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Introduction, motivation

Environmental physics is an important area of modern physics which applies
the tools of classical physics. Environmental fluid dynamics (Pedlosky, 1979;
Vallis, 2006) grew out from general hydrodynamics in the first part of the 20th

century. Compared to the latter it is special in that its phenomena are consid-
erably influenced, what is more, typically determined by the following factors:
the Earth’s rotation and spherical geometry, and the investigated medium’s
shallowness and stratification. Taking into account these effects environmental
fluid dynamics has proven to be considerably successful in understanding the
atmospheric and oceanic processes. This knowledge is, on the one hand, nec-
essary for understanding how real weather and, consequently, climate works,
and, on the other hand, for interpreting appropriately the solutions obtained
numerically from the basic equations of the atmosphere and the ocean. The
full exploration of this range of phenomena is, however, a duty for the future.

Within environmental fluid dynamics, phenomena on a rotating sphere still
need a more precise understanding. My research, aimed at investigating the
motion of vortex pairs and the chaotic advection in their velocity fields, and
providing a testbed for a generally used approximation, the so-called β-plane
approximation, contributes to this issue. The description of climate dynamics,
in turn, is not at all matured, this poses in fact one of the most important
tasks of our age. Its probabilistic approach is based on the so-called snapshot
attractor picture. My aim was to work out in detail the method of applying
snapshot attractors, and to quantify their deviation from the attractors of
time-independent systems.

Model setups, applied methods

In an ideal two-dimensional incompressible flow the simplest vortices are the
so-called point vortices. Their motion is described by ordinary differential
equations in which the constant circulation of the point vortices appear as a
parameter. This construction is applicable also for spherical geometry (New-
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ton, 2001). The motion of point vortices on a rotating sphere can be taken
into account by making the circulations of the vortices depend on the position,
in particular, on the latitudinal coordinate. This is the so-called the modula-
tion which ensures the conservation of the angular momentum of the vortices.
The idea (Zabusky and McWilliams, 1982) is more than three decades old,
its application, however, has been restricted to the β-plane approximation
(Pedlosky, 1979) so far when one investigates a small neighborhood of a given
latitude. The extension of the method to the full sphere was done in [1]. In
the first major topic of our work we considered pairs composed of two mod-
ulated vortices. We defined a pair such that its members’ circulations on the
reference latitude ϕr are identical in absolute value and are opposite in sign.

In the β-plane approximation of environmental fluid dynamics (Pedlosky,
1979) the geometry is approximated by a plane near a particular latitude
considered to be the origin, and the latitudinal dependence of quantities are
taken into account in the linear order of the Taylor expansion around the
origin. The model of the modulated point vortices is especially suitable for
investigating the appropriateness of this approximation, since, unlike in usual
hydrodynamical systems, the motion of vortices is determined by ordinary
differential equations.

In the velocity field of modulated vortex pairs on the β-plane passive trac-
ers are advected chaotically (Velasco Fuentes et al. 1995; about chaotic advec-
tion in general: Aref, 1984, 2002). If the tracers leave the close neighborhood
of the vortex pair, the advection is open and is governed by a so-called chaotic
saddle which is a fractal set consisting of unstable periodic orbits. if the trac-
ers always move together with the vortex pair, the advection is closed, and is
determined by a space-filling chaotic set. In the model of modulated vortex
pairs on the β-plane both behavior types are observable. What is more, the
type of the behavior with a given set of parameters depends on the initial
conditions of the vortex pair: between the two types of advection, a kind of
“phase transition” occurs at a particular latitude (Benczik et al., 2007).

In the other major topic of our work, the studying of climate dynamics,
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we applied the model referred to as the Lorenz 84 model (Lorenz, 1984). This
describes (on a conceptual level) the atmospheric dynamics of midlatitudes by
three variables: the speed of the Westerlies and the amplitudes of two cyclonic
modes. We incorporated a climate change into this model (in what follows:
the modified Lorenz 84 model) by the linear time-dependence of a parameter
which corresponds to the decrease of the temperature contrast between the
Equator and the polar region and thus mimics the increase of the CO2 level.
This way we obtained a nonautonomous dynamical system.

The usual attractors (Ott, 1993) appearing in autonomous dynamical sys-
tems (or in those forced periodically in time) cannot form if the forcing is
not periodic in time. The long term behavior is described by the so-called
snapshot attractor (Romeiras et al., 1993; Chekroun et al., 2011) in such
cases which changes in time perpetually and without any periodicity. This
object is obtained by initializing an ensemble of trajectories in a given time
instant t0, being in the remote past, applying an identical forcing on them,
and registering the endpoints of these trajectories at the time instant t of the
observation.

Ergodicity cannot hold in such systems, i.e., the ensemble average (taken
with respect to the natural measure) and a temporal average taken along a sin-
gle trajectory (on an infinitely long time window) do not coincide. Chekroun
et al. (2011) introduced an alternative definition — which is, however, not
applicable for single time series, only for ensembles — for temporal averaging
by means of which the mentioned equality can be made valid.

Thesis points related to the modulated point vortex pairs

1. Time scale separation in the advection: a crossover from locally
open advection to global mixing [1]

The advection of passive tracers in the velocity field of a vortex pair on a ro-
tating sphere, described by modulating the circulations, may locally be closed
and open. We showed that whether the advection is closed or open depends
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on the initial conditions of the vortex pair when the set of parameters is given:
between the two types of advection, a kind of “phase transition” occurs at a
particular latitude. The locally closed and open advection types are observed
on short time scales. On asymptotically long times, however, we found even
the open advection to become closed since the vortex pair periodically reenters
its own wake due to the spherical geometry. The chaotic saddle governing the
open dynamics was shown to be less and less repelling, to gradually become
space filling and to spread to the full sphere in a zonal band. Such a time
scale separation is expected to occur in any chaotic advection problem where
the flow is locally open but globally closed.

2. The inconsistency of the β-plane approximation in the dipole
limit [2]

In the modulated point vortex pair model on the sphere we considered the
equations of motion in the dipole limit. We derived the β-plane approximation
for these equations around the reference latitude ϕr of the model, and we
also carried out a consistent linearization of the original (full spherical) dipole
equations in the latitudinal coordinate ϕ around the reference latitude ϕr. We
showed that two terms of the consistently linearized equations of motion are
missing in the β-plane equations. Even in the geophysically relevant context of
small velocities one of the two additional terms turns out to be of equal order as
the only term present in the β-plane equations. The missing of the additional
terms is due to the inconsistent treatment of the spherical geometry in the β-
plane approximation. These results strongly suggest that conventional β-plane
approximations might not be suitable under all circumstances for analyzing
phenomena with a small meridional extension in the realm of environmental
fluid dynamics.
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3. The different trajectories of the β-plane approximation and the
spherical treatment [2]

In the β-plane approximation it is the reference latitude ϕr on which a uniform
eastward and a uniform westward propagation of the dipole occurs (depend-
ing on the initial conditions). The uniform eastward propagation serves as
a center for the trajectories initiated closely to ϕr and exhibiting a mean-
dering motion to the east. The uniform westward propagation separates the
large-sized, circular trajectories that are restricted to the northern and to the
southern side of ϕr. In the full spherical dipole equations and also in the
consistently linearized ones we analytically showed that the uniform eastward
and westward propagations take place on different latitudes from ϕr and also
from each other (although the differences are typically not very large). We
call them the special latitudes, denoted by ϕ±, with ϕ+ corresponding to the
eastward propagation. In particular, we found that ϕ+ < ϕ0 and ϕ− > ϕ0

if ϕr > 0. At the same time, we numerically pointed out that the special
latitudes exhibit the same roles of center and separator as ϕr in the β-plane
approximation. The difference between ϕ+ and ϕ− is interpreted as a symme-
try breaking, observable the best in a phase space representation, and which
is hidden by the conventional β-plane approximation. By solving numerically
the dipole equations of the β-plane approximation and the spherical treatment
we concluded that the β-plane approximation makes the largest relative errors
in the vicinity of its origin where it would be expected to perform the best.
We found that it is inapplicable approximately in the middle one fourth of its
validity range. Similar results were obtained for finite-sized vortex pairs as
well. These numerical findings confirm also from a practical point of view that
the conventional β-plane approximation may end up in misleading results.
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4. Advectional aspects of the inconsistency of the β-plane approxi-
mation [2]

We compared the chaotic advection of passive tracers in the field of a finite-
sized vortex pair under β-plane and full spherical treatments. We found con-
siderably different advection patterns on a quantitative level: the clouds of
tracers left behind the vortex pair are rather different under the two treat-
ments. What is more, we showed transport properties (e.g. escape rates) to
be systematically enhanced or attenuated by the β-plane approximation, de-
pending on the initial conditions of the vortex pair. We managed to explain
this qualitatively by comparing the vortex pair trajectories under the different
treatments. It is nevertheless true that the advection patterns and the level of
their error in the β-plane approximation cannot be deduced purely from the
vortex pair trajectories.

Thesis points related to snapshot attractors and climate dy-
namics

5. The relevance of snapshot attractors in changing climates [3]

The relevance of smooth deterministic forcings in climate change science ap-
pears as a novelty in the literature of snapshot attractors. In this context we
argued that the internal variability of the climate is described by the natu-
ral probability measure of the snapshot attractor. We note furthermore that
climate changes should be interpreted as the time-dependence of the natural
measure. As an illustration, we considered the time-dependent snapshot at-
tractor (which is different in every time instant) of the modified Lorenz 84
model, and we evaluated time-dependent averages and variances over its nat-
ural measure. In contrast to how snapshot attractors are treated in the math-
ematical literature, we demonstrated, with the help of the statistics (through
the investigation of their independence on the set of initial conditions), that
an initialization of the numerical ensemble of the trajectories, representing
the snapshot attractor and its natural measure, may take place even only a
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short time before the time instant of observation, because the convergence
to the snapshot attractor (and to its natural measure) is exponentially fast.
This property enables one to numerically generate the snapshot attractor of
any particular problem without any additional effort compared to generating
usual attractors.

6. A deviation from ergodicity [4]

In nonautonomous dynamical systems with arbitrary time-dependence ergod-
icity, the equality of temporal averages along single trajectories and ensemble
averages, may not be fulfilled, because the natural probability measure de-
pends on time. To characterize the mismatch between the two kinds of av-
erages we introduced what we call the signed ergodicity deficit δτ (t): this is
the difference of two terms. One of them is the temporal average Aτ which
is taken along a single realization over a finite-length time window τ , and the
other is the ensemble average Aµ which is taken over the natural measure
of the snapshot attractor at the time t of observation. δτ (t) depends on the
time instant t, on the choice of the window length τ , and on the particular
realization. As such, it has its on probability distribution. We investigated
this probability density function (pdf) in detail in the modified Lorenz 84
model. We considered separately a case with a periodic forcing (i.e., an er-
godic case) and that when a parameter of the model is varied linearly in time
(nonergodic case). In a climatic context these cases describe a stationary and
a changing climate, respectively. We found that the pdf of δτ (t) approximates
well a rather extended Gaussian both in the ergodic and in the nonergodic
case. Single realization in finite-length time windows thus typically exhibit a
nonzero ergodicity deficit, they are “not ergodic”.

7. Measures of nonergodicity [4]

We also investigated the quantitative characteristics of the pdf introduced
in Thesis Point 6. The standard deviation σµ(δτ ) of the pdf, describing the
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spread among different realizations, was numerically found with increasing τ
to decrease according to a law of 1/

√
τ , which implies a scale-free conver-

gence to fulfilling the ergodic relation (when this relation holds at all). In
the ergodic case we found the average Aµ(δτ ) of the pdf to be zero for any
window length τ , which is a generalization of the ergodic theorem for finite
τ . In the nonergodic case, however, we observed this average to be typically
different from zero (i.e., it represents a bias), and its modulus exhibits an
increasing tendency with increasing τ . We proposed this latter, i.e., the mod-
ulus |Aµ(δτ )| of the average signed ergodicity deficit, to regard as a measure
of how much the dynamics is nonergodic. The mechanisms underlying our
findings are the central limit theorem and the considerable time-dependence
of the natural measure. The average ergodicity deficit modulus, Aµ(|δτ |), in-
corporates both the spread and the bias, and stands for the expected distance
of a single-realization temporal average from the ensemble average. In the
modified Lorenz 84 model it is never small, according to a trade-off situation,
pointed out by us, between the spread and the bias, decreasing and increasing
with increasing τ , respectively. We conclude that single-realization temporal
averages are never expected to approximate well ensemble averages in general
nonautonomous dynamical systems. In particular, we do not expect 30-year
averages along single realizations — applied widely — to give useful hints on
internal variability and on climate change in climate science. Instead, the
measures themselves introduced for the degree of nonergodicity measure well
the degree of climate change.

8. The application of a different construction for ergodicity [4]

We also investigated a different, purely mathematically motivated construc-
tion for ergodicity. This transforms the ensemble average taken over the end-
points, corresponding to the time t of observation, of different trajectories to
the temporal average taken over the initial time instants of these trajectories.
We found this artificial averaging to always tend to the traditional ensemble
average with the increasing length of the time window for averaging (i.e., with
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taking into account more and more trajectories initialized in different time
instants), both in the autonomous and nonautonomous case, it thus makes
no distinction between these cases. As follows from what is said in Thesis
Point 7, distinguishing autonomous and nonautonomous dynamics is impor-
tant from a climatic point of view. For this reason, and also because the
artificial averaging implies the use of an ensemble just as averaging over the
numerically represented natural measure itself, we do not really see a reason
for considering this different construction for ergodicity to be very useful in
climate science.

Conclusions

In view of the results detailed in the thesis points, we may draw two conclu-
sions. On the one hand, numerous uncovered phenomena may be found even
in the better-studied areas of environmental fluid dynamics (such as in the
dynamics of vorticity). On the other hand, finding the appropriate framework
(such as that of snapshot attractors) may be essential for describing environ-
mental systems that are not yet understood (such as the climate system). Still,
we have been applying the theory of dynamical systems for all our purposes,
and the success of this approach demonstrates the power of this theory. (This
is also illustrated well by the research made parallel to the PhD work in the
topic of chaotic scattering [E1-E4].)

Let us consider briefly the details, too. In the model of vortex pairs we have
managed to describe a new phenomenon with a general perspective: how the
chaotic saddle of a locally open dynamics transforms, when investigating long
times, to the space-filling chaotic set of a globally closed dynamics. Within the
same model it has also become clear that results originating in the traditional
β-plane approximation have to be treated with caution.

We have seen that the probabilistic characterization of a continuously
changing climate is provided by the natural measure of the snapshot attractor,
and that its numerical generation does not require special efforts due to the
exponentially fast convergence. We note that in a different work [E5] we have
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already applied this approach for a high-degrees-of-freedom, intermediate-
complexity climate model as well. From the results of the present thesis points
it becomes clear that climate change and nonergodicity are closely related. As
an important consequence, the widely used temporal averages taken along
single realizations are typically irrelevant in a changing climate.
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