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Résumé 

Le poly(acide lactique) ou PLA est une famille de polyester thermoplastique linéaire qui a connu 

un essor commercial important durant la dernière décennie. L'enthousiasme pour le PLA vient de 

sa nature biosourcée, de ses bonnes propriétés mécaniques comme un module élastique élevé et 

de la possibilité de le biodégrader. Toutefois, certaines carences comme une faible résistance 

thermique et une faible élasticité à l’état fondu limitent son champ d’application. Fait à noter, le 

monomère d’acide lactique possède deux stéréo-isomères (L et D). Il est possible de polymériser 

les isomères L ou D pour former respectivement le PLLA ou le PDLA mais de façon 

surprenante, le mélange de PLLA et de PDLA permet la formation d’une structure cristalline 

distincte appelée le stéréocomplexe. Cette forme cristalline a un point de fusion 50 
o
C plus élevé 

par rapport aux formes cristallines du PLLA ou de PDLA d’où un premier intérêt pour 

augmenter la résistance thermique du matériau. Dans ce travail, l’usage de petites quantités (0-5 

% massique) de PDLA comme additif dans une phase majeure de PLLA sera analysé. L’effet du 

stéréocomplexe formé à haute température sur la nucléation du PLLA et sur les propriétés 

rhéologiques du mélange sera plus particulièrement étudié.  

La présente thèse comprend une revue de littérature sur la cristallisation des PLA suivie de 

quatre parties expérimentales, conclusions et recommandations. La revue de littérature a pour 

objectif de réinterpréter l’ensemble des données disponibles sur la cristallisation du PLA afin 

d’en tirer des conclusions claires. La première partie expérimentale porte sur la cinétique de 

formation du stéréocomplexe à l'état fondu. Il a été constaté que la formation du stéréocomplexe 

est lente aux températures usuelles de mise en forme du PLLA ( 180 
o
C). De plus, la 

coexistence d’une morphologie baptisée dans ce travail « structure en réseau » et d’une 

morphologie sphérulitique a été révélée pour la première fois. Il a été démontré que la structure 

de réseau a une température de fusion moins élevée que la structure sphérulitique. Dans la 

seconde partie du travail, la cinétique de stéréocomplexation a été améliorée significativement 

pour adapter celle-ci aux cycles de refroidissement courts typiques des méthodes de mise en 

forme à l’état fondu. Ceci a été réalisé en ajoutant des agents nucléants qui initient la 

cristallisation à plus haute température et des agents plastifiants qui viennent augmenter la 

mobilité des polymères. Cette stratégie a permis de réduire le temps de cristallisation d’un ordre 

de grandeur. Dans un troisième temps, l'effet du stéréocomplexe sur les propriétés rhéologiques 

d’un mélange PDLA/PLLA a été investigué. En raison de son point de fusion élevé, le 

stéréocomplexe peut être préservé dans une matrice PLLA fondue et ainsi changer 

significativement les propriétés rhéologiques. La présence du stéréocomplexe a mené à une 

augmentation significative de la viscosité et de l'élasticité du PLA expliqué par la formation de 

points de « réticulation physique » dans la matrice amorphe. Enfin, dans la dernière partie 

expérimentale, le stéréocomplexe a été utilisé pour améliorer le comportement en moussage du 

PLA. Des expériences de visualisation et de moussage en mode discontinu ont montré que la 

présence de stéréocomplexe augmente la densité de nucléation de bulles et améliore 

significativement la morphologie de la mousse finale grâce à un effet de nucléation et à 

l’augmentation de l’élasticité du fluide. La revue de littérature et les trois premières parties 

expérimentales sont présentées sous forme d’articles scientifiques. La dernière partie 

expérimentale est à titre prospectif pour la suite du projet et ne sera pas soumis pour publication. 

Mots-clés : poly(acide lactique), stéréocomplexe, cristallisation  
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Abstract 

Poly(lactic acid), or PLA, is a family of linear thermoplastic polyesters that has experienced 

strong market growth over the past decade. The enthusiasm for PLA originates from its bio-

based nature, its good properties and its biodegradability. However, some of PLA deficiencies 

such as low thermal resistance and low melt elasticity have limited the development of this 

polymer. It is noteworthy that the lactic acid monomer has two stereo-isomers (L and D) that can 

be polymerized respectively into PLLA and PDLA but surprisingly, blending of PLLA and 

PDLA can lead to the formation of a “stereocomplex” which has a distinct crystalline structure 

from that of the homopolymers. This crystalline form has a melting point 50 
o
C greater than the 

crystalline PDLA or PLLA forms, thus it has by itself an interest in terms of heat resistance. In 

this work, the use of small amounts of PDLA (0-5%) in a matrix of PLLA will be explored. 

Particular emphasis will be on the nucleating ability of the stereocomplex (formed at high 

temperature) on PLLA crystallization and on its effect on the blends rheological properties. 

The current thesis comprises a literature review on PLA crystallization followed by four 

experimental sections. The objective of the literature review was to reinterpret the large body of 

data available on PLA in order to draw clear conclusions on PLA crystallization. The first 

experimental part of the work focused on the kinetics and conditions of stereocomplex formation 

in the melt state. It was found that stereocomplex formation is slow in the melt processing 

temperature range of PLLA ( 180 
o
C). Co-existence of a so-called “network structure” with a 

spherulitic structure was revealed for the first time. It was shown that the network structure has a 

lower melting point than the spherulitic one. In the second part of the work, stereocomplexation 

kinetics was improved significantly to match it with the fast cooling cycles typical of melt 

processing techniques. This was achieved by adding nucleating agents that initiated 

crystallization at higher temperatures and plasticizers that enabled more polymer fluidity. This 

strategy enabled an order of magnitude decrease in crystallization time. The third part of the 

work was the investigation of rheological properties upon formation of the stereocomplex 

structure in 0-5% PDLA in PLLA blends. Due to its higher melting point, the stereocomplex can 

be preserved in molten PLLA and alter significantly the blend melt rheology. Stereocomplex 

formation was monitored through rheological measurements and compared to classical 

calorimetry data. The presence of the stereocomplex lead to a significant increase in viscosity 

and in melt elasticity explained through the presence of physical crosslink points in the 

amorphous matrix. Finally, in the last experimental part of the work, the stereocomplex was 

employed to enhance PLA foaming behavior. Foaming visualization experiments as well as 

batch foaming tests showed that the presence of the stereocomplex can increase bubble 

nucleation density and led to a finer and more uniform foam morphology due to its nucleating 

effect and to the increased melt elasticity.  

The literature review and the three first experimental sections are presented in Peer-reviewed 

journal format. The last experimental section is meant as an exploratory and prospective part for 

the project and will not be submitted for publication. 

Key words: Poly(lactic acid), stereocomplex, crystallization 
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Chapter 1. Introduction 

1.1 Context 

Poly(lactic acid) is a linear thermoplastic polyester which has been the subject of a vast research 

in the past decade [1-6]. It is no wonder why it has been so popular these days as it possesses lots 

of advantages simultaneously. PLA is a bio-based polymer that can be produced from annually 

renewable resources such as starch and other polysaccharides [2]. On the other hand, it is a 

compostable polymer. Thus, it originates from and goes back to the nature. In terms of 

applications, PLA is even more interesting. Its biocompatibility and bioresorbability has made it 

suitable for specialty biomedical applications such as tissue engineering and drug delivery [7]. 

Moreover, good mechanical, optical and barrier properties in combination with compostability 

has positioned PLA as a cost-competitive biobased polymer substituting petroleum-based 

material in applications such as packaging, textiles and molded articles [1, 8, 9]. The other side 

of the coin is that this interesting polymer has some disadvantages which are obstacles for its 

further product development. The main weaknesses are low crystallinity and crystallization rate , 

a low heat resistance (originating from a low Tg about 55 
o
C and low crystallinity [6]), lack of 

reactive groups and brittleness (low impact resistance) [4]. The main challenges for melt 

processing of PLA are its low melt strength and elasticity which is problematic in processes such 

as extrusion foaming and film blowing requiring a certain degree of melt strength [8]. 

Lactic acid is available in two enantiomeric forms called L-lactic acid and D-lactic acid. Most 

commercial PLA resins are polymerized primarily from L-lactic acid with D-Lactic acid being a 

“contaminant” with a level between 0-15 wt.% . In this context, the D component acts as a non-

crystallizing comonomer and leads to a lowering of PLA final crystallinity and crystallization 

rate [6]. If pure enantiomeric L or D forms are used, the corresponding polymers are known as 

PLLA or PDLA respectively. These polymers have very similar properties with a melting point 

about 175 
o
C. Surprisingly, the co-crystallization of PLLA and PDLA chains yields a crystalline 

form called stereocomplex with a melting point 50 
o
C higher than PLLA or PDLA homocrystals 

[10]. This higher melting point structure could be employed to improve PLA heat resistance. In 

this work however, the focus has been placed on blends where PDLA is used as an additive, in 

the 0-10 wt.% concentration range, to form a minor stereocomplex phase that in turn can play a 
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role on PLLA crystallization (as a nucleant for homocrystallization) or on its melt rheology. For 

melt rheology, the minor stereocomplex phase will tie together different PLLA chains leading 

conceptually to a physically cross-linked structure within an amorphous molten PLA. 

1.2 Problem definition and objectives 

As we will see in the literature review, most of the published work on stereocomplexation 

involved solvent mixing and solution casting and competition between homocrystallization and 

stereocomplex formation was an important challenge when the viscosity of the media is high. It 

appeared that stereocomplexation from the melt and at elevated temperatures was not fully 

investigated and deserved more attention since the vast majority of polymer processing 

operations involve solvent-free melt processing, short processing times and fast cooling rates. 

Based on the current state of understanding, it was decided to focus the project according to the 

following objectives:  

 To study the structure and stereocomplex formation conditions in the molten state. 

 To examine the heterogeneous nucleation and plasticization on stereocomplex formation 

rate and microstructure and to determine the effect of a stereocomplex minor phase on the 

homocrystallization rate of PLA 

  To determine if the presence of the stereocomplex minor phase in amorphous (molten) 

PLA can increase PLA melt elasticity. 

 To assess the potential of the stereocomplex for the polymer foaming process 

1.3 Thesis organization 

The thesis has been organized in the following manner. In chapter 2, a literature review on PLA 

crystallization has been presented in two sections. Homocrystallization is reflected in the first 

section which is published as a review paper. The second part of the literature review focuses on 

the general knowledge about PLA stereocomplex. Chapters 3 to 6 are the four distinct 

experimental parts responding to the four main objectives described above. Chapter 3 presents a 

study of stereocomplexation kinetics from the melt and elucidates a dual network/spherulitic 

crystalline morphology which is formed at isothermal stereocomplex formation in the melt state. 

In chapter 4, the effect of nucleation and plasticization on stereocomplex formation and their 

effect on crystalline morphology is determined. In chapter 5, stereocomplex formation from the 
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melt is investigated by rheological measurements and the effect of the developed structure on 

PLA rheological properties are demonstrated. Chapter 6 presents the application of 

stereocomplex structure in the improvement of the PLA foaming process. Finally, in chapter 7, 

the most important conclusions of this work are summarized and some recommendations are 

given regarding the future work in this area. 

1.4 Original contributions 

This work has several original contributions to the subject of PLA stereocomplex in relation to 

the stated objectives. In the first phase of the project which aimed at the determination of the 

structure and conditions of stereocomplex formation in the melt state, a dual network/spherulitic 

crystalline morphology was reported for the first time for blends crystallized isothermally from 

the melt. In addition, the observation of a transcrystalline layer at the surface of stereocomplex 

spherulites was another original aspect at this stage. In the second experimental part where the 

enhancement of the stereocomplex formation kinetics in the melt state was intended, 

plasticization and heterogeneous nucleation were employed simultaneously for the first time in 

the case of PLA stereocomplex in melt blended systems. An aromatic phosphonate which was 

never used before for PLA stereocomplex nucleation was proved to be very effective. Also 

different stereocomplex crystalline morphologies were developed by the incorporation of 

nucleating agent and plasticizer and the variation of crystallization temperature. The third phase 

of the project was original in the sense that stereocomplex formation was not probed by 

rheological means in prior works. Kinetic curves obtained from rheological measurements were 

compared to common calorimetric curves and their difference was attributed to the change in the 

chain microstructure as a result of stereocomplex formation. Furthermore, another original aspect 

of the rheological experiments was the detection of a yield stress for PLA melt containing 

stereocomplex structure. Finally, the last phase of the project which was aimed to assess the 

potential of the stereocomplex for the foaming process was essentially original since it was not 

explored prior to the attempts reported in this thesis. Stereocomplex was shown to enhance cell 

nucleation through heterogeneous nucleation and stabilized cell formation resulting in a more 

homogeneous and finer cell morphology. 

  



4 

 

 

 

Chapter 2. Literature review 

Avant-propos 

Auteurs et affiliation: 

Sajjad Saeidlou: , Faculté de 

genie, Université de Sherbrooke 

Michel A. Huneault: Département de génie chimi , Faculté 

de genie, Université de Sherbrooke 

Hongbo Li: National Research Council of Canada 

Chul B. Park: Department of Mechanical and Industrial Engineering, University of Toronto 

Date d’acception: 16 juillet 2012 

État de l’acceptation: version finale publiée 

Revue: Progress in Polymer Science 

Référence: Progress in Polymer Science, 2012.37: p. 1657-1677. 

Titre français: Cristallisation du poly(acide lactique) 

Contribution au document: revue de la littérature pertinente aux travaux expérimentaux  

Résumé français: Le poly(acide lactique) est un polyester thermoplastique biosourcé et 

compostable qui a rapidement évolué pour devenir un matériau de base compétitif durant la 

dernière décennie. Le principal obstacle à l’augmentation de l'utilisation du PLA est le contrôle 

de sa cristallinité. Comprendre le phénomène de cristallisation est particulièrement important 

pour contrôler le taux de dégradation du PLA, sa résistance thermique ainsi que ses propriétés 

optiques, mécaniques et barrières. La cristallisation du PLA a également été un sujet 

particulièrement riche d'un point de vue fondamental en raison de l'existence des deux formes 

énantiomères de l'acide lactique qui peuvent être utilisées pour contrôler le taux de 

cristallisation, mais aussi pour former des structures stéréocomplexes ayant un point de fusion 

élevé. Cet article présente un aperçu des connaissances actuelles sur les principes fondamentaux 

de la cristallisation du PLA dans des conditions de quiescence et sur les moyens pratiques 

d'améliorer son taux. Les données apportées par une littérature abondante sur la cristallisation 
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de PLA ont été compilées et analysées pour fournir des relations globales entre la cinétique de 

cristallisation et les caractéristiques principales de la structure moléculaire du PLA. En outre, 

les efforts les plus prometteurs dans l'amélioration de la cinétique de cristallisation du PLA par 

plastification ou nucléation hétérogène ont été discutés. 
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Abstract: Poly(lactic acid) is a biobased and compostable thermoplastic polyester that has 

rapidly evolved into a competitive commodity material over the last decade. One key bottleneck 

in extending the use of PLA is the control of its crystallinity. Understanding the crystallization 

behavior is particularly crucial to control PLA's degradation rate, thermal resistance as well as 

optical, mechanical and barrier properties. PLA crystallization has also been a particularly rich 

topic from a fundamental point of view because of the existence of the two enantiomeric forms of 

lactic acid that can be used to control the crystallization rate but also to form high melting point 

stereocomplex structures. This article presents an overview of the current understanding on the 

fundamentals of PLA crystallization in quiescent conditions and on the practical means to 

enhance its rate. Data from the abundant literature on PLA crystallization were compiled and 

analyzed to provide comprehensive relationships between crystallization kinetics and the main 

molecular structure characteristics of PLA. In addition, the most promising efforts in enhancing 

PLA crystallization kinetics through plasticization or heterogeneous nucleation were reviewed. 

Keywords: Poly(lactic acid), Polylactide, PLA, Crystallization, Kinetics, Review 

2.1.1 Introduction 

Poly(lactic acid) or PLA is a biodegradable polymer that can be produced from annually 

renewable resources [1]. It is an aliphatic thermoplastic polyester that boasts a high modulus, 

high strength and good clarity. Therefore, it has raised a lot of interest as a potential replacement 

for petroleum-based polymers. Before its introduction as a packaging and commodity material, 

specialty grades of PLA had been developed for biomedical uses. Its biocompatibility and 
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bioresorbability had made it a suitable choice for applications such as drug delivery systems, 

sutures, blood vessels, etc. [11]. The commercial introduction of bio-based PLA in 2003 has 

opened the way for more common applications. In particular, PLA has been finding an 

increasing number of applications in the packaging industry due to its good mechanical 

properties, transparency and compostability. 

The term Poly(lactic acid) is slightly misleading. The PLA now commercialized for 

commodity applications is made from ring-opening polymerization of lactide, a dimer of lactic 

acid. Therefore, from a nomenclature point of view, we should refer to polylactide rather than to 

poly(lactic acid) but both terms are used indifferently in the scientific literature. Another 

precision that needs to be made is that PLA does not refer to a single material but rather to a 

family of materials with a range of properties due to the chiral nature of lactic acid as we will 

explain later. One general drawback of the PLA family of material is that they exhibit a lower 

glass transition temperature (Tg), up to about 60 
o
C, compared to competing polyesters. The 

ubiquitous polyethylene terephthalate (PET), for example, possesses a Tg around 80 
o
C. 

Therefore, unless PLA can be crystallized to a large extent, its thermal resistance will remain 

relatively poor. For example, heat deflection temperature (HDT) and Vicat penetration 

temperature were increased more than 30 and 100 
o
C respectively, after amorphous samples were 

fully crystallized. As well, an increase in flexural modulus and strength by 25% and increased 

impact resistance were reported following the full crystallization of amorphous PLA [12, 13]. On 

the other hand, if one is interested in maintaining the PLA clarity or maximizing the 

biodegradability of PLA, it might be useful to understand how to limit crystallization. Enzymatic 

degradation rate can be reduced by more than 7 times for highly crystalline PLA compared to the 

amorphous samples [14]. Furthermore, barrier properties are improved due to PLA 

crystallization. A study by Drieskens et al. [15] showed for crystallized PLA that oxygen and 

water vapor permeability coefficients were decreased by more than 4 and 3 times respectively, 

compared to amorphous references. This stresses the importance of PLA crystallization not only 

from a fundamental point of view but also for obvious market development considerations. 

Several authors have reviewed the synthesis, properties, processing and applications of PLA [1, 

8, 9, 16-18]. The current review will focus specifically on the current understanding of PLA 

crystallization. In particular, we will examine the microstructure of PLA, the isothermal and non-
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isothermal crystallization kinetics and will summarize the different strategies used to control or 

enhance crystallinity development during melt processing operations. 

2.1.2 Chain structure 

To understand the crystallization behavior of PLA, it is useful to first examine its chain 

structure. PLA can be synthesized by two polymerization routes, polycondensation of lactic acid 

or ring-opening polymerization of lactide [18]. In both cases, lactic acid is the feedstock for PLA 

production. Due to an asymmetric carbon atom, lactic acid has two optically active forms called 

L-lactic acid and D-lactic acid. When producing PLA from lactide, three forms are possible: the 

LL-lactide made from two L-lactates, the DD-lactide from two D-lactates, and the LD or meso-

lactide made from a combination of one L- and one D-lactate. In Figure 2.1, schematics of the 

lactic acid and lactide molecules are illustrated. 

 

Figure 2.1 Stereochemistry of lactic acid and lactide molecules 

The polymers coming from pure L- or pure D- feed are referred to as PLLA and PDLA 

respectively. Commercial PLA grades however are usually based on an L-rich mixture as the 

majority of lactic acid bacteria (LAB) used in fermentation processes such as Lactobacillus and 

Lactococcus produce L-lactic acid predominantly. Due to purification issues, they typically 

comprise a minimum of 1-2% D units. Since the two repeating units are optically active, they 

rotate polarized light in opposite directions. Specific optical rotation values in chloroform at 25 

o
C ([α]

25
) equal to -156

o
 and +156

o
 are commonly used in the literature for 100% pure PLLA and 

PDLA, respectively [19-23]. A higher content of one repeating unit in polymer chain results in a 

higher rotation angle in that direction. Thus, by employing the following equation [24], one can 

calculate the molar fraction of D units (XD) in PLA: 

 

Equation 2.1 
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Based on the molar fraction and source of D units in PLA chains, i.e., DD-lactide or meso-

lactide, another important parameter called the average isotactic sequence length ( ) is defined 

for L-lactide rich PLA as:  

 

Equation 2.2 

where a is a coefficient that depends on the source of D units in polymerization feed. It is equal 

to 1 if all D units are incorporated via meso-lactide, equal to 2 if they are all comprised of DD-

lactide and between 1 and 2 depending on the ratio of meso and DD-lactide in the polymerization 

feed. Using the coefficient 2 for DD-lactide is due to the paring of D units in the random 

copolymerization of LL-lactide and DD-lactide. Another clarification about the latter equation is 

that it is correct for random copolymers. In some cases by employing specific initiators, it is 

possible to have a preferential monomer insertion into the growing chain resulting in a PLA with 

longer isotactic sequences compared to a statistical copolymer with the same XD [21, 22]. 

A higher  value means a higher level of chain order. Therefore, this parameter influences 

directly the crystallization behavior of PLA. It can be controlled by adjusting the ratio of LL, DD 

and meso-lactide in the monomer feed for PLA polymerization. However, in the course of 

polymerization, L or D units may convert into their counterpart form [25]. This undesirable 

reaction called racemization will influence  and thus will disturb chain order. Another way that 

chain order may be disturbed is by inter or intramolecular trans-esterification reactions [19]. 

Chain architecture is another aspect of chain structure. PLA is typically linear in its 

structure, but it is possible to produce it in different branched architectures by employing 

multifunctional initiators [26-28] or co-monomers bearing initiation groups [29, 30] in 

polymerization reaction. Multifunctional chain extenders [31, 32] or peroxides [33, 34] 

sometimes used for PLA to counterbalance chain scission are other potential sources of 

branching. Accordingly, it is useful to understand the effect of branching parameters such as 

branch’s length, amount and architecture on PLA crystallization behavior. 

2.1.3 Crystal structure 

Different crystal structures have been reported for PLA, the formation of which depends on 

the crystallization conditions. The most common α-form occurring in conventional melt and 
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solution crystallization conditions was first reported by De Santis and Kovacs [35] and 

investigated further in a number of studies [36-38]. Based on WAXD and IR data, Zhang et al. 

reported the slightly different α′-form for PLA crystallized below 120 °C [39]. The chain 

conformation and crystal system of the α′-form is similar to α structure, but with a looser and less 

ordered chain packing. More recent studies suggest that only the α′ crystal is formed at 

crystallization temperatures below 100 °C while crystallization between 100 and 120 °C gives 

rise to the coexistence of α′ and α crystal structures [40, 41]. As a consequence of its looser chain 

packing and disordered structure, the α′ crystal leads to a lower modulus and barrier properties 

and to higher elongation at break compared to α crystal [42]. A β-form, first observed by Eling et 

al. [43], is created by stretching the α-form at high draw-ratio and high temperature such as in 

hot-drawing of melt or solution spun fibers [37, 43]. Melting temperature of the β structure is 

about 10 
o
C lower compared to the α crystal, implying that β form is thermally less stable [37]. 

Later, Puiggali et al. [44] suggested that β-form crystal is a frustrated structure with a trigonal 

cell containing three chains which are randomly oriented up and down. A more ordered crystal 

modification called γ was also reported by the same group [45]. In the γ-form which was 

obtained by epitaxial crystallization of PLA on hexamethyl benzene, two chains are oriented 

antiparallel in the crystal cell. Besides the homocrystallization of PLLA and PDLA, these two 

enantiomeric chains can co-crystallize together and form a stereocomplex [10]. In contrast to 

PLLA or PDLA homocrystals, the stereocomplex crystal cell contains one PLLA and one PDLA 

chain. Interestingly, melting point of the stereocomplex is about 50 °C higher than that of PLA 

homocrystal. Thus, stereocomplexation may provide greater temperature resistance to the 

material. Properties of PLA crystal form are summarized in Table 2.1. The densities were 

calculated based on the reported cell parameters and the number of monomers in each unit cell. 

Table 2.1: Properties of different PLA crystal types 

Crystal 

type 
Crystal system 

Chain 

conformation 

Cell parameters ρ theoretical 

(g/cm3) 
a (nm) b (nm) c (nm) α (°) β (°) γ (°) 

α [35] Pseudo-orthorombic 103 helical 1.07 0.645 2.78 90 90 90 1.247 

α [38] Orthorombic 103 helical 1.05 0.61 2.88 90 90 90 1.297 

β [37] Orthorombic 31 helical 1.031 1.821 0.90 90 90 90 1.275 

β [44] Trigonal 31 helical 1.052 1.052 0.88 90 90 120 1.277 

γ [45] Orthorombic 31 helical 0.995 0.625 0.88 90 90 90 1.312 
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SC [46] Triclinic 31 helical 0.916 0.916 0.870 109.2 109.2 109.8 1.274 

SC [47] Trigonal 31 helical 1.498 1.498 0.87 90 90 120 1.274 

2.1.4 Structure-properties relationship 

2.1.4.1 Glass transition temperature 

The glass transition temperature, Tg, plays an important role on the determination of PLA 

crystallization window since polymer chain mobility is related to T-Tg. Figure 2.2 presents Tg 

data as a function of molecular weight for different D-lactate contents. The Tg increases rapidly 

when the molecular weight is increased to 80-100 kg/mol but then reaches a constant value. At a 

given molecular weight, an increase in optical impurity, i.e. increase in minor unit concentration 

(defined as D-lactate in the case of an L-rich PLA and as L-lactate for a D-rich PLA), decreases 

the glass transition temperature to some extent but its effect on Tg is not as significant as on Tm. 

The data points for different D-lactate contents presented in Figure 2.2 have been fitted 

with the predictions of the Flory-Fox equation given by 

 

Equation 2.3 

where Tg
∞ 

is the glass transition temperature for infinite molecular weight, K is a constant and Mn 

is the number-average molecular weight. Accordingly, we have found that K increases linearly 

with D-lactate concentration and that Tg
∞
 shows a decreasing trend that can be predicted quite 

well with a rational function.  

 

Equation 2.4 

 

 
Equation 2.5 

   

where Tg
∞
 and K are respectively expressed in 

o
C and in 

o
C.kg/mol. 

The solid curves in Figure 2.2 are the relationships obtained using Equation 2.3 and the 

equation parameters Tg
∞
 and K described above, showing that Tg of PLA can be correctly 

estimated from these equations. 
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Figure 2.2 Tg vs. Mn for different D-lactate concentrations, data adapted from [48-51] 

PLA chain architecture is another influential parameter for Tg. Compared to the linear 

structure, a branched PLA has a lower Tg value. This is due to the existence of a higher free 

volume caused by the higher number of chain ends. Pitet et al. [29] reported a 10 
o
C decrease in 

Tg for hyper branched PLA produced by copolymerization of lactide and glycidol while Zhao et 

al. [52] reported a 5 
o
C decrease in Tg for a 32-arms star shaped PLA produced by a poly(amido 

amine) dendrimer initiator. For lower branching contents such as star or comb like architectures 

with 4-9 arms [28] or by adding chain extender [53], no significant difference in Tg was reported. 

2.1.4.2 Melting temperature and equilibrium melting point 

Figure 2.3 compares the melting point data from several authors as a function of D-unit 

content in the polymer structure. Pure PLLA (0% data) exhibits the maximum melting 

temperature, between 175 and 180 
o
C depending on authors. The melting point decreases linearly 

with the D-lactate content. The best linear fit for each data set is presented as well. The slope of 

these lines varies between -5.5 to -5.0, meaning that 1% D-unit content results in approximately 

5 
o
C reduction in melting temperature. The difference between data presented in Figure 2.3 is 

due to the different molecular weight. For example, Kolstad reported Tm for PLA with Mn 

between 50 to 130 kg/mol [54] while data reported by Witzke [51] and Bigg [55] concern PLA 

with Mw higher than 100 kg/mol. Furthermore, the thermal history applied by the authors 

differed slightly. 
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Figure 2.3 Melting temperature as a function of D-lactate content, data adapted from [51, 54-56] 

The melting temperature of a polymer is expected to increase with the temperature at 

which it was crystallized (Tc). Due to the kinetic barrier for crystallization when approaching the 

melting temperature, polymer crystallization is typically carried out at high undercoolings which 

limits the crystal thickness. However, in the limiting case when crystallization is in equilibrium 

with melting of crystals, the crystal grows large enough in all directions so that the melting point 

reaches its maximum value, the so-called equilibrium melting point (Tm
0
). The effect of the D-

content on the Tm
0
 of PLA can be calculated based on Hoffman-Weeks procedure [57]. 

Figure 2.4 addresses the effect of crystallization temperature and of minor unit concentration on 

melting point and presents the Tm
0
 values obtained for each minor unit concentration (i.e. the 

Tc=Tm line). As expected, Tm decreases with minor unit concentration for all crystallization 

temperature. The melting point for any given minor unit content clearly increases as a function of 

the crystallization temperature. The data at Tc = Tm is compared to the Baur Model prediction. 

This model is used to calculate melting point depression due to random copolymerization with a 

non-crystallizable co-monomer. The Baur model [58] is a modification based on earlier 

development proposed by Flory [59] and is given by 

 

Equation 2.6 
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where X is the molar fraction of crystallizable units, ΔHm
0
 is the equilibrium enthalpy of fusion, 

R is the gas constant and  is the average sequence length of crystallizable units (see Equation 

2.2). The model is identical to the one proposed by Flory except for the 1/  term. The 

equilibrium melting point depression is well described by the Baur Model. The validity of the 

Baur equation was also reported by Huang et al. [60] as well as Baratian et al. [61] for PLA 

systems. 

 

Figure 2.4 Tm and Tm
0 as a function of minor repeating unit concentration, filled symbols for PDLA and open symbols for 

PLLA, data adapted from [24] 

The reported equilibrium melting temperature and equilibrium enthalpy of fusion of PLA 

are summarized in Table 2.2 with their calculation methods. Most authors report equilibrium 

melting temperatures between 200 and 215 
o
C. Variations may be due to variations in molecular 

weights and purity of the investigated polymers. In terms of equilibrium melting enthalpies, 

estimations vary between 80 and 135 J/g.  

Table 2.2 Reported equilibrium melting temperature and melting enthalpy for PLA 

 Tm
0 (oC)  ΔHm

0 (J/g) 

Method Value Ref. Method Value Ref. 

Hoffman-Weeks 
Baur 

200 
199 

[24] Baur 82 [24] 

Gibbs-Thomson 

Data fitting 

214 

215 
[60] - 100 [60] 

Hoffman-Weeks 207 [62] 
Extrapolation to infinite 

crystal thickness 

Flory model for solution 
grown crystals 

81 
 

93 

[63] 

Hoffman-Weeks 205 [64] 

Hoffman-Weeks 206 [65] 

Hoffman-Weeks 211, 212 [66] 

Hoffman-Weeks 215 [67] 

Hoffman-Weeks 215 ± 10 [36] Extrapolation to crystal 135 [68] 
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Marand 

Hoffman-Weeks 

227 

199 
[48] 

density (Density-Enthalpy 

relation) 
Hoffman-Weeks 

(pseudo-equilibrium 

lamellar crystals) 

215 [69] 

Molecular weight is another factor that significantly influences the melting temperature. 

Figure 2.5 illustrates the melting point variation with the number averaged molecular weight Mn. 

The data has been compiled from seven papers where the PLA had less than 1.25% minor units 

[24, 48, 50, 51, 61, 70, 71]. The melting temperature increases dramatically with molecular 

weight for low Mn but reaches an asymptotical value at Mn>100 kg/mol. It can be as low as 90°C 

for PLA oligomers and increases up to 185 °C for PLA in the 100 kg/mol range. It is noteworthy 

that commercial PLA grades with a molecular weight in the 50-150 kg/mol range are in the high-

molecular weight plateau region and therefore are not highly sensitive to molecular weight 

changes. In order to express the relationship between melting point and molecular weight in a 

simple way, the data from Figure 2.5 was fitted using the following equation: 

 

Equation 2.7 

with Tm
∞

 = 181.3 
o
C and A = 1.02×10

5 o
Cg/mol. This is a common molecular weight dependency 

used for expressing changes in polymer properties such as glass transition temperature, tensile 

strength, etc. The property is expressed as a function of the number-averaged molecular weight 

Mn, and of a theoretical property value obtained at infinite molecular weight. As can be seen on 

the figure, Equation 2.7 gives a fair account of the effect of molecular weight on the melting 

temperature. 
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Figure 2.5 PLA Melting point as a function of molecular weight, data adapted from [24, 48, 50, 51, 61, 70, 71] 

In some circumstances, two peculiarities are observed in the DSC heating scans of semi-

crystalline PLA. One is the emergence of a small exothermic peak just before the melting peak 

and the other one is the occurrence of a double melting peak. These two phenomena can be well 

explained by taking into consideration the crystallization conditions in parallel with the α' and α 

crystal formation requirements [40, 41, 72, 73]. When PLA is crystallized at temperatures 

corresponding to α' crystal formation, the small exotherm appearing just before the single 

melting peak is due to the transformation of disordered α' crystals to the ordered α-form. On the 

other hand, a double melting behavior appears when the crystallization temperature is situated in 

the region of simultaneous α' and α type formation. For high crystallization temperatures, only α 

crystals are produced leading to a single melting peak. 

Effect of branched structure on the melting point was also reported in a number of studies 

[28, 31, 52, 53, 74]. Tm was insensitive to branching when different contents of reactive 

copolymers (chain extenders) were employed to produce long chain branched PLA [31, 53]. 

However, in the case of star-shaped PLAs synthesized by multifunctional initiators, the 

magnitude of Tm reduction was in direct relation with the number of arms. Tm reduction between 

5 and 40 
o
C were observed for branched PLAs with 4-9 arms [28, 74] and 32 arms [52], 

respectively. This behavior was attributed to the poor folding property of branched architecture 

due to steric hindrance as well as crystal imperfections caused by chain ends and branching 

points. 

2.1.4.3 Maximum achievable crystallinity 

Both the molecular weight and D-Lactate content determine the maximum achievable 

crystallinity. The enthalpy of fusion data obtained from various data sets are summarized in 

Figure 2.6. The maximum enthalpy of fusion decreases generally with molecular weight and 

minor unit concentration. The molecular weight effect can be explained by the higher restrictions 

of chain motion at higher molecular weights, while the reduction in maximum achievable 

crystallinity by increasing D-lactate content is expected from crystal disruption. At about 10 to 

12 mol.% (in the case of random distribution) of non-crystallizable unit, crystallinity is 

extremely low and so lengthy that PLA can be considered completely amorphous. Furthermore, 

crystallinity is diminished if branching is imparted to PLA structure as a consequence of more 
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difficult chain segment transportation to crystallization sites. Compared to linear PLA, 7-15% 

less crystallinity was achieved for star-shaped and long chain branched PLA [28, 31, 52, 74]. 

 

Figure 2.6 Effect of molecular weight and minor unit concentration on maximum enthalpy of fusion, data adapted from 

[24, 54, 60, 70, 75-80] 

2.1.5 Crystallization kinetics 

2.1.5.1 Kinetics through visual observation 

The overall crystallization kinetics is typically examined in terms of two independent 

phenomena: initial crystal nucleation and of subsequent crystal growth. In practice, optical 

microscopy on thin polymer films is used to determine the nucleation density and spherulite 

growth rates in isothermal conditions. The polymer film is usually first melted and rapidly 

cooled to the desired temperature. The size and number of spherulites can then be monitored 

over time. High-quality images and more accurate measurements are also reported by 

observation via an Atomic Force Microscopy technique [81, 82]. The relation between the 

number of crystallization sites (spherulite density) with crystallization temperature for PLA is 

illustrated in Figure 2.7. The spherulite density was shown to decrease with temperature and the 

decreasing rate gradually accelerates with temperature.  
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Figure 2.7 Spherulite density as a function of crystallization temperature, data adapted from [24, 79, 83, 84] 

The growth phenomenon is evaluated by measuring spherulite radius with time. The crystal 

growth rate (G) is equal to the slope of the spherulite radius vs. time curve, while extrapolation 

of this data to zero-radius can be used to determine the induction time (related to nucleation 

kinetics). Usually G is constant for a specific Tc, implying a constant concentration of impurities 

like non-crystallizable segments at the growth front because of their rejection to inter-lamellar 

regions. One of the most important theories on polymer crystallization is the Hoffman-Lauritzen 

theory that deals with the crystal growth kinetics [85, 86]. It defines three crystallization regimes 

based on the ratio between the rate of surface nucleation and the rate of chain deposition on the 

crystal surface. It is noteworthy that this theory concerns the secondary nucleation occurring on 

preformed lamellae. It is different from the primary nucleation defined as the initiation of a new 

lamella from a polymer melt. In regime I which covers low undercoolings, surface nucleation is 

slow and is the limiting factor while chain mobility is high. By decreasing temperature and 

moving to regime II, surface nucleation becomes more effective while chain movement is 

reduced. However the combination of the two factors gives higher growth rates. Finally, upon 

further cooling, we move to regime III. Contrary to regime I and due to high undercoolings, 

surface nucleation is maximum and chain motion is the limiting factor, resulting in lower growth 

rates compared to regime II. According to this theory, the crystal growth rate (G) of a 

homopolymer is given by: 

 

Equation 2.8 
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where G0 is a pre-exponent constant known as front factor, U* is the activation energy for local 

motion, R is the gas constant, Tc is the crystallization temperature, T∞ is the temperature at which 

flow ceases, ΔT is the undercooling (Tm
0
-Tc), and f is a factor to account the change in heat of 

fusion with temperature. Kg known as the nucleation constant is a parameter given by: 

 

Equation 2.9 

where a is a constant that depends on the crystallization regime (2 for regime II crystallization 

and 4 for regime I and III), b is the surface nucleus thickness, σ is the lateral surface free energy, 

σe is the fold surface free energy, Tm
0
 is the equilibrium melting temperature, ΔHf is the heat of 

fusion for 100% crystallinity and k is the Boltzmann constant. Typical values of Hoffman-

Lauritzen equation parameters reported for PLLA are summarized in Table 2.3. 

Table 2.3 Hoffman-Lauritzen Eq. parameters for PLLA 

Parameter Description Value 

U* Activation energy for local motion 6.27 × 103 J/mol [62] 

R Gas constant 8.314 JK-1mol-1 

T∞ Temperature at which flow ceases Tg-30 K 

ΔT Undercooling Tm
0 - Tc 

f 
Factor to account the change in heat 

of fusion with temperature 
2Tc/(Tm

0+Tc) 

Tm
0 Equilibrium melting temperature (SeeTable 2.2) 

b Surface nucleus thickness 5.17 × 10-10 m [36] 

σ Lateral surface free energy 12.03 × 10-3 Jm-2[62] 

σe Fold surface free energy 60.89 × 10-3 Jm-2[62] 

ΔHf Heat of fusion (SeeTable 2.2) 

k Boltzmann constant 1.38 × 10-23 JK-1 

 

When the growth rate measurement is done for different crystallization temperatures, 

plotting                             versus            will lead to a linear plot where the slope is -Kg and the 

intercept is ln(G0). In addition, the regime change temperature can be obtained from the points of 

slope variation. Regime I-II transition for PLA was reported to occur at 163 [62] or 147 
o
C [48] 

while regime II-III transition occurs at 120 
o
C [40, 48, 87, 88]. Furthermore, G is maximum at 
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about 130 
o
C [40, 60, 62, 87, 89]. In some cases, however, an unusual behavior is reported for 

the variation of G with Tc for PLA where two local maxima are observed at temperatures around 

105-115 
o
C and 125-135 

o
C instead of a bell-shaped curve [48, 69, 82, 83, 88, 90-93]. The origin 

of this double peak behavior is not known exactly. Transition from regime II to III [48, 88, 94] or 

growth of α' and α crystal structures [91] are assumed to be the main causes for such behavior. 

Interestingly, the temperatures for regime II-III transition and transition from pure α to a mixture 

of α' and α crystal formation coincide (120 
o
C). Besides, there are arguments on whether the 

crystal structure or spherulite morphology remains the same [48, 90, 91] or varies for these two 

growth rate peaks [83].  

In Table 2.4, some of the reported values for Kg and G0 are summarized. Reported G0 data 

are varying widely, however Kg values are more consistent. Additionally, ratios of Kg(III)/Kg(II) 

and Kg(I)/Kg(II) are close to the theoretical value of 2. 

Table 2.4 Reported front factor and nucleation constant for different crystallization regimes 

Mw (kg/mol) D (%) G0 (µm/min) × 10-7 Kg × 10-5 (K2) Ref. 

I II III I II III 

150-690 (Mv) - 2.13×106 1.56-3.38 - 4.87 2.29-2.44 - [62] 

50-200 - - - - - 1.21-2.08 - [68] 

127.4 0.4 - - - - 2.4 - [60] 

22-701 0 - 1530-2700 - 8.11-11.27 4.64-5.01 6.33-9.7 [48] 

101 - - - - - 1.85 4.38 [87] 

26-1218 0.3-0.96 - 1.79-3.98 1780-53200 - 2.27-2.55 4.73-5.51 [88] 

124.8-151.3 0-1 - 1700-2080 - 4.52-6.32 2.41-3.46 4.78-7.01 [69] 

101 - - - - - 1.85 4.38-5.97 [90] 

136 0.96 - 510 - - 3.03 - [89] 

206 0.8 - - - - 3.22 6.02 [40] 

27.18-28.08 - - 3.98-8.86 7200-10700 - 2.2-2.5 4.48-4.7 [92] 

For high melting point polyesters, like PLA, Hoffman et al. [95] related the lateral surface 

free energy to chain flexibility through the following equation: 

 

Equation 2.10 

where a0 is the surface nucleus height and equals to 5.97 Å for PLA according to Kalb and 

Pennings [36]. C∞ is the characteristic ratio defined as the mean-square end-to-end distance of an 
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unperturbed linear polymer chain over that of an equivalent random-flight chain. This ratio is a 

representation of chain flexibility and assumes higher values for stiffer polymer chains and more 

extended conformations. There is a discrepancy in the literature about PLA chain flexibility. 

Different values of C∞ are reported for PLA ranging from 2 up to 12 [49, 96-102]. Dorgan et al. 

[49, 102] identified a number of reasons for this inconsistency and with a series of careful 

experiments in melt and solution state, they suggested that PLA has a flexible polymer chain 

with a characteristic ratio of about 6.5, in agreement with the simulation study by Blomqvist 

[101]. Presence of an oxygen atom in the backbone gives flexibility to the chain, having a nearly 

free-rotation around O-C bond. In terms of crystallization, this implies less extended chains that 

should pass a higher entropy barrier to crystallize [95]. Replacing the lateral surface free energy 

in Hoffman-Lauritzen model by Equation 2.10 likewise confirms that for a more flexible chain 

(smaller C∞), the exponential term associated to secondary nucleation becomes smaller and its 

contribution to growth rate is reduced. 

An additional factor affecting growth rate is the D-lactate concentration. This is illustrated 

in Figure 2.8 where the growth rate is plotted versus crystallization temperature for PLA of 

similar molecular weight but with different D-lactate concentration. Open symbols represent data 

for which D-unit is incorporated through copolymerization of LL-lactide with meso-lactide, 

while filled symbols are for LL-lactide copolymerized with DD-lactide. It should be noted that 

the nominal concentration of meso or DD-lactide for the samples with lowest D-unit 

concentration were 0%. The optimum Tc (at which G is maximum) is in the 115-130 °C range. 

Increasing the optical impurity decreases dramatically the maximum spherulite growth rate. It is 

around 4.5 μm/min for a PLA with 0.4% D impurity and is decreased by a factor of 40 (less than 

0.1 μm/min) with the addition of only 6.6% D-lactate. The way that D-unit is introduced into the 

PLA structure also influences the growth rate significantly. Comparison of the data sets with 

similar D-lactate concentration suggests that when DD-lactide is the source of impurity, the 

growth rate is higher compared to the situation where meso-lactide is the impurity source. This is 

logical since for DD-lactide, each two D-units are connected to each other. Thus, the average 

isotactic sequence length of L-units is doubled compared to the PLA having meso-lactide as the 

feed component (see Equation 2.2). Finally, from Figure 2.8 it is clear that the optimal 

crystallization temperature shifts to lower values when the D-lactate concentration increases. 
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Figure 2.8 Effect of D unit concentration on the spherulite growth rate of Poly(LL-co-meso-lactide) (open symbols, Mn ≈ 

65 kg/mol) and Poly(LL-co-DD-lactide) (filled symbols, Mn ≈ 74 kg/mol), data adapted from [60, 61] 

The molecular weight’s effect on the maximum growth rate is shown in Figure 2.9. The 

molecular weight is a number average, except for the viscosity average molecular weight data of 

Vasanthakumari and Pennings [62]. The data is for PLA having low D-unit concentration (0-

1%). However, for some data points this parameter is not specified by the authors. Once more, 

we chose the general form of Flory-Fox equation for regression of the maximum growth rate 

data. Thereby, the following parameters were used to draw the solid-line curve in Figure 2.9: 

 

Equation 2.11 

where Gmax
∞
 = 1.4 µm/min and A = -3.8×10

5
 (µm.g)/(min.mol). 

 

Figure 2.9 Maximum spherulite growth rate as a function of molecular weight, data adapted from [40, 48, 60, 62, 69, 

79, 82, 83, 88, 89, 91-93] 
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Obviously, the growth rate decreases with molecular weight as expected from more 

restricted chain mobility. The decrease is sharp at lower molecular weights, while in the range of 

molecular weights typical of commercially available PLA, the effect is not as dramatic as that of 

the optical impurity. 

2.1.5.2 Kinetics through calorimetry 

Calorimetry is another technique used to study the crystallization kinetics. In particular, 

calorimetry enables quantification of transition temperatures and enthalpies in isothermal and 

non-isothermal modes. For isothermal characterizations, after initial quenching below the glass 

transition temperature or directly from the melt state, the amorphous polymer is rapidly brought 

to the selected crystallization temperature Tc. Heat flow is then measured as a function of time 

until crystallization is completed. The heat flow data is converted into an absolute crystallinity 

level or more commonly, to a fraction relative to the final crystallinity level. Such crystallinity 

growth curves are illustrated in Figure 2.10 for a PLLA crystallized at temperatures between 90 

and 130˚C. Once this data is obtained, it can be curve-fitted with the Avrami model: 

 

Equation 2.12 

where k is a kinetic rate constant and n is the Avrami exponent. The Avrami exponent is 

typically between 2 and 4 for polymer crystallization and is associated to the nucleation 

mechanism (homogeneous vs. heterogeneous and simultaneous vs. sporadic), dimensionality of 

crystal growth and growth mechanism, i.e., linear or diffusion controlled due to the high impurity 

concentration. The solid lines in Figure 2.10 are data regression obtained using the Avrami 

model. The Avrami exponents for this specific example were in the range of 2.5-2.8 for the 

temperature range of 90 to 130 
o
C, suggesting a change in crystal growth from two to three 

dimensional with simultaneous nucleation [103]. Likewise, there are other reports of the Avrami 

exponent around 2 [104-106], between 2.5 and 3.5 [54, 65, 79, 107-111] and between 3.5 and 4.3 

[68, 112, 113]. The higher n values are attributed to three dimensional spherulitic growth with a 

sporadic or a combination of sporadic and simultaneous nucleation type, while the lower values 

are associated to two dimensional growth with instantaneous and some sporadic nucleation. 
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Figure 2.10 Degree of crystallization of PLLA (Mn = 1.23×105 g/mol, PDI = 1.8) vs. time for different crystallization 

temperatures, data adapted from [103] 

To rapidly compare the crystallization rates of materials, it is convenient to report the 

crystallization half-time (t1/2) defined as the time required to attain half of the final crystallinity 

(Xt = 0.5). The half-time is typically reported as a function of temperature enabling the 

determination of the optimal temperature window. In Figure 2.11, t1/2 is plotted versus 

crystallization temperature for PLA having different molecular weights (Mn in kg/mol) and D-

lactate concentration. Even though the materials varied widely in terms of molecular weight and 

optical purity, all curves go through the typical minimum. This minimum is associated to the 

competition between the increased mobility and the reduced nucleation rate as a function of 

temperature. The lowest reported half-time was in the 2-3 minutes range. This is relatively high 

compared to other semi-crystalline commodity polymers. The half-time increases clearly with 

the D-lactate content and the typical U-shaped curves are shifted up. A useful general rule 

reported by Kolstad [54] is that the crystallization half-time increases by about 45% for each 1% 

increase in meso-lactide content. The data in Figure 2.11 does not enable a systematic evaluation 

of molecular weight effects but one-to-one comparison of data with similar D-contents show that 

the half-time was increased with molecular weight as expected from the reduced chain mobility. 
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Figure 2.11 Crystallization half-time as a function of crystallization temperature for different D-lactate concentrations 

and molecular weights, Data adapted from [54, 76, 79, 110, 114] 

 The maximum crystallization rate, or the minimum half-time, was reached in the 105-110 

o
C range. It is noteworthy that the optimal crystallization temperature observed by isothermal 

calorimetry is 15-20 °C lower than the one determined from in situ spherulite growth rate 

measurement reviewed earlier. Also, the dual peaks sometimes reported for the growth rate are 

not observed in half-time curves. This illustrates the fact that the overall crystallization rate 

measured by calorimetry takes into account the increased number of crystallization sites 

emerging by reducing the temperature. It is also in agreement with the trend observed in 

Figure 2.7 where spherulite density sharply decreases above 110 
o
C. Therefore, at temperatures 

lower than the optimal growth rate temperature, the crystal growth rate decrease was 

compensated by a larger number of crystallization sites (higher nuclei density) due to increased 

driving force for nucleation. 

Although it has a negative effect on total crystallinity and melting point, higher 

crystallization rates have been observed for branched PLA compared to linear one [31, 53]. The 

cold crystallization temperature was decreased and the crystallization peak was shifted to higher 

temperatures for branched PLA compared to the linear structure as a consequence of the 

nucleating effect of branching points. In addition, the magnitude of both the cold crystallization 

peak and crystallization peak upon cooling was increased due to the faster overall crystallization 

rate. It was also observed that increasing the branching level intensified the shifts of Tc and Tcc as 

well as peak amplitude. 
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2.1.6 PLA heterogeneous nucleation and plasticization 

2.1.6.1 Nucleation 

As discussed above, the overall nucleation and crystallization rates of PLA in 

homogeneous conditions are relatively low. This has prompted tremendous efforts in the 

scientific community toward the improvement of PLA crystallization kinetics by adding 

nucleants to increase its nucleation density and by adding plasticizers to increase chain mobility. 

Nucleating agents will reduce the nucleation induction period and increase the number of 

primary nucleation sites. In a general classification, nucleation can be either physical or 

chemical. The physical agents can be categorized as mineral, organic and mineral-organic 

hybrids. The different classes of nucleating agents are explained hereafter. It is noteworthy that 

the additional processing step required to blend additives into PLA may lead to molecular weight 

reduction by hydrolytic or thermal degradation. Therefore care must be taken in distinguishing 

between nucleation, plasticization and molecular weight reduction effects. 

2.1.6.1.1 Chemical nucleating agents 

Chemical nucleating agents are those for which nucleation proceeds through a chemical 

reaction mechanism. For example, Legras and co-workers [115-117] studied the nucleating 

effect of organic salts of sodium on the crystallization of polyesters such as PET and 

polycarbonate (PC). They showed that when sodium 2-chlorobenzoate is added to PET, it 

dissolves in the polymer melt and reacts with ester linkages through a chain scission mechanism 

to produce sodium-terminated ionomers. Acceleration in crystallization kinetics was associated 

to the decrease in molecular weight and to the association of ionic end-groups into clusters, the 

latter being more important. Garcia [118] and Zhang [119] did similar studies on the chemical 

nucleation of organic sodium salts on PET and PTT respectively. In the case of PLA, sodium 

salts such as sodium stearate have been explored for nucleating PLA crystallization but failed to 

provide significant improvement of the crystallization rate while severely decreasing the PLA 

viscosity due to extensive chain scission [76]. Another sodium salt investigated for this purpose 

was sodium benzoate [120]. At a concentration of 0.2%, it reduced the Mw of PLA from 163.3 to 

127.5kg/mol, yet no enhancement in crystallization kinetics was observed. 
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2.1.6.1.2 Mineral nucleating agents 

Talc is an effective physical nucleating agent for PLA and is commonly used as a reference 

to compare the nucleation ability of other additives [12, 54, 76, 80, 121-126]. For example, 

Kolstad [54] found that 6% talc increased the nucleation density by 500 times. This led to a 7 

folds reduction in crystallization half-time, t1/2, at the optimum crystallization temperature. In 

another study, a 35-fold reduction in t1/2 with 1% talc was reported [76]. In addition, the 

optimum crystallization temperature was shifted from 100 to 120 
o
C in presence of talc [124]. In 

non-isothermal condition, the crystallization peak upon cooling (Tc.) is also shifted to higher 

temperatures. For example, it was reported that for the investigated cooling rates up to 80 

o
C/min, Tc was increased by 2-3 

o
C with increasing talc concentration from 1 to 2%. Further 

addition provided only an additional Tc increase of 0.5 
o
C/% talc indicating that relatively low 

talc amounts are sufficient for nucleation [76]. In another report using a low cooling rate of 1 

o
C/min, it was shown that the peak crystallization temperature was shifted from 107 to 123 

o
C 

when 3% talc was incorporated via solution blending [125]. 

Clay has been employed to improve thermal, mechanical and barrier properties of 

polymers. It is therefore interesting to examine its effect on the crystallization of PLA. In a 

qualitative study, narrowing of cold crystallization peaks were observed for PLA in presence of 

clay [127]. In another study, a crystallization rate increase around 50% was reported in presence 

of 4% organically modified montmorillonite [128]. The effect of clay exfoliation on 

crystallization was investigated by employing four different organo-modified clays. It was shown 

that the crystallinity and nucleation density of intercalated and flocculated samples were greater 

than those of nearly exfoliated clay. On the other hand, exfoliation of the silicate layers resulted 

in a lowering by about 10 
o
C of the cold crystallization temperature compared to intercalated 

morphology [129]. Kirkorian and Pochan confirmed that the exfoliated morphology had a lower 

nucleation effect but showed that the spherulite growth rate was increased in presence of 

exfoliated morphology [130]. They later used FTIR spectroscopy to identify the origin of these 

phenomena and concluded that in pure PLLA the inter-chain interactions precede helix 

formation, while for intercalated morphology inter and intra-chain interactions are simultaneous 

leading to faster crystallization. On the other hand, in exfoliated morphology, the helix formation 

started earlier and the silicate layers hindered the inter-chain interactions necessary for crystal 

nucleation [131]. The Avrami exponent was also used to demonstrate the effect of clay 
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exfoliation on PLA crystallization. In the optimum crystallization temperature range, natural clay 

with poor dispersion increased the exponent by about one unit implying a nucleation effect while 

the exponent was reduced relative to the neat PLA reference for organoclays due to the 

restriction of crystal growth [132]. Compared to talc, clay is a less efficient nucleating agent for 

PLA as the reduction in t1/2 is moderate in isothermal mode and it is not effective for high 

cooling rates in non-isothermal crystallization. 

2.1.6.1.3 Organic nucleants 

Organic materials can also physically nucleate the crystallization of PLA. This is typically 

achieved by adding a low molecular weight substance that will crystallize more rapidly and at a 

higher temperature than the polymer, providing organic nucleation sites. It was reported that 

calcium lactate could increase the crystallization rate of an L-lactide/meso-lactide copolymer 

containing 10% meso-lactide [133]. This was not corroborated however by later work from Li 

and Huneault where calcium lactate was compared with talc and sodium stearate [76]. Stronger 

nucleation effects were reported by Nam et al. using N,N-ethylenebis(12-hydroxystearamide), 

(EBHSA) on a PLLA with 0.8% D content [134]. Upon heating at 5 
o
C/min, the cold 

crystallization temperature (Tcc) was reduced from 100.7 to 79.7 
o
C, showing that EBHSA can 

play a nucleating role. Cold crystallization is an experiment where the sample is heated from the 

solid amorphous state rather than cooled from the melt state. Optical micrographs at the interface 

of PLA and EBHSA showed a well-developed layer of trans-crystallites grown from EBHSA 

surface, an evidence for epitaxial crystallization of PLA. Since EBHSA crystallizes rapidly, it 

acted as nucleating agent given the condition that the isothermal crystallization was carried out 

below the melting point of EBHSA (144.5 
o
C). At high crystallization temperatures (130 

o
C), the 

nucleation density in presence of EBHSA was increased 40 times and the overall crystallization 

rate was increased 4 times. One advantage of organic nucleating agents is that they can be very 

finely dispersed in molten PLA. Nakajima et al. took advantage of this point to prepare haze-free 

crystalline PLA [135]. Different derivatives of 1,3,5-benzene tricarboxyamide (BTA) were 

solution blended with PLA and screened based on the solubility parameter and melting point 

characteristics in a cold crystallization experiment. PLA sheets with 1% of selected derivatives 

crystallized at 100 
o
C for 5 min exhibited 44% crystallinity while the neat PLA reference showed 

a crystallinity of 17% in the same conditions. More interestingly, the derivative with a lower 

melting point (206 
o
C) than processing temperature (235 

o
C) and similar solubility parameter to 
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PLA preserved PLA’s transparency regardless of the high degree of crystallinity. Kawamoto et 

al. [123] compared the nucleating ability of hydrazide compounds with talc and EBHSA using a 

PLLA with 99.4% optical purity. Samples containing 1% nucleating agent were completely 

melted and their nucleation behavior was compared at a rate of 20 
o
C/min. Selected hydrazide 

compounds enabled complete PLA crystallization upon cooling with enthalpy of crystallization, 

ΔHc, reaching 46 J/g. Talc and EBHSA showed ΔHc of 26 and 35 J/g in the same conditions. The 

crystallization peak, Tc, was also higher for the hydrazide, 131 
o
C compared to 102 and 110 

o
C 

for talc and EBHSA. Finally, p-tert-butylcalix[8]arene is another organic material that has 

revealed interesting nucleating effect for PLA [111]. PLA with 1% of this material revealed a 

sharp crystallization peak at 134.3 
o
C upon cooling at a rate of 5 

o
C/min, 15 

o
C higher than that 

of 1% talc and nearly 26 
o
C higher than neat PLA. Furthermore, the Avrami exponent was 

increased from about 3 for neat PLA to nearly 5 for nucleated PLA as a result of change in 

crystal growth from spherulite to sheaf-like morphology.  

2.1.6.1.4 Bio-based nucleants 

Among organic nucleating agents, biobased nucleants are a particular subset of interest for 

PLA. Harris and Lee reported a reduction in the crystallization half-time of a 1.4% D PLA from 

38 to 1.8 min when adding 2% of a vegetable-based ethylene bis-stearamide (EBS). Talc in the 

same conditions led to a lower half-time of 0.6 min. Upon cooling at 10 
o
C/min, addition of EBS 

enabled some crystallization with a broad and weak exotherm centered around 97 
o
C but again 

talc was more effective revealing a sharp peak at 107 
o
C [12]. 

Starch is a biopolymer that has raised a lot of interest in recent years and its blends with 

other polymers are under extensive investigation. The effect of starch on PLA crystallization was 

found to be relatively modest with a crystallization half-time reduction from 14 min to 1.8-3.2 

for samples containing 1-40 % starch. Again, 1 % talc was found to be more efficient and 

decreased t1/2 to about 0.4 min. It also shifted the optimum crystallization temperature up by 

about 15 
o
C compared to only 5 

o
C for starch [124]. 

Stronger effects were found by Li and Huneault when using starch in a thermoplastic state 

[136]. In this form, starch is an amorphous and highly plasticized polymer. It was found that the 

dispersed phase size reduction, obtained through interfacial modification, had a significant 

influence on PLA crystallinity. In fact, the unmodified blend comprising 20% of very coarsely 
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dispersed thermoplastic starch did not reveal any crystallization peaks at a cooling rate of 10 

o
C/min. However, in the same condition, the interface modified and finely dispersed blends 

crystallized to their maximum level (ΔHc = 50 J/g). In isothermal crystallization, the minimum 

crystallization half-time was reduced to 75 s when using an interfacial modifier. 

Cellulose nanocrystal (CNC) is another emerging material that has prompted high interest 

due to its high tensile properties and biobased origin. It was found that unmodified CNC, with a 

15 nm diameter and 200-300 nm length, did not significantly affect PLA crystallinity [110]. 

However, when its surface was partially silylated (SCNC), it had a modest positive effect on 

crystallinity. Used at 1%, the modified CNC increased PLLA Xc from 14% to 30% upon slow 

cooling at 10˚C/min. In isothermal experiments, the crystallization half-time was decreased 2-

fold to around 4 min when 1% SCNC was incorporated. 

Orotic acid is another bio-based chemical that was recently investigated [137]. As little as 

0.3% orotic acid had a significant effect on crystallinity development in non-isothermal and 

isothermal mode. At a cooling rate of 10 
o
C/min, a sharp crystallization peak at 124 

o
C with a 

high crystallization enthalpy 34 J/g was found. Besides, the t1/2 in the 120-140 
o
C temperature 

range exhibited 10-20 fold decreases down to as low as 0.64 min. Authors believed that the good 

match between b-spacing of PLA and a-spacing of orotic acid crystals may explain this strong 

nucleating effect.  

2.1.6.1.5 Carbon nanotubes (CNT) 

Recently, carbon nanotubes have attracted attention because of their high aspect ratio and 

outstanding mechanical, thermal and electrical properties. Unmodified and modified CNT were 

investigated in a number of studies as nucleating agents for PLA [104, 138-143]. Xu et al. [141] 

reported modest nucleating effects for multi-wall carbon nanotubes (MWCNT) solvent-mixed at 

very low loading (up to 0.08 wt.%) in PLLA. Upon cooling, the crystallization peak temperature, 

Tc, was shifted to higher temperatures but did not enable significant crystallinity development at 

cooling rates of 10 
o
C/min and higher. PLA-grafted carbon nanotubes (PLA-g-CNT) were also 

investigated in a PLA with 2% D [104, 139]. At the moderate cooling rate of 5 
o
C/min, 

crystallinity of 12-14% were attained with 5-10% PLA-g-CNT [139]. Moreover, in isothermal 

experiments on similar material, the minimum t1/2 was decreased from 4.2 min to 1.9 min with 

5% PLA-g-CNT [104]. Li et al. [142] investigated the nucleating effect of maleic anhydride 



31 

 

 

 

functionalized multi-wall carbon nanotubes on a PLA containing 4.3% D unit. Since the PLA 

had a large optical impurity, slow cooling and annealing were required to develop full 

crystallinity. Samples comprising the CNT exhibited sharper diffraction peaks in WAXD 

analysis but DSC analysis revealed that the CNT were not effective nucleating agents in 

moderate (i.e., 10 
o
C/min) or rapid cooling conditions. According to the above mentioned 

examples, it seems that carbon nanotubes cannot play a significant nucleating role for PLA melt 

processing. 

2.1.6.1.6 PLA stereocomplex 

As mentioned above, mixture of PDLA and PLLA can crystallize in the form of a 

stereocomplex that has a melting point about 50 
o
C higher than the PLLA or PDLA 

homocrystals. Because the stereocomplex will form at higher temperature upon cooling than the 

homocrystals, small concentrations of PLA stereocomplex may be suitable for nucleating PLA 

homo-crystallization. 

Brochu et al. [144] reported that in presence of the PLA stereocomplex, the spherulite 

density was higher and the homopolymer crystalline fraction was larger than that in the pure 

polymer, implying the nucleating effect of stereocomplex crystals. They concluded that PLLA 

crystals can form epitaxially on stereocomplex lamellae that were previously formed at higher 

temperatures. Schmidt and Hillmyer [80] studied the nucleation effect of the stereocomplex for 

PLLA crystallization in solvent mixed blends. They used the following nucleation efficiency 

(NE) scale based on the self-nucleation of polymers [145] in order to quantify the nucleation 

performance: 

 

Equation 2.13 

Tc
min

 is the crystallization temperature observed when the neat polymer is cooled from the 

amorphous state. Tc
max 

is the crystallization temperature when the crystallized polymer is 

partially melted and self-nucleated with the remaining crystals. In this case, NE is assumed to be 

100% since there is a high concentration of well distributed nucleating crystals which have a 

high affinity to the melt. For the investigated systems, Tc
max

 and Tc
min

 were 157 
o
C and 106 

o
C, 

respectively. It was shown by measuring the crystallization temperature, Tc, for various 
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compositions that addition of small PDLA contents (forming the stereocomplex in situ in the 

PLLA major phase) had a higher nucleation efficiency than talc. For example, the nucleating 

efficiency of 6 % talc was 32% whereas that of 6 wt.% PDLA was 56%. In addition, the 

nucleation density with as little as 0.25 wt.% PDLA was more than 170 times that of pure PLLA. 

The use of 1% talc only doubled the nucleation density in the same conditions. Unfortunately, 

the nucleation density increase was not accompanied by an overall increase in the extent of 

crystallization of the PLLA. This behavior was related to the tethering effect of stereocomplex 

crystallites, reducing PLLA chain mobility. 

In another study on PLLA crystallization, Anderson and Hillmyer used the scaling concept 

but this time for stereocomplex formed in the melt state [122]. They quantified the effect of 

PDLA molecular weight (Mn equal to 5.8, 14 and 48 kg/mol) and concentration (0.5-3 wt.%) on 

the nucleating efficiency of the stereocomplex. The highest efficiency was observed using the 14 

kg/mol PDLA. Nucleating efficiency values up to 94% were achieved when 3% of this PDLA 

was used, suggesting an almost ideal nucleation behavior and implying that an optimum 

molecular weight exists. In addition, the final crystallinity of PLLA upon cooling at 5 
o
C/min 

was increased from 41% to 60% with the addition of 0.5% of 14 kg/mol PDLA. By contrast, the 

addition of 6% talc led to 54% crystallinity and a nucleating efficiency of 50%. The effect of the 

stereocomplex on the crystallization rate of PLA at 140 
o
C is depicted in Figure 2.12. For the 

lower molecular weight PLLA, the crystallization half-time, t1/2 was reduced from 17 min to less 

than 1 min when 3% of a 14 kg/mol PDLA was melt blended. The same trend is observed for a 

higher molecular weight PLLA for which blends are prepared via solution mixing, but curves are 

shifted to higher half-times as a consequence of lower chain mobility. In both cases, the half-

time for PDLA nucleated samples was one order of magnitude smaller than the corresponding 

PLA nucleated with 6% talc. 
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Figure 2.12 t1/2 as a function of PDLA (Mn ≈ 14 kg/mol) and talc concentration for two PLLAs of Mn = 56 and 94 kg/mol, 

data adapted from [80, 122] 

Yamane and Sasai examined the role of higher molecular weight PDLA on the nucleation 

and crystallization of PLLA [146]. The PLLA with Mw =180 kg/mol was solution blended with 

PDLAs of 45, 120 and 260 kg/mol. Like Anderson and Hillmyer [122] and in contrast to the 

results obtained by Brochu et al. [144] and Schmidt and Hillmyer [80], they found that 

crystallinity increased with PDLA concentration when the PDLA content was very low, but 

tended to level off at higher PDLA concentrations. It is noteworthy that the nucleation efficiency 

for samples rapidly cooled from 200 
o
C was greater for the higher molecular weight PDLA and 

that this trend was reversed when the material was cooled from 240 
o
C. The authors explained 

that when cooling from temperatures below the stereocomplex melting point, the stereocomplex 

crystals are already present and those formed from higher molecular weight PDLA provide a 

larger surface area for PLLA crystallization. On the other hand, when samples are cooled from 

temperatures above the stereocomplex melting point, the stereocomplex has to be created within 

the limited timeframe of the cooling process, thus lower molecular weight PDLA is preferable 

because the stereocomplex is produced at a greater rate. Rahman et al. [147] also confirmed that 

PDLA with a lower molecular weight resulted in a higher stereocomplex crystallinity than a 

PDLA with higher molecular weight. 

In Figure 2.13, the peak crystallization temperature upon cooling as a function of PDLA 

concentration is compared for different cooling rates (Ф in 
o
C/min) and PDLA molecular weights 

(Mw in kg/mol). Two distinct trends arise from the stereocomplex formation route. For samples 

in which the stereocomplex exists from the beginning of the cooling cycle, the crystallization 
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temperature, Tc, increased with PDLA concentration up to a plateau. On the other hand, when the 

blends were cooled directly from the melt state without pre-existence of the stereocomplex, the 

nucleation effects were not observed until the PDLA concentration reached about 5%. This is 

due to the insufficient time to form the stereocomplex nucleation sites. Furthermore, when the 

cooling rate or molecular weight of PDLA was increased, Tc shifted to lower values. 

 

Figure 2.13 Effect of PDLA concentration on peak crystallization temperature for various molecular weight and cooling 

rate. Solid trend lines and filled symbols: pre-crystallized stereocomplex, dashed lines and open symbols: direct 

stereocomplex formation from the melt, data adapted from [80, 122, 147] 

Tsuji et al. [79] compared the spherulite growth rates of stereocomplex-nucleated PLA 

with the stereocomplex growth rate observed in their previous study [148]. They concluded that 

the spherulites contained only PLLA crystallites because the growth rate was independent of the 

PDLA content. If the spherulites had contained stereocomplex crystallites other than nucleating 

sites, the growth rate should have increased due to the high stereocomplex growth rate. In 

addition, increasing the PDLA content did not have a significant influence on the induction time. 

Similarly, the nucleation constant (Kg) and front constant (G0) did not show an explicit 

dependence on PDLA concentration indicating no growth mechanism variation related to the 

presence of the stereocomplex. Tsuji et al. also compared PLA stereocomplex to other nucleants 

such as talc, fullerene C60, clay and polysaccharides [125]. The nucleating effect was ranked in 

the following order: PDLA > talc > C60 > montmorillonite > polysaccharides. 

2.1.6.1.7 Nucleation based on inorganic-organic hybrids 

Inorganic-organic hybrids are a new class of materials that include polyhedral oligomeric 

silsesquioxane (POSS) and layered metal phosphonates. Unlike organoclays, the organic and 
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inorganic components of these hybrid materials are connected through covalent rather than ionic 

bonds. In the case of POSS, the material core is constituted of a silicon and oxygen “nanocage” 

grafted with organic arms that can be modified depending on requirements. In a series of studies, 

Qiu et al. investigated the effect of POSS with isobutyl, methyl and vinyl arms on the PLA 

properties [149-152]. In cold crystallization experiments at a heating rate of 20 
o
C/min, POSS 

decreased the cold crystallization peak temperature, Tcc, between 10 and 22 
o
C depending on the 

organic arm and POSS concentration [149, 151, 152]. The developed crystallinity was also 

increased from 8 to 44%. In isothermal experiments, 1% POSS with vinyl arms decreased t1/2 

from 8 to 1.2 min [152]. Upon cooling at 5 
o
C/min, the crystallization temperature was increased 

by 10-15 
o
C compared to neat PLA and the samples were fully crystallized within the cooling 

cycle. At a cooling rate of 15 
o
C/min however, only a small crystallization exotherm appeared 

around 92 
o
C for 2% POSS. This was shifted slightly to 95 and 97 

o
C when POSS concentration 

was increased to 5 and 8%, respectively [151]. 

Layered metal phosphonates have also exhibited a nucleating effect on PLA. Pan et al. 

compared the nucleation effect of zinc phenylphosphonate (PPZn) to that of talc and PDLA at 

1% nucleating agent content [126]. For crystallization upon cooling at 10 
o
C/min, the highest 

crystallization temperature, around 128
o
C, and the sharpest crystallization peaks were achieved 

for PPZn. At the same cooling rate, a very high crystallinity of 47 to 56% was achieved when 

using PPZn in the range of 0.02 to 15% in PLA. The cold crystallization temperature of 

quenched samples was also shown to be reduced by up to 30 
o
C when adding PPZn. In 

isothermal tests, PPZn was also more effective than talc and PDLA in reducing the 

crystallization half-time, t1/2, of PLA. Values as low as 0.63 min were found compared to over 6 

min for talc and PDLA respectively. It was suggested that the match of the lattice parameters of 

PPZn and PLA α crystal explains such a great enhancement of the crystallization behavior. In 

another study, Wang et al. investigated the effect of metal type on PLA/layered metal 

phosphonate composites by comparing zinc, calcium and baryum phosphonates (PPZn, PPCa 

and PPBa) [153]. It was found that the nucleating ability decreased in the following order PPZn 

> PPCa > PPBa due to the different dispersion and interfacial interaction of nucleating agents 

with PLA matrix. 
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2.1.6.2 Plasticization 

Since PLA is a brittle material, plasticization has been employed extensively for 

toughening and extending its applications [5]. Plasticization may have contrasting effects on the 

crystallization behavior. On one hand, the Tg depression, a measure of plasticization efficiency, 

will shift the crystallization temperature window to lower temperatures. The increased chain 

mobility will facilitate the movement of chains from the amorphous phase unto the existing 

crystal surface, especially at lower temperatures. Consequently, parameters that are directly 

associated with chain mobility will be affected. For example in isothermal crystallization mode, 

spherulite growth rate should increase and the optimum growth temperature should be lowered. 

For cold crystallization, the crystallization peak should be sharper and shifted to lower 

temperatures. On the other hand, plasticization may also cause melting point and equilibrium 

melting point depression, adversely influencing the growth rate and overall crystallization rate at 

a given crystallization temperature due to the reduced degree of undercooling (Tm
0
 –Tc) driving 

the crystallization and primary nucleation processes. Therefore, the enhancement in chain 

mobility may be partially compensated for by reduced primary and secondary nucleation. 

In Table 2.5, average Tg and Tm depression as a function of plasticizer concentration is 

compared for some of the plasticizers explored for PLA. 

Table 2.5 Average Tg and Tm depression of PLA as a function of plasticizer type and concentration 

Plasticizer Abbr. Mw (g/mol) ΔTg/[Plasticizer] 

(oC/%) 

ΔTm/[Plasticizer] 

(oC/%) 

Ref. 

Polyethylene glycol PEG 

200 
 

2.34 0.6 [154] 

400 2.33 0.46 [154, 155] 

578 2.51  [156] 

1000 1.91 0.16 [154, 157] 

1500 1.55 0.1 [155] 

8000 1.87 0 [77, 158, 159] 

Polypropylene glycol PPG 
530 2.25  [156] 

1123 2.17  [156] 

Poly(ethylene glycol-co-propylene glycol) PEPG 12000 1.78 0.13 [160] 

Triphenyl phosphate TPP 326.3 1.34 0.37 [161] 

Dioctyl phthalate DOP 390.56 1.75 0.46 [162] 

Di(2-ethylhexyl) adipate DOA 371 1.48 0.4 [163-165] 

Polymeric adipate 

G206/2 1532 1.76 0.23 [163] 

G206/3 2000 1.96 0.4 [164, 165] 

G206/5 2700 1.48  [164] 
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G206/7 2565-3400 1.75 0.26 [163-165] 

Poly(1,3-butylene adipate) PBA 1500-3000 1.03  [166] 

Triethyl citrate TEC 276 1.45 0.81 [167, 168] 

Tributyl citrate TBC 360 1.85 0.43 [167-170] 

TBC- oligoester 
TBC-3 980-4450 1.27 0.3 [169, 170] 

TBC-7 2200-63600 0.6 0.2 [169, 170] 

Acetyl triethyl citrate ATEC 318 1.28 0.39 [167, 168] 

Acetyl tributyl citrate ATBC 402 2 0.46 [166-168] 

Glycerol   0.33 0.78 [155] 

Oligomeric lactic acid OLA - 2.05 0.9 [155] 

Poly(1,3-butanediol) PBOH 2100 1.2 0.12 [154] 

Acetyl glycerol monolaurate AGM 358 1.54 0.36 [154] 

Dibutyl sebacate DBS 314 1.53 0.45 [154] 

Diethyl bishydroxymethyl malonate DBM 220 1.67 0.57 [169, 171] 

DBM-oligoester 

DBM-A-8 4200 0.87 0.2 [169] 

DBM-A-18 8900 0.67 0.2 [169] 

DBM-S-4 1800 1.07 0.4 [169] 

DBM-S-7 3500 0.8 0.27 [169] 

DBMAT 2300 0.87 0.2 [169] 

DBM-oligoesteramide DBMATA 3200 1.13 0.4 [169] 

Glyceryl triacetate GTA 218.2 1.85 0.59 [165, 168] 

 

Polyethylene glycol (PEG) is the most investigated plasticizer for PLA. It is available in a 

wide range of molecular weights. Copolymers of ethylene glycol or ethylene oxide with lactic 

acid and the possibility to have different chain termination groups are also of great interest to 

manipulate its properties. The addition of PEG reduces the Tg by approximately 2˚C per 

%bplasticizer while it does not affect melting point significantly. Combination of these two 

characteristics makes PEG a suitable crystallization promoter for PLA. In different studies on 

PLA plasticization, PEG was compared to glucose monoester and partial fatty acid ester [172], to 

citrate ester, glycerol and oligomeric lactic acid [155] and to poly(1,3-butanediol), dibutyl 

sebacate and acetyl glycerol monolaurate [154]. Among these plasticizers, PEG was found to be 

the most efficient in decreasing the glass transition temperature and the cold crystallization 

temperature. Even a PLA with 5% D units which does not readily cold crystallize was found to 

cold crystallize between 88 and 90 
o
C with 10% PEG and up when heated at a rate of 10 

o
C/min 

[77]. The crystallinity of PLA and PEG was also found to be proportional indicating that PEG in 

the intra-spherulitic region crystallized much faster than that in the inter-spherulitic amorphous 

region. The effect of PEG end-group on plasticization and crystallization was also investigated 
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[78, 173, 174]. For PEG in the lower range of Mw (400-750 g/mol) and concentrations up to 

10%, the end-groups did not exhibit any significant influence on crystallization parameters such 

as transition temperatures, crystallinity and growth rate [78]. However, when comparing methyl-

methyl, hydroxyl-hydroxyl, methyl-hydroxyl and amine-amine terminated 2000 g/mol PEG 

[173, 174], it was found that the miscibility decreased in the following order: 2NH2> 2CH3> 

1OH-1CH3> 2OH. Furthermore, the melting point depression was found to increase according to 

the miscibility ranking. Hydroxyl-terminated PEG showed the smallest depression (3 and 7 
o
C 

for 10 and 30%) while the amine-terminated PEG showed the highest effect (14 and 26 
o
C for 10 

and 30%). High miscibility of amine-terminated PEG with PLA and highest melting point 

reduction were associated to the ionic interaction of amine groups with the carboxylic acid 

groups at PLA chain ends. Due to the competition between chain mobility and nucleation, it was 

found that the crystallization half-time, t1/2, went through a minimum when increasing the PEG 

content. This concentration was lower for amine-terminated PEG than other types of PEG, i.e., 

10% vs. 30% plasticizer. Regarding the crystallization kinetics, contrary to the prediction based 

on the melting point reduction, amine-terminated PEG enabled fastest crystallization, a behavior 

that was attributed to the lowest fold-surface free energy when PEG has two amine end-groups 

compared to other end-group types. 

Polypropylene glycol (PPG) is another oligomeric plasticizer investigated for PLA [156, 

175]. As the data in Table 2.5 suggests, PEG and PPG have similar effects on Tg. However, PPG 

may be less miscible with PLA and blends with only 12.5% PPG were shown to exhibit a second 

Tg around -77 
o
C related to a phase-separated PPG phase [156]. PPG was found to be less 

efficient in cold crystallization enhancement than PEG. Finally, based on the spherulite size 

measurements with a Small Angle Light Scattering (SALS) technique, it was shown that the 

growth rate and nucleation density were greater with PEG than with PPG [175]. 

Among the low molecular weight plasticizers for PLA, citrate esters are the most 

investigated ones. These materials are as effective as PEG for reducing the glass transition 

temperature but induce a higher melting point reduction. Among common citrates, tributyl citrate 

and acetyl triethyl citrate were found to be more efficient than triethyl citrate and acetyl tributyl 

citrate [167]. In another study, glycerin triacetate also known as triacetine was compared with the 

aforementioned citrate esters. It was found that tributyl citrate and triacetine led to the strongest 
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cold crystallization temperature decrease, from 95 to around 67-70 
o
C by incorporation of 20-

25% plasticizer. However, no significant effect on crystallization upon cooling was observed 

[168]. In addition to citrate esters, other low molecular weight plasticizers such as triphenyl 

phosphate and dioctyl phthalate were found to enhance PLA crystallization [161, 162]. In the 

case of triphenyl phosphate, the plasticizer used at 10, 20 and 30 % reduced significantly the Tg 

of PLA by 14, 26 and 39 
o
C, respectively, and increased the spherulite growth rate. The 

maximum growth rate for PLA was 16.8 µm/min, appearing at 132 
o
C. For 10, 20 and 30% 

triphenyl phosphate, the growth rate was increased to 30.6, 53.4 and 52.8 µm/min and the 

optimum temperature was reduced to 123, 110 and 102 
o
C, respectively [161]. 

Adipates are another family of PLA plasticizers. For this group of plasticizers, the Tg 

decreases with plasticizer concentration only up to concentration of 10% probably due to limited 

miscibility with PLA. Accordingly, only modest crystallization enhancements were found when 

using adipate plasticization [163, 165]. 

Even though it cannot be used as a conventional plasticizer because of its high volatility, it 

is interesting to note that carbon dioxide is highly soluble in PLA and has shown outstanding 

plasticization and crystallization enhancement effects in PLA [176-181]. This is of practical 

importance mainly in the extrusion foaming process where CO2 can be used as a physical 

blowing agent for PLA. On a weight-basis, CO2 is much more effective in reducing Tg than the 

plasticizers mentioned in Table 2.5. For example, Reignier et al. [178] showed that the Tg was 

decreased by 24 
o
C, 46 

o
C and 58 

o
C for 5, 10 and 15 wt.% CO2 respectively. On a pressure 

basis, Takada et al.[176] found that Tg and Tm decreased linearly with increasing CO2 pressure at 

a rate of 3.66 and 2.18 
o
C/MPa respectively. Reignier et al. showed as well that crystallization 

accelerates in the chain mobility controlled region in the presence of CO2 [178]. Similar effect of 

CO2 on isothermal crystallization kinetics was reported by Yu et al. [177] where t1/2 for cold 

crystallization at 70 
o
C was reduced sharply from about 360 min for atmospheric pressure to 

about 10 min by increasing CO2 pressure to 2 MPa. In actual extrusion foaming trials, Mihai et 

al. have shown that a very rapid PLA crystallinity development was triggered by the presence of 

6-7% CO2. Above this concentration, highly crystalline PLA foams could be formed within the 

few seconds of foam formation even though the neat PLA had a crystallization half-time in 

excess of 40 minutes in quiescent conditions. This rapid crystallinity formation could not be 
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explained solely in terms of a plasticization effect and this pointed out that additional nucleation 

effects, possibly from supercritical carbon dioxide clusters, were necessary to explain the 

dramatic rise in crystallization rate [180, 181]. 

2.1.6.3 Combination of nucleation and plasticization 

The heterogeneous nucleation provided by nucleants has its greatest impact on the overall 

crystallization rate at elevated temperature when the driving force for homogeneous nucleation is 

weak. Plasticization, on the other hand, will have its highest impact at a lower temperature when 

crystallization is hindered by a lack of chain mobility. Therefore combination of nucleation and 

plasticization is expected to widen the crystallization temperature window and increase the 

crystallization rate of PLA. Among the first promising reports on this topic were those of Pluta 

[182] followed by Ozkoc et al. [183, 184] focusing on blends of a PLA containing 4% D units 

with combinations of up to 20% PEG and 5% clay that was either pristine or organically 

modified. The cold crystallization peak, Tcc, for samples having both modifiers appeared at 

approximately 80 
o
C which was 20 

o
C less than the neat PLA. Upon cooling, neat PLA and its 

composites with 3 or 5% clay did not reveal any crystallization peaks even at a low cooling rate 

of 2 
o
C/min. At the same rate, plasticized formulations showed some crystallization peaks, with 

crystallization enthalpy up to 22 J/g but this value rapidly decreased to 13 J/g when the cooling 

rate was increased to 15 
o
C/min. The peak crystallization temperature Tc was 8-9 

o
C lower for 

plasticized composites compared to plasticized PLA [184]. This is in contrast with Pluta’s work 

showing a drop in ΔHc and a slight increase in Tc when clay was introduced [182]. Later, Li and 

Huneault [76] examined combinations of talc with ATEC or PEG as plasticizers for a PLA 

containing 2% D units. Much faster crystallization kinetics was achieved at 1% talc and 10% 

plasticizer levels than with the clay/PEG combination. Upon cooling at 10 and 20 
o
C/min, the 

materials exhibited a sharp crystallization peak around 105 
o
C and crystallized to their maximum 

level (over 40 J/g) within the cooling cycle. In comparison, sample with only 1% talc had a 

crystallization peak at 94 
o
C and reached only half of the full crystallinity. A similar study later 

confirmed these findings with 1% talc and up to 20% PEG [185]. Based on polarized optical 

micrographs obtained after non-isothermal crystallization at 2.5 
o
C/min from the melt, spherulite 

density decreased in the following order: PLA/talc > neat PLA > PLA/talc/20% PEG. Therefore, 

reduced nucleation due to plasticizer addition is compensated for by an increased growth rate, 

resulting in a higher overall crystallization rate. The effect of the plasticizer is highlighted at high 
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cooling rates in Figure 2.14. In this figure, the developed crystallinity upon cooling is depicted as 

a function of the cooling rate for nucleated and nucleated/plasticized samples. The crystallization 

enthalpy of the neat PLA control dropped sharply from 35 to nearly 0 J/g as the cooling rate was 

increased from 1.5 to 10 
o
C/min leading to essentially amorphous material. The talc filled PLA 

suffered a similar drop at higher cooling rates. The nucleated/plasticized formulations, however, 

were much less sensitive to the cooling rate. Even at a cooling rate of 80
o
C/min, the formulation 

with talc/PEG still crystallized to a high level. 

 

Figure 2.14 Crystallization enthalpy as a function of cooling rate for different formulations, data adapted from [76, 185] 

Other plasticizer/nucleant combinations lead to more moderate improvements. Instead of 

PEG, Xiao et al. combined talc with triphenyl phosphate plasticizer (TPP) to enhance the 

crystallization of a PLA containing 2% D units [106, 186]. PLA containing talc and talc+TPP 

showed the fastest crystallization kinetics with the development of a crystallization enthalpy 

around 30 J/g at a cooling rate of 10 
o
C/min. In isothermal conditions, the crystallization half-

time, t1/2, was reduced from 3.6 min for the neat PLA to 0.7 and 0.9 min for the nucleated and 

nucleated/plasticized samples, respectively. Another investigated combination was CNT and 

PEG. As pointed out earlier, CNTs do not seem to provide a strong nucleating effect for PLA. 

Addition of up to 10% PEG to 0.5% CNT/PLA blends failed to show any significant crystallinity 

at cooling rates greater than 2 
o
C/min [187]. In addition, based on optical microscopy 

monitoring, it was shown that the presence of the CNT decreased the spherulite growth rate 

probably by restricting the PLA chain mobility. 
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The cooling rates investigated in differential calorimetry studies are typically far below the 

ones prevailing in polymer processing operations such as injection molding. In processing 

operations, crystallization is also preceded by rapid polymer flow that can lead to strain-induced 

crystallization. Therefore, it is interesting to see how crystallinity can develop in typical 

industrial processing conditions. Figure 2.15 reproduces crystallinity data as a function of the 

mold temperature of an injection molding process. The data from Li and Huneault [76] is for 

PLA with 1% talc / 5% ATC molded using a 1 minute cycle. The data from Harris and Lee [12] 

is for pure PLA and for a PLA nucleated with 2% talc but for a molding cycle of 3 minutes. 

Typically, low mold temperature will enable faster solidification of the molten material and thus 

will enable shorter cycle time. In the case of slow crystallizing materials, part solidification may 

occur through cooling below the glass transition temperature or through a significant increase in 

the material crystalline content. In the reported studies, quality parts were obtained at low mold 

temperatures, around 20-40 
o
C but these were essentially amorphous. At mold temperatures in 

the 50-60 
o
C range, close to PLA’s Tg, the molded parts could not be ejected out of the mold 

because they were too soft. Finally, when maintaining the mold at 70-100 
o
C, highly crystallized 

quality parts were produced. It is noteworthy that in quiescent DSC conditions, getting fully 

crystallized samples in isothermal conditions below 100
o
C would require a much longer time. 

The shearing and local orientation, inherent to the molding process, therefore had a positive 

effect on the final crystallinity. 

 

Figure 2.15 Crystallinity versus mold temperature for injection molded PLA, data adapted from [12, 76] 
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The significance of shear-induced crystallinity in PLA was supported by optical 

microscopy observations of Li et al. on sheared PLA in isothermal [84] and non-isothermal [188] 

conditions. They reported that in samples pre-sheared at 1 s
-1

 and then crystallized isothermally 

above 120 
o
C, thread-like precursors first appeared and then turned into cylindrite crystals before 

additional spherulites started to grow. By contrast, under quiescent conditions, only spherulites 

were formed. Compared to the crystallization in quiescent conditions, sheared samples had lower 

induction time and a higher nucleation density. This morphology change was not observed 

however at temperatures below 120 
o
C probably due to the greater supercooling and thus greater 

homogeneous nucleation rate. In a non-isothermal test procedure, pre-sheared samples were 

cooled at controlled rates between 0.5 and 5 
o
C/min. It was found that the formation of cylindrite 

crystals occurred only if the shear rate used for the pre-shearing was above a certain critical 

value. For example, at 2 
o
C/min cooling, cylindrites were formed only for shear rates above 5 s

-1
. 

Furthermore, the onset crystallization temperature was shifted up by as much as 30 
o
C by the 

pre-shearing. The final crystalline content was increased from 9% in quiescent conditions up to 

more than 30% for pre-sheared samples. Similar observations were later reported by Huang et al. 

[189]. Considering that the deformation rates in actual polymer processing machinery are much 

higher than in these model experiments, it is likely that at elevated temperature, strain-induced 

nucleation of PLA has a positive effect on the overall crystallization of foamed, molded or 

extruded PLA. 

2.2 Poly(lactic acid) Stereocomplex 

In section 2.1, the subject of PLA stereocomplex was introduced briefly and its application 

as a nucleating agent was reviewed. In this section, more details about PLA stereocomplex 

formation are provided. 

2.2.1 Structure of PLA stereocomplex 

Upon discovery of the PLA stereocomplex, Ikada et al. reported that its X-ray diffraction 

pattern is different from homopolymer crystals; however, the crystal structure was not 

determined. Only by assuming a right-handed helical conformation for PDLA chain, based on 

the left-handed helical chain conformation of PLLA proposed by De Santis and Kovacs [35], 

they suggested the origin of this stereocomplex formation to be van der Waals forces such as 

dipole-dipole interactions. The crystalline structure of the PLA stereocomplex was studied in 
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detail by Okihara et al. [46] based on X-ray measurements and energy calculations. Crystal 

system was found to be triclinic with cell dimensions of a = 0.916 nm, b = 0.916 nm and c = 

0.870 nm and angles of α = 109.2
o
, β = 109.2

o
 and γ = 109.8

o
. They suggested that chains’ 

conformation is 31 helix, each unit cell containing a PLLA and a PDLA chain with the same 

number of L and D units. It means that in stereocomplex crystals, chains are more extended 

compared to PLLA α crystal in which chains are 103 helices. Figure 2.16 is a schematic 

illustration of the stereocomplex crystal structure. 

 

Figure 2.16 Crystal structure of PLA stereocomplex [190] 

2.2.2 Stereocomplex detection and crystallinity measurement 

DSC analysis: The most interesting characteristic of PLA stereocomplex is to have a 

melting point about 50 
o
C higher than that of each polymer homocrystals [10]. Difference 

between the melting point of the homocrystal and that of the stereocomplex gives the opportunity 

to evaluate the existence and amount of stereocomplex in blends of PLLA and PDLA or stereo-

block copolymers, simply by DSC analysis. 

XRD analysis: Ikada et al. [10] found that another feature of the PLA stereocomplex is its 

different XRD pattern compared to homocrystals. Therefore, the stereocomplex can be detected 

without altering the polymer’s thermal history. They reported diffraction peaks for 

stereocomplex PLA appearing at 2θ around 12, 21 and 24 degree whereas PLA homocrystal 

diffraction peaks appear at 2θ equal to 15, 16, 18.5 and 22.5 degree. It is also possible to evaluate 

the amount of stereocomplex present in the system with this method [191]. 

Other methods have also been proposed that can detect the presence of stereocomplex. 

Microscopy techniques like SEM, TEM and AFM, spectroscopy techniques such as FTIR, 

Raman and NMR in which peaks’ shapes, intensities and positions change as a consequence of 
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stereocomplexation can be named for such methods. However, these techniques are not useful 

for quantitative analysis of stereocomplex formation. 

2.2.3 Thermodynamic aspect 

In a study on the PLA stereocomplex formation at constant polymer concentrations [192], 

Tsuji et al. demonstrated that above a critical total concentration, a gel is formed in the solution 

after enough time is given. This concentration is higher for lower molecular weight polymers. 

Dried gel showed only a single endothermic peak at 216 
o
C in DSC experiment, showing that the 

crosslinking crystallites are only made by stereocomplex. As a result, one can reason that the 

critical concentration for stereocomplexation is lower than that for homocrystallization. In 

another study concerning the stereocomplex formation upon precipitation from solution by 

adding a non-solvent [193], only stereocomplex was formed over a wide range of molecular 

weights unless total concentration was increased.  

Dominant formation of stereocomplex rather than homocrystal in the above examples 

suggests the energetically favorable co-crystallization compared to homocrystallization of PLA 

from a thermodynamic point of view. In addition, based on energy calculations by Okihara et al. 

[46], a 31 helix chain conformation in stereocomplex is more stable than a 103 helix in α-form 

crystal. 

2.2.4 Parameters affecting co-crystallization 

Despite that co-crystallization is more favorable thermodynamically; slow crystallization 

kinetics is the limiting factor to produce PLA stereocomplex efficiently. As a result, there is a 

competition between stereocomplex formation and homocrystallization. Different parameters 

influence the extent and kinetics of stereocomplex formation, which, in turn, influence the 

homocrystallization as well. Polymer structure, i.e. the enantiomeric purity and molecular weight 

of the constituents, blending method, crystallization conditions and procedure, and PLLA/PDLA 

blending ratio are the main parameters that determine the extent and kinetics of co-

crystallization.  

Blending ratio: DSC analysis by Ikada et al. revealed that the optimum blending ratio for 

PLLA and PDLA is 1:1. At this ratio, only stereocomplex was formed with the procedure they 

used for blending and by deviating from equimolar ratio, PLA homocrystallization occurred 
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simultaneously. Considering the proposed stereocomplex crystalline structure in which PLLA 

and PDLA chains are paired in each cell with the equilateral triangles structure, it is reasonable 

to say that equimolar blending ratio is the optimum ratio for efficient production of 

stereocomplex. Therefore, most of the research has been conducted at this blending ratio. 

Tsuji et al. [193, 194] demonstrated that for PDLA fraction (XD) between 0.1 to 0.3 and 0.7 

to 0.9, melting peaks of both homocrystal and stereocomplex was observed, while only 

stereocomplex was detected for XD between 0.4 to 0.6 with the maximum of ΔHm at XD = 0.5, 

and homocrystallization happened near XD = 0 and 1. 

Blending and crystallization route: Methods of producing stereocomplex PLA are 

divided to two main categories; stereocomplexation in solution and in bulk. Considering the 

efficiency, facility of production and required time for the stereocomplex formation, mostly 

solution methods, specifically solution casting and solution precipitation are employed. Although 

direct melt blending is the preferred route in polymer blending industry due to higher production 

capacity and the appeal for solvent-less processing. As will be seen in the reviewed literature 

below, only a small fraction of the literature in the field of stereocomplexation has dealt with 

melt processed blends. This is probably due to the high cost and limited availability of PDLA 

which made it unpractical for more material-consuming processes such as melt blending in 

industrial extruders. 

Figure 2.17 compares solution precipitation and solution casting from the view point of 

stereocomplex formation efficiency and its competition with homocrystallization. The 

comparison is done for the 1:1 PLLA/PDLA blends. 



47 

 

 

 

 

Figure 2.17 Competition between stereocomplex and homocrystal formation in solution casting and precipitation 

methods[193, 194] 

As shown in this figure, when solution precipitation is employed, for a wide range of 

molecular weights only stereocomplex is formed. Only if concentrated solutions (5 g/dL) were 

precipitated or if precipitation was done without stirring, stereocomplexation was reduced for 

high molecular weight polymers and homocrystallization took place as well. 

Contrarily, in the solution casting route, the amount of stereocomplex decreased rapidly 

and gave place to homocrystallization; the chains that could not participate in co-crystallization 

produced more homocrystals. Increasing polymer concentration and molecular weights, by 

decreasing chain mobility, prevented co-crystallization. 

Another possible route is to blend polymers by solution casting method but perform 

crystallization studies from the melt [67]. In this case, the mixing level is similar to the previous 

studies but crystallization occurs in the melt state. It was found that stereocomplexation 

proceeded rapidly after cooling the melt while homocrystallization required much longer 

induction time. This may be the consequence of higher under-coolings as the equilibrium melting 

point of the stereocomplex is higher than that of the homocrystals. At the mixing ratio of 50:50, 

increasing the molecular weights of the components resulted in increased homocrystallization 

and reduced stereocomplex formation. Amount of melting enthalpy obtained in this way for 

stereocomplex and homocrystal is compared with solution casting in Figure 2.18. 



48 

 

 

 

 

Figure 2.18 Competition between stereocomplex and homocrystal formation in solution casting and from the melt [67, 75] 

Also by deviating from equimolar blending ratio, homocrystallization and 

stereocomplexation happened simultaneously. Overall stereocomplex crystallization was 

completed more rapidly compared to homocrystallization of PLLA or PDLA which was ascribed 

to higher spherulite density of stereocomplex.  

Based on these behaviors, one can conclude that the melt blending conditions are less 

favorable to stereocomplex formation because the mixing level is not as high as solution 

blending. The crystallization from the melt also involves non-isothermal crystallization that must 

occur at high cooling rates. These are non-favorable conditions that must be faced in industrial 

scale polymer processing. 

Molecular weight: Both Figure 2.17 and Figure 2.18 demonstrate molecular weight’s 

effect on the extent of homo and co-crystallization. In Figure 2.17, PDLA has a viscosity average 

molecular weight of 360,000 g/mol and PLLAs with different molecular weights are used. When 

PLLA and PDLA are mixed by a solution blending method in a 50/50 ratio and that the mixture 

is concentrated slowly in a film casting process, the stereocomplex is preferentially produced 

only when either of the components had a low molecular weight. The stereocomplex is 

exclusively formed for polymers for viscosity-average molecular weights lower than 4 × 10
4
 

g/mol. However, homocrystallization is predominant when both polymers have high molecular 

weights, e.g. 1 × 10
5 

g/mol [194]. In contrast, when the solution was precipitated directly, results 
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were different. At the moment of crystallization, chains are at high mobility in solution state and 

well mixed at the molecular scale. In that case, stereocomplexation was preferred to 

homocrystallization, irrespective of the molecular weight of components. 

In Figure 2.18, PLLA and PDLA have almost similar molecular weights, with their 

average molecular weight as independent variable. The effect of molecular weight on 

stereocomplex formation was similar to solution casting except that the critical viscosity-average 

molecular weight below which only stereocomplex forms is lower, i.e. 6000 rather than 40000 

g/mol. It is clear that in both cases, at low molecular weights, co-crystallization is dominant as it 

is thermodynamically more favorable and there are no kinetic limitations. In cast films, by 

increasing the molecular weight, from about 100,000 g/mol, homocrystallization starts to 

increase while enthalpy of fusion for co-crystallization falls as a consequence of chain mobility 

restriction. This is worse in the case of crystallization from melt since it starts from much lower 

molecular weights. 

Chain’s optical purity: Chain optical purity is decreased as the content of opposite 

enantiomeric monomer increases in the polymer. Similar to its effect on homocrystallization, 

optical purity of the polymers affects the extent of stereocomplexation. In a study by Tsuji and 

Ikada [24], 1:1 blends of similar optical purity PLLA and PDLA prepared by solution casting as 

well as non-blended polymers were subjected to DSC and POM analysis. Photomicrographs 

revealed that non-blended polymers with optical purity less than 76% had no spherulitic 

structure. Spherulite density was increased by decreasing isothermal crystallization temperature 

(Tiso), especially for lower optical purities. Furthermore, at a similar Tiso, spherulite density was 

higher for polymers with higher optical purity due to higher undercooling associated to higher 

equilibrium melting point (Tm
0
). In addition, blended films had higher spherulite density than 

non-blended ones at any optical purity and crystallization temperature. When melt quenched 

PLLA and PDLA samples were heated in DSC tests, they showed Tg around 55 
o
C, a cold 

crystallization and subsequent melting peaks. Increasing optical purity reduced the cold 

crystallization temperature and increased the melting point. Optical purities less than 90% 

showed no homocrystallization and melting peaks. For blended samples, a melting peak 

associated to the stereocomplex was also observed around 230 
o
C. While homopolymers with 

83% optical purity could not crystallize during heating in DSC, the blend of those polymers 
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could crystallize. At a fixed crystallization temperature, increasing optical purity increased the 

melting point. In this work, Tsuji and Ikada estimated the equilibrium melting temperature of 

stereocomplex crystallites (Tm
0
) to be 279 

o
C. 

Brochu et al. [144] examined the influence of composition and overall enantiomeric excess 

on the morphology of PLA stereocomplexes. They prepared the samples by solution blending 

PLLA and PDLA and slow solvent evaporation. For the PLLA they prepared a 100% pure 

sample, 100L. Two samples of PDLA was used, 100% pure PDLA, 100D, and a sample with 

90% D-lactide, 80D (enantiomeric excess is 80%). For 100L/100D cast films and those 

isothermally crystallized at 140 
o
C for 1 h, enthalpy of fusion of the stereocomplex increased 

linearly by increasing PDLA content up to the maximum at 50:50 composition, similar to what 

was previously pointed out on the effect of blending ratio. Meanwhile ΔHm of PLLA decreased 

linearly to the point that at 40% PDLA, no PLLA homocrystal was formed. This is an indication 

of prohibition of homocrystal formation in the presence of the stereocomplex. In 100L/80D cast 

films and isothermally crystallized samples at 115 
o
C for 1 h, the regular increase of the enthalpy 

was observed as well, but for cast film, the maximum was achieved at 65% of 80D component 

and PLLA homocrystals were formed up to 70% of 80D. By isothermal crystallization of these 

blends, maximum of ΔHm for stereocomplex appeared at 56% of 80D and no PLLA homocrystal 

was formed above the 50% 80D. Also the amount of homocrystal was close to the calculated one 

based on the amount of 100L which is not incorporated in the stereocomplex, showing a greater 

freedom for crystallization compared to 100L/100D blends. 

In addition it was observed that the amount of stereocomplex in cast films of 100L/80D 

blends was much less than that in 100L/100D ones. This was attributed to two factors. First of 

all, the rate of stereocomplexation is reduced, because the L units in 80D polymer should be 

excluded from the stereocomplex. The second reason was the higher molecular weight of 80D 

samples compared to 100L and 100D, resulting in slower chain diffusion for stereocomplex 

formation. Thus the isothermal crystallization helped to improve the amount of stereocomplex 

but no significant improvement was observed in 100L/100D blends. 

Another aspect that was pointed in their work was the small variation of PLLA melting 

point as a function of composition which was concluded to be a sign of formation of separate 

domains which is not the case in copolymers showing large temperature dependence. 
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2.2.5 Stereocomplexation kinetics 

Studying the spherulite growth of stereocomplex from the melt of 1:1 blends, with low 

molecular weight PLLA (Mw = 1 × 10
4
) and PDLA (Mw = 2.2 × 10

4
) showed that it can occur at 

higher temperatures (190 
o
C) compared to homocrystallites (140 

o
C) [148]. A blend was 

prepared by solution casting and solvent evaporation at 25 
o
C for 1 day. At the same temperature 

of 140 
o
C, induction period was shorter, radius growth rate was an order of magnitude higher and 

spherulite density was higher for stereocomplex compared to homopolymers. The combination 

of higher spherulite density, shorter induction time and faster growth rate results in more rapid 

completion of overall stereocomplex crystallization compared to homopolymers. 

Bouapao and Tsuji [195] studied the effect of XD in the wide range of 0-1 on the 

stereocomplex crystallization and spherulite growth of PLLA/PDLA blends during isothermal 

and non-isothermal crystallization from the melt. Low molecular weight PLAs (PLLA with Mw = 

4000 g/mol and PDLA with Mw = 5400 g/mol) were solution blended and solvent was 

evaporated slowly at 25 
o
C for two days. 

In isothermal tests, for Tc above 130 
o
C, only stereocomplex crystallites were formed and 

the stereocomplex spherulite growth happened in a higher temperature range (up to 180 
o
C) 

compared to homopolymers (below 120 or 130 
o
C). The growth rate (G) was maximum at XD = 

0.5 in the Tc range of 130-180 
o
C and it decreased by deviation from this blend ratio. This 

maximum G value at Tc 130 
o
C (154 μm/min) was 4.5 and 4.7 times higher than pure PLLA (34 

μm/min) and PDLA (33 μm/min) at Tc = 105 and 110 
o
C respectively. Regime analysis showed 

the independency of crystallization mechanism to blending ratio. Also in non-isothermal tests, 

cold crystallization took place at lower temperatures and higher rates for the blends compared to 

pure polymers, as a result of faster stereocomplex crystallization and its nucleating effect. 

Masaki et al. [196] studied stereocomplex formation by melt blending in a continuous 

process. They used two sets of high molecular weight PLLA and PDLA. In the first set, Mw of 

PLLA and PDLA were 2 × 10
5
 and 1.8 × 10

5
 g/mol respectively and some trace of active catalyst 

was detected in them. In the second set, PLLA and PDLA had Mw of 1.6 × 10
5
 and the active 

catalyst was completely inactivated. 1:1 Blends of PLLA and PDLA were produced by feeding 

equal amounts of each polymer to the feeder. The extrudate was immediately quenched in ice-

water at the exit of the mixer. Different temperatures were tried for blending. Between 170-200 
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o
C, solid granules were extruded while at temperatures between 210-240 

o
C, molten extrudate 

was produced. DSC curves obtained from heating with the rate of 10 
o
C/min from samples 

prepared at different temperatures showed that granular solids were highly crystalline with no 

crystallization exotherm and a large endotherm peak at 230 
o
C. On the other hand, samples 

prepared at temperature range of 210-240 
o
C showed and exotherm at 100 

o
C and two endotherm 

peaks at 175 and 220 
o
C, indicating the amorphous state of the samples and tendency to both 

homocrystallization and stereocomplex formation. WAXD analysis on samples prepared at 

temperatures between melting point of homopolymer and stereocomplex (170-200 
o
C) showed 

the presence of stereocomplex but no homocrystallization was detected. Samples prepared at 190 

and 240 
o
C were again kneaded at 250 

o
C and the extrudate was quenched. DSC analysis on 

these samples revealed the following results. The sample prepared at 190 
o
C with a trace of 

catalyst, showed an exotherm at 100 
o
C and an endotherm at 220 

o
C at the first heating cycle 

with the rate of 10 
o
C/min. The following cooling cycle at the faster rate of 20 

o
C/min showed an 

exotherm peak at 120 
o
C. Finally the second heating cycle with the rate of 20 

o
C/min showed 

only a melting endotherm for the stereocomplex. However the sample prepared at 240 
o
C and the 

one prepared at 190 
o
C but with inactivated catalyst, showed both the melting peak of 

homopolymer crystals and stereocomplex. Based on these results, the authors concluded that 

PLLA and PDLA form the stereocomplex at their interface when they are melt-mixed at 

temperature between Tm of homopolymers and stereocomplex. Considering the high rate of 

stereocomplex crystallization, the system becomes a mixture of solid stereocomplex crystals and 

polymer melt. When the blend is kneaded at high temperatures, chains that are already connected 

to the stereocomplex cannot separate completely and form stereocomplex consistently. Presence 

of the active catalyst in the sample results enhanced trans-esterification reactions at elevated 

temperature between PLLA and PDLA and formation of block copolymers which may act as 

compatibilizer or nucleating agent for stereocomplex. 

2.2.6 Conclusions 

From a crystallization point of view, PLA is best viewed as a copolymer of L- and D-

Lactic acid with PLLA and PDLA being the limiting case homopolymers. The minor unit plays 

the role of a non-crystallizable co-monomer with the consequence that crystallization rate 

decreases dramatically with the minor unit concentration leading to amorphous materials for 
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minor co-monomer concentration greater than 10%. The melting temperature of PLA also 

decreases with minor unit fraction but increases with molecular weight up to Mn values around 

100 kg/mol. Conversely, its crystal growth rate is severely decreased by molecular weight in the 

same range. The fastest crystallization rates are observed in the 100-130 
o
C temperature range. A 

peculiar consequence of the stereoisomeric nature of lactic acid is that the PLLA and PDLA 

homopolymers can co-crystallize in the form of a stereocomplex that boasts a melting point that 

is 50
o
C higher than the respective homopolymers. Numerous investigations have focused on the 

heterogeneous nucleation and plasticization as means to enhance the crystallization kinetics of 

PLA. Important nucleation rate improvements can be obtained with minerals such as talc, 

organics such as hydrazide compounds and organic-mineral hybrids such as layered metal 

phosphonates. The highest crystallization rates however were obtained when adding both 

nucleants and plasticizers to PLA. This widens the crystallization window and enables 

crystallization at high cooling rates. Further improvement in this direction will enable the 

development of fully crystallized extruded or injection molded applications and open the way to 

the production of PLA parts with greater thermal resistance. 

In the specific case of the PLA stereocomplex, most of the research work has been done in 

the solution state. It is however important to explore the stereocomplex formation in melt 

blended systems for future applications in melt processing techniques. Thermodynamically, 

stereocomplex formation is favored over homocrystallization. On the other hand, the kinetic 

barrier originating from the mixing level and longer diffusion path of opposite chains results in a 

competition with homocrystallization. Increasing the crystallization temperature above the 

homocrystallization temperature prohibits homocrystallization at the expense of slower 

stereocomplex formation. Several parameters influence stereocomplex formation such as the 

molecular weight of the two components, their optical purity and ratio as well as the blend 

preparation and crystallization conditions and have been studied extensively. Nevertheless, very 

little literature exists on the kinetics of PLA stereocomplex formation in melt blended systems 

and contrary to homocrystallization, stereocomplex formation enhancement is neglected.  
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Chapter 3. Evidence of a dual network/spherulitic crystalline 

morphology in PLA stereocomplexes 
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Titre français: Preuve d'une morphologie cristalline double réseau / sphérulitique des 

stereocomplexes du PLA 

Contribution au document: présenter l’étude de la cinétique de stéreocomplexation a partir de 

l’état fondu et élucider la structure cristalline double formée en condition isotherme.  

Résumé français: La formation d’un stéréocomplexe entre le poly(L-acide lactique) (PLLA) et 

le poly(D-acide lactique) (PDLA) à l'état fondu a été étudiée. Des mélanges contenant jusqu'à 

5% de PDLA ont été préparés à l’état fondu et caractérisés en rhéologie, calorimétrie, 

diffraction des rayons X (XRD) et en microscopie optique. Les études cinétiques suggèrent que le 

demi-temps (t1/2) de stéréocomplexation varie de 5 à 7 min. Le rôle de nucléant du 

stéréocomplexe pour l’homocristallisation du PLLA a été démontré par des observations en XRD 

et en microscopie optique. Ces dernières montrent une augmentation de la densité des 
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sphérulites ainsi que le développement d'une couche trans-cristalline autour des sphérulites de 

stéréocomplexe. Plus intéressant encore, une double morphologie cristalline comprenant des 

sphérulites et une structure en réseau a été révélée par les observations de microscopie optique. 

Cette morphologie complexe est associée au double pic de fusion du stéréocomplexe observé 

après cristallisation isotherme en DSC. La morphologie en réseau est associée à une forte 

augmentation de la viscosité observée en présence d'une petite concentration de stéréocomplexe 

dans une masse fondue de PLLA. 
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Abstract. Stereocomplex formation between poly(L-lactic acid) (PLLA) and poly(D-lactic acid) 

(PDLA) in the melt state was investigated. Blends with up to 5% PDLA were prepared via melt-

blending and characterized by rheological, calorimetric, X-ray diffraction (XRD) and optical 

microscopy techniques. Kinetic studies suggest that the stereocomplex formation half-time (t1/2) is 

in the range of 5 to 7 min. The nucleating role of the stereocomplex for PLA homocrystallization 

was demonstrated in XRD experiment and in optical microscopy observations through an 

increase in the spherulite density as well as the growth of a trans-crystalline layer on 

stereocomplex spherulites. More interestingly, a dual crystalline morphology for PLA 

stereocomplex comprising a spherulitic and a network structure was revealed by optical 

microscopy observations. This complex morphology was associated to a double stereocomplex 

melting peak behavior observed after isothermal crystallization in DSC as well as to a huge 

viscosity increase observed in the presence of a small concentration of stereocomplex in a PLLA 

melt. 

Keywords: PLA, Stereocomplex, Crystallization 

3.1 Introduction 

PLA is a thermoplastic polyester that can be produced from annually renewable resources. It 

is also a compostable polymer with good mechanical, optical and barrier properties. These 
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advantages in parallel with the recent technological developments in PLA production have rapidly 

expanded its applications as a competitive commodity polymer in a variety of processes [1, 8]. On 

the other hand, PLA has a low temperature resistance and crystallization as a means to improve its 

thermal resistance has been a subject of considerable interest in recent years [12, 76]. The 

monomer, Lactic acid exists in two enantiomeric forms, L-lactic acid and D-lactic acid, resulting 

in a wide range of properties from completely amorphous to semicrystalline PLA, depending on 

the ratio and distribution of enantiomeric units along polymer chains [197]. An outcome of this 

stereochemical aspect is the possibility for L- and D-rich PLA chains called PLLA and PDLA, 

respectively, to co-crystallize and form a stereocomplex with a melting point about 50 
o
C higher 

than PLA homocrystals [10]. Many attempts have been made to identify the mechanism and effect 

of different parameters on PLA stereocomplex formation such as molecular weight of the two 

components, their optical purity, PLLA/PDLA blending ratio, preparation methods and 

crystallization conditions [24, 67, 75, 144, 192-194, 198-202]. Furthermore, research has been 

going on to apply this interesting phenomenon in the modification of different PLA properties. 

PLA stereocomplex is used as a nucleating agent for PLA itself to improve its crystallization 

kinetics [79, 80, 122, 125, 144, 146, 147]. Thermo-mechanical properties are improved 

significantly in the presence of stereocomplex compared to pure PLLA [75]. Moreover, higher 

melting point of the stereocomplex compared to PLA homocrystal makes it possible to preserve 

stereocomplex in the polymer melt, thus employing it as a rheological modifier [147, 203]. From 

the thermodynamic point of view, stereocomplex formation is favored over homocrystallization. 

Based on energy calculations by Okihara et al. the 31 helix chain conformation in the 

stereocomplex is more stable than the 103 helix in α-form crystal of PLLA [46]. Furthermore, 

Tsuji et al. showed that the critical concentration for crystallization in solution state is lower for 

stereocomplex formation compared to homocrystallization [192]. They showed as well that for 

dilute solutions, precipitation with a non-solvent resulted in the predominant stereocomplex 

formation over a wide range of molecular weights [193]. However, there is a kinetic barrier 

against stereocomplex formation originating from its competition with homocrystallization. This 

is due to a high level of mixing required between PLLA and PDLA chains to co-crystallize, while 

similar chains are already in the vicinity of each other for homocrystallization. Thus, in most of 

the studies on different aspects of PLA stereocomplex, PLLA/PDLA blends are prepared via 

solution blending followed by either evaporation of the solvent or precipitation of the polymer 
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mixture through the addition of a non-solvent. However, these methods require organic solvents in 

high proportions which is less favorable for mass-production than the conventional melt blending 

techniques used for preparing polymer blends. Nonetheless, there are a few reports on the PLA 

stereocomplex formation where PLLA/PDLA blends are prepared via melt-mixing [122, 196, 204, 

205]. Another aspect where there is a lack of information is the kinetics of PLA stereocomplex 

formation, few studies addressing this issue [148, 195, 199, 206, 207]. Specifically, it is crucial to 

understand the stereocomplex formation at temperatures representing the PLA melt-processing in 

order to apply it in industrial applications. The objectives of this work are to investigate the 

stereocomplex formation of melt-blended enantiomeric PLAs at elevated temperatures, to 

elucidate the stereocomplex dual crystalline morphology and to clarify its relation with the 

thermal and rheological behavior of the PLLA/PDLA blends. 

3.2 Experimental 

3.2.1 Materials 

A commercial PLA, grade 4032D was used as a PLLA source. It is a semi-crystalline grade 

supplied by NatureWorks LLC that comprises about 2% D- units. PDLA was also a semi-

crystalline grade provided by Hycail, Finland that comprised 0.5% L- units. Table 3.1 summarizes 

the properties of polylactides used in this work. Molecular weights were measured via a 

ViscotekTDAmax GPC apparatus (Malvern Instruments Ltd) equipped with a triple detection 

system. 

Table 3.1 Properties of polylactides 

Polymer Mw(kg/mol) PDI 
D-unit 

content (%) 

PLLA 109 1.57 2 
PDLA 61 2.1 99.5 

 

3.2.2 Blending 

Blends of PLLA and PDLA containing 1, 3 and 5 wt.% of PDLA were prepared using a 

HAAKE MiniLab conical twin-screw micro compounder (Thermo Scientific). In addition, PLLA 

without any PDLA was processed under the same conditions as a reference. Polymers were 

vacuum dried at 50 
o
C for 38 hr prior to melt mixing. Mixing was carried out at 180 

o
C for 5 
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minutes at a rotation speed of 60 rpm. The extruded blends were also dried in the same conditions 

prior to characterizations. 

3.2.3 Rheological characterization 

Compression molded specimens were prepared using a Carver laboratory press. The molding 

temperature was set to 240 °C and disk-shaped specimens were prepared to fit the rheometer 

geometry. The procedure was as follows: i) Pre-heat at 240 °C under ambient pressure for 1.5 min. 

ii) Press at 240 °C under 3.2 MPa for 30 sec. iii) Remove mold assembly from press and quench in 

15 °C water bath to preserve the amorphous structure prior to tests. The amorphous structure was 

confirmed by X-ray diffraction technique. 

A rotational rheometer (ARES LS model from TA Instruments) was used in parallel plate 

geometry (25mm diameter) for the rheological characterization. The average specimen thickness 

was around 0.9 mm. A thermal equilibration time of 30 s was used in the rheometer prior to the 

rheological measurement to insure that the samples had reached the specified test temperature of 

180 °C. Small deformation (10%) oscillatory motion was then imposed on the samples at a 

frequency of 1 Hz (6.28 rad/s) over a time period of 30 min and the stress was monitored. The 

time sweeps were performed at 180 °C under a blanket of dry nitrogen to minimize hydrolytic 

degradation. 

It is noteworthy that PLA can undergo rapid thermal degradation at 240 °C. This heating step 

is necessary to eliminate traces of stereocomplex. The duration of this step was limited to 

minimize degradation and rheological tests were carried out at 180 °C where the materials are 

relatively stable.  

3.2.4 Wide-angle X-ray Diffraction analysis 

Wide-angle X-ray Diffraction (WAXD) patterns of the blends were obtained with an X-ray 

diffractometer (D-8, Bruker) to make sure the samples were amorphous prior to rheological 

characterization and to determine the crystalline structure after the tests. The samples were 

exposed to an X-ray beam with the X-ray generators running at 40 kV and 40 mA. The scanning 

was carried out at a rate of 0.03
o
/s in the angular region (2θ) of 2-40

o
. 
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3.2.5 Differential Scanning Calorimetry 

Kinetics of the stereocomplex formation was studied in isothermal mode using a DSC 

Q2000 differential scanning calorimeter (TA instruments). Blends with 5% PDLA were first 

heated to 240 
o
C and kept at that temperature for 2 min to eliminate their thermal history, followed 

by rapid cooling to isothermal crystallization temperature. Specimens were kept for enough time 

to ensure completion of stereocomplex formation. Finally, they were heated with the rate of 10 

o
C/min to 240 

o
C to evaluate their melting behavior. 

For deconvolution of overlapping peaks, a non-linear fitting software (PeakFit v4) was 

employed. An asymmetric logistic peak function with standard least-squares minimization was 

used to find the optimum fit. 

3.2.6 Hot-stage Optical Microscopy 

Optical microscopy (OPTIPHOT-2) was employed to observe the evolution of crystalline 

morphology through stereocomplex formation. Thin films were prepared by hot-pressing blend 

granules with 5% PDLA. A programmable hot stage (MettlerFP82HT) was used to perform the 

thermal procedures on the samples and observe the crystalline morphology evolution. 

3.3 Results and discussion 

3.3.1 Rheology 

Figure 3.1 presents the evolution of PLLA/PDLA blend viscosity with time for samples at 

180 
o
C containing 1, 3, and 5 wt.% PDLA as well as the reference. Note that according to the 

experimental procedure, samples were heated to test temperature within 30 s thus preserving their 

amorphous state. The initial viscosity was reduced by increasing the level of PDLA from 0 to 

5awt.%. This was expected since PDLA has a lower molecular weight, thus a lower melt viscosity. 

However, the melt viscosity increased gradually during the time-sweep characterization until a 

plateau was reached. The plateau viscosity level increased from 3 kPa.s for 0% PDLA gradually 

up to 6 kPa.s for 5% PDLA. This two-fold increase is particularly striking considering that the 

initial viscosity of the 5% PDLA blend was much lower, around 1 kPa.s. 
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Figure 3.1 Variation of melt viscosity with time as a consequence of stereocomplex formation during time-sweep test at 

180 oC 

Similar tests performed at strains between 0.1 to 10% lead to very similar responses (data 

not shown). This confirmed that the observed effect was not induced by strain. It is useful to 

discuss how stereocomplex formation may influence the melt viscosity. First, stereocomplex 

crystals may act as dispersed solid particles in the melt and contribute to an increase in melt 

viscosity. In this case, the solid particulates may be stereocomplex lamellae or more complex 

spherulitic structures comprising some amorphous material as well. Secondly, PLLA and PDLA 

chains which are connected physically through stereocomplexation may be considered as 

macromolecules with higher apparent molecular weight [203]. Furthermore, the structure of 

physically connected chains are transformed from linear to branched since the pending segments 

of the chains that have not participated in stereocomplex formation will act as branches on the 

opposite chain [203]. Finally, another possible mechanism is the formation of a three dimensional 

network through physical cross-links by stereocomplex formation between multiple chains [75, 

203]. 

In Figure 3.2, progress of stereocomplex formation is demonstrated by plotting the relative 

viscosity change    vs. time where η is the dynamic viscosity at time t, η0 is the initial blend 

viscosity at time zero and ηmax is the maximum achieved viscosity. The selection of the initial 

blend viscosity as a reference (η0) for each concentration minimizes the effect of sample 

degradation occurring before the rheological tests. For samples with 3 and 5 wt.% PDLA, 

maximum viscosity was obtained at the end of the test. However, for the 1% PDLA blend after 



62 

 

 

 

reaching a maximum at about 720 s, the viscosity started to decrease. Note however that this drop 

is very small in absolute terms because the viscosity change  for the 1% PDLA blend is 

small. 

 
Figure 3.2 Degree of stereocomplex formation vs. time from time-sweep analysis at 180 oC for samples containing 1, 3 and 

5% PDLA 

It is noteworthy that PLLA was thermally stable throughout the rheological characterization 

window while PDLA showed a significant chain scission. The PDLA chains that do not 

participate in stereocomplex crystallites therefore lower the overall viscosity of the PLLA/PDLA 

blend. When comparing the dynamics of the viscosity evolution, it seems that the 1% PDLA blend 

reached its maximum stereocomplex level more rapidly, within around 700 s. The further decrease 

is possibly due to chain scission of PDLA chains that are not participating in a stereocomplex or to 

general hydrolytic degradation of the blend (noting once again that the denominator  

used to calculate the relative viscosity change is small). The kinetics related to 3% and 5% PDLA 

blends was slower with final maximum viscosities reached at around 1600 s for 5% PDLA and 

probably over 1800 s for the 3% blend. 

Viscosity increase ratio (viscosity after complexation divided by viscosity before 

complexation)  is plotted as a function of PDLA content in Figure 3.3 to compare the effect of 

PDLA concentration with theoretical viscosity variations that could be expected if the 

stereocomplex particles were considered as a solid filler in a matrix of amorphous PLLA. As 

previously mentioned, the maximum viscosity increased by a factor of 2 upon addition of 5% 
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PDLA. However, if we consider the ratio between the viscosity of the 5% PDLA blend after and 

before complexation, the viscosity increase is more than 6 times. This is particularly significant if 

we consider the blend viscosity increase ratio as more representative of the complexation effect. 

The data is compared with the predictions from Krieger-Dougherty model which is aimed at 

predicting the viscosity increase for concentrated suspensions. It is given by: 

 

Equation 3.1 

where η is the viscosity of the mixture, η0 is the matrix phase viscosity,  is the volume fraction 

of solid particles,  is the maximum packing equal to 0.61 and A is a constant equal to 3.28. 

The choice of matrix phase viscosity is not trivial since during the experiment, some PDLA will 

leave the melt phase to form the stereocomplex. Nonetheless, since the amount of PDLA involved 

is small, it was assumed more representative to select the initial blend viscosity as our matrix 

phase viscosity rather than use the initial PLLA viscosity. 

 
Figure 3.3 Effect of PDLA concentration on viscosity increase ratio and comparison with Krieger-Dougherty model 

prediction 

Also, for the Krieger-Dougherty model, the density difference between the amorphous and 

crystalline phases was neglected and it was assumed that all the added PDLA took part in 

stereocomplex formation, thus volume fraction of the solid particle would be two times the PDLA 

concentration. Comparing the experimental data with Krieger-Dougherty model predictions shows 
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that the presence of stereocomplex in the polymer melt had a stronger effect than that expected 

from the simple addition of a solid crystalline phase. This is possibly due to some interaction 

between stereocomplex crystallites. 

In Figure 3.4, complex viscosity as a function of oscillation frequency is compared for the 

neat PLLA and the 5% PDLA blend after stereocomplex formation. Neat PLLA demonstrates a 

Newtonian plateau at low frequencies, typical of polymer melts, while such behavior is not 

observed for 5% PDLA blend. In the presence of PDLA, significant deviation of complex 

viscosity at low frequencies relative to that of neat PLLA can be associated to the interaction 

between chains caused by stereocomplex formation. Such a rapid viscosity increase at low shear 

rates has been observed in highly filled polymeric systems where particles tend to aggregate and 

form structures like carbon black, as well as in some nanocomposites [208]. 

 
Figure 3.4 Frequency sweep behavior of PLA in the presence and absence of stereocomplex 

3.3.2 XRD analysis 

Figure 3.5 presents the XRD patterns before and after rheological characterization for 

samples containing 5% PDLA. Peaks at 2θ = 14.7, 16.4, 18.6 and 22 are associated to 

homopolymer crystals whereas those at 11.8, 20.5 and 23.6 are related to stereocomplex. Peak 

positions are in good agreement with the reported values [10]. The XRD patterns therefore 

confirm that the samples were completely amorphous prior to rheological characterization. 
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Figure 3.5 X-ray diffraction patterns of samples containing 5% PDLA before and after time-sweep test 

After the time-sweep tests, depending on the quenching procedure, the crystalline structure 

was different. When the samples were directly quenched from 180 
o
C in cold water, they exhibited 

peaks related to both PLA homocrystals and stereocomplex simultaneously. The quenching 

procedure was modified to minimize homocrystallization. The samples were rapidly heated to 200 

o
C after the time-sweep test and were then quenched in liquid nitrogen. This resulted in samples 

where only the stereocomplex was formed as exhibited from the XRD results. At T = 200 
o
C, the 

temperature is greater than the homocrystallization temperature but lower than the melting point 

of the formed stereocomplex. Therefore, when rapidly quenching from T = 200 
o
C into liquid 

nitrogen, the time spent in the homocrystallization temperature window is minimized. Based on 

this observation, samples with 1, 3 and 5% PDLA were prepared using the procedure above after 

rheological characterization and then subjected to XRD analysis. Results are depicted in 

Figure 3.6. Only the three peaks related to stereocomplex crystals were detected and their intensity 

increased by incorporating more PDLA in blends. For blends with 3 and 5% PDLA it was possible 

to calculate the degree of crystallinity based on the XRD peak integration. By dividing the sum of 

stereocomplex peaks area to total peak area it was found that samples with 3 and 5% PDLA had a 

degree of crystallinity equal to 2.55 and 4.58%, respectively. In an ideal situation, 6 and 10% 

crystallinity were expected (2×[PDLA]). Therefore, stereocomplex formation efficiency was 42 

and 45%, respectively. It is noteworthy that the calculated yields are based on the assumption that 

components are 100% pure in terms of enantiomeric isomers, while the PLLA and PDLA used in 

this study had some optical impurity. Especially, the PLLA contained about 2% D units that limit 
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the stereocomplex formation. In addition, the molecular weight of the components, blending route 

and crystallization method are other influential parameters for the achievable stereocomplex 

crystallinity. For example in samples prepared by solution casting, increasing the molecular 

weight of the components from about 27 to 360 kg/mol decreased the stereocomplex crystallinity 

from 50-55% to 1-10% for different PDLA concentrations [194]. However, the higher molecular 

weight combination had a stereocomplex yield of 32 to 51% when it was crystallized in a solution 

precipitation method where chains had a higher degree of mobility during crystallization [193]. 

Our results are in agreement with the literature, considering the important effect of molecular 

weight of the components. For low molecular weight oligomeric components (Mv 3.3-5.7 kg/mol) 

stereocomplex yields of 58 to 72% were reported [67]. The yield for slightly higher molecular 

weights (Mv 13.2-14.5 kg/mol) reached 50 to 60% [144] while for much higher molecular weights 

(Mw 215-228 kg/mol), only up to 13% stereocomplex yield were reported [147]. 

 
Figure 3.6 X-ray diffraction patterns of samples containing 1, 3 and 5% PDLA after time-sweep test 

3.3.3 Differential Scanning Calorimetry 

It is interesting to investigate the effect of crystallization temperature on the stereocomplex 

formation kinetics as well as the efficiency of our approach to form PLA stereocomplex in the 

melt state. For this purpose, samples containing 5% PDLA were characterized by DSC in 

isothermal mode. Reference samples (i.e. neat processed PLLA) were analyzed with the same 

procedure and data was subtracted from the 5% PDLA samples to eliminate the instabilities 

caused by rapid cooling to isothermal crystallization temperature. In Figure 3.7, crystallization 
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peaks obtained at different temperatures are showed. It can be seen that stereocomplexation 

initiates shortly after that temperature reaches the set point. 

 
Figure 3.7 Isothermal crystallization peaks of the sample with 5% PDLA obtained at different temperatures 

Stereocomplex crystallization enthalpy which is equal to the area under the crystallization 

peak was calculated for different crystallization times. The cumulative integrals normalized to the 

total peak area are plotted vs. crystallization time in Figure 3.8. In addition, in this figure, degree 

of stereocomplex formation obtained by rheological characterization at 180 
o
C is plotted to 

compare calorimetry and rheology as the stereocomplexation kinetics study methods. 

 
Figure 3.8 Degree of stereocomplexation expressed as a fraction of the maximum stereocomplex enthalpy obtained at 

different crystallization temperatures 
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Curves are shifted slightly to lower times as the temperature is reduced from 185 to 170 
o
C. 

The time required to reach 50% of stereocomplexation (t1/2) at 185 
o
C is 7.45 min while this value 

is reduced to 6.75 min and 5.37 min for crystallization temperature of 180 and 170 
o
C, 

respectively. The DSC and rheological analysis at 180 
o
C match well with each other after 55% 

stereocomplex is formed. However, rheological studies show higher values at the first five 

minutes. This may have resulted from a greater sensitivity of viscosity to molecular weight 

changes which will be discussed later. 

As explained in the experimental section, after the isothermal crystallization was completed, 

specimens were heated to 240 
o
C to measure the melting enthalpy and calculate the stereocomplex 

yield. Melting peaks obtained for the four different crystallization temperatures are depicted in 

Figure 3.9. A double melting peak behavior was observed above 200 
o
C which is much higher 

than the homocrystal melting temperature. Thus both peaks have a stereocomplex nature. The 

double peak behavior has been previously reported in different studies for PLA homocrystal 

melting in PLA fibers [43, 209-211] as well as for PLA crystallized in quiescent conditions [41, 

72, 73, 212]. It was attributed to melt-recrystallization process or existence of two crystal forms 

such as α and β or α and α' structures. However, such behavior is not typical for melt crystallized 

PLA stereocomplex and is an indication of two different stereocomplex crystal size distributions. 

To examine the possibility of a reorganization and recrystallization mechanism responsible for the 

double melting peak behavior, isothermally crystallized samples were melted at various heating 

rates between 2 and 20 
o
C/min. However, the dual peak behavior was not dependent on the 

heating rate showing that the dual peak behavior is not the result of such a recrystallization. 
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Figure 3.9 Melting behavior of stereocomplex formed isothermally at different temperatures 

In order to better study these peaks, each curve was mathematically deconvoluted to two 

distinct peaks as illustrated in Figure 3.10. For the melting peak located at a lower temperature, a 

clear trend is observed with crystallization temperature. Increasing the crystallization temperature 

shifted this peak to higher temperatures while making it narrower. At the same time, its melting 

enthalpy increased slightly from 1.76 to 2.4J/g. On the other hand, for the melting peak located at 

a higher temperature, maximum occurs around 217 
o
C and does not depend on crystallization 

temperature. Melting enthalpy of this peak increased from 4.8 to about 6.6 J/g by increasing 

crystallization temperature and its shape became wider. The ratio between the enthalpy of the 

higher temperature to lower temperature peak remained almost constant at about 2.75, thus the 

share of higher melting point crystals in total stereocomplex crystallinity was about 75%. 

Assuming a value of 146 J/g for the melting enthalpy of 100% crystalline PLA in stereocomplex 

form [191], it is possible to calculate the crystallinity of blends after isothermal crystallization. For 

temperatures of 170, 175, 180 and 185 
o
C, degree of crystallinity was 4.5, 5, 5.8 and 6.2 % 

respectively. These values are in agreement with the degree of crystallinity obtained from XRD 

analysis. 
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Figure 3.10 Deconvoluted melting peaks for different isothermal crystallization temperatures, 1: lower temperature 

melting peaks; 2: higher temperature melting peaks 

3.3.4 Optical Microscopy 

To further our understanding of crystalline morphology evolution and to elucidate the 

double melting peak phenomena, the 5% PDLA samples were characterized by optical 

microscopy observations in two different thermal procedures. In the first procedure, spherulite 

density of 5% PDLA blend was compared with that of neat PLLA. The specimen were melted at 



71 

 

 

 

240 
o
C for 2 min to remove the thermal history, cooled at 40 

o
C/min to 180 

o
C, crystallized for 3 

min to generate some stereocomplex nuclei, cooled at 40 
o
C/min to 140 

o
C and then isothermally 

crystallized for 10 min. In Figure 3.11, the optical micrographs after this stage are illustrated. It is 

clear from these two images that a small amount of stereocomplex crystallites produced at higher 

temperatures had a profound nucleating effect for PLA homocrystallization. Neat PLA developed 

only few spherulites which did not grow much in size in the 10 min isothermal crystallization at 

140 
o
C. On the other hand, 5% PDLA blend resulted in a much higher number of spherulites 

which almost covered all the surface area for the same crystallization time period. 

 
 

11-1                                                                11-2 

 
Figure 3.11 Optical micrographs of specimen after first thermal procedure, 1: neat PLLA; 2: 5% PDLA blend 

Figure 3.12 represents the second thermal procedure followed to further investigate the 

stereocomplex formation and Figure 3.13 presents optical micrographs obtained at different stages 

of the thermal history. The samples were first heated to 240 
o
C to melt and remove thermal history 

and then cooled at 40 
o
C/min to 180 

o
C and isothermally crystallized for 30 min. Figure 3.13-1 

illustrates the crystalline morphology at the end of this stage where stereocomplex spherulites 

were uniformly grown to about 40 µm in diameter. Subsequently, samples were cooled at 20 

o
C/min to 100 

o
C and held for 3 min. Figure 3.13-2 is taken during the cooling procedure at 120 

o
C. A trans-crystalline layer is developed on the surface of PLA stereocomplex spherulites during 

the cooling procedure which proves that the stereocomplex surface can initiate trans-crystallinity. 

As well, Figure 3.13-3 which shows the crystal morphology after 3 min at 100 
o
C is another 

demonstration of homocrystallization nucleated by stereocomplex. In this image, stereocomplex 
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spherulites are still detectable while a great number of small homocrystal spherulites covering the 

whole surface area were nucleated by much smaller stereocomplex crystallites. To further observe 

the crystalline morphology after re-melting the homocrystals, samples were heated back to 180 
o
C 

and kept for about 4 min to completely melt the homocrystals. Figure 3.13-4 illustrates the 

crystalline morphology at this point. In addition to the stereocomplex spherulites, an 

interconnected structure appeared in the bulk of the sample illustrated by bright lines connected 

throughout the sample. This is believed to be generated by the connection of small 

stereocomplexed regions, similar to a 3D network. Another interesting point is the existence of a 

very thin transparent layer around the stereocomplex spherulites. This is probably due to diffusion 

of PDLA chains to the stereocomplex spherulites. This migration leads to a depletion of this 

component in the boundary layer and thus leads to fully amorphous shells around the spherulites. 

Finally, the observed morphology was heated at a rate of 5 
o
C/min to 240 

o
C to carefully observe 

its melting behavior. The optical micrograph in Figure 3.13-5 was captured during this heating 

stage at 216 
o
C. At this temperature the network like structure had vanished while the 

stereocomplex spherulites were still present. It is noteworthy that the melting behavior observed in 

the final heating stage matches very well with the double melting peak behavior previously 

mentioned in DSC analysis. Thus, it can be assumed that the lower temperature melting peak is 

associated to the network structure and the higher temperature peak is the characteristic peak for 

spherulite melting. It could be argued that the thermal history in the DSC and optical microscopy 

tests were not identical. To remove any doubts on the relation between the two observed textures 

and the double melting peak, DSC tests were re-made with exactly the same thermal history as for 

the optical observation procedure 2. An identical double melting peak behavior was found 

confirming the previous results. To the authors’ knowledge, it is the first time that this double 

melting peak behavior can be clearly associated to distinct crystalline morphologies in PLA 

stereocomplexes. 
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Figure 3.12 Second thermal procedure for optical microscopy observations 

 

 
13-1                                                                       13-2 

 
13-3                                                                       13-4 
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Figure 3.13 Optical micrographs obtained during the thermal procedure described in Figure 3.12 

3.3.5 Discussion 

It is interesting to reflect on the relations between the rheological response and the 

crystalline morphology developments in light of this dual network/spherulitic stereocomplex 

structure. Spherulitic structures will act as particulates with their volume fraction directly related 

to the crystalline content and to the amount or ratio of amorphous material that can be trapped 

within the complex spherulitic structure. In the earlier calculations to evaluate the effect of the 

solid crystalline fraction on the material viscosity, it was assumed that 100% of the PDLA was 

involved in stereocomplex formation. However, considering that the stereocomplex yield in this 

study was less than 50%, it is clear that the Krieger-Dougherty model predictions presented in 

Figure 3.3 were made using an overestimated solid content. Even if the apparent solid content 

would be increased due to an amorphous portion within the spherulites, the observed blend 

viscosities could not be predicted from a viscosity model based solely on a solid volume fraction. 

Furthermore, one should note that the large viscosity increase observed at low oscillation 

frequency in Figure 3.4 was caused by only 4.5% solid content rather than the 10% expected in 

the ideal stereocomplex formation situation. Only solid particulates with strong tendency for 

agglomeration or network formation show such large effects at concentration below 5%. It is also 

noteworthy that from our optical microscopy observations, the formation of the stereocomplex 

spherulites is a lengthy process. Around 30 minutes at 180
o
C were required to develop the 

spherulites in Figure 3.13-1 for example. Network formation on the other hand is associated to a 

lower melting point structure and can appear more rapidly as we increase the undercooling. The 
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rheological procedure consisted in rapidly heating amorphous sample to 180
o
C and then 

monitoring the oscillatory response. In this context, the initial response is more directly related to 

the network formation rather than to spherulite formation. 

It was noted in the comparison of calorimetric and rheological responses (Figure 3.8) that in 

the initial crystallization minutes, the crystalline growth based on the viscous response was greater 

than that measured from the standard calorimetric method. This may well be related to a non-

linear relation between the blend viscosity and the crystalline content when a physical network 

structure is established. In that situation, the rheological response will be greater than the one 

expected from a suspension rheology model (i.e. a nearly linear relation between viscosity and 

solid content at low solid content). A rheological model that can accurately describe the behavior 

of the material during the early stages of the network formation would be useful and thus, further 

efforts in that direction should be made. Interestingly, the strong viscosity–crystallinity 

dependence may provide a more sensitive means to monitor the onset of the network formation 

compared to calorimetry or x-ray diffraction. 

3.4 Conclusions 

This work has shown the existence of a dual network/spherulitic crystalline morphology 

during PLA stereocomplex formation in the melt state. This dual structure can be witnessed 

directly by optical microscopy where the stereocomplex spherulites take on the usual radiated 

structure while the so-called network crystallinity is a less organized worm-like structure. The 

melting endotherm associated with the spherulites was around 218 
o
C while that of the network 

structure was significantly lower and was in direct relation with the crystallisation temperature. 

Typical half-time for completion of the overall stereocomplexation was between 300 and 500 s 

and the efficiency of stereocomplex formation was around 45%. The nucleating role of the 

stereocomplex for PLA homocrystallization was demonstrated by XRD and by optical microscopy 

characterizations. Specifically, a trans-crystalline layer of PLA homocrystals was grown on the 

surface of stereocomplex spherulites. Future efforts should focus on the kinetics and efficiency of 

stereocomplex formation at elevated temperatures in the melt state to benefit from this 

phenomenon in actual PLA melt-processing applications.   
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Chapter 4. Effect of nucleation and plasticization on the stereocomplex 

formation between enantiomeric poly(lactic acid)s 
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Résumé français: L'effet de la nucléation et de la plastification sur la formation de 

stéréocomplexes entre le poly(L-acide lactique) (PLLA) et le poly(D-acide lactique) (PDLA) a 

été étudié dans les mélanges où le PDLA est ajouté en tant que phase mineure dans une phase 

principale de PLLA. L'utilisation de petites quantités de PDLA est destinée à créer une phase 

cristalline de stéréocomplexe ayant un point de fusion élevé qui peut servir d'agent de nucléation 

pour la phase majoritaire de PLLA. Des mélanges contenant 5% de PDLA, de 1% de talc ou de 

phosphonate organique comme agent de nucléation et de 5% de polyéthylène glycol comme 

plastifiant ont été préparés par mélange à l’état fondu. Leur comportement de cristallisation a 

été étudié par calorimétrie différentielle à balayage (DSC) en utilisant différentes histoires 
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thermiques. Deux endothermes de fusion du stéréocomplexe ont été trouvés. Le pic de 

température et l'enthalpie de ces deux endothermes ont été corrélés à la température de 

cristallisation isotherme. Les différents endothermes ont également été associés à deux 

morphologies cristallines différentes observées par microscopie optique et nommées structure en 

réseau et structure sphérulitique. L'influence de la plastification et de la nucléation hétérogène 

sur ces morphologies a été étudiée par microscopie optique et des observations calorimétriques. 
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Abstract. The effect of nucleation and plasticization on the stereocomplex formation between 

poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA)was investigated in blends where 

PDLA is added as a minor phase in a major phase of PLLA. The use of small amounts of PDLA 

is aimed at creating a high melting point stereocomplex phase that in turn can serve as 

nucleating agent for the major phase of PLLA. Blends containing 5% PDLA with talc or organic 

phosphonate as nucleants and polyethylene glycol as plasticizer were prepared via melt-blending. 

Their crystallization behavior was investigated through Differential Scanning Calorimetry (DSC) 

using various thermal histories. Two peculiar stereocomplex melting endotherms were found. 

The peak temperature and enthalpy of these two endotherms were correlated to prior isothermal 

crystallization temperature. The different endotherms were also associated with two different 

crystalline morphologies observed by optical microscopy and referred to as Network and 

Spherulitic morphologies. The influence of plasticization and of heterogeneous nucleation on 

these morphologies was investigated through optical microscopy and calorimetric observations. 

Keywords: PLA stereocomplex, Crystallization kinetics, Nucleation and plasticization 

4.1 Introduction 

Poly(lactic acid) (PLA) is a thermoplastic polyester which was initially employed for 

specialty biomedical purposes due to its biocompatibility and bioresorbability. Thanks to its 

compostability and recent developments enabling its production from a renewable feedstock, PLA 
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utilization has increased dramatically with applications in packaging, textiles and molded articles 

[1, 8, 9]. Despite the good mechanical, optical and barrier properties, PLA has a low heat 

resistance as a result of low glass transition temperature, slow crystallization and low achievable 

crystallinity in conventional melt processing technologies. Lactic acid has a chiral carbon atom 

which gives rise to two enantiomeric forms, L-lactic acid and D-lactic acid. As a result, PLA can 

have a wide range of properties from amorphous to semi-crystalline forms, depending on the 

proportion and distribution of L and D units in the PLA chain. Ikada et al. found that this 

stereochemical aspect can lead to an interesting phenomenon where L- and D-rich PLA chains 

called PLLA and PDLA respectively, co-crystallize and form a stereocomplex with a melting 

point about 50 
o
C higher than PLLA or PDLA homocrystals [10]. Characteristics of the two 

components; i.e., the molecular weight, optical purity and chain architecture (linear or branched), 

as well as the blend preparation and crystallization conditions have influence over the kinetics and 

extent of stereocomplex formation between PLLA and PDLA. Several reports exist on the 

quantification of the role of these parameters as well as the understanding of stereocomplex 

formation mechanism [24, 67, 192-194, 198, 200-202, 213-222]. Furthermore, due to the higher 

melting point of stereocomplex compared to PLA homocrystal, it is possible to preserve it in 

molten PLA. This provides the opportunity of using PLA stereocomplex as a nucleation site for 

PLA homocrystallization [79, 80, 122, 144, 146, 147, 205, 216]. Other possible applications of 

stereocomplexation include improvement of thermo-mechanical [75, 223] and rheological 

properties [147, 203, 216]. More elaborated applications in carbon nanotubes-PLA 

nanocomposites [224, 225], increased interfacial adhesion in rubber toughened PLA [226], 

biodegradable hydrogels [227, 228] and nanoparticle formation [229-231] have also been reported 

recently. The fact that two different chains, i.e., PLLA and PDLA, must combine to form the 

stereocrystals imposes a larger diffusion path than in the regular chain folding crystallization 

mechanism. Therefore, stereocomplex formation compared to homocrystallization suffers from a 

larger kinetic barrier and this must be taken into account since stereocomplexation and 

homocrystal formation will be in competition upon cooling of the material. Due to the same 

kinetic issue, most of the prior research was done on blends prepared via solution mixing rather 

than through melt-mixing which would be the preferred method from an industrial application 

point of view. An approach to face this problem is to use stereoblock PLAs (PLLA-b-PDLA 

copolymers). However, since PLLA and PDLA blocks are connected to each other, their free 
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movement is constrained, thus stereocomplex formation is slower in this kind of materials relative 

to comparable PLLA/PDLA blends and leads to lower amounts of stereocomplex [232, 233]. It is 

possible to decouple stereocomplexation and homocrystallization by carrying out the 

stereocomplex formation at elevated temperatures where there is no overlap with 

homocrystallization. This is done obviously at the expense of a lower rate of stereocomplex 

formation since undercooling is reduced.  

There has been a tremendous research effort dedicated to the PLA crystallization and this 

has been reviewed elsewhere [6]. Combination of nucleation and plasticization was shown to be 

necessary in order to increase the crystallization rate of PLA and obtain crystallized parts in a 

typical industrial molding process [76]. However, very little literature has been dedicated to the 

improvement of PLA stereocomplexation in the molten state [121]. In a previous study on the 

stereocomplex formation for melt mixed PLLA/PDLA blends at high temperatures, a peculiar dual 

network/spherulitic crystalline morphology was revealed [216]. In the current work, the effect of 

nucleation and plasticization on stereocomplex formation and on this network/spherulitic dual 

morphology is investigated. 

4.2 Experimental 

4.2.1 Materials 

PLLA and PDLA were semi-crystalline commercial grades provided respectively by 

NatureWorks LLC and Hycail. According to the producers they contained 2% D- units and 0.5% 

L- units, respectively. Molecular weights of the polylactides were measured via a 

ViscotekTDAmax GPC apparatus (Malvern Instruments Ltd) equipped with a triple detection 

system. The measured weight-averaged molecular weight (Mw) and polydispersity index (Mw/Mn) 

were 109 kg/mol and 1.57 for PLLA and 61 kg/mol and 2.1 for PDLA. A high molecular weight 

PDLA (Mw = 174 kg/mol, PDI = 1.4) was also used for comparison but unless mentioned 

otherwise, the results presented in this paper are for the lower molecular weight PDLA. 

Polyethylene glycol (PEG) is a common plasticizer for PLA and is employed in different studies 

for enhancing its crystallization behavior. Therefore, to investigate the effect of plasticization on 

stereocomplex formation, a PEG with a nominal molecular weight of 3350 g/mol (Carbowax 

3350) supplied by Dow Chemicals was selected. Talc (Mistron Vapor R) with a mean particle size 
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of 2 µm supplied by Luzenac America and an aromatic phosphonate (Ecopromote-NP) from 

Nissan Chemical Industries, LTD with a particle size of 0.1-0.2 µm were used as nucleating 

agents. 

4.2.2 Blend preparation 

Prior to blend preparation, all the materials were vacuum dried at 50 
o
C for 2 days. Different 

formulations were prepared via a melt-blending technique using a HAAKE MiniLab conical twin-

screw micro compounder (Thermo Scientific). Mixing was carried out at 180 
o
C for 5 minutes at a 

rotation speed of 100 rpm. Neat PLLA was processed at the same operating conditions and was 

used as a reference (L). The extruded blends were also dried in the same conditions prior to 

characterizations. Table 4.1 summarizes the concentration of each component in the prepared 

formulations. Letters D, T, A and P in formulation designations refer to PDLA, talc, aromatic 

phosphonate and PEG, respectively. The number after each letter corresponds to the concentration 

of that component in weight %. 

Table 4.1 Composition of the studied blends in wt. % 

Designation PDLA Talc 
Aromatic 

Phosphonate 
PEG 

L 0 0 0 0 

D5 5 0 0 0 

D5P5 5 0 0 5 

D5P10 5 0 0 10 

T1 0 1 0 0 

A1 0 0 1 0 

D5T1 5 1 0 0 

D5A1 5 0 1 0 

D5T1P5 5 1 0 5 

D5A1P5 5 0 1 5 

D5T1P10 5 1 0 10 

D5A1P10 5 0 1 10 

4.2.3 Differential Scanning Calorimetry (DSC) 

Dynamic and isothermal characterizations were performed using a DSC Q2000 differential 

scanning calorimeter (TA instruments). Thermal history of the blends was removed by heating 

them to 240 
o
C and maintaining this temperature for 2 min. Afterwards, specimens were cooled to 
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room temperature at a rate of 10 
o
C/min and their crystallization from the melt was observed in the 

cooling cycle. In isothermal mode, removal of the thermal history was followed by rapid cooling 

to various isothermal crystallization temperatures (Tiso) ranging from 160 to 190 
o
C. Isothermal 

crystallization (i.e., stereocomplex formation) was carried out until its completion. Finally, 

samples were heated back to 240 
o
C at a rate of 10 

o
C/min to evaluate the stereocomplex melting 

behavior. A non-linear fitting software (PeakFit v4) was employed to deconvolute the overlapping 

double melting peaks. Pearson IV peak function with standard least-squares minimization was 

used to find the optimum fit. 

4.2.4 Hot-stage Optical Microscopy 

Optical microscopy (OPTIPHOT-2) was employed to observe the effect of isothermal 

crystallization temperature and additives on PLA stereocomplex crystalline morphology. Thin 

films were prepared by hot-pressing blend granules. A programmable hot-stage (Mettler FP82HT) 

was used to perform the thermal procedures. 

4.3 Results and discussion 

4.3.1 Non-isothermal DSC 

Effect of PEG (plasticizer): The addition of a plasticizer increases chain mobility and 

facilitates its transfer to crystallization sites. It is typically most effective at lower crystallization 

temperatures where chains are restricted in motion. Figure 4.1 presents the DSC thermograms of 

neat PLLA and its blends with 5 wt.% PDLA, without and with PEG. Neat PLLA showed a small 

crystallization peak at 95 
o
C, while the other three blends had two crystallization peaks due to the 

presence of PDLA. For 5% PDLA without PEG (D5), the stereocomplex formation peak was 

small with an enthalpy of 2.4 J/g at 143.5 
o
C, and the presence of plasticizer increased 

stereocomplex enthalpy to 3.6 and 3.9 for 5 and 10% PEG respectively with no significant change 

in peak temperature. While larger homocrystallization peaks are expected in presence of the 

plasticizer, one could assume that the plasticizer will not significantly affect stereocomplex 

formation as it occurs at much higher temperatures compared to homocrystallization. However, 

results lead to the opposite conclusion. This can be explained considering the chain hindrance 

caused by stereocomplex formation. During the initial stages of stereocomplex formation, chain 

branching and a network-like structure forms due to the stereocomplex crystallite formation that 
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restricts chain mobility even at high temperatures [216]. Therefore, the presence of a plasticizer is 

helpful to counteract this negative aspect. Furthermore, the combination of plasticizer and the 

stereocomplex formed at higher temperatures that can act as a nucleating agent improves PLA 

homocrystallization even more, as expected from the synergistic effect of the nucleating agent and 

plasticizer on PLA crystallization. The 5% PDLA alone could not increase the homocrystallization 

compared to neat PLLA due to insufficient amount of stereocomplex and chain mobility issue at 

low crystallization temperature. On the other hand, presence of both PDLA and PEG enhanced 

homocrystallization as shown by the enthalpy increase from 3.4 J/g to 23 and 26 J/g and increasing 

peak temperature by 7 and 13 
o
C for D5P5 and D5P10 samples, respectively. Assuming a melting 

enthalpy of 146 J/g for 100% crystalline PLA (ΔHm,100) in the stereocomplex form [191], the 

maximum stereocomplex formation enthalpy at 5% PDLA content is 14.6 J/g for optically pure 

PLLA and PDLA (2×[PDLA]×ΔHm,100). Therefore the stereocomplex yield was increased from 

16% for D5 sample to 26% by incorporating up to 10% plasticizer. 

 

Figure 4.1 DSC cooling thermograms of neat PLLA (L), PLLA/5%PDLA (D5), PLLA/5%PDLA/5%PEG (D5P5) and 

PLLA/5%PDLA/10%PEG (D5P10) 

Effect of nucleating agents: Influence of 1% talc or aromatic phosphonate on 

crystallization behavior of PLA blends is illustrated in Figure 4.2, where DSC cooling cycles of six 

samples are compared. Two types of crystallization peaks appear in these thermograms, those at 

higher temperatures, ranging from 143.5 
o
C (for D5) to 170.5 

o
C (for D5A1), are associated to 

stereocomplex formation and lower temperature peaks are related to homocrystallization. In terms 
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of stereocomplex formation both nucleating agents revealed significant increase in enthalpy and 

crystallization temperature. Stereocomplex enthalpy was increased to 7 and 7.5 J/g (corresponding 

to 48-51% stereocomplex crystallinity) and stereocomplex formation peak temperature was 

increased by 20 and 27 
o
C to 163.5 and 170.5 

o
C using 1% talc and 1% aromatic phosphonate, 

respectively. Another interesting result is the effect of aromatic phosphonate on PLA 

homocrystallization. A very sharp peak appeared at 128 
o
C with an enthalpy of 35.2 J/g. This is 

equal to complete crystallization at 33 
o
C higher temperature compared to the neat PLLA 

crystallization. Meanwhile, in the absence of PDLA (blends T1 and A1) homocrystallization peaks 

appeared at the same temperature as when both PDLA and nucleating agent were present. 

Therefore, talc and aromatic phosphonate have the main contribution in nucleation of 

homocrystallization. 

 

Figure 4.2 DSC cooling thermograms of neat PLLA (L), PLLA/5%PDLA (D5), PLLA/ 1% talc (T1), 

PLLA/5%PDLA/1%talc (D5T1), PLLA/ 1%aromatic phosphonate (A1) and PLLA/5%PDLA/1%aromatic phosphonate 

(D5A1) 

Combined effect of nucleation and plasticization: Figure 4.3 and Figure 4.4 present the 

DSC thermograms of all studied formulations in the stereocomplex formation and 

homocrystallization regions, respectively. Since the role of the plasticizer is to facilitate chain 

movements at lower temperatures, higher improvements are observed for homocrystallization than 

for stereocomplex formation. More specifically, homocrystallization peak temperature and 

enthalpy were increased by 11 
o
C (from 103 to 114 

o
C) and 7.5 J/g when adding 10% PEG (i.e. 
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D5T1P10 compared to D5T1) while for aromatic phosphonate nucleated blend (D5A1) where 

homocrystallization is almost completed at a higher temperature, only a 2 
o
C increase in 

homocrystallization peak temperature was observed upon addition of the plasticizer. It is 

noteworthy that many studies have reported 130 
o
C as the optimum temperature for PLA 

spherulite growth rate [40, 60, 62, 87, 89]. Thus, if a nucleating agent like the aromatic 

phosphonate can nucleate PLA homocrystallization at this temperature it would result in a rapid 

crystallization. Similarly, for stereocomplex formation where peaks were shifted by 20 and 27 
o
C 

to 163.5 and 170.5 
o
C with 1% talc and aromatic phosphonate, further addition of plasticizer only 

increased peak temperature by 3.5 and 2 
o
C, respectively. Stereocomplex formation enthalpy was 

also increased to 7.7 and 8 J/g in presence of the plasticizer (D5T1P10 and D5A1P10 samples). 

 

Figure 4.3 DSC cooling thermograms of all formulations in the stereocomplex formation region 
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Figure 4.4 DSC cooling thermograms of all formulations in the homocrystallization region 

4.3.2 Isothermal stereocomplex crystallization 

Selected formulations were isothermally crystallized in the temperature range of 160 to 190 

o
C to study the effect of nucleation and plasticization on isothermal stereocomplexation kinetics 

and subsequent melting behavior. Figure 4.5 presents the crystallization peaks and the 

corresponding relative degree of stereocomplexation for the unmodified 5% PDLA blend (D5), the 

plasticized blend (D5P10), the aromatic phosphonate nucleated blend (D5A1) and for the 

plasticized/nucleated blend (D5A1P10). Successive curves represent 5 
o
C increments in isothermal 

crystallization temperature. Commonly, for all four samples, increasing the isothermal 

crystallization temperature resulted in widening of the peaks and in a slower stereocomplex 

formation. The aromatic phosphonate is the most efficient additive for enhancing the 

stereocomplex formation kinetics. PEG addition also increased the crystallization rate to some 

extent. 
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Figure 4.5 Isothermal crystallization peaks and corresponding relative degree of stereocomplexation for (a,b): D5, (c,d): 

D5P10, (e,f): D5A1 and (g,h): D5A1P10 

To better illustrate the effect of temperature and formulation on the kinetics, stereocomplex 

formation half-time (t1/2) is plotted versus the isothermal crystallization temperature in Figure 4.6. 

The t1/2 is the time required to reach 50% relative degree of stereocomplex formation. For the 

blend without modifier (D5), t1/2 is reduced from 12.6 min to 5 min by decreasing Tiso from 190 to 

160 
o
C. For the blend with 10% PEG, the half-time ranged from 11.3 to 3.4 min in the same 

temperature interval showing some improvement in stereocomplex formation rate. In presence of 

aromatic phosphonate, the t1/2 at 160 
o
C was remarkably reduced to 0.58 min and to 0.27 min with 

further addition of 10% PEG. Interestingly, the plasticizer was more effective in accelerating 

stereocomplex formation at lower temperatures and as the isothermal crystallization temperature 

was raised, data for plasticized and non-plasticized samples converged.  
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Figure 4.6 Stereocomplex formation half-time (t1/2) as a function of isothermal crystallization temperature 

4.3.3 PLA stereocomplex melting behavior 

The melting behavior of isothermally crystallized blends was observed in a subsequent 

heating cycle at a rate of 10 
o
C/min. Figure 4.7 presents melting peaks for the unmodified 5% 

PDLA blend (D5) obtained after isothermal crystallization in the temperature range of 160-190 
o
C 

(5 
o
C increments) as an example. Curves are shifted vertically for the sake of better illustration. 

 

Figure 4.7 Melting behavior of the unmodified 5%PDLA blend (D5) after isothermal crystallization at 160-190 oC 
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In all four investigated blends, a double stereocomplex melting peak was observed, as it was 

reported earlier for PLLA/PDLA blends [216]. This phenomenon is related to the formation of a 

dual network/spherulite stereocomplex crystalline morphology and probably to a larger lamellae 

thickness in the spherulitic structure. Melt re-crystallization was ruled out as the cause of this 

behavior since double melting behavior was not dependent on heating rate for samples melted at 

heating rates between 5 to 40 
o
C/min. The position and amplitude of the two peaks varied 

depending on the isothermal crystallization temperature and presence of plasticizer and nucleating 

agent. In Figure 4.8, deconvoluted melting peaks obtained for different isothermal crystallization 

temperatures are illustrated for sample D5. Figure 4.8-a shows the lower temperature melting 

peaks associated to network structure and Figure 4.8-b shows the higher melting temperature peaks 

which are related to spherulite melting. Clearly, by increasing the isothermal crystallization 

temperature (Tiso), both the network and spherulite melting peaks shift to higher temperatures. 

However, the portion of network structure is increased in the final morphology at the expense of 

the spherulitic structure. The sum of melting enthalpies from the two peaks for all isothermal 

crystallization temperatures is around 7.5 J/g which is equal to 50% stereocomplex crystallinity.  
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Figure 4.8 Effect of isothermal crystallization temperature on the melting behavior of PLLA with 5% PDLA (D5): (a) 

network structure melting and (b) spherulitic structure melting 

Figure 4.9 known as Hoffman-Weeks plot, shows the variation of melting point versus 

crystallization temperature for the two melting peaks to obtain the stereocomplex equilibrium 

melting temperature. Melting temperature for both peaks increases linearly with isothermal 

crystallization temperature. However, the slope for lower temperature peak is higher which results 

in an equilibrium melting point of 248 
o
C compared to 232 

o
C obtained from the higher melting 

peak. Tsuji and Ikada [24] reported equilibrium melting point for 1:1 blends of PLLA and PDLA 

with different optical purities with the same method ranging from 214 to 263 
o
C, showing that 

estimated Tm
0
 depends on the optical purity of PLA. Therefore, the two melting peaks which 

resulted in different Tm
0
 of stereocomplex may have been originated from segregated PLLA and 

PDLA chain segments with different optical purities. 



92 

 

 

 

 

Figure 4.9 Hoffman-Weeks plot for the two stereocomplex melting peaks 

A similar dual-peak melting behavior with increasing Tiso was observed for the other three 

blends. In Figure 4.10, melting peaks of D5, D5P10, D5A1 and D5A1P10 obtained after 

isothermal crystallization at 170 and 180 
o
C are compared as an example. Aromatic phosphonate 

addition (D5A1) resulted in a lower melting temperature spherulite and network compared to the 

reference 5% PDLA blend (D5). Spherulite melting peak temperature was reduced by 3 
o
C while 

network melting peak temperature was reduced only one degree. Addition of 10% PEG on the 

other hand shifted the melting peaks slightly to lower temperature as Tiso was increased. The more 

significant plasticizer effect however was increasing the enthalpy of the spherulite peak which is 

clear by comparing sample D5 with D5P10 and D5A1 with D5A1P10 blends. The sum of melting 

enthalpies from network and spherulite peaks for D5P10 blend was about 8.8 J/g which is equal to 

60% stereocomplex crystallinity, showing a 10% increase in total stereocomplex formation.  
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Figure 4.10 Effect of nucleating agent and plasticizer on the PLA stereocomplex network and spherulite melting peaks 

after isothermal crystallization at (a) 170 oC and (b) 180 oC 

In addition, to understand the role of PDLA molecular weight on stereocomplexation, a 

higher molecular weight PDLA (Mw = 174 kg/mol, PDI = 1.4) was used for comparison. 

Figure 4.11 shows melting peaks obtained for a blend containing 5% of this higher molecular 

weight PDLA. The same double melting behavior is observed and the trend in their position and 

size variation with isothermal crystallization temperature is similar to that observed in 

Figure 4.7. On the other hand, due to the much higher molecular weight of PDLA, 
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stereocomplex formation is less favored and the melting enthalpy of stereocomplex formed is 

around 1.5 J/g compared to 7.5 J/g in case of lower molecular weight PDLA. 

 

Figure 4.11 Melting behavior of the blend with 5% high molecular weight PDLA after isothermal crystallization at 160-

190 oC 

4.3.4 Optical microscopy observations 

Optical microscopy observations were performed to correlate the crystalline morphology 

with isothermal DSC characterizations. After removing thermal history by keeping the samples at 

240 
o
C for 2 min, thin films were isothermally crystallized at desired Tiso long enough (based on 

DSC results, Figure 4.5) to complete stereocomplex formation. Then samples were cooled to 110 

o
C, kept at this temperature for few minutes and finally heated back to 200 

o
C to observe the final 

morphology. As it was explained in an earlier work [216], this cooling and heating cycle was 

necessary for better visualization of the network morphology. Figure 4.12 shows the images 

captured at 200 
o
C for D5 blend isothermally crystallized at different temperatures. According to 

these images, by increasing Tiso from 160 to 190 
o
C, the number of stereocomplex spherulites is 

reduced slightly, the final spherulite size is reduced considerably, and stereocomplex lamellae are 

less packed in spherulite morphology and grow laterally on existing lamellae. Especially at Tiso 

equal to 190 
o
C some irregular lamellae aggregates are observed. These phenomena lead to less 

stereocomplex in the spherulite morphology and higher portion of network structure. Therefore, 

optical microscopy observations are consistent with isothermal DSC characterization results where 

network peak grows and spherulite peak shrinks with increasing Tiso. 
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(a)      (b) 

 

(c)      (d) 

Figure 4.12 Final stereocomplex crystalline morphology of D5 blend at 200 oC, isothermally crystallized at (a) 160 oC, (b) 

170 oC, (c) 180 oC and (d) 190 oC 

Furthermore, to investigate the influence of nucleation and plasticization, the final 

stereocomplex morphologies after isothermal crystallization at 180 
o
C were compared. 

Micrographs taken at 200 
o
C are presented in Figure 4.13 for the same blend series as in previous 

figures (D5, D5P10, D5A1 and D5A1P10). Interestingly, four distinct morphologies were 

observed for the four blends. Comparing Figure 4.13-a with Figure 4.13-b suggests that the 

presence of plasticizer decreases the stereocomplex spherulite density while results in larger 

spherulites. On the contrary, presence of the aromatic phosphonate (Figure 4.13-c) greatly 

influenced the morphology leading to a dense mixture of stereocomplex network and very fine 

spherulites which are difficult to distinguish. Finally, presence of both plasticizer and nucleating 
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agent (Figure 4.13-d) ended in an intermediate morphology with a lower spherulite density and 

larger spherulites compared to D5A1 sample. 

The achieved results are of great significance and could lead to the use of a minor 

stereocomplex phase as means for accelerating homocrystallization, for generating high melting 

point physical cross-links in an otherwise amorphous matrix or for increasing melt elasticity of 

PLA in melt processing applications. The stereocomplexation half-time was reduced by an order of 

magnitude which makes it possible to produce PLA stereocomplex efficiently in the timeframe of 

melt processing techniques. As well, a variety of stereocomplex morphologies can be produced in 

a controlled manner by varying temperature as well as nucleating agent and plasticizer 

concentration. 

 
(a)      (b) 

 
(c)      (d) 

Figure 4.13 Final stereocomplex crystalline morphology at 200 oC, blends isothermally crystallized at 180 oC: (a) D5, (b) 

D5P10, (c) D5A1 and (d) D5A1P10 
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4.4 Conclusions 

Both talc and aromatic phosphonate can nucleate PLA homocrystallization as well as 

stereocomplex formation, with aromatic phosphonate being the most efficient. The addition of a 

plasticizer such as PEG further lowers the stereocomplex formation time even though 

stereocomplexation is carried out at a much higher temperature than the homocrystallization. This 

emphasizes the importance of dynamic limitations in the stereocomplexation process. The 

stereocomplexation half-time can be reduced by an order of magnitude when properly combining 

heterogeneous nucleation and plasticization. Two types of stereocomplex morphologies, a lower 

melting-point network morphology and a higher melting-point spherulitic morphology, can coexist 

and are observable under optical microscope. The ratio of the two morphologies can be controlled 

by changing the temperature at which the stereocomplex is formed. Lower formation temperatures 

favor the spherulitic morphology at the expense of the network one. The presence of a plasticizer 

increases the spherulite size and reduces their number. The presence of nucleating agents, already 

known to nucleate homocrystallization, also increases dramatically the stereocomplex nucleation 

density leading accordingly to a reduction in spherulite size. In the current study, the spherulite 

size was lowered below the measuring limit of optical microscopy. These findings are of great 

interest because they show that stereocomplex formation in the melt state is feasible within an 

acceptable timeframe for industrial melt processes. Since the stereocomplexation and 

homocrystallization are enhanced by the same nucleants and plasticizers, these additives will 

provide high stereocomplexation rates and high homocrystallization level at the same time. 
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Chapter 5. Poly(lactic acid) stereocomplex formation: application to PLA 

rheological property modification 
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Contribution au document: Les effets de la formation des stéréocomplexes sur les propriétés 

rhéologiques sont examinés.  

Résumé français: La formation de stéréocomplexes de PLA en conditions isothermes a été 

étudiée en absence et en présence d'un agent de nucléation d'un point de vue rhéologique grâce 

à la sensibilité des propriétés viscoélastiques à des changements structurels au cours de ce 

processus. Le PDLA en concentrations faibles a été mélangé avec le PLLA à l'état fondu pour la 

formation de stéréocomplexes. Des échantillons amorphes ont été préparés et la cristallisation a 

été réalisée dans un rhéomètre à des températures élevées afin de simuler des conditions de mise 

en forme à l'état fondu. La stereocomplexation a été explorée au cours du temps en mesurant les 

paramètres rhéologiques en mode de cisaillement oscillatoire à faible déformation en utilisant la 

géométrie des plaques parallèles. Les données cinétiques obtenues par ce moyen ont été 

comparées aux données des études calorimétriques. Cette comparaison met en évidence une 

tendance différente en fonction de la méthode de caractérisation. De plus, après la fin de la 

cristallisation, la structure cristalline finale a été sondée sur une large gamme de fréquences 

pour étudier le rôle de la modification rhéologique du PDLA sur une phase principale de PLLA. 
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Des différences entre les caractéristiques rhéologiques des mélanges asymétriques de PLLA / 

PDLA et PLLA ont été associées à des changements structurels qui se produisent en raison de la 

formation de stéréocomplexes. 
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Abstract. PLA stereocomplex formation in isothermal conditions in the absence and presence of 

a nucleating agent was studied from a rheological point of view due to sensitivity of viscoelastic 

properties to structural changes during this process. PDLA was melt blended in low 

concentrations with PLLA to produce a stereocomplex. Amorphous samples were prepared and 

crystallization was carried out in a rheometer at high temperatures to simulate melt processing 

conditions. Stereocomplexation was explored over time by measuring rheological parameters in 

small deformation oscillatory shear mode at a low frequency using parallel plate geometry. 

Kinetic data obtained by this means was compared to data from calorimetric studies, showing a 

different trend depending on the characterization method. Moreover, after the completion of 

crystallization, final crystalline structure was probed over a wide range of frequencies to 

investigate the rheological modification role of PDLA on PLLA major component. Differences in 

rheological characteristics of asymmetric PLLA/PDLA blends compared to neat PLLA were 

associated to the structural changes happening due to the formation of the stereocomplex. 

Keywords: PLA stereocomplex, Rheology, Crystallization 

5.1 Introduction 

Poly(lactic acid) (PLA) is a fast growing bio-based and compostable polymer that has raised 

lots of interest recently. Due to the presence of a chiral carbon atom, lactic acid has two 

enantiomeric forms called L-lactic acid and D-lactic acid. This can lead to an interesting 
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phenomenon where L- and D-rich PLA chains called PLLA and PDLA respectively, co-crystallize 

and form a crystal structure known as a stereocomplex [10]. PLA stereocomplex is distinguished 

from PLLA or PDLA homocrystals by a 50 
o
C higher melting point. In the last decade, PLA has 

become widely available commercially as a cost-competitive biobased polymer with applications 

in packaging, textile and molded parts [1, 8, 9]. This has augmented the need to overcome PLA 

deficiencies such as low heat resistance, slow crystallization and low melt strength. Currently 

available PLA are mainly made from L-Lactic acid as this is the preferred form naturally obtained 

through fermentation routes. Progress has been made however to produce D-lactic acid and 

therefore could open the way to the use of PLA stereocomplex to solve the aforementioned 

obstacles [234-237]. Up to now, investigations have mainly focused on gaining an understanding 

of the stereocomplexation phenomenon with the emphasis on the crystallization mechanism and 

on the effect of different parameters such as molecular weight, optical purity as well as the blend 

preparation method and crystallization conditions [24, 67, 192-194, 198, 200-202, 213-222]. In 

terms of applications, PLA stereocomplex has been investigated as a nucleation site for PLA 

homocrystallization [79, 80, 122, 144, 146, 147, 205, 216], as a thermo-mechanical properties 

modifier [75, 223] as well as in PLA nanocomposites [224, 225, 238, 239]. However, very few 

reports exist on the improvement of PLA rheological properties with the use of a stereocomplex 

[203]. Despite good mechanical, optical and barrier properties, rheological properties of PLA are 

relatively inadequate for some processing techniques that require melt elasticity, i.e. the so-called 

melt strength. This is particularly limiting for processes such as film blowing and extrusion 

foaming where melt elasticity is required to retain film or foam structure prior to solidification. 

Thus, the first objective of this work was to explore the influence of stereocomplex on PLA melt 

rheology. 

On the other hand it is also interesting to study the PLLA/PDLA co-crystallization by 

rheological measurements. Many reports exists on PLA crystallization mostly based on 

calorimetric studies, reviewed elsewhere [6]. Rheological monitoring of PLA homocrystallization 

as well has been done by a number of researchers [240-242], however there is no study on 

rheological monitoring of PLA stereocomplex formation. It is known that nucleation and 

plasticization have a significant effect on PLA homocrystallization [76]. In a previous study on the 

stereocomplex formation for melt mixed PLLA/PDLA blends it was shown that these 
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modification techniques are also helpful for acceleration of stereocomplex formation even at 

elevated temperatures, with nucleation having a major contribution [243]. Therefore, the second 

objective of this work was to probe the effect of a nucleating agent on stereocomplex formation 

through rheological measurements. Results have been compared to kinetic data obtained via 

calorimetry and the difference in the response of material is explained taking into account the 

evolution of PLA microstructure by stereocomplex formation from the melt. 

5.2 Experimental 

5.2.1 Materials 

PLLA and PDLA were semi-crystalline commercial grades provided respectively by 

NatureWorks LLC and Hycail. According to the producers they contained 2% D- units and 0.5% 

L- units, respectively. Molecular weights of the polylactides were measured via a 

ViscotekTDAmax GPC apparatus (Malvern Instruments Ltd) equipped with a triple detection 

system. The measured weight-averaged molecular weight (Mw) and polydispersity index (Mw/Mn) 

were 109 kg/mol and 1.57 for PLLA and 61 kg/mol and 2.1 for PDLA. An aromatic phosphonate 

(Ecopromote-NP) from Nissan Chemical Industries, LTD with a particle size of 0.1-0.2 µm was 

used as nucleating agent. 

5.2.2 Blend preparation 

Different formulations were prepared via a melt-blending technique using a LabTech twin-

screw extruder. Mixing was carried out at 180 
o
C at a rotation speed of 200 rpm and a feeding rate 

of 4 kg/hr. Neat PLLA was processed at the same operating conditions and was used as a 

reference. The extruded blends were vacuum dried at 55 
o
C for 2 days prior to characterization. 

5.2.3 Rheological measurements 

Extruded samples were compression molded to disk-shaped specimens using a Carver 

laboratory press. The molding temperature was set to 240 
o
C and the mold assembly was removed 

and quenched in liquid nitrogen to obtain amorphous samples. Dynamic melt rheological 

measurements were performed using an MCR 502 rheometer (Anton Paar) with parallel plate 

geometry. Plates diameter was 25 mm and gap size was set to 1.2 mm. Initially, dynamic strain 

sweep tests were performed on annealed samples to determine the linear viscoelastic region. For 
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the crystallization monitoring, time sweep characterization was done at a frequency of 1 Hz for 30 

min. Then, to investigate the effect of the crystalline structure formed during the time sweep test 

on the rheological properties of the blend, frequency sweep tests were performed in the frequency 

range of 0.1-300 rad/s. All tests were conducted under a blanket of dry nitrogen to minimize 

hydrolytic degradation. 

5.3 Results and discussion 

5.3.1 Effect of stereocomplex on linear viscoelastic region 

Figure 5.1 shows the variation of elastic modulus (G') as a function of applied strain (γ) 

obtained at a frequency of 1 Hz for annealed samples with different concentrations of PDLA. It is 

clear that increasing the PDLA content results in an increase in G' as more stereocomplex is 

formed. Moreover, the linear viscoelastic region is significantly reduced as the PDLA 

concentration is increased. For neat PLLA the higher limit is 45% whereas for a blend with 10% 

PDLA it is decreased to about 2%. Similar behavior is observed for the well dispersed carbon 

nanotubes (up to 7%) in PLA matrix [244]. Based on these results a low strain of 0.5% was chosen 

for the rheological measurements. 

 

Figure 5.1 Elastic modulus as a function of strain for annealed samples with PDLA concentration between 0 to 10 wt.%. 

5.3.2 Rheological monitoring of stereocomplex formation 

Time sweep tests were performed on amorphous samples at 180 
o
C and a frequency of 1 Hz 

to monitor the variation of rheological properties with time which is an indication of 
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stereocomplex formation at the test temperature. In Figure 5.2, G' is plotted versus time for blends 

with different amounts of PDLA. 

 

Figure 5.2 Elastic modulus as a function of time for initially amorphous samples with different PDLA concentrations 

First of all, for neat PLLA variation of G' in the time frame of the test was small. Therefore 

the material was thermally stable at these conditions. By adding PDLA to PLLA, the initial value 

of G' decreased below that of neat PLLA. This was expected since PDLA has a lower molecular 

weight compared to PLLA. As time went by, G' gradually increased until it reached a plateau 

where variations of elastic modulus were small enough to assume that the stereocomplex 

formation was completed. The final value of the elastic modulus, G'(∞) depended on PDLA 

concentration and was in agreement with the values obtained for annealed samples in strain sweep 

tests. 

To demonstrate the effect of stereocomplex formation in the test conditions on melt 

elasticity, phase angle (δ) as a function of time is presented in Figure 5.3 for the investigated 

blends. Neat PLLA showed a constant phase angle of 75
o
 in the absence of any PDLA to co-

crystallize with. Meanwhile, PLLA/PDLA blends revealed a decrease in phase angle, indicating 

that stereocomplex structure formed and contributed to an increase in melt elasticity. Higher 

PDLA concentration resulted in a lower phase angle, reaching a value of 44
o
 for 10% PDLA. 
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Figure 5.3 Variation of phase angle with time as an indication of stereocomplex formation 

In prior work, It has been assumed that the amount of crystalline phase scales with G' based 

on the following equation [245]: 

 

 
Equation 5.1 

where χ is the relative crystallinity, G'(t) is the elastic modulus at time t, G'(0) is the initial elastic 

modulus and G'(∞) is its final value. Therefore, to investigate the kinetics of stereocomplex 

formation based on rheological data, χ is plotted versus crystallization time in Figure 5.4. 
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Figure 5.4 Relative crystallinity as a function of time for blends with 3, 5 and 10% PDLA. 

From this figure it can be seen that crystallization rate depends on PDLA concentration and 

as the PDLA amount in the blend is increased, the stereocomplex formation rate is increased. 

Stereocomplex formation half-time (t1/2) was between 3.8 to 8.3 min depending on PDLA 

concentration. 

Comparing rheology with DSC: It is interesting to compare the kinetic data obtained from 

rheological measurements with those from calorimetry [243]. In Figure 5.5, kinetic curves 

corresponding to stereocomplex formation at 180 
o
C for the blend with 5% PDLA are compared. 
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Figure 5.5 Comparison of relative crystallinity as a function of time for 5% PDLA blend obtained by rheological and 

calorimetric measurements at Tc = 180 oC 

The relative crystallinity obtained from rheological measurements was higher compared to 

that obtained from DSC until 50% stereocomplex formation, after which it falls below the DSC 

curve. This discrepancy may be explained by considering the specific case of stereocomplex 

formation and of the complex crystalline structure formed in isothermal conditions. It was shown 

that a dual network/spherulitic crystalline morphology is formed by co-crystallization of PLLA 

and PDLA chains [216, 243]. Spherulites are higher order structures which takes longer time to 

produce and grow. On the other hand, network structure is composed of smaller crystallites formed 

at a shorter time scale at different spots where PLLA and PDLA chains are in the vicinity of each 

other. Therefore, the effect of enantiomeric chains connection to each other is more significant on 

melt rheology at the initial stages of stereocomplexation. Physical connection of two chains results 

in an apparent increase in molecular weight. Also the chain structure evolves from a linear to a 

branched structure. Furthermore, if more than two chains are involved in stereocomplexation, 

physical cross-linking may occur. All these reasons result in an increase in elasticity and PLA 

viscosity, thus a higher rheological response in the earlier stages of crystallization. 

Effect of nucleating agent: It has been shown through calorimetric studies that an aromatic 

phosphonate has a significant nucleating effect on PLA stereocomplex formation [243]. This was 

further investigated by tracing the variation of elastic modulus with time in the presence of this 

material. Figure 5.6 shows G' as a function of time for three samples. The straight line corresponds 

to the sample without PDLA having 1% nucleating agent. Thus, the material is thermally stable in 

the presence of nucleating agent with no significant decrease in G' after about 30 min. The curve 

presented with downward triangle symbol is related to the blend with 5% PDLA as illustrated in 

Figure 5.2 and is shown for the sake of comparison. Finally, the blend with 5% PDLA and 1% 

nucleating agent is presented with open circles. The initial point for the sample with PDLA and 

nucleating agent was higher compared to the other two blends, suggesting that the stereocomplex 

formation had already progressed to some extend from the time that sample was placed in the 

rheometer until time sweep test was started. In addition, the plateau was reached much faster 

compared to the unmodified blend. 
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Figure 5.6 Elastic modulus as a function of time for amorphous samples: 1% nucleating agent without and with 5% 

PDLA and 5% PDLA blend without nucleating agent 

G' values for the nucleated sample are transformed to relative crystallinity according to 

Equation 5.1 and compared in Figure 5.7 to unmodified blend’s relative crystallinity obtained from 

rheology and DSC characterization. To find the initial point for the nucleated sample, data were 

extrapolated to the initial value of elastic modulus for the unmodified blend. Similar to the 

unmodified blend, the kinetic curve for the blend containing 1% aromatic phosphonate and 5% 

PDLA obtained from DSC characterization is illustrated. Based on Figure 5.7, it can be concluded 

that heterogeneous nucleation was highly effective to enhance the stereocomplex formation at high 

temperatures. Stereocomplex formation half-time was reduced from 375 s for unmodified blend to 

50 s in the presence of aromatic phosphonate. For the nucleated sample as well, the rheological 

data showed an earlier increase in relative crystallinity compared to DSC curve. However, since 

the stereocomplex formation was much faster in this case compared to the unmodified blend, this 

difference is not as notable.  
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Figure 5.7 Comparison of relative crystallinity as a function of time for 5% PDLA blends without and with nucleating 

agent obtained by rheological and calorimetric measurements at 180 oC 

5.3.3 Effect of stereocomplex on PLA rheological properties 

To investigate the effect of stereocomplex on the rheological properties of PLA, frequency 

sweep tests were performed on samples which had already completed stereocomplexation in 

isothermal time sweep tests. In Figure 5.8, complex viscosity is plotted as a function of oscillation 

frequency for neat PLLA as well as blends with 3, 5 and 10% PDLA. 

 

Figure 5.8 Complex viscosity vs. frequency at 180 oC for neat PLLA and blends with 3, 5 and 10% PDLA after completion 

of stereocomplex formation. 
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PLLA showed a η*- ω relationship typical of linear polymers with a Newtonian plateau at 

low frequencies. However as soon as PDLA was introduced to PLLA, the complex viscosity data 

was shifted upward, especially at lower frequency region. This behavior was more evident for 5 

and 10% PDLA blends where complex viscosity does not stabilize to a viscosity plateau value at 

low frequency, thus showing a significant frequency dependent behavior. 

To further analyze the crystalline morphology present in our blend, the viscosity increase 

ratio of the investigated blends was compared with predictions from a solution viscosity model. If 

the stereocomplex is present in the form of isolated and non-interacting “solid particulates” in an 

amorphous matrix of PLA, the effect of crystallinity should be similar to the effect of adding a 

solid filler. The experimental viscosity increase ratio was compared to prediction from Krieger-

Dougherty model at the frequency of 0.1 rad/s. This model is used to predict the viscosity of 

concentrated suspensions: 

 

Equation 5.2 

where η is the viscosity of the suspension, η0 is the matrix phase viscosity, φ is the volume fraction 

of solid particles, φmax is the maximum packing equal to 0.61 and A is a constant equal to 3.28. The 

first question arising with the use of a solution model is how to calculate the volumetric solid 

fraction. Since one PDLA chain crystallizes with one PLLA chain, in an ideal situation for 100% 

stereocomplex yield, the stereocomplex content can be assumed as two times the PDLA 

concentration. However, it was shown previously that stereocomplexation efficiency is around 

50%. Therefore, we can assume that the “solid fraction” to be used in the Krigher-Dougherty 

model corresponds roughly to the PDLA (weight) fraction. One obvious simplification is made in 

this process. It is to neglect the density difference between the crystalline and amorphous phases 

since the volume fraction of denser crystalline matter should be slightly smaller than the weight 

fraction. Comparing the Krieger-Dougherty prediction with experimental data shows that the effect 

of PDLA addition on the blend viscosity is substantially higher than that obtained from a 

suspension model. For example, at a PDLA content of 10%, the model predicted a 1.5 times 

increase in viscosity while experimental data showed a value of 60 times increase. This clearly 

confirms that the huge viscosity increase observed in presence of the stereocomplex cannot be 
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simply explained by the presence of non-interacting solid spherulites dispersed in a matrix of 

amorphous PLA. It must therefore be concluded that the solid crystalline fraction present in the 

PLLA matrix are not isolated crystallites or spherulites and must have some level of interaction, 

possibly through a network tying PLA chains at a much finer level and that can explain the 

dramatic viscosity increase. 

Accordingly, it was assumed that the PLA melt containing stereocomplex structure had a 

yield stress to describe the significant viscosity increase at low frequencies. Equation 5.3 which is 

the Carreau-Yasuda model with an extra term accounting for the yield stress was employed to fit 

the complex viscosity data. 

      

                                 Equation 5.3 

where η* is the complex viscosity, σ0 is the yield stress, ω is the frequency, η0 is the zero-shear 

viscosity, λ is the characteristic relaxation time, a is the Yasuda parameter and n is the shear 

thinning index. Solid lines presented in Figure 5.8 represent the predictions of Equation 5.3. As it 

is clear from the figure, Equation 5.3 predicts very well the complex viscosity data. Predicted yield 

stress is plotted as a function of PDLA concentration in Figure 5.9. The blend with 3% PDLA had 

a yield stress of 12 Pa and by increasing the PDLA content to 5%, an upward trend was observed 

in yield stress value. Based on the presented data points, a rheological percolation was assumed at 

4.5% PDLA content where the horizontal line connecting the first two points crosses the diagonal 

line connecting the last two points. 
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Figure 5.9 Yield stress as a function of PDLA concentration 

Comparison of the material functions such as storage and loss moduli in relation to material 

composition is a proper approach to understand the role of the stereocomplex structure and its 

concentration on PLA viscoelastic behavior. Therefore, in Figure 5.10 the variation of elastic and 

loss moduli as a function of frequency is compared for neat PLLA and PLLA/PDLA blends with 

different PDLA contents after being crystallized in time sweep tests. 
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Figure 5.10 Elastic (filled symbols) and loss (open symbols) moduli as a function of frequency for neat PLLA and blends 

with 3, 5 and 10% PDLA 

For neat PLLA a G'-G" relationship typical of linear polymers is observed where at low 

frequencies G' is proportional to ω
2
 and G" is proportional to ω. When 3% of PLLA is replaced by 

PDLA, both dynamic moduli shift up and G' becomes closer to G". Further addition of PDLA (5 

and 10%) results in higher G' and G" values and G' becomes more independent of the frequency. 

At 5% PDLA concentration G' and G" get too much close to each other at 0.1 rad/s, it seems they 

cross at a lower frequency. In the case of 10% PDLA, the elastic nature of the material becomes 

more significant. G' is above G" at frequencies below 5 and above 60 rad/s and between these 

frequencies G' and G" overlay. The high increase in G' at low frequencies suggest that there is a 

structure forming in the presence of PDLA and the microstructure is changing progressively. 

Cole-Cole plots are commonly used in the literature to describe the viscoelastic properties of 

heterogeneous polymeric systems and the transformation in their microstructure as a result of 

temperature variation, branching or structure formation. Therefore, these plots are presented in 

Figure 5.11 for better illustration of this change in microstructure. Figure 5.11-a is the plot of G' 

versus G" and Figure 5.11-b η" versus η' for the four studied blends. For the neat PLLA G' versus 

G" and η" versus η' show linear and semi-circular behavior, respectively, which is expected from 

the linear chain structure of the PLA. On the other hand, by increasing the PDLA content in the 

blends, G' versus G" shifts upwards and deviates from neat PLA showing that the microstructure is 

evolving. The same conclusion can be drawn from η" versus η' plot where addition of PDLA 

results in a tale in semi-circular behavior which shifts upward as the PDLA content is increased 
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from 3 to 10%. This deviating behavior is also observed in the composites of PLA with structuring 

materials such as silica and carbon nanotubes [244, 246]. 

 

Figure 5.11 Cole-Cole plots for neat PLLA and blends with 3, 5 and 10% PDLA: (a) G' versus G" and (b) η" versus η' 

5.4 Conclusions 

Rheological monitoring of PLA stereocomplex formation kinetics at high temperatures was 

performed for the first time for asymmetric PLLA/PDLA blends. Crystallization half-time was in 

the range of 4-8 minutes showing a dependency on PDLA concentration. It was shown that the 

elastic modulus was more sensitive to crystallization in the early stages of the crystallization 

process. This was associated to interaction or network formation between the crystallites resulting 

in apparent molecular weight increase and branching. In addition, it was shown that crystallization 

kinetics can be significantly increased in the presence of an aromatic phosphonate which was 

employed as a nucleating agent. Frequency sweep tests performed on crystallized specimens 

showed a remarkable increase in viscosity and elasticity of the blend as PDLA content was 

increased above 3%. Complex viscosity vs. frequency data could be predicted quite well with the 

Carreau-Yasuda model with an extra term accounting for a yield stress. Based on the plot of the 

yield stress as a function of PDLA content, a rheological percolation is achieved at 4.5% PDLA 

content. Low frequency region data in the complex viscosity and dynamic moduli graphs as well 

as cole-cole plots also suggest the transformation of chain microstructure from a linear to a 

branched architecture in the presence of a small concentration of PDLA.   
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Chapter 6. Enhanced foaming behavior of poly(lactic acid) in the 

presence of PLA stereocomplex 

6.1 Introduction 

An emerging trend in the polymer area is to replace fossil based polymers with biopolymers. 

Among the bio-based polymers, poly(lactic acid) has attracted so much attention due to its 

desirable mechanical and physical properties. Foaming of PLA could be desirable for many 

reasons. Foaming is a possible way to reduce material consumption, produce lighter products, 

provide materials with good insulating properties or in biomedical field, produce porous 

materials with controlled bioresorbability. Unfortunately, the linear structure of PLA molecules 

results in low elasticity which is not favorable for the foaming process. Therefore, PLA foaming 

remains a challenge process with a narrow processing window. Several attempts have been made 

to improve PLA foamability by adding minerals such as clay and silica, inducing chain 

branching through multifunctional chain extenders and partial crystallization [31, 247-251]. 

However, PLA foaming in the presence of a minor stereocomplex phase has not been studied. In 

rheological measurements, it was observed that stereocomplex structure had a notable effect on 

PLA elasticity. Thus it is interesting to investigate the influence of stereocomplex structure on 

PLA foaming behavior and employ it as a processing modifier. Specifically, it is of high interest 

to elaborate on PLA modification by itself to produce entirely bio-based and biocompatible 

foams. 

6.2 Experimental 

6.2.1 Materials 

PLLA and PDLA were the same grades as previously used in this work, provided 

respectively by NatureWorks LLC and Hycail. According to the producers, they contained 2% 

D- units and 0.5% L- units, respectively. Molecular weights of the polylactides were measured 

via a ViscotekTDAmax GPC apparatus (Malvern Instruments Ltd) equipped with a triple 

detection system. The measured weight-averaged molecular weight (Mw) and polydispersity 

index (Mw/Mn) were 109 kg/mol and 1.57 for PLLA and 61 kg/mol and 2.1 for PDLA. 
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6.2.2 Blending and sample preparation 

Prior to blend preparation, PLLA and PDLA were vacuum dried at 50 
o
C for 2 days. Two 

samples were prepared via a melt-blending technique using a HAAKE MiniLab conical twin-

screw micro compounder (Thermo Scientific). The first sample was neat PLLA used as a 

reference and the second sample was a PLLA/PDLA blend with 5% PDLA. Mixing was carried 

out at 180 
o
C for 5 minutes at a rotation speed of 100 rpm. CO2 was used as foaming agent as it 

is a safe, inexpensive gas with high solubility in PLA. 

For foam visualization experiments, films with approximately 200 µm thickness were 

prepared by hot pressing technique using a Carver laboratory press and circular specimens with a 

diameter of 5 mm were punched out of the films. For batch foaming experiments rectangular 

specimens were prepared with a thickness of 1mm. 

6.2.3 Foaming visualization 

Figure 6.1 is a schematic illustration of the foaming visualization setup. The setup consists 

of a high temperature, high pressure chamber (up to 2500 psi and 250 
o
C), a pressure drop rate 

control system with a pressure data acquisition system, a gas supply system including a gas 

reservoir and a syringe pump to reach desired pressure, and an optical system including an 

objective lens, light source and a high speed camera with a maximum speed of 120,000 fps. 

 

Figure 6.1 Schematic of the foaming visualization system [252] 
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Samples were first heated to 180 
o
C and remained at that temperature for 2 min to remove 

traces of homocrystals. Next, they were brought to foaming temperature and pressure and 

saturated for 30 min. Finally, pressure release valve was activated and images were captured. 

Figure 6.2 shows the pressure drop profile based on the chosen saturation pressures. A one 

second delay was intentionally given after the pressure release was triggered for better 

illustration of pressure profile. 

 

Figure 6.2 Pressure drop profile for different saturation pressures 

6.2.4 Batch foaming 

Batch foaming was done based on the following procedure. A high pressure PAAR 

autoclave was used to saturate the specimens at room temperature. Samples were placed in the 

autoclave and pressure was raised to saturation pressure. Based on the pressure and sample 

thickness, enough time was given to make sure that specimens are saturated with CO2. Then, 

samples were removed from the autoclave and placed in a silicon oil bath with a pre-adjusted 

temperature. Finally foamed samples were quenched in a cold water bath. 

6.3 Results and discussion 

6.3.1 Foam visualization 

A wide range of foaming temperature and pressure was investigated to compare the 

samples with and without stereocomplex. Pressure was changed between 600 and 1800 psi and 
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temperature was varied from 160 to 180 
o
C. Lower temperatures were avoided to eliminate the 

chance of homocrystallization. Figure 6.3 shows the effect of pressure on cell nucleation for neat 

PLLA. Tests are done at 180 
o
C and each image covers a 1mm × 1mm area. 

 

1200 psi            1300 psi            1400 psi            1500 psi            1800 psi 

Figure 6.3 Effect of saturation pressure on cell density at 180 oC for neat PLLA 

It is clear from this figure that by increasing saturation pressure, cell density increased 

significantly as the CO2 concentration was increased in the system. Therefore to have a better 

comparison of the samples with and without stereocomplex a saturation pressure of 1100 psi was 

chosen, just above the CO2 critical pressure (1070 psi). 

In order to determine the foaming temperature for the comparison of neat PLLA with 5% 

PDLA blend, the latter was examined at a saturation pressure of 1100 psi at three different 

temperatures. Figure 6.4 shows the images obtained from these tests. 

 

160 
o
C              170 

o
C              180 

o
C 

Figure 6.4 Effect of foaming temperature on cell density at 1100 psi for 5% PDLA blend 

According to Figure 6.4, reducing foaming pressure from 180 to 170 
o
C resulted in a slight 

increase in cell density, while going further down to 160 
o
C had a huge effect on cell nucleation. 

It seems that cell nucleation mechanism was changed by lowering temperature and a much 

higher cell density was obtained. Therefore it was decided to compare the two materials at this 

foaming temperature. 
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In Figure 6.5, cell nucleation and growth is compared for neat PLLA and PLLA with 

5awt.% PDLA at previously determined conditions, i.e. foaming temperature of 160 
o
C and 

saturation pressure of 1100 psi. The upper row shows images associated to PLLA and the lower 

row shows the images for the blend containing stereocomplex. Number above or below each 

image indicate the elapsed time in ms. 

 

Figure 6.5 Comparison of cell nucleation and growth for neat PLLA and PLLA with 5% PDLA at 160 oC and 1100 psi 

Based on the images presented in Figure 6.5, neat PLLA had a very low cell density at the 

specified conditions which grew to big cells after formation in about half a second. On the other 

hand, PLLA containing stereocomplex showed a completely different behavior. Although cell 

nucleation started at comparable times with neat PLLA, in about 0.2 s after, the entire surface 

was covered with a lot of small cells. New cells emerged in a matter of milliseconds around 

initial cells and propagated from all directions. This shows clearly that foaming mechanism was 

different between the two samples and when the stereocomplex was present in the system, due to 

the elasticity of the material, the stress generated in the flow field around the growing cells 

rapidly transferred to the neighboring areas and new cells were produced by the induced 

fluctuations. 

6.3.2 Batch foaming 

Batch foaming tests were performed to confirm the finding of foaming visualization 

experiments. Specimens were saturated at 800 psi and foamed at 160 
o
C. SEM images of the 
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foamed samples are compared in Figure 6.6. Neat PLLA resulted in a coarser cell morphology 

with a distribution of small and larger cells. On the other hand, cell morphology for PLLA with 

stereocomplex was more homogeneous with much finer cells in the range of few microns in 

diameter. This is in agreement with the results from foaming visualization experiments, showing 

a higher cell density and smaller cell size in the presence of PLA stereocomplex. 

 

Figure 6.6 SEM images of neat PLLA and PDLA with 5% PDLA foamed in a batch foaming process. 

6.4 Conclusions 

Foaming visualization and batch foaming experiments were performed on neat PLLA and 

PLLA with 5% PDLA to investigate the effect of foaming temperature, saturation pressure, and 

stereocomplex structure on PLA foaming behavior. In the foaming visualization experiments, 

increasing the saturation pressure and decreasing the foaming temperature had positive effect on 

cell nucleation. Cell density increased dramatically at pressures above 1400 psi for both samples 

while at a pressure just above the critical pressure of CO2, a reduction in temperature from 170 to 

160 
o
C changed the cell nucleation mechanism to stress induced cell nucleation and propagation 

for blend containing PDLA. Morphology of the foamed specimen obtained in a batch foaming 

experiment also supported the significant difference between neat PLLA and 5%PDLA/PLLA 

blends, showing much finer and more homogeneous cell morphology. It is believed that the 

remarkable enhancement is due to the formation of the stereocomplex prior to foaming which 

acts as a bubble nucleating agent as well as rheology modifier. 
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Chapter 7. Conclusions and recommendations 

 

7.1 Conclusions 

7.1.1 (Français)  

Dans cette thèse, la cinétique de formation de stéréocomplexes à l'état fondu dans des mélanges 

asymétriques de PLLA / PDLA avec une faible concentration de PDLA a été étudiée. Dans la 

première phase du projet, l'existence d’une morphologie cristalline double réseau / sphérulites a 

été révélée par microscopie optique et indirectement par DSC et par mesures rhéologiques. Le pic 

de fusion associé à des sphérulites était à des températures plus élevées par rapport à celle de la 

structure du réseau et les deux étaient en relation directe avec la température de cristallisation. 

C'est la première fois que ce comportement a été décrit dans les publications scientifiques. Il a 

également été montré que le demi-temps typique de formation des stéréocomplexes se situe entre 

300 et 500 s et que l'efficacité de la formation était d'environ 50%. En plus, le rôle de la nucléation 

du stéréocomplexe sur l'homo-cristallisation du PLA a été évalué par diffraction des rayons X et 

par microscopie optique. Une région transcristalline à la surface de sphérulites de stéréocomplexe 

a été clairement démontrée et c’est aussi une contribution originale de ce travail. 

Dans la deuxième phase du projet, l’objectif était d’accélérer la cinétique de formation de 

stéréocomplexe à températures élevées pour être en mesure de profiter de ce phénomène dans les 

applications réelles de mise en forme à l'état fondu. Il a été montré que le talc et le phosphonate 

aromatique peuvent nucléer l’homo-cristallisation du PLA ainsi que la formation de 

stéréocomplexe, le phosphonate aromatique étant le plus efficace. Très peu de littérature existe sur 

l'utilisation de phosphonate aromatique dans les polymères et ce fut le premier rapport montrant la 

grande efficacité de ce composé pour la formation de stéréocomplexe. En plus, il a été trouvé que 

même si la formation de stéréocomplexe est effectuée à une température beaucoup plus élevée que 

l'homo-cristallisation, la présence d'un plastifiant tel que le PEG contribue encore à réduire le 

temps de formation de stéréocomplexe. Au moyen de la nucléation et de la plastification, la mi-

temps de formation de stéréocomplexe a été réduit d’un ordre de magnitude, ce qui montre que la 

formation de stéréocomplexe à l'état fondu est possible dans un délai acceptable pour les processus 

de mise en forme industriels. Aussi dans la deuxième phase, une investigation plus approfondie a 

été faite sur la morphologie cristalline double montrant que le ratio entre les deux morphologies 
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peut être contrôlé; des températures de cristallisation inférieures favorisent la morphologie 

sphérulitique par rapport à la morphologie de réseau. La plastification et la nucléation hétérogène 

ont affecté significativement la morphologie de stéréocomplexe. L'agent plastifiant augmente la 

taille de sphérulites et réduit leur nombre tandis que la tendance inverse est observée lors de l'ajout 

d'un agent de nucléation. 

Dans la troisième étape du projet, le suivi rhéologique de formation de stéréocomplexe de 

PLA a révélé une dépendance de la cinétique sur la concentration de PDLA. Les courbes 

cinétiques obtenues par des mesures rhéologiques ont été différentes de celles obtenues par 

caractérisation DSC en ce sens qu’une cristallisation plus rapide a été détectée dans les étapes 

initiales. Ce comportement est associé à des changements dans la masse moléculaire apparente, la 

ramification, et formation de la structure de réseau. Les caractérisations supplémentaires des 

échantillons cristallisés dans les tests de balayage de fréquences ont suggéré qu’une phase mineure 

de stéréocomplexe peut agir comme un modificateur des propriétés rhéologiques de PLA. Une 

augmentation remarquable de la viscosité et de l'élasticité du mélange a été détectée lorsque la 

quantité de PDLA a été augmentée au-dessus de 3%. Les données de viscosité complexe et des 

modules dynamiques dans le domaine des fréquences faibles ainsi que des graphiques Cole-Cole 

suggèrent la transformation de la microstructure à chaîne linéaire vers une architecture ramifiée, 

en présence d'une faible concentration de PDLA. 

Dans la dernière partie du projet, l'utilisation d'une phase mineure de stéréocomplexe sur le 

procédé de moussage de PLA a été explorée en comparant le PLLA avec un mélange 95/5 de 

PLLA / PDLA dans la visualisation de moussage et moussage en mode discontinu. Dans un 

procédé de moussage basé sur la chute rapide de pression de dioxyde de carbone d'un échantillon 

saturé, il a été trouvé que la densité des cellules a été augmentée en augmentant la pression de 

saturation et en réduisant la température de moussage. Il était intéressant de noter qu’en présence 

de stéréocomplexes de PLA, une réduction de la température de 170 à 160 ° C a changé le 

mécanisme de moussage de la nucléation homogène vers un mécanisme de nucléation et  de 

propagation de cellules induites par la contrainte. Cette différence considérable dans le 

comportement de moussage des échantillons a été confirmé par les images MEB d’échantillons 

moussées dans un procédé discontinu, montrant une morphologie cellulaire plus homogène et plus 

fine dans le mélange de PLLA / PDLA. Donc, une petite quantité de PDLA peut remarquablement 

améliorer le moussage du PLA. 
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7.1.2 (English) 

In this thesis, kinetics of stereocomplex formation from the melt in asymmetric 

PLLA/PDLA blends with low PDLA concentrations was investigated. In the first phase of the 

project, the existence of a dual Network / Spherulitic crystalline morphology was revealed by 

optical microscopy and indirectly through DSC and rheological measurements. The melting 

endotherm associated with the spherulites was at higher temperatures compared to that of the 

network structure, and both were in direct relation with the crystallisation temperature. It was the 

first time that this behaviour was described in the scientific literature. It was also shown that the 

typical half-time for completion of the overall stereocomplexation was between 300 and 500 s and 

that the efficiency of stereocomplex formation was around 50%. In addition, the nucleation role of 

the stereocomplex for PLA homocrystallization was assessed by XRD and by optical microscopy 

characterizations. An original transcrystalline region at the surface of stereocomplex spherulites 

was clearly demonstrated and is also an original contribution of this work. 

In the second phase of the project, it was intended to enhance the stereocomplexation 

kinetics at elevated temperatures to be able to take advantage of this phenomenon in actual melt 

processing applications. It was shown that talc and aromatic phosphonate can nucleate PLA 

homocrystallization as well as stereocomplex formation, with aromatic phosphonate being the 

most efficient. Very little literature exists on the use of aromatic phosphonate in polymers and this 

was the first report showing the high efficiency of this compound for stereocomplex formation. In 

addition, it was found that even though stereocomplexation is carried out at a much higher 

temperature than the homocrystallization, the presence of a plasticizer such as PEG further lowers 

the stereocomplex formation time. By means of nucleation and plasticization, the half-time of 

stereocomplexation was reduced by an order of magnitude, showing that stereocomplex formation 

in the melt state is feasible within an acceptable timeframe for industrial melt processes. Also in 

the second phase, more investigation was done on the dual stereocomplex crystalline morphology 

showing that the composition ratio between the two morphologies can be controlled; lower 

crystallization temperatures favor the spherulitic morphology at the expense of the network one. 

Both plasticization and heterogeneous nucleation affected stereocomplex morphology significantly. 

The plasticizer increases the spherulite size and reduces their number while the opposite trend is 

observed when adding a nucleating agent. 
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In the third stage of the project, rheological monitoring of PLA stereocomplex formation 

revealed a dependency of kinetics on PDLA concentration. Kinetic curves obtained by rheological 

measurements were different from those obtained by DSC characterization in the sense that a 

faster crystallization was detected at the initial stages of crystallization. This behaviour is 

associated to the changes in apparent molecular weight, branching and a network structure 

formation. Further characterizations of crystallized specimen in frequency sweep tests suggested 

the suitability of a stereocomplex minor phase as a PLA rheological property modifier. A 

remarkable increase in viscosity and elasticity of the blend was detected as PDLA content 

increased above 3%. Low frequency region data in complex viscosity and dynamic moduli graphs 

as well as cole-cole plots suggest the transformation of chain microstructure from linear to 

branched architecture in the presence of a small concentration of PDLA. 

In the final section of the project, the use of a stereocomplex minor phase on the PLA 

foaming process was explored by comparing neat PLLA with a 95/5 PLLA/PDLA blend in 

foaming visualization and batch foaming experiments. In a foaming process based on rapid 

pressure drop of a carbon dioxide saturated specimen, it was found that cell density was increased 

by increasing saturation pressure and reducing foaming temperature. Interestingly, in the presence 

of the PLA stereocomplex, a reduction in temperature from 170 to 160 
o
C changed the cell 

nucleation mechanism from a homogeneous mechanism to a stress induced cell nucleation and 

propagation. This considerable difference in the foaming behavior of the two specimens was 

confirmed by SEM images of samples foamed in a batch process, showing much finer and more 

homogeneous cell morphology in PLLA/PDLA blend. Thus a small amount of PDLA could 

remarkably enhance PLA foaming. 

7.2 Recommendations 

The following topics are suggested for further research: 

1. Stereocomplex formation in rapid expansion of supercritical solutions (RESS) continuous 

process: Based on the literature it is known that the challenge in stereocomplex formation 

is kinetics rather than thermodynamics and there is a competition between 

homocrystallization and stereocomplexation. It was also shown that using organic 

solvents for increasing the chain mobility can help to increase the ratio of stereocomplex 

over homocrystals. Besides, it was found that the presence of plasticizer enhanced the 



125 

 

 

 

kinetics of stereocomplex formation. Thus, it is desired to maximize the chain mobility 

throughout stereocomplex formation. RESS process is a possible method. It is an 

interesting process to produce polymer micro-particles [253]. Especially, employing CO2 

is an interesting choice due to its mild supercritical conditions leading to low operating 

temperatures and pressures. Furthermore, using an environment friendly gas instead of 

organic solvents is another advantage of CO2. On the other hand, CO2 has illustrated 

plasticization effect in PLA crystallization. Putting these facts together, one can assume 

that using RESS is a potential solution to produce rapidly and efficiently 

stereocomplexed PLA in a continuous way. Furthermore, the final product shape which is 

a powder with micron size particles is suitable for other applications. For example it 

might be a nucleating agent for PLA homocrystallization and stereocomplex formation in 

the melt state as a high concentration source of pre-crystallized stereocomplex. 

2. Improvement of PLA foaming behavior in the presence of PLA stereocomplex: Some 

preliminary experiments has been done to investigate PLA foaming behavior in the 

presence of stereocomplex. Initial stage of the foaming process, i.e. cell nucleation and 

growth was recorded via a high speed camera. Accordingly, stereocomplex structure was 

potent to increase cell density by stress induced nucleation. Batch foaming experiments 

also supported the significant positive influence of stereocomplex on final foam 

morphology. Therefore, PLA foaming in the presence of stereocomplex needs to be 

explored in more details. 

3. Effect of shear and extensional flow fields on PLA stereocomplex formation: It is known 

that shear and elongational flow have influence over crystallization of polymers. Various 

reports exist on this subject. However, PLA stereocomplex formation is a new topic that 

has not be systematically investigated. As for other slowly crystallizing polyesters, strain 

induced crystallization could be a way to efficiently produce materials with high 

crystalline content. It is highly recommended that stereocomplex formation is explored in 

shear and elongational flow fields as it is directly related to the kinetics of crystallization. 

Potential applications include stereocomplex formation in injection molding, fiber 

spinning, foaming and extrusion processes. 
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