
UNIVERSITE DE

SHERBROOKE

Faculte de Genie

Departement de genie electrique et de genie informatique

HIGH DIMENSIONAL NEURAL FUZZY CONTROLLER

FOR NONLINEAR SYSTEMS

Memoire de maitrise es sciences appliquees

Speciality: genie electrique

Xiaodong Tan

Sherbrooke Quebec Canada Juin 2007

- " • ifidt \\/-l II

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-49586-5
Our file Notre reference
ISBN: 978-0-494-49586-5

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

•*•

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

RESUME

De nos jours, la theorie de controle joue un role significatif dans presque tous les domaine de

la science et de l'ingenierie. Les controleurs lineaires PID sont les applications principales de

la theorie de controle, et ils se basent sur les systemes de controle simples. Mais beaucoup de

vrais systemes possedent des caracteristiques non-lineaires. Dans la pratique, il est necessaire

de faire beaucoup de linearisations. Quand nous employons le controleur classique dans un

systeme non-lineaire fortement complexe, les difficultes augmentent exponentiellement. Pour

eviter les imperfections, on peut employer des controleurs flous. Le controleurs flous se

basent sur le systeme de connaisance. Ce sont des outils importants dans le domaine de

l'automatique. Ils possedent beaucoup plus d'avantages que les controleurs classiques "PID",

mais ils ont besoin d'experts pour concevoir les regies de base. La limite principale des

controleurs flous est la difficulte d'etablir les regies de base.

Maintenant, beaucoup de recherches sont consacrees a la fusion des reseaux de neurones et

de systemes flous dans une nouvelle structure (les reseaux de neuro-floue). Cette approche

combine les avantages de deux paradigmes puissants dans une capsule simple, et fournit un

cadre puissant pour extraire des regies floues des donnees numeriques.

Cependant, cette technologie n'est pas parfaite. II reste quelques difficultes: beaucoup de

regies floues sont necessaires, les algorithmes sont complexes et la fiabilite est basse (Par

exemple, pour un meme modele ou fonction, les resultats dependent des ensembles

d'apprentissage). Pour eviter les difficultes, ce memoire presente une nouvelle methode,

appelee "inference neuro-floue de haute-dimension".

L'idee fondamentale de cette methode propose est de considerer chaque donne dans ce

systeme comme point avec la haute dimension. Chaque dimension d'entree sera traitee en

meme temps dans les memes sous-ensembles de haute dimension.

L'algorithme propose a ete examine sur differentes applications, et les resultats ont ete

compares aux donnees editees sur trois problemes de repere.

Cet algorithme est simple a employer, et les resultats experimentaux prouvent que le nombre

de faisceaux exiges est inferieur a ceux rapportes dans la litterature. L'exactitude de

rendement est bonne dans beaucoup d'applications.

REMERCIEMENTS

Au terme de ce travail, je tiens tout d'abord a exprimer ma profonde gratitude a
1'endroit de mon directeur de recherche, le professeur et doyen au Faculte de genie
du Universite de Sherbrooke Dr. Gerard Lachiver. Je le remercie aussi pour ses
conseils et son support financier duree de ce projet.

Enfin, je remercie tout specialement ma femme wei He, pour leur soutien moral tout
au long de ce travail, ainsi que mes parents et beaux-parents, wanhua tan, jiaping
Lu, keyu He, et yufeng Xia, pour leur soutien et leur interet continus.

Encore une fois, Merci beaucoup, il n'y a aucun de mot qui peut exprimer ma
gratitude.

TABLE OF CONTENTS

1. INTRODUCTION 3

2. ARTIFICIAL NEURAL NETWORKS 6

2.1 Artificial Neural Networks 6

2.1.1 Supervised learning 9

2.1.2 Unsupervised learning 13

2.1.3 Clustering 17

3 FUZZY LOGIC 18

3.1 Fuzzy sets and membership function 18

3.2 Linguistic variables and linguistic rules 20

3.3 Fuzzy system 21

3.4 Fuzzy control system 36

3.4.1 SISO AND MISO 37

3.4.2 MIMO 38

4 DESIGN OF A HIGH-DIMENSIONS NEURAL FUZZY CONTROLLERS

(HDFIN) FOR NONLINEAR SYSTEMS 40

4.1 High-dimensions fuzzy inference 41

4.2 Input space clustering 46

4.3 Membership function forming 47

4.4 Identification parameters matrix derivation for T-S fuzzy rules 48

4.5 Conclusion 49

5. RESULTS AND COMPARATIVE ANALYIS 50

5.1 Nonlinear function approximation 50

5.2 Mackey-Glass time series prediction 53

5.3 Nonlinear system control: the ball and beam example 57

6. CONCLUSION 66

7. APPENDIX A 68

8. APPENDIX B 71

9. BIBLIOGRAPHY 78

2

1. INTRODUCTION

Today, the control theory plays a significant role in almost every field of

science and engineering. The classical theory of automatic control systems

has been widely used in modern society and it ranges from simple

application, such as in washing machine control systems, to highly

sophisticated systems such as space shuttles, satellites and intelligent

robots. Throughout the history of control, the goal has been to mimic the

human worker interacting with machines and to process events without

human interaction. In recent years, researchers work to design controllers

that have the ability to "learn" and "think" like human expert [1] [2].

Fuzzy theory is a powerful problem-solving method with wide applications

in industrial control and information processing [3] [4] [5]. It provides a

simple way to draw definite conclusions from vague, ambiguous and

imprecise information. Unlike classic approach which needs a deep

understanding of system dynamics and the knowledge of exact equations

and precise numerical values, fuzzy logic incorporates simple rule-based

"IF X AND Y THEN Z" approach to solve control problem rather than

trying to model it mathematically. Fuzzy modeling based on numerical

data, which was first explored systematically by Takagi and Sugeno [6],

has found many successful applications to complex system modeling.

Fuzzy controllers are the most important application of the fuzzy theory.

They work rather differently than conventional controllers by using expert

knowledge (rules) instead of differential equations to describe a system.

The knowledge could be expressed in a natural way with "linguistic

variables", which are described by "fuzzy sets". Fuzzy logic has many

advantages but also has some limitations. For example, fuzzy systems

needs expert for rule discovery and they cannot learn the rules themselves.

3

Artificial Neural Network (ANN) is an important concept in artificial

intelligence. These networks are based on the parallel architecture of

human brain. The true power and advantage of neural networks lies in their

ability to represent both linear and non-linear relationships and in their

capacity to learn these relationships directly from training examples. The

training examples must be selected carefully otherwise useful time is

wasted or even worse the network might be functioning wrongly. ANN is

made of many highly interconnected processing elements (neurons)

working in unison to solve specific problems. It can create its own

organisation or representation of the information it receives during learning

time but the knowledge represented by the network is difficult to

understand. Also, the mathematical theories used to guarantee the

performance of an applied neural network are still under development.

Many researches are devoted to fusion of neural networks and fuzzy

system into new structures called "Neuro Fuzzy Networks". These

approaches combine the benefits of two powerful paradigms into a single

capsule and provide a powerful framework to extract fuzzy rules from

numerical data [7], [8], [9], [10], [11], [12]. Neuro fuzzy networks are

widely used in many fields. In fact, a fuzzy system can be seen as a special

neural network and represented as a three-layer feedforward network [13]

[14]. However this technology is not perfect. Neuro fuzzy networks behave

like "black boxes" whose internal rules of operation are unknown. Nodes

and links in a neuro fuzzy network correspond to a specific component of a

fuzzy system, some represent linguistic terms, some input or output

variables and some are used for representing fuzzy rules. All nodes are not

fully connected to the nodes in the neighboring layers. This arises several

questions such as: how to optimize a neuro fuzzy network, how to set a

large number of parameters, how to reduce convergence time and how to

realize effective training and adaptation?

4

The aim of this work is to answer these questions by proposing a new

clustering neuro fuzzy method. The objective is to improve the accuracy in

modeling applications, and to reduce the number of fuzzy rules and to

realize reliable adaptation in fuzzy control applications.

The method uses clustering techniques and Takagi-Sugeno modeling. The

learning phase starts with a clustering algorithm which divides the input

space into a series of clusters according to the input data distribution. These

clusters are then used to construct a series of membership functions for the

input space mapping. As a result, a collection of fuzzy sets represents all

inputs. Finally an identification parameters matrix P is drawn by Takagi-

Sugeno modeling and matrix operations. This matrix holds all

identification parameters for the consequent part of the T-S fuzzy rules. In

a certain extent, this matrix is equivalent to a rule base. After training, the

matrix will be use to compute the system output. The main advantage of

the proposed method is its simplicity, a fast convergence time and great

accuracy.

This work is divided as follows: chapter 2 and chapter 3 introduce fuzzy

logic and neural networks. They describe essential knowledge and

information needed to design neuro fuzzy networks. In chapter 4, the

proposed method is developed in details. Performances and results are

evaluated and discussed for three different types of application in chapter

5: prediction, approximation, and control. Finally, conclusions are given in

chapter 6.

5

2. ARTIFICIAL NEURAL NETWORKS

Neuro fuzzy systems have the structure of Artificial Neural Networks and the

abilities of fuzzy inference. Therefore, a good understanding of ANN is important to

design neuro fuzzy systems.

2.1 Artificial Neural Networks

ANN is an information processing paradigm inspired by our knowledge on

biological nervous system. This idea was established before the arrival of computers.

In 1943, a neurophysiologist Warren McCulloch and a young mathematician Walter

Pitts wrote a paper on how neurons might work [15]. To do so, they modeled a

simple neural network with electrical circuits. With computers, it is now possible to

simulate more complex neural networks and to mimic human learning skill.

Neural networks try to reproduce the structure of neurons in the human brain. They

are a powerful data-modeling tool. Knowledge in neural networks is stored within

the synaptic weights like inter-neuron connection strengths. Neural networks have

typically a multi-layer architecture where layers of nodes are connected [16].

In a neural network, the basic element is the artificial neuron which is a device with

several inputs and one output. Figure 2.1 shows the model of a single artificial

neuron.

6

X\

X2

Inputs

Xn O

Summation
Node

Synaptic Weights Bias

Activation Function

/(«)

a

/ "
Output

Fig 2.1 Artificial Neuron Model

A single neuron, called a perceptron, is characterized by the parameters:

0 = (cot, o)2,...,con,b,f). (2-1)

Each connection link has a synaptic weight that multiplies the signal transmitted.

Each neuron has an activation function being applied to the weighted sum of the

inputs signal and the bias to produce an output signal y :

y = f
• n

yaw -b (2-2)

The activation function can be a threshold function, a piecewise-linear function or a

sigmoid function.

A multi-layer neural network is a neural network with more than one layer of

neurons. In this case, the activation functions of the different neurons can be

different. There are no connections between neurons of the same layer, only

weighted connections with neurons in the next layer [16], [17]. Figure 2.2 shows a

typical multi-layer neural network architecture.

7

By using proper input and output training samples, an ANN can learn to approximate

complex relationships between inputs and outputs. Through the learning process, an

ANN can be configured for a specific application, such as approximation, pattern

recognition or data classification. However, the accuracy of the output is limited

because the variables are effectively treated as analog variables, and the recursive

least squares algorithm used during the learning process does not necessarily lead to

a null error. Also, the needed time for proper training of a neural network can be

long.

Output layer

Hidden layer

Input layer

inputs

Fig 2.2 Typical Neural Network Architecture

Neural networks need to be trained before they can be used. They improve their

performances during the learning process. Learning occurs through an iterative

process of adjustment applied to all weights and bias of the network. Learning

methods used for neural networks can be classified into two main categories:

supervised learning and unsupervised learning [18].

8

2.1.1 Supervised learning

An essential factor of supervised or active learning is the availability of an external

teacher, as showed in figure 2.3. The term "supervised" originates from the fact the

desired response is provided by an external "teacher". Network parameters are

adjusted under a combined influence of the training vector and the error signal; the

error signal is defined as the difference between the actual response of the network

and the desired response. Finally, through step by step adjustments, the error will

approach 0. The backpropagation algorithm is widely used to implement this

technique.

Vector describing state of the
..environment

environment

Desired response

Fig 2.3 Supervised Learning

Backpropagation is a systematic method for training multiple-layer (three or more)

artificial neural networks. Standard backpropagation is a gradient descent algorithm,

in which the network weights are moved along the negative of the gradient of a

performance function. Properly trained backpropagation networks tend to give

reasonable answers when presented with inputs that they have never seen before. In

backpropagation, the output error on the training examples is used to adjust the

network weights. Figure 2.4 shows a typical three layers network.

Target t

Output layer k

U

Hidden layer;

Input layer i

X(XirX2, ••• yXn) Xl

Fig 2.4 Typical BackPropagation Network

Let tk be the £-th target (or desired) output, z* be the A:-th computed output with

k = 1,..., p and corepresents all the network weights andx the inputs.

The training error is given by:

1 p

(2-3)

10

The backpropagation learning rule is based on gradient descent. The change in each

weight vector component is proportional to the negative of its gradient:

Aa} = -r1f (2-4)
ceo

Where rj is a constant called the learning rate chosen between 0 and 1.

a)(m +1) = co{m) + Aco(m) (2-5)

where in is the m-th pattern presented.

Backpropagation involves two passes. In the forward pass, the input signals

propagate through the network to the output. In the reverse pass, the calculated error

signals propagate backwards through the network where they are used to adjust all

the weights. Calculating the output is carried out, layer by layer, in the forward

direction. The output of one layer is the input to the next layer. In the reverse pass,

using the delta rule, the error value of each output neuron guides the adjustment of

the associated weights. Since the middle-layer neurons have no target values, the

error must be propagated back through the network layer by layer [19].

Suppose netj is the inner product of the input layer signals with input weights for

hidden unity:

n

netl=YJ
x
l°

}v (2"6)

The hidden unit output is then computed:^ = /(netA, where / (.) is a nonlinear

activation function. The error on the hidden-to-output weights is given by:

de de dnetk _ dnet,
~ ••• = Sk-T-jL (2-7) dcokl dnetk dmkl

 k d<okl

11

where:

de _ de dzk

dnetk dzk dnetk

= (tk-zk)f'(ne(k) (2-8)

Suppose netk is the inner product of the input layer signals with input weights at the output

unit k:

mtk=%y.,o>kj (2-9)
./ = !

On the output layer, the change in each weight vector component is:

A ^ , = riSkyj = rj(tk -zk)f'(netk)yj (2-10)

Equations for the hidden layer are the same as for the output layer except the error term must

be generated without a target vector.

Error on the input-to-hidden units is given by:

de _ de dy t dnet,

dcon dy} dnet] dm n
(2-11)

where:

de

"*y,

d
k = \

*yj

p

= -E('*-z*)f(we'*H

t r k)Jy, h{k k)dnetk dy, (2-12)

*=i

According to (2-8) one can define:

<W'H>)I>*A (2-13)
k=\

12

The learning rule for the input-to-hidden weights is:

A<y„ = i1xlSJ = r1{^jwkjdk)f'{net)xl (2-14)

Backpropagation technique summary [20]:

1. Randomize the weights to small random values (both positive and negative) to

ensure the network is not saturated by large values of weights.

2. Select a training pair from the training set.

3. Apply the input vector to network input.

4. Calculate the network output.

5. Calculate the error, the difference between the network output and the desired

output.

6. Adjust the weights of the network in a way that minimizes this error.

7. Repeat steps 2-8 for each pair of input-output vectors in the training set until the

error for the entire system is acceptably low.

The training algorithm updates the parameters to match one input-output pair at a

time. Others algorithms, such as recursive least squares, minimize the summation of

the matching error for all the input-output pairs.

2.1.2 Unsupervised learning

In unsupervised or self-organized learning there is no external teacher or critic to

oversee the learning process, as showed in figure 2.5. The word "unsupervised"

means that no target values are needed. In fact, for most varieties of unsupervised

learning, the targets are the same as the inputs. Unsupervised learning usually

performs tasks like: classify data or compressing information from inputs. A typical

unsupervised learning technique is competitive learning.

13

Vector describing state of the
environment

environment Learning System

Fig 2.5: Unsupervised Learning

A basic competitive learning network has one layer of input neurons and one layer of

output neurons (fig 2.6). An input pattern X is a sample point in the ^-dimensional

real vector space (/?"). Competitive learning is an unsupervised learning paradigm,

so it just extracts information from the input patterns alone without the need for a

desired response. In a competitive-learning network, a neuron's synaptic weight

vector typically represents a set of related data points, and is able to find the largest

or smallest output. It associates those groups with one another and with a specific

proper response. Normally, when competition for learning is in effect, only the

weights belonging to the winning processing element will be updated. This element

is called "winner" and is determined as the element with the largest weighted-sum

Net?, where:

Net* = wjxk (2-15)

Where xk is the current input. Thus the iih element is the winning unit if:

w,rxk > w]xk for all j * i (2-16)

which may be written as:

jjwA-jci < j k - j c l for all j * i (2-17)

14

The concept of choosing a winner is a fundamental issue in competitive learning. In

general, the winner is the best output (depending on the criteria) and this system is

called "winner-take-all" network. The simplest architecture is a single layer of units,

each receiving the same input X^R" and producing an output Y. It is also assumed

that only one unit is active at a given time see Figure 2.6.

y\
— •

yi
— •

" l r n

Fig 2.6: Single Layer Competitive Network

For a given input x* drawn from a random distribution p(x), the weights of the

winning unit are updated (the weights of all other units are left unchanged)

according to:

co,(t + l) = <y((t) + a(t)-(x(t) - a)j(O) if/is winner index (2-18)

o)l (t + 1) = <w,.(t) if / is not winner index (2-19)

Where a is a scalar called adaptation gain or step rate, 0 < « (/) < 1. The variable

a controls how large the update's rate is at each step. If the step rate is close to 1,

the network will converge quickly, but any new input can upset the cluster. On the

other hand, if a is too small, the convergence will be too slow. A compromise is to

use a variable step rate a(t) during learning. In general, there are three types of step

X\

*2

A n

15

rate.

a. Constant learning rate

Suppose the learning rate is constant, so:

a(t) = a0 (2-20)

b. /C-means learning rate:

a{t) = - (2-21)
m

Where the time parameter m stands for the number of input signals for which

this particular unit has been winner so far.

c. Exponentially decaying learning rate

The exponential decay learning rate is given by:

a{t) = a,{—)'/,,m (2-22)
a,

Where al and af are the initial and final value of the learning rate, /11111X is

the total number of adaptation steps which is taken.

Every update strategy has its advantages and disadvantages: /C-means is simple, but

" 1
the harmonic series lim V = oo diverges, so even after a large number of input

signals and similarly low values of the learning rate arbitrarily large modifications of

each input vector may occur. Constant learning rate has no convergence, but its

practical effect is better than /C-means in many cases. Exponentially decaying

learning rate has good effect than the two other strategies, but in many cases tmax is

unknown.

16

2.1.3 Clustering

To fuzzify input signals in a fuzzy system, it is important to have a series of proper

membership functions. Clustering technology is a good way to compose these

membership functions. The key idea is to use clustering technology to class the input

space into a series of subspaces, and then, to use cluster to construct membership

function for each subspace.

Clustering is one of the most important unsupervised learning technologies. A loose

definition of clustering is "the process of organizing objects into groups whose

members are similar in some way". The goal of clustering is to reduce the amount of

data by categorizing or grouping similar data items together. Such grouping is

pervasive in the way humans process information, and one of the motivations for

using clustering algorithms is to provide automated tools to help in forming

categories or taxonomies [21] [22].

A cluster is a collection of objects which have similitudes between them and are

"dissimilar" to the objects belonging to other clusters. Competitive rule allows a

single-layer linear network to group and represent data samples that lie in a

neighborhood of input space. Each neighborhood is represented by a single output

neuron. From the view of the input space, clustering divides the space into local

regions, each of which is associated with an output neuron. If the vectors are in the

same cluster then they are similar. It usually means that they are "close" to one

another in the input space. Clustering is a mechanism that changes a continuous

space to a series of discrete vectors. If the number of clusters is enough, the error

between a data sample in the neighborhood and its center is small, so the fidelity is

high. However at present time there is no algorithm to find the optimal clusters for

an input space.

17

3 FUZZY LOGIC

Lotfi Zadeh, professor at the University of California at Berkeley, first introduced

fuzzy logic in the mid-1960's. Fuzzy logic is a powerful problem-solving theory with

many applications in control engineering and information processing. Fuzzy logic

provides a remarkably simple way to draw definite conclusions from vague,

ambiguous or imprecise information. In a sense, fuzzy logic resembles human

decision making with its ability to work from approximate data and find precise

solutions. Fuzzy logic incorporates an alternative way of thinking which allows

modeling complex systems using a higher level of abstraction originating from our

knowledge and experience. Fuzzy Logic allows to expresse this knowledge with

subjective concepts such as very well or bright red to be maped into exact numerical

ranges [23] [24].

3.1 Fuzzy sets and membership function

Fuzzy sets are extension sets of the classic sets. Fuzzy sets, unlike classic sets, have

no crisp boundary, and they provide a gradual transition between "belonging to" and

"not belonging to" a set. A fuzzy set in a universe of discourse X (which contains all

the possible elements of concern in each particular context or application) is

characterized by a membership function MA(X) that takes values in the interval [0,

1]. In other words, a fuzzy set is a generalization of a classical set by allowing the

membership function to take any values in the interval [0, 1]. The fuzzy set theory

makes it possible for an object or a case to belong to a set to a certain degree [25].

For instance, we might think that age 20 is "young" with membership value of 1.

Age 30 has a membership value of 0.95. Age 60 has a membership value of 0.1, and

so forth. That is to say, every people is "young" to a certain degree. Figure 3.1

describes a possible relationship between fuzzy sets "young" and "old".

18

1

H(age)

0

age

Fig 3.1 Fuzzy sets young and old

Curves in figure 3.1 are the membership function of the fuzzy set "young" and the

fuzzy set "old". The membership value of each element is between 0 and 1. The

values 0 and 1 describe "not belonging to" and "belonging to" a classic set

respectively. Elements of a fuzzy set are taken from a universe of discourse, also

called its universe. The universe contains all elements that can come into

consideration. In general, fuzzy sets can either be discrete or continuous. For

example, a fuzzy set A in universe X may be represented as a set of ordered pairs of

a generic element x and its membership value, that is,

A = {(x,MA(x))\xeX} (3-1)

When X is a discrete set:

X — | xx, x2, x,, •••, xn J (3-2)

19

A = y nM. (3-3)
x X

Where the summation sign does not represent arithmetic addition; it denotes the

collection of all points x e X with the associated membership function juA (x).

When X is a continuous and infinite set:

A= [A. (3 .4)
S x,

3.2 Linguistic variables and linguistic rules

Just like an algebraic variable takes numbers as values, linguistic variables take

words or sentences as values. A linguistic variable is characterized by a quintuple

(X; T(X); U; G; M) in which X is the name of the variable, T(X) is the term set, U

is a universe of discourse, G is a syntactic rule to create the elements of T(X) and M

is a semantic rule for associating meaning with the linguistic values of X [6]. In

figure 3.1, the "age" is a linguistic variable.

Fuzzy if-then rules (linguistic rules) or fuzzy conditional statements are expressions

of the form if A then B, where A and B are labels of fuzzy sets characterized by

appropriate membership functions. Inputs of a fuzzy system are associated with the

premise, and outputs are associated with the consequence. Assume that a fuzzy

system has m+k linguistic variables: m inputs xj, X2 ,x„, and k outputs yi, y2 ,

y* and that n linguistic rules defined by:

/?/.• ifxi is An andx2 is Kn and, ,andxm is Ajm

Then yi is Cu andy2 is C/2 and, ,andy^ is C;*

R„: ifxj is A„i and X2 is A„2 and, ,andx„, is A,

20

Then yi is C„i andyi is C,a and, ,andyk is C„*

3.3 Fuzzy system

Fuzzy systems have been applied to a wide variety of fields ranging from control,

signal processing and communication. However, the most significant applications

are in control problems. In general, a fuzzy system consists of four components:

fuzzification, fuzzy inference, defuzzification and fuzzy rule base (Figure3.2). The

function of fuzzification is to map a crisp input to a linguistic value. After

fuzzification, the inference engine uses a fuzzy if-then rules base and linguistic

values to form linguistic output. Once linguistic output is available, the

defuzzification step produces a final crisp value from linguistic values.

crisp output
•

fuzzy rule base

Fig 3.2 Fuzzy System

3.3.1 Fuzzification

Fuzzification transforms crisp values x, into grades of membership for linguistic

21

crisp input

fuzzification —».
fuzzy

inference

i i

— • defuzzification

terms of fuzzy sets A,. The simplest form of fuzzification can be done using a

fuzzifier function / that fixes the degree of fuzziness //(A,) in a set.

For example, suppose A, is the input space, xt is an input vector and xl e A,. The

fuzzification performs to transform x, to every fuzzy set A, defined by function / :

/i(Af) = / (* ,) (3-3)

In general, Gaussian or triangular membership functions are used as fuzzifier.

A Gaussian function is defined by:

(x-a)2

ju(x) = exp(- — - y —)
2b

(3-4)

Where a is the peak value and b is the width of the membership function (fig 3.3).

0.5

MM

o.i 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig 3.3 Gaussian Function

If membership functions are defined as symmetric or triangular function (fig 3.4), then their

22

general form is (3-5):

*M(x)

IV y \
\

\
\

0.5 /

y

/
/ v

\

0.1 0.3 0.4 0.5 0.6

Fig 3.4 Triangular Function

0.7

\
V

0.8 0.9 1

x

ju(x) = l-(2-\x-a\) / b

= 0

a-b a+b
for < x <

2 2
for otherwise

(3-5)

In triangular or Gaussian functions, there are two unknown parameters, center and

width. In most case, the center points can be found by clustering technique, and the

width factors can be determined by two ways.

a. Constant width

If the width is constant for all the membership functions, then the width can be

defined by:

23

S = d i ^ (3-6)
,'2M

Where M is number of subsets, and d(max) is the maximum distance between those

centers of subsets. This form would be close to the optimal solution if the data were

uniformly distributed in the input space leading to a uniform distribution of the

centers. Unfortunately, most real-life problems show non-uniform data distributions.

The method is thus inadequate in practice and an identical width for all Gaussian

kernels should be avoided since their widths should depend on the clusters position,

which in turn depends on the data distribution in the input space.

b. Independent width

If the width of each Gaussian function is independent, the following form can be

used to define the width of each function:

min{ ||V, - V,|j /, 1 = 1 , 2 , - , * i*L)
\ = (3-7)

Where k is the number of subsets, V, and Vi are the center of subset, and i is not

equal L. In practice, another form, based on the r-nearest neighbor of the center is

often used:

2 |

8L = - ^ (3-8)

Where the V,- are the r-nearest neighbors of center VL. A suggested value for r is 2k.

The form (3-7) and (3-8) offer the advantage of taking the distribution variations of

the data into account. In practice, they are able to perform much better as they offer a

greater adaptability to the data than a fixed-width procedure.

24

3.3.2 Defuzzification

The outputs of a fuzzy system are fuzzy. They often need to be converted into a

scalar. This process is called defuzzification. Defuzzification is especially necessary

for hardware application because conventional systems work with crisp data

exchange. However, selecting a single scalar value from a series of fuzzy outputs is a

challenging task. There are many defuzzification methods: Centroid Average (CA),

Maximum Center Average (MCA), Mean of Maximum (MOM), Smallest of

Maximum (SOM) and Largest of Maximum (LOM) Centroid Average and

Maximum Center Average methods belong to continuous methods and are

frequently used in control engineering and process modeling. The rest represents

discontinuous methods, which are mainly used in decision-making and pattern

recognition applications. For convenience, we could divide all the defuzzification

methods into two basic mechanisms: centroid and maxima. The centroid methods are

based on finding a point within the total geometric figure such as the weight of each

fuzzy set, the area of the largest fuzzy set, or the area of the highest intersection.

a. The Center of Area Defuzzification:

The Center of Area (COA) method is often referred to as the Center-of-Gravity

because it calculates the centroid of the composite area representing the output fuzzy

term (3-9). It specifies the crisp value y* as the center of the area covered by the

membership function of fuzzy set A.

y* - - ^ — — - (3" 9)

L^M.Ay,)

The summation is carried overvalues of the universe of discourse y, sampled at N

points. See figure 3.5.

25

t n*(y*)

overlaping area is
counted once

y* y

Fig 3.5: CO A Defuzzification

If we regard //,, (>»,•) as the probability density function of a random variable, then

the center of area defuzzification gives the mean value of the random value. The

advantage of COA lies in its intuitive likelihood. The disadvantage is the difficulty

to calculate the summation in most real case since. COA favors "central" values in

universe of discourse and that, because of its complexity, it may lead to rather slow

inference cycles If the areas of two or more contributing rules overlap, the

overlapping area is counted only once. This defuzzification method is often used

[26] [27].

b. The center of sums defuzzification

The Center of Sums (COS) method builds the resulting membership function by

taking the sum of output from each contributing rule. So, this sum is not just the

union. The overlapping areas are counted more than once. This method can be

carried out easily and leads to rather fast inference cycles and it is the most

commonly used defuzzification method.

26

y * = (3-10)

Where ^(y ,) is the membership function which is at point y,- of the universe of

discourse resulting from the firing of the kth rules (figure 3.6).

h^(y ;)

overlaping area is
counted twice

Fig 3.6 COS Defuzzification

c. The Mean of Maxima method:

The Mean of Maxima method (MOM) a simple method for doing the

defuzzification. The output takes the crisp value of the highest degree of

membership in ^(y,) . If a system has more than one element in the universe of

discourse having the same maximum value, a random selection can be used or a

mean value is performed. Suppose, there are M such maxima in a discrete universe

of discourse. The crisp output can be obtained by:

27

y * = (3-11)

Where ym is the mth element in the universe of discourse where the membership

function of /^(y,) is at the maximum value, and M is the total number of such

elements. MOM defuzzification is faster than COA. Furthermore, it allows the

controller to reach values near the edges of the universe of discourse. This method

does not consider the overall shape of the fuzzy output //^(y,) (fig 3.7).

t^>Y)

Fuzzy value with
maximum height

3.3.3 Fuzzy Inference

Fig 3.7 MOM Defuzzification

To draw conclusions from a rule base, a mechanism that can produce an output from

a collection of If-then rules is necessary. This mechanism is called fuzzy inference.

There are two major inference methods: T-S fuzzy inference and Mamdani fuzzy

28

inference. The Mamdani fuzzy inference method is the most common method.

a. Mamdani fuzzy inference:

The Mamdani method was proposed in 1975 [28], to control a steam engine and

boiler combination. In this application, the set of fuzzy rules was supplied by

experienced human operators.

The following example is a typical Mamdani fuzzy rule.

Rj.- ifxi is An and %2 is Ai2 and and xr is A,> then y is C, (3-12)

Where Rt is the /' fuzzy rule; x is an input and A is a fuzzy set.

The following two examples explain the Mamdani fuzzy inference.

Single fuzzy rule

If A: is A then}' is C

If x is A' then C is?

C'=min{C, max(A,A')}

M

P

fi

M

M

y

c=?

y

MriiL
y

Fig 3.8 Simple fuzzy rule Mamdani method

29

Multiple fuzzy rules

Rulel: If x is A; theny is C; *"

y

Rule2: If x is A2 theny is C2 M jm&.
Query: If x is A' then C" is ?

C"=miiUCi. maxfAi. A'H+ min/Ci. maxfA?. A'H

0

y

C

/ ^ .

y

Fig 3.9 Multiple Fuzzy Rules of Mamdani Method

b. Takagi-Sugeno fuzzy inference

The Takagi-Sugeno fuzzy inference method was introduced in 1984 and it is similar

to the Mamdani method. The first two parts of the fuzzy inference process, inputs

fuzzification and fuzzy operators, are the same. The main difference between

Mamdani and Sugeno is Takagi-Surgeon approximates a nonlinear system by a

combination of several linear systems (see figure 3.10). It breaks down the input

space into several subspaces and represents the input/output relation in each

subspace by a linear equation. A typical model of Takagi-Sugeno fuzzy inference is:

If input x = Ai and input y =Bj, then output is z = ax + by + c.

Where a, b, c are numerical constants.

(3-13)

30

y A ; s

->

x

Fig 3.10 Linear approximation by 3 fuzzy rules

In general, Takagi-Sugeno rules have the following form:

If xj isAu, and ... andxr isAir then y' - fj(x,,x2,---,xr)= b' +a[xi + —t-a'mxm (3-14)

Where fi is the linear function, a and b are parameters of this linear function, _y, is the inference

consequence of this rule.

T-S method can be easily represented and evaluated by a three-layers' neural

network. Let us suppose a multiinput system with n inputs D(x{, x2, x3, x4, ..., xn)

and an output Y(_y,, y2, y3, y4, ..., yk) (figure3.11).

31

X\

Xi

D = (x,,x2,...,*„)\J

Layer 1

Fuzzification

Layer 2

Product Operator

Layer 3

Defuzzification

Fig 3.11 Takagi-Sugeno Fuzzy System

Layer 1:

The nodes of first layer receive input vector D(x,, x2, x,, x4, ..., xn) and act as

fuzzy sets representing the terms of the matching input variable. Nodes in this layer

are arranged into n groups; each group representing the (/"-part of fuzzy rule. Each

node acts as a fuzzifier. Hence, the node outputs are in the range [0, 1] and are

calculated by the following function:

Mijix,) = exp _ (3-15)

32

Layer 2:

The number of nodes in this layer is equal to the number of fuzzy rules. A node in

this layer represents a fuzzy rule. Each node in this layer is a product operator. The

"min" operator is not used, because the function "min" is not differentiable in the set

of real numbers iR. Outputs of this node are:

<0\ = Mu Oi) th, (*2) ' •' Mm, (*».) 0 ^ ' ^ <l) (3-16)

= rW*<> (3-17)
7=1

co is called the firing strength.

Layer 3:

Nodes in this layer represent the output variables of the system. Each node acts as a

defuzzifier. Outputs of this node are:

y-^-.y'*^-y*-*^-y (3-18)
i<=\

•"I
(3-19)

" II

The firing strengths a>, are normalised and outputs y are the crisp output sets

weighted by the firing strengths.

A fuzzy rule (3-14) has four basic elements: input (JC, , x,, x,, JC4 ...,*„), input

space (Al
l,A'2,---,A'm), output y and parameters of consequence (b',a\,---,a'm). In

certain degree, the object of training is to draw the parameters of consequence, so

33

the following contents will introduce how to draw the parameters of consequence

matrix P.

Suppose that we have n rules R' (/ = 1,2, •••,«) of the form:

R': IFx; isA/ and*2 i s ^ ' and...andx„, isA„', theny'=b'+ai'xi+a2lX2+ ... +a„,'xm

If we apply the j"' sample to the i'h rule R', we obtain:

R/: IFxij isA\j andx2; isA2/ and...andx„y isAm/, Then yf=bl+a\'xij+ci2lX2j+... +am'xmj

Where i=l,2,...,n andy=/,2,...,r.

So the weights of the rules are:

w) =xjj is Ajj and X2j is A2/ and... and xmj is Amf

= fl^K;) k=l,2,...,m (3-21)

According to (3-19), the output yy is given by:

y = ^1
Si n

i>;
= Z« (3-22)

1=1

Where :

co'
P„ = - 7 - - (3-23)

i>;

The output yj can be expressed by:

34

yj=[A,02j-0„]

=[A,A,--A,]

yj

y'i

y]
b1 a\
L 2 2

b a,

b a.

x,
(3-24)

So, the vector of output Y can be expressed by:

Y =

V
y2

y>-.

=

\Pu
Pa

A

Pu •

Pn •

P2r •

- A„l
- P,a

- Pnr_

bl a\ ••

i 2 2
b ax •

b" a'; •

• a l '

•• al

• • « : .

i i "

11 X\2

Xm\ Xml

• 1

• * 1 ,

•x

(3-25)

We can rewrite in the form:

Where:

Y = X P (3-26)

Y =
y\

yr

(3-27)

X=
P l l ' * ' A i l ' X\\P\\ ' " X\\Pn\ '" Xm\P\\ '" Xm\Pn\

Pxr ••• A , r > * 1 , A ••• XirPnr - *„„ A " • * r a r A .

(3-28)

35

b"

p= (3-29)

X is a vector matrix with r x n(m +1) dimensions,

Y is a vector with r dimensions,

P is a vector with nx(m + l) dimensions.

Finally, vector P is expressed by:

P = [X^l'^Y (3-30)

3.4 Fuzzy control system

Control systems are classified in two categories: open loop control systems, in which

the control action is independent of physical system output, and closed loop system,

also known as feedback control systems. The physical system under control is called

a plant. In a closed loop system, a sensor measures the output signal and returns it to

the input signal. To guarantee satisfactory responses and performance, it is necessary

to use an additional system, known as a controller or a compensator into the loop.

Currently, most controllers are based on proportional integral derivative (PID)

technology. PID controllers work well in many control applications. But in practice,

the system to control always contains uncertainty, is complex, poorly understood, or

nonlinear. So it is difficult to build a precise mathematic model and is difficult to

linearize. A fuzzy controller unlike a PID controller which needs a deep

understanding of the system, exact equations and precise numerical values, uses a

simple, rule-based if x AND v then z approach rather than trying to model a system

mathematically. Fuzzy logic provides an alternative solution for nonlinear

36

applications. Fuzzy inference processes results in improved performance, simpler

implementation, and reduced design costs. In many applications, fuzzy logic can

lead to better control performances than linear, piecewise linear, or lookup table

techniques. Most control applications have multiple inputs and require modeling and

tuning of many parameters which makes implementation tedious and time-

consuming. Fuzzy rules can help to simplify implementation by combining multiple

inputs into single if-then statements while still handling nonlinearity.

In general, a fuzzy control system includes three major classes: single input single

output (SISO), multi-input single output (MISO), and multi-input multi-output

(MIMO).

3.4.1 SISO AND MISO

The "SISO" fuzzy controller is widely applied in practice. This class of controllers is

simple (Fig 3.12).

Fig 3.12 Structure of a SISO

However, for dynamic systems, it is better to track also the trend of the error's

change as shown in (Fig 3.13).

37

Fig 3.13 Structure of a MISO with differential input

3.4.2 MIMO

The design of controllers for MIMO systems has always been a hard problem even

for the linear ones. Currently, there is no complete theory to design MIMO systems.

Most of existed techniques are quite complicated. The main difficulties is the

derivation of rules is not easy and the number of rules is too high, however it is

possible to describe a "MIMO" system (figure 3.14) with several "MISO" systems

(figure 3.15).

u(kt)

plant

yi(to)

y„(kt)

Figure 3.14 Structure of a simple MIMO

38

r(kt)

/ „ > «

AV
i

s~

k

r> Fuzzy Controller

•

~^\<» filfl
• (TT Y --A^r v^

i L

r *

d(e\{kt))

dt

iii(kt)

Fuzzy Controller

•
d(e„(kt))

dt

Un(kt)

plant

y\(to)

yn(kt)

Figure 3.15 Implementation of a MIMO system with several MISO systems

39

4 DESIGN OF A HIGH-DIMENSIONS NEURAL FUZZY CONTROLLERS FOR

NONLINEAR SYSTEMS

Fuzzy controller are widely applied and fuzzy systems have been proved to be able

to approximate nonlinear functions with arbitrary accuracy [29] [30]. Generally

speaking, fuzzy systems and neural networks have much equivalence [31] [32]. In

fact, fuzzy control systems can be regard as special neural networks control systems

and many neural networks learning algorithms can be used in fuzzy control systems.

Neural fuzzy systems have good capacity for approximations; however, there are

still some difficulties.

Many fuzzy rules are needed, which leads to excessive training time,

particularly with multidimensional input.

* Algorithms are complex and problem adapted.

. The reliability is low. For example, for a same model or function, the

learning results are dependent on the training sets.

To solve these problems, Jian-qin Chen and Yu-Geng Xi [33] developed a learning

method. The basic idea is to use competitive learning for partition the input space to

fix the decision boundaries for local regions in an input space, and then to learn the

consequent part of the fuzzy rules by RLS (Recursive Least Square). In this method,

the boundaries decision is an important step. The choice of decision boundaries is

useful for dealing with the conflict between over fitting and generalization as well as

reducing the number of local input regions in certain degree. The following section

describes the decision boundaries algorithm:

Step 1. Freeze the cluster centers v, (i=l,2,... ,cluster_number).

Step 2. Let r,=0 (i=l,2,..., clusterjiumber) at first

Step 3. For any input x(t) find out vc by

\x(t) - vt.|| = min|jc(0 - v j . (4-1)

40

Step 4. Update rc

if |JC(/) —vt.| > rt., then rc(k + 1) = jpt(/)-v .;| (4-2)

if ! jx(0-vj<r. , then rc(k + l) = rc(k) (4-3)

Where v, is the i'h cluster and r, is the radius of the local regions which center is v,.

The algorithm for determination of decision boundaries is efficient and simple.

However in practice, this algorithm has some drawbacks. For example; two very

closed points A and B, with similar characteristics, can belong to different clusters

("A" belongs to cluster N and M. "B" belongs to cluster M and P). This may lead to

output errors (called boundary error). To decrease this type of errors and to improve

the precision, it is necessary to increase the number of clusters and to lessen theirs

radiuses. This method needs many clusters to guarantee a good accuracy.

X"
X / \ X 'N X x / . / ^ X

X X
"x^i x̂ j*

X x x >x v>' x
/x A <: x J ^ / x
\ X N >̂ ^ ^ X

V -X X- ' ' %v*- - - ' ' '
\ x x .-''' x x """"'

Fig 4.1 Boundary error during a clustering process

4.1 High-dimensions neural fuzzy inference (HDNFI)

To solve the problem mentioned above, in inference phase, a high-dimension neural

fuzzy inference (HDNFI) which based on T-S model is proposed in this work (see

figure 4.2)

41

,'X\ \

i X2

H y

Pa

y

U — \X\, Xj , • • •, Xn) Layer 1 Layer 2

Fuzzification Inference and Defuzzification

Fig 4.2 High-dimension fuzzy inference

The basic idea of this method is to consider each data in this system as a point with high-

dimension. Each dimension of input D will be processed at same time in same high-dimension

subsets.

Layer 1:

The nodes of first layer receive input vector D(x,, x>, x3, x4, ..., jcn) and each node

acts as a fuzzifier. Therefore, the node outputs are in the range [0, 1] and are

calculated by the following function:

42

//,(D) = exp-(™J^- (4-4)
2b-

Where c, is the center and bt is the width of membership function (4-4), c, and D has same

dimensions.

Layer 2:

This layer includes fuzzy inference and defuzzification. In this layer, the variable //,

is the degree of fuzziness of input D in subset A, and suppose the firing strength cot

equal to //,. The ouput is given by:

y=^- y+^-y+• • •+^r-y (4-5> - _ ^ l . v '

_i>y
! ! > <

=S'-,^

+ &>2

I" «,

(4-6)

(4-7)

Firing strengths a>l are normalised and outputs y are the crisp output sets weighted

by the firing strengths.

Suppose that we have q rules R' (/ = 1,2,•••,#) of the form:

R': If input D is in Aj then output is z' = a ' x D + 6'

If we apply the /* sample to the i'h rule i?', we get:

R\: If input D, is in A, then output is z' = a / x D7 + V

Where i=l,2,...,q and j=1,2,...,r.

According to (4-6), the output y, is given by:

43

Where :

2»;
y> = " —

2>;
/=!

i«
/=!

(4-8)

1=1

(4-9)

The output y, can be expressed by:

yj=[AjAr~Pv]

-[bj&j-PA

1 1
y.i

y~i

yri

b1 a\

b2 a2

b" a'l

a:

x„

(4-10)

So, the vector of output Y can be expressed by:

Y =

V
y2

y r .

=

\Pu
Pn

A

Pix •

Pv. •

Pzr •

• P* }
• P«

- P„r

V
b2

b"

1
" U[1 "1 1 •

11 12

Xn\ Xn2 '

• 1

• X \ r

~Xn,

(4-11)

We can rewrite in the form

Y = X P (4-12)

44

Where:

yr

(4-13)

x=
Pu ••• Pq\>

 x\\Pu ••• * n A , i ••• x„\Pu ••• X„\P,

p=

b"

X is a matrix with r x q{n + 1) dimensions,

Y is a matrix with r dimensions,

P is a matrix with q(n +1) dimensions.

Finally, matrix P is expressed by:

'/i

P\r ••• Par, XUPU. ••• XlfB ••• Xmpu ••• XmPl

(4-14)

(4-15)

P = [XTX]"]XTY (4-16)

Obviously, in this method, the number of fuzzy rules is equal to the number of subsets (number

of membership functions) and input D is processed by every membership function during the

inference phase, that is to say input D is the member of all subsets, there is no step for choosing

subsets. So, there is no boundary error. The points A and B in figure 4.1 will give similar output

45

if using the proposed method and this result is more reasonable than [33]. In this method, the

characteristics of input data will be represented more accurately by those membership functions.

The output accuracy will be improved. In other word, for a certain requirement of accuracy, this

method can decrease the number of membership functions.

The following section presents the design process. Appendices A and B provide the

detail flow chart and pseudo-code.

4.2 Input space clustering

A typical input space may contain a large number of inputs. But, it is not necessary

to deal with each input. They can be grouped according to their common

characteristics and then be represented by a point. This process is called clustering

and this chosen point is called a cluster. Clusters can be multi-dimensional points,

and competitive learning is often used to perform the clustering. The following

algorithm is used for clustering.

Step 1. Fix the cluster number "clusterjiumber", initialize these clusters

cluster (i) (/' = 1, 2, ••• , cluster number).

Step 2. By using a traditional learning algorithm to decide a winner, dead units

(clusters which are never updated) may appear. To solve this problem,

the following algorithm is used [33].

Pwmna-l XU)' duster (winner ID) \ = minpl(time_win(i)x.\ x(j)- cluste(i)\) (4-17)

w h e r e / , (= . _ 4 _ _ (4-18)

Where the cluster (winner_ID) (winner_ID=l,2,..., clusterjiumber) is the

nearest cluster of x(j) and x(j) is the / h input of training sample, p, is roughly

46

equal to the probability of input data near the cluster (/), nt is the number of

cluster(j') being chosen as a winner and m is the number of cluster [33]. The

variable probability p is used to avoid dead units. So every cluster has a chance

to competition.

Step 3. Update the cluster(win_ID) according to x(t) by:

tiuster(winlD) = cluster{winJD) + steprate x (x(j) - cluster{win_ID)) (4-19)

Where x(j) is the input vector (j = \, 2, •••, numberJnput). The variable

step_rate is used to avoid oscillation during the training time.

Step 4. Update step_rate (2-20)

a(t) = a,{aL)'""" (4-20)
«,

In general, it is difficult to know the exact value of each / v , but it can be

roughly set as the maximum number of iterations.

4.3 Membership function forming

At the end of the preceding section, the input space clustering is done. That is to say

all the centers of the membership functions are fixed. However, just having centers

is not enough to compose membership functions. It is necessary to find another

parameter such as the width to describe each membership function. If the input space

is uniformly distributed, then width can be inferred by equation (3-6). This method is

simple and rapid. However if the input space is not uniformly distributed, then we

need to use the independent width method (3-7) or (3-8) as following.

Step 1. Find the maximal distance between arbitrary two centers by

47

distance = m\n{\cluster{i)-cluster (b)\) (4-21)

Step 2. Calculate out widths by:

. , , distance
width = (4-22)

4.4 Identification parameters matrix derivation for T-S fuzzy rules

In this proposed neural fuzzy system, the purpose of training process is to get an

identification matrix P. This matrix contains all the identification parameters of

consequent part of T-S fuzzy rules. It can be gained by the matrix operation (4-12)

(4-13) (4-14) (4-15) (4-16). Matrix P is the core of the proposed controller. To get a

desired output, a simple multiplication between fuzzy input and matrix P is

performed.

Step 1. Fuzzification by Gaussian function or the triangular function (3-4) or (3-5)

dis = x(i)-cluster(j) (4-23)

-ll/S

u{j,i) = e ^ ^ (4-24)

Step 2. Calculate P with equation (4-9)

Step 3. Use fi to construct input matrix X (4-14)

Step 4. Calculate matrix P with equation (4-16)

Step 5. Calculate the final output with equation (4-12). If the final error is

more than the expected error, then increase the number of clusters and

retrains the controller.

48

dis is the distance between given input and a cluster. x(i) is the input

vector (/ = 1, 2, • • • , m). "m" is the total number of inputs.

4.5 Conclusion

This method has three main parts. The first part is a competitive learning

phase used to cluster the input space. Exponentially decaying learning rate

is used in this phase, which can avoid oscillations during the training time.

The second part forms membership functions. Independent widths are used

to make membership functions more suitable for the input space. The third

part is based on fuzzy inference and matrix operations to draw the

identification parameters matrix P. This method has been validated on

three different benchmarking problems and results are presented in the next

chapter.

49

5. RESULTS AND COMPARATIVE ANALYIS

The validity of the proposed procedure has been validated by means of extensive computer
simulations on three benchmark problems commonly used in the literature:

• Nonlinear function approximation.

• Mackey-Glass time series prediction.

• Nonlinear system control.

5.1 Nonlinear function approximation

Let us suppose a nonlinear system with a single output variable [34] [35] whose model is

given by:

vfr 11)- MQyfr-i)yQ-2)"fr-iM-2)-i]+"(Q} (5l)
ll + yi(t-l)+yi(t-2)\

In this nonlinear function, the output value depends on its previous values y(t), y(t-

1), y(t-2) and input values u(t), u{t-\). So, to approximate this function, a 5

dimension input vector x is defined where: x(t) = [u(t),u(t-\),y(t),y(t-\),y(t-2)]

and an output y as a single dimension vector [_y(/ + l)]. This classic nonlinear

function is often used to test the performances of fuzzy systems to approximate

nonlinear functions.

Suppose u(t) = 0 and y(t) = 0 for (s 0 . The learning procedure randomly generates

input signal u(t) uniformly distributed in the range [-1, 1]. Using equation (5-1), the

corresponding output y(t +1) is computed, thus composing the training samples

{x(t),y(t + \)}.

Then the training samples train the proposed neural fuzzy system using the

following parameters:

Initial cluster number = 1;

Initial update rate = 0.1;

50

Final update rate = 0.001. An exponential decay update strategy is used

as given by equation (2-20);

Independent membership function widths (equation 3-7) are used;

If the final output error is more than 0.0001, increase cluster number by

1 and retrain the system.

Once the training is completed, the fuzzy inference system is tested with a new input

given by:

«(0 = s in -— for t<500 and M(0 = 0 . 8 s i n — + 0.2 s i n — - for t>500. (5-2)
250 250 25

The following figures show the resulting performances. Real output and expected

output curves are shown in figure 5.1. As observed, these two curves almost

completely overlap. The computed difference between the two outputs, called

approximation error is illustrated in figure 5.2.

100 200 300 400 500 600 700 800

Fig 5.1 Real output and expected output curves

51

x 10

A
100

Ui

ft
A w\/. \m u u

200 300 400 500 600 700 800

Figure5.2: Approximation error.

Several authors have reported on the same experiment [33] [36]. To compare results

with them, the same performance index as in [58] is used. Let's defined:

r'-itw-yQ] N
(5-3)

i=i

In [33], the author used 50 clusters. The best case reported gives PI = 0.0012, the

worst case PI = 0.0052 and the average case PI = 0.0029. In [36], the performance

index is only 0.0052 when the author tests the generalization and he reported a PI =

0.00028 only when the training sets are chosen to be the same as the testing sets in

which the generalization is ignored.

With the method described in this work, with 50 clusters used, the best performance

index obtained is PI = 0.00008 and the worst case is PI = 0.0015. The average case

is PI = 0.000308. This experiment shows that the proposed method is more accurate

than those found in the literature and has good generalization properties.

52

5.2 Mackey-Glass time series prediction

The prediction of time-series is an important practical problem with applications

found in economics, business planning, inventory and production control, weather

forecasting, signal processing, and control. In this experiment, the proposed method

is used to predict a Mackey-Glass chaotic time series [37]. This time series is created

with the use of the Mackey-Glass time-delay differential equation defined here:

dx(t) = Olxit^

dt 1 + Jt'V-r) W V '

This time series, originally developed to model white blood cell production, is

commonly used to test the performance of neural networks. This extremely chaotic

series makes it an ideal representation of nonlinear oscillations found in many

physiological processes. It has no obvious time period, is neither convergent nor

divergent and its value at any time may depend on its entire previous history.

When JC(0) = 1.2, r = 17, this series is a non-periodic, non-convergent time series

and is very sensitive to initial condition (x(t) = 0 for t<0). So in this experiment,

JC(0) —1.2 and r = 17 has been used as initial conditions. The word prediction

means that at time / the function value is known and the object is to predict the

value at future time t + p. The standard method for this type of prediction is to

create a mapping from D sample data points, sampled every A units in time,

(x(t-(D-\)A,...,x(t-A),Jt(7)), to a predicted future value x(t + p). To compare

with other articles [33] [38] [39] [40] [41], the conventional settings D = 4 and

A = p = 6 are used in this experiment.

A four dimensional input vector is defined in the following form:

XV(t) = [x(t -18), x(t -12), JC(/ -6), x(t)] (5-5)

53

A one dimensional prediction vector is defined in the following form:

output(t) = JC(/ + 6) (5-6)

A MATLAB demo called "Time-Series prediction" illustrates a Mackey-Glass

series. This demo was used to generate training samples and test samples for the

experiment. The samples was saved in a file mgdata.dat with (JC(0) = 1.2, r = 17).

The following MATLAB program is used:

load mgdata.dat
t = mgdata(:,l);
x = mgdata(:,2);
plot(t,x);
for t=l 18:1117,

Data(t-117,:) = [x(t-18) x(t-12) x(t-6) x(t) x(t+6)];
end
trnData = Data(l:500,:); % first 500 data pairs used to construct training samples.
chkData = Data(501:end,:); % last 500 data pairs used to construct test samples.

In this program, the time range t is 118 to 1117 to be able to compare with results

published by other authors. The trnData and chkData are 5-dimension arrays. The

matrix trnData holds 500 training pairs, and matrix chkData holds 500 test pairs.

The first four-dimension of trnData and chkData are used to construct training and

test input vectors and the last dimensions of trnData and chkData are used to

construct the training and test output vector.

The proposed neural fuzzy system was trained with the following parameters:

Initial cluster number = 1;

Initial update rate = 0.1;

Final update rate = 0.001. An exponential decay update strategy is used

as given by equation (2-20);

Independent membership function width (equation 3-7);

If the final output error is greater than 0.0001, increase cluster number

by 1 and retrain the system.

54

Figure 5.3 gives the prediction error while figure 5.4 shows the computed output and

the expected output in the same coordinate system. The difference is so small that it

is almost impossible to distinguish the two curves.

618 668 718 768 818 868 918 968 1018 1068 1117

Fig 5.3 Prediction error.

8 668 718 768 818 868 918 968 1018 1068 1117

Fig 5.4 Mackey-Glass prediction:

55

The same experiment was reported in [33] [38] [39] [40] [41]. To compare with experiment D

of [33], PI is used, which is defined as (5-3). Table I lists the simulating results represented by

PI.

TABLE I

Test Results between [33] and HDNFI

MODEL

[33]

HDNFI

CLUSTER NUMBER

40

15

TRAINING

DATA

2500

500

WORST

CASE (PI)

0.00246

0.0019

AVERAGE

CASE (PI)

0.00172

0.000056

BEST CASE

(PI)

0.00142

0.00000875

In average case P/(HDNFI)=0.000056 and in best case P/(HDNFI)=0.00000875, which is

a perfect result. And this result show us the performance of HDNFI is much better

than the [33]'s. To show more performances of HDNFI, a comparison was also

conducted with [33] [38] [39] [40] [41]. For these cases a non-dimensional error

index (NDEI) is defined as the root mean square error (RMSE) divided by the

standard deviation of the target series. Table II lists the simulating results

represented by NDEI (main data are from [41]).

TABLE II

Test Results on Mackey-Glass Data

MODEL

WKNN

CC-NN model

6th-order Polynomial

MLP(BP)

HYFIS [38]

ANFIS [39]

DENFIS [40]

NFI [41]

HDNFI

TEST NDEI

0.06

0.06

0.04

0.02

0.01

0.007

0.006

0.004

0.0033

56

The table II shows that the method NFI which proposed by [41] possesses better

performance than other method except HDNFI. Because all the fuzzy membership

functions in [41] are one-dimension, but in HDNFI, all the fuzzy membership

functions are high-dimensions, which can effectively decrease the output error. And

in [41], the cluster radiuses are used as the widths of fuzzy membership functions,

but in HDNFI, the form (3-7) and (3-8) for calculating the widths are proposed,

which is more suitable of many kinds of input spaces.

Obviously, above reasons make the proposed algorithm HDNFI perform well than

the other models. With results clearly superior to those previously found in the

literature.

5.3 Nonlinear system control: the ball and beam example

The ball and beam system is a frequently given example of nonlinear dynamic

system. It is a popular and important laboratory model to teach control systems

engineering because it is open loop unstable.

57

Ball Position

Motor

Beam

Fig 5.5 Ball and beam system

The system shown in Figure 5.5 is very simple. A beam is mounted on the output

shaft of a motor. The beam can be tilted around its centre axis by applying an

electrical control signal to a motor amplifier. The position of the ball on the beam is

measured by a sensor. The ball moves with an acceleration that is proportional to the

tilt of the beam. That is to say the ball position increases without limit for a fixed

beam angle. A control system must be used to keep the ball in a desired position on

the beam. This system has been used to test the capacity of the proposed controller to

control the ball and beam system.

A MATLAB demo, called "Ball and beam" is readily available with a fuzzy logic

controller (figure 5.6). The controller is a MISO controller. It uses four state

variables as input vector [A,B,C.DJ: position, angle and their respective

derivatives. The output is a one-dimension vector [E]: motor voltage.

58

• • D O
0 0

Target Position

Constant

Target Position
(Mouse-Driven)

A
Switch

• 1 . 6

Variable Initialization

Fuzzy Logic

Controller

Mux animbb

Animation

Mux m
Scope

Ball-Beam Dynamics

E
simouM

To Workspace4

Mux

A
simout

B
To Workspace

simoutl

To Workspacel

c
simout2

To Workspace2

I)
simout3

To Workspace3

Fuzzy Logic
Controller

Figure 5.6 Original MATLAB Ball and beam controller

This experiment was modified for the following purposes:

- To acquire the proper "control knowledge" by learning from the original fuzzy

logic controller;

- To replace the original controller and stabilize the ball.

Five steps are needed to conduct this experiment from the MATLAB demo :

Step 1 Add 5 simouts in the original SIMULINK program at points labeled A, B, C,

D, E in figure 5.6.

Simout is a workspace block of SIMULINK. It is used to return output

trajectories to the MATLAB workspace. The block writes its output to an

59

array or structure that has the name specified by the block's variable name

parameter. These 5 simouts are used to obtain training data. Data from

simout, simoutl, simoutl and simout3 are input data, so the input of this

system is a 4-dimensions vector [simout, simoutl, simout2, simout3]. And

[simout4] is a one-dimension output vector.

Step 2 Run the original SIMULINK program for more than 8 seconds then stop the

program. Check workspaces. Every simout block kept more than six hundred

data. The first 500 data of each simout is used to construct the training

sample in this work.

Step 3 Use the 500 input-output pairs \simout, simoutl, simout2, simout 3\,

\simout4\ to train the new controller more than ten times.

Step 4 Replace the original fuzzy controller by the new controller.

Step 5 Run the simulation.

The animation shows us that the ball is under control while moving on the beam.

Figure 5.8 allows the comparison between the target position and the real position

when the proposed controller is used. Figure 5.9 shows the target position and real

position when the MATLAB controller is used.

60

file:///simout

100 200 300 400 500 600 700 800 900

Fig 5.8 Position and tracking with the proposed controller

230 300 400 5G0 00 800 900

Fig 5.9 Position and tracking with the original controller.

Results were compared with those published in papers [42] and [43] with different

initial conditions [position, angle position's derivative, angle's derivative]:

61

x(Q) = [2.4, -0.1, 0.6, 0.1], [1.6, 0.05, -0.6, -0.05], [-2.4, 0.1, -0.6, -0.1], [-1.6, -0.05,

0.6, 0.05], [1, 0, 0, 0], [2, 0, 0, 0] and [3, 0, 0, 0].

Figure 5.10 shows the ball position of the closed-loop ball and beam system using

the proposed controller for the following initial conditions A { x(Q) = [2.4, -0.1, 0.6,

0.1], [1.6, 0.05, -0.6, -0.05], [-2.4, 0.1, -0.6, -0.1] and [-1.6, -0.05, 0.6, 0.05] }.

Figure 5.11 shows the ball position of the closed-loop ball and beam system using

the SVM-based fuzzy basis function inference system as published in [43] for the

following initial conditions A { x(0) = [2.4, -0.1, 0.6, 0.1], [1.6, 0.05, -0.6, -0.05], [-

2.4, 0.1, -0.6, -0.1] and [-1.6, -0.05, 0.6, 0.05] }. This inference system is a hybrid of

fuzzy basis function inference system [36] and the support vector machine. It

chooses the fuzzy basis function as the kernel function of the support vector machine

to fuse those two mechanisms into a new fuzzy inference system. This inference

system possesses satisfactory generalization ability and over-fitting prevention

capability. This overall fuzzy inference system can be represented as series

expansion of fuzzy basis functions, and this also makes the inference system itself to

be interpretable.

Figure 5.12 shows the ball position of the closed-loop ball and beam system using

the proposed controller for the following initial conditions B { x(0) = [1, 0, 0, 0], [2,

0, 0, 0] and [3, 0, 0, 0] }.

Figure 5.13 shows the results found in [36] for initial conditions B {x(0) = [1, 0, 0,

01, [2, 0, 0, 0] and [3, 0, 0, 0]}.

62

~i 1 1 1 1 r

-2

-ih

J I I I I L

0 1 10

Fig 5.10 Ball position with the proposed controller with initial conditions A

c o

I
- 2 -

-4 •

— •' 1 '

J
\

, _ ™ , , , i _

/
/

_ i -.„

—" '" 'T 1"

V^

.

0 2 4 6 8 10 12 14 16 18 20
time

Fig 5.11: Ball position found in [43] with initial conditions A

63

Fig 5.12: Ball position with the proposed controller with initial conditions B

2.5 h

Fig 5.13: Outputs of the closed-loop ball and beam system in [42] with initial conditions B

64

The figure 5.10 and figure 5.11 shows that HDNIF controller and the controller which

proposed by [43] have similar rise time and peak overshoot at initial conditions A. But their

settling time are difference, /V(HDNFI) = 7.5 and (,([43]) = 12.5. The figure 5.12 and figure

5.13 shows that at initial conditions B, the rise time /,(HDNFI) = 1.5 ,/,.([42]) = 8 and the

settling time (V(HDNFI) = 8 and (,([42]) = 24 .

The above experiment results show us that the performance of proposed

controller HDFIN is satisfactory and it may provide better generalization

capability than other controller in article [42] and [43].

65

6. CONCLUSION

Fuzzy logic is a powerful tool for control engineering. However serious drawbacks

affect the design of fuzzy controllers. One of them is the rule base construction. To

overcome these problems, authors propose solutions to construct the rule base

automatically by combining artificial neural networks techniques and fuzzy logic in

neuro fuzzy architectures.

Several researches have been conducted on the subject and algorithms are available,

most of them give good results, but they generally have some limitations. In many

cases these algorithms result in a large number of fuzzy rules, proper learning

results dependent on the quality of training sets and accuracy is not always

acceptable.

To address these limitations, a new clustering neuro fuzzy procedure was developed

in this work. The main concept is to use clusters to construct membership function

in the input data space. Then based on Tagaki-Sugeno fuzzy inference engine and

matrix operations, a matrix P is constructed. This matrix includes all fuzzy rules

parameters and is called rule base matrix or identification parameters matrix.

During the training phase, the clustering technique and an exponential decay update

rate are applied to find the proper clusters for the input data space. These clusters

and independent widths used to construct membership functions are well adapted to

different types of data space. For the fuzzy inference phase, to avoid boundary

errors, a high-dimension T-S fuzzy inference is used. Each input data is processed

by every membership function to construct if-part of fuzzy rules base. This strategy

improves the output accuracy and decreases the number of clusters.

The proposed algorithm has been tested on different applications and results

compared with published data on three benchmark problems.

66

The proposed algorithm is simple to use and experimental results show that the

number of clusters required is less than those reported in the literature. Output

accuracy is good in many applications.

The proposed algorithm has many advantages but also has some

difficulties. Since its structure is based on neural networks and the

mathematical theories used to guarantee the performance of an applied

neural network are still under development. So we cannot guarantee getting

same training result every time even using same training samples.

Sometimes, for drawing a perfect result, we need to do more times training.

So the further direction for research is to improve the stability of neural

networks and optimize the membership functions in high-dimensions

space.

67

7. APPENDIX A

PSEUDOCODE DESCRIPTION

set dim // to indicate the dimension of input
set cluster_number=l II At the beginning of training phase, the number of clusters is set 1
error=l // to start the following "while" loop
set input_number II Number of input data in training sample
for i=l to cluster_number

time_win[i]=l // to indicate times the i' cluster wins
endfor
set step_rate_i // set initial update rate
set step_rate_f // set final update rate
while (error>0.0001) // if the final error exceeds this value, the cluster number is

increased and system is trained again.
cluster_number=cluster_number+l // at the beginning we assume there is one cluster.

Every time the final error is more than 0.0001,
the clusterjiumber is increased by 1 and the
system is trained again

set cluster[dim][cluster_number] // random set the initial value of each cluster
set distance_min // set this variable equals to a large value
winner_ID = 0 II to indicate which cluster wins in the current loop

set clusting_loop // iteration number for clustering
for i=l to cluster_number
step_rate[i]= step_rate_i // initialize update rate
endfor

II*. ********** To determine the winner and to update the winner*************
for i= 1 to clusting_loop

for j= lto input_number
for k=l to cluster_number

distance = (time_win[k]*abs(cluster[k]-x[j]))/clusting_loop
if distance_min >distance

distance _min = distance
winner_ID=k

else
endif

endfor 11 end of variable "k"
time_win(k)= time_win(k)+l
step_rate[winner_ID]= step_rate_i*(step_rate_f / step_rate_i)time-win[winnerJD|/clus'in8-"»p
for h=l to dim // update winner

68

cluster[h][winner_ID]=
cluster[h][winner_ID]+step_rate[winner_ID]*(cluster[h][winner_ID]-x[h][j])

endfor // end of variable "h " for update clusters
set distance_min equal to a very big value
winner_ID = 0

endfor // end of variable "j"
endfor // end of variable "i"

/ /********** calculate out the width of each membership function * * * * * *

for i= 1 to cluster_number
total=0
for j=(i+l) to cluster_number

total =total + abs(cluster[i]- cluster[j])
endfor // end of variable "j"
variance[i] = total / (2* cluster_number) // width of membership function

endfor // end of variable "i"

II*******************fuzzy inference ((3-27),(3-28),...,(3-34))************
for i= 1 to input_number

for j= 1 to cluster_number
dis=abs(cluster[j]-x[i])
u[j][i]=exp(-dis/(2*variance* variance)) // fuzzify input {calculate out the degree of

fuzziness)
endfor // end of variable "]"

endfor // end of variable "i"

set w[j][i]=u[j][i] // w is the firing strength
total_w=0
for i=l to input_number

for j= 1 to cluster_number
total_w= total_w+w[j][i]

endfor // end of variable "j"

for k=l to cluster_number
beta[k][i] = w[k][i]/total_w

endfor // end of variable "k"
total_w=0

endfor // end of variable "i"

for i=l to input_number
for j=l to cluster_number

x_beta(j,i) = beta(j,i)
endfor // end of variable "j"

for k= cluster number+1 to cluster number*2

69

x_beta(k,i) = x(i,l) * beta(k-cluster_number,i)
endfor // end of variable "k"

for m=cluster_number*2+l to cluster_number*3
x_beta(m,i) = x(i,2) * beta(m-cluster_number:|!2,i);

endfor// end ofvariable "m"

for n=cluster_number*3+l to cluster_number*4
x_beta(n,i; = x(i,3) * beta(n-cluster_number*3,i);

endfor // end of variable " n"

for o=cluster_number*4+l to cluster_number*5
x_beta(o,i) = x(i,4) * beta(o-cluster_number*4,i);

end // end of variable "o"
endfor // end of variable "i"

parameter =inv(x_beta* (x_beta'))* (x_beta) * (y_expect)
y_real=x_beta'*parameter

PI=0 // performance index
for i= 1 to input_number

PI = PI +(y_real[i] - y_expect[i])* (y_real[i] - y_expect[i])
endfor // end of variable "i"
PI = PI / input_number
endwhile

70

ixB

Initialization

Set dimension = dim, cluster number = 1

cluster number = cluster number+1

Set cluster = rand(dimension,cluster_number)

Set distance_min equal to a very big value

Set winnerlD = 0, set cluster_loop

Set step_rate_i, set step_rate

Point "start"

then

71

time_win(k) = time_win(k) + 1;

. • • m i . i •*/ .. . c i . . •xtime winfwinner ID]/clusiina loop
step_rate[winner_ID]= step_rate_i*(step_rate_t / step_rate_i) - l - J h- '

cluster(z,winner_ID) = cluster(z,winner_ID)+step_rate(winner_ID)*(x(z,j)-cluster(z,winner_ID));

Z= 1,2,3 — , dimension

set distance_min equal to a

very big value

I

i = i+l

To point

Alv

To point
VAV

else

72

i=l

"M"

set total=0

.i=i

total = total +abs(cluster(i)-cluster(j))

then

else

Variance(i) = total / (2*cluster_number)

73

else

i+1

set i=l

set j=

dis = x(i)-cluster(j)

u(j,i) = exp(-dis/(2*variance/v2));

j=j+l

i = i+l

set w(j,i) = u(j,i)

j=l.. . cluster_number

i =1... input_number

To point

"M"

else

else

74

I
total w=0

i= l

j = l

total_w = total_w + w(j,i); j = j+1

k=l

ir-

beta(k,i) = w(k,i)/total_w;

k = k+l

If k>cl uste r n umber

else

then

75

i=l

j = 0, k=cluster_number,

m=cluster number*2,

j =j+l

then

k=k+l

then

m =m+l

then

"G"

x_beta(j,i) = beta(j,i);

else

x_beta(k,i) = x(i,l) * beta(k-

cluster_number,i);

else

x_beta(m,i) = x(i,2) * beta(m-

cluster_number*2,i);

else

H'

n=n+l

76

To Point

"G"
1 To Point "H"

x_beta(n,i) = x(i,3) * beta(n-

cluster_number *3,i);

else

0=0+1 x_beta(o,i) = x(i,4) * beta(o-

cluster_number*4,i);

else

i=i+l

parameter = inv(x_beta*(x_beta')) * (xbeta) *

(y_expectl);

y_real=x_beta'*parameter;

else
To point "start"

then

output

77

9. BIBLIOGRAPHY

1. M. Funabashi, A. Maeda, Y. Morooka, and K. Mori, "Fuzzy and neural hybrid

expert systems: Synergetic AI," IEEE Expert, vol. 10, pp. 32-40, Aug. 1995.

2. Kim C. Ng, Member, IEEE, and Mohan M. Trivedi, Senior Member, IEEE, "A

Neuro-Fuzzy Controller for Mobile Robot Navigation and Multirobot

Convoying", IEEE T Transactions on Systems, Man and Cybernetics part B:,

1998 vol. 28, no 6.

3. Eichfeld, H., Kiinemund, T. & Menke ,M. (1996). "A 12b General-Purpose

Fuzzy Logic Controller Chip", IEEE Transactions on Fuzzy Systems. 4 (4);

460-475.

4. Guilherme N. DeSouza and Avinash C. Kak, "Vision for Mobile Robot

Navigation: A Survey", IEEE Transactions on Pattern analysis and machine

intelligence, vol. 24, no. 2, Feb. 2002

5. Umut Uludag and Anil K. Jain, "Fuzzy Fingerprint Vault", Springer, 2003,

Computer Science and Engineering, Michigan State University, East Lansing,

MI, 48824, USA

6. T. Takagi and M. Sugeno, "Fuzzy Identification Of Systems and Its

Applications to Modeling and Control," IEEE Trans. Syst., Man, Cybern.,

vol.15, pp. 116-132,1985.

7. J.S.R. Jang, C.T. Sun, "Neurofuzzy modeling and control", IEEE Trans. Fuzzy

Sys, vol. 3, no. 3, March 1995, pp. 378-406.

8. L.X. Wang and J. Mendel, "Generating fuzzy rules by learning from

Examples", IEEE Trans. Syst., Man, and Cyb., vol. 22, 1992, pp. 1414- 1427.

9. D.A. Linkens, M-Y. Chen, "Input selection and partition validation for fuzzy

modeling using neural network", Fuzzy Sets and Systems, vol. 107, 1999, pp.

299-308.

10. M. Figueiredo, F. Gomide, "Design of fuzzy systems using neurofuzzy

networks," IEEE Trans, on NeuralNetworks, vol. 10, no. 4, July 1999, pp.815-

827.

11. C. Lin, Y. Lu, "A neural fuzzy system with supervised learning", IEEE Trans.

78

Syst., Man, and Cyb. - Part B, vol. 26, 1996, pp. 744-763.

12. J.S.R. Jang, C.T. Sun, "Neurofuzzy modeling and control," IEEE Trans. Fuzzy

Sys., vol. 3, no. 3, March 1995, pp. 378-406.

13. L.X. wang and J.M. Mendel, "Analysis and design of fuzzy logic controller,"

USCSIPIRep. 184, 1991

14. L.X. wang and J.M. Mendel, "Back-propagation fuzzy systems as nonlinear

dynamic system identifiers," in Proc. IEEE 1992 Int. Conf. Fuzzy systems (San

Diego, CA) Mar.1992, pp. 1409-1418

15. Warren McCulloch, Walter Pitts, "A Logical Calculus of Ideas Immanent in

Nervous Activity", Bulletin of Mathematical Biophysics 5:115-133, 1943.

16. Mohamad H. Hassoun, "Fundamentals of Artificial Neural Networks", The

MIT Press, Cambridge, Massachusetts, USA, 1995.

17. L.P.J Veelenturf , "Analysis and Applications of Artificial Neural Networks",

New York: Prentice Hall, 1995.

18. Simon.Haykin, "Neural Networks", MacMaster university, ISBN 0-13-226556-

7, Neural networks (Computer science), QA76.87.H39,1994.

19. Lefteri H. Tsoukalas and Robert E. Uhrig, "Fuzzy and Neural Approaches in

engineering," ISBN 0-471—16003-2, pp. 240.

20. Lefteri H. Tsoukalas and Robert E. Uhrig, "Fuzzy and Neural Approaches in

engineering," ISBN 0-471—16003-2, pp. 229-288.

21. Jardine. N. and Sibson. R., "Mathematical Taxonomy," Wiley, London, 1971

22. Sneath, P.H.A. and Sokal, R.R, "Numerical Taxonomy," Freeman, San

Francisco, CA, 1973.

23. Kevin M.Passino , Steohen Yurkovich, "Fuzzy Control", Menlo Park, Calif. :

Addison-Wesley: World Scientific, ISBN 0-201-18074, 1998.

24. Henk B.Verbruggen, Robert Babuska "Fuzzy Logic Control Advances in

Applications", World scientific series in robotics and intelligent systems, vol 23

, Singapore; River Edge, NJ, ISBN 981-02-3825-8,1999.

25. L. A. Zadeh, "Fuzzy Sets", Information and Control, 8, pp. 338-353, 1965.

26. Lee, C. C, "Fuzzy logic in control systems: fuzzy logic controller B Part I",

IEEE Transactions on Systems, Man and Cybernetics, 1990, vol. 20, no:2,

79

p.404-418.

27. Lee, C. C , "Fuzzy logic in control systems: fuzzy logic controller B Part II",

IEEE Transactions on Systems, Man and Cybernetics, 1990, vol. 20, no:2,

p.419-435.

28. Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis with a

fuzzy logic controller," International Journal of Man-Machine Studies, Vol. 7,

No. 1, pp. 1-13,1975.

29. L.X. Wang and J.M. Mendel, "Generating fuzzy rules by learning from

examples," IEEE Trans. Syst.,Man, Cybern., vol. 22, pp. 1414-1427, June 1992

30. L.X. Wang and J.M. Mendel, "Fuzzy basis function, universal approximation,

and orthogonal least-squares learning," IEEE Trans. Neural Networks, vol. 3,

PP.807-814, sept. 1992.

31. R.J.S. Jang and C. T. Sun, "Functional equivalence between radial basis

function networks and fuzzy inference systems," IEEE Trans. Neural Networks,

vol. 4, pp. 156-159, Jan. 1993.

32. J.J. Bucley, Y.Hayashi, and E. Czogala, "On the equivalence of neural

networks and fuzzy expert systems", in Int. Joint Conf. Neural network.

Baltimore, MD, pp.691-695, June 7-11, 1992.

33. Jian-Qin chen and Yu-Geng Xi "Nonlinear System Modeling by Competitive

Learning and Adaptive Fuzzy Inference System", IEEE Man and Cybernetics,

Part C: Application and Reviews, vol. 28, pp. 231-238, No. 2, may 1998.

34. J.Nie, "constructing fuzzy model by self-organizing counterpropagation

network," IEEE Trans. Syst., Man,Cybern., vol. 25, pp. 963-970, June 1995.

35. K.Narendra and K.Parthasarathy, "Identification and control of dynamical

systems using neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-

27, Jan. 1990.

36. J.Nie, "Constructing fuzzy model by self-organizing counterpropagation

network," IEEE Trans., Man, Cybern., vol. 25, pp.963-970, Ju

37. Mackey, M. C. and L. Glass. 1977. "Oscillations and chaos in physiological

control systems," Science 197: 287-289.

38. J.S. Kim and N.Kasabov, "HyFIS: Hybrid connectionist fuzzy inference for

80

adaptive dynamic systems," Neural Networks, Vol.12, NO. 9, pp. 1301-1321,

2001.

39. R.Jang, "ANFIS: Adaptive network-based fuzzy inference system," IEEE

Trans.Syst., Man, Cybern., vol. 23, no.3, pp. 665-685, Jun,1993.

40. N.Kasabov and Q. Song, "DENFIS: Dynamic, evolving neural-fuzzy inference

systems and its application for time-series prediction," IEEE Trans. Fuzzy Syst.,

vol 10, no. 2, pp. 144-154, Apr.2002.

41. Qun Song and Nikola K.Kasabov, "NFI: A Neural-Fuzzy Inference Method for

Transductive Reasoning", IEEE Trans., Fuzzy Syst., vol. 13, No. 6, pp. 799-

808, December 2005.

42. Li-xin Wang, "Stable and Optimal Fuzzy control of linear systems", IEEE

Trans., Fuzzy Syst., vol 6, No 1, pp 137-143, Feb. 1998.

43. Jung-Hsien Chang, Pei-yi Hao, "Support Vector Learning Mechanism for

Fuzzy Rule-Based Modeling: A New Approach", IEEE Trans., Fuzzy Syst., vol

12, No.l, pp 1-12, Feb 2004.

81

