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Chapter 1

Preface

These lecture notes are based on the series of lectures that were given by the
authors at the Eötvös Loránd University for students in Physics, Geophysics,
Meteorology and Geology. It is written firstly for these students, however, it
can be also used by students in mathematics. People at the Department of
Applied Analysis and Computational Mathematics have taught mathematics
to science students for decades. The authors have taken part in this work
for several years, they taught the topics dealt with in these lecture notes
in many semesters. Their long term teaching and pedagogical experience is
behind this work.

Concerning its contents the book is similar to other analysis textbooks,
however, it is special because of several reasons. First of all, most of the
textbooks are written for students in mathematics, or for non-mathematics
students in some special field, for example students in engineering or econ-
omy. These lecture notes are customized to science students at the Eötvös
Loránd University. According to our teaching experience the students do not
acquire mathematical knowledge through the axiomatic set-up, instead they
understand mathematical notions and methods gradually getting deeper and
deeper synthesis. Hence the lecture notes follow an alternative way, all sub-
jects are presented at the beginners level, when mainly methods are taught
(for physics students this corresponds to the Calculus course). The book is
strongly application oriented. For example, vector calculus is included for
students in geophysics, complex functions, contour and surface integral is
presented for physics student.
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2 1. Preface
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Chapter 2

Sets, relations, functions

We present the tools and frequently used notions of mathematics, and intro-
duce some important conventions. We prepare a solid base for the further
constructions. To abbreviate the words “every” or “arbitrary” we will often
use the symbol ∀, while the notation ∃ will be employed for the expression
“exists” or “there is”. This chapter covers the following topics.

• Sets and operations on sets

• Relations

• Functions and their properties

• Composition and inverse functions

2.1 Sets, relations, functions

2.1.1 Sets and relations

A set is considered as given if we can decide about every well-defined object
whether it belongs to the set or not. (A “clever thought”, a “beautiful girl”, a
“sufficiently big number” or a “small positive number” cannot be considered
as well-defined objects, so we will not ask if they belong to a set.)

Let A be a set, and x a well-defined object. If x belongs to the set, then
we will denote this as x ∈ A. If x does not belong to the set, we will write
x /∈ A.

A set can be given by listing its elements, e.g., A := {a, b, c, d}, or by
specifying a property, e.g., B := {x | x is a real number and x2 < 2}.
Definition 2.1. Let A and B be sets. We say that A is a subset of B if for
all x ∈ A x ∈ B holds. Notation: A ⊂ B.

3



4 2. Sets, relations, functions

Definition 2.2. Let A and B be sets. Set A is equal to set B if both have
the same elements. Notation: A = B.

It is easy to see that the following theorem holds.

Theorem 2.1. Let A and B be sets. Then A = B if and only if A ⊂ B and
B ⊂ A.

We will show some procedures which yield further sets.

Definition 2.3. Let A and B be sets.
The union of A and B is the set A ∪B := {x | x ∈ A or x ∈ B}.
The intersection of A and B is the set A ∩B := {x | x ∈ A and x ∈ B}.
The difference of A and B is the set A \B := {x | x ∈ A and x /∈ B}.

When taking the intersection or the difference of sets, it can happen that
no object x possesses the required property. The set to which no well-defined
object belongs is called empty set. Notation: ∅.

Let H be a set and A ⊂ H a subset. The complement of A (with respect
to set H) is defined as the set A := H \ A. The following theorem is known
as De Morgan’s identities.

Theorem 2.2. Let H be a set, A,B ⊂ H. Then we have

A ∪B = A ∩B and A ∩B = A ∪B.

Let a and b be any objects. The set {a, b} can obviously be written in
several ways:

{a, b} = {b, a} = {a, b, b, a} = {a, b, b, a, b, b} = etc.

As opposed to this, we introduce the basic notion of the ordered pair (a, b),
an essential property of which is

(a, b) = (c, d) if and only if a = c and b = d.

We define the product of sets with the aid of ordered pairs.

Definition 2.4. Let A,B be sets. The Cartesian product of A and B is
the set of ordered pairs

A×B := {(a, b) | a ∈ A and b ∈ B}.

For example, let A := {2, 3, 5} and B := {1, 3}, then

A×B = {(2, 1), (2, 3), (3, 1), (3, 3), (5, 1), (5, 3)}.
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Relations are based on the notion of ordered pair.

Definition 2.5. We say that a set r is a relation if each of its elements is
an ordered pair.

A Hungarian-English dictionary is a relation because its elements are or-
dered pairs of a Hungarian word and the corresponding English word.

Definition 2.6. Let r be a relation. The domain of definition of r is

D(r) := {x | there exists an y such that (x, y) ∈ r}.

The range of r is

R(r) := {y | there exists an x ∈ D(r) such that (x, y) ∈ r}.

Obviously, r ⊂ D(r)×R(r).
For example, in the case of r := {(4, 2), (4, 3), (1, 2)}, D(r) = {4, 1},

R(r) = {2, 3}.

2.1.2 Functions

A function is a special relation.

Definition 2.7. Let f be a relation. We say that f is a function if for all
(x, y) ∈ f and (x, z) ∈ f y = z.

For example, r := {(1, 2), (2, 3), (2, 4)} is not a function since (2, 3) ∈ r
and (2, 4) ∈ r, but 3 6= 4; however, f := {(1, 2), (2, 3), (3, 3)} is a function.

We introduce some conventions in connection with functions. If f is a
function, then in case of (x, y) ∈ f we call y the value of function f at x,
and we say that f associates y to x or maps x to y. Notation: y = f(x).

If f is a function, A := D(f), and B is such a set that R(f) ⊂ B (clearly,
A is the domain of definition of the function, and B is (a) range of the
function, then instead of the expression “f ⊂ A × B, f is a function” the
notation f : A→ B is employed (“the function f maps set A to set B”).

If f is a function and D(f) ⊂ A,R(f) ⊂ B, then this is denoted by
f : A֌ B (“f is a function that maps from set A to set B”).
For example f := {(a, α), (b, β), (g, γ), (d, δ), (e, ε)} is a function. One can see
that β is the value of f at b: β = f(b).
If L denotes the set of Latin letters and G the set of Greek letters, then
f : {a, b, g, d, e} → G, f(a) = α, f(b) = β, f(g) = γ, f(d) = δ, f(e) = ε. If we
only want to refer to the type of the function, then it is sufficient to write
f ∈ L֌ G.

Obviously, any function has an inverse, however, it can happen that the
inverse is not a function.
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Definition 2.8. Let f : A → B be a function. We say that f is one-to
one (injective) if it associates different elements of B to different elements
x1, x2 ∈ A, that is, for all x1, x2 ∈ A, x1 6= x2: f(x1) 6= f(x2).

It is easy to see that the inverse of a one-to-one function is a function. In
more detail:

Theorem 2.3. Let f be a function, A := D(f), B := R(f), f one-to-one.
Then the inverse f−1 : B → A of f is such a function that maps any point
s ∈ B to t ∈ A for which f(t) = s, (briefly: for any s ∈ B: f(f−1(s)) = s).

We can also prepare the composition of functions. Fortunately, it will
always be a function.

Let g : A → B, f : B → C. Then by using the composition of relations
one can show that

f ◦ g : A→ C, and for all x ∈ A : (f ◦ g)(x) = f(g(x)).

For example, let the function g add 1 to the double of each number (g : R→R,
g(x) := 2x + 1); and the function f raise each number to the second power
(f : R → R, f(x) := x2), then f ◦ g : R → R, (f ◦ g)(x) = (2x + 1)2 will be
the composition of f and g.

Further useful notions
Let f : A → B and C ⊂ A. The restriction of a function f to C is the

function f|C : C → B for which f|C (x) := f(x) for all x ∈ C.
Let f : A→ B, C ⊂ A and D ⊂ B. The set

f(C) := {y | there exists x ∈ C, such that f(x) = y}

is called the “image of set C under the function f ”. The set

f−1(D) := {x | f(x) ∈ D}

is called the “preimage of set D under the function f ”. (Attention! The
notation f−1 does not stand for the inverse function in this case.)

2.2 Exercises

1. Let A := {2, 4, 6, 3, 5, 9}, B := {4, 5, 6, 7}, H := {n | n is a whole number,
1 ≤ n ≤ 20}. Prepare the sets A ∪ B,A ∩ B,A \ B,B \ A. What is the
complement of A with respect to H?

2. Let A := {a, b}, B := {a, b, c}. A×B =? B ×A =?
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3. Let r := {(x, y) | x, y real numbers, y = x2}. r−1 =? Is r a function? Is
r−1 a function?

4. Let f : R→ R, f(x) := x
1+x2 . Prepare the functions f ◦ f , f ◦ (f ◦ f).

5. Think over how the inverse of a one-to-one function f : A → B can be
illustrated.

6. Consider that the inverse of a function f : A→ B can be obtained in the
following steps:

1) Write that y = f(x).

2) Swap the “variables” x and y: x = f(y).

3) From this equation express y with the aid of x: y = g(x). This very g
will be the inverse function f−1.

Example: f : R→ R, f(x) = 2x− 1. (This is a one-to-one function.)

1) y = 2x− 1

2) x = 2y − 1

3) x+ 1 = 2y, y = 1
2 (x+ 1).

So f−1 : R→ R, f−1(x) = 1
2 (x+ 1).

Draw the graphs of the functions f and f−1.

7. Let f : A→ B, C1, C2 ⊂ A,D1, D2 ⊂ B. Show that
f(C1 ∪ C2) = f(C1) ∪ f(C2),

f(C1 ∩ C2) ⊂ f(C1) ∩ f(C2),

f−1(D1 ∪D2) = f−1(D1) ∪ f−1(D2),

f−1(D1 ∩D2) = f−1(D1) ∩ f−1(D2).

Is it true that C1 ⊂ C2 implies f(C1) ⊂ f(C2)?

Is it true that D1 ⊂ D2 implies f−1(D1) ⊂ f−1(D2)?

8. Let f : A→ B, C ⊂ A,D ⊂ B.

Is it true that f−1(f(C)) = C? Is it true that f(f−1(D)) = D?





Chapter 3

Sets of numbers

We can calculate with real numbers since our childhood, we add, multiply
and divide them, raise them to powers and take their absolute values. We
re-arrange equations and inequalities. Now we lay down the relatively simple
set of rules from which the learnt procedures can be derived. We will cover
the following topics.

• The set of real numbers

• The set of natural numbers

• The sets of integers and rational numbers

• Upper bound, lower bound

• Interval and neighborhood

• Exponentiation and power law identities

• The set of complex numbers

• The trigonometric form of complex numbers, operations

3.1 Real numbers

3.1.1 The axiomatic system of real numbers

Let R be a nonempty set. Suppose there is a function + : R× R→ R called
addition and a function · : R × R → R called multiplication satisfying the
following properties:

a1. for all a, b ∈ R, a+ b = b+ a (commutativity);

a2. for all a, b, c ∈ R, a+ (b+ c) = (a+ b) + c (associativity);

9



10 3. Sets of numbers

a3. there exists an element 0 ∈ R such that for all a ∈ R, a+ 0 = a (0 is a
neutral element with respect to addition);

a4. for all a ∈ R there is an element −a ∈ R such that a+ (−a) = 0;

m1. for all a, b ∈ R, a · b = b · a;

m2. for all a, b ∈ R, a · (b · c) = (a · b) · c;

m3. there exists an element 1 ∈ R such that for all a ∈ R, a · 1 = a (1 is a
neutral element with respect to the multiplication);

m4. for all a ∈ R \ {0} there exists a reciprocal element 1
a ∈ R for which

a · 1
a = 1;

d. for all a, b, c ∈ R, a · (b+ c) = ab+ ac (multiplication is distributive with
respect to addition).

It is easy to see that the fourth requirement of multiplication is essentially
different from the laws of addition (otherwise the two operations would not
differ from each other).

Axiom d also emphasizes the difference.

Assume that there exists an ordering relation ≤ (called less than or equal
to) on R, which has the following further properties:

r1. for all a, b ∈ R either a ≤ b, or b ≤ a holds;

r2. in all cases where a ≤ b and c ∈ R are arbitrary numbers, a+ c ≤ b+ c;

r3. in all cases where 0 ≤ a and 0 ≤ b, 0 ≤ ab.

Let us fix that instead of a ≤ b, a 6= b the notation a < b will be employed.
(Unfortunately, < is not an ordering relation, since it is not reflexive.)

On the basis of a1–a4, m1–m4, d, r1–r3 one can derive all “laws” related
to equalities and inequalities. As a supplement, we mention three notions.

Definition 3.1. Let a, b ∈ R, b 6= 0. Then a
b := a · 1b .

So, division can be performed with real numbers.

Definition 3.2. Let x ∈ R. The absolute value of x is

|x| :=
{

x if 0 ≤ x
−x if x ≤ 0, x 6= 0.

Inequalities with absolute value are very useful.

1. For all x ∈ R, 0 ≤ |x|.
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2. Let x ∈ R and ε ∈ R, 0 ≤ ε. Then x ≤ ε and − x ≤ ε⇐⇒ |x| ≤ ε.

3. For all a, b ∈ R, |a+ b| ≤ |a|+ |b| (triangle inequality).

4. For all a, b ∈ R, ||a| − |b|| ≤ |a− b|.
These statements are simple to prove. Here we show the proof of A 4.

Consider the equality a = a− b+ b. Then, by property 3,

|a| = |a− b+ b| ≤ |a− b|+ |b|.

According to r2, by adding the number −|b| to both sides, the inequality does
not change.

|a|+ (−|b|) = |a| − |b| ≤ |a− b|. (3.1)

Similarly,

b = b− a+ a,

|b| = |b− a+ a| ≤ |b− a|+ |a| /− |a|,
|b| − |a| ≤ |b− a|,

− (|a| − |b|) ≤ |b− a| = |a− b|. (3.2)

The inequalities (3.1) and (3.2) according to property 2 (by the choice x :=
|a| − |b|; ε := |a− b|) exactly yield ||a| − |b|| ≤ |a− b|.

3.1.2 Natural, whole and rational numbers

Now we separate a famous subset of R.
Let N ⊂ R be such a subset for which

1o 1 ∈ N,

2o for all n ∈ N, n+ 1 ∈ N,

3o for all n ∈ N, n+ 1 6= 1 (1 is the “first” element),

4o the facts that a) S ⊂ N,
b) 1 ∈ S,
c) for all n ∈ S, n+ 1 ∈ S

imply S = N. (Complete induction.)

This subset N of R is called the set of natural numbers.
We supplement all this with the following definitions:

Z := N ∪ {0} ∪ {m ∈ R | −m ∈ N} is the set of integers,

Q := {x ∈ R | there exists p ∈ Z, q ∈ N such that x = p
q } is the set of

rational numbers,
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Q∗ := R \Q is the set of irrational numbers.

With the aid of N, we impose a third requirement on R in addition to the
laws of the operations and ordering.

Archimedes’ axiom: For all a, b ∈ R, 0 < a there exists n ∈ N such
that b < na.

As a consequence of Archimedes’ axiom, one can show that for all K ∈ R

there exists a natural number n ∈ N for which K < n, since by the choice
a := 1, b := K the axiom provides such a natural number.

We also show that for all ε ∈ R, 0 < ε there exists a natural number n ∈ N

such that 1
n < ε, since let us choose a := ε and b := 1. According to the

axiom there is an n ∈ N such that 1 < n · ε. By applying the appropriate
“law”:

1 < nε /+ (−1),

0 < nε− 1 / · 1
n
,

0 <
1

n
(nε− 1) = ε− 1

n
/+

1

n
,

1

n
< ε.

Even with the introduction of Archimedes’ axiom R does not meet all de-
mands. We need a final axiom, for which we make preparations by introduc-
ing some further notions.

3.1.3 Upper and lower bound

Definition 3.3. Let A ⊂ R, A 6= ∅. We say that the set A is bounded
above if there exists a K ∈ R such that for all a ∈ A, a ≤ K. Such a number
K is called an upper bound of set A.

Let A ⊂ R, A 6= ∅ be bounded above. Consider

B := {K ∈ R | K is an upper bound of set A}.

Let α ∈ R be the smallest element of set B, that is, a number for which

1o α ∈ B (α is an upper bound of set A),

2o for all upper bounds K ∈ B, α ≤ K.

The only question is whether there exists such an α ∈ R.

The least upper bound axiom: Every set A ⊂ R, A 6= ∅ of real numbers
having an upper bound must have a least upper bound.
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Such a number α ∈ R (which is not necessarily an element of A) is called
supremum of A and denoted as

α := supA.

Clearly, the following two properties of supA hold:

1o for all a ∈ A, a ≤ supA,

2o for all 0 < ε there exists a′ ∈ A such that (supA)− ε < a′.

The laws of the operations and ordering, Archimedes’ axiom and the least
upper bound axiom make the set of real numbers R complete. In this way
we have laid down a solid base for the future calculations, too.

Some further conventions:

Definition 3.4. Let A ⊂ R, A 6= ∅. We say that A is bounded below if
there exists an L ∈ R such that for all a ∈ A, L ≤ a. The number L is called
(a) lower bound of set A.

Let A be a set of numbers that is bounded below. The greatest lower
bound of A is called infimum of A. (The existence of this lower bound does
not require any new axiom, it follows from the least upper bound axiom.)
The infimum of A is denoted as

inf A.

Obviously,

1o for all a ∈ A, inf A ≤ a,

2o for all 0 < ε there exists an a′ ∈ A such that a′ < (inf A) + ε.

3.1.4 Intervals and neighborhoods

Definition 3.5. Let I ⊂ R. We say that I is an interval if for all x1, x2 ∈ I,
x1 < x2: any x ∈ R for which x1 < x < x2 is in I.

Theorem 3.1. Let a, b ∈ R, a < b.

[a, b] := {x ∈ R | a ≤ x ≤ b},

[a, b) := {x ∈ R | a ≤ x < b},

(a, b] := {x ∈ R | a < x ≤ b},

(a, b) := {x ∈ R | a < x < b},
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[a,+∞) := {x ∈ R | a ≤ x},

(a,+∞) := {x ∈ R | a < x}; (0,+∞) =: R+,

(−∞, a] := {x ∈ R | x ≤ a},

(−∞, a) := {x ∈ R | x < a}; (−∞, 0) =: R−,

(−∞,+∞) := R.

All these are intervals. We mention that [a, a] = {a} and (a, a) = ∅ are
degenerate intervals.

Definition 3.6. Let a ∈ R, r ∈ R+. The neighborhood with radius r of
point a is defined as the open interval

Kr(a) := (a− r, a+ r).

We say that K(a) is a neighborhood of point a if there exists an r ∈ R+

such that K(a) ⊂ Kr(a).

3.1.5 The powers of real numbers

Definition 3.7. Let a ∈ R. Then a1 := a, a2 := a · a, a3 := a2 · a, . . . , an :=
an−1 · a, . . .

Definition 3.8. Let a ∈ R, 0 ≤ a. Denote by
√
a the nonnegative number

whose square is a, i.e., 0 ≤ √a, (√a)2 = a.

Note that for all a ∈ R,
√
a2 = |a|.

Definition 3.9. Let a ∈ R, k ∈ N. Denote by 2k+1
√
a the real number whose

(2k + 1)th power is a.

Note that if 0 < a, then 2k+1
√
a > 0, and if a < 0, then 2k+1

√
a < 0.

Definition 3.10. Let a ∈ R, 0 ≤ a, k ∈ N. Denote by 2k
√
a the nonnegative

number whose (2k)th power is a.

Let us introduce the following notation: if n ∈ N and a ∈ R corresponds
to the parity of n, then

a
1
n := n

√
a.

Definition 3.11. Let a ∈ R+, p, q ∈ N.

a
p
q := q

√
ap.
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Definition 3.12. Let a ∈ R+, p, q ∈ N.

a−
p
q :=

1
q
√
ap
.

Definition 3.13. Let a ∈ R \ {0}. Then a0 := 1.

By this chain of definitions we have defined the number a ∈ R+ raised to
any rational power r ∈ Q. One can show that the numbers in the definitions
uniquely exist, and the following identities are valid:

1o for a ∈ R+, r, s ∈ Q, ar · as = ar+s,

2o for a ∈ R+, r ∈ Q, ar · br = (ab)r,

3o for a ∈ R+, r, s ∈ Q, (ar)s = ars.

3.2 Exercises

1. Let a, b ∈ R. Show that

(a+ b)2 : = (a+ b)(a+ b) = a2 + 2ab+ b2,

a2 − b2 = (a− b)(a+ b),

a3 − b3 = (a− b)(a2 + ab+ b2),

a3 + b3 = (a+ b)(a2 − ab+ b2)

2. Prove that for all x ∈ R, x 6= 1 and n ∈ N

xn+1 − 1

x− 1
= 1 + x+ x2 + · · ·+ xn.

3. (Bernoulli’s inequality)

Let h ∈ (−1,+∞) and n ∈ N. Show that

(1 + h)n ≥ 1 + nh.

Solution: Let S := {n ∈ N | (1 + h)n ≥ 1 + nh}.

1o 1 ∈ S, since (1 + h)1 = 1 + 1 · h.
2o Let k ∈ S. Then k + 1 ∈ S, since

(1 + h)k+1 = (1 + h)k(1 + h) ≥ (1 + kh)(1 + h) =

= 1 + (k + 1)h+ kh2 ≥ 1 + (k + 1)h.
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(In addition to the rules of ordering we have exploited the fact that
k ∈ S, that is, (1 + h)k ≥ 1 + kh.)

Keeping in mind requirement 4o during the introduction of N, this
means that S = N, so the inequality holds for all n ∈ N. This method
of proof is called mathematical induction.

4. Let a, b ∈ R+.

A2 :=
a+ b

2
, G2 :=

√
ab, H2 :=

2
1
a + 1

b

, N2 :=

√

a2 + b2

2
.

Show that H2 ≤ G2 ≤ A2 ≤ N2, and there is equality between the
numbers if and only if a = b.

These equalities are also valid in a more general case.

Let k ∈ N (k ≥ 3) and x1, x2, . . . , xk ∈ R+.

Ak :=
x1 + x2 + · · ·+ xk

k
, Gk := k

√
x1x2 · · ·xk,

Hk :=
k

1
x1

+ 1
x2

+ · · ·+ 1
xk

, Nk :=

√

x21 + x22 + · · ·+ x2k
k

.

One can show that Hk ≤ Gk ≤ Ak ≤ Nk, and there is equality between
the numbers if and only if x1 = x2 = . . . = xk.

5. Let h ∈ R and n ∈ N. Then

(1 + h)n = 1 + nh+

(

n

2

)

h2 +

(

n

3

)

h3 + · · ·+ hn,

where, exploiting the fact that k! := 1 · 2 · . . . · k,
(

n

k

)

=
n!

k!(n− k)! , k = 0, 1, 2, . . . , n

(remember that 0! := 1).

From this, one can prove the binomial theorem:

Let a, b ∈ R, n ∈ N. Then

(a+ b)n =
n

∑

k=0

(

n

k

)

akbn−k.
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6. Let A :=
{

n
n+1 | n ∈ N

}

. Show that A is bounded above. Find supA.

Solution: Since for all n ∈ N, n < n+ 1, therefore n
n+1 < 1, so K := 1

is an upper bound. We show that supA = 1, since

1o For all n ∈ N, n
n+1 < 1.

2o Let ε ∈ R+. We seek such an index n ∈ N for which
n

n+ 1
> 1− ε,

n > (1− ε)(n+ 1) = n− εn+ 1− ε,
εn > 1− ε,

n <
1− ε
ε

.

Since one can find a greater natural number than any real number,
there is a greater natural number than 1−ε

ε ∈ R as well, let it be n′ ∈ N,

therefore for n′

n′+1 ∈ A, n′

n′+1 > 1− ε. So supA = 1.

7. * Let E := {(n+1
n )n | n ∈ N}. Show that E ⊂ R is bounded above.

Solution: We show that for all n ∈ N
(

n+ 1

n

)n

≤ 4.

Let n ∈ N, and consider the number 1
4 (

n+1
n )n. According to the equality

between the algebraic (Ak) and geometric (Gk) means in Exercise 4:

1

4

(

n+ 1

n

)n

=
1

2
· 1
2
· n+ 1

n
· n+ 1

n
· · · n+ 1

n
≤

≤
( 1

2 + 1
2 + n+1

n + n+1
n . . . n+1

n

n+ 2

)n+2

= 1,

thus (n+1
n )n ≤ 4, and so E is bounded above. According to the least

upper bound axiom it has a supremum. Let e := supE.

We remark that this supremum has never been and will never be con-
jectured (as opposed to Exercise 6...). It is approximately e ≈ 2.71.
The number e was introduced by Euler.

8. Let

P :=

{(

1− 1

2

)

·
(

1− 1

22

)

·
(

1− 1

23

)

· · ·
(

1− 1

2n

)

| n ∈ N

}

.

Is there an inf P? (When you have shown that inf P exists, do not get
disappointed if you cannot find it. The problem is unsolved.)
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3.3 Complex numbers

3.3.1 The concept of complex numbers, operations

We generalize the real numbers in such a way that the properties of the
operations remain unchanged.

Let C := R × R the set of real ordered pairs. Introduce the addition for
any (a, b), (c, d) ∈ C as

(a, b) + (c, d) := (a+ c, b+ d);

and the multiplication as

(a, b) · (c, d) := (ac− bd, ad+ bc).

It is easy to check some properties of addition and multiplication.

a1. ∀(a, b), (c, d) ∈ C, (a, b) + (c, d) = (c, d) + (a, b) (commutativity).

a2. ∀(a, b), (c, d), (e, f)∈C, (a, b) + ((c, d) + (e, f))=((a, b) + (c, d)) + (e, f)
(associativity).

a3. ∀(a, b) ∈ C, (a, b) + (0, 0) = (a, b).

a4. ∀(a, b) ∈ C, (−a,−b) ∈ C is such that (a, b) + (−a,−b) = (0, 0).

m1. ∀(a, b), (c, d) ∈ C, (a, b) · (c, d) = (c, d) · (a, b) (commutativity).

m2. ∀(a, b), (c, d), (e, f) ∈ C, (a, b) · ((c, d) · (e, f)) = ((a, b) · (c, d)) · (e, f)
(associativity).

m3. ∀(a, b) ∈ C, (a, b) · (1, 0) = (a, b).

m4. ∀(a, b) ∈ C \ {(0, 0)}, ( a
a2+b2 ,− b

a2+b2 ) ∈ C is such that

(a, b) ·
(

a

a2 + b2
,− b

a2 + b2

)

= (1, 0).

d. ∀(a, b), (c, d), (e, f) ∈ C

(a, b) · [(c, d) + (e, f)] = (a, b) · (c, d) + (a, b) · (e, f)

(multiplication is distributive with respect to addition).
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The properties a1–a4, m1–m4 and d ensure that operations and calculations
performed with real numbers (containing only addition and multiplication
and referring only to equalities) can be performed with complex numbers in
the same way.

Let us identify the real number a ∈ R and the complex number (a, 0) ∈ C.
(Clearly, there is a one-to-one correspondence between R and the complex
set R× {0} ⊂ C.) We introduce the imaginary unit i := (0, 1) ∈ C. Then
for all complex number (a, b) ∈ C

(a, b) = (a, 0) + (0, 1)(b, 0) = a+ ib.

(The second equality is the consequence of the identification!)
Taking into account that i2 = (0, 1) · (0, 1) = −1, the addition becomes

simple:
a+ ib+ c+ id = a+ c+ i(b+ d),

and so does the multiplication:

(a+ ib) · (c+ id) = ac− bd+ i(ad+ bc).

Complex numbers can be illustrated as position vectors (Fig. 3.1).

1 a

i

b
(a,b)=a+ib

•

•

•

Figure 3.1

Addition corresponds to the addition of vectors in the plane by the “par-
allelogram rule” (Fig. 3.2).

3.3.2 The trigonometric form of complex numbers

To a complex number a + ib ∈ C we can assign its absolute value and its
direction angle (Fig. 3.3).
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a+ib

c+id

a+c+i(b+d)

•

•

•

Figure 3.2

a

b
a+ib

r

φ

•

Figure 3.3

The absolute value: r =
√
a2 + b2.

The direction angle can be given in each quarter plane:

φ =































arctg b
a if a > 0 and b ≥ 0,

π
2 if a = 0 and b > 0,

π − arctg| ba | if a < 0 and b ≥ 0,
π + arctg| ba | if a < 0 and b < 0,

3π
2 if a = 0 and b < 0,

2π − arctg| ba | if a > 0 and b < 0.

One can see that for the direction angle φ ∈ [0, 2π). We remark that for
a = 0, b = 0: r = 0, and the direction angle is arbitrary.
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•

•

•

αβ
α+β

rp

rp

Figure 3.4

If a complex number a+ ib ∈ C has absolute vale r and direction angle φ,
then

a = r cosφ, b = r sinφ,

therefore, a + ib = r(cosφ + i sinφ). This is the trigonometric form of a
complex number. With the aid of the trigonometric form the multiplication
of complex numbers becomes geometrically meaningful.
Let r(cosα+ i sinα), p(cosβ + i sinβ) ∈ C, then

r(cosα+ i sinα) · p(cosβ + i sinβ) =

= rp(cosα cosβ − sinα sinβ + i(sinα cosβ + cosα sinβ)) =

= rp(cos(α+ β) + i sin(α+ β)).

So, by multiplication the absolute values are to be multiplied, and the di-
rection angles to be added (Fig. 3.4).

Exponentiation also becomes fairly simple with the trigonometric form. If
z = a+ ib = r(cosφ+ i sinφ) ∈ C and n ∈ N, then

zn = (a+ ib)n = [r(cosφ+ i sinφ)]n = rn(cosnφ+ i sinnφ),

so, when raising a complex number z to the nth power, the nth power of the
absolute value and n times the direction angle are taken in the trigonometric
form of zn.





Chapter 4

Elementary functions

We present the major properties of functions defined on and mapping to
the set of real numbers. We define the frequently used real functions called
elementary functions. The following topics will be covered.

• Operations on real functions

• Bounded, monotone, periodic, odd and even functions

• Power functions

• Exponential and logarithmic functions

• Trigonometric functions and their inverses

• Hyperbolic function and their inverses

• Some peculiar functions

4.1 The basic properties of real functions

Definition 4.1. Let f : R ⊃→ R, λ ∈ R. Then

λf : D(f)→ R, (λf)(x) := λf(x).

Definition 4.2. Let f, g : R ⊃→ R, D(f) ∩D(g) 6= ∅. Then

f + g : D(f) ∩D(g)→ R, (f + g)(x) := f(x) + g(x),

f · g : D(f) ∩D(g)→ R, (f · g)(x) := f(x) · g(x).

Definition 4.3. Let g : R ⊃→ R, H := D(g) \ {x ∈ D(g) | g(x) = 0} 6= ∅.
Then

1/g : H → R, (1/g)(x) :=
1

g(x)
.

23
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Definition 4.4. Let f, g : R ⊃→ R

f

g
:= f · 1/g

Definition 4.5. Let f : R ⊃→ R. We say that f is bounded above if the
set R(f) ⊂ R is bounded above.

We say that f is bounded below if the set R(f) ⊂ R is bounded below.
We say that f is a bounded function if the set R(f) ⊂ R is bounded

below and above.

Definition 4.6. Let f : R ⊃→ R. We say that f is a monotonically in-
creasing function if for all x1, x2 ∈ D(f), x1 < x2: f(x1) ≤ f(x2).

The function f is strictly monotonically increasing if for all x1, x2 ∈
D(f), x1 < x2: f(x1) < f(x2).

We say that f is a monotonically decreasing function if for all x1, x2 ∈
D(f), x1 < x2: f(x1) ≥ f(x2).

The function f is strictly monotonically decreasing if for all x1, x2 ∈
D(f), x1 < x2: f(x1) > f(x2).

Definition 4.7. Let f : R ⊃→ R. We say that f is an even function if

1o for all x ∈ D(f), −x ∈ D(f),

2o for all x ∈ D(f), f(−x) = f(x).

Definition 4.8. Let f : R ⊃→ R. We say that f is an odd function if

1o for all x ∈ D(f), −x ∈ D(f),

2o for all x ∈ D(f), f(−x) = −f(x).

Definition 4.9. Let f : R ⊃→ R. We say that f is a periodic function if
there exists a number p ∈ R, 0 < p such that

1o for all x ∈ D(f), x+ p, x− p ∈ D(f),

2o for all x ∈ D(f), f(x+ p) = f(x− p) = f(x).

The number p is called a period of the function f .

4.2 Elementary functions

4.2.1 Power functions

Let id : R ⊃→ R, id(x) := x. As Fig. 4.1 shows, id is a strictly monotonically
increasing function.
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id

Figure 4.1

id
2

1

1

Figure 4.2
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id
3

1

1

Figure 4.3

id
−1

1

1

Figure 4.4

Let id2 : R ⊃→ R, id2(x) := x2. Clearly, id2
|
R+

is a strictly monotonically

increasing function, while id2
|
R−

is strictly monotonically decreasing. The

function id2 is even (Fig. 4.2).
Let id3 : R ⊃→ R, id3(x) := x3. Function id3 is strictly monotonically

increasing and odd (Fig. 4.3). If n ∈ N, then the function idn : R → R,
idn(x) := xn inherits the properties of id2 for even n, and the properties of
id3 for odd n.

Let id−1 : R \ {0} → R, id−1(x) := 1/x. The functions id−1
|
R−

and id−1
|
R+

are strictly monotonically decreasing (however, id−1 is not monotone!). The
function id−1 is odd (Fig. 4.4).
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id
−2

1

1

Figure 4.5

id
1/2

1

1

Figure 4.6

Let id−2 : R \ {0} → R, id−2(x) := 1/x2. The function id−2
|
R−

is strictly

monotonically increasing, while id−2
|
R+

is strictly monotonically decreasing.

The function id−2 is even (Fig. 4.5).

Let n ∈ N. The function id−n : R \ {0} → R, id−n(x) := 1/xn inherits
the properties of id−2 if n is even, and those of id−1 if n is odd.

Let id1/2 : [0,∞)→ R, id1/2(x) :=
√
x. The function id1/2 is strictly mono-

tonically increasing (Fig. 4.6). We mention that id1/2 can also be defined as
the inverse of the one-to-one function id2

|[0,∞)
.

Let r ∈ Q, and consider the function idr : R+ → R, idr(x) := xr. For
some values of r the functions idr are plotted in Fig. 4.7.
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id
3/2

id
2/3

id
0

id
−1/2

1

1

Figure 4.7

Finally, let id0 : R → R, id0(x) := 1. The function id0 is even, mono-
tonically increasing, and at the same time monotonically decreasing. It is
periodic by any number p > 0 (Fig. 4.7).

4.2.2 Exponential and logarithmic functions

Let a ∈ R+. The exponential function with base a is defined as

expa : R→ R, expa(x) := ax.

expa is strictly monotonically increasing if a > 1,

expa is strictly monotonically decreasing if a < 1,

expa = id0 if a = 1 (monotonically increasing and decreasing at the same
time) (Fig. 4.8).

If a > 0 and a 6= 1, then R(expa) = R+, so expa only takes positive values
(and it does take all positive values). For all a > 0 and by any x1, x2 ∈ R:

expa(x1 + x2) = expa(x1) · expa(x2).

(This is the most important characteristic of the exponential functions.) A
special role is played by the function expe =: exp (Fig. 4.9) (where e is Euler’s
number introduced in Exercise 7* of the previous chapter).

Let a > 0, a 6= 1. Since expa is strictly monotone, therefore it is one-to-one,
and so it has an inverse function:

loga := (expa)
−1
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exp
a
   a>1exp

a
   a<1

exp
1

1

Figure 4.8

1

e

exp

Figure 4.9

called logarithmic function with base a (Fig. 4.10). So

loga : R+ → R, loga(x) = y, for which expa(y) = x.

If a > 1, then loga is strictly monotonically increasing, and if a < 1,
then loga is strictly monotonically decreasing. Logarithmic functions have
the fundamental properties that

1o for all a > 0, a 6= 1 and any x1, x2 ∈ R+

loga(x1x2) = loga x1 + loga x2;
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log
a
   a>1

log
a
   a<1

1

Figure 4.10

2o for all a > 0, a 6= 1 and any x ∈ R+ and k ∈ R

loga x
k = k loga x;

3o for all a, b > 0, a, b 6= 1 and any x ∈ R+

loga x =
logb x

logb a
.

Property 3o implies that all logarithmic functions can be obtained by mul-
tiplying any one logarithmic function by a real number. That is why the
logarithmic function to the base e, called “natural logarithm” plays a special
role:

ln := loge

(Fig. 4.11).

4.2.3 Trigonometric functions and their inverses

Let sin : R→ R, sinx := Do not expect a formula here! Draw a circle of ra-
dius 1. Then draw two straight lines perpendicular to each other through the
center of the circle. One of them will be called axis (1), while the other axis
(2). From the point where the (positive half) of axis (1) intersects the circle
“measure the arc corresponding to the number x ∈ R to the circumference”.
[This operation requires considerable manual skills!. . . ] The second coordi-
nate of the end point P of the arc will be sinx (Fig. 4.12). The sine function
is odd, and periodic with period p = 2π (Fig. 4.13). R(sin) = [−1, 1].



4.2. Elementary functions 31

1 e

ln

1

Figure 4.11

•

•

1
x

sin x

P
1

(1)

(2)

Figure 4.12
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sin

π/2 π 2π

1

−1

−π/2

Figure 4.13

cos

π/2 π

2π

1

−1

−π/2

Figure 4.14
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tg

−π/2 π/2 π

Figure 4.15

Let cos : R → R, cosx := sin(x + π
2 ). The cosine function is even, and

periodic with period p = 2π (Fig. 4.14). R(cos) = [−1, 1].
Fundamental relationships:

1o For all x ∈ R, cos2 x+ sin2 x = 1.

2o For all x1, x2 ∈ R, sin(x1 + x2) = sinx1 cosx2 + cosx1 sinx2,
cos(x1 + x2) = cosx1 cosx2 − sinx1 sinx2.

Let tg := sin
cos and ctg := cos

sin .
It follows from the definition that

D(tg) = R \
{π

2
+ kπ | k ∈ Z

}

, D(ctg) = R \ {kπ | k ∈ Z} .

The functions tg and ctg are odd, and periodic with period p = π (Fig. 4.15
and Fig. 4.16).

Due to their periodicity, trigonometric functions are not one-to-one func-
tions.

Consider the resriction sin|[−π
2

, π
2

]
. This function is strictly monotonically

increasing, therefore one-to-one, and so it has an inverse function:

arcsin := (sin|[−π
2

, π
2

]
)−1.

From the definition arcsin : [−1, 1]→ [−π
2 ,

π
2 ], arcsinx = α for which sinα =

x.
The arcsin function is strictly monotonically increasing and odd (Fig. 4.17).
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ctg

−π/2 π/2
π−π

Figure 4.16

arcsin

π/2

1

−1

−π/2

Figure 4.17

The restriction to the interval [0, π] of the cosine function is strictly mono-
tonically decreasing, therefore it has an inverse function:

arccos := (cos|[0,π]
)−1.

From the definition it follows that arccos : [−1, 1] → [0, π], arccosx = α for
which cosα = x.

The arccos function is strictly monotonically decreasing (Fig. 4.18).
The restriction to the interval (−π

2 ,
π
2 ) of the tg function is strictly mono-

tonically increasing, therefore it has an inverse function:

arctg := (sin|[−π
2

, π
2

]
)−1.
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arccos

π

1−1

Figure 4.18

From the definition it follows that arctg: R → (−π
2 ,

π
2 ), arctg x = α for

which tg α = x.
The arctg function is strictly monotonically increasing and odd (Fig. 4.19).

arctg

π/2

−π/2

Figure 4.19

The restriction to the interval (0, π) of the ctg function is strictly mono-
tonically decreasing, therefore it has an inverse function:

arcctg := (ctg|[0,π]
)−1.

From the definition it follows that arcctg : R → (0, π), arcctg x = α for
which ctg α = x.

The arcctg function is strictly monotonically decreasing (Fig. 4.20).
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arcctg

π/2

π

Figure 4.20

sh

Figure 4.21

4.2.4 Hyperbolic functions and their inverses

Let sh : R → R, shx := ex−e−x

2 . The sh function is strictly monotonically
increasing and odd (Fig. 4.21).

Let ch : R → R, chx := ex+e−x

2 . The function ch|
R−

is strictly mono-
tonically decreasing, while ch|

R+
is strictly monotonically increasing. The ch

function is even. R(ch) = [1,+∞). This function is often called chain curve
(Fig. 4.22).

Fundamental relationships:

1o For all x ∈ R, ch2x− sh2x = 1.
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ch

1

Figure 4.22

2o For all x1, x2 ∈ R

sh(x1 + x2) = shx1chx2 + chx1shx2,

ch(x1 + x2) = chx1chx2 + shx1shx2.

Let th := sh

ch
, cth := ch

sh
.

It follows from the definition that th : R → R, th x = ex−e−x

ex+e−x , cth :

R \ {0} → R, cth x = ex+e−x

ex−e−x . The th and cth functions are odd (Fig. 4.23).

th

cth

1

−1

Figure 4.23

The th function is strictly monotonically increasing. R(th) = (−1, 1).
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arsh

Figure 4.24

The function cth|
R−

is strictly monotonically decreasing, while cth|
R+

is
strictly monotonically increasing. R(cth) = R \ [−1, 1].

The sh function is strictly monotonically increasing, and so it has an in-
verse function:

arsh := (sh)−1.

It follows from the definition that arsh : R → R, arsh x = ln(x +
√
x2 + 1)

(see Exercise 5). The arsh function is strictly monotonically increasing and
odd (Fig. 4.24).

The restriction to the interval [0,∞) of the ch function is strictly mono-
tonically increasing, therefore it has an inverse function:

arch := (ch|[0,∞)
)−1.

From the definition it follows that arch : [1,∞) → [0,∞), arch x =
ln(x+

√
x2 − 1). The arch function is strictly monotonically increasing (see

Fig. 4.25).
The th function is strictly monotonically increasing, so it has an inverse

function:
arth := (th)−1.

From the definition it follows that arth : (−1, 1) → R, arth x = 1
2 ln

1+x
1−x .

The arth function is strictly monotonically increasing and odd (Fig. 4.26).
The restriction to R+ of the cth function is strictly monotonically decreas-

ing, therefore it has an inverse function:

arcth := (cth|
R+

)−1.

From the definition it follows that arcth : (1,+∞)→ R+, arcth x = 1
2 ln

x+1
x−1 .

The arcth function is strictly monotonically decreasing (Fig. 4.27).
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arcth

1

Figure 4.27

abs

1

1

Figure 4.28

4.2.5 Some peculiar functions

1. Let abs : R→ R, abs(x) := |x|, where (as we saw before)

|x| :=
{

x, if x ≥ 0,
−x, if x < 0

(Fig. 4.28).

2. Let sgn : R→ R, sgn(x) :=







1, if x > 0,
0, if x = 0,

−1, if x < 0
(Fig. 4.29).
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ent

1
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−1

−1

•

•

•

•

•

Figure 4.30

3. Let ent : R→ R, ent(x) := [x], where

[x] := max{n ∈ Z | n ≤ x}.

(The “integer part” of the number x ∈ R is the greatest integer that is less
than or equal to x.) (Fig. 4.30.)

4. Let d : R→ R, d(x) :=

{

1 if x ∈ Q,
0 if x ∈ R \Q.

This function is called Dirichlet’s function, and we do not make an attempt
to draw it.
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5. Let r : R→ R

r(x) :=

{

0 if x ∈ R \Q or x = 0,
1
q if x ∈ Q, x = p

q ,

where p ∈ Z, q ∈ N, and p and q have no common divisor (different from
1). It is called Riemann’s function, and again we do not try to plot it.

4.3 Exercises

1. Compute the following function values:

id0(7) = id3

(

1

2

)

= id
1
2 (4) = id−6(1) =

id(6) = id3

(

−1

2

)

= id
3
2 (4) = id−6(2) =

id2(5) = id3(0) = id−
3
2 (4) = id−6

(

1

2

)

=

2. Arrange the following numbers in ascending order:

a) sin 1, sin 2, sin 3, sin 4;

b) ln 2, exp2
1
2 , exp 1

2
2, log2 1;

c) sh 3, ch (−2), arsh 4, th 1;

d) arcsin 1
2 , arctg 10, th 10, cos 1.

3. Prove that ch2x− sh2x = 1, ch2x = ch(2x)+1
2 for all x ∈ R.

4. Prove that for x, y ∈ R

a) sin 2x = 2 sinx cosx, cos 2x = cos2 x − sin2 x, cos2 x = 1+cos 2x
2 ,

sin2 x = 1−cos 2x
2 ;

b) sinx− sin y = 2 sin x−y
2 cos x+y

2 , cosx− cos y = 2 sin y−x
2 sin x+y

2 .

5. Show that

a) arsh x = ln(x+
√
x2 + 1) (x ∈ R);

b) arch x = ln(x+
√
x2 − 1) (x ∈ [1,+∞));

c) arth x = 1
2 ln

1+x
1−x (x ∈ (−1, 1)).

Solution: a)

1o y = sh x = ex−e−x

2 ;
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2o x = ey−e−y

2 ;

2x = ey − e−y/ · ey;
2xey = (ey)2 − 1;
(ey)2 − 2xey − 1 = 0;

(ey)1,2 = 2x±
√
4x2+4
2 = x±

√
x2 + 1.

Since the exp function only takes positive values, and for all x ∈ R√
x2 + 1 >

√
x2 = |x| ≥ x, therefore

ey = x+
√

x2 + 1.

From this
y = ln(x+

√

x2 + 1),

which means that
3o arsh x = ln(x+

√

x2 + 1).

6. Show that arctg 6= π
2 th.

7. Sketch the following functions:

a) f : R→ R, f(x) :=

{

sin 1
x if x 6= 0,

0 if x = 0.

b) g : R→ R, g(x) :=

{

x2 sin 1
x if x 6= 0,

0 if x = 0.

c) h : R→ R, h(x) :=

{

x2(sin 1
x + 2) if x 6= 0,
0 if x = 0.

8. Let f : R → R be an arbitrary function. Show that for the functions
φ, ψ : R→ R

φ(x) :=
f(x) + f(−x)

2
, ψ(x) :=

f(x)− f(−x)
2

.

φ is even, ψ is odd, and f = φ + ψ. If f = exp, then what will be the
functions φ and ψ?

9. Let f, g : R → R. Assume that f is periodic with period p > 0, and g
with period q > 0.

a) Show that if p
q ∈ Q, then f + g is periodic.

b) Give an example where p
q ∈ R \Q, and f + g is not periodic.

Solution: a) Let p
q = k

l , where k, l ∈ N. Then lp = kq. Let ω := lp+ kq >
0. We show that f + g is periodic with period ω.
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1o D(f + g) = R.

2o For all x ∈ R

(f + g)(x+ ω) = f(x+ kq + lp) + g(x+ lp+ kq)

= f(x+ kq) + g(x+ lp) = f(x+ lp) + g(x+ kq)

= f(x) + g(x) = (f + g)(x).

One can similarly prove that (f + g)(x− ω) = (f + g)(x).



Chapter 5

Sequences, series

Sequences are fairly simple functions. They are useful in studying the ac-
curacy of approximations. They are important building stones of the later
concepts. We will deal with the following topics.

• The concept of sequence, monotonicity, boundedness

• Limit and convergence

• Important limits

• The relationships between limits and operations

• The definition of the number e

• Cauchy’s convergence criterion for sequences

• The convergence of series

• Convergence criteria for series

5.1 Sequences, series

5.1.1 The concept and properties of sequences

A sequence is a function defined on the set of natural numbers.
Let H 6= ∅ be a set. If a : N → H, then we have a sequence in H. For

example, if H is the set of real numbers, then we have a number sequence; if
H is a set of certain signals, then we have a signal sequence; if H is a set of
intervals, then we have an interval sequence.

Let a : N → R be a number sequence. If n ∈ N, then we denote the
nth element of the sequence by an instead of a(n). The number sequence
a : N→ R will also be denoted more briefly as (an), or we can emphasize by
writing (an) ⊂ R that we have a number sequence.

45
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For example, instead of a : N→ R, an := 1
n we can write ( 1n ).

Sometimes we use the lengthier notation a1, a2, . . . , an, . . . instead of (an).
For example, instead of (n2) we can speak about the sequence 1, 4, 9, . . . , n2, . . .

Since sequences are functions, therefore the concepts of boundedness, mono-
tonicity and the operations on sequences do not require new definitions. To
remind the reader, we still reformulate some terms.

Definition 5.1. We say that the sequence (an) is bounded if there exists a
K ∈ R such that for any n ∈ N |an| ≤ K.

Definition 5.2. We say that (an) is monotonically increasing if for all n ∈ N

an ≤ an+1.

Definition 5.3. If (an) is a sequence, and λ ∈ R, then

λ(an) := (λan).

If (an), (bn) are two sequences, then

(an) + (bn) := (an + bn),

(an) · (bn) := (an · bn).
If moreover bn 6= 0 (n ∈ N), then

(an)

(bn)
:=

(

an
bn

)

.

For example, the sequence ( n
n+1 ) is bounded, since n < n+1 for all n ∈ N,

therefore
∣

∣

∣

∣

n

n+ 1

∣

∣

∣

∣

=
n

n+ 1
< 1.

The sequence ( n
n+1 ) is monotonically increasing, because for all n ∈ N

an =
n

n+ 1
<
n+ 1

n+ 2
= an+1,

since n(n+ 2) < (n+ 1)2.
The sequence (en) := ((n+1

n )n) is also monotonically increasing. To prove
this, let n ∈ N. Due to the inequality between the algebraic and geometric
mean values:

en =

(

n+ 1

n

)n

= 1 · n+ 1

n
· n+ 1

n
· · · n+ 1

n
≤

(

1 + n · n+1
n

n+ 1

)n+1

=

(

n+ 2

n+ 1

)n+1

= en+1.

The sequence (en) is bounded (proving this requires the same calculation as
that shown in Exercise 7* of Chapter 3): for all n ∈ N

(

n+1
n

)n ≤ 4.
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5.1.2 The limit of a sequence

Now we will learn about a completely new property of sequences. We call
a sequence a1, a2, . . . , an, . . . convergent if there is a value that the terms of
the sequence “get close to eventually”. More precisely:

Definition 5.4. We say that a number sequence (an) is convergent, if there
exists an A ∈ R such that for any ε > 0 there exists an index N ∈ N for
which |an −A| < ε holds for all n ∈ N, n > N . If there is such a number A,
then we call it limit of the sequence, and employ the notation lim an = A or
an → A.

For example, 1
n → 0, since for any ε > 0 there exists an N ∈ N for which

N > 1
ε (Archimedes’ axiom). And if n > N , then 1

n < 1
N < ε, and so

| 1n − 0| < ε.

As another example, consider a one meter long rod. If we cut it into half,
then halve the half of the rod, then halve one of the pieces again, and so on,
then we are led to the sequence

1

2
,
1

4
,

1

23
, . . . ,

1

2n
, . . . .

Clearly, the lengths of the remaining pieces of the rod form the sequence
( 1
2n )→ 0, so the new pieces will be arbitrarily small.

One can see at once that whenever (an) is convergent, it is also bounded,
since for ε := 1 there exists an index N1 such that for all n > N1

A− 1 < an < A+ 1,

and the finitely many elements a1, a2, . . . , aN cannot spoil the boundedness
of the sequence (an).

Convergent sequences nicely behave during operations.

Theorem 5.1. If an → A and λ ∈ R, then λan → λA.
If an → A and bn → B, then an + bn → A+B, anbn → AB.
If bn → B and B 6= 0, then 1

bn
→ 1

B .

If an → A and bn → B 6= 0, then an

bn
→ A

B .

Let us look at some applications of these theorems.

lim
3n2 − 2n+ 1

2n2 + n
= lim

3− 2 · 1
n + 1

n2

2 + 1
n

=
3

2
,

since 1
n → 0, therefore 1

n2 = 1
n · 1n → 0. The denominator is 2+ 1

n → 2+0 6= 0,
so the quotient sequence is convergent.

Further ways of determining whether a sequence is convergent:
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Theorem 5.2 (The Sandwich Theorem for Sequences). If (an), (xn), (yn)
are such that

1o for all n ∈ N, xn ≤ an ≤ yn,

2o limxn = lim yn =: α,

then (an) is convergent, and lim an = α.

Theorem 5.3. If (an) is monotone and bounded, then (an) is convergent.

For example, we have seen that the sequence (en) :=
((

n+1
n

)n)
is mono-

tonically increasing and bounded, and so it is convergent. Its limit is the
number e, known from Exercise 7* of Chapter 3:

lim

(

n+ 1

n

)n

= e.

For further convergent sequences see the exercises.
The definition of the limit of a sequence involves a serious difficulty: we

should conjecture the number A ∈ R to which the elements of the sequence get
close eventually. This can be avoided with the aid of the following theorem:

Theorem 5.4 (Cauchy’s convergence criterion). The sequence (an) is con-
vergent if any only if for all ε > 0 there exists an index N ∈ N such that for
all m,n > N |an − am| < ε.

So, the property that the elements of a sequence get arbitrarily close to a
number is equivalent to the property that the elements of the sequence get
arbitrarily close to each other.

5.1.3 Series

Now consider the situation that somebody would like to glue the split pieces
of the previous one meter long rod, i.e., they would like to prepare the „sum”

1

2
+

1

22
+

1

23
+ . . .+

1

2n
+ . . . .

Then they would glue the 1
22 meter long piece to the 1

2 meter long piece, so
it will be 1

2 +
1
22 meter long; then they would glue the 1

23 meter long piece to
it, so it will be 1

2 + 1
22 + 1

23 meter long, and so on. More generally: Let (an)
be a number sequence. Prepare the new sequence

S1 := a1, S2 := a1 + a2, S3 := a1 + a2 + a3, ..., Sn := a1 + a2 + ...+ an, ... .

The sequence of partial sums (Sn) prepared from the sums of the elements of
(an) will be called infinite series and denoted as

∑

an. Summing the infinite
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series is a convergent procedure, i.e., the infinite series
∑

an is convergent
if the sequence (Sn) is convergent. If the sequence (Sn) is convergent, then
the sum of the infinite series

∑

an is defined as the limit of the sequence
(Sn), i.e.,

∑∞
n=1 an := limSn.

For example, let q ∈ R, 0 < q < 1. Consider the sequence (qn). Its nth
partial sum is

Sn = q + q2 + q3 + . . .+ qn = q
qn − 1

q − 1
.

Since qn → 0 (see Exercise 3), therefore

limSn = lim q
qn − 1

q − 1
=

−q
q − 1

=
q

1− q .

So, the infinite series
∑

qn is convergent, and
∑∞

n=1 q
n = q

1−q is the sum of
the infinite series.

If
∑

an is a convergent series, then (Sn) is convergent. Then, according
to Cauchy’s convergence criterion, for all ε > 0 there exists an index N such
that for all m > N and n := m+ 1 > N

ε > |Sn − Sm| = |a1 + a2 + . . .+ am + am+1 − (a1 + a2 + . . .+ am)| = |an|.

This exactly means that an → 0. So the following theorem is valid:

Theorem 5.5. If
∑

an is convergent, then an → 0.

The reverse statement is not true. Let (an) := (ln n+1
n ). Since n+1

n =
1 + 1

n → 1, therefore ln n+1
n → ln 1 = 0. For all n ∈ N

Sn = ln
2

1
+ ln

3

2
+ ln

4

3
+ . . .+ ln

n+ 1

n
= ln

2

1
· 3
2
· 4
3
· · · n+ 1

n
= ln(n+ 1).

Let K > 0 be arbitrary. There exists an n ∈ N such that n+ 1 > eK . Then
Sn = ln(n + 1) > ln eK = K, so (Sn) is not bounded, but then it is not
convergent, either, so

∑

an is not convergent.
The infinite series

∑

1
n behaves the same way: although 1

n → 0, the series
∑

1
n is not convergent.
It is possible to decide from the behavior of the summand whether the

series is convergent or not.

Theorem 5.6 (Ratio test). Let (an) be a sequence for which there exists a
number 0 < q < 1 and an index N such that for all n > N |an+1

an
| ≤ q. Then

∑

an is convergent.

Theorem 5.7 (Root test). Let (an) be a sequence for wich there exists a
number 0 < q < 1 and an index N such that for all n > N n

√

|an| ≤ q. Then
∑

an is convergent.
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For example
∑

2n

n! is a convergent series because

an+1

an
=

2n+1

(n+1)!

2n

n!

=
2

n+ 1
<

1

2
if n > 5.

There is an interesting theorem about alternating series.

Theorem 5.8 (Leibniz). Let (an) be a monotonically decreasing sequence of
positive numbers for which an → 0. Then the alternating series

∑

(−1)n+1an
is convergent.

For example, the series
∑

(−1)n+1 1
n is convergent because ( 1n ) is mono-

tonically decreasing, and 1
n → 0.

5.2 Exercises

1. Show that an → A if and only if an −A→ 0.

Solution: Let ε > 0 be arbitrary. If an → A, then there exists an N such
that for n > N

|an −A| < ε.

Then |an −A− 0| = |an −A| < ε also holds, and so an −A→ 0.

One can similarly prove the converse statement.

2. Show that an → 0 if and only if |an| → 0.

Solution: Let ε > 0. If an → 0, then there exists an N such that for
n > N , |an − 0| = |an| < ε, but then ||an| − 0| = |an| < ε is also true,
from which |an| → 0 follows.

If |an| → 0, then −|an| → 0 also holds. Since −|an| ≤ an ≤ |an| for all
n ∈ N, therefore due to the Sandwich Theorem an → 0.

3. Let q ∈ (−1, 1). Show that qn → 0.

Is the sequence ( 1
3n ), ((sin

π
4 )

n), ( 2n

3n+10 ) convergent?

Solution: If q = 0, then 0n → 0. If q 6= 0, then 0 < |q| < 1, therefore
there exists an h > 0 such that 1

|q| = 1 + h. Then due to Bernoulli’s
inequality for all n ∈ N

(

1

|q|

)n

= (1 + h)n ≥ 1 + nh > nh,

0 < |q|n < 1

h
· 1
n
.

Since 0→ 0, 1
h · 1

n → 0, therefore the sandwiched sequence also tends to
0, that is |qn| = |q|n → 0. According to Exercise 2, qn → 0 is also true.
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4. Let a > 1. Show that n
an → 0.

Is the sequence ( n
2n ), (n · 0.999n) convergent?

Solution: If a > 1, then there exists an h > 0 such that a = 1 + h. By
Exercise 5 of Chapter 3 for all n ∈ N, n > 1

an = (1 + h)n >

(

n

2

)

h2 =
n(n− 1)

2
h2.

From this

0 <
n

an
<

2

h2
1

n− 1
.

Clearly, 1
n−1 → 0, and so for the sandwiched sequence n

an → 0.

5. Let a > 1, k ∈ N. Show that nk

an → 0.

Let (an) :=
(

n100

1,001n

)

. Estimate the value of a1, a2, a3, and give the limit

lim an =?

Solution: For all n ∈ N

nk

an
=

n

( k
√
a)n

· n

( k
√
a)n

· · · n

( k
√
a)n

Since k
√
a>1, therefore n

( k
√
a)n
→0 according to Exercise 4. Then the prod-

uct of k sequences tending to 0 also tends to 0, consequently, n
( k
√
a)n
→0.

6. Let a > 0. Show that an

n! → 0.

Solution: There exists a k ∈ N such that a < k. Let n ∈ N, n > k. Then

an

n!
=
a

1
· a
2
· · · a

k
· a

k + 1
· · · a

n− 1
· a
n
.

Let a
1 · a2 · · · ak := L; a

k+1 < 1, . . . , a
n−1 < 1, then

0 <
an

n!
< L

a

n
.

Since La
n → 0, therefore for the sandwiched sequence an

n! → 0.

7. Show that n!
nn → 0.

8. Let a > 0. Prove that n
√
a→ 1.

Solution: First let a > 1. Let pn := n
√
a − 1 > 0 (n ∈ N). Due to

Bernoulli’s inequality, for all n ∈ N

a = (1 + pn)
n > npn,
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so

0 < pn <
a

n
.

Since a
n → 0, therefore for the sandwiched sequence pn → 0, but then,

according to Exercise 1 n
√
a→ 1.

If 0 < a < 1, then 1
a > 1, therefore n

√

1
a → 1, but then for the reciprocal

sequence n
√
a→ 1 holds, too.

9. lim n
√
5 =? lim n

√
2n + 1000 =? lim n

√
2n + 5n =?

10. Prove that n
√
n→ 1.

Is the sequence (
n
√
n2),

(

n

√

1
n2

)

convergent?

Solution: Let pn := n
√
n − 1 > 0 (n ∈ N). For all n ∈ N, n > 1:

n = (1 + pn)
n >

(

n
2

)

p2n according to Exercise 5 of Chapter 3. From this

n >
n(n− 1)

2
p2n,

p2n <
2

n− 1
,

0 < pn <

√
2√

n− 1
.

It is easy to prove that 1√
n−1

→ 0, so the sandwiched sequence pn → 0,

which is equivalent to the statement n
√
n→ 1 (see Exercise 1).

11. Prove that 1
n√
n!
→ 0.

Solution: For all n ∈ N (temporarily assuming that n is even)

n! = 1 · 2 · · ·
(n

2
− 1

)

· n
2
·
(n

2
+ 1

)

· · ·n > 1 · 1 · · · 1 · n
2
· n
2
· · · n

2
,

so n! > (n2 )
n
2 . From this

n
√
n! >

(n

2

)
1
2

,

0 <
1

n
√
n!
<

√
2√
n
.

Since 1√
n
→ 0, therefore for the sandwiched sequence 1

n√
n!
→ 0.
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12. Show that
∑

1
n(n+1) is convergent.

Solution: Let n ∈ N.

Sn =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 + . . .+
1

1 · n(n+ 1)
.

Since 1
k(k+1) =

1
k − 1

k+1 , therefore

Sn =
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

n
− 1

n+ 1
= 1− 1

n+ 1
.

limSn=lim1− 1
n+1 =1, so

∑

1
n(n+1) is convergent, and

∑∞
n=1

1
n(n+1) =1.

13. Show that
∑

1
n2 is convergent.

Solution: Let n ∈ N, n > 1. Then

Sn =
1

12
+

1

22
+

1

32
+ . . .+

1

n2
< 1 +

1

1 · 2 +
2

2 · 3 + . . .
1

(n− 1)n

= 1 +
1

1
− 1

2
+

1

2
− 1

3
+ . . .+

1

n− 1
− 1

n
= 1 + 1− 1

n
< 2.

So the sequence (Sn) is bounded. On the other hand, for all n ∈ N

Sn+1 = Sn + 1
(n+1)2 > Sn, therefore (Sn) is monotonically increasing.

Therefore, Sn is convergent, that is,
∑

1
n2 is convergent.

14. Is the infinite series
∑

1
n! ,

∑

3n

n! convergent?

For what values of x ∈ R is the infinite series
∑

xn

n! convergent?

Solution: We show that for all x ∈ R,
∑

xn

n! convergent, since if x 6= 0,
then

∣

∣

∣

∣

∣

∣

xn+1

(n+1)!
xn

n!

∣

∣

∣

∣

∣

∣

=
|x|
n+ 1

≤ 1

2
if n > [2|x| − 1],

therefore by the ratio test
∑

xn

n! is convergent.

15. Is the infinite series
∑

3n

1+32n convergent?

Solution: By the root test

n

√

3n

1 + 32n
<

n

√

3n

32n
=

1

3
(n ∈ N),

therefore
∑

3n

1+32n is convergent.
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16. Can we decide by the ratio or root test whether
∑

1
n2 is convergent or

not?

Solution: No. The reason is that

1
(n+1)2

1
n2

=

(

n

n+ 1

)2

< 1,

but there exists no number q < 1 such that for some index N ,
(

n
n+1

)

≤ q

for all n > N .

According to the root test

n

√

1

n2
=

1
n
√
n2

< 1

holds, too, but since lim 1
n√
n2

= 1, therefore there exists no number q < 1

such that from some index N 1
n√
n2
< q for all n > N .

17. Is the infinite series
∑ cos(nπ)√

n
convergent?

Solution: cos(nπ) = (−1)n,
(

1√
n

)

tends to 0 monotonically decreasing,

therefore by Leibniz’s theorem
∑ cos(nπ)√

n
is convergent.

18. * Prove the following statements:

a) For all α, β, γ ∈ R

lim

(

1 +
α

n+ β

)n+γ

= eα.

b)
∑∞

n=0
1
n! = e.

c) For all n ∈ N there exists a ϑ ∈ (0, 1) such that

e =
1

0!
+

1

1!
+

1

2!
+ . . .+

1

n!
+

ϑ

n!n
.

d) e ∈ R \Q.



Chapter 6

Continuity

Continuity is a local property of a function. It means that small changes of
a point a result in small changes in the function value f(a). The following
topics will be discussed.

• The concept of continuous function

• The relationship between continuity and the operations

• The properties of continuous functions on an interval

6.1 Continuity

6.1.1 The concept and properties of a continuous func-

tion

Let f1 : R→ R, f1(x) := x, a := 2. Consider another function f2 : R→ R,

f2(x) :=







1 if x < 2,
2 if x = 2,
3 if x > 2

(Fig. 6.1).

Apparently, the function f1 is such that when x is close to the point a := 2,
then the values f1(x) = x are also close to the value f1(2) = 2. The same does
not hold for the function f2. For any number x that is close to the point a = 2
(x 6= 2), the function values f2(x) are far from the value f2(2) = 2 (clearly
further than 1

2 ). In view of the behavior of the function f1 we formulate the
concept of continuity.

Let f : R ֌ R, a ∈ D(f). We say that the function f is continuous
at some point a, if for any ε > 0 there exists a δ > 0, such that whenever
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2 2

f
1
(2) f

2
(2)• •

Figure 6.1

x ∈ D(f) and |x − a| < δ (the point x is closer to the point a than δ), then
|f(x) − f(a)| < ε (the function value f(x) is closer to f(a) than ε). This
property will be denoted as f ∈ C[a].

Indeed, f1 ∈ C[2], since ∀ε > 0 the value δ := ε will do because ∀x ∈
R, |x − 2| < δ: |f1(x) − f1(2)| = |x − 2| < ε. However, f2 /∈ C[2], since by
ε := 1

2 and ∀δ > 0 there exists an x ∈ R, for example x := 2 + δ
2 for which

|x − 2| = δ
2 < ε, but |f2(x) − f2(2)| = |3 − 2| > ε, therefore the function f2

is not continuous at the point a := 2.

A useful property of continuous functions is the preservation of sign.
It means that if f ∈ C[a] and f(a) > 0, then there exists a neighborhood
K(a) ⊂ D(f) such that ∀x ∈ K(a) f(x) > 0, that is, the sign of f(a) is
inherited by function values taken in the neighborhood of a. To prove this
property it is enough to consider the definition of continuity for the error
bound ε := f(a)

2 > 0, since ∃δ > 0 such that ∀x ∈ Kδ(a): f(a)− ε < f(x) <
f(a) + ε, that is,

0 <
f(a)

2
= f(a)− ε < f(x).

Continuity is also related to convergent sequences. If f ∈ C[a] and (xn) ⊂
D(f) is an arbitrary sequence such that xn → a, then f(xn) → f(a), that
is, the function values taken at the points of the sequence (xn) tend to f(a).
The converse is also true: if ∀(xn) ⊂ D(f), xn → a: f(xn)→ f(a), then f is
continuous at the point a. This characterization of continuity is symbolized
by the equality lim f(xn) = f(limxn).

6.1.2 The relationship between continuity and the op-

erations

Theorem 6.1. If f ∈ C[a] and λ ∈ R, then λf ∈ C[a].
Theorem 6.2. If f, g ∈ C[a], then f + g ∈ C[a] and f · g ∈ C[a].
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Theorem 6.3. If f, g ∈ C[a] and g(a) 6= 0, then f
g ∈ C[a].

Theorem 6.4. If g ∈ C[a] and f ∈ C[g(a)], then f ◦ g ∈ C[a].

Note that the converse statements are not true. For instance, for f := sgn
and g := −sgn the sum f+g is the constant zero function, for which obviously
f + g = 0 ∈ C[0], however, f /∈ C[0] and g /∈ C[0].

The inverse function will only be continuous under rather special condi-
tions.

Theorem 6.5. Let I ∈ R be an interval, and f : I → R a strictly monotone
function. Assume that at the point a ∈ I f ∈ C[a]. Moreover, let b := f(a).
Then f−1 ∈ C[b].

Let [a, b] ⊂ D(f). The function f is continuous on the closed interval
[a, b] if ∀α ∈ [a, b], f ∈ C[α]. This is denoted by f ∈ C[a, b].

6.1.3 The properties of continuous functions on inter-

vals

Functions defined on bounded, closed intervals have nice properties.

Theorem 6.6 (Bolzano). If f ∈ C[a, b] and f(a) < 0, f(b) > 0, then
∃c ∈ (a, b) for which f(c) = 0.

This is a particular case of the following statement also known as Bolzano’s
theorem.

Theorem 6.7. Let f ∈ C[a, b], and d any number between f(a) and f(b).
Then ∃c ∈ [a, b] such that d = f(c).

This theorem states that if a continuous function defined on an interval
takes two values, then it takes any value between these two values as well,
that is, the continuous image of an interval is an interval.

Theorem 6.8 (Weierstrass). If f ∈ C[a, b], then ∃α, β ∈ [a, b] such that
∀x ∈ [a, b]

f(α) ≤ f(x) ≤ f(β).

This theorem states that f|[a,b]
is bounded (since all values of the function

are between f(α) and f(β)), moreover, the function f|[a,b]
has a minimum

and a maximum.
As a consequence of Bolzano’s and Weierstrass’ theorems, the continuous

image of a closed, bounded interval is a closed, bounded interval.
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6.2 Exercises

1. Show that the function f : [0,+∞)→ R, f(x) :=
√
x is continuous at any

point a ≥ 0.

Solution: First we show that if a := 0, then f ∈ C[0].
Let ε > 0 be arbitrary. Then due to

√
x < ε ⇔ x < ε2 let δ := ε2. If

x ≥ 0, x < δ, then |f(x)− f(0)| = √x < ε.

Let now a > 0. Clearly, ∀x ≥ 0

|√x−√a| = |√x−√a| · (√x+
√
a)√

x+
√
a

=
|x− a|√
x+

√
a
≤ |x− a|√

a
.

Let ε > 0 be arbitrary. In view of the previous inequality, δ := ε · √a.
Then ∀x ≥ 0, |x− a| < δ

|f(x)− f(a)| = |√x−√a| ≤ |x− a|√
a

<
δ√
a
= ε,

which means that f ∈ C[a].

2. Show that the function f : R→ R, f(x) := x2 is continuous at any point
a ∈ R.

Solution: Let (xn) ⊂ R, xn → a be an arbitrary sequence. Then f(xn) =
(xn)

2 = xn · xn → a · a = f(a).

Since for any sequence (xn) ⊂ R, xn → a: f(xn) → f(a), therefore,
according to the definition of continuity in terms of limits of sequences
f ∈ C[a].

3. Show that the function f : R → R, f(x) := sinx is continuous at any
point a ∈ R.

Solution: By using the definition of the sine function, one can see the
inequality | sinx− sin a| ≤ |x− a| ∀a, x ∈ R from Fig. 6.2.

Let ε > 0 be arbitrary. If δ := ε, then ∀x ∈ R, |x− a| < δ: |f(x)− f(a)| =
| sinx− sin a| ≤ |x− a| < ε, so f ∈ C[a].

4. Let f : R→ R,

f(x) :=

{

sin x
x if x 6= 0,
1 if x = 0.

Show that f ∈ C[0].

5. Let f : R → R. Suppose that there is a number L > 0 such that ∀s, t ∈
D(f), |f(s)− f(t)| ≤ L|s− t|. Show that ∀a ∈ D(f), f ∈ C[a].
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a

x

sin x−sin a

x−a

Figure 6.2

6. Show that the equation x5 + 4x− 3 = 0 has a root on the interval [0, 1].

7. Show that if f ∈ C[a, b], f is a one-to-one function, then f is strictly
monotone on the interval [a, b].





Chapter 7

Limit of a function

The limit of a function at some point a is A if f(x) is close to A whenever x
is close to a. The following topics will be discussed.

• The concept of limit of a function

• Relationship between the limit and the operations

• Limit at infinity and infinite limit

• One-sided limit

• The limit of monotone functions

7.1 Limit of a function

7.1.1 Finite limit at a finite point

Examine three functions, which look rather similar. Let

f1 : R→ R f1(x) := x+ 2,

f2 : R \ {2} → R f2(x) :=
x2−4
x−2 = (x−2)(x+2)

x−2 = x+ 2,

f3 : R→ R f3(x) :=

{

x+ 2 if x 6= 2,
1 if x = 2

Fig. (7.1).

We are interested in the behavior of these functions around the point a :=
2. The function f1 is continuous at this point, which means that whenever
x is close to 2, the values f1(x) = x + 2 are close to 4, which is none other
than f1(2).

Although the function f2 is not defined in 2, when x is close to 2, the
values f2(x) = x+ 2 change just a little around 4.
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f
1

f
2

f
3

2 2 2

f
1
(2)

1 •

• •

Figure 7.1

The function f3 is defined in 2. When x is close to 2, (but x 6= 2), then
the values f3(x) = x+ 2 (similarly to the functions f1 and f2) change just a
little around 4 (independently of the fact that f(2) = 1).

We formulate the concept of limit of a function in view of the phenomena
experienced in the above examples.

We study functions f : R ⊃→ R whose domain of definition D(f) contains
points other than a arbitrarily close to a (possibly a /∈ D(f)).

Definition 7.1. We say that the function f has a limit at the point a if
there exists a number A ∈ R such that for any error bound ε > 0 there
is a distance δ > 0 such that for all points x ∈ D(f) closer to a than δ
(|x − a| < δ), but x 6= a, the function values f(x) are closer to A than the
error bound ε (|f(x)−A| < ε).

This property of the function f is designated by any of the notations

lim
a
f = A;

lim
x→a

f(x) = A;

if x→ a, then f(x)→ A.

By comparing the limit of a function f with the definition of continuity, one
can see that lima f = A exactly means that considering the function

f̃ : D(f) ∪ {a} → R, f̃(x) :=

{

f(x) if x 6= a,
A if x = a

instead of the function f , f̃ will be continuous at the point a. In other words,
the function f has a limit at the point a if it can be made continuous at the
point a. Therefore, whenever a ∈ D(f) and there exists lima f , the function
f is continuous at the point a if and only if lima f = f(a).
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From this observation it follows that operations performed with limits
originate in operations performed with continuous functions.

Theorem 7.1. If lim
a
f = A and λ ∈ R, then lim

a
λf = λA.

Theorem 7.2. If lim
a
f = A and lim

a
g = B, then lim

a
(f + g) = A+B.

Theorem 7.3. If lim
a
f = A and lim

a
g = B, then lim

a
f · g = AB.

Theorem 7.4. If lim
a
g = B and B 6= 0, then lim

a

1
g = 1

B .

Theorem 7.5. If lim
a
f = A and lim

a
g = B, B 6= 0, then lim

a

f
g = A

B .

Theorem 7.6. If lim
a
g = B and f ∈ C[b], then lim

a
f ◦ g = f(b).

7.1.2 Limit at infinity, infinite limit

One can notice that the concept of limit is based on the tendency of how the
function values change. We can extend the so-called “finite limit at a finite
point” (that we have considered so far). Let us look at what possibilities we
have:

Let f : R ⊃→ R.

1o If D(f) is a set that is not bounded above, and there exists an A ∈ R

such that for any error bound ε > 0 there is a number ω ∈ R such that
for all points x > ω, x ∈ D(f): |f(x) − A| < ε, then we say that the
limit of the function f at (+∞) is A.

Notation: lim
+∞

f = A or lim
x→+∞

f(x) = A or f(x)→ A when x→ +∞.

For example, lim
x→+∞

1
x = 0.

2o If D(f) is a set that is not bounded below, and there exists an A ∈ R

such that for any error bound ε > 0 there is ω ∈ R such that for all
points x < ω, x ∈ D(f): |f(x) − A| < ε, we say that the limit of the
function f at (−∞) is A.

Notation: lim
−∞

f = A or lim
x→−∞

f(x) = A or f(x)→ A as x→ −∞.

For example, lim
x→−∞

1
x = 0.

3o If a ∈ R, moreover, the domain of definition D(f) contains points other
than a arbitrarily close to a, and for all K ∈ R there exists a δ > 0
such that for all x ∈ D(f), x 6= a, |x− a| < δ: f(x) > K, then we say
that the limit of f at a is +∞.
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Notation: lim
a
f = +∞ or lim

x→a
f(x) = +∞ or f(x)→ +∞ as x→ a.

For example, lim
x→0

1
x2 = +∞.

4o If a ∈ R, moreover, the domain of definition D(f) contains points other
than a arbitrarily close to a, and for all K ∈ R there exists a δ > 0
such that for all x ∈ D(f), x 6= a, |x− a| < δ: f(x) < K, then we say
that the limit of f at a is −∞.

Notation: lim
a
f = −∞ or lim

x→a
f(x) = −∞ or f(x)→ −∞ as x→ a.

For example, lim
x→0

(− 1
x2 ) = −∞.

5o If D(f) is not bounded above, and for any number K ∈ R there exists
an ω ∈ R such that for any point x > ω, x ∈ D(f): f(x) > K, then we
say that the limit of the function f at (+∞) is +∞.

Notation: lim
+∞

f = +∞ or lim
x→+∞

f(x) = +∞ or f(x) → +∞ as x →
+∞.

For example, lim
x→+∞

x2 = +∞.

6o If D(f) is not bounded below, and for any number K ∈ R there exists
an ω ∈ R such that for all points x < ω, x ∈ D(f): f(x) > K, then we
say that the limit of the function f at (−∞) is +∞.

Notation: lim
−∞

f = +∞ or lim
x→−∞

f(x) = +∞ or f(x) → +∞ as x →
−∞.

For example, lim
x→−∞

x2 = +∞.

7o If D(f) is not bounded above, and for any number K ∈ R there exists
an ω ∈ R such that for all points x > ω, x ∈ D(f): f(x) < K, then we
say that the limit of f at (+∞) is −∞.

Notation: lim
+∞

f = −∞ or lim
x→+∞

f(x) = −∞ or f(x) → −∞ as x →
+∞.

For example, lim
x→+∞

(−x2) = −∞.

8o If D(f) is not bounded below, and for any number K ∈ R there exists
an ω ∈ R such that for all points x < ω, x ∈ D(f): f(x) < K, then we
say that the limit of f at (−∞) is −∞.

Notation: lim
−∞

f = −∞ or lim
x→−∞

f(x) = −∞ or f(x) → −∞ as x →
−∞.

For example, lim
x→−∞

(−x2) = −∞.
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Sequences are functions whose domain of definition is N. The set N is not
bounded above, therefore a function a : N→ N, that is, a sequence (an) may
have a limit at (+∞). Comparing the definitions of an → A, an → +∞ or
an → −∞ with the definition of the limit of a function at (+∞), we obtain
that

lim an = A⇐⇒ lim
+∞

a = A,

lim an = +∞⇐⇒ lim
+∞

a = +∞,

lim an = −∞⇐⇒ lim
−∞

a = −∞.

7.1.3 One-sided limit

It can happen that there are points in the domain of definition arbitrarily
close to the point a both on the left and on the right side of a, however, the
function f has no limit at a. Sometimes we can say something about the
behavior of the function even in such a case.

9o If the point a ∈ R is such that there are points x ∈ D(f), x > a
arbitrarily close to a, and there exists a number A ∈ R such that
for any error bound ε > 0 there exists δ > 0 such that for all points
x ∈ D(f), a < x < a+δ: |f(x)−A| < ε, then we say that the right-side
limit of f at a is A.

Notation: lim
a+0

f = A or lim
x→a+0

f(x) = A. Sometimes f(a + 0) denotes

the right-side limit of the function f at a. [Traditionally, in the case
a = 0, instead of “0 + 0” we simply write “0+” everywhere.

For example the function

f : R→ R, f(x) :=

{

1 if x ≥ 0,
−1 if x < 0

has no limit at 0, however, limx→0+ f(x) = 1 or f(0+) = 1.]

10o If a ∈ R is such that there are points x ∈ D(f), x > a arbitrarily close
to a, and for any number K ∈ R there exists a δ > 0 such that for
all points x ∈ D(f), a < x < a + δ: f(x) > K, then we say that the
right-side limit of f at a is +∞.

Notation: lim
a+0

f = +∞ or lim
x→a+0

f(x) = +∞.

For example, the limit lim
x→0

1
x does not exist, but limx→0+

1
x = +∞.

11o If a ∈ R is such that there are points x ∈ D(f), x > a arbitrarily close
to a, and for any number K ∈ R there exists a δ > 0 such that for
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all points x ∈ D(f), a < x < a + δ: f(x) < K, then we say that the
right-side limit of f at a is −∞.

Notation: lim
a+0

f = −∞ or lim
x→a+0

f(x) = −∞.

For example, the limit lim
x→0

(− 1
x ) does not exist, but limx→0+(− 1

x ) =

−∞.

12o If a ∈ R is such that there are points x ∈ D(f), x < a arbitrarily close
to a, and there exists an A ∈ R such that for any error bound ε > 0
there exists a δ > 0 such that for all points x ∈ D(f), a − δ < x < a:
|f(x)−A| < ε, then we say that the left-side limit of f at a is A.

Notation: lim
a−0

f = A or lim
x→a−0

f(x) = A. Sometimes f(a − 0) denotes

the left-side limit of f at a. [Traditionally, in case a = 0, instead of
“0− 0” we write “0−” everywhere.

For example, in the example after definition 9o lim
x→0−

f(x) = −1 or

f(0−) = −1.]
13o If a ∈ R is such that there are points x ∈ D(f), x < a arbitrarily close

to a, and for any number K ∈ R there exists a δ > 0 such that for
all points x ∈ D(f), a − δ < x < a: f(x) > K, then we say that the
left-sided limit of f at a is +∞.

Notation: lim
a−0

f = +∞ or lim
x→a−0

f(x) = +∞.

For example lim
x→0−

(− 1
x ) = +∞.

14o If a ∈ R is such that there are points x ∈ D(f), x < a arbitrarily close
to a, and for any number K ∈ R there exists a δ > 0 such that for
all points x ∈ D(f), a − δ < x < a: f(x) < K, then we say that the
left-sided limit of f at a is −∞.

Notation: lim
a−0

f = −∞ or lim
x→a−0

f(x) = −∞.

For example limx→0−
1
x = −∞.

The icons in Fig. 7.2 summarize the different cases of limits.
We can also formulate the relationship between the one-sided limits and

the limit:
If there exists lim

a−0
f as well as lim

a+0
f , and lim

a−0
f = lim

a+0
f , then the function f

has a limit at a, and
lim
a
f = lim

a−0
f = lim

a+0
f.

Note that whenever a ∈ R is a point where only the right-sided or only
the left-sided limit may exist at the point a and it does exist, then the limit
of f at a will be this very one-sided limit.
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7.2 Exercises

1. limx→2
2x2−x−6
x2−x−2 =? limx→∞

2x2−x−6
x2−x−2 =?

2. limx→1
x4−2x2−3
x2−3x+2 =? limx→2−0

x4−2x2−3
x2−3x+2 =? limx→2+0

x4−2x2−3
x2−3x+2 =?

3. limx→1

(

3
1−x3 − 2

1−x2

)

=?

4. limx→0
sin 3x

x =? limx→0
sin 3x
sin 5x =? limx→0

tg2x
x =?

5. limx→0
1−cos x

x2 =? limx→0
tgx−sin x

x3 =?

6. limx→0
e2x−1

x =? limx→0
2x−1

x =?

7. limx→0
sh(x+2)
sh(x−2) =?

8. limx→+∞
√
x2 + 2−

√
x2 + 2x− 3 =?

limx→−∞
√
x2 + 2−

√
x2 + 2x− 3 =?

9. Is there a number k ∈ R for which the limit

lim
x→3

x3 − 9x2 + kx− 27

x2 − 6x+ 9

exists and is real?



Chapter 8

Differentiability

Differentiability means the smoothness of a function. A differentiable func-
tion is continuous, and its graph cannot contain any breaks or spires. The
following topics will be discussed.

• The concept of derivative and its geometric meaning

• Derivatives of elementary functions

• Differentiation rules

• Monotonicity and extreme values

• Convexity and inflection

• Function analysis

• Taylor polynomial

• L’Hospital’s rule

8.1 Differentiability

8.1.1 The concept of derivative and its geometric mean-

ing

Let us examine two simple functions: f1 : R→R, f1(t) := t2 and f2 : R→R,
f2(t) := |t|. Let us fix the point x := 0. As one can easily check, f1 and
f2 are even; bounded below and not bounded above; increasing on the set
of positive numbers, decreasing on the set of negative numbers; attain their
minima at the point x = 0 with minimum value 0; and both are continuous
at the point x = 0.

In spite of the many similarities, it is apparent that the function f1 is
smooth at the point x = 0, while the function f2 breaks at this point.

69
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f
1

f
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0 K

f
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Figure 8.1

Is there a “device” which would be able to detect whether a function is
smooth at a point, while another one is not smooth?

Let f : R ⊃→ R be an arbitrary function, x ∈ D(f) a given point. We
introduce the difference quotient of f belonging to x as the function

Kf
x : D(f) \ {x} → R, Kf

x (t) :=
f(t)− f(x)

t− x .

Apply this “device” to the functions f1 and f2 at the point x := 0 (Fig. 8.1).
As one can see, in the case of the smooth function f1, the difference quo-

tient function Kf1
0 has a limit (it can be made continuous) at 0, while for the

function f2 with the break the difference quotient function Kf2
0 has no limit

at 0.
This investigation motivates that a function whose difference quotient has

a limit at the point it belongs to be called differentiable at that point. We
will denote this property as f ∈ D[x].

If f ∈ D[x], then the limit of the difference quotient function of f is called
derivative of the function f at x:

lim
t→x

f(t)− f(x)
t− x =: f ′(x).



8.1. Differentiability 71

It is easy to show that t − x → 0 in case t → x, however, f(t)−f(x)
t−x does

not go to infinity, which can only be the case if f(t) − f(x) → 0, so if f is
differentiable at x, then it must be continuous at x, too.

How did we create our “device”, which is able to detect the smoothness of
a function? First we will show a geometric approach. Let f ∈ D[x]. Draw a
straight line (a so-called secant) through two different points, (x, f(x)) and
(t, f(t)) of the coordinate system. The slope of this line is

f(t)− f(x)
t− x .

[That is what we denoted as Kf
x (t).]

x t

t−x

f(t)−f(x)

(x,f(x))

(t,f(t))

secant

tangent

Figure 8.2

If t tends to x, then the secants tend to a limit position called tangent,
so the slopes of the secants tend to the slope of the tangent (Fig. 8.2). [It is
this limit value that we called derivative.]

The other one is a physical interpretation. Assume that the movement
of a point is described by the position-time function t 7→ s(t). The average
velocity during the time interval [t0, t] is the quotient of the displacement
s(t)− s(t0) and the total time t− t0, that is

s(t)− s(t0)
t− t0

.

[This quotient is often denoted by ∆s
∆t .] If we shorten the time interval “beyond

all bounds”, the average velocity will be arbitrarily close to a number (by the
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assumption that the position-time function is smooth), and this number is
called instantaneous velocity:

lim
t→t0

s(t)− s(t0)
t− t0

=: v(t0) or lim
∆t→0

∆s

∆t
= v.

[One can see that the instantaneous velocity is the limit of the average velocity
and the derivative of the position-time function: s′(t0) = v(t0).]

The function f : R→ R, f(t) := t2 does not only look smooth at the point
x := 0. Let x ∈ R be an arbitrary real number. Let us examine whether the
difference quotient of the function f has a limit at x.

lim
t→x

f(t)− f(x)
t− x = lim

t→x

t2 − x2
t− x = lim

t→x

(t− x)(t+ x)

t− x = lim
t→x

(t+ x) = 2x.

So, f ∈ D[x] and f ′(x) = 2x.
The function which gives the difference quotient of f at each x (where the

function is differentiable) is called derivative of the function f , and is denoted
by f ′. In our example f ′ : R→ R, f ′(x) = 2x.

The function f : R→ R, f(t) := t2 is often mentioned as the x2 function,
and its derivative is denoted by (x2)′. With this convention in mind we can
write

(x2)′ = 2x.

8.1.2 Derivatives of the elementary functions, differen-

tiation rules

Let us look at some further examples. Let f : R→ R, f(t) := t3, x ∈ R.

lim
t→x

f(t)− f(x)
t− x = lim

t→x

t3 − x3
t− x

= lim
t→x

(t− x)(t2 + tx+ x2)

t− x = lim
t→x

(t2 + tx+ x2) = 3x2,

thus f ∈ D[x] and f ′(x) = 3x2, or briefly (x3)′ = 3x2.
Let f : R→ R, f(t) := sin t, x ∈ R.

lim
t→x

f(t)− f(x)
t− x = lim

t→x

sin t− sinx

t− x = lim
t→x

2 sin t−x
2 cos t+x

2

t− x

= lim
t→x

(

sin t−x
2

t−x
2

cos
t+ x

2

)

= 1 · cosx = cosx.

(During the transformation we used a consequence of the trigonometric addi-
tion formulas. Since limu→0

sinu
u = 1, therefore in case t→ x, u := t−x

2 → 0,
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so limt→x
sin t−x

2
t−x
2

= 1.) So, f ∈ D[x], that is, the sine function is differentiable

at all x ∈ R, and f ′(x) = cosx, or briefly (sinx)′ = cosx.
One can show the differentiability of several other functions in a similar

manner, and as a result of the calculations we obtain the derivatives as well.
In the following summary we have collected the derivatives of some im-

portant functions:

(xα)′ = αxα−1, α ∈ R, (lnx)′ =
1

x
,

(sinx)′ = cosx, (loga x)
′ =

1

x ln a
(a > 0, a 6= 1),

(cosx)′ = − sinx, (arcsin x)′ =
1√

1− x2
,

(ex)′ = ex, (arccos x)′ = − 1√
1− x2

,

(ax)′ = ax ln a (a > 0), (arctg x)′ =
1

1 + x2
,

(tg x)′ =
1

cos2 x
, (arsh x)′ =

1√
x2 + 1

,

(ctg x)′ = − 1

sin2 x
, (arch x)′ =

1√
x2 − 1

(x > 1),

(sh x)′ = ch x, (arth x)′ =
1

1− x2 (−1 < x < 1),

(ch x)′ = sh x, (arcth x)′ =
1

1− x2 (|x| > 1),

(th x)′ =
1

ch2x
,

(cth x)′ = − 1

sh2x
.

During operations with differentiable functions we often obtain a differen-
tiable function. For example, if f, g ∈ D[x], then

lim
t→x

(f+g)(t)−(f+g)(x)

t− x = lim
t→x

f(t)− f(x) + g(t)− g(x)
t− x

= lim
t→x

f(t)−f(x)
t− x +lim

t→x

g(t)−g(x)
t− x =f ′(x)+g′(x).

Consequently, the function f + g is also differentiable at the point x, and
(f + g)′(x) = f ′(x) + g′(x).

One can verify the following theorems in a similar manner:

Theorem 8.1. If f ∈ D[x] and λ ∈ R, then λf ∈ D[x] and (λf)′(x) =
λf ′(x).
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Theorem 8.2. If f, g ∈ D[x], then f + g ∈ D[x] and (f + g)′(x) = f ′(x) +
g′(x), moreover, f · g ∈ D[x] and (f · g)′(x) = f ′(x)g(x) + f(x)g′(x).

Theorem 8.3. If g ∈ D[x] and g(x) 6= 0, then 1
g ∈ D[x] and

(

1
g

)′
(x) =

− g′(x)
g2(x) .

Theorem 8.4. If f, g ∈ D[x] and g(x) 6= 0, then f
g ∈ D[x] and

(

f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)
g2(x)

.

Theorem 8.5. If g∈D[x] and f ∈D[g(x)], then f◦g∈D[x] and (f ◦g)′(x)=
f ′(g(x)) · g′(x).
Theorem 8.6. If f ∈ D[x], f ′(x) 6= 0, and the inverse function f−1 exists,
then by using the notation u := f(x) we have f−1 ∈ D[u], and (f−1)′(u) =

1
f ′(x) =

1
f ′(f−1(u)) .

8.1.3 The relationship between the derivative and the

properties of the function

How do we benefit form the fact that a function is differentiable (smooth)
and we know its derivative?

a) Let f ∈ D[x]. This means that whenever t is close to x, f(t)−f(x)
t−x is close

to f ′(x). From this follows a further expressive and useful meaning of the
differentiability. Namely, if t ≈ x, then

f(t)− f(x)
t− x ≈ f ′(x), which implies f(t)− f(x) ≈ f ′(x)(t− x) or

f(t) ≈ f(x) + f ′(x)(t− x).
This means that at points t that are close to x the function values can be
approximated by values of a first degree polynomial (straight line). The
function ex(t) := f(x) + f ′(x)(t − x) (t ∈ R) is the tangent of f at the
point (x, f(x)).

b) The sign of the derivative informs us about the increase of the function.

Let f ∈ D[x] and f ′(x) > 0. Then

f(t)− f(x)
t− x ≈ f ′(x) if t ≈ x.

Since f ′(x) > 0, therefore f(t)−f(x)
t−x > 0 if t ≈ x. This means that if

t1 < x, then f(t1) < f(x), and if t2 > x, then f(t2) > f(x). So, for
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any points t1, t2 for which t1 and t2 are both close to x and t1 < x < t2,
f(t1) < f(x) < f(t2). One can also show that if f ′(x) > 0 at every point
x of an interval I, then the function f is strictly monotonically increasing
on the interval I, that is, for all x1, x2 ∈ I, x1 < x2: f(x1) < f(x2).

c) The derivative can also be applied for seeking local extreme values. A
function f has a local minimum at the point a ∈ D(f) if there exists an
interval around a such that for any x ∈ D(f), chosen from this interval,
f(x) ≥ f(a).

If f ∈ D[a], and the function f has a minimum at the point a, then
f ′(a) = 0. Should f ′(a) 6= 0, for example f ′(a) > 0 hold, then there
should be two points t1 < a < t2 close to a for which f(t1) < f(a) < f(t2),
which contradicts the fact that f has a local minimum at a.

Consequently, a function that is differentiable at all points of an open
interval may have a local extreme value only at a point where its derivative
is zero.

Attention! If f ∈ D[a] and f ′(a) = 0, then it is possible that there is
no extreme value at a. For example, in case f : R → R, f(t) := t3:
(t3)′ = 3t2, therefore f ′(0) = 3 · 02 = 0, but the function f has no local
extreme value at 0.

d) The derivative also tells us about the shape of a function. The function f
is called convex on the interval I if for all x1, x2 ∈ I, x1 < x2 the graph
of the function is below the chord connecting the points (x1, f(x1)) and
(x2, f(x2)) on the interval [x1, x2].

It can be verified that a differentiable function f is convex on the interval I
if and only if its derivative f ′ is monotonically increasing on this interval.

We can decide if f ′ is monotonically increasing by examining the sign
of its derivative. If f ′ is differentiable, then by introducing the second
derivative f ′′ := (f ′)′, we are led to the theorem: if f ′′(x) > 0 (x ∈ I),
then f is convex on I.

(Similarly, we can define the concept of a concave function, and we can
obtain a similar sufficient condition for such a function as well.)

A point a ∈ D(f) is called inflection point of the function f if the shape
of the function is different on intervals before and after this point (that is,
the function changes from convex to concave or from concave to convex
at this point). For example, the function f(x) = x3 has an inflection at 0.

One can show that if a ∈ D(f) is an inflection point of the twice differen-
tiable function f , then f ′′(a) = 0.

Attention! If f is twice differentiable at the point a, and f ′′(a) = 0, then
it may not have an inflection at a. For example, in case of the function
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f : R → R, f(t) := t4 the second derivative is f ′′(t) = 12t2, and so
f ′′(0) = 0, but the function f is convex on the whole interval R (and not
concave on any sub-interval).

e) How can we use our previous results for sketching the curve of a function?
It is advisable to follow the steps on the example of Exercise 3.

1. Prepare the derivative function f ′.
2. Find the zeros of f ′ (or the points where f ′ may change sign).
3. Calculate the second derivative f ′′.
4. Find the zeros of f ′′ (or the points where f ′′ may change sign).
5. The domain of definition of the function is slashed into open intervals

by the zeros (or the points of possible sign changes) of f ′ and f ′′. We
examine the signs of the derivatives on these intervals, from which we
can determine the monotonicity and shape properties of the function.
(It is helpful to prepare a table for the function analysis.)

6. We calculate some important characteristics: the values of the local
minima and maxima, if they exist, the limits (possibly one-sided ones,
too) of the function at each point where the function is not defined,
but there may be a limit.

7. We sketch the curve of the function.

8.1.4 Multiple derivatives and the Taylor polynomial

We have seen the roles of the first and second derivatives of a function. As a
generalization, let us introduce the higher-order derivatives.

If f ′ is differentiable, then f ′′ := (f ′)′.
If f ′′ is differentiable, then f ′′′ := (f ′′)′.
...
If f (k) is differentiable, then f (k+1) := (f (k))′, k = 1, 2, . . ..
We remark that the apostrophes are only used for denoting the first three

derivatives, so f (1) := f ′, f (2) := f ′′, f (3) := f ′′′. Sometimes it is useful to
follow the convention that f (0) := f .

“Sufficiently smooth” functions can be well approximated with polynomi-
als. We have already seen that if f ∈ D[a], then for the tangent function

ea(t) := f(a) + f ′(a)(t− a) (t ∈ R)

we have
ea(a) = f(a);

e′a(t) = f ′(a), therefore e′a(a) = f ′(a), so the derivative of ea and that of f
are equal at a.
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One can also see that

lim
t→a

f(t)− ea(t)
t− a = lim

t→a

f(t)− (f(a) + f ′(a)(t− a))
t− a

= lim
t→a

f(t)− f(a)
t− a − f ′(a) = 0,

which expresses the fact that the tangent function ea is such an approximation
to the function f that even if the difference f(t) − ea(t) is magnified by
dividing it by (t − a), the obtained quotient will be close to 0 whenever t is
close to a.

The tangent function ea is just a first degree polynomial. What should
that higher-order polynomial look like which would provide an even better
approximation?

Let P (x) := 3− 2x+ 4x2 − 5x3. Then P (0) = 3.

P ′(x) = −2 + 8x− 15x2, P ′(0) = −2;
P ′′(x) = 8− 30x, P ′′(0) = 8;

P ′′′(x) = −30, P ′′′(0) = −30.

One can easily check that for all x ∈ R

P (x) = P (0) + P ′(0)x+
P ′′(0)

2!
x2 +

P ′′′(0)

3!
x3,

that is, a polynomial was fairly well (in this case exactly) approximated
with the aid of a polynomial, the coefficients of which are the higher-order
derivatives of the function at a point (now this point was 0), divided by the
factorial of the order of the derivative in each term.

The above two observations lead us to the so-called Taylor formula. As-
sume that f is so “smooth” that even the derivative function f (n+1) is con-
tinuous in a neighborhood K(a) ⊂ D(f) of a ∈ D(f). Let Tn : R→ R,

Tn(x) := f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n

the so-called nth Taylor polynomial. (One can see that T1 = ea.) It is easy

to check that Tn(a) = f(a), T ′n(a) = f ′(a), T ′′n (a) = f ′′(a), . . . , T (n)
n (a) =

f (n)(a) (that is, the Taylor polynomial Tn possesses the same property as the
tangent function ea.) It can be verified that under such a condition for all
x ∈ K(a) there exists a point c between x and a such that

f(x) = Tn(x) +
f (n+1)(c)

(n+ 1)!
(x− a)n+1,
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which means that the function f is so well approximated by the Taylor poly-
nomial that

f(x)− Tn(x)
(x− a)n =

f (n+1)(c)

(n+ 1)!
(x− a) ≈ 0 if x ≈ a.

So, the Taylor polynomial approximates the function f fairly well (in the
order n); that is, the values of f at points close to a can be approximated
very accurately by function values of a polynomial.

8.1.5 L’Hospital’s rule

With the aid of the derivatives we can calculate some seemingly complicated
function limits. One of L’Hospital’s rules says that if f and g are differentiable
on an open interval I and at the point a (which can either be an element or
one of the end points of the interval, and can even be +∞ or −∞), and

lim
x→a

f(x) = lim
x→a

g(x) = 0,

however, the quotient of the derivatives has a limit

lim
x→a

f ′(x)

g′(x)
=: L,

then the quotient of f and g has a limit as well, and

lim
x→a

f(x)

g(x)
= L.

The same holds when at the point a f and g tends to +∞ or −∞ instead of
0 [the two infinite limits may have opposite signs, too].

Apply L’Hospital’s rule to calculate the limit lim
x→0

cosx− cos 3x

x2
.

Both the numerator and the denominator are 0 at 0, therefore it is enough
to calculate the limit of the quotient of the derivatives.

lim
x→0

(cosx−cos 3x)′

(x2)′
= lim

x→0

− sinx+3 sin 3x

2x
= −1

2
lim
x→0

sinx

x
+

3

2
lim
x→0

sin 3x

x

= −1

2
· 1 + 9

2
lim
x→0

sin 3x

3x
= −1

2
+

9

2
= 4.

In this manner,

lim
x→0

cosx− cos 3x

x2
= 4.

[The limit of the quotient of the derivatives could have also been calculated
by using L’Hospital’s rule:
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lim
x→0

− sinx+ 3 sin 3x

2x
= lim

x→0

− cosx+ 9 cos 3x

2
=
−1 + 9

2
= 4.]

Unfortunately, not even L’Hospital’s rule is able to give a simple answer to
every “critical” limit value problem. For example,

lim
x→∞

sh(x+ 2) = lim
x→∞

sh(x− 2) = +∞.

If we consider the derivatives, then

lim
x→∞

ch(x+ 2) = lim
x→∞

ch(x− 2) = +∞,

then the derivatives of these will read as

lim
x→∞

sh(x+ 2) = lim
x→∞

sh(x− 2) = +∞,

and so on and so on. We will never obtain the limit lim
x→∞

sh(x+ 2)

sh(x− 2)
by

applying L’Hospital’s rule. [We remark that

lim
x→∞

sh(x+ 2)

sh(x− 2)
= lim

x→∞
ex+2 − e−(x+2)

ex−2 − e−(x−2)
= lim

x→∞

e2 − e−2

e2x

e−2 − e2

e2x

= e4.]

8.2 Exercises

1. Differentiate the function f(x) := 3x5 +
√
x+ ln sin2( 1x ).

Solution: f ′(x) = 3 · 5x4 + 1
2x
− 1

2 + 1
sin2( 1

x )
· 2 sin( 1x ) · cos( 1x ) · (− 1

x2 ).

2. Differentiate the functions

g(x) := 4x3 − 2x2 + 5x− 3;

h(x) := (x− 2)3 sin(4x);

l(x) := xa + ax + ax+ x
a + a

x (a>0);

k(x) := (sinx)cos x;

m(x) := arctg tgx+1
1−tgx .

3. Sketch the curve of the function f : R→ R, f(x) := 2x−1√
x2+1

.

Solution:

a) f ′(x) =
2
√
x2+1−(2x−1) 2x

2
√
x2+1

x2 + 1
=

2(x2+1)−2x2+x

(x2 + 1)
3
2

=
x+ 2

(x2+1)
3
2

.
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b)
x+ 2

(x2 + 1)
3
2

= 0, x = −2 (the fraction does not change sign at any other

point since the denominator is positive).

c) f ′′(x) =
(x2 + 1)

3
2 − (x+ 2)

3
2 (x2 + 1)

1
2 2x

(x2 + 1)3

=
x2 + 1− (3x2 + 6x)

(x2 + 1)
5
2

=
−2x2 − 6x+ 1

(x2 + 1)
5
2

.

d)
−2x2 − 6x+ 1

(x2 + 1)
5
2

= 0, −2x2 − 6x+ 1 = 0







x1 = 6+
√
44

−4 ≈ −3.16,
x2 = 6−

√
44

−4 ≈ 0.16.

e)

−3.16 −2 0.16
f ′ - - - - - - - - - - - - - - - - - - - | + + + + + + + + + + +

f mon. decreasing min increasing
f ′′ - - - - - - - | + + + + + + + + + + + + | - - - - - -

f shape concave | inflection | convex | inflection | concave

f) f(−2) = − 5√
5
= −

√
5 ≈ −2.23,

limx→−∞
2x−1√
x2+1

= limx→∞
2− 1

x

−
√

1+ 1
x2

= −2,

limx→∞
2x−1√
x2+1

= limx→∞
2− 1

x
√

1+ 1
x2

= 2.

g)

f

2

−2

5 

Figure 8.3

4. Analyze the curves of the following functions:

g : R→ R, g(x) := e−x2

,
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h : R \ {−2, 8}, h(x) := x
x2−6x−16 ,

l : R+ → R, l(x) := x lnx,

k : R→ R, k(x) := ex

1+ex .

5. Prepare the Taylor polynomial of the order n := 11 for the function
f(x) := sinx around the point a := 0.

Solution:

f(x) = sinx, f(0) = 0,

f ′(x) = cosx, f ′(0) = 1,

f ′′(x) = − sinx, f ′′(0) = 0,

f ′′′(x) = − cosx, f ′′′(0) = −1,
f (4)(x) = sinx, f (4)(0) = 0,

f (5)(x) = cosx, f (5)(0) = 1,

...
...

f (11)(x) = − cosx f (11)(0) = −1,
f (12)(x) = sinx f (12)(0) = 0.

[One can see that f = f (4) = f (8) = . . . = f (4k) = . . . = sin.]

Thus,

T11(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +

1

9!
x9 − 1

11!
x11

Remark: If the sine function is approximated by its Taylor polynomial
T11, then, e.g., at x := 0, 1 we have

| sin 0, 1− T11(0, 1)| =
| sin c|
12!

0, 112 ≤ 0, 112

12!

=
10−12

479001600
< 2 · 10−9 · 10−12 = 2 · 10−21.

Moreover, if 0 ≤ x ≤ π
2 , then (by exploiting the fact that x ≤ π

2 < 2)

| sinx− T11(x)| =
| sin c|
12!

x12 ≤ 1

12!

(π

2

)12

<
212

12!

≤ 2 · 10−9 · 212 = 8192 · 10−9 < 10−5.

Clearly, the values of T11 approximate the values of the sine function fairly
well (at least with an accuracy of four decimal digits) on the interval [0, π2 ].
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6. Prepare the Taylor polynomials for the following functions:

g(x) : = ex, a : = 0, n : = 10,

h(x) = cosx, a : = 0, n : = 12,

l(x) =
√
1 + x, a : = 0, n : = 2,

k(x) =
1√

1 + x2
, a : = 0, n : = 2.

7. Calculate the limit limx→0 x
2 lnx.

Solution:

lim
x→0

x2 lnx = lim
x→0

lnx

x−2
.

Since

lim
x→0

(lnx)′

(x−2)′
= lim

x→0

x−1

−2x−3
= lim

x→0
−1

2
x2 = 0,

therefore

lim
x→0

lnx

x−2
= 0, and so lim

x→0
x2 lnx = 0.

8. Calculate the following limits:

a) limx→0
xtgx−1

x2 .

b) limx→0

√
cos x−1
sin2 2x

.

c) limx→0
1−√cos x
1−cos

√
x
.

d) limx→∞
xln x

(ln x)x .



Chapter 9

Integrability, integration

Integrability of a function means that the “domain under the graph” of the
function has an area. We will elaborate a method for determining this area.
We will trace several problems to the calculation of the area under the graph.
The following topics will be discussed.

• The concept and geometric meaning of the Riemann integral

• Integration rules

• The Newton–Leibniz formula

• Primitive functions

• Primitive functions of the elementary functions

• Some geometric and physical applications of the integral

• Fourier series

• Improper integral

9.1 Integration

9.1.1 The concept and geometric meaning of the Rie-

mann integral

It is well known that the area of a rectangle of length u > 0 and width v > 0
is uv. In case of u > 0 and v < 0 let us call uv the “signed area”. The areas of
curvilinear shapes were already investigated in the early ages of mathematics.
Let us now examine the area of the domain “under the parabola”

H := {(x, y) | x ∈ [0, 1], y ∈ [0, x2]}.

83
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id
2

1/n i/n

(i/n)
2

Figure 9.1

Divide the interval [0, 1] into n equal parts. The mesh points are then x0 =
0, x1 = 1

n , x2 = 2
n , . . . , xn = n

n . Let Sn := 1
n · ( 1n )2+ 1

n · ( 2n )2+ . . .+ 1
n · (nn )n,

that is, the sum of the areas of those rectangles whose base is 1
n , and whose

height is the function value of id2 at the mesh points (Fig. 9.1).
Sn is the area of a “staircase shape”. If we increase the number n of the

mesh points, then the staircase shapes will fit better and better to the set H,
and so we can expect that the limit of the sequence (Sn) will exactly be the
area of the set H. By using the fact that for all k ∈ N, 12 + 22 + . . .+ k2 =
k(k+1)(2k+1)

6 ,

limSn = lim
1

n3
(12 + 22 + . . .+ n2) = lim

1

n3
n(n+ 1)(2n+ 1)

6

= lim
2n2 + 3n+ 1

6n2
= lim

2 + 3
n + 1

n2

6
=

1

3
.

So, let the area of the set H be 1
3 .

This train of thought will be generalized.
Let f : [a, b]→ R be a function.
Let

τ := {x0, x1, x2, . . . , xi−1, xi, . . . , xn} ⊂ [a, b],

with
a = x0 < x1 < x2 < . . . < xi−1 < xi < . . . < xn = b

be a partition of the interval [a, b].
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Let us set a point ξi within all sub-intervals [xi−1, xi] (i = 1, 2, . . . , n.)
Prepare the sum approximation of the function f for the partition τ :

σ(τ) : = f(ξ1)(x1 − x0) + f(ξ2)(x2 − x1) + . . .+ f(ξn)(xn − xn−1)

=
n

∑

i=1

f(ξi)(xi − xi−1).

(This σ(τ) corresponds to the area Sn of the staircase shape, where the point
ξi was taken at the right end of each sub-interval.)

We call a function integrable if the sum approximations σ(τ) get infinitely
close to a number as the partition is “refined”. More precisely:

Definition 9.1. We say that the function f : [a, b] → R is integrable on
the interval [a,b], if there is a number I ∈ R such that for any error bound
ε > 0 there is a δ > 0 such that for all partitions τ of the interval [a, b] for
which

max{xi − xi−1 | i = 1, 2, . . . , n} < δ

and for any points ξi ∈ [xi−1, xi] taken from the sub-intervals [xi−1, xi] of the
partition τ the sum approximation σ(τ) =

∑n
i=1 f(ξi)(xi − xi−1) satisfies

|σ(τ)− I| < ε.

If f is integrable on the interval [a, b], then this will be denoted as f ∈ R[a, b]
(in honour of Riemann, who introduced the integral in this manner), and let

∫ b

a

f := I.

(“integral from a to b”). Moreover, in this case we say that the set

H := {(x, y) | x∈ [a, b], y∈ [0, f(x)] if f(x)≥0, or y∈ [f(x), 0] if f(x)<0}

(“domain under the graph”) has a signed area, and this area is the number
I ∈ R.

It is common to refer to this concept by introducing the notation ∆xi :=
xi − xi−1 and writing

lim
∆xi→0

∑

f(ξi)∆xi = I

or

lim
∆x→0

∑

f(ξ)∆x =

∫ b

a

f(x)dx.

(It is worth having a look at the metamorphose of the symbols!)
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f

a b c

Figure 9.2

It is easy to see that if f : [a, b]→ R, f(x) = c is a constant function, then

lim
∆xi→0

∑

f(ξi)∆xi = lim
∆xi→0

n
∑

i=1

c(xi − xi−1) = c(b− a),

as we have expected from the geometry, so f ∈ R[a, b] and
∫ b

a
f = c(b− a).

9.1.2 Relationship between the Riemann integral and

the operations

It can be proved that if f ∈ C[a, b], then f ∈ R[a, b]. It follows also from the
geometric approach that if f ∈ R[a, b] and f ∈ R[b, c], then f ∈ R[a, c], what
is more,

∫ b

a

f +

∫ c

b

f =

∫ c

a

f (Fig. 9.2).

It is not so obvious, but one can verify the following

Theorem 9.1. If f ∈ R[a, b] and λ ∈ R, then λf ∈ R[a, b], and
∫ b

a

λf = λ

∫ b

a

f.

Theorem 9.2. If f, g ∈ R[a, b], then f + g ∈ R[a, b], and
∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.
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Theorem 9.3. If f, g ∈ R[a, b], and f(x) ≥ g(x) for all x ∈ [a, b], then

∫ b

a

f ≥
∫ b

a

g.

An important consequence of the latter theorem is the statement that if
f ∈ R[a, b], then |f | ∈ R[a, b], and due to

−|f | ≤ f ≤ |f |

it follows that

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |,

thus
∣

∣

∣

∣

∣

∫ b

a

f

∣

∣

∣

∣

∣

≤
∫ b

a

|f |.

9.1.3 Newton–Leibniz formula

It is apparent from the geometry that the following theorem holds.

Theorem 9.4. If f ∈ C[a, b], then there exists a c ∈ [a, b] such that

∫ b

a

f = f(c) · (b− a) (Fig. 9.3).

The number
∫ b
a
f

b−a is called mean value of the function f . This is a gen-
eralization of the mean value of finitely many numbers. (The theorem says
that the mean value is a function value.)

The statements that we have seen so far are expressive, however, we still
owe the reader a comfortable way of calculating the integral.

For simplicity, let f ∈ C[a, b]. We introduce the area function as T :
[a, b]→ R, T (x) :=

∫ x

a
f (Fig. 9.4).

Let α ∈ (a, b) be an arbitrary point, and let us examine the difference
quotient

T (x)− T (α)
x− α

in case x ∈ (a, b), x 6= α.

T (x)− T (α)
x− α =

∫ x

a
f −

∫ α

x
f

x− α =
1

x− α

∫ x

α

f =
1

x− αf(c)(x− α) = f(c),

where c ∈ [α, x] (Fig. 9.5). From this, by exploiting the fact that f ∈ C[α],
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f

a c b

Figure 9.3

f

T(x)

a x b

Figure 9.4
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f

T(α)

a α c x b

Figure 9.5

lim
x→α

T (x)− T (α)
x− α = lim

x→α
f(c) = f(α),

on the other hand,

lim
x→α

T (x)− T (α)
x− α = T ′(α).

So, the area function T is such that its derivative is f . Since T (a) = 0 and

T (b) =
∫ b

a
f , therefore

∫ b

a

f = T (b)− T (a).

We have arrived at a famous result (in a rather heuristic way).

Theorem 9.5 (Newton–Leibniz formula). If f ∈ C[a, b], and T is such a
function that T ′ = f , then

∫ b

a

f = T (b)− T (a).

For example, if f : [0, 1]→ R, f(x) = x2, then the function T : [0, 1]→ R,
T (x) := x3

3 will be appropriate (since (x
3

3 )′ = x2), thus

∫ 1

0

f = T (1)− T (0) = 13

3
− 03

3
=

1

3
,

which is in accordance with the result obtained in the introducing example.
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9.1.4 Primitive functions

In some sense, a primitive function represents the opposite of derivation (also
called antiderivative).

Definition 9.2. Let I ⊂ R be an open interval, and f : I → R. The
differentiable function F : I → R is a primitive function of f if F ′ = f .

If F and G are primitive functions of f , then F ′ = f and G′ = f , and
so (F − G)′ = 0, but on an interval the derivative of a function can only
be zero if the function itself is constant. So, there exists a c ∈ R such that
F −G = c, that is, the primitive functions of a function can only differ from
each other by a constant. (Also, the area function T can only differ from any
other primitive function by a constant.)

The calculation of the integral has become extremely simple, since we only
have to find a primitive function of f . If we denote it by F , then, according
to the traditional way of writing

∫ b

a

f(x)dx = [F (x)]ba,

where [F (x)]ba := F (b)− F (a).
For example, for the calculation of

∫ π

0
sinxdx F (x) := − cosx is a suitable

primitive function ((− cosx)′ = sinx), thus

∫ π

0

sinxdx = [− cosx]π0 = 1− (−1) = 2.

Let us agree that a primitive function of f will be denoted by
∫

f instead of
F , and

∫

f(x)dx instead of F (x). Searching for a primitive function is the
“inverse” of derivation. Some simple methods for finding primitive functions
(which you can easily check by derivation!) are as follows.

∫

λf = λ
∫

f,
∫

(f + g) =
∫

f +
∫

g.

∫

f ′g = fg −
∫

fg′ (integration by parts).

∫

φα · φ′ = φα+1

α+1 if α 6= −1.
∫

φ′

φ = ln ◦φ if φ(x) > 0 (x ∈ I).

If
∫

f(x)dx = F (x), then
∫

f(ax+ b) = 1
aF (ax+ b).

(
∫

f) ◦ φ =
∫

(f ◦ φ · φ′) (integration by substitution).
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The inversion of the differentiation “rules” yields the following table of inte-
grals.

∫

xαdx = xα+1

α+1 (α 6= −1),
∫

1
xdx = lnx if x > 0, and

∫

1
xdx = ln(−x) if x < 0

∫

exdx = ex,
∫

axdx = ax

ln a ,
∫

sinxdx = − cosx,
∫

cosxdx = sinx,
∫

1
cos2 x = tgx,

∫

1
sin2 x

= −ctgx,
∫

shxdx = chx,
∫

chxdx = shx,
∫

1
1+x2 dx = arctgx,

∫

1√
1−x2

dx = arcsinx, x ∈ (−1, 1),
∫

1√
x2+1

dx = arshx,
∫

1√
x2−1

dx = archx, x ∈ (1,+∞).

9.1.5 The applications of integrals

1. If f, g ∈ R[a, b], and for all x ∈ [a, b], f(x) ≥ g(x), then the area of the
set

H := {(x, y) | x ∈ [a, b] és g(x) ≤ y ≤ f(x)}
is given by the formula

T =

∫ b

a

f −
∫ b

a

g =

∫ b

a

(f − g)
(

=

∫ b

a

f(x)− g(x)dx
)

(Fig. 9.6). (Note that the functions f and g are not necessarily nonnega-
tive!)

2. It is known from geometry that the volume of a brick of length a, width
b and height m is V = ab ·m. By generalization, the volume of a prism is
the product of the area of the base and the height, that is V = T ·m.

Consider now a three-dimensional shape H (for example a potato). Pre-
pare all plane sections of H perpendicular to the x axis of the coordinate
system. (In the example of the potato a knitting needle, stuck through
the potato could play the role of the x axis. We split at right angles to
this needle.) Assume that the plane section S(x) obtained at x has an
area, and the function

S : [a, b]→ R, x 7→ S(x),

is continuous on the interval [a, b] (if x′ and x′′ are close to each other,
then S(x′) and S(x′′) are close, too) (Fig. 9.7).

Divide the interval [a, b]:

τ : a = x0 < x1 < x2 < . . . < xi−1 < xi < . . . < xn = b,
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a b
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Figure 9.7
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and take arbitrary points ξi ∈ [xi−1, xi] (i = 1, 2, . . . , n) (Fig. 9.8).

S(ξi)(xi − xi−1) is the volume of a prism whose “area of base” is S(ξi),
and whose height is (xi − xi−1). Summing these areas we get a sum
approximation:

n
∑

i=1

S(ξi)(xi − xi−1).

By refining the partition of the interval [a, b], the sum approximations
have a limit (S ∈ C[a, b], therefore S ∈ R[a, b]), which will be the volume
of the shape:

V = lim
xi−xi−1→0

∑

S(ξi)(xi − xi−1) =

∫ b

a

S(x)dx.

Calculating the volume becomes especially simple if H is a “solid of rev-
olution”, obtained by “rotating a function f : [a, b] → R, f ∈ C[a, b],
f(x) ≥ 0 (x ∈ [a, b]) around the x axis” (Fig. 9.9). Then the area of the
plane section S(x) is the area of a circle:

S(x) = πf2(x),

thus

V =

∫ b

a

πf2(x)dx.

It is easy to see Cavalieri’s principle, too, which says that if two
shapes have pairwise equal plane sections, parallel with a plane (that is,
S1(x) = S2(x) for all x, where the x axis is a straight line perpendicu-
lar to the plane), and the functions S1 and S2, obtained in this manner,
are continuous, then the two shapes have the same volume, since due to
S1 = S2

∫ b

a

S1(x)dx =

∫ b

a

S2(x)dx.

3. Let f : [a, b]→ R a continuously differentiable function. The set

H := {(x, f(x) | x ∈ [a, b])}

is often called the graph of f . Our aim is to calculate its arc length.
Divide the interval [a, b] again:

τ : a = x0 < x1 < x2 < . . . < xi−1 < xi < . . . < xn = b.
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Figure 9.10

The length of the line segment connecting the points (xi−1, f(xi−1)) and
(xi, f(xi)) (Fig. 9.10) is

li : =
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2

= (xi − xi−1)

√

1 +

[

f(xi)− f(xi−1)

xi − xi−1

]2

.

By Lagrange’s mean value theorem there exists a ξi ∈ (xi−1, xi) for which
f(xi)− f(xi−1) = f ′(ξi) · (xi − xi−1), thus

li = (xi − xi−1)
√

1 + [f ′(ξi)]2.

One can see that the length of the broken line, approximating the graph
of f is

n
∑

i=1

li =

n
∑

i=1

√

1 + [f ′(ξi)]2(xi − xi−1),

which is a sum approximation of the integral for the function φ : [a, b]→R,
φ(x) :=

√

1 + [f ′(x)]2. So, the arc length of the graph of f is

I(f) = lim
xi−xi−1→0

∑√

1 + [f ′(ξi)]2(xi − xi−1) =

∫ b

a

√

1 + [f ′(x)]2dx.
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Figure 9.11

4. If f : [a, b] → R, f(x) ≥ 0 (x ∈ [a, b]) is a continuously differentiable
function, then, in a similar manner, the side of the solid of revolution
obtained by rotating the graph of f around the x axis has the area

P (f) =

∫ b

a

2πf(x)
√

1 + [f ′(x)]2dx.

5. It is known that the vector pointing to the center of a mass-point system
is given by

rs =
m1r1 +m2r2 + . . .+mnrn

m1 +m2 + . . .+mn
,

where mi is the mass of the ith mass point, and ri is the position vector
pointing from a fixed point to the ith mass point (Fig. 9.11). Let f ∈
R[a, b], f(x) ≥ 0, x ∈ [a, b], and

H := {(x, y) | x ∈ [a, b], y ∈ [0, f(x)]}
a homogeneous disc of density ρ (Fig. 9.12).

To find the center of mass of the disc let us divide the interval [a, b].

τ : a = x0 < x1 < x2 < . . . < xi−1 < xi < . . . < xn = b.

By choosing the points ξi :=
xi−1+xi

2 (i = 1, 2, . . . , n), the position vector
directed to the center of mass of the rectangle [xi−1, xi]× [0, f(ξi)] is

ri

(

ξi,
f(ξi)

2

)

,
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and the mass of the point, substituting the rectangle is

mi = ρf(ξi)(xi − xi−1).

The approximate value of the first coordinate of the center of mass is

m1ξ1 +m2ξ2 + . . .+mnξn
m1 +m2 + . . .+mn

=

∑n
i=1 ρf(ξi) · ξi(xi − xi−1)
∑n

i=1 ρf(ξi)(xi − xi−1)
,

while that of the second coordinate is

m1
f(ξ1)

2 +m2
f(ξ2)

2 + . . .+mn
f(ξn)

2

m1 +m2 + . . .+mn
=

1
2

∑n
i=1 ρf

2(ξi)(xi − xi−1)
∑n

i=1 ρf(ξi)(xi − xi−1)
.

Apparently, both expressions contain sum approximations of integrals,
therefore no surprise that the vector rs = (xs, ys) pointing to the center
of mass of the disc will be as follows:

xs =

∫ b

a
xf(x)dx

∫ b

a
f(x)dx

; ys =
1
2

∫ b

a
f2(x)dx

∫ b

a
f(x)dx

.

6. The moment of inertia of a mass point of mass m rotating around the
point O is Θ = ml2, where l is the distance of the mass point from O
(Fig. 9.13).

If a rod of length L and mass M rotates around an axis, fixed to the end
of the rod and perpendicular to it, then we can calculate the moment of
inertia of the rod with respect to the axis. Divide the interval [0, L] as

τ : 0 = x0 < x1 < x2 < . . . < xi−1 < xi < . . . < xn = L.
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The mass of the rod segment [xi−1, xi] is

M

L
· (xi − xi−1),

while the distance to the rotation axis can be chosen as

ξi := xi,

so the moment of inertia of this segment can be given as

M

L
· (xi − xi−1)ξ

2
i .

The sum of the moments of inertia of the segments approximates the
moment of inertia of the whole rod:

n
∑

i=1

M

L
ξ2i (xi − xi−1).

From this, the moment of inertia of the rod is

Θ = lim
xi−xi−1→0

n
∑

i=1

M

L
ξ2i (xi − xi−1) =

∫ L

0

M

L
x2dx,

which, by the Newton–Leibniz formula can be calculated as
∫ L

0

M

L
x2dx =

[

M

L

x3

3

]L

0

=
M

L

L3

3
=

1

3
ML2,
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thus Θ = 1
3ML2.

These few examples have shown what a wide variety of problems can be
traced to integrals.

We will sketch a further important application.

9.1.6 Fourier series

Let f : R → R be a periodic function with period 2π. (If the period of f is
p > 0, then by a simple transformation (x := 2π

p t) we can make it periodic
with period 2π.) Our aim is to compose f as a “sum” of the well known
functions cos ◦nid (n = 0, 1, 2, . . .) and sin ◦nid (n = 0, 1, 2, . . .), that is, to
construct such sequences a0, a1, a2, . . . , an, . . . and b1, b2, . . . , bn, . . . that for
all x ∈ R

f(x) =
a0
2

+ a1 cosx

+ b1 sinx+ a2 cos 2x+ b2 sin 2x+ . . .+ an cosnx+ bn sinnx+ . . . .
(9.1)

It is not clear at this point for what functions f it is possible to do this.
Moreover, if we do obtain some sequences (an) and (bn), then how do we know
that the sum on the right-hand side returns f? Now, by formal reasoning,
let us start from the assumption that f ∈ C(R) and for all x ∈ R it is equal
to the sum of the infinite series

a0
2

+
∞
∑

n=1

an cosnx+ bn sinnx.

1. Integrate the equality (9.1) from (−π) to π by the assumption that the
sum can be integrated termwise:

∫ π

−π

f(x)dx =

∫ π

−π

a0
2
dx+

∞
∑

n=1

an

∫ π

−π

cosnxdx+ bn

∫ π

−π

sinnxdx.

Since
∫ π

−π

a0
2
dx =

a0
2
2π,

∫ π

−π

cosnxdx =

[

sinnx

n

]π

−π

= 0,

∫ π

−π

sinnxdx =

[− cosnx

n

]π

−π

= 0,

therefore

a0 =
1

π

∫ π

−π

f(x)dx.
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2. Let k ∈ N be a fixed index. Multiply the equality (9.1) by (cos kx), and
integrate from (−π) to π:

∫ π

−π

f(x) cos kxdx =
a0
2

∫ π

−π

cos kxdx

+
∞
∑

n=1

an

∫ π

−π

cosnx cos kxdx+ bn

∫ π

−π

sinnx cos kxdx.

By trigonometric formulas, for n 6= k
∫ π

−π

cosnx cos kxdx =

∫ π

−π

1

2
(cos(n+ k)x+ cos(n− k)x)dx

=
1

2

(

[

sin(n+ k)x

n+ k

]π

−π

+

[

sin(n− k)x
n− k

]π

−π

)

= 0,

and for n = k
∫ π

−π

cos2 kxdx =

∫ π

−π

1 + cos 2kx

2
dx =

[

1

2
x+

sin 2kx

4k

]π

−π

= π.

By a similar calculation
∫ π

−π

sinnx cos kxdx = 0.

So, the terms of the infinite series are all zero with the exception of one,
hence

ak =
1

π

∫ π

−π

f(x) cos kxdx.

If the equality (9.1) is multiplied by (sin kx) and integrated from (−π) to
π, then the same way of calculation yields

bk =
1

π

∫ π

−π

f(x) sin kxdx.

3. When the function f is continuous, then the obtained numbers

a0 =
1

π

∫ π

−π

f(x)dx, ak =
1

π

∫ π

−π

f(x) cos kxdx, bk =
1

π

∫ π

−π

f(x) sin kxdx,

k = 1, 2, . . . are called Fourier coefficients of f . It can be verified that
(apart from some very exceptional functions, unimaginable in practise)
f is given as the sum of the Fourier series, made up with the above
coefficients:

f(x) =
a0
2

+
∞
∑

k=1

ak cos kx+ bk sin kx (x ∈ R).

This method can be used for the investigation of vibrations and waves.
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9.1.7 Improper integrals

So far we have investigated integrability and calculated integrals over closed
and bounded intervals [a, b] only. Now we shall extend our concepts.

Definition 9.3. Let f : [a,+∞)→ R be a function for which ∀ω ∈ R, ω > a:
f ∈ R[a, ω]. We say that the improper integral of f is convergent on
the interval [a,+∞) if

∃ lim
ω→∞

∫ ω

a

f ∈ R.

Let us denote this as f ∈ R[a,+∞). If f ∈ R[a,+∞), then

∫ +∞

a

f := lim
ω→∞

∫ ω

a

f.

If the limit limω→∞
∫ ω

a
f does not exist, or if it exists, but not finite, then

we say that the improper integral of f is divergent.

For example,

∫ +∞

1

1

x2
dx = lim

ω→∞

∫ ω

1

1

x2
dx = lim

ω→∞

[

− 1

x

]ω

1

= lim
ω→∞

(

− 1

ω
+ 1

)

= 1,

thus id−2 ∈ R[1,+∞).
Since

lim
ω→∞

∫ ω

1

1

x
dx = lim

ω→∞
[lnx]∞1 = lim

ω→∞
lnω = +∞,

therefore id−1 /∈ R[1,+∞), that is, the improper integral of id−1 is divergent.
There are other extensions as well.

Definition 9.4. Let f : (a, b] → R be a function for which ∀µ ∈ (a, b),
f ∈ R[µ, b]. We say that f ∈ R[a, b] if

∃ lim
µ→a

∫ b

µ

f ∈ R.

Then
∫ b

a

f := lim
µ→a

∫ b

µ

f.

If the limit limµ→a

∫ b

µ
f does not exist or it is infinite, then we say that the

integral of f is divergent on the interval [a, b]. (This can even happen to
bounded functions, but in most cases the victims are unbounded functions.)
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For example,
∫ 1

0

1√
x
dx = lim

µ→0

∫ 1

µ

1√
x
dx = lim

µ→0
[2
√
x]1µ = lim

µ→0
2− 2

√
µ = 2,

so id−
1
2 ∈ R[0, 1].
∫ 1

0

1

x
dx = lim

µ→0

∫ 1

µ

1

x
dx = lim

µ→0
[lnx]1µ = lim

µ→0
(ln 1− lnµ) = +∞,

hence the integral of the function id−1 is divergent on the interval [0, 1] as
well.

One of the main results obtained for improper integrals is that
∫ ∞

0

e−x2

dx =

√
π

2
.

This implies (by further extension of the concepts) that if m ∈ R and δ > 0,
then

∫ +∞

−∞
e−

(x−m)2

2σ2 dx =
√
2πσ,

which plays an important role in probability theory.

9.2 Exercises

1. Check the methods for finding primitive functions.

Solution: If α 6= −1, then

a) (φ
α+1

α+1 )
′ = 1

α+1 · (α+ 1)φα · φ′, therefore
∫

φα · φ′ = φα+1

α+1 .

b) (f ·g−
∫

f ·g′)′ = f ′·g+f ·g′−f ·g′ = f ′·g, therefore
∫

f ′·g = f ·g−
∫

f ·g′
(integration by parts).

c) (
∫

f ◦φ ·φ′)′ = f ◦φ ·φ′, on the other hand, ((
∫

f)◦φ)′ = f ◦φ ·φ′. Since
the derivatives of the two functions are equal on an interval, therefore the
functions may only differ by a constant, thus (

∫

f) ◦ φ =
∫

(f ◦ φ · φ′)
(integration by substitution).

2. Find the following primitive functions:
∫

sin3 x cosxdx =?
∫

tgx cos5 xdx =?
∫

2x+3
(x2+3)4 dx =?

∫

x
1+x2 dx =?

∫

tgxdx =?
∫

2x+3
x2+3x+10dx =?

∫

cos(5x− 1)dx =?
∫

1
x2+2dx =?

∫

1
x2+3x+10dx =?
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3. Find the following primitive functions by integration by parts:
∫

xe2xdx =?
∫

x2e2xdx =?
∫

e2x sin 3xdx =?

∫

eax cos bxdx =?
∫

lnxdx =?
∫ √

1− x2dx =?

Solution:
∫

√

1− x2dx =

∫

1 ·
√

1− x2dx = x
√

1− x2 −
∫

x
−x√
1− x2

dx

= x
√

1− x2 −
∫

1− x2 − 1√
1− x2

dx

= x
√

1− x2 −
∫

√

1− x2 − 1√
1− x2

dx

= x
√

1− x2 −
∫

√

1− x2dx+ arcsinx.

From this 2
∫ √

1− x2dx = x
√
1− x2 + arcsinx, and so

∫

√

1− x2dx =
1

2
(x

√

1− x2 + arcsinx).

4. The graph of the function f : [0, r] → R, f(x) :=
√
r2 − x2 is a quarter

circle of radius r centered at the origin. Calculate the area and the cir-
cumference of the circle, and the volume and the surface of a sphere of
radius r.

5. Let a > 0. Calculate the area under the graph and the arc length of the
function ch|[0,a]

.

6. Where is the center of mass of the homogeneous semicircle of radius r?

7. Let f : R → R, f(x) := x2 if x ∈ [−π, π], and for all x ∈ R f(x + 2π) =
f(x− 2π) =: f(x) (Fig. 9.14).

a) Find the Fourier coefficients of f .

b) Expand f into Fourier series.

c) What does this series give for x := 0, x := π?

8. Calculate the following improper integrals:
∫ ∞

1

1

xα
dx =? (α > 1)

∫ ∞

0

e−atdt =? (a > 0)



104 9. Integrability, integration

f

−π π 3π

Figure 9.14

9. The gamma function.

Let Γ : [0,∞) → R, Γ(α) :=
∫∞
0
tαe−tdt. Show that Γ(0) = 1, Γ(1) = 1,

and for any α > 0 Γ(α+ 1) = (α+ 1)Γ(α).

Solution: Γ(0) =
∫∞
0
e−tdt = [e−t]∞0 = 1 (Here we have used an abbrevi-

ation: instead of limω→∞[e−t]ω0 we wrote [e−t]∞0 .)

Γ(α+ 1) =

∫ ∞

0

tα+1e−tdt = [−e−ttα+1]∞0 −
∫ ∞

0

−e−t(α+ 1)tαdt

= 0 + (α+ 1)

∫ ∞

0

tαe−tdt = (α+ 1)Γ(α).

Therefore,

Γ(1) = (0 + 1)Γ(0) = 1
Γ(2) = (1 + 1)Γ(1) = 2 · 1 = 2!
Γ(3) = (2 + 1)Γ(2) = 3 · 2! = 3!
...
Γ(n) = n! (n ∈ N).

The values Γ(α), α /∈ N can also be calculated (approximately).
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10. Calculate the mean value of sin2|[0,2π]
.

Solution:

1

2π

∫ 2π

0

sin2 xdx =
1

2π

∫ 2π

0

1− cos 2x

2
dx

=
1

2π

[

1

2
x− sin 2x

4

]2π

0

=
1

2π

1

2
2π =

1

2
.

The mean value of sin2|[0,2π]
is 1

2 .
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Chapter 10

Sequences and series of

functions

This is a supplementary chapter. Some problems arising in practice (such
as the approximation of functions or the approximate solution of ordinary
and partial differential equations) necessitate the forthcoming concepts and
results. The following topics will be discussed.

• The domain of convergence of a sequence of functions

• Pointwise and uniform convergence

• Continuity, differentiability and integrability of the limit function

• Convergence of a series of functions

• Weierstrass’ majority criterion

• Continuity, differentiability and integrability of the sum of a series of
functions

• Power series

• The Cauchy–Hadamard theorem

• Differentiability of the sum of a series, Abel’s theorem

10.1 Sequences and series of functions

10.1.1 Sequences of functions

Let H ⊂ R, H 6= ∅ be a set, and φ1, φ2, . . . , φn, . . . functions for which
φn : H → R (n ∈ N). Then we say that the sequence of functions (φn) is
“defined on the set H”.

107
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For example,

1. (idn) [here D(idn) = R, n ∈ N];

2. if n ∈ N, then φn : [0, 1]→ R, φn(x) :=







0 if x = 0,
1 if 0 < x < 1

n ,
0 if 1

n ≤ x ≤ 1;

3. if n ∈ N, then see Fig. 10.1;

φ
n

1/2n 1/n 1

1

Figure 10.1

4. if n ∈ N, then see Fig. 10.2;

5. * (
∑n

k=1 sin ◦(k · id)) [here again R is the domain of definition of each
function].

It is interesting to raise the question of whether the members of the se-
quence of functions(φn) get closer to some function if n is increased.

Definition 10.1. The convergence domain of the sequence of functions
(φn) [D(φn) = H, n ∈ N] is

KH(φn) := {x ∈ H | the number sequence (φn(x)) is convergent}.

In Example 1, KH(idn) = (−1, 1], because if −1 < x < 1, then idn(x) =
xn → 0; if x := 1, then idn(1) = 1→ 1, but if x > 1 or x ≤ −1, then (idn(x))
does not converge.
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φ
n

1/2n 1/n 1

n

Figure 10.2

In Example 2, KH(φn) = [0, 1], since φn(0) = 0 → 0. If 0 < x < 1,
then there exists an N such that 1

N < x, and then the sequence (φn(x)) is
1, 1, . . . , 1, 0, 0, 0, . . . , 0, . . ., which tends to 0 (if n ≤ N , then φn(x) = 1, if
n > N , then φn(x) = 0).

The same holds for Examples 3 and 4.

Example 5* is a bit more difficult. If x = lπ (l ∈ Z), then the number
sequence is (

∑n
k=1 sin(klπ)) = (0), which tends to 0. So

KH

(

n
∑

k=1

sin ◦(k · id)
)

⊃ {lπ | l ∈ Z}.

Should there be further x ∈ R, x 6= lπ (l ∈ Z) in the convergence domain of
the function sequence, the sequence (sin kx) should converge to 0. Assume
that sin kx→ 0. Then sin(k + 1)x→ 0 would also hold, that is,

sin(kx+ x) = sin kx cosx+ cos kx sinx→ 0.

Since sinx 6= 0, sin kx → 0, therefore cos kx → 0 is also true. In this
manner, sin2 kx + cos2 kx → 0 would also hold, but it is impossible, since
sin2 kx+ cos2 kx = 1. Thus,

KH

(

n
∑

k=1

sin ◦(k · id)
)

= {lπ | l ∈ Z}.
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This is an important example because the topic of Fourier series gives rise to
several difficulties of the same kind.

Definition 10.2. Let (φn) be a sequence of functions defined on a set H. As-
sume thatKH(φn) 6= ∅. The limit function of the sequence of functions(φn)
is the function f : KH(φn)→ R for which

f(x) := limφn(x)

for all x ∈ KH(φn)

The notation f := limφn is often used.

In Example 1

lim idn : (−1, 1]→ R, (lim idn)(x) :=

{

0 if − 1 < x < 1,
1 if x = 1.

In Examples 2, 3 and 4

limφn : [0, 1]→ R, (limφn)(x) := 0.

In Example 5*

lim
n

∑

k=1

sin ◦(k · id) =
∞
∑

k=1

sin ◦(k · id) : {lπ | k ∈ Z} → R,

(

lim
n

∑

k=1

sin ◦(k · id)
)

(x) =
∞
∑

k=1

sin kx := 0.

When we compare the properties of the members of a sequence of functions
with the properties of the limit function in the examples, we can find some
interesting differences. In Example 1, idn is continuous and differentiable
on R, while lim idn is not continuous, and so of course not differentiable,
either. In Example 2 none of the functions φn is continuous, however, limφn
is not only continuous, but also differentiable. In Examples 3 and 4 both the
members φn and limφn are continuous, φn is not differentiable, and limφn
is smooth. But here we should notice another exciting difference:

In Example 3
∫ 1

0

φn =
1

2

1

n
· 1 =

1

2n
→ 0, and

∫ 1

0

limφn =

∫ 1

0

0 = 0,

while in Example 4
∫ 1

0

φn =
1

2

1

n
· n =

1

2
→ 1

2
, but

∫ 1

0

limφn =

∫ 1

0

0 = 0,
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so, the limit of the sequence consisting of the integrals of the members in the
sequence of functions is not the integral of the limit function.

In Example 5* the members of the sequence of functions are nice trigono-
metric, smooth and periodic functions on the whole R, while the limit func-
tion has rather poor properties, it is only periodic. . .

The above examples show that the concept of “pointwise convergence”
is not sufficient for the nice properties of the members of the sequence of
functions to be inherited by the limit function. We will try to do something
about this.

Definition 10.3. Let (φn) be a sequence of functions defined on the set
H 6= ∅. Assume that KH(φn) 6= ∅, and let E ⊂ KH(φn), E 6= ∅. We say
that the sequence of functions (φn) is uniformly convergent on the set E
if for any error bound ε > 0 there exists an index N ∈ N such that ∀n > N
and for all x ∈ E

|φn(x)− (limφn)(x)| < ε.

Let us denote this fact by φn →֒E limφn.

This means that the index N is independent of x, that is why this kind of
convergence is called uniform.

In Example 1 the convergence of (idn) is not uniform on the set (−1, 1].
But not even on (−1, 1)! However, if δ > 0, then on the interval E :=
[−1 + δ, 1− δ]

idn →֒E 0.

In Examples 2, 3 and 4 the convergence is not uniform on the interval [0, 1],
but for δ > 0

φn →֒[δ,1] 0

already holds.
Although in Example 5* the convergence is uniform on the set E :=

KH(
∑n

k=1 sin ◦(k · id)), it is of little avail. . .
What are the consequences of the uniform convergence of a sequence of

functions? We can put an end to the confusion seen in the examples.

Theorem 10.1. Let φn ∈ C[a, b] (n ∈ N). Assume that φn →֒[a,b] f. Then
f ∈ C[a, b].

Theorem 10.2. Let I ⊂ R be an open interval, φn : I → R (n ∈ N).
Assume that there is an x0 ∈ I such that (φn(x0)) is convergent. Suppose
φn is continuously differentiable on the interval I (φn ∈ C1(I), n ∈ N) and
φ′n →֒I g. Then the sequence of functions (φn) is also uniformly convergent to
a function f : I → R on the interval I (φn →֒I f), and f ∈ D(I), moreover,
f ′(x) = g(x) = limφ′n(x) for all x ∈ I.
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Briefly, the theorem states that

(limφn)
′ = limφ′n,

so the limit and the differentiation are interchangeable.

Theorem 10.3. Let φn ∈ R[a, b], (n ∈ N). Assume that φn →֒[a,b] f . Then

f ∈ R[a, b], and lim
∫ b

a
φn =

∫ b

a
f.

To put it more briefly, in case of uniform convergence

lim

∫ b

a

φn =

∫ b

a

limφn,

that is, the limit and the integration are interchangeable.

10.1.2 Series of functions

The concepts defined for sequences of functions can be extended to series of
functions with some obvious modifications.

Definition 10.4. Let (φn) be a sequence of functions defined on the set
H 6= ∅. Let Sn := φ1 + φ2 + . . . + φn (n ∈ N) be the nth partial sum. The
series of functions contributing to the sequence of functions (φn) is defined
as the sequence of functions (Sn), that is,

∑

φn := (Sn).

Definition 10.5. KH
∑

φn := KH(Sn).

One can see that KH
∑

φn = {x ∈ H |∑φn(x) is convergent}.

Definition 10.6. Assume that KH
∑

φn 6= ∅. We call

∞
∑

n=1

φn : KH
∑

φn → R,

( ∞
∑

n=1

φn

)

(x) :=
∞
∑

n=1

φn(x)

the sum function of the series of functions.

Clearly, (
∑∞

n=1 φn) (x) = limSn(x) for all x ∈ KH(Sn).
For example, in case φn := idn (n ∈ N), at any point x ∈ R

Sn(x) := x+ x2 + . . .+ xn =

{

xxn−1
x−1 if x 6= 1,

n if x = 1.

Therefore, limSn(x) =
x

1−x if x ∈ (−1, 1); if x ∈ R \ (−1, 1), then (Sn(x)) is
divergent. Thus, KH

∑

idn = (−1, 1), and (
∑∞

n=1 idn)(x) = x
1−x .
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Definition 10.7. Let (φn) be such a sequence of functions for which

KH
∑

φn 6= ∅.

Let E ⊂ KH
∑

φn. We say that
∑

φn is uniformly convergent on the set
E if the sequence of partial sums (Sn) is uniformly convergent on the set E.

Notation:
∑

φn →֒E

∑∞
n=1 φn.

A useful sufficient condition for the uniform convergence of a series of
functions:

Theorem 10.4 (Weierstrass’ majorant criterion). Let (φn) be a sequence of
functions defined on the set H 6= ∅ for which there is a sequence (an) ⊂ R+

of positive numbers such that |φn(x)| ≤ an (n ∈ N) for all x ∈ H, and also
∑

an is convergent. Then

∑

φn →֒H

∞
∑

n=1

φn.

Due to the conditions for the uniform convergence of the sequence of partial
sums of the series of functions, the following theorems (sketchily given here)
are valid:

• If φn ∈ C[a, b], and
∑

φn →֒[a,b]

∑∞
n=1 φn, then

∑∞
n=1 φn ∈ C[a, b].

• If φn ∈ C1(I), and
∑

φ′n →֒I g, then
∑∞

n=1 φn ∈ C1(I), and

( ∞
∑

n=1

φn

)′

=
∞
∑

n=1

φ′n = g.

(The summation is interchangeable with the differentiation.)

• If φn ∈ R[a, b], and
∑

φn →֒[a,b]

∑∞
n=1 φn, then

∑∞
n=1 φn ∈ R[a, b], and

∫ b

a

∞
∑

n=1

φn =
∞
∑

n=1

∫ b

a

φn.

(A series of functions can be integrated termwise.)

10.1.3 Power series

Power series are special series of functions.
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Definition 10.8. Let c0, c1, c2, . . . , cn, . . . be a number sequence, and a ∈ R

a number. The series of functions
∑

cn(id− a)n

is called power series with sequence of coefficients (cn) and “center” a ∈ R.

Let us consider a := 0 in the sequel for the sake of simpler formulation.

Theorem 10.5 (The Cauchy–Hadamard theorem). Let
∑

cnidn be a power
series.

1o If ( n
√

|cn|) is bounded, and lim sup n
√

|cn| 6= 0, then let

R : =
1

lim sup n
√

|cn|
(R is called convergence radius of the power series).

Then
(−R,R) ⊂ KH

∑

cnidn ⊂ [−R,R].

2o If ( n
√

|cn|) is not bounded above, then

KH
∑

cnidn = {0}.

3o If lim sup n
√

|cn| = 0, then

KH
∑

cnidn = R.

One can see that the convergence domain of a power series is always an
interval (in case 2o it is a degenerate interval), but in case 1o this interval
can either be (−R,R), (−R,R], [−R,R) or [−R,R]. Compare the conver-
gence domain of a power series with the convergence domain of the series of
functions

∑

sin ◦(k · id) of Example 5*, the difference is salient.

Theorem 10.6. Let
∑

cnidn be a power series for which ( n
√

|cn|) is bounded
above. Then the sum function

f : KH
∑

cnidn → R, f(x) :=
∞
∑

n=0

cnx
n

is not only continuous, but also differentiable on the open interval

int KH
∑

cnidn;
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what is more, for all x ∈ int KH
∑

cnidn

f ′(x) =
∞
∑

n=0

ncnx
n−1.

This theorem implies that ( n
√

|ncn|) = ( n
√
n n
√

|cn|) is bounded above if
( n
√

|cn|) is bounded above, moreover, the convergence domain of the power
series

∑

ncnidn−1 remains the same as the convergence domain of
∑

cnidn.
Therefore, the sum function of this power series is also differentiable, and

f ′′(x) =
∞
∑

n=2

n(n− 1)cnx
n−2

for all x ∈ int KH
∑

cnidn.
This train of thought can be continued:

f (k)(x) =
∞
∑

n=k

n(n− 1) . . . (n− k + 1)cnx
n−k, x ∈ int KH

∑

cnidn.

Note that f(0) = c0, f
′(0) = c1 . . . , f (k)(0) = k!ck, . . .

Theorem 10.7 (Abel). Let
∑

cnidn be a power series with convergence ra-
dius R > 0. Assume that

∑

cnR
n is convergent. Then f ∈ C[R], that is,

limx→R f(x) =
∑∞

n=0 cnR
n.

10.2 Exercises

1. Find the domains of convergence for the following power series:

∑

idn,
∑ 1

n
idn,

∑ (−1)n
n

idn,
∑ 1

n2
idn,

∑ 1

5nn
idn,

∑ 1

n!
idn,

∑

nnidn.

Solution: lim sup n
√
1 = 1, lim sup n

√

1
n2 = 1, lim sup n

√

1
n! = 0,

lim sup n

√

1
n = 1, lim sup n

√

1
5nn = 1

5 , ( n
√
nn) = (n) is not bounded above.

KH
∑

idn = (−1, 1),

KH
∑ 1

n
idn = [−1, 1) (Leibniz’s theorem),
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KH
∑ (−1)n

n
idn = (−1, 1],

KH
∑ 1

n2
idn = [−1, 1],

KH
∑ 1

5nn
idn = [−5, 5),

KH
∑ 1

n!
idn = R,

KH
∑

nnidn = {0}.

2.

1 + x+ x2 + x3 + . . .+ xn + . . . =
1

1− x if |x| < 1.

Is it true that

1 + 2x+ 3x2 + . . .+ nxn−1 + . . . =

(

1

1− x

)′
=

1

(1− x)2 if |x| < 1?

Is it true that

x+ 2x2 + 3x3 + . . .+ nxn + . . . =
x

(1− x)2 if |x| < 1?

Calculate the sum

1 + 22x+ 32x2 + . . .+ n2xn−1 + . . . if |x| < 1.

3.

1 + x+ x2 + . . .+ xn + . . . =
1

1− x if |x| < 1.

Let x := −t. Then

1− t+ t2 − . . .+ (−1)ntn + . . . =
1

1 + t
if |t| < 1.

Is it true that

t− t2

2
+
t3

3
− . . .+ (−1)n t

n+1

n+ 1
+ . . . = ln(1 + t) if |t| < 1?

Is it true that

1− 1

2
+

1

3
− . . .+ (−1)n 1

n+ 1
+ . . . = ln 2?
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4.

1 + x+ x2 + . . .+ xn + . . . =
1

1− x if |x| < 1.

Let x := −t2. Then

1− t2 + t4 − . . .+ (−1)nt2n + . . . =
1

1 + t2
if |t| < 1.

Is it true that

t− t3

3
+
t5

5
− . . .+ (−1)n t2n+1

2n+ 1
+ . . . = arctgt if |t| < 1?

Is it true that

1− 1

3
+

1

5
− . . .+ (−1)n 1

2n+ 1
+ . . . =

π

4
?





Chapter 11

Multivariable functions

There are numerous phenomena that cannot be described by real functions.
Therefore we generalize our concepts, introduced so far for real functions.
The following topics will be discussed.

• Operations on vectors and matrices

• The concept and illustration of multivariable functions

• The limit of a vector sequence

• The limit and continuity of a multivariable function

11.1 Multivariable functions

11.1.1 The n-dimensional space

In the Linear Algebra course we learnt about the vector space Rn. If x ∈ Rn

is a vector, then x = (x1, x2, . . . , xn), where xi ∈ R is the ith coordinate of
x. The norm (length) of a vector x is

‖x‖ :=
√

x21 + x22 + . . .+ x2n ∈ R.

The norm of a vector satisfies the following properties:

1o ‖x‖ ≥ 0, and ‖x‖ = 0⇔ x = 0 ∈ Rn,

2o λ ∈ R ‖λx‖ = |λ|‖x‖,

3o ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

119
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Let ei := (0, . . . , 1i), . . . 0) ∈ Rn be the ith unit vector (‖ei‖ = 1), i =
1, 2, . . . , n. Then x = x1e1 + x2e2 + . . .+ xnen.

The inner product of the vectors a, b ∈ Rn is defined as the number

〈a, b〉 := a1b1 + a2b2 + . . .+ anbn ∈ R

The properties of the inner product:

1o 〈a, b〉 = 〈b, a〉,

2o 〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉,

3o if λ ∈ R, 〈λa, b〉 = 〈a, λb〉 = λ〈a, b〉,

4o 〈a, a〉 = ‖a‖2 ≥ 0,

5o |〈a, b〉| ≤ ‖a‖ · ‖b‖ (Cauchy–Bunyakovsky–Schwarz inequality).

The vectors a and b are orthogonal (perpendicular) if 〈a, b〉 = 0.
We are familiar with matrices, too. If A is a matrix of m rows and n

columns, then A ∈ Rm×n, where the jth element of the ith row is aij .
Let A,B ∈ Rm×n and λ ∈ R. Then C := A + B ∈ Rm×n, where cij =

aij + bij , and D := λA ∈ Rm×n, where dij = λaij .
If A ∈ Rm×n and B ∈ Rn×p, then S := A · B ∈ Rm×p, where sij =

∑n
k=1 aikbkj .
Let us agree that we identify the vector space Rn with the space of column

matrices Rn×1, which implies that the vector x ∈ Rn, x = (x1, x2, . . . , xn) is
identified with the column matrix

x =











x1
x2
...
xn











∈ Rn×1.

(We do not even make any distinction in their notation, what is more, we
say vector, but write a column matrix.) For example, if a, b ∈ Rn, then their
scalar product can be considered in the form

〈a, b〉 = a1b1 + a2b2 + . . .+ anbn = [a1 a2 . . . an]











b1
b2
...
bn











,

too, that is, as the matrix product of a row matrix of R1×n and a column
matrix of Rn×1.
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11.1.2 Multivariable functions

Let f : Rn ⊃→ Rk be a function of n variables with vector values of dimension
k. If x ∈ D(f) and x = (x1, x2, . . . , xn), then f(x) ∈ Rk, and f(x) =
(f1(x), f2(x), . . . , fk(x)), where fi : Rn

֌ R is the ith coordinate function of
f (i = 1, 2, . . . , k). Such a function f can be given in the form

f =











f1
f2
...
fk











.

For example, let

f : R2 → R3, f(x1, x2) :=





sin(x1x2)
x1 + x2
x2



 .

Here f1 : R2 → R, f1(x1, x2) := sin(x1x2) is the first coordinate function,
while f2 : R2 → R, f2(x1, x2) := x1 + x2 and f3 : R2 → R, f3(x1, x2) = x2
are the second and third coordinate functions, respectively.

Let us look at some special cases.

1o n = 1, k = 1, f ∈ R ֌ R is a real function that we have discussed so
far.

2o n > 1, k = 1, f ∈ Rn → R is an n-variable, real-valued or scalar-
valued function. It can be illustrated for n = 2 as follows. On a line
perpendicular to the plane at the point (x1, x2) ∈ D(f) we measure
the number f(x1, x2) ∈ R. The points obtained in this manner form a
surface (Fig. 11.1). Another way of illustration for the case n = 2 is
as follows. Let c ∈ R and

Nc := {(x1, x2) ∈ D(f) | f(x1, x2) = c}.

Nc is the level curve of the function f corresponding to the value c.
Plotting the contour lines for a few values c1 < c2 < . . . < cs tells a
lot about the function f . In cartography this is called contour map
(Fig. 11.2).

3o n := 1, k > 1, r ∈ R ֌ Rk is a vector-valued function in k dimensions
of a single variable.

Such a function can be illustrated for k = 3 as follows. Let D(r) :=
[α, β]. To a parameter value t ∈ [α, β] we assign a point in R3 given by
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r(t)
•

α βt

Figure 11.3

the coordinates r(t) := (x(t), y(t), z(t)). The points obtained in this
way form a space curve (Fig. 11.3). (Note that the space curve is the
range of the function r!)

For example,

r : [0, 6π]→ R3, r(t) :=





2 cos t
2 sin t
0.5t





is the section of a helix of height 3π that spirals up around a cylinder
of radius 2 (Fig. 11.4).

4o n > 1, k > 1, f ∈ Rn
֌ Rk is a multivariable function of vector

values.

When we assign the wind velocity vector to each point of the atmo-
sphere:

v ∈ R3
֌ R3,

then we obtain the so-called velocity function (or velocity field). The
gravitational field of a mass (for example, of a star) can also be defined
by assigning a vector, namely, the gravitational force, acting at the
given point, to each point of the space, and so a function g ∈ R3

֌ R3

describes the gravitational field of a mass (or a star).
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•

r(t)

t

Figure 11.4

11.1.3 Limit and continuity

Let us examine what properties can be extended to such functions.
Let a := (a1, a2, . . . , am) : N → Rm be a vector sequence. The vector

sequence (an) is convergent if it gets arbitrarily close to some point, more
precisely:

Definition 11.1. We say that the vector sequence (an) is convergent if
there exists a vector A ∈ Rm, A = (A1, A2, . . . , Am) such that for any error
bound ε > 0 there exists an index N such that for all n > N

‖an −A‖ < ε.

This will also be denoted by lim an = A or an → A. It is easy to see that

‖an −A‖ < ε⇔ |ain −Ai| <
ε√
m
, i = 1, 2, . . . ,m,

so, a vector sequence is convergent if and only if each of its coordinate
sequences (number sequences) are convergent. For example, the vector se-

quence
((

1
n ,

n
n+1

))

is convergent because 1
n → 0, n

n+1 → 1, therefore

lim
(

1
n ,

n
n+1

)

= (0, 1). The vector sequence (( 1n , (−1)n)) is not convergent

(divergent) because ((−1)n) is not convergent.
Let f ∈ Rn

֌ Rk and a ∈ D(f). The function f is called continuous at
the point a if at points close to a the function values are close to f(a), more
precisely:



11.1. Multivariable functions 125

Definition 11.2. We say that f is continuous at the point a if for all error
bounds ε > 0 there exists a δ > 0 such that for all x ∈ D(f), ‖x − a‖ < δ:
‖f(x)− f(a)‖ < ε.

This will also be denoted by f ∈ C[a].
One can see that for f = (f1, f2, . . . , fk) we have

‖f(x)− f(a)‖ < ε⇔ |fi(x)− fi(a)| <
ε√
k
, i = 1, 2, . . . , k,

and so f is continuous at a if and only if each of its coordinate functions is
continuous at a. This can also be defined in terms of sequences:

Theorem 11.1. Let f ∈ Rn
֌ Rk, a ∈ D(f). Then f ∈ C[a] ⇐⇒

for all sequences (xn) ⊂ D(f), xn → a : f(xn)→ f(a).

For example,

f : R2 → R3, f(x1, x2) :=





x1x2
x21
x2





is continuous at a := (1, 3) because for any sequence (x1n, x2n) → (1, 3),
x1n · x2n → 1 · 3, (x1n)2 → 12 and x2n → 3, therefore f(x1n, x2n)→ f(1, 3).
So, f ∈ C[(1, 3)].

Sometimes we need matrix-valued functions. If f ∈ Rn
֌ Rk×p, then

fij ∈ Rn
֌ R is the (i, j)th component of f . Let us call f continuous at

the point a ∈ D(f) if each of its components fij is continuous at a. (It is
sufficient to consider that Rk×p is identified with the vector space Rkp.)

A matrix-valued function is

f : R2 → R2×2, f(x1, x2) :=

[

x1x2 ex1

0 x1 + x2

]

.

Moreover, this function f is continuous at every point (a1, a2) ∈ R2.
Let a ∈ Rn and r > 0. The neighborhood of radius r of the point a is

defined as
Kr(a) := {x ∈ Rn | ‖x− a‖ < r}.

Let H ⊂ Rn and a ∈ Rn. The point a is called accumulation point of the
set H if in any neighborhood K(a) of a there are infinitely many points of
H. Let us denote this by a ∈ Ḣ.

Let f ∈ Rn
֌ Rk and a ∈ (D(f))˙.

Definition 11.3. We say that the function f has a limit at the point a if
there exists an A ∈ Rk such that for all error bounds ε > 0 there exists a
δ > 0 such that for all x ∈ D(f), ‖x− a‖ < δ, x 6= a:

‖f(x)−A‖ < ε.
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This will be denoted by lima f = A or limx→a f(x) = A or f(x) → A
whenever x→ a.

It is easy to see that the function f ∈ Rn
֌ Rk has a limit at the point

a ∈ (D(f))˙ if and only if each of its coordinate functions fi ∈ Rn
֌ R has a

limit at a.
The following theorem is again valid:

Theorem 11.2. lima f = A ⇐⇒ for all (xn) ⊂ D(f), xn → a, xn 6= a:
f(xn)→ A.

11.2 Exercises

1. Verify the Cauchy–Bunyakovsky–Schwarz inequality: for all vectors a, b ∈
Rn, a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

|〈a, b〉| ≤ ‖a‖ · ‖b‖,

or

|a1b1 + a2b2 + . . .+ anbn| ≤
√

a21 + a22 + . . .+ a2n ·
√

b21 + b22 + . . .+ b2n.

Solution:

1o If b = (0, 0, . . . , 0), then the statement is obviously true.

2o If b 6= 0, then for all λ ∈ R

0 ≤ 〈a+ λb, a+ λb〉 = 〈a, a〉+ 2〈a, b〉λ+ 〈b, b〉λ2

= ‖b‖2λ2 + 2〈a, b〉λ+ ‖a‖2.

Due to the fact that ‖b‖ 6= 0, this is such a second degree polynomial
which is nonnegative for all λ ∈ R. Therefore its discriminant D ≤ 0.
Thus,

4〈a, b〉2 − 4‖b‖2‖a‖2 ≤ 0,

〈a, b〉2 ≤ ‖a‖2‖b‖2,
|〈a, b〉| ≤ ‖a‖ · ‖b‖.

2. Think over that the function f : R2 → R, f(x1, x2) := x21 + x22 can be
illustrated as a surface of revolution. How does the surface g : R2 → R,
g(x1, x2) := x21 + x22 − 2x1 + 4x2 + 1 look like?

3. Let F : R3 \ {0} → R3, F (r) := − Mr
‖r‖3 , where r = (x1, x2, x3), M > 0.

Find the coordinate functions of F =: (P,Q,R).
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4. Let

g : R2 → R3, g(x, y) :=





xy
x+ y
x− y



 ,

f : R3 → R, f(u, v, w) := u2v + w3.

Find the composition f ◦ g.

5. Let

f : R2 → R, f(x, y) :=

{ xy
x2+y2 if x2 + y2 6= 0,

0 if x2 + y2 = 0.

Does the function f have a limit at the point (0, 0) ∈ R2?

Solution: First let (xn, yn) := ( 1n , 0) (n ∈ N). (xn, yn) → (0, 0), but
(xn, yn) 6= (0, 0).

f(xn, yn) =
1
n · 0
1
n2 + 0

= 0→ 0.

If, however, (xn, yn) := ( 1n ,
1
n ) (n ∈ N), then though (xn, yn)→ (0, 0) and

(xn, yn) 6= (0, 0),

f(xn, yn) =
1
n · 1

n
1
n2 + 1

n2

=
1

2
→ 1

2
.

Since for two appropriate sequences, converging to (0, 0), the sequences of
the function values converge to different limits, f itself does not have a
limit at (0, 0).

6. Let

f : R2 → R, f(x, y) :=

{

x2y2

x2+y2 if x2 + y2 6= 0,

0 if x2 + y2 = 0.

Show that f ∈ C[(0, 0)].





Chapter 12

Differentiation of

multivariable functions

We introduce the concepts of partial derivatives, the differentiability of mul-
tivariable functions and the directional derivative. We will compute extreme
values with the aid of derivatives. The following topics will be discussed.

• Partial derivatives

• Differentiation of multivariable functions, the derivative matrix

• The relation between partial derivatives and the derivative matrix

• The tangent plane to a surface

• The tangent of a space curve

• Extreme values and their necessary condition

• Young’s theorem

• Second derivative, Taylor’s formula

• The sufficient condition of an extreme value

12.1 Multivariable differentiation

12.1.1 Partial derivatives

Let f : R2 ⊃→ R be a function. Consider an internal point a = (x, y) ∈
int D(f) of the domain of definition. Draw a straight line through the point
a parallel with the x axis, a point of which will be

(x+ t, y), t ∈ R,

129
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x

y

z

(x,y)

(x+t,y)

f(x,y)φ

Figure 12.1

then take the values of the function at these points: f(x + t, y). In this
manner we have defined a real function φ : R ⊃→ R, φ(t) := f(x+ t, y), the
graph of which is a curve lying on the surface (Fig. 12.1).

Definition 12.1. We say that the function f is partially differentiable
with respect to the first variable at the point (x, y) if φ is differentiable
at t = 0.

If φ ∈ D[0], then the partial derivative of f with respect to the first
variable at (x, y) is defined as φ′(0), that is,

∂1f(x, y) := φ′(0).

Keeping in mind the differentiability of real functions, the partial derivative
is none other than

∂1f(x, y) = lim
t→0

f(x+ t, y)− f(x, y)
t

.

One can see that the partial differentiability with respect to the first vari-
able only means the smoothness of the curve on the surface at the point t = 0,
and ∂1f(x, y) gives the slope of this curve. Apparently,

f(x+ t, y)− f(x, y)
t

≈ ∂1f(x, y) if t ≈ 0,

which tells us that moving from (x, y) in the direction of the first axis

f(x+ t, y) ≈ f(x, y) + ∂1f(x, y) · t if t ≈ 0.
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Similarly, if we draw a straight line through the point (x, y) parallel with the
y axis, then we get another surface curve ψ : R ⊃→ R, ψ(t) := f(x, y+ t). If
ψ ∈ D[0], then f is partially differentiable with respect to the second variable
at the point (x, y), and

∂2f(x, y) := ψ′(0) = lim
t→0

f(x, y + t)− f(x, y)
t

will be the partial derivative of f with respect to the second variable at the
point (x, y). The meaning of ∂2f(x, y) can be given similarly.

Instead of ∂1f(x, y) the notations ∂f
∂x (x, y), f

′
x(x, y) and D1f(x, y) are

also frequently used for the partial derivative. Corresponding notations are
employed for ∂2f(x, y), too.

Observe that when differentiating f partially with respect to the first vari-
able, the second coordinate y does not change, it remains constant. That is
why if we want to calculate the first partial derivative of, say, the function

f(x, y) := x2y3 + 2x+ y ((x, y) ∈ R2)

at an arbitrary point (x, y), then the variable y should be considered as
constant during the differentiation, so

∂1f(x, y) = 2xy3 + 2 + 0 ((x, y) ∈ R2).

In a similar manner, during partial differentiation with respect to the second
variable, x should be considered as constant, that is

∂2f(x, y) = x23y2 + 1 ((x, y) ∈ R2).

Unfortunately, the partial differentiability of f , even with respect to both
variables, does not even guarantee the continuity of f at that point. For
example, for the function

f : R2 → R, f(x, y) :=

{

1 if xy = 0,
0 if xy 6= 0.

∂1f(0, 0) = 0 and ∂2f(0, 0) = 0, but f /∈ C[(0, 0)].

12.1.2 The derivative matrix

Now our aim is to create such a differentiability concept which will be an
actual generalization of the differentiability of real functions.

Let f : R2 ⊃→ R, (x, y) ∈ int D(f).
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Definition 12.2. We say that f is differentiable at the point (x, y) if
there exist A1, A2 ∈ R and a function α : R2 ⊃→ R such that for any vector
h = (h1, h2) ∈ R2 for which (x+ h1, y + h2) ∈ D(f), the equality

f(x+ h1, y + h2)− f(x, y) = A1h1 +A2h2 + α(h1, h2)

is satisfied, where

lim
h→0

α(h)

‖h‖ = 0.

The limit limh→0
α(h)
‖h‖ = 0 ensures that the remainder α(h) be “small”.

Clearly, limh→0 α(h) = 0 holds too, but if we divide the values of α(h) by the
small number ‖h‖ ≈ 0, then we “magnify” the values of α(h), so, if even this
quotient tends to zero, then α(h) will be really “small”.

When h is of the form h := (h1, 0), then after rearranging and taking the
limit

lim
h→0

f(x+ h1, y)− f(x, y)
h1

= lim
h1→0

(

A1 +
α(h1, 0)

|h1|

)

= A1,

which means that if f is differentiable at the point (x, y), then A1 can only
be ∂1f(x, y).

Similarly, for vectors of the form h := (0, h2) we would obtain that A2 can
only be ∂2f(x, y).

So, if f is differentiable at the point (x, y), then the change of the function
f(x+ h1, y+ h2)− f(x, y) can be well approximated by the “linear function”

∂1f(x, y)h1 + ∂2f(x, y)h2,

what is more, the error of the approximation, α(h1, h2) is negligibly small:
even the magnified quotient α(h)

‖h‖ is close to 0 when ‖h‖ is small.
By using matrices, the differentiability of f means that there exists a

function α : R2 ⊃→ R such that

f(x+ h1, y + h2)− f(x, y) = [∂1f(x, y) ∂2f(x, y)]

[

h1
h2

]

+ α(h1, h2)

and

lim
h→0

α(h)

‖h‖ = 0.

The differentiability of the function f at the point (x, y) ∈ int D(f) will be
denoted as f ∈ D[(x, y)], and the derivative of f at this point as

f ′(x, y) := [∂1f(x, y) ∂2f(x, y)] ∈ R1×2.
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If f ∈ D[(x, y)], then f ∈ C[(x, y)], too, since

lim
h1,h2→0

f(x+ h1, y + h2)− f(x, y)

= lim
h1,h2→0

∂1f(x, y)h1 + ∂2f(x, y)h2 + α(h1, h2) = 0.

In the applications of mathematics the notations h1 =: ∆x, h2 =: ∆y are
often used; and the change of the function is denoted by

∆f := f(x+ h1, y + h2)− f(x, y).
Then

∆f ≈ ∂f

∂x
∆x+

∂f

∂y
∆y

refers to the fact that the change of the function ∆f is well approximated by
the linear function prepared from the partial derivatives. This has a version
using “infinitesimal quantitites”, which hardly makes any sense:

df =
∂f

∂x
dx+

∂f

∂y
dy.

Here df is called “differential of the function f ”.
The concepts that we introduced for functions of two variables can be

generalized to functions of more than two variables without any difficulty.
Let f : Rn ⊃→ R, x = (x1, x2, . . . , xi, . . . , xn) ∈ int D(f). Then

∂if(x) := lim
t→0

f(x1, x2, . . . , xi + t, . . . , xn)− f(x1, x2, . . . , xi, . . . , xn)
t

is the partial derivative of f with respect to the i-th variable.
We call the function f : Rn ⊃→ R differentiable at the point x ∈ int D(f)

if there exist

A := [A1 A2 . . . An] ∈ R1×n, and a function α : Rn ⊃→ R

such that for any vector h ∈ Rn

f(x+ h)− f(x) = Ah+ α(h), where lim
h→0

α(h)

‖h‖ = 0.

It is again true that Ai = ∂if(x), i = 1, 2, . . . , n. If f ∈ D[x], then

f ′(x) = [∂1f(x) ∂2f(x) . . . ∂nf(x)].

Finally, let f : Rn ⊃→ Rk, x ∈ int D(f). The function f is differentiable at
the point x if there exists an A ∈ Rk×n and α : Rn ⊃→ Rk such that for all
h ∈ Rn

f(x+ h)− f(x) = Ah+ α(h), where lim
h→0

α(h)

‖h‖ = 0.
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Now Aij = ∂jfi(x), and so

f ′(x) =











∂1f1(x) ∂2f1(x) . . . ∂nf1(x)
∂1f2(x) ∂2f2(x) . . . ∂nf2(x)

...
∂1fk(x) ∂2fk(x) . . . ∂nfk(x)











∈ Rk×n

is the derivative of f at the point x. It is called Jacobian matrix.
For example,

1. if f(x, y, z) := xyz, then f ′(x, y, z) = [yz xz xy],

2. if r(t) :=





cos t
sin t
t



, then r′(t) :=





− sin t
cos t
1



,

3. if F (x, y, z) =





P (x, y, z)
Q(x, y, z)
R(x, y, z)



, then F ′(x, y, z) =





∂xP ∂yP ∂zP
∂xQ ∂yQ ∂zQ
∂xR ∂yR ∂zR



.

12.1.3 Tangent

Tangent plane to a surface

Let f : R2 ⊃→ R, (x0, y0) ∈ int D(f), and assume that f ∈ D[(x0, y0)]. This
means that

f(x, y)− f(x0, y0) ≈ ∂1f(x0, y0)(x− x0) + ∂2f(x0, y0)(y − y0)

if (x, y) ≈ (x0, y0), and this approximation is “sufficiently good”. Let z0 :=
f(x0, y0), then by

z := ∂1f(x0, y0)(x− x0) + ∂2f(x0, y0)(y − y0) + z0

f(x, y) ≈ z if (x, y) ≈ (x0, y0). Note that if

n := (∂1f(x0, y0), ∂2f(x0, y0),−1),

r0 := (x0, y0, z0),

r := (x, y, z),

then we have shown that the plane described by the equation 〈n, r− r0〉 = 0
“sufficiently well” approximates the surface given by the function f .

The plane 〈n, r − r0〉 = 0 is called tangent plane to the surface f at the
point (x0, y0, f(x0, y0)).
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Tangent line to a space curve

Let r : R ⊃→ R3, t0 ∈ int D(r), and assume that r ∈ D[t0]. If

r(t) =





x(t)
y(t)
z(t)



 ,

then

r(t)− r(t0) =





x(t)− x(t0)
y(t)− y(t0)
z(t)− z(t0)



 ≈ ṙ(t0) · (t− t0) =





ẋ(t0)
ẏ(t0)
ż(t0)



 (t− t0),

and the approximation is “sufficiently good”. This means that for any point

r :=





x
y
z



 of the straight line with direction vector v :=





ẋ(t0)
ẏ(t0)
ż(t0)



 and

passing through the point r0 :=





x(t0)
y(t0)
z(t0)



 we have

x = x(t0) + ẋ(t0) · (t− t0),
y = y(t0) + ẏ(t0) · (t− t0),
z = z(t0) + ż(t0) · (t− t0),

and this line runs close to the curve, that is, r(t) ≈ r if t ≈ t0.
The line r = r0 + v(t− t0) is called tangent line to the space curve r at

the parameter value t0, whose direction vector is the tangent vector ṙ(t0).
(Traditionally, the derivative of a space curve is denoted by a point instead

of a comma.)

12.1.4 Extreme values

Let f : R2 ⊃→ R, a = (a1, a2) ∈ D(f).

Definition 12.3. We say that the function f has a local minimum at
the point a if there is a neighborhood K(a) of a that for all x = (x1, x2) ∈
K(a) ∩D(f)

f(x1, x2) ≥ f(a1, a2) or f(x) ≥ f(a).

The local maximum can be defined in a similar way.

Theorem 12.1 (The necessary condition of a local extreme value). Let f :
R2

֌ R, a = (a1, a2) ∈ int D(f) and f ∈ D[a]. If f has a local extreme
value (either minimum or maximum) at a, then f ′(a) = 0.

[f ′(a) = 0⇐⇒ ∂1f(a1, a2) = 0 and ∂2f(a1, a2) = 0.]



136 12. Differentiation of multivariable functions

To prove this, it is enough to consider that if f has a local minimum at
the point (a1, a2), then the function

φ : R ⊃→ R, φ(t) := f(t, a2)

will have a local minimum at the point t = a1.
Since f ∈ D[(a1, a2)], therefore φ ∈ D[a1], and so φ′(a1) = 0, which

exactly means that ∂1f(a1, a2) = 0.
The same holds for the function

ψ : R ⊃→ R, ψ(t) := f(a1, t).

So, ψ′(a2) = 0, that is, ∂2f(a1, a2) = 0.
This method can be applied for finding the extreme value points of a

differentiable function.
Our results can be extended to functions f : Rn ⊃→ R with slight modifi-

cations.

Theorem 12.2. Let f : Rn ⊃→ R, a ∈ int D(f) and f ∈ D[a]. If f has a
local extreme value at a, then f ′(a) = 0.

[f ′(a) = 0⇐⇒ ∂1f(a) = 0, ∂2f(a) = 0, . . . , ∂nf(a) = 0.]

If f : Rn ⊃→ R and f ∈ D[a], then instead of the row matrix f ′(a) ∈ R1×n

the vector gradf(a) := (f ′(a))T is used.
So,

grad f(a)=











∂1f(a)
∂2f(a)

...
∂nf(a)











(a column matrix that can be identified with a vector).

The meaning of gradf(a) will be illustrated in Exercise 4.

12.2 Exercises

1. Imagine the surfaces defined by the functions f : R2 → R,

f(x, y) := x2 + y2;

f(x, y) := x2 + y2 + 4x− 2y + 10;

f(x, y) := 2x2 + 5y2.

How could the surface of the functions

h : {(x, y) | x2 + y2 < 100} → R, h(x, y) := −x2 − y2 + 100

look like?
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2. Find the tangent plane to the function f : R2 → R, f(x, y) := x2y3 at the
point (x0, y0) := (1, 2).

3. Find the tangent vector to the space curve r : [0, 4π] → R3, r(t) :=
(2 cos t, 2 sin t, t) at any point t0 ∈ (0, 4π). Calculate the scalar product
〈ṙ(t0), e3〉 (e3 := (0, 0, 1)). Explain the result.

4. Let f : R2 → R, a ∈ int D(f) and e ∈ R2, for which ‖e‖ = 1. The
directional derivative of f along a vector e at a point a is defined as
the limit

∂ef(a) := lim
t→0

1

t
(f(a+ te)− f(a))

it this limit exists.

If f ∈ D[a], then one can show that

∂ef(a) = 〈gradf(a), e〉.

Verify that at the point a the surface is steepest in the direction which is
parallel with the vector gradf(a).

Solution:

The direction that we look for is the vector ê ∈ R2, ‖ê‖ = 1 for which
∂ef(a) ≤ ∂êf(a) for any e ∈ R2, ‖e‖ = 1. We know from Linear Algebra
that for planar vectors

〈gradf(a), e〉 = ‖gradf(a)‖ · ‖e‖ cosα,

where α is the angle of the two vectors. Since ‖gradf(a)‖ does not change
(a ∈ int D(f) is fixed), and ‖e‖ = 1, therefore, the product is maximal if
cosα = 1, that is, if e is parallel with the vector gradf(a).

This has the consequence that mountain streams and glaciers always move
along the direction of the gradient at each point.

5. The method of least squares

Assume that we make measurements in order to verify some relation. De-
note by yi the measurement corresponding to the value xi. Our conjecture
is that the points (xi, yi), i = 1, 2, . . . , n should be located along a line.
Let us find the straight line y = Ax + B that best fits the measurement
points.

Solution:

The sum
∑n

i=1(Axi+B−yi)2 is the square sum of the differences between
the measurements and the straight line. We want this sum to be as small
as possible.
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Let e(A,B) :=
∑n

i=1(Axi+B−yi)2. The function e can be minimal where
e′(A,B) = 0, that is

∂Ae(A,B) =
∑

2(Axi +B − yi)xi = 0,

∂Be(A,B) =
∑

2(Axi +B − yi) = 0.

In more detail,

A
∑

x2i +B
∑

xi =
∑

xiyi,

A
∑

xi +Bn =
∑

yi.

This is a system of linear equations in two unknowns (A and B), whose
solution (which always exists if the points xi are all different) is

A =
n
∑

xiyi −
∑

xi
∑

yi
n
∑

x2i − (
∑

xi)2
, B =

∑

x2i
∑

yi −
∑

xi
∑

xiyi
n
∑

x2i − (
∑

xi)2
.

(The summation indices run from 1 to n everywhere.) It can be shown
that for such values of A and B the line y = Ax+B truly runs closest to
the points.

6. Let f : R2 → R, f(x, y) := exy cos(x2y3).

Calculate the partial derivatives ∂xf(x, y), ∂yf(x, y), ∂y(∂xf)(x, y) and
∂x(∂yf)(x, y). What do you observe?

7. Let f : R2 → R,

f(x, y) :=

{

xy x2−y2

x2+y2 if x2 + y2 6= 0,

0 if x2 + y2 = 0.

Show that
∂y(∂xf)(0, 0) 6= ∂x(∂yf)(0, 0).

8. Find the local extreme values of the function f : R2 → R, f(x, y) :=
x4 + y4 − 2x+ 3y + 1.

9. The equality 2x5y3 + x3y5 − 3x4y2 + 5xy3 = 6x2 − 1 is satisfied for x = 1
and y = 1. Does this equation have any other solution?

Solution:

Let f : R2 → R, f(x, y) := 2x5y3+x3y5−3x4y2+5xy3−6x2+1. Clearly,
f ∈ C1 and f(1, 1) = 0.

∂2f(x, y) = 6x5y2 + 5x3y4 − 6x4y + 15xy2, therefore ∂2f(1, 1) = 20 6= 0.
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Due to the implicit function theorem, there exist neighborhoods Kµ(1)
and Kρ(1) and a differentiable function φ : Kµ(1) → Kρ(1) such that for
all x ∈ (1− µ, 1 + µ), f(x, φ(x)) = 0, so the equation has infinitely many
solutions. (Of course this does not mean that besides the solution (1, 1)
it has any other solution that is made up of two integers!) Since

∂1f(x, y) = 10x4y3 + 3x2y5 − 12x3y5 + 5y3 − 12x, ∂1f(1, 1) = −6,

therefore

φ′(1) = −∂1f(1, 1)
∂2f(1, 1)

=
3

10
.

Exploiting this, we can get an approximation of the function φ:

φ(x) ≈ φ(1) + φ′(1)(x− 1) if x ≈ 1,

that is,

φ(x) ≈ 1 +
3

10
(x− 1) if x ≈ 1.

10. Assume that there is a differentiable function y : R ⊃→ R that is defined
by the equation xy + ex+y − y2 + 5 = 0. Calculate its derivative!

Solution:

Let f : R2 ⊃→ R, f(x, y) := xy + ex+y − y2 + 5. Due to the assumption,
for all x ∈ D(y)

h(x) := f(x, y(x)) = 0,

therefore, the derivative of the function h is 0, too, that is, for all x ∈ D(y)

h′(x) = (xy(x) + ex+y(x) − y2(x) + 5)′

= y(x) + xy′(x) + ex+y(x) · (1 + y′(x))− 2y(x)y′(x) = 0.

From this we can express y′(x) as

y′(x) = − y(x) + ex+y(x)

x+ ex+y(x) − 2y(x)
(x ∈ D(y)).

This result is often written in the superficial form

y′ = − y + ex+y

x+ ex+y − 2y
.

We remark that in this case the derivation rule of the implicitly defined
function is applied without checking the conditions.



140 12. Differentiation of multivariable functions

11. The state of a gas is given by the equation of state F (p, V, T ) = 0. (For
an ideal gas it has the form pV − nRT = 0.) This equation defines three
implicit functions:

p = p(V, T ),

V = V (T, p),

T = T (p, V ).

Show that
∂V p(V, T ) · ∂TV (T, p) · ∂pT (p, V ) = −1.

Solution:

Assuming that the assumptions of the implicit function theorem are sat-
isfied and substituting the implicit functions we obtain that

(V, T ) 7→ F (p(V, T ), V, T ) = 0,

(T, p) 7→ F (p, V (T, p), T ) = 0,

(p, V ) 7→ F (p, V, T (p, V )) = 0.

The partial derivative of the constant 0 function is 0, therefore

∂V F (p(V, T ), V, T ) = ∂1F · ∂V p+ ∂2F · ∂V V + ∂3F · ∂V T

= 0⇒ ∂V p = −
∂2F

∂1F
,

∂TF (p, V (T, p), T ) = ∂1F · ∂T p+ ∂2F · ∂TV + ∂3F · ∂TT

= 0⇒ ∂TV = −∂3F
∂2F

,

∂pF (p, V, T (p, V )) = ∂1F · ∂pp+ ∂2F · ∂pV + ∂3F · ∂pT

= 0⇒ ∂pT = −∂1F
∂3F

.

From this we have

∂V p · ∂TV · ∂pT =

(

−∂2F
∂1F

)(

−∂3F
∂2F

)(

−∂1F
∂3F

)

= −1.

We remark that those thinking superficially may be surprised that by
using the traditional notations and treating the partial derivatives as
quotients the expected result would be

∂p

∂V
· ∂V
∂T

· ∂T
∂p

= 1 . . . .

Check by calculation in the case pV −nRT = 0 that the product is really
(−1).



12.2. Exercises 141

12. Let Φ : R2 → R3,Φ(u, v) =





x(u, v)
y(u, v)
z(u, v)



 :=





u+ v
u2 + v2

u3 + v3



 be a “surface

parameterized with two parameters”. Find a normal vector to the tangent
plane of this surface at the point (u0, v0) := (1, 2).

Solution:

The inverse of the function

g : (u, v) 7→
[

x(u, v)
y(u, v)

]

=

[

u+ v
u2 + v2

]

would be

g−1 : (x, y) 7→
[

u(x, y)
v(x, y)

]

.

By substituting this into the function z, the surface Φ would be given as
the two-variable real-valued function

z ◦ g−1 : (x, y) 7→ z(u(x, y), v(x, y)).

A normal vector of its tangent plane is

n = (∂xz(u(x0, y0), v(x0, y0)), ∂yz(u(x0, y0), v(x0, y0)),−1).

One can see that (z ◦ g−1)′(x0, y0) is the derivative we just need. Using
the inverse function theorem we obtain that

(z ◦ g−1)′(x0, y0) = z′(g−1(x0, y0)) · (g−1)′(x0, y0)

=
[

∂uz(u0, v0) ∂vz(u0, v0)
]

· (g′(u0, v0))−1

=
[

3u20 3v20
]

·
[

1 1
2u0 2v0

]−1

=
[

3 12
]

·
[

1 1
2 4

]−1

=
[

3 12
]

·
[

2 − 1
2

−1 1
2

]

=
[

−6 9
2

]

.

So, ∂xz(u(1, 2), v(1, 2)) = −6 and ∂yz(u(1, 2), v(1, 2)) = 9
2 , thus, a normal

vector of the tangent plane is n(−6, 92 ,−1).

13. Find the local extreme value points of the function f : R2 → R, f(x, y) :=
x2 + y2 − 2x+ 4y − 1 on the closed set

Q := {(x, y) ∈ R2 | x2 + y2 ≤ 1}.
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Solution:

The function f may have a local extreme value on the open circle

intQ = {(x, y) ∈ R2 | x2 + y2 < 1}

only where

∂1f(x, y) = 2x− 2 = 0,

∂2f(x, y) = 2y + 4 = 0.

From this we obtain (x0, y0) = (1,−2), which is not on the open circle
intQ, that is, f has no local extreme value inside the circle. Since Q is
a compact set (bounded and closed), therefore the continuous function f
has a minimum and a maximum in Q. So, the extreme value points are
on the boundary of Q.

Find the conditional minimum and maximum of the function f under the
condition g(x, y) := x2 + y2 − 1 = 0.

Prepare the function F (x, y) := f(x, y) + λg(x, y) = x2 + y2 − 2x+ 4y −
1 + λ(x2 + y2 − 1).

∂1F (x, y) = 2x− 2 + 2λx = 0,

∂2F (x, y) = 2y + 4 + 2λy = 0,

x2 + y2 − 1 = 0.

Solving the system of equations in three unknowns (we have exactly as
many equations as unknowns. . . ), we obtain that x = 1

1+λ , y = − 2
1+λ ,

from which
1

(1 + λ)2
+

4

(1 + λ)2
= 1.

There are two solutions: λ1 =
√
5 − 1 and λ2 = −

√
5 − 1. The points

corresponding to these solutions are P1(
1√
5
,− 2√

5
) and P2(− 1√

5
, 2√

5
).

First let λ1 =
√
5− 1 and P1(

1√
5
,− 2√

5
).

F1(x, y) = f(x, y) + λ1g(x, y),

F ′1(x, y) =
[

2x− 2 + 2(
√
5− 1)x 2y + 4 + 2(

√
5− 1)y

]

,

F ′′1 (x1, y1) =

[

2 + 2(
√
5− 1) 0

0 2 + 2(
√
5− 1)

]

=

[

2
√
5 0

0 2
√
5

]

is the matrix of a positive definite quadratic form, so for any vector
h ∈ R2, h 6= 0: 〈F ′′1 (x1, y1)h, h〉 > 0. Therefore, at the point P1(

1√
5
,− 2√

5
)

the function f has a minimum under the condition g = 0.
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λ2 = −
√
5 − 1 and P2(− 1√

5
, 2√

5
) define a function F2(x, y) = f(x, y) +

λ2g(x, y) as well.

F ′2(x, y) =
[

2x− 2 + 2(−
√
5− 1)x 2y + 4 + 2(−

√
5− 1)y

]

,

F ′′2 (x2, y2) =

[

2 + 2(−
√
5− 1) 0

0 2 + 2(−
√
5− 1)

]

=

[

−2
√
5 0

0 −2
√
5

]

is the matrix of a negative quadratic form, so for any vector h ∈ R2,
h 6= 0: 〈F ′′2 (x2, y2)h, h〉 < 0. Therefore, at the point P2(− 1√

5
, 2√

5
) the

function f has a maximum under the condition g = 0.





Chapter 13

Line integrals

We generalize the integral of a function f : [a, b] → R. The role of the
interval [a, b] will be played by a curve, while the role of the function f by a
multivariable vector-valued function. The following topics will be discussed.

• Line integral and its properties

• Potential and the relation between its existence and the line integral

• The differentiability of parametric integrals

• A sufficient condition for the existence of potential

13.1 Line integrals

13.1.1 The concept and properties of line integral

When a sleigh is pulled from point A to point B along a displacement s with
a force F parallel with the path, then the work done is W = F · s (Fig. 13.1).

When the force F encloses an angle α with the displacement (Fig. 13.2),
then the work is approximately

W = F cosα = 〈F , s〉.

A Bs

F

Figure 13.1
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A Bs

α

F

Figure 13.2

The work of a force F ∈ R3 → R3, changing from point to point (i.e.,
a force field) along a space curve r : [α, β] → R3 can be approximated by
dividing the interval [α, β] by the division points α = t0 < t1 < . . . < ti−1 <
ti < . . . < tn = β and taking further points

ti−1 ≤ ξi ≤ ti (i = 1, . . . , n).

Then the elementary work is

∆Wi := 〈F (r(ξi)), r(ti)− r(ti−1)〉,

and the work done by the force field F along the curve is

W ≈
∑

∆Wi =
n

∑

i=1

〈F (r(ξi)), r(ti)− r(ti−1)〉 =
∑

〈F (r(ξi)),∆ri〉.

If r is sufficiently smooth (differentiable), then

r(ti)− r(ti−1) =





x(ti)− x(ti−1)
y(ti)− y(ti−1)
z(ti)− z(ti−1)



 =





ẋ(ηi)(ti − ti−1)
ẏ(ϑi)(ti − ti−1)
ż(ζi)(ti − ti−1)



 ≈ ṙ(ξi)(ti − ti−1),

provided that ṙ is continuous. One can see that

W ≈
n

∑

i=1

〈F (r(ξi)), ṙ(ξi)〉(ti − ti−1),

which looks like a sum approximation of an integral. This consideration is
the ground for the further concepts.

Let Ω ⊂ Rn be a connected (meaning that any two points of Ω can be
connected by a continuous curve running in Ω) and open set, that is, a
domain. Let f ∈ Rn

֌ Rn, D(f) := Ω be a continuous vector function, f ∈
C(Ω). Let r : [α, β] → Ω be a smooth space curve, that is, r ∈ C[α, β], r ∈
D(α, β), ṙ(t) 6= 0 (t ∈ (α, β)), and for all t1, t2 ∈ (α, β), t1 6= t2: r(t1) 6= r(t2).
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r(t
i−1

)
r(t

i
)

r(ξ
i
) F(r(ξ

i
))

Figure 13.3

Definition 13.1. The line integral of the function f along r is
∫

r

f :=

∫ β

α

〈f(r(t)), ṙ(t)〉dt.

For example,

f : R3 → R3, f(x, y, z) :=





x+ y
x− y
z





(here Ω = R3) and for

r : [0, 1]→ R3, r(t) :=





t
2t
3t





we have ṙ(t) =





1
2
3



 , thus,

∫

r

f =

∫ 1

0

〈





t+ 2t
t− 2t
3t



 ,





1
2
3





〉

dt =

∫ 1

0

[(t+ 2t) + 2(t− 2t) + 9t]dt

=

∫ 1

0

10tdt =

[

10
t2

2

]1

0

= 5.
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The properties of line integral

1o If r1 : [α, β] → Ω, r2 : [β, γ] → Ω and r1(β) = r2(β), then r1 ∪ r2 :
[α, γ]→ Ω, where r1 ∪ r2|[α,β]

= r1 and r1 ∪ r2|[β,γ]
= r2 is called union

of the two curves. Then
∫

r1∪r2
f =

∫

r1

f +

∫

r2

f.

2o If r : [α, β]→ Ω, then we call ←−r : [α, β]→ Ω,←−r (t) := r(α+ β − t) the
reverse curve to r. Then

∫

←−r
f = −

∫

r

f.

3o If f is bounded on the domain Ω, that is, there is a number K > 0
such that for all x ∈ Ω, ‖f(x)‖ ≤ K, and the length of r : [α, β]→ Ω is
equal to L, then

∣

∣

∣

∣

∫

r

f

∣

∣

∣

∣

≤ K · L.

13.1.2 Potential

Line integral is basically related to the “work of a force field”. When work
(energy) is considered, one may be interested whether there is energy loss or
perhaps energy gain along a closed curve. It may also be important to know
what path is worth following from the point of view of the work done. Such
questions are answered by the following theorem.

Theorem 13.1. Let Ω ⊂ Rn be a domain, f : Ω → Rn, f ∈ C(Ω). The
following three properties of the function (or force field) f are equivalent:

1o For any smooth closed curve r : [α, β] → Ω, r(α) = r(β)
∮

f = 0
(here the symbol

∮

emphasizes that we integrate along a closed curve).

2o For any fixed a, b ∈ Ω and any arbitrary curves r1 and r2 “connecting
a and b” (that is, r1 : [α1, β1] → Ω and r2 : [α2, β2] → Ω for which
r1(α1) = r2(α2) = a and r1(β1) = r2(β2) = b),

∫

r1

f =

∫

r2

f.

3o There exists a so-called potential function Φ : Ω → R, Φ ∈ D(Ω)
such that for all x ∈ Ω and i = 1, 2, . . . , n

∂iΦ(x) = fi(x),

or, more briefly, gradΦ = f.
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This theorem states that if the force field f has a potential, then the work
done along any closed curve is zero, moreover, the work done between two
points is independent of the curve that connects them.

Obviously, it would be interesting to know how we can decide whether a
force field f has a potential.

Theorem 13.2. If Ω ⊂ Rn is a domain that has a point a ∈ Ω such that for
all x ∈ Ω

[a, x] := {a+ t(x− a) ∈ Rn | t ∈ [0, 1]} ⊂ Ω

( [a, x] is called the “section connecting the point a with the point x”, such
a set Ω is called a “starlike domain” with respect to the point a), and
f : Ω → Rn, f ∈ C(Ω) is such that for all i, j = 1, 2, . . . , n ∂ifj ∈ C(Ω)
(each partial derivative of each coordinate function of f is continuous at all
points of Ω), moreover,

∂ifj(x) = ∂jfi(x) for all x ∈ Ω, i, j = 1, 2, . . . , n

(which means that the derivative matrix f ′(x) is symmetric), then the func-
tion f has a potential Φ : Ω→ R.

When Ω = R3, then this domain is starlike. If the force field

f :=





P
Q
R



 : R3 → R3

is sufficiently smooth with coordinate functions P,Q,R : R3 → R (also men-
tioned as “components” of the force field), then the condition ∂ifj = ∂jfi
means that the derivative matrix

f ′(x) =





∂1P (x) ∂2P (x) ∂3P (x)
∂1Q(x) ∂2Q(x) ∂3Q(x)
∂1R(x) ∂2R(x) ∂3R(x)



 (x ∈ Ω)

is symmetric. If we introduce the concept of rotation, then

rotf := ∇× f :=

∣

∣

∣

∣

∣

∣

e1 e2 e3
∂1 ∂2 ∂3
P Q R

∣

∣

∣

∣

∣

∣

:= (∂2R− ∂3Q)e1 − (∂1R− ∂3P )e2 + (∂1Q− ∂2P )e3 = 0 ∈ R3

on the whole R3 space. In physics this theorem is often mentioned in the
following form: “A rotation-free force field has a potential.”
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Finally, let us examine how we can find the potential of a force field f in
case it exists, and what else we gain from knowing it.

For simplicity, let

f : R2 → R2, f(x, y) :=

[

x+ y
x− y

]

.

Since ∂y(x+ y) = 1 and ∂x(x− y) = 1, therefore f ′(x, y) is symmetric, so f
has a potential Φ, and this – temporarily unknown – potential is a function
Φ : R2 → R for which

∂xΦ(x, y) = x+ y,

∂yΦ(x, y) = x− y.

If ∂xΦ(x, y) = x + y, then Φ is of the form Φ(x, y) = x2

2 + xy + φ(y), where
φ : R → R is differentiable, but otherwise arbitrary. Then ∂yΦ(x, y) =

x + φ′(y) = x − y, so φ′(y) = −y, from which φ(y) = −y2

2 + c, where c ∈ R

is arbitrary.
Consequently, the potential of f can only be a function of the form

Φ : R2 → R, Φ(x, y) = x2

2 + xy − y2

2 + c.

If after all this we would like to calculate the work of the force field f
along any smooth curve r : [α, β] → R2, then (in view of the chain rule of
differentiating a composition of functions)

∫

r

f =

∫ β

α

〈f(r(t)), ṙ(t)〉dt =
∫ β

α

〈gradΦ(r(t)), ṙ(t)〉dt =
∫ β

α

Φ′(r(t)) · ṙ(t)dt

=

∫ β

α

(Φ(r(t)))′dt = [Φ(r(t))]
β
α = Φ(r(β))−Φ(r(α)),

which shows that the value of the line integral only depends on the two
“end points” of the curve, and is independent of the curve that connects the
points r(α) and r(β) (a fact also suggested by the theorem). Particularly, if
r(α) = r(β), then we have a closed curve, and then Φ(r(β)) = Φ(r(α)), so
∮

r
f = 0, as it was also stated by the theorem.
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13.2 Exercises

1. Let

f : R3 → R3, f(x, y, z) : =





x+ y + z
y − z
x+ z



 and r : [0, 6π]→ R3,

r(t) : =





2 cos t
2 sin t
t



 .

Calculate the line integral
∫

r
f .

2. Let f : R2 \ {(0, 0)} → R2, f(x, y) :=

[ x
x2+y2

− y
x2+y2

]

.

Calculate the line integral of the tangent space f along a closed circle
of radius 1, centered at the origin and with positive (counterclockwise)
direction.

3. Show that the force field

F : R3 \ {(0, 0, 0)} → R3, F (x1, x2, x3) :=







− x1

(x2
1+x2

2+x2
3)

3/2

− x2

(x2
1+x2

2+x2
3)

3/2

− x3

(x2
1+x2

2+x2
3)

3/2







has a potential. Calculate the potential Φ.

Solution:

Let i, j = 1, 2, 3 and i 6= j. Then

∂i

(

− xj
(x21 + x22 + x23)

3/2

)

= −xj
(

−3

2
(x21 + x22 + x23)

−5/2

)

· 2xi

= −xi
(

−3

2
(x21 + x22 + x23)

−5/2

)

· 2xj = ∂j

(

− xi
(x21 + x22 + x23)

3/2

)

,

therefore the force field F has a potential. If Φ : R3 \{(0, 0, 0)} → R, then

∂iΦ(x1, x2, x3) = −
xi

(x21 + x22 + x23)
3/2

,

and then

Φ(x1, x2, x3) =
1

(x21 + x22 + x23)
1/2

+ c,
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since

∂iΦ(x1, x2, x3) = −
1

2
(x21 + x22 + x23)

−3/2(2xi)

= − xi
(x21 + x22 + x23)

3/2
, i = 1, 2, 3.

We remark that F can be considered as the gravitational force field of a
mass point M = 1 located at the origin, since the force acting on the mass
m = 1 at the point with location vector r (apart from the multiplication
factor arising from the choice of the unit system) is

F (r) = − 1

‖r‖2 ·
r

‖r‖ (r 6= 0).

The potential of this force field is

Φ(r) =
1

‖r‖ (r 6= 0).

4. Let

f : R2 → R2, f(x, y) :=

[

xy2

x2y

]

,

and let the curve be a lemniscate, for example

L :=
{

(x, y) ∈ R2 |
√

(x− 2)2 + y2 ·
√

(x+ 2)2 + y2 = 8
}

.

(The curve L is the locus of points on the plane whose product of dis-
tances from the points C1(2, 0) and C2(−2, 0) equals 8.) Calculate the
line integral of f along this lemniscate.



Chapter 14

Differential equations

Differential equations are suitable for the description of several natural and
social phenomena. The following topics will be discussed.

• The concept of differential equation

• Separable differential equations

• Applications

14.1 Differential equations

14.1.1 Basic concepts

Let Ω ⊂ R2 be a domain, and f : Ω → R a continuous function. We look
for such functions y : R ֌ R whose range D(y) is an open interval, y is
continuously differentiable, and for all x ∈ D(y): (x, y(x)) ∈ Ω and

y′(x) = f(x, y(x)).

This problem is called first order differential equation, and we denote
it by the symbol y′ = f(x, y). We will see that such a problem usually has
infinitely many solutions. If, however, at some point x0 we prescribe the
value of the solution y(x0), then, as a rule, we will obtain one solution. The
relation

y(x0) = y0

is called initial condition. As the exercises will reveal, such types of condi-
tions naturally belong to the differential equations.

We can raise the question of whether the continuity of the function f is suf-
ficient for the differential equation y′ = f(x, y) to have a solution, moreover,
if it has one, how can we calculate it.

153
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14.1.2 Separable differential equations

As a first step, let us deal with the special case where the function f : R2
֌ R

is of the form
f(x, y) = g(x)h(y),

where g, h : R ֌ R are continuous functions, D(g) is an interval, and the
function h is nowhere equal to zero. This type of differential equations is
called separable differential equation, and can be denoted more briefly as

y′ = g(x)h(y).

Assume that some function y : I → R solves the problem, that is, for all
x ∈ I, y′(x) = g(x)h(y(x)). Then

y′(x)

h(y(x))
= g(x) (x ∈ I). (14.1)

Let H :=
∫

1/h and G =
∫

g be primitive functions of 1/h and g, respectively.
For any arbitrary x ∈ I

(H ◦ y)′(x) = H ′(y(x))y′(x) =
y′(x)

h(y(x))
and G′(x) = g(x).

Since the derivative functions (H ◦ y)′ and G′ are equal on the interval I by
(14.1), therefore the functions H ◦ y and G can only differ by a constant. So,
there exists a number c ∈ R such that for all x ∈ I

H(y(x)) = G(x) + c.

If H has an inverse function, H−1, then

H−1(H(y(x))) = H−1(G(x) + c),

that is, for all x ∈ I
y(x) = H−1(G(x) + c). (14.2)

Consequently, the solution of the problem y′ = g(x)h(y) can be given in the
form (14.2). (One can check by substitution that these functions are really
solutions.) We remark that following this train of thought just formally, we
can get to a solution procedure that is easy to memorize:

y′ = g(x)h(y),

dy
dx

= g(x)h(y),

dy
h(y)

= g(x)dx.
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Integrating this equation and introducing the primitive functions H :=
∫

1/h
and G =

∫

g, we are led to the equation

H(y) = G(x) + c.

Applying the inverse function H−1 to both sides, we obtain the solution
(14.2).

Let us look at what kinds of phenomena can be described by such a simple
type of differential equations.

14.1.3 Application

Assume that a radioactive substance has mass m0 at time t0. As time passes,
at t > 0 we denote the mass m(t), while at time t + ∆t by m(t + ∆t). We
suppose that the change of mass ∆m := m(t+∆t)−m(t) between the time
instances t and t + ∆t is proportional to the mass m(t) at time t and the
time ∆t that has passed: ∆m ∼ m(t)∆t. Due to the radioactive decay,
∆m < 0 if ∆t > 0. Introducing a proportionality factor k > 0, we have
∆m = −km(t)∆t, and so we are led to the equality

∆m

∆t
= −km(t).

In the limit ∆t→ 0 we obtain the differential equation

lim
∆t→0

∆m

∆t
=

dm
dt

= −km(t).

Here the variable is denoted by t instead of x, and the unknown function
by m(t) instead of y(x). The differential equation is separable (now k does
not even depend on the variable t). Let us solve the equation by using the
previously introduced method. By separating the variables we have

dm
m

= −kdt.

Integrating both sides yields

lnm = −kt+ c,

from which
m = e−kt+c = e−ktec.

Since from the initial conditionm0 = m(0) = e0ec = ec, therefore the solution
for any t > 0 is

m(t) = m0e
−kt.
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An important characteristic of radioactive substances is the half-life T , which
is the time required for one half of the amount of radioactive material to
degrade. The decay constant k can be expressed in terms of T , since

m0

2
= m(T ) = m0e

−kT ,

from which

k =
ln 2

T
.

Research has shown that the concentration of the carbon-14 isotope is con-
stant in living plants, since the radiated C14 is replenished from the atmo-
sphere during the assimilation. However, when a tree dies, no more C14 will
infiltrate, therefore, its concentration decreases in the material of the tree. A
decayed trunk has been found in which the amount of C14 per unit volume
is just 90% of the usual amount. When did the tree die if we know that the
half-life of C14 is 5370 years?

Since the amount of C14 at time t after the death of the tree is given by
the formula

m(t) = m0e
− ln 2

5370 t,

and now the amount of C14 is 0, 9m0 in the wood, therefore the time in
question is given by the equation

0, 9m0 = m0e
− ln 2

5370 t.

Dividing both sides by m0 and then taking their logarithms we have

ln 0, 9 = − ln 2

5370
t,

from which

t = −5370 ln 0, 9
ln 2

= 816 years.

So, the tree died 816 years ago. This example illustrates the method of
absolute dating, for which W. Libby, American chemist was awarded the
Nobel Prize in 1960. . .

14.2 Exercises

1. (The model of unlimited reproduction) Assume that the mass of virus in
the population of a city at time t = 0 is m0. Describe the formation of
the epidemic (if there is no remedy of the disease. . . ).
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2. (The model of limited growth) On an island the grass can support at most
a population of rabbits of total amount (e.g., mass) M . Assume that a
rabbit population of mass m0 are settled on the island. Describe how the
amount of rabbits changes in time.

Solution: Denote by m(t) the amount in question at time t. We may
assume that the change of this amount in time ∆t at t is proportional
to the time ∆t that has passed, the amount m(t) of the rabbits and the
remaining carrying capacity of the island. Thus,

m(t+∆t)−m(t) ∼ m(t)(M −m(t))∆t.

By introducing the reproduction factor k,

m(t+∆t)−m(t) = km(t)(M −m(t))∆t.

Dividing the equation by ∆t, and then taking the limit as ∆t → 0, we
obtain the separable differential equation

dm
dt

= m′ = km(M −m).

Separating the variables we have

dm
m(M −m)

= kdt.

Exploiting the equality

1

m(M −m)
=

1

M

(

1

m
+

1

M −m

)

,

we obtain that
∫

1

m(M −m)
dm =

1

M
(lnm− ln(M −m)) =

1

M
ln

m

M −m.

Integrating both sides of the equation yields

1

M
ln

m

M −m = kt+ c,

ln
m

M −m =Mkt+Mc,

m

M −m = eMkteMc.

From here

m(t) =M
eMkt

e−Mc + eMkt
.
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m(t)

M

m
0

t

Figure 14.1

Due to the initial condition m(0) = m0,

m0 =M
1

e−Mc + 1
,

and so
eMc =

m0

M −m0
.

So, the solution is

m(t) =M
eMkt

M−m0

m0
+ eMkt

.

One can see that

lim
t→∞

m(t) =M lim
t→∞

1
M−m0

m0
e−Mkt + 1

=M.

3. Solve the following differential equations:

a) y′ = xy, x ∈ R,

b) y′ = −ytgx, x ∈ (−π/2, π/2),
c) y′ = 1

2x

√

1 + y2, x > 0.



Chapter 15

Integration of multivariable

functions

Now we generalize the integration of real functions in another direction. We
will get to the volume of space under a surface, the calculation of which will
be traced back to integrals of real functions. The following topics will be
discussed.

• The definition of the Riemann integral for multivariable functions

• Calculating the integral on a rectangle by Fubini’s theorem

• Calculating the integral on a normal domain

• Calculating the integral on other domains by integral transformation

15.1 Multiple integrals

15.1.1 The concept of multiple integral

Let T := [a, b] × [c, d] ⊂ R2 be a closed rectangle. Let f : R2 ⊃→ R be a
continuous function of two variables for which T ⊂ D(f). Prepare a partition
a = x0 < x1 < . . . < xi−1 < xi < . . . < xn = b of the interval [a, b] and
c = y0 < . . . < yk−1 < yk < . . . < ym = b of the interval [c, d]. At each
subinterval [xi−1, xi] we set a point ξi ∈ [xi−1, xi], and at each sub-interval
[yk−1, yk] a point ηk ∈ [yk−1, yk] (i = 1, . . . , n, k = 1, . . . ,m). Prepare the
sum approximation

σn,m :=

n
∑

i=1

m
∑

k=1

f(ξi, ηk)(xi − xi−1)(yk − yk−1).

159



160 15. Integration of multivariable functions

(Here σn,m can be illustrated as the sum of “signed” volumes of prisms with
a rectangular base of area [xi−1, xi]× [yk−1, yk] and “height” f(ξi, ηk) (which
can be negative, too!).)

Under the condition that f is continuous, one can verify that the sum
approximations have a limit in the sense that there exists a number I ∈ R

such that for all ε > 0 there is a number δ > 0 such that for all partitions
satisfying the property

max{xi − xi−1 | i = 1, 2, . . . , n} < δ

and
max{yk − yk−1 | k = 1, 2, . . . ,m} < δ

and for arbitrarily chosen values ξi ∈ [xi−1, xi] (i = 1, . . . , n) and ηk ∈
[yk−1, yk] (k = 1, . . . ,m)

|σn,m − I| < ε.

Such a number I ∈ R is called integral of the function f on the rectangle
T and denoted as

∫

T

f := I.

This concept is often referred to as
∫

T

f = lim
xi−xi−1→0, yk−yk−1→0

∑

i,k

f(ξi, ηk)(xi − xi−1)(yk − yk−1)

= lim
∆xi→0, ∆yk→0

∑

i,k

f(ξi, ηk)∆xi∆yk =

∫

[a,b]×[c,d]

f(x, y)dxdy.

The number
∫

T
f ∈ R is called “signed” volume of the space

H := {(x, y, z) ∈ R3 | (x, y) ∈ T, 0 ≤ z ≤ f(x, y) if f(x, y) ≥ 0

or f(x, y) ≤ z ≤ 0 if f(x, y) < 0}
under the surface f .

15.1.2 Integration on rectangular and normal domains

Obviously, performing the procedure just introduced would make it rather
complicated to calculate the integral of a function f on a rectangle T .

Let us remember how the integrals of real functions can be applied to
the calculation of volumes. Let the plane section of H at an arbitrary point
x ∈ [a, b] be denoted by S(x) (Fig. 15.1). This area is the integral of the
function [c, d] ∋ y 7→ f(x, y) on [c, d]:

S(x) =

∫ d

c

f(x, y)dy.
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a x b

c

d

f

S(x)

Figure 15.1

If this function [a, b] ∋ x 7→ S(x) (which is continuous due to the continuity
of f) is integrated on the interval [a, b], then

∫

T

f =

∫

[a,b]×[c,d]

f(x, y)dxdy =

∫ b

a

S(x)dx =

∫ b

a

(

∫ d

c

f(x, y)dy

)

dx.

By a similar consideration,

∫

T

f =

∫ d

c

(

∫ b

a

f(x, y)dx

)

dy.

Theorem 15.1 (Fubini’s threorem). Let f : R2
֌ R, f continuous and

[a, b]× [c, d] ⊂ D(f). Then

∫

[a,b]×[c,d]

f =

∫ b

a

(

∫ d

c

f(x, y)dy

)

dx =

∫ d

c

(

∫ b

a

f(x, y)dx

)

dy.

For example, let f : R2 → R, f(x, y) = xy. T := [0, 1]× [2, 3]. Then

∫

T

f =

∫ 3

2

(∫ 1

0

xydx

)

dy =

∫ 3

2

[

x2

2
y

]1

0

dy =

∫ 3

2

y

2
dy =

[

y2

4

]3

2

=
9

4
− 1 =

5

4
.

The definition of the integral of f on the rectangle T did not require the
function f to be continuous. If f is not continuous, then it may happen that
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the number I ∈ R does not exist. If, however, the number I with the desired
property exists, then the function f is called integrable on the rectangle T ,
and then

∫

T

f := I.

With this remark we move on to the integrability and integration of a function
f : R2 ⊃→ R on domains that are not rectangular.

Let α, β : [a, b] → R be a continuous function, such that for all x ∈ [a, b],
α(x) ≤ β(x). Let

Nx := {(x, y) ∈ R2 | x ∈ [a, b] and α(x) ≤ y ≤ β(x)}

be a normal domain with respect to the x axis. Let f : Nx → R be a
continuous function. Since α, β ∈ C[a, b], therefore there exist c, d ∈ R such
that for all x ∈ [a, b], c ≤ α(x) ≤ β(x) ≤ d. Let us extend the function f to
the rectangle

T := [a, b]× [c, d]

as follows:

f̂ : T → R, f̂(x, y) :=

{

f(x, y) if (x, y) ∈ Nx,
0 if (x, y) ∈ T \Nx.

This function f is such that f̂|Nx
is continuous, while it is constant zero on

the set T \Nx. It can be verified that such a function f̂ is integrable, and we
define the integral of the function f on the normal domain Nx as the integral
of the function f̂ on the rectangle T :

∫

Nx

f :=

∫

T

f̂ .

By Fubini’s theorem

∫

Nx

f =

∫

T

f̂ =

∫ b

a

(

∫ d

c

f̂(x, y)dy

)

dx

=

∫ b

a

(

∫ α(x)

c

f̂(x, y)dy +

∫ β(x)

α(x)

f̂(x, y)dy +

∫ d

β(x)

f̂(x, y)dy

)

dx

=

∫ b

a

(

∫ β(x)

α(x)

f(x, y)dy

)

dx,

since [c, α(x)] ∋ y 7→ f̂(x, y) = 0, [α(x), β(x)] ∋ y 7→ f̂(x, y) = f(x, y) and
[β(x), d] ∋ y 7→ f̂(x, y) = 0 for all x ∈ [a, b].
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For example, let f : R2 → R, f(x, y) = xy and

Nx :=
{

(x, y) ∈ R2 | x ∈ [−1, 1] és x2 − 1 ≤ y ≤ 1− x2
}

.

Then
∫

Nx

f =

∫ 1

−1

(

∫ 1−x2

x2−1

xydy

)

dx =

∫ 1

−1

[

x
y2

2

]1−x2

x2−1

dx

=

∫ 1

−1

x

2
(1− x2)2 − x

2
(x2 − 1)2dx =

∫ 1

−1

0 dx = 0.

We obtain the integral of f on a normal domain Ny with respect to y with
obvious modifications.

We can similarly construct the integral of a function f : R3 ⊃→ R on the
brick T := [a1, b1] × [a2, b2] × [a3, b3], the corresponding Fubini’s theorem,
and then the integral on a normal domain Nxy with respect to the plane xy.

The set Nxy ⊂ R3 is a normal domain with respect to the plane xy if
there exists a closed interval [a, b] ⊂ R and continuous functions α, β : [a, b]→
R for which α(x) ≤ β(x) (x ∈ [a, b]), and there exist continuous functions
λ, µ : R2 ⊃→ R for which λ(x, y) ≤ µ(x, y) (x ∈ [a, b], α(x) ≤ y ≤ β(x)) such
that

Nxy =
{

(x, y, z) ∈ R3 | x ∈ [a, b], α(x) ≤ y ≤ β(x), λ(x, y) ≤ z ≤ µ(x, y)
}

.

Assume that f : R3 ⊃→ R, it is continuous, and Nxy ⊂ D(f). Then

∫

Nxy

f =

∫ b

a

{

∫ β(x)

α(x)

(

∫ µ(x,y)

λ(x,y)

f(x, y, z)dz

)

dy

}

dx.

15.1.3 The transformation of integrals

The integration by substitution of real functions has its equivalent in multiple
integration. According to the integration by substitution in the real case, if
φ : [α, β] → [a, b] is a strictly monotonically increasing one-to-one function,
and φ ∈ D, then

∫ b

a

f(x)dx =

∫ β

α

f(φ(t)) · φ′(t)dt.

Assume that we would like to integrate the function f : R2 ⊃→ R on the
set Q ⊂ D(f). If we are lucky, then we can find such a one-to-one function
Φ = (φ, ψ) : T → Q, where T = [α, β] × [γ, δ] ⊂ R2 is a rectangle, Φ is
continuously differentiable, and for all (u, v) ∈ T

detΦ′(u, v) =

∣

∣

∣

∣

∂uφ(u, v) ∂vφ(u, v)
∂uψ(u, v) ∂vψ(u, v)

∣

∣

∣

∣

6= 0.
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One can prove that
∫

Q

f =

∫

T

f(φ(u, v), ψ(u, v)) · | detΦ′(u, v)|dudv.

For example, let Q := {(x, y) ∈ R2 | x2 + y2 ≤ 4}, which is a closed circle of
radius 2, centered at the origin. Then f : R2 → R, f(x, y) := x2 + y2.

Since

(φ, ψ) := [0, 2]× [0, 2π]→ Q, φ(u, v) := u cos v, ψ(u, v) := u sin v

is a one-to-one function (known as polar transformation), and

det(φ, ψ)′(u, v) =

∣

∣

∣

∣

cos v −u sin v
sin v u cos v

∣

∣

∣

∣

= u cos2 v + u sin2 v = u,

therefore
∫

Q

x2 + y2dxdy =

∫

[0,2]×[0,2π]

{

(u cos v)2 + (u sin v)2
}

ududv

=

∫ 2

0

(∫ 2π

0

u3dv

)

du =

∫ 2

0

[u3v]2π0 du =

[

2π
u4

4

]2

0

= 8π.

It makes the integration of a function f : R3 ⊃→ R easier if we notice that
by the transformation

X(r, φ, ϑ) := r sinϑ cosφ,

Y (r, φ, ϑ) := r sinϑ sinφ,

Z(r, φ, ϑ) := r cosφ

the brick
[R1, R2]× [φ1, φ2]× [ϑ1, ϑ2] =: T

is mapped to the domain of integration Q ⊂ R3 by the function Φ :=
(X,Y, Z) : T → Q in a one-to-one manner, and detΦ′ 6= 0 on the brick T .
Then

detΦ′(r, φ, ϑ) =

∣

∣

∣

∣

∣

∣

sinϑ cosφ −r sinϑ sinφ r cosϑ cosφ
sinϑ sinφ r sinϑ cosφ r cosϑ sinφ

cosϑ 0 −r sinϑ

∣

∣

∣

∣

∣

∣

= −r2 sinϑ.

Then
∫

Q

f(x, y, z)dxdydz =

∫

T

f(X(r, φ, ϑ), Y (r, φ, ϑ), Z(r, φ, ϑ)) · r2 sinϑ · drdφdϑ.

The polar transformation, applied here, is suitable for domains Q that are
part of a sphere (hemisphere, spherical layer etc.).
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Vector analysis

We define and calculate the characteristics of space curves (curvature, tor-
sion, arc length). We introduce the concept of integral on a surface. As
a generalization of the Newton–Leibniz theorem, we formulate theorems for
integral transforms (Gauss, Stokes). The following topics well be discussed.

• Tangent, binormal and principal normal vectors of a curve

• Rectifiable curves and their lengths

• Curvature, osculating circle, torsion

• Parametric definition of a surface

• The definition of surface

• Surface integral of a scalar field

• Surface integral of a vector field

• Gradient, divergence, rotation

• Stokes’ theorem, Gauss’ theorem

16.1 Vector analysis

16.1.1 Space curves

Let r : [α, β] → R3 be a sufficiently smooth space curve (ṙ, r̈,
...
r ∈ C and

for all t ∈ (α, β) ṙ(t), r̈(t),
...
r (t) 6= 0). As we have seen, ṙ(t0) is a tangent

vector to the curve at the point corresponding to the parameter value t0.
Denote by t the unit vector pointing to the direction of ṙ(t0):

t :=
ṙ(t0)

‖ṙ(t0)‖
.

165
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This is called tangential vector.
Now let the point P0 on the curve be the end point of the vector r(t0).

Take two arbitrary points P1 and P2 (P1, P2 6= P0) on the curve. If P1, P0, P2

do not fall on one straight line, then they determine a plane. Let P1 and P2

both approach P0. Assume that the planes determined by them also approach
a limit position, which is a plane, too. This plane is called osculating plane
of the curve belonging to the point P0 (in fact, this plane contains a small
piece of the curve close to P0). It is possible to show that the osculating
plane is spanned by the vectors ṙ(t0) and r̈(t0), therefore ṙ(t0) × r̈(t0) is a
normal vector of the plane. Therefore, for the position vector r of any point
of the osculating plane we have

〈(ṙ(t0)× r̈(t0)), r − r(t0)〉 = 0 (the equation of the osculating plane).

The unit vector derived from a normal vector of the osculating plane is called
binormal vector:

b :=
ṙ(t0)× r̈(t0)
‖ṙ(t0)× r̈(t0)‖

.

Clearly, the binormal vector b is perpendicular to the tangential vector t.
The plane spanned by b and t is called rectifying plane. A normal vector
to this plane is t× b, and the unit vector f derived from this vector is called
principal normal vector:

f :=
(ṙ(t0)× r̈(t0))× ṙ(t0)
‖(ṙ(t0)× r̈(t0))× ṙ(t0)‖

.

The plane spanned by f and b is called normal plane (a normal vector of
which is the tangent vector ṙ(t0)).

The vectors t, f and b are pairwise orthogonal unit vectors, which form a
right-handed system in this order. The vector system t, f , b fit to the point
of the curve with position vector r(t0) is called accompanying trieder (if
t0 changes, the accompanying trieder changes as well, but this system seems
quite natural for the curve).

The length of a path is important to know even our in everyday life. We
will clarify when a space curve r : [α, β] → R3 has an arc length, and if it
does, how we can define it.

Let τ be an arbitrary partition of [α, β] :

τ : α = t0 < t− 1 < . . . < ti−1 < ti < . . . < tn = β.

The vectors r(ti−1) and r(ti) are position vectors of two points on the curve,
so ‖r(ti)− r(ti−1)‖ is the length of the section connecting them. Let

L(τ) :=
n

∑

i=1

‖r(ti)− r(ti−1)‖,
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that is, the broken line corresponding to the points r(t0), r(t1), . . . r(tn). Let
us prepare the set containing the lengths of all these broken lines:

{L(τ) | τ is a partition of the interval [α, β]}.
If this set is bounded above, then the space curve r is called rectifiable
(“straightenable”), and then the real number

sup{L(τ) | τ is a partition of the interval [α, β]} =: L

is called length of the space curve. If this set is not bounded above, then the
curve has no length (or infinite length).

We have already seen that in case of a smooth curve

r(ti)− r(ti−1) ≈ ṙ(ξi) · (ti − ti−1) (ξi ∈ [ti−1, ti]),

thus

L(τ) =
n

∑

i=1

‖r(ti)− r(ti−1)‖ ≈
n

∑

i=1

‖ṙ(ξi) · (ti − ti−1)‖,

which is the sum approximation of an integral. One can show that in case of
a smooth curve this leads us to the arc length of the curve: a smooth curve
is rectifiable, and

L =

∫ β

α

‖ṙ(t)‖dt.

If r : [α, β] → R is a smooth curve, then for all t ∈ [α, β] let s(t) :=
∫ t

α
‖ṙ(u)‖du, that is, the arc length of the curve between the parameter point

α and t (which also exists obviously). From the definition one can see that

s′(t) =
d

dt

∫ t

α

‖ṙ(u)‖du = ‖ṙ(t)‖.

If t, t+∆t ∈ [α, β], then

∆s := s(t+∆t)− s(t) =
∫ t+∆t

t

‖ṙ(u)‖du ≈ ‖ṙ(t)‖∆t if∆t ≈ 0.

From this we can derive the orbital (tangential) velocity of a point moving
along the space curve r:

v(t) = lim
∆t→0

∆s

∆t
=

ds

dt
= ‖ṙ(t)‖.

The concept of angular velocity is also frequently used. Assume that the
angle enclosed by the vectors r(t) and r(t+∆t) is ∆φ. We define the angular
velocity at the point t of the space curve r as

ω(t) := lim
∆t→0

∆φ

∆t
.
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For a sufficiently smooth curve we calculate the angular velocity ω(t). It is
known that

‖r(t)× r(t+∆t)‖ = ‖r(t)‖ · ‖r(t+∆t)‖ · sin∆φ.

By exploiting the fact that r(t)× r(t) = 0,

sin∆φ =
‖r(t)× (r(t+∆t)− r(t))‖

‖r(t)‖ · ‖r(t+∆t)‖ .

We remember that lim∆φ→0
sin∆φ
∆φ = 1, and in case ∆t → 0, ∆φ → 0, we

continue the calculation as

sin∆φ

∆φ
· ∆φ
∆t

=
‖r(t)× r(t+∆t)−r(t)

∆t ‖
‖r(t)‖ · ‖r(t+∆t)‖ ,

lim
∆t→0

r(t+∆t)− r(t)
∆t

= ṙ(t),

ω(t) = lim
∆t→0

∆φ

∆t
=
‖r(t)× ṙ(t)‖
‖r(t)‖2 .

When sitting in a car we arrive at a bend, it is important to know how steep
the bend is. Denote by ∆s the arc length of a sufficiently smooth curve
between the parameter points t and t + ∆t. Let the angle of the tangent
vectors at these two points be ∆α. The curvature at point t is defined as

G(t) := lim
∆s→0

∆α

∆s
.

The curvature informs us about the change of the angle along the displace-
ment ∆s. If G is big, then the bend is “steep”, if G is close to zero, then the
path is practically straight.

We calculate the curvature in case of a sufficiently smooth curve (ṙ, r̈ ∈ C).
If ∆s ≈ 0, then ∆t ≈ 0, so

∆α

∆s
=

∆α

∆t
:
∆s

∆t
,

from which

G(t) = lim
∆s→0

∆α

∆s
= lim

∆t→0

∆α

∆t
: lim
∆t→0

∆s

∆t
= Ω(t) : ‖ṙ(t)‖,

where Ω(t) is the angular velocity of ṙ (this is also a space curve!) at the
point belonging to the parameter t. So,

G(t) =
‖ṙ(t)× r̈(t)‖
‖ṙ(t)‖2 : ‖ṙ(t)‖ = ‖ṙ(t)× r̈(t)‖

‖ṙ(t)‖3 .
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Let

R(t) :=
1

G(t)
> 0

in case G(t) 6= 0. It is possible to verify that the circle of radius R(t) that fits
the point of the curve belonging to the parameter t, which is in the osculating
plane, and whose center lies on the principal normal vector f , approaches the
curve most tightly. It is called osculating circle. Any movement along a
small section of the curve can be replaced by movement along the osculating
circle.

Curvature measures how much a curve deviates from the straight line.
Another characteristic property, the so-called torsion informs us about the
deviation of a space curve from a plane curve.

A normal vector of the osculating plane of a curve is called binormal vector.
If the osculating plane changes with the parameter, then this is shown by the
deflection of the binormal vector. The change in the angle of the binormal
vector whereas the arc length changes by ∆s is characterized by the torsion
(twist), that is, the torsion at the location of parameter value t is defined as

T (t) := lim
∆s→0

∆β

∆s
,

where ∆β is the angle enclosed by the normal vectors at the points r(t) and
r(t+∆t) of the curve (that is, the angle of b(t) and b(t+∆t)), and ∆s is the
arc length between the two points. Similarly to our previous consideration,
for a sufficiently smooth curve (ṙ, r̈,

...
r ∈ C)

T (t) = lim
∆s→0

∆β

∆s
= lim

∆t→0

∆β

∆t
:
∆s

∆t
= lim

∆t→0

∆β

∆t
: lim
∆t→0

∆s

∆t

=
‖b(t)× ḃ(t)‖
‖b(t)‖2 : ‖ṙ(t)‖,

where the dividend is the angle velocity of the binormal b as a space curve.
Substituting the already known form of the binormal vector, after some sim-
plifications we obtain that

T (t) =
|〈ṙ(t)× r̈(t), ...r (t)〉|
‖ṙ(t)× r̈(t)‖2 .

We remark that if we do not take the absolute value of the “mixed product”
in the numerator, then the curve makes a right-handed screw if T (t) > 0,
and a left-handed screw if T (t) < 0. In case of screws and winding staircases
this may also be of great importance . . .
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16.1.2 Surfaces

Let S be a plane in the space. Let the vector r0 be directed to a point of
the plane S. Assume that a and b are two non-parallel plane vectors. It is
known that a vector r directed to an arbitrary point of the plane S can be
given in the form

r = r0 + ua+ vb,

where u, v ∈ R are suitable numbers. To put it coordinate-wise,

x = x0 + ua1 + vb1,

y = y0 + ua2 + vb2,

z = z0 + ua3 + vb3.

So, we could give any point of the plane S with the aid of three functions of
two variables.

This is generally true. Let

Φ : R2 ⊃→ R3, Φ =





X
Y
Z



 ,

where X,Y, Z : R2 ⊃→ R. If Ω := D(Φ) ⊂ R2, then for all (u, v) ∈ Ω





X(u, v)
Y (u, v)
Z(u, v)



 ∈ R3

defines a position vector of a point of the plane. These points define a (two-
parameter) surface. For example, the function Φ : [0, 2π]× [0, π]→ R3,

Φ(u, v) :=





3 sin v cosu
3 sin v sinu

3 cos v





is the two-parameter representation of the surface of a sphere with radius
R = 3, centered at the point (0, 0, 0) (Fig. 16.1).

Let Φ : R2 ⊃→ R3, (u0, v0) ∈ D(Φ). The curve p : R ⊃→ R3, p(u) :=
Φ(u, v0), lying on the surface is called u-parameter curve, while q : R ⊃→
R3, q(v) := Φ(u0, v) is called v-parameter curve (Fig. 16.2).

If Φ is a smooth function (the partial derivatives of the coordinate functions
X,Y, Z are continuous), then ṗ(u0) and q̇(v0) are tangent vectors of the az
u-parameter curve and the v-parameter curve, and then n := ṗ(u0)× q̇(v0) is
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a normal vector to the tangent plane of the surface Φ at the point Φ(u0, v0).
Since

ṗ(u0) =





∂uX(u0, v0)
∂uY (u0, v0)
∂uZ(u0, v0)



 and q̇(v0) =





∂vX(u0, v0)
∂vY (u0, v0)
∂vZ(u0, v0)



 ,

therefore the normal vector of the tangent plane is the determinant

n =

∣

∣

∣

∣

∣

∣

i j k
∂uX ∂uY ∂uZ
∂vX ∂vY ∂vZ

∣

∣

∣

∣

∣

∣

where the partial derivatives are to be evaluated at the point (u0, v0).
Let Φ be a smooth surface, and consider the rectangle defined by the points

(u, v), (u+∆u, v), (u+∆u, v +∆v), (u, v +∆v) ∈ D(Φ). The area of this
rectangle is ∆u ·∆v. Then

Φ(u+∆u, v)− Φ(u, v) ≈





∂uX(u, v)
∂uY (u, v)
∂uZ(u, v)



∆u =: a,

Φ(u, v +∆v)− Φ(u, v) ≈





∂vX(u, v)
∂vY (u, v)
∂vZ(u, v)



∆v =: b,

therefore, the area of the piece of surface, enclosed by the u- and v-parameter
curves, characterized by the “vertices” Φ(u, v), Φ(u+∆u, v), Φ(u+∆u, v +
∆v), Φ(u, v + ∆v) can be approximated with the area of a parallelogram,
lying on the tangent plane of the surface at the point Φ(u, v), the side vectors
of which are a and b. This area can be expressed by the vector product

‖a× b‖ = ‖n‖∆u∆v = ‖

∣

∣

∣

∣

∣

∣

i j k
∂uX ∂uY ∂uZ
∂vX ∂vY ∂vZ

∣

∣

∣

∣

∣

∣

‖ ·∆u∆v.

Partitioning the parameter domain finely enough with straight lines parallel
with the u and v axes, cells of area ∆u∆v are obtained (Fig. 16.3).

The image of a cell is a “curvilinear cell” on the surface, the area of which
has just been calculated. Summing these up, we obtain a sum approximation
of the area of the surface Φ:

∑

u

∑

v

‖





∂uX(u, v)
∂uY (u, v)
∂uZ(u, v)



×





∂vX(u, v)
∂vY (u, v)
∂vZ(u, v)



 ‖∆u∆v,
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which, by refining the partition beyond all bounds, tends to the integral of
the surface Φ over its domain of definition Ω. So, the area of the surface Φ is

S :=

∫

Ω

‖∂uΦ× ∂vΦ‖dudv,

where

∂uΦ =





∂uX
∂uY
∂uZ



 and ∂vΦ =





∂vX
∂vY
∂vZ



 .

We can simplify the integrand. Since for the vectors a, b

‖a× b‖2 = ‖a‖2 · ‖b‖2 sin2 α = ‖a‖2‖b‖2(1− cos2 α)

= ‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2 α = ‖a‖2‖b‖2 − (〈a, b〉)2,

therefore

S =

∫

Ω

(‖∂uΦ‖2‖∂vΦ‖2 − (〈∂uΦ, ∂vΦ〉)2)1/2dudv.

Surface integral of a scalar field

Let Φ : R2 ⊃→ R3, Ω := D(Φ) be a smooth surface. Assume that to each
point of the surface a real number is assigned, so, let U : R3 ⊃→ R, D(U) :=
Φ(Ω). Assume that U is continuous. The integral of the “scalar function” U
on the surface Φ is defined in the usual manner:

1o We divide the parameter domain Ω into cells of area ∆u∆v.

2o We take arbitrary points (u′, v′) in the cells.
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3o We prepare the product U(Φ(u′, v′)) ·‖∂uΦ×∂vΦ‖∆u∆v (we multiplied
the value of the function U at a surface point by the approximate area
of the image of the cell of area ∆u∆v).

4o The sum
∑

u

∑

v U(Φ(u′, v′)) · ‖∂uΦ×∂vΦ‖∆u∆v is the approximation
of an integral.

5o The integral of the scalar function U on the surface Φ is defined as the
limit of the sum approximations:

∫

Φ

U := lim
∆u→0,∆v→0

∑

u

∑

v

U(Φ(u′, v′)) · ‖∂uΦ× ∂vΦ‖∆u∆v

=

∫

Ω

U(Φ(u, v)) · ‖∂uΦ(u, v)× ∂vΦ(u, v)‖dudv.

Surface integral of a vector field

Let Φ : R2 ⊃→ R3, Ω := D(Φ) be a smooth surface. Assume that to each
point of the surface a vector is assigned, that is F : R3 ⊃→ R3, D(F ) = Φ(Ω).
Assume that F is continuous. The integral of the “vector-valued” function F
on the surface Φ can be defined in the usual manner:

1o We divide the parameter domain Ω into cells of area ∆u∆v.

2o We take arbitrary points (u′, v′) in the cells.

3o We prepare the vector F (Φ(u′, v′)).

4o To the point Φ(u, v), belonging to the “vertex” (u, v) of the cell, corre-
sponds a tangent plane, a normal vector of which is

∂uΦ(u, v)× ∂vΦ(u, v).

Since the area of the surface element corresponding to the cell of area
∆u∆v is

∆S ≈ ‖∂uΦ(u, v)∆u× ∂vΦ(u, v)∆v‖ = ‖∂uΦ(u, v)× ∂vΦ(u, v)‖∆u∆v,

therefore the vector

∆S := (∂uΦ(u, v)× ∂vΦ(u, v))∆u∆v

is called surface vector. (The length of ∆S is exactly the area of the
surface element, and its direction is orthogonal to the surface so that
it forms a right-handed system with the vectors ṗ(u), q̇(v).)
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5o We prepare the sum of scalar products

∑

u

∑

v

〈F (Φ(u′, v′)),∆S〉.

This is the sum approximation of an integral.

6o The integral of the vector-valued function F on the surface Φ is defined
as the limit of the sum approximations:

∫

Φ

F := lim
∆u→0,∆v→0

∑

u

∑

v

〈F (Φ(u′, v′)), ∂uΦ(u, v)× ∂vΦ(u, v)〉∆u∆v

=

∫

Ω

〈F (Φ(u, v)), ∂uΦ(u, v)× ∂vΦ(u, v)〉dudv. (16.1)

16.1.3 The nabla symbol

Nabla is a symbolic vector, which expresses partial differentiation with re-
spect to x, y and z. It is denoted as ∇. It can be used as a vector and can
be employed as a factor in scalar and vector products.

∇ :=





∂x
∂y
∂z





If f : R3 ⊃→ R is a smooth function, then

gradf = ∇f =





∂xf
∂yf
∂zf



 .

(Here f behaves like a scalar multiplier of a vector, however, in an unusual
way it is located behind the vector.)

If f : R3 ⊃→ R3 is a smooth function, then let the sum of the elements in
the main diagonal of the derivative matrix f ′(x, y, z) ∈ R3×3 be

divf(x, y, z) = ∂xf1(x, y, z) + ∂yf2(x, y, z) + ∂zf3(x, y, z).

The divergence of f in terms of the nabla vector reads as

divf = 〈∇, f〉

(the scalar product of nabla and the vector f).
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If f : R3 ⊃→ R3 is a smooth function, then the vector consisting of the
differences of the elements, symmetrical to the main diagonal of the derivative
matrix f ′(x, y, z) ∈ R3×3 is called rotation of f , and

rotf(x, y, z) :=





∂yf3(x, y, z)− ∂zf2(x, y, z)
∂zf1(x, y, z)− ∂xf3(x, y, z)
∂xf2(x, y, z)− ∂yf1(x, y, z)



 .

The rotation of f can be expressed in terms of the ∇ vector as

rotf = ∇× f

(the vector product of nabla and the vector f).
The meaning of gradf was discovered in connection with the directional

derivative, while rotf arose in the topic of the line integral, where the suf-
ficient condition of the existence of a potential was investigated. (divf will
soon appear, too.) One can see that grad, div and rot are differentiation
operations, which become more transparent with the aid of the ∇ symbol.
∇ really behaves like a vector. For example, in case of a sufficiently smooth

function f : R3 ⊃→ R

rot(gradf) = ∇× (∇f) = 0,

since ∇ and ∇f are “parallel”. (After performing the tedious derivations we
would get the same result.)

Note that the scalar product of ∇ by itself is known as the Laplacian
operator:

△ := 〈∇,∇〉,
that is, if f : R3 ⊃→ R is a sufficiently smooth scalar function, then

△f := div(gradf) = ∂2xxf + ∂2yyf + ∂2zzf

is called “Laplacian of f”.

16.1.4 Theorems for integral transforms

We are going to generalize the Newton–Leibniz theorem of real functions.
As a consequence of this theorem, if a function f : R ⊃→ R is continuously
differentiable, then

∫ b

a

f ′ = f(b)− f(a),

which means that the integral of the function f on the set [a, b] is equal to
the change of the function on the boundary of the set.
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The first generalization is as follows:
Let Φ : R2 ⊃→ R3 be a smooth surface, bounded by an oriented curve

r : R ⊃→ R3 (r should be positively oriented from the viewpoint of the
surface vectors).

Theorem 16.1 (Stokes’ theorem). If F : R3 ⊃→ R3 is a smooth vector
function, then

∫

Φ

rotF =

∫

r

F,

that is, the surface integral of rotF (here a differential operator has been
applied to the function F ) is equal to the line integral of F on the boundary
of the surface.

The second generalization is as follows:
Let Φ : R2 ⊃→ R3 be a closed, smooth surface, enclosing the space V ⊂ R3

(the surface vectors are oriented “outwards”).

Theorem 16.2 (Gauss’ theorem). If F : R3 ⊃→ R3 is a smooth vector
function, then

∫

V

divF =

∫

Φ

F,

that is, when integrating the function divF on the space domain V (here
another differential operator has been applied to the function F ), this integral
can be given as a surface integral on the boundary of the space domain.

16.2 Exercises

1. Consider the helix r : [0, 6π] → R3, r(t) :=





cos t
sin t
t



 . At the parameter

point t0 := π
2 calculate

a) the vectors t, f , b of the accompanying trieder,

b) the curvature G(t0), and the radius R(t0) of the osculating circle,

c) the torsion T (t0).

Calculate the length of the helix.

2. Consider the spherical surface

Φ : [0, 2π]× [0, π]→ R3, Φ(u, v) :=





3 sin v cosu
3 sin v sinu

3 cos v



 .



178 16. Vector analysis

Give the u- and v-parameter curves p : [0, 2π]→ R3, p(u) := Φ(u, π2 ) and
q : [0, π]→ R3, q(v) := Φ(0, v) for the parameter values (u0, v0) := (0, π2 ).
(What would they mean on the surface of the Earth?)

Give the equation of the tangent plane corresponding to the parameter
values (u0, v0) := (π3 ,

π
3 ). (What angle does it enclose with the plane of

the Equator?)

3. Calculate the area of the previous surface Φ(u, v) over the parameter do-
main

Ω :=
{

(u, v) | 0 ≤ u ≤ π

4
,
π

3
≤ v ≤ π

2

}

.

4. Show that the area of the smooth function f : [a, b] × [c, d] → R as a
surface is given by the integral

∫ d

c

(

∫ b

a

√

1 + [∂xf(x, y)]2 + [∂yf(x, y)]2dx

)

dy.

Solution: Define the surface as the two-parameter function

Φ : [a, b]× [c, d]→ R3, Φ(x, y) :=





x
y

f(x, y)



 .

∂xΦ(x, y) =





1
0

∂xf(x, y)



 , ∂yΦ(x, y) =





0
1

∂yf(x, y)



 ,

‖∂xΦ(x, y)‖2 = 1 + [∂xf(x, y)]
2, ‖∂yΦ(x, y)‖2 = 1 + [∂yf(x, y)]

2,

(〈∂xΦ(x, y), ∂yΦ(x, y)〉)2 = (∂xf(x, y) · ∂yf(x, y))2,

‖∂xΦ‖2 · ‖∂yΦ‖2 − 〈∂xΦ, ∂yΦ〉2 = 1 + (∂xf)
2 + (∂yf)

2.

The latter implies the statement.

5. Let Φ : [0, 1] × [0, 1] → R3, Φ(u, v) :=





u+ v
u− v
u



 , and U : R3 → R,

U(x, y, z) := x+ y + z. Calculate the surface integral
∫

Φ
U .

6. Let

Φ : [0, 1]× [0, 1]→ R3, Φ(u, v) :=





u+ v
u− v
u



 ,
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and

F : R3 → R3, F (x, y, z) :=





y
x
z



 .

Calculate the surface integral
∫

Φ
F .

7. Consider the “upper hemisphere”

Φ : [0, 2π]× [0, π/2]→ R3, Φ(u, v) :=





cos v cosu
cos v sinu

sin v





and its boundary curve

r : [0, 2π]→ R3, r(t) :=





cos t
sin t
0



 .

Let F : R3 → R3, F (x, y, z) :=





x2y
yz
z



 be a vector function. Check the

validity of Stokes’ theorem.

Solution:

rotF (x, y, z) = ∇× F (x, y, z) =

∣

∣

∣

∣

∣

∣

i j k
∂x ∂y ∂z
x2 yz z

∣

∣

∣

∣

∣

∣

= i(0− y)− j(0− 0) + k(0− x2),

so rotF (x, y, z) =





−y
0
−x2



 , rotF (Φ(u, v)) =





− cos v sinu
0

−(cos v cosu)2



 .

∂uΦ(u, v) =





− cos v sinu
cos v cosu

0



 , ∂vΦ(u, v) =





− sin v cosu
− sin v sinu

cos v



 ,

∂uΦ(u, v)× ∂vΦ(u, v) =

∣

∣

∣

∣

∣

∣

i j k
− cos v sinu cos v cosu 0
− sin v cosu − sin v sinu cos v

∣

∣

∣

∣

∣

∣

= i(cos2 v cosu)−j(−cos2 v sinu)+k(cos v sin v sin2u+cos v sin v cos2u)

=





cos2 v cosu
cos2 v sinu
cos v sin v



 ,
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and these vectors are oriented “outwards”.

The left-hand side of Stokes’ theorem:

∫

Φ

rotF =

∫

[0,2π]×[0,π/2]

〈rotF (Φ(u, v)), ∂uΦ(u, v)× ∂vΦ(u, v)〉dudv

=

∫ 2π

0





∫ π/2

0

〈





− cos v sinu
0

− cos2 v cos2 u



 ,





cos2 v cosu
cos2 v sinu
cos v sin v





〉

dv



 du

=

∫ 2π

0

(

∫ π/2

0

(− cos3 v sinu cosu− cos3 v sin v cos2 u)dv

)

du.

Since

∫

− cos3 vdv = −
∫

cos v(1− sin2 v)dv

= −
∫

cos vdv +

∫

sin2 v cos vdv = − sin v +
sin3 v

3
,

therefore

∫ π/2

0

− cos3 vdv =

[

− sin v +
sin3 v

3

]π/2

0

= −2

3
.

On the other hand,

∫ π/2

0

cos3 v(− sin v)dv =

[

cos4 v

4

]π/2

0

= −1

4
.

By exploiting all this,

∫

Φ

rotF =

∫ 2π

0

sinu cosu ·
(

−2

3

)

+ cos2 u ·
(

−1

4

)

du

= −2

3

[

sin2 u

2

]2π

0

− 1

4

∫ 2π

0

1 + cos 2u

2
du

= 0− 1

4

[

1

2
u+

sin 2u

4

]2π

0

= −π
4
.
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The right-hand side of Stokes’ theorem is a line integral:

∫

r

F =

∫ 2π

0

〈F (r(t)), ṙ(t)〉dt =
∫ 2π

0

〈





cos2 t sin t
0
0



 ,





− sin t
cos t
0





〉

dt

=

∫ 2π

0

− cos2 t sin2 tdt =

∫ 2π

0

− sin2 2t

4
dt =

∫ 2π

0

−1− cos 4t

8
dt

=

[

−1

8
t+

sin 4t

32

]2π

0

= −π
4
.

So, in this example
∫

Φ

rotF =

∫

r

F = −π
4
.

8. Consider the vector function F : R3 → R3, F (x, y, z) :=





x2y
yz
z



 .

Let
V :=

{

(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ R2
}

be a sphere of radius R, centered at the origin, which is bounded by the
surface

Φ : [0, 2π]× [−π/2, π/2]→ R3, Φ(u, v) :=





R cos v cosu
R cos v sinu
R sin v



 .

Check the validity of Gauss’ theorem.

Solution:

divF (x, y, z) = 〈∇, F 〉(x, y, z) = ∂x(x
2y)+∂y(yz)+∂z(z) = 2xy+z+1.

The left-hand side of Gauss’ theorem:
∫

V

divF =

∫

V

(2xy + z + 1)dxdydz.

For the calculation of the integral it is convenient to perform polar trans-
formation. Let

Ψ : [0, 2π]× [π/2, π/2]× [0, R]→ R3, Ψ(u, v, r) :=





r cos v cosu
r cos v sinu
r sin v



 .
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Ψ is a one-to-one correspondence between T := [0, 2π]× [π/2, π/2]× [0, R]
and the sphere V . Calculate the determinant of the derivative of the
substituting function:

detΨ′(u, v) =

∣

∣

∣

∣

∣

∣

−r cos v sinu −r sin v cosu cos v cosu
r cos v cosu −r sin v sinu cos v sinu

0 r cos v sin v

∣

∣

∣

∣

∣

∣

= −r cos v(−r cos2 v sin2 u− r cos2 v cos2 u)
+ sin v(r2 cos v sin v sin2 u+ r2 cos v sin v cos2 u)

= r2 cos v.

Since v ∈ [−π
2 ,

π
2 ], therefore | detΨ′(u, v)| = r2 cos v. By exploiting this,

∫

V

(2xy + z + 1)dxdydz

=

∫ 2π

0

(

∫ π/2

−π/2

(

∫ R

0

(2(r cos v cosu)(r cos v sinu)+r sin v+1)r2 cos vdr

)

dv

)

du

=

∫ 2π

0

(

∫ π/2

−π/2

(

∫ R

0

(2r4 cos3 v cosu sinu+ r3 sin v cos v + r2 cos v)dr

)

dv

)

du

=

∫ 2π

0

(

∫ π/2

−π/2

(

2

5
R5 cos3 v cosu sinu+

1

4
R4 sin v cos v +

1

3
R3 cos v

)

dv

)

du.

By Exercise 7,

∫ π/2

−π/2

cos3 vdv =

[

sin v − sin3 v

3

]π/2

−π/2

=
4

3
.

∫ π/2

−π/2

sin v cos vdv =

[

sin2 v

2

]π/2

−π/2

= 0 és
∫ π/2

−π/2

cos vdv = 2.

By continuing the integration:

∫ 2π

0

[

4

3
· 2
5
R5 cosu sinu+

1

4
R4 +

2

3
R3

]

du =
8

15
R5

[

sin2 u

2

]2π

0

+
4π

3
R3

=
4π

3
R3.

The right-hand side of Gauss’ theorem is a surface integral:
∫

Φ

F =

∫

[0,2π]×[−π
2 ,π2 ]

〈F (Φ(u, v)), ∂uΦ(u, v)× ∂vΦ(u, v)〉dudv.
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∂uΦ(u, v) =





−R cos v sinu
R cos v cosu

0



 , ∂vΦ(u, v) =





−R sin v cosu
−R sin v sinu

R cos v





∂uΦ(u, v)× ∂vΦ(u, v) =

∣

∣

∣

∣

∣

∣

i j k
−R cos v sinu R cos v cosu 0
−R sin v cosu −R sin v sinu R cos v

∣

∣

∣

∣

∣

∣

= i(R2 cos2 v cosu)− j(−R2 cos2 v sinu)

+ k(R2 cos v sin v sin2 u+R2 cos v sin v cos2 u)

=





R2 cos2 v cosu
R2 cos2 v sinu
R2 cos v sin v



 .

F (Φ(u, v)) =





(R cos v cosu)2(R cos v sinu)
(R cos v sinu)(R sin v)

R sin v



 .

By using these functions,

∫

Φ

F =

∫

[0,2π]×[−π
2 ,π2 ]

〈





R3 cos3 v cos2 u sinu
R2 cos v sin v sinu

R sin v



,





R2 cos2 v cosu
R2 cos2 v sinu
R2 cos v sin v





〉

dudv

=

∫ 2π

0

(

∫ π/2

−π/2

(R5 cos5v cos3u sinu+R4cos3 v sin v sin2u+R3 sin2 v cos v)dv

)

du.

We calculate the integral of each term:

∫

cos5 vdv =

∫

(1− sin2 v) cos3 vdv =

∫

cos3 vdv −
∫

cos3 v sin2 vdv.

From Exercise 7 we have
∫

cos3 vdv = sin v − sin3 v
3 .

∫

cos3 v sin2 vdv =

∫

(cos3 v sin v) sin vdv

= −cos4 v

4
sin v −

∫

−cos4 v

4
cos vdv

= −1

4
cos4 v sin v +

1

4

∫

cos5 vdv.
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After rearrangement of the results we obtain

∫

cos5 vdv = sin v − sin3 v

3
+

1

4
cos4 v sin v − 1

4

∫

cos5 vdv,

5

4

∫

cos5 vdv = sin v − sin3 v

3
+

1

4
cos4 v sin v,

∫ π/2

−π/2

cos5 vdv =
4

5

[

sin v − sin3 v

3
+

1

4
cos4 v sin v

]π/2

−π/2

=
4

5
· 4
3
=

16

15
.

Thus we have
∫ π/2

−π/2

(R5 cos5 v cos3 u sinu+R4 cos3 v sin v sin2 u+R3 sin2 v cos v)dv

=
16

15
R5 cos3 u sinu+R4 sin2 u

[

−cos4 v

4

]π/2

−π/2

+R3

[

sin3 v

3

]π/2

−π/2

=
16

15
R5 cos3 u sinu+

2

3
R3.

Finally,

∫ 2π

0

(

16

15
R5 cos3 u sinu+

2

3
R3

)

du

=

[

16

15
R5

(

−cos4 u

4

)

+
2

3
R3u

]2π

0

=
4π

3
R3.

So,
∫

V

divF =

∫

Φ

F =
4π

3
R3.


