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A thesis submitted to the Eötvös University of Budapest for the degree of

Doctor of Philosophy

in the Faculty of Natural Sciences

Written by: Frigyes Nemes

PhD School of Physics

Particle and Astrophysics program

PhD school leader: Dr. László Palla, professor
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Abstract

The TOTEM experiment at the LHC at CERN is optimized to measure elastic and

diffractive scattering at the LHC and measures the total proton-proton cross-section with

the luminosity-independent method. The TOTEM experiment uses the special technique

of movable beam pipe insertions – called Roman Pots – to detect very forward protons.

The reconstruction of the forward proton kinematics requires the precise understanding

of the LHC beam optics. A new method of LHC optics determination is reported, which

exploits kinematical distributions of elastically scattered proton-proton data measured by

the Roman Pots of the TOTEM experiment. The method has been successfully applied

to data samples recorded since 2010.

The interpretation of the proton-proton elastic differential cross-section is a challenging

task. The geometrical model of proton-proton elastic scattering of Bialas and Bzdak is

fitted to ISR data and to data measured by the TOTEM experiment at LHC energy of
√
s = 7 TeV. The Bialas-Bzdak model is generalized and improved in order to give a

satisfactory and unified description of the ISR and LHC data. The improved model is

extrapolated to future LHC energies and beyond.
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Chapter 1

Introduction

Proton-proton (pp) scattering reactions are partly diffractive by means of the presence of

a diffractive pattern in the final state; elastic pp scattering is a typical example where

a diffractive minimum (the “dip”) appears in the measured elastic differential cross-

section [1–3]. The term diffraction was introduced in nuclear high-energy physics in the

1950’s by Landau and his school in strict analogy with optical diffraction [4].

Diffractive processes represent about 50 % of the total pp cross-section σtot at the

Large Hadron Collider (LHC) [5–7]. The general purpose experiments at the LHC are

focusing mainly to non-diffractive events, where it is the most likely that the creation

of a new particle happens, enlarging our knowledge about the Universe. This certainly

doesn’t mean that diffractive physics is not worth to investigate and the TOTEM (TOTal

cross section, Elastic scattering and diffraction dissociation Measurement at the LHC)

experiment at the LHC at CERN (Conseil Européen pour la Recherche Nucléaire) is

dedicated to measure the total pp cross-section and to study diffractive physics [5].

The TOTEM experiment is placed at the Interaction Point 5 (IP5) of the LHC and

uses the special technique of movable beam pipe insertions – called Roman Pots (RP) –

to detect very forward protons. The reconstruction of the kinematics of forward protons

require the precise understanding of the LHC beam optics defined by the LHC magnet

lattice, see Fig. 2.2. My main task in the physics program of the TOTEM experiment

became the calibration of the LHC optics, resulting in the validation and application of a

novel experimental method to determine the optics of the LHC accelerator at IP5 utilizing

measured RP pp data [8, 9].

4
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My PhD work also included the interpretation of elastic pp differential cross-section

data using the particular geometrical model of A. Bialas and A. Bzdak (BB model) [10].

The BB model is based on the so-called “eikonal picture”, which is the high-energy physics

analogue of optical Fraunhofer-diffraction [2]. A limitation of the original BB model that

its purely imaginary elastic scattering amplitude vanishes at the diffractive minima, which

leads to vanishing elastic differential cross-section value at these points.

I have fitted the original BB model at ISR energies and at the LHC energy of
√
s =

7 TeV to the measured TOTEM data [11]; the
√
s variable is defined in the Appendix. In

order to obtain meaningful result I left out the data points close to the dip from the fit

procedure, which led to acceptable fits in case of the ISR data sets, but the interpretation

of the TOTEM data remained unsatisfactory.

I have improved the BB model by adding a real part to its scattering amplitude, as a

perturbative correction, which lead to non-vanishing elastic differential cross-section at the

dip position [12]. The improved model gives a satisfactory description of the ISR data and

a qualitatively improved but statistically not acceptable result at the LHC
√
s = 7 TeV

data. I have found that the interpretation of the LHC data requires an increased real part

in the elastic scattering amplitude, which is too large to be handled perturbatively.

To overcome the persisting disagreement between data and model description at the

LHC energy of
√
s = 7 TeV, I have generalized the BB model using unitarity constraints

by adding an arbitrarily large real part to its scattering amplitude in a systematic way [13].

Based on the good quality of the fit results, the improved model can be extrapolated to

future LHC energies and beyond.

The structure of this PhD dissertation is as follows: in the remaining part of this

chapter a terse overview of the LHC collider is provided in Section 1.1, followed by an ele-

mentary overview of diffractive hadronic physics in Section 1.2. The TOTEM experiment

at the LHC is introduced in Section 1.3.

My LHC optics studies are reported in Chapter 2, which describes the mentioned new

experimental method to determine the optics of the LHC accelerator at IP5, used by the

TOTEM collaboration in many physics analysis.

My fit results using the BB model at ISR energies and at the LHC energy of
√
s =

7 TeV are explained in Chapter 3, while the perturbatively improved BB model is the
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topic of Chapter 4. Chapter 5 presents the results obtained with the further improved

BB model applying unitarity constraints.

The brief summary of my PhD research is the subject of Chapter 6. My research was

supported by many people and organizations: I would like to thank their contribution

in the Acknowledgments of Chapter 7. The Appendix defines the basic notations used

throughout in my PhD thesis.

1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is currently the largest and most powerful particle

collider of the world, which started its operation in 2008 [14]. The main goal of the

accelerator is to test the Standard Model (SM) and search for new physics beyond the

SM. I describe briefly the main design parameters of the LHC in Section 1.1.1 and the

experiments at the LHC in Section 1.1.2.

1.1.1 The LHC accelerator

The schematic layout of the LHC particle collider is shown in Fig. 1.1. The LHC is built

in the existing Large Electron Positron (LEP) tunnel with a circumference of 26.7 km.

The tunnel is under the ground at a depth between 50 m and 100 m. The final, future,

collision energy of the LHC is
√
s = 14 TeV, while the expected maximum collision energy

is at
√
s = 15 TeV [14].

The particles are circulated in two beams at the LHC, clockwise in Beam 1 and

counter-clockwise in Beam 2, see Fig. 1.1. The trajectory of the particles is defined

by the accelerator magnets, which act similarly to an “optical” system characterized

with a nominal betatron amplitude of β∗ = 0.55 m, see also Chapter 2. The two beams

circulate the particles in separated beam pipes, except at the four interaction points where

Beam 1 and 2 cross each other, if dedicated dipole magnets bring them into collision. The

interaction points are referred as IP1, IP2, IP5 and IP8, which host the experimental

insertions indicated with stars in Fig. 1.1 [14].

The LHC uses other accelerators at CERN as a chain of injectors, including the Linac2,

Proton Synchrotron Booster (PSB), Proton Synchrotron (PS) and Super Proton Syn-
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Figure 1.1: Schematic layout of the LHC. Beam 1 circulates the particles clockwise, while

Beam 2 counter-clockwise. The four interaction points, IP1, IP2, IP5 and IP8, which host

the experimental insertions are indicated with stars.

chrotron (SPS) accelerators. The particles are accelerated by the radio frequency (RF)

high voltage system. The RF system is designed such that particle motion is confined

longitudinally to a region called the RF bucket. Collection of particles captured within

one RF bucket is called the particle bunch [14].

Nominally, there are nb = 2808 number of bunches per beam with Nb = 1.15 ×
1011 protons per bunch at the LHC [14]. The nominal value of the so-called normalized

transverse emittance is εN = 3.75µm rad at the LHC, see Eq. (2.18) for details. The

luminosity L is defined by the machine parameters, see also Eq. (2.19), and lead to an

LHC peak luminosity of Lnom = 1034 cm−2s−1 at IP5, which determines the reach of the

LHC in terms of physics cross-sections, see also Eq. (1.3).

1.1.2 The experiments at the LHC

There are seven experiments at the LHC. The ATLAS (A Toroidal LHC ApparatuS),

the CMS (Compact Muon Solenoid), the ALICE (A Large Ion Collider Experiment),

LHCb (Large Hadron Collider beauty), LHCf (Large Hadron Collider forward), TOTEM



CHAPTER 1. INTRODUCTION 8

(TOTal Elastic and diffractive cross section Measurement) and the MoEDAL (Monopole

and Exotics Detector at the LHC) experiment. The locations of the LHC experiments

are illustrated in Figs. 1.2 and 1.1.

The ATLAS and CMS are general-purpose detectors, which can test the largest range

of physics possible at the LHC. On 4 July 2012, after 4 years of successful operation, the

ATLAS and CMS experiments announced a fundamental discovery, the observation of a

new particle in the mass range of 126 GeV. The observed particle is consistent with the

Higgs boson [15,16], which particle plays a central role in the Standard Model.

Figure 1.2: The locations of the 7 LHC experiments (ALICE, ATLAS, CMS, LHCb,

LHCf, MoEDAL, TOTEM) [17]. The TOTEM experiment shares the IP5 with CMS.

The ALICE detector is specialized to study lead-ion collisions. It is designed to test

the physics of strongly interacting matter at extreme energy densities, where the so-

called strongly coupled quark-gluon plasma is formed. The LHCb experiment specializes

to study the differences between matter and antimatter by studying the “b” quark. The

LHCf studies forward particles to simulate cosmic rays in laboratory conditions. The main

motivation of the MoEDAL experiment is to search directly for a hypothetical particle

with magnetic charge: the magnetic monopole.
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1.2 Overview of particle diffraction at high-energy

In this section a brief overview of particle diffraction is provided. If optical light is

diffracted by an obstacle at small angles and at sufficiently large wave numbers k, the

distribution of the intensity with the scattering angle ϑ can be approximated with [2]

I(ϑ) ≃ I(0) · (1−B · k2ϑ2) , (1.1)

where B ∝ R2 (the square of the obstacle’s radius, or of the hole in the screen), and

q ≃ k · ϑ is the momentum transfer. Hence, the intensity Eq. (1.1) shows a forward peak

and a rapid decrease with increasing scattering angle ϑ.

Similar behavior can be observed in case of the cross-sections of diffractive hadronic

processes; consider for example Fig. 5.8, which shows the recent pp elastic differential

cross-section data measured by the TOTEM experiment at
√
s = 7 TeV. In general at

small values of the four-momentum squared t (|t| ∝ ϑ2 at high energies) the cross-section

behave as [2]
dσ

dt
=

dσ

dt

∣∣∣∣
t=0

· e−B |t| ≃ dσ

dt

∣∣∣∣
t=0

· (1−B |t|) , (1.2)

where the definition of the squared four-momentum t is given in the Appendix.

In case of hadronic processes the slope parameter B is proportional to the squared

nuclear radius of the target hadron. The observed similarity between optical and hadronic

diffractive phenomena can be transformed into a general definition in terms of pure particle

physics: a reaction where no quantum numbers are exchanged between the colliding

particles, at high energies, is a diffractive reaction [2].

The general definition of diffraction can be further classified as elastic, single diffrac-

tive, double diffractive, central diffractive (“double pomeron exchange”) and higher or-

der (“multi pomeron”) processes [5], see also Fig. 1.3. Operationally, a diffractive re-

action is characterized by a large, non exponentially suppressed, gap in rapidity y =

1
2
ln[(E + pz)/(E − pz)] in the final state, whose measurement is a challenging task in

itself 1.

Since the 1960’s the theoretical framework to describe hadronic diffraction is the so-

called Regge-theory: the pioneering introduction of complex angular momenta, where

hadronic reactions are described with the exchange of “objects” called reggeons. The

1A rapidity gap means an empty region in the rapidity distribution.
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Figure 1.3: Classification of diffractive processes and their measured cross-sections at

Tevatron and estimated for the LHC [5].

reggeon with vacuum quantum numbers which dominates asymptotically is the so-called

pomeron [2].

In the 1960’s the increase of the total pp cross-section was observed with increasing

center-of-mass energy
√
s. This phenomenon has no classical optical analogy, since in

case of classical electrodynamics the total cross-section is independent of the momentum

of the scattered light, see Eq. (4.5). It is the exchange of intermediate particle states in

QED, which leads to the increase of the total cross-section and exactly the same is the

case in QCD, leading to the concept of the “expanding” proton [18–23], see also Fig. 5.10.

The optical analogy extends to pp elastic scattering, since the so-called “optical the-

orem” relates the total cross-section to the forward nuclear elastic scattering amplitude

T (s, t)|t=0, extrapolated to vanishing squared four-momentum transfer t = 0. At very

low-|t| the interference with the pp Coulomb interaction has to be carefully taken into
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account in the model extrapolation [5].

1.3 The TOTEM experiment

The TOTEM experiment is dedicated to measure the total pp cross-section, elastic scat-

tering and diffractive processes at the LHC at CERN. The experimental layout and the

detector technologies are chosen in order to exploit efficiently the physics spectrum, briefly

summarized in the previous Section 1.2. The main physics objective is the luminosity-

independent measurement of the total pp cross-section, which relies on the determination

of the nuclear inelastic rate Ninel [2, 5, 14]

L · σtot = Ntot = Nel +Ninel , (1.3)

where L is the LHC luminosity, and on the “optical theorem” which relates the total

cross-section to the nuclear elastic rate density function dNel/dt extrapolated to vanishing

squared four-momentum transfer t = 0 [2,5]

L · σ2
tot =

16π

1 + ρ2
· dNel

dt

∣∣∣∣
t=0

. (1.4)

The total cross-section σtot can be expressed from Eqs. (1.3) and (1.4), without making

use the luminosity L. The parameter ρ, defined with Eq. (3.13), is taken from theoretical

predictions or from extrapolations of other measurements [24]. Expression (1.4) is a simple

consequence of Eqs. (3.11) and (3.12), as discussed later.

The reliable extrapolation of dNel/dt to t = 0 requires the measurement of protons

with very small scattering angles. The TOTEM Roman Pot detectors, described in Sec-

tion 1.3.1, fulfill this requirement. According to the general cross-section assumption

Eq. (1.2) the nuclear inelastic rate Ninel is measured in the forward direction with the T1

and T2 inelastic detectors of the TOTEM experiment, described in Section 1.3.2.

The potential of the setup of the TOTEM experiment was demonstrated by several

important measurements at the lower LHC energies of
√
s = 7 and 8 TeV. The total cross-

section was measured at
√
s = 7 TeV and 8 TeV centre-of-mass energies by the TOTEM

experiment with the luminosity-independent method [25, 26] and with other methods;

at
√
s = 7 TeV the elastic σel and inelastic σinel cross-sections were also determined [25].

The forward charged particle pseudorapidity η = − ln tan(ϑ/2) density in pp collisions was
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measured at
√
s = 8 TeV in the first common CMS-TOTEM measurement [27], which

measurement was also done at
√
s = 7 TeV and 8 TeV by the TOTEM experiment itself

independently, but limited to the forward rapidity range of the T1 and T2 detectors [28,

29]. The double diffractive cross-section in the very forward region was measured at
√
s = 7 TeV by the TOTEM experiment [30], while the challenging way of creating new

resonances and new particles through central diffraction is under feasibility studies [5,31].

During the Long Shutdown 1 (LS1) the TOTEM experiment’s layout has been up-

graded substantially enlarging its physics potential [32–34]. In this PhD thesis only the

experimental layout before LS1 is considered.

1.3.1 The Roman Pot detectors of the TOTEM experiment

The RPs are moveable beam-pipe insertions, which are able to approach the beam of the

LHC through vacuum bellows in order to detect very forward protons [5,35]. The sensitive

detectors are placed inside the secondary vacuum of the RP, see Fig. 1.5, which keeps

them isolated from the LHC primary vacuum.2 This innovative experimental technique

was introduced at the ISR [36] and it has been successfully applied at other colliders like

the Sp̄pS, TEVATRON, RHIC and HERA.

The RPs of the TOTEM experiment are organized into RP units, where each unit

consists of three RPs: two of them approaches the outgoing beam vertically (top and

bottom RPs) and another one horizontally. During data taking the horizontal RP detector

overlaps with both vertical RP detectors, see Fig. 1.6. The overlap of the detector planes

within a unit allows for the relative alignment of the 3 RPs with a precision of 10 µm

by correlating the registered hit positions [37]. The horizontal alignment of the RPs with

respect to the beam centre is based on proton tracks with low-ξ, while the vertical by

matching the distributions of elastic protons. The final uncertainty of this procedure is

less than 10 µm [35,37].

The horizontal RP of the unit has yet another benefit: it approaches the beam cen-

ter from the radially outer side of the beam, thus it completes the RP acceptance for

diffractively scattered protons, see also Eq. (2.21) and Ref. [35].

2The experimental layout of the TOTEM experiment changed substantially during the LHC Long

Shutdown 1 (LS1) [32,33]. In this PhD thesis the layout before LS1 is considered.
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Figure 1.4: Side view of a Roman Pot unit

with two vertical (top and bottom) and one

horizontal pot.

Figure 1.5: Roman Pot with the diamond

shaped thin window and with the ferrite

collar mounted around the housing on the

beam vacuum side.

The RP units are organized into RP stations, where each station consists of two RP

units, see Fig. 1.7. The two RP147 stations are centered at ±149.6 m from the IP5,

while the two RP220 stations are centered at ±217.3 m [5]3. The distance of the units in

the RP220 stations is ∆sunits = 5.372m. In a particular arm the units of station RP220

are abbreviated as “near” and “far” by means of their distance from IP5, see Fig. 2.2,

which figure also explains the “left arm” and “right arm” abbreviations by means of

the relative directions of the RPs with respect to the IP5. The long lever arm within

a station, between the near and far units, has the advantage that local track angles

are reconstructed with a precision of 5 to 10 µrad, which greatly helps to identify the

background. The RPs can be arranged into so-called diagonals, where the top RPs in the

left arm and the bottom RPs in the right arm form one diagonal; the other diagonal can

be obtained by exchanging the top and bottom in the statement. The two diagonals are

almost independent experiments [35].

Each RP hosts a stack of 10 planes of “edgeless” silicon strip detectors to detect leading

protons scattered at very small angles, see Fig. 1.8. There are 512 strips on each silicon

detector plane with a separation of 66 µm pitch distance. Half of the planes are oriented

at an angle of +45◦ (5 planes), while the other half is oriented at −45◦ (5 planes) with

respect to the detector edge which faces the beam. The (programmable) trigger requires

3Note, that the RP147 station was not used in actual data taking.
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Overlap

vertical detectors

horizontal detectors
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strips || v

vertical detectors
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Figure 1.6: The overlap between the horizontal and vertical RP detectors of a RP unit.

Figure 1.7: The design drawing of the RP147 Roman Pot station. The design of the other

station, RP220, is identical except that the distance between the two units is larger.

collinear hits in at least three out of five planes for each projection, which significantly

reduces the background. This radiation tolerant integrated trigger circuits are mounted

on the detector. The alignment precision of the 10 mounted detector planes within a

stack is of 20 µm [5,35].

The movement of the RPs happens with step motors (5 µm step) and their precision

is verified with inductive sensors with 10 µm precision.

The LHC beams are very thin, due to the high beam energy, consider Eqs. (2.15) and

(2.18). Consequently, the detectors have to approach the beam to a distance as close as

1 mm and the silicon detectors have to remain efficient close to their mechanical edge.
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This required the development of a so-called Planar Edgeless Detector with “Current

Terminating Structure” (CTS) which includes an external “Current Terminating Ring”

(CTR) guard ring, see Fig. 1.8. The CTR has the same potential bias as the device, hence

it is able to collect the currents generated in the highly damaged region at the cut edge,

preventing the diffusion of charges into the sensitive detector volume [5].

Figure 1.8: Planar Edgeless Detector with CTS (left). The magnification of a portion of

the chip cut region (right) shows the details of the CTS.

The RP insertion has an integrated cooling system, which removes the thermal load

from the sensors and the electronics.

1.3.2 The forward inelastic telescopes

According to Eqs. (1.3) and (1.4), the measurement of the inelastic rate Ninel is necessary

for the luminosity-independent total cross-section determination [5]. Monte Carlo simu-

lations showed that a detector coverage in the forward region is necessary for an efficient

measurement of the inelastic rate, see also Eq. (1.2) about the distribution of diffractive

processes in general. The apparatus of the TOTEM experiment consists of the T1 and

T2 forward inelastic telescopes to measure the charged particles produced in inelastic

collisions in order to determine Ninel.

The T1 inelastic telescope

The T1 forward tracking inelastic telescope of the TOTEM experiment takes place inside

the endcaps of the CMS detector within two cone-shaped regions. It detects charged
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particles covering the pseudorapidity range of 3.1 ≤ |η| ≤ 4.7 [5]. The two arms of the T1

telescope are installed symmetrically with respect to the IP5 at a distance between 7.5 m

and 10.5 m from the IP5, see Fig. 1.9.

Figure 1.9: Half arm of the T1 forward telescope before (left) and after (right) installation

inside the endcaps of the CMS detector.

The T1 detector and its inelastic trigger is of key importance for the measurement

of the inelastic rate Ninel, which is part of the total pp cross-section measurement, see

Eqs. (1.3) and (1.4). In order to distinguish the background (beam-gas interactions,

beam muon-halo, etc.) from good beam-beam events with high efficiency the T1 detector

has to have the capability to reconstruct the three coordinates of the primary vertex [5].

The T1 detector technology is the multiwire proportional chamber with segmented

cathode read-out: the Cathode Strip Chamber (CSC), which meets with the above re-

quirements. The CSC is a well understood technology. The CSC applies small mate-

rial densities which is important as there are forward calorimeters behind the T1 tele-

scope [5, 38].

Each arm of the T1 telescope consists of five planes with CSCs. The planes are placed

equidistantly along the longitudinal axis of the detector and each arm is divided to two

vertical halves to facilitate the installation around the vacuum chamber (Fig. 1.9).

A single detector plane of T1 is composed of six pieces of CSC wire chambers, where

each CSC chamber covers approximately a φ region of 60◦. Within one detector plane the

neighboring CSC chambers overlap in φ in order to fully cover the geometrical area with

sensitive detector surface. The detector sextants of each plane are slightly rotated with
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respect to each other with an angular step of 3◦ to improve the pattern recognition step

of the track reconstruction procedure [5].

The T2 inelastic telescope

The T2 detectors are placed at ±13.5 m on both sides of the IP5 [5]. The T2 inelastic

telescopes detect charged particles in the pseudorapidity range of 5.3 ≤ η ≤ 6.5. The

generic requirements for the T2 detector are similar to the ones for T1 described in the

previous section: it has to provide an inclusive trigger for diffractive events, an efficient

reconstruction of the coordinates of the interaction vertex point in order to be able to

discriminate the signal beam-beam events from the background, and it has to have a

left-right symmetric alignment of the telescopes for better control of the systematic un-

certainties [5].

Figure 1.10: Half arm of the T2 detector (left) and the two halves of a single arm of the

T2 detector before installation (right).

It is expected that the T2 telescope is able to work up to luminosities L of the order of

1033 cm−2s−1 (close to Lnom) where hard diffraction, heavy particle searches and physics

beyond the SM could be probed [5, 31].

The T2 detector applies the gaseous electron multiplier (GEM) technology due to its

high rate capability, good spatial resolution and robust mechanical structure [5]. The fill

gas of the GEM is Ar/CO2 with a mixture ratio of 70/30.

The T2 telescopes are installed in the forward shielding of CMS between the vacuum

chamber and the inner shielding of the HF calorimeter. In each arm of T2, 20 pieces of
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semi-circular GEM planes are installed. The GEMs are installed in pairs in a back-to-back

configuration to form 10 detector planes of full azimuthal coverage, see Fig. 1.10 [5].

The shape of the GEM detector used in the T2 telescope is semi-circular with an active

area covering an azimuthal angle of 192◦ and extending from radius R1 = 43 mm up to

R2 = 144 mm from the beam axis. The front and back plates of the T2 GEM detector

are 3 mm thick lightweight honeycomb structures. The drift electrode takes place on the

front honeycomb plate. The electrode is followed by a 3 mm long drift space, where the

three GEM foils are placed in a cascade, separated with a 2 mm charge transfer region.

After the last GEM foil there is an induction gap of 2 mm space followed by the charge

readout board installed on the back honeycomb plate of the GEM detector. The frames

of the GEM foils contain also holes in two corners for a uniform distribution of the gas to

the drift, transfer and induction gaps [5].

At the design value of the operating voltage, the gas amplification over all the three

GEM foils is roughly 8000. The corresponding electrical field over the drift space is

approximately 2.4 kV/cm, and 3.6 kV/cm over the transfer and induction gaps [5].

The readout board of T2 contains 2×256 concentric strips for the readout of the radial

coordinates. The azimuthal coordinates are read with a matrix of 1560 pads. The pads

take place under the strips isolated from each other with a layer of polyimide. The pads

are divided into 65 radial sectors each containing 24 pads [5].

1.3.3 The electronics of the TOTEM experiment

The main requirement for the TOTEM electronics system is to provide the readout of the

collected electrical charge for the three different detectors (RPs, T1 and T2 detectors) and

maintain the full compatibility with the CMS experiment. In the TOTEM experiment the

VFAT chip is the common front-end ASIC (Application-Specific Integrated Circuit), which

provides the charge readout for all the TOTEM detectors and introduces the common data

format and control mechanism [5].

The VFAT chip is designed to provide the trigger and tracking information at the

LHC.
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1.3.4 The TOTEM trigger system

The TOTEM trigger system is constructed on the basis of all TOTEM detectors [5].

The trigger mechanism depends on the targeted physics, on the machine luminosity L,
the run and background conditions as well. Coincidences between the different detectors

on both sides of the intersection point reduce the background but as well can introduce

certain biases. An important example is the measurement of the total cross-section, which

requires triggers, as unbiased as possible, on all possible inelastic event topologies.

The TOTEM detectors actively create the first level trigger of the TOTEM experiment,

where the read-out and trigger strategy is common to all detectors using the trigger

bits generated by the VFAT chip. The Coincidence Chip (CC) provides on-detector

coincidences to reduce the trigger data [5]. It is applied at the RP and T2 detectors,

while in case of T1 due to the complex geometry of the detector it is not used. The CC

chip has 80 inputs which are grouped in two ways: 16 groups of 5 inputs, for 5 silicon

detector planes (RP case) and 8 groups of 10 inputs, for 10 detector planes (T2 case).



Chapter 2

LHC optics reconstruction using

Roman Pots

2.1 Introduction

The TOTEM experiment at the LHC is optimized to measure elastic pp scattering at

the LHC with the Roman Pot detectors, described in Section 1.3.1. Due to the very

small scattering angle of the detected protons, observed by the near beam RP detectors,

their trajectories are determined by the magnetic fields of the LHC accelerator magnet

lattice, see Fig. 2.2. Therefore, the reconstruction of the kinematics of the scattered

protons requires an accurate model of the LHC optics. The currently available so-called

β-beating measurements with an uncertainty of 5 − 10 % do not allow to estimate the

optics model with the uncertainty, required by the TOTEM physics program [39,40].

I have validated a new method of LHC optics determination for the TOTEM exper-

iment. The method compares the measured information, obtained from angle-position

distributions of elastically scattered protons observed in the RP detectors, with the LHC

optics model, and tunes the transport model of the LHC within its nominal uncertainties

until the LHC optics model calculations meet with the measured constraints. Theoretical

predictions, as well as Monte Carlo studies, show that the residual uncertainty of the

optics estimation method is smaller than 2.5h. I have successfully applied the method

to data samples recorded since 2010 [8, 9].

The outline of this chapter is as follows: the overview of the particular magnet lattice

20
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of the LHC is the topic of Section 2.2, followed by a minimal and elementary accelerator

theory part in Section 2.3, which is necessary to explain the method’s theoretical back-

ground. After the introductory parts the description of the mentioned new method of

LHC optics evaluation is provided in Section 2.4, where I discuss two representative LHC

optics of betatron amplitudes β∗ = 3.5m and 90m [8,9].

2.2 The LHC magnet system

The layout of the LHC accelerator follows the design of the 27 km long LEP tunnel, which

contains eight arc and straight sections, see Fig. 1.1. In order to reuse the existing LEP

tunnel in the most profitable way and also to drive the LHC cost-efficiently supercon-

ducting magnets, with a classical Nb-Ti technology, are heavily used in the LHC magnet

lattice [14].

The arc sections of the LHC house the dipole magnets which bend the beams. In

each arc of the LHC beam the magnets are organized into 23 regular cells, where each

half-cell is 53.45 m long (Fig. 2.1). The half-cell contains three dipole magnets and one

MQ quadrupole to focus or defocus the beam, according to the alternating focusing and

defocusing quadrupoles of the Focus-Drift-Defocus-Drift (FODO) system [14].

Figure 2.1: Schematic layout of one half-cell of the LHC.

At the LHC 1232 main dipole magnets are used for bending, which all share the same
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design [14]. The overall length of a dipole is 16.5 m, the cold mass diameter is 570.0 mm

at room temperature 293 K. The weight of one dipole is approximately 27.5 tons. These

magnets are cooled down with superfluid helium to operate at a temperature of 1.9 K in

order to achieve the required field strength of 8.33 T which provides a bending radius of

2803.98 m at 7 TeV beam energy [14].

The straight sections house the four experimental insertions, where the two beams

cross each other [14]. The remaining four straight sections are utility insertions without

beam crossing, see Fig. 1.1.

The nominal beam separation is 194 mm at the LHC. The separation dipole magnets

D1 and D2 are used to change the nominal separation and bring together the beams onto

a colliding orbit. D1 is a normal conducting magnet, MBXW, in case of high-luminosity

insertions (IP1 and IP5) and superconducting magnet, MBX, at the ALICE and LHCb

insertions. The D2 dipole, MBRC, is a twin-aperture superconducting magnet. The

location of the separation dipole magnets at IP5 is shown in Fig. 2.2 with respect to the

TOTEM experiment’s RP detectors, described in Section 1.3.1.

The focusing and defocusing of the beam at the collision point is provided by the two

inner triplet, one on each side of the collision point, see Fig. 1.1. One triplet is composed of

four single-aperture quadrupoles. The two MQXA quadrupoles are 6.6 m long, developed

by KEK, Japan. These are the Q1, Q3 parts of the triplet. The Q2 part contains two

5.7 m long MQXB quadrupoles, built by FNAL, USA. In total 16 MQXA and 16 MQXB

magnets are used at the four experimental insertions [14].

The operating temperature of these quadrupoles is 1.9 K and their nominal gradient is

220 T/m. The MQY and MQML matching quadrupoles are also installed in each straight

section.

Crossing angle

The number of bunches in the beam nb is maximized in order to maximize the LHC

luminosity L. The bunches are so closely spaced that unwanted “parasitic” collisions

occur. To keep this beam-beam effect as small as possible, a crossing-angle is introduced

at each experimental insertion. In case of standard LHC runs, with betatron amplitude

β∗ = 0.55 m, a horizontal crossing angle of +142.5µrad is applied for Beam 1 at IP5
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during collision, which is half of the total crossing angle [14]. The error of the crossing

angle is determined by the error of the Beam Position Monitors (BPM).

Runs with dedicated β∗ = 90 m optics have lower luminosity than the nominal Lnom

with not more than 156 bunches, hence in this case the crossing-angle is zero; the same

applies to the TOTEM-specific β∗ = 1540 m future optics. In case of the β∗ = 3.5 m

optics the crossing angle is half of the β∗ = 0.55 m one.

beam1

beam2

beam2

beam1

IP5

mm

Sector 45 (left arm) Sector 56 (right arm)

Figure 2.2: Schematic layout of the LHC magnet lattice at IP5 up to the RP220 RP

station of the TOTEM experiment. The “near” and “far” RP units of the RP220 station

are indicated with full (red) dots at the positions pointed by the black arrows. The figure

also illustrates the key ingredients of the TOTEM experiment’s “microscope” for the right

arm: the inner triplet (Q1, Q2, Q3 superconducting quadrupoles) and the Q4 and Q5

quadrupoles are shown together with the D1 and D2 separation dipole magnets.

2.3 Description of particle transport

2.3.1 The closed orbit

The bending magnetic fields of an accelerator are usually vertically directed [41]. There-

fore, the force acting on a charged particle due to the bending magnetic fields is horizontal

~F = e~v × ~B , (2.1)

where e is the electrical charge and ~v is the velocity of the particle, respectively, and ~B

describes the magnetic field.

If the bending magnetic fields of the accelerator were uniform everywhere, and the

radiative corrections were small enough, the trajectory of the particle could be well ap-

proximated with a circle in the horizontal plane. In case of a non-uniform field one can

define the local curvature ρ(s) illustrated in Fig. 2.3.

The plane and the curvature of the trajectory is defined by the LHC bending magnets.

The accelerator design is such that there is a particle trajectory with an ideal momentum



CHAPTER 2. LHC OPTICS RECONSTRUCTION USING ROMAN POTS 24

(s)x

(s)y

(s)s

(s)ρ

Figure 2.3: The local coordinate system of the closed orbit at position s. Charged particles

with ideal momentum, placement and angle follow this orbit, with local curvature ρ(s).

p0 which closes on itself. We refer this orbit as the closed orbit of the central momentum

particle [14, 41–43].

The description of particle motion can be given in a local coordinate system, see

Fig. 2.3. There is a curved s-coordinate line which is aligned along the closed orbit. The

horizontal x- and the vertical y-coordinate axes are perpendicular to the closed orbit, and

the origin of the coordinate axes lies on the closed orbit. The positive x-coordinate axis is

oriented outward from the accelerator center, while the positive y-coordinate axis points

upward.

Charged particles with ideal momentum p0 and position x0 = y0 = 0 follow the closed

orbit. In reality, the bunch of particles enter into the LHC as a bundle of trajectories

which shows a certain spread about the ideal orbit: the momentum of a particle may

differ from the ideal one p0. Also, at any instant the particle may have displacements and

divergence angles both horizontally and vertically in the transverse (x, y) plane

ϑx ≈ x′ =
dx

ds
, ϑy ≈ y′ =

dy

ds
. (2.2)

The alternating focusing-defocusing magnet system of the LHC is designed such that

protons whose position deviates from the ideal one are restored back towards the closed

orbit and, in total, the particles are forced to do so-called betatron oscillations around

the closed orbit in the transverse plane. The influence of the transverse displacement

and the relative momentum loss on the particle’s trajectory is discussed in Sections 2.3.2

and 2.3.4, respectively.
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2.3.2 Motion in the transverse plane

If a particle, which carries the elementary charge e, traverses a magnetic field ~B which is

perpendicular to its velocity vector ~v, the equation of particle motion is [41–43]

e~v × ~B =
d~p

dt
, (2.3)

where ~p is the relativistic momentum vector of the particle.

The result of the cross product is perpendicular to the velocity vector ~v and conse-

quently the particle trajectory is curved with radius ρ. Denote the length of this curved

trajectory with s, where s = ρ ϑ, then
∣∣∣∣
d~p

dt

∣∣∣∣ = |~p| dϑ
dt

=
|~p|
ρ

ds

dt
. (2.4)

The plane of motion and the magnetic field is assumed to be normal, hence the absolute

value of the left hand side of the equation of motion Eq. (2.3) becomes

e
∣∣∣~v × ~B

∣∣∣ = eB
ds

dt
, (2.5)

where B = | ~B|. The two results Eq. (2.4) and Eq. (2.5) must be equal, thus

eB
ds

dt
=

|~p|
ρ

ds

dt
, (2.6)

and after simplification one can define the so called magnetic rigidity

Bρ =
p

e
, (2.7)

where p = |~p|.

2.3.3 Hill’s equation

In order to describe momentum independently the strength of a given quadrupole magnet,

its gradient has to be normalized with magnetic rigidity

k =
1

B · ρ
dBy

dx
. (2.8)

Suppose that a particle, which is displaced by a small x, passes through a short quadrupole

with strength k and thickness ds. The angular deflection is

dx′ ≈ dϑx =
ds

ρ
≈ (dBy/dx) x

Bρ
ds = kx ds . (2.9)
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It follows from the last equation Eq. (2.9) that negative k focuses horizontally. The result

Eq. (2.9) can be written as a second-order linear differential equation

x′′ − k(s)x = 0 , (2.10)

with periodic coefficient function k(s). This equation is known as Hill’s equation [41,44].

If the strength k is constant, the solution of Hill’s equation Eq. (2.10) is the solution of

the harmonic oscillator. The general solution can be found with the method of variation

of integration constants, thus we use an ansatz with s dependent amplitude and phase

x(s) =
√

βx(s)ε cos [φx(s) + φ0] , (2.11)

where ε is a constant, βx is the horizontal betatron amplitude function, and φx is the

horizontal phase advance function of the oscillation. Note, that the
√
βx(s)ε function

describes the envelope of the horizontal motion.

Differentiate the trial solution (2.11) with respect to s:

x′ (s) = −
√

ε

βx (s)
sin [φx (s) + φ0] +

β′
x (s)

2

√
ε

βx (s)
cos [φx (s) + φ0] . (2.12)

The first derivative Eq. (2.12) and the second x′′(s) can be substituted back to Hill’s

equation (2.10), which leads to the following conditions [41–43]

φ′
x (s) =

1

βx (s)
, (2.13)

and

βx(s)β
′′
x(s)−

1

2
β′
x(s)

2 + 2k(s)βx(s)
2 = 2 . (2.14)

At the positions sm where β′
x(s)|s=sm

= 0 the particles always fall to an ellipse in the

(x, x′) plane according to Eqs. (2.11) and (2.12) with semi-axis in the x-direction

σ(x) =
√
βxε , (2.15)

while in the x′-direction Eq. (2.12) gives

σ(x′) =
√
εβ−1

x . (2.16)

The area of the ellipse is thus constant

π · σ(x) · σ(x′) = π ε , (2.17)
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which is the consequence of Liouville’s theorem, and one can introduce ε as the so-called

emittance of a beam of many particles. The emittance is a constant of the motion as

long as the particle’s energy is constant. In case of accelerating beam the normalized

emittance is defined [41]

εN = (βL · γL)ε , βL =
v

c
, (2.18)

where v is the velocity of the particle, c is the speed of light and γL = (1 − β2
L)

− 1
2 is the

Lorentz factor. 1

The quantity σ(x), introduced in Eq. (2.15) is the so-called betatron beam size, as it

does not include the component coming from the particles with momentum loss, discussed

in the next Section.

The luminosity can be calculated for a beam with Gaussian transverse spatial distri-

bution with [14,41,44]

L = f · nb ·
Nb1Nb2

4πσ∗
xσ

∗
y

, (2.19)

where f is the revolution frequency (11.2 kHz at LHC, determined by the circumference

of the LEP tunnel), nb is the number of bunches with Nb1 and Nb2 number of protons in

Beam 1 and 2, respectively. σ∗
x,y are the horizontal and vertical beam sizes, see Eq. (2.15),

at the interaction point, respectively. Note, that in Eq. (2.19) the contribution of the

crossing angle is not taken into account.

2.3.4 Orbit of low-momentum particles

Particles with momentum loss with respect to p0

∆p = p− p0 , (2.20)

will deviate from the closed orbit: according to the definition of the magnetic rigidity

Eq. (2.7) if the particle losses momentum ∆p < 0, the bending radius ρ becomes smaller,

hence the particle is bent more at each dipole of the lattice.

The trajectory of a particle with slight momentum loss can be understood as a con-

tinuous deformation of the closed orbit, which preserves the topology and the trajectory

1The subscript “L” is used in βL and γL to avoid confusion with the betatron amplitude function β

and a γ function, which is introduced later in Eq. (3.32).
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remains closed. Locally, it is the FODO system which compensates the extra bent and

leads to the new closed orbit. The effect of the particle’s momentum loss is similar to

the effect of the gravity field on the trajectory, which effect is also compensated with a

“suspension” coming from the extra focusing component of the FODO system [41].

The effect of the momentum-loss ∆p combines together with the transverse motion

described with Eq. (2.11). In total the horizontal coordinate of the transverse particle

motion is described with

x(s) =
√

βx(s)ε cos [φx(s) + φx,0] +Dx(s)ξ, ξ =
∆p

p
, (2.21)

where Dx(s) is the horizontal dispersion function, which describes the horizontal “sus-

pension” effect of the FODO system. In case of the LHC the vertical dispersion function

vanishes Dy(s) = 0, since the bending fields are vertical and forces can act in the hori-

zontal plane only.

According to Eq. (2.21) the width of the beam increases with increasing momentum

spread. If one assumes that the momentum distribution of the beam is independent from

the betatron oscillations the full beam size can be characterized with

σD(x) =

√
σ(x)2 +

(
Dx

σ(p0)

p0

)2

, (2.22)

where σ(p0) is the RMS of beam momentum spread.

2.3.5 Description of particle transport with matrices

The transport of particles from an initial position s1 to another one s2 can be described

with matrices, which formalism is similar to the description of light ray propagation in

optics through a system of optical lenses, collimators and drift spaces. The matrix de-

scription is a general consequence of the linearity of Hill’s differential equation Eq. (2.10).

In the horizontal plane the propagation can be written with the help of a 2× 2 matrix

M21, the transport matrix


 x(s2)

x′(s2)


 = M21


 x(s1)

x′(s1)


 . (2.23)
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In the particular case, when the particle passes through a drift space with length l,

the motion is described with the linear equations

x(s2) = x(s1) + x′(s1) · l , (2.24)

x′(s2) = x′(s1) ,

which can be transformed into the form of matrix equation Eq. (2.23) with the matrix

Mdrift =


 1 l

0 1


 . (2.25)

The particle transport through a thin quadrupole magnet, with strength k and length

l, can be described with the matrix [41]

Mquad =


 1 0

−kl 1


 . (2.26)

The effect of each particular element of the magnet lattice may be expressed by a

matrix Mi. Finally, one can trace particles over a whole section of the lattice by simply

forming the product of the elementary lattice element matrices

T (s, s0) = M1 ·M2 · ... ·Mn . (2.27)

2.4 The LHC optics between IP5 and the RPs

In case of the LHC accelerator, the scattered protons are detected by the Roman Pots after

having traversed a segment of the LHC lattice containing 29 main and corrector magnets

per beam, see Fig. 2.2. The trajectory of protons produced with transverse positions2

(x∗, y∗) and angles (ϑ∗
x, ϑ

∗
y) at IP5 is described approximately by a linear formula

~d = T · ~d∗ , (2.28)

where ~d = (x, ϑx, y, ϑy, ξ)
T . The single pass transport matrix

T =




vx Lx m13 m14 Dx

dvx
ds

dLx

ds
m23 m24

dDx

ds

m31 m32 vy Ly Dy

m41 m42
dvy
ds

dLy

ds

dDy

ds

0 0 0 0 1




(2.29)

2The ’∗’ superscript indicates the LHC Interaction Point 5
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is defined by the optical functions [42, 43]. The transport equation Eq. (2.28) is the

straightforward generalization of the two-dimensional case of Eq. (2.23), which includes

the description of low-momentum particles using the dispersionDx,y functions, see Eq. (2.21).

The horizontal and vertical magnifications

vx,y =
√
βx,y/β∗ cos∆µx,y (2.30)

and the effective lengths

Lx,y =
√

βx,yβ∗ sin∆µx,y (2.31)

are of particular importance for proton kinematics reconstruction, where the horizontal

and vertical relative phase advances

∆µx,y =

∫
RP

IP

ds

β(s)x,y
(2.32)

are determined by the horizontal and vertical betatron amplitudes βx,y, according to

Eq. (2.13).

In case of the LHC nominal optics the coupling coefficients of the transport matrix

Eq. (2.29) are, by design, equal to zero

m13, ...,m42 = 0 . (2.33)

Also for elastically scattered protons the interaction related contribution to longitudinal

momentum loss ξ is 0. However, the beam protons are characterized by a momentum

spread resulting from the beam longitudinal emittance and the RF configuration. For the

LHC this spread is δp/p0 = 10−4 [14], which is not significant with respect to the beam

momentum offset uncertainty of 10−3, reported in Table 2.1. Therefore, the terms Dx,y · ξ
and dDx,y/ds ·ξ of the transport equation Eq. (2.28) can be neglected in case of elastically

scattered protons.

Furthermore, the horizontal phase advance ∆µx is equal to π at 219.59 m (see Fig. 2.4),

and consequently the horizontal effective length Lx vanishes close to the far RP unit, as it

is shown in Fig. 2.6. Therefore, in the proton kinematics reconstruction dLx/ds is used.

Note, that each optical function is a complicated and non-linear function of the pro-

ton’s relative momentum loss ξ, according to the transport equation Eq. (2.28); not the

subject of this thesis, where ξ = 0 is always assumed. Comprehensive LHC beam optics

studies, concerning the case of non vanishing ξ, can be found in Ref. [45].
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2.4.1 Proton’s kinematics reconstruction

Figure 2.4: The evolution of the horizontal βx and vertical betatron amplitude βy between

IP5 and the location of the Roman Pot stations for the LHC β∗ = 3.5 m optics. The

horizontal µx and vertical phase advance µy are also shown, these functions are normalized

to 2π. The plot shows that the horizontal phase advance ∆µx = π close to the far RP

unit. The figure has been obtained with the MAD-X code of version 5.01.00 [46].

The kinematics of elastically scattered protons at IP5 can be reconstructed on the

basis of RP proton tracks using the transport equation Eq. (2.28). Suppose, that the

coupling coefficients in the transport matrix Eq. (2.29) vanish, mij = 0, and the proton’s

momentum loss is zero ξ = 0. In this case the transport equation Eq. (2.28) dictates that

the proton’s horizontal coordinate and horizontal scattering angle at a given location are

x = vx · x∗ + Lx · ϑ∗
x ,

ϑx =
dvx
ds

x∗ +
dLx

ds
ϑ∗
x , (2.34)

where each optical function is a function of the initial and final location s along the beam

line, according to Eq. (2.32). The corresponding equations in the vertical y-plane can be

obtained from Eqs. (2.34) by replacing x with y.
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Figure 2.5: The evolution of the horizontal βx and vertical betatron amplitude βy between

IP5 and the location of the Roman Pot stations for the LHC β∗ = 90 m optics. The

horizontal µx and vertical phase advance µy are also shown, these functions are normalized

to 2π. The plot shows that the horizontal and vertical phase advance ∆µx = π and

∆µy = π/2 close to the far RP unit.

The proton’s horizontal coordinate at the location of the “near” RP unit can be

explicitly written

xnear = vx,near · x∗ + Lx,near · ϑ∗
x , (2.35)

and the same applies to the “far” RP unit. These two equations can be inverted

x∗ =
Lx,far · xnear − Lx,near · xfar

D
, (2.36)

ϑ∗
x =

vx,near · xfar − vx,far · xnear

D
. (2.37)

if the determinant D = (vx,near · Lx,far − vx,far · Lx,near) does not not vanish; the equations

in the vertical plane can be obtained as before, by replacing x with y.
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Figure 2.6: The evolution of the horizontal effective length Lx and its derivative dLx/ds

between IP5 and the location of the Roman Pot stations in case of the LHC β∗ = 3.5 m

optics. The plot indicates that Lx = 0 close to the far RP unit, thus in the proton

kinematics reconstruction dLx/ds is used instead of Lx.

The reconstruction formula of the scattering angle Eq. (2.37) can be rearranged into

a more readable form

ϑ∗
x =

1
dLx

ds

(
ϑx −

dvx
ds

x∗

)
, (2.38)

where the derivative of the horizontal effective length is used in the form

dLx

ds
=

Lx,far − Lx,near

sfar − snear
, (2.39)

since there is no magnetic field present between the two RP units; the same applies to

the derivative of the horizontal magnification dvx/ds.

The rearranged formula Eq. (2.38) clearly shows how the contribution of the horizontal

vertex distribution x∗ is removed when the scattering angles are calculated. Due to

∆µx = π (Figs. 2.4 and 2.5) the horizontal effective length vanishes Lx = 0 close to the
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Figure 2.7: The evolution of the vertical effective length Ly and its derivative dLy/ds

between IP5 and the location of the Roman Pot stations for the LHC β∗ = 3.5 m optics.

far RP unit (Fig. 2.6), thus in the proton kinematics reconstruction the use of dLx/ds is

preferred using Eq. (2.38).

According to Eq. (2.15) the transverse vertex size σ∗
y is small in case of the β∗ = 3.5m

optics, while the β∗ = 90m optics has a vertical phase advance of ∆µy = π/2 close to the

RP units, see Fig. 2.5. Thus, it follows from Eq. (2.30) that the vertical magnification vy

vanishes, see also Fig. 2.8. Therefore, in case of the two analyzed representative optics

β∗ = 3.5m and 90m, the vertical effective length Ly is large enough to simplify the

transport formula in the vertical plane at each RP unit

ynear ≈ Ly,near · ϑ∗
y , yfar ≈ Ly,far · ϑ∗

y , (2.40)

which has to be compared with the horizontal case of Eq. (2.35).

Finally, the vertical scattering angle at the interaction point is reconstructed as the

average of the near and far RP unit measurements

ϑ∗
y ≈

1

2

(
ynear
Ly,near

+
yfar
Ly,far

)
. (2.41)
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Figure 2.8: The evolution of the horizontal vx and vertical magnification vy in case of

the LHC β∗ = 90 m optics between IP5 and the location of the Roman Pot stations.

Figure 2.5 shows that the vertical phase advance ∆µy = π/2 close to the far RP unit and

according to Eq. (2.30) the vertical magnification vy vanishes.

Elastic scattering events consist of two anti-parallel protons, detected with the RPs

installed at Beam 1 and 2. The horizontal and vertical scattering angles of both protons

are reconstructed with the use of Eqs. (2.38) and (2.41) and the results are averaged

ϑ∗
x =

1

2

(
ϑ∗
x,b1

+ ϑ∗
x,b2

)
, ϑ∗

y =
1

2

(
ϑ∗
y,b1

+ ϑ∗
y,b2

)
, (2.42)

where the subscripts b1 and b2 indicate Beam 1 and 2, respectively.

The squared four-momentum transfer t, defined with Eq. (A.2), of the elastic scattering

pp process can be thus reconstructed

t ≈ −p20 (ϑ
∗
x
2 + ϑ∗

y
2) , (2.43)
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where Eq. (A.13) was applied [37,45].

As the values of the reconstructed angles are inversely proportional to the optical

functions, consider Eqs. (2.38) and (2.41), the errors of the optical functions have to be

determined to estimate their contribution into the systematic errors of the final physics

results.

2.4.2 Proton transport model at the LHC

The proton transport matrix T (s;M), calculated with MAD-X [46], is defined by the

machine settings M, which are obtained on the basis of several data sources. The version

V6.5 of the LHC sequence is used to describe the magnet lattice, while the nominal

magnet strength file for a given beam optics is always updated using measured data: the

currents of the magnet’s power converters are first retrieved using TIMBER [47], which

is an application to extract data from heterogeneous databases containing information

about the whole LHC infrastructure.

First of all, for a given data taking period, the measured currents of the magnets’

power converters IPC are retrieved from the TIMBER database [47]. Then, the currents

are converted to magnet strengths with the LHC Software Architecture (LSA) [48] which

employs for this purpose the conversion curves described by the Field Description for the

LHC (FIDEL) [49].

Through the WISE (Windows Interface to Simulation of Errors) interface [50] one

has access to the database of the measured LHC imperfections (field harmonics, magnets

displacement, rotations) included in M, as well as statistical models describing the non-

measured parameters’ tolerances. Alignment uncertainties of the magnets are included

into WISE based on measurements of the mechanical and magnetic axes. Other uncer-

tainties for example relative and absolute measurement errors of hysteresis and power

converters accuracy are also included for all magnets.
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2.5 Machine imperfections

The real LHC machine [51] is subject to additional imperfections ∆M, not measured well

enough so far, which alter the transport matrix by ∆T :

T (s; M) → T (s; M+∆M) = T (s; M) + ∆T. (2.44)

The most important are [14, 52–55]:

– magnet current–strength conversion error: σ(k)/k ≈ 10−3

– beam momentum offset: σ(p)/p ≈ 10−3 .

Their impact on the most relevant optical functions Ly and dLx/ds can be calculated with

MAD-X, the results are presented in Table 2.1. It is clearly visible that the imperfections

of the inner triplet (the so called MQXA and MQXB magnets) are of high influence on

the transport matrix while the optics is less sensitive to the strength of the quadrupoles

MQY and MQML.

Other imperfections that are of lower, but not negligible, significance:

– magnet rotations: δφ ≈ 1 mrad

– beam harmonics: δB/B ≈ 10−4

– power converter errors: δI/I ≈ 10−4

– magnet positions: δx, δy ≈ 100µm.

Generally, as indicated in Table 2.1 and 2.2, the low-β∗ optics sensitivity to the machine

imperfections is significant and cannot be neglected. For high-β∗ optics the magnitude

of ∆T is smaller in the vertical plane but in the horizontal plane the β∗ = 3.5 m and

β∗ = 90 m optics result is similar. Due to the sensitivity of Lx the β∗ = 90 m optics is

also investigated in the following sections.

The proton reconstruction is based on Eqs. (2.36) and (2.38). Thus it is necessary to

know the effective lengths Lx,y and their derivatives with an uncertainty better than 1–2%

in order to measure the total cross-section σtot with the aimed uncertainty of [56]. The

currently available ∆β/β beating measurement with an error of 5− 10 % does not allow

to estimate ∆T with the uncertainty, required by the TOTEM physics program [39, 40].
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δLy,b1,far/Ly,b1,far [%] δ
(

dLx,b1

ds

)
/
dLx,b1

ds
[%]

Perturbed element β∗ = 3.5m β∗ = 90m β∗ = 3.5m β∗ = 90m

MQXA.1R5 0.98 0.14 −0.46 −0.42

MQXB.A2R5 −2.24 −0.24 0.33 0.31

MQXB.B2R5 −2.42 −0.25 0.45 0.42

MQXA.3R5 1.45 0.20 −1.14 −1.08

MQY.4R5.B1 −0.10 −0.01 −0.02 0.00

MQML.5R5.B1 0.05 0.04 0.05 0.06

∆pb1/pb1 −2.19 0.01 −0.79 0.71

∆φquadrupoles 0.01 3 · 10−3 0.01 0.01

(∆x,∆y)quadrupoles 6 · 10−6 1 · 10−5 3 · 10−5 2 · 10−5

Total sensitivity 4.33 0.43 1.57 1.46

Table 2.1: Sensitivity of the vertical effective length Ly,b1 and dLx,b1/ds to 1 h deviations

of magnet strengths or beam momentum for low- and high-β∗ optics of the LHC Beam 1.

The total sensitivity to the perturbations of the quadrupole magnets’ transverse position

(∆x,∆y = 1 mm) and rotation (∆φ = 1 mrad) is also included. The subscript b1 indicates

Beam 1.

However, as it is shown in the following sections, ∆T can be determined well enough from

the proton tracks in the Roman Pots, by exploiting the properties of the optics and those

of the elastic pp scattering.

2.6 Correlations in the transport matrix

The transport matrix T defining the proton transport from IP5 to the RPs is a product of

matrices describing the magnetic field of the lattice elements along the proton trajectory,

see Eq. (2.27). The imperfections of the individual magnets alter the cumulative transport

function. It turns out that independently of the origin of the imperfection (strength of

any of the magnets, beam momentum offset) the transport matrix is altered in a similar
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δLy,b1,far/Ly,b1,far [%]

Perturbed element β∗ = 11m β∗ = 1000m

MQXA.1R5 0.99 0.08

MQXB.A2R5 −2.24 −0.14

MQXB.B2R5 −2.43 −0.15

MQXA.3R5 1.48 0.14

MQY.4R5.B1 −0.25 −4.1 · 10−3

MQML.5R5.B1 0.08 0.04

∆pb1/pb1 2.27 −0.06

Total sensitivity 4.39 0.23

Table 2.2: Sensitivity of the vertical effective length Ly to 1 h deviations of magnet

strengths and beam momentum for the β∗ = 11 m and β∗ = 1000 m optics to be compared

with Table 2.1. Only the most important contributions are summarized.

way, as can be described quantitatively with eigenvector decomposition, discussed in

Section 2.6.1.

2.6.1 Correlation matrix of imperfections

Assuming that the imperfections discussed in Section 2.5 are independent, the covariance

matrix describing the relations among the errors of the optical functions can be calculated:

V = Cov(∆Tr) = E
(
∆Tr∆T T

r

)
, (2.45)

where Tr is the most relevant 8-dimensional subset of the transport matrix

TT
r = (vx, Lx,

dvx
ds

,
dLx

ds
, vy, Ly,

dvy
ds

,
dLy

ds
) , (2.46)

which is presented as a vector for simplicity.

The optical functions contained in Tr differ by orders of magnitude and, are expressed

in different physical units. Therefore, a normalization of V is necessary and the use of

the correlation matrix C, defined as

Ci,j =
Vi,j√

Vi,i · Vj,j

, (2.47)
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is preferred. An identical behavior of uncertainties for both beams was observed and

therefore it is enough to study the Beam 1. In case of the β∗ = 3.5m optics the following

error correlation matrix is obtained using the MAD-X results of Section 2.5:

C =




1.00 0.74 −0.42 −0.80 −0.51 −0.46 −0.61 −0.44

0.74 1.00 −0.63 −1.00 −0.25 −0.30 −0.32 −0.29

−0.42 −0.63 1.00 0.62 0.03 0.07 0.01 0.08

−0.80 −1.00 0.62 1.00 0.29 0.33 0.37 0.32

−0.51 −0.25 0.03 0.29 1.00 0.99 0.98 0.98

−0.46 −0.30 0.07 0.33 0.99 1.00 0.96 1.00

−0.61 −0.32 0.01 0.37 0.98 0.96 1.00 0.95

−0.44 −0.29 0.08 0.32 0.98 1.00 0.95 1.00




. (2.48)

The non-diagonal elements of C, which are close to ±1, indicate strong correlations

between the elements of ∆Tr. Consequently, the machine imperfections alter correlated

groups of optical functions.

This observation can be further quantified by the eigenvector decomposition of C,

which yields the following vector of eigenvalues λ(C) for the β∗ = 3.5m optics:

λ(C) = (4.9, 2.3, 0.53, 0.27, 0.01, 0.01, 0.00, 0.00) . (2.49)

Since the two largest eigenvalues λ1 = 4.9 and λ2 = 2.3 dominate the others, the correla-

tion system is practically two dimensional with the following two eigenvectors

v1 = ( 0.35, 0.30, −0.16, −0.31, −0.40, −0.41, −0.41, −0.40) , (2.50)

v2 = (−0.26, −0.46, 0.47, 0.45, −0.29, −0.27, −0.25, −0.28) . (2.51)

Therefore, contributions of the individual lattice imperfections cannot be evaluated,

see later Fig. 2.12. On the other hand, as the imperfections alter approximately only

a two-dimensional subspace, a measurement of a small set of weakly correlated optical

functions would theoretically yield an approximate knowledge of ∆Tr.

2.6.2 Error estimation of the method

Let us assume for the moment that we can precisely reconstruct the contributions to ∆Tr

of the two most significant eigenvectors while neglecting the others. The error of such

reconstructed transport matrix can be estimated by evaluating the contribution of the

remaining eigenvectors:

δ∆Tr,i =
√

Ei,i · Vi,i , (2.52)
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where

E = N ·




0 0 0 0 0

0 0 0 0 0

0 0 λ3 0 0
...

. . .
...

0 0 0 0 λ8




·NT (2.53)

and N = (ν1, ..., ν8) is the basis change matrix composed of eigenvectors νi corresponding

to the eigenvalues λi.

The relative optics uncertainty before and after the estimation of the most significant

eigenvectors is summarized in Table 2.3. According to the table, even if we limit ourselves

vx,far Lx,far
dvx
ds

dLx

ds

Tr,i −3.1 −1.32 · 10−1m 3.1 · 10−2m−1 −3.21 · 10−1

√
Vi,i

|Tr,i| [%] 2.0 · 10−1 3.4 · 102 4.2 · 10−1 1.6

δ∆Tr,i

|Tr,i| [%] 9.5 · 10−2 9.1 · 101 2.6 · 10−1 3.4 · 10−1

vy,far Ly,far
dvy
ds

dLy
ds

Tr,i −4.3 2.24 · 101 m −6.1 · 10−2m−1 8.60 · 10−2

√
Vi,i

|Tr,i| [%] 6.8 · 10−1 4.3 5.9 · 10−1 1.5 · 101
δ∆Tr,i

|Tr,i| [%] 6.1 · 10−2 6.4 · 10−1 8.3 · 10−2 2.75

Table 2.3: Nominal values of the optical functions Tr,i and their relative uncertainty

before (
√
Vi,i/ |Tr,i|) and after (δ∆Tr,i/ |Tr,i|) the determination of the two most significant

eigenvectors (β∗ = 3.5m, Beam 1).

only to the first two most significant eigenvalues, the uncertainty of optical functions due

to machine imperfections drops significantly. In particular, in case of dLx/ds and Ly a

significant error reduction down to a per mil level is observed. Unfortunately, due to

∆µx = π (Figure 2.4), the uncertainty of Lx, although importantly improved, remains

very large and the use of dLx/ds for proton kinematics reconstruction should be preferred,

according to Eq. (2.38).

In the following sections a practical numerical method of inferring the optics from
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the RP proton tracks is presented and its validation with Monte Carlo calculations is

reported.

2.7 Optics constraints from tracks in RPs

Elastically scattered protons can be selected with high purity and efficiency by the

TOTEM experiment at LHC [6, 35]. The RP detector system, due to its high resolu-

tion (σ(x, y) ≈ 11µm, σ(ϑx,y) ≈ 2.9µrad), can measure very precisely the proton angles,

positions and the angle-position relations on an event-by-event basis, see Section 1.3.1.

The kinematical variables of the detected particles can be used to define a set of

estimators, which provide information about the correlations between the elements of the

transport matrix T , defined with Eq. (2.29), and also about the correlations between the

transport matrices of the two LHC beams. Such a set of estimators R̂1, ..., R̂10 (defined in

the next sections) is exploited to reconstruct, for both LHC beams, the transport matrix

T (M) + ∆T defined in Eq. (2.44).

2.7.1 Correlations between the two LHC beams

The momentum of the two LHC beams is identical, thus the elastically scattered protons

are deflected symmetrically from their nominal trajectories of Beam 1 and 2

ϑ∗
x,b1

= −ϑ∗
x,b2

, ϑ∗
y,b1

= −ϑ∗
y,b2

, (2.54)

which allows to compute ratios R1,2 relating the effective lengths at the RP locations of

the two beams. From Eqs. (2.28) and (2.54) one obtains

R1 ≡ ϑx,b1

ϑx,b2

≈
dLx,b1

ds
·ϑ∗

x,b1
dLx,b2

ds
·ϑ∗

x,b2

= −
dLx,b1

ds
dLx,b2

ds

, (2.55)

and

R2 ≡ yb1,far
yb2,far

≈ −Ly,b1,far

Ly,b2,far
. (2.56)

Approximations present in Eqs. (2.55) and (2.56) represent the impact of statistical effects

such as detector resolution, beam divergence, primary vertex position distribution and

longitudinal momentum spread of the particles.
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The estimators R̂1 and R̂2 are obtained from the (ϑx,b1 , ϑx,b2) and (yb1,far, yb2,far) dis-

tributions and are defined with the help of the distributions’ principal eigenvector, as

illustrated in Fig. 2.9 and reported in Table 2.4. The beam divergence and the vertex

contribution widen the distributions defining the estimators uncertainty, see Table 2.4.
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Figure 2.9: Beam 1 and 2 elastic scattering angle correlation in the horizontal plane

(ϑx,b1 , ϑx,b2) (left panel) and correlation between vertical positions (right panel) of elasti-

cally scattered protons detected by the RPs. The plots also illustrate the linear fit of the

distributions whose slope parameter is the estimator R̂1 and R̂2, respectively.

2.7.2 Single beam correlations

The distributions of proton angles and positions measured by the Roman Pots define the

ratios of certain elements of the transport matrix T , defined by Eqs. (2.28) and (2.29).

First of all, dLy/ds and Ly are related by

R3 ≡
ϑy,b1

yb1
≈

dLy,b1

ds

Ly,b1

, R4 ≡
ϑy,b2

yb2
≈

dLy,b2

ds

Ly,b2

. (2.57)

The corresponding estimators R̂3 and R̂4 can be calculated as presented in Table. 2.4.

Similarly, we exploit the horizontal dependencies to quantify the relations between

dLx/ds and Lx. As Lx is close to 0, see Fig. 2.6, instead of defining the ratio we rather

estimate the position s0 along the beam line (with the uncertainty of about 1m), for
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which Lx = 0. This is accomplished by resolving

Lx(s0)

dLx(s1)/ds
=

Lx(s1)

dLx(s1)/ds
+ (s0 − s1) = 0 , (2.58)

for s0, where s1 denotes the coordinate of the Roman Pot station along the beam with

respect to IP5. Obviously, dLx(s)/ds is constant along the RP station as no magnetic

fields are present at the RP location. The ratios Lx(s1)/
dLx(s1)

ds
for Beam 1 and 2, similarly

to the vertical constraints R3 and R4, are defined by the proton tracks:

Lx

dLx

ds

≈ x

ϑx

, (2.59)

which are reported in Table 2.4. In this way two further constraints and the corresponding

estimators (for Beam 1 and 2) are obtained:

R5 ≡ sb1 and R6 ≡ sb2 . (2.60)

2.7.3 Coupling / rotation

In reality the coupling coefficientsm13, ...,m42 cannot be always neglected, as it is assumed

by Eq. (2.33). RP proton tracks can help to determine the coupling components of the

transport matrix T as well, where it is especially important that Lx is close to zero at the

RP locations. Always based on Eqs. (2.28) and (2.29), four additional constraints (for

each of the two LHC beams and for each unit of the RP station) can be defined:

R7,...,10 ≡
xnear(far)

ynear(far)
≈ m14,near(far)

Ly,near(far)

. (2.61)

The subscripts “near” and “far” indicate the position of the RP along the beam with

respect to the IP. Geometrically R7,...,10 describe the rotation of the RP scoring plane

about the beam axis. Analogously to the previous sections, the estimators R̂7,...,10 are

obtained from track distributions as presented in Table 2.4.

Constraints’ values

Table 2.4 reports the values of the estimators defined in the previous sections. The

estimators R7 and R8 are calculated for the ’near’ and ’far’ RPs of Beam 1, while R9 and

R10 represent the values for Beam 2.



CHAPTER 2. LHC OPTICS RECONSTRUCTION USING ROMAN POTS 45

i of R̂i Value Uncertainty [%] i of R̂i Value Uncertainty [%]

1 -0.9895 0.5 6 217.6 0.2

2 -1.0954 0.2 7 0.0436 1.6

3 0.00388 0.4 8 0.0390 1.3

4 0.00262 1.5 9 0.0369 2.4

5 217.0 0.2 10 0.0316 3.5

Table 2.4: The measured value and uncertainty of the optics constraints R̂i in case of the

β∗ = 3.5 m optics.

2.7.4 Optical functions estimation

The machine imperfections ∆M, leading to the transport matrix change ∆T , are in

practice determined with the χ2 minimization procedure:

∆̂M = arg min(χ2) , (2.62)

defined on the basis of the estimators R̂1, ..., R̂10 , where the arg min function gives the

phase space position where the χ2 is minimized. As it was discussed in Section 2.6.1,

although the overall alteration of the transport matrix ∆T can be determined precisely

based on a few optical functions’ measurements, the contributions of individual imper-

fections cannot be established. In terms of optimization, such a problem has no unique

solution and additional constraints, defined by the machine tolerance, have to be added.

Therefore, the χ2 function is composed of the part defined by the Roman Pot tracks’

distributions and the one reflecting the LHC tolerances:

χ2 = χ2
Design + χ2

Measured . (2.63)

The design part

χ2
Design =

12∑

i=1

(
ki − ki,MAD-X

σ(ki)

)2

+
12∑

i=1

(
φi − φi,MAD-X

σ(φi)

)2

+
2∑

i=1

(
pi − pi,MAD-X

σ(pi)

)2

, (2.64)
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where ki and φi are the nominal strength and rotation of the ith magnet, respectively.

Thus Eq. (2.64) defines the nominal machine (ki, φi, pi) as an attractor in the phase

space. Both LHC beams are treated simultaneously. Only the relevant subset of ma-

chine imperfections ∆M was selected. The obtained 26-dimensional optimization phase

space includes the magnet strengths (12 variables), rotations (12 variables) and beam

momentum offsets (2 variables). Magnet rotations are included into the phase space,

otherwise only the coupling coefficients m13, ...,m42 could induce rotations in the (x, y)

plane Eq. (2.61), which could bias the result.

The measured part

χ2
Measured =

10∑

i=1

(
R̂i −Ri,MAD-X

σ(R̂i)

)2

(2.65)

contains the track-based estimators R̂1, ..., R̂10 (discussed in detail in Section 2.7) to-

gether with their uncertainty. The subscript “MAD-X” defines the corresponding values

evaluated with the MAD-X software during the χ2 minimization.

Table 2.5 presents the results of the optimization procedure for the β∗ = 3.5m optics

used by LHC in October 2010 at beam energy Ebeam = 3.5TeV. The obtained value of the

effective length Ly of Beam 1 is close to the nominal one, while Beam 2 shows a significant

change. The same pattern applies to the values of dLx/ds. The error estimation of the

procedure is discussed in Section 2.8. The β∗ = 90m results at Ebeam = 4TeV are also

presented in Table 2.6.

β∗ = 3.5 m

Ly,b1,far [m] dLx,b1/ds Ly,b2,far [m] dLx,b2/ds

Nominal 22.4 −3.21 · 10−1 18.4 −3.29 · 10−1

Estimated 22.6 −3.12 · 10−1 20.7 −3.15 · 10−1

Table 2.5: Selected optical functions of both LHC beams for the β∗ = 3.5 m optics,

obtained with the estimation procedure, compared to their nominal values.
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β∗ = 90 m

Ly,b1,far [m] dLx,b1/ds Ly,b2,far [m] dLx,b2/ds

Nominal 263.2 −5.36 · 10−1 263.2 −5.36 · 10−1

Estimated 264.1 −5.25 · 10−1 266.3 −5.17 · 10−1

Table 2.6: Selected optical functions of both LHC beams for the β∗ = 90 m optics,

obtained with the estimation procedure, compared to their nominal values.

The interplay between the detector alignment and the optics matching procedure is

discussed in details in Ref. [8].

2.8 Monte Carlo validation

In order to demonstrate that the proposed R̂i optics estimators are effective I have vali-

dated the method with Monte Carlo simulations.

In each Monte Carlo simulation the nominal machine settings M were altered with

simulated machine imperfections ∆M within their tolerances using Gaussian distribu-

tions. The simulated elastic proton tracks were used afterwards to calculate the estimators

R̂1, ..., R̂10. The study included the impact of

– magnet strengths,

– beam momenta,

– magnet displacements, rotations and harmonics,

– settings of kickers,

– measured proton angular distribution.

The error distributions of the optical functions ∆T obtained for β∗ = 3.5m and Ebeam =

3.5TeV are presented in Figs. 2.10 and 2.11, also in Table 2.7, while the β∗ = 90m results

at Ebeam = 4TeV are shown in Fig. 2.13 and Table 2.8.
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Simulated Reconstructed

optics distribution optics error

Relative optics Mean RMS Mean RMS

distribution [%] [%] [%] [%]

δLy,b1,far

Ly,b1,far
0.39 4.2 8.3 · 10−2 0.16

δdLx,b1
/ds

dLx,b1
/ds

−0.97 1.6 −0.13 0.17

δLy,b2,far

Ly,b2,far
−0.14 4.9 0.21 0.16

δdLx,b2
/ds

dLx,b2
/ds

0.10 1.7 −9.7 · 10−2 0.17

Table 2.7: The Monte-Carlo study of the impact of the LHC imperfections ∆M on

selected transport matrix elements dLx/ds and Ly for β∗ = 3.5m at Ebeam = 3.5 TeV.

The LHC parameters were altered within their tolerances. The relative errors of dLx/ds

and Ly (mean value and RMS) characterize the optics uncertainty before and after optics

estimation.
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Figure 2.10: The MC error distribution of β∗ = 3.5 m optical functions Ly and dLx/ds

for Beam 1 at Ebeam = 3.5 TeV, before and after optics estimation.
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Figure 2.11: The MC error distribution of β∗ = 3.5 m optical functions Ly and dLx/ds

for Beam 2 at Ebeam = 3.5 TeV, before and after optics estimation.
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Figure 2.12: The distribution of the magnets’ relative strength after optics estimation,

Beam 1 (left panel) and Beam 2 (right panel), in case of β∗ = 3.5 m optics at Ebeam =

3.5 TeV.
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Simulated Reconstructed

optics distribution optics error

Relative optics Mean RMS Mean RMS

distribution [%] [%] [%] [%]

δLy,b1,far

Ly,b1,far
2.2 · 10−2 0.46 5.8 · 10−2 0.23

δdLx,b1
/ds

dLx,b1
/ds

6.7 · 10−3 1.5 −6.4 · 10−2 0.20

δLy,b2,far

Ly,b2,far
−5 · 10−3 0.47 5.8 · 10−2 0.23

δdLx,b2
/ds

dLx,b2
/ds

1.8 · 10−2 1.5 −7 · 10−2 0.21

Table 2.8: The Monte-Carlo study of the impact of the LHC imperfections ∆M on

selected transport matrix elements dLx/ds and Ly for β∗ = 90m at Ebeam = 4 TeV.

The LHC parameters were altered within their tolerances. The relative errors of dLx/ds

and Ly (mean value and RMS) characterize the optics uncertainty before and after optics

estimation.
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Figure 2.13: The MC error distribution of β∗ = 90 m optical functions Ly and dLx/ds

for Beam 1 at Ebeam = 4 TeV, before and after optics estimation.

First of all, the impact of the machine imperfections ∆M on the transport matrix

∆T , as shown by the MC study, is identical to the theoretical prediction presented in
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Table 2.3. The bias of the simulated optics distributions is due to magnetic field harmonics

as reported by the LHC imperfections database [50]. The final value of mean after optics

estimation procedure contributes to the total uncertainty of the method.

The errors of the reconstructed optical functions are significantly smaller than eval-

uated theoretically in Section 2.6.2. This results from the larger number of constraints,

design and measured constraints Eq. (2.63), employed in the numerical estimation proce-

dure of Section 2.7.4. In particular, the collinearity of elastically scattered protons was

exploited in addition. Finally, the achieved uncertainties of dLx/ds and Ly are both lower

than 2.5h for both beams.

Other non-published details about the recalibration of the LHC optics from TOTEM

data are summarized in my TOTEM internal analysis note of Ref. [9].

2.9 Summary of Chapter 2

I have validated and applied a new method to estimate the LHC optics for the TOTEM

collaboration. The main result of the method is the determination of the vertical effective

length Ly and the derivative of the horizontal effective length dLx/ds optical functions

with an uncertainty smaller than 2.5h [8, 9].

Figure 2.14: Compilation of the total cross-section σtot measurements from Ref. [6]. The

TOTEM result demonstrates the impact of the optics estimation procedure.
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The optics estimation method allows for the determination of the LHC optics with

a per mil level uncertainty in case of low-β∗ LHC optics, where machine imperfections

have the highest influence, also allowing to estimate the transport matrix uncertainties.

In case of high-β∗ LHC optics the method remains effective and reduces the uncertainties

to the per mil level. The method has been validated with Monte Carlo studies both for

high- and low-β∗ optics.

The optics estimation method, reported in this chapter, was successfully used by the

TOTEM experiment to estimate the real optics for TOTEM physics runs; see especially

Refs. [35] and [57], where the contribution of the LHC beam optics into the reconstruction

of the squared four-momentum transfer |t| is discussed in details; see also Fig. 2.14 about

the compilation of the total cross-section σtot measurements from Ref. [6], where the

TOTEM result demonstrates the impact of the optics estimation procedure.



Chapter 3

Test of the BB model at the LHC

3.1 Introduction

In Chapter 1 it was briefly discussed that the interpretation of the pp elastic scattering

data at low values of the squared four-momentum transfer |t| involves the geometrical scale

of the proton (obstacle) size, which leads to an analogous behavior of the cross-sections in

case of optical and high-energy particle diffraction [2,58]. Chapter 2 gave insight into one

of the experimental techniques used by the TOTEM experiment to obtain the measured

elastic pp differential cross-section data. In the present Chapter I turn to interpret the

measured data using the particular geometrical model of elastic pp scattering of Bialas

and Bzdak (BB model).

The BB model is based on the so-called “eikonal picture” which is the high-energy

particle physics analogue of optical Fraunhofer-diffraction [10]. In the eikonal picture

the unitarity relation Eq. (3.4), the equivalent of σel + σinel = σtot in the so-called im-

pact parameter space, determines the elastic scattering amplitude. The unitarity rela-

tion Eq. (3.4) can be straightforwardly derived in non-relativistic potential scattering

theory [2, 59]. In accordance with the optical analogy, the quantum mechanical result is

formally very similar to the optical formulae calculated from Kirchhoff’s diffraction theory

in the Fraunhofer limit. My PhD dissertation uses the framework of relativistic S-matrix

theory, where the eikonal picture can be defined using the partial wave expansion [2]. On

this theoretical ground the original BB model is defined in Sections 3.2 and 3.3. The fit

method is briefly described in Section 3.4.

53
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I have first confirmed the calculations and results of Bialas and Bzdak using the original

BB model at ISR energies [11]. The method of Bialas and Bzdak does not allow to assess

the fitted parameters’ uncertainty, see Section 3.4 for details. I have determined the best

values and uncertainties of the BB model parameters using the MINUIT minimization

code [60]. I have fitted the BB model at ISR energies and at the LHC energy of
√
s =

7 TeV, the results are presented in Sections 3.3 and 3.5. My results demonstrate that

the original BB model is not able to interpret the
√
s = 7 TeV pp elastic differential

cross-section data measured by the TOTEM experiment. I have introduced an effective

proton radius Reff , and I have found that R2
eff is proportional to the total pp cross-section

at ISR energies [11].

I have generalized the original BB model by including a perturbatively small real

part into the model’s scattering amplitude in order to provide a better description of the

measured elastic pp differential cross-section data [12]. I have fitted the improved model

(αBB model) at ISR and LHC energies, the results are discussed in Chapter 4. I have

shown that the new αBB model can be fitted at ISR energies reliably. However, even the

new αBB model is not able to describe the
√
s = 7 TeV TOTEM data, which suggests

the interpretation that the real part of the FSA becomes non-perturbatively large. In

addition I have found a relation between the total pp cross-section and the position of

the first diffractive minimum, motivated by the so-called “black disc” scattering model,

which shows a similar but quantitatively different behavior.

To overcome the clear disagreement between data and model description at the LHC

energy of
√
s = 7 TeV, I have further generalized the BB model using unitarity con-

straints [13]. I have fitted the new model (ReBB model) at ISR and also at the LHC

energy of
√
s = 7 TeV. I have determined the energy dependence of the ReBB model

parameters based on the good quality of the fits at ISR and LHC energies and I have

extrapolated the ReBB model to future LHC energies and beyond. I have shown that the

effective interaction radius of the proton, calculated from the ReBB model, is increasing

substantially between ISR and LHC energies, while the proton’s effective “edge” shows

the same width. I have demonstrated that the ReBB model shows a non-exponential

feature at low values of the squared four-momentum transfer |t|, which is in agreement

with the new TOTEM finding at
√
s = 8 TeV [57]. My results with the ReBB model are
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presented in Chapter 5.

3.2 The Eikonal Picture and cross-section formulae

In this section I turn to describe the eikonal picture, the framework of the original BB

model, and the basic cross-section formulae.

The scattering or S-matrix is the unitary operator which transforms the initial state

|i〉 of a scattering process into the final state: |f〉 = S |i〉. The unitarity of the S matrix

SS† = I , (3.1)

where I is the identity matrix, ensures that the sum of the probabilities Pi→f = |〈f |S |i〉|2

for all possible outcomes of the scattering process is one. The decomposition S = I + iT ,

where T is the transition matrix, leads the unitarity equation Eq. (3.1) to

T − T † = iTT † . (3.2)

In case of high-energy scattering it is useful to define the impact parameter b with

ℓ =
b
√
s

2
, (3.3)

where ℓ is the angular momentum and s is the squared center-of-mass energy. The uni-

tarity equation Eq. (3.2) can be rewritten in the form [2,61]

2 Im tel(s, b) = |tel(s, b)|2 + σ̃inel(s, b) , (3.4)

where tel(s, b) is the so-called profile function (or forward scattering amplitude of elas-

tic scattering), which corresponds to the ℓth partial wave amplitude Tℓ(s), through

Eq. (3.3) [2, 59]. The function σ̃inel(s, b) = d2σinel/d
2b is the so-called inelastic overlap

function and represents the probability of absorption at each value of the impact param-

eter b; similarly |tel(s, b)|2 = d2σel/d
2b. Eq. (3.4) is the reformulation of σtot = σel + σinel

using the impact parameter b, where σtot, σel and σinel are the total, elastic and inelastic

cross-sections, respectively.

The unitarity relation Eq. (3.4) is a second order polynomial equation in terms of the

(complex) profile function tel(s, b). If one defines the opacity function Ω(s, b) [59, 61–65]

tel(s, b) = i
[
1− e−Ω(s,b)

]
, (3.5)



CHAPTER 3. TEST OF THE BB MODEL AT THE LHC 56

the inelastic overlap function σ̃inel can be expressed as

σ̃inel(s, b) = 1− e−2ReΩ(s,b) . (3.6)

The formula for tel is the so called eikonal form. From Eq. (3.6) the real part of the

opacity function Ω(s, b) can be expressed as

ReΩ(s, b) = −1

2
ln [1− σ̃inel(s, b)] . (3.7)

In the original BB model it is assumed that the real part of the profile function tel vanishes.

In this case Eqs. (3.5) and (3.7) imply that

tel(s, b) = i
[
1−

√
1− σ̃inel(s, b)

]
. (3.8)

If the imaginary part ImΩ is taken into account in Eq. (3.5) the result is

tel(s, b) = i
[
1− e−i ImΩ(s,b)

√
1− σ̃inel(s, b)

]
, (3.9)

where the concrete parametrization of ImΩ(s, b) is discussed later.

The profile function Eq. (3.5) has to be transformed into momentum space to obtain

the elastic scattering amplitude

T (s,∆) =

+∞∫

−∞

+∞∫

−∞

ei
~∆·~b tel(s, b) d

2b

= 2π i

∞∫

0

J0 (∆ · b)
[
1− e−Ω(s,b)

]
b db , (3.10)

where b = |~b|, ∆ = |~∆| is the transverse momentum and J0 is the zero order Bessel-

function of the first kind. In the high energy limit,
√
s → ∞, ∆(t) ≃

√
−t, where t is the

squared four-momentum transfer, see also Eq. (A.17). According to the definition of the

scattering amplitude the elastic differential cross-section can be evaluated as [2]

dσ

dt
=

1

4π
|T (s,∆)|2 , (3.11)

and the optical theorem tells us that the total cross-section Eq. (1.3) [2]

σtot = 2 ImT (s,∆)|t=0 . (3.12)

The ratio of the real to the imaginary FSA is abbreviated as

ρ =
ReT (s, 0)

ImT (s, 0)
. (3.13)
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3.3 The diquark scatters as a single entity

In this section I follow the lines of my research papers [11–13]. The original BB model [10]

describes the proton as a bound state of a quark and a diquark, where both constituents

have to be understood as “dressed” objects that effectively include all possible virtual

gluons and qq̄ pairs. The quark and the diquark are characterized with their positions

with respect to the proton’s center-of-mass using their transverse position vectors ~sq and

~sd in the plane perpendicular to the proton’s incident momentum. Hence, the coordinate

space H of the colliding protons is spanned by the vector h = (~sq, ~sd, ~s
′
q, ~s

′
d) where the

primed coordinates indicate the coordinates of the second proton.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�����������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������

����������������

��������������

����������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�����������������������������������

Rq

Rd

diquark

sq

sd

b

quark

Proton 2

Proton 1

Figure 3.1: Scheme of the scattering of two protons in the impact parameter space, when

the proton is assumed to have a quark-diquark structure and the diquark is assumed to

be scattered as a single entity. This is just a snapshot and all the model parameters follow

a Gaussian distribution.

The inelastic pp scattering probability σ̃inel(s, b) of Eq. (3.8) is calculated as an average

of “elementary” inelastic scattering probabilities σ(h;~b) over the coordinate space H [66]

σ̃inel(b) =
〈
σ(h;~b)

〉
H
=

+∞∫

−∞

. . .

+∞∫

−∞

dh p(h) · σ(h;~b) , (3.14)

where the weight function p(h) is a product of probability distributions

p(h) = D(~sq, ~sd) ·D(~s ′
q, ~s

′
d) . (3.15)
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The D(~sq, ~sd) function is a two-dimensional Gaussian, which describes the center-of-mass

distribution of the quark and diquark with respect to the center-of-mass of the proton

D (~sq, ~sd) =
1 + λ2

R2
qd π

e−(s2q+s2
d
)/R2

qdδ2(~sd + λ~sq) , (3.16)

where

λ =
mq

md

, (3.17)

is the dimensionless ratio of the quark mq and diquark md masses.

The parameter Rqd, the standard deviation of the quark and diquark distance, is deter-

mined from the fit to the data. Note that the two-dimensional Dirac δ function preserves

the proton’s center-of-mass and reduces the dimension of the integral in Eq. (3.14) from

eight to four.

It is assumed that the “elementary” inelastic scattering probability σ(h;~b) can be

factorized in terms of binary collisions among the constituents with a Glauber expansion

σ(h;~b) = 1−
∏

a

∏

b

[
1− σab(~b+ ~s ′

a − ~sb)
]
, a, b ∈ {q, d} , (3.18)

where the indices a and b can be either quark q or diquark d.

The σab (~s) functions describe the probability of binary inelastic collision between

quarks and diquarks and are assumed to be Gaussian

σab (~s) = Aabe
−s2/S2

ab , S2
ab = R2

a +R2
b , a, b ∈ {q, d} , (3.19)

where the Rq, Rd and Aab parameters are fitted to the data.

The inelastic cross-sections of quark, diquark scatterings can be calculated by inte-

grating the probability distributions Eq. (3.19) as

σab,inel =

+∞∫

−∞

+∞∫

−∞

σab (~s) d
2s = πAabS

2
ab . (3.20)

In order to reduce the number of free parameters, it is assumed that the diquarks are

bound very weakly, hence the ratios of the inelastic cross-sections σab,inel satisfy

σqq,inel : σqd,inel : σdd,inel = 1 : 2 : 4 , (3.21)

which means that in the BB model the diquark contains twice as many partons than the

quark and also that these quarks and diquarks do not “shadow” each other during the
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scattering process. This assumption is not trivial. Note, that the version of the BB model

where the diquark is assumed to be composite object, introduced in Section 3.5, allows

for different σqq,inel : σqd,inel : σdd,inel ratios.

Using the inelastic cross-sections Eq. (3.20) together with the assumption Eq. (3.21)

the Aqd and Add parameters can be expressed with Aqq

Aqd = Aqq

4R2
q

R2
q +R2

d

, Add = Aqq

4R2
q

R2
d

. (3.22)

In this way only five parameters have to be fitted to the data Rqd, Rq, Rd, λ, and Aqq.

The last step in the calculation is to perform the Gaussian integrals in the aver-

age Eq. (3.14) to obtain a formula for σ̃inel(b). The Dirac δ function in Eq. (3.16) expresses

the protons’ diquark position vectors as a function of the quarks position

~sd = −λ~sq , ~s ′
d = −λ~s ′

q . (3.23)

After expanding the products in the Glauber expansion Eq. (3.18) the following sum

of contributions is obtained

σ(h;~b) =σqq + 2 · σqd + σdd − (2σqqσqd + σ2
qd + σqqσdd + 2σqdσdd)

+ (σqqσ
2
qd + 2σqqσqdσdd + σddσ

2
qd)− σqqσ

2
qdσdd , (3.24)

where the arguments of the σab(~s) functions are suppressed to abbreviate the notation.

The average over H in Eq. (3.14) has to be calculated for each term in the above

expansion Eq. (3.24). Take the last, most general, term and calculate the average; the

remaining terms are simple consequences of it. The result is

I =
〈
−σqqσ

2
qdσdd

〉
H
=

+∞∫

−∞

. . .

+∞∫

−∞

dh p(h) · (−σqqσ
2
qdσdd ) , (3.25)

where the p(h) weight function Eq. (3.15) is a product of the quark-diquark distributions,

given by Eq. (3.16). Substitute into this result Eq. (3.25) the definitions of the quark-

diquark distributions Eq. (3.16)

I = −4v2

π2

+∞∫

−∞

+∞∫

−∞

d2sqd
2s′q e

−2v(s2q+s′2q )
∏

k

∏

l

σkl(~b− ~sk + ~s ′
l ), k, l ∈ {q, d} , (3.26)

where v = (1 + λ2)/(2 · R2
qd) and the integral over the coordinate space H is explicitly

written out; it is only four dimensional due to the two Dirac δ functions in p(h). Using
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the definitions of the σab (~s) functions Eq. (3.19) and the expression A = AqqAqdAdqAdd

the integral Eq. (3.26) can be rewritten, to make all the Gaussian integrals explicit

I = −4v2A

π2

+∞∫

−∞

+∞∫

−∞

d2sqd
2s′q e

−2v(s2q+s′2q )
∏

k

∏

l

e−ckl(~b−~sk+~s ′

l )
2

, (3.27)

where the abbreviations ckl = S−2
kl refer to the coefficients in Eq. (3.19). Finally, the four

Gaussian integrals have to be evaluated in our last expression Eq. (3.27), which leads to

I = −4v2A

B
e−b2 Γ

B , (3.28)

where

B = Cqd,dq

(
v + cqq + λ2cdd

)
+ (1− λ)2 Dqd,dq ,

Γ = Cqd,dqDqq,dd + Cqq,ddDqd,dq , (3.29)

and

Ckl,mn = 4v + (1 + λ)2 (ckl + cmn) ,

Dkl,mn = v (ckl + cmn) + (1 + λ)2 cklcmn . (3.30)

Each term in Eq. (3.14) can be obtained from the master formula Eq. (3.28), by setting

one or more coefficients to zero, ckl = 0 and the corresponding amplitude to one, Akl = 1.

3.4 Fit method

Bialas and Bzdak used the total inelastic cross-section, the slope of elastic cross-section at

t = 0, the position of the dip and the height of the maximum after the dip to determine

the value of the fit parameters by solving 4 equations with 4 unknowns in their original

publication Ref. [10]. They found, that the resulting parameters provide a good overall

description of elastic scattering data at ISR energies. However, neither the errors of the

parameters nor the fit quality description with a χ2/NDF test were provided.

I have used the CERN MINUIT fitting package to determine the best values of the

model parameters together with their errors [60], with the χ2 function

χ2 =
N∑

i=1

{
dσi/dt− γ · dσth,i/dt

σi

}2

, (3.31)
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where the sum runs over the fitted data points [67]. The upper bound N of the sum

in Eq. (3.31) is the number of fitted data points, dσi/dt is the ith measured differential

cross-section data point and dσth,i/dt is the corresponding theoretical value at the ith

data point calculated from the investigated model. The value σi is the mere statistical

uncertainty of the ith data point.

In Chapter 5 I apply an additional term in the χ2 function, which takes into account

the luminosity uncertainty [60]

χ2
lumi = χ2 +

(γ0 − γ)2

σ2
lumi

. (3.32)

In this case the parameter γ becomes an additional parameter to be minimized. The

constant γ0 ≡ 1 abbreviates the unscaled value, while σlumi is the relative luminosity

uncertainty reported by the measurement. I set parameter σlumi to a conservative value

of 5 % at each ISR energy [1]. In case of the TOTEM data sets it is set to 4 %, which is

determined by the uncertainty of the CMS luminosity [35, 68].

3.4.1 Fit results

In this section the MINUIT fit results are presented for the ISR [1,69] and TOTEM [35]

pp elastic scattering data considering the scenario when the diquark is assumed to act as

a single entity in the scattering process. The BB model is fitted with Eq. (3.31) without

the use of the luminosity error.

In a preliminary analysis all model parameters were optimized [70], including also the

values of λ and Aqq, resulting in large parameter errors due to the strong correlations

among the fit parameters [70]. In the fits presented in this PhD thesis I fix the values of

the BB model parameters

λ = 0.5 , Aqq = 1.0 , (3.33)

where the latter assumption means that head-on qq collisions are inelastic with a proba-

bility of 1, according to Eq. (3.19).

Our corresponding results are shown in Fig. 3.2. The confidence levels, and model

parameters together with their errors are presented in Table 3.1. The calculated elastic

cross-sections, including their uncertainty, were evaluated from the MINUIT fits to the

differential cross-section data. At the end of this section I also study and discuss, what
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happens when the measured total cross-sections are also added, as additional data points,

to the optimalization procedure.

The ratios of the inelastic cross-sections were fixed with Eq. (3.21), in order to decrease

the number of free fit parameters, therefore these ratios will be provided only for the case,

when the diquark is assumed to be a composite object.

The original form of the BB model shows a singular behavior at the diffractive minima,

which unphysical region may completely dominate the fit results. To obtain a meaningful

fit result, I have excluded 3 data points from the optimalization procedure, that were

closest to the dip region at the ISR energies. These points are shown in red (color online)

on the plots. I have checked that leaving out 5 or 7 points do not change the results.

Another important remark is that the TOTEM data covers the |t| range from 0.36

GeV2 up to 2.5 GeV2 and this range is applied in my analysis to allow a comparison

between the ISR and TOTEM results.
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Figure 3.2: Results of MINUIT fits with the original BB model at ISR energy of
√
s =

23.5 GeV (left) and LHC energy of
√
s = 7 TeV (right) in the 0.36 to 2.5 GeV2 |t| fit

range, when the diquark is assumed to scatter as a single entity. The BB model is singular

at the dip, hence 3 data points at the dip, indicated with filled (red) circles, are left out

from the fit of the ISR data.
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√
s [GeV] 23.5 30.7 52.8 62.5 7000

Rqd [fm] 0.31 ± 0.01 0.34 ± 0.01 0.36 ± 0.01 0.31 ± 0.01 0.52 ± 0.01

Rq [fm] 0.26 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.28 ± 0.01 0.39 ± 0.01

Rd [fm] 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.75 ± 0.01 0.83 ± 0.01

χ2/NDF 65.0/44 26.7/32 57.2/33 52.9/33 4622.7/76

CL [%] 2.14 73.05 0.55 1.56 0.0

σelastic [mb] 6.2 ± 0.1 5.1 ± 0.3 5.0 ± 0.3 7.3 ± 0.3 17.9 ± 0.2

Table 3.1: The BB model fit quality and resulting parameters of the fit at ISR energies

including the LHC result at
√
s = 7 TeV, in the 0.36 to 2.5 GeV2 |t| range. The diquark

is assumed to be a single entity.

Figure 3.3: Visualization of the obtained Rqd, Rq and Rd BB model parameters for the

case when the proton is assumed to scatter as a quark-diquark composite, p = (q, d).

The main observation is that the proton seems to be much larger at the LHC energy

than in the ISR regime. This is mainly due to an increase in the Rqd parameter, that

characterizes the separation of the quark and the diquark. However, as the CL of the fit

to the TOTEM data at
√
s = 7 TeV is too low, much smaller than 0.1 %, the conclusion

about Rqd needs to be re-evaluated in the light of more precise description of the TOTEM

data, see in particular the subsequent Chapters 4 and 5.
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3.5 The diquark scatters as a composite object

The collision of the two protons is illustrated in Fig. 3.4, in case the diquark scatters as a

composite object including two constituent quarks. Bialas and Bzdak [10] supposed that

the two quarks follow a Gaussian distribution inside the diquark

D ( ~sq1, ~sq2) =
1

πd2
e−(s

2
q1+s2q2)/2d2δ2 ( ~sq1 + ~sq2) , (3.34)

where the transverse positions of the quarks are indicated with ~sq1, ~sq2. The distance d

is the RMS of the separation of the quarks inside the diquark. It is defined as

d2 = R2
d −R2

q , (3.35)

which expresses that the diquark is composed of two quarks which are separated by a

distance d. In the present case the inelastic cross-sections σqd, σdq and σdd have to be

factorized using the σqq inelastic cross-section using expansion (3.18). The formula for

σqd and σdq is the following

σqd (~s) =
4AqqR

2
q

R2
d +R2

q

e
−s2 1

R2
d
+R2

q −
A2

qqR
2
q

R2
d

e−s2/R2
q , (3.36)

σdd is more complicated, and is given in details in Refs. [10, 11, 71–73]. The inelastic

cross-section (3.14) can be calculated using the master formula (3.28) as before.
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Figure 3.4: Snapshot about the two scattering protons in the p = (q, (q, q)) model. Pro-

tons are described as a quark-diquark system, where the diquark is assumed to scatter

as a quark-quark composite object. This is an illustration only, actually all the model

parameters follow a Gaussian distribution, based on Refs. [10, 11, 71–73].
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In this subsection, similar MINUIT fit results are presented as in the previous sub-

section, the main modification is a change in the model assumption: now I assume that

the diquark scatters as a composite object that contains two quarks. I present the final

fit results to pp elastic scattering data both at ISR [1, 69] and at the LHC energy of
√
s = 7 TeV [35]. The results are illustrated in Fig. 3.5. The confidence levels, and model

parameters with their errors are summarized in Table 3.2.
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Figure 3.5: BB model fit result as Fig. 3.2, but the diquark is assumed to have a composite

(q, q) substructure.

3.6 Inelastic cross-sections

The inelastic cross-sections for the quark-quark, quark-diquark and diquark-diquark sub-

collisions were analyzed on the basis of formula Eq. (3.20). The detailed results are

collected in Table 3.3, while the average of these ratios for the described ISR energies are

σqq : σqd : σdd = 1 : (1.93± 0.03) : (3.65± 0.1) , (3.37)

which is close to the ideal 1: 2 : 4 ratio, confirming the assumption of having two quarks

inside the diquark, amended with some shadowing which is 4 % and 9 % respectively. At
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√
s [GeV] 23.5 30.6 52.8 62.5 7000

Rqd [fm] 0.21 ± 0.01 0.23 ± 0.01 0.25 ± 0.01 0.23 ± 0.01 0.66 ± 0.01

Rq [fm] 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.29 ± 0.01 0.33 ± 0.01

Rd [fm] 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.67 ± 0.01

χ2/NDF 80.0/44 32.1/32 65.4/33 68.6/33 4852.7/76

CL [%] 0.07 46.30 0.07 0.03 0.0

σelastic [mb] 6.9 ± 0.1 6.6 ± 0.1 6.6 ± 0.1 7.2 ± 0.1 9.8 ± 0.1

Table 3.2: The BB model fit quality and resulting parameters of the fit at the ISR energies

including the LHC result at
√
s = 7 TeV in the 0.36 to 2.5 GeV2 |t| fit range. The diquark

is assumed to be a d = (q, q) composit entity.

√
s = 7 TeV the ratios are different from Eq. (3.37)

1 : (1.88± 0.01) : (3.43± 0.02) , (3.38)

which shows that shadowing is stronger, 6 % and 14 % percent respectively, and a signif-

icant decrease compared to the ideal ratio can be observed.

√
s [GeV] 23.5 30.6 52.9 62.5 7000

σqd/σqq 1.92 ± 0.01 1.93 ± 0.01 1.93 ± 0.01 1.93 ± 0.01 1.88 ± 0.01

σdd/σqq 3.64 ± 0.02 3.66 ± 0.01 3.67 ± 0.01 3.65 ± 0.01 3.43 ± 0.02

Table 3.3: The ratios of the total inelastic cross-sections for the quark-quark, quark-

diquark and diquark-diquark processes for the ISR and LHC energies using the composite

diquark hypothesis.

3.7 Model comparison

The comparison of Table 3.1 and 3.4 shows that the fit quality is similar for both versions

of the BB model. However, the best fit parameters are quite different at each colliding

energy and the picture of the proton, as shown in Figs. 3.3 and 3.6, are also different. I

found one combination of the model parameters, an effective radius that is obtained from

the quadratic sum of Rq, Rd and Rqd, that seems to be the same in both models

Reff =
√
R2

q +R2
d +R2

qd , (3.39)
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Figure 3.6: Visualization of the obtained Rqd, Rq and Rd BB model parameters when

the diquark is assumed to be a qq entity. The proton seems to be much larger at the

LHC energies than in the ISR regime. This is mainly due to an increase in the Rqd

parameter, that characterizes the separation of the quark and the diquark, which is further

decomposed as (q,q) state in this class of models. However, as the CL of the fit to the

TOTEM data at
√
s = 7 TeV is too low, much smaller than 0.1 %, the conclusion about

Rqd needs to be re-evaluated in the light of more precise description of the TOTEM data,

see in particular the subsequent Chapters 4 and 5.

and which is related in a simple way to the measured total cross-section by

σtot = 2π ·R2
eff . (3.40)

The
√
s dependence of the effective radius Reff and the relationship between the effective

radius and the measured total cross-section is shown in Fig. 3.7.
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√
s [GeV ] 23.5 30.6 52.9 62.5 7000

data [mb] 38.94 ± 0.17 40.14 ± 0.17 42.67 ± 0.19 43.32 ± 0.23 98.3 ± 0.2

p=(q,d)

σtot [mb] 38.5 ± 0.2 40.0 ± 0.2 42.5 ± 0.2 43.2 ± 0.3 79.0 ± 1.1

χ2/NDF 107.2/45 62.2/33 110.7/34 56.1/34 4667.67/77

CL [%] 0.00 0.16 0.00 1.00 0.00

p=(q,(q,q))

σtot [mb] 38.6 ± 0.1 39.7 ± 0.2 41.6 ± 0.2 42.6 ± 0.2 74.2 ± 1.3

χ2/NDF 86.8/45 60.2/33 154.2/34 95.3/34 5059.57/77

CL [%] 0.02 0.26 0.00 0.00 0.00

Table 3.4: Measured and fitted BB model values of the total cross-sections, when the

measured values of the total cross-sections are included into the earlier fitting procedure,

as another, additional data point.
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Figure 3.7: The effective radius parameter Reff (left) and the quantity 2π ·R2
eff normalized

with the measured total pp cross-section as a function of the center-of-mass energy
√
s.

3.8 Summary of Chapter 3

A systematic study of fit quality as well as the fit parameters under similar circumstances

have been performed for the BB model [10] in a wide energy range from ISR to the LHC

energies using the same kinematic interval and the same method at each energy. The

model gives a good description of the ISR data, which means that the CL is acceptable

on the ISR energies if 3 data points at the first diffractive minimum were left out from
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the fit.

An important shortcoming of the quark-diquark BB model of protons is that it ignores

the real part of the elastic scattering amplitude. This leads to a singular behavior at the

diffractive minimum, which is apparently a more and more serious model limitation with

increasing pp collision energy. Due to this reason, the BB model fails to describe in detail

the structure of the first diffractive minimum at the LHC energies of
√
s = 7 TeV.

I found a combination of the BB model parameters, an effective radius that is obtained

as the quadratic sum of quark, diquark radii and the separation between the quark and

the center of mass of the diquark, that seems to be the same in both models and which

is related in a simple, intuitive way to the measured total cross-section, as given by

Eqs. (3.39) and (3.40).



Chapter 4

Perturbatively extended BB model

In the previous Chapter 3 I have fitted the original BB model to ISR and LHC energies.

In this Chapter 4 the BB model of elastic pp scattering is generalized to the case when

the real part of the parton-parton level forward scattering amplitude is non-vanishing,

which enables the model to describe well the dip region of the differential cross-section of

elastic scattering at the ISR energies, and improves significantly the ability of the model

to describe also the recent TOTEM data at
√
s = 7 TeV LHC energy. The presentation

of the results in this Chapter 4 follows the lines of Ref. [12].

The expression for the profile function tel of Eq. (3.9) is derived from the unitarity

relation Eq. (3.4) and allows one to introduce a real part to the FSA in a systematic way.

At the beginning of our data analysis, using the BB model, I have assumed that the real

part of the FSA is small enough to provide it in a perturbative way. Thus, in the so-called

αBB model, I introduced the real part of the FSA with a purely imaginary factor using

a new parameter α

σ̃inel,α(s, b) = (1− iα) σ̃inel(s, b) . (4.1)

The new parameter α is determined from the analysis of data. Note, that the α = 0

case corresponds to a situation, when the proton always scatters elastically if its con-

stituents scatter elastically. Parameter α is introduced in a way that is motivated by the

α parameter of the Glauber-Velasco model of Refs. [74, 75].

Using the parametrization for σ̃inel,α(s, b) of Eq. (4.1) the profile function of the original

70
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BB model, see Eq. (3.8), is modified

tel(s, b) = i

[
1−

√
1− σ̃inel,α(s, b)

]
, (4.2)

where the profile function tel(s, b) is a complex valued function in this case.

In this section the results of our MINUIT fits with the αBB model are presented for

the ISR [1, 69] and TOTEM [6, 35] pp elastic scattering data. The scenario when the

diquark is assumed to scatter as a single entity is considered first, which is followed by

the fit results for the case when the diquark is considered as composite object. To provide

a fair comparison among the model descriptions on the different dataset at different
√
s,

the |t| region of the fits is limited to the first TOTEM publication. In the discussion

section, the fit quality is also studied in special fits to the TOTEM data in the low |t|
region. As we shall see, even the αBB model cannot describe the TOTEM data in the

whole |t| region.
The results show that thanks to the new parameter α, which generates the real part

of the forward scattering amplitude, the fits improve significantly and describe the data

also in the dip region, as compared to the α = 0 case presented in Refs. [10, 11, 71–73].

This phenomenon can be interpreted such that the proton does not necessarily scatter

elastically even if all its constituents are scattered elastically. This effect is small at lower

collision energies, however it becomes more and more prominent with increasing energies.

4.1 The diquark is assumed to scatter as a single en-

tity

In this subsection the fit results are collected in case the diquark is assumed to scatter as

a single entity. This version of the model was fitted to the pp elastic scattering data both

at ISR [1, 69] and at LHC [35] energy as well. The αBB model is fitted with Eq. (3.31)

without the use of the luminosity error. The results are illustrated in Fig. 4.1 and a

visualization of the model parameters is provided in Fig. 4.2. The confidence levels, and

model parameters with their errors are summarized in Table 4.1.

The figures contain two phenomenological relations below the legend, the effective

radius Reff of Eq. (3.39) and also the relation Eq. (3.40) calculated from the αBB model.
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This formula was originally proposed for the BB model in [11], and was found to be model

independently valid in both the p = (q, d) and in the p = (q, (q, q)) models with a precision

of 10− 15%. Here I validate this formula for the α 6= 0 case.

Numerically, I have found another phenomenological formula, which indicates that the

|t| position of the first diffractive minimum |tdip| multiplied with the total cross-section

σtot is nearly constant
|tdip| · σtot

C
≈ 1, (4.3)

where C = 54.8± 0.7mb GeV2. The test of these relations for each energy with both the

p = (q, d) and p = (q, (q, q)) models is given on the figures and the results are collected

and described in our Discussion part.
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Figure 4.1: αBB fit result at ISR energy of
√
s = 23.5 GeV (left) and LHC energy of

√
s = 7 TeV (right) in the 0.36 to 2.5 GeV2 |t| fit range in case the diquark is assumed

to be a single entity. Note that although α is not significantly different from 0, a tiny

value of α makes the fit behavior in the dip region significantly better, than the α = 0

case, indicated by a dashed line, see also the corresponding result with the BB model in

Fig. 3.2. The total cross-section σtot,exp is from Ref. [6].
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Figure 4.2: Visualization of the αBB fit results of Fig. 4.1.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

Rq [fm] 0.27 ± 0.01 0.25 ± 0.01 0.26 ± 0.01 0.29 ± 0.01 0.34 ± 0.01

Rd [fm] 0.71 ± 0.01 0.71 ± 0.01 0.73 ± 0.01 0.77 ± 0.01 0.78 ± 0.01

Rqd [fm] 0.30 ± 0.01 0.34 ± 0.01 0.35 ± 0.01 0.29 ± 0.01 0.61 ± 0.01

α 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.16 ± 0.01

χ2/NDF 59.58/46 29.89/34 62.29/35 52.09/35 166.32/74

CL [%] 8.63 66.94 0.30 3.16 0.00

Table 4.1: The
√
s dependence of the confidence levels and the αBB fit parameters ob-

tained in the 0.36 to 2.5 GeV2 |t| fit range in case the diquark is assumed to be a single

entity.

4.2 The diquark scatters as composite object

The MINUIT fit results of the αBB model are presented as in the previous subsection,

except that it is assumed that the diquark scatters as a composite object which contains

two quarks. This version of the model was fitted to the pp elastic scattering data both at

ISR [1, 69] and at LHC [35] energy as well. The results are illustrated in Fig. 4.3, while

the visualization of the obtained parameters is given in Fig. 4.4. The confidence levels,

and model parameters with their errors are summarized in Table 4.2.
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Figure 4.3: αBB fit result at ISR energy of
√
s = 23.5 GeV (left) and LHC energy of

√
s = 7 TeV (right) in the 0.36 to 2.5 GeV2 |t| fit range in case the diquark is assumed to

be a composite object. Dashed line indicates the fit result when the parameter α is set

to zero, see also the BB model fit result in Fig. 3.5.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

Rq [fm] 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.29 ± 0.01 0.29 ± 0.01

Rd [fm] 0.73 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.63 ± 0.01

Rqd [fm] 0.21 ± 0.01 0.23 ± 0.01 0.25 ± 0.01 0.23 ± 0.01 0.73 ± 0.01

α 0.01 ± 0.01 0.00 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.42 ± 0.02

χ2/NDF 71.96/46 38.47/34 48.96/35 82.00/35 274.44/74

CL [%] 0.85 27.42 5.88 0.00 0.00

Table 4.2: The
√
s dependence of the confidence levels and the αBB fit parameters in case

the diquark is assumed to be a composite entity. Note that the quark-diquark distance

Rqd increases significantly at the LHC, but note also that the fit quality is not statistically

acceptable at
√
s = 7 TeV.
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Figure 4.4: Visualization of the αBB fit results of Fig. 4.3.

4.3 Total cross-section estimation based on low-|t|

TOTEM data

Note that even the generalized αBB model failed on the TOTEM data when it was fitted

in the 0.36 ≤ −t ≤ 2.5 GeV2 region. In this section I investigate the fit range dependence

of this negative result. The total cross-section is estimated based on the small |t| data
which was measured by the TOTEM experiment. The fit is repeated in a low |t| range
of 0.0 ≤ −t ≤ 0.8 GeV2 and the total cross-section value is included into the fits as one

additional data point to show how well it can be described by the αBB model. The results

are illustrated in Fig. 4.5.

In the low |t|-range a reasonable description cannot be achieved with the single entity

version of the model, neither in the case when the diquark is assumed to be composite.

In addition, when the fits are limited to the low |t| region, the extrapolated fit curves

deviate from the data significantly in the large |t| region for both the p = (q, d) and the

p = (q, (q, q)) model.

Note also that I could not find a fit with statistically acceptable quality, when the fit

region was increased to 0.0 ≤ −t ≤ a GeV2, where a > 0.8 GeV2. This indicates that

the αBB model does not describe TOTEM elastic scattering data in the whole measured

t range.
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Figure 4.5: αBB fit result at
√
s = 7 TeV in the low |t| range of 0.0 ≤ −t ≤ 0.8 GeV2,

including the measured total cross-section value, as additional data point. The diquark

is assumed to be a single entity (left) and a composite object (right). Both fits are

unsatisfactory, CL < 0.1 %.

4.4 Discussion of the αBB model results

The comparison between the αBB model results, shown in Figs. 4.1 and 4.3, and the ones

made with the original BB model, given in Figs. 3.2 and 3.5, shows that the αBB model

significantly improves the description of the dip region.

Although the αBB model fit quality improved and become reasonable in the dip region,

I still could not find a reasonable description of the TOTEM dataset, that would work

both in the low-|t|, in the dip and in the large-|t| region. For example, if the low-|t| region
is not included in the fit, this region is under-estimated by the extrapolated curve and also

the total cross-section is under-estimated by 17.7 %. Fig. 4.5 indicates, that if I include

the measured total cross-section to the fit as an additional data point, but still keeping

the fitted t range to 0.16 ≤ |t| ≤ 2.5 GeV2, the description improves at the low values

of |t| but the fit deviates more from the data in the dip region. The radius parameter of

the quarks Rq and that of the diquarks Rd together with the quark-diquark distance Rqd
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increase after adding the measured total cross-section.
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Figure 4.6: αBB fit result at
√
s = 7 TeV in the 0.16 ≤ −t ≤ 2.5 GeV2 range shown

on the left hand side plot. The case when the measured total cross-section is added to

the fit as one additional data point is shown on the right hand side plot. The diquark is

assumed to be a single entity.

Although parameter α is introduced to have a successful data description at the dip

region, and it can be considered as the ρ parameter Eq. (3.13) of parton-parton level

scattering, our method to introduce α is based on an analogy with the Glauber-Velasco

model and can be considered valid in the leading order, |α| << 1 limit only.

The α parameter as a function of
√
s is plotted in Fig. 4.7, which shows the increasing

role of this parameter at LHC energies. The increase of α can be interpreted as the proton

becomes more and more fragile with increasing
√
s.
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Figure 4.7: The
√
s dependence of the parameter α using the αBB model fit results. This

plot shows, that α becomes more important at LHC energies, than at ISR, indicating

that it is more probable at LHC that a proton does not scatter elastically even if all of its

constituents happened to scatter elastically. According to these results, the pp collisions

become more and more “fragile” with increasing
√
s.

The phenomenological relation Eq. (4.3), which relates the position of the first diffrac-

tive minimum tdip and the total cross-section, is model independent, and well satisfied for

both ISR and LHC energies, according to Table 4.5 and Fig. 4.8. The relation Eq. (4.3) is

motivated by the formulae of photon scattering on a black disk with radius Rblack, where

the elastic differential cross-section is given with [2, 76]

dσblack

dt
= πR4

black

[
J1(qRblack)

qRblack

]2
, (4.4)

with q =
√
−t, and the total cross-section of the scattered light on the black disk can be

calculated with the optical theorem [2]

σtot,black = 2πR2
black . (4.5)

In this simple theoretical model the position of the first diffractive minimum, following

from Eq. (4.4), and the total cross-section Eq. (4.5) satisfies

Cblack = |tdip,black| · σtot,black = 2π · j21,1(h̄c)2 ≈ 35.9mb GeV2 , (4.6)
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where j1,1 is the first root of the Bessel function J1(x).
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Figure 4.8: The
|tdip|·σtot,exp

C
ratio, directly obtained from experimental data. The dashed

line indicates the ratio 1.

In case of the phenomenological relation Eq. (4.3) the constant C was fitted to the

measured data, to obtain the best possible description. It is clear that this fitted constant

C = 54.8± 0.7mb GeV2 is significantly different from the number Cblack of Eq. (4.6) one

may expect from light scattering on a black disc.

In this sense, although Eq. (4.3) is satisfied by ISR as well as TOTEM data, the value

of the constant indicates a more complex scattering phenomena, than the photon black

disc scattering, mentioned above.

The observed |tdip| ·σtot ≈ C relationship may in fact be a reflection of a deeper scaling

property of the differential cross-section of elastic pp scattering. To guide our intuition,

it is again useful to consider the scattering of light on a black disk. The differential

cross-section Eq. (4.4) can be written as

dσblack

dt
=

σtot,black

2|t| J1

(√
|t|σtot,black

2π

)2

. (4.7)
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The result Eq. (4.7) can be scaled to a universal scaling curve

|t|
σtot,black

dσblack

dt
=

1

2
J1

(√
y

2π

)2

= Fblack(y), (4.8)

where Fblack(y) is a dimensionless function of the variable y = |t| · σtot,black, and is the

same for all black discs regardless of their radius. The function Fblack(y) can be expressed

in terms of the dimensionless variable z = |t|/|tdip,black| = y/Cblack. From Eq. (4.6) and

Eq. (4.8)

|t||tdip,black|
Cblack

dσblack

dt
=

1

2
J1

(√
zCblack

2π

)2

= Gblack(z) , (4.9)

Both of the above dimensionless functions can be generalized to the real experimental

case, leading to F (y) and G(z), where y = |t|σtot and z = y/C. I have thus plotted both

the F (y) and the G(z) functions for all the ISR and LHC data available for us. The results

are shown in Fig. 4.9, where the scaling functions of the black disc Fblack(y) and Gblack(z)

are also presented. The plots indicate, that ISR and LHC data on dσ/dt approximately

satisfy these newly found scaling relation, but with some scaling violating terms.
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Figure 4.9: The F (y) and G(z) scaling functions showing the ISR and TOTEM data.

The scaling functions of the black disc Fblack(y) and Gblack(z) are also shown.

The data indicate that the pp elastic differential cross-section dσ/dt data collapse to

an energy independent scaling function at the ISR energies of
√
s = 23.5− 62.5 GeV, and

data at
√
s = 7 TeV are significantly and qualitatively different, move closer to the scaling

functions that characterize the black disc limit. However, even at
√
s = 7 TeV, the data

are significantly different from the scaling function of the black disc limit. In particular,

the secondary minimum of the black disc limit is not observed, so scaling violating terms
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are still important. It remains to be seen if this trend of approaching better the black

disc limit continues with increasing colliding energies, or not. Plotting the F (z) and the

G(z) scaling functions seems to be a useful tool to investigate, to understand how the

data approach this possible limiting behaviour.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

ρ 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.21 ± 0.01

σtot,exp/(2πR
2
eff) 0.92 ± 0.01 0.93 ± 0.03 0.95 ± 0.03 0.91 ± 0.03 1.42 ± 0.05

Table 4.3: The ρ parameter and the σtot,exp/(2πR
2
eff) ratio in case the diquark is assumed

to be a single entity. Fit range is the same 0.36 ≤ −t ≤ 2.5 GeV2 for all datasets. Note

that the fit quality is not acceptable at
√
s = 7 TeV.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

ρ 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.53 ± 0.02

σtot,exp/(2πR
2
eff) 0.95 ± 0.01 0.93 ± 0.01 0.94 ± 0.01 0.96 ± 0.01 1.53 ± 0.06

Table 4.4: The ρ parameter and the σtot,exp/(2πR
2
eff) ratio, the diquark is assumed to be

a composite entity. Fit range is the same 0.36 ≤ −t ≤ 2.5 GeV2 for all datasets. Note

that the fit quality is not acceptable at
√
s = 7 TeV.

√
s [GeV] 23.5 30.7 52.8 62.5 7000

|tdip|σtot,exp

C
1.03 ± 0.04 1.05 ± 0.04 1.05 ± 0.04 1.05 ± 0.05 0.95 ± 0.02

Table 4.5: The
|tdip|σtot,exp

C
ratio, model independently. Precise up to 5% (within errors).

One can ask the question, why and at what range of squared four-momentum transfer

|t| such a simple model should work. Apparently, for sufficiently large |t| one starts to

probe a distance that becomes smaller than 0.2 fm, the size of a constituent quark in

the Bialas-Bzdak picture, or, the even larger diquark scale. Thus, for a large enough |t|
the simple Bialas-Bzdak model, and even its generalized version presented in the current

manuscript, are expected to fail.
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4.5 Summary of Chapter 4

In this work I have generalized the geometrical Bialas-Bzdak model of elastic pp scattering

by allowing for a real part of the forward scattering amplitude using the same geometrical

picture, but assuming that a pp scattering may become inelastic even in the case when

all scattering of the constituents of the colliding protons is elastic (but not completely

collinear). This generalization, the αBB model, resulted in a successful description of the

dip region of elastic pp scattering in the ISR energy region and resulted in a significant,

qualitative improvement of the ability of this model to describe elastic pp scattering at
√
s = 7 TeV colliding energy as measured by the TOTEM Collaboration. The comparison

between the αBB model results, see Fig. 4.1 and 4.3 also Fig. 4.6, and the BB model

ones, given in Figs. 3.2 and 3.5, clearly shows that I have improved significantly on the

description of the dip region using the αBB model.

I have also found that the αBB model is able to describe only the small |t| data set

and therefore the total cross-section σtot at LHC, if the fit range is limited to a relatively

low |t| range. However, even the αBB model model fails, if the large |t| region data of

TOTEM is included, more precisely I find no good quality fits in the 0.0 ≤ −t ≤ a GeV2

region, where a ≥ 0.8 GeV.

Based on the geometrical picture behind the Bialas-Bzdak model, I have identified and

tested the validity of two simple phenomenological formulas. Our first formula relates the

total pp scattering cross-section to an effective radius, that is the quadratic sum of the

radii of a quark and a diquark as well as the distance between the center of mass of

the diquark and the quark inside the proton. Regardless of the detailed structure of

the diquarks, and independently of the values of the real part of the forward scattering

amplitude, this formula gives a model independent estimate for the total cross-section

with a typical 10 % precision at ISR energies, that becomes worse at LHC energies.

Our second formula establishes a relation between the total cross-section of pp scatter-

ing and the position of the dip in the differential cross-section, see Fig. 4.8 and Table 4.5.

In particular, I find that the product of these two quantities is a model independent con-

stant. I also demonstrated that this formula is remarkably precise, it is satisfied by the

ISR data within one standard deviations, while at LHC the formula is also satisfied by

the data within 3 standard deviations.



Chapter 5

The ReBB model

I have learnt from the analysis of the ISR and
√
s = 7 TeV TOTEM data at LHC,

explained in Chapters 3 and 4, that the real part of the FSA is perturbatively small at

ISR energies, it becomes non-perturbative at LHC but the scattering is still dominated by

the imaginary part of the scattering amplitude. In this Chapter I apply the consequence

Eq. (3.9) of the unitarity constraint Eq. (3.4) which provides a simple way to handle

the real part of the FSA at LHC. According to Eq. (3.9), in this case one has to define

ImΩ(s, b).

I have studied several possible choices. One possibility is to introduce the imaginary

part of the opacity function so that it is proportional to the probability of inelastic scat-

terings, which is known to be a decreasing function of the impact parameter b. A possible

interpretation of this assumption may be that the inelastic collisions arising from non-

collinear elastic collisions of quarks and diquarks follow the same spatial distributions as

the inelastic collisions of the same constituents

ImΩ(s, b) = −α · σ̃inel(s, b) , (5.1)

where α is a real number, corresponding to the shape parameter of the differential cross-

section of elastic pp scattering.

The above proportionality Eq. (5.1) between ImΩ(s, b) and σ̃inel(s, b) provided the

best fits from among the relations that I have tried but it is far from being a unique

possibility for an ansatz. Note, that the α = 0 case corresponds to the p = (q, d) version

of the original BB model of Chapters 3 and Ref. [10], where the FSA has a vanishing real

part.

83
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In the α < 0.1 perturbative limit the αBB model of Ref. [12] can also be obtained as

follows. The αBB model can be defined by the relation

ImΩ(s, b) =
α · σ̃inel(s, b)

σ̃inel(s, b)− 2
. (5.2)

This definition is equivalent to the original form of the definition of the αBB model in

Ref. [12] where σinel(s, b) in Eq. (3.8) was allowed to have a small imaginary part, in the

form of σinel(s, b) → (1 + iα) · σinel(s, b). This condition was satisfied for fits at ISR

energies, with α ≈ 0.01, however, at LHC energies the αBB model did not describe the

TOTEM data in a satisfactory manner [12].

I have also investigated the assumption that the real and the imaginary parts of the

opacity function are proportional to one another

ImΩ(s, b) = −α · ReΩ(s, b) . (5.3)

However, as the results using Eq. (5.3) were less favorable than the results obtained

with Eq. (5.1), I do the data analysis part, described in the next section, using Eq. (5.1).

I mention this possibility to highlight that here some phenomenological assumptions are

necessary as the ReBB model does allow for a broad range of possibilities for the choice

of the imaginary part of the opacity function.

In this way, the ReBB model is fully defined, and applying convention Eq. (3.33) at

a given colliding energy only four parameters have to be fitted: the three geometrical

parameters Rq, Rd, Rqd and parameter α of Eq. (5.1).

I have studied the version when the diquark is assumed to be a composition of two

quarks, referred as the p = (q, (q, q)), see Section 3.5. Our earlier studies using the αBB

model indicated [12], that the p = (q, d) case gives somewhat improved confidence levels as

compared to the p = (q, (q, q)) case. So I discuss ReBB results with the p = (q, d) scenario

only, however, it is straightforward to extend the investigations to the p = (q, (q, q)) case.

I have performed these calculations but the details are not presented here as the results

are not acceptable at
√
s = 7 TeV. To demonstrate that the p = (q, (q, q)) model does

not work, I report only the rather unsatisfactory fit quality when the data analysis is

discussed.
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5.1 Fit results with the ReBB model

The ReBB model, defined with Eqs. (3.9) and (5.1), was fitted to the data at ISR energies

and at LHC energy of
√
s = 7 TeV. The relation between the imaginary part of Ω(s, b)

and α is defined with Eq. (5.1). In the course of the minimization of the ReBB model I

take into account the uncertainty of the overall scale factor of the measured data, with

the χ2
lumi function of Eq. (3.32).

First I attempted to fit the ReBB model in the 0 < |t| < 2.5 GeV2 range, fitting

simultaneously both the low-|t| TOTEM measurement of Ref. [68] and the one containing

the dip region [35], see Fig. 5.1.

Note, that in this particular fit two normalization parameter were used in the χ2
lumi

function Eq. (3.32): γ1 below and γ2 above |tsep|, since the pp elastic differential cross-

section data measured by the TOTEM experiment at
√
s = 7 TeV is a compilation of

two subsequent measurements [6, 35, 68], which are (almost) independent measurements.

The squared four-momentum transfer value tsep = −0.375 GeV2 separates the two data

sets.1 Note also, that the two datasets were taken with two very different settings of the

machine optics of the LHC accelerator.

This fit provides χ2/NDF= 289.04/158 = 1.83 and CL = 9× 10−9 ≪ 0.1% , which is

statistically not an acceptably good fit quality, although, as indicated in Fig. 5.1, the fit

looks reasonably good by eye. So, unfortunately, I could not get a unified and statistically

acceptable description of the differential cross-section of elastic pp scattering in the whole

measured squared four-momentum transfer t interval using the ReBB model.

It is important to note, however, that I determined the fit quality using the statisti-

cal and the luminosity uncertainty only, where the latter is a t-independent systematic

uncertainty. According to the original TOTEM publications [35, 68], the systematic un-

certainties of the two TOTEM data sets are very different due to different data taking

conditions, especially due to the different LHC machine optics. The t-dependent part of

the systematic errors allow the data points, as a function of |t|, to be slightly moved in a

correlated and t dependent way, which could, in principle, improve our fit quality.

However, this part of the systematics is rather difficult to handle correctly in the

1The squared four-momentum transfer value tsep separates the bin centers at the common boundary,

the two bins actually overlap [6, 35,68].
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present analysis. So I decided to analyze the two TOTEM data sets separately. If the

separated fits to
√
s = 7 TeV elastic differential cross-section dσ/dt data are evaluated,

below and above the separation |tsep|, quality results can be obtained, which are shown in

Figs. 5.2 and 5.3, and are summarized in Table 5.1. As detailed below, this strategy leads

to reasonable fit qualities (CL = 1.8 %, statistically acceptable fit in the cone region and

CL = 0.04 %, statistically marginal fit in the dip region), with a remarkable stability of

fit parameters.2

√
s [GeV] 23.5 30.7 52.8 62.5 7000

|t| [GeV2] (0, 2.5) (0, |tsep|) (|tsep|, 2.5)

χ2/NDF 124.7/101 95.6/46 96.1/47 76.2/46 109.9/81 120.4/73

CL [%] 5.5 2× 10−3 3× 10−3 0.3 1.8 4× 10−2

Rq [fm] 0.27±0.01 0.28±0.01 0.28±0.01 0.28±0.01 0.45±0.01 0.43±0.01

Rd [fm] 0.72±0.01 0.74±0.01 0.74±0.01 0.75±0.01 0.94±0.01 0.91±0.01

Rqd [fm] 0.30±0.01 0.29±0.01 0.31±0.01 0.32±0.01 0.32±0.05 0.37±0.02

α 0.03±0.01 0.02±0.01 0.04±0.01 0.04±0.01 0.11±0.04 0.12±0.01

γ 1.01±0.05 0.98±0.05 0.90±0.06 0.97±0.05 1.00±0.04 1.00 (fixed)

Table 5.1: The values of the fitted ReBB model parameters from ISR to LHC energies.

At the
√
s = 7 TeV LHC energy, the pp elastic dσ/dt data measured by the TOTEM

experiment is a composition of two subsequent measurements, which are separated at

tsep = −0.375 GeV2. The errors and the values are rounded up to two valuable decimal

digits.

The calculated total cross-section of the low-|t| fit is σtot = 99.3 ± 3.8 mb, where

the uncertainty is the propagated uncertainty of the fit parameters, including that of the

shape parameter that can be relatively badly determined in the cone region. This result

nevertheless agrees very well with the value σtot = 98.0±2.5 mb measured by the TOTEM

experiment at
√
s = 7 TeV [25] in a luminosity-independent way, and the calculated value

2The αBB version of the BB model, discussed in the previous Chapter 4, has been fitted at ISR in

the restricted 0.36 < |t| < 2.5 GeV2 range in order to be consistent with the t-range of the available

TOTEM data set of that time [35], while in this chapter concerning the ReBB model the low |t| data are

also included at each analyzed energy. The more limited fit range explains the seemingly better χ2/NDF

and CL values reported in Section 4 and in our earlier publication Ref. [12] using the αBB model.
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for the parameter ρ = 0.09 ± 0.03 is also reasonable, as within its errors it is consistent

with the measured value of ρ = 0.145±0.091 as reported by the TOTEM experiment [25].

Note, that the uncertainty of the value of our ρ parameter is the propagated uncertainty

of the ReBB model fit parameters as it is given in Fig. 5.2, consequently, it contains the

effects of propagated statistical and luminosity uncertainties only.

On the other hand, if one checks the fit at the dip region, with γ = 1 fixed, a remarkable

stability of the shape of the differential cross-section can be found at low values of |t| that
still yield reasonable values for the total cross-section (σtot = 91.9±2.6 mb) and similarly

reasonable values for the parameter ρ = 0.10± 0.01. The stability and consistency of the

model description is visible also in Figs. 5.2 and 5.3.

For the sake of completeness, I present also one of our fits at the ISR energy of
√
s = 23.5 GeV, as indicated in Fig. 5.4 [1, 6, 68,69]. The parameters of the best fits and

the parameters’ errors at each analyzed ISR energy are summarized in Table 5.1.
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Figure 5.1: The fit of the ReBB model in the whole 0 < |t| < 2.5 GeV2 range at
√
s =

7 TeV. The fit method uses the luminosity error according to Eq. (3.32), applying two

normalization parameters γ1 below |tsep| and γ2 above. Parameters without errors were

fixed during the optimization and their value is rounded up to two decimal digits.
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Figure 5.2: The same as Fig. 5.1, but the fit is performed in the 0 < |t| < |tsep| range.
The fit quality is satisfactory, CL > 0.1%.
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Figure 5.3: The same as Fig. 5.2, but the fit is performed in the |tsep| < |t| < 2.5 GeV2

range. I present the results for the γ = 1 fixed case.
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Figure 5.4: The fit of the ReBB model at
√
s = 23.5 GeV in the 0 < |t| < 2.5 GeV2

squared four-momentum transfer |t| range. The fit uses the statistical errors of the data

points and the luminosity error of the systematic uncertainty according to Eq. (3.32).

Parameter values are rounded up to two valuable decimal digits.
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If the two parameters Aqq and λ are released and included into the set of fitted pa-

rameters of the ReBB model, the fit quality improves at each analyzed energy from the

point of view of mathematical statistics. In case of
√
s = 30.7 GeV the improvement is

quite significant as the confidence level of the fit reaches CL = 8% instead of 2× 10−3 %.

However, the two new fitted parameters introduce more correlations, which lead to large

fit uncertainties, and the parameters λ and Aqq within errors remain in the range of their

values that were fixed for the fits reported in Table 5.1, however, due to the correlations

between the fit parameters when Aqq and λ are released, the fit parameters fluctuate

more when evaluated as a function of
√
s, consequently their trend is more difficult to

determine. Therefore, in order to determine the excitation function of the model param-

eters, I utilized the results of the ReBB fit results as listed in Table 5.1, where these two

parameters are fixed according to Eq. (3.33).

Also note that if ImΩ(s, b) is defined to be proportional to ReΩ(s, b), according to

Eq. (5.3), the MINUIT fit result of χ2/NDF= 504.9/159 = 3.2 is obtained at
√
s = 7 TeV

in the 0 < |t| < 2.5 GeV2 range, which is disfavored as compared to fits with Eq. (5.1),

see also Fig. 5.1.

In Section 3.5 the p = (q, (q, q)) version of the BB model, and the ReBB model as

well, has been defined, the case when the diquark is assumed to be a composition of

two quarks [12]. At
√
s = 7 TeV in the 0 < |t| < 2.5 GeV2 range the p = (q, (q, q))

scenario provides a fit result with χ2/NDF= 15509/159 ≈ 97.5, which means that the

p = (q, (q, q)) ReBB version can be rejected. The failure of the p = (q, (q, q)) version

is due the wrong shape of the differential cross-section: the second diffractive minimum

appears too close to the first one.

5.2 Discussion

5.2.1 Shadow profile functions and saturation

The fits, from which the model parameters were determined, also permit us to evaluate

the so-called shadow profile function in order to characterize the absorption in the impact

parameter b-space

A(s, b) = 1− |exp [−Ω(s, b)]|2 , (5.4)
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where Ω(s, b) is the opacity function of Eq. (3.5).

The obtained curves to A(s, b) are shown in Fig. 5.5. The shadow profile functions

at ISR energies exhibit a Gaussian like shape, which smoothly change with the center-

of-mass energy
√
s. In this case, the A(s, b = 0) < 1 value indicates that the protons are

not completely “black” at the ISR energies, even at their centre they do not scatter with

the maximum possible probability per unit area. At the LHC energy of
√
s = 7 TeV

something new appears: the innermost part of the distribution shows a saturation, which

means that around b = 0 the shadow profile function becomes almost flat and stays close

to A(b) ≈ 1. Consequently, the shape of the shadow profile function A(b) becomes non-

Gaussian and somewhat “distorted” with respect to the shapes found at ISR. At the same

time, the width of the edge of the shadow profile function A(b), which can be visualized

as the proton’s “skin-width”, remains approximately independent of the center-of-mass

energy
√
s.
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Figure 5.5: The shadow profile functions A(b) of the ReBB fit results indicate a saturation

effect at LHC, while at ISR energies a Gaussian shape can be observed. Note that the

7 TeV (black dashed) curve is based on the statistically acceptable fit result in the 0 <

|t| < 0.38 GeV2 range. The distributions’ edge shows approximately the same width at

each energy, corresponding to a constant “skin-width” of the proton.
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5.2.2 Non-exponential behavior of dσel/dt

To compare the obtained low-|t| ReBB fit of Fig. 5.2 with a purely exponential distribution

the following exponential parametrization is used

dσel

dt
=

dσel

dt

∣∣∣∣
t=0

· e−B·|t| , (5.5)

where dσel/dt|t=0 = 506.4 mb/GeV2 and the slope parameter of B = 19.89 GeV−2 is

applied, according to the TOTEM paper of Ref. [68].

The result, shown in Fig. 5.6, indicates a clear non-exponential behavior of the elastic

differential cross-section in the 0.0 ≤ |t| ≤ 0.2 GeV2 range at
√
s =7 TeV.

A very similar structure, a deviation from an exponential behavior was also reported

as early as in 1984 in the analysis of proton-antiproton elastic scattering at 546 GeV by

Glauber and Velasco [74]. Such a non-exponential behavior at the CERN LHC energy of

8 TeV were made public by the TOTEM experiment [57] interpreted in the theoretical

works of Ref. [77, 78].
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ex
p

/d
t -

 e
xp

σd

-15

-10

-5

0

5

10

-3 10×

exponential fit

ReBB model fit

Figure 5.6: The ReBB model fit result, shown in Fig. 5.2, with respect to the exponential

fit of Eq. (5.5). In the plot only the 0.0 ≤ |t| ≤ 0.2 GeV2 range is shown, but the ReBB

model is fitted to 7 TeV TOTEM data in the low-t interval of (0, tsep). The ReBB fit

result indicates a significant deviation from the simple exponential at low-|t| values.
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5.3 Extrapolation to future LHC energies and be-

yond

The ReBB model can be extrapolated to energies which have not been measured yet at

LHC. The fit results of Table 5.1 and the parametrization

P (s) = p0 + p1 · ln (s/s0) (5.6)

is applied for each parameter P ∈ {Rq, Rd, Rqd, α}, where s0 = 1 GeV2. The parametriza-

tion Eq. (5.6) implies that the four free parameters of the original ReBB model that were

fitted at each colliding energy independently are now replaced with eight parameters pi

that prescribe their energy dependence. The fits of the ReBB model parameters are shown

in Fig. 5.7 and the fit parameters are collected in Table 5.2.

The logarithmic dependence of the geometric parameters on the center-of-mass energy
√
s in the parametrization Eq. (5.6) is motivated by the so-called “geometric picture“

based on a series of studies [18–20, 79–81]. In case of the α parameter, which is not

a geometrical property of the proton, the logarithmic
√
s dependence is an additional

assumption. As indicated by Fig. 5.7 and Table 5.2, such an energy dependence of the α

shape parameter is consistent with the currently available data.

Table 5.2 shows that the rate of increase with
√
s, parameter p1, is an order of magni-

tude larger for Rq and Rd than for Rqd. The saturation effect, described in Section 5.2.1,

is consistent with this observation as the increasing components of the proton, the quark

and the diquark, are confined into a volume which is increasing slower than that.

Parameter Rq [fm] Rd [fm] Rqd [fm] α

χ2/NDF 6.2/3 2.4/3 7.5/3 1.2/3

CL [%] 10.2 49.4 5.8 75.3

p0 0.15± 0.01 0.59± 0.01 0.30± 0.01 −0.04± 0.01

p1 0.017± 0.001 0.019± 0.001 0.002± 0.001 0.009± 0.001

Table 5.2: The parametrization Eq. (5.6) is applied to each parameter of the ReBB model

and the fits are shown in Fig. 5.7. Numerical values are rounded up to two valuable

decimal digits. The fit quality information is provided in the first and second row of the

table. Note that the fit quality is acceptable for each parameter as CL>0.1 % for each fit.
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Figure 5.7: The excitation function of the parameters of the ReBB model, collected in

Table 5.1, is determined from fits with Eq. (5.6) to each of the parameters Rq, Rd, Rqd

and α. The plots about the resulting fits are collected here, while the parameters of the

excitation functions are collected in Table 5.2. The statistically acceptable quality of these

fits allow the ReBB model to be extrapolated to center-of-mass energies which have not

been measured yet at LHC.

Using the extrapolation formula Eq. (5.6) and the value of the parameters from Ta-

ble 5.2 it is straightforward to calculate the values of the parameters at 8 TeV, where

the TOTEM measurement of the total cross-section is published [26], and at expected

future LHC energies of
√
s =13, 14, 15 TeV and also at 28 TeV, which is beyond the

LHC capabilities. Using the extrapolated values of the parameters I plot the predicted pp

elastic differential cross-section curves at each mentioned energy in Fig. 5.8. The shadow

profile functions A(b) can be also extrapolated, see Fig. 5.9. The shadow profile functions

even allow us to visualize the increasing effective interaction radius of the proton in the

impact parameter space in Fig. 5.10.

It is also important to see how the most important features change with center-of-mass
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Figure 5.8: The pp elastic differential cross-section is extrapolated to 8 TeV as well as to

future LHC energies and beyond.
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energy
√
s: the extrapolated values of the total cross-section σtot, the position of the first

diffractive minimum |tdip| and the parameter ρ is given in Table 5.3.

Our calculated value at
√
s = 8 TeV is σtot = 99.6 mb, which is consistent with the

total cross-section σtot = 101.7 ± 2.9 mb at
√
s = 8 TeV, measured with a luminosity-

independent method by the TOTEM experiment [26].

According to Table 5.3, the predicted value of |tdip| and σtot moves more than 10 %

when
√
s increases from 8 TeV to 28 TeV, while the value of C = |tdip| · σtot changes only

about 2 %, which is an approximately constant value, within the errors of the extrapola-

tion.
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Figure 5.9: The shadow profile functions at the extrapolated energies
√
s. The results

show the increase of the proton interaction radius with increasing
√
s energies. Also note

that the “edge” of the distributions remains of approximately constant width and shape.

I have reported a similar, and exact, scaling of the black disk scattering model with

Eq. (4.6) [76]. However, the scaling behavior indicated by the stability of the value C, is

different from the black disk model, described by Eq. (4.6), as the corresponding value

Cblack is significantly different

Cblack 6= C . (5.7)

In this sense the value of C indicates a more complex scattering phenomena, than the

scattering of a photon on a black disc, however, the constancy of the product suggests the

validity of an asymptotic geometric picture, in agreement with the recent observations in

Refs. [12, 82–84].
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√
s [TeV] σtot [mb] |tdip|[GeV2] ρ Cextr = |tdip| · σtot [mb GeV2]

8 99.6 0.494 0.103 49.20

13 106.4 0.465 0.108 49.48

14 107.5 0.461 0.108 49.56

15 108.5 0.457 0.109 49.58

28 117.7 0.426 0.114 50.14

Table 5.3: The extrapolated values of the total cross-section σtot at future LHC energies

and beyond. The position of the first diffractive minimum |tdip|, the parameter ρ and the

|tdip| · σtot value is also provided at each energy. Note, that the predicted value of |tdip|
and σtot moves more than 10% when

√
s increases from 8 TeV to 28 TeV, while the value

of Cextr increases with about 2 %. Note also, that the C value of Eq. (4.3) is higher than

any of the quoted Cextr values of the table; the reason is that the ReBB model predicts a

shallow minimum for Cextr at
√
s = 200 GeV.
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Figure 5.10: Visualization of the shadow profile functions A(b) in the transverse plane

of the impact parameter vector (bx, by). The figures show the increase of the proton

effective interaction radius in the impact parameter space with increasing center-of-mass

energy
√
s. It can be also observed that the black innermost core of the distributions

is increasing, while the thickness of the proton’s “skin”, the gray transition part of the

distributions, remains approximately independent of the center-of-mass energy
√
s.
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5.4 Summary of Chapter 5

To overcome the clear disagreement between data and model description at LHC energy

of
√
s = 7 TeV, I have further generalized the BB model using unitarity constraints [13]. I

have fitted the new model (ReBB model) at ISR and also at LHC energy of
√
s = 7 TeV.

I have determined the energy dependence of the ReBB model parameters based on the

good quality of the fits at ISR and LHC energies and I have extrapolated the ReBB model

to future LHC energies and beyond. I have shown that the effective interaction radius

of the proton, calculated from the ReBB model, is increasing substantially between ISR

and LHC energies, while the proton’s effective “edge” shows the same width. I have

demonstrated that the ReBB model shows a non-exponential feature at low values of

the squared four-momentum transfer |t|, which is consistent with the TOTEM data at
√
s = 8 TeV.
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Conclusions and Summary

For the TOTEM experiment I have calibrated the LHC beam optics at IP5 by exploiting

the proton-proton data measured by the TOTEM RP detectors [8, 9]. The new calibra-

tion method reduced the largest systematic error of the total proton-proton cross-section

measurement with approximately an order of magnitude, see Fig. 2.10. With this optics

calibration result, I made it possible to measure the total proton-proton cross-section σtot

with very good accuracy at CERN LHC
√
s = 7 and 8 TeV energies

I have checked and confirmed the published results of the Bialas-Bzdak model, and I

have determined the best value and uncertainty of the model parameters at ISR and LHC

energies. I have successfully fitted both the p = (q, d) and p = (q, (q, q)) model versions

to the ISR data, and I have demonstrated, that the original Bialas-Bzdak model is not

able to describe the data, measured at the LHC [11]. I have defined an effective proton

radius Reff , which takes the same value for both model versions, and I have shown that

R2
eff is proportional to the total proton-proton cross-section σtot at ISR energies [11].

I have generalized the Bialas-Bzdak model by adding a perturbatively small real part

to its elastic scattering amplitude. I have fitted the improved model, αBB model, to data

measured at ISR and LHC energies [12]. I have achieved, that the αBB model can be

fitted to the ISR data without adjusting the fit range. On the other hand I have found

that even the αBB model is not able to interpret the data measured at LHC energy

of
√
s = 7 TeV. I have diagnosed that the interpretation of the LHC data requires an

increased real part in the elastic scattering amplitude, which is too large to be treated

perturbatively.
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I have discovered, that the product of the total proton-proton cross-section σtot and

the squared four-momentum transfer position of the dip tdip leads to a value which is

approximately independent from the collision energy. I have also found that the so-called

“black disk” model shows a similar and exact behavior, however, the exact value differs

from the measured one. With this observation I have shown that the “black disk” limit

is not reached at the LHC energy of
√
s = 7 TeV.

Using unitarity constraints I have generalized the BB model by adding an arbitrarily

large real part to its scattering amplitude in a systematic way. I have shown that the

improved model, ReBB model, is able to describe the data measured at ISR and LHC

energies in a statistically acceptable manner [13].

Based on the good quality of the ReBB fit results, I found a statistically acceptable

description of the energy dependence of the ReBB model parameters, with which I was

able to estimate the expected value of the total proton-proton cross-section at future LHC

energies and beyond [13].

I have shown as well, that the effective interaction radius of the proton is substantially

increasing with increasing colliding energy between ISR and LHC. I have also found that

the probability of having inelastic collision within this effective radius is also increasing,

and becomes almost certain at LHC. At the same time the “edge” of the probability

distribution remains approximately constant.

I have discovered that for low values of the squared four-momentum transfer |t| the
ReBB model predicts a non-exponential behavior in the elastic proton-proton differential

cross-section, which observation is in agreement with a TOTEM result currently under

the review process [13, 57].

I would like to continue my research as a member of the TOTEM collaboration with

the experimental analysis and theoretical interpretation of the proton-proton scattering

data, which is expected to be measured soon at the LHC energy of
√
s = 13 and 14 TeV
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cousin for their encouragement. And last, but not least, I am grateful to Pavla Kašparová
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Appendix A

Basic formulae

The basic formulae are collected here, to define the notation. The kinematics for two-body

reactions [2]

1 + 2 → 3 + 4 , (A.1)

can be described with the Mandelstam invariants

s = (p1 + p2)
2 = (p3 + p4)

2 ,

t = (p1 − p3)
2 = (p2 − p4)

2 ,

u = (p1 − p4)
2 = (p2 − p3)

2 . (A.2)

Process Eq. (A.1) is a so-called s-channel process by means of the Mandelstam variable

s, which is the square of the total center-of-mass energy.

The Mandelstam variables obey the identity

s+ t+ u =
4∑

i=1

m2
i , (A.3)

which is a consequence of the conservation of the four-momentum and the definitions

Eq. (A.2). Hence, only two of them are independent. I use the variables s and t throughout

this PhD thesis.

In case of the s-channel reaction (A.1), the definition of the center-of-mass (CM)

system is

~p1 + ~p2 = 0 . (A.4)

Assume that particle 1 and 2 travel along the z-axis. In this case the four-momenta
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of the incoming and outgoing particles can be given as

p1 = (E1, ~p) = (E1, 0, 0, pz) ,

p2 = (E2,−~p) = (E2, 0, 0,−pz) ,

p3 = (E3, ~p′) = (E3, ~∆, p′z) ,

p4 = (E4,−~p′) = (E4,−~∆,−p′z) , (A.5)

where the conservation of the three-momentum and definition (A.4) was used. The scat-

tering angle ϑ, in the s-channel, is defined by

p′z = |~p′| cosϑ , |~∆| = |~p′| sinϑ . (A.6)

The energies Ei can be expressed in terms of the CM variables

E1 =
1

2
√
s
(s+m2

1 −m2
2) , E2 =

1

2
√
s
(s+m2

2 −m2
1) , (A.7)

and E3, E4 can be obtained from Eq. (A.7) by replacing the indices 1 → 3 and 2 → 4

respectively. The particle momenta can be also expressed with CM variables

|~p|2 = p2z = E2
1 −m2

1 =
1

4s
λ(s,m2

1,m
2
2) ,

|~p′|2 = |~∆|2 + p2z = E2
3 −m2

3 =
1

4s
λ(s,m2

3,m
2
4) , (A.8)

where λ is the triangle function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz . (A.9)

If the particle masses are identical mi = m or in the high energy limit

s → ∞ , (A.10)

according to Eq. (A.7) and Eq. (A.8), each particle energy and momentum approaches

the same limit

Ei ≃
√
s

2
, |~p|, |~p′| ≃

√
s

2
. (A.11)

The squared four-momentum transfer can be expressed with the center-of-mass vari-

ables using Eq. (A.5)

t = (p1 − p3)
2 = m2

1 +m2
3 − 2E1E3 + 2|~p||~p′| cosϑ . (A.12)
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If the particles have equal masses

t = −2|~p|2(1− cosϑ) , (A.13)

and

cosϑ = 1 +
2t

s− 4m2
. (A.14)

In the high energy limit, or in the massless case, Eq. (A.14) simplifies to

cosϑ = 1 +
2t

s
. (A.15)

This expression (A.15) and the definition of the scattering angle Eq. (A.6) lead to

t ≃ −∆2 , (A.16)

where ∆ = |~∆|, which is also useful in the form

∆ ≃
√
−t . (A.17)
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[11] F. Nemes and T. Csörgő Int.J.Mod.Phys. A27 (2012) 1250175, arXiv:1204.5617

[hep-ph].
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Magyar nyelvű összefoglaló (Hungarian summary)

A TOTEM ḱısérlet tagjaként a Roman Pot detektorok proton-proton mérési adatai

seǵıtségével kalibráltam az LHC nyaláb optikáját, ı́gy közel egy nagyságrenddel csökkentettem

a proton-proton szórás teljes hatáskeresztmetszetének legnagyobb szisztematikus hibáját.

Ezzel lehetővé tettem a proton-proton szórás teljes hatáskeresztmetszet értékének minden

korábbinál pontosabb meghatározását a CERN LHC
√
s = 7 és 8 TeV energiáin.

A Bialas-Bzdak modell publikált számı́tásait ellenőriztem, majd meghatároztam a

modell paramétereinek legjobb értékét és hibáit az ISR és LHC gyorśıtók energiáin. Meg-

mutattam, hogy az eredeti Bialas-Bzdak modell nem ı́rja le helyesen az LHC energián

mért adatokat. Bevezettem egy effekt́ıv proton sugarat Reff melynek négyzete arányos a

proton-proton szórás teljes hatáskeresztmetszetével az ISR energiákon.

Általánośıtottam a Bialas-Bzdak modellt a szórási amplitúdó valós részének pertur-

bat́ıv figyelembevételével. Az ı́gy kapott modellt, αBB modell, illesztettem a mérési

adatokra az ISR és LHC energiákon is. Megmutattam, hogy az αBB modell az ISR ener-

giákon illeszthető a diffrakt́ıv minimum körüli adatpontok elhagyása nélkül is, azonban

az LHC
√
s = 7 TeV energiáján az új modell sem illeszthető. Az adatok anaĺızise során

észrevettem, hogy a teljes proton-proton szórási hatáskeresztmetszet és az első diffrakt́ıv

minimum helyzetének szorzata az ütközés energiájától független számra vezet, mely azon-

ban eltér a “fekete korong” modellből számolható egzakt értéktől. Ezzel megállaṕıtottam,

hogy a “fekete korong” szórási határesetet nem értük el a
√
s = 7 TeV LHC energián.

Unitaritási kényszerekkel általánośıtottam a Bialas-Bzdak modellt tetszőlegesen nagy

valós részt tartalmazó elasztikus szórási amplitúdó esetére, majd megmutattam, hogy az

ı́gy kapott ReBB modell illeszthető mind az ISR, mind az LHC energiákon. A ReBB mod-

ell paramétereinek energiafüggésére statisztikailag jó léırást találtam, mellyel kiszámoltam

a teljes hatáskeresztmetszet várható értékét több jövőbeli LHC energiára. Megmutattam,

hogy az ISR-hoz képest az LHC-nál a proton kölcsönhatási sugara lényegesen megnő.

Felfedeztem, hogy kis elasztikus szórási szögek esetén a ReBB modell a rugalmas proton-

proton differenciális hatáskeresztmetszet alakjára az exponenciálistól eltérő viselkedését

jósol, mely összhangban van a TOTEM ḱısérlet legfrissebb, jelenleg a folyóirat általi

elb́ırálás, referálás állapotában levő közleményével.



Summary

For the TOTEM experiment I have calibrated the LHC beam optics at IP5 by exploiting

the proton-proton data measured by the TOTEM RP detectors. The calibration reduced

the largest systematic error of the total proton-proton cross-section measurement with

about an order of magnitude. With this calibration result, I made it possible to measure

the total proton-proton cross-section σtot with very good accuracy at CERN LHC
√
s = 7

and 8 TeV energies.

I have checked and confirmed the published results of the Bialas-Bzdak model, de-

scribed in the introduction and I have determined the best value and uncertainty of their

model parameters at ISR and LHC energies. I have demonstrated, that the original

Bialas-Bzdak model is not able to describe the TOTEM data, measured at the LHC.

I have defined an effective proton radius whose square R2
eff is proportional to the total

proton-proton cross-section σtot at ISR energies.

I have generalized the Bialas-Bzdak model by adding a perturbatively small real part to

its elastic scattering amplitude. I have fitted the improved αBB model to data measured

at ISR and LHC energies. I have achieved, that the αBB model can be fitted to the ISR

data without adjusting the fit range. I have found that even the αBB model is not able

to interpret the data measured at LHC energy of
√
s = 7 TeV. I have discovered, that

the product of the total proton-proton cross-section σtot and the squared four-momentum

transfer position of the dip tdip leads to a value which is approximately independent from

the collision energy. I have also found that the so-called “black disk” model shows a

similar and exact behavior, however, the exact value differs from the measured one.

Using unitarity constraints I have generalized the BB model by adding an arbitrarily

large real part to its scattering amplitude in a systematic way. I have shown that the

improved model, ReBB model, is able to describe the data measured at ISR and LHC

energies in a statistically acceptable manner. I found a statistically acceptable description

of the energy dependence of the ReBB model parameters, with which I was able to

estimate the expected value of the total proton-proton cross-section at future LHC energies

and beyond. I have shown as well, that the effective interaction radius of the proton is

substantially increasing with increasing colliding energy between ISR and LHC. I have

discovered that for low values of the squared four-momentum transfer |t| the ReBB model

predicts a non-exponential behavior in the elastic proton-proton differential cross-section.


