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Spectra and total energies from self-consistent many-body perturbation theory
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With the aim of identifying universal trends, we compare fully self-consistent electronic spectra
and total energies obtained from the GW approximation with those from an extended GWΓ scheme
that includes a nontrivial vertex function and the fundamentally distinct Bethe–Goldstone approach
based on the T -matrix. The self-consistent Green’s function G, as derived from Dyson’s equation, is
used not only in the self-energy but also to construct the screened interaction W for a model system.
For all approximations we observe a similar deterioration of the spectrum, which is not removed
by vertex corrections. In particular, satellite peaks are systematically broadened and move closer
to the chemical potential. The corresponding total energies are universally raised, independent of
the system parameters. Our results therefore suggest that any improvement in total energy due to
self-consistency, such as for the electron gas in the GW approximation, may be fortuitous.

PACS numbers: 71.10.-w, 71.45.Gm, 71.15.Nc

I. INTRODUCTION

Thanks to advances in modern computer technology
and an increasingly efficient treatment of the under-
lying one-electron structure, many-body corrections to
the quasiparticle band energies and spectral functions of
solids can now be obtained from first principles using
many-body perturbation theory. Most calculations for
real materials employ the GW approximation,1 which
owes its name to the fact that it models the electron
self-energy as the product ΣGW = iGW of the Green’s
function G and the dynamically screened Coulomb inter-
action W . By explicitly including polarization effects in
the exchange term it describes dynamic correlation be-
tween the electrons and so can be physically motivated
as an extension of the static Hartree–Fock treatment.

The Green’s function of the interacting electron system
is linked to the self-energy by means of Dyson’s equation,

symbolically written as G−1 = GH
−1

− Σ, where GH in-
dicates the Hartree approximation that neglects both ex-
change and correlation. It is immediately clear that one
faces a self-consistency problem, because the self-energy
in turn depends on the Green’s function. Hence both
propagators must be determined simultaneously. The
latter functional dependence is of course nonlinear due
to the dynamic properties of the screened interaction,
which is related to the bare Coulomb potential v and
the polarizability P through W−1 = v−1 −P . In a man-
ner consistent with the GW approximation the neglect of
vertex corrections in the polarizability yields the random-
phase approximation PRPA = −2iGG, which ignores the
interaction between the screening electrons and holes.

To obtain full self-consistency the above four equations
have to be solved iteratively starting from a zeroth-order
noninteracting Green’s function until the results stabi-
lize. Although self-consistent GW calculations for real
materials are now within reach,2 the associated compu-

tational cost is still enormous. Therefore in practice the
outcome of the first iteration is instead taken as the final
spectrum. In this formulation the GW approximation
has been applied to a wide range of materials including
semiconductors3–5 and alkali metals6 as well as transi-
tion metals7 and their oxides.8 For all these diverse sys-
tems the predicted quasiparticle band structures agree
very well with experimental results, while optical spec-
tra, which include satellite features resulting from col-
lective excitations such as plasmons, are generally less
satisfactory and require the addition of so-called vertex
corrections. However, systematic progress in this direc-
tion is still limited.9

Despite the apparent success of conventional calcula-
tions, the neglect of self-consistency remains problem-
atic, in part because it implies a certain ambiguity with
respect to the choice of starting point. The zeroth-
order Green’s function is usually constructed from the
local-density approximation (LDA), but in principle it
is equally possible to start from any other initial ap-
proximation such as the Hartree–Fock treatment.5 The
resulting spectra will in general differ.10 Furthermore,
the non-self-consistent GW scheme violates the Baym–
Kadanoff criteria for conserving approximations.11 As a
result the total particle number, energy, and momentum
of the system are not conserved under the influence of ex-
ternal perturbations. Even without such perturbations,
the integrated spectral weight no longer corresponds to
the number of physical particles.12

In order to address these issues, past implementations
have occasionally incorporated modifications aimed at
introducing a higher degree of self-consistency. In par-
ticular, the band energies of the zeroth-order Green’s
function used to evaluate the self-energy are sometimes
shifted such as to improve agreement with those obtained
from Dyson’s equation.3,6,8 This approach assumes that
the true quasiparticle orbitals are virtually indistinguish-
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able from the corresponding LDA wave functions, which
has only been explicitly proven for states close to the
band edge of simple semiconductors, however.3 Moreover,
it entirely ignores the transfer of spectral weight to satel-
lite peaks, which typically account for between 10% and
50% of the total spectrum.

More properly self-consistent results for model sys-
tems were recently reported, although most realiza-
tions still restrict the computational expense by fix-
ing the screening function W either at the zeroth-order
random-phase approximation13–15 or a simpler plasmon-
pole model.16 Until now the only comprehensive, fully
self-consistent calculations have been performed for a
quasi-one-dimensional semiconducting wire17,18 and the
homogeneous electron gas.19,20 For the electron gas, the
system most studied so far,14–16,19,20 self-consistency was
found to worsen the agreement between calculated spec-
tra and exact results by (i) increasing the occupied band-
width, (ii) transfering weight from the plasmon satel-
lites to the corresponding quasiparticle peaks, (iii) nar-
rowing the quasiparticle resonance widths, thereby in-
creasing the lifetime, and (iv) broadening the plasmon
satellites while moving them closer to the Fermi surface.
Some of these effects have also been observed for the
quasi-one-dimensional wire,18 and there is evidence that
the reported increase in the band gap extends to real
semiconductors.2 In contrast, self-consistency improves

the agreement of quasiparticle energies of localized semi-
core states with experimental data.13

Because of the small number of models studied so
far the results quoted above cannot readily be assumed
for other systems without further quantitative investiga-
tions, nor is it clear whether they are peculiar to the
GW approximation or of a more general nature. Previ-
ous partially self-consistent calculations that include ver-
tex corrections have done little to clarify the situation,
since they only consider modifications of the GW scheme
in the form of additional self-energy diagrams of second
order in W : depending on the choice of diagrams and
the model screening function used, these may restore the
occupied band width of the electron gas to its superior
non-self-consistent value16 or leave it unchanged.15

In order to shed more light on these numerical aspects,
in this paper we present fully self-consistent calculations
for a model system using a wide range of conserving
self-energy approximations. Besides the GW approxima-
tion and an extended GWΓ scheme that is derived from
time-dependent Hartree–Fock rather than Hartree theory
and includes multiple particle–hole scattering,21 we also
consider the fundamentally distinct Bethe–Goldstone
approach22 based on the T -matrix. Our first objective
is to compare the resulting spectra and thereby identify
universal trends.

In the second part of this paper we then focus on to-
tal energies. A very interesting outcome of recent fully
self-consistent calculations for the electron gas was that
the total energy derived from the Green’s function is
strikingly close to values obtained from quantum Monte-

Carlo simulations,19 which are presumed accurate. It has
been speculated that this unexpected result is related to
the fact that the self-consistent GW scheme conserves
energy,23 but the basis of this connection is not imme-
diately obvious. Rather, we will show here that self-
consistency in fact systematically raises the total energy.
Our results therefore suggest that the improvement for
the electron gas may be fortuitous.

This paper is organized as follows. In Sec. II we present
the model system and its exact numerical solution. In
Sec. III we discuss the self-energy approximations con-
sidered here in more detail. In Secs. IV and V we give
results for spectral functions and total energies, respec-
tively. Finally, in Sec. VI we summarize our conclusions.

II. MODEL DESCRIPTION

In order to limit the computational cost of fully self-
consistent calculations with vertex corrections beyond
the GW approximation, which so far have never been at-
tempted for real materials, we consider a Hubbard model
that describes the dynamics of electrons on a lattice with
strong, short-range interaction. The Hamiltonian is suf-
ficiently simple that it can be diagonalized exactly for
small cluster sizes using standard numerical techniques,
yet its physical behavior is nontrivial and reflects many
properties of real materials. The model geometry we em-
ploy is a finite two-leg ladder with open boundary con-
ditions. Each of the M lattice sites contains one orbital
that can accommodate up to two electrons with opposite
spin. Doubly occupied orbitals are penalized by a repul-
sive on-site interaction U , while the hopping of transient
electrons between neighboring sites yields an energy gain
of −t. The full Hamiltonian is

H = −t
∑

〈R,R′〉,σ

c†
RσcR′σ + U

∑
R

n̂R↑n̂R↓, (1)

where c†
Rσ, cRσ are the creation and annihilation opera-

tors for an electron at site R with spin σ, n̂Rσ ≡ c†
RσcRσ

is the particle number operator, and 〈R,R′〉 indicates a
sum over nearest neighbors only. We choose the energy
norm by setting t = 1. The total electron number is
denoted by N .

The exact one-particle Green’s function at zero tem-
perature is defined as

GRR′(t − t′) = −i〈N |T {cRσ(t)c†
R′σ(t′)}|N〉, (2)

where |N〉 is the ground state of the interacting many-
electron system, T is Wick’s time-ordering operator,
and cRσ(t) ≡ exp(iHt)cRσ exp(−iHt) denotes the time-
dependent wave-field operator in the Heisenberg picture.
We have suppressed the spin index in G because the
Green’s function is diagonal and degenerate in σ.

The Green’s function can in principle be written in
terms of the eigenstates featuring an additional electron
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or hole,24 but this representation is disadvantageous be-
cause the basis set grows exponentially with the system
size. While the Hamiltonian matrix contains mostly ze-
roes and so may be stored in a compressed format, the
same is not possible for the eigenvector matrix since it is
not in general sparse. For a reasonable system size the
memory requirements thus render this procedure infea-
sible. Instead, we Fourier transform (2) to the energy
domain and rewrite the Green’s function in the form

GRR′(ω) = 〈N |cRσ

1

ω −H+ + EN + iδ
c†
R′σ|N〉

+〈N |c†
R′σ

1

ω + H− − EN − iδ
cRσ|N〉. (3)

Here EN is the ground-state energy corresponding to |N〉,
which we compute by simultaneous subspace iteration,25

and H± denotes the Hamiltonian matrix for N ± 1 elec-
trons. The parameter δ is positive and tends to zero. In
practice we use a finite but small value of δ = 0.05. The
diagonal elements of G, in which we are most interested,
may now be calculated without full matrix inversion by
transforming ω∓ (H±−EN − iδ) to a chain using the re-

cursion method26 and starting with the vector c†
R′σ|N〉 or

cRσ|N〉. Once the diagonal elements an and off-diagonal
elements bn of the tridiagonal matrix are determined up
to a suitable chain length D, the elements of the Green’s
function are obtained from

GRR(ω) =
1

ω − a0 −
b2
1

ω − a1 − · · · −
b2
D

ω − aD

. (4)

For nondiagonal elements of G an analogous block recur-
sion must be performed. As the Hamiltonians consid-
ered here have many highly degenerate eigenvalues, the
chain length D can be chosen substantially lower than
the order of H±. In practice a few recursions per actual
spectral feature are sufficient to achieve full convergence.
To check the accuracy we have also calculated the total
particle number for all systems discussed in the following
by summing the diagonal elements of G and integrating
the spectral weight below the chemical potential µ. The
numerical deviation from the exact values is of the order
of 0.1%.

III. SELF-ENERGY APPROXIMATIONS

In many-body perturbation theory the effect of the
Coulomb force on the propagation of quasiparticles is
rigorously described by an effective potential. Follow-
ing established conventions we distinguish between the
Hartree contribution

V H
RR′ = U(〈n̂R↑〉 + 〈n̂R↓〉)δRR′ (5)

and the remaining exchange–correlation part, which we
call the self-energy Σ. It is in general both nonlocal and

energy-dependent. Although the exact self-energy func-
tional remains elusive, physically motivated approxima-
tions can be obtained by truncating its diagrammatic
series expansion. In the following we describe the three
distinct schemes considered in this paper.

The GW approximation renormalizes the nonlocal
Fock potential by including dynamic screening in the ex-
change interaction, as shown diagrammatically in Fig.
1(a). The screening function is modeled in the random-
phase approximation (RPA) and includes ring diagrams
to all orders. In the spirit of the space–time method27

we avoid costly convolutions by switching between the
real time and energy domains as appropriate, using fast
Fourier transforms with 32,768 sampling points over a
range of 160 energy units. This procedure also guar-
antees a high degree of numerical accuracy, because we
do not need to repeatedly fit the propagators to analytic
functions. Given a Green’s function G we hence compute
the self-energy by solving the defining equations

PRPA
RR′ (t) = −2iGRR′(t)GR′R(−t), (6)

W−1

RR′(ω) =
1

U
δRR′ − PRPA

RR′ (ω), (7)

ΣGW
RR′(t) = iGRR′(t)WRR′(t). (8)

The factor 2 in the polarization propagator is due to spin
summation.

While the GW approximation accurately describes ma-
terials that are governed by the screening of free carriers,
such as the homogeneous electron gas, vertex corrections
are in general necessary for more complex systems. Such
extensions are often refered to as GWΓ schemes. A par-
ticular approximation that we consider here includes a
vertex function derived from time-dependent Hartree–

with = +

+

(a)

(b)

(c) +

++

++

+ + + ...

+ ...

+ ...

+ ...

ΣGW
=

ΣGWΓ
=

ΣTx =

FIG. 1. Diagrammatic representation of (a) the GW ap-
proximation, (b) a GWΓ scheme with vertex corrections
that describe multiple particle–hole scattering, and (c) the
Bethe–Goldstone approach based on the T -matrix. Arrows
represent Green’s functions; the Coulomb interaction is indi-
cated by a broken line.
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Fock theory, as shown in Fig. 1(b). It contains multi-
ple scattering in the particle–hole channel, which is most
significant in atomic and molecular systems with par-
tially filled shells.28 Nontrivial vertex functions usually
increase the computational cost dramatically, but due to
the short-range interaction in the Hubbard model the
self-energy in this case is still given by an expression of
the form (8), albeit with a modified screened interaction

W̃−1

RR′(ω) =
1

U
δRR′ −

1

2
PRPA

RR′ (ω). (9)

The Bethe–Goldstone approach constitutes a funda-
mentally distinct approximation based on the so-called
transition or T -matrix, which describes multiple scatter-
ing in the particle–particle and hole–hole channels to all
orders. This process dominates in the low-density limit
of the electron gas,29 but it also predicts the specific be-
havior of systems with localized orbitals and strong elec-
tronic correlation such as the transition metals.30 As the
self-energy, shown as a sum of ladder diagrams in Fig.
1(c), contains exchange contributions in the two-particle
propagator, we designate it by the label Tx. For the Hub-
bard model the corresponding direct and exchange terms
are in fact identical except for a prefactor of 2 due to spin
summation in the former, so the self-energy is given by

G2
RR′(t) = iGRR′(t)GRR′(t), (10)

T−1

RR′(ω) =
1

U
δRR′ − G2

RR′(ω), (11)

ΣTx

RR′(t) = −iTRR′(t)GR′R(−t) − V H
RR′δ(t). (12)

In the last equation we have subtracted the Hartree po-
tential because it is already dealt with separately.

By tuning the parameters of the Hamiltonian (1)
we can create configurations geared to the particular
strengths of different self-energy approximations within
the same model: independent of the Coulomb integral
U the T -matrix becomes increasingly accurate for a very
low or, because of particle–hole symmetry, very high frac-
tional band filling N/(2M), while the GW schemes per-
form best for medium site occupancies and a not too
strong interaction.10

IV. SELF-CONSISTENT SPECTRA

In order to study the effects of self-consistency in a
general perspective, we compare calculations using all
the many-body approximations described in the previ-
ous section. As a convenient starting point we choose
the Hartree Green’s function GH, which only includes
the electrostatic potential V H generated by the total elec-
tron charge. The occupation numbers 〈n̂Rσ〉 are deter-
mined self-consistently by a simple iterative procedure.
After evaluating the self-energy Σ we obtain an updated,
dressed Green’s function from Dyson’s equation

G−1

RR′(ω) = GH
−1

RR′ (ω) − ΣRR′(ω), (13)

which in a conventional treatment is taken as the final
spectrum. In a self-consistent calculation we instead use
it to compute a new Hartree potential and self-energy
and continue the iteration until the results stabilize. To
guarantee the correct analytic time-ordering of the spec-
trum obtained from Dyson’s equation it is necessary to
shift the Hartree Green’s function rigidly on the energy
axis by an amount 〈Σ(µH)〉 before evaluating the self-
energy in (13). Here µH denotes the chemical potential,
which we identify with the highest occupied quasiparticle
state, and the matrix element is formed with the corre-
sponding orbital. As this shift must tend to zero for the
self-consistent solution, we decrease it by a factor of e−1

in every subsequent iteration. To achieve convergence
we typically perform at least ten iterations, after which
the shift is reduced to a negligible value without influ-
ence on the spectral features or total energy. We use a
very small initial resonance width of δ = 0.05 through-
out the calculations in order to avoid systematic errors,
and only the final spectra are broadened through convo-
lution with a Lorentzian of width 0.5 for visual display.
We have again checked the numerical reliability by calcu-
lating the total particle number from the self-consistent
Green’s functions and generally find the same high level
of accuracy as for the exact solution.

In Fig. 2 we compare an ordinary GW spectral func-
tion, obtained from a single iteration of Dyson’s equation,
with the result of a converged, self-consistent calculation
after 10 iterations. Like all other figures in this section it
shows the diagonal element for a corner site of the clus-
ter, which we have confirmed to be representative. The
following observations therefore apply equally to other
matrix elements. By setting the model parameters to
M = 10 and N = 2 with a medium interaction strength

−5.0 0.0 5.0 10.0

ω

−1.8

0.2

2.2

Im
 G

R
R
(ω

)

exact

GW, 10 iterations

GW, 1 iteration

FIG. 2. Comparison between an ordinary and a converged
GW calculation after 10 iterations. The most striking effect of
self-consistency is the broadening of satellite peaks, which are
hardly discernible in a diffuse background. This is particularly
obvious at high energies, as indicated by an arrow.
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−5.0 0.0 5.0 10.0

ω

−1.8

0.2

2.2

Im
 G

R
R
(ω

)

exact

GWΓ, 10 iterations

GWΓ, 1 iteration

FIG. 3. The vertex function in the GWΓ approximation
fails to prevent the deterioration of spectral features when
brought to full self-consistency.

of U = 4 we have deliberately chosen a small band filling
of 10% for which the GW approximation is not optimal,
so that possible improvements should be more obvious.
The exact spectrum is shown for comparison.

To examine the effects of self-consistency we distin-
guish between quasiparticles and their satellites. The
former are in fact little affected, mainly by small shifts in
position and a marginal narrowing of the resonance width
for states close to the chemical potential. In contrast, the
satellite spectrum deteriorates significantly. The most
striking change is the broadening of satellite peaks. By
fitting the spectrum to a set of Lorentzians we find that
the resonance widths approximately double. As the spec-
tral weight is smeared out and peaks merge, individual
features are hardly discernible above the spectral back-

−5.0 0.0 5.0 10.0

ω

−1.8

0.2

2.2

Im
 G

R
R
(ω

)

exact

T
x
, 10 iterations

T
x
, 1 iteration

FIG. 4. Although unrelated to the GW approximation, the
Tx scheme effects the same changes in quasiparticle and satel-
lite peaks in a converged, self-consistent spectrum.

ground, particularly isolated satellites at high energies.
One such example is indicated by an arrow. Furthermore,
it can be seen that the satellites move closer towards the
chemical potential. All of these observations are in agree-
ment with previous self-consistent calculations.14,19

We now address the relation between self-consistency
and the simultaneous inclusion of vertex corrections. To
this end we show the results of a corresponding GWΓ cal-
culation in Fig. 3. It is evident that the vertex function
in the latter fails to prevent the deterioration of spectral
features when brought to full self-consistency. In par-
ticular, we do not observe a restoration of well-defined
structure. This point is further underlined by our in-
vestigation of the Bethe–Goldstone approach. A typical
calculation using N = 6, which corresponds to a band
filling of 30%, is illustrated in Fig. 4: although unre-
lated to the GW approximation, the Tx scheme effects
the same changes in quasiparticle and satellite peaks in
a converged, self-consistent spectrum.

The general success of ordinary GW calculations for
most systems suggests that the sum of all neglected self-
energy diagrams is small. A thorough understanding of
this process is invaluable for the design of superior ap-
proximations, but despite continuing efforts the nature of
this cancellation remains elusive. On the one hand, there
is strong evidence for a certain mutual cancellation be-
tween corresponding vertex corrections in the polarizabil-
ity and self-energy.31–33 If we assume that this argument
still holds for the true vertex function, then by exten-
sion the remaining contributions, i.e., the self-consistent
renormalization of propagators in the polarizability and
self-energy, must also cancel. However, the disturbing
deterioration of spectral features in the self-consistent
GW approximation,19 particularly when compared to a
partially self-consistent calculation with a fixed zeroth-
order dielectric function,14 suggests that this is not the
case, at least when a trivial vertex is used. Consequently
one would also expect a certain mutual cancellation be-
tween self-consistency and vertex diagrams. Recently
reported direct numerical evidence16 to this end is cir-
cumstantial, however, since only quasiparticle properties
were considered and the response function was replaced
by a plasmon-pole model of unclear diagrammatic struc-
ture. In this context our results, alongside those from a
partially self-consistent cumulant expansion that also ex-
amined complete spectral functions,15 indicate that this
cancellation is a very subtle process and that mutually
balancing contributions may be hard to identify.

V. TOTAL ENERGIES

One of the notable features of self-consistency in many-
body perturbation theory is that the total energy be-
comes a proper, uniquely defined quantity. In practice to-
tal energies are most often obtained from the one-particle
Green’s function using the Galitskii–Migdal formula,34
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which may of course be applied to any approximate G.
However, it is important to note that other definitions,
for instance through the two-particle Green’s function
or an integral of the interaction strength, in general
yield different numerical values. Full self-consistency re-
moves this ambiguity. Moreover, the total energy is then
also properly conserved under the influence of external
perturbations.11

For the Hubbard model an analogous expression for
the total energy

E =
1

π

∑
〈R,R′〉

∫ µ

−∞

(ωδRR′ − t) Im GRR′(ω) dω (14)

in terms of the one-particle Green’s function can be de-
rived from the equation of motion of the wave-field oper-
ator. Despite formal similarities to the Galitskii–Migdal
formula this expression also contains contributions from
nondiagonal elements of the Green’s function. The rea-
son for this apparent discrepancy is that the site index R

does not represent a spatial coordinate. Instead, it is in-
troduced in second quantization to label a set of overlap-
ping Wannier orbitals. As the creation and annihilation
operators are transformed separately, local operators in
real space become nondiagonal in the site index, a point
that was previously noted in conjunction with the proper
parametrization of the charge density.35 Analogously the
local kinetic-energy operator and external potential cor-
respond to the nondiagonal hopping term of the Hubbard
Hamiltonian, which resurfaces here.

Unlike the calculation of the particle number, a direct
evaluation of the frequency integral in (14) proved quite
sensitive to the initial resonance width δ. In order to
obtain reliable results, we therefore fit the elements of
the Green’s function to a model of the form

GRR′(ω) =
∑

n

an
RR′

ω − bn
RR′ − iδn

RR′

+
∑
m

am
RR′

ω − bm
RR′ + iδm

RR′

, (15)

which of course becomes exact as δ tends to zero. The
frequency integration can now be performed analytically
in the proper limit δn

RR′ → 0, and so for the total energy
we eventually obtain

E =
∑

〈R,R′〉

∑
n

(bn
RR′δRR′ − t) an

RR′ . (16)

We have confirmed the reliability of our procedure by
comparing total energies derived from the true Green’s
function with the exact numerical value EN , which we ob-
tained earlier by diagonalizing the Hamiltonian matrix.
The fit according to (15) is very accurate. Unfortunately
it is also computationally expensive, so that all results in
this section refer to a reduced model size of M = 6.

In Figs. 5 and 6 we show calculated total energies as a
function of the interaction strength U for N = 2, which

0.0 4.0 8.0

U

−6.0

−5.8

−5.6

−5.4

−5.2

T
o
ta

l 
en

er
g
y
 E

0.0 4.0 8.0

U

−6.0

−5.8

−5.6

−5.4

−5.2

(a) (b)

FIG. 5. Total energies calculated from (a) the GW and
GWΓ approximations, indicated by circles and diamonds, re-
spectively, and (b) the Tx scheme as a function of the inter-
action strength U for a low band filling of 17%. Open sym-
bols refer to ordinary, non-self-consistent Green’s functions,
while filled symbols refer to self-consistent ones. The solid
line shows the exact total energy for comparison.

corresponds to a low band filling of 17%, and N = 4,
equivalent to an intermediate band filling of 33%. Re-
sults obtained from the GW , the GWΓ, and the Tx

scheme are indicated by circles, diamonds, and squares,
respectively. Open symbols refer to ordinary, non-self-
consistent Green’s functions, while filled symbols refer to
self-consistent ones. The curves are not perfectly smooth
due to unresolved convergence problems for individual
values of U . As these do not obscure overall trends, how-
ever, we have decided to retain the corresponding ener-
gies for reasons of completeness. The solid line shows the
exact total energy for comparison.
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U

−8.0

−7.0

−6.0

−5.0

−4.0

T
o
ta

l 
en

er
g
y
 E

0.0 4.0 8.0

U

−8.0

−7.0

−6.0

−5.0

−4.0

(a) (b)

FIG. 6. Corresponding values for the same model with an
intermediate band filling of 33%. Self-consistency systemati-
cally raises the total energy for all approximations.
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As a first result we note that the quality of total-energy
predictions correlates with that of spectral functions in
the same parameter range, i.e., the Bethe–Goldstone ap-
proach works best for low particle numbers, while the two
GW schemes perform optimally for intermediate band
fillings, where screening effects dominate. Of the latter,
the GWΓ approximation is superior due to the promi-
nence of exchange in the Hubbard model. The drop in
the GW total energy after reaching a plateau is in part
an artefact of the model specification: as the interaction
is short-range, the true energy converges to a finite value
in the limit U → ∞ as long as N ≤ M , indicating a com-
plete spatial separation of the electrons. The tendency of
the GW approximation to underestimate the total energy
eventually causes the downward trend. Such an unphys-
ical behavior does not occur for the long-range Coulomb
interaction, where the energy diverges as the correlation
strength approaches infinity.

When comparing the total energies obtained from or-
dinary with those obtained from self-consistent Green’s
functions, we find that the latter are systematically
raised. This is a general feature valid for all approxi-
mations at all band fillings that we investigated. It can
be understood as follows: self-consistency modifies the
Green’s function in two ways, namely by rescaling and
moving individual resonances relative to the chemical po-
tential, and by an overall rigid shift caused by a redef-
inition of the chemical potential itself. The first effect
may influence the total energy in either way, depending
on the balance of opposite trends. For the homogeneous
electron gas, for instance, the increase in band width,
which moves quasiparticles to lower energies relative to
the Fermi surface, competes with the upward transfer of
spectral weight from low-lying plasmon satellites to the
corresponding main peaks.19 In contrast, the second con-
tribution is always positive. It results from a relocation
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FIG. 7. Total energy in the GW approximation for a larger
band filling of 67%. As the ordinary GW approximation
already predicts the true energies rather well in this case,
self-consistency leads to a substantial overestimation.

of the chemical potential, which in an ordinary treatment
is given by µ = µH + 〈Σ(µH)〉, equivalent to that of the
shifted Hartree Green’s function in Dyson’s equation. In
a self-consistent approach the chemical potential instead
becomes µ = µH + Z〈Σ(µH)〉, where Z is the quasiparti-
cle renormalization factor. For the sake of the argument
we ignore small deviations in the underlying Hartree po-
tentials and the self-energy matrix elements, which are of
course calculated from different Green’s functions. It is
then clear that in the self-consistent case the self-energy
correction, which is always negative, is scaled down by
Z, leading to a higher reference chemical potential. Un-
less compensated by other factors, this effect therefore
always raises the total energy.

Although the argument makes the increase in total en-
ergy for the electron gas plausible, it does not explain the
excellent numerical agreement with results from quantum
Monte-Carlo simulations, which are presumed accurate.
In the light of our calculations this appears rather for-
tuitous, however. While the increase in the GW total
energy for our model system with two and four electrons
indeed constitutes a quantitative improvement, in Fig. 7
we present results for a larger band filling of 67%, corre-
sponding to N = 8, to demonstrate that this is not always
so: as the ordinary GW approximation already predicts
the true energies rather well in this case, self-consistency
leads to a substantial overestimation.

VI. CONCLUSIONS

In this paper we have presented self-consistent many-
body calculations of the spectra and total energies for
a model system. The self-consistency was not restricted
and extends to the construction of the screened interac-
tion in the random-phase approximation. By comparing
the GW approximation with an extended GWΓ scheme
that includes a nontrivial vertex function as well as the
unrelated Bethe–Goldstone approach based on the T -
matrix we were able to identify universal trends. We have
demonstrated that the deterioration of spectral features
due to self-consistency, previously observed in GW calcu-
lations, also occurs in more elaborate treatments and is
not removed by vertex corrections. The most important
effect is the broadening of satellite peaks, particularly
at high energies, and their simultaneous shift towards
the chemical potential. For all approximations the cor-
responding total energies are systematically raised. This
trend, which we made plausible on the basis of physi-
cal arguments, is independent of the system parameters
such as correlation strength and band filling. Our results
therefore suggest that the recently reported improvement
in the GW total energy for the electron gas due to self-
consistency may be fortuitous.
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20 A. G. Eguiluz and W.-D. Schöne, Mol. Phys. 94, 87 (1998).

21 B. Schneider, H. S. Taylor, and R. Yaris, Phys. Rev. A 1,
855 (1970).

22 H. A. Bethe and J. Goldstone, Proc. R. Soc. London A238,
551 (1957).

23 F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61,
237 (1998).

24 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw–Hill, San Francisco, 1971).
25 B. N. Parlett, The Symmetric Eigenvalue Problem (Pren-

tice Hall, Englewood Cliffs, 1980).
26 R. Haydock, in Solid State Physics, edited by H. Ehrenre-

ich, F. Seitz, and D. Turnbull (Academic, New York, 1980),
Vol. 35, p. 215.

27 H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev.
Lett. 74, 1827 (1995).

28 E. L. Shirley and R. M. Martin, Phys. Rev. B 47, 15 404
(1993).

29 J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
30 M. Springer and F. Aryasetiawan, Phys. Rev. Lett. 80,

2389 (1998).
31 G. D. Mahan and B. E. Sernelius, Phys. Rev. Lett. 62,

2718 (1989).
32 C. Verdozzi, R. W. Godby, and S. Holloway, Phys. Rev.

Lett. 74, 2327 (1995).
33 F. Bechstedt, K. Tenelsen, B. Adolph, and R. Del Sole,

Phys. Rev. Lett. 78, 1528 (1997).
34 V. M. Galitskii and A. B. Migdal, Sov. Phys. JETP 7, 96

(1958).
35 A. Schindlmayr and R. W. Godby, Phys. Rev. B 51, 10 427

(1995).

8


	Schindlmayr, A, Pollehn, TJ, Godby, RW (1998) Spectra and to
	Physical Review B (12684-12690)

