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RESUME

Le moulage de composites a renforts tisses sur des formes complexes ayant une double

courbure conduit a un rearrangement complexe des differentes couches du stratifie. Ces

changements qui se produisent durant la mise en forme modifient les proprietes mecaniques et

thermiques du materiau et creent des niveaux de contraintes et defonnations residuelles

difficilement previsibles. Cette etude vise a predir les facteurs suivant: les coefficients de

retrait des composites tisses, Ie rearrangement des fibres qui s'effectue durant Ie moulage de

formes complexes en composite a fibres tissees, ansi que les contraintes et defomiations

residuelles qui en decoulent.

Le coefficient de retrait est estime a partir de la theorie classique des stratifies et de

Fextension non lineaire. La reorientation des fibres et la variation de Fepaisseur des couches

constituantes sont predites en utilisant la methode du fllet a rotules. La variation de 1'epaisseur

des plis est calculee pour Ie cas cTun moulage avec matrice simple. Les distorsions de la piece

moulee sont calculees avec un modele par elements fmis qui tient compte du rearrangement

complexe des couches. Un modele pour la caracterisation du comportement mecanique des

composites a renfort tisse, base sur Ie modele mosaique, est presente et utilise pour la

modelisation de la structure.

En etudiant Ie coefficient de retrait, on en deduit que la resine tend a se contracter dans la

direction perpendiculaire a la direction des fibres tandis qu'il y a expansion dans la direction

des fibres. Pour des lamines fabriques a partir de tissus non-symetriques tels que Ie «satin8» et

de la resine polyester ayant durci a la temperature ambiante, 11 y a une grande deformation



hors du plan du tissu apres durcissement. Consequemment, Ie coefficient de retrait a ete

determine de deux fa^ons : par la theorie classique des stratifies et aussi par Pextension non

lineaire. Les resultats montrent que la prediction basee sur la solution non-lineaire est

conforme au resultat experimental.

Les predictions numeriques de la reorientation des fibres, de la variation de 1'epaisseur des

couches et des distorsions sont comparees avec des pieces moulees sur une forme

hemispherique a base conique. Atm de mettre en evidence les variations de comportement de

differents types de tissage, deux composites tisses constitues de fibres de verre et de resine

polyester ont ete utilises: une toile et un satin de 8.

Les mesures de 1'orientation des fibres et de 1'epaisseur des plis ont montre une grande

conformite des valeurs calculees avec Ie modele numerique du filet a rotules. Une precision

legerement superieure des resultats a toutefois ete observee avec Ie composite en toile,

confirmant Ie comportement plus uniforme de la toile compare au satin 8. D'autre part, une

plus grande facilite de formage du satin 8 a ete observee, ce qui confirme les differences de

comportement de plusieurs types de tisses.

L'analyse par elements fmis des distorsions a montre une bonne precision. Le modele propose

pour la caracterisation mecanique des composites tisses s'est avere efficace !ors de 1'analyse.



SUMMARY

Forming of fabric composites into complex parts such as double curvature shells leads to

complex redistribution and reorientation of fibres in the composite. This results in

heterogeneity in thermal and mechanical properties of the material which in turn creates

residual stresses and deformation of the part after moulding. This study deals with the

prediction of the shrinkage coefficient of fabric composite, the fibre reorientation and layer

thickness variation during forming of fabric composites as well as the resulting residual stress

and deformation after moulding.

The shrinkage coefficient is evaluated using the classical laminate theory and the non-linear

extension. The fibre reorientation is predicted using the pin-jointed net theory. The layer

thickness variation is calculated according to single die moulding. A finite element model

using calculated rearrangement of the laminate is generated for the residual distortion

prediction of the complex part. A model for the analysis of the mechanical behaviour of fabric

composite, based on the mosaic model, is presented and used in the finite element model.

The investigation ofshrinkage coefficient leads to the conclusion that the resin tends to shrink

in the direction perpendicular to the fibre direction while it extends in the fibre direction. For

laminates fabricated from unsymmetric woven fabric such as 8 harness satin and polyester

resin with room-temperature curing, there is a large out-of-plane deformation in the after

curing. The determination of the shrinkage coefficients was realised in two ways: by using the

classical laminate theory and the non-linear extension. The results showed that the prediction

based on the non-linear solution conforms to the experimental results.

The prediction of the rearrangement of the laminate and the distortion were compared to

experiments on rounded top cone parts. To study the influence of behaviour of the fabric

Ill



structures, two different glass polyester fabric composites were used: plain weave composite

and 8 harness satin. Experimental measurements of the fibre orientation and thickness of the

moulded parts showed good agreement with the predictions. As expected, uniformity of the

rearrangement on the plain weave composite parts and better formability of the 8-harness

satin weave composite have been observed.

The finite element computation of the distortions of the moulded parts show good agreement

with experimental measurements. The model for the mechanical behaviour of fabric gave

relatively good results.

IV
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INTRODUCTION



INTRODUCTION

In recent years, applications of reinforced polyester have increased constantly in various fields

such as automobile, construction, marine, sanitary equipment, etc. Polyester reinforced by

glass fibre, indeed, offers major advantages including low cost tooling, ease of fabrication,

wide range of available colours, light weight, high strength, high choke resistance, simple

curing cycle, etc. However, several problems related to the quality of parts made ofpolyester

reinforced by glass fibre such as warpage, surface appearance, crack initiation etc. are

frequently encountered in practice. This is caused by shrinkage during polymerisation of the

resin. Much works [1-9] have been carried to reduce shrinkage ofpolyester resin. However,

these reported works are limited to polyester film or short fibre composites. There are not any

investigation on the same phenomenon for the woven fabric composite. To predict the

shrinkage of polyester reinforced with woven fabric, the following problems need to be

addressed:

To choose the mathematical model for modelling the mechanical properties of woven

composite.

To determine the shrinkage coefficients.

Deliberate efforts have been made to model the mechanical performance of woven fabric

composites. The various mathematical models such as the mosaic model, the fibre undulation

model, bridging model and sub-plies model have been developed. These models, incorporated

with the classical laminate theory were used to predict the thermal and the mechanical

properties of woven fabric composite. However, the mosaic model, the crimp model and the

bridging model cannot be applied to the case of non orthogonal fabric structures, encountered

in parts with double curvature. The sub-plies model will thus be utilized in this work.

Although the polymerisation of polyester occurred at room temperature, problems such as

warpage and large out-of-plane deformation, encountered in composite with high curing



temperature, were also observed in composite made of polyester. Therefore, the shrinkage

coefficients can be determined in the manner of the thermal expansion coefficients.

It is known that, during the fabrication process, due to the mismatches of the thermal

coefficients or the shrinkage coefficients between two directions: longitudinal and

perpendicular to the fibres, laminates experience very complex changes in shape.

If the lay-up configurations are not symmetric about mid-plane of the plate, a bent or warped

shape due to bending-stretching and bending-twisting coupling occurs. Experiments [10]

showed an appearance of circular cylindrical shape rather than saddle shape for laminate. On

the other hand, the out-of-plane deformations of thin laminate are many times higher than of

the thickness. As a consequence, the classical laminate theory is in conflict with the

experiments and needs to be modified. The reported investigations [11-18] developed a

geometrical non-linear solution from the classical laminate theory to conform to the

experiment. However, these efforts have been only offered to the unwoven composites.

Following the above approaches, the purpose of this work is to address the shrinkage problem

in woven composite made ofpolyester.

Accordingly, in this thesis, we will address the following issues: First, the theoretical

background will be given in Chapter II, Then the methods and the models used to address the

shrinkage problem will be presented in Chapter III. The description of the sub-plies model for

modelling woven fabric composite, the methods for evaluating the shrinkage coefficients

consisting of the linear and non-linear theories, the fisherman'net method for meshing woven

fabric, and the finite element method application will be issued. Chapter 4 will be reserved for

the experimental results and discussions. We will conclude with a discussion of the main

issues addressed in this work.



CHAPTER 11

THEORETICAL BACKGROUND



2. THEORETICAL BACKGROUND

2.1 Material composite . .

Composites consist of one or more reinforcement phases embedded in a matrix phase. The

reinforcement phase is usually harder and stronger than the matrix phase. Properties of

composites are strongly influenced by the properties of their constituent materials, their

distribution, and the interaction among them.

2.2 Matrix materials

Fibres, since they can not transmit loads from one to another, they have to be embedded in a

matrix material, to form a composite. The matrix serves to bind the fibres together, transfer

loads to the fibres, and protect them against environmental attack and damage due to

handling.

2.2.1 Polymers

Polymers are the most widely used matrix material for fibre composites. Their main

advantages are low cost, easy processibility, good chemical resistance, and low specific

gravity. According to their structure and behaviour, polymers can be classified as

thermoplastic or thermosets. Thermoplastic polymers soften or melt on heating. Otherwise,

thermosetting plastics do not soften but decompose on heating



2.2.2 Common Polymeric Matrix Materials

Polyester and epoxy are the most common polymeric matrix materials used with high-

performance reinforcing fibres. Both of them are thermosetting polymers. The typical

properties ofpolyester and epoxy are listed in table 2.1 and 2.2.

TABLE 2.1 TYPICAL PROPERTIES OF POLYESTER RESIN

Density, g/cm3 1.1-1.4

Tensile strength, MPa 34.5 - 103.5

Tensile modulus, GPa 2 - 4.4

Thermal expansion, 1 Q'6/°C 55 - 100

Water absorption, % in 24 h 0.15-0.6

TABLE 2.2 TYPICAL PROPERTIES OF EPOXY RESIN

Density, g/cmj 1.2- 1.3

Tensile strength, MPa 55-130

Tensile modulus, GPa 2.75 - 4.1

Thermal expansion, 10/C 45-65

Water absorption, % in 24 h 0.08 - 0.15



2.3 Fibre

A great majority of materials are stronger and stiffer in the fibrous form than as a bulk

material. A high fibre aspect ratio (length-diameter ratio) permits very effective transfer of

load via matrix materials to the fibres, thus taking advantage of their excellent properties.

Therefore, fibres are very effective and attractive reinforcement materials. There are a variety

of fibres in the market. However, the following kinds are used widely. -

Glass fibre

Carbon and Graphite fibre

Aramid fibre

Boron fibre

Glass fibres are the most common of all reinforcing fibres for polymer matrix composites.

The principal advantages of glass fibres are the low cost and high strength. The disadvantages

are low modulus and poor abrasion resistance. Two forms of glass fibres can be produced -

continuous fibre and discontinuous fibre. In the continuous form, glass fibre can be classified

in two types: nonwoven and woven.

2.3.1 Woven fabric

In the woven fabric, fibre yarn is woven into fabric by standard textile operations. Woven

fabric is commercially available in various forms such as plain weave, twill weave, crowfoot

satin, 5 harness satin and 8 harness satin, figure 2.1.



Plain weave

Iff?
crowfoot satin twill weave

rrrrrrrn
r»»rrrrrlai

rrrrrrrrl
rrrrrrlan

rrrrrn

5 harness satin

uirrrrrrn
rrrrrrrn
frrrrrrlai
rrwlBrm
rrrrrrrn

8 harness satin

Figure 2.1 Different types of woven fabric

The various types of fabric structures can be identified by the pattern of their repeating

regions. They are characterized by a geometrical parameter ng, that denotes a warp thread

which is interlaced with ngWeft threads, figure 2.2. For example, ng= 2 for plain weave, ng = 3

for twill weave, ng = 4 for crowfoot satin, ng = 5 for 5 harness satin, and iig = 8 for 8 harness

satin.

^5^© © ® <© © © © ^^.

Figure 2.2 The pattern of the repeating region (ng = 8)



2.4 Classification of composite material

Most composite materials developed so far, have been fabricated to improve-mechanical

properties such as strength, stiffness, toughness, and high-temperature performance. It is

natural to study together the composites that have a common strengthening mechanism. The

strengthening mechanism strongly depends on the geometry of the reinforcement. Therefore,

it is quite convenient to classify composite materials on the basis -of the geometry of a

representative unit of reinforcement. Figure 2.3 represents a commonly accepted classification

scheme for composite materials.

Composite materials

Fibre reinforced composites
(fibrous composites)

Partide-reinforced composites
(particulate composites)

Random
orientation

Single-iayer composites
(including composites having
same orientation and properties in
each layer)

Multilayered (angle-ply)
composites

Laminates Hybrids

Continuous-fibre-reinforced
comDosites

Discontinuous-fibre-reinforced composites

Unidirectional
reinforcement

Bidirectional
reinforcement

(woven reinforcements)

Random
orientation

Preferred
orientation

Preferred
orientation

Figure 2.3 Classification of composite materials



2.5 Different types of fibre deformation

During the forming process, the fabric must deform to conform to the die geometry. As a

result, the fill threads and the weft threads of fabric are no longer orthogonal. This results in a

significant modification of the mechanical properties of woven composite. Thus, the study of

the different deformed forms of fabric plays an important role.

2.5.1 Stretching of the fibre

Because the Young's modulus of the glass fibre is about 68.9 GPa and the maximum

stretching of fibre is about 4.8% for a very heavy load, it is clear that the stretching of fibre,

figure 2.4, is negligible during the forming process.

^>
B

d(A,B) < d(A,C)

Figure 2.4 Illustration of the stretching of fibre

2.5.2 De-undulation of the fibre

In the fabric, the fibres are originally undulated. In the forming process, the fibres become

tighter and the fabric looses its weaving regularity, figure 2.5. The de-undulation of

fibre is also negligible,

10



A B c
^>

Figure 2.5 Illustration of the de-undulation of fibre

2.5.3 Sliding by shear of fibre

The mesh of the fabric is a more or less rigid set. When we pull on a comer of fabric, if the

mesh can deform without changing the angle of its corner this phenomenon is called the

sliding of the fibres, figure 2.6. Sliding is a undesirable characteristic.

^>

Figure 2.6 Illustration of sliding by shearing of fibres

In the reference [17] a kinematic model of fabric was presented. The experimental results

have conducted to an empirical equation in which a corrective factor t's", featuring for the

elongation of the elementary mesh and the angle 9 between the waq? and the weft, was

introduced.

11



p=p^+s(\-^ (2.1)

Where

po '. the length between the adjacent meshes of a non-deformed fabric

p : the length between the adjacent meshes of a deformed fabric

s : corrective factor

6 : angle between the warp and the weft

2.5.4 DefQrmation due to the trellii effect

During the forming process, the fibres are not stretched but they only change their directions,

figure 2.7. That process needs less effort to obtain the large deformation. The small amount of

energy needed for the trellis effect reinforces the fact that it is able to neglect the three

previous types of deformation. It is also seen that this effect is close to what happens in the

pure shearing of metal.

Finally, it can be assumed that the fibre deformations result exclusively from the trellis effect.

The deformation of fabric is then reduced to simulate a geometrical problem - calculating the

reorientation of fibres. In this model, the fabric constitutes of two families of unstretchable

fibres which connect together by the rotating joints.

12



^>

Figure 2.7 Illustration of the trellis effect

Generally, the numeric resolution for predicting the deformation of fabric during forming

process can be realised by two ways:

The algorithm based on the principle ofminimisation of the elastic energy [18].

The algorithm using the method of fisherman's net [19,20].

The minimisation of the elastic energy provides the results which are similar to ones obtained

by the fisherman's net. However, the fisherman's net method is easier to use and gives a

smaller error. Therefore, it will be used to predict the reorientation of fabric.

2.6 Deformations of the stratified composites during moulding

Laminate experiences a complex change in shape during the forming process due to external

forces, die geometry, stacking sequence of fabric, etc. The forces, applied on material in

which it deforms according to the form of the mould, play an important role on the

microstructure of composite. The visco-elastic deformations occurring during the forming

process, will affect strongly the mechanical performance of the specimen. Generally, the

elastic behaviour of fibre structure and viscous behaviour of resm will influence the

deformation of composite during the forming process.

13



For laminated composites, the deformation may be described in terms of five distinct possible

mechanisms [21,22]. illustrated in figure 2.8: resin percolation, longitudinal fibre flow,

transverse fibre flow. in-plane shearing and interlaminar slip.

im+itt

a)

b) c)

^>

d) e)

Figure 2.8 Fundamental deformation mechanisms involved in the forming of composite

laminates: (a) resin percolation; (b) longitudinal fibre flow; (c) transverse fibre flow; (d) in-

plane shearing; (e) interlaminar slip.

2.7 Kinematic model in the thickness sense

The forming process of fabric on a complex die geometry produces rearrangement of fibres,

not only in the plan of fabric, but also in the thickness sense. In the fabric plan, the

14



deformation is supposed to be conformable to trellis effect, and modelised by the fisherman's

net. In the thickness sense, two study cases must be distinguished, figure 2.9.

Moulding with simple tool plate. -

Moulding with double tool plate.

a) b)

Figure 2.9 Illustration of two types of moulding: a) Moulding with simple tool plate,

b) Moulding with double tool plate.

Since the specimens used in this research were fabricated by hand-lay-up method (the

moulding with simple tool plate). This kind of moulding does not impose a uniform thichiess

to the fabric. The rearrangement of the fibre is assumed to be mainly governed by the trellis

effect.

It means that for a laminate, the deformation mechanism can be represented by the figure

2.10.

15



A\>v

^>

Figure 2.10 Modification of thickness under the forming process

It can be seen that the elementary mesh area is reduced due to the variation of angle 6.

( a'sin(O) instead of a' ). However, it has been assumed reasonably [23] that although ply

thickness changes occur during forming, the local volume fraction doesn't change. The

mathematical constraint derived from this assumption is that the thickness must be varied by

the following law.

sin(^)
(2.2)

Furthermore, the hypothese of the fibre volume fraction staying constant implies that the

engineering constant such as Ex, Ey, v^, Gxy are independent of the angle 6.

2.8 Residual stress

It is known that the existence of residual stress can cause micro cracking in resin matrix,

warping, buckling and the difference in shape between the mould and fabricated piece. Since

the residual stress has a significant influence in the prediction of the mechanical behaviour as

well as the longevity of fabricated piece, a serie of publications [24,25,26] has contributed to

the research on its effect on composite material.
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We distinguish that there exist two types of residual stress with a thermoset matrix. One

derives from the thermal strain and the other links to the chemical shrinkage of resin. At the

beginning of the fabrication cycle, most of chemical shrinkage takes place, induced by the

cross-link. The residual stress derived from the thermal strain are the following.

The non-uniform variation due to the change of temperature inside the piece.

The deformations of the piece is limited in certain points by boundary conditions.

The anisotropy of the material.

The fabrication process follows the strictly technical requirements in order to avoid the first

two types of residual stresses. Consequently. these two types of stresses appear as the result of

fabrication or manipulation error.

The anisotropy of material is then the principal phenomena that induces the residual stresses.

It is high enough to cause the cracks even before any load is applied [27]. From an analytical

point of view, these residual stresses have been modelled on a basis of elastic behaviour

material [24].

To simplify the calculation process. the thermo-mechanic behaviour is supposed to be linear

during the process of fabrication by Hahn and Pagano [24]. That means the coefficients of

tensor of rigidity and thermal expansion are constant. This assumption is still valid in

condition that the magnitude ofresin shrinkage in the mould is known.

The residual stresses (T|A have been modelled [28] by the following formula, which cr," is a

linear function of the temperature.

aR=Q,,(^+zk^R) (2.3)

Where:

CT|R : residual stress

Qij: tensor of rigidity
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Ej : strain component in mid-plane

z : coordinate in thickness direction

kj : curvature

EJR: strain caused by thermal and chemical shrinkage

2.8.1 Stiffness gfjaminates

The mechanical behaviour of a laminate is the superposition of the mechanical properties of

each unidirectional ply. We can apply the Hooke's law to evaluate the stiffness of

unidirectional ply. Since composite material is anisotropic, it is important to distinguish the

difference between two material coordinate systems: The on-axis system and the off-axis

system. In the on-axis system, the x-axis is along with the fibre direction, figure 2.11, while in

the off-axis system, the x-axis rotates about the fibre direction through an angle 0, which is

called the skew angle. The relation between stress o-, and strain £, on the on-axis system of

one unidirectional ply is the following.

^
a>

cr,

Q» Q xy 0
XV yy

0 Q
0 (2.4)

The stif&iess coefficients Qy can be determined directly from the engineering constant.

Q»=mE»

Q»,=mEy

Q>, = mE,

Q,,=G,,

(2.5)

18



where

m =
1

1-^EV
E.

> 1

Figure 2.11 The coordinate system for a unidirectional ply. Oxy: on-axis system, 012 : off-

axis system.

Using the transformation matrix [28], the relation between the stress and strain in the off-axis

system ofaunidirectional ply can be expressed as

0-,

0-,

0\

Qll Ql2 Ql6

Ql2 Q22 026

Q,6 Q:6 066

£•> (2.6)

19



where

Q,| = Q^ cos4 <9+ Q^. sin' 0 + 2(Q,y + 2Q^)sin2 0cos1 0

Q22 = Qxx sin4 0 + Q^ cos4 0 + 2(Q,y + 2Q^)sin2 0cos2 0 -

Q,2=(Qx.+Q>,-4QJsin2^cos26>+Q^(cos4^+sm4^)

Q66=(Qxx+Qyv-2Q,-2QJsin2^cos2^+Q,(cos4(9+sm4<9)

Q,6 =(Qxx -Qxy -2QJsin^cos3^-(Q^ -Q,, -2QJsin3^cos^

Q26 =(Q. -Q.y -2QJsin^cos^-(Q^ -Q, -2QJsin^cos3 ^

(2.7)

Finally, the stress resultant N; and moment M; of a laminate can be expressed as functions of

the de formation £j° of the neutral fibre and the curvature kj.

where

'N,

M.

An B.

B, D»

A, = jQ.dz

B,, = jQ,zdz

D, = jQ,,z:dz

(2.8)

(2.9)

2.9 Woven fabric composite model

Polymer reinforced by woven fabrics are probably the most commonly used composites in

structural applications such as aircraft, boats, reservoirs, pressure vessels, etc. Woven fabric

offers many advantages in terms of manipulative requirements, including dimensional

stability, good conformability, and deep-draw shape ability. Moreover, compared to unwoven

unidirectional composites, the woven-fabric composites provide more balanced properties,

higher impact resistance, easier handling and lower fabrication cost, particularly for parts with

complex shapes. Deliberate efforts have been made to model the thermo-mechanical
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performance of woven fabric composites. The various mathematical models have been

developed by considering the actual properties and all possible parameters that might affect

the results. -Up to now, four main workable models are known as the mosaic model, the fibre

undulation model (crimp model), the bridging model, and the sub-plies model.

2.9.1 Mosaic model

In the mosaic model, proposed by Chou [29]. the woven composite is idealized by an

assembly ofcross-ply laminates [0/90] in series, figure 2.12. The stiffness coefficients of the

mosaic model are evaluated by using the classical laminate theory.

With a simple structure, the mosaic is unable to take into account the stress perturbation, the

deformation as well as the continuity of fibre inside laminates in the undulated zone.

L

M^^a23
m

t/2

L/n.

Figure 2.12 Modelisation of mosaic model

In this model, the stiffness coefficients A,j. B, and D of a certain woven composite can be

calculated by a cross-ply laminate with the same thickness and fibre volume fraction as the

woven fabric.
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A,, =A,

B, =[\-2-\B, (2.10)'IJ

D, = A,

n.l

Although the mosaic model appears to be easy to use, it can't be applied for the fabric which

is no longer orthogonal.

2.9.2 Fibre undulation model

The fibre undulation model [30] is developed to consider the continuity and the undulation

of fibre in fabric composites. This model, illustrated in figure 2.13, permits to determinate the

stress behaviour and the deformation of woven composite in the undulated zone. The

undulated zone is depicted by three geometrical parameters hifx), h^x), and flu which are

shown in figure 2.13 The fibre undulation model is applicable to Hg values in general.

However, it is only effective for characterizing the plain weave and seems to be less effective

for the satin where n, > 4.
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Y,

Figure 2.13 Modelisation of the fibre undulation model

2.9.3 Bridging model

This model [31] utilises the concept of two previous models. It is valid for only satin weave

where rig > 4. Figure 2.14 represents a basis interlaced region in the satin weave called the

repeating unit. A schematic view of the bridging model is shown in figure 2.14 c for a

repeating unit, which consists of the interlaced region and its surrounding areas. The four

regions labelled by A, B, D and E consist of straight fill threads, and hence can be regarded as

pieces of cross-ply laminates. Region C has an interlaced structure with an undulated fill

thread. In this model, the regions B and D carry higher loads than region C and act as bridges

for load transfer between regions A and E. For plain weave fabric, since there are no straight

thread regions surrounding an interlaced region, the bridge model is no longer valid.
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a)

h-2°—l

b) .

Figure 2.14 Modelisaion of the bridging model, a) Repeating unit, b) Decompostion of model

2.9.4 Sub-plies model

In the sub-plies model [32], the fabric is considered as a laminate consisting of four fictional

unwoven unidirectional plies, figure 2.15. The fibre orientation of these four fictional plies is

arranged as an anti-symmetric structure that can be considered generally as [6/-0/9/-6].

It has been shown in [32] that the fictional thickness e can be expressed as a function of the

fabric thickness to and ng.

e=t. (2.11)
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Where ng is a geometrical parameter which presents a wrap thread interlacing with ng fill

threads. The stiffhess coefficients of this laminate Ay, Bjj, and Dy can be obtained from the

classical laminate theory.

4y = ^y

B5=V~i\B"

DS = D,

(2.12)

where Ay, By and Dy are the stiffness coefficients of a [0/90] cross-ply laminate with the

same fibre volume fraction and total thickness as that of the fabric composite.

Sub-plies model is identified with the shell element in any finite element code. Therefore, it is

able to use directly its engineering constants in finite element code without any transferring

procedure.

t/2

e/2 e/2

Figure 2.15 Model isation of the sub-plies model

25



2.10 Effect of non-Iinear on the after curing shape of unsymmetric laminates

It is well known that the unsymmetric laminates experience a change in shape after curing due

to the existence of residual stress. Classical lamination theory predicts the after curing shape

of all unsymmetric laminates to be saddle, figure 2.16. Experimental observations, however,

indicate that some unsymmetric laminates have cylindrical shape. Moreover, the out-of-plane

deformation is many time higher than the thickness (geometrical non-linear). For composites

made of polyester with room-temperature curing and high level of shrinkage, the same

phenomena occurs on thin unsymmetric laminate.

a) b)

c) d)

Figure 2.16 Laminate shapes: a) room-temperature, b) a saddle shape, c) a cylindrical shape,

d) another cylindrical shape.
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CHAPTER III

METHODOLOGY



3. METHODOLOGY

3.1 Summary diescription

This chapter presents the methodology to predict the complex arrangement of fabric during

the forming process as well as its effect on strain and residual stress. The chapter will thus be

divided into three main parts.

The first part will focus on the determination of the stiffness coefficients of woven fabric

composite. In this part, the woven fabric composite will be modelled using the sub-plies

model. The effect of fibre's undulation will be taken into account through the test data.

The second part describes the method to predict the shrinkage coefficients. The mechanical

properties, determined from the first part, are utilised to evaluate the shrinkage coefficients.

Two methods according to two kinds of sample: cross-ply and angle ply samples, will be

presented. As to be seen for a composite fabricated from the unsymmetric woven fabric and

the matrix with a high level of shrinkage, the non-linear effect on the deformation becomes

significant. Therefore, the discussion on the non-linear method will be presented.

The last part is the synthesis of the two previous parts. The technique used for addressing the

shrinkage of a complex geometrical piece after moulding will be presented. The fisherman's

net method is used to predict the fibre's reorientation. The finite element method is then used

to determine the strain and residual stress.

3.2 Material choice

The deformations appearing during the forming process depend on the fibre's structure of

composite. In order to show the possible influences of the weaving type of fabric on modes of
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deformation, two types of fabrics were utilised, plain weave and 8-hamess satin. The first type

is strongly affected by the fibre's undulation and easy to deform during moulding while the

second type is less affected by the fibre's undulation and make it harder to follow the die

geometry. The utilisation of these two types of fabrics permits a verification which, through it,

we can assess the effects of the different intermediate types of fabrics on the deformation of

woven composites. Therefore, in this work, resin polyester reinforced by glass fibre woven in

the plain weave and 8-harness satin patterns was utilised.

3.3 Study form

The piece used to study the shrinkage in woven fabric composite must satisfy the following

conditions.

- It must have the form which is often used in industry

- It is easy to fabricate

- It permits the existence of the possible deformed mechanisms of woven fabric such

as longitudinal fibre flow, transverse fibre flow, in-plane shearing, and interlaminar

slip, see paragraph 2.6.

- It permits to avoid the fibre kinking during the forming process.

- It is easy to remove from the mould after moulding

To satisfy the above demands, the chosen piece has the shape of a rounded cone. The rounded

cone is modelled by a right circular cone in which the top of the cone has been replaced by a

spherical shell, figure 3.1. The spherical sector is assumed to be joined smoothly to the cone

by having the same diameter and the same slope of the cone at the junction.
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Figure 3.1 Rounded cone

The rounded cone belongs to the family of pieces which have the double curvature. This is the

most popular form in many industrial applications. With such a three dimensional structure,

the piece permits the existence of all admissible deformed mechanisms.

According to [20], the relation between the cone angle a and the minimum angle of fabric

(the minimum angle between the weft and the warp) can be established by an empirical

equation.

,a.
^,.=90"sin(-) (3.1)

To avoid the fibre kinking, the minimum angle of fabric must be greater than 45 .

On the analytical point of view, the dimension of piece does not affect the numerical results.

However, the research from [17] demonstrated that a rounded cone with a hemispherical

diameter <25.45mm will cause an important dispersion in numerical result.
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In order to reduce the dispersion of the result, a radius of 60mm for the spherical sector and a

height of 60mm for the rounded cone was chosen. Figure 3.2 illustrates the chosen

geometrical dimensions.

Figure 3,2 Dimensions of the chosen rounded cone.

3.4 Thermo-Elastic Properties of the Unidirecdonal Sub-plies

Since the fibre undulation is not considered in the sub-plies model, the prediction of thermo-

elastic properties of fabric composite based on this one becomes less accurate. Especially, for

fabric with a low value of rig such as plain weave fabrics, the model may lead to significant

error.

To make the stiffness coefficients of the model more appropriate, the properties of the

unidirectional sub-plies should be modified in such a way that the effect of fibre undulation

must be taken into account. These modified properties can be obtained through the
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experimental measurement on moulded specimens made from the woven fabric composite.

According to reference [32], two tension tests are necessary for such characterization : a

[(0/90)n]s test and a [(+45/-45)n]s test, where the angles correspond to the yarn orientations in

the fabric. The stiffness coefficients of the equivalent unidirectional sub-plies ( Qxxfeqj, Qx)'[eq],

Qyy[eq] and Qss[eq]), can thus be calculated from the Young's modulus and the Poisson's ratios

of these tension tests.

From the tension tests on [(0/90)n]s specimens, the Young's modulus E [0/90] and the

Poisson's ratio V[o9o] are given respectively by eqns (3.2) and (3.3) as a function of the

stiffness coefficients of the equivalent unidirectional sub-plies.

Q.^[^} + Qyy[^} ^Qxy[^]
^[0 901 ~ 2- o , ,+a, , v"

^xr[^)^^nl^|

:T,-[^]
l/[o/90] = 0~~^0~~ ^'~

'xr(^) ~T~ ^yy[ug]

These equations can be combined to obtain the stiffness coefficient of the equivalent

unidirectional sub-plies Qxy-[eq]-

_ E[0 90]l/[0/90]

'x>^ ~ i_^_
'[0/90]

Similarly, the sum of the stiffness coefficients Qxx[eq] and Qyy[eq] can be expressed as

_ 2E[0 90]
?xxfeq] + ^>y[eq| = -^—-^— ^-

v[0,90)

Generally, we can not separate these two coefficients from test data of tension test. However,

it is reasonable to assume that the fibre undulation does not have a significant effect on the

transverse Young's modulus. Therefore, the transverse modulus of the equivalent

unidirectional composite Ey[eq] of sub-plies model could be considered equal to the transverse

modulus of unidirectional composite Ey^mdir]' The relation is then given by
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Qli
Ey[^} = EA'"^'r} = Qy^n} ~ ^ ^3'6^

'."(^]

By combining eqns (3.4), (3.5) and (3.6), eqn (3.7) can be obtained. The stiffness coefficient

Qxx[eq] can be deduced by solving this equation.

Q^\+
( 2£,

\
£„„„„„. - -^f- \Q»M + Q;.M = o (3.7)

-[0 90}

Substituting the values of Qxx[eq] and Qxy[eq] into eqn (3.6), we can obtain the stiffness

coefficient Qyy[eq].

From the tension test on [(+45/-45)p]s, the Young's modulus (E[+45/_45]) and the Poisson's ratio

{\'[-43-45j) can be expressed as a function of the stiffness coefficients of the equivalent

unidirectional sub-ply.

/.u(e(/J ^.u[cq] +^.iT[e</) + 2y.r.v(e</]

"l"-4'l-0.»,,,+(?n,,|+2&,,,,,+40,,,,,

^^ ^^(?^l+0,,l,l+2(?^,-40,^1
rl4'"'l-^,l+0,l,,l+2e,,i,,i+4&,,,,

Similarly to the case of [(0/90)n]s tension test, eqn (3.8) can be combined to obtain the

stiffness coefficient of the equivalent unidirectional composite Qss[eq]-

^45/-45]
'•^[^] ~ ~^77~~. \~ ^-''

2(l+l/M5..-45])

3.5 Characterization of equivalent on-axis shrinkage coefficients

The equivalent on-axis shrinkage coefficients y^eq] and /v/-eqj can be calculated in the same

manner of thermal expansion coefficients. Generally, the shrinkage coefficients can be

determined by two kinds of sample: using the [0/90]n or [+6/-9]n woven fabric. With

laminates fabricated from plain weave which have zero curvature after moulding, the [+6/-9]n
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samples supply a simple procedure for evaluating the shrinkage coefficients. While the

laminates fabricated from satin such as 8-hamess satin can use both kinds of sample as well.

On the other hand, the out-of-plane deformation due to the chemical shrinkage in polyester

reinforced by unsymmetric woven fabric, for instance 8-hamess satin, seems to be governed

by the non-linear rule rather than the linear one. Therefore, without loss of generality, the

formulas for calculating shrinkage coefficients will be presented in two ways: using classical

laminate theory and non-linear extension.

3.5.1 Determination of the shrinkase coefficients by cross-plv laminate r0/901n

As mentioned above, the thermal expansion coefficients can be replaced by the shrinkage

coefficients. According to the reference [33], the in-plane strain e; and curvature K, can be

written as functions ofon-axis ply stiffness and shrinkage coefficients.

^^L\,_L
t, m[^ n,)

/y/^J ~Yx!^l

4(Q^Q^4Q,)-3(Q^Q,^
V

7-

Y "^} m'

K,=-K,

K,=0

and

f, =

4(Q,^2Q,)-3(1- 2-)!01,

£ =_f/

e^O

n, m-
r.+ 4(Q,+2QJ-3(]- 2/%

n^ m'

4(0^0,+4QJ-3(Q,+Q,)\]-
^ } m

Yy

(3.10)

(3.11)
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where

Ql= (Qxx[eqj-Q)y/~eq]}( Qxx[eq]-Qxy-[eq])

Q2= (Q^[eq]-Qyy[eq])( Qxy-[eq]-Q)y[eq])

Q3= Qxx[eq]Qyy[eq]-0'^ x)-[eq]

(3.12)

The on-axis equivalent shrinkage coefficients Yx[eq] and Vy^q] can be solved from eqns (3.10)

and(3.U),i.e.

y xi ^ i

Yyleq]

c(a.s, -ci^K, )

a^al +a2^

c(a^£\ +ajKj )

a^a,+a^)

where

^ =4(Q.^.,1 +&,/^7 -2&n/^7^^.^^y+&n/.,/^

- 3(l - ^)~ ^(Q»i.,i - 0,,/.,/ XQ^I - °n/.,/ )

^ =^Q^.,1 -^Qyylc,l -2Q^^JfQ^^,^Q^^i)

2\'^-xx[eq] ^n / cq j -/1 ^-xy/^/ ^yyf^!
n m'

24
a, =

tm
/-^

n,
'xxleql^yyluqj ~ ^ x. f eq /

V "8 }

c = -i[/Q,.,/,,/ -0,,/.,// -^<2^,/0,,^/ -•/&;,,<,/7

V7

-3\1-^\
"J

/
m'

(Qxx[^l ~ 0,n i^j)'

(3.13)

(3.14)

(3.15)
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3.5.2 Determination of the shrinkage coefficients by angle-ply laminate f6/-61n

From the classical laminate theory [28], the in-plane strain s, can be written as function of

resultant force F, and stiffness ofangle-ply laminate A^y, B0,,, D3^

A^(N,-B^)-A^(N,-B^)
'S ^S / ^S \2
A^-{A^)- ^ ^^

A^-B»k,)-_A^(N,-B^)
1 —

Is As -( As\'-
II2^I22 -Vyl!2

where

.V, = ph+qhcos(20)

.V, =ph-qhcos(20) (3.17)
2

k^ = ——"6-4D^

As,j, Bs,j, Ds,/. determined from eqn (2.7).(2.9) and (2.12)

9 : skew angle

P =^(&tr[^) +Qxy[c^/x.x[^} +^Qxy[^] ^ Q yy^Y yy[^]
(3.18)

1 _ „ . 1
<3r =^Wxx[eq] ~ <^xy[eq] )Y xx[eq\ + ~^ W xy[eq} ~ <^ \r[vq] ^ yy[uq}

1—

Two unknowns p, q can be solved by substituting the experimental values of e; and eqn (3.17)

into eqn (3.16). Once p, q are determined the shrinkage coefficients can be calculated from

eqn(3.18).i.e.

^^Q^Q^P^-Q.) ^
Q»Q». - 0,2,

P(Q. -&,)-?(&,, +o,,)
;^=—^—^——r^—=-1— (3.20)

Q»Q,,-Qly
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3.6 Non-linear expansion

For non-linear theory, it was assumed that the out-of-plane displacement of unsymmetric

laminates is many times the laminate thickness. Accordingly, the Von Karman approximation

to Green's strain should be used. The strain-displacement relations are as follows:

^
Sx ~ 3^ ' 2{9x,

.0

6 XX =
(hi 9 w 1 ( chv

Syy =
<9v(

-z
92w l(Q\^

+-1
Qy Qy2 2[9y

£ = —
-YY 2

Qu° Bv 0
+

Qy ox

9^'w S}\' <?u'
-2z——+——

9x9y Ox Sy

(3.21)

For the cross-ply laminate, the out-of-plane deformation are assumed:

w=-^(a,x- +b,y- ) (3.22)

The mid-plane displacements of the laminate are assumed to be of the following form [14]:

.0 _ .. Q~ ._J , _ .._.2u" =a,x-—x' +a^xy'

^=b,y-b-^y3^b^y
(3.23)

Eqn (3.22) and eqn (3.23) are substituted subsequently into eqn (3.21), the mid-plane strains

are expressed as:

4=^/+^r7

<=b,+b,x!

^=(a^b^a-^)xy

(3.24)

If the restriction that e°vy=0, i.e a^=b-i= -aobo/4 are applied in eqn (3.24) and then the mid-

plane strains in eqn (3.24) turn into the Hyer's formulation [12].
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3.6.1 Minimal potential energy

It is reasonable to assume that the external load is not important during the shrinkage process.

Thus, the potential energy, including the effects ofshrinkage expansion, is written as:

W = \QdV (3.25)

where

Q=ic,,(^-^,) (3.26)

After the strain energy density function is expanded in a power series, where Eij are small and

terms higher than the second order are neglected, the reduced tensor form of the potential

energy is:

W=-Q,,s,£,-Y,s, (3.27)

Where Q denotes the reduced transformed stiffness and y; are shrinkage coefficients.

As can be seen, the potential energy can be expressed in terms ofaj, b,, x, y, z, Q and yi:

W = ^\0(a,b,,x,y,z^,,Y,)dxdydz (3.28)

The first variation of W must be zero to satisfy the condition of equilibrium of energy, i.e.
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^'=Zl^]'5°.+lf^,=0 (3.29)
, Sa, !"• • ^ [Sb, F "

Where i=0,l: neglect the in-plane shear strain; i=0,l ,2: assume the in-plane shear strain.

Eqn (3.29) leads to the condition that each of partial variation must be zero. Therefore

w=0
Ca,
.'J. (3.30)

8W-=0
eb.

With the assumption of in-plane shear strain or not, the above equations result in six or four

non-linear simultaneous equations. The coefficients, a,, bi, that were deduced from these

equations are used to construct mid-plane strains. Furthermore, in order to minimize the

energy, 8'W must be positive and definite. A non-linear Newton-Raphson iteration is used to

calculate numerically <5W. See appendix A for the detail of system of equations (3.30).

3.6.2 Shrinkage coefficient determined from the non-linear extension

From the classical laminate theory, the curvature in principal direction of cross-ply laminate

can be expressed as a function of the second derivative of the out-of-plane deformation, i.e.

K^ =——=^ and from eqn (3.24), s^^,, =a,. Substituting the experimental results of
9x" " ' ' ' "'

K^ and s0 p into eqn (3.30) will lead to solving a system ofnon-linear equations to deduce

the on-axis equivalent shrinkage coefficients /xfeqj and Yy[eq]-
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3.7 Fisherman's net

In the previous chapter, we discussed the deformation of fabric to conform the desired

component geometry during moulding. The trellis effect plays an important role in the fibre's

reorientation. It was also outlined several methods used to predict the fibre's reorientation.

Among them, the fisherman's model [19,20] has many advantages, and hence was chosen for

fibre reorientation numerical modelling. In this model, the fabric is considered as being

constituted by two families of inextensible fibres - the wefts and the warps, which connect

together by the ball joints. The angle 9 between a weft and a warp is a variable depicting the

deformation of fabric to follow the die geometry, figure 3.3. The numerical description of

this model is realised by discretizing the weft and the warp into line segments. There are three

mathematical constraints were assumed.

- The first assumption is that the reinforcement fibre can neither be lengthened nor shortened

during forming. The fibre ends are unconstrained and thus any axial load produced in the fibre

is assumed to be negligible. The result of this assumption is that each fibre is then modelled as

a series of constant length line segments joined by nodes. The mathematical constraint

derived from this is that the distance between nodes on a single fibre is held fixed and we

define that distance as the data point spacing, dps.

- The second assumption is based on the transverse spreading behaviour of the ply.

Transverse spreading is produced by the forming pressure. The induced squeeze flow of resin

results in local thinning or thickening of the ply. As to be assumed, although ply thickness

changes occur during forming, the local volume fraction does not change, and thus the

transverse fibre spacing does not change. The mathematical constraint derived from this
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assumption is that the distance between adjacent fibres is also held fixed and we define that

distance as the fibre spacing, fs.

- The final constraint on the nodes is that they must lie on the tool surface.

Figure 3.3 Mathematical modelling of fisherman's net.

Three above constraints can be expressed mathematically by the following equations.

d(M(iJ),M(i-lJ))-ft2

d(M(iJ),M(i-lj))=dps:

M(iJ)eS

(3.31)

Where S is surface of piece

In the cartesian coordinate system, eqn (3.31) becomes
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(X(iJ)-X(i-lj))2+(Y(iJ)-Y(i-lJ)2+(Z(ij)-Z(i.lJ))2-fs2

(mj)-X(iJ-l))2+(Y(iJ)-Y(i,j-l)2+(Z(i,j)-Z(i,j-l))2=dps2 (3.32)

F(X(i,j),Y(iJ),Z(i,j))=0

Where

X(i,j), Y(i,j), Z(ij): coordinate of point M(i.j)

F(X,Y,Z) : mathematical equation of surface tool

The iterative methods such as Newton-Raphson or Least-Squares can be used to solve these

equations. The main steps are summarized as the following.

Choose starting point M{0,0). It means that the intersection between the weft and

the warp, which is referred to as the reference point.

On the weft direction, calculate points M(i,0) so that d(M(i,0),M(i-l),0)=fs

Repeat the second step for points on the warp direction.

Calculate the points M(i,j) by using the iterative technique and the relations in the

system of equations (3.32).

3.7.1 The influence of the grid size

The fisherman's net algorithm idealizes the curve between two adjacent points on the tool

surface as a line segment. Figure 3.4 represents the modelling of the tool surface curvature

For a given surface, the ciu-vature is a fixed value. Thus, the error occurring during the

modelling process depends on the value of p. The more the grid size is reduced, the more the
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error is reduced. However, the value of p should be chosen appropriately to avoid a lengthy

calculation.

surface M(i^,j) ^

As

As developed

M(ij)

Figure 3.4 Modelling the curvature of surface,

3.7.2 Fisherman's net generalized

The fisherman's net method requires that the equation of the tool surface must be expressed in

the explicit form. However, in many industrial applications, the products often have complex

forms to satisfy the aerodynamic and artistic criteria. Consequently, the die geometry can not

be depicted by a unique mathematical equation. To address this problem, the tool surface can

be divided into small triangles (figure 3.5). The determination of the coordinates of the

surface turns into that of triangles.

In the system of equations (3.31), the equation of the surface can be replaced by that of

triangle in which the point M(i,j) belongs to,

(X(ij)-X(i-l,j))2^(Y(iJ)-Y(i-lJ)2Jr(Z(i,j)-Z(i-l,j))2=fs2

(X(i,j)-X(i,j-l))2+(Y(i,j)-Y(i,j-l)2+(Z(ij)-Z(i,j-l))2=dps2

A X(ij)+B Y(i,j)+C Z(i.j)+D=0

(3.33)
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Where

A = (y2-yi)(z3-zi)-(y3-yi)(z2-z,)

B = (Z2-Zl)(X3-Xl)-(Zj-Zj)(X2-X])

C = ^2-X/^>'j-^^-fXj-X^^->'^

D = Ax/ + Byj +Cz/

Xj, y;, Zi: coordinate of three nodes that constitute the triangle.

n_2

c=^> "s

n?

Figure 3.5 Discretisation the surface by the triangles

3.8 Finite element method

To predict strain and residual stress due to the shrinkage of resin during the moulding by the

finite element method,.the geometrical definition and the mechanical properties of piece must

be determined. It means that the following terms must be identified

Type of element

Number of layers in the element.

Material angle fwrap or weft direction in-element coordinate system)

Thickness of layer

Engineering constants
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Geometrical definition of piece

Boundary condition

Applied load

The COSMOS software version 1 .75A programmed by the Structural Research and Analysis

Corporation was used for the finite element analysis in my research. It is also known that the

rounded cone was chosen for the stress and strain analyses. This double cur/ature form is

appropriate to the utility of the shell element with membrane and bending capabilities for

analysis of three-dimensional structural models in the finite element code. Thus, the

SHELL4L is the type of element used. This is a 4-node multi-layer quadrilateral thin shell

element with six degrees of freedom (three translations and three rotations) per node, figure

3.6.

The shell element composes of four plies with the same anti-symmetric configuration as that

of sub-plies model. It means that the stacking sequence of ply's orientation in the element

coordinate system is [0.9,0,9] and the corresponding thickness distribution is

[to/2,e/2,e/2,to/2] . According to the sub-plies model, the relation between to and e can be

deduced from eqn (2.11).
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Weft direction

Warp direction

> Y

^2
e/2

Figure 3.6 Shell4L element. XYZ: Global cartesian coordinate system, xyz: Element

coordinate system.

The meshing procedure resulting from the fisherman's net method will supply the node

coordinates as well as the angle 6 between the weft and the warp. Pointed out in the previous

chapter, the angle 9 affects the total thickness according to eqn (2.2) The stiffness coefficients

of the equivalent unidirectional sub-plies Qxx[eq], Qxy[eq], Qyy[eqj, and Qss[eq], determined from

tension test, can be substituted into eqn 2.5 to evaluate the engineering constants.

Due to the double symmetry of piece, there is only a quadrant of piece which is modelled. The

model is illustrated in figure 3.5.

The boundary conditions can be stated as the following.

For the nodes situated in the plane Y=0, the boundary conditions are

displacement on- Y is null
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rotation around Y is null

rotation around Z is null

For the nodes situated in the plane X=0, the boundary conditions are

displacement on X is null

rotation around Y is null

rotation around Z is null

The on-axis shrinkage coefficients Yxx[eq] Y^[eq] can be applied as the thermal coefficients in

condition that the variation of temperature AT is set to 1.

x

Figure 3.7 Finite element meshing for a quadrant of piece
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CHAPTER IV

EXPERIMENTAL RESULTS AND DISCUSSION



4. EXPEMMENTAL RESULTS AND DISCUSSION

4.1 Materials

In order to show the effect of different fabric structures, two types of fabrics were used: a

plain weave and a 8-hamess satin weave. They represent two different fabric patterns

commonly used (ng=2 for plain weave and ng=8 for 8-hamess satin) with the fibre

undulation effect much more important in the plain weave fabric. The thermo-elastic

properties of unidirectional sub-plies without undulation were measured on a unidirectional

composite consisting of the same matrix and fibres volume fraction.

All samples were fabricated by hand lay-up method from plain weave WR. 180 Z, 8-hamess

satin (aircraft cloth 38") and AK2100 unsaturated polyester resin, supplied by Armkem Inc.

Canada. An approximately 48% fibre volume fraction was maintained during the process of

fabrication. The non-orthogonal fabric was made by deforming the orthogonal interlaced yarns

of fabric by in-plane shearing to different angles before moulding. This in-plane deformation

of the fabric was performed by clamping fabric in a fixture and shearing by hand. With this

method, the angle between the weft and the warp of fabric is uniform.

4.2 Elastic properties

The mechanical properties such as the equivalent on-axis ply stifftiess coefficients Qxx[eq],

Qxy[eq], Qyy[eq], and Qs5(eq] Were deduced from tension tests according to the ASTM (D3039).

To prepare for tension test,-the fabric was cut out in 0° and 45° directions of fill fibres to

make [0/90]n and [-45/45]n samples. The samples were cut off from the laminates by a

diamond saw in order to minimize the damage. Tension test was carried out at the room
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temperature and the relative humidity. Table 4.1 and 4.2 list the values of the equivalent

unidirectional engineering properties and the equivalent on-axis ply stiffness coefficients that

can be determined from eqn (3.2) to eqn (3.9) at the room temperature with the assumption of

Ey[eq] = Ey[unidirection] measured Oil unidirectional sample [34].

Also to be seen, the stiffness coefficients in fibre direction Qxx of plain weave composite is

smaller than that of 8-hamess satin composite. That can be explained that due to the effect of

undulation the plain weave composite becomes weaker in the fibre direction although it has

the same volume fraction with the 8-hamess composite.

To verify' the accuracy of the above properties, the plain weave and the 8-hamess satin fabric

was deformed to different angles before moulding. The off-axis modulus of the deformed

woven fabric composite is shown in figure 4.1 and 4.2 as a function of the angle 9 between

the interlaced yarns. Predictions based on sub-plies model with the equivalent unidirectional

properties derived from the in-plane stiffness Qxx[eq], Q.^f'eqj, and Qyy[eq] measured on the plain

weave and 8-hamess satin samples and on unidirectional samples [34] are also shown. The

results suggest that there is a relatively good agreement between experimental data and the

prediction based on the sub-plies model. Procedures for calculating the off-axis modulus were

referred from [28].

4.3 Shrinkage coeffident

4.3.1 Plain weave

To measure the shrinkage coefficient of constituent fictional ply, the plain weave fabric was

deformed by in-plane shearing to an angle of 60°. The measurement was performed on the

moulded fabric samples at room temperature, after removing the specimens from the mould
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for two weeks. These conditions permit the resin to complete the shrinkage process. The

relative displacements si and £2 were measured by optical microscopy, figure 4.3. The

shrinkage coefficients in the fibre direction and the trans verse direction Yx[eq] and Yy[eq] were

evaluated using equations (3.19) and (3.20). The shrinkage measurement is rather difficult

since the shrinkage of the woven fabric composite is small with respect to the scatter of

experimental measurements. The results shown in Table 4.3 are the average values determined

from experimental measurements on 12 specimens. It is found that the value of y\[eq] is

positive. This implies that the resin shrinkage leads to an expansion in the fibre direction of

the constituent umdirectional ply of the sub-plies model. In fact, micro-mechanical models

have long been developed to predict the hydrothermal properties of a lamina. The longitudinal

and transverse thermal expansion coefficients can be expressed by [35]:

a,=^-(a,E,y,+a,,E^,) (4.1)
EL ' ' '

a,=a,V,+(l+vJa^ (4.2)

Using the above equation, it can be seen that if shrinkage occurs only in the matrix, both the

longitudinal and transverse shrinkage coefficients should be negative. The results shown in

Table 4.3 are therefore quite surprising and cannot be explained by the increase in temperature

during curing process.

As mentioned above, the deformations were only measured two weeks after removing the

sample from the mould so that its temperature is that of room temperature. From the laminate

theory, it can be shown that a positive shrinkage coefficient'yc/c^ should result in an expansion

ofangle-ply laminates [+(p/-<p]s for low values of (p. Figure 4.4 shows the deformation f/ after

curing of two plain weave composites with the angles between interlaced yarns of 60° and
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70°. The results confirm that curing of the matrix results in an expansion of the laminates in

the direction 1, validating therefore the positive value of Yx[eq]- A possible explanation for the

expansion in the fibre direction of the constituent ply is that matrix shrinkage could straighten

the undulated fibres in woven fabric composites. For large values of 0, it could be expected

that 81 are negative since the coefficient /y[eqj becomes predominant. This effect is confirmed

by Figure 4.5 for the values 9 of 90°, 105°, and 110°.

The values of Yx[eq] and /y[eq] ui Table 4.3 were subsequently used in the sub-plies model to

predict the deformation s/ of the plain weave fabric, deformed to different angles 0 (see

Figure 4.3). The prediction ^ as then compared to experimental measurements. The measured

data are listed in Table 4.4. Figure 4.6 presents the variation of the relative displacement £1 as

a function of the yarns angle 0. It is seen that prediction based on the sub-plies model is in

good agreement with experimental measurements. For a comparison purpose, prediction using

the theoretical shrinkage coefficients calculated from Equations (4.1), (4.2) for different

percentages of shrinkage of the matrix is also shown. It can be seen that the calculated

shrinkage coefficients using micro-mechanics models for aligned fibres without undulation

result in a very strong discrepancy between prediction and experimental measurements of

shrinkage of the fabric composite after curing.

In order to verify the accuracy of this approach for predicting shrinkage due to matrix curing

in woven fabric composites, measurements and calculation were carried out on orthogonal

fabric samples. Eight laminates of undeformed plain weave fabric were fabricated in order to

measure the relative displacement e in the principal directions. The prediction was made by

using the same shrinkage coefficients /xfeqj and Yy[eq] 'in Table 4.3. The experimental results are

compared to the predicted values in Table 4.5. Again, there is a good agreement between

experimental measurement of shrinkage in the plain weave composite and the proposed
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approach of prediction (with an error of only about 3%).

4.3.2 8-hamess satin

Due to the unsymmetric woven pattern of the satin-8, the composite made of this fabric gives

two types of deformation: the m-plane and out-of-plane deformations. Test data showed that

the out-of-plane deformation is many times the thickness. Therefore, the non-linear extension

solution was used to obtain the more precise results. The following tasks were thus carried

out:

Measure the on-axis equivalent shrinkage coefficients /x[eqj and Yy[eq]-

Using the non-linear extension solution to improve the results.

Study the effect of aspect ratio, mechanical properties and manufacturing parameters

on shrinka.ee deformation.

The samples for determining the shrinkage coefficients were cut off from orthogonal 8-

harness satin to the dimension of 460x90 mm2 (aspect ratio = 5.4). This choice can help to

avoid the effect of aspect ratio on test data that will be seen in the next section. Two quantities

are measured: Out-of-plane deformation and in-plane strain. Non-contact measurement, using

the microscope, was applied to ensure that the measurement technique did not cause any

deformation on the thin laminates. It is necessary to remark that the curvature K was

calculated from the out-of-plane deformation and the length of chord (see figure 4.7) by the

following relationship.

K=-^ (4-3)
ct +4u'
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Where:

u : out-of-plane deformation

c : length of chord

Substituting the cm-vature and in-plane strain into eqn (3.13) and eqn (3.14) yields the values

of the on-axis equivalent shrinkage coefficients /xfeqj and Yy[eq], see table 4.6

In order to verify the precision of these coefficients, the fabric was deformed by shear into the

angles (32°, 37.5°, 45°, 52°, 55.5°, 58.5 ) before making composite laminates. The off-axis

shrinkage deformation 81 of these laminates were measured and compared with the predicted

results. The formula that deduced from equation (3.16) was used to calculate the shrinkage

deformation. Figure 4.8 presents the variation of the relative off-axis displacement 61 ofangle-

ply laminate as a function of deformed angle 9. It can be observed that the prediction is less

accurate. The mismatch between prediction and experiment might be explained by the

assumption of small out-of-plane deformation in evaluating the on-axis shrinkage coefflcients.

Therefore, to obtain the more precise values, the non-linear extension solution were used to

determine the y^eq] and Yy[eq]- After substituting the experimental values into eqn (3.30), the

Yx[eq] and Yy[eq] can be deduced by solving simultaneously a system of non-linear equations.

The results shown in table 4.6 are values determined from test data.

The contradiction in sign between /xfeqj and Yy[eq] implies that the resin shrinkage of the

constituent unidirectional ply in the sub-plies model tends to expand in the fibre direction

while to shrink in the transversal direction. It is worth to note that the difference in yy between

classical laminate theory and non-linear extension is about 15%.

Figure 4.9 shows the off-axis relative displacement in term of skew angle 6. In this case, the

prediction based on the non-linear extension is in good agreement with test data.
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4.4 Effect of aspect ratio on shrinkage deformation

According to the Classical Laminate Theory, the geometrical factors such as the orientation of

ply angle, and the number of layers except for the geometrical dimension will affect the value

of the cm-vatures. In contrast, for the non-linear extension, the geometrical dimension

contributes to the out-of-plane deformation. In figure 4.10, the curvatures in directions:

longitudinal and perpendicular to fibre, K\ and K}, were expressed as functions of aspect ratio.

It can be seen that K/ and K^ become stable when the values of aspect ratio > 2. This explains

why the chosen dimension for shrinkage samples is independent of the aspect ratio. It can also

be seen from figure 4.10, for the aspect ratio < 2, the value of cm-vatures changes

continuously. Thus, this area can be chosen to investigate the feasibility of non-linear

extension solution. In the next section, the square plates will be used to verify the

approximation of the non-linear extension solution.

4.4.1 Non-linear extension discussion

As were mentioned by some authors [14-16], the existence ofin-plane shear deformation may

cause the change in shape of the cured curvature, especially the shifting of bifurcation point.

Thus, the effect of in-plane shear deformation was investigated. Two solutions, including and

neglecting the in-plane shear strain, were carried out to clarify the influence of this factor.

The initial dimensions of the laminates are 400x400 mm . After measuring the curvatures,

successively smaller plates were cut from 400 mm square laminate such that the centre point

of all the panels was the same. In the figure 4.11, the predicted pHncipal curvatures Ki and K^

are plotted with different width-to-thickness ratios. The solution omits the in-plane shear

strain e^y. While the predicted principal curvatures Ki and K^ plotted in the figure 4.12 are
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calculated with the assumption of the existence of in-plane shear strain. Also in two figures,

the dotted and continuous lines were drawn with the equivalent on-axis shrinkage coefficients

calculated respectively from classical laminate theory and non-linear solution with and

without shear analysis, table 4.6. To be observed here, the bifurcation point A [12] occurs at

W/T= 125 for shear strain analysis while W/T=115 for zero-shear strain analysis. The

Classical Laminate Theory and non-linear extension solutions are rather approximate at

W/T=100. It is also noted that compared to the experimental results, the non-linear solution

gives the better results. Moreover, for the non-linear case the shear strain analysis appears to

be more converging than the zero shear strain analysis. Yet, the prediction seems to be less

accurate with W/T < 120 in both cases. In two analyses, the asymptotic value of cm'vatures

reaches at W/T > 220. It can be seen from eqn 3.24, the in-plane shear strain always reaches

maximum value at X=± L/2. Figure 4.13, hence, expresses the in-plane shear strain and the

normal strain at middle plane in term ofY/L corresponding to X=L/2. In figure 4.14, the in-

plane shear strain is expressed as a function of width to thickness ratios. Unlike the unwoven

composite [14], the maximum in-plane shear strain takes place during the interval 100 < W/T

< 125 and before the bifurcation point. It can also be deduced that the level of residual shear

strain in cured shape is substantial in the range of 60 < W/T < 150 and negligible at both ends

of the x-axis.

4.5 Effect of mechanical properties and manufacturing parameters

One of the factors that cause the deviation between theoretical calculation and experimental

observation is the non-uniformity of-samples due to'the variations in mechanical properties,

volume fraction and thickness of laminates. Especially, for the large laminates, which are

fabricated by hand lay-up method, the non-homogeneity of the resin volume fraction becomes
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significant. For a visualisation of the non-uniformity of sample, small specimens cut off from

the square plate 400x400 mmz were measured for their thickness and burnt for volume

fraction verification. Figures 4.15 and 4.16 give an outlook of the non-homogeneity of fibre

volume fraction as well as thickness at the different plate positions. It can be seen that the

values of thickness are rather scattered. To investigate the global influence of the mechanical

properties on curvature value, a 10% variation of mechanical properties were supposed. Table

4.7 shows the changes in asymptotic curvature values from this change. It can be seen that the

thickness and the shrinkage coefficient yy are the most effective on the value of curvature.

That means approximately 9% variation in cm-vatures due to 10% of thickness and yy deviation.

Finally, the small specimens were cut off from the composite plates and verified on the D.S.C

(different scanning calorimeter) analyser for the chemical shrinkage completion. Figure 4.17

shows a typical curve of the absorbed energy of sample as a function of temperature so that

the resin (s polymerisation finishes completely.

4.6 Fisherman's net verification

The Fisherman's net method is used for simulating the reorientation of fabric during moulding

process. The results from this simulation are utilized for meshing procedure in finite element

method. The verification of the fisherman's net model will help for selecting a suitable grid

size as well as reducing the calculating error. The software called Pluton [36], based on the

fisherman's net generalized method, were used for simulating the fabric reorientation during

moulding process. Six rounded cones were fabricated from plain weave and 8-hamess satin

with the same die geometry as in figure 3.2. Figure 4.18 presents the simulation of the-

reorientation of fabric to follow the rounded cone shape. Due to the difficulties of measuring

device, the test of fabric angle is transferred to thickness test via the relation in equation 2.2.
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The following tests were realized.

Measuring the variation of thickness in the OXY plane according to the different

value of angle (p, figure 4.19. See figure 3.1 for definition of angle (p.

Measuring the variation of thickness along with the Z axis at (p= 45 , figure 4.20. As

to be noted, the reorientation of fabric is mostly influenced at (p= 45 .

Verification the error occurring from grid size, figure 4.21 .

In figure 4.19, to is the thickness of the undeformed fabric. It means that the vveft thread and

the warp thread are still orthogonal. Thickness test showed that the maximum error is about

6% for two cases (plain weave and 8-hamess satin).

For the error caused by crude grids, the numerical results from meshing simulation were

compared to equation (3.1). The result shows that a error < 5% can be obtained with a grid

size < 6mm. Therefore, a gird size =3 mm is chosen for meshing procedure in finite element

method.

4.7 Finite element method application

After finishing the meshing step and choosing a suitable grid size, the calculation based on

finite element method can be proceed. As to be presented in the paragraph 4.3.2, the woven

composite fabricated from 8-hamess satin and polyester resin give the large out-of-plane

deformation. Thus, the 8-hamess satin is preferred to study the deformation of piece after

removing from mould. Figure 4.22 presents the top view, front view and side view of a

deformed rounded cone simulated by finite element method. The deformed shape given by

finite element method is the same as that of experiment, figure 4.23.

For numerical verification, two points A and B, figure 4.24, at the bottom of rounded cone
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were chosen for calculating their displacements. Three different values of shrinkage

coefficients calculated from the classical laminate theory, the non-linear extension with zero

in-plane shear analysis, and the non-linear with in-plane shear analysis were input. Table 4.8

shows the corresponding results. According to table 4.9, the prediction with shrinkage

coefficient calculated from the non-linear extension with in-plane shear analysis give the best

result. Therefore, it can be concluded that the non-linear effect plays an important role on the

shrinkage ofpolyester resin reinforced by the unsymmetric woven fabric.
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TABLE 4.1 PROPERTIES OF EQUIVALENT UNIDIRECTIONAL COMPOSITE FROM
PLAFN WEAVE COMPOSITE

'X ~

Ey =
Es =

Vxy =

Qxx =

Qyy -
Qxy =
Qss =

36.695
7.196
5.1049
0.39
37.826
7.418
2.896
5.105

(GPa)
(GPa)
(GPa)

(GPa)
(GPa)
(GPa)
(GPa)

TABLE 4.2 PROPERTIES OF EQUIVALENT UNIDIRECTIONAL COMPOSITE FROM
8-HARNESS SATIN COMPOSITE

Ex =

Ey =
Es =

Vxy =

Qxx =

Qvy =
Qxy =
Qss =

38.433
7.196
5.518
0.412
39.6946
7.4322
3.0621
5.518

(GPa)
(GPa)
(GPa)

(GPa)
(GPa)
(GPa)
(GPa)

TABLE 4.3 ON-AXIS SHRINKAGE COEFFICIENTS.

CixlO-4

-3.7879

Sbxl0'5

2.13698

E2X10'4

12.197

Sbxl0-5

8.4632

rx[eq]XlO'4

4.4296

Yy[eq]XlO'4

-26.512

S^: Standard deviation

60



TABLE 4.4 THE SHRINKAGE OF DEFORMED WOVEN FABRIC LAMINATES

Yarn ls angle
of woven fabric

G(°)

[+35/-35]
[+45/-45]
[+52.5/-52.5]
[+55/-55]

No of
sample

6
6
6
6

Relative deformation on axis 1

w
Mean

2.614xl0'4
-2.462xl0'4

-5.076xl0~4

-7.652x10-4

-SIr

5.056xl0'5
5.065xl0-3
7.829x10''
9.714x10"'

S : Standard deviation

TABLE 4.5 ON-AXIS DEFORMATION DUE TO MATRIX SHRINKAGE IN

ORTHOGONAL PLAFN WEAVE COMPOSITE

Experimental measurement

8|XlO-4

1.507

Sbxl0'5

1.94

Prediction by sub-plies model

SixlO-4

1.47

S°: Standard deviation

TABLE 4.6 EQUIVALENT ON-AXIS SHRFNKAGE COEFFICIENTS

Mean value

Standard deviation

eixl0'4

4.33483

0.22613

Kl

4.0444

0.2178

YxXlO^ YyXlO-4

Classical laminate
theory

3.6786 -24.861

YnlxXlO-4! YnlyXlO

Non-Iinear zero
shear analysis

2.3739 -21.534

YnsxXlO-4 YntsyXlO'4

Non-tinear shear
analysis

3.2047 -21.2723
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TABLE 4.7 THE INFLUENCE OF THE VARIATION OF MECHANICAL PROPERTIES

ON ASYMPTOTIC CURVATURE VALUE

% change in Ki

%change in K^

Variation of 10% value of the following mechanical properties

Ei

3.70

-1.09

E2

-3.46

0.65

Es

0.82

-0.46

^'\y

1.82

-2.94

Yx

-1.03

1.02

Yy

-9.37

8.56

h

9.09

9.09

TABLE 4.8 DISPLACEMENT PREDICTED FROM FINITE ELEMENT METHOD

Point A
Point B

experiment

AX(mm)
8.22

0

AY(mm)
0

-8.28

Linear

AX(mm)
11.412

0

AY(mm)
0

-11.47

Non-linear
zero in-plane shear

analysis
AX(mm)

7.48
0

AY(mm)
0

-7.62

in-plane shear
analysis

AX(mm)
7.67

0

AY(mm)
0

-7.8

TABLE 4.9 CALCULATING ERROR

Point A
Point B

Linear

error %
27.97
27.8

Non-linear
zero in-plane shear analysis

error %
9

7.97

in-plane shear analysis

error %
6.7
5.8
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Figure 4.1 Variation of Young's modulus as a function of 9/2 for the plain weave composite
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Figure 4.2 Variation of Young's modulus as a function of 9/2 for the 8-hamess satin
composite
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Figure 4.6 Variation of deformation due to shrinkage,ei, as a function of angle 6/2. ( •) : Test
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based on the micro mechanic model neglecting the effect of undulation correspond to
different values of y.

Figure 4.7 Measurement of curvature
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Figure 4.8 Variation of the off-axis relative displacement as a function of angle 6 for
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theory)
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Figure 4.9 Variation of the off-axis relative displacement as a function of angle 9 for
8-hamess satin composite (shrinkage coefficient determined from the non-linear extension)
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Figure 4,15 Distribution of thickness on square plate 400*400 mm
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Figure 4.18 Simulation of a rounded cone by software Pluton.
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CONCLUSION

In this work, an approach to address the shrinkage problem of polyester resin reinforced by

woven fabric has been developed. The sub-plies model was used to determinate the shrinkage

coefficients in woven fabric composite. Since the experimental results agree with prediction

for two significant different fabric structures (ng = 2 for plain weave and rig = 8 for 8-hamess

satin), it is expected that the model will also be applicable to other common woven fabric

structures (2 < ng < 8) as well. To take into account the fibre undulation effect, the on-axis

thermo-elastic properties of the fictional constituent plies in the sub-plies model can be

determined by an experimental procedure. The research on the shrinkage problem showed

some interesting results. The resin tends to shrink in the direction perpendicular to the fibre

direction while to extend in the fibre direction. For the laminates fabricated from unsymmetric

woven fabric such as 8-hamess satin, there is a large out-of-plane deformation after removing

the laminate from the mould. Thus, to obtain a precise evaluation of shrinkage coefficients,

the non-linear solution was used. The prediction, based on the non-linear solution, conforms

to the experiments. The study also showed that aspect ratio and width to thickness ratio affect

on the value of curvature of laminate. Finally, the rounded cones were fabricated from

polyester resin and 8-harness satin to verify the sub-plies model. The results from

experimental measurements and those calculated are different about 5%.
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APPENDIX A

With zero in-plane analysis, system of equation (3.30) has the following form

A-;, (a, - a,b,C,) - 5;, ^ + 4, {b, - C^b,) - ^ = 0

A^{a, -C,a,b,)+B^+A-;,(b, -C,a,b,}-N, =0

4(,(C^o -^2aOal)+<2(2aOAOC3 -^2^0AI -a0a|)-^22(c4fl'0260 -^1^0Ao)+

5,',c,aj +^(C,^ -6,)+D,^o +D,\^ +(C^,+C,7V,)^ +^, =0

<,(C^o2 -C,a^)+A;\(2a,b2,C, -C^b, -c,b,)-A^C.a^ -C,V,)+

B^2a,b,C, -a,)+By^ +D;,^ +^A +(C,^+C,^)^ +M, =0

where

L\ ^ L\ ^ I},1}, ^ L\ ^ L\'x r^ __ ~~ > r^ ~x—y /~, _ '-'^ ^-i __ —i

48 z 48 ~' 2304 ' 1280 -' 1280

With in-plane analysis, system of equation (3.30) has the following form

5,ti (a,-a,C,)- D;, a, - D^b - 2A^C,b,(a^ +a, +b,)-M, = 0

- D^a, + B^ (A, + 6;C,) - D^b, - 2Ay,a, ("^ +a,+b,)-M,=0

- <, {a, + C,^ ) + B,\a, - A-;, (b, + C,^) + N, = 0

- A^_ {a, + C,a, ) + B^b, - A[, (^, + C,^) + N, = 0

-<,(C^ +C,a,)+B;^C,-A^C,b, +C^,)+

-2A'iC,(2a,+2b^a,b,)+C,N,=0

-A;,{C,a, +C,a,)+^AC,-^(CA +C,A,)+

-2A'iC^2a, +2b, +aA)+C,Ar, =0
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where

r2 r2 r2 r2 /- /r4
^ r -^L r ~^y_ r - ^ r -^^ — ~~ ^t — _ ^ — l_^ — — ^ < — —^ ~ 12 ^2 - 12 ^3 - 144 ^4-80 ^5 -80

(N,,M,}=^Q^v,(\,z)d:

A,, B;, D,) = f^,,,(l,z,--2)rfz (i,j = 1.2.6)
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