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RESUME 

De nos jours, la theorie de controle joue un role significatif dans presque tous les domaine de 

la science et de l'ingenierie. Les controleurs lineaires PID sont les applications principales de 

la theorie de controle, et ils se basent sur les systemes de controle simples. Mais beaucoup de 

vrais systemes possedent des caracteristiques non-lineaires. Dans la pratique, il est necessaire 

de faire beaucoup de linearisations. Quand nous employons le controleur classique dans un 

systeme non-lineaire fortement complexe, les difficultes augmentent exponentiellement. Pour 

eviter les imperfections, on peut employer des controleurs flous. Le controleurs flous se 

basent sur le systeme de connaisance. Ce sont des outils importants dans le domaine de 

l'automatique. Ils possedent beaucoup plus d'avantages que les controleurs classiques "PID", 

mais ils ont besoin d'experts pour concevoir les regies de base. La limite principale des 

controleurs flous est la difficulte d'etablir les regies de base. 

Maintenant, beaucoup de recherches sont consacrees a la fusion des reseaux de neurones et 

de systemes flous dans une nouvelle structure (les reseaux de neuro-floue). Cette approche 

combine les avantages de deux paradigmes puissants dans une capsule simple, et fournit un 

cadre puissant pour extraire des regies floues des donnees numeriques. 

Cependant, cette technologie n'est pas parfaite. II reste quelques difficultes: beaucoup de 

regies floues sont necessaires, les algorithmes sont complexes et la fiabilite est basse (Par 

exemple, pour un meme modele ou fonction, les resultats dependent des ensembles 

d'apprentissage). Pour eviter les difficultes, ce memoire presente une nouvelle methode, 

appelee "inference neuro-floue de haute-dimension". 



L'idee fondamentale de cette methode propose est de considerer chaque donne dans ce 

systeme comme point avec la haute dimension. Chaque dimension d'entree sera traitee en 

meme temps dans les memes sous-ensembles de haute dimension. 

L'algorithme propose a ete examine sur differentes applications, et les resultats ont ete 

compares aux donnees editees sur trois problemes de repere. 

Cet algorithme est simple a employer, et les resultats experimentaux prouvent que le nombre 

de faisceaux exiges est inferieur a ceux rapportes dans la litterature. L'exactitude de 

rendement est bonne dans beaucoup d'applications. 
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1. INTRODUCTION 

Today, the control theory plays a significant role in almost every field of 

science and engineering. The classical theory of automatic control systems 

has been widely used in modern society and it ranges from simple 

application, such as in washing machine control systems, to highly 

sophisticated systems such as space shuttles, satellites and intelligent 

robots. Throughout the history of control, the goal has been to mimic the 

human worker interacting with machines and to process events without 

human interaction. In recent years, researchers work to design controllers 

that have the ability to "learn" and "think" like human expert [1] [2]. 

Fuzzy theory is a powerful problem-solving method with wide applications 

in industrial control and information processing [3] [4] [5]. It provides a 

simple way to draw definite conclusions from vague, ambiguous and 

imprecise information. Unlike classic approach which needs a deep 

understanding of system dynamics and the knowledge of exact equations 

and precise numerical values, fuzzy logic incorporates simple rule-based 

"IF X AND Y THEN Z" approach to solve control problem rather than 

trying to model it mathematically. Fuzzy modeling based on numerical 

data, which was first explored systematically by Takagi and Sugeno [6], 

has found many successful applications to complex system modeling. 

Fuzzy controllers are the most important application of the fuzzy theory. 

They work rather differently than conventional controllers by using expert 

knowledge (rules) instead of differential equations to describe a system. 

The knowledge could be expressed in a natural way with "linguistic 

variables", which are described by "fuzzy sets". Fuzzy logic has many 

advantages but also has some limitations. For example, fuzzy systems 

needs expert for rule discovery and they cannot learn the rules themselves. 
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Artificial Neural Network (ANN) is an important concept in artificial 

intelligence. These networks are based on the parallel architecture of 

human brain. The true power and advantage of neural networks lies in their 

ability to represent both linear and non-linear relationships and in their 

capacity to learn these relationships directly from training examples. The 

training examples must be selected carefully otherwise useful time is 

wasted or even worse the network might be functioning wrongly. ANN is 

made of many highly interconnected processing elements (neurons) 

working in unison to solve specific problems. It can create its own 

organisation or representation of the information it receives during learning 

time but the knowledge represented by the network is difficult to 

understand. Also, the mathematical theories used to guarantee the 

performance of an applied neural network are still under development. 

Many researches are devoted to fusion of neural networks and fuzzy 

system into new structures called "Neuro Fuzzy Networks". These 

approaches combine the benefits of two powerful paradigms into a single 

capsule and provide a powerful framework to extract fuzzy rules from 

numerical data [7], [8], [9], [10], [11], [12]. Neuro fuzzy networks are 

widely used in many fields. In fact, a fuzzy system can be seen as a special 

neural network and represented as a three-layer feedforward network [13] 

[14]. However this technology is not perfect. Neuro fuzzy networks behave 

like "black boxes" whose internal rules of operation are unknown. Nodes 

and links in a neuro fuzzy network correspond to a specific component of a 

fuzzy system, some represent linguistic terms, some input or output 

variables and some are used for representing fuzzy rules. All nodes are not 

fully connected to the nodes in the neighboring layers. This arises several 

questions such as: how to optimize a neuro fuzzy network, how to set a 

large number of parameters, how to reduce convergence time and how to 

realize effective training and adaptation? 
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The aim of this work is to answer these questions by proposing a new 

clustering neuro fuzzy method. The objective is to improve the accuracy in 

modeling applications, and to reduce the number of fuzzy rules and to 

realize reliable adaptation in fuzzy control applications. 

The method uses clustering techniques and Takagi-Sugeno modeling. The 

learning phase starts with a clustering algorithm which divides the input 

space into a series of clusters according to the input data distribution. These 

clusters are then used to construct a series of membership functions for the 

input space mapping. As a result, a collection of fuzzy sets represents all 

inputs. Finally an identification parameters matrix P is drawn by Takagi-

Sugeno modeling and matrix operations. This matrix holds all 

identification parameters for the consequent part of the T-S fuzzy rules. In 

a certain extent, this matrix is equivalent to a rule base. After training, the 

matrix will be use to compute the system output. The main advantage of 

the proposed method is its simplicity, a fast convergence time and great 

accuracy. 

This work is divided as follows: chapter 2 and chapter 3 introduce fuzzy 

logic and neural networks. They describe essential knowledge and 

information needed to design neuro fuzzy networks. In chapter 4, the 

proposed method is developed in details. Performances and results are 

evaluated and discussed for three different types of application in chapter 

5: prediction, approximation, and control. Finally, conclusions are given in 

chapter 6. 
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2. ARTIFICIAL NEURAL NETWORKS 

Neuro fuzzy systems have the structure of Artificial Neural Networks and the 

abilities of fuzzy inference. Therefore, a good understanding of ANN is important to 

design neuro fuzzy systems. 

2.1 Artificial Neural Networks 

ANN is an information processing paradigm inspired by our knowledge on 

biological nervous system. This idea was established before the arrival of computers. 

In 1943, a neurophysiologist Warren McCulloch and a young mathematician Walter 

Pitts wrote a paper on how neurons might work [15]. To do so, they modeled a 

simple neural network with electrical circuits. With computers, it is now possible to 

simulate more complex neural networks and to mimic human learning skill. 

Neural networks try to reproduce the structure of neurons in the human brain. They 

are a powerful data-modeling tool. Knowledge in neural networks is stored within 

the synaptic weights like inter-neuron connection strengths. Neural networks have 

typically a multi-layer architecture where layers of nodes are connected [16]. 

In a neural network, the basic element is the artificial neuron which is a device with 

several inputs and one output. Figure 2.1 shows the model of a single artificial 

neuron. 
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Fig 2.1 Artificial Neuron Model 

A single neuron, called a perceptron, is characterized by the parameters: 

0 = (cot, o)2,...,con,b,f). (2-1) 

Each connection link has a synaptic weight that multiplies the signal transmitted. 

Each neuron has an activation function being applied to the weighted sum of the 

inputs signal and the bias to produce an output signal y : 

y = f 
• n 

yaw -b (2-2) 

The activation function can be a threshold function, a piecewise-linear function or a 

sigmoid function. 

A multi-layer neural network is a neural network with more than one layer of 

neurons. In this case, the activation functions of the different neurons can be 

different. There are no connections between neurons of the same layer, only 

weighted connections with neurons in the next layer [16], [17]. Figure 2.2 shows a 

typical multi-layer neural network architecture. 
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By using proper input and output training samples, an ANN can learn to approximate 

complex relationships between inputs and outputs. Through the learning process, an 

ANN can be configured for a specific application, such as approximation, pattern 

recognition or data classification. However, the accuracy of the output is limited 

because the variables are effectively treated as analog variables, and the recursive 

least squares algorithm used during the learning process does not necessarily lead to 

a null error. Also, the needed time for proper training of a neural network can be 

long. 

Output layer 

Hidden layer 

Input layer 

inputs 

Fig 2.2 Typical Neural Network Architecture 

Neural networks need to be trained before they can be used. They improve their 

performances during the learning process. Learning occurs through an iterative 

process of adjustment applied to all weights and bias of the network. Learning 

methods used for neural networks can be classified into two main categories: 

supervised learning and unsupervised learning [18]. 

8 



2.1.1 Supervised learning 

An essential factor of supervised or active learning is the availability of an external 

teacher, as showed in figure 2.3. The term "supervised" originates from the fact the 

desired response is provided by an external "teacher". Network parameters are 

adjusted under a combined influence of the training vector and the error signal; the 

error signal is defined as the difference between the actual response of the network 

and the desired response. Finally, through step by step adjustments, the error will 

approach 0. The backpropagation algorithm is widely used to implement this 

technique. 

Vector describing state of the 
..environment 

environment 

Desired response 

Fig 2.3 Supervised Learning 

Backpropagation is a systematic method for training multiple-layer (three or more) 



artificial neural networks. Standard backpropagation is a gradient descent algorithm, 

in which the network weights are moved along the negative of the gradient of a 

performance function. Properly trained backpropagation networks tend to give 

reasonable answers when presented with inputs that they have never seen before. In 

backpropagation, the output error on the training examples is used to adjust the 

network weights. Figure 2.4 shows a typical three layers network. 

Target t 

Output layer k 

U 

Hidden layer; 

Input layer i 

X(XirX2, ••• yXn) Xl 

Fig 2.4 Typical BackPropagation Network 

Let tk be the £-th target (or desired) output, z* be the A:-th computed output with 

k = 1,..., p and corepresents all the network weights andx the inputs. 

The training error is given by: 

1 p 

(2-3) 
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The backpropagation learning rule is based on gradient descent. The change in each 

weight vector component is proportional to the negative of its gradient: 

Aa} = -r1f (2-4) 
ceo 

Where rj is a constant called the learning rate chosen between 0 and 1. 

a)(m +1) = co{m) + Aco(m) (2-5) 

where in is the m-th pattern presented. 

Backpropagation involves two passes. In the forward pass, the input signals 

propagate through the network to the output. In the reverse pass, the calculated error 

signals propagate backwards through the network where they are used to adjust all 

the weights. Calculating the output is carried out, layer by layer, in the forward 

direction. The output of one layer is the input to the next layer. In the reverse pass, 

using the delta rule, the error value of each output neuron guides the adjustment of 

the associated weights. Since the middle-layer neurons have no target values, the 

error must be propagated back through the network layer by layer [19]. 

Suppose netj is the inner product of the input layer signals with input weights for 

hidden unity: 

n 

netl=YJ
x
l°

}v (2"6) 

The hidden unit output is then computed:^ = /(netA, where / ( . ) is a nonlinear 

activation function. The error on the hidden-to-output weights is given by: 

de de dnetk _ dnet, 
~ ••• = Sk-T-jL (2-7) dcokl dnetk dmkl

 k d<okl 
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where: 

de _ de dzk 

dnetk dzk dnetk 

= (tk-zk)f'(ne(k) (2-8) 

Suppose netk is the inner product of the input layer signals with input weights at the output 

unit k: 

mtk=%y.,o>kj (2-9) 
./ = ! 

On the output layer, the change in each weight vector component is: 

A ^ , = riSkyj = rj(tk -zk)f'(netk)yj (2-10) 

Equations for the hidden layer are the same as for the output layer except the error term must 

be generated without a target vector. 

Error on the input-to-hidden units is given by: 

de _ de dy t dnet, 

dcon dy} dnet] dm n 
(2-11) 

where: 

de 

"*y, 

d 
k = \ 

*yj 

p 

= -E('*-z*)f(we'*H 

t r k)Jy, h{k k)dnetk dy, (2-12) 

*=i 

According to (2-8) one can define: 

<W'H>)I>*A (2-13) 
k=\ 
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The learning rule for the input-to-hidden weights is: 

A<y„ = i1xlSJ = r1{^jwkjdk)f'{net)xl (2-14) 

Backpropagation technique summary [20]: 

1. Randomize the weights to small random values (both positive and negative) to 

ensure the network is not saturated by large values of weights. 

2. Select a training pair from the training set. 

3. Apply the input vector to network input. 

4. Calculate the network output. 

5. Calculate the error, the difference between the network output and the desired 

output. 

6. Adjust the weights of the network in a way that minimizes this error. 

7. Repeat steps 2-8 for each pair of input-output vectors in the training set until the 

error for the entire system is acceptably low. 

The training algorithm updates the parameters to match one input-output pair at a 

time. Others algorithms, such as recursive least squares, minimize the summation of 

the matching error for all the input-output pairs. 

2.1.2 Unsupervised learning 

In unsupervised or self-organized learning there is no external teacher or critic to 

oversee the learning process, as showed in figure 2.5. The word "unsupervised" 

means that no target values are needed. In fact, for most varieties of unsupervised 

learning, the targets are the same as the inputs. Unsupervised learning usually 

performs tasks like: classify data or compressing information from inputs. A typical 

unsupervised learning technique is competitive learning. 
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Vector describing state of the 
environment 

environment Learning System 

Fig 2.5: Unsupervised Learning 

A basic competitive learning network has one layer of input neurons and one layer of 

output neurons (fig 2.6). An input pattern X is a sample point in the ^-dimensional 

real vector space (/?"). Competitive learning is an unsupervised learning paradigm, 

so it just extracts information from the input patterns alone without the need for a 

desired response. In a competitive-learning network, a neuron's synaptic weight 

vector typically represents a set of related data points, and is able to find the largest 

or smallest output. It associates those groups with one another and with a specific 

proper response. Normally, when competition for learning is in effect, only the 

weights belonging to the winning processing element will be updated. This element 

is called "winner" and is determined as the element with the largest weighted-sum 

Net?, where: 

Net* = wjxk (2-15) 

Where xk is the current input. Thus the iih element is the winning unit if: 

w,rxk > w]xk for all j * i (2-16) 

which may be written as: 

jjwA-jci < j k - j c l for all j * i (2-17) 
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The concept of choosing a winner is a fundamental issue in competitive learning. In 

general, the winner is the best output (depending on the criteria) and this system is 

called "winner-take-all" network. The simplest architecture is a single layer of units, 

each receiving the same input X^R" and producing an output Y. It is also assumed 

that only one unit is active at a given time see Figure 2.6. 

y\ 
— • 

yi 
— • 

" l r n 

Fig 2.6: Single Layer Competitive Network 

For a given input x* drawn from a random distribution p(x), the weights of the 

winning unit are updated (the weights of all other units are left unchanged) 

according to: 

co,(t + l) = <y((t) + a(t)-(x(t) - a)j(O) if/is winner index (2-18) 

o)l (t + 1) = <w,.(t) if / is not winner index (2-19) 

Where a is a scalar called adaptation gain or step rate, 0 < « ( / ) < 1. The variable 

a controls how large the update's rate is at each step. If the step rate is close to 1, 

the network will converge quickly, but any new input can upset the cluster. On the 

other hand, if a is too small, the convergence will be too slow. A compromise is to 

use a variable step rate a(t) during learning. In general, there are three types of step 

X\ 

*2 

A n 
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rate. 

a. Constant learning rate 

Suppose the learning rate is constant, so: 

a(t) = a0 (2-20) 

b. /C-means learning rate: 

a{t) = - (2-21) 
m 

Where the time parameter m stands for the number of input signals for which 

this particular unit has been winner so far. 

c. Exponentially decaying learning rate 

The exponential decay learning rate is given by: 

a{t) = a,{—)'/,,m (2-22) 
a, 

Where al and af are the initial and final value of the learning rate, /11111X is 

the total number of adaptation steps which is taken. 

Every update strategy has its advantages and disadvantages: /C-means is simple, but 

" 1 
the harmonic series lim V = oo diverges, so even after a large number of input 

signals and similarly low values of the learning rate arbitrarily large modifications of 

each input vector may occur. Constant learning rate has no convergence, but its 

practical effect is better than /C-means in many cases. Exponentially decaying 

learning rate has good effect than the two other strategies, but in many cases tmax is 

unknown. 
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2.1.3 Clustering 

To fuzzify input signals in a fuzzy system, it is important to have a series of proper 

membership functions. Clustering technology is a good way to compose these 

membership functions. The key idea is to use clustering technology to class the input 

space into a series of subspaces, and then, to use cluster to construct membership 

function for each subspace. 

Clustering is one of the most important unsupervised learning technologies. A loose 

definition of clustering is "the process of organizing objects into groups whose 

members are similar in some way". The goal of clustering is to reduce the amount of 

data by categorizing or grouping similar data items together. Such grouping is 

pervasive in the way humans process information, and one of the motivations for 

using clustering algorithms is to provide automated tools to help in forming 

categories or taxonomies [21] [22]. 

A cluster is a collection of objects which have similitudes between them and are 

"dissimilar" to the objects belonging to other clusters. Competitive rule allows a 

single-layer linear network to group and represent data samples that lie in a 

neighborhood of input space. Each neighborhood is represented by a single output 

neuron. From the view of the input space, clustering divides the space into local 

regions, each of which is associated with an output neuron. If the vectors are in the 

same cluster then they are similar. It usually means that they are "close" to one 

another in the input space. Clustering is a mechanism that changes a continuous 

space to a series of discrete vectors. If the number of clusters is enough, the error 

between a data sample in the neighborhood and its center is small, so the fidelity is 

high. However at present time there is no algorithm to find the optimal clusters for 

an input space. 
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3 FUZZY LOGIC 

Lotfi Zadeh, professor at the University of California at Berkeley, first introduced 

fuzzy logic in the mid-1960's. Fuzzy logic is a powerful problem-solving theory with 

many applications in control engineering and information processing. Fuzzy logic 

provides a remarkably simple way to draw definite conclusions from vague, 

ambiguous or imprecise information. In a sense, fuzzy logic resembles human 

decision making with its ability to work from approximate data and find precise 

solutions. Fuzzy logic incorporates an alternative way of thinking which allows 

modeling complex systems using a higher level of abstraction originating from our 

knowledge and experience. Fuzzy Logic allows to expresse this knowledge with 

subjective concepts such as very well or bright red to be maped into exact numerical 

ranges [23] [24]. 

3.1 Fuzzy sets and membership function 

Fuzzy sets are extension sets of the classic sets. Fuzzy sets, unlike classic sets, have 

no crisp boundary, and they provide a gradual transition between "belonging to" and 

"not belonging to" a set. A fuzzy set in a universe of discourse X (which contains all 

the possible elements of concern in each particular context or application) is 

characterized by a membership function MA(X) that takes values in the interval [0, 

1]. In other words, a fuzzy set is a generalization of a classical set by allowing the 

membership function to take any values in the interval [0, 1]. The fuzzy set theory 

makes it possible for an object or a case to belong to a set to a certain degree [25]. 

For instance, we might think that age 20 is "young" with membership value of 1. 

Age 30 has a membership value of 0.95. Age 60 has a membership value of 0.1, and 

so forth. That is to say, every people is "young" to a certain degree. Figure 3.1 

describes a possible relationship between fuzzy sets "young" and "old". 
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1 

H(age) 

0 

age 

Fig 3.1 Fuzzy sets young and old 

Curves in figure 3.1 are the membership function of the fuzzy set "young" and the 

fuzzy set "old". The membership value of each element is between 0 and 1. The 

values 0 and 1 describe "not belonging to" and "belonging to" a classic set 

respectively. Elements of a fuzzy set are taken from a universe of discourse, also 

called its universe. The universe contains all elements that can come into 

consideration. In general, fuzzy sets can either be discrete or continuous. For 

example, a fuzzy set A in universe X may be represented as a set of ordered pairs of 

a generic element x and its membership value, that is, 

A = {(x,MA(x))\xeX} (3-1) 

When X is a discrete set: 

X — | xx, x2, x,, •••, xn J (3-2) 
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A = y nM. (3-3) 
x X 

Where the summation sign does not represent arithmetic addition; it denotes the 

collection of all points x e X with the associated membership function juA (x). 

When X is a continuous and infinite set: 

A= [A. ( 3 .4) 
S x, 

3.2 Linguistic variables and linguistic rules 

Just like an algebraic variable takes numbers as values, linguistic variables take 

words or sentences as values. A linguistic variable is characterized by a quintuple 

(X; T(X); U; G; M) in which X is the name of the variable, T(X) is the term set, U 

is a universe of discourse, G is a syntactic rule to create the elements of T(X) and M 

is a semantic rule for associating meaning with the linguistic values of X [6]. In 

figure 3.1, the "age" is a linguistic variable. 

Fuzzy if-then rules (linguistic rules) or fuzzy conditional statements are expressions 

of the form if A then B, where A and B are labels of fuzzy sets characterized by 

appropriate membership functions. Inputs of a fuzzy system are associated with the 

premise, and outputs are associated with the consequence. Assume that a fuzzy 

system has m+k linguistic variables: m inputs xj, X2 ,x„, and k outputs yi, y2 , 

y* and that n linguistic rules defined by: 

/?/.• ifxi is An andx2 is Kn and, ,andxm is Ajm 

Then yi is Cu andy2 is C/2 and, ,andy^ is C;* 

R„: ifxj is A„i and X2 is A„2 and, ,andx„, is A, 
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Then yi is C„i andyi is C,a and, ,andyk is C„* 

3.3 Fuzzy system 

Fuzzy systems have been applied to a wide variety of fields ranging from control, 

signal processing and communication. However, the most significant applications 

are in control problems. In general, a fuzzy system consists of four components: 

fuzzification, fuzzy inference, defuzzification and fuzzy rule base (Figure3.2). The 

function of fuzzification is to map a crisp input to a linguistic value. After 

fuzzification, the inference engine uses a fuzzy if-then rules base and linguistic 

values to form linguistic output. Once linguistic output is available, the 

defuzzification step produces a final crisp value from linguistic values. 

crisp output 
• 

fuzzy rule base 

Fig 3.2 Fuzzy System 

3.3.1 Fuzzification 

Fuzzification transforms crisp values x, into grades of membership for linguistic 
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terms of fuzzy sets A,. The simplest form of fuzzification can be done using a 

fuzzifier function / that fixes the degree of fuzziness //(A,) in a set. 

For example, suppose A, is the input space, xt is an input vector and xl e A,. The 

fuzzification performs to transform x, to every fuzzy set A, defined by function / : 

/i(Af ) = / ( * , ) (3-3) 

In general, Gaussian or triangular membership functions are used as fuzzifier. 

A Gaussian function is defined by: 

(x-a)2 

ju(x) = exp(- — - y — ) 
2b 

(3-4) 

Where a is the peak value and b is the width of the membership function (fig 3.3). 

0.5 

MM 

o.i 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig 3.3 Gaussian Function 

If membership functions are defined as symmetric or triangular function (fig 3.4), then their 
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general form is (3-5): 

*M(x) 

IV y \ 
\ 

\ 
\ 

0.5 / 

y 

/ 
/ v 

\ 

0.1 0.3 0.4 0.5 0.6 

Fig 3.4 Triangular Function 

0.7 

\ 
V 

0.8 0.9 1 

x 

ju(x) = l-(2-\x-a\) / b 

= 0 

a-b a+b 
for < x < 

2 2 
for otherwise 

(3-5) 

In triangular or Gaussian functions, there are two unknown parameters, center and 

width. In most case, the center points can be found by clustering technique, and the 

width factors can be determined by two ways. 

a. Constant width 

If the width is constant for all the membership functions, then the width can be 

defined by: 
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S = d i ^ (3-6) 
,'2M 

Where M is number of subsets, and d(max) is the maximum distance between those 

centers of subsets. This form would be close to the optimal solution if the data were 

uniformly distributed in the input space leading to a uniform distribution of the 

centers. Unfortunately, most real-life problems show non-uniform data distributions. 

The method is thus inadequate in practice and an identical width for all Gaussian 

kernels should be avoided since their widths should depend on the clusters position, 

which in turn depends on the data distribution in the input space. 

b. Independent width 

If the width of each Gaussian function is independent, the following form can be 

used to define the width of each function: 

min{ ||V, - V,|j /, 1 = 1 , 2 , - , * i*L) 
\ = (3-7) 

Where k is the number of subsets, V, and Vi are the center of subset, and i is not 

equal L. In practice, another form, based on the r-nearest neighbor of the center is 

often used: 

2 | 

8L = - ^ (3-8) 

Where the V,- are the r-nearest neighbors of center VL. A suggested value for r is 2k. 

The form (3-7) and (3-8) offer the advantage of taking the distribution variations of 

the data into account. In practice, they are able to perform much better as they offer a 

greater adaptability to the data than a fixed-width procedure. 
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3.3.2 Defuzzification 

The outputs of a fuzzy system are fuzzy. They often need to be converted into a 

scalar. This process is called defuzzification. Defuzzification is especially necessary 

for hardware application because conventional systems work with crisp data 

exchange. However, selecting a single scalar value from a series of fuzzy outputs is a 

challenging task. There are many defuzzification methods: Centroid Average (CA), 

Maximum Center Average (MCA), Mean of Maximum (MOM), Smallest of 

Maximum (SOM) and Largest of Maximum (LOM) Centroid Average and 

Maximum Center Average methods belong to continuous methods and are 

frequently used in control engineering and process modeling. The rest represents 

discontinuous methods, which are mainly used in decision-making and pattern 

recognition applications. For convenience, we could divide all the defuzzification 

methods into two basic mechanisms: centroid and maxima. The centroid methods are 

based on finding a point within the total geometric figure such as the weight of each 

fuzzy set, the area of the largest fuzzy set, or the area of the highest intersection. 

a. The Center of Area Defuzzification: 

The Center of Area (COA) method is often referred to as the Center-of-Gravity 

because it calculates the centroid of the composite area representing the output fuzzy 

term (3-9). It specifies the crisp value y* as the center of the area covered by the 

membership function of fuzzy set A. 

y* - - ^ — — - ( 3" 9 ) 

L^M.Ay,) 

The summation is carried overvalues of the universe of discourse y, sampled at N 

points. See figure 3.5. 
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t n*(y*) 

overlaping area is 
counted once 

y* y 

Fig 3.5: CO A Defuzzification 

If we regard //,, (>»,•) as the probability density function of a random variable, then 

the center of area defuzzification gives the mean value of the random value. The 

advantage of COA lies in its intuitive likelihood. The disadvantage is the difficulty 

to calculate the summation in most real case since. COA favors "central" values in 

universe of discourse and that, because of its complexity, it may lead to rather slow 

inference cycles If the areas of two or more contributing rules overlap, the 

overlapping area is counted only once. This defuzzification method is often used 

[26] [27]. 

b. The center of sums defuzzification 

The Center of Sums (COS) method builds the resulting membership function by 

taking the sum of output from each contributing rule. So, this sum is not just the 

union. The overlapping areas are counted more than once. This method can be 

carried out easily and leads to rather fast inference cycles and it is the most 

commonly used defuzzification method. 
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y * = (3-10) 

Where ^(y , ) is the membership function which is at point y,- of the universe of 

discourse resulting from the firing of the kth rules (figure 3.6). 

h^(y ; ) 

overlaping area is 
counted twice 

Fig 3.6 COS Defuzzification 

c. The Mean of Maxima method: 

The Mean of Maxima method (MOM) a simple method for doing the 

defuzzification. The output takes the crisp value of the highest degree of 

membership in ^(y,) . If a system has more than one element in the universe of 

discourse having the same maximum value, a random selection can be used or a 

mean value is performed. Suppose, there are M such maxima in a discrete universe 

of discourse. The crisp output can be obtained by: 
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y * = (3-11) 

Where ym is the mth element in the universe of discourse where the membership 

function of /^(y,) is at the maximum value, and M is the total number of such 

elements. MOM defuzzification is faster than COA. Furthermore, it allows the 

controller to reach values near the edges of the universe of discourse. This method 

does not consider the overall shape of the fuzzy output //^(y,) (fig 3.7). 

t^>Y) 

Fuzzy value with 
maximum height 

3.3.3 Fuzzy Inference 

Fig 3.7 MOM Defuzzification 

To draw conclusions from a rule base, a mechanism that can produce an output from 

a collection of If-then rules is necessary. This mechanism is called fuzzy inference. 

There are two major inference methods: T-S fuzzy inference and Mamdani fuzzy 
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inference. The Mamdani fuzzy inference method is the most common method. 

a. Mamdani fuzzy inference: 

The Mamdani method was proposed in 1975 [28], to control a steam engine and 

boiler combination. In this application, the set of fuzzy rules was supplied by 

experienced human operators. 

The following example is a typical Mamdani fuzzy rule. 

Rj.- ifxi is An and %2 is Ai2 and and xr is A,> then y is C, (3-12) 

Where Rt is the /' fuzzy rule; x is an input and A is a fuzzy set. 

The following two examples explain the Mamdani fuzzy inference. 

Single fuzzy rule 

If A: is A then}' is C 

If x is A' then C is? 

C'=min{C, max(A,A')} 

M 

P 

fi 

M 

M 

y 

c=? 

y 

MriiL 
y 

Fig 3.8 Simple fuzzy rule Mamdani method 
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Multiple fuzzy rules 

Rulel: If x is A; theny is C; *" 

y 

Rule2: If x is A2 theny is C2 M jm&. 
Query: If x is A' then C" is ? 

C"=miiUCi. maxfAi. A'H+ min/Ci. maxfA?. A'H 

0 

y 

C 

/ ^ . 

y 

Fig 3.9 Multiple Fuzzy Rules of Mamdani Method 

b. Takagi-Sugeno fuzzy inference 

The Takagi-Sugeno fuzzy inference method was introduced in 1984 and it is similar 

to the Mamdani method. The first two parts of the fuzzy inference process, inputs 

fuzzification and fuzzy operators, are the same. The main difference between 

Mamdani and Sugeno is Takagi-Surgeon approximates a nonlinear system by a 

combination of several linear systems (see figure 3.10). It breaks down the input 

space into several subspaces and represents the input/output relation in each 

subspace by a linear equation. A typical model of Takagi-Sugeno fuzzy inference is: 

If input x = Ai and input y =Bj, then output is z = ax + by + c. 

Where a, b, c are numerical constants. 

(3-13) 
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y A ; s 

-> 

x 

Fig 3.10 Linear approximation by 3 fuzzy rules 

In general, Takagi-Sugeno rules have the following form: 

If xj isAu, and ... andxr isAir then y' - fj(x,,x2,---,xr)= b' +a[xi + —t-a'mxm (3-14) 

Where fi is the linear function, a and b are parameters of this linear function, _y, is the inference 

consequence of this rule. 

T-S method can be easily represented and evaluated by a three-layers' neural 

network. Let us suppose a multiinput system with n inputs D(x{, x2, x3, x4, ..., xn) 

and an output Y(_y,, y2, y3, y4, ..., yk) (figure3.11). 
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X\ 

Xi 

D = (x,,x2,...,*„)\J 

Layer 1 

Fuzzification 

Layer 2 

Product Operator 

Layer 3 

Defuzzification 

Fig 3.11 Takagi-Sugeno Fuzzy System 

Layer 1: 

The nodes of first layer receive input vector D(x,, x2, x,, x4, ..., xn) and act as 

fuzzy sets representing the terms of the matching input variable. Nodes in this layer 

are arranged into n groups; each group representing the (/"-part of fuzzy rule. Each 

node acts as a fuzzifier. Hence, the node outputs are in the range [0, 1] and are 

calculated by the following function: 

Mijix,) = exp _ (3-15) 
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Layer 2: 

The number of nodes in this layer is equal to the number of fuzzy rules. A node in 

this layer represents a fuzzy rule. Each node in this layer is a product operator. The 

"min" operator is not used, because the function "min" is not differentiable in the set 

of real numbers iR. Outputs of this node are: 

<0\ = Mu Oi) th, (*2) ' •' Mm, (*».) 0 ^ ' ^ <l) (3-16) 

= rW*<> (3-17) 
7=1 

co is called the firing strength. 

Layer 3: 

Nodes in this layer represent the output variables of the system. Each node acts as a 

defuzzifier. Outputs of this node are: 

y-^-.y'*^-y*-*^-y (3-18) 
i<=\ 

•"I 
(3-19) 

" II 

The firing strengths a>, are normalised and outputs y are the crisp output sets 

weighted by the firing strengths. 

A fuzzy rule (3-14) has four basic elements: input (JC, , x,, x,, JC4 ...,*„), input 

space (Al
l,A'2,---,A'm), output y and parameters of consequence (b',a\,---,a'm). In 

certain degree, the object of training is to draw the parameters of consequence, so 
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the following contents will introduce how to draw the parameters of consequence 

matrix P. 

Suppose that we have n rules R' (/ = 1,2, •••,«) of the form: 

R': IFx; isA/ and*2 i s ^ ' and...andx„, isA„', theny'=b'+ai'xi+a2lX2+ ... +a„,'xm 

If we apply the j"' sample to the i'h rule R', we obtain: 

R/: IFxij isA\j andx2; isA2/ and...andx„y isAm/, Then yf=bl+a\'xij+ci2lX2j+... +am'xmj 

Where i=l,2,...,n andy=/,2,...,r. 

So the weights of the rules are: 

w) =xjj is Ajj and X2j is A2/ and... and xmj is Amf 

= fl^K;) k=l,2,...,m (3-21) 

According to (3-19), the output yy is given by: 

y = ^1 
Si n 

i>; 
= Z« (3-22) 

1=1 

Where : 

co' 
P„ = - 7 - - (3-23) 

i>; 

The output yj can be expressed by: 
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yj=[A,02j-0„] 

=[A,A,--A,] 

yj 

y'i 

y] 
b1 a\ 
L 2 2 

b a, 

b a. 

x, 
(3-24) 

So, the vector of output Y can be expressed by: 

Y = 

V 
y2 

y>-. 

= 

\Pu 
Pa 

A 

Pu • 

Pn • 

P2r • 

- A„l 
- P,a 

- Pnr_ 

bl a\ •• 

i 2 2 
b ax • 

b" a'; • 

• a l ' 

•• al 

• • « : . 

i i " 

11 X\2 

Xm\ Xml 

• 1 

• * 1 , 

•x 

(3-25) 

We can rewrite in the form: 

Where: 

Y = X P (3-26) 

Y = 
y\ 

yr 

(3-27) 

X= 
P l l ' * ' A i l ' X\\P\\ ' " X\\Pn\ '" Xm\P\\ '" Xm\Pn\ 

Pxr ••• A , r > * 1 , A ••• XirPnr - *„„ A " • * r a r A . 

(3-28) 

35 



b" 

p= (3-29) 

X is a vector matrix with r x n(m +1) dimensions, 

Y is a vector with r dimensions, 

P is a vector with nx(m + l) dimensions. 

Finally, vector P is expressed by: 

P = [X^l'^Y (3-30) 

3.4 Fuzzy control system 

Control systems are classified in two categories: open loop control systems, in which 

the control action is independent of physical system output, and closed loop system, 

also known as feedback control systems. The physical system under control is called 

a plant. In a closed loop system, a sensor measures the output signal and returns it to 

the input signal. To guarantee satisfactory responses and performance, it is necessary 

to use an additional system, known as a controller or a compensator into the loop. 

Currently, most controllers are based on proportional integral derivative (PID) 

technology. PID controllers work well in many control applications. But in practice, 

the system to control always contains uncertainty, is complex, poorly understood, or 

nonlinear. So it is difficult to build a precise mathematic model and is difficult to 

linearize. A fuzzy controller unlike a PID controller which needs a deep 

understanding of the system, exact equations and precise numerical values, uses a 

simple, rule-based if x AND v then z approach rather than trying to model a system 

mathematically. Fuzzy logic provides an alternative solution for nonlinear 

36 



applications. Fuzzy inference processes results in improved performance, simpler 

implementation, and reduced design costs. In many applications, fuzzy logic can 

lead to better control performances than linear, piecewise linear, or lookup table 

techniques. Most control applications have multiple inputs and require modeling and 

tuning of many parameters which makes implementation tedious and time-

consuming. Fuzzy rules can help to simplify implementation by combining multiple 

inputs into single if-then statements while still handling nonlinearity. 

In general, a fuzzy control system includes three major classes: single input single 

output (SISO), multi-input single output (MISO), and multi-input multi-output 

(MIMO). 

3.4.1 SISO AND MISO 

The "SISO" fuzzy controller is widely applied in practice. This class of controllers is 

simple (Fig 3.12). 

Fig 3.12 Structure of a SISO 

However, for dynamic systems, it is better to track also the trend of the error's 

change as shown in (Fig 3.13). 
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Fig 3.13 Structure of a MISO with differential input 

3.4.2 MIMO 

The design of controllers for MIMO systems has always been a hard problem even 

for the linear ones. Currently, there is no complete theory to design MIMO systems. 

Most of existed techniques are quite complicated. The main difficulties is the 

derivation of rules is not easy and the number of rules is too high, however it is 

possible to describe a "MIMO" system (figure 3.14) with several "MISO" systems 

(figure 3.15). 

u(kt) 

plant 

yi(to) 

y„(kt) 

Figure 3.14 Structure of a simple MIMO 
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Figure 3.15 Implementation of a MIMO system with several MISO systems 
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4 DESIGN OF A HIGH-DIMENSIONS NEURAL FUZZY CONTROLLERS FOR 

NONLINEAR SYSTEMS 

Fuzzy controller are widely applied and fuzzy systems have been proved to be able 

to approximate nonlinear functions with arbitrary accuracy [29] [30]. Generally 

speaking, fuzzy systems and neural networks have much equivalence [31] [32]. In 

fact, fuzzy control systems can be regard as special neural networks control systems 

and many neural networks learning algorithms can be used in fuzzy control systems. 

Neural fuzzy systems have good capacity for approximations; however, there are 

still some difficulties. 

Many fuzzy rules are needed, which leads to excessive training time, 

particularly with multidimensional input. 

* Algorithms are complex and problem adapted. 

. The reliability is low. For example, for a same model or function, the 

learning results are dependent on the training sets. 

To solve these problems, Jian-qin Chen and Yu-Geng Xi [33] developed a learning 

method. The basic idea is to use competitive learning for partition the input space to 

fix the decision boundaries for local regions in an input space, and then to learn the 

consequent part of the fuzzy rules by RLS (Recursive Least Square). In this method, 

the boundaries decision is an important step. The choice of decision boundaries is 

useful for dealing with the conflict between over fitting and generalization as well as 

reducing the number of local input regions in certain degree. The following section 

describes the decision boundaries algorithm: 

Step 1. Freeze the cluster centers v, (i=l,2,... ,cluster_number). 

Step 2. Let r,=0 (i=l,2,..., clusterjiumber) at first 

Step 3. For any input x(t) find out vc by 

\x(t) - vt.|| = min|jc(0 - v j . (4-1) 
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Step 4. Update rc 

if |JC(/) —vt.| > rt., then rc(k + 1) = jpt(/)-v .;| (4-2) 

if ! jx(0-vj<r. , then rc(k + l) = rc(k) (4-3) 

Where v, is the i'h cluster and r, is the radius of the local regions which center is v,. 

The algorithm for determination of decision boundaries is efficient and simple. 

However in practice, this algorithm has some drawbacks. For example; two very 

closed points A and B, with similar characteristics, can belong to different clusters 

("A" belongs to cluster N and M. "B" belongs to cluster M and P). This may lead to 

output errors (called boundary error). To decrease this type of errors and to improve 

the precision, it is necessary to increase the number of clusters and to lessen theirs 

radiuses. This method needs many clusters to guarantee a good accuracy. 

X" 
X / \ X 'N X x / . / ^ X 

X X 
"x^i x̂  j* 

X x x >x v>' x 
/x A <: x J ^ / x 
\ X N >̂  ^ ^ X 

V -X X- ' ' %v*- - - ' ' ' 
\ x x .-''' x x """"' 

Fig 4.1 Boundary error during a clustering process 

4.1 High-dimensions neural fuzzy inference (HDNFI) 

To solve the problem mentioned above, in inference phase, a high-dimension neural 

fuzzy inference (HDNFI) which based on T-S model is proposed in this work (see 

figure 4.2) 
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Fig 4.2 High-dimension fuzzy inference 

The basic idea of this method is to consider each data in this system as a point with high-

dimension. Each dimension of input D will be processed at same time in same high-dimension 

subsets. 

Layer 1: 

The nodes of first layer receive input vector D(x,, x>, x3, x4, ..., jcn) and each node 

acts as a fuzzifier. Therefore, the node outputs are in the range [0, 1] and are 

calculated by the following function: 
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//,(D) = exp-(™J^- (4-4) 
2b-

Where c, is the center and bt is the width of membership function (4-4), c, and D has same 

dimensions. 

Layer 2: 

This layer includes fuzzy inference and defuzzification. In this layer, the variable //, 

is the degree of fuzziness of input D in subset A, and suppose the firing strength cot 

equal to //,. The ouput is given by: 

y=^- y+^-y+• • •+^r-y (4-5> - _ ^ l . v ' 

_i>y 
! ! > < 

=S'-,^ 

+ &>2 

I" «, 

(4-6) 

(4-7) 

Firing strengths a>l are normalised and outputs y are the crisp output sets weighted 

by the firing strengths. 

Suppose that we have q rules R' (/ = 1,2,•••,#) of the form: 

R': If input D is in Aj then output is z' = a ' x D + 6' 

If we apply the /* sample to the i'h rule i?', we get: 

R\: If input D, is in A, then output is z' = a / x D7 + V 

Where i=l,2,...,q and j=1,2,...,r. 

According to (4-6), the output y, is given by: 
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Where : 

2»; 
y> = " — 

2>; 
/=! 

i« 
/=! 

(4-8) 

1=1 

(4-9) 

The output y, can be expressed by: 

yj=[AjAr~Pv] 

-[bj&j-PA 

1 1 
y.i 

y~i 

yri 

b1 a\ 

b2 a2 

b" a'l 

a: 

x„ 

(4-10) 

So, the vector of output Y can be expressed by: 

Y = 

V 
y2 

y r . 

= 

\Pu 
Pn 

A 

Pix • 

Pv. • 

Pzr • 

• P* } 
• P« 

- P„r 

V 
b2 

b" 

1 
" U[ 1 "1 1 • 

11 12 

Xn\ Xn2 ' 

• 1 

• X \ r 

~Xn, 

(4-11) 

We can rewrite in the form 

Y = X P (4-12) 
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Where: 

yr 

(4-13) 

x= 
Pu ••• Pq\>

 x\\Pu ••• * n A , i ••• x„\Pu ••• X„\P, 

p= 

b" 

X is a matrix with r x q{n + 1) dimensions, 

Y is a matrix with r dimensions, 

P is a matrix with q(n +1) dimensions. 

Finally, matrix P is expressed by: 

'/i 

P\r ••• Par, XUPU. ••• XlfB ••• Xmpu ••• XmPl 

(4-14) 

(4-15) 

P = [XTX]"]XTY (4-16) 

Obviously, in this method, the number of fuzzy rules is equal to the number of subsets (number 

of membership functions) and input D is processed by every membership function during the 

inference phase, that is to say input D is the member of all subsets, there is no step for choosing 

subsets. So, there is no boundary error. The points A and B in figure 4.1 will give similar output 
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if using the proposed method and this result is more reasonable than [33]. In this method, the 

characteristics of input data will be represented more accurately by those membership functions. 

The output accuracy will be improved. In other word, for a certain requirement of accuracy, this 

method can decrease the number of membership functions. 

The following section presents the design process. Appendices A and B provide the 

detail flow chart and pseudo-code. 

4.2 Input space clustering 

A typical input space may contain a large number of inputs. But, it is not necessary 

to deal with each input. They can be grouped according to their common 

characteristics and then be represented by a point. This process is called clustering 

and this chosen point is called a cluster. Clusters can be multi-dimensional points, 

and competitive learning is often used to perform the clustering. The following 

algorithm is used for clustering. 

Step 1. Fix the cluster number "clusterjiumber", initialize these clusters 

cluster (i) (/' = 1, 2, ••• , cluster number). 

Step 2. By using a traditional learning algorithm to decide a winner, dead units 

(clusters which are never updated) may appear. To solve this problem, 

the following algorithm is used [33]. 

Pwmna-l XU)' duster (winner ID) \ = minpl( time_win(i)x.\ x(j)- cluste(i)\) (4-17) 

w h e r e / , ( = . _ 4 _ _ (4-18) 

Where the cluster (winner_ID) (winner_ID=l,2,..., clusterjiumber) is the 

nearest cluster of x(j) and x(j) is the / h input of training sample, p, is roughly 

46 



equal to the probability of input data near the cluster (/), nt is the number of 

cluster(j') being chosen as a winner and m is the number of cluster [33]. The 

variable probability p is used to avoid dead units. So every cluster has a chance 

to competition. 

Step 3. Update the cluster(win_ID) according to x(t) by: 

tiuster(winlD) = cluster{winJD) + steprate x (x(j) - cluster{win_ID)) (4-19) 

Where x(j) is the input vector ( j = \, 2, •••, numberJnput). The variable 

step_rate is used to avoid oscillation during the training time. 

Step 4. Update step_rate (2-20) 

a(t) = a,{aL)'""" (4-20) 
«, 

In general, it is difficult to know the exact value of each / v , but it can be 

roughly set as the maximum number of iterations. 

4.3 Membership function forming 

At the end of the preceding section, the input space clustering is done. That is to say 

all the centers of the membership functions are fixed. However, just having centers 

is not enough to compose membership functions. It is necessary to find another 

parameter such as the width to describe each membership function. If the input space 

is uniformly distributed, then width can be inferred by equation (3-6). This method is 

simple and rapid. However if the input space is not uniformly distributed, then we 

need to use the independent width method (3-7) or (3-8) as following. 

Step 1. Find the maximal distance between arbitrary two centers by 
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distance = m\n{\cluster{i)-cluster (b)\) (4-21) 

Step 2. Calculate out widths by: 

. , , distance .. . . . 
width = (4-22) 

4.4 Identification parameters matrix derivation for T-S fuzzy rules 

In this proposed neural fuzzy system, the purpose of training process is to get an 

identification matrix P. This matrix contains all the identification parameters of 

consequent part of T-S fuzzy rules. It can be gained by the matrix operation (4-12) 

(4-13) (4-14) (4-15) (4-16). Matrix P is the core of the proposed controller. To get a 

desired output, a simple multiplication between fuzzy input and matrix P is 

performed. 

Step 1. Fuzzification by Gaussian function or the triangular function (3-4) or (3-5) 

dis = x(i)-cluster(j) (4-23) 

-ll/S 

u{j,i) = e ^ ^ (4-24) 

Step 2. Calculate P with equation (4-9) 

Step 3. Use fi to construct input matrix X (4-14) 

Step 4. Calculate matrix P with equation (4-16) 

Step 5. Calculate the final output with equation (4-12). If the final error is 

more than the expected error, then increase the number of clusters and 

retrains the controller. 
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dis is the distance between given input and a cluster. x(i) is the input 

vector (/ = 1, 2, • • • , m). "m" is the total number of inputs. 

4.5 Conclusion 

This method has three main parts. The first part is a competitive learning 

phase used to cluster the input space. Exponentially decaying learning rate 

is used in this phase, which can avoid oscillations during the training time. 

The second part forms membership functions. Independent widths are used 

to make membership functions more suitable for the input space. The third 

part is based on fuzzy inference and matrix operations to draw the 

identification parameters matrix P. This method has been validated on 

three different benchmarking problems and results are presented in the next 

chapter. 

49 



5. RESULTS AND COMPARATIVE ANALYIS 

The validity of the proposed procedure has been validated by means of extensive computer 
simulations on three benchmark problems commonly used in the literature: 

• Nonlinear function approximation. 

• Mackey-Glass time series prediction. 

• Nonlinear system control. 

5.1 Nonlinear function approximation 

Let us suppose a nonlinear system with a single output variable [34] [35] whose model is 

given by: 

vfr 11)- MQyfr-i)yQ-2)"fr-iM-2)-i]+"(Q} (5l) 
ll + yi(t-l)+yi(t-2)\ 

In this nonlinear function, the output value depends on its previous values y(t), y(t-

1), y(t-2) and input values u(t), u{t-\). So, to approximate this function, a 5 

dimension input vector x is defined where: x(t) = [u(t),u(t-\),y(t),y(t-\),y(t-2)] 

and an output y as a single dimension vector [_y(/ + l)]. This classic nonlinear 

function is often used to test the performances of fuzzy systems to approximate 

nonlinear functions. 

Suppose u(t) = 0 and y(t) = 0 for ( s 0 . The learning procedure randomly generates 

input signal u(t) uniformly distributed in the range [-1, 1]. Using equation (5-1), the 

corresponding output y(t +1) is computed, thus composing the training samples 

{x(t),y(t + \)}. 

Then the training samples train the proposed neural fuzzy system using the 

following parameters: 

Initial cluster number = 1; 

Initial update rate = 0.1; 
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Final update rate = 0.001. An exponential decay update strategy is used 

as given by equation (2-20); 

Independent membership function widths (equation 3-7) are used; 

If the final output error is more than 0.0001, increase cluster number by 

1 and retrain the system. 

Once the training is completed, the fuzzy inference system is tested with a new input 

given by: 

«(0 = s in -— for t<500 and M(0 = 0 . 8 s i n — + 0.2 s i n — - for t>500. (5-2) 
250 250 25 

The following figures show the resulting performances. Real output and expected 

output curves are shown in figure 5.1. As observed, these two curves almost 

completely overlap. The computed difference between the two outputs, called 

approximation error is illustrated in figure 5.2. 

100 200 300 400 500 600 700 800 

Fig 5.1 Real output and expected output curves 
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Figure5.2: Approximation error. 

Several authors have reported on the same experiment [33] [36]. To compare results 

with them, the same performance index as in [58] is used. Let's defined: 

r'-itw-yQ] N 
(5-3) 

i=i 

In [33], the author used 50 clusters. The best case reported gives PI = 0.0012, the 

worst case PI = 0.0052 and the average case PI = 0.0029. In [36], the performance 

index is only 0.0052 when the author tests the generalization and he reported a PI = 

0.00028 only when the training sets are chosen to be the same as the testing sets in 

which the generalization is ignored. 

With the method described in this work, with 50 clusters used, the best performance 

index obtained is PI = 0.00008 and the worst case is PI = 0.0015. The average case 

is PI = 0.000308. This experiment shows that the proposed method is more accurate 

than those found in the literature and has good generalization properties. 
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5.2 Mackey-Glass time series prediction 

The prediction of time-series is an important practical problem with applications 

found in economics, business planning, inventory and production control, weather 

forecasting, signal processing, and control. In this experiment, the proposed method 

is used to predict a Mackey-Glass chaotic time series [37]. This time series is created 

with the use of the Mackey-Glass time-delay differential equation defined here: 

dx(t) = Olxit^ 

dt 1 + Jt'V-r) W V ' 

This time series, originally developed to model white blood cell production, is 

commonly used to test the performance of neural networks. This extremely chaotic 

series makes it an ideal representation of nonlinear oscillations found in many 

physiological processes. It has no obvious time period, is neither convergent nor 

divergent and its value at any time may depend on its entire previous history. 

When JC(0) = 1.2, r = 17, this series is a non-periodic, non-convergent time series 

and is very sensitive to initial condition (x(t) = 0 for t<0). So in this experiment, 

JC(0) —1.2 and r = 17 has been used as initial conditions. The word prediction 

means that at time / the function value is known and the object is to predict the 

value at future time t + p. The standard method for this type of prediction is to 

create a mapping from D sample data points, sampled every A units in time, 

(x(t-(D-\)A,...,x(t-A),Jt(7)), to a predicted future value x(t + p). To compare 

with other articles [33] [38] [39] [40] [41], the conventional settings D = 4 and 

A = p = 6 are used in this experiment. 

A four dimensional input vector is defined in the following form: 

XV(t) = [x(t -18), x(t -12), JC(/ -6), x(t)] (5-5) 
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A one dimensional prediction vector is defined in the following form: 

output(t) = JC(/ + 6) (5-6) 

A MATLAB demo called "Time-Series prediction" illustrates a Mackey-Glass 

series. This demo was used to generate training samples and test samples for the 

experiment. The samples was saved in a file mgdata.dat with (JC(0) = 1.2, r = 17). 

The following MATLAB program is used: 

load mgdata.dat 
t = mgdata(:,l); 
x = mgdata(:,2); 
plot(t,x); 
for t=l 18:1117, 

Data(t-117,:) = [x(t-18) x(t-12) x(t-6) x(t) x(t+6)]; 
end 
trnData = Data(l:500,:); % first 500 data pairs used to construct training samples. 
chkData = Data(501:end,:); % last 500 data pairs used to construct test samples. 

In this program, the time range t is 118 to 1117 to be able to compare with results 

published by other authors. The trnData and chkData are 5-dimension arrays. The 

matrix trnData holds 500 training pairs, and matrix chkData holds 500 test pairs. 

The first four-dimension of trnData and chkData are used to construct training and 

test input vectors and the last dimensions of trnData and chkData are used to 

construct the training and test output vector. 

The proposed neural fuzzy system was trained with the following parameters: 

Initial cluster number = 1; 

Initial update rate = 0.1; 

Final update rate = 0.001. An exponential decay update strategy is used 

as given by equation (2-20); 

Independent membership function width (equation 3-7); 

If the final output error is greater than 0.0001, increase cluster number 

by 1 and retrain the system. 

54 



Figure 5.3 gives the prediction error while figure 5.4 shows the computed output and 

the expected output in the same coordinate system. The difference is so small that it 

is almost impossible to distinguish the two curves. 

618 668 718 768 818 868 918 968 1018 1068 1117 

Fig 5.3 Prediction error. 

8 668 718 768 818 868 918 968 1018 1068 1117 

Fig 5.4 Mackey-Glass prediction: 
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The same experiment was reported in [33] [38] [39] [40] [41]. To compare with experiment D 

of [33], PI is used, which is defined as (5-3). Table I lists the simulating results represented by 

PI. 

TABLE I 

Test Results between [33] and HDNFI 

MODEL 

[33] 

HDNFI 

CLUSTER NUMBER 

40 

15 

TRAINING 

DATA 

2500 

500 

WORST 

CASE (PI) 

0.00246 

0.0019 

AVERAGE 

CASE (PI) 

0.00172 

0.000056 

BEST CASE 

(PI) 

0.00142 

0.00000875 

In average case P/(HDNFI)=0.000056 and in best case P/(HDNFI)=0.00000875, which is 

a perfect result. And this result show us the performance of HDNFI is much better 

than the [33]'s. To show more performances of HDNFI, a comparison was also 

conducted with [33] [38] [39] [40] [41]. For these cases a non-dimensional error 

index (NDEI) is defined as the root mean square error (RMSE) divided by the 

standard deviation of the target series. Table II lists the simulating results 

represented by NDEI (main data are from [41]). 

TABLE II 

Test Results on Mackey-Glass Data 

MODEL 

WKNN 

CC-NN model 

6th-order Polynomial 

MLP(BP) 

HYFIS [38] 

ANFIS [39] 

DENFIS [40] 

NFI [41] 

HDNFI 

TEST NDEI 

0.06 

0.06 

0.04 

0.02 

0.01 

0.007 

0.006 

0.004 

0.0033 
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The table II shows that the method NFI which proposed by [41] possesses better 

performance than other method except HDNFI. Because all the fuzzy membership 

functions in [41] are one-dimension, but in HDNFI, all the fuzzy membership 

functions are high-dimensions, which can effectively decrease the output error. And 

in [41], the cluster radiuses are used as the widths of fuzzy membership functions, 

but in HDNFI, the form (3-7) and (3-8) for calculating the widths are proposed, 

which is more suitable of many kinds of input spaces. 

Obviously, above reasons make the proposed algorithm HDNFI perform well than 

the other models. With results clearly superior to those previously found in the 

literature. 

5.3 Nonlinear system control: the ball and beam example 

The ball and beam system is a frequently given example of nonlinear dynamic 

system. It is a popular and important laboratory model to teach control systems 

engineering because it is open loop unstable. 
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Ball Position 

Motor 

Beam 

Fig 5.5 Ball and beam system 

The system shown in Figure 5.5 is very simple. A beam is mounted on the output 

shaft of a motor. The beam can be tilted around its centre axis by applying an 

electrical control signal to a motor amplifier. The position of the ball on the beam is 

measured by a sensor. The ball moves with an acceleration that is proportional to the 

tilt of the beam. That is to say the ball position increases without limit for a fixed 

beam angle. A control system must be used to keep the ball in a desired position on 

the beam. This system has been used to test the capacity of the proposed controller to 

control the ball and beam system. 

A MATLAB demo, called "Ball and beam" is readily available with a fuzzy logic 

controller (figure 5.6). The controller is a MISO controller. It uses four state 

variables as input vector [A,B,C.DJ: position, angle and their respective 

derivatives. The output is a one-dimension vector [E]: motor voltage. 
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Figure 5.6 Original MATLAB Ball and beam controller 

This experiment was modified for the following purposes: 

- To acquire the proper "control knowledge" by learning from the original fuzzy 

logic controller; 

- To replace the original controller and stabilize the ball. 

Five steps are needed to conduct this experiment from the MATLAB demo : 

Step 1 Add 5 simouts in the original SIMULINK program at points labeled A, B, C, 

D, E in figure 5.6. 

Simout is a workspace block of SIMULINK. It is used to return output 

trajectories to the MATLAB workspace. The block writes its output to an 
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array or structure that has the name specified by the block's variable name 

parameter. These 5 simouts are used to obtain training data. Data from 

simout, simoutl, simoutl and simout3 are input data, so the input of this 

system is a 4-dimensions vector [simout, simoutl, simout2, simout3]. And 

[simout4] is a one-dimension output vector. 

Step 2 Run the original SIMULINK program for more than 8 seconds then stop the 

program. Check workspaces. Every simout block kept more than six hundred 

data. The first 500 data of each simout is used to construct the training 

sample in this work. 

Step 3 Use the 500 input-output pairs \simout, simoutl, simout2, simout 3\, 

\simout4\ to train the new controller more than ten times. 

Step 4 Replace the original fuzzy controller by the new controller. 

Step 5 Run the simulation. 

The animation shows us that the ball is under control while moving on the beam. 

Figure 5.8 allows the comparison between the target position and the real position 

when the proposed controller is used. Figure 5.9 shows the target position and real 

position when the MATLAB controller is used. 
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100 200 300 400 500 600 700 800 900 

Fig 5.8 Position and tracking with the proposed controller 

230 300 400 5G0 00 800 900 

Fig 5.9 Position and tracking with the original controller. 

Results were compared with those published in papers [42] and [43] with different 

initial conditions [position, angle position's derivative, angle's derivative]: 
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x(Q) = [2.4, -0.1, 0.6, 0.1], [1.6, 0.05, -0.6, -0.05], [-2.4, 0.1, -0.6, -0.1], [-1.6, -0.05, 

0.6, 0.05], [1, 0, 0, 0], [2, 0, 0, 0] and [3, 0, 0, 0]. 

Figure 5.10 shows the ball position of the closed-loop ball and beam system using 

the proposed controller for the following initial conditions A { x(Q) = [2.4, -0.1, 0.6, 

0.1], [1.6, 0.05, -0.6, -0.05], [-2.4, 0.1, -0.6, -0.1] and [-1.6, -0.05, 0.6, 0.05] }. 

Figure 5.11 shows the ball position of the closed-loop ball and beam system using 

the SVM-based fuzzy basis function inference system as published in [43] for the 

following initial conditions A { x(0) = [2.4, -0.1, 0.6, 0.1], [1.6, 0.05, -0.6, -0.05], [-

2.4, 0.1, -0.6, -0.1] and [-1.6, -0.05, 0.6, 0.05] }. This inference system is a hybrid of 

fuzzy basis function inference system [36] and the support vector machine. It 

chooses the fuzzy basis function as the kernel function of the support vector machine 

to fuse those two mechanisms into a new fuzzy inference system. This inference 

system possesses satisfactory generalization ability and over-fitting prevention 

capability. This overall fuzzy inference system can be represented as series 

expansion of fuzzy basis functions, and this also makes the inference system itself to 

be interpretable. 

Figure 5.12 shows the ball position of the closed-loop ball and beam system using 

the proposed controller for the following initial conditions B { x(0) = [1, 0, 0, 0], [2, 

0, 0, 0] and [3, 0, 0, 0] }. 

Figure 5.13 shows the results found in [36] for initial conditions B {x(0) = [1, 0, 0, 

01, [2, 0, 0, 0] and [3, 0, 0, 0]}. 
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Fig 5.10 Ball position with the proposed controller with initial conditions A 
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Fig 5.11: Ball position found in [43] with initial conditions A 
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Fig 5.12: Ball position with the proposed controller with initial conditions B 

2.5 h 

Fig 5.13: Outputs of the closed-loop ball and beam system in [42] with initial conditions B 
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The figure 5.10 and figure 5.11 shows that HDNIF controller and the controller which 

proposed by [43] have similar rise time and peak overshoot at initial conditions A. But their 

settling time are difference, /V(HDNFI) = 7.5 and (,([43]) = 12.5. The figure 5.12 and figure 

5.13 shows that at initial conditions B, the rise time /,(HDNFI) = 1.5 ,/,.([42]) = 8 and the 

settling time (V(HDNFI) = 8 and (,([42]) = 24 . 

The above experiment results show us that the performance of proposed 

controller HDFIN is satisfactory and it may provide better generalization 

capability than other controller in article [42] and [43]. 
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6. CONCLUSION 

Fuzzy logic is a powerful tool for control engineering. However serious drawbacks 

affect the design of fuzzy controllers. One of them is the rule base construction. To 

overcome these problems, authors propose solutions to construct the rule base 

automatically by combining artificial neural networks techniques and fuzzy logic in 

neuro fuzzy architectures. 

Several researches have been conducted on the subject and algorithms are available, 

most of them give good results, but they generally have some limitations. In many 

cases these algorithms result in a large number of fuzzy rules, proper learning 

results dependent on the quality of training sets and accuracy is not always 

acceptable. 

To address these limitations, a new clustering neuro fuzzy procedure was developed 

in this work. The main concept is to use clusters to construct membership function 

in the input data space. Then based on Tagaki-Sugeno fuzzy inference engine and 

matrix operations, a matrix P is constructed. This matrix includes all fuzzy rules 

parameters and is called rule base matrix or identification parameters matrix. 

During the training phase, the clustering technique and an exponential decay update 

rate are applied to find the proper clusters for the input data space. These clusters 

and independent widths used to construct membership functions are well adapted to 

different types of data space. For the fuzzy inference phase, to avoid boundary 

errors, a high-dimension T-S fuzzy inference is used. Each input data is processed 

by every membership function to construct if-part of fuzzy rules base. This strategy 

improves the output accuracy and decreases the number of clusters. 

The proposed algorithm has been tested on different applications and results 

compared with published data on three benchmark problems. 
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The proposed algorithm is simple to use and experimental results show that the 

number of clusters required is less than those reported in the literature. Output 

accuracy is good in many applications. 

The proposed algorithm has many advantages but also has some 

difficulties. Since its structure is based on neural networks and the 

mathematical theories used to guarantee the performance of an applied 

neural network are still under development. So we cannot guarantee getting 

same training result every time even using same training samples. 

Sometimes, for drawing a perfect result, we need to do more times training. 

So the further direction for research is to improve the stability of neural 

networks and optimize the membership functions in high-dimensions 

space. 
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7. APPENDIX A 

PSEUDOCODE DESCRIPTION 

set dim // to indicate the dimension of input 
set cluster_number=l II At the beginning of training phase, the number of clusters is set 1 
error=l // to start the following "while" loop 
set input_number II Number of input data in training sample 
for i=l to cluster_number 

time_win[i]=l // to indicate times the i' cluster wins 
endfor 
set step_rate_i // set initial update rate 
set step_rate_f // set final update rate 
while (error>0.0001) // if the final error exceeds this value, the cluster number is 

increased and system is trained again. 
cluster_number=cluster_number+l // at the beginning we assume there is one cluster. 

Every time the final error is more than 0.0001, 
the clusterjiumber is increased by 1 and the 
system is trained again 

set cluster[dim][cluster_number] // random set the initial value of each cluster 
set distance_min // set this variable equals to a large value 
winner_ID = 0 II to indicate which cluster wins in the current loop 

set clusting_loop // iteration number for clustering 
for i=l to cluster_number 
step_rate[i]= step_rate_i // initialize update rate 
endfor 

II*. ********** To determine the winner and to update the winner************* 
for i= 1 to clusting_loop 

for j= lto input_number 
for k=l to cluster_number 

distance = (time_win[k]*abs(cluster[k]-x[j]))/clusting_loop 
if distance_min >distance 

distance _min = distance 
winner_ID=k 

else 
endif 

endfor 11 end of variable "k" 
time_win(k)= time_win(k)+l 
step_rate[winner_ID]= step_rate_i*( step_rate_f / step_rate_i)time-win[winnerJD|/clus'in8-"»p 
for h=l to dim // update winner 
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cluster[h][winner_ID]= 
cluster[h][winner_ID]+step_rate[winner_ID]*(cluster[h][ winner_ID]-x[h][j]) 

endfor // end of variable "h " for update clusters 
set distance_min equal to a very big value 
winner_ID = 0 

endfor // end of variable "j" 
endfor // end of variable "i" 

/ /********** calculate out the width of each membership function * * * * * * 

for i= 1 to cluster_number 
total=0 
for j=(i+l) to cluster_number 

total =total + abs(cluster[i]- cluster[j]) 
endfor // end of variable "j" 
variance[i] = total / (2* cluster_number) // width of membership function 

endfor // end of variable "i" 

II*******************fuzzy inference ((3-27),(3-28),...,(3-34))************ 
for i= 1 to input_number 

for j= 1 to cluster_number 
dis=abs(cluster[j]-x[i]) 
u[j][i]=exp(-dis/(2*variance* variance)) // fuzzify input {calculate out the degree of 

fuzziness) 
endfor // end of variable "]" 

endfor // end of variable "i" 

set w[j][i]=u[j][i] // w is the firing strength 
total_w=0 
for i=l to input_number 

for j= 1 to cluster_number 
total_w= total_w+w[j][i] 

endfor // end of variable "j" 

for k=l to cluster_number 
beta[k][i] = w[k][i]/total_w 

endfor // end of variable "k" 
total_w=0 

endfor // end of variable "i" 

for i=l to input_number 
for j=l to cluster_number 

x_beta(j,i) = beta(j,i) 
endfor // end of variable "j" 

for k= cluster number+1 to cluster number*2 
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x_beta(k,i) = x(i,l) * beta(k-cluster_number,i) 
endfor // end of variable "k" 

for m=cluster_number*2+l to cluster_number*3 
x_beta(m,i) = x(i,2) * beta(m-cluster_number:|!2,i); 

endfor// end ofvariable "m" 

for n=cluster_number*3+l to cluster_number*4 
x_beta(n,i; = x(i,3) * beta(n-cluster_number*3,i); 

endfor // end of variable " n" 

for o=cluster_number*4+l to cluster_number*5 
x_beta(o,i) = x(i,4) * beta(o-cluster_number*4,i); 

end // end of variable "o" 
endfor // end of variable "i" 

parameter =inv(x_beta* (x_beta' ))* (x_beta) * (y_expect) 
y_real=x_beta'*parameter 

PI=0 // performance index 
for i= 1 to input_number 

PI = PI +( y_real[i] - y_expect[i])* (y_real[i] - y_expect[i]) 
endfor // end of variable "i" 
PI = PI / input_number 
endwhile 
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ixB 

Initialization 

Set dimension = dim, cluster number = 1 

cluster number = cluster number+1 

Set cluster = rand(dimension,cluster_number) 

Set distance_min equal to a very big value 

Set winnerlD = 0, set cluster_loop 

Set step_rate_i, set step_rate 

Point "start" 

then 
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time_win(k) = time_win(k) + 1; 

. • • m i . i •*/ .. . c i . . •xtime winfwinner ID]/clusiina loop 
step_rate[winner_ID]= step_rate_i*( step_rate_t / step_rate_i) - l - J h- ' 

cluster(z,winner_ID) = cluster(z,winner_ID)+step_rate(winner_ID)*(x(z,j)-cluster(z,winner_ID)); 

Z= 1,2,3 — , dimension 

set distance_min equal to a 

very big value 

I 

i = i+l 

To point 

Alv 

To point 
VAV 

else 
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i=l 

"M" 

set total=0 

.i=i 

total = total +abs(cluster(i)-cluster(j)) 

then 

else 

Variance(i) = total / (2*cluster_number) 
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else 

i+1 

set i=l 

set j= 

dis = x(i)-cluster(j) 

u(j,i) = exp(-dis/(2*variance/v2)); 

j=j+l 

i = i+l 

set w(j,i) = u(j,i) 

j=l.. . cluster_number 

i =1... input_number 

To point 

"M" 

else 

else 
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I 
total w=0 

i= l 

j = l 

total_w = total_w + w(j,i); j = j+1 

k=l 

ir-

beta(k,i) = w(k,i)/total_w; 

k = k+l 

If k>cl uste r n umber 

else 

then 
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i=l 

j = 0, k=cluster_number, 

m=cluster number*2, 

j =j+l 

then 

k=k+l 

then 

m =m+l 

then 

"G" 

x_beta(j,i) = beta(j,i); 

else 

x_beta(k,i) = x(i,l) * beta(k-

cluster_number,i); 

else 

x_beta(m,i) = x(i,2) * beta(m-

cluster_number*2,i); 

else 

H' 

n=n+l 
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To Point 

"G" 
1 To Point "H" 

x_beta(n,i) = x(i,3) * beta(n-

cluster_number *3,i); 

else 

0=0+1 x_beta(o,i) = x(i,4) * beta(o-

cluster_number*4,i); 

else 

i=i+l 

parameter = inv(x_beta*(x_beta')) * (xbeta) * 

(y_expectl); 

y_real=x_beta'*parameter; 

else 
To point "start" 

then 

output 
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