
W*M UNIVERSITY DE 

m SHERBROOKE 

Universite de Sherbrooke 

Faculte de genie 

Departement de genie electrique et genie informatique 

OPTIMISATION TEMPORELLE DE CIRCUITS LOGIQUES 

PAR L'UTILISATION DE TAMPONS 

Memoire de maitrise es sciences appliquees 
Specialite: genie electrique 

Amir Hossein RABBANI 

Sherbrooke (Quebec), Canada Septembre 2007 

tf-/«^ 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-37929-5 
Our file Notre reference 
ISBN: 978-0-494-37929-5 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Circuit delay optimization by buffering the logic gates 

PREFACE 

As devices shrink, deep submicron designs demonstrate the increasing importance of 

interconnect delay on the circuit performance. In order to reduce interconnect delay 

and help driving large fanout, buffer insertion needs to be performed during logic and 

physical synthesis. This optimization activity is often based on dynamic 

programming. In this dissertation, using the branch-and-bound technique, the 

problem for the specific case of buffering balanced trees is solved, where all loads 

have identical required time and input load capacitance. Necessary mathematical and 

data structural elements are provided to take into account a variety of design issues 

such as topology, buffer library and phase-shifting in the presence of inverting 

buffers. Combining dynamic programming and branch-and-bound techniques, a 

hybrid method is presented to improve runtime while memory consumption remains 

reasonably low. The underlying mathematical and algorithmic concepts given in this 

thesis can be used to generalize the proposed buffering method to produce a buffer 

tree for a set of different loads with different required time and capacitance. 

l 



Optimisation temporelle de circuits logiques 
par ['utilisation de tampons 

RESUME 

Avec la miniaturisation actuelle, les circuits demontrent de plus en plus l'importance 

des delais d'interconnexion. Afin de reduire ce delai, l'insertion de tampons doit etre 

effectuee durant la synthese logique et la synthese physique. Cette activite 

d'optimisation est souvent basee sur la programmation dynamique. Dans ce memoire, 

la technique branch-and-bound est utilise et le probleme pour le cas specifique 

d'arbres de tampons equilibres est resolu, ou toutes les charges ont un temps requis et 

une capacite identique. Une analyse mathematique est faite pour tenir compte d'une 

variete de questions de conception telles que la topologie, la bibliotheque de tampons 

, et le changement de phase en presence d'inverseur. En combinant la programmation 

dynamique et les techniques branch-and-bound, une methode hybride est presentee 

qui ameliore le temps d'execution tout en conservant une utilisation de memoire 

raisonnable. Les concepts mathematiques et algorithmiques fondamentaux utilises 

dans ce memoire peuvent etre employes pour generaliser la methode proposee pour 

un ensemble de charges avec des capacites et des temps requis differents. 

11 



ACKNOWLEDGEMENTS 

The author wishes to thank several people. I would like to thank Dr. Mailhot for his help, expert 

insight and valuable guidance which made this thesis an enjoyable experience. I would also like 

to thank Ali Shanian whose support and true friendship helped me a lot through this Master's 

project. Last but not least, I would like to thank all my friends, in particular Behnam Mostajeran 

and Zohreh Rafiei, for being beside me in difficulties and happiness. 

in 



To my parents: 

Bijan Rabbani 

Shahla Kamuei 

For their unending love, boundless patience and supreme support 

IV 



TABLE OF CONTENTS 

1 INTRODUCTION 1 

1.1 BACKGROUND AND MOTIVATION 1 

1.2 CONTRIBUTIONS OF THE THESIS 2 

1.3 ORGANIZATION 3 

2 OVERVIEW OF SYNTHESIS PROCESS & PREVIOUS WORK 4 

2.1 REVIEW OF BUFFERING CONCEPTS 4 

2.2 PREVIOUS WORK 17 

3 BALANCED BUFFERING ........27 

3.1 BALANCED BUFFERING APPLICATIONS: FACTS AND POTENTIALS 28 

3.2 STATEMENT OF THE PROBLEM 30 

3.3 METHOD.. 30 

3.4 ALGORITHM 37 

3.5 SOLUTION LIST 39 

3.6 BALANCED SUB-TREES 40 

3.7 BUFFER SELECTION 44 

3.8 HANDLING THE INVERTERS 47 

3.9 EXPERIMENTAL RESULTS < 50 

3.10 SUMMARY 53 

4 MIXED METHOD ..54 

4.1 SUITABLE STRUCTURE FOR MEMORY REUSE 55 

4.2 MIXED METHOD ALGORITHM 60 

4.3 WHEN SHOULD MEMORY REUSE B E PERFORMED? 61 

4.4 SOLUTION LIST PRUNING 64 

4.5 SEARCH SPACE 66 

4.6 MORE SPEEDUP TECHNIQUES 80 

4.7 EXPERIMENTAL RESULTS ; 84 

4.8 SUMMARY 89 

CONCLUSION & FUTURE WORK ...91 

APPENDICES 95 

APPENDIX A 96 

MINIMUM DELAY CALCULATION FOR THE BALANCED BUFFER TREE 96 

V 



APPENDIX B 104 

PROOF OF THE BEST BUFFER EXISTENCE 104 

APPENDIX C 114 

FINDING THE BEST BUFFER 114 

REFERENCES 115 

VI 



TABLE OF FIGURES 

Figure 2-1 Inverting and non-inverting buffer . 5 

Figure 2-2 Two different implementations for an inverter 5 

Figure 2-3 Modeling the buffer insertion problem 7 

Figure 2-4 Circuit synthesis stages 8 

Figure 2-5 Buffering in the circuit synthesis steps..... 9 

Figure 2-6 Logic synthesis stages 10 

Figure 2-7 Splitting the fanouts of a gate into several parts 11 

Figure 2-8 Buffering during logic synthesis 12 

Figure 2-9 Dividing less critical fanouts with buffers 13 

Figure 2-10 Balanced Load Decomposition 13 

Figure 2-11 The dominance of interconnect delay 14 

Figure 2-12 Physical synthesis procedure 16 

Figure 2-13 Van Ginneken's algorithm 18 

Figure 2-14 A routing grid graph and a buffered minimum Elmore delay path 23 

Figure 3-1 Balanced buffering versus a typical buffering problem 28 

Figure 3-2 Clock tree construction 29 

Figure 3-3 Recursively built sub-problems 32 

Figure 3-4 Calculating Elmore delay for a given buffer tree 33 

Figure 3-5 A non-discrete structure of an ideal buffer tree 34 

Figure 3-6 Lower bound calculation 35 

Figure 3-7 Feasible region as a directed acyclic graph 36 

Figure 3-8 Search space graph 37 

Figure 3-9 Flowchart of balanced buffering algorithm 38 

Figure 3-10 Saving and reconstructing the best buffer tree 39 

Figure 3-11 A generic solution structure 40 

Figure 3-12 Splitting a tree with a fanout number of 10 in 3 different ways 41 

Figure 3-13 The specific case of partially balanced sub-trees : 41 

Figure 3-14 3 ways of making partially balanced sub-trees for 17 fanouts 42 

Figure 3-15 Legal divisors of 15 43 

Figure 3-16 All possible sub-trees for a fanout of 15 44 

Figure 3-17 Single wire buffering illustrating theorem 1 45 

VII 



Figure 3-18 Single wire buffering illustrating theorem 2 46 

Figure 3-19 Two different sub-problems leading to a negative-phase sub-tree 47 

Figure 3-20 A hybrid solution list..... 48 

Figure 3-21 Two connected search spaces with different priorities 49 

Figure 3-22 Curve-fitting on an arbitrary set of buffering problem runtime 53 

Figure 4-1 An example of common sub-problem 56 

Figure 4-2 branch-and-bound vs. dynamic programming 57 

Figure 4-3 Search space structure for a balanced buffering problem 57 

Figure 4-4 Combining two methods in solving a common sub-problem 58 

Figure 4-5 Mixed method flowchart ." : 60 

Figure 4-6 Basic solutions application 62 

Figure 4-7 Setting real delays and sorting the solutions when making a solution list.... 63 

Figure 4-8 A sub-problem being updated 64 

Figure 4-9 Pruning a positive-phase list 65 

Figure 4-10 Pruning a negative-phase list 66 

Figure 4-11 Solution types 67 

Figure 4-12 2-dimensional coordinate .68 

Figure 4-13 Solution list access key 68 

Figure 4-14 Usage number distribution for the given example 70 

Figure 4-15 A binary search tree with look-up tables inside each node 71 

Figure 4-16 Filling up a dynamic look-up table 72 

Figure 4-17 An example of push-up function 74 

Figure 4-18 Push-up operations for a chain of equally weighted nodes 75 

Figure 4-19 The structure of the defined node 76 

Figure 4-20 Defining balancing property '. 77 

Figure 4-21 Example of see-saw-up function 78 

Figure 4-22 Existence of a possible m 80 

Figure 4-23 Meeting the same sub-problem through different paths 81 

Figure 4-24 Solution jumping for a positive phase solution list 83 

Figure 4-25 Memory tracking for a problem with a fanout number of 300 86 

Figure 4-26 The effect of the pruning operation on memory usage 87 

Figure 4-27 Released memory when using pruning 88 

Figure 4-28 Curve-fitting on an arbitrary set of buffering problem runtime 89 

Figure A-l Zero level buffering 97 

Figure A-2 One level buffering 97 

vm 



Figure A-3 Two level buffering 99 

Figure A-4 K level buffering 100 

Figure B-l The proof procedure using Lagrange Multipliers 105 

IX 



LIST OF TABLES 

Table 2-1 Comparison the time complexity of Van Ginneken's algorithm and its variations 26 

Table 3-1 Buffer libraries 51 

Table 3-2 Runtime for different fanouts using different buffer libraries 51 

Table 3-3 Chapter summary 53 

Table 4-1 Properties of the first 20 most common sub-problems 70 

Table 4-2 Runtime and memory usage for the simple branch-and-bound and the mixed method. 84 

Table 4-3 Runtime results for smart bound and solution jumper 85 

Table 4-4 Runtime and memory usage for simple branch-and-bound and complete system 85 

Table 4-4 (continue) 86 

Table 4-5 Runtime and memory usage for different access methods 88 

x 



Chapter 1 

INTRODUCTION 

1.1 Background and Motivation 

In modern integrated circuits a logic gate often has to drive very large fanouts. This is due to the fact 

that during logic synthesis, where generating common expressions is needed to compact the circuit by 

reducing the number of logic gates, large fanouts are also produced. This is a crucial problem because 

a logic gate driving large fanouts dramatically slows down the circuit. On the other hand, there are 

many places where timing is so crucial that one has to make sure that the signals are traveling the 

circuit as quickly as possible, such as making clock trees, multiplexers, etc. Buffering is one common 

solution to these problems and is addressed during this dissertation. A new buffering method has been 

proposed and its efficiency is proved through a number of well-staged testing scenarios. The goal of 

the presented method is to construct the fastest buffer tree, i.e. a buffer tree by which signals can travel 

from a logic gate to its fanouts as quickly as possible. 

A number of buffering methods have been suggested in the literature (see chapter 2). While these 

methods are efficient in terms of runtime and memory, none of them guarantees optimality. One often 

has to compromise runtime and memory consumption at the cost of solution quality. In this 

dissertation, a buffering method is proposed which produces the optimum solution for a specific class 

of buffering problems where all fanouts are identical in terms of input capacitance and required arrival 

time. The presented algorithm is significantly fast and needs very small memory. In constructing the 

buffer tree, no routing constraint is imposed on the tree structure. This is mainly because there are 

many applications where timing objectives dominate the geometrical objectives (such as designing a 

clock tree). In chapter 3, it is shown how one can take advantage of the special structure of this class 

of buffering problems to nicely model and solve them. The properties of the problem allow using 

branch-and-bound algorithm, which guarantees the optimality by nature. Other than optimality, one 

has to make sure that the solution is produced quickly and the calculations are done with a reasonable 

amount of memory. Therefore, a number of optimization techniques have been introduced in chapter 4 

to improve the performance of the buffering algorithm proposed in chapter 3. It is going to be 

discussed how the solution space being explored by the buffering algorithm is characterized in such a 

1 



way that one can avoid redundant calculations by storing and retrieving common solutions. This 

optimization technique results in faster runtime. Some modifications on the branch-and-bound 

algorithm have been also put together to speed-up the buffer tree construction. In industrial scale 

problems, where synthesis tools have to deal with logic gates having hundreds of thousands of 

fanouts, memory consumption becomes a bottleneck. To avoid any memory overload in real 

applications, a new group of binary trees have been designed in this dissertation to help memory 

consumption remain within a reasonable range. A unique feature of those binary trees is the ability to 

modify the tree structure based on the way it is used, i.e. providing faster access times for the nodes 

used more frequently. This new class of binary trees, its properties, implementation and applications is 

going to be discussed more in details in chapter 4. 

1.2 Contributions of the Thesis 

In this thesis, a new balanced buffering method along with a number of speed-up techniques has been 

developed to address the buffering problem from a different perspective. The main contributions are 

listed as follows: 

1- An efficient way of balanced buffering using branch-and-bound algorithm: While most of 

today's buffering techniques are based on dynamic programming, a new and effective method 

is proposed based on the branch-and-bound technique. Characterizing the problem from a 

mathematical point of view, the problem for the specific case of buffering balanced trees is 

solved, where all loads have identical required time and input load capacitance. This new 

method is called balanced buffering. As opposed to many buffering methods, the presented 

balanced buffering algorithm guarantees solution optimality and can handle several design 

issues simultaneously, such as buffer tree topology, phase shifting in the presence of inverters 

and buffer library. Also, the underlying concepts are provided for a generalized version of the 

proposed algorithm to solve the buffering problem for a set of different load capacitances and 

required times. 

2- Speed up techniques for the proposed balanced buffering algorithm: To obtain faster search 

time for the proposed balanced buffering technique three efficient approaches are introduced 

for the first time in this thesis: mixed branch-and-bound and dynamic programming (or simply 

mixed method), smart bound and solution jumper. Applying these speed-up techniques, 

runtimes up to 60,000 times faster have been achieved for the simple balanced buffering 

2 



algorithm, which is a significant contribution to the CPU cost of the buffer tree construction 

method. While mixed method and smart bound are introduced to specially improve the 

runtime of balanced buffering, they can be applied to any similar problem where the efficiency 

of the branch-and-bound algorithm is affected by the existence of common sub-problems in 

the search space. 

Self-reorganizing binary search trees: One of the speed-up techniques, the mixed method, 

needs to keep the results of solving each sub-problem in order to prevent redundant 

calculations during search traversal. Such approach requires a simple yet efficient structure to 

maintain and access the solution lists information in the memory. Lazy weight and perfectly 

balanced binary search tree, two new classes of dynamic search trees, are proposed for the first 

time in this thesis to improve the access time of those solution lists. Keeping record of each 

node usage number, they restructure themselves such that the nodes with higher access 

number move toward the root of the binary tree. This provides faster access time for highly 

shared sub-problems which generally improves the balanced buffering algorithm runtime. 

1.3 Organization 

The thesis is organized as follows. After a short introduction to the work addressed in this dissertation 

in chapter 1, basic buffering concepts, circuit synthesis stages and previous work in this field are 

introduced in chapter 2. Balanced buffering algorithm and its analysis are presented in chapter 3. 

Chapter 4 discusses the speed-up methods to improve the runtime of balanced buffering. Finally, a 

summary of current work and possible directions of future work is given in chapter 5. 

3 



Chapter 2 

» OVERVIEW OF S Y N T H E S I S 
PROCESS & PREVIOUS WORK 

In this chapter basic buffering concepts are introduced and a number of widely used buffer insertion 

techniques are presented. In order to understand how and where buffer tree construction is applied in 

the circuit design process, in section 2.1 different stages of circuit synthesis are explained and buffer 

tree construction is addresses at logic and physical synthesis stages. In section 2.2, major buffer 

insertion techniques are studied. The applications of these techniques encompass area and delay 

optimization in general, and physical effects such as wire capacitance, wire inductance and the effect 

of placement and routing in particular. 

However, it should be pointed out that the buffering method proposed in this dissertation is new and is 

not an extension of any previously presented buffering method. Yet, reviewing these methods provides 

insight necessary for understanding the work that has been done in this dissertation. 

2.1 Review of Buffering Concepts 

2.1.1 What is a buffer? 

A buffer is an amplifying element placed along the wires and between the logic blocks to help 

decoupling large loads and regenerating degraded signals. Though a buffer is conventionally known as 

a neutral logic gate that has no effect on the logic values it transmits, its definition in the domain of 

circuit synthesis has been extended to also include the inverters. In fact, a non-inverting buffer is a 

logic-gate compound of 2 contiguous inverters. As the most basic logic unit, inverters are generally 

smaller and faster than non-inverting buffers. However, the problem of phase-shifting in the presence 

of inverters makes many buffering algorithms only use non-inverting buffers. Nevertheless, solutions 

to a buffering problem can still contain inverters as long as the problem of phase-shifting is correctly 

handled. The symbolic forms of inverting and non-inverting buffers along with their circuits and logic 

function are shown in figure 2-1. 

4 



P S m * c V mi, niiinif^h -

F = X F = X 

Figure 2-1 Inverting and non-inverting buffer 

The physical and geometrical properties of buffers are specifically designed to yield fast timing 

characteristics while causing the least congestion at the routing level. Since different buffer layouts 

can result in different electrical properties, a number of inverting and non-inverting buffers with 

various physical characteristics are often put together in a library, in order to help automated design 

systems produce better buffering solutions. In figure 2-2, it is seen how 2 inverters with different 

layouts can present different physical characteristics. As it is shown in this figure, buffer layout 1 has 

small total capacitance, whereas buffer layout 2 has small total resistance and intrinsic delay. 

p-dffltalon 
metal 

n-#tetan 
potytllcan 

JH contact: 

m 

x 

Him 

11 11 
Firtffi 

111! 

\>> 

Rinui 

\ 

II 
MI 

^ 
• • i t 

Ml 

TOO 

IIIIIIIIIA 

GND 

Buffer Layout 1 Buffer Layout 2 

T o t a l R e s i s t a n c e * > Tsfel Resistance 

Total capadtancs < | Total Capacitance 

Intrinsic D«Iay > inwnsfcrwajr 

Figure 2-2 Two different implementations for an inverter 

5 



A buffer library provides the physical and geometrical diversity required in constructing a buffer tree. 

This diversity helps choosing the best buffer configuration for the physical characteristics of the given 

buffering problem. As a consequence of different layout design, a buffer [ALPERT et ai, 2000]: 

1) May have a relatively high delay when driving a small load, but a relatively low delay 

when driving a large load. Such a buffer usually is not a single gate, but rather a series 

of cascading buffers. 

2) May be relatively fast for a large range of loads, but it may have a high input 

capacitance which increases the delay of the previous stage. This is typically true of 

large inverting buffers. 

3) May have a low input capacitance, which is useful for decoupling a sub-tree that 

connects non-critical sinks, but the buffer may not have enough strength to drive the 

entire load that it needs to decouple. 

4) May be designed for high noise margins or low power, but perhaps not the best 

performance. 

Hence, many buffering algorithms are designed based on buffer selection techniques. Some of them 

will be introduce in section 2.2. 

2.1.2 How to model a buffering problem 

Buffers are typically inserted along the wires and at certain predefined places called legal positions. 

Legal positions are reserved empty blocks that are specified during the physical synthesis stage 

(physical synthesis will be introduced in section 2.1.3). Putting a series of buffers at these legal 

positions forms a buffer tree. An example of buffer tree is shown in figure 2-3. In this figure legal 

positions are shown by dashed triangles placed along a given routing topology between a source gate 

and 10 sinks (fanouts). To construct the best buffer tree, one has to decide which empty blocks must 

be filled out by what type of buffer. This also means that some legal positions can be left empty in 

order to make the best buffer tree. The number of legal positions in a given routing topology can vary 

with the physical design restrictions. This problem has been addressed by a number of researches that 

will be discussed in section 2.2. 

6 



s, 
A \ 7 Sink 

1 
Source '-,-1 '-,-1 wa< 

S,r, 

L is. 

Legal S LS^ 
Buffering r L ;

 u" 
Position V 

iS3 

Figure 2-3 Modeling the buffer insertion problem 

Different levels of circuit design process shall be discussed now in order to understand when and how 

buffer insertion is used in circuit delay optimization procedure. 

2.1.3 Circuit Synthesis Stages 

In the mid 80's, several academic and commercial systems (Such as BooleDozer by IBM and 

Encounter RTL Compiler by Cadence) were put together to address the problem of designing ever 

more complex digital circuits. In the early 90's, when those systems matured and were widely used, 

their focus broadened from initial optimization of area and delay to encompass power dissipation, 

testability and physical effects such as wire capacitance, wire inductance, and the effect of placement 

and routing on delay. Several automatic systems have been developed to help designing faster circuits 

and make optimization methods more efficient. These automatic systems are all based on 3 main 

levels, as illustrated in figure 2-4. In High Level Synthesis, the circuit functionality and the input-

output behavior is designed' using a high-level hardware description language (HDL). This 

functionality is then transformed to a netlist in Logic Synthesis followed by technology mapping. In 

Physical Synthesis, the netlist is transformed into networks of transistors and interconnects and then it 

is fabricated. While devices shrink in size, meeting the area, time and power consumption objectives 

becomes more and more critical. As a result, one has to iterate between these three synthesis levels 

until the cost and speed targets are met. 

7 



Figure 2-4 Circuit synthesis stages 

2.1.4 Different levels of buffering 

As legal positions for buffer insertion are specified in physical synthesis, buffering was originally 

considered as a post-layout optimization method. However, due to the importance of timing 

requirements, in modern circuit synthesis tools buffering is done during logic synthesis and then is re-

optimized together with physical synthesis. In addition, there are some considerations during high-

level synthesis to make buffering a more effective optimization technique in logic and physical 

synthesis. The situation of buffering in the circuit design sequences is illustrated in figure 2-5. During 

logic synmesis and when timing properties of the circuit are found, buffer insertion is applied to 

improve the circuit speed (black box in figure 2-5). Then during placement and routing steps the 

buffering solution provided by logic synthesis is re-optimized (grey boxes in figure 2-5). This is done 

at the local placement and detailed routing steps. A number of iterations between high-level, logic and 

physical take place until the best solution is found. 

8 



if 

~+ 

Syntactic Analysis 

Scheduling 

Resource Allocation , — p 

Restructuring 

Retiming 

0 

0 
'•V 

—jw 

2-level Synthesis 

Multi-level Synthesis 

Placement 

Routing 

Core Extraction 

Global: Floorplan 

H Global: VDD, VSS, BUS 

Figure 2-5 Buffering in the circuit synthesis steps. 

Grey boxes indicate buffering considerations during physical synthesis [MAILHOT, 2005] 

During the next two sub-sections some optimization problems in logic and physical synthesis will be 

examined where buffering techniques play a major role in resolving them. 

2.1.5 Buffering in logic synthesis 

Using an RTL (Register Transfer Language) description as an entry, logic synthesis generates a 

structural view of a logic-level model and converts this data structure into a network of generic logic 

cells, called netlist. The synthesis process consists of a sequence of optimization steps, the order and 

nature of which depend on the chosen cost function-area, speed, power, testability, or some 

combination. Typically, logic optimization systems divide the task into the following steps [SMITH, 

1998]: 

9 



1) A technology independent phase, where the input RTL is parsed (also called analysis) 

and translated (also called elaboration) to a data structure. This data structure is 

converted into a network of generic logic cells. 

2) Next is the logic optimization phase where the logic is optimized using a number of 

Boolean or.algebraic manipulation techniques. Many optimization algorithms can be 

employed here based on the logic involved (combinational or sequential). This step 

attempts to improve this technology-independent network under the control of the 

designer. The output of this stage is an optimized, but technology-independent logic 

network. 

3) Further is technology-mapping (also called logic-mapping) phase, where the 

synthesizer maps the optimized logic to a specified technology-dependent target cell 

library. This phase takes into account the properties of the intended implementation 

architectures. The technology-independent description resulting from the earlier 

phases is thus translated into a gate netlist. 

A schematic logic synthesis process is shown in figure 2-6. 

Figure 2-6 Logic synthesis stages 

We now explain a very common but crucial problem that must always be handled in logic synthesis, 

and it will be discussed how and at which level buffer insertion can help the situation. Some basic 

concepts [CARRAGHER and CHENG, 1995] will be defined that are important in the rest of this thesis: 

Definition 1. Arrival Time: the actual arrival time ag of gate g is the latest time for which 

a valid signal will be produced by g for its fanouts. 

Definition 2. Required Time: the required time r„ of gate g is the latest time for which a 

valid signal is needed on g's fanouts. 

Definition 3. Slack: the slack of gate g, Sg, is the difference between its required time and 

its arrival time, or Sg = rg - ag. The slack of a gate represents how well the timing 

10 



requirements are being met at that gate, if its slack is positive, and how poorly those 

requirements are not being met at that gate, if the slack is negative. 

Definition 4. Critical Path: path of smallest slack (usually negative) from primary inputs 

to primary outputs. 

During certain logic synthesis steps, some gates with very large fanout are produced, as a result of 

sharing logic functions. A gate which has to drive many others can significantly slow down the whole 

circuit, if it is located on the critical path. Fanout optimization in logic synthesis addresses the problem 

of distributing an electrical signal to a set of sinks with known loads and required times so as to 

maximize the required time at the signal driver (root of the net). Interconnect delay is not incorporated 

in this operation because the locations of sinks are not known at this stage. There are two main 

methods to break large fanouts into smaller portions: splitting and buffer insertion. 

One solution to the fanout problem is to split the fanouts of a gate into several parts, each of which 

driven by a copy of the original gate. To this end, gate duplication is applied to maintain the main 

logic function while helping a fair load distribution. An example of splitting fanouts by duplicating a 

logic gate is shown in figure 2-7. 

Figure 2-7 Splitting the fanouts of a gate into several parts. 

Each part is driven with a copy of the original gate. 

Although gate splitting speeds up the gate being split by reducing the output load, it increases the load 

of the gate driving the split gate. This operation is therefore beneficial at times, but not always. 

Another technique used for fanout optimization is buffer tree construction. Buffers are logic gates 

exclusively designed for driving signals applied to load capacitances and optimizing the signal's 

arrival time. In effect, a buffer can hide a fanout with large load from the other fanouts with smaller 

loads, thus reducing the delay for the driving gate. After having mapped the network during the 

technology mapping step of logic synthesis, delay estimation techniques are used to determine whether 

11 



the delay requirements are met, and whether maximum loads of logic gates are violated. Then a 

primary buffering is done in order to get realistic delay evaluation. After obtaining more realistic 

delays from physical synthesis, the buffer trees is re-optimized, iterating between logic and physical 

synthesis. Critical paths are also detected during logic synthesis, so buffering at this moment 

decouples large loads off of these critical paths. In figure 2-8, buffer insertion that takes place after 

technology independent optimization is highlighted in the process of circuit optimization during logic 

synthesis. 

/^VU \^/T 
\ - ."* .V -<L > 

i ^ ' .V.-r.: M 

. . . 
. 

J 

Figure 2-8 Buffering during logic synthesis 

Most often buffer insertion is more effective than gate duplication since buffers are usually better 

designed for driving signals. Also, gate duplication can increase routing congestion and make 

placement more difficult. 

The two main fanout optimization techniques involving buffering synthesis are critical path isolation 

and balanced load decomposition. 

1) Critical Path Isolation: During logic synthesis, when one or several sinks (fanouts) 

are timing-critical, the critical path isolation technique generates a fanout tree so that 

the root gate drives the critical sinks while the non-critical sinks are separately driven 

by a buffer tree. In figure 2-9 an example of an optimized circuit with 3 buffers shows 

how the fanouts of a logic gate are divided into critical and non-critical parts such that 

non-critical fanouts can be driven with buffers. 

12 



....WHHIK. 

—•! Less Critical 

"El 
More Critical: Timing Is improved 

Due to Less Loading 

Figure 2-9 Dividing less critical fanouts with buffers 

2) Balanced Load Decomposition: If sinks required times are within a small range, 

balanced load decomposition is applied in order to decrease the load at the source 

gate, using buffer insertion. This is shown in figure 2-10. 

Figure 2-10 Balanced Load Decomposition. 

2.1.6 Buffering in physical synthesis 

Due to the importance of ever challenging problems of interconnect delay (wire delay) and its impact 

on physical design, first the interconnect delay problem and its potential solutions are discussed, and 

then the way that buffering can contribute to solving this problem is examined. 

13 



As feature size becomes smaller and chip area becomes larger in integrated circuits, the importance of 

interconnect delay increases rapidly with respect to gate delay. As a result, interconnect delay at the 

global level has become a critical factor in determining the system performance in deep submicron 

designs. Starting with the 0.25 um generation, circuit delay has been dominated by interconnect delay, 

as it is explicitly shown in figure 2-11. 

-*- Gate Delay 

-*- Sum of Delays, At SS(02 

• • Sura of Delays, CM S Lows 

-*- Interconnect Delay, Al&SiOj 

I - interconnect Delay, Cu $ Low < 

M XQftii <m 
Cu 1.7 tid-cm 

Lews a~2.0 
& Cut ,8/i Thkk 
& Cu Line 43 ulong 

m m 350 m m m w 
Generation jrtm) 

Figure 2-11 The dominance of interconnect delay. 

Calculated gate and interconnect delay versus technology generation illustrating the 

dominance of interconnect delay as feature sizes approach 100 nm. [BOHR, 1995] 

Vast efforts have been taken to control interconnect delay. There exist two main techniques: 

Processing technology; New materials, such as copper and low dielectric constant (K) materials, have 

been used to improve interconnect performance. However, at the global interconnect level the benefit 

of material changes alone is insufficient to meet overall performance requirements. Even with the help 

of copper and low (K) materials, it is predicted that interconnect delay is still likely to dominate the 

chip performance beyond the lOOnm technology. Therefore, the significance of interconnect delay is 

expected to rapidly increase in the near future. 

14 



Design Technology: Using automated design tools and efficient algorithms, a permanent goal is to 

reduce circuit delay during the synthesis steps. Miscellaneous interconnect performance optimization 

techniques are done in synthesis procedures, like topology construction, buffer insertion, driver sizing, 

wire sizing and wire spacing. It has already been explained how and at which level buffering is done in 

logic synthesis. The methods that take buffering concerns into account during physical design are 

briefly reviewed, starting with an introduction to physical synthesis. 

Having generated netlists during logic synthesis, physical synthesis performs the operations needed to 

produce the final circuit. The necessary steps to electrically implement the initial circuit design are as 

follows: 

1) Partitioning: if too large to fit into one ASIC (Application Specific Integrated 

Circuit), functional blocks are split, or partitioned, into smaller blocks considering 

predefined design objectives. The product of this phase is then a netlist describing 

circuit blocks. 

2) Floorplanning: having a hierarchical netlist that describes the interconnection of the 

blocks, floorplanning tools map this netlist into a physical description. The task of 

floorplanning ranges from arranging logic cells within the blocks to deciding about 

I/O pads and type of clock distribution. 

3) Placement: At this level, logic cells are placed within flexible blocks. Since, after 

floorplanning and placement both intrablock and interblock capacitances are 

predictable, it is possible to return to the logic synthesis domain to re-optimize the 

design with more accurate estimates of the capacitive loads that each logic gate must 

drive. 

4) Routing: The routing task consists of making connections between the blocks and 

within the designated channels defined by earlier phases. 

5) Compaction: To minimize the overall circuit area, a set of optimization actions are 

performed to make the routed blocks as compact as possible. 

15 



6) Extraction and Verification: During the extraction step, the interconnection 

resistance and capacitance are determined and together with the entire design are sent 

for timing verification. At this step, the cost and design objectives along with the 

logical functionality are tested to ensure all design targets are met. 

A summary of the physical synthesis steps is provided in figure 2-12. 

KirMinnin.! 

I wpU«m.iq 
• r'-i' Placpnienl 

RcuLng 

Compaction 

t-*!i"ri'.:tcn and 
Venticotioi 

Figure 2-12 Physical synthesis procedure 
[SMITH, 1998] 

As mentioned before, buffering considerations are taken into account in physical synthesis. This is 

done at 3 different levels of physical synthesis [CONG and YUAN, 2000]: 

16 



1) Pre-routing (Placement and Floorplanning) stage: To obtain better routability, a 

number of methods consider some particular places for buffer insertion during the 

floorplanning step. This is helpful because during or after the routing step, most of the 

area is occupied by logic blocks and wires. Therefore ignoring buffer insertion during 

pre-routing steps can seriously restrict the space available for buffering. 

2) Routing stage: In conventional design flows, fanout optimization and routing 

generation are often performed in a sequential manner, which means buffer insertion 

is used as a post-layout optimization technique after the routing stage. Consequently, 

a solution obtained during one of these optimizations becomes a constraint for the 

other one. Solving the unified problem, i.e. generating a buffered routing tree for a set 

of sinks and a driver, helps capturing the intrinsic interactions between the combined 

design steps and produces higher-quality implementations by systematically 

searching a much larger solution space. 

3) Post-routing stage: Buffer insertion is typically a post-layout optimization technique, 

meaning that it is applied to improve the layout and delay after the routing stage. 

Having more realistic wire and load capacitance estimates at this level, the previously 

generated buffer tree is likely re-optimized to yield better circuit timing. 

As devices shrink in size, the focus is being narrowed more and more on buffering in physical 

synthesis. In the next section, the major work done for buffer tree construction in both logic and 

physical synthesis will be briefly reviewed. 

2.2 Previous Work 

There are two main groups of buffer insertion techniques: Van Ginneken's method [VAN GINNEKEN, 1990] 

and its variations, and other methods which are not extensions of Van Ginneken's method. As many of 

the practical buffer insertion techniques in use today are based on the important work of Van 

Ginneken, this algorithm is studied first. Then other major efforts which basically extend Van 

Ginneken's method are examined. Buffer insertion methods that are not extensions of Van Ginneken's 

algorithm are discussed last. Different issues such as multi-type buffering, simultaneous routing and 

buffering, buffer sizing, continuous buffer insertion and buffered clock trees are addressed in this 

section which provides a good insight about the major challenges in this field. 

17 



2.2.1 Early efforts on optimal buffer insertion: Van Ginneken's algorithm 

Van Ginneken proposed a dynamic programming algorithm [BELLMAN, 1957] for inserting buffers into a 

given topology. His algorithm returns the optimal solution in terms of Elmore delay [ELMORE, 1948], 

taking RC effects into account. For given required times at the sinks of the wiring tree, the algorithm 

chooses buffers such that the required time at the source is as late as possible. The topology of the 

wiring tree is assumed given, as well as the legal positions for the buffer insertion. The algorithm uses 

a depth first search on the wiring tree to construct a set of connected capacity-required time pairs (C, 

Q) that correspond to different choices for possible assignment of buffers. These pairs are inserted 

directly after branching points and at the legal positions. The structure of Van Ginneken's algorithm is 

shown in figure 2-13. 

y^\. Legal 
yf Nw Buffering 

!'- '3 • / >». <r rvi S- Position 

Figure 2-13 Van Ginneken's algorithm. 

As the algortihm is based on dynamic programming, it consists of two main phases: bottom-up 

prediction and top-down decision making. 

During the first phase the algorithm computes all options for each node. A set of (C, Q) pairs are 

constructed and stored. Then, for the options at the root of the tree delay, options are calculated and 

the option with the best source delay is chosen. The final solution is constructed during the second 

phase where the computations that led to the best option at the source are traced back. Buffers are 

placed during this phase. 

According to Van Ginneken, in addition to timing optimization, the number of buffers can also be 

optimized. This is done by using triples of numbers rather than pairs for the options. Each option, in 

addition to the required time and the load, also has a solution cost. At the time of decision making, an 

option can only be discarded if it is worse in all three respects. 

18 



2.2.2 Extensions of Van Ginneken's algorithm 

Despite its optimality under certain conditions, Van Ginneken's algorithm has some drawbacks as 

well. The time and space complexity of Van Ginneken's method is O (n2) [ALPERT et ai, 2000] [ZHOU et ai, 

2000] where n is the number of buffer positions. Therefore, for large fanouts this method becomes 

inefficient. Besides, Van Ginneken' algorithm only works with a single-type of non-inverting buffers 

where only one legal buffering position is considered between two nodes. A number of techniques 

have consequently been proposed to efficiently enhance the complexity of the algorithm [SHI and zi, 2005] 

or to allow the algorithm to work with a buffer library consisting of inverting and non-inverting 

buffers with different physical characteristics [HRKIC and LILLIS, 2002] [Sffl and zi, 2005] [ALPERT et ai, 2000]. 

One can improve the time and memory complexity of Van Ginneken's by performing a set of 

modifications on the original algorithm. These modifications are based on finding and removing 

redundant solutions and are performed through 3 steps [SHI and zi, 2005]: 

1) Predictive Pruning: Examining the options produced during the first phase of Van 

Ginneken's algorithm, one notices that some options are potentially dominated by 

some other options. In fact, whenever option A provides larger time slack and smaller 

input capacitance than option B, option A dominates option B, i.e. option B becomes 

a redundant solution. Speed-up is achieved by finding and pruning future redundant 

solutions. 

2) Making Option Tree: Organizing the options information in an efficient data structure 

like a balanced binary tree helps achieving faster decision making process during the 

second phase of Van Ginneken's problem. Utilizing such a system also results in 

smaller memory consumption. 

3) Fast Merging: Having one balanced binary tree for each option and its sub-tree 

information, the final solution is quickly constructed by merging those binary trees 

during the bottom-up phase. 

Performing these techniques Van Ginneken's approach time complexity reduces to 0 (n log2 n) while 

only O (n log n) memory is needed to construct the buffer tree. 

To remove the drawback of single type buffering, some methods have been introduced to make it 

possible to do multiple buffer insertions. A primary solution quality improvement is achieved by 

taking b buffer types into account in the original Van Ginneken's algorithm. However, this basic 

19 



extension leads to 0(b2n2) runtime [HRKIC and LILLIS, 2002]. Better runtime is achievable if the 3 

mentioned modifications consider a buffer library as well. This results in O (b2n log2(n)) runtime [SHI 

and zi, 2005]. Modern design libraries may contain hundreds of different buffers, which may be either 

inverting Or non-inverting. If a user supplies every buffer available for the given technology as input to 

the buffer insertion tool, it could possibly take several days or even weeks to run to completion on a 

large design. Consequently, an appropriate set of buffers must be carefully selected to reduce the 

runtime [ALPERT et ai, 2000]. This is done in two steps. First, according to the physical characteristics of 

buffers a pruning process is applied to find the superior buffers and discard the rest. These superior 

buffers are chosen based on a performance criteria defined by the user, such as intrinsic delay, high 

noise margins, etc. This subset of superior buffers may be larger than the allowable buffer library size, 

again defined by the user. Therefore, during the second step, similar buffers are clustered and smaller 

buffer libraries are formed. A new size-reduced buffer library is created by choosing a number of 

smaller libraries. The metric used for proximity between buffers is their timing properties expressed as 

a linear delay function. 

A different solution to multiple-buffer insertion is buffer sizing. Instead of a discrete buffer library, 

some methods allow for continuous buffer sizing [VOGEL and WONG, 2006] [CHEN et ai, 2002] [CHU and WONG, 

1997]. As the input capacitance and the output resistance of the buffer can be expressed as the linear 

functions of the buffer size, different timing properties such as faster rise time or faster intrinsic delay 

are achieved by varying the transistor widths of the buffer. This removes the need, to have a buffer 

library and also helps meeting the timing requirements of the circuit, but at the cost of more 

computational efforts. 

Van Ginneken's algorithm assumed only one buffer per wire in the tree. This assumption can severely 

hurt solution quality if the wire delay is taken into account. Instead, one can divide each wire into 

smaller segments, and hence introducing new legal buffering positions to insert buffers. Although 

segmenting each wire into small wires can help finding better buffering solutions, establishing 

the right number of wire segments is crucial. A small number of wire segments may result in 

sub-optimal solution, whereas a large number of wire segments may significantly increase 

CPU time. The ideal number of wire segments has been studied [ALPERT and DEVGAN, 1997] and the 

appropriate number of wire segments has been computed. This is done based on using only one buffer 

type. Handling a buffer library is achieved by obtaining the ideal wire segmenting factor for each 

buffer type, and choosing the maximum number of wire segments achieved for different buffers to 

guarantee the solution optimality [ALPERT et ai, 2000]. 

20 



The extensions of Van Ginneken's algorithm mentioned above are done mainly during logic synthesis. 

However, some other extensions take buffer insertion into account during physical synthesis. These 

extensions are categorized in 2 groups: 

1) Simultaneous routing and buffer tree construction (buffered routing) 

In modern circuit fabrications chips becomes more congested, the number of metal 

layers used increases and interconnect delay dominates gate delay in establishing the 

overall circuit performance. Consequently, the important tradeoff between routing 

resource cost and signal delay is unavoidable. Some researchers consider 

simultaneous routing tree construction and buffer insertion to tackle this problem 

[TANG and WONG, 2004] [OKAMOTO and CONG, 1996a] [LILLIS et al, 1996a] [SALEK et al, 1999] [CONG and 

YOUAN, 2000] [HRKIC and LILLIS, 2002], which is an NP-hard problem [SHI et al, 2004]. 

Early efforts on buffered routing started with combining routing techniques with Van 

Ginneken's algorithm in 1996. While a method [OKAMOTO and CONG, 1996b] was 

proposed to construct the fastest buffer tree based on the A-Tree routing topology 

[CONG et al, 1993] , some Other approaches [LILLIS et al, 1996a] [OKAMOTO and CONG, 1996a] Were 

proposed to use P-Tree routing topology [LILLIS et al, 1996b] during buffer insertion. In 

1999, a more general buffered routing algorithm based on the P-Tree method was 

proposed [SALEK et al, 1999]. This method is called MERLIN. Introducing Ca-Tree as an 

extended version of P-Tree, MERLIN solves the buffered routing problem in 

polynomial time where multiple-buffer insertion is also allowed. A concept that 

MERLIN introduced for the first time was the 3-dimensional curves to take buffer 

location and area into account. These 3-dimensional curves consist of required time 

and load capacitance versus total buffer area. The third dimension (total buffer area) 

allows the user to solve the problem for either one of the following variants: 

I) Minimizing the required time subject to an area constraint 

II) Minimizing the area subject to a required time constraint 

2) Handling buffer insertion during floorplanning (pre-routing stage) 

As the amount of communication among modules rapidly increases, it becomes more 

and more difficult to insert buffers to remedy interconnect during or after routing, 

21 



since most silicon and routing resources are already occupied. To that effect, some 

solutions have been proposed to consider buffering before routing and during the 

floorplanning stage by reserving particular areas for buffers [JIANG and CHANG, 2004] 

[KANG et ai, 1997a]. These reserved areas are known as buffer blocks. The Buffer Blocks 

are used to guarantee an effective interconnect optimization during the routing stage. 

The designated regions for buffer insertion may significantly change the floorplan and 

placement, thus causing problems in timing closure and design convergence. It is 

possible to do buffer block planning during the floorplanning stage [JIANG and CHANG, 

2004], or construct a bounded delay tree, and then use Van Ginneken's algorithm to 

optimize buffers [KANG et ai, 1997a]. 

A summary of the time complexity of Van Ginneken's approach and some of its variations is shown in 

table 2-1 (at the end of the chapter). In this table n represents the number of sinks and b represents the 

number of buffers available in the buffer library. 

2.2.3 Other Work 

Due to the importance and wide applications of buffered routing, numerous methods have been 

proposed that are not extensions of Van Ginneken's algorithm. Many of these methods are graph-

based and are known as maze routing approaches [LAI and WONG, 2000] [ZHOU et ai, 2000] [HUANG et ai, 2003]. 

The goal of maze routing is to find a route between two terminals in a routing area, which is often 

represented as a grid graph. Some wiring obstacles and restrictions on buffer locations and types may 

be present in the routing area. One major advantage of maze routing approaches over the extensions of 

Van Ginneken's algorithm is that they are formulated as shortest path problems. Therefore, efficient 

software routines solving shortest path problems in existing graph application libraries can be used in 

buffered routing. A sample routing grid graph and a buffered minimum delay path is shown in figure 

2-14 [LAI and WONG, 2000]. The dark areas represent wiring obstacles. Buffers can not be placed in gray 

and dark regions, while wires are allowed to pass through gray areas. Solid circles at some of the grid 

line intersections are possible buffer locations or previously mentioned legal positions. 

22 



Figure 2-14 A routing grid graph and a buffered minimum Elmore delay path. 

For a buffer insertion technique to be effective, it must be fully aware of its surrounding blockage 

constraints. During the routing process, there are macro-blocks placed within the area. These blocks 

form useful routing regions because wires are allowed to run over them, whereas buffers are not 

allowed to use them, since in that case the design of those blocks has to be changed. One brute force 

solution is to ignore macro blocks during routing. In this way, first a shortest path is found and then 

buffers are inserted outside the macro blocks. If there is no macro block, it can be proved that this 

sequential two-stage routing and buffer insertion approach gives an optimal solution. However, with 

macro blocks, a shortest path no longer guarantees minimum delay. The fast path algorithm [ZHOUetai, 

2000] is a way of simultaneously doing routing and buffer insertion with blockage avoidance. This 

method extends Dijkstra's shortest path algorithm to do a general labeling, based on the Elmore delay 

model where path length is substituted by Elmore delay in Dijkstra's algorithm. Unlike Dijkstra's 

algorithm, the sub-path of a shortest path in this solution is not necessarily a shortest one. The total 

runtime of the fast path algorithm is 0(nv(e+nv) log(nv)), where n represents the number of possible 

buffer positions, v is the number of vertices and e is the number of edges. A similar work that also 

considers wire sizing has a 0(v2 log(v)) runtime and 0(b2v2) space complexity where v is the vertices 

in the grid graph and b is the number of buffers available in the buffer library [LAI and WONG, 2000]. In 

buffered routing more accurate delay models can also be used (transmission lines, delay look-up 

tables, etc.) [HUANG et ai, 2003J. In this method, only those vertices which have qualifying transition time 

are included in the graph. This technique guarantees that all transition time constraints are satisfied. 

With k transition time bins and v vertices in the grid graph, the time and space complexity of this 

method is O(kV). 

23 



In addition to maze routing algorithms, some studies have been done on different tradeoffs in buffered 

routing. As a result of the intrinsic complexity of buffered routing, one has to carefully deal with 

various design parameters where each design objective becomes a constraint for the other ones. Based 

on a previously proposed buffered routing method [TANG et ai, 2001], [TANG and WONG, 2004] widely 

discusses different approaches to tackle the tradeoff between signal delay and routing cost by 

formulating the problem as a linear function of all design constraints. 

As opposed to the buffering methods reviewed so far, a number of approaches assume no restriction 

for buffer positions and buffer sizes. These methods are known as continuous methods. For buffer 

insertion on a single line allowing continuous buffer positions and continuous buffer sizes, Dhar and 

Franklin [DHAR and FRANKLING, 1991] proposed a closed form solution, and Chu and Wong [CHU and WONG, 

1999] proposed a quadratic programming approach. However, it should be pointed out that as opposed 

to the discrete version of the buffer insertion problem, the continuous methods can not be applied to 

trees. This drawback limits the applications of such approaches. 

The minimization of total wire length is of interest since total wire length contributes to circuit area 

and routing congestion. As a result, some methods have been proposed to optimize total wire length as 

primary objective, with satisfying delay bounds as secondary objective [ZHU, 1995] [RANG et ai, 1997b]. 

These methods are basically known as delay bounded algorithms. Delay bounded minimum Steiner 

tree or DBMST is one way to construct a low cost Steiner tree with bounded delay at critical sinks 

[ZHU, 1995]. The DBMST algorithm consists of two phases: 

(1) Initialization of Steiner tree subject to timing constraints 

(2) Iterative refinement of the topology to reduce the wiring length while satisfying the 

delay bounds associated with critical sinks. 

Since the Elmore delays at sinks are very sensitive to topology and they have to be recomputed every 

time the topology is changed, the DBMST algorithm searches all possible topological updates 

exhaustively at each iteration and as a result is very time consuming. The delay bounded minimum 

buffered tree or DBMB-tree algorithm as an extension of DBMST has smaller time complexity 0(n2) 

where n is the total numbers of the terminals of the net [KANG et ai, 1997b]. This algorithm successfully 

combines the local stochastic hill climbing features from SA (Simulated Annealing) and the global 

crossover operation from GA (Genetic Algorithm) in an optimization method, named genetic 

simulated annealing (GSA). Also, a multi-dimensional acceptance function is defined to accept the 

candidate solutions along the single search path generated by SA-based local moves. This multi-

24 



dimensional function is defined based on the votes of the experts, and the objectives are ordered by 

sensitivity defined for each of them. 

More accurate delay models have been investigated by some researchers. While RC (Resistance-

Capacitance) models are used for high resistance nets, inductance is becoming more important with 

faster on-chip rise times and longer wire lengths. Wide wires are frequently encountered in clock 

distribution networks and in upper metal layers. These wires have low resistance and can exhibit 

significant inductive effects. Furthermore, performance requirements are pushing the introduction of 

new materials for low resistivity interconnects. Inductance is therefore becoming an essential element 

in VLSI design methodologies. The Elmore delay does not consider non-monotonic responses which 

can occur in RLC (Resistance-Inductance-Capacitance) circuits. Therefore, some approaches have 

been proposed to take wire inductance into account. For example, one method introduces a simple 

tractable delay formula for RLC trees that preserves the useful characteristics of the Elmore delay 

model [ISMAIL et ai, 1999]. In this method the rise time of the signals in an RLC tree is characterized as 

well as the overshoots and the settling time. 

Clock tree buffering is also addressed by a number of methods [WANG et ai, 2005] [TELLEZ and 

SARRAFZADEH, 1997] [ALPERT et ai, 200i]. In high performance synchronous VLSI design, system 

performance is limited by the quality of its clock signal, which is measured by the clock skew, clock 

slew and clock phase delay. The clock skew is defined as the maximum difference between the arrival 

times of the signals at all of the clock sinks. The clock slew is the slope of clock signals and the clock 

phase delay is defined as the maximum delay from the clock source to any clock sink [WANG et ai, 2005]. 

Without a careful design, clock skews can cause lower clock frequency (zero clocking) as well as race 

conditions that result in failure regardless of frequency (double clocking). These two important factors 

can be optimized by good routing strategy and effective buffer insertion. The most common clock 

distribution network is a buffered tree. The focus of buffered clock tree systems usually is on skew 

minimization whereas a good buffer tree can also improve slew rate. Since bounding the load 

capacitance is a well known method to improve coupling noise immunity most of the buffered clock-

tree algorithms use bounded load capacitances to guarantee meeting the electrical constraints [TELLEZ 

and SARRAFZADEH, 1997] [ALPERT et ai, 2001]. However, one major drawback of such algorithms is that they 

can only use single non-inverting buffer type. 

25 



2.2.4 Summary 

Major approaches applied in logic and physical synthesis to handle buffering in different contexts with 

different objectives were reviewed. The buffering techniques discussed in this section demonstrate 

efficiency in terms of time and memory. However, none of them guarantees optimality of the solution. 

In fact, the complexity of buffering problems generally makes it impractical to obtain an optimum 

solution in a reasonable time. In chapters 3 and 4, it will be shown that the optimum solution can be 

efficiently found for a particular class of buffering problems, known as balanced buffering. The 

efficiency of the new algorithm proposed in this thesis has been proved through runtime tests. 

Moreover, the elegant problem formulation in this thesis provides a good foundation for future work 

where the method presented can be used in solving more complex buffering problems. 

Method 

N
um

be
r 

o
f 

o
p
tio

n
s 

SO
 

10
0

 1
90

9
 

10
00

0
 

Van Ginneken's algorithm 

/ s nil:-"— j--^oW 

y^ i L.— 

1 J 4 10 » « 

Number of sinks (n) 

Extension of Van Ginneken's algorithm for multiple buffer insertion [HRKIC and LILLIS, 2002] 

[HRKIC and LILLIS, 2002]'s method improvement by [SHI and ZI, 2005] 

Van Ginneken's algorithm speedup by [SHI and ZI, 2005] 

Van Ginneken's algorithm speedup with multiple buffer insertion [SHI and ZI, 2005] 

Simultaneous routing buffer insertion under fixed buffer location [CONG and YUAN, 2000] 

Time 

Complexity 

0(n) 

2 2 
0(b n ) 

0(bn2) 

2 
0(n log n) 

2 2 
0(b nlog n) 

3 
0(n log «) 

Table 2-1 Comparison the time complexity of Van Ginneken's algorithm and its variations 

26 



Chapter 3 

• BALANCED BUFFERING 

In this chapter a specific buffering problem is addressed and a new solution is proposed. The objective 

of the buffering method introduced is to generate the fastest buffer tree for a set of identical 

fanouts,(identical in terms of capacitance and required time). Due to the symmetrical buffer tree 

structure obtained by the proposed method, it is called balanced buffer tree while the process of 

producing a balanced buffer tree is known as balanced buffering. Analyzing this type of buffering 

from a mathematical point of view and extracting elegant formulas expressing the characteristics of 

the best buffer tree, a new buffering algorithm is proposed in this chapter1. The presented algorithm 

ensures solution optimality due to the nature of the applied method which is branch-and-bound. While 

the tests provided in this chapter show a reasonable time and space complexity for the presented 

balanced buffering algorithm, a number of techniques will be introduced in chapter 4 to improve the 

performance of this algorithm. This chapter also encompasses some exclusively tailored data structure 

to the proposed problem-solving method. To strengthen the purpose of using an idea or a technique, 

adequate mathematical proofs are provided in appendices. 

Chapter Outline 

In section 3.1, the balanced buffering problem is discussed and its major characteristics are studied. 

Section 3.2 gives a formal definition of the balanced buffering problem. Section 3.3 examines the 

required conditions of using the branch-and-bound method to design the buffering algorithm and the 

structure of the feasible region (search space) explored by the buffering algorithm is examined. 

Section 3.4 presents the flowchart of the balanced buffering algorithm. In section 3.5, it is explained 

how solutions are handled by the algorithm. Section 3.6 studies the topology of balanced buffer trees 

and the proper ways of making balanced sub-trees to implement the branch-and-bound algorithm. In 

section 3.7 two rules are introduced to help avoiding non-promising solutions. Section 3.8 presents 

efficient techniques utilized to produce a neutral-phase buffer tree with a buffer library containing both 

inverting and non-inverting buffers. Finally, section 3.9 shows the runtime of the proposed buffering 

algorithm. 

1 The basic mathematical and algorithmic techniques discussed in this chapter have been investigated by 
[AMOURA and MAILHOT, w. d.]. 

27 



3.1 Balanced Buffering Applications: Facts and Potentials 

As mentioned before, buffering is used at both logical and physical design levels to improve circuit 

timing and help decoupling large fanouts. In a typical buffering problem, the load specifications are 

not necessarily identical, i.e. the required times in logic synthesis and the realistic load capacitances 

obtained in physical design are regularly very diverse. However, certain types of circuitry do exhibit 

local specifications where loads have similar input capacitance and required time. This is the case 

where a balanced buffer tree is generated. In figure 3.1 two types of buffering problems are compared. 

Each box represents a load and the size of the box represents the load capacitance. In addition, the 

distance between the boxes and the source gate is used to depict their required times. The closer a box 

is to the source gate, the smaller its required time. 

; 

\ 

R®q*j iredTi rtre 

Load 
Capacitance 

—--• 

"**>*" 

Load 

A typicai buffering problem 
with different required times 

arid load capacitances 

• 
D 
D • 

Required Time 

A balanced buffering problem 
with Identical required times 

and load capacitances 

Figure 3-1 Balanced buffering versus a typical buffering problem. 

A good example of balanced buffer trees is in clock tree construction. The purpose of a clock signal in 

a synchronous digital design is to define a reference for data movement. Hence, the stability of clock 

signals is extremely important. One solution to distribute signals with minimal skews and healthy 

signal waveforms is to generate a tree with an H-form structure where the distances from the center to 

all branch points are the same, and hence, the signal delays would be the same. Typically, such a clock 

network should be a balanced buffer tree. Note that due to routing constraints and different fanout 

requirements, this is difficult to implement in practice, but certain methods have some preferences on 

28 



timing objectives rather than routing targets, and therefore, they use H-form clock trees as a pre-

routing operation. H-form structure and a balanced buffer clock tree are shown in figure 3-2. 

M l L I 
i—1> 

I I I | I I 

a) H-form structure for a clock tree 

i—£>—a 

•—{>—a 

i> »-£> m 

f>—a I h>. 

b) Balanced buffer clock tree 

Figure 3-2 Clock tree construction 

Yet, this is not the only application for which this thesis proposes a buffering method. The long term 

goal of this work is for a designer to be able to solve even unbalanced buffering problems for more 

general cases by casting them into the balanced buffering model. However, in this thesis only balanced 

buffering problem is solved, the generalized techniques being left for future work. 

Modeling of the problem is an important step toward solving it. If available, a mathematical model 

which can capture the basic characteristics of the problem is preferred because it can significantly 

simplify both developing and implementing the solution. In order to extract a mathematical model for 

the balance buffering problem it is therefore useful to find the minimum delay achievable for a typical 

buffering using a balanced buffer tree. More precisely, answering the following question leads to an 

elegant mathematical model: 

Given a source and a set of identical loads with similar required time and capacitance, what is the 

best delay achievable by an ideal buffer treel 

The term ideal buffer tree means a buffer tree which exhibits prefect timing properties but is not 

necessarily implementable. While in a typical tree branching factors and the depth of the tree are 

expressed by integer values, in an ideal buffer tree these parameters may be non-integer and hence 

make it impossible to implement such a tree. In this dissertation, the term ideal buffer tree will be used 

as opposed to real buffer tree which is an implementable tree. Also, Ideal delay and real delay will be 

used throughout this dissertation to indicate the delay values for each of the mentioned buffer tree 

29 



types. For more clarity, a statement of the problem follows, to determine the overall constraints and 

objectives with which the problem is going to be solved. 

3.2 Statement of the Problem 

The goal is to maximize the slack of the circuit, or simply minimize its delay. The physical properties 

of the source gate and its fanouts are given, and all fanouts are identical in terms of required times and 

physical characteristics. No routing topology is given and it is possible to freely look for the best 

buffer tree topology meeting the timing needs. It is preferred to use a buffer library consisting of 

inverting and non-inverting buffers to help finding better solutions to the problem. No buffer sizing is 

applied to reduce the circuit delay. The generated buffer tree must have a positive phase, i.e. in the 

presence of inverters no phase shifting is allowed to occur and the buffer tree must have no effect on 

the circuit logic. Thus, the problem is simply stated as: 

Minimize Dft 

Where Dyy denotes the overall delay of a network consisting of a source and its fanouts. 

3.3 Method 

Since the significant work of Van Ginneken [VAN GINNEKEN, 1990] which proposed a dynamic 

programming algorithm for inserting buffers and the work of Touati [TOUATI, 1990], many of the 

practical buffer insertion techniques in use today have been proposed to extend these algorithms or 

improve their time complexities. However, even though general buffering has been proven to be an 

NP-complete problem [BERMAN et ai, 1989] [SHI et ai, 2004], exhaustive search techniques, such as branch-

and-bound algorithm, are more effective than dynamic programming in solving balanced buffering 

problems, due to the nature of such problems which exhibits good branching and bounding properties. 

In fact, searching for the best topology as well as the best buffer arrangement makes balanced 

buffering extremely difficult to solve with a dynamic programming technique. This is due to the fact 

that the efficient structure required to cast a balanced buffering problem into a dynamic programming 

pattern is hard to find as the best buffering configuration varies with topology changes. Therefore, a 

branch-and-bound method is chosen to cover all possible solutions to a balanced buffering problem. 

The branch-and-bound method was first introduced in 1960's in the Operations Research community 

[LAND and DOIG i960]. It is discussed extensively in [MICHALEWICZ and FOGEL 2000] [AHO et ai, 1983] and only 

30 



the implementation issues are discussed in this dissertation. Two basic tools are required for any 

branch-and-bound procedure to be implemented: 

1) A branching technique ; to divide the feasible region2 of possible solutions into 

feasible sub-regions. 

2) A bounding tool to quickly find the lower bound (in minimization problems) or 

upper bound (in maximization problems) within a feasible region. 

It is understood that here the problem is a minimization problem, as a buffer tree with the minimum 

delay is going to be constructed. To find the solution in a minimization problem, the main approach is 

to observe when the lower bound for a sub-region A from the search space is greater than the upper 

bound for any other previously examined sub-region B. In that case, A is safely discarded from the 

search. This is called pruning in the branch-and-bound method. To implement pruning, it is usually 

necessary to find a global variable keeping the minimum upper bound seen among all sub-regions 

examined so far. Using this global variable, any solution that has greater lower bound can be 

discarded. The minimum delay achieved so far can be used as the required global variable in balanced 

buffering. 

In a minimization problem cost is addressed, as opposed to maximization problems where function 

value is addressed. The cost of each buffering solution in the feasible region is the delay of the buffer 

tree. The search procedure in branch-and-bound is usually terminated when every possible solution in 

the feasible region is either pruned or examined. To have the final answer, a record, or snapshot, of the 

best buffer tree is always kept. A snapshot is taken whenever a solution with a smaller delay than the 

best previous solution is encountered. The runtime efficiency of the branch-and-bound algorithm is 

highly dependant on branching and bounding methods. Bad choices can lead to repeated branching 

without pruning or sub-optimal feasible region where optimum solutions have not been generated. An 

efficient branching method and a bound equation are going to be introduced in section 3.3.1 and 3.3.2. 

3.3.1 Recursive structure 

In order to efficiently split the feasible region into feasible sub-regions, it is necessary to define a 

recursive structure for the balanced buffering problem. The following definition yields such a 

structure: 

1 Note that branching technique is used in the branch-and-bound algorithm and it must not be confused with 
branching factor by which a tree is divided into sub-trees. 
2 In branch-and-bound, feasible region is a term referring to a set of admissible values for a given function. 

31 



Given a source gate and a set of sinks, the fastest buffer tree is the combination of fastest balanced 

buffered sub-trees with a certain branching factor, where the root of every sub-tree is a buffer taken 

from a buffer library. 

Figure 3-3 shows how a set of sub-trees are generated by a branching factor of 3 to the original tree. 

Branching factor is always equal to the number of sub-trees. While it can be a floating point value for 

ideal buffer trees, it must be an integer value for a real buffer tree. 

IMKwttM A 

Q 0 
• 1 
D 2 

Qn-1 
Branching Factor 

Figure 3-3 Recursively built sub-problems 

3.3.2 Lower bound equation 

In order to implement the branch-and-bound algorithm, an effective lower bound is necessary. It is 

sufficient for the underlying delay model used for the bound calculation to be the simplistic Elmore 

delay formula [ELMORE, 1948], where no wire delay is taken into account. The Elmore delay model 

basically overestimates the delay of a tree, the effect of which is on the algorithm runtime and not on 

the solution quality. In order to use the Elmore delay model, the following definitions is used: 

Definition. Gate delay: the delay at gate g from input pin i is defined to be the delay from that input 

pin to the input pins of its fanout. 

Definition. Elmore delay: For a gate driving a capacitive load, the Elmore delay is calculated using 

the following equation: 

Delay = a + y (5 

32 



Where a is the intrinsic delay, /? is the output resistance of the driving gate, and y is the input load 

capacitance of the load. Using the Elmore delay formula, figure 3-4 shows an example of calculating 

the gate delay for a given buffer tree with 1 driving and 2 driven buffers. 

c 

Output Resistance 

il load Capacitance C2 

Delay = a+^y 

Figure 3-4 Calculating Elmore delay for a given buffer tree 

Definition. Best buffer: the buffer that forms the ideal buffer tree. 

Having defined the required concepts, it is now possible to introduce the ideal delay. One can calculate 

the ideal delay of a buffering solution before solving it using the information about the driving buffer 

and load capacitance using equation 3-1: 

D 
optimum = M 1 + ln 

^ 
POYT 

V M J J 
3-1 

Where D optimum is the ideal delay of the ideal buffer tree, /?o is the output resistance of the source gate, 

YT is the total load capacitance and ju is defined in equation 3-2: 

M = A7be 3-2 

Where fit, and J\, are respectively the output resistance and the input capacitance of the best buffer in 

the library andQ^ represents its intrinsic delay. See appendix A for more details on how the ideal 

33 



delay is calculated. See also appendix B for a proof that a unique best buffer exists. The best buffer is 

the one with the smallest jU in a given buffer library. This is proved in appendix C. One can 

systematically find this best buffer before starting to solve the problem and use its value when 

calculating the bound. Figure 3-5 shows the special structure of an ideal buffer tree. In that figure an 

ideal buffer tree with continuous (as opposed to discreet) branching factors and a buffer grid providing 

possible buffer arrangements are illustrated. While the ideal buffer tree is shown as a triangle, the real 

buffer tree for the same case has to be constructed only by using the paths provided by the buffer grid. 

Figure 3-5 A non-discrete structure of an ideal buffer tree 

The lower bound (minimum cost) of a buffering solution in the feasible region is calculated as follows 

in equation 3-3: 

LowerBound = D current + OCb + Ideal Delay subtree 3-3 

D cumn, is the delay of the buffer tree up to the root of the sub-tree for which balanced buffering is 

going to be done, CC/, is the intrinsic delay of the buffer at the root of the sub-tree and Ideal Delay Subtree 

is the ideal delay of the sub-tree obtained by equation 3-1. This is shown in figure 3-6. 

34 



Intrinsic 
Defay 

,»V D e i a > 

Ideal 
buffer tree 

Figure 3-6 Lower bound calculation 

The ideal delay is safe to use in lower bound calculations, since equation 3-1 assumes ideal conditions 

that cannot occur in real problems. 

3.3.3 Search space 

There always exists at least one best buffer tree for a given source and a set of loads. In a balanced 

buffer tree, all paths from source to sinks are equivalent. It is therefore possible to build the best tree 

hierarchically by finding and combining the fastest buffered sub-trees, provided that in the process all 

branching factors are explored. If a branching method is well defined, the feasible region ideally 

becomes a tree, and so the search space is called search tree. However, as will be discussed in chapter 

4, the existence of many common sub-problems in solving a balanced buffering problem makes it less 

profitable to use a pure search tree structure. The real structure of the feasible region is in fact a 

directed acyclic graph where each node represents a solution. This is shown in figure 3-7 where 

common sub-problems are depicted darker than the others. Common sub-problems will be addressed 

in chapter 4. 

35 



Figure 3-7 Feasible region as a directed acyclic graph. 

Searching the best buffer tree in the feasible region corresponds to traversing the search space graph. 

While traversal progresses, non-bounded solutions are reached through some search path. A search 

path is in fact a scenario presenting a certain sequence of tree partitioning and buffer insertion applied 

to the original problem. Each node in the feasible region is a local buffering solution consisting of a 

branching factor and a buffer at the root of new sub-trees. In the end, the best scenario is the one that 

generates the fastest buffer tree. An example of a feasible region and the best scenario are given in 

figure 3-8. The search process starts with the root of the feasible region graph where no buffer is 

inserted. At each step, new buffering problems (new nodes) are produced by applying a local buffering 

solution to the previous buffering problem (previous node). Consequently, as the search traversal goes 

deeper in the feasible region graph, more buffers are inserted in the buffer tree and sub-trees become 

smaller. When a local buffering solution is generated, its lower bound is computed and compared to 

the global best delay, ff this lower bound is greater than the best global delay, it will not be profitable 

to solve the new problem. This is the point where a portion of the feasible region is cut out by the 

bound, as shown by dashed lines in figure 3-8. In addition to the lower bound calculation, the real 

delay of the current buffer tree is calculated and compared to the best global delay every time that a 

node is generated. An update of the best global delay is needed when the current buffer tree delay is 

better than the current best global delay. The best scenario is a path from the root of the search graph 

to the node that has the minimum real delay. 

36 



Figure 3-8 Search space graph 

3.4 Algorithm 

In this section the balanced buffering algorithm is presented based on the branch-and-bound method 

and using the materials explained in section 3.3. This algorithm enumerates every possible solution to 

a balanced buffering problem, calculating only those solutions allowed by the bound. Thus, one 

expects to achieve a high quality solution, i.e. the fastest buffered tree together with the best tree 

topology. Given a source output resistance and a set of identical sinks, the algorithm calculates the 

minimum delay of the best ideal buffer tree and uses this value to prune non-promising solutions in the 

search space. The exhaustive nature of the search method guarantees its optimality, and appropriate 

use of the bound significantly reduces the number of potential solutions that really need to be visited. 

The flowchart of the balanced buffering algorithm is given in figure 3-9. Due to the recursive structure 

identified for the branching procedure, it is best to design a recursive algorithm. It hierarchically 

produces sub-problems and either solves them or prunes them. The solutions to a buffering problem 

are stored in a solution list and explored one by one. The stop condition of the recursive algorithm is 

true either if the current problem is pruned by the bound or the end of a solution list is encountered. 

During this procedure, the best solution is detected and saved whenever it yields a smaller delay than 

the best delay found so far. The real delay of the current buffer tree is calculated immediately after the 

beginning of the recursive function. Therefore, it is possible to calculate and use the lower bound to 

avoid solving a non-promising problem before any solution list enumeration. At each search step, the 

current buffer tree can be constructed by orderly combining the solutions kept in a stack. This solution 

stack is then used in saving the best buffer tree by saving a copy of it, and is used at the end of the 

search to generate the final best tree. 

37 



(J*D 

Connect the source gate directly to tnefanouts arrf 
calculate the resulting delay: d 

Calculate the solution cost: 
current delay +'source gate intrinsic delay + d 

Yes 
Save the tree 

Calculate the Bound; 
current source * source gate intrinsic delay + 

ideal delay tor the given source and fanout 

Update Best Delay 

Get solution 

Sttt new source gate and fanout 

Call Balanced Buffering 

Yes 

38 

Figure 3-9 Flowchart of balanced buffering algorithm 



An example of running that function is illustrated in figure 3-10. In this example the original problem 

has 12 fanouts. The best buffer tree obtained for that problem contains 4 local solutions kept ordered 

on the stack. When, for example, solution 1 is applied to the original problem, 3 new sub-trees with 4 

fanouts are formed and buffer Bl is used at the root of sub-trees. Each of those 3 new sub-trees form a 

new buffering problem and is solved by applying solution 2. The rest of the solutions are used in a 

similar manner to build up the buffer tree. 

S o l u t e 2 So!uion3 Session 4 

Solution Stack 

B-

B. 

B;-

B-

2 | 
-1 ] t 

2 | 

3 1 
Buffer BrancMng 
Type Factor 

i 4 

Solution 3 

Solution 2 

Solution 1 12 

Figure 3-10 Saving and reconstructing the best buffer tree 

A set of data structures designed to efficiently run the algorithm is now introduced. The solution list 

enumeration will be shown, together with its use in exploring the search space. 

3.5 Solution List 

The set of solutions for a given source gate and a given fanout is a group of sub-trees that can be 

extracted from the original tree and solved as sub-problems. Each sub-tree has a source buffer at its 

root which is taken from the buffer library, and has a carefully chosen number of fanouts that gives it a 

39 



balanced form. In general, solutions are obtained by systemically producing possible sub-trees and 

inserting a buffer at their root. These buffers are taken from the buffer library. To have an efficient 

traversal ordering for the solution list, the ideal delay of each (buffer, sub-tree) pair is calculated and 

saved together with the source buffer and the branching factor to form a solution. The ideal delay can 

then be used as a measure to solve the promising solutions first. To that effect, the solution list is 

sorted in terms of ideal delays after all solutions are enumerated. This makes it possible to find more 

promising solutions with smaller ideal delays, placing them in higher ranks in the list. As a result, the 

solutions are explored in a top-down fashion, solving first the potentially better sub-problems. A 

generic solution and a solution list are illustrated in figure 3-11. 

I Ranked with 
I respect to ideal 

J , d«iay 
B-Jfer Type Brarnh tv} 

Fartor rif>,il '.'May 

Solution Structure 

Solution List 

Figure 3-11 A generic solution structure. 

3.6 Balanced Sub-trees 

A set of balanced sub-trees is composed of those that have zero or at most one fanout in difference. 

The former case is called strictly balanced sub-trees whereas the latter case is called partially balanced 

sub-trees. In other words, strictly balanced sub-trees are obtained whenever the proper divisors of the 

fanout number is used to divide the tree, whereas partially balanced sub-trees are obtained whenever 

the fanout number is divided by a number which is not its proper divisor. The objective of defining a 

balanced structure is first to preserve the generality of the problem-solving method and second to be 

able to apply the solution to a sub-problem for other sub-problems at the same level. This saves 

significant runtime as only a portion of a buffering problem is being solved at a time, and the solution 

to the remaining sub-trees can be found by mirroring what is achieved for the sub-problem being 

solved. In figure 3-12 3 different ways of making sub-trees are shown. 

40 



I—a 

-N 

IF"«. 

-M 
IT^Hii; 

-H r—D 
—a 
—a 
—a 

Strictly Balanced Partially Balanced 

Figure 3-12 Splitting a tree with a fanout number of 10 in 3 different ways 

Splitting a tree into balanced sub-trees is a very critical task. Bad choices can delay finding the best 

buffer tree in general and in particular make it impractical to use the same solution to all sub-trees at 

the same level. To split a tree, both strictly and partially balanced sub-trees are considered. However, 

in order to minimize the resource ioss caused by mirroring a solution for dissimilar sub-problems, only 

one specific type of partially balanced sub-trees being generated is permitted. The necessary property 

of such group of sub-trees is defined as follows: 

Ifn represents the total number of partially balanced sub-trees, there must exist n-1 instances of the 

sub-tree with the larger fanout number and only 1 instance of the sub-tree with a smaller fanout 

number. 

In figure 3-13 this specific case is shown. If there are n sub-trees, every sub-tree must have m fanouts 

except for the last one which has m-1 fanouts. 

-Hi: 

—a 
I m 

'—-D 

I—• 

" r r * 

n-1 

m-1 

n subtrees 

Figure 3-13 The specific case of partially balanced sub-trees 

41 



The splitting method introduced presents a group of sub-trees where all but one sub-tree have identical 

fanout numbers. This type of tree partitioning minimizes the number of enumerated sub-trees in 

producing partially balanced sub-trees, the effect of which is to reduce resource loss. It also helps 

achieving more realistic solutions by giving smaller critical path delays. The delay value of the critical 

path is directly influenced by the number of sub-trees. It can be shown that using strictly balanced and 

the specific case of partially balanced sub-trees minimizes critical path delay. This is due to the fact 

that the two classes of balanced sub-trees mentioned have maximum regrouping factor, i.e. minimum 

number of sub-trees. As shown in figure 3-14, the larger the number of sub-trees, the larger the 

number of buffers, and as a result, the larger the capacitance seen at the root of the tree. For example, 

one can split a tree with 17 fanouts by either 5 sub-trees with 3 fanouts together with a sub-tree with 2 

fanouts (left buffer tree in figure 3-14), or 3 sub-trees with 3 fanouts and 4 sub-trees with 2 fanouts 

(middle buffer tree in figure 3-14). In the former case there are a total of 6 sub-trees and hence the 

total number of buffers used is 6, whereas in the latter case, there exist a total of 7 sub-trees and hence 

the total number of buffers used is 7. It is then trivial to observe that the capacitance seen at the root of 

the buffer tree is larger in the second case as also shown in figure 3-14. 

Curmnt Delay 

Subproblem to 
*% t » solved 

W 
Capacitance seen 

from subtrees 

1 H & 

""""l^^li 

c 
42 

Figure 3-14 3 ways of making partially balanced sub-trees for 17 fanouts 



As critical path passes through the root of the buffer tree, larger sub-tree capacitances seen at the 

buffer tree root lead to larger critical delay values. Therefore, one may obtain different lower bound 

values for the same sub-problem chosen to be solved as this critical path delay is used in the lower 

bound calculation as current delay. Choosing the right branching factor that yields minimum number 

of sub-trees is therefore a simple way to minimize the critical path delay and help finding more 

realistic lower bound values. 

Given a fanout number N, the following method is then suggested to find the best branching factors 

for the balanced sub-trees: 

Step 1) Find divisors of N and call them div j ^ . Consider all divisors in div ^ as a 

branching factor. 

Step 2) Find divisors of N-l and call them div jsj.j. 

Step 3) Find divisors of N+l and call them div ^+1 . 

Step 4) For each divisor belonging to div ^ - l , called d N-l> if the quotient of N/ d jsj-1 

has a fractional value greater than or equal to 0.5, consider d N_I as a branching factor. 

Step 5) For each divisor belonging to div j<f+i, called d j^+l, if the quotient of N/ d N + J 

has a fractional value greater than or equal to 0.5, consider d N + 1 as a branching factor. 

Let us find the balanced sub-trees of a tree with a fanout number of 15. First, divisors of 15 are listed, 

as well as the divisors of its adjacent numbers, 14 and 16. In order to have a set of strictly balanced 

sub-trees it is sufficient to simply use the proper divisors of 15, which are 1,3,5 and 15. Partially 

balanced sub-trees are also produced using the divisors found during steps 2 through 5, which are 2 

and 8. A table of all strictly and partially balanced sub-trees is set up and shown in figure 3-15. 

14 

' 
! - * 

.: 

" • • " "5 

1 ' iV - ! -'< 

n.7 -;> • 

- £ * .* * 

piopar <SM$tx 

15 
Biyisor Qudtait 

1 

3 

S 
15 

- I > - . ' 

" J A * ' I 

«r,.ty . 

*:•}-- 1 

RatM dMsof 

16 

m iso r Q u o * * 

1 ] ",' ••: 

-<Slw»u 

£ . : • „ 

1-V? • ' ' . 

.'•••I - Li 7C 

1 "...•! " 1 ft 

•• 1 r t . ! '>-,•;«. ! i .p 

Indivisible 

Figure 3-15 Legal divisors of 15. 

43 



A different problem representation is illustrated figure 3-16 for more clarification. In this figure the 

numbers inside the triangle represent the fanout number of the sub-trees, whereas the numbers in the 

left column outside the triangle represent the applied divisors. Solutions are those triangle rows that 

correspond to strictly and partially balanced sub-trees. An arbitrary row (which would not be chosen 

as a solution because it has 3 sub-trees which differ from the others) is shown with the corresponding 

buffer tree which it would entail. 

i l l 
i,,J 

p. 

1 r . 
f j 

! 3 

i 3 
1 "i 

i / 

r 

r 

A 

i 

*4 

'£ 

£ 

S 

4 

j 

{ 

/ 
i 

s 
*1 

* 
? 

? 

*1 

1 

1 

't 

z 

* 
•j 

? '1 
2 

2 

i 

\'J 

§ 

• 

2 

i 

> 
f 

1 

1 

2 

i 

?. 

1 

1 

1 

3 

1 
4k 

t 

1 

1 

1 

2 

• 
• 

-

• 
• 
i 

i 

• 

i 

1 

1 

1 

1 

', ' 

1 
A 

1 

1 

1 

1 

1 
A 

1 

t 

1 

« 

' 
1 

* 
' 
* 

1 

1 

1 

1 

« 
1 

• 
1 

l t 

Divisors Subtree arrangements 

r~0 

•••"'"jE-H £. 

Stststm 

» O 1 

H^™~"*CJ 1 

•~* o 1 

15 

Figure 3-16 All possible sub-trees for a fanout of 15. 

3.7 Buffer Selection 

Certain enumerated solutions can be discarded under certain conditions even before exploring them in 

the feasible region. This filtering can occur at the time of creation of a solution list. The decision to 

keep or discard a solution can be taken for sequences of single buffers. It is often the case that a sub

tree has a fanout number of 1 (no splitting is actually happening) where just another buffer is added to 

the root of the tree. The following theorems state under which conditions solutions are definitely 

dominated by some others. 

Theorem 1. Consider the case of having two different buffers (B2 and B3) placed along the same wire 

in figure 3-17: 

44 



2 Eiift^ itisfl^ I i 

<*3 

Figure 3-17 Single wire buffering illustrating theorem 1 

Regardless of the physical characteristics of B1, if the input capacitance of B3 is smaller than or equal 

to the input capacitance of B2, buffer B2 can simply be removed from the wire in order to have a 

better delay. This choice is independent from any other physical characteristics of the two buffers, 

such as intrinsic delay, output resistance, size, etc. 

Proof. The claim is easily proven by writing the delay equations for each of the cases. In the following 

equations the input capacitance of each buffer is represented by y, while the output resistance and the 

intrinsic delay of such buffers are respectively shown as f5t and OCt . The load input capacitance is also 

represented by y. 

D^pj2+a2+/32y3+a3+p3y 
D2=fiy3+a3+j33y 

If D2 is subtracted from Dl: 

D,-D2= fi(y2-y3)+a2 +Ar3 

If y3 <y2\\ is always true thatDj— D2 > 0 , or Dl>D2. This means sequences of buffers must 

always be done such that their input capacitance is monotonically increasing. 

Theorem 2. Consider the case of having two different buffers (B2 and B3) placed along the same wire 

in figure 3-18: 

45 



h ^ 1 TihJ?2 J,Hl3 I T U -—|jiy tu-^y fe^P^-"""""— Y 
02 • ' O3 

Figure 3-18 Single wire buffering illustrating theorem 2 

Regardless of the physical characteristics of Bl, if the output resistance of B3 is greater than or equal 

to the output resistance of B2, B3 can simply be removed in order to get a better delay value for the 

whole circuit. This choice is independent from any other physical characteristics of the two buffers, 

such as intrinsic delay, input capacitance, size, etc. 

Proof. The same notation is used as in theorem 1 to illustrate the physical characteristics. Then: 

Dl=]3lr2 + a1+/32r3 + a3+&r 
D2=pj2+a2+p2y 

If D2 is subtracted from Dx: 

D1-D2=j32y3+a3+(/33-j32)r 

If j32 </?3 it is always true thatD ; -D2 > 0 , or DX>D2. This means sequences of buffers must 

always be done such that their output resistance is monotonically decreasing. 

Corollary 1. Theorem 1 and theorem 2 indicate that when buffers are inserted sequentially in a single 

line, the buffer input capacitances must appear in an ascending order while the buffer output 

resistances must appear in a descending order. 

Corollary 2. Repeating the same buffer with exactly the same physical characteristics along a single 

wire never results in smaller delay. As a result, such solutions must never be included in the solution 

list. 

46 



3.8 Handling the Inverters 

In order to improve the quality of the buffer tree generated, the buffer library is allowed to contain 

inverting buffers as well as non-inverting ones. Inverters, as discussed before, often present better 

timing and sizing characteristics than non-inverting buffers. However, the existence of the phase-

shifting problem in the presence of inverters entails a more complicated algorithm design. It is now 

explained how inverters are taken into account such that no phase-shifting occurs in the final best 

buffer tree while the overall structure of the balanced buffering method still preserves its simplicity. 

To this end, a series of modifications are introduced in the structure of solution list, search space and 

the body of the main algorithm. 

3.8.1 Changes in making a solution list 

As inverters are now allowed to appear at different stages of a buffer tree, a sub-problem may make 

the entire phase of the tree become negative, by using an inverter at the root of a new sub-tree. On the 

other hand, a solution with a non-inverting buffer can also be the cause of a negative-phase buffer tree 

remaining negative, if an inverter has previously altered the phase somewhere before the current stage. 

This is shown in figure 3-19. Both of these solution types result in an impractical buffer tree with a 

negative phase, and hence, solving them must allow for correcting the phase problem. 

Figure 3-19 Two different sub-problems leading to a negative-phase sub-tree 

These two solution types should not be discarded from the search space. Instead, a larger search space 

must be explored where solution lists are smartly re-organized for the negative-phase sub-problems. 

By setting up a proper sorting order for such solution lists, the traversal converges fast enough to make 

the runtime of the balanced buffering reasonably small. To that effect, for those sub-problems which 

produce or maintain a negative-phase, the solution list is broken into two sub-lists: one that resolves 

47 



the problem, suggesting the solutions which can change the phase back to positive, and the other sub-

list containing solutions that have no effect on the buffer tree phase. The reader would probably guess 

what type of buffers each of these type sub-lists may contain: the former sub-list only includes 

inverters, and the latter sub-list consists of non-inverting buffers. It is important to note that the source 

buffer of a negative-phase sub-tree is not necessarily an inverting one. As said earlier, it could be non-

inverting but still carry a negative-phase produced by preceding stages. 

In solving a negative-phase sub-problem, the priority is on phase correction rather than finding the 

minimum delay, as opposed to a positive-phase sub-problem where the priority is merely on finding 

the minimum delay. As a result, the solutions of a negative-phase sub-problem are arranged such that 

the solutions whose phase can be fixed witfi inverting buffers appear first. To that effect, solutions 

with inverted phase are put together in one sub-list, and all solutions with non-inverting buffer are 

placed in a second sub-list. Calculating the ideal delay for every solution in both sub-lists, they are 

separately sorted in terms of minimum ideal delay. In the end, they are combined in a single list such 

that the sub-list with positive phase is placed on the upper half of the unified list and the omer sub-list 

with non-inverting buffers is placed on the lower half. The combination of the two sub-lists is then 

saved as the ultimate solution list. An example of such hybrid list is shown in figure 3-20. 

Inverting 
Solutions 

Non-inverting 
Solutions 

Hybrid Solution List 

Figure 3-20 A hybrid solution list 

48 



When fetching solutions in the balanced buffering algorithm, those solutions that produce a positive-

phase tree are taken first. Thus, the search procedure can find practical (positive-phase) buffer trees 

sooner, improving runtime. In addition, to allow fast convergence, a maximum of two identical 

inverters are allowed to be placed next to each other on a single wire, breaking the buffer selection rule 

introduced in corollary 2. This ensures an immediate solution available to a negative-phase sub-

problem. 

3.8.2 Changes in the search space structure 

The existence of two classes of sub-problems, one with negative-phase and the other one with 

positive-phase, changes the search space structure. There are now two distinct regions in the search 

space, and every solution falls in either one of them. This is shown in figure 3-21 where the two 

connected circles correspond to the positive and negative phase search spaces, as also indicated by the 

plus and minus signs. In each search space there are a number of solutions represented by small circles 

with a buffer inside. A buffering solution and the new sub-problem made by this solution are 

connected together by an arrow. 

Search space with Search space with 
priority on phase priority on delay 

correction optimization 

Figure 3-21 Two connected search spaces with different priorities 

The graph traversal has now to be modified. The traversal must always begin and end in positive-

phase search space. This is because the phase of the original problem is assumed to be positive and the 

constructed buffer tree must preserve the circuit logic. After beginning, the search traversal can either 

stay in the same search space using non-inverting buffers, or pass through the negative search space at 

some points using inverting buffers. Altering the search space then occurs only when a solution with 

49 



an inverting buffer is being solved. In contrast, as long as non-inverting buffers are used, traversal 

stays in the same search space, as no phase-change is encountered. 

However, in the balanced buffering algorithm introduced before no extra consideration is required to 

handle the traversal of the double search space, except for saving the best buffer tree. Given that no 

buffer tree with a negative phase is of interest, the scenarios ending in the negative-phase search space 

are never saved. 

3.8.3 Modified algorithm 

In order to take phase shifting into account, an argument is added to the algoritfim header indicating 

the current phase of the tree. This new argument must be calculated and assigned before every 

function call, regarding the phase of the current buffer tree and the phase of buffer type that has been 

selected from the solution list. In addition, the condition of having a positive-phase buffer tree 

candidate is verified before saving the best solution. In this manner, inverters are successfully taken 

into account using efficient solution lists and imposing the least modifications on the main algorithm. 

3.9 Experimental Results 

The proposed balanced buffering algorithm is implemented in C++. The program runs on a Pentium 

IV computer (CPU 3.4 GHz) and for different fanouts, ranging from 10 to 1000. Two buffer libraries 

are applied, one with 6 and the other with 7 buffers. These are libraries A and B in table 3-1 

respectively. Both libraries contain inverting and non-inverting buffers. The intrinsic delay, output 

resistance and input capacitance for the buffers range from 3-21 ps, 0.03-0.15 O, 30-150 fF. The input 

capacitance of the load is set to 500 fF and die output resistance of the driving source is set to 0.5Q. The 

runtime of solving those problems given the fanout numbers and buffer libraries is shown in table 3-2. 

50 



Buffer 
Library 

Buffer 
ID 

Type 
Intrinsic 

Delay 

E 

Output 
Resistance 

n 

Input 
Capacitance 

fF 
Invertine OJS 

Non-invcninij 20 0.04 30 
Nmi-invcrtini; 0.06 80 

Invertine 0.04 SO 
Invertine 0.12 10 

Interline 10 0.1 100 
{ •ppiw 4w\Sj|0£ 

.ffSarttr**" fcWWlsS! 
H^^gSHMUS I 

\-.>&«&mm 

0.03 60 
0.05 150 

WB&M 
Wmmm mmim 

MM. •H9HHI 
Table 3-1 Buffer libraries 

Fanout 

10 
20 
30 
40 
50_ 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
300 
500 
1000 

Runtime (seconds) 

Buffer 
Library A 

8 
45 
107 
153 
188 
444 
477 
628 
1202 
488 
1136 
2514 
960 
2118 
1261 
1764 
1769 
4863 
2926 
1936 
7665 
14466 
59077 

Buffer 
Library B 

3 
16 
54 
86 
135 
366 
224 
421 
675 
253 
641 
1424 
909 
1264 
732 
1077 
1121 
3064 
1744 
1453 
5726 
23124 
33491 

Table 3-2 Runtime for different fanouts us ing different buffer libraries 

51 



3.9.1 Runtime Analysis 

From tables 3-1 and 3-2 it is observed that program runtime generally increases with fanout number. 

However, one has to note that this increase in runtime is not monotonic. This is due to the fact that 

program runtime is directly dependent on the search space size rather than on the fanout number. If, 

for example, a tree with a fanout number of 90 is being buffered, it does not necessarily result in a 

smaller search space size than a tree with a fanout number of 100, as the set of divisors for each one 

have different sizes. It is therefore preferred to take the fanout divisors (branching factors), into 

account rather than the fanout number itself in studying the algorithm runtime. 

Another reason for variation in the algorithm runtime is the choice of the search space traversal. With 

different search strategies the final solution may be found sooner or later. The effect of this is on the 

size and the time that the redundant portion of the search space is cut out by the lower bound. In the 

balanced buffering algorithm proposed in this thesis, a depth first traversal has been selected to 

explore the search space. However, finding more efficient search strategies is a suitable subject for 

future work. 

In a branch-and-bound algorithm where the size of the feasible region is dependent upon the fanout 

number and its divisors, calculating the time complexity is not a straightforward matter. As a result, a 

regression analysis1 is done in order to achieve estimation for the algorithm runtime. A linear 

regression is then performed with an objective of finding the least squares fitting value2 for a set of 

fanouts ranging from 10 to 200 with an interval of 10, using buffer library A. The result of this 

operation is an estimated second-degree function of y = 11.028 X 1-907 w j t n a least-square value of 

0.94 which indicates a reliable estimation. The resulting trendline is shown in figure 3-22. One can 

therefore suggest an approximated time complexity 0(n2) for the presented buffering algorithm. 

1 Regression Analysis estimates the relationship between variables so that a given variable can be predicted from one or 
more other variables [GAUSS 1809] 
2 The Least-squared Value is actually the square of the correlation coefficient. The correlation coefficient gives us a 
measure of the reliability of the linear relationship between two variables. Values close to 1 indicate excellent linear 
reliability. 

52 



Runtime 
(second) 

5000 

4000 

2000 

1000 -

• 
• • 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Fanout 

Figure 3-22 Curve-fitting on an arbitrary set of buffering problem runtime 

3.10 Summary 

A new buffering method was introduced to solve the balanced buffering problem where loads are 

identical in terms of required time and capacitance. A number of important buffering issues such as 

finding the best buffer tree topology, taking buffer libraries into account and handling the phase-

shifting problem in the presence of inverting buffers have been addressed. Balanced buffering 

performance has not been compared to other buffering methods in use today. The reason for this is the 

nature of the branch-and-bound algorithm: the buffering method presented in this chapter guarantees 

solution optimality, while other approaches do not. Furthermore, the most advanced buffering 

techniques are part of proprietary systems where it is impossible to isolate a specific technique (here, 

buffering) from the other optimization operations that take place in those systems. As a result, a 

number of techniques will be put together in chapter 4 to ensure an efficient buffer insertion algorithm 

by improving its runtime and memory consumption while the solution optimality is also preserved. 

Although there are some applications for balanced buffering, the ultimate goal is to apply the basic 

ideas of balanced buffering to solve more general buffering problems in future. The underlying 

mathematical and algorithmic structure has been developed in this chapter for further extensions of the 

subject. A brief summary of the chapter contents is provided in table 3-3. 

Problem: Balanced Buffering 

Required 
Time 

Identical 
for all 
loads 

Load 
Capacitance 

Identical for 
all loads 

Topology 

Not 
given 

Solution: Searching for the Fastest Buffer Tree 

Delay 
Model 

Elmore's 

Method 

branch-and-
bound 

Buffer Library 

Considered 
in the 

algorithm 

Inverters 

Considered 
in the 

algorithm 

Table 3-3 Chapter summary 

53 



Chapter 4 

• MIXED METHOD 

The necessary data structures together with the underlying mathematical concepts to implement the 

balanced buffering algorithm have been studied. One major drawback of the proposed method is its 

relatively large runtime, as seen in section 3.9. To resolve this problem, a number of speedup methods 

will be suggested, the main one being a combination of the branch-and-bound and dynamic 

programming methods1. For more convenience, and because of its hybrid nature, the term mixed 

method is used to refer to the combination of branch-and-bound and dynamic programming. Also, two 

other speedup techniques will be presented which are somewhat related to the mixed method. 

The first part of the work done in this chapter is a new approach of mixing branch-and-bound and 

dynamic programming techniques to improve the balanced buffering runtime. This idea comes from 

the fact that a remarkably high number of common sub-problems are encountered while solving a 

typical balanced buffering problem. As a result, and compared to the simple branch-and-bound 

method where no sub-problem solution is kept, the mixed method saves the sub-problem results and 

reuses them for quickly solving similar sub-problems. This allows faster search time with a reasonable 

memory footprint. While storing all sub-solutions would require much more memory than the simple 

branch-and-bound technique, the mixed method has shown only a small increase in memory usage 

during the tests. This is due to the use of dynamic programming which regroups similar sub-solutions. 

Two additional speedup techniques will also be introduced for the first time, smart bound and solution 

jumper. Therefore, this chapter explains how the infrastructure is put in place for the mixed method, 

and how it is used to implement the additional speedup techniques. 

Chapter Outline 
Sections 4.1 through 4.4 explain how dynamic programming memory-reuse techniques are used to 

avoid redundant calculations and improve the buffering algorithm runtime. Section 4.1 illustrates the 

essential conditions under which dynamic programming and the branch-and-bound method can be 

1 Part of the work presented in this chapter was published in URSIISSSE 2007 by [RABBANI and MAILHOT 2007]. 
54 



combined. Section 4.2 presents the mixed method algorithm. Section 4.3 discusses the details of the 

mixed method implementation. Storing the sub-solution results can increase the memory usage. 

Section 4.4 introduces an efficient technique to reduce the memory consumption by detecting and 

deleting redundant solutions. The important issue of accessing solution lists is studied in section 4.5 

where two new binary search trees are designed to meet the specific characteristics of the balanced 

buffering problem. Section 4.6 shows two additional techniques to improve the algorithm runtime. 

Finally, in section 4.7 the efficiency of the proposed speedup techniques is investigated. 

4.1 Suitable Structure for Memory Reuse 

4.1.1 Common sub-problems 

In the previous chapter, a recursive structure was defined for solving the balanced buffering problem, 

where the solution found to a sub-sub-problem is independent from the solution to its originating sub-

problem. In other words, given a source buffer and a number of sinks, there exists only one best buffer 

tree, regardless of buffering decisions made to the previous stages. This useful property somehow 

hides away the rest of the tree at the time of solving a sub-problem. Therefore it is possible to 

concentrate on finding the optimal solution of the newly generated sub-problem. If two different sub-

problems share the same sub-solution, once the common sub-solution is calculated for one of them it 

can be used for the other sub-problem. Therefore, using this property can improve runtime. To have a 

better idea of how two buffering problems can share a common sub-problem, consider the example of 

figure 4-1. In this example two different buffers, Bl and B2, are driving the same fanout number. If 

both trees use the same solution, i.e. B3 at the root of sub-tree and a branching factor of 2, a common 

sub-problem is generated where B3 is driving 3 fanouts. 

Re-using the results of a solved problem is essentially what is done in dynamic programming, where 

redundant calculations are avoided by saving and utilizing the sub-problem solutions. As a result, it is 

useful to look into the basic structure of a typical dynamic programming problem and examine how to 

combine it with the branch-and-bound structure during balanced buffering. 

55 



Bi 

^ 

•4—-||J::; • M * 

/••' B 3 i r * l 

Figure 4-1 An example of common sub-problem 

4.1.2 Branch-and-bound versus dynamic programming 

Branch-and-bound methods can be very effective whenever independent sub-problems are 

encountered, where solving one does not affect the results of solving the others. They also need a tight 

bound in order to filter effectively the potentially enormous space of possible solutions. However, if 

the complete problem encompasses a large set of overlapping sub-problems, branch-and-bound 

methods can waste a significant amount of runtime, repeatedly recalculating the same sub-problems. 

In contrast, dynamic programming techniques can be applied whenever common sub-problems form 

the basic structure of a problem [BELLMAN, 1957] [MITCHELL, 1997] [KNUTH, 1998]. Recognizing an optimal 

substructure and the existence of overlapping sub-problems are two important properties of the 

problems which are solvable by dynamic programming. Using a structure tailored to dynamic 

programming, one can solve the problem efficiently in terms of both memory usage and runtime. The 

sub-problem graphs for branch-and-bound and dynamic programming are compared in figure 4-2. 

While an ideal structure for a problem to be solved by branch-and-bound is a graph tree where no sub-

56 



problem overlapping occurs, dynamic programming method is very efficient when sub-problems are 

reused several times. 

A Branch-and-Bound Structure A Dynamic Programming 
Structure 

Figure 4-2 branch-and-bound vs. dynamic programming 

4.1.3 Hybrid structure 

In solving the balanced buffering problem, where there exist many common (overlapping) sub-

solutions and where it is also possible to compute bounds, one can profit from the advantages of both 

branch-and-bound and dynamic programming methods. The idea of solution-reuse from dynamic 

programming can be applied to avoid unnecessary recalculations and when appropriate, utilize a 

bound to prune away non-promising sub-problems. The actual number of sub-problems visited during 

the search progress decreases with this method as solving similar sub-problems is avoided. This is 

symbolically shown in figure 4-3. In the left sub-problem graph some sub-problems appear and are 

solved more than once while they actually have the same solution. These are common sub-problems 

and they make the search space structure sub-optimal. A smaller search space is achieved by reusing 

the solution to common sub-problems when they are merged into one sub-problem. This is shown in 

the right sub-problem graph in figure 4-3. 

b b c b c c 

Sub-optimal structure 

b c 

Optimal structure for the same case 

Figure 4-3 Search space structure for a balanced buffering problem 

57 



4.1.4 Conflict 

There is an apparent contradiction between the ways branch-and-bound and dynamic programming 

techniques operate: branch-and-bound is essentially a top-down approach, whereas dynamic 

programming is a bottom-up one. This issue is resolved by traversing the search space in a top-down 

fashion, using branch-and-bound to limit the search as the traversal progresses. As end solutions are 

reached, dynamic programming takes over in order to propagate up the real best solutions encountered 

for every sub-problem. Consequently, the optimality of the branch-and-bound method is preserved 

while runtime is improved using dynamic programming. A general procedure of resolving the above 

conflict in two rounds is illustrated in figure 4-4. In this figure a common sub-problem (the dark node) 

is being shared by two higher level sub-problems. In the first round when this sub-problem is accessed 

for the first time (through the left parent node), it must be solved and its solution must be stored as 

there was no solution available for it before. After the common sub-problem finds its solution, the 

search traversal returns to the root (often a local one) and the common sub-problem is generated again 

through the right parent node. In this round, one can simply extract the solution by retrieving the 

results stored before and hence save time. If available, the solution to a sub-problem must always be 

propagated up to be used by the algorithm for solving higher level sub-problems in the future. 

Calculating a common sub- "] 
solution in She first round 

/ 
/ V 

1 x) 

»*** / 
/ 

\ 

\ \ 
\ o 

V \ \ u Propagating up the 
\ y ( « « ^ \ \ previously calculated results 

\ 2 
\ Meeting the same 

\ \ sub-solution in the \ \ second round 

m » ** 

\ / ' 

Figure 4-4 Combining two methods in solving a common sub-problem 

(The common sub-problem is darkened) 

58 



4.1.5 Mixed method efficiency in solving balanced buffering 

Due to the recursive structure of the sub-trees identified in the balanced buffering problem, many 

similar sub-problems are encountered. Therefore, one expects the mixed method to reuse many 

common solutions while searching for the best balanced buffer tree. As will be shown in section 4.7, 

sub-solution-reuse leads to better runtime, while keeping memory usage reasonably low. However, it 

is important to note that the efficiency of mixing the two techniques (branch-and-bound and dynamic 

programming) relies on 2 major factors: 

1) The traversal ordering of the sub-problems 

2) The structure of the search space 

Underneath the first factor, two somewhat opposing goals are at work: runtime efficiency and memory 

usage. In order to optimally reduce memory, the best choice in solving a set of sub-problems would be 

to choose the one which leads to the largest sub-solution reuse. However, a comprehensive decision 

making algorithm would then be necessary and would negatively impact runtime. As a compromise, 

the sub-problems are currently traversed based on their ideal buffer tree delay, as discussed in chapter 

3. This technique is generally satisfactory, as will be shown by the experimental results. 

The second factor to consider is the way sub-problems are distributed in the search space. The number 

of sub-problems and the way their dependencies are established are directly influenced by the timing 

properties of buffers. In section 3.7 it was showed that the order of buffer arrangements in the best 

buffer tree obeys certain physical constraints. Due to the additional memory allocation needed for 

saving the solutions, the gain of using the mixed method must be carefully studied to guarantee a good 

payback. 

The modifications to the balanced buffering method are now presented. They are necessary to 

implement the mixed method. In addition, this chapter covers a specific binary search tree introduced 

and designed to help the runtime of the mixed method. Because the sub-problem solutions are saved in 

the mixed method, memory usage has to be dealt with, a concern which does not exist in the simple 

branch-and-bound algorithm. One efficient technique will be introduced to handle the memory usage 

problem. Moreover, two new speedup methods will also be presented to effectively reduce the 

runtime. The efficiency of such modifications and techniques will be studied in section 4.7. 

59 



4.2 Mixed Method Algorithm 

The mixed method flowchart is provided in figure 4-5 explaining the modifications done in the main 

balanced buffering algorithm. More details about the techniques put in place to improve runtime and 

memory consumption follow in the next sections. 

(Start ) 

Connect the source gate directly to the fanouts and 
calculate the resulting delay: d 

Calculate t ie solution cost; 
current delay + source gate intense delay + d 

Yes 

Calculate the Bound: 
current source + source gste intrinsic delay + 
kfeal delay for the given source and fanart 

Get solution 

Save the tree 

Update Best Delay 

Set new source gate and fanout 

Call Balanced Buffering 

-»(^Stop ) 

Yes 

R#sort the solution list 

Prune the solution list 

(jStojT) 

Figure 4-5 Mixed method flowchart 



4.3 When Should Memory Reuse Be Performed? 

With dynamic programming, it is necessary to keep the sub-problem results for further reference. 

Therefore, solution lists are updated whenever solving a sub-problem yields a practical solution. A 

practical solution, a completely solved sub-problem, is one that never fails to pass the bound during 

the solving process. The outcome of completely solving a sub-problem is getting the best buffer tree 

for that sub-problem. It is only achieved when the search process, has successfully terminated without 

any interruption by the bound, where a negative phase buffer tree can never be a practical solution. 

Thus, a sub-problem solution can be saved whenever its best buffer tree becomes available. 

The saving and memory-reusing procedure must be handled at different stages. Those steps include 

either updating the delay values of the solutions or reusing them to calculate some others. The major 

operations of the memory reuse system are: 

1) Making Basic Solutions. There always exist a number of empty solution lists in the 

search space, which correspond to single fanout problems. The only solution to that 

class of sub-problems is connecting the source buffer directly to the sinks, without 

any intermediate buffer insertion. To make those solutions reusable, a no-buffering 

solution is simply added to the empty solution lists and it is called basic solution. The 

delay of a basic solution is quickly calculated and saved together with the solution, as 

there is no better delay expected from such a solution. Hence, the basic solutions are 

the initial points where memory re-use starts. In figure 4-6 it is shown how basic 

solutions must be produced and used. 

2) Making Solution Lists. To make memory reuse effective, one has to first search for 

previously calculated solutions at the time of making a new solution list. As the 

solutions are enumerated, the search space is examined for any solution result already 

available. This is the core of the speed enhancement: most of the enumerated sub-

problems find their complete solutions at the time of making the solution list, before 

the list even being explored by the main algorithm. In addition, in order to have an 

effective search traversal in the main algorithm, the solution list is sorted in terms of 

minimum delay using both real and ideal delay values. In the sorting process and if 

available, the real delay values of the solutions are used, and if not available their 

ideal delay values are taken into account. 

61 



i—a 

«—a 

Traversa! 

Making 
Solution List 

•D E=|> 

Making new 
solution list 

A a* 

Acquiring 
real delay 

~>-a 
Basic 

Solution 

- ^ - Q 

Us 

Figure 4-6 Basic solutions application 

At the end of the sorting step, if a complete solution (with a real) delay places at the 

top of the list, the solution list will be marked as complete and its best solution will be 

later used to extract the best real delay. Otherwise, the solution list will be marked as 

incomplete. The set of solutions with no real delay that belong to an incomplete 

solution become candidate to be solved by the balanced buffering algorithm. Note 

however that a solution list whose ideal delay is larger than the best real solution will 

remain incomplete as it will not be processed. An example of making a solution list is 

provided in figure 4-7 where solutions are named a through g. All solutions have only 

ideal delay at the beginning. This is shown by check marks in the middle column of 

the list. Then the search space is verified for any solution previously calculated. 

Those solutions that have been calculated before and have a real delay are updated in 

the list. This is shown by check marks in the right column. Then the list is sorted 

based on real delay values, and if not available, based on ideal delay values. For 

example if solution b has a greater real delay than the ideal delay of c, it will be 

placed in a lower position in the solution list. 

62 



Solution List 

a 

b 

c 

d 
f» 

f 

a 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

-
-
-
-
-
-

^ 

Looking for previously 
calculated solutions In 

the search space * 

Solution Heal fteal Delay 
deisy 

Solutions with idea! delays 

a 

b 

c 

c! 

e 

* 

g 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

-

/ 
-

/ 
/ 
-

/ 

" = > 

Sorting solutions 'J-JLJ. 
y 1 / 1 / 

Solutions with real delay Final solution list 

Figure 4-7 Setting real delays and sorting the solutions when making a solution list 

3) Updating the Solution Delays. Any buffer tree will only contain basic solutions at its 

deepest buffering stage, i.e. the last level of buffers before the fanouts. For example, 

if a buffer tree has 5 levels of buffers, the 5th level contains only basic solution as the 

buffers are directly connected to the fanouts. Any sub-problem at the previous level 

can easily use the real delay values from the basic solutions. This propagates back the 

real best solution to the preceding stages, repeatedly to the root of tree. This is where 

the algorithm performs like a dynamic programming method. Therefore, the result of 

solving a sub-sub-problem may be used by the originating sub-problem if and only if 

it provides a complete solution list. This is where the algorithm varies from a pure 

dynamic programming method. However, the proposed method differs from pure 

dynamic programming in that it uses a bound to eliminate some of the sub-solution 

calculations. 

Once the balanced buffering algorithm finishes fetching and solving the sub-problems 

of a solution list, the list must be resorted as some incomplete solutions may now 

have real delay values. In the end, the first solution of the list, whether having a real 

delay or not, is returned to be examined by the originating sub-problem. The returned 

solution is then used to update the delay field of the sub-problem it is derived from. 

This occurs after the balanced buffering algorithm returns from solving a sub-

problem. The procedure of updating the real delay value of a solution is shown in 

figure 4-8. First sub-problem a is encountered in a solution list. Then it is solved by 

enumerating and exploring its solution list. Finally when all solutions in the generated 

solution list have obtained their real delays, the list is sorted and the best solution, 

63 



which is the one with minimum real delay, is returned. This is when the real delay of 

solution a is updated. 

». 
i 

best solution in 
th® solution list 

Figure 4-8 A sub-problem being updated 

4.4 Solution List Pruning 

There is often a trade-off between memory usage and runtime. Whereas the runtime of balanced 

buffering is improved by saving solution lists, a higher amount of memory is required in comparison 

with a simple branch-and-bound system. To resolve this drawback and help keeping the search space 

small, solution lists are pruned by deleting those solutions which are dominated by a complete 

solution. If the ideal delay of an unsolved solution is already worse than the real delay of a complete 

solution in the same list, it can never be better than that complete solution, and hence becomes 

redundant. Pruning must be performed during solution list enumeration, and after the solutions are 

sorted with respect to their delay values. 

4.4.1 Pruning the positive-phase solution lists 

Positive-phase solution lists are those which are generated for positive-phase balanced buffering sub-

problems (see section 3.8). To prune a positive phase solution list, where there is a mixture of sorted 

solutions with ideal and real delay, the solution with minimum real delay is found (if there is any) and 

the rest of the list is deleted. The example in figure 4-9 shows the procedure. According to the list, 

solution c is the best solution with real delay and the inferior solutions can be discarded. Although 

solutions e and /a re not complete, they have to be discarded as well. This is due to the fact that these 

two solutions have already a larger estimated delay than solution c and even if they are solved they 

will not get any smaller delay value. 

64 

c) 
Looking for previously 
calculated solutions in 

the sear* space 

• 
t 

a 

• 

Kfc. Solution list of "a" ^ 

Solving sub-
problem "a" 

<p. Solution list of "a" 

B lest solution 



FirsE solution 
with the best 

rea! delay 

Figure 4-9 Pruning a positive-phase list 

4.4.2 Pruning the Negative-Phase Solution Lists 

Pruning a negative-phase solution list is somewhat more complicated. There are two sub-lists 

(positive-phase and negative-phase) which are sorted separately and therefore, it is not possible to just 

use the first real solution to prune away the combined list. Whereas a simple way to do the task is to 

prune each sub-list independently, the best real solution of every sub-list is used to improve pruning of 

the other one. The following steps must be taken in order to effectively prune a negative-phase 

solution list: 

1) Sort each sub-list in terms of minimum delay 

2) Find the best real solution of each sub-list 

3) Between the two best real solutions select the one with smaller real delay 

4) Add the selected solution to the sub-list it does not belong to 

5) Resort the sub-list in which the selected solution has been inserted 

6) Prune each sub-list 

Note that by doing so, a solution with inverting buffer may be used to prune a non-inverting sub-list 

and vice versa. However, the pruning technique applied does not violate the primary assumptions to 

have two independent sub-lists in solving a negative-phase sub-problem, as the added solution is 

ignored by the main algorithm due to its real delay. 

The example in figure 4-10 clarifies the multi-step pruning technique. The same procedure can be 

applied to the case in which the non-inverting sub-list has the best real solution. In order to minimize 

memory usage, the pruning function is applied at the end of a solutions list exploration in the main 

algorithm, as some solutions might now have acquired a real delay value. Thus, a solution list can 

65 

e 
f 

53 
157 

LM^UHI 

-

-

•.-:\Z,>^iJM 

c> 
Pruning 

a | 20 

b J 24 
-

-

-*• 



always be kept at its minimum size. The tests show that pruning a solution list has an effective role in 

reducing memory usage of the algorithm, as will be shown in section 4.7. 

First solution 

real detay in tissfc 
inverting 

solution subsist 

H
ill
 

"X
 

a | 

b 1 
10 

17 

e | 

f 1 
h j 

16 
• } -

30 

• 
I 

1 
§ 

• 

28 < 29 d) 
Adding solution "C" 
to tfse non-inverting 

sokiSon «uMist 

Mtttrt mat 
solution 

a 

b 
10 
17 1 

f c •"• 15 "' ?8 
f"d " 2 5 ""'41 

e 

f 

16 - | 

21 | 
""g ^ '22 '29 

Resort (he non-
Invartirg solution 

swMat 

Hem position 

^ 
Pruning both 

sub-lists 

Pruned solution list 

Figure 4-10 Pruning a negative-phase list 

4.5 Search Space 

To summarize what has been described thus far about the solution management and reuse in the search 

space, they are categorized into three major groups: 

a) Eliminated redundant solutions: those solutions are cut by the bound. Their solution 

lists are not built. 

66 



b) Complete solutions: those solutions whose results are already available and are built 

of previously calculated sub-solutions. Their sub-solutions are not recalculated; instead, 

the best solution in their solution lists is used to avoid redundant calculations. 

c) Candidate solutions: those solutions which have both complete and redundant 

solutions in their solution lists. Their solution lists are saved anyways, although it is not 

possible to use them to obtain the best solution. This helps them being solved faster 

during further references. 

These 3 solution types are shown in figure 4-11 where a candidate solution has a complete and a 

filtered solution in its solution list (solution a and b respectively). 

Candidate solution 

Complats solutions Eliminate redundant solutions 

Figure 4-11 Solution types 

4.5.1 Saving and maintaining the solution lists 

For solution list reuse to be useful, an efficient retrieval system is needed. Every unique sub-problem 

is defined by its source buffer and the number of fanouts it is driving. Therefore, a solution list can 

easily be found using these two values. As a consequence, the feasible space of the solution list lies in 

a 2-dimensional coordinate system in which each point represents a solution list with the given pair of 

buffer type and fanout number. If there are n buffer types and m fanouts, m*n distinct points will be 

available in the coordinate system to be used as the identifier (access key). This is shown in figure 4-

12. 

67 



Buffer Type 

Ik 

-f~ 
—i_. 

,„,.,. 

— 

Tv r 

-T'T""1 

.... ,̂  .„„|„,..., 

1 ; 

„ „ „ 

j 4 
ltSDi|!tKHl 

I ' 
~*f"" r— 

• f-4— 

<f,b) 

fefiJdress 

. ..,., | 

.„,„. 

„..,„ 

...... 

™*"'l 

~-|—~ 

"~"T 
. i 

"""("*" 

..,,,, 

— 

f anout rtymbsr 

Figure 4-12 2-dimensional coordinate 

An access key structure is symbolically illustrated in figure 4-13. 

Identifier Data 

I > .Hiotil Numtwr I Buffer ID 

Figure 4-13 Solution list access key 

To have the best effect, an appropriate data structure should be carefully chosen to best harmonize 

with the properties of the typical balanced buffering problems. Some common look-up methods along 

with the related data structures commonly used in similar applications are going to be studied. A new 

data structure will then be introduced that is well-tailored to the nature of the balanced buffering 

algorithm. 

4.5.2 Look-up table 

A 2-dimensional look-up table can easily solve the solution list access problem. However, despite its 

simple structure, its implementation is not straightforward. There are two common ways to implement 

a look-up table; one is to construct a static table using static arrays, the other one is to have a dynamic 

table consisting of dynamic arrays. There is a crucial tradeoff between those two methods: if static 

arrays are used, the access time is constant, but the memory pre-allocated to save the solution lists can 

be very high for large search spaces. In contrast, if dynamic arrays are used an efficient memory usage 

68 



is put in place, but on average, poor access time is observed. This is because the solution lists are 

generated randomly and hence the look-up table can not have any specific key ordering to make 

constant access time possible. In fact, one has to implement a dynamic table as a linked list, which 

yields a linear access time O (n) on average. 

4.5.3 Other Methods 

Two other widely used methods are hash tables and binary search trees. While a well-implemented 

hash table can result in an acceptable memory usage and a good access time, finding an efficient hash 

function becomes very challenging when a 2-dimensional key must be mapped into address values. If 

poorly chosen, the hash function can badly impact the length of the linked list sharing the same hash 

value, which eventually results in high access time. 

As an alternative, a binary search tree can yield good access time (O (log n) in general) while its 

implementation does not demand any complex mathematical basis. In fact, the class of self-balancing 

binary search trees guarantees a good worst-case runtime of O (log n) for the basic operations such as 

insert, search and delete. That group of binary search trees may seem suitable for the balanced 

buffering problem, meeting all design objectives such as acceptable search time and good memory 

footprint. 

On the other hand, if the distribution of solution lists usage number for a typical balanced buffering 

problem is carefully examined, an uneven distribution will be observed, having more a Zipf s law [Li, 

1992] than a uniform distribution. This can be explained as some common sub-problems, e.g. those with 

a fanout number of 2, are more popular than the others, and hence their total reference numbers appear 

to be higher than non-popular ones, say those with large fanout numbers. This is clearly observable in 

figure 4-14. In this figure the usage number graph for the first the 20 sub-problems of a buffering 

problem with 86 sub-problems is presented. The total fanout number is 1000 and a buffer library with 

6 non-inverting buffers is used. The properties of the first 20 sub-problems encountered in this 

example are tabulated and shown in table 4-1. Sub-problems are sorted in terms of usage number. 

69 



300 

Usage 
Number 

250 

200 

150 

100 

50 

L'i«*S 

1 2 '3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 13 20 

Sub-problem rank with respect to its usage number 

Figure 4-14 Usage number distribution for the given example 

Sub-Problem 

Source Buffer 

1 annul 
Number 

I \ase Number 

1 

H 
i 

:M 

2 
B 4 

2 

76 

3 
B 6 

4 

39 

4 
B 4 

3 

37 

5 
B 6 

7 

36 

6 
B 6 

3 

32 

7 
B 6 

5 

30 

8 
B 6 

21 

20 

9 
B4 

5 

19 

10 
B 6 

6 

17 

11 
B 6 

14 

16 

12 
B 2 

7 

12 

13 
B 2 

2 

11 

14 
B 2 

21 

9 

15 
B 6 

10 

8 

16 
B 6 

11 

8 

17 
B 6 

13 

8 

18 
B 6 

16 

8 

19 
B 6 

25 

8 

20 
B 6 

9 

7 

Table 4-1 Properties of the first 20 most common sub-problems 

This characteristic of the balanced buffering problem suggests a more dynamic data structure. It is 

therefore very helpful to have a self-organizing data structure capable of reshaping itself such that the 

access time of popular keys reduces as their usage number increases. To that effect, a binary search 

tree must be modified such that the keys of the more common sub-solutions are found closer to the 

root. This is achieved through a dynamic binary tree which gradually pushes up the popular sub-

solutions. Two different classes of such self-organizing binary search trees have been invented and 

implemented in this thesis, called lazy weight binary search tree and perfectly balanced binary search 

tree. They are going to be explained in details in sections 4.5.4 through 4.5.7 and their impact on the 

algorithm runtime will be studied in section 4.7. 

4.5.4 Modified binary search tree 

In this section, a simple binary search tree is modified such that the solution list addresses are stored 

and accessed efficiently. In a typical binary search tree each node is assigned a key and contains a 

value as data. The binary search tree must hold the binary search tree property, which is the following: 

70 



Binary Search Tree Property: Let x be a node in a binary search tree. If y is a 

node in the left sub-tree of x, then key[y] < key[x]. If y is a node in the right sub

tree ofx, then key[x] < key[y]. [CORMEN et ai, 2001] 

In a simple binary tree only one key is needed to find a node. However, in the balanced buffering case 

where the access key is a pair of values (fanout number, buffer type), it is necessary to add an 

additional dimension to each node to make it possible to implement a 2-dimensional access key. This 

is done by inserting an additional data structure inside each tree node. There are therefore two different 

keys: one general key to find the correct binary tree node, and a secondary one to extract the data from 

the encapsulated data structure inside that node. 

Given the fact that the number of buffer types in a buffer library does not normally exceed a few 

dozens, a suitable option is to use buffer types as the secondary key. Hence, if there are B buffers in 

the buffer library, the encapsulated data structure can be a relatively small look-up table with a 

maximum of B rows. Using a static look-up table is a brute force way. It usually yields a fast local 

access time and a reasonable memory usage. On the other hand, the fanout number is used as the 

general key of the binary search tree. An example of such a data structure is shown in figure 4-15, 

where a set of fanout numbers (fj.. .f14) is used as the general key and a set of buffer types (0.. .B-l) is 

used to provide local access to the look-up table. A solution list address is then found by (f, b) where f 

is fanout number and b is the buffer type. 

Figure 4-15 A binary search tree with look-up tables inside each node. 

Solution lists are generated randomly. This means there is no specific order for their address to appear 

in the look-up table. Therefore, if a dynamic table is being used one has to search the whole table for 

71 



the requested address simply because there is no way to calculate its position. This effort makes the 

time complexity of local access to the solution O (b) where b is the buffer library size. As mentioned 

in section 4.5.2 a static table can yield a constant access time, but it is often very sparse and hence 

wastes memory. A useful technique to reduce the size of the embedded static look-up tables is to 

combine static and dynamic tables. This is explained by the following example. 

Consider there are B buffer types in the buffer library. Therefore a simple static look-up table using 

the buffer types as its access key would have B rows. To decrease the number of empty rows, dynamic 

arrays are used to build up the table, and insert empty slots only when it is necessary. To see how the 

method works, consider the example of figure 4-16. In this example different buffer types are assigned 

a unique number. At first, there are only two slots in the table (left table) whose buffer types have 

consecutive numbers. If a sub-problem with the same fanout number but with a different buffer type, 

say type 5 is processed, its solution list address must be saved in the 5th row in order to keep the table 

in order. The gap produced between the second and the fifth rows must then be filled with empty slots. 

This is similar to a static table in the sense that one can easily compute the position of a requested 

address in constant time. Since the number of inserted empty slots is usually less than the number of 

empty rows in a sparse simple static table, less memory is consumed while the access time remains 

constant. 

4t.t(ff '-?(>'• 2 

H-.Nu r ype ' 

1' JC-t.'.< 

A.. I 'd' . ' . 

Inserting a solution list 
address of a sub-problem 4 

with buffer type 5 

. !lfc' fyf« 5 1 A.'.'ieab 1 

Pi.tf>i Trf-i 1 1 

dLffet I w e « 

•Ji tff-r r > | i " S 

rJiff.'i lv|<n ' 

AMU ib 

A <'.'t-.,s 

Empty 
Slots 

Figure 4-16 Filling up a dynamic look-up table 

Note that the buffer type labeling strategy can play a major role in decreasing the number of empty 

slots. If those buffer types which are more frequently used by the algorithm are somehow identified 

and labeled with low numbers, definitely fewer gaps in the look-up tables will be encountered. 

4.5.5 Lazy weight binary search tree (LWB) 

A LWB is a binary tree in which each node is assigned a weight value. It slowly modifies its structure 

as the program progresses, such that after a certain amount of time the access time of highly 

72 



referenced solution lists reduces. The basic structure required for a LWB was proposed in section 

4.5.4. In this section a method will be put together to enable a tree to be self-organizing. The purpose 

of using the term lazy to call this specific type of binary trees will be explained after introducing the 

architecture of the search tree. 

The goal is to dynamically restructure a binary tree such that highly shared common sub-problems can 

be accessed faster than the others. It is then required to measure the usage number of every sub-

problem. To this end, a data field is added to every solution list and is incremented whenever the 

solution list is referenced. This usage number is then used during the tree self-reorganizing operations. 

The weight of a node in a binary search tree is defined as: 

j 

Nodeweight -^SolutionList. ->usage number 
i=\ 

Where j is the number of available solution lists and Solution Listt -> usage number means the usage 

number of the i& solution list. Next, the self-reorganizing rule is defined as follows: 

Self Reorganizing Rule: The weight of a child node must be less than, or at most 

equal to the weight of its parent node. 

A function is also defined to send up the more accessed nodes, called push-up: 

Push-up Function: while the current node weight is larger than its parent weight, 

push it up by a left tree rotation, if it is the right child of its parent, and a right tree 

rotation, if it is the left child of its parent. 

Note that tree rotation is used rather than simply swapping two nodes. This is due to the fact that the 

key orders are not subject to change, only the node weight orders. By tree rotations instead of node-

swapping the binary search tree property is preserved. 

The push-up function works as follows: once a solution list is created or referenced, its usage number 

is incremented. Therefore the total usage number of the corresponding node is incremented. If 

required, push-up does an adequate number of tree rotations to send up the node that has been recently 

accessed. This procedure continues until the self-reorganizing property holds again. An example of 

how the push-up function works is shown in figure 4-17. A node with a key value of 20 and a usage 

number of 62 is accessed. As a result, its usage number becomes 63, which violates the self-

73 



reorganizing rule. From here, push-up takes over and performs a right tree ration. In this case, only 

one tree rotation is enough. 

Weight: usage number 62 

g3 O M J Key:fanoutnumber 

Recently accessed node Bm l S ) | ) 

1 2 / \ J 9 ^ \ j 

y ^ / V £ / V i / a right tree rotation 

Figure 4-17 An example of push-up function. 

Push-up plays a tree maintenance role which preserves the self-reorganizing property of the proposed 

search tree. There is also a subsidiary advantage of the previously presented 2-dimensional data 

structure. When a sub-problem is visited for the first time in the search pace and has a fanout number 

leading to a highly used node, it can profit from a good access time by being initially placed near the 

root. This is because that node was pushed up before and now lives somewhere close to the root. This 

also helps stabilizing the tree restructuring process by effectively decreasing the number of tree 

rotations. 

Sometimes a chain of equally weighted nodes appears in the search tree. Although it is not often the 

case, it can cause a particular problem. If the last node of such a series is accessed, its usage number is 

incremented. Having a node weight heavier than its parent, the push-up function will send it up right 

to the top of the chain. Now as they were all equally weighted before, one can suppose that the 

probability of being accessed for all of them is roughly equal, and consequently another node of that 

chain will soon be used. If this occurs, and the node is unluckily found at the tail of the chain, the 

push-up function has to repeat the procedure to send it up. In that case, one spends a lot of time 

adjusting the tree, where the time gained from the self reorganizing method becomes insignificant in 

comparison with the time spent in manipulating the chained nodes. This is illustrated in figure 4-18 by 

an example. In this figure node a, with a usage number of 6, is accessed and has to be sent up to the 

root. An access to any node other than node a triggers a series of time consuming tree rotations. As a 

compromise, a less sensitive function is introduced which is called move-once. 

74 



c> 
Adjusting the tree 

Recently accessed node 

Figure 4-18 Push-up operations for a chain of equally weighted nodes 

Move-once is similar to push-up except that it performs a maximum of one rotation at a time. It is 

defined as follows. 

Move-Once function: if the current node weight is larger than its parent weight, 

push it up by a left tree rotation, if it is the right child of its parent, and a right tree 

rotation, it is the left child of its parent. 

Note that the only difference between the move-once and the push-up definitions is the while 

condition replaced by the if condition. In most cases, move-once and push-up both perform at most 

one rotation when a solution list is accessed, if the referenced node does not belong to any chain of 

equally weighted nodes. If it does, move-once moves the node only one level upward and by doing so 

it waits for further references to that specific node. If that node contains highly used solution lists, it 

soon reaches the head of the chain and finds its proper position. If not, time is saved by postponing the 

tree adjustment. In practice, the loss of slowly pushing up a node belonging to a chain of equally 

weighted nodes is negligible as the length of such chains is generally short. Due to its laziness in self-

reorganizing, this type of data structure has been called lazy. 

4.5.6 Perfectly balanced binary search tree (PBB) 

In this section a second type of self-reorganizing binary search trees is presented, called perfectly 

balanced binary search tree. While the first type has demonstrated good result in tests, a different data 

structure is introduced to provide the underlying concepts for future extensions of the solution lists 

access method. An ideal search tree would set the distance of each node such that the sum of all node 

75 



access probabilities is maximized. If there exist n nodes in the search tree, one can consider an n-

variable function for which a maximum probability value is found: 

Maximized where: F = ^Solution List. - > access probability 
'=i 

Where n is the number of available solution lists and Solution Listi -> access probability means the 

access probability of the i^ solution list. The optimal structure presenting a maximum value for F is 

only achieved by global decisions upon the tree structure. However, this is not achievable by LWB, 

where each re-organizing decision is merely based on local optimization. In order to design a self-

reorganizing method with an optimal node distribution, four tree properties must be defined: 

Property 1: The weight of a node is the sum of its left sub-tree total weight, plus its 

right sub-tree total weight, plus its own usage number. This is shown in figure 4-19. 

Node total 
weight 

Left subtree 
weight 

Left subtree weight 
+ Right subtree weight 
+ node total usage number 

Right subtree 
weight 

Figure 4-19 The structure of the defined node 

Property 2: The applied search tree is an extended binary tree where each regular 

node has exactly two children. The null sub-trees are replaced with special Null 

nodes that do not have any children. 

76 



Property 3 (Balancing Property): Consider figure 4-20: 

JOQ " 1 **3 

Figure 4-20 Defining balancing property 

Aj, A2 and A3 are defined as follows: 

A1 = ILTW-RTWI (4-1) 

A2 = ILTW - (RTW + AUN + CW)I (4-2) 

A3 = IRTW-(LTW + AUN + BW)I (4-3) 

Where LTW is the left sub-tree weight, RTW is the right sub-tree weight, AUN is the 

usage number of node A, CW is the weight of node C and BW is the weight of node 

B. Please note that there is a difference between weight and usage number, as 

weight is the sum of usage numbers of all sub-trees of a node, while the usage 

number is limited to the node itself. One now claims the tree is perfectly balanced if 

and only if: 

Aj =min(Aj ,A 2 ,A 3 ) 

Proof of Property 3. It is trivial that if A, is not minimum, either of the children becomes the parent, 

any of which that has smaller A. 

Property 4: Every sub-tree in a perfectly balanced binary search Tree must also be 

perfectly balanced. 

11 



Holding all defined properties, the whole search tree presents an efficient structure in terms of access 

probability. The tree with such an attribute is then called a perfectly balanced binary search tree 

(PBB). To implement a PBB, two functions must be defined: see-saw-up and see-saw-down. 

See-saw-up is used to move up a node in 6 steps: 

1) Consider a triple of nodes, consisting of current node, its sibling and its parent. 

2) Calculate A for each the current node and its parent, using property 3. 

3) If the calculated A for the current node is smaller than the calculated A of its parent, 

move it up by a tree rotation. If not, the function terminates. 

4) Update the weight fields of each node 

5) Do a see-saw-down for the new child (explanation follows) 

6) Repeat the steps of 1 to 3 for the recently pushed up node. 

An example of the see-saw-up function execution is provided in figure 4-21. A node is accessed 

(darkened) and since property 3 is violated the tree must be re-organized. Note that both node 

weight (220) and node usage number (147) have been increased. Also, when the former parent 

becomes a new child, its weight must be updated by summing up its own usage number, its left 

and right sub-tree weights. 

Figure 4-21 Example of see-saw-up function. 

78 



Each time see-saw-up performs a tree rotation, the former parent node becomes the root of a new sub

tree. Therefore, the property 4 must be verified to be held for this new sub-tree. If the mentioned 

property is violated, then a number of operations must be done in order for the sub-tree to retrieve its 

perfectly balanced attributes. These operations are summarized in a function called see-saw-down. 

See-saw-down is used to push down a node in 6 steps: 

1) Consider a triple of nodes, consisting of the current node, and its two children 

2) Calculate A for each node, using property 3. 

3) Find the minimum min (A,, A2, A3) 

4) If the minimum A does not belong to the root of the sub-tree, rotate the tree such that 

the node with minimum A is placed at the root. If not, the function terminates. 

5) Update the weight field of the new root and the new child 

6) Repeat the steps of 1 to 4 for the recently pushed down node. 

Reorganizing the binary tree requires a combination of see-saw-up and see-saw-down functions. For 

each see-saw-up it is required to do a number of see-saw-down to hold the tree properties. Although 

this could become a drawback for the method, the experimental results have shown that a good 

runtime is achieved in practice. This is because of the efficient structure of the search tree which 

provides fast access times to solution lists. This section ends with a potentially better method using the 

two types of search tree introduced. 

4.5.7 Hybrid Method 

The PBBs are very sensitive to any change in solution list usage numbers, and may trigger a series of 

tree rotations at a single solution list access. In contrast, the LWBs are less sensitive and take a 

minimum number of actions to modify the tree. One can profit from both properties by carefully 

choosing either of these methods for different phases of the search space exploration. 

During the initial stages of balanced buffering, the tree is small and is subject to a lot of changes. A 

sensitive method could then waste a lot of time at this point. On the other hand, after a certain period 

of time and once an adequate number of solution lists are created and used, the structure of the search 

tree becomes more stable. At this point, due to a relatively large search space, the access times become 

more and more crucial. As a result, a lazy access method may be applied in the first steps of a search 

tree evolution, and a more sensitive but efficient method is used when the search tree is stabilized. 

79 



During the tests, a particular number of solution lists references are chosen randomly, say m, to 

indicate the time of switching the tree manipulation method from lazy to sensitive. LWB is then 

utilized to control the search tree construction before m references occur, and PBB is used over the 

second phase. In general, applying the proposed solution resulted in an overall runtime improvement 

in the program. However, the main difficulty with successfully implementing such a method is to find 

a proper m. Based on the experimental observations, the author believes that there is an optimum m 

for which one obtains the minimum runtime for the presented buffering algorithm, m is symbolically 

shown in figure 4-22 to better explain the idea. 

Program 
runtime 

m 
Number of solution list references 
before changing the access method 

Figure 4-22 Existence of a possible m. 

The number of appropriate references before altering the tree access method is directly influenced by 

how the traversal in the search space progresses. The sooner the highly used solutions are processed, 

the smaller m should be needed, as the search tree is stabilized sooner. As a result, an appropriate 

value for m could be found by somehow pre-evaluating potential sub-problems of a balanced 

buffering problem, which is far beyond the scope of the research in this thesis. Therefore, it is left for 

future studies to find a function capable of calculating a good approximation for m. 

4.6 More Speedup Techniques 

In this section, two more speedup techniques are presented which significantly improve the runtime of 

balanced buffering, as will be shown in section 4.7. Both of these techniques have been proposed to 

improve the balanced buffering algorithm, and have the capacity to be extended to other similar 

methods. One of them, smart bound, helps the bound to filter more non-promising solutions, while the 

l.:i/y Access 

80 



other one, solution jumper, uses the bounding decisions on one solution to skip solving the other 

solutions in the same solution list. 

4.6.1 Smart Bound 

At the time of solving a sub-problem, the bound must be calculated to ensure a promising search 

strategy. From equation 3-3: 

LowerBound = D current + a.b + Ideal Delay subtree 

The calculated bound for a common sub-problem often varies as the sub-problem can be reached from 

different paths in the search space. In figure 4-23, it is shown how one common sub-problem can be 

met through 2 different search paths, resulting in different D cumnx. 

Path A PathB 

Common Sub-problem 
Accessed Through 

Different Paths 

Figure 4-23 Meeting the same sub-problem through different paths 

Studying the bound equation, it is observed that for common sub-problems, the only variable 

expression in the bound calculation isDcum;nl, as OCb and SubTreeldealDelay are always constant. Now, 

consider the following situation: 

A) A sub-problem is encountered during search space traversal and its bound is calculated 

as: 

Bound A =DcumntA +ab +SubTreeldealDelay 

B) The same sub-problem is re-encountered during search space traversal, but through a 

different search path. The bound for this case would be: 

81 



Bound B =DcumntB +ab +SubTreeIdealDelay 

If BoundA is subtracted from Bound B 

BoundB - BoundA =Dcumntg -DcumntA 

Now if Dcunml > Dcumnt , one can conclude that BoundB — BoundA > 0 or in fact: 

BoundB > BoundA (I) 

Given (I), it is clear that solving the sub-problem never leads to any better solution in case B, because: 

1- If the sub-problem is filtered by the bound in case A, it will be definitely filtered in case B, 

and 

2- If the sub-problem is not filtered by the bound in case A, its sub-subproblems are somewhere 

filtered by the bound. If it was not the case, it would not be needed to solve the same problem 

for a second time. Now given the fact thsitDcumntg will be used in calculating the bound for 

any sub-subproblem, and also provided thatDeum7!(
 >Dcumnt , all of the sub-subproblems 

will have larger values for their bounds, and so does the previously filtered sub-subproblem. 

As a result, solving the same sub-problem never yields any better solution in case B. 

This property helps boosting the bound by monitoring the current delays. In fact, a sub-problem is 

solved only if its recent current delay is better than its previous one. This is achievable by regularly 

keeping a record of various current delays for a sub-problem. The implementation is very 

straightforward: a data field is added to each solution list to store the value of the current delay. Once a 

solution list is used, it is updated and used for future references. 

Applying this speedup technique, many unfiltered but non-promising sub-problems are ignored while 

search progresses, and consequently a significant amount of runtime is saved. 

4.6.2 Solution Jumper 

The solutions in a typical solution list are sorted in terms of minimum delay. The idea of the solution 

jumper is that if a solution with better ideal delay does not manage to pass the bound, its inferior 

solutions cannot either. To better understand, let us look back at the bound equation: 

82 



LowerBound = D current + (Xb+ Ideal Delay subtme 

For all the solutions in a solution list D currenl and <Xb are constant, as they all share the same 

originating buffering problem (OCh is the intrinsic delay of the source buffer not the solution buffer). 

Now, if the bound is calculated for each solution, the only variable element is Ideal Delay subtree, that is 

the solution ideal delay. As a result, if a solution has a large ideal delay and fails the bound, one can 

positively conclude that all the solutions in that solution list that have larger ideal delays will be 

filtered by the bound. Based on this, exploring a solution list has to be stopped whenever a solution is 

filtered during the solving procedure. 

Note that there is no need to abort the list entirely, as there might be a real solution at the end of the 

list, which needs to be verified. Therefore the algorithm jumps to the real solution at the end of the list 

before completely quitting the list. That is why this method is called solution jumper. In figure 4-24, 

this procedure is shown in 3 phases. In the first phase, a solution is chosen to be solved. In the second 

phase, this solution is filtered by the bound and the control is returned to the solution list. Since no real 

delay has been obtained, the algorithm jumps to the end of the solution list where there is always a 

complete solution (this is because of pruning the list regularly). 

Solution List 

3 
Jump to the 
real solution 

Solution idea! Raai Dgfay 
datay 

Figure 4-24 Solution jumping for a positive phase solution list 

The method introduced can be easily applied to positive phase solution lists where there is a unified 

ordered list of solutions. However, to utilize the same idea for negative phase solution lists where there 

are two independent sub-lists, one has to merely jump to the end of the sub-list, instead of the end of 

s. 1 /1 

S,,-; 

a 
• 
/ / 

Sx is filtered 
somewhere by 

the bound 

83 



the solution list. This constraint makes the implementation slightly more complicated for two-part 

solution lists, but the overall time gained by this method is still significant, as shown in section 4.7. 

4.7 Experimental Results 

The same implementation conditions are used as in chapter 3. In order to make a comparison between 

the simple branch-and-bound method and the mixed method, the program is run for fanout numbers of 

100, 200, 300, 500 and 1000, using buffer library A introduced in the section 3.9. The search space 

access method is based on LWB, whose runtime will be studied separately. The results are shown in 

table 4-2. The average speed up factor is 2.2 when applying the mixed method to the same set of 

buffering problems as in the second chapter. As shown in table 4-2, the mixed method operates with a 

reasonably low memory usage, while pruning the solution lists reduces memory consumption even 

more. 

Fanout 

100 
200 
300 
500 
1000 

Runtime (seconds) 

Branch-and-
Bound 

488 
1936 
7665 
14466 
59077 

Mixed Method 

Runtime 

203 
861 

3024 
6483 
26324 

Speed up 

2.4 
•> •> 

2.5 
"1 1 

*> -» 

Memory Usage (Kbytes) 

Branch-
and-Bound 

Negligible1 

Mixed Method 

Without 
Pruning 

407 
644 
1,085 
1,428 
2,336 

With 
Pruning 

246 
404 
702 
932 

1,586 

Table 4-2 Runtime and memory usage for the simple branch-and-bound and the 

mixed method. 

The program was also run with the smart bound as well as the solution jumper methods. The speed up 

factors are studied in table 4-3. Note that they are compared with the simple mixed method and not 

with the simple branch-and-bound method. As the effect of using the mixed method on the algorithm 

runtime is linear, the efficiency of the smart bound and the solution jumper is examined in comparison 

with the simple mixed method to reduce runtime. While a slight speed up is observed with the solution 

jumper, the program runtime improves significantly with the smart bound, particularly for larger 

entries. Running the program with a combination of all speed up techniques a significant runtime 

reduction is observed. Furthermore, the memory usage remains reasonable even for large fanout 

1 A few kilobytes 
84 



numbers. Table 4-4 compares the runtime and the memory consumption between the simple branch-

and-bound method and the system with all the speed up techniques. 

Fanout 

100 
200 
300 
500 
1000 

Simple 
Mixed 

Method 
(seconds) 

203 
861 

3024 
6483 

26324 

Mixed Method 
with Solution 

Jumper 

Runtime 
(seconds) 

180 
750 

2780 
5425 

20896 

1.1 
1.2 
1.1 

1.2 
1.3 

Fanout 

100 
200 
300 
500 
1000 

Simple 
Mixed 

Method 
(seconds) 

203 
•861 
3024 

6483 
26324 

Mixed Method 
with Smart 

Bound 

Runtime 
(seconds) 

0.93 
1.71 
3.34 

4.31 
9.40 

in 
501 
905 
1503 
2799 

Table 4-3 Runtime results for smart bound and solution jumper 

Fanout 

100 
200 
300 
500 
1000 
1100 
1200 
1300 
1400 
1500 

1600 
1700 

1800 
1900 
2000 
2100 
2200 

KuntJinv (st'iondM 

Branch-and-
Bound 

488 
1936 
7665 
14466 
59077 
>24hr 
>24hr 
>24hr 
>24hr 
>24hr 

>24hr 
>24hr 

>24hr 
>24hr 
>24hr 
>24hr 
>24hr 

All Speed 
Enhancement 
Techniques 

Runtime 

0.20 
0.29 
0.56 
0.73 
1.07 
0.98 
1.10 
0.89 
1.54 
1.43 

1.18 
1.42 

1.51 
1.43 
1.35 
1.82 
1.75 

Speed-up 

2404 
6522 
13615 
19709 
54803 

>87804 
>77908 
>97078 
>55886 
>60083 

>72727 
>60759 

>56992 
>60I25 
>63669 
>47264 
>49371 

Memory Usage (Kbytes) 

Branch-
and-Bound 

Negligible 

Negligible 

Negligible 

All Speed 
Enhancement 
Techniques 

193 
260 
369 
425 
614 
739 
841 
770 
963 
882 

893 
998 

1,022 
895 
925 

1,184 
931 

Table 4-4 Runtime and memory usage for simple branch-and-bound and complete system 

85 



Fanout 

2300 
2400 
2500 
2600 
2700 
2800 
2900 
3000 

^^^MtWBWmmSIWP^^^m Memory Usage (Kbytes) 

Branch-and-
Bound 

>24hr 
>24hr 
>24hr 
>24hr 
>24hr 
>24hr 
>24hr 
>24hr 

All Speed 
Enhancement 
Techniques 

Runtime 

1.84 
1.78 
1.25 
1.90 
2.48 
1.85 
1.15 
2.59 

>46854 
>48512 
>69I20 
>45306 
>34782 
>46476 
>74675 
>33320 

Branch-
and-Bound 

Negligible 

All Speed 
Enhancement 
Techniques 

1,037 
1,234 
899 

1,109 
1,227 
1,208 
944 

1,215 

Table 4-5 (continue) 

In order to make the mixed method efficient in terms of memory consumption, redundant solutions are 

pruned from the solution list. The memory footprint when performing the pruning operation on an 

arbitrary buffering problem is shown in figure 4-25. The balanced buffering algorithm is run on a 

problem with a fanout number of 300, while using buffer library A. The algorithm with the pruning 

function constructs the best buffer tree in 0.563 seconds while the effective memory usage is 369.064 

Kilo-bytes. Also, the algorithm is run on the same problem but without pruning the solution list. This 

causes an increase of 162.748 Kilo-bytes in the memory usage. 

Memory 
Usage 

(Bytes) 
H 

o 
Without Solution __^x^ 
l.isl Pinning ^^'"^' 

—••""r" wiirnroiutimi 
___ •—^" List I'miiing 

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 18fl 

531.812 
K-Bytes 

369.064 
K-Bytes 

Memory samples per 3.1 milliseconds 

Figure 4-25 Memory tracking for a problem with a fanout number of 300 

86 



The influence of pruning the solution lists is clearly identified in two enlarged curves in figure 4-26 

Memory Usage (Bytes) 

r— 

-—/ 
/• '' 

OT'' 
/ ^ a r Pruning Hflect 

• - -

A 

- - •- s' 

. . 

Memory Usage (Bytes) 

Memory samples per 3.1 milliseconds Memory samples per 3.1 milliseconds 

Figure 4-26 The effect of the pruni'ng operation on memory usage. 

A- The released memory is observed as a downward slope on the memory record path. 

B- No pruning operation for the same set of memory samples. 

In figure 4-27 the amount of released memory by pruning the solution lists of the same buffering 

problem is depicted. Observe that as search traversal goes on and more complete solutions become 

available, more redundant solutions are identified and pruned away from the solution list. 

Using library A from section 3.9, the program is run with four different search space access methods: 

static-array-based, dynamic memory allocation with a simple binary search tree, dynamic memory 

allocation with a lazy self-reorganizing tree (LWB), and dynamic memory allocation with a sensitive 

self-reorganizing tree (PBB). While on average 30% speed loss is encountered by dynamic memory 

allocation in comparison with static memory allocation, the memory usage is reduced significantly by 

utilizing dynamic memory allocation, specifically for large fanout numbers. As highlighted in table 4-

6, the fastest dynamic access method can be variable for different fanout numbers and as the fanout 

number increases the self-reorganizing operations become more efficient. Although in most of the 

cases the lazy self-reorganizing method operates faster than the sensitive self-reorganizing method, its 

performance is dominated by the sensitive self-reorganizing method for certain entries. This shows a 

combination of lazy and sensitive access methods would likely improve the program runtime. 

87 



Bytes 

Number of pruning 
actions 

Figure 4-27 Released memory when using pruning 

Table 4-6 Runtime and memory usage for different access methods 



4.7.1 Runtime Analysis 

A linear regression was previously proposed to approximately calculate the algorithm time 

complexity. The mixed method time complexity is estimated likewise. The trend line obtained 

corresponds to the linear function y = 0.05x + 0.97, with a least square value of 0.5. The trendline is 

demonstrated in figure 4-28. Thus, it is concluded that the mixed method affects the time complexity 

of the balanced buffering algorithm such that it now appears linear. 

Runtime 
(second) • 

y-0,0514>c + 0,9782 
Rs = 0.5003 ___ _ 

• • _ 1 — — " " * ~ 

• 

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 Fanout 

Figure 4-28 Curve-fitting on an arbitrary set of buffering problem runtime 

4.8 Summary 

While buffering in general is an NP-complete problem, it has been shown how one can perform 

balanced buffering in a reasonable amount of time and acceptable memory usage when using the 

proposed speed-up methods. A mixture of two problem solving methods, branch-and-bound and 

dynamic programming, were studied to improve the performance of the balanced buffering problem. 

The idea of the mixed method can be applied to solve any similar hybrid problem demonstrating both 

a dynamic programming structure and the possibility of having a mathematically computable bound to 

implement the branch-and-bound algorithm. When this occurs, one can profit from both the solution 

quality of the branch-and-bound method, and the fast yet memory efficient techniques of dynamic 

programming. On the other hand, having a reliable bound, one can also improve the dynamic 

programming algorithm by analytically selecting the promising sub-problems to be solved, and thus 

save time and memory. Also, two efficient techniques have been introduced to speed-up the search 

traversal: smart bound and solution jumper. Such speed enhancement methods are applicable to any 

89 



branch-and-bound algorithm where the feasible region contains a large number of common sub-

solutions (in order to use the smart bound), and a cost-ordered solution list (in order to apply solution 

jumper). In addition, some useful data structures were introduced, some of which were specifically 

tailored to the balanced buffering problem. Interestingly, some of them, such as the two newly defined 

binary search trees, can have more applications in similar contexts. 

90 



lONCLUSION & F U T U R E WORK 

Conclusion 

This thesis presents a number of methods to address the balanced buffering problem. The main 

contributions are listed as follows: 

1- An efficient way of balanced buffering using branch-and-bound algorithm: While most of the 

buffering methods in use today are considered as extended versions of Van Ginneken's 

dynamic programming approach, in this thesis the buffer tree construction problem has been 

studied from a different perspective. A method based on the branch-and-bound technique was 

introduced to solve the specific case of buffering problems where loads are identical in terms 

of required time and input capacitance. One strong motivation to apply such exhaustive search 

method is to maximize the solution quality for the produced buffer tree, which is generally 

achieved due to the high number of possible solutions examined during the search traversal. 

As the nature of a typical balanced buffering problem demonstrates symmetry of structure in 

various aspects, a recursive structure was identified and applied to implement the branch-and-

bound algorithm. One achievement was also done when the timing properties of an ideal 

buffer tree were mathematically characterized. The ideal delay equation for the general case of 

balanced buffering was successfully extracted and applied to design a filtering lower bound 

for the branch-and-bound method. While the size of the search space grows up exponentially 

with the increase in the fanout number, the bound introduced can efficiently cut large portions 

of the search space that contain no solution. This was shown in section 3.9. The proposed 

method also takes a number of key design factors into account including buffer library, buffer 

tree topology and phase shifting in the presence of inverting buffers. 

2- Speed up techniques for the proposed balanced buffering algorithm: In order to improve the 

runtime of the balanced buffering method, 3 speed-up techniques were proposed: 

First, it was shown how one can take advantage of the existence of common sub-solutions in 

the search space to prevent redundant calculations. To that effect, the memory-reuse concepts 

of dynamic programming were applied to save the sub-problems results and reused them for 

91 



quickly solving similar sub-problems. This method was called the mixed branch-and-bound 

and dynamic programming method, or simply the mixed method. As opposed to the simple 

branch-and-bound method where no solution list is kept, the mixed method needs to save the 

information of those solution lists, and therefore, the memory consumption issue becomes 

crucial. A solution list pruning technique was presented to effectively reduce memory 

consumption by frequently relaxing the solution lists of non-promising solutions. Pruning 

technique resulted in implementing the mixed method with a reasonable memory foot-print. 

Secondly, the smart bound method was proposed to improve the buffering algorithm runtime 

by keeping a record of filtered sub-solutions in the search space. That technique led to a 

significant speed-up according to the test results provided in section 4.7. 

Finally, the solution jumper method was introduced to prevent exploring non-promising sub-

problems by ignoring the solutions dominated by a filtered solution in the solution list. The 

combination of all these techniques, together with the pruning method, results in a 

significantly fast buffering algorithm, while the memory consumption remains reasonable. 

3- Self-reorganizing binary search trees: Due to the need of saving and accessing the solutions 

lists by the mixed method, two new classes of dynamic binary search trees were presented in 

this thesis: LWB and PBB. The proposed data structures are able to modify their structure 

such that highly referenced solution lists can be accessed faster than the other solution lists. 

This is achieved by keeping a record of the usage number of each solution list and using it in 

ranking and re-organizing the tree-nodes. While LWB is less sensitive than PBB, both of them 

have shown to be more effective than a simple binary search tree in reducing the balanced 

buffering runtime. 

Future Work 

The potential extensions of the work presented in this thesis are briefly reviewed, which together can 

help generalizing balanced buffering method to solve more general types of buffering problems. 

As devices shrink in size, deep submicron designs demonstrate the increasing importance of 

interconnect delay on the circuit performance. As a result many research groups are at work to tackle 

the issue of interconnect delay, many of which have broadened their focus to also study new materials 

employed in the circuit fabrication process or even new approaches to help signals traveling faster 

92 



through a conductor. For instance, new studies at Caltech and Stanford University argue the possibility 

of achieving faster integrated circuits by combining the advantages of photonics and electronics 

[OZMAY, 2006]. The new method, called plasmonic, would help chipmaker design circuit components 

with frequencies 100,000 times greater than the ones of current microprocessor, with almost no wire 

capacitance. Nevertheless, it is still required to develop and improve buffer insertion techniques in 

order to efficiently handle the challenging issue of interconnect delay, as such innovative techniques 

are yet to be industrialized. As a result, one important extension of balanced buffering is consider the 

wire's physical characteristics. 

It has been assumed that all loads have identical required time and input capacitance. One important 

extension of balanced buffering is to construct a buffer tree for dissimilar sinks by using the ideas of 

balanced buffering. To that effect, it is necessary to mathematically find a way to transform the 

dissimilar sinks into identical ones in order to profit from the efficient balanced buffering algorithm. 

Yet, the problem should not be over-simplified in order to preserve the solution quality. 

As discussed in section 4.5.7, there exists a possibility of achieving even faster search space access 

times by combining LWB and PBB. The success of combining those methods is dependent on finding 

a proper m, the number of adequate solution list references before altering the access method from a 

lazy self-reorganizing tree to a sensitive one. The likelihood of the existence of that value could be an 

interesting subject for further studies. 

Some other subjects in this domain include higher order delay models, better signal characterizations 

by considering different rise/fall times, buffer sizing, and resource reduction for non-critical paths in 

the buffer tree. 

93 



94 



APPENDICES 

95 



ft PPENDIX A 

Minimum delay calculation for the balanced buffer tree 

1. The Minimum Delay Equation 

Theorem: given the source output resistance /?0, and the total load capacitance yT , the optimum 

delay is obtained from the following equation: 

optimum H1 

where ju is: 

1 + ln 
v M j j 

A-l 

M = &rbe
Kfl+l) A-2 

and Pb and yb are respectively the output resistance and the input capacitance of the best buffer 

in the library and 0^ represents its intrinsic delay. As is shown in appendix C, the best buffer is 

the one with the smallest ju in a given buffer library. 

It is necessary to initially find a well-formed delay equation for a balanced buffer tree, and then 

examine under which conditions the minimum delay value is obtained. Let us begin with 

calculating the delay equation for cases having zero, one and two levels of buffering. Next, the 

delay equation for K levels of buffering will be found and the optimum delay will be calculated 

with respect to K. 

2. Proof 

Pre-assumptions for minimum delay calculation 

1) Continuous rather than discrete values are allowed for the number of levels and branches 

in the ideal buffer tree. 

96 



2) Due to the symmetrical structure of a balanced buffer tree, all source-to-sink paths can 

be considered as the critical path. 

Delay with zero levels of buffers 

Having a source output resistance of /?0and a total load capacitance ofyT like what is shown in 

figure A-l the delay equation of a simple tree with no buffer inserted is: 

D=J30yT A-3 

T 

Figure A-1 Zero level buffering 

Delay with one level of buffers 

Regarding the buffer tree structure in figure A-2 and using a certain buffer type B^, the delay 

equation for the buffer tree would be: 

A-4 

Ti P 

-4KBk 

i—a 

• 

n i 

? • . 

n i 

Figure A-2 One level buffering 

97 



Where /?0is the source output resistance, /T is the total load capacitance,/^, ftand flf,are 

respectively the output resistance, the input capacitance and the intrinsic delay of the buffer Bi, 

and «jis the number of buffers used in the tree. In order to find the minimum delay, the 

derivative of D is taken with respect to nx: 

-. — Hah 
on1 n 

A K - ^ - 0 A-5 

Solving the above equation yields the best number of buffers: 

n\ ~ *xl% A-6 
Po/i 

'•optimum 

The optimum delay is found by replacing the best number of buffers in the original delay 

equation: 

DoP,Unum = ^ + IJPAWT A " 7 

Delay with two levels of buffers 

The delay of a buffer tree with 2 levels of buffering is now calculated, as shown in figure A-3. To 

preserve generality, it is assumed that different buffers are used at each level, say Bj and B2. The 

same notation are used as in equation A-7 to show source output resistance and total load 

capacitance, while the physical properties of each applied buffer are symbolized as Pt, yt and 

CCt for each buffer, nj and n2 are the number of buffers for the first and the second level 

respectively. The delay is calculated as: 

R y 
D =Pan\Y\+ a\+Pini y1+a2+t-1LL- A-8 

98 



y. Pii-H : * r 
_ § * - <»2 '—a n i n 2 

^ T . ^ r~9 

; ! > - -

Figure A-3 Two level buffering 

As there are now 2 variables in the delay equation, nj and n2, in order to find the optimum delay 

partial derivative should be taken, once with respect to nj and once with respect to n2. By setting 

the two resulting equations, the best buffer numbers are then found for each buffering level. 

n, n 1 " 2 

dD 
=Ar2 

PIYT _ 
-I / - 1 / 2 2 = 0 

A-9 

A-10 

i _<P0
2rl

2 

From (A-9): —-- 2 
»2 AYz 

A-ll 

Into (A-10): fij^&3L!hAjL M$ n^^ff-
ni A 7T PQ 7\ 

A-12 

Similarly, by putting (A-10) into (A-9): 

, 3 _ PoPiYiYr 
2 " AV 

A-13 

Replacing (A-12) and (A-13) into (A-8), the optimum delay for a buffer tree with 2 levels of 

buffers is: 

Doptimum =ax + a2+ ^POPAYJIYT A-14 

99 



Delay with K levels of buffers 

Using inductive reasoning, a general delay equation for K levels of buffers with dissimilar buffer 

types is found with the properties shown in figure A-4. 

D=YdalHK+\){pQyT.pi..A.Yv..YK)™ 
1=0 

Y> fe 

Po 

y< pi 
£*z 

r i i n 2 

K 

A-15 

YK PK I Q V-j 

aK I—Q nin2--nK 

nK 

Figure A-4 K level buffering 

The smallest D must be found. Therefore, a buffer in the library should be used for which the 

product of ft and fi is minimum. Let us call this buffer best buffer. It is proven in appendix B 

that replacing all buffers with this best buffer results in a delay less than the delay value obtained 

from (A-15). By doing so, the delay equation becomes: 

D =Kab+{K +\)(pjT{PbYb)
K)K+l A-16 

The smallest value for D will occur for some number of levels K. For that number of levels K, the 

function will be at a minimum. Therefore, the derivative of D is taken with respect to K in order 

to find the best number of levels. 

dD 
dK 

= 0 A-17 

Let us use a new variable//, where: 

100 



M = (&rT(AnY)Ki A-18 

It then gives: 

D = ju + ({i + ab)K A-19 

Knowing that: 

dD__dD_ 3// _ 

dK ~ dju'dK ~ 
A-20 

From (A-16): 

- = M + abHK+l).£ A-21 

In order to remove K from (A-21), (A-18) is manipulated and plugged in (A-21). This is done in 

the following manner: 

^(A»(AJif)" 
C ^ > inM = -^—[ln(j30yT) + K.ln(j3byb] 

l ) (K+l).lnju = ln(fi0rT) +K.In (J3byb) 

l ) AT( ln / / - ln (An) ) = ln(AJ5.)- ln/ / 

r—) ^ ( m / , - i n ( / U ) ) + * — = - — 

dju ju 
'-V i v ~ dK (K+X) 

•In A-22 

Plugging (A-22) into (A-21): 

- - = // +or,+// . ln ^ * -
dK KM; 

= 0 A-23 



Now ju corresponding to the minimum delay can be found: 

^ . . . , fj8br^ 
= H + ab +//.ln 

dK 

rPbYb^ ^ + 1 

sO 

> n 

V M J 

\ 

= -ah 
J 

= - ^ — 1 

: ) inAn-in//=-^--i 

-N> i n / / = + ^ . + 1 + l n ^ n 

^> M = for„e 

$ 
In ," 

A% b J 

-S.+1 
^ 

A-24 

A-25 

Using (A-18), the optimum number of levels, K is found and will be later used to find the 

minimum delay: 

[ ^ ( # + l ) . m / / - K J n ( ^ ) = l n ( / ? 0 r r ) 

C Z ) K.{\nfi-ln(/1brb)) = \n(/]0yT)-]niu 

[ = ) lf = 
In 

In 

'ML" 
M J 

\Pbrb) 

A-26 

From (A-19) the optimum delay is now calculated: 

D =/u + ({i + ab).K 

102 



Using (A-26): 

D=n + (]U + ab).-
V M j 

In 

An \Hblb J 

A-27 

Plugging (A-14) into (A-27): 

In 

Doptimum =M + (M + abl-
v M j 

(M + ab) 
M 

A-28 

Doptimum=V + H.\n 
v M j 

A-29 

D - u 
optimum " 

1 + ln 
v M j 

Where 

M = Arbe » 

These are equations A-l and A-2, which appeared in the theorem. 

Corollary. The best number of levels (K timum ) is calculated using the optimum delay equation. 

From (A-16): 

Doptimum=M + (M + 0!b).Ki 'b * optimum 

And from (A-l): 

optimum r* l+. ln 
V 

K M 
optimum 

K 

ju + ab 

1 

•In 
v M j 

optimum *y 

1+-6-
M 

In 'for ' 
I M 

A-29 

A-30 

file:///Hblb


PPENDIX B 

Proof of the Best Buffer Existence 
Theorem: The ideal buffer tree only contains one type of buffer. 

It is first assumed that there are at least two different buffer types in the ideal buffer tree. It will 

then be shown that this assumption does not lead to any better delay than if only a single buffer 

type would be used. To this end, the optimum delay of such a buffer tree has to be found. Since it 

is difficult to find a closed form formula for the delay function being extremized, the Lagrange 

multipliers1 method is used. The Lagrange multipliers method is very useful to find the extrema 

(maxima or minima) of a function subject to a fixed constraint. This method is used to find the 

optimum delay for a buffer tree made of two buffer types. In order to apply the Lagrange 

multipliers method, a constraint has to be defined first. Assuming that mi levels of the ideal 

buffer tree contain buffer type Bi, and the rest, say m2> contain buffer type B2, the total number 

of buffering levels, k, would then be: 

k — ml+m2 

Having this, a very simple constraint can be defined as: 

G — n\ +m2—k 

The optimum delay of a buffer tree with 2 buffer types is now calculated subject to the above 

condition. For more convenience and clarity, in figure B-l the necessary steps to find the values 

for mi and m2 that yield the optimum delay are summarized. After finding minimum m\ and 

minimum m2, it will be discussed whether it is impossible to have a faster buffer tree by multi-

type buffering. 

'The Lagrange Multipliers method is named after Joseph Louis Lagrange, an Italian mathematician and 
astronomer who made important contributions to all fields of analysis and number theory. 
104 



- '• - . •- - j ^ r a i ^ K 

I 
l^ii'.ii'.il!'!;! t:i- .«.<] 
rn. #iih "i- iptU to K 

I 
•'•-Cu'.i-on or m- ar.Ci <n 

tf I ^ 
m< < 0 or ffte -••1 * :'i MIII III^ * o m» = 0 « r p - 0 

Figure B-1 The proof procedure using Lagrange Multipliers 

Setting the Lagrange Multipliers 

For simplicity, /3 and y are merged into J'without loss of generality. Using the general delay 

equation (B-l)1, the specific case of k levels of buffers and 2 different buffer types is obtained 

(B-2): 

D=ZatHk+i)(fi0rT-A->A-rr-ri™ B-I 
1=0 

1 

D = nfiyCC^ + m2a2 +\yTy™1 y^"2]*+1 B-2 (delay equation for two buffer types) 

As introduced before, the necessary constraint for the Lagrange multiplier is: 

G = n\ + m2 — k B-3 

The main function being minimized is defined in terms of mi, m2 and k, introducing a new 

unknown, X, as follows: 

<&(m1,m2,k,X) = D-XG B-4 

The overall procedure to solve such problems is to first find X, and once k is found mj and m2 are 

computed. In this case, since it is sufficient to study the necessary conditions for mj and m2 

1 Equation A-15 from appendix A 
105 



under which the minimum delay is found, calculations will be stopped after obtaining the 

minimum mj and m2- The possibility of having an optimum delay with 2 buffer types will be 

discussed. From (B-2), (B-3) and (B-4): 

1 

3> = mjOT; + m2a2 + [_yTyl
mi f^ ]*+1 -l{mx+m2-k) 

The smallest<I> subject to the constraint is needed. Therefore, derivatives with respect to mj and 

iri2 are separately taken: 

rd®^ 

v dm, / , , 
\ i /m2,k,A:const 

sO 

a1+[rTrrr2m2}+1-~^--^=o B-5 

Similarly an expression is found for m^. 

f s^ \ d® 

v dm-, i , , 
v ^ /mj,k,A:consl 

= 0 

II7T L°8e(r2) a2+[rrrl
mir2"

h}+l. *'**\]-i B-6 

Preparing an auxiliary equation 

From (B-5) and (B-6): 

(jfc + 1) l L'"1 'z J (jfc + 1) 
al+[rTrrr2m2}+lL^e}^=^+[rTrrr2^ Loge{72) 

[rTrrr2m2} 
i 

(k + i) 
•Log, L = (a2-al) 

|_ / T11 ' 2 J — f ^ 

2i 

B-7 

106 



[yTrry2^y 

\ (*+l) 

(k+l). {a2-a^) 

Loge 

rr^ 
V / 2 7 J 

Calculating 17̂  with respect to k 

Fromk = ml+m2: 

m2=k — ml 

Into (B-7): 

(k+\) 
•Loge 

\Yu 
\a2-a,) 

Rearranging with respect to mj: 

(rTr2
k)k+l-

f „,\ 

.n) 

k+l _(k+i).(a2-al) 

Loge V 
\Yij 

V 
V 2 ) 

\Yij 

mlLog€ 

** _{k + l).(a2-al) l 

Loge 

r \ 
Y 

\Yu 

{YTY2
k) 

\(k+l) 

1_ 
k+l 

(k+\).(a2-a{) 

Loge 
rr\ 
\'2j J 

1 

'(YTYI) 

\.Yij 
= (* + !). 

{k+\).{a2-ax) 
Loge 

v 
r r 

Loge 

\Yu 

Loge(rTr2
k) 

j ) 

n\ =• 
(* + 0 

L0ge 
\Yij 

Loge 

{k + l).{a2-a{) 

Loge 
^Y? 
\f*J JJ 

Loge(yTr2
k) 

Loge V 
\Yi j 



Calculating nr>2 with respect to k 

From k = ml+m1: 

ml=k-m2 

Into (B-7): 

(k+i) 
•Loge 

V 
= ( « j - a i ) 

Rearranging with respect to mq;. 

(ntf) t+i 12. 

In) 
^i _(k+l).(a2-al) 

Loge 

\7ij 

fy^ 

\ i \ j 

^ _(k+l).(a2-al) l 

Log. 
\Yij 

\Yj 

m2Loge 

i+1 

(k + l).{a2-a,) 

Loge 
L 

\Yu 
'{YrY?) 

R •(k + l). Logs 
(fc + l M O j - O i ) 

Loge 

V V \Yu 

•Loge(yTyx
k) 

J) 

m^ =-
(k + l) 

L0ge 
\Yxj 

Loge 
(k + l).(a2-ar) 

Loge 
V 
\Y2j 

Loge{yTyk) 

Loge 
J) rj 

B-10 

Rewriting mi and rri2 

Since it is known that: 

108 



Log, [VI 

From (B-7): 

= -Log, V 
V i V 

m, 
(* + l) 

^ £ e V ^og£ 

(fc + l J . ^ - O i ) 

^oge 

V V 

V 
V^2 7 

Loge(yT7ik) 

Loge V 

To simplify the equations obtained so far, A is defined as: 

A = -
(* + l) 

£og. UJ 
£*& 

(^+l).(<ar2-a^) 

i ^ e 
Y 

\YIJ 

B-l l 

Also, the equivalent of (B-l 1) for future references is found. From (B-8): 

[rTrl
mi72m2]--

(* + !).(«,-a,) 

iog. V 
v/2 7 y 

Taking natural logarithm from both sides: 

^ g e V 
U 2 ^ y 

From(B-ll): 

(fc+i) ^ [ ^ " " r / 1 2 ] 
A = -

Loge V (AT+1) 

An equivalent for A is calculated: 

109 



Loge[rTrl
mir2mz] 

Loge 

B-12 

Rewriting mj and ni2 in terms of A: 

m, = -A + 
L°8e(rT7l) 

Loge V 

m2 = A-
Loge(rTnk) 

Loge 

B-13 

B-14 

Discussion on mi and rri2 

It is of interest to know if there exist any permissible values for m^ and m2 with which one can 

obtain an optimum delay. Therefore, different values of mj and m2 are investigated which are, as 

mentioned before, the number of buffer levels containing buffers of type 1 and 2 respectively. 

All the possible values for mj and m2 are summarized in three cases: 

Case 1 : m 1 < 0 O R f f l 2 < 0 

Since negative values for the number of levels are not feasible, this case is not considered as a 

possible range for finding an optimum delay. 

Case 2: rr\ = 0 OR n^ = 0 

It is clear that an answer to k = n\+m2 would be when rt\ or m^ equals to zero and the other one 

equals to k. In this case, the original delay equation 

D = mlal + m2a2 + [ yT ftm> y^ "I *+1 

n j B-15 

can be rewritten with only one buffer type, i.e.: 

D = k.al+[rTrl
kJk 

Therefore, for the case of having either m\ or ni2 equal to zero, the claim is proved. 

1 

|yfc+l 

110 



Case 3: m, > 0 AND m2>0 

The conditions under which k, n\ and m^ are all positive must be examined, if there are any. 

Initially it is assumed that y2 > yx and mirror reasoning is used for the case of Y2<Y\- The 

condition in which yx = y2 is not studied, as according to some equations like (B-8) it is forbidden 

to have yx = y2 (because of the log statement in the denominator). Seen from a different point of 

view, having yx = y2 means the two types of buffers (type 1 and 2) are identical. 

In order to have positive n\ and m^, two conditions must be shown: 

I) Form,: 

0<m1 <k 

From(B-ll): 

0<-A + 
Loge{yTy2

k) 

Loge 

<k 

0<-(A v ' \)<k 

Loge 

-k<A-
Logeirrrz) 

Loge 
V <0 B-16 

II) And for m^: 

From (B-14): 

0 < m2 < k 

0<A-
Logt(rTrt) 

Loge 

<k B-17 

Merging (B-16) and (B-17) yields: 

-k<A-
Loge(yTy2

k) Loge(yTyk) 

Loge 
Yx 
U 

•<A 

Loge 

<k 

111 



- J t -A<-
Logeirrrf) Loge(yTyk) 

Loge n) 

<— 
L°8e 

•<k-A 

A + k> 

L°8e(rTr2k) Loge(rTnk) 

L08e Loge 
\Yj 

>A-k B-18 

Since it has been assumed that y2 > y\, both sides of the inequality can be multiplied 

by Loge 

fY? 
\nj 

without any sign change: 

(A + k).Loge >Loge(yTy2
k)> Loge[yTyk)>(A-k).Logt 

A.Loge + k.Loge 

f7? 
\Y) 

>Loge( yT y2
k) > Loge (yT yk)>A .Loge 

r \ 
h. 

•k.Loge V 
\fiy 

From (B-12): 

B-19 

Loge[yTyry2
m>] 

A = L—-—-—± 

Loge 

Into (B-19): 

{7 

Loge [rTrrr2
m2] + k.Loge &- > Loge (yTy2

k) > Logc {yTyk) > Loge [yTy?y^]-k.Log. 
. Y\ J \7j 

Rearranging the left most and the right most expressions: 

c y ( V 
Loge[yTyr'y2'"

1] + Loge -&• >Loge(yTy2
k)>Loge{yTyk)>Loge[yTyl"

hy2"^]-Log_ 

Loge 

Yx 
.[yTyry2"

h]\>Loge(yTy2
k)>Lo8e(yTyi

k)>Loge A [yTy^y2^] 
(r^k 

\ i i . 

112 



The inequality is monotonic, so it is possible to drop the natural logarithm from all expressions: 

/ Yx £ [rTrrYi1 ] > YrY2 > YTYk > A {YTYX"1Y2
mi] B-20 

\Yx) \Y2) 

From the most left inequality of (B-20): 

R ) {YTYrY2m2]>YTY2
k 

\Y\ J 
Rearranging: 

r \k 

Yx) 
•Ym'Y2m2>Y2

k E ^ > y"<Y^Y2
mi (H)B-2i 

Therefore, as long as Yx< Yi> Yi"1 Yi^ c a n De replaced in the original delay equation with Y\ to 

have smaller delay value. This means the delay equation would become: 

1 - " I — 
D = m1a1+m2a2+[rTrl

m'Y2m2]k+l H^> D = mlal + m2a2+[YTrl
mi+m2Y20} 

Since the share of the second buffer is zero in the parenthesis, and hence in the buffer tree, it has 

no share in the sum part mfi^ + mflj either: 

/ ) = (»!! + m2)ax +0.a2 +[YTYri+m2Y2°] 

Therefore: 

D = k.a1 + [YTrxk] 

I_ 

k+X 

1 
lt+1 

where k— mx+m1. D is minimum as long as Yx< Y2
 an<^ regardless of the intrinsic delay of the 

buffers. Therefore, there is no optimum delay for any positive values of mi and va.2, unless one of 

them is set to zero, which makes the buffer tree use only one buffer type. The same reasoning is 

applicable for the case Yx> Yianc^ f° r m o r e buffer types as well. 

113 



(PPENDIX C 

Finding the best buffer 

Theorem. The Best Buffer is the one with the smallest JU in the buffer library. 

Proof. The necessary and sufficient condition to have the total delay of the buffer tree at its 
1 

minimum is to have I /30yT(/3byb) Ik+l at its minimum in the original delay equation: 

1 

D=kabHk+i)(js0rT(An))M 

This is true regardless of the sum of intrinsic delays k(Xb' .Since // is defined as: 

i 

It is clear that the delay equation is minimum for any buffer that yields the minimum//. This 

buffer is defined as the best buffer. 

1 See appendix B: Proof of the Best Buffer Existence. 
114 



REFERENCES 

[AHO et al, 1983] AHO, A. H., HOPCROFT, J.E., ULLMAN, J.D.,(1983), Data Structures and Algorithms, 

Chapter 10, Addison-Wesley. 

[ALPERT et al, 2000] ALPERT, C. J., GANDHAM, R. G, NEVES, J. L., QUAY, S. T. (2000), Buffer library 

selection, IEEE International Conference on Computer Design, p. 221-226. 

[ALPERT et al, 2001] ALPERT, C. J., KAHNG A. B., LIU, B., MANDOIU, I., ZELIKOVSKY, A.,(2001), 

Minimum-buffered routing of non-critical nets for slew rate and reliability control, 

Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided 

Design, p. 408-415. 

[ALPERT and DEVGAN, 1997] ALPERT, C. J., DEVGAN, A., (1997), Wire segmenting for improved buffer insertion, 

IBM Austin Research Laboratory, Austin, TX 78758, Design Automation Conference 

(DAC), p. 588-593. 

[AMOURA and MAILHOT, w. d.] AMOURA, A., MAILHOT, E, (w. d.) Private communication. 

[BELLMAN, 1957] BELLMAN, R. E., (1957), Dynamic Programming, Princeton University Press. 

[BERMAN et al, 1989] BERMAN, C.L., CARTER, J.L., DAY, K.F., (1989), Thefanout problem: from theory to 

practice, SEITZ, C. L., editor, Advanced Research in VLSI: Proceedings of the 1989 

Decennial Caltech Conference, MIT Press, p. 69-89. 

[BOHR, 1995] BOHR, M. T, (1995), Interconnect Scaling - The real limiter to high performance VLSI, 

Technical Digest, IEEE International Electronic Devices Meeting, p. 241-244. 

[CARRAGHER and CHENG, 1995] CARRAGHER, R. J., CHENG C. -K„ (1995), Simple tree-construction heuristics for the 

fanout problem, Proceeding of International Conference on Computer-Aided Design, p. 

671-679. 

[CHEN et al, 2002] CHEN, W., PEDRAM, M., BUCH, P., (2002), Buffered routing tree construction under 

buffer placement blockage, Proceeding of the 2002 Conference on Asia South Pacific 

Design, p. 381. 

[CHU and WONG, 1997] CHU, C.C.N., WONG D. E„ (1997), Closed form solution to simultaneous buffer 

insertion/sizing and wire sizing, International Symposium on Physical Design, p. 192-197. 

115 



[CHU and WONG, 1999] CHU, C.C.N., WONG D. E., (1999), A quadratic programming approach to simultaneous 

buffer insertion/sizing and wire sizing, IEEE Transaction on Computer Aided Design of 

Integrated Circuit System, vol. 18, no. 6, p. 787-798. 

[CONG et al, 1993] CONG J., LEUNG, K.S., ZHOU, D. (1993), Performance-driven interconnect design 

based on distributed RC delay model, Proceeding of ACM/IEEE Design Automation 

Conference, p. 606-611. 

[CONG and YUAN, 2000] CONG, J., YUAN, X., (2000), Routing tree construction under fixed buffer locations, 

Proceeding of Design Automation Conference, p. 379-384. 

[CORMEN et al, 2001] CORMEN, T. H„ LEISERSON, C. E., RIVEST, R. L., STEIN, C , (2001), Introduction to 

algorithms, second edition, p. 323-324. 

[DHAR and FRANKLIN, 1991] DHAR, S., FRANKLIN, M. A., (1991), Optimum buffer circuits for driving long uniform 

lines, IEEE J. Solid-State Circuits, vol. 26, no. 1, p. 32-40. 

[ELMORE, 1948] ELMORE, W. C, (1948), The transient response of damped linear networks with 

particular regard to wideband amplifiers, Journal of Applied Physics, vol. 19, p. 55-63. 

[ERDOS, 1946] ERDOS, P., (1946), On sets of distances ofn points, American Mathematical Monthly 

no.53, p. 248-250. 

[GAUSS, 1809] GAUSS, C.F., (1809), Theoria motus corporum coelestium in sectionibus conicis solem 

ambientum (theory of motion of the celestial bodies moving in conic sections around the 

sun). 

[HRKIC and LILLIS. 2002] HRKIC, M., LILLIS, J., (2002), S-tree: A technique for buffered routing tree synthesis, 

New Orleans, LA, Proceeding of ACM/IEEE Design Automation Conference, p. 578-583. 

[HUANG et al. 2003] HUANG, H., -D., LAI, M., WONG, D. E, GAO, Y„ (2003), Maze routing with buffer 

insertion under transition time constraints, IEEE Transactions on Computer-Aided Design 

of Integrated Circuits and Systems, vol. 22, no. 1. p. 91-96. 

[ISMAIL et al, 1999] ISMAIL, Y I. , FRIEDMAN, E. G, NEVES, J. L. (1999), Equivalent Elmore Delay for 

RLC Trees, Proceedings of the 36th ACM/IEEE conference on Design automation, p. 715-

720. 

[JIANG and CHANG, 2004] JIANG, I. H., CHANG, Y. -W, (2004), Simultaneous floorplan and buffer-block 

optimization, IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, vol. 23, no. 5, p. 694. 

116 



[RANGet al, 1997a] RANG, M., DAI, W. W.-M, DILLINGER, T., LAPOTIN, D., (1997), Delay bounded 

buffered tree construction for timing driven floorplanning, Proceeding IEEE/ACM 

Internation Conference of Computer-Aided Design, p. 707-712. 

[RANG et al, 1997b] KANG, M., DAI, W. W.-M., DILLINGER, T., LAPOTIN, D., (1997), Timing-driven 

floorplanning with intermediate buffer insertion, Technical Report: UCSC-CRL-97-03, 

University of California at Santa Cruz, California, USA. 

[KNUTH, 1998] KNUTH, D. E., (1998), The Art of Computer Programming, Volume 3 - Sorting and 

Searching, Addison-Wesley, 2nd edition. 

[LAI and WONG, 2000] LAI, M. WONG, D. E, (2000), Maze routing with buffer insertion and wire sizing, 

ACM/IEEE Design Automation Conference, p. 374-378. 

[LAND and DOIG, 1960] LAND, A. H., DOIQ A.,(1960), An automatic method for solving discrete programming 

problems, Econometrica, 28, p. 497-520. 

[LI, 1992] LI, W, (1992), Random texts exhibit Zipf's-law-like word frequency distribution, IEEE 

Transaction on Information Theory, p. 1842-1845. 

[LILLIS etal.1995] LILLIS, J., CHENG, C.-K., LIN, T.-T. Y., (1995), Optimal wire sizing and buffer insertion 

for low power and a generalized delay model, IEEE Journal of Solid-State Circuits, p. 

437447. 

[LILLIS etal, 1996a] LILLIS, J., CHENG, C.-K, YLIN, T.-T., (1996), New performance driven routing 

techniques with explicit area/delay tradeoff and simultaneous wire sizing, Proceeding of 

33rd ACM/IEEE Design Automation Conference, p. 395-400. 

[ULLis et al, 1996b] LILLIS, J., CHENG, C.-K, Y LIN, T.-T, (1996), Simultaneous routing and buffer 

insertion for high performance interconnect, Proceeding of the Sixth Great Lakes 

Symposium on VLSI, p. 148-153. 

[MAILHOT, 2005] MAILHOT, E, (2005), Computers architecture II- GEI431, course material offered at the 

Department of Electrical and Computer Engineering, University of Sherbrooke, Quebec, 

Canada. 

[MICHALEWICZ and FOGEL, 2000] MICHALEWICZ, Z., FOGEL, D. B.,(2000), How to Solve It: Modern Heuristics, 

Springer-Verlag, Chapter 3. 

[MITCHELL, 1997] MITCHELL, T. M.,(1997), Machine Learning, WCB McGraw-Hill. 

[OKAMOTO and CONG, 1996a] OKAMOTO, T, CONG, J., (1996), Buffered Steiner tree construction with wire sizing for 

interconnect layout optimization, Proceeding of IEEE/ACM International Conference on 

Computer-Aided Design, p. 44-49. 

117 



[OKAMOTO and CONG, 1996b] OKAMOTO, T., CONG J., (1996), Interconnect layout optimization by simultaneous 

Steiner tree construction and buffer insertion, Fifth ACM/SIGDA Physical Design 

Workshop, p. 1-6. 

[OZMAY, 2006] OZMAY, E., (2006), Plasmonics: merging photonics and electronics at nano-scale 

dimensions, In Science, vol. 311. no. 5758, p. 189 - 193. 

[RABBANI andMAILHOT, 2007] RABBANI, A. H., MAILHOT, R, (2007), Efficient buffer tree construction using mixed 

branch-and-bound and dynamic programming techniques, Montreal, International 

Symposium on Signals, Systems and Electronics, p. 395 - 398. 

[SALEK et al, 1999] SALEK, A. H., LOU, J., PEDRAM, M., (1999), MERLIN: Semi-order-independent 

hierarchical buffered routing tree generation using local neighborhood search, 

Proceeding of the 36th ACM/IEEE Conference on Design Automation, p. 472 - 478. 

[SHI and zi, 2005] SHI, W., LI, Z., (2005), A fast algorithm for optimal buffer insertion, IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 6. p. 879-891. 

[SHI et al, 2004] SHI, W., LI. Z., ALPERT. C. J., (2004), Complexity analysis and speedup techniques for 

optimal buffer insertion with minimum cost, Yokohoma, Japan, Proceeding of the 2004 

Conference on Asia South Pacific Design Automation, p. 609-614. 

[SMITH, 1998] SMITH, M. J. S., (1998), Application-specific integrated circuits, Addison Wesley VLSI 

System Series, p. 1026. 

[TANG et al, 2001] TANG X., TIAN, R., XIANQ H., WONG D.F., (2001), A new algorithm for routing tree 

construction with buffer insertion and wire sizing under obstacle constraints, Proceedings 

of the 2001 IEEE/ACM International Conference on Computer Aided Design, p. 49-56. 

[TANG and WONG, 2004] TANG X., WONG, M., (2004), Tradeoff routing resource, runtime and quality in buffered 

routing, Proceeding of the 2004 Conference on Asia South Pacific Design Automation, p. 

430-433. 

[TELLEZ and SARRAFZADEH 1997] TELLEZ, G E., SARRAFZADEH, M., (1997), Minimal buffer insertion in clock trees 

with skew and slew rate constraints, IEEE Transactions on Computer-Aided Design, 

p.333-342. 

[TOUATI, 1990] TOUATI, H., (1990), Performance-oriented technology mapping, University of 

California, Berkeley, Technical Report Memorandum UCB/ERL M90/109. 

[VAN GINNEKEN, 1990] VAN GINNEKEN, L.P.P.P., (1990), Buffer placement in distributed RC-tree networks for 

minimal Elmore delay, Proceeding of IEEE International Symposium on Circuits and 

Systems, p. 865-868. 

118 



[VOGEL and WONG, 2006] VOGEL, S. WONG, D.R,(2006), Closed form solution for optimal buffer sizing using the 

Werierstrass elliptic function, Proceeding of the 2006 Conference on Asia South Pacific 

Design Automation, p. 315-319. 

[WANG et al, 2005] WANG K., RAN, Y., JIANG, H., MAREK-SADOWSKA, M.,(2005) General skew 

constrained clock network sizing based on sequential linear programming, IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 

5. p. 773-782 

[ZHOU et al, 2000] ZHOU, H., WONQ D. E, LIU, I. M„ AZIZ, A., (2000), Simultaneous routing and buffer 

insertion with restrictions on buffer locations, IEEE Transaction Computer Aided Design 

Integrated Circuits, vol. 19, no. 7, p. 819-824. 

[ZHU, 1995] ZHU, Q. (1995), Chip and Package Co-Synthesis of Clock Networks, PhD thesis, 

University of California, Santa Cruz, California. 

119 


