1981; Canova et al., 1984;
Tomé et al., 1984). Within their framework, each grain could no longer be treated independently
nor could the stresses from all grains in an aggregate simply be averaged. Rather, in a restricted
sense the actual continuity requirements from continuum mechanics were enforced across flat
grain boundaries, while the overall deformation of an aggregate was constrained to match the
macroscopic deformation of the material point. They simulated the flat rolling of polycrystalline
aluminum as an application for their model, and compared the predicted deformation textures
with the predictions of an earlier study which were based on a Taylor model. Several detailed
comparisons indicated that the texture predictions made by the new model, which accounts for

the effects of grain morphology, matched the experimental observations more closely.

Kalidindi et al. (1992) developed a finite element polycrystalline model where each
element represented one crystal and sets of initially “random” grain orientations were assigned to
the elements. As with Taylor model simulations, the macroscopic stress—strain response and
crystallographic texture were computed as volume averages over the entire aggregate. The
crystallographic texture was obtained by a direct equal-area projection of the orientations of all
grains. Their calculations satisfied (in the “weak” finite element sense) both compatibility and
equilibrium in the aggregate. They analysed FCC, polycrystalline, oxygen-free-high-conductivity
(OFHC) copper for (i) planar simple shear and thin-walled tubular torsion to large shear strains,
and (i) a simple plane-strain forging operation. Their results clearly indicated that the new model

nicely captured the major features of the evolved textures.

Bronkhorst et al. (1992) used the model proposed by Kalidindi et al. (1992) to simulate

“nominally homogeneous” deformations of simple compression and tension, plane strain
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compression, and simple shear of a polycrystalline aggregate by using a multitude of single
crystals. They compared their results against those from Taylor-type calculations and concluded
that their model was in much better agreement with the experiments than was the Taylor-type
model. Anand and Kalidindi (1994) also used the model proposed by Kalidindi et al. (1992) to
simulate the effects of crystallographic texture evolution on the process of shear band formation
in plane strain compression of initially isotropic OFHC polycrystalline copper. They computed
deformed textures that are in very good qualitative agreement with the experimental texture after

an axial compressive strain of —1.0.

Beaudoin et al. (1995) developed a finite element model based on a hybrid formulation to
investigate the averaging of crystal microscopic responses developed during the course of a
macroscopic deformation. They simulated channel die compression with one crystal per finite
element and compared their results with simulations obtained from the FC and RC models. Their
hybrid finite element formulation was able to predict the development of the brass texture
component in the 90° section of the crystal orientation distribution (COD), while there was no
evidence of formation of this texture component in their RC simulation. While their FC model
showed texture development in the 90° section, it was away from the brass location indicated by

the experimental data.

The study of a model polycrystal using finite element simulations (Sarma and Dawson,
1996a) showed neighbour interactions to be the main factor in determining the spread of the
applied deformation among the crystals. Sarma and Dawson (1996b) presented a viscoplastic
model for distributing the deformation applied to a polycrystal in a non-uniform fashion among
the constituent crystals. Their finite element model was based on the hybrid formulation of
Beaudoin et al. (1995). Polycrystal simulations of crystallographic texture development under
plane strain compression and simple shear were simulated with this model, and the results
obtained were compared to the results of similar calculations using a Taylor model. They
concluded that the model incorporating neighbour interactions improved texture predictions, in

terms of both the intensity levels and the locations of certain texture components.
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Recently, Acharya and Beaudoin (2000) proposed a constitutive model for the prediction
of grain-size dependent hardening in FCC polycrystalline metals where they considered a purely
viscoplastic response. Later on, Beaudoin et al. (2000) extended this work to include effects of
temperature and strain rate dependence. Their work has provided detailed comparisons between
their model and experimental compression data, taken at varying temperature and strain rate, for

pure Ag having two different grain sizes.

2.5.2 Strain gradient plasticity

Dislocation theory suggests that the plastic flow strength of a solid depends not only on
strains, but also on strain gradients. Hardening is due to the combined presence of geometrically
necessary dislocations associated with a plastic strain gradient and statistically stored dislocations
associated with plastic strain. In general, strain gradients are inversely proportional to the length
scale over which plastic deformation occurs. Thus, gradient effects become important for plastic
deformations taking place at small scales. Experimental evidence suggests that the flow strength

increases with diminishing size, at length scales on the order of several microns or less.

The most general versions of the theories proposed fit within the Toupin (1962) and
Mindlin (1964) strain gradient framework, which involves all components of the strain gradient
tensor and work-conjugate higher-order stresses in the form of couple stresses and double
stresses. A specialized version deals with only a subset of the strain gradient tensor in the form of

deformation curvatures (i.e., rotation gradients). This is the simpler couple stress framework.

Experimental evidence is accruing for the existence of a strong size effect in the plastic
flow of metals and ceramics. For example, the measured indentation hardness of metals and
ceramics increases by a factor of about two as the width of the indent is decreased from about 10

um to 1 um (Stelmashenko et al., 1993; Ma and Clarke, 1995). The well-known Hall-Petch

(1951) effect states that the yield strength of pure metals increases with diminishing grain size.
Long-standing observations of shear bands in metals have revealed that micro-shear band widths
appear to be consistently on the order of a micron. Simple dimensional arguments lead to the

conclusion that any continuum theory for each of these phenomena based solely on strain
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hardening, with no strain gradient dependence, would necessarily predict an absence of any such

size effect.

Gradient effects in an elastic single crystal of pure metal become significant only for
deformation fields with wavelengths on the order of the atomic spacing. However, when plastic
deformation occurs, gradient effects can become important at much larger scales. Fleck and
Hutchinson (1997) used the notions of statistically stored dislocations and geometrically
necessary dislocations to provide the physical basis for a continuum theory of single-crystal
plasticity. They assumed that slip occurs on specific slip systems in a continuous manner, and
that the increment in flow strength of any given slip system depends upon the rates of both the
strain and the first spatial gradient of strain. Their crystal theory fits within the framework of
Toupin (1962) and Mindlin (1964, 1965) strain gradient theory.

Following Mindlin (1964) and Fleck and Hutchinson (1997), Shu and Fleck (1997)
presented a formulation where they assumed that the per unit volume internal work rate of a
strain gradient solid consists of two parts: the usual second order stress tensor and a third order
double stress tensor. They used this formulation to investigate the size dependent deformation of
bicrystals. Recently Shu and Barlow (2000) demonstrated the improved modelling accuracy of a
finite deformation strain gradient crystal plasticity formulation over its classical counterpart by
conducting a joint experimental and numerical investigation of the microscopic details of the
deformation of a whisker-reinforced metal matrix composite. They obtained the lattice rotation
distribution around whiskers in thin foils using a transmission electron microscopy (TEM)
technique, and then correlated these results with numerical predictions based on finite element
analyses of a unit-cell of a single crystal matrix containing a rigid whisker. Their strain gradient
formulation accounted for both strain hardening and strain gradient hardening. They found that,
while a classical crystal formulation tends to over-predict the spatial gradient of the deformation,
the strain gradient formulation was able to predict a more smooth field with significantly lower

gradients and thus in better correlation with the TEM measurements.

Acharya and Bassani (2000) developed a simple constitutive model where lattice

incompatibility only enters the instantaneous hardening relations, and thus the incremental
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moduli, which preserves the classical structure of the incremental boundary value problem. Due
to this inclusion of a material parameter with dimensions of length in the hardening response, an
intrinsic length-scale was introduced in their theory. Spatial derivatives of elastic deformation
entered into material response which, at least in the case of single slip, make the slip evolution
dependent on spatial derivatives of slip. They have discussed the implications of their modified
constitutive structure with respect to the incremental boundary value problem of equilibrium for

rate-independent and rate-dependent response.

2.5.3 Models including backstress

Polycrystalline plasticity formulations to date have neglected explicit effects of
dislocation substructure in the constitutive relations. As a result, symptoms which lack physical

' bases arise, such as premature texture development (Harren et al., 1989).

When a metal deforms inelastically, inhomogeneities arise due to mechanisms at several
length scales. These inhomogeneities can arise from single dislocation sources at the lattice, or at
a higher length scale via dislocation cell boundaries enclosing equiaxed volumes that contain few
dislocations. Inhomogeneities can also arise at higher length scales from geometrically necessary
boundaries (GNBs) which surround groups of cells in cell blocks (CBs) (Kuhlman-Wilsdorf,
1989; Hansen, 1990; Leffers, 1992). Inhomogeneities give rise to internal stresses associated with
local hard and soft regions; hence, macroscale hardening behaviour during inelastic deformation
ensues from dislocations simultaneously interacting throughout a range of length scales. These
inhomogeneties not only generate short range stresses at a local level which induce anisotropy,

but also affect the polycrystalline elastic anisotropy.

The crystal plasticity models that have previously been discussed have been successful in
predicting the elasto-plastic behaviour as well as the texture evolution for crystalline materials.
However, backstress evolution has been neglected in these models. The backstress is a residual
stress embedded in the polycrystalline or single crystal material at the crystal-lattice level due to
plastic deformation of crystals. Within the context of dislocation resistance, the notion of
backstress was studied by Mughrabi (1983). It has been used in some plasticity models to

describe the Bauschinger effect which has been associated with sequential activation, de-
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activation, and dislocation substructures. The backstress arises as dislocation densities at the
GNBs are high enough to induce a tensile stress state (or forward stress) such that regions
between them experience a compressive stress state. To maintain compatibility at the interface
between the boundaries and interiors of the subgrain, the GNBs serve as barriers to dislocation
motion and give rise to backstress. These backstresses influence the work-hardening rate and
limit the free operation of dislocation sources in the softer cell interiors when the material is
reloaded. Tensile stresses (or forward stresses) in the boundaries assist the applied stresses to

operate on the sources with shorter dislocation segments.

Horstemeyer and McDowell (1998) introduced a second rank micro-heterogeneity internal
state variable (ISV) tensor into the elastoviscoplastic polycrystalline framework (Rashid and
Nemat-Nasser, 1990) to represent effects of dislocation substructures in the form of geometrically
necessary boundaries (GNBs). This evolving ISV was resolved onto the slip systems using
Schmid’s law to introduce kinematic hardening (i.e., a backstress) in the flow rule. The micro-
heterogeneity ISV tensor that they introduced also affected the intergranular constraint by using a
self-consistent (relaxed constraint) method analogous to that of Berveiller and Zaoui (1979). This
micro-heterogeneity ISV relates the dislocation substructure evolution to the backstress for
intergranular hardening, and to the grain boundaries for intergranular hardening. By including the
micro-heterogeneity ISV into the elastoviscoplastic polycrystalline framework relative to the
Taylor model, they improved trends of correlations with experimental compression and torsion
stress—strain curves. Also the trends of their prediction of axial stresses in fixed end torsion tests
were more realistically simulated as second order axial effects were shown to depend on both
texture and dislocation substructure. Two other noteworthy results presented were that the trends
of intensity and distribution (spread) of texture evolution were more realistically predicted, and
that the trends of prediction of polycrystalline elastic moduli for deformed OFHC Cu and 304L
stainless steel were more accurately simulated. Also their elastoviscoplastic calculations with the
micro-heterogeneity ISV model showed that torsion produced a higher degree of anisotropy than
compression since the backstress magnitude for torsion was greater than for compression. Their
results and also other results such as presented by Voyiadjis and Huang (1996) and Dawson et al.
(1999) suggest that residual stresses such as backstresses and their evolution should be

considered for a physically-based polycrystalline framework.
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2.5.4 Discrete dislocation plasticity

As has already been discussed, conventional plasticity theories are length-scale
independent and exclude the effects of strain gradients. However, based on crystal plasticity, Van
Der Giessen and Needleman (1995) have presented a method for solving small-strain plasticity
problems with plastic flow represented by the collective motion of a large number of discrete
dislocations. Their formulation assumes that the ensuing deformation process is quasi-static and
involves small strains. The process leads to the motion of dislocations, mutual annihilation, the
generation of new dislocations and their pinning at point obstacles. The analysis of Van Der
Giessen and Needleman (1995) of the deformation process is performed in an incremental
manner in time, where the incremental step at any instant ¢ involves three main computational
stages. First, for the current dislocation arrangement, the current stress, and the strain state of the
problem are determined. Secondly, from that state, the so-called Peach-Koehler force, i.e., the
driving force for changes in the dislocation structure, is determined. Finally, the instantaneous
rate of that dislocation structure is computed on the basis of a set of constitutive equations for

motion, annihilation and generation of dislocations.

Van Der Giessen and Needleman (1995) have presented results for monophase and
composite materials with periodic microstructures subjected to simple shear loading. Even
though they were only for a single slip system and use assumptions for sources and obstacles, the
results showed a number of noteworthy features; especially for problems of plastic flow near
crack tips, around micro-indentors and in composite materials, at a scale where the collective
motion of large numbers of dislocations and discrete dislocation effects play a role. Their results
indicate that, for the aforementioned microscale problems, continuum plasticity may not give the
desired resolution of stress and strain fields on that scale, and that the discrete nature of

dislocations may need to be accounted for.

2.6 Crystal plasticity numerical analyses

In this section, a brief summary of numerical analyses based on crystal plasticity will be

presented. Before reviewing simulations for polycrystals, we discuss some analyses based on
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single crystal models since these analyses provide a foundation for understanding the nature of

nonuniform deformations in crystals.

Numerical analyses of plane strain tension for single crystals have been presented by
Peirce et al. (1982, 1983). They demonstrated that nonuniform deformations, crystal lattice
rotations, and the evolution of shear bands in single crystals could be modelled using the finite
element method. Shear band formation during the plane strain compression of single crystals has
been analyzed by Harren et al. (1987). Subsequently, Déve et al. (1988) investigated shear band
bifurcation strains, shear band angles, as well as lattice orientations within shear bands. Their

predictions were found to be in good agreement with experimentally measured values.

There have been significant advances in implementing single crystal deformation
mechanisms in polycrystal constitutive models as well as in the application of these models. A
pioneering work is that of Asaro and Needleman (1985) who have presented an elastic-plastic,
rate-dependent polycrystalline constitutive model for low homologous temperatures. The global
response of the polycrystal was obtained by employing the Taylor (1938) hypothesis.
Accordingly, the deformations in each grain of the aggregate were taken to be uniform and equal
to the macroscopic deformation, while the macroscopic stresses in the polycrystal were obtained
as the average of the stresses in each crystal. As applications of their formulation, Asaro and
Needleman (1985) analyzed uniaxial tension, plane strain tension, and compression. Furthermore,
they presented sheet necking simulations based on the analysis proposed by Marciniak and
Kuczynski (1967) (referred to as the M-K analysis) both for isotropic and strongly textured
sheets. Finite element predictions based on their formulation for the evolution of texture in plane
strain compression and simple shear in FCC polycrystals have been compared against existing
experimental work on copper (Harren et al., 1988; Harren and Asaro, 1989). It was found that all
of the relevant features of experimentally determined textures could be captured by this

formulation.
Using the polycrystal model proposed by Asaro and Needleman (1985), Harren et al.

(1989) presented numerical analyses of large-strain shear in FCC polycrystals. In their work, they

investigated the effects of strain hardening, latent hardening, strain-rate sensitivity, and initial

26



textures on texture evolution and constitutive response. However, their analyses were restricted to
conditions of homogeneous simple shear. Neale et al. (1990) presented an accurate analysis of
fixed end torsion of a solid bar using a Taylor-type rate dependent polycrystal model. Their
analysis was based on a special solution procedure in which the solution was obtained from the
response to simple shear. They concluded that the trends for the stresses which develop in solid

bar torsion may differ considerably from those of homogeneous simple shear.

Mathur and Dawson (1989) incorporated a Taylor-type polycrystal model into an Eulerian
finite element procedure. They used this approach to predict the evolution of crystallographic
texture in a steady-state aluminum rolling procedure. A streamline technique was employed to
integrate the evolution equations for the lattice rotations and the slip system hardnesses. As an
extension of this work, Mathur et al. (1990) analyzed the development of deformation-induced
texture during bulk forming processes using the “finite element per single crystal” (FESC) model
discussed in Section 2.5.1. Other applications with the FESC model have already been discussed
in Section 2.5.1 (e.g., Kalidindi et al., 1992; Bronkhorst et al., 1992; Anand and Kalidindi, 1994,
Beaudoin et al., 1995; Sarma and Dawson, 1996b).

Becker (1992) also employed the Asaro and Needleman (1985) polycrystal formulation to
simulate the development of shear localization in a polycrystalline sheet subjected to pure
bending. His simulations showed that the predicted bands of localized plastic deformation
occurred at realistic strain levels and at angles which were in agreement with the shear band
angles in a bent sheet. Simulations of earing during the deep drawing of polycrystalline
aluminum sheets have also been presented by Becker et al. (1993). Their analysis was based on a
special flange analysis (which will be discussed in Chapter 6), and the results were in good

agreement with experiments.

Van der Giessen and Neale (1993) extended the polycrystal model employed by Neale et
al. (1990) to include the anisotropic elasticity of the crystals as well as slip system hardening
(similar to that of Asaro and Needleman, 1985). This work was the first numerical study based on
polycrystal plasticity for the inverse Swift effect. They analyzed free-end twisting, unloading and

subsequent free-twisting extension of solid bars, and concluded that textures produced during
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each of the above stages are of prime importance for the inverse Swift effect. More recently, Wu

et al. (1996) have analyzed the behaviour of FCC polycrystals during reversed torsion.

Using the previously mentioned M-K approach, Tvergaard and Needleman (1993)
investigated the development of localized shear bands in polycrystals subjected to plane strain
tension, biaxial stretching, and large strain shear. In their analyses, which was also based on the
polycrystal model formulation of Asaro and Needleman (1985), they investigated the effects of
variations in imperfection amplitude and material strain-rate sensitivity on the formation of shear
bands. Zhou and Neale (1995) have directly applied a rate dependent crystal plasticity model in
conjunction with the M-K approach to predict forming limit diagrams (FLDs) for annealed FCC
sheet metals. Subsequently, Wu et al. (1997, 1998) and Savoie et al. (1998) used the Asaro and
Needleman (1985) polycrystal plasticity formulation to compute the FLDs for FCC polycrytals.
They discussed in detail the effects of various material parameters on the predicted FLDs, and

showed that this analysis leads to very good agreements with experimental trends.

2.7 Discussion and conclusion

In this chapter, the deformation characteristics of single crystals and polycrystals have
been presented. The principles of anisotropy were well understood for single crystals by the
1950s, even for the grossly nonlinear properties of plastically deforming solids. Predicting the
anisotropy of polycrystals from single crystal properties involves two fundamental steps: (a) the
determination of the texture by measuring the orientations of all crystals of a polycrystal, and (b)
an averaging scheme for combining single crystal properties into polycrystal behaviour which, at

least for mechanical properties, is not a trivial task.

The inherent difficulty with the rate independent formulation; loss of uniqueness of the
“mode of slip”, was solved when Asaro and Needleman (1985) introduced the rate sensitivity of
slip into Taylor-type crystal models. In this rate dependent model, slip rates are directly and
uniquely related to the prevailing stress state allowing the unique determination of the slipping

rate on each slip system.
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Crystal plasticity models reviewed in Section 2.4 can be classified in two groups: the self-
consistent models and the Taylor-type models. The self-consistent models are more complex than
the Taylor-type models; they explicitly account for the interaction of each grain (or subdomains
in the grain) with its surroundings, for the relative anisotropies of the grains, and for grain shape
effects. As a result, they can be used to analyze problems that cannot be investigated properly
with the simpler Taylor-type models, such as the plastic deformation of highly anisotropic
materials with a limited number of slip systems, or the heterogeneous deformation of polyphase
materials. However, the assumption of an isotropic matrix may not be valid at large deformations,
and they involve very lengthy and complex calculations for simulations of polycrystal

deformation.

Compared to the self-consistent models, the Taylor-type models are simpler, and the
corresponding calculation procedures are much shorter than the self-consistent ones. Therefore,
they have been more widely used for simulations of polycrystal deformation, particularly for
predictions of texture development. The Taylor hypothesis can be described as a partitioning
assumption in which the analysis does not require detailed definition of the aggregate topology.
The partitioning of the macroscopic deformation among the crystals of a polycrystalline

aggregate is done without regard to which crystals are neighbour of which.

The evaluation of the validity of Taylor’s model has been done exclusively through
comparisons of its predictions with experimental results. Comparisons of predicted textures based
on the Taylor theory with experimentally observed textures have been carried out by many
authors. Kocks et al. (1988) concluded that the Taylor model can successfully refer aluminum,
copper and silver deformation to large strains by wiredrawing, compression and torsion to one
single work-hardening master curve when the initial textures are included in the model

calculations.

The Taylor assumption suffices for evaluating the mechanical response of an aggregate if
the grains are nearly equiaxed and the strains accumulated over the loading path are not too large.
However, heavily worked grains become distorted with the consequence that the deformation of

individual grains may not be the same as the macroscopic deformation. Rather, even though
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collectively the grains in an aggregate follow the macroscopic deformation, individual grains may
be more likely to exhibit responses that differ from the mean. In essence, the constraints on one
grain from its neighbours are qualitatively different from those demanded by a Taylor
assumption, and thus different combinations of deformation modes in each grain are activated.
This directly affects subsequent texture development and thereby influences the anisotropy
imparted to the flow and yield properties of the polycrystal. Under these conditions, if grain
shape effects are not included, the predicted textures are not in good agreement with the

experimental textures.

In order to account for the grain shape effects, the so-called “finite element per single
crystal” models were developed where the crystals of an aggregate are modelled by elements,
using one or more elements for every crystal. These finite element calculations furnish detailed
analyses of the plastic behaviour for each individual grain, which in turn provides an
understanding of the mechanisms that contribute to the deformation of the polycrystal. As
discussed in Section 2.5.1, many authors have presented improved predictions of the major and

minor texture components at large strains by including grain shape effects in the analyses.

Another important concept relates to the residual stresses at the crystal level in a
polycrystalline metal following plastic deformation. Residual stresses exist in polycrystals after
unloading as a consequence of the single crystal anisotropy and grain interactions. One important
residual stress is the backstress embedded in the polycrystalline or single crystal at the crystal
lattice level. Computations have shown that backstresses can have important effects on the trends

of intensity and distribution of texture evolution (e.g., Horstemeyer and McDowell, 1998).

Considering all the polycrystal models that have been described in this chapter, it is fair to
conclude that the Taylor model for polycrystalline materials is in very good first-order agreement
with experiments for the evolution of texture and the overall stress—strain response of single
phase FCC materials. It has been regarded as one of the most successful models, and is widely
accepted for analyzing deformation responses and texture evolution in polycrystals. Thus, for the
numerical simulations presented in this study, the rate dependent Taylor type polycrystal model is

adopted.
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CHAPTER 3

POLYCRYSTAL DEFORMATION FORMULATION AND
NUMERICAL ANALYSIS



3.1 Formulation

The polycrystal deformation analysis used in the present study is based on Asaro and
Needleman’s (1985) Taylor-type formulation. It includes five aspects: (i) the polycrystalline
nature of the metal, (ii) the microscopic deformation mechanism, assumed to be rate-dependent
crystallographic slip, (iii) the evolution of crystallographic texture, (iv) anisotropic crystal

elasticity, and (v) finite deformations.

This formulation considers a material point as a collection of a certain number of grains.
The deformation in each grain is taken to be identical to the macroscopic deformation of the
continuum. Furthermore, the macroscopic values of all quantities, such as stresses, stress rates
and elastic moduli, are obtained by averaging their respective values over the total number of
grains at the particular material point. In this model, strain compatibility is satisfied from grain to
grain, but equilibrium may be violated on the grain boundaries, since the state of stress may vary
among the grains of the aggregate in general. However, the average macroscopic stresses are

required to satisfy equilibrium and balance the external tractions.

The mathematical formulation based on this model, and used in our finite element
procedure, attempts to simulate any evolving plastic anisotropy by tracking all the grains at a
material point, and computing how the grains rotate and how the slip systems of these grains
strain-harden. It is worthwhile to mention that, even though our applications are simulated as 2-D
modes of deformation, the constitutive model and computational procedures incorporate the full

3-D slip structure of FCC crystals.
3.1.1 Notations

Standard notations are used throughout this thesis. Tensors and vectors are denoted by

bold-faced letters and the symbol ® denotes the tensor product. The following operations for
arbitrary second-order tensors a and b apply: ab = a,b,; ¢;®e;(e; being a cartesian basis), @ . b =

a,b, , with proper extension to higher order tensors. Superscripts T and —1 denote the transverse
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and inverse of a second order tensor respectively. The trace is denoted by tr. Furthermore, Latin

indices range from 1 to 3.
3.2  Single crystal constitutive model

The total deformation of a single crystal is taken to be the result of two distinct physical
mechanisms: crystallographic slip due to dislocation motion on the active slip systems, and
clastic lattice distortion (e.g., Rice, 1971; Hill and Rice, 1972). Within an FCC crystal, plastic

deformation occurs by crystallographic slip on the 12 {111} (110) slip systems where the slip
planes are the {111} crystallographic planes with normals b, and the (110) directions are the
shear directions with slip vectors s. Plastic deformation is envisaged to occur as a set of plastic
simple shears along the various slip systems, leaving the lattice and the slip system vectors
(s, b)) not only essentially undistorted, but also unrotated. (The brackets for the subscripts a
indicate that ¢ is not a tensor index, and its value ranges from one to the total number of slip

systems.) Next, the material and lattice are considered to deform elastically and rotate rigidly

from the plastically deformed state to the current configuration as illustrated in Fig. 3.1.

4 p
Y 33'4

Figure 3.1 Decomposition of the deformation gradient F
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As a result of the above deformation mechanism, the deformation gradient F can be

written as:
F=F'F?, 3.1

where F” consists solely of crystallographic slipping along the specific slip systems, while the

elastic deformation and any rigid body rotation are embodied in F". The deformation in (3.1) can

be envisioned as occurring in two stages: material first moves though the undeformed crystal

lattice according to F” and then the lattice and material deform together giving rise to F ". From
(3.1), the spatial gradient of velocity can be written as

L=FF'=L +I*, (3.2)

where

L=FF™, I!=F"(F’F"")F"" (3.3)

The vectors s™@ and ™ are regarded as lattice vectors that remain orthogonal. Accordingly, they

stretch and rotate by

§@=F's@, @ = pF"! (3.4)
Taking the symmetric and antisymmetric parts of (3.2) and (3.3) leads to the elastic and plastic
strain rates D" and D”, the so-called plastic spin Q, and the spin Q" associated with the rigid
lattice rotation

D=D"+D?, Q=0+ Q" (3.5)

where
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N
=) % (s“(")@b*(") + b ORs® )

a=1
(3.6)
N
P_N"p@1 ( (@Qp' @ — p'@ *(a))
Q ;y 5 5B - b ®s
By introducing the following symmetric and skewsymmetric tensors for each slip system «
P“":%[b"("’@m*("" + b*“”@s*(“)]
3.7)
W‘“’:l[s“(")®b*(”) _ b”"’@s”"”]
2 b
the plastic strain rate and plastic spin for the crystal can be written as
D= Z P(a)y(a) , QF = ZW(a)y(d) (3.8)
respectively, where 7@ is the shear rate on the slip system o .
The elastic constitutive equation for a crystal is specified by
Vw * * *
tT=r-Qr+7Q=LD, (3.9

v
where 7° is the Jaumann rate of the Kirchhoff stress tensor 7 based on the lattice rotations, and

L. is the tensor of the elastic moduli. These moduli are based on the anisotropic elastic constants

of the FCC crystals and thus exhibit the appropriate cubic symmetry.
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v
In order to express the constitutive law (3.9) in terms of the Jaumann rate o of the
Cauchy stress o =det(F Yz, based on the continuum slip W, we introduce a second-order

tensor R for each slip system as follows
RO=LP? + W@ - o W®@ (3.10)

Using (3.4) — (3.8) and (3.10), the constitutive equation (3.9) can be rewritten in the form

v
o=LD-6°-c trD (3.11)

where 6 is a viscoplastic type stress rate defined by

¢'= Y Ry® (3.12)

a

The slip rates to be substituted into equation (3.12) are taken to be governed by the power

law expression

Ja
@ 7'

@
g Q,

4 (a):7 ©S817T (3.13)

where 7(0) is a reference shear rate taken to be the same for all the slip systems, 7?=P“:c is

the resolved shear stress on slip system «, and 2@ is its hardness. The constant m characterizes

the material strain-rate sensitivity, which is taken to be the same for each slip system. For the

limiting case as m — 0, the analysis becomes rate-insensitive.

For multiple slip, the evolution of slip system hardness is governed by:

g'<“>=zﬂ:h(a,,,\y@| (3.14)
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where g (0) is the initial hardness, taken to be a constant 7, for each slip system, and 7, are

the hardening moduli. The form of these moduli is
Poap) = ()P ) (0O sum on ) (3.15)

where A, is a single slip hardening rate and ¢, is the matrix describing the latent hardening
behaviour of the crystallite. For FCC crystals with 12 slip systems, we take ¢,4), as in Asaro and
Needleman (1985), to be given by

A gA qgA qA

_|gA4 AqAqA

9 =1 g4 94 A qA
gAdgAgA A

(3.16)

where g is the ratio of the latent hardening rate to self-hardening rate, and A is a 3 x 3 matrix
fully populated by ones. In the above, slip systems {1,2,3} are coplanar, as are systems {4,5,6},
{7,8,9} and {10,11,12}. Thus, the ratios of the latent hardening rates to the self-hardening rates

for coplanar systems are taken as unity.

Asaro and Needleman (1985), among others, simply take each g® to depend on the

accumulated sum, ya, of the slips; i.e.

29=g®(y,) (3.17)

where

v..=r]Z\W|df (3.18)
0 o

Thus, Az is identical for each slip system.

37



The most elusive parameters in the constitutive law (3.9) are the elements of the
hardening matrix /s in (3.14). Bach component of 4s depends on the deformation history.
Further, the s need only be homogeneous of degree zero in the shear rates; an increment of

flow stress might as well depend nonlinearly on the increments of slip. In an FCC crystal there
would be 144 elements to specify for a general monotonic deformation, and this number becomes
576 if reverse plastic straining is taken into account. Thus, in order to obtain a tractable
description of crystal hardening, several simple forms for the hardening matrix have been
assumed in the past. Calculations by Peirce et al. (1981) indicate however that the detailed
description of latent hardening, even within the range suggested by the experiment, may be very

important.

3.2.1 Single slip hardening laws

The simplest single slip hardening law takes the following power-law form for 4 :

h(ﬂ)zho(%};—aﬂjn- (3.19)

where 7, is the initial hardening rate of the system, and # is the hardening exponent.

Based on measurements of strain hardening of single crystals of aluminium alloys by
Chang and Asaro (1981), the following slip hardening function was used by Asaro and co-
workers (e.g., Harren et al., 1989):

hy = h, + (h,—h,) secﬁz{(’;:—:%) ya} (3.20)

where h, and h, are the initial and asymptotic hardening rates. If h=0, then 7, represents the

saturation value of the shear stress.
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Motivated by the work of Brown et al. (1989), Anand and co-workers (e.g., Kalidindi et
al.,, 1992; Bronkhorst et al., 1992) have considered another power-law form of the hardening
function A,

g(ﬁ) a
hy=h| 1 =~ (3.21)

where #,, aand 7, are slip system hardening parameters which are taken to be identical for all
slip systems. Unlike the Asaro (3.20) single slip hardening rate, 4, in (3.21) is directly related to

the current hardness g, of the slip system.

As previously pointed out, the simple form for %, in (3.15) incorporates only a limited

coupling between slip systems through off-diagonal components that scale by the latent
hardening parameter ¢ with the corresponding diagonal components. When viewed in terms of
observations from uniaxial stressing of single crystals including an orientation dependence of
hardening, secondary slips before overshoot and coarse slip band formation, the degree of latent
hardening introduced in (3.15) appears to be too high. By reviewing reported experimental
observations and reinterpreting latent hardening, Bassani and Wu (1991) proposed a particular
multiplicative form in which each diagonal component is taken as the product of a self-hardening

term /4 and an interactive hardening term G:
Mo = h (7®) G (00 sumonar) (3.22)

The hardening of system S due to slip on the system « is simply taken to be a fraction g of the

active modulus, and the off-diagonal components are given by

Popy=qM ey » @#f (0O SUM onq) (3.23)
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It is clear that Asaro and co-workers as well as others have adopted a hardening

description that is a special case of the form (3.22) where G = 1. A form for G that equals unity
when its arguments are all zero and asymptotes to finite values when all slips y? (,B;ta) are large

is (Bassani and Wu, 1991)

®)
G=1+Y f,tan Zy_) (3.24)

pra 0

where y, represents the amount of slip after which a given interaction between slip system o
and f reaches peak strength. Each f,, represents the strength of the interaction and depends on

the type of dislocation junction formed between slip systems o and f, which in turn, depends
on the geometric relation between the two slip systems. For FCC crystals, Bassani and Wu (1991)
classify f,, into five groups. Table 2 in Bassani and Wu (1991) gives each value of f,, while

the corresponding notations for the slip systems and slip planes are given in their Table 1.

A simple form for the self-hardening h(}/(")) that gives a monotonically decreasing

modulus at small strains and a finite rate of hardening at large y, is (Bassani and Wu, 1991)

h (@) = b, + (-h,) secﬁz{(%—:’;—;) }/a}, (3.25)

where 7, is the initial critical resolved shear stress, 7, is the so-called stage I stress and 4, is the
initial hardening rate, and A, is assumed to depend on the total accumulated slip y, on all slip

systems (Bassani, 1994):

h,=h + (W"—h) tank ( 7;;,) (3.26)
Yo
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where #' and K" are the hardening rates during the stage I and II, respectively, and y." is
approximately the accumulated slip at the onset of stage III. It is important to note, for
applications to different loading histories (e.g. reverse loading), that the slip rates 7@ in the
present description in (3.8) — (3.15) can be either positive or negative (contrary to Bassani, 1994).

Therefore, it is implied in the hardening laws (3.23) — (3.26) that 7, is interpreted as the
accumulated shear on the slip system i.e., ﬂy(“) |dt. Then, also note that (3.25) is similar in form as

(3.20), but a function of the accumulated shear of the slip system instead of the total accumulated

shear.

3.3 Basic field equations

Many metal forming operations involve large inelastic deformations with severe nonlinear
geometric effects. Although the mathematical formulation of these large-strain plasticity
problems is now a reasonably straightforward matter (except sometimes for the difficulty of
choosing appropriate constitutive laws), the solution of the governing equations is often a

formidable task.

Numerical techniques are required for the majority of applications since it is generally not
possible to obtain analytical mathematical solutions for problems involving complicated
geometries, loadings, and material properties. Among these numerical techniques the finite
element method offers a numerical means to solve the governing field equations. Finite element
solutions are generally preferred for numerical analyses since they provide the most flexible
means for achieving the degree of accuracy required for a given application. The basic
formulation is usually in incremental or rate form to account for the large-strain history-

dependent features of inelastic behaviour.

3.3.1 Principle of virtual work

In this study, a finite element procedure based on a large-strain Lagrangian formulation of

the field equations using convected coordinates is employed (Neale, 1981; Needleman and
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Tvergaard, 1984). The initial, undeformed configuration of the body, with volume V" and surface
S, is used as a reference. A material point is identified by the convected coordinates x; in the

reference configuration having base vectors g; and corresponding metric tensor g; where

g,=8 8.8 =8¢ (3.27)
In the current configuration the base vectors are Gi=F g; with metric tensor G where
G, =G,. G, G'=G.G (3.28)

The displacement and velocity vectors with respect to the undeformed configuration can be

written as

u=ug=1ug,
(3.29)

IR S |
u=u,g=ug

respectively. The Lagrangian strain tensor components with respect to the initial base vectors g’

are given by

n=1n,88
(3.30)

1 k
Ny '“E(ui, ju U j)

Here, a comma denotes covariant differentiation with respect to the undeformed metric. The

strain rates 7, are equal to the covariant Eulerian strain-rate components D; of D on the

deformed base vectors G' (D =D, G G’), but this correspondence does not hold for the

respective contravariant components.
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The Kirchhoff stress components 7/ (7 = 7/ G, G, ), conjugate to 77, , are defined in terms of the

Cauchy stress components with respect to the deformed base vectors, o’ (o = 6’ G;G,), by

ri=(detF)c? (3.31)

The nominal traction vector T = T" g, on a surface element dS having unit normal n = n, g in

the reference configuration has components
T'=n (' +t"u}) (3.32)

We may now express the conditions of equilibrium in terms of the principle of virtual

work (under quasi-static conditions) as

[eon,av = [r'suds (3.33)
S

14
In the linear incremental formulation, we suppose the current state of equilibrium to be known at

time #. To determine the equations for the field quantity rates, Equation (3.33) is expanded in a

Taylor series about the time # to yield (Needleman and Tvergaard, 1984)

[@on,+"itsu, ) av = [i'suds —[ [e'on,av-[r "5u,~d5] (3.34)
S 12 s

vV

The term in brackets on the right side of Equation (3.34) serves as an equilibrium correction if

equilibrium in the current state is only approximate.
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3.4 Numerical analysis

In this section, we briefly present our finite element formulations (Inal, 1998), for both
plane strain and plane stress assumptions, and the rate tangent modulus method that are used in

our numerical analyses.
3.4.1 Finite element formulation

The basic finite element employed in both the plane stress and plane strain analyses is a
four-node quadrilateral element, consisting of four “crossed” constant strain triangular sub-
elements. In presenting results, the quadrilateral is regarded as the basic element, and when
reporting values of the field quantities, the average value of the triangles is associated with the
centroid of the quadrilateral.

3.4.1.1 Plane strain formulation

We first present the FE formulation for the plane strain case. The continuous displacement

variable u is approximated in terms of its nodal values and shape functions as follows:

u=Nu (3.35)

where N is the matrix of the shape functions and u is the vector of nodal displacements (in our
formulation, 2 degrees of freedom are assigned per node). By introducing a B matrix which
contains the partial derivatives of the displacements and the shape functions, the Lagrangian

strain tensor defined in Equation (3.30) can be written as;

n=Bu (3.36)

where
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N, 0 N,, 0 N,; 0

(4u) 0 v, 0 N, 0 N,, 0 N;, 0

Bl=| 0 w, 0G| | TN N 0N
u, (+u) (I+v)) v, 1.1 1 3

’ , ’ ’ 0 N, 0 Nz,z 0 N,

The left side of the virtual work Equation (3.34) can be written in matrix form as

f@/on,+c"itsu, ) v = [su” BTLB + NjzN)) i dv (3.37)
Vv v
since,
#n, = su” B'LB u
(3.38)
W96, = su” Nz N, &
where
Nll O N21 0 N3,1 0
N N12 0 N22 O N3,2 0
[ d]—. N,, 0 N,, 0 N,,
0 N, 0 N,, 0 N,
(3.39)
(& uJ
5, Ny 0 Ny 0 Nop 0] |5y
sl _ [N 0 Nap 0 Ny 0| sy
Suy[ | 0 Ny, 0O N,y 0 Ny| [0%
2
0 u, 0 N, 0 N,, 0 Ny, 0
g ’ ’ a3

In Equation (3.37), L and 7 represent the elastoplastic moduli and the Kirchhoff stress tensor
respectively. Similarly, the right hand side of Equation (3.34) becomes

T'5udS - [c6n,dV—|T'dudS|= |ouTdS - |suB'zdV-|ouTdS (3.40)
S v ’ N S v S
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Considering Equations (3.37) and (3.40), we can construct the global finite element

equations in the form

Ka=F (3.41)
where the global stiffness matrix K and the vector F become:

K= {B'LB +Njz N, dV (3.42)

F = j T ds —-[ j B’z dV— j T ds} (3.43)
S v S
respectively.
The numerical solution of this system gives the rate of displacement of each node within
the domain. Once the rate of displacement of all the nodes are known, the rates of deformation
are calculated in each element. Furthermore, with the constitutive relations, the rates of stresses

are obtained from the rates of deformation at each integration point within the solid. Following an

update of all quantities, this procedure is repeated until the analysis is completed.

3.4.1.2 Plane stress formulation

A plane stress based FE code is developed by modifying the plane strain FE code
presented in the previous section, without changing the general structure of the FE formulation.
When modelling with the assumption of plane stress, the stress component in the normal

direction (ND) of the sheet is taken as zero; i.e.,
2 =1""p,=0 (3.44)

Thus, 7, can be written as;

46



1133 2233 3312
L L L

7733 = - L3333 7‘711 _L3333 7722 -2 L3333 7712 (3~45)

In order to include the thickness strain into the formulation presented through Equations (3.36) —
(3.43), we introduce a reduced constitutive moduli so that the rate of Kirchhoff stress tensor

becomes

’Z" 11 Eg 11 (_:g 12 ‘E@ 13 .
7% gg 21 22 23 711
2= L? L T (3.46)

z-_12 gg 31 gg 32 gg 33 2 7'712

where & Yare called the so-called reduced moduli having as components

1133 72233
L7

= 2 22 _ 72l
=L - 3333 L
L

(3.47)

@B = e _ ngs!'

EXee
L

233 3312
L~ L

23 212 3R
LT =L"" - e =L
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3.4.2 Rate tangent modulus method

A direct implementation of the constitutive law (3.11) in the finite element code leads to
an explicit Euler-time integration scheme which requires extremely small time steps to ensure
numerical stability. In this study, we use the semi-implicit, forward-gradient time-integration

procedure developed by Peirce et al. (1983, 1984).

Considering the slip-rate law expressed in Equation (3.13), the slip increment on system

o at time 7 is given by
Ay =y t+ A~y (2) (3.48)
A linear interpolation is employed within the time increment to give
Ay =|1-0) @ @)y+072,, (3.49)
where At is the time increment. The parameter @ ranges from 0 to 1; =0 corresponds to the
simplest Euler integration procedure. A choice of 6 between 0.5 and 1 is recommended (Pierce

et al.,, 1984). Then the last term in Equation (3.49) can be obtained using a Taylor expansion as

follows:

(a (o a l(a) o) a .(a) a
V=7t )"{ a};(a)AT( )+5gy(7)Ag( : ) (3.50)

where A7® and Ag® are the increments of the resolved shear stress and the current hardening
in slip system « within the time increment Ar, respectively. Finally, the slip increments,

according to Equation (3.49), can be expressed in terms of the quantities at time 7 as

Ay O=(fO+F@ : D)At (3.51)
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where

@) _ @ p@_ @ o047, p@
f E M 7.7 F E MaﬂQ , Q R (3.52)
7 7

m T(a)

Here M, is the inverse of matrix N,, defined by

Oty @. p® h,
NaﬂzéaﬂJr( n}zl £ JXI:RT("{; +sgn(1(ﬁ’)—§(%i| (3.53)

It is important to mention that, for the rate-insensitive analysis, N,, is not necessarily

Q

Q

invertible. However, for any m > 0 a sufficiently small time step can be chosen so that N, is

invertible. Thus, for rate-sensitive material behaviour a unique set of slip rates is always obtained

for any prescribed strain rate.

From Equation (3.51), the constitutive Equation (3.11) can be rewritten as

v
0=CD -6"-oc trD (3.54)
where the moduli C are defined by

C=L- ) R“F” (3.55)

and the viscoplastic type stress rate term (Equation (3.12)) becomes

¢'=y R¥f® (3.56)
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3.5 Parallel Computing

The implementation of the crystal plasticity based constitutive law in the finite element
modelling leads to significant demands in both computational power and storage, due to the
necessity of tracking an enormous number of so-called internal state variables on the microscopic
level. Classical sequential computations based on workstations, even on vector supercomputers,
are generally unable to supply the computing power required for these applications. However,
with the advent of high-speed computers and massive parallelization techniques, such demands

are more easily met using parallel processing.

Parallel computers perform their calculations by concurrently executing different
computational tasks on a number of processors. The processors within a parallel computer
generally exchange information during the execution of the parallel code. This exchange of
information occurs either in the form of explicit messages sent by one processor to another, or by
different parallel processors sharing a specified common memory resource within the parallel

computer.

The parallel computer used for our calculations is the IBM SP3 at the Université de
Sherbrooke. It consists of 21 WinterHawk 2 nodes. Each node has 4 IBM POWER3 processors,
and a total memory of 90 Gbytes is distributed amongst these processors. The paralle] finite

element formulations have been developed to be executed on this system.

In this section the parallel finite element formulation is presented briefly. The two main
goals in the parallelization of a code are: (1) a decrease in CPU time for the simulations, and (2)
code capacity enlargement. The Taylor-type polycrystal model is ideally suited for the
parallelization of the computational procedures. A detailed parallel formulation to decrease CPU
time was presented by Inal (1998) where simulations where performed with relatively less
memory demanding applications (smaller than 1 Gbytes). For the applications considered in that
work, CPU time was decreased significantly; the results were very close to the maximum values

of the speed-up that can be achieved by parallel computing.
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We now focus attention on parallelization for code capacity enlargement. The parallel
algorithms used in our simulations are designed to distribute data (e.g., Beaudoin et al., 1993) on
the microscopic level (crystal data) over the processors of the IBM SP3. To illustrate this,
consider a simulation with a total number N of crystals (Fig. 3.2a). The global crystal data is
distributed between the processors (Fig. 3.2b) such that each processor runs a part of the global

program for N/ A crystals where A is the total number of processors used in the simulation.

(A
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(a) (b)

Figure 3.2 (a) Polycrystal aggregate comprised of N crystals, (b) the distribution of this

polycrystal aggregate between the processors

The macroscopic values of all quantities such as stresses, stress rates and elastic moduli
are obtained by collective communication between the processors using the message passing
interface (MPI) library. As a result, each processor has its own microscopic data; however, all of
the processors have the same macroscopic data. We should mention that the total number of
crystals should be distributed as evenly as possible between the processors. Otherwise the large
difference in the number of crystals per processor affects the CPU time per processor, and

blocking commands (which are costly in terms of CPU) are required during communication
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between processors. To avoid this the parallel algorithms developed here distribute the crystals as

evenly as possible among the available processors.

The above parallel data distribution enables us to perform simulations using the total
memory of the IBM SP3. Furthermore, the subroutines which have been developed are scalable;
that is, increasing the number of processors (corresponding to increasing the total memory) will

proportionately decrease the memory required per processor.
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CHAPTER 4

INSTABILITY AND LOCALIZED DEFORMATION IN FCC
POLYCRYSTALS UNDER TENSION



4.1 Introduction

In the early stages of tensile straining, crystals of ductile pure metals and alloys exhibit
deformation patterns which, on a macroscopic scale, are essentially homogeneous. With
continued straining, however, the homogeneous deformation pattern is observed to give way to a
non-homogeneous one, generally through the-onset of diffuse necking and/or localized shearing.
Failure usually ensues either by necking down to a “chisel edge” or by rupture within intense

shear bands.

There are two main classes of material behaviour that have been employed for plastic
instability predictions: the rate-insensitive and the rate-sensitive constitutive models. For a rate-
insensitive solid, plastic instability occurs either as a bifurcation from a homogeneous state of
stress and deformation, or as an imperfection-triggered localization. For rate-sensitive materials,
bifurcation is effectively excluded, but small inhomogeneites (material and/or geometric) can still
result in localization. In the limit of low material rate sensitivity, the localization strain predicted
for a given initial inhomogeneity is practically identical to that predicted for the corresponding
rate-insensitive solid, while for high rate sensitivity, localization is retarded considerably
(Hutchinson and Neale, 1977).

Numerous analytical and numerical investigations have been carried out to investigate the
onset of necking in metal bars under axial tension, both in terms of bifurcation theory and in
terms of imperfection-sensitivity. For a one-dimensional model, Considére (1885) demonstrated
that instability occurs at the maximum load point. Hutchinson and Miles (1974) have shown that
the occurrence of necking at the maximum load point corresponds to the limit of a long, thin bar,
whereas the first critical bifurcation in a more stubby specimen is delayed to a point somewhat
after the maximum load. Also the subsequent localization of plastic flow in a neck, with a length
of the order of magnitude of the diameter, has been predicted numerically (e.g., Needleman,
1972; Norris et al., 1978; Saje 1979).

In metal-forming problems involving thin sheets, the onset of localized necking is an

important failure mode that limits the sheet formability. The concept of a forming limit diagram

54



(FLD), first introduced by Keeler (1961) from his investigation of plastic instability and fracture
in sheets stretched over steel punches, has proved to be extremely useful for representing
conditions for the onset of sheet necking. It is now a standard tool for characterizing materials in

terms of their drawability.

Early calculations of forming limit diagrams were based on Hill’s (1952) criterion for
localized necking along a direction of zero-extension. In Hill’s bifurcation analysis for rate-
insensitive materials, J, flow theory was employed together with a power-law stress—strain
relationship and smooth yield surface. His predictions only gave the critical strains between the
uniaxial tension and plane strain states on the FLD. When the sheet is under biaxial stretching,

Hill’s direction of zero-extension does not exist.

An alternative plane stress analysis for sheet necking was presented by Marciniak and
Kuczynski (1967) (referred to as the M-K analysis). In the M-K analysis, thickness imperfections
are introduced normal to the principal stress and strain direction in the form of a groove to
simulate pre-existing defects in the material. Necking was. considered to occur when the ratio of -
the thickness in the groove to the nominal thickness was below a critical value. For this two-
dimensional view to be appropriate, the length scale of the neck should be long compared to the
sheet thickness but short compared to characteristic in-plane dimensions (Hutchinson et al.,
1977).

Originally developed as a means of describing localized necking in biaxial stretching for
which the minor straing,, > 0, the M-K analysis was later extended to the negative &,, region
(Storen and Rice, 1975; Hutchinson and Neale, 1978a; Chan et al., 1984). Furthermore, in
Hutchinson and Neale’s (1978a) work, the M-K model, which is based on the flow theory of
plasticity framework and quadratic plastic potentials, was also refined by incorporating the .J;

deformation theory of plasticity.
Another extension, namely the inclusion of strain-rate effects in studies of sheet metal

formability, was initially initiated by Marciniak et al. (1973). Similar analyses were carried out
by Hutchinson and Neale (1978b) and Needleman and Tvergaard (1984) for rate-sensitive
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materials. In these simulations, the effects of various constitutive features on localized sheet

necking were explored.

It is well known that the localization of plastic flow is strongly influenced by
deformation-induced textures and anisotropy (Asaro and Needleman, 1985). In turn, this
localization then affects, to some degree, the texture development in polycrystals. Considering
these factors, polycrystal deformation models can be expected to-be very effective for-simulating
plastic instability processes. A polycrystal model should provide an improved understanding of
the relation of localization to the microstructure of the material, and thus be more successful in

predicting strain localization phenomena than phenomenological models.

Early applications of crystal plasticity concepts in instability analyses were presented by
Bassani et al. (1979) and Barlat and co-workers (Barlat 1987, 1989; Barlat and Richmond, 1987).
These researchers calculated a series of Bishop-Hill yield surfaces of polycrystals corresponding
to various crystallographic textures. They used these yield surfaces rather than the conventional -
phenomenological ones to compute the corresponding FLDs and obtained results which were in
good agreement with corresponding experimental observations (Lege et al, 1989) in certain
cases. However, neither Bassani et al. (1979) nor Barlat and co-workers (Barlat 1987, 1989) have
included the subsequent evolution of the yield surface during deformation. Furthermore none of -
these analyses included the effect of elasticity. Based on the simple M-K-type model, Asaro and
Needleman (1985) presented analyses of localized necking in thin sheets subjected to equal
biaxial stretching with their polycrystal model. Their work enabled, for the first time the study of
the effects of texture and path-dependent strain hardening on sheet necking. Later on, Tvergaard
and Needleman (1993) investigated the development of localized shear bands from an initial
material inhomogeneity using the polycrystal model proposed by Asaro and Needleman (1985).
They studied shear band formation in materials subjected to plane strain tension, biaxial
stretching, and large strain shear.. Zhou and Neale (1995) have directly applied a rate-sensitive
crystal plasticity model in conjunction with the M-K approach to predict FLDs for annealed FCC
sheet metals. Their analyses considered the initial texture and its evolution. However, elasticity
was neglected and the imperfection groove was restricted to be normal to the major principal

stretch direction. Wu et al. (1997) used the Asaro and Needleman (1985) polycrystal plasticity
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model to calculate the FLDs for FCC polycrytals. They have discussed in detail the effects of
initial imperfection intensity and orientation, initial distribution of grain orientations, erystal
elasticity, strain rate sensitivity, single slip hardening, and latent hardening on the predicted
FLDs.

It has already been mentioned that the initiation of a neck leads to localized deformation.
With further stretching, either strain localizes progressively in this neck or necking triggers the
formation of shear bands. In the mathematical description, the formation of localized shear bands
in solids is quite similar to localized necking in sheets. However shear bands represent a material
instability, and they do not depend on constraints along the boundary of the solid. Such material
instabilities are of significance as a precursor to fracture, and have been observed in a wide
variety of materials (Needleman and Tvergaard, 1992). The basic phenomenon of shear
localization can be studied using a relatively simple approach similar to the above-mentioned M-
K analysis where localized shearing is assumed to occur in a thin slice of material, while the

strain fields outside this band are assumed to remain uniform throughout the deformation history.

Pierce et al. (1982) presented finite element calculations for nonuniform deformation
modes in ductile single crystals, based on a rate-independent constitutive model for
crystallographic slip. Their analysis, however, highlighted inherent limitations of the rate-
independent idealisation of crystalline slip. These limitations were so severe that an analysis of
large strain plastic flow was precluded for a full range of material properties, in particular for
materials having high strain hardening. As a result, Pierce et al. (1983) adopted the rate-
dependent constitutive theory for crystalline slip, and were. able to simulate large strain tension
tests of single crystals. Their results provided a general understanding of the roles of rate

sensitivity and lattice kinematics in the development of localized modes of deformation.

More recently, Zikry and Nemat-Nasser (1990) have studied numerically the phenomenon
of shear banding in an FCC single crystal undergoing plane-strain tensile deformations at high
strain rates. They have demonstrated that shear band formation in single crystals, subjected to

high rates of strain, is a function of the geometrical and thermal softening mechanisms of the
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crystal. The problem of the initiation and growth of dynamic shear bands in a FCC single crystal

deformed in simple compression was also investigated by Zhu and Batra (1993).

This chapter is dedicated to the investigation of tensile instabilities in FCC polycrystals
using our polycrystal model-based finite element code. Numerical simulations of instabilities and
localized deformations in the commercial aluminum sheet alloy AA3004-H19 under both plane
strain tension and plane stress tension are carried out. The effects of various parameters on the
formation of localized deformation are discussed in detail. The results of these investigations
have been published in Inal et al. (2001a, 2001b). In an additional study (Inal et al., 2000), whichv
will not be presented in this thesis, the plane stress FE code was employed to predict the angular
variations (with respect to the rolling direction) of the R-value (the ratio of width-to-thickness

strain under tensile loading) of this aluminum sheet alloy.

4.2 Instability and localized deformation in polycrystalline solids under

plane strain tension

In this section, the plane strain finite element model which has been developed is
employed to simulate localized deformation in polycrystals subjected to plane strain tension.
Simulations are performed for a specimen with an initial thickness inhomogeneity. The effects of
texture evolution, slip-rate sensitivity, and strain hardening on the nonuniform localization modes

are-investigated.
4.2.1 Problem formulation

A specimen subjected to tensile loading along the x;-axis (Fig. 4.1) has been modelled
under the assumption of plane strain conditions in the x, direction. The initial length of the

specimen is 2 Ly and its initial thickness is 2 (%,+Ah,) where 2 A, is the average thickness and 2
Ah, is the initial thickness inhomogeneity. When the reference axes x; and x; are assumed to

coincide with the rolling (RD) and normal (ND) directions of the sheet, respectively, the
deformations can be considered symmetric about the central lines x; = 0 and x3 = 0.

Consequently, only one-quarter of the specimen needs to be considered in the numerical analysis.

58



The FE mesh consists of four-node quadrilateral elements, made up of four ‘crossed’
constant strain triangular sub-elements. In presenting results, the quadrilateral is regarded as the
basic element and, when reporting values of the field quantities, the average value of the triangles
is assigned to the centroid of the quadrilateral (Wu and Van der Giessen, 1996). A typical finite

element mesh used in the simulations is shown in Fig, 4.1.

A
X3 (ND)

ho

X; (RD)

L

Figure 4.1 Finite element mesh used in simulations
With the tensile axis aligned in the x; direction, the boundary conditions become
uz=0along x3=0
u; =0alongx; =0 4.1)
u,= V (applied velocity) along x; = Lo
The end of the specimen, x; = Lo, is considered to be shear free.

The initial thickness imperfection Ak, is the same as that employed by Tvergaard et al.
(1981), and is given by
Ah, =h, [—é,cos (ﬂx2 AE: )+§2cos (pﬂ.x2 / L,,)] 4.2)
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where &, and &, are prescribed imperfection amplitudes and p(>1) is the wave number.

4.2.2 Results and discussion

The initial texture (represented by 380 crystals) of the aluminum sheet alloy AA3004-H19
is presented in Fig. 4.2 in terms of {111} stereographic pole figures for the x| - x; and x; - x3
planes, respectively. Here x;, x, and x3 refer to the rolling, transverse and the normal directions of

the sheet, respectively.

Figure 4.2 Initial texture of AA30004-H19 represented by {111} stereographic pole figure

The single slip hardening law proposed by Asaro and co-workers (3-20) is used in the

simulations. The material constants in this law are as follows:

T,=95MPa, h,/7,=1.2, 7,/t,=1.16, h/t, =0,g=1.0 (4.3)

These properties were obtained by fitting the uniaxial stress—strain curve obtained by the
polycrystal plasticity simulation to the uniaxial stress—strain curve measured experimentally (Inal

et al., 2000b). The slip system reference plastic shearing rate ¥, and the slip rate sensitivity

parameter m are taken as ¥, =0.001s" and m = 0.002, respectively, with the crystal elastic

constants taken as C;; = 206 GPa, C|, = 118 GPa and C44 = 54 GPa.
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The specimen is stretched under plane strain tension by applying the boundary conditions

defined in (4.1). The initial aspect ratio of the specimen considered in this study is Z,/h, =3 as

in Tvergaard et al. (1981), and the finite element discretization is a 16 x 48 mesh, giving a total of
768 quadrilaterals (Fig. 4.1). The initial thickness imperfection is given by (4.2), with

£,=0.42 x 107, £,=0.24 x 107, and a wave number p = 2.

The normalized nominal stress (o y,,/7,) — elongation (U/L,) response is plotted in Fig.
4.3. This curve indicates that the normalized nominal stress reaches a maximum around U/L,=

0.055, and then starts to decrease. The deformation patterns at various normalized elongations are
shown in Fig. 4.4. Figure 4.4a shows the deformed mesh after the maximum normalized nominal

stress, at U/L,= 0.07, where a very light diffuse neck has formed. Evidence of the formation of
shear bands that cross at the specimen centre can be observed in Fig. 4.4b, where U/L,= 0.10.

These bands are more fully developed at U/L,= 0.13, as shown in Fig. 4.4c.

3.5 1

2.5 1

1.5 |

Normalized Nominal Stress

0.5

0.00 0.03 0.06 0.09 0.12

Nomalized Elongation

Figure 4.3 Normalized nominal stress — elongation curve
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Figure 4.4 Deformed meshes at: (a) U/Ly = 0.07, (b) U/Ly = 0.10, and (c) U/Ly = 0.13

A more quantitative representation of shear band development is presented in Fig. 4.5,
where contours of true strain &, are plotted at various deformation stages. Figure 4.5a
corresponds to Fig. 4.4a, where U/L,= 0.07. Although the strain pattern is slightly nonuniform,
an inhomogeneity corresponding to the early stages of necking can be observed since the highest
strains are at the specimen centre. A shear band pattern is evident in Fig. 4.5b, which shows
contour plots at U/L,= 0.10. Although little additional straining has occurred towards the end of
the specimen as compared to Fig. 4.5a, strain has begun to concentrate in a well-defined band
(represented by the 0.21 contour) nearer the centre of the specimen. Figure 4.5¢ shows the fully

developed shear band at U/L,= 0.13. The strains in the shear band exceed 0.4 although the
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Figure 4.5 True strain &, at: (a) U/Lg = 0.07, (b) U/Ly = 0.10, and (¢) U/Ly=0.13

overall normalized extension is U/L,= 0.13. While there is very little deformation occurring

outside the band, a large amount of shear is accumulating within the well-defined shear band

(represented by the 0.4 contour).

4.2.2.1 The effect of texture evolution

To investigate the effect of texture evolution on the localization modes, the simulation

described above has been carried out once more, but with texture evolution excluded from the

polycrystal model. Thus, the stretching and rotation of the lattice vectors (s, ™) according to
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Equation (3.4) are excluded in the analysis. From now on, the model including texture evolution
will be referred to as ITE, and the model excluding texture evolution will be referred to as ETE.
Figure 4.6 shows that the normalized nominal stress — elongation curves for the two models start
to differ after the maximum normalized nominal stress is attained. In the ITE model, the nominal

stress drops more rapidly than that obtained with the ETE model.

The importance of including texture evolution can be seen by comparing Fig. 4.4c to the

deformed mesh of Fig. 4.7, which is the result from the ETE simulation at U/L,= 0.13. As

discussed earlier, shear bands are fully developed at this stage of the simulation with the ITE
model. However, there are no shear bands formed with the ETE model, although the initiation of
necking is visible. With further loading, strain localizes progressively in the neck area without
any formation of shear bands. Pierce et al. (1982) have shown that, for single crystals, necking
causes nonuniform lattice rotations and “geometrical softening” that lead to localized shearing. In

their work, they refer to “geometrical softening” as the increase in the resolved shear stress on the
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Figure 4.6 Comparison between the normalized nominal stress — elongation curves for

simulations with and without texture evolution
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slip system responsible for the concentrated straining due to its rotation with respect to the
loading direction. We shall adopt this terminology. As the ETE model does not include texture
evolution, necking cannot induce the necessary lattice rotations that produce “geometrical
softening”. As a result, although a neck is formed, it cannot act as a triggering mechanism for

shear localization in the form of a band.

Figure 4.7 Deformed mesh at U/Ly = 0.13 for the case where texture evolution is excluded .

A comparison between the texture evolutions at the centre of the specimen and at the end
of the specimen (away from the neck) are shown in Figs. 4.8 and 4.9 where the pole figures
relative to the rolling (x;) and transverse (x;) directions are given for points at the end and at the

centre of the specimen, respectively. Figures 4.8a and 4.8b correspond to the deformation shown

(@) (b)

Figure 4.8 Texture evolution for U/ L,= 0.07 at: (a) the end of the specimen, and (b) at the centre
of the specimen
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in Fig. 4.4a (U/L,=0.07), and they indicate that the initial texture (Fig. 4.2) has evolved slightly.

Note that texture evolution at the end and at the centre of the specimen are very similar at this

elongation. By contrast, Figs. 4.9a and 4.9b (corresponding to Fig. 4.4c and U/L,= 0.13) show

that, in the shear band, the texture has become much sharper than that at the end of the specimen.

(a) (b)

Figure 4.9 Texture evolution for U/L,=0.13 at: (a) the end of the specimen, and (b) at the centre
of the specimen

Next the texture evolution at two different elements in the shear band (elements 1and 2 identified
in Fig. 4.4c) are compared. Figures 4.10 a-b present pole figures related to the rolling (x;) and
normal (x3) directions for these when U/L;= 0.13. The differences between these two textures
suggest that the deformation modes are different at the two elements selected. Element 1 is

undergoing tensile stretching, while element 2 is experiencing both shearing and tensile

stretching.
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Figure 4.10 Texture evolution for U/L,= 0.13 at elements: (a)1, and (b) 2

4.2.2.2 The effect of slip rate sensitivity m

The effect of slip rate sensitivity m on the constitutive response is investigated by

comparing simulations with m =0.002, 0.01 and 0.02, respectively. Figure 4.11 compares the

'Normalized Nominal Stress
N

15 4
—m=002
11 —  m=0.01
e —m=0.002
0 : . . .
0.00 0.03 0.06 0.09 0.12 0.15

Normalized Eiongation

Figure 4.11 Normalized nominal stress — elongation curves for various values of the rate

sensitivity m
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normalized nominal stress—elongation curves for these simulations. It can be seen that, as
expected, the normalized nominal stress response increases with increasing m value. It is also
observed that, as m increases, the nominal stress falls less rapidly in the later stages of
deformation. In Fig. 4.12 the deformed meshes are presented for the simulation where the rate

sensitivity m is taken as 0.02. The normalized extension in Fig. 4.12a is U/L,= 0.11, and the

deformation pattern is quite uniform. Evidence of the initiation of necking can be seen in Fig.

4.12b where U/L,= 0.16. In Fig. 4.12¢c, where U/L,= 0.23, the neck is clearly visible. Recall
that, shear bands were fully developed at U/L,= 0.13 (Fig. 4.4c). However, there is no evidence

of shear band formation when the strain rate sensitivity m was taken as 0.02.

(2)

i

i

(b)

©

Figure 4.12 Deformed meshes for the case where m = 0.02 at: (a) U/L,=0.11, (b) U/L,=0.16
and (c) U/L,=0.23

The above results show that, when the rate sensitivity is increased, not only does the

ductility of the metal increase, but that, the localization mode can change from shear bands to
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necking if the m value is sufficiently high. This change in the mode of localization was an
expected result considering the results of Section 4.2.2.1 where the importance of texture
evolution on the development of shear bands was clearly demonstrated. Previous studies (Canova
et al., 1988) have shown that the rate of texture evolution in tension is decreased by an increase in
the slip rate sensitivity. Harren et al. (1989) have shown for simple shear that, when the strain
rate sensitivity m was high enough (0.5 for their material), there was almost no tendency for
textures to form. This can be explained by the near vanishing with increasing m of the plastic spin
7 defined in the second part of Equation (3.5). In our simulations, the evolution of texture does
not vanish completely when m is taken as 0.02, but the “geometric softening” produced by this

texture evolution is not sufficiently high to trigger shear band formation.

In Fig. 4.13 the normalized stress o/0,,, is plotted as a function of the normalized

elongation. Here, o ,ux refers to the maximum of the physical component of the true stress (in

the loading direction) calculated at the end section of the specimen, x; = Lo. It can be seen that

0.00 0.05 0.10 0.15 0.20 0.25
UlLo

Figure 4.13 The evolution of neck section area «, the true strain &, (at the centre of the
specimen) and the true stress o, (at the end of the specimen)
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o reaches a maximum around U/L,= 0.09 (point B) and then begins to decrease. The
normalized elongation (U/L,= 0.058) where the maximum nominal stress is attained is

represented by point A.

The evolution of the neck-section area x (where k¥ = An/4o calculated along the centre of
the specimen, x; = 0) together with the true straing,, (in the rolling direction) at the centre of the
specimen are also shown in Fig. 4.13. These curves show that the attainment of the maximum
stress at U/L,= 0.09 identifies the onset of diffuse necking, and beyond this elongation the strain
g, begins to increase rapidly thus signifying localization. This conclusion was also reached for

other simulations based on phenomenological constitutive laws of plasticity (e.g., Tugcu and
Neale, 1988; Tugcu, 1991), where it was shown that the attainment of the maximum stress at the

end of a round tensile specimen identified the onset of necking.

4.2.2.3 The effect of strain hardening

The effect of strain hardening on the formation of shear bands is investigated by
comparing the results obtained from simulations with three different values of asymptotic

hardening rates: A/z,= 0, h/z,= 0.02 and h/z,= 0.2. Figure 4.14 depicts the true stress — true

strain curves (for a specimen without imperfection) for these three cases. It can be seen that when

h,/z,> O there is strain hardening, while for 4,/z,= 0 there is saturation.

The normalized nominal stress — elongation curves for these 3 cases are compared in Fig.
4.15. The only difference in the normalized nominal stress — elongation curves for the

simulations with A/z, = 0 and Az, = 0.02 is that the normalized nominal stress drops more
rapidly when 4,/z, = 0. Nevertheless, shear bands are still predicted for both cases. However, no
shear bands are predicted when the strain hardening rate is taken relatively high (%,/z,= 0.2),

where the specimen deforms by the strain localizing progressively in the neck.
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Figure 4.14 True stress—strain curves for various asymptotic hardening rates
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Figure 4.15 Normalized nominal stress—elongation curves for various asymptotic hardening rates
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4.3 Instability and localized deformation in polycrystalline solids under

plane stress tension

In this section, the plane stress finite element model that has been developed is employed
to simulate localized deformation in polycrystalline sheets. Simulations are performed with a
specimen without any initial inhomogeneity. The so-called “built-in” boundary conditions at the
ends of the specimen are applied, and the resulting inhomogeneous behaviour eventually initiates
localized deformation. Simulations are performed for specimens rotated such that the rolling
direction is at 0°, 1°, 45° and 90° to the tensile axis. The onset of both necking and shear banding

are investigated.

4.3.1 Problem formulation

A specimen subjected to tension along the x;-axis (Fig. 4.16) has been modelled under the
assumption of plane stress conditions. It is assumed that Dy3 = Dy3 = Wiz = W3 = 0, where W13

and Wa; are the components of the skew symmetric spin tensor. Ds; is determined from the

condition that the average stress component &5, = 0. For the orthotropic texture considered, these

conditions imply that the average stress components o,; = 6,; = 0.

When x; and x; are assumed to coincide with the rolling and transverse directions of the
sheet, respectively, deformations can be considered symmetric about the central lines x; = 0 and
x; = 0. In such cases (e.g., 0° and 90° oriented specimens) only one-quarter of the specimen is
considered in the numerical solutions, as shown in Fig. 4.16. With the tensile axis aligned in the

x; direction, the so called “built-in” boundary conditions on the quadrant are

uy =0 along x; =0
u; = 0 along x; =0 (4.4)
uy = 0 along x; = Lo

u,= V (applied velocity) along x; = Lo
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Figure 4.16 Finite element mesh used in 0 and 90 degrees rotated specimen simulations
Thus, the end of the specimen, x; = Lo, in this case is not shear free.

Specimens where the RD is oriented at 1° and 45° with respect to the tensile axis are also
considered. For these cases the assumption of orthotropic material symmetry is no longer valid,
and the entire specimen has to be modelled in the numerical analysis. The finite element mesh
used to model the entire specimen is presented in Fig. 4.17. The boundary conditions for

simulations with the full mesh are:

u; =0along x; =+ Lo
u,=V (applied velocity) along x; = Lo 4.5)

u,= -V (applied velocity) along x; = -Lo

Again, the ends of the specimen, x; = =+ Lo, are not shear free.
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Figure 4.17 Finite element mesh used in 1 and 45 degrees rotated specimens

4.3.2 Results and discussion

The initial texture for the aluminum alloy AA3004-H19 as presented in Fig. 4.2 and the
material properties for the single slip hardening law (3-20) are as specified by Equation (4.3). The

slip system reference plastic shearing rate 7, and the slip rate sensitivity parameter m are taken

as 7, =0.001s"and m = 0.002, respectively. The initial geometry of the specimen is such that

Lo/Wy = 3, and this value is used for all simulations presented in this section.

4.3.2.1 A typical result

A comparison between the simulated and experimental true stress—strain curves for
uniaxial tension in the RD is presented in Fig. 4.18. It can be seen that the FE simulation is in
reasonably good agreement with the experimental curve. The failure strain has been over-
predicted by our simulation, but this is an obvious result since the simulation is carried out
without any initial imperfection. Also, the crystal plasticity model employed in this study does
not account for microscopic defects, such as voids, which will possibly influence the failure

strain.
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Figure 4.18 True stress—strain curves in RD

4.3.2.2 Mesh sensitivity

Shear band localization phenomena are notorious for sometimes exhibiting a pathological
mesh sensitivity. However, as demonstrated by Needleman (1988), this is not necessarily the case
for our type of simulations where the inherent mesh sensitivity with a rate-independent theory
can be eliminated by a rate-dependent formulation such as the one used in this study.
Nevertheless, the selection of a proper mesh does require attention. Figures 4.19 a-c show the
three different finite element meshes used in this study with 288, 448 and 864 elements

respectively.

The numerical studies show that the overall stress—strain curves for all three meshes are
nearly identical for strain hardening and saturation (Fig. 4.20). Once softening occurs, the finer
meshes demonstrate a stronger softening effect. Figure 4.21 illustrates the contours of true strain

(in the loading direction) at an elongation of U/Ly=0.10 for the three meshes considered. These
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Figure 4.19 Initial meshes used in the mesh sensitivity analysis: (a) 288, (b) 448, and c) 864
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Figure 4.20 Nominal stress—normalized elongation curves for three different meshes

76



simulations show that the initiation and propagation of shear bands are not sensitive to the
meshes considered; for all cases, localized deformation in the form of two shear bands
intersecting at the centre of the specimen are formed. It is also observed that, the finer is the
mesh, the narrower and stronger are the shear bands, although this does not have a significant
impact on localized deformation. Based on these observations, it was decided that the relatively

fine mesh (16 x 28) was sufficiently accurate. This mesh is therefore used for all simulations with

(©

Figure 4.21 Contour plots of true strain (in loading direction) at U/Ly = 0.1 for: (a) 12 x 24, (b) 16
x 28, and (c) 24 x 36 elements
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one quarter of the specimen, while a mesh of 32 x 56 elements is employed for the simulations of

the complete specimen.
4.3.2.3 Uniaxial tension simulations along the RD, 45° from the RD, and along the TD

We first present results for uniaxial tension simulations along the RD, for the 45°
orientation from the RD, and for tension along the TD. Henceforth, simulations of uniaxial
tension along the RD, 45° from the RD, and along the TD will be referred to as the RD, 45° and
TD simulations, respectively. The nominal stress—strain curves for the RD, 45° and TD
simulations are compared in Fig. 4.22. These simulations show that the nominal stress—
normalized elongation curves for the RD and 45° simulations are quite similar, while the TD
simulation results in a somewhat higher curve. The maximum nominal stresses are obtained at
U/Ly=0.55, U/Ly=0.53 and U/Ly=0.52 for the RD, 45° and TD simulations, respectively. After
saturation, softening occurs for all three orientations, with the 45° simulation exhibiting slightly

stronger softening than the other two.
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Figure 4.22 Nominal stress—strain curves for uniaxial tension along the RD, 45° from the

RD, and along the TD

78



As already mentioned, the RD and TD simulations are carried on by modelling one
quarter of the specimen with the assumption of orthotropic symmetry. Since that assumption is
not valid for the 45° simulations, the full specimen is modelled for this case. In order to analyse
the sensitivity of the results to the loading direction, we have compared uniaxial tension along the
RD with a slightly rotated specimen, with the RD oriented at 1° with respect to the axis of
loading. The complete specimen has been modelled for both these cases. For the RD simulations,
as expected (due to orthotropic symmetry), two shear bands are predicted, similar to what was
presented in Fig. 4.21b. However, when the specimen is rotated even as slightly as 1°, only one

shear band is predicted as shown in Fig. 4.23.
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Figure 4.23 Deformed mesh for 1° simulation at U/Ly=0.09

Results are now presented for the deformed meshes of the RD, 45° and TD simulations.
Figure 4.24a presents the deformed meshes at U/Ly=0.07 (after the maximum nominal stresses
for all three orientations) where very slight diffused necks have formed in all three orientations.
Shear bands are fully developed for all three orientations at U/Ly=0.09 (Fig. 4.24b). Here the RD
and TD simulations indicate two shear bands intersecting at the centre of the specimen, while the

45" simulation predicts only one shear band.

A more quantitative representation of shear band development is presented in Fig. 4.25,
where contours of true strain (in the loading direction) are plotted at various stages of
deformation. Figure 4.25a corresponds to Fig. 4.23a, where U/Ly=0.07. The strain distribution is
observed to be nonuniform for all orientations indicating localized deformation (Fig. 4.25a). For
the RD simulation, the concentration of strain at the centre of the specimen indicates early stages

of necking; however, there are no signs of shear banding. By contrast, for the TD and 45°
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