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Abstract

With the remarkable progress in computer technology, theoretical chemistry has
become an essential tool in all fields of chemistry. In particular, theoretical mechanistic
studies have been proved to be very important in understanding chemical reactions
and to develop new, more efficient processes.My thesis discusses our efforts in this
field. Part of my work has been experimentally motivated, we have explored reaction
pathways of reactions which are very promising from synthetic point of view. The
other part of my thesis discusses our results in method developments.

First a detailed introductory section is presented where all the relevant theoretical
background and approaches are reviewed. Then first the mechanistic studies are
discussed. For a palladium catalyzed C–H activation reaction our calculations identified
a path where the rate-determining C–H activation step is followed by a C–C coupling
via a bimetallic complex and a Pd(III)-Pd(I) reductive elimination. For a very
recent silver-mediated oxidative C–H/C–H functionalization the DFT calculations
have pointed out the dual role of silver: it is a reactant to initiate the reaction in a
radical route and a catalyst in the later stages of the path to drive the reaction to
the furan-ring formation. In a joint experimental-theoretical study of direct trifluoro-
ethylation of indoles the computations have identified the reaction channel leading to
C3 trifluorethylation of indoles, and also explained the side reactions and the role of the
bases. On the basis of the results the efficiency of a given substrate–base combination
could be assessed by comparing the theoretical activation barriers of the competing
N- and C-alkylations. We have also studied the cooperative hydrogen splitting by
Frustrated Lewis Pairs. New, remarkable aspects of the reaction paths have been
identified from the reactive trajectories. The asynchronicity of the activation could be
traced as the origin of the strong localization of the reaction enthalpy on the proton
in the product state, whereas the reactant state temperature distribution pointed out
the role of H2 translation energy in the activation.

We have developed a new and efficient method to calculate rate constants. The
method requires the free energy profile along a suitable reaction coordinate and
dynamical information from short unbiased trajectories. We have also developed a new
approach to obtain an efficient CV where we represent the committor of the system
by property map. The method is based on an efficient initial geometry generation
algorithm and an iterative optimization. Combination of the method with enhanced
sampling techniques has been shown to provide very promising results.





Összefoglaló

A számítástechnika rohamos fejlődésével a kémia számos területén nélkülözhetetlen
eszközzé váltak az elméleti számítások. A kémiai reakciók megértésében és az új,
hatékonyabb eljárások kifejlesztésében különösen fontos szerepet játszik a reakciómech-
anizmusok elméleti vizsgálata. Doktori értekezésem az említett területen végzett
kutatásainkat összegzi. Vizsgálatainkat részben kísérleti szempontok motiválták, ugya-
nis ígéretes szintetikus átalakítások mechanizmusát térképeztük fel. értekezésem
második része módszerfejlesztéssel kapcsolatos eredményeinket tárgyalja. A dolgozat
első fejezete részletes elméleti bevezetőt nyújt és ismerteti a mechanizmuskutatás
fontos módszereit. Ezt követően mechanisztikus vizsgálatainkat mutatja be.

Egy palládium–katalizált C–H aktiválási reakció vizsgálata során olyan reakcióutat
azonosítottunk, amelynek sebességmeghatározó lépése a C–H aktiválás, amit egy bimet-
allikus palládiumkomplexen végbemenő C–C kapcsolási reakció követ. Az új C–C kötés
egy Pd(III)-Pd(I) reduktív elimináció során alakul ki. Egy új ezüst-katalizált oxidatív
C–H/C–H funkcionalizáció sűrűségfunkciónál-elmélet keretei között végzett vizsgálata
során kimutattuk az ezüst ionok kettős szerepét. A reakció kezdeti szakaszában az
ezüst a reaktáns szerepét tölt be, míg a második szakaszban katalizátorként segíti
a furángyűrű kialakulását. Egy közös kísérleti-elméleti kutatás során azonosítottuk
indolszármazékok C3-as helyzetű trifluoretilezésének és az azt kísérő mellékreakcióknak
a mechanizmusát, ami megmagyarázta a bázis szerepét az átalakításban.Eredményeink
értelmében egy adott szubsztrát és bázis kombinációjának hatékonysága megbecsülhető
a versengő N- és C- alkilezések aktiválási energiájából. Vizsgáltuk Frusztrált Lewis
párok kooperatív H2-hasítási reakcióját. A mechanizmus egy új, fontos oldalát azonosí-
tottuk. Számításaink alapján az aktiválás aszinkronitásának egy fontos következménye,
hogy a reakcióentalpia nagy része a termékben a savas hidrogénen lokalizálódik.
Ugyanakkor a reaktáns oldali hőmérséklet-eloszlás arra enged következtetni, hogy a
hidrogénmolekula transzlációs energiájának meghatározó szerepe van az aktiválásban.

Kifejlesztettünk egy új, hatékony eljárást reakciósebességi állandók számítására.
A módszer egy megfelelő reakciókoordináta menti szabadenergia profil számításból
és rövid dinamikai szimulációkból épül fel. Munkánk során emellett kifejlesztettünk
egy hatékony kollektív változót,amely a dinamikai elkötelezettséget a tulajdonság-
térképpel reprezentálja. Az eljárás alapját egy hatékony szerkezetgeneráló és egy
iteratív optimalizációs algoritmus képezi. A módszer ritka-esemény mintavételezési
technikákkal való kombinációja ígéretes eredményekre vezetett.





Chapter 1

Introduction
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1.1 Reaction mechanisms – networks of elementary

reactions

The research discussed in this thesis belongs to the field of elementary reaction level
computational description of reaction mechanisms. Elementary reactions are molecular
transformations that proceed in one step, without any finite lifetime intermediates
between their reactants and products. Exploration of the network of relevant ele-
mentary reactions provides us with the sequence of transformations, the structural
properties of intermediates and with the possible branching points for side reactions.
The reaction mechanism can be used for the rationalization of the ratio of different
products, i.e. regio- and stereoselectivities. The understanding of the activity of
catalysts and prediction of the performance of potential new catalyst candidates also
require the detailed knowledge of reaction mechanisms.

The mechanistic considerations are usually based on the estimation of the relative
rates of the different possible reaction pathways. The thesis discusses computational
exploration of three interesting, complex reaction mechanisms with multiple reaction
pathways and with possible side reactions. In these studies the mechanistic inter-
pretations tacitly assumed the validity of the transitional state theory (TST) and
the molecules have been described within a quasi-zero temperature framework. A
more elaborate approach has been used for the description of the hydrogen activa-
tion reactions of three bifunctional organic compounds. The thesis also discusses
two methodological developments. The first is a new rate calculation method for
elementary reactions. The second is a new reaction coordinate optimizing method for
elementary reactions.

1.1.1 Central quantities: rate constant of elementary reactions

and equilibrium constant

In the followings a hypothetical

R1 (+R2) −→ P1 (+P2 + ...) (1.1)

homogeneous elementary reaction is discussed. R2 appears only if the reaction is
bimolecular. For the sake of simplicity we assume that a specific reactant or product
appear only once in the chemical equation (e.g. R1 6= R2). The forward rate of the
elementary step is defined by the concentration change of the reactant:

rf = −d[R1]

dt
, (1.2)

where the square brackets denote the actual concentration. According to the experien-
tial observations, the rate of an elementary homogeneous reaction can be described
as:

rf = kf · [R1] (·[R2]) (1.3)
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Here kf is the forward rate constant. If the reaction is reversible we can assume that
it leads to a dynamical equilibrium:

R1 (+R2) ⇀↽ P1 (+P2 + ...) (1.4)

when the forward and reverse rates are equal, and the concentrations are constant.
This leads to the definition of the equilibrium constant:

Kc =
kf
kr

=
Π[Pi]

Π[Ri]
(1.5)

We note that equilibrium constant can be also defined by other quantities. For example
standard equilibrium constant is defined by relative activities.

Definitions in chemistry, such as molecules, reactants or products are arbitrary. For
example conformers, optical isomers, isotopomers might be considered or measured to
be the same chemical species, but they may also be distinguished. On atomic level
a reactant molecule (complex) turns into product through a continuous structural
evolution. For example by a continuous change of the interatomic distances, and
continuous redistribution of the electron density during the formation or cleavage of
bonds. Therefore the border between reactant or product is also arbitrary to some
extent. In spite of this arbitrariness, different definitions might give similar qualitative
description. The mathematical construction which defines reactant and product is
called reaction coordinate.

1.2 Elementary reaction – definition of reaction co-

ordinate

The progress of the reaction can be characterized by one coordinate, which has distinct
values for the reactants and products. The set of molecules considered as reactant
(product) on the basis of the reaction coordinate is called reactant (product) state.
The reaction coordinate is required to be able to describe the degree of transformation
as well, i.e. it should change its value continuously from reactant to product state.
In my thesis I will exclusively consider ground state reactions therefore I assume
that the molecule with a given configuration can be classified as reactant or product.
Sometimes it is not obvious how to define such a one dimensional reaction coordinate
and therefore we apply a vector i.e. a set of coordinates for this purpose.

1.2.1 Reaction coordinate as a function of atomic coordinates

The following terms are invoked frequently in the literature of molecular simulations.
However, their definition is not widely accepted. This thesis employs the following
definitions [7, 8]:

• Collective variables(CVs) are continuous or discontinuous surjections of atomic
coordinates to a lower dimension space.
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• An order parameter is a CV that is capable to distinguish between two or more
states, such as reactant or product states. Order parameters are not necessarily
continuous.

• Reaction coordinates are continuous order parameters, that are able to describe
the progress of the reactive events.

As the definitions indicate, CVs are more general than reaction coordinates. Order
parameters and reaction coordinates are special sets of CVs. Usually they are expressed
as functions of other CVs. The complexity of these functions varies from simple linear
combinations to neural networks.

1.2.2 Frequently used collective variables

The simplest CVs are the actual coordinates of specific atoms with respect to some
reference frames. The next level of complexity is the distance between atoms, the
angle or torsion angle defined by three or four atoms. These quantities in combination
with atomic masses or charges can result in wide variety of CVs. These primitive
functions are frequently modified by switching functions in order to obtain better
distinction between states. Such switching functions are listed below.
The rational function:

s(x) =
1−

(
x−d0

x0

)a

1−
(

x−d0

x0

)b
(1.6)

the exponential function:

s(x) = exp

(

−x− d0
x0

)

(1.7)

the Gaussian function:

s(x) = exp

(

− (x− d0)
2

2 · x2
0

)

(1.8)

the sigmoid function of sketch-map [9]:

s(x) =

[

1 + (2a/b − 1)

(
x− d0
x0

)]−b/a

(1.9)

or the Fermi-like function:

s(x) =
1

1 + exp(a · (x− x0))
. (1.10)

In these equations x denotes any CV, while x0, d0, a and b are constants and their
actual value is selected according to the properties described by the CV (we present
the parameterization as it is implemented in plumed [10]). These switching functions
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can be useful in summations, as they can dramatically change the contribution of
different states to the sum. Switching functions are used in coordination numbers
where we count the total number of bonding pairs, or the total number of connections
between two subsets of atoms. A special case of coordination numbers is called contact
map [11]. A contact map sums the switching function-transformed distance of each
atom from the corresponding atom in a reference structure.

Another use of the switching functions is to mimic logical gates. For example
"x AND y" can be achieved by simple multiplication,

s(x) · s(y) (1.11)

"x XOR y" can be realized by the

s(x) · (1− s(y)) (1.12)

expression. It is important to note, that these expressions provide the exact logical
gate-behaviour only in their limits, where s(x) approaches the Heaviside function. The
logical gate like usage is included for example in the hydronium CV [12].

The Gaussian type switching function is exclusively used in path-like CVs, such as
reaction-path CV [13], or property-map [14]. These complex CVs perform dimensional-
ity reduction and define IRn → IR surjections. The property-map utilize the following
functional form:

X(q′) =

Nr∑

i

X(qi) exp (−γD(q′, qi))

Nr∑

i

exp (−γD(q, qi))

(1.13)

Z(q′) = − 1

γ
log

(
Nr∑

i

exp (−γD(q′, qi))

)

(1.14)

where D(q′, qi) is the distance between the ith reference geometry and the actual
configuration q′, X(qi) is the X property of the ith image, while Nr is the total number
of reference structures. γ is a positive parameter for controlling the smoothing of the
function. If γ is zero, the mapping reduces to a constant function (the average of X
for the Nr reference structure). If γ is a large value, then the exponentials select the
X quantity of the closest structure. Z(q) calculates an weighted average distance from
the reference structures. The reaction path-CV [13] can be considered as a special
case of property map, where Xi is defined as follows:

Xi =
i− 1

Nr
(1.15)

Path-like CVs have raised a new and still open question, namely the proper definition
of distance in the context of properties. The distance between two points of the CV
space x(q1) and x(q2) is usually defined by the application of a metric tensor M in a
quadratic expression:
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D(q1, q2)
2 = [x(q1)− x(q2)]

T
M [x(q1)− x(q2)] (1.16)

Various definitions are in use for the metric tensor, such as diagonal i.e. (scaled)
Euclidean, or the Mahalanobis. In the latter the metric tensor is the inverse of the
covariance matrix. Another widely applied distance is the root mean square deviation
(RMSD). This quantity is minimized by the alignment of the molecules. The distance
is defined beween the configurations q and q′ as:

d(q, q′) =

√
∑

i

∑

α

wi[qi,α − cα(q)−
∑

β

M(q, q′,w′)α,β(q′i,β − cβ(q′))]2 (1.17)

where wi is the normalised weight of the ith atom. α, β ∈ {x, y, z}. M(q, q′,w′) is the
optimal alignment transformation matrix and cα(q) is defined as:

cα(q) =
∑

i

w′
iqi,α. (1.18)

cα(q) equals to the center of mass if the weights are derived from the atomic masses
{mi} as:

wi =
mi
∑

i mi
. (1.19)

Physical quantities such as functions of atomic coordinates can be considered as CVs
as well. For example such functions are the total energy or the dipole moment of the
system.

1.3 Probability density with respect to collective

variable(s): Free energy surface

The equilibrium constant in canonical ensemble is linked to the free energy difference
between the product and the reactant states [15]

∆RS
PSF = −kBT lnK, (1.20)

where kB is the Boltzmann constant and T is the thermodynamic temperature. The
definition of equilibrium constant in Eq. 1.5 is based on concentrations. However,
as the probability of finding the system in a given state and the concentration are
proportional, the equilibrium constant between reactant state (RS) and product state
(PS) can be defined on the basis of probabilities as well:

K =
cPS

cRS
=

PPS

PRS
(1.21)

The connection between free energy differences and relative probabilities is therefore:

∆RS
PSF = −kBT ln(PRS/PPS). (1.22)
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If the progress of the elementary reaction can be followed by a single reaction coordinate
(λ), equilibrium constant and the free energy difference can be derived from the
probability density with respect to the reaction coordinate:

K =
PPS

PRS
=

∫

λ∈PS

f(λ)dλ

∫

λ∈RS

f(λ)dλ
(1.23)

∆RS
PSF = −kBT ln






∫

λ∈PS

f(λ)dλ

∫

λ∈RS

f(λ)dλ




 , (1.24)

where f(λ) is the probability density with respect to the reaction coordinate, λ. The
free energy difference between two infinitesimal state intervals at PS = λ and RS = λ′

can be written:
F (λ)− F (λ′) = −kBT ln (f(λ)/f(λ′)) . (1.25)

This expression leads to the definition of an important concept, the free energy surface
F (λ):

F (λ) = −kBT ln (f(λ)) . (1.26)

It is important to emphasize, that these relations are valid for canonical ensembles.
The probability density and therefore the free energy surface is not restricted to
reaction coordinates. One can define probability densities with respect to any of CVs.
The dimension of the probability density can be reduced by integration:

f(λ1) =

∫

f(λ1, λ2)dλ2 (1.27)

The connection between free energy surface and probability density (Eq. 1.26) is
analogous for higher dimensions:

F (λ1, λ2) = −kBT ln (f(λ1, λ2)) (1.28)

f(λ1, λ2) = exp(−βF (λ1, λ2)), (1.29)

where β is 1/kBT . Substituting f(λ1) in Eq. 1.26 from Eq. 1.27 and employing the
definition of f(λ1, λ2) from Eq. 1.29 yield the expression for dimension reduction of
free energy surfaces:

F (λ1) = −kBT ln (f(λ1)) (1.30)

= −kBT ln

(∫

f(λ1, λ2)dλ2

)

(1.31)

= −kBT ln

(∫

exp(−βF (λ1, λ2))dλ2

)

, (1.32)

The previous quantities were based on statistical descriptors of of any CV, such as
probability density of inter-atomic distances, angles or other structural quantities.
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Many distributions are readily accessible from experiments. For example in single
molecule experiments, the distribution of the end to end distance of a molecule is
directly measured by atomic force microscopy. The corresponding free energy surface
can be calculated through Eq. 1.26. It is important to note that free energy and free
energy surfaces can be connected to non-measurable microscopic physical quantities as
well. Statistical mechanics connects free energy to energy. Exclusively the knowledge
of Boltzmann relation is necessary for obtaining the connection between the probability
of a micro state and its energy:

Pi =
exp (−βEi)
∑

i

exp (−βEi)
(1.33)

In continuous treatment this expressions changes by replacing the i index by p, q

phase-space points:

P (p, q) =
exp (−βH(p, q))dpdq

∫ ∫
exp (−βH(p, q))dpdq

, (1.34)

Ensemble average of an A(p, q) quantity is:

〈A〉 =
∫
A(p, q) exp (−βH(p, q))dpdq
∫ ∫

exp (−βH(p, q))dpdq
(1.35)

Eq. 1.34 can be factorized by introducing potential energy V (q) and kinetic energy
Ekin(p):

P (p, q) =
exp (−βV (q))

∫
exp (−βV (q))dq

︸ ︷︷ ︸

f(q)

dq · exp (−βEkin(p))
∫
exp (−βEkin(p))

︸ ︷︷ ︸

f(p)

dp (1.36)

In case of an A quantity that depends on spatial coordinates exclusively, the momentum
dependence cancels in the ensemble average:

〈A〉 =
∫
A(q) exp (−βV (q))dq
∫
exp (−βV (q))dq

(1.37)

The spatial integral is related to the excess free energy:

F = −kBT ln

(∫

exp (−βV (q))dq

)

(1.38)

= −kBT lnZ, (1.39)

where Z denotes the canonical configuration integral.
The probability density with respect to any coordinate can be derived from Eq.

1.34 by the following expression:

f(λa) =

∫ ∫
exp (−βH(p, q)) (δ(λ(p, q)− λa)dpdq

∫ ∫
exp (−βH(p, q))dpdq

, (1.40)
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which simplifies to the following equation if λ depends only on spatial coordinates:

f(λa) =

∫
exp (−βV (q)) δ(λ(q)− λa)dq

∫
exp (−βV (q))dq

. (1.41)

Relative probabilities can be expressed easily:

f(λa)

f(λb)
=

∫
exp (−βV (q)) δ(λ(q)− λa)dq

∫
exp (−βV (q)) δ(λ(q)− λb)dq

. (1.42)

These expressions have led to numerous theoretical considerations and computational
techniques, which provide excellent extensions to experimental methods. The next
section focuses on some of these techniques, especially on methodologies of calculating
free energy differences or free energy surfaces by computer simulations.

1.4 Molecular dynamics simulations

Unless indicated otherwise, we employ classical treatment for the nuclear degrees of
freedom. This section summarizes the simulation techniques for a classical dynamical
system obeying the forces arising from the potential energy surface (PES) (see section
1.7 for details of PES). The time evolution of such system can be described with the
classical propagator [16]:

a(qt) = exp(iL̂t) · a(q0) (1.43)

where L is the Liouville operator:

iL̂ =

3N∑

α=1

[
∂H

∂qα

∂

∂pα
− ∂H

∂pα

∂

∂qα

]

(1.44)

The propagator can be factorized by the Trotter theorem, which leads to an exact
equation in the limit of infinitesimal time-steps [17]. For a single degree of freedom
with m mass we can derive:

exp(iL̂qt) = lim
∆t→0

[

exp

(
∆t

2
F (q)

∂

∂p

)

exp

(

∆t
p

m

∂

∂q

)

exp

(
∆t

2
F (q)

∂

∂p

)] t
∆t

(1.45)

The application of the propagator with a finite time step leads to the velocity Verlet [18]
algorithm:

q(∆t) = q(0) +
p(0)

m
∆t+

F (q(0))

2m
∆t2 (1.46)

p(∆t)

m
=

p(0)

m
+

F (q(0)) + F (x(∆t))

2m
∆t (1.47)

The propagation of equations of the motion by the velocity Verlet algorithm is a
symplectic (i.e. conserves the are in the phase space delimited by an ensemble of the



10 • Chapter 1. Introduction

system), time-reversible scheme with O(∆t3) error. As a symplectic integrator, this
scheme results in constant energy molecular dynamics (i.e. microcanonical ensemble).
In order ensure NVT conditions it is necessary to include the effect of the thermostats.
The influence of the heat bath can be imposed by rescaling the velocities in each
time-step or by modifying the Hamiltonian of the system. In the latter case the
energy of the extended system will be conserved, while the physical system will
behave according to the canonical ensemble. The change in the Hamiltonian can
be applied by introducing a half time-step propagator before and after the classical
Hamiltonian propagator according to the thermostat’s Liouville-operator. Several
different thermostat schemes are readily available in different molecular dynamics
codes. Two widely applied thermostats are presented here. The Hamiltonian of the
Nosé-Hoover chain [19–21] features an extended Hamiltonian with an additional term
for accounting for the kinetic energy of the additional degrees of freedom and with
temperature dependent potential energy terms. The expression for the Hamiltonian is
the following:

H ′(p, q) = H(p, q) +
M∑

j=1

p2ηj

2Qj
+ gkBTη1 + kBT

M∑

j=2

ηj (1.48)

This thermostat introduces chaos into the equations by coupling several extra degrees
of freedom. The Nosé-Hoover method for systems with low dimensionality and with
short chains might lead to ergodicity problems [21,22].

Another efficient thermostat applies random velocity scaling in order to obtain the
proper ensemble. It is called canonical sampling through velocity rescaling (CSVR) [22].
The scaling is defined by the following equation:

dEkin = (Ēkin − Ekin)
dt

τ
+ 2 +

√

ĒkinEkin

Nf

dW√
τ
, (1.49)

where τ is the time constant parameter, Nf is the number of degrees of freedom
and dW is a random number with Gaussian distribution. Ēkin is the average of the
previous instanious kinetic energy values (Ekin). This scheme has some attractive
features as in the τ → ∞ limit it gives back the Hamiltonian dynamics, while in the
τ → 0 limit, the system is instantly thermalised. In contrast with Nosé-Hoover, CSVR
introduces chaos by random numbers.

1.4.1 Free energy methods

In this section a collection of different molecular dynamics based methods is presented,
that are designed to calculate free energy surfaces or free energy differences. The
methods presented here can be classified into the following groups:

• methods based on distributions

• adaptive biasing potential methods
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• methods based on energy difference accumulation

• methods based on force accumulation

• adaptive biasing force methods

Calculating a free energy surface or differences on the basis of histogram
accumulation is called Boltzmann inversion and it is the basis of numerous others
methods [23]. The method is straightforward, since Eq. 1.26 defines the connection
between the probability density and the free energy surface. However there are some
technical issues to consider in practice. In the case of a sufficiently long molecular
dynamics simulation, the λ(t) function can be transformed to a f(λ) function. If λ(t)
were continuous this transformation could be done analytically. However molecular
dynamics simulations apply finite time-steps. If the values for the reaction coordinate
or CV are saved frequently, intermediate values can be interpolated. With the final
data sets in hand, the definition of bin widths is still necessary. Larger bins are
advantageous as the error of the histogram estimate is inversely proportional to the
square-root of the counts per the actual bin. However larger bins result in lower
resolution of the surface. This sort of compromise is even more frequent for two or
three dimensional distributions where the inversion cannot be done for continuous
trajectories either. One usual work-around for this issue is to build up the histogram
from Gaussian kernel functions in order to avoid bins [24, 25]. However this sort
of smoothing might hide important details of the probability density or result in
artificially over-structured probability density in case of too small Gaussian width.

Another issue is the varying error along the reaction coordinate. If there is a low
probability region along the profile it is sampled with much worse statistics. In the
vast majority of the cases this probability region becomes prohibitive for the sampling.
In other words the trajectory cannot escape from one of the high probability regions,
or equivalently one of the free energy minima [26].
This phenomenon introduces the so-called rare event methods. Rare events are meant
to be rare on molecular or simulation time scales, since their characteristic times are
much longer than the time ranges accessible by present simulations. It is important to
note that although rare events are infrequent, they are often fast, even on molecular
time-scale (femto-pico second) when they actually occur. One possible solution for this
problem is to apply static potentials to enhance the sampling of the low probability
regions. The effect of a static potential can be derived from Eq. 1.42. If the potential
V (q) is substituted with a potential V ′(q) = V (q) + U(λ(q)), then the ratio of the
perturbed probabilities will remain:

P ′(λa)

P ′(λb)
=

exp(−βU(λa))

exp(−βU(λb))

P (λa)

P (λb)
= exp(−β∆a

bU)
P (λa)

P (λb)
(1.50)

Applying Eq. 1.26 for this expression, we obtain the resultant free energy change
(∆a

bF
′) between λa and λb:

∆a
bF

′ = ∆a
bF +∆a

bU. (1.51)
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In conclusion, static potential alters the probability density by a multiplicative expo-
nential factor, while contributes with an additive term to the free energy surface.
A convenient way to obtain higher population in the rarely visited regions is to add a
harmonic restrain to the Hamiltonian [27]:

U(λ) =
k

2
(λ− λ0)

2 (1.52)

This specific biasing technique is called umbrella sampling [27]. The distorted his-
tograms can be debiased by a exp(+βU(λ)) factor and the free energy information of
the neighbouring umbrellas can be aligned by numerous methods. The alignment is not
straightforward, as free energy surfaces are defined up to a constant only. Therefore the
free energy profiles from the umbrellas have to be adjusted by a level shift. The most
commonly used method for this approach is the weighted histogram analysis method
(WHAM) [28, 29]. Its zero width limit is the multistate Bennett acceptance ratio
(M-BAR) [30]. This method is attractive as it has no bin-width parameter. A recent
promising approach is variational free energy profile (vFEP) method [31, 32]. The
vFEP method is based on the maximum likelihood fitting procedure of an analytical
surface (one or two dimensional spline) to the dataset. The derivatives of the resulting
free energy surface can be analytically estimated, therefore its critical points and the
minimum free energy path can be calculated. vFEP can also efficiently overcome one of
the shortcomings of umbrella sampling based methods. Namely, in both WHAM and
M-BAR type analysis of the data, a significant overlap of the neighbouring simulations
is required, whereas vFEP is more robust in this aspect. It is important to note that
the convergence of umbrella sampling simulations can be enhanced by switching the
bias between umbrella sampling simulations. The random switches are performed by
a Monte Carlo algorithm [33]. This approach is called Hamiltonian replica exchange
umbrella sampling.

If the free energy profile were already known, we could apply its negative as a
biasing potential to achieve flat free energy surface and uniform probability distribution.
This idea leads to the next group of free energy methods, i.e. the adaptive biasing
methods.

A simple application of this idea is called iterative Boltzmann inversion (IBI) [34].
The approach was originally used to derive simple pairwise potentials to mimic
experimental g(r) functions. However, as g(r) is also related to the free energy surface,
it can be considered as an inverse free energy problem. The procedure updates the
empirical potential in each iteration by the following equation:

Ui+1 = Ui − αkBT ln

(
gi(r)

gt(r)

)

(1.53)

where α is a scaling factor, gi(r) is the radial distribution function in the ith iteration,
while gt(r) is the target radial distribution function. This method calculates the inter-
atomic potential by adding extra potential terms depending on the actual probability
density, in order to reproduce the target probability density.
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Adaptive biasing methods apply and update an extra potential, in order to reach a
uniform distribution, when the negative of the biasing potential equals to the free
energy surface. The external potential can be updated iteratively, with sampling and
potential update cycles, or simultaneously. The Gauss-mixture umbrella sampling
(GAMUS) [35] method belongs to the former type. It samples CV values, and fits their
distribution with a mixture of multidimensional Gaussians. The resulting probability
density is used to construct a biasing potential:

Hi+1 = Hi − kBT ln(Pi(λ)), (1.54)

where Pi denotes the Gaussian fitted probability density from the ith iteration. GAMUS
shares similarities with other adaptive biasing methods, such as local elevation [36] and
metadynamics [37]. Both methods utilize Gaussian or truncated Gaussian functions
as GAMUS. Local elevation uses potentials centered on a grid, while metadynamics
deposits the potentials wherever the trajectory explores the CV space. In contrast
GAMUS accumulates histograms and applies the corresponding potentials in separate
simulations. These methods can be considered as the application of the sum of
Gaussian kernel functions for histogram evaluation as explained earlier. Another
essential difference between GAMUS and metadynamics (or local elevation) is that the
former increases the potential by the logarithmic probability, i.e. the true free energy
contribution, while the latter benefits from the self-healing nature of the large number
of hills. Due to its flexibility metadynamics is very popular and has become a dominant
method for exploration of low (below ten) dimensional CV spaces. Several flavours of
metadynamics have been developed and implemented to overcome the disadvantages
of the method. One of the possible artefacts of the frequent hill deposition is that it
distorts the canonical distribution by pumping energy in the system, and heats up
a part of the system [38]. This effect is more pronounced if high hills are applied or
if the rate of the deposition is high. It can be treated for some extent with massive
thermostating i.e. coupling a thermostat to each degrees of freedom. Another solution
can be an extended Lagrangian formulation [39], where the physically meaningful CVs
are coupled to fictitious CVs, with fictitious masses. As the coupling is performed
with harmonic springs, each CV requires two parameters: the mass and the coupling
constant. In case of appropriately selected parameters, the physical and the fictitious
CVs oscillate around each other, assisting in the efficient dissipation of the extra energy
arising from the deposited hill potentials.

For faster exploration of the CVs multiple walker version of metadynamics can be
applied. In this method multiple metadynamics simulations are performed in parallel.
The simulations (walkers) build the same time-dependent potential by sharing the
information of the deposited hills.

Free energy differences can also be calculated from other sources of information.
One evident choice is the utilization of the potential energy. The free energy change of
imposing a small perturbation on the system can be calculated in the framework of free

energy perturbation(FEP) [40]. The free energy differences between two systems with
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slightly different Hamiltonian can be calculated by estimating the ratio of probabilities
as follows:

Pa

Pb
=

∫
exp (−βVa(q))dq

∫
exp (−βVb(q))dq

(1.55)

This can be accomplished by performing a molecular dynamics simulation and
calculating the effect of the perturbation in each time step. The expression above can
be further transformed:

Pa

Pb
=

∫
exp (−βVa(q) + βVb(q)− βVb(q))dq

∫
exp (−βVb(q))dq

(1.56)

=

∫
exp (−β∆a

bV (q)) exp (−βVb(q))dq
∫
exp (−βVb(q))dq

(1.57)

The latter expression can be interpreted as an ensemble average:

Pa

Pb
=

∫

exp (−β∆a
bV (q)) · pb(q)dq (1.58)

= 〈exp (−β∆a
bV (q))〉b (1.59)

∆a
bF = −kBT ln (〈exp (−β∆a

bV (q))〉b) (1.60)

Free energy perturbation has the great advantage that it can utilize different Hamilto-
nians. Therefore it can be used for annihilation or creation of particles. Changing the
number of particles makes usually broad energy distributions and give large variance
for the average above. This can be handled by assuming intermediate states for
example by an interpolative Hamiltonian:

H(µ,p, q) = Ekin(p) + µk · Va(q) + (1− µ)k · Vb(q), (1.61)

where k is an exponent and µ is a parameter for the interpolation. The change from a
to b can be performed by simulation for several lambda steps.

The free energy response for infinitesimal change in µ can be derived from Eq. 1.39
by applying explicit derivation.

(
∂F

∂µ

)

µ=µ∗

= −∂kbT ln(Z)

∂µ
(1.62)

= −kbT

Z

∂Z

∂µ
(1.63)

=

∫ ∂V (q)
∂µ exp(−βV (q))dq
∫
exp(−βV (q))dq

(1.64)

=

〈
∂V (q)

∂µ

〉

µ=µ∗

(1.65)
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The overall free energy change can be obtained by integrating the derivative along
µ. This approach is called thermodynamic integration [41]:

∆F =

1∫

0

〈
∂V (q)

∂µ

〉

dµ (1.66)

The integration can be performed through quadrature integration [42], which
requires the calculation of the mean force at limited number of points. We note, that
for particle annihilation or creation µ = 0 yields singular integrand for Eq. 1.66 if
k = 1 is used in Eq. 1.61 [42]. For practical applications k ≥ 4 is necessary [42].

The method also has conceptual significance. Eq. 1.66 shows that the free enegy is
the potential of the mean force (PMF) [43]. Besides the PMF notation, thermodynamics
integration is a starting point to understand numerous other methods. For example
blue moon sampling [44], which employs constrained µ values, or umbrella integration,
which accumulates force during umbrella sampling simulation and adaptive biasing
force methods [45]. The latter is similar to metadynamics, but instead of the underlying
free energy, the mean force is compensated by the negative of the averaged forces. This
method collects more information about the system, than adaptive biasing potential
methods, as we save also the direction of the force. Nevertheless its implementation
requires higher derivatives of the CVs with respect to atomic coordinates. In principle
any of these methods can be applied to any CV.

Free energy methods are based on statistical averages, or iterative procedures to
construct a biasing potential. As any statistical descriptor, or iterative procedure,
free energy methods also have an error, that is needed to be estimated or converged
until a predefined threshold. In free energy calculations the quantity of interest,
such as barrier height, equilibrium constant can be converged. The simulations can
be terminated upon achieving the predefined convergence criteria or the regime of
small oscillations. The simulations can be considered as stochastic random processes.
Therefore performing the same simulation with different initial conditions leads to
independent samples of the same calculated quantities. The error corresponding any
quantity can be calculated from the standard deviation of the independent simulations,
and can be decreased by larger number of simulations.

1.4.2 Validating collective variables

Choosing a proper reaction coordinate is a challenging process. Usually several tests
are necessary in order to explore the relevant degrees of freedom. Therefore it is
important to validate the chosen CV set a posteriori. One of the requirements to have
a good reaction coordinate is to describe the progress of the reaction. It implies that
it can discriminate between reactant and product states. This can be easily tested by
performing unbiased molecular dynamics simulations, starting from each state. The
trajectories in the reaction coordinate space should have no overlap. In the case when
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both states are known, this test should be done before starting expensive free energy
calculations.

A proper reaction coordinate fulfils additional requirements. The proper set of the
sufficient requirements is still not known. However there is a quantity, which is widely
accepted as a test tool and a proper coordinate [46]. This quantity is the committor
(φ(q)), i.e. the probability that a configuration with random velocities reaches the
stable product state before reaching the stable reactant state. Any reaction coordinate
is expected to map the committor:

φ(q) ≡ φ(λ(q)). (1.67)

The committor of a configuration can be estimated from molecular dynamics
simulations. In practice short trajectories are initialized with random velocities drawn
from Boltzmann distribution. The trajectories are followed until they reach one of
the stable states. If the simulation reaches the reactant its commitment is unity. If it
reaches the product the commitment is zero. The committor of the configuration is
the expectation value of the commitments.

There is an ensemble of geometries in the focus of our interest, defined by their
commitment probability of 0.5. These configurations have the same probability to
reach the reactant and product states. This set of such configurations is referred to as
the transition state ensemble. In case of a double-well free energy surface the transition
state ensemble is localized in the vicinity of the saddle of the free energy surface
where the mean force is zero. The numerical procedure for examining transition state
ensemble can be carried out in various ways. The typical procedure is the following.
At the saddle of the approximate free energy surface a constrained or restrained
molecular dynamical simulation is performed to sample the configurations representing
the saddle region. Then trajectories are initiated from each configuration with random
velocity. In the simple approach the average of single trajectory commitments is
calculated. It is expected to be approximately 0.5. In a more elaborate, but much
more computationally demanding approach, distribution of commitment averages is
plotted and studied. Each commitment value is calculated as an average of multiple
trajectories from a single configuration. As the theoretical distribution for commitment
should be binomial with 0.5 as expectation value, the distribution should be narrow
and single peaked around 0.5.

1.4.3 Optimization of reaction coordinates

Previously, two important physically meaningful scalar fields have been identified:
free energy surface and the committor. In the followings the most important methods
of dimensional reduction techniques are presented, which map the space of multiple
CVs into a low dimensional set of CVs.

One of the first concepts in the field is to identify the minimum free energy path.
The minimum free energy path is an object connecting the corresponding minima
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of the reactant and product states. This one dimensional object is a path in the n

dimensional space of the n CVs. Orthogonally to the path the mean force should be
zero. This path can be constructed for example by exploring the full n dimensional
CV space and by optimizing the path on the high dimensional free energy surface. An
important study of dimensional reduction techniques utilizes two CVs for this purpose:
the progress along the path and the distance from the path [13]. The definition of the
path is changed after each exploration of the free energy surface, in order to minimize
the average of the distance from path CV (Eq.1.14) in each iteration. The path can
be defined either by reference structures or by a set of n dimensional CV vectors.
For higher dimensions it is more economical to calculate the potential of mean force
on-the-fly. This idea is employed by the finite temperature string method [47]. This
method discretizes the path into equal length segments. The points at the end of
each segment are following the direction of the mean force. The mean force can be
calculated from constrained or restrained simulations. After this relaxation step, each
CV is fitted with a spline by assigning row numbers for each point, and the points
are then evenly redistributed along the path. The procedure is repeated until the
convergence criteria are met. It is worth noting, that the component of the mean force
in the path direction can be used to obtain the free energy profile along the path.

This optimization can be done in higher dimensions if it is necessary. An extreme
example of that is when the applied CVs are the Cartesian coordinates of the atoms.
In such case the free energy along the path can be partitioned to the atoms involved
in the given chemical transformation [48].

Although the minimum free energy path is well-defined in a given CV space,
projection to the path is not obvious, and to a certain extent it is ambiguous. Therefore
progress along the path cannot be considered as proper reaction coordinate even if
it is close to that [46]. It implies that even an excellent reaction coordinate for free
energy calculations can be suboptimal for rate constant calculations or might provide
unsatisfactory committor distributions.
An interesting idea to overcome this difficulty is to use the proper reaction coordinate,
i.e the committor as practical reaction coordinate. In their groundbreaking paper, Ma
and Dinner applied an estimate of the committor based on carefully trained and tested
artificial neuron network [49]. They collected commitment data uniformly from the
CV space, and trained the neural network with a least-squares cost function. Their
study provided an important conceptual asset to the molecular simulation community.
However their work did not prove to be practically feasible for realistic systems. Only
2 from ca. 150 one hundred and fifty citations are actual application of the method.
Besides the complex training and testing procedure, its applicability is limited by the
enormous amount of trajectories that are necessary for convergence.
Dynamical optimization of the parameters in contact map CV has been done by Best
and Hummer [50]. They have optimized their reaction coordinate to obtain peaked
average reactivity around the transition state. The average reactivity equals to the
probability that a structure belongs to the ensemble of trajectories that connects the
stable reactant and stable product states. This requirement can be achieved by the
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maximization of the product of forward and backward committors, i.e. the product of
commitment with a random velocity and with the inverted velocity.

Another important and widely used method is the likelihood maximization approach
of Peters and Trout [51]. This method intends to find the optimal linear combination
of CVs by maximizing the likelihood of a model committor function. The model
function for the committor φ(λt) is defined as

φ(λt(α, q) =
1 + tanh(λt(α, q))

2
, (1.68)

The free parameters of the model function (α) are optimized by maximizing the
likelihood of the simulated commitment results through the following likelihood
function:

L(α) =

PS∏

i=1

φ(λt(α, q))

6=PS
∏

i=1

(1− φ(λt(α, q)) (1.69)

The authors have also suggested an alternative formulation, where the central quantity
is not the committor, but the average reactivity. In their latter work they concluded
that the approach based on commitments is more reliable [52].

The commitment values are calculated through a path sampling algorithm which
is a special variant of the transition path sampling(TPS) [53]. Detailed introduction to
this family of methods is out of the scope of this thesis, but the main idea is presented
here. The TPS algorithms start with the generation of an initial path, which can be
accomplished in various ways. Then the trajectory is perturbed by one of the many
available stochastic algorithms. The perturbation results in a new trajectory which is
accepted or rejected based on a Monte Carlo acceptance criterion. The result of the
TPS is an ensemble of reactive trajectories. Sampling of various physical quantities is
possible for the path ensemble. In this particular case the aimless shooting algorithm

is applied for path perturbation [51]. This approach assigns completely new velocities
for the randomly chosen configurations at −t or +t from the previous shooting point.
The completely new velocities ensure the fast decorrelation of the trajectories, while
the biased sampling in the vicinity of the previous shooting point ensures high average
reactivity and enhanced sampling around the dividing surface. Note that the reactant
and product states can be connected by several reaction channels separated by high
barriers. The application of the original TPS method is not appropriate for such
systems. However, parallel tempering TPS technique is available to overcome this
problem [54].

The combination of string method and maximum likelihood approach has been
presented by Lechner, Bolhuis and co-workers [55]. The approach is similar to the
original maximum likelihood approach, but the optimal reaction coordinate is assumed
to be a string instead of a simple linear combination. This functional form is also able
to describe complicated pathways. Its optimization is accomplished through Monte
Carlo moves of the string images. The moves are rejected or accepted, depending on
the variation of the logarithmic likelihood function.
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1.5 Zero temperature limit

In this section the zero temperature limit of the presented expressions is discussed.
The zero temperature limit is useful to derive approximate equations. These equations
have limited validity but they provide us with a cost effective procedure to calculate
fundamental physical quantities.

As Eq. 1.37 suggests in the zero temperature limit the average of any quantity
is replaced by the actual value of the quantity at the lowest energy configuration.
Depending on the statistical weights of other configurations this approximation can be
applied at higher temperatures as well. The effect of temperature can be approximated
by including contributions from the truncated series of the PES. [56]

One elegant example for zero temperature limit is deriving zero temperature

string method [57] from finite temperature string method. Molecular dynamics in
zero temperature is equivalent with small steps in the direction of the force, with
instantaneous dissipation of the thermal energy. The method essentially results in
repetitive geometrical optimization and image redistribution steps. The procedure
converges to the minimum energy path (MEP) instead of the minimum free energy
path.

1.5.1 Static calculations

The Helmholtz or the Gibbs free energies can be approximated from the local charac-
teristics of the PES and structural properties of a molecular system. This treatment is
a good approximation for a gaseous system where the molecules do not interact with
each other. In such a case the partition function of the system (Q) can be treated as
a product of the molecular partition functions. However if the molecules are identical,
the equivalence of the different permutations should be taken into account by a 1/Nm!

factor, where Nm is the number of molecules. The partition function can be expressed
as:

Q =
QNm

m

Nm!
, (1.70)

where Qm is the molecular partition function. The relevant thermodynamically
quantities can be expressed as function of the molecular partition function and its
derivatives:

S = R+R ln (Qm)) +RT ln

(
∂ lnQm

∂T

)

V

(1.71)

U = RT 2

(
∂ lnQm

∂T

)

V

(1.72)

H = pV + U. (1.73)

In the previous sections exclusively classical equations have been presented. How-
ever in the present approximation an efficient quantized formalism is available. The
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molecular partition function can be expressed as:

Qm =
∑

i

gi e
−βǫi , (1.74)

where gi is the degeneracy and ǫi is the energy of the ith level. A further approximation
can be employed for the different degrees of freedoms. The molecular energy levels of
translation (t), rotation (r), vibration (v) and the electronic (e) energy are assumed to
be independent. In the followings the physical quantities corresponding these degrees
of freedom are denoted with the initials in brackets. If the energy contributions of
these degrees of freedom are assumed to be independent, the total energy equals to
the following sum:

ε = εt + εr + εv + εe. (1.75)

It can be shown, that in this case the molecular partition function can be calculated
as a product of the corresponding factors:

Qm = Qm,t ·Qm,r ·Qm,v ·Qm,e. (1.76)

The factorization leads to additive contributions to the entropy and to the internal
energy:

S = R+ St + Sr + Sv + Se (1.77)

U = Ut + Ur + Uv + Ue. (1.78)

R is the universal gas constant. If the relevant energy levels are known and the
partition function is calculated, the entropy and internal energy contribution of the
specific degrees of freedom can be calculated as:

Sx = R ln (Qmx) +RT ln

(
∂ lnQmx

∂T

)

V

(1.79)

Ux = RT 2

(
∂ lnQmx

∂T

)

V

, (1.80)

where x ∈ {t, r, v, e} . The translational contribution can be exactly decoupled from
the other degrees of freedom. Its contribution can be calculated from the particle in
the box model:

Qm,t =

(
2πmkBT

h2

) 3

2 kBT

P
, (1.81)

which leads to following entropy and internal energy contributions:

St = R lnQm,t +
3

2
R (1.82)

Ut =
3

2
RT (1.83)

The rotational movement can be approximated as a rigid rotor. Rigidity assumption
removes coupling with vibrations and facilitates simple analytic solution. The rotational
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molecular partition function can be calculated from the molecule’s principal moments
of inertia Θr:

qr =
1

σ

√

π
T 3

Θr,AΘr,BΘr,C
. (1.84)

Its contribution to the entropy and internal energy can be expressed as:

Sr = R ln

(

Qm,r +
3

2

)

(1.85)

Ur =
3

2
RT. (1.86)

The vibrational contribution can be calculated in the harmonic approximation. If
the vibrations in a system with Natoms number of atoms are harmonic, the 3Natoms-6
vibrations decouple into independent one dimensional oscillators. As the solution for
the quantum oscillator is known, its partition function can be calculated:

Qm,v =
∏

K

e−
βhνK

2

1− e−βhνK
, (1.87)

which requires the calculation of harmonic frequencies {νK}. Harmonic frequencies
are readily available from the Hessian of the potential energy surface and the atomic
masses. However their calculation might result in serious errors if internal rotors are
not identified and calculated as vibrations. The relevant thermodinamic contributions
are:

Sv = R
∑

K

(
βhνK

eβhνK − 1
− ln

(
1− eβhνK

)
)

(1.88)

Uv = RT
∑

K

βhνK

(
1

2
+

1

eβhνK − 1

)

(1.89)

1.5.2 Geometry optimization

The special importance of the optimized structures have been emphasized in the
previous section. There are efficient algorithms for finding the critical points of the
PES. One basic approach is to consider the surface to be quasi-quadratic around the
critical point. In other words, approximating the surface by its truncated Taylor-series
results in a one-step convergence if this approximation is valid. This concept is referred
to as Newton or Newton-Raphson method. In the quasi harmonic approximation the
best assumption for the minimal energy structure can be calculated as:

qn+1 = qn +∆q (1.90)

= qn − gnH
−1
n , (1.91)

where gn is the gradient and Hn is the Hessian of the PES at the nth configuration
qn. This method is the basis of many current algorithms. However, the calculation
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of the Hessian in each step is computationally demanding, therefore the Hessian is
usually updated after its initial exact or approximate calculation. Different algorithms
are available for the Hessian update such as BFGS [58–61] or SR1 [62]. Convergence
of the method could be enhanced by introducing a level shift in the Hessian matrix.
This can be accomplished for example by a suitable diagonal matrix ξ [63].

qn+1 = qn − gn(Hn − ξ)−1 (1.92)

This approach scales the steps in order to avoid too large steps. The approach is
also suitable for modifying the direction of the search and facilitates search for saddle
points of the potential energy surface. The direct inversion of the iterative subspace

(DIIS) technique from Pulay [64], originally developed for enhancing the convergence
of electronic structure methods, The method was adapted to geometry optimization
as GDIIS [65], which have been further modified (GEDIIS [66]) by improvements of
Scuseria and co-workers for the SCF problem [67]. The underlying idea is that the
optimal geometry can be derived as an interpolation of the previous trial geometries.
The procedure expresses the current geometry as a linear combination of the previous
geometries. The coefficients are determined to minimize the norm of an approximate
error vector, under the constraint that the square sum of the coefficients is equal to
one. qn and gn are also expressed as a linear combination of the previous vectors with
the optimal coefficients:

qn+1 =
n∑

i

ciqi −
n∑

i

cigi(Hn − ξ)−1 (1.93)

In practice the algorithms are switched depending on the RMSD threshold and also
the Hessian update is varied during efficient algorithms.

1.6 Microscopic definition of rate constant

The rate of an elementary reaction and the rate constant have been defined in section
1.1.1 in a phenomenological manner. It was based on a macroscopic quantity: the
concentration. This section focuses on the various microscopic definitions, and the
possible numerical techniques to calculate rate constants from molecular level simula-
tions. As these simulations are extremely expensive some approximate approaches are
also presented.

1.6.1 Concepts and definitions in rate constant calculations

The equations for the description of reactions can be generally applied for any rare
events. Different chemical and physical transformations, such as conformational
changes, bond forming or breaking reactions or collective molecular rearrangements
such as crystallisation are all rare events. They can be rationalized on the basis of
a free energy profile along a reaction coordinate as a double well problem. They
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are also typically characterized by separation of time-scales. Although the reactions
occur rarely on molecular time scales, the actual reactive events proceed usually much
faster. In other words the reactive events cover negligible time frame comparing to the
typical times between two consecutive events. This relation leads to formally different
microscopic definitions of rate constants with almost no practical discrepancy.

The definitions are based on an ideal equilibrium situation between two states: the
reactant (RS) and the product state (PS). In terms of reaction coordinate the two
states are adjacent. One can imagine an infinitely long canonical molecular dynamics
simulation with infinite number of transitions from RS to PS and vice versa. The
rate constant can be formulated through the mean residence time in the state RS:

kf =
1

〈trRS〉
(1.94)

=
N t

ttrRS

, (1.95)

where trRS is the residence time in the reactant state, while ttrRS is the total residence
time in the reactant state for N t number of forward reactions. An alternative definition
is based on the mean first passage time from RS to PS (〈tpRS〉) [8]. The passage time
is defined as the time necessary to reach PS if the system started from RS. Note,
that this definition is equivalent to the previous one with adjacent states. However
in some formulations the non-adjacent stable states are applied, which leads to some
discrepancy. The third definition of the rate constant is the transition probability
from RS to PS per unit time [8].

1.6.2 Methods for rate constant calculations

The mean first passage time can be calculated by the Bennett-Chandler [68] [69]
procedure. The usual derivation of the method is based on state indicator functions
(order parameters): hRS(q) and hPS(q) are defined to be zero if q is out of the specific
state, and unity if q is within the state. The state correlation functions are used to
construct a correlation function:

C(t) =
〈hRS(q(0))hPS(q(t))〉

〈hRS(q)〉
(1.96)

It can be shown that if there is a separation between the time scales, the C(t) is
approximately proportional to the forward rate constant in between the molecular and
the relaxation time range. In other words for longer times than a reactive event, but
shorter times than 1/k, C(t) can be approximated as:

C(t) ≈ kf (t) · t. (1.97)

This result can be used by calculating the time derivative of the correlation function.
In the followings λ(q(t)) is denoted as λt and the value of the reaction coordinate
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corresponding to the dividing surface is λ∗ The time derivative of the correlation
function is:

Ċ(t) =

〈

λ̇0Θ(λt − λ∗)δ(λ∗ − λ0)
〉

〈Θ(λ∗ − λ0)〉
. (1.98)

where Θ and δ are the Heaviside and the Dirac delta functions.
This expression can be simplified by the concept of the free energy surface, and its

definition [8]:

k(t) = Ċ(t) (1.99)

=
〈

λ̇0Θ(λt − λ∗)
〉

λ0=λ∗

exp(−βF (λ∗))
∫

RS

exp(−βF (λ))dλ
(1.100)

= R(t)
exp(−βF (λ∗))
∫

RS

exp(−βF (λ))dλ
. (1.101)

These expressions are not only fundamental, but also very interesting. First
of all we note that the rate constant is time dependent in this picture. It has a
plateau region, where its value is independent from the actual choice of t. The
time dependence is exclusively condensed into the factor R(t), which is called the
unnormalized transmission coefficient [8]. This factor accounts for the dynamical
properties of the system, such as tendency for recrossing during a reactive event. The
rest of the expression is purely static quantity. Interestingly it does not depend on
the masses of the atoms. Therefore it could also be calculated from Monte Carlo
simulations.

In spite of its historical role, the BC procedure is based on error cancellation. The
error cancellation is exact in the case of infinite sampling. Eq. 1.100 expresses a simple
physical picture. The static part calculates the probability to find the system at the
top of the barrier. R(t) calculates the reactive flux through the border of RS and PS,
through the dividing surface(λ = λ∗). The Θ(λt − λ∗) factor simply filters trajectories
which are initiated at the dividing surface (λ∗), and reach the PS after time t. The
true reactive flux involves only trajectories that are initiated from the reactant state
and reach in the product state. The time elapsed since the trajectory previously
entered from PS to RS must be much longer than the time length of the actual
reactive event. Otherwise the event is nothing else but a recrossing of an unsuccessful
backward reaction attempt. Therefore this expression calculates the right average.
However non-reactive trajectories will have positive and negative contributions to the
average. The expression have been improved in the BC2 expression [68] [69]:

R(t)BC2 =
〈

λ̇0Θ(λt − λ∗)Θ(λ∗ − λ−t)
〉

λ0=λ∗

(1.102)

Eq. 1.102 calculates the flux through the dividing surface (at λ = λ∗) for trajectories
which started in RS at time −t and arrived at PS at time t. In practice, the BC2
procedure follows the simple approach:
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• an optimal reaction coordinate (λ) is defined

• the free energy along this putative reaction coordinate is calculated

• a constrained simulation is carried out at the top of the free energy barrier

• configurations are sampled during the constrained simulation

• the configurations are assigned with random velocities and propagated until time
t

• for each configuration, the assigned initial velocity is inverted, and the trajectory
is back-propagated until −t

• Eq. 1.102 is calculated by averaging the λ̇0 for each configuration, but switching
the contribution to zero if the configuration did not correspond to a true reactive
event.

The BC2 approach raised interesting numerical issues. Namely that it averages
both negative and positive contributions from reactive trajectories. In fact, the
same trajectory with multiple recrossings is sampled at its different dividing surface
intersections. At each crossing in the positive direction the trajectory will contribute
with a positive λ̇0, while each crossing in the opposite direction will result in a negative
contribution. These terms cancel out each other, and a trajectory with multiple
recrossings will contribute just once, as if it had only one recrossing. The cancelling
of the forward and backward recrossings is guaranteed by the canonical sampling.
Although a fast recrossing has larger contribution, the probability to sample that
crossing point is smaller than that of a slow crossing point. This argument explains
that the true contribution of a single trajectory is obtained only in the limit of an
infinite canonical sampling of its crossing points.

Another solution for accounting the recrossings is the application of the positive
flux expression [70]. The algorithm is exactly the same as that of BC2, but the rate
constant is calculated through an expression that gives non-zero contribution only for
positive crossings. This feature results in better convergence.

R(t)PF =
〈

λ̇0Θ(λt − λ∗)Θ(λ̇0)
〉

λ0=λ∗

−
〈

λ̇0Θ(λ−t − λ∗)Θ(λ̇0)
〉

λ0=λ∗

(1.103)

This expression is much more efficient than BC2. However it still relays on error
cancellation. A forward reactive trajectory with n crossings might contribute at
each crossing point if the specific crossing point is sampled. This could result in an
over-counting of the reactive flux. However, the second term of the expression gives
n − 1 negative contributions if the expression is evaluated on the trajectory with
inverted time.

As it is explained previously, accounting for multiple recrossings is the most
problematic part of the rate constant calculations. This problem has been successfully
treated by the effective positive flux (EPF) approach of van Erp and Bolhuis [71]. This
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method gives a very elegant solution for the multiple crossings problem by introducing
the concept of stable RS and stable PS, and a new indicator function for a trial
trajectory, denoted with χEPF

f (q(0)). The indicator function is unity if the backward
propagated trajectory leads to RS without recrossing λ∗ and if the forward propagated
trajectory reaches the PS before reaching the RS. This complex indicator function is
used in the followingle expression:

R(t)EPF =
〈

λ̇0Θ(λ̇0)χ
EPF
f (q(0))

〉

λ0=λ∗

(1.104)

Similar expression was applied in the method of Anderson [72], which follows
trajectories in time until the rate constant reaches a plateau. It calculates the velocity
of the last crossing only.

An interesting expression was been derived by Hummer [73]. The formula calculates
rate constants from transition path ensemble. The method defines the Ni reactivity
index for the ith trajectory. It is unity for reactive paths, and zero for nonreactive
pathways. The method calculates the relative probability to find the system at the
dividing surface (feq(λ∗)), the ensemble average of the ratio of reactivity (Ni) and the
time spent at all crossing points for forward and backward propagated trajectories
initiated at the dividing surface. Formally:

1

k−1
f + k−1

b

= crkf = cpkb =

〈

Ni
∑

i

|vi|−1

〉

ds

feq(λds) (1.105)

This method has an interesting feature. It samples the transition path ensemble
and gives important quantities such as committor as well. Moreover, each reactive
trajectory in the sample gives its true contribution to the rate constant irrespective
of which dividing surface crossing point was used as its starting point. On the other
hand, the algorithm follows each trajectory till the stable reactant or stable product
states. Therefore the EPF method might be more effective for systems with frequent,
long, non-reactive trajectories. In contrast, other quantities, such as average reactivity
or committors can be obtained from the method of Hummer.

All the methods presented above are based on the sampling of a single dividing
surface. This is an obvious possibility if the dividing surface is known a priori.
Methods designed to sample wider range of the reaction coordinate are presented in
the followings.

An alternative formulation of the BC rate constant leads to an expression which
utilizes starting points from the full reaction coordinate range between the stable
reactant and product states. This expression has been derived by Ruiz-Montero,
Frenkel and Brey [74]. Their derivation starts from similar indicator functions as the
BC procedure, however they apply smooth functions instead of Heaviside function.
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The proposed indicator function is:

hPS(λ) =

λ∫

sRS

exp(βF (λ′))dλ′

sPS∫

sRS

exp(βF (λ′))dλ′

. (1.106)

Here integration limits sRS and sPS denote the vale of λ corresponding to the border
of the stable reactant and stable product states. The ensemble of starting configurations
are sampled by applying a −2F (λ) biasing potential. Finally the time-dependent
expression for rate constant is calculated:

kf (t) =
1

〈hA〉

〈
t∫

0

λ̇0λ̇t′ exp(βF (λt′)− βF (λ0))dt
′

〉

B∫

A

exp(βF (λ))dλ
B∫

A

exp(−βF (λ))dλ

. (1.107)

The expression is similar to the Green-Kubo relation for diffusion constant [75, 76].
It is important to note that this method can be efficient for diffusive cases as it
accumulates velocity information not only at single dividing surface crossing points
but also in the neighbourhood of the barrier. It can also utilize calculated trajectories
if the exact position of the dividing surface is not known. This feature of the method
is a remarkable advantage as the calculation of the dividing surface is computationally
demanding.

Transition path sampling is an alternative option for calculating rate constants [53].
This approach requires to calculate the function PRS(λ, t), the probability that a path
reaches λ at time t provided that it started at the stable RS. As the probability to
reach values of λ, that belonging to the PS is very low, it requires advanced path
sampling techniques, namely the path sampling analogue of umbrella sampling. The
time correlation function C(t) can be calculated from an integral of PRS(λ, t) with
respect to λ.

The formulation of EPF has been utilized in the method called transition interface
sampling [71]. The method employs multiple interfaces, and calculates the crossing
probabilities. P (λi+1|λi) is the probability that a trajectory which started at λ0 and
crosses λi reaches λi+1 before reaching again λ0. The rate constant can be calculated
as:

kf =
N+

c

t

n−1∏

i=1

P (λi+1|λi) (1.108)

where N+
c is the number of positive crossings calculated at the first interface in time t

in long unbiased simulation at the reactant state.
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1.6.3 Transition State Theory

Various methods have been introduced for calculating rate constant for elementary
reactions as shown in the previous section. These methods require extra computations
beyond the calculation of the free energy surface along the reaction coordinate. How-
ever, the kinetics of complex reaction mechanisms can be simplified if there are parallel
reaction channels with rate constants that differ in orders of magnitude. Therefore
approximate calculation of the rate constants with significantly less computational
effort has great practical importance. In the followings the transition state theory

(TST) is presented, which facilitates the approximate calculation of rate constants [77].
TST assumes that if the system crosses the dividing surface then it leads to a

reaction. This assumption is considered valid for the backward reactions as well. This
implies that the theory neglects the recrossings. Furthermore it also relies on the
assumption of quasi equilibrium, which means that the probability to find the system
in the dividing surface can be derived from the equilibrium distribution. The latter
assumption has been also implicitly used in all Bennett-Chandler type methods. The
unnormalized transmission coefficient of TST can be easily derived from the analogous
quantity appearing in the positive flux formalism (Eq. 1.103). Since in TST we
assume that there are no recrossing trajectories, all trajectory with positive λ̇ will be
forward reactive. In Eq. 1.103 the Θ(λ̇) will filter out all backward trajectories, and
Θ(λt − λ∗) will be unity for all reactive trajectories. Therefore the first term simplifies

to
〈

λ̇Θ(λ̇)
〉

λ=λ∗

. The second term of the positive flux expression provides only zero

contributions within this assumption, as no trajectory can fulfil the two conditions of
positive λ̇ and product side origin if no recrossing occurs. In this way we obtain the
rate expression for TST as:

kTST
f =

〈

λ̇Θ(λ̇)
〉

λ=λ∗

exp(−βF (λ∗))
∫

RS

exp(−βF (λ))dλ
(1.109)

The
〈

λ̇Θ(λ̇)
〉

λ=λ∗

factor simplifies to 1
2

〈

|λ̇|
〉

λ=λ∗

in case of a symmetric distribution

for λ̇. This factor can be calculated from canonical constrained simulation at λ = λ∗.
In the particular case, when the reaction coordinate is a Cartesian coordinate, the
average can be evaluated analytically [8]

1

2

〈

|λ̇|
〉

λ=λ∗

=
1√

2πβm
(1.110)

As it has been described earlier, free energy differences can be approximately
calculated from the local properties of critical points of the PES. TST can be formulated
in this language as well. The description leads to expressions similar to Eq. 1.109,
with minor differences. Since in this picture, states are defined as optimized structures
and their vicinity, the RS will be replaced with a single molecular structure, and the
dividing surface will be replaced by the configuration corresponding to the saddle
point, the transition state. Probability to find the system at the transition state can
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be calculated from the ratio of the canonical partition functions:

K‡ =
QTS

QRS
= exp

(
−β∆G‡

)
, (1.111)

where
∆G‡ = ∆GTS −∆GR. (1.112)

Here ∆GTS and ∆GR are the Gibbs free energies corresponding to the TS and
the reactant(s), respectively. It is important to note, that the Gibbs free energy
corresponding to a TS is calculated identically to the stable structures (section 1.5.1
with one difference: contribution from the normal coordinate describing the motion
along the reaction coordinate is not included. The contribution from this degree of
freedom is included in the pre-exponential factor. The pre-exponential factor can be
calculated from different models, such as particle in the box or zero frequency limit of
harmonic oscillator:

k‡ =
1

βh
(1.113)

Finally the rate constant is derived as a product of the k‡ and K‡:

kTST
0 =

1

βh
exp

(
−β∆G‡

)
(1.114)

It is important to note the differences between Eq. 1.114 and Eq. 1.109. Although
both expressions are based on the calculation of the probability of finding the system
at the dividing surface or at the transition state from free energy information, this
information is calculated from different principles. It is very tempting to calculate the
barrier height from a free energy surface and substituting it into Eq. 1.114, but it
is both formally and practically incorrect. The height of the barrier depends on the
CV describing the reactive event. Therefore the barrier height could be modified by a
mathematical transformation of the reaction coordinate. Note that this dependence
is cancelled by the reaction coordinate dependence of the pre-factor in exact rate
calculation methods.

1.7 Calculation of approximate PESs

The equations for the calculation of the probability density or rate constant implicitly
relied on the assumption that a given configuration can be assigned to a potential
energy value. This is not trivially true, but it is one of the fundamental assumptions
of theoretical chemistry, which is called the Born-Oppenheimer approximation. The
non-relativistic potential energy surface can be exactly derived through wave function
theory, which is briefly introduced in the followings. Then the density functional
theory is presented. The section introduces some more approximate methods, and
finally summarize the applied force fields.
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1.7.1 Wave function theory (WFT)

The ground state exact potential energy can be calculated from the following functional:

E[Ψ] =

〈

Ψ|Ĥ|Ψ
〉

〈Ψ|Ψ〉 (1.115)

Ĥ is the Hamiltonian operator of the electronic subsystem within the Born-
Oppenheimer approximation and Ψ is its eigenvector corresponding to the lowest
eigenvalue. As the energy spectrum for bounded states has a lowest eigenvalue, the
exact eigenvector (wave function) can be found by the variation of the functional
with respect to Ψ. In practice this can be accomplished by the expansion of the
wave function as a linear combination of an orthogonal set of functions, and by the
variation of the coefficients. The full configuration interaction method uses the set of
Slater-determinants as a basis for this expansion.

Although this method is exact, it utilizes an infinite expansion. Moreover, the
method has a factorial scaling, which prohibits practical applications. Approximations
can be done by truncation of this series. However it results in size consistency error.
The relevant coefficients and the energy can be obtained through alternative, non-
variational approaches as well, such as coupled cluster or perturbation theory. The
former and specific forms of the latter have the advantage over configuration interaction,
namely that these are size consistent methods.

Even if the N ! scaling can be considerably reduced to N6 or N7 without sacrificing
the applicability for well behaving systems (where N is the number of electrons); large
systems, high throughput calculations, and systems with strongly correlated electronic
structure motivated the development of alternative formalisms.

1.7.2 Density functional theory (DFT)

The DFT expresses the energy as a functional of the total ground state electron
density:

E = F [ρ]. (1.116)

This description could be highly beneficial as the electron density is a three dimensional
function, while the wave-function is a much more complicated 3N dimensional object.
Although Hohenberg and Kohn proved an existence theorem and also a variational
theorem for this functional fifty years ago [78], its form is still not known. The main
difficulty is that the kinetic energy of the electronic system could not be sufficiently
modelled as a functional of the electron density. As this term has large contribution
to the energy, any approximation causes severe error.

The practical importance of the density functional theory can be dated to the
introduction of the Kohn-Sham formalism [79]. In this picture some more complex
variables have been introduced into the functional, such as the wave-function of a
non-interacting electronic system, with the same density as the interacting system
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of interest. The Schrödinger-equation can be solved exactly for a non-interacting
electronic system and its energy is defined by the density. Therefore the exact electronic
energy can be calculated from the density. The only problem to be solved is to find
the proper potential, which turns the non-interacting electron density to be equivalent
with the interacting electron density.

E0 = E[ρ0] =
〈

Ψ[ρ0]
∣
∣
∣T̂ + V̂s

∣
∣
∣Ψ[ρ0]

〉

(1.117)

There is no exact external potential or equivalently exact Kohn-Sham functional
either. However as the kinetic energy and the electron-electron, nuclear-nuclear and
electron-nuclear classical Coulomb terms are known, only a small portion of the
total energy needs to be modelled. This remaining part of the electronic energy
describes the exchange interaction between parallel spin electrons, and the correlation
interaction. This part of the functional is referred to as exchange-correlation functional.
The functional derivative of the exchange-correlation functional provides the last term
(VXC[ρ(r)]) to the potential:

Vs(r) =
∑

i 6=j

ZiZj

|qi − qj |
−
∑

i

Zi

|r − qi|
+

∫
ρ(r ′)

|r − r ′|d
3r′ + VXC[ρ(r)] (1.118)

where r is the electronic degrees of freedom, and Zi is the charge of the ith nucleus. The
exchange-correlation functional has been modelled in various ways. The approximate
functionals might depend on other functions besides the electron density [80](as in
local density approximation), such as spin-densities (local spin-density approximation)
or the gradients of the spin densities (generalized gradient approximation, GGA) or the
second derivatives of the spin densities (meta-generalized gradient approximation, meta-
GGA) [81]. As excluding the self-interaction error is challenging in density functional
theory [82], the Kohn-Sham orbitals and Hartree-Fock exchange expression are also
often used in approximate exchange-correlation functionals (hybrid functionals) [83].
Distance based mixing of Hartree-Fock and DFT exchange is used in range separated
functionals [84]. Recently second order perturbation theory on the Kohn-Sham orbitals
has been utilized in order to improve precision [85].

The description of dispersion is not sufficient for the most density functionals.
Therefore often semiempirical dispersion is added to the energy. A frequently used
formulation from Grimme and co-workers [86] gives two and three atom contributions
depending exclusively on atomic positions.

The two atom contribution is calculated in the following expression:

E(2) =
∑

AB

∑

n=6,8,10...

sn
CAB

n

dnAB

Dn(dAB), (1.119)

where sn is a functional dependent scaling factor, while CAB
6 is calculated from the

Casimir-Polder [87] formula through time-dependent density functional theory from
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hydrides. Higher order coefficients are calculated from CAB
6 with recursive expressions.

The coefficients can be calculated in a system dependent manner. The numbers of
neighbours are calculated for each atom through a Fermi coordination number formula
such as Eq. 1.10 and for intermediate numbers of coordination the property map
formula (Eq. 1.13 is used for interpolation). Finally Dn(dAB) is the so-called dumping
function which eliminates the singularity at zero distance (dAB = 0). Various forms
of Fermi functions (Eq. 1.10) are in use for this purpose. Three-body terms are
calculated through the Axilrod–Teller–Muto formula [88,89]:

EABC =
CABC

9 (3 cosα cosβ cos γ + 1)

(dABdBCdAC)3
(1.120)

where the CABC
9 coefficient is calculated from the pairwise 6th order coefficients.

Angels and distances are denoted according to usual notion of an ABC triangle.

1.7.3 Summary of the applied DFT forcefields

The BLYP exchange correlation functional is a cost efficient GGA functional. It
contains exchange functional of Becke [90], and the correlation term of Lee, Yang and
Parr [91]. The exchange part contains only a simple correction to the LSDA expression,
with a single parameter [90]. The correlation term includes two fitted parameters. As
the functional neglects long-range dispersion, it is advantageous to apply together
with Grimme-corrections [86].

The M06 functional of Thrular and co-workers [92] is a hybrid-meta-GGA exchange-
correlation functional. Although the functional is strongly semiemperical (the opti-
mization procedure involved 35 parameters), it fulfils exact important criteria and
designed with deep physical understanding. The functional development involved a
versatile strategy with the following elements: constraint satisfaction (3 constraints to
obtain correct uniform electron gas limit), empirical fitting, mixing of Hartree–Fock
and approximate DFT exchange and the modelling of the exchange-correlation hole.
The correlation energy is calculated differently for parallel spin and antiparallel spin
interactions and the former vanishes for any one-electron system. The exchange term is
a linear combination of the Hartree–Fock and DFT exchange. The latter is a mixture
of the PBE [93] and the LSDA description.

In comparison with 12 other functionals, M06 proved to be outstanding in main-
group thermochemistry, barrier heights, non-covalent interactions, and organometallic
thermochemistry. A recent validation of the method has shown that it is reliable
also for organometallic kinetics [94]. It can also handle difficult cases, such as ligand
dissociation. As this fuctional describe the middle-range correlation as well, it is
usually applied without additional dispersion correction.

The ωB97XD is a range separated hybrid functional from Head-Gordon and co-
workers [95]. The functional contains pairwise additive dispersion term to ωB97X [96],
which itself relies on 17 fitted parameters. Unlike many long range corrected hybrid
functionals, it contains a small fraction of exact-exchange at short distances as well.
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The optimization of the functional has also involved constrains to fulfil the uniform
electron gas limit.

1.7.4 Molecular mechanics (MM)

As it was shown in the previous section, weaknesses of a given approximate forcefield
can be compensated with physically motivated additive N -atom contributions. This is
not only true for dispersion, but for other quantities as well. In general the potential
energy surface can be approximated as a sum of N -atom potentials:

E(R) =
∑

n=1

Un(R). (1.121)

Since the particular form of Un(R) can be derived from different principles, various
formulations are in use in molecular modelling. The potential energy in the Amber
forcefield [97] is the following expression:

E(q) =
∑

bonds
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2 +
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2 +
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QiQj

4πǫ0dij
.

The first two summations are the applications of the harmonic approximation for
the potential energy in internal coordinates (interatomic distances, and angles). The
third summation describes the potential energy surface along torsional angles. The
potential energy is extended into a few Fourier components. The fourth line of the
expression contains the Lennard-Jones model potential for van der Waals interactions.
Comparison with the Grimme potential shows, that it neglects important three-body
contributions, and also some higher order two-body terms. The fifth line is a simple
Coulomb term with static atomic point charges.
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2.1 Palladium catalysed C–H activation reaction [1]

2.1.1 Introduction

2-amino-benzophenon is an important starting material of the synthesis of various
heterocycles, such as cinnolines, acridones, indazoles, indoles, quinolines [98]. Recently
the synthesis of 2-amino benzophenones by palladium-catalyzed cross-dehydrogenative
coupling between anilides and aromatic aldehydes has been developed applying by
different methodologies. The methods developed by Zhou [99] and Kwong [100] could
provide the desired products at 120 and 90 ◦ C respectively. These procedures applied
toluene as solvent and required palladium(II) trifluoroacetate (Pd(TFA)2) catalyst.

Recently Yu and co-workers [98] applied pivalanilide in a similar reaction scheme.
Their procedure requires milder conditions (40 ◦C) and a more economical catalyst
combination. The C–H activation was carried out by palladium(II) acetate (Pd(OAc)2)
catalyst in combination with trifluoroacetic acid (TFA). They have also proposed a
reaction mechanism based on their experimental findings, where the carbopalladation
is the rate determining step. This assumption is also validated by their kinetic isotope
effect measurements. According to their proposal the carbopalladation step is followed
by the oxidation of the metallic center of the intermediate by the attachment of the
benzoyl radical. Finally reductive elimination takes place. Their mechanistic proposal
is based on the assumption of the in situ generation of Pd(TFA)2 catalyst.

Figure 2.1: Procedure for oxidative coupling of acetanilide and benzaldehyde through C–H

activation.

Novak and co-workers [1] (our experimental partners) have found that the re-
action can be performed in water with Pd(OAc)2 catalyst and with various acids at
room temperature. In order to increase the reaction efficiency they have applied
detergents (Fig. 2.1). In spite of the experimental findings by Yu and co-workers [98],
important details of the mechanism remained unravelled. The formation of a more
active catalyst Pd(TFA)2 could not be convincingly supported, as non-coordinating
acids, such as sulphuric or perchloric acid provided the same conversion as TFA. As
the carbopalladation is the rate-determining step, the study of the subsequent steps is
difficult by experimental techniques.

On the other hand for analogous C-H activation reactions important observations
could be done regarding the steps after carbopalladation. For example Dong and
co-workers isolated and characterised a bimetallic Pd-complex from a coupling reaction
of aryl esters and aldehydes [101]. Bimetallic palladium complex formation from
2-phenylpyridine [102] and benzo[h]quinoline [103] was also reported by the group
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of Ritte. We also intended to study the role of monometallic or bimetallic species
in the C–C coupling reaction between anilides and aromatic aldehydes. We aimed
to determine the evolution of the oxidation state of the palladium center during the
reaction. In particular, we have focused on the possible sequances of two important
steps, the reductive elimination and the single electron transfer from the palladium to
the tBuO· radical. Depending on this squence the reductive elimination can feature a
Pd(IV) → Pd(II) or a Pd(III) → Pd(I) change [1].

2.1.2 Methodology

Our mechanistic study have been carried out by employing static calculations on the
M06 [92] potenetial energy surface. The Kohn-Sham orbitals were expanded in the
6-31+G* [104] basis set. For palladium the LANL2DZ [105] basis set was applied with
additional diffuse and polarization functions. The effect of the core electrons and the
relativistic effects were modelled through the LANL2 [105] effective core potential. The
interaction with the solvent have been taken into account by employing the SMD [106]
solvent model.

2.1.3 Mechanistic study

Based on the experimental evidences we have examined the mechanism of the reaction
by assuming that the first step is the C–H activation. The corresponding structures
and the free energy profile for this transformation is depicted on Fig. 2.2. The
association of the Pd(OAc)2 and the acetanilide proved to be slightly endergonic.
The association features 2.9 kcal/mol free energy change. The C–H activation step
from 1.1 to 3.1 is only slightly endergonic and includes a 17.2 kcal/mol barrier (blue
profile on Fig. 2.2). The effect of strong acids can be rationalized by noticing that
the dissociation of one of the acetate ligands from Pd(II) acetate ion is enhanced by
its protonation (green profile). This step results in remarkable free energy release
(-22.2 kcal/mol). The proton abstraction by the acetate ligand proceeds through a
slightly more favourable elementary step in comparison with the two-acetate-ligand
analogue. This step involves only 15.8 kcal/mol activation free energy. It is important
to note that concerted metalation-deprotonation is a frequently applied concept for
the rationalization of C–H activation of arenes. This concept was applied for example
by Macgregor [107] and Fagnou [108, 109] for the description of carbopalladation
mechanisms in similar systems.

On the basis of our mechanism the effect of the acid is the following. By the
spontaneous protonation of one of the acetate ligands the acidic media shifts the
equilibrium in the direction of the active species (palladium(II)-acetanilide-acetate
complex) formation. In this scheme a further advantage is that the palladium complex
with a single acetate ligand undergoes intermolecular proton abstraction slightly easier.
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Figure 2.2: Gibbs free energy profiles for the two different C–H activation mechanisms.

Values in parentheses are in kcal/mol. Green: one acetate ligand. Blue: two acetate ligands.

The C–C coupling of 1 and 2 was first investigated with a monometallic
model system. Fig. 2.3 (green profile) summarizes the results in terms of free energy
changes and a schematic mechanism. The transformation from 3.2 to 3.3 involves
the deprotonation of the complex. This step is unfavorable (15.7 kcal/mol). It is
important to note that the present continuum solvation model might overestimate
this energy change. The hydrogen abstraction from the benzaldehyde molecule by
tBuOOH:

tBuOOH+HCOPh −→ tBuO ·+ · COPh + H2O (2.1)

requires an additional 4.4 kcal/mol (3.3 → 3.4) investment. Association of the
benzoyl radical and complex 3.3 leads to intermediate 3.5. The barrier for the
reductive elimination step is only 1.7 kcal/mol, which is followed by an instantaneous
free energy release of -10.4 kcal/mol. Additional -42.8 kcal/mol is released during the
closing steps. These involve the redox reaction between the Pd(I) species and the
tBuO· radical as well as the protonation of the resulting tBuO− anion.

Figure 2.3: Gibbs free energy profiles for the mono-metallic mechanism of the C–C coupling

reaction. Energies are in kcal/mol. Green: Pd(III) to Pd(I) pathway. Blue: Pd(IV) to Pd(II)

pathway.

As the reductive elimination in palladium catalysed reactions often proceeds
through IV to II states, we have investigated the oxidation of complex 3.5 (Fig. 2.3,
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blue diagram). The oxidation from 3.5 to 3.5+ by the tBuO· radical is exergonic
(-14.1 kcal/mol). The reductive elimination step requires an additional 7.3 kcal/mol
activation. The overall barrier with this route is 40.4 kcal/mol. Therefore the
monometallic C–C coupling pathway is more favourable along the III to I reductive
elimination pathway than along the IV to II route. It is important to emphasize
that the overall activation barrier for the C-C coupling step exceeds 20 kcal/mol
for the more favourable pathway as well. These activation free energy values are
significantly larger than 15.8 kcal/mol for the C–H activation. Therefore this pathway
is not compatible with the experimental proposal, i.e. the carbopalladation is not the
rate-determining step.

Figure 2.4: Gibbs free energy profiles for the bi-metallic mechanism of the C–C coupling

reaction. Green: Pd(III) to Pd(I) pathway. Blue: Pd(IV) to Pd(II) pathway.

As the monometallic C–C coupling is incompatible with the experimental
findings we have sought other possibilities. We have assumed the deprotonation and
dimerization of 3.2 to B3.3 (See Fig. 2.4, green profile). This transformation is
spontaneous (-10.7 kcal/mol). Going from B3.3 to B3.4 requires the same energy
investment for the H abstraction from benzaldehyde as in the monometallic route. The
association of the bimetallic complex and the benzoyl radical requires only negligible
activation. Likewise the reductive elimination is an almost spontaneous reaction with
1.0 kcal/mol free energy barrier. The Gibbs free energy balance of this step is also
remarkable, -29.2 kcal/mol. The free energy level of the products is reached via
analogous steps to those in the monometallic route. The overall activation free energy
for the C–C coupling is 11.8 kcal/mol. Assuming this path as the mechanism for the
C–C coupling, the C–H activation is the rate-determining step.

Although the reductive elimination proved to be remarkably efficient for the
bimetallic pathway, we have also investigated the possibility of an early oxidation.
This pathway is depicted in blue on Fig. 2.4. The effect of oxidation on this path
is very similar to the effect on the mono-metallic path. The redox process is also
endergonic and the reductive elminiation requires again larger activation energy in
comparison with the Pd(III)→ Pd(I) path. The overall barrier for this pathway is
27.2 kcal/mol, which is again incompatible with the experiments.
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In summary we have given a mechanism for the palladium catalysed C–H activation
of acetanilide and its coupling with benzaldehyde in the presence of tBuOOH. Our
mechanism features the rate-determining C–H activation step, which is catalysed by
a palladium complex with one acetate ligand. According to our proposal the C–H
activation is followed by a C–C coupling via a bimetallic complex and a Pd(III)→
Pd(I) reductive elimination.
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2.2 Silver-mediated furan formation [2]

2.2.1 Introduction

Methods for selective synthesis of furan and pyridine rings from simple building blocks
are important transformations. These rings are important intermediates of organic
syntheses and they appear in numerous natural products [110, 111]. The synthesis
of various substituted furans has been reported in a recent work of Lei at al [112].
Their synthetic strategy was based on an oxidative coupling of β-ketoesters with
terminal-acetylenes via a silver mediated transformation (Figure 2.5). The same
procedure led to pyrrol derivatives, if enamines were used instead of β-ketoesters.
The final protocol for the reaction has been obtained by systematic variation of the
applied Ag sources, bases and solvents. Remarkably, the reaction did not provide
the expected product if toluene or THF solvents were applied. In contrast, the yield
varied from 40 to 100% if polar solvents such as DMF or DMSO were chosen as media.
The combination of Ag2CO3 and carbonate bases were moderately successful, and
AgOAc in combination with KOAc bases did not yield any product. The application
of silver-carbonate with silver-acetate proved to be very efficient with full conversion.

Figure 2.5: Silver-mediated oxidative C-H/C-H functionalization of 1 and 2.

The authors carried out mechanistic investigations as well. They have postu-
lated silver phenylacetylide as an intermediate. Their concept is also supported
by the production of the same product in the reaction of silver phenylacetylide
and ethyl acetoacetate. They also postulated coupling between the silver acetylide
salt and the α carbon of the β-keto ester. However this idea has not been justified
experimentally. The assumption that silver phenylacetylide formation from the
reaction of Ag2CO3 and phenylacetylene in polar solvents can occur, has been
supported by vibrational spectroscopy results. In two subsequent works of Lei and his
co-workers silver-phenylacetylide has been detected by Raman spectroscopy [113] and
in situ IR [114] spectroscopy. In both studies DMSO solvent has been employed.

The aim of our study was to explore several possible pathways for this interesting
silver-mediated furan formation. On the basis of the corresponding free energy profiles
we have selected the most likely routes. The mechanisms emerged from these pathways
have been supported by additional experiments [2].
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2.2.2 Methodology

For this study we have applied the M06 functional and the SMD solvent model.
The geometry optimizations and frequency calculations employed a double zeta basis
set: 6-31+G* [104] for all main group elements, and the LANL2DZ for silver. The
effect of core electrons was modelled by the LANL2 effective core potential [105].
The solvation free energy contribution has been taken into account by single point
SMD [106] calculations employing triple zeta basis set. For the main group elements
6-311++G(3df,3pd) [115] basis set were employed, while the LANL2TZ basis [116]
with additional set of polarization and diffuse functions was used for silver. The
additional polarization and diffuse functions have been taken from the aug-ccpVTZ-PP
basis set.

2.2.3 Mechanistic study

We have selected the reaction of phenylacetylene and ethyl-acetoacetate for the
mechanistic study, which has been used in the development of the synthetic procedure
of Lei and co-workers [112]. The investigation of the reaction is particularly challenging
due to the solid reactants (KOAc and Ag2CO3) and solid product (elementary silver).
As the precise value for the solvation free energy change cannot be calculated within
the applied theoretical framework, we have assumed that a certain fraction of the
base and the silver source is already in the solvent phase. [2] In this approach we
have an endergonic process with a free energy change which would only shift each
Gibbs free energy diagrams with the same, constant value. The free energy change of
silver precipitation has been calculated from the experimental values of atomisation
enthalpy and entropy of silver [117], and the calculated solvation free energy for the
solvation of a single silver atom.

Figure 2.6: Gibbs free energy profile and mechanism for the C-C coupling part. Energies

are in kcal/mol. Green: pathway featuring 2.1. Blue: pathway featuring 2.

The initial step of our mechanism is the deprotonation of the ethyl acetoac-
etate at the α carbon atom. This is followed by the single electron transfer oxidation
of the anion to a radical by the silver cation. These two steps are exergonic and
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release in total -17.7 kcal/mol Gibbs free energy. The radical mechanism of the
reaction has been verified by our experimental partners. The application of radical
scavengers such as TEMPO or BHT could inhibit the product formation. We have
investigated two possibilities for the C–C coupling reaction mechanism. The first is
the direct coupling of the phenylacetylene and the radical, while the second possibility
features the formation of silver acetylide and its coupling with the radical. The two
mechanisms and the corresponding free energy diagrams have been presented on
Fig. 2.6. The pathways feature similar barriers (15.0 and 14.3 kcal/mol) and similar
reaction Gibbs free energy changes (-11.0 kcal/mol and -12.1 kcal/mol). In contrast,
the two reactions result in chemically significantly different species. In the first case
the reaction yields an organic radical intermediate, while the silver mediated path
provides a closed-shell intermediate and a silver atom. In the followings the latter
reaction is described.

Figure 2.7: Gibbs free energy profile and mechanism for path A. Energies are in kcal/mol.

Fig. 2.7 summarizes the reaction path following an ionic cyclisation mecha-
nism. We have assumed that the atomic silver precipitates from the reaction mixture
after the C–C coupling step. It is important to note that the formation of silver mirror
on the reaction chamber is indeed observed in the experiments. This path also features
the silver catalysis of the cyclisation reaction. The silver ion has catalytic effect by
polarizing the triple-bond and enhancing the nucleophilic attack on it. Despite the
silver catalysis the path involves prohibitively high barrier for the cyclisation (40.4
kcal/mol). The instantaneous stabilization of the system after the high barrier is only
6.8 kcal/mol. However surprisingly large amount of free energy (-57.3 kcal/mol) is
released during the deprotonation of intermediate 4.1. This large energy suggests that
the deprotonation step should be considered during an earlier phase of the mechanism
in order to find more favourable pathways. The deprotonation reaction results in
an interesting silver-organic intermediate (4.2) with considerable stability. As the
experimental procedure includes acidic work up, one might assume that the reaction
stops at this stage, and the silver organic compound is decomposed by the reaction
with the HCl-solution. Our experimental partners therefore carried out experiments
to test this hypothesis with isotope labelling. To this end the reaction mixture has
been exposed to D2O/DCl during the workup. The deutered product has not been
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identified irrespective of 2 or 2.1 have been chosen as reactant for the reaction. These
experiments also support the presence of 2.1 as an important intermediate of the
reaction.

The exchange of the silver ion with a proton is slightly favoured under the conditions
(by -3.0 kcal/mol). Nevertheless this step requires a barrier that is rather high for a
proton exchange reaction (27.1 kcal/mol).

As pathway A suggested the importance of the early deprotonation reaction, we
have focused on the effect of an earlier proton abstraction on the cyclisation reaction.
The corresponding free energy profile and the structure of the relevant intermediates
are depicted on Fig. 2.8. The deprotonation of 3.2 leads to the enolate ion 3.4
with an exergonicity of -19.0 kcal/mol. The enolate moiety is a stronger nucleophile
comparing to the original ketone-group. This is also reflected in the reduced barrier
height (29.5 kcal/mol) for the cyclisation reaction. This amount of activation free
energy is compatible with the temperature of the reaction.

Figure 2.8: Gibbs free energy profile and mechanism for path B. Energies are in kcal/mol.

In path C (Fig. 2.9) the synergistic effect of Ag+ and the early stage deprotonation
are studied. This idea is based on the assumption that the entropy loss of the
association of the organic species and the silver cation is compensated to a larger
extent by the Coulomb interaction in this case. As expected, the overall barrier from
state 3.4 is modest (21.4 kcal/mol), especially at the temperature of the reaction.
The cyclisation reaction results in a silver-furanyl compound. The last section of this
path is identical to the closing steps of pathway A. Interestingly in this case the
barrier of the proton exchange reaction is higher than the barrier of cyclisation reaction.
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Figure 2.9: Gibbs free energy profile and mechanism for path C. Energies are in kcal/mol.

Another interesting possibility can be derived from the assumption that the
cyclisation reaction precedes the silver precipitation (route D, Fig. 2.10). In this case
the reaction might proceed through a radical pathway without the reduction of the
organic moiety. However the direct cyclisation step in this case features a barrier of
33.8 kcal/mol. Therefore this pathway is inferior to the previous ionic pathways. As
a summary of the presented mechanisms we can conclude that path C is our best
mechanism if the deprotonation of the alkyne is assumed.

Although the reaction typically applied for terminal alkynes, some examples for
internal alkynes have been presented in the supportin information of the original
synthetic work [112]. The desired product has been identified in only traces
for diphenylacetylene and in only 10% for the methyl- and phenyl-substituated
analogues. As our previous pathways have not involved the reaction of these sub-
strates, we have followed the reaction starting from the radical intermediate 3.1 as well.

Figure 2.10: Gibbs free energy profile and mechanism for path D. Energies are in kcal/mol.

The dash-dot line indicates that intermediates between 4.5 and 4 along the segment have

not been identified.
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On the basis of our previous experience about the cyclisation reaction we have
assumed that the intermediate is promptly deprotonated and that the resulting
radical ion associates with a silver ion. The corresponding pathway and its free energy
profile are depicted on Fig. 2.11. The deprotonation reaction requires 18.2 kcal/mol
activation, while the association reaction is slightly favoured in terms of free energy
(-3.0 kcal/mol). The cyclisation reaction requires only 16.3 kcal/mol of activation and
provides the desired product instantly.

Figure 2.11: Gibbs free energy profile and mechanism for path E. Energies are in kcal/mol.

In order to test our hypothesis on this alternative mechanism we have calculated
the first barrier of pathway E for the methyl and phenyl substituted compounds
as well (Fig. 2.12). The results are in agreement with the experimental order of
reactivities. It is important to note that the height of the barrier alone does not
explain the reduced reactivity. However the higher activation barrier for the reac-
tion of the unstable radical compound 1.2 might open the possibility for side reactions.

Figure 2.12: Gibbs free energy profiles for the C-C coupling reaction for terminal and two

different internal alkynes. Energies are in kcal/mol.

In summary we have identified the relevant reaction pathways for the silver
mediated-furan synthesis reaction of Lei and co-workers [112]. Our mechanistic
proposal for furan formation from terminal acetylenes and ethyl acetoacetate features
a C–C coupling between silver acetylide and the radical intermediate from ethyl
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acetoacetate. The cyclisation reaction is assumed to be silver ion assisted ionic
process. For internal acetylides we have proposed the direct bond formation between
the ethyl-acetoacetate radical and the acetylene along with a cyclisation reaction with
atomic silver formation.
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2.3 Direct 2,2,2-trifluoroethylation of indoles via C–

H functionalization [3]

2.3.1 Introduction

The synthetic procedures for the installation of trifluormethyl group onto aromatic
and heteroaromatic systems have remarkable significance. These approaches are
uncommon, but yield products with high pharmacological significance. Trifluoroethyl
groups can increase the lypophilicity and the metabolic stability of the molecules.
Our experimental partners have successfully developed a procedure for selective C3
modification of indole derivatives. The transformation introduces a 2,2,2-trifluoroethyl
group to the C3 position through C-H activation. The procedure is depicted
on Fig. 2.13. It is important to note that the reaction requires the presence of
2,6-di-tert-butylpyridine (DTBPY) in order to achieve maximum yield.

Figure 2.13: The reaction for trifluorethylation of indoles in our mechanistic study.

2.3.2 Methodology

In order to understand this valuable synthetic transformation we have performed
mechanistic calculations. Our theoretical approach used the ωB97XD functional [95]
in combination with the 6-31+G* [104] basis set for geometry optimization and
frequency calculations while the 6-311++G(3df,3pd) basis set [115] for single point
SMD calculations [106] (with CH2Cl2 solvent). For iodine atoms we have applied
LANL2 effective core potentials. LANL2DZ [105] and LANL2TZ basis sets [116] with
additional diffuse and polarization functions from aug-cc-pVDZ-PP and aug-cc-pVTZ-
PP bases sets respectively, have been used as basis sets for iodine.

2.3.3 Mechanistic study

We have started our study with the calculation of the free energy change for the
dissociation of the iodonium salt. Our calculations have shown that the product state
is slightly more favoured (by 0.9 kcal/mol). We therefore consider the dissociated
form as the resting state. The direct electrophilic attack of the iodonium salt to the
indole features a 25 kcal/mol high barrier. The step is highly exergonic (by 34.2
kcal/mol) therefore irreversible. The deprotonation of the sigma complex by DTBPy
features 18.3 kcal/mol activation free energy. The large activation free energy can be
rationalized by the steric hindrance of the base.
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Figure 2.14: Free energy profile and mechanism for the trifluoroethylation reaction. Energies

are in kcal/mol.

In the absence of DTBPy the reaction yielded a side product. Since the se-
paration of the side product was not successful, DTBPy is essential for a successful
reaction protocol. We aimed to understand the side reaction as well. Understanding
this process is necessary in order to rationalize the further developments of this
reaction. Fig. 2.15 summarizes our proposed mechanism for the side reaction
and the corresponding Gibbs free energy profile. We have started our mechanistic
considerations by analysing the role of the base in the reaction. Earlier we have
postulated that the role of the DTBPy is to deprotonate 3.1. Therefore in the
absence of the base the proton will be abstracted by some other species. As the
triflate ions are not appropriate candidates for proton abstraction, the only possibility
to be protonated is the indole molecule. This assumption seems reasonable as the
protonation of indole known from experiments [118] and from theoretical calculations
as well [119]. The proton exchange between 3.1 and the indole molecule proved to be
exergonic (6 kcal/mol). We have assumed that the reaction proceeds via association
of the protonated and the neutral indole molecules. This reaction is endergonic (10.0
kcal/mol) and requires an activation free energy of 16.1 kcal/mol. This protonated
species can exchange proton with another indole molecule in a slightly endergonic
process. Intermediate 5.2 is a neutral secondary amine. Such molecules readily
undergo N-alkylation reactions with iodonium salts. The corresponding barrier height
for this transformation is 20.0 kcal/mol. This step provides the protonated side
product. The overall free energy barrier for this process is remarkably large (30.3
kcal/mol). However the deprotonation and activation (according to the mechanism
described in Fig. 2.14 ) of protonated indole requires slightly larger overall activa-
tion free energy (31.2 kcal/mol). Therefore the side reaction is slightly more favourable.
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Figure 2.15: Free energy profile and mechanism for the dimerization side reaction. Energies

are in kcal/mol.

The qualitative picture presented above suggests that the side reaction can
be supressed by employing moderate strength bases. However the application of
organic bases might result in the trifluorethylation of these substances. Figure 2.16
summarizes the conversion of indole to the desired product in the presence of various
organic amines and the Gibbs free energy profile for the trifluorethylation side reaction
of the bases. The correlation between the activation free energies for the N-alkylation
reaction and the conversions to the desired product is obvious. If the activation Gibbs
free energy for this side reaction is smaller than the activation necessary for the indole
functionalization reaction, only traces of the product is detected. If the activation
free energy barrier for the side reaction is in the range of the barrier for the desired
reaction the useful conversion remains small to moderate. The DTBPy proved to be
the only base in our scope which has significantly higher barrier against alkylation
reaction than that of the indole molecule.

Figure 2.16: Conversion of the trifluorethylation of indole in the presence of amines in

comparison with the Gibbs free energy profiles of the trifluorethylation of the amines. Values

in parentheses are in kcal/mol.

In summary, our research on the mechanism of C3 trifluorethylation of in-
doles examined the target reaction and two experimentally observed side reactions.
The desired product is formed through a simple electrophyl substitution reaction on
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the indole ring and the deprotonation of the σ-complex. The followed side reactions
are related to with the protonation of indole in the absence of suitable bases and the
trifluorethylation of the bases. Our calculations on the latter reaction also revealed
the role of the sterical hinderence of DTBPy.
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2.4 Frustrated Lewis-Pairs [4]

2.4.1 Introduction

Frustrated Lewis-Pair (FLP) systems are based on the concept of cooperative bifunc-
tional catalysis. FLP systems consist of a Lewis aceptor (A) and Lewis donor (D).
The direct reaction (quenching) of the donor and acceptor molecules or fragments (in
the case of intramolecular FLPs) is unfavoured. The quenching is prevented by the
high degree of steric hindrance or the high ring strain in the product state. FLPs can
facilitate the activation of otherwise inert reagents, even molecular hydrogen. The
activated hydrogen molecule can be utilized in various reductive processes that can
yield valuable organic substances. The catalytic hydrogenation of imines [120–122],
enamines [121], enols ethers [123], N-heterocycles [124], alkenes [125], alkynes [126]
and carbonyl compounds [127] have been successfully accomplished by the utilisation
of different FLP catalysts.

The mechanism of the hydrogen activation has been described and rationalized
by static DFT calculations [128]. In general, the process features a pre-equilibrium
between the active and inactive form of the FLP. The active form of the FLPs is able
to cleave heterolytically molecular hydrogen by stabilizing the proton and the hydride
by the Lewis base and acid sites, respectively. According to the static calculations,
the hydrogen dissociation proceeds in a single elementary step [128]. Interpretation
of the hydrogen activation step is based on molecular orbital approach [129]. Ideal
orbital interaction between the bonding orbital of the hydrogen and the empty orbital
of the Lewis acceptor requires a side-on orientation. In contrast an end-on orientation
is necessary to ensure sufficient overlap between the lone pair of the Lewis donor
and the antibonding orbital of the hydrogen molecule. The calculated structural
parameters for the TS-s of H2 activation by FLPs demonstrated the validity of this
picture. In addition, the cooperative nature of the H2 activation has been revealed
and discussed [129,130].

Recently Pu and Privalov have published theoretical studies which combine PES
exploration with ab initio molecular dynamics simulations [131–135]. Their results
suggest the existence of a quasi-stable bounded state in hydrogen activation reactions
[135]. This assumption implies that hydrogen activation is a two-step process and
that the static calculations for these systems provide qualitatively false mechanistic
picture. However, identification of intermediate states in finite temperature picture
requires free energy calculations or the estimations of the lifetimes from canonical
molecular dynamics simulations. Without such calculations the relevance of the
assumed intermediate state can not be convincingly shown.

In order to asses the validity of the single-step hydrogen activation model in finite
temperature, we have performed free energy calculations in combination with ab
initio MD. This assessment also provides an opportunity to compare the static picture
emerged from earlier studies with this new dynamical mechanistic view and discuss the
validity of the approximation used in static approaches. We have studied intramolecular
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FLPs, where the dissociation of the Lewis donor and acceptor counterparts is prevented
by the linking group.

2.4.2 Methodology

All simulations have been performed employing the CP2K code [136] and the BLYP-
D3 [86,90,91] method. The effect of core electrons has been described by the Goedecker-
Teter-Hutter [137] pseudopotentials, while the valence orbitals have been extended in
a double-ζ basis set. An auxiliary plane-wave basis set was applied for the electron
density with a kinetic energy cut-off of 300 Ry. The molecular dynamics simulations
were carried using a time-step of 0.5 fs and a global Nosé-Hover thermostat-chain. The
dynamics of the system has been characterized by two CVs: a coordination number for
the description of the bonding between the hydrogen atoms and the relevant atoms of
the linked FLPs (CV1), and a coordination number between the atoms of the hydrogen
molecule.

The free energy calculations have been done with metadynamics within its extended
Lagrangian formalism [39]. The width of the Gaussian functions has been chosen for 0.1
in both dimensions, while the height of the hills was 0.5 kcal/mol. The minimum free
energy path on the free energy surface was localised by applying the zero temperature
free energy string method. The images of the optimized pathway have been used to
construct a reaction path-CV which has been used as reaction coordinate (λ) [13]. The
chosen CVs have been tested through committor analysis. The ensemble of shooting
points has been sampled through two dimensional umbrella potential. The reaction
coordinate was used to define the stable reactant and product regions, and to analyse
the committor trajectories. Configurations from the reactant and product states and
from the saddle region of the free energy surface were aligned with an algorithm based
on their minimal RMSD (Eq. 1.17) and visualized for each system (vide infra).
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2.4.3 Nitrogen/boron "molecular tweezer" by Repo and

Rieger et al. [122]
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Figure 2.17: The free energy surface of the "molecular tweezer" system with respect to

CV1 (horizontal axis) and CV2 (vertical axis) and an ensemble of geometries for reactant,

transition and product states. Colour of the atoms: N-blue, B-cyan, HB-gold, HN -red,

C-green, F-yellow, HFLP -white. Energy contours are in kcal/mol. H2 molecules in the

reactant state are not shown.

The free energy surface of the studied molecular tweezer system is clearly charac-
terized by two well defined minima and the connecting transition state region. Apart
from the displacements of the reacting four atoms, the ensembles of configurations in
the reactant, transition and product states show only small variations, which can be
associated with equilibrium vibrations and internal rotation of methyl groups. This
indicates that the contributions of internal rotors to the free energy along the reaction
path cancel out to a large extent.

The position of the hydrogen atoms in the TS is surprisingly localised. Note, that
on Fig. 2.17 the atoms of molecular hydrogen are omitted from the reactant state
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ensemble for sake of simplicity. Comparison of the TS and product state ensembles
clearly shows that the bonding to boron atom is almost complete at the TS, while the
proton binds to the nitrogen in concert with the cleavage of the H–H bond after the
TS.

Figure 2.18: The minimum free energy pathway and the definition of stable reaction and

product states. Energy contours are in kcal/mol.

The shape and the quite uniform slope of the minimum energy pathway indicates
that a single CV is able to describe the reaction sufficiently. However, very fine details,
such as the pronounced curvature at the TS, would not be possible to capture with a
simple linear combination of our present CVs.
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Figure 2.19: Temperature of B (blue), N (green) and activated hydrogen atoms HB

(orange), HN (red). The shaded area corresponds to the 90% confidence interval calculated

from the standard error of the mean. The temperature of other atoms remained constant at

the 300 K set for the TS ensemble.

The instantaneous temperature of each atom has been calculated and averaged
along the reaction path from the committor simulations. Since these trajectories
are NVE trajectories, we can deduce the temperature distribution of a hypothetical
reactant ensemble where all configurations have a temperature distribution sufficient
to reach the TS. Fig. 2.19 indicates that the necessary thermal energy for the reaction
is dominantly stored in the molecular hydrogen. Interestingly, the two atoms of the
molecule contribute differently. Even larger differences can be observed at approaching
the product state. The H-B bond formation is significantly more advanced then that
of H-N at the TS. Therefore a large part of the H-N bond energy is released after the
TS, which contributes to the significantly higher temperature of the H atom on the
nitrogen.
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2.4.4 The "preorganized" FLP of Slootweg, Lammertsma et

al. [139]
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Figure 2.20: The free energy surface of the "preorganized" FLP system with respect to

CV1 (horizontal axis) and CV2 (vertical axis) and an ensemble of geometries for reactant,

transition and product states. Colour of the atoms: P-gold, B-cyan, HB-purple, HN -red,

C-green, HFLP -white. Energy contours are in kcal/mol. The H2 molecules in the reactant

state are not shown.

This preorganized system is one of the rare FLP systems that activate hydrogen
molecule in spite of the absence of fluorinated groups or other strongly electron
withdrawing groups.

An interesting feature of the reaction path (Fig. 2.20) is the remarkable variation
of the mobility of the phenyl rings. At the reactant state both rings fluctuate around
the equilibrium arrangement. In contrast, at the TS the phenyl rings rotate around
the B-C σ bonds. At the product state, one of the phenyl rings can still rotate,
while the other is restrained by the tBu-groups. The high mobility at the TS is
counter-intuitive, as we expect a more pyramidal B arrangement by the sp2 →sp3

hybridization change upon H2 coordination. Such pyramidalization is expected to
increase the steric congestion around the boron atom. However after filling the empty
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orbital of the boron atom, no delocalization can occur between the phenyl groups
and the boron atom. This effectively reduces the torsion potential around the B-C σ

bonds. Although the HBCPH core is quite rigid, the orientation of the tBu groups
provides room for the rotation of one of the phenyl groups in the product state.

Another interesting feature of the H2 activation of this FLP is that the orientation
of the simultaneously developing B–H and P–H bonds deviate from the usual planar
alignment. This may be attributed to the steric repulsion between the ligands of the
Lewis centers.

Figure 2.21: The minimum free energy pathway and the definition of reaction and product

states. Energy contours are in kcal/mol.

The minimum free energy surface of the system is also interesting (See Fig. 2.21.
It features three almost perfectly straight segments. The first includes the approach
of the hydrogen molecule to the reactive center. This part is responsible for the major
part of the free energy barrier. The second segment shows a synchronous heterolytic
hydrogen cleavage and the attachment of the hydride and the proton to the boron
and the phosphorous, respectively. During the third segment the final hidride–proton
distance is reached. It is important to note that at variance with the previous system
the iso-lines defining the reactant and the product state are close to be orthogonal to
each other. This means that no linear combination of the two coordinates would be
sufficient for the description of the reactive event.
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Figure 2.22: Temperature of B (blue), P(green) and activated hydrogen atoms HB (orange),

HP (red). The shaded area corresponds to the 90% confidence interval calculated from the

standard error of the mean. The temperature of other atoms remained constant (300 K).

The instantaneous atomic temperature shows a dramatically different picture from
what we have seen for the molecular tweezer (See Fig. 2.22). The energy is more
uniformly distributed among the atoms involved in the reaction. In the reaction
side not only the hydrogen atoms have high temperature, but also the boron and
phosphorus atoms have comparable temperature. This can be understood by assuming
that the twist around the CH2–P and CH2–B bond requires excess velocity on the
boron and phosphorous atoms. This torsional movement is crucial to form the strained
transitional state structure with a five-member ring. In the product side the excess
heat from the P–H bond formation again contributes to the temperature of the proton,
while the B–H bond formation releases much smaller amount of heat.
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2.4.5 Ethylene-linked phosphine–borane system by Erkel at

al. [138]
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Figure 2.23: The free energy surfaceof the ethylene-linked FLP system with respect to the

CV1 (horizontal axis) and CV2 (vertical axis) and an ensemble of geometries for reactant,

transition and product states. Colour of the atoms: Colour of the atoms: P-gold, B-cyan,

HB-purple, HN -red, C-green, F-yellow, HFLP -white. Energy contours are in kcal/mol. The

H2 molecules in the reactant state are not shown.

The free energy surface (Fig. 2.23) indicates that before reaching the TS, only
minor H–H bond dissociation occurs. The ensembles of the FLP systems are fairly
uniform, they show only oscillations around a well-defined structure in the reactant,
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transition and product states. Again hydride coordination to the boron atom precedes
the proton attachment to the phosphorous. The product zwitter-ionic species is
stabilized by the Coulombic interaction between the FLP counterparts.

Figure 2.24: The minimum free energy pathway (white circles) and the projection of the

intrinsic reaction coordinate (purple line). The definition of reaction and product states are

indicated with thin blue and red lines, respectively. Energy contours are in kcal/mol.

Comparison of the minimum free energy path and the 0 K IRC curve provides
additional insight into the reaction. To this end we have projected the IRC config-
urations into our two dimensional CV space. Fig. 2.24 shows that the two curves
nicely coincide. This finding is important, as it suggests that the zero temperature
description is qualitatively correct in terms of the important coordinates.

Although the minimum energy path is in good agreement with the minimum
free energy path in these two CVs, this does not necessarily mean that structural
parameters calculated along the IRC path are representative for the reaction path
ensemble. We have therefore calculated the distribution of some structural parameters
along the commitment trajectories and plotted their distribution with respect to the
reaction coordinate (See Figs. 2.25–2.30).

Fig 2.25 presents the distribution of BHB distance along the reaction coordinate.
The distribution is quite narrow and it is in excellent agreement with the IRC values.
We can also see that the evolution of the B–H distance supports the early bond
formation picture.

The HPP distance distribution on Fig. 2.26 is wider than the distribution of BHB

distance. Still, the IRC gives satisfactory description for the progress of this variable
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along the reaction coordinate. The asyncronous B–H vs. P–H bond formation can be
also understood by comparing the slopes of the curves in Figs. 2.25 and 2.26.

Figure 2.25: Distribution of the B–HB distance with respect to λ. The IRC is designated

with white line.

Figure 2.26: Distribution of the HP –P distance with respect to λ. The IRC is designated

with white line.
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Fig. 2.25 presents the distribution of BHB distance along the reaction coordinate.
The distribution is quite narrow and it is in excellent agreement with the IRC values.
We can also see that the evolution of the B–H distance supports the early bond
formation picture.

The HPP distance distribution on Fig. 2.26 is wider than the distribution of BHB

distance. Still, the IRC gives satisfactory description for the progress of this variable
along the reaction coordinate. The asyncronous B–H vs. P–H bond formation can be
also understood by comparing the slopes of the curves in Figs. 2.25 and 2.26.

Figure 2.27: Distribution of the HBHP distance with respect to the reaction coordinate.

The IRC is designated with white line.

As the HBHP distance is in direct connection with CV2, its good correlation with
the IRC curve is not surprising. The distribution of the reactive trajectory snapshots
is also presented on Fig. 2.27 in order to demonstrate the power of IRC curve in the
qualitative description. The distribution is very narrow along the reaction coordinate,
especially in the product side of the reaction.

Another set of relevant coordinates for the description of the FLP systems is
the two angles BHBHP (Fig. 2.28) and HBHPP (Fig. 2.29). The angles are often
used to interpret molecular orbital overlaps along the reaction path. Although the
IRC gives again a reasonable guess for these parameters, the distributions are more
spread than those of the distances. Similarly, the torsional angle defined by the atoms
BHBHPP proved to be quite undetermined, and they scatter quite considerably along
the reaction coordinate (Fig. 2.30). The IRC provides only strongly qualitative picture
for its evolution.

The static calculations also suggest that formation of the HPP and BHB bonds
are correlated. In order to describe this correlation we have plotted the distribution
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of the HPP distance with respect to the BHB distance. The IRC curve has been
projected again onto these two coordinates. The distribution shows that the correlation
is significant and follows the picture provided by the IRC. We also see, that this
correlation of the two distances is stronger at the product side.

Figure 2.28: Distribution of the BHBHP angle with respect to the reaction coordinate.

The IRC is designated with white line.
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Figure 2.29: Distribution of the HBHPP angle with respect to the reaction coordinate.

The IRC is designated with white line.

Figure 2.30: Distribution of the BHBHPP dihedral with respect to the reaction coordinate.

The IRC is designated with white line.
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Figure 2.31: Distribution of the HPP distance with respect to the BHB distance. The

IRC is designated with white line.

Analysis of the temperature curves (Fig. 2.32) yields similar conclusions to those
obtained for the previous systems. Again we see that the largest amount of heat
is localized on the P–H unit. This feature can be observed for each system and
points to an important reactivity issue regarding subsequent reactions. An extremely
heated proton on the Lewis-base phosphorous or nitrogen atom is likely to participate
in subsequent non-equilibrium reactions such as degradation of the complex or fast
deprotonation of the system. However we note that these issues require simulations
with explicit solvent, because heat dissipation might be significantly effected by the
solvent cage.
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Figure 2.32: Temperature of B (blue), P (green) and the activated hydrogen atoms HB

(orange), HP (red). The shaded area corresponds to the 90% confidence interval calculated

by the standard error of the mean.

In the reactant side the kinetic energy of the hydrogen atoms is significantly large
for all three systems. Detailed insight can be obtained by decomposing the velocities
of the H atoms into vibrational, rotational and translational components. The center
of mass for the two atoms defined as:

rcom =
mHr1 +mHr2

2mH
(2.2)

=
r1 + r2

2
(2.3)

The center of mass velocity can be obtained by simple derivation:

vcom =
v1 + v2

2
. (2.4)

The translational kinetic energy corresponding to the center of mass motion is
provided by the following expression:

Etrans
kin = 2mH

v2com
2

. (2.5)
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The instantaneous temperature can be calculated the translation as:

Ttrans =
2Etrans

kin

3kB
(2.6)

The velocity of the atoms in the center of mass coordinate system is defined as:

vcom
i = vi − vcom (2.7)

This velocity can be projected into the axis defined by the two hydrogen atoms, in
order to obtain the velocity for vibrations of the hydrogen molecule:

vvibr = (vcom
i · e) · e, (2.8)

where e is unit vector of the H–H bond. The corresponding kinetic energy contribution
is:

Evibr
kin = 2mH

v2vibr
2

(2.9)

The instantaneous vibrational temperature for this single degree of freedom is:

Tvibr =
2Evibr

kin

kB
(2.10)

The contribution of the two rotational degrees of freedom to the kinetic energy
can be calculated from the energy conservation:

Erot
kin = Etot

kin − Etrans
kin − Evibr

kin , (2.11)

where Ktot is the total kinetic energy of the hydrogen atoms. The rotational tempera-
ture is:

Trot =
2Erot

kin

2kB
(2.12)

The kinetic energy distribution between the different degrees of freedom of the
H2 molecules reaching the TS region shows an interesting picture (Fig. 2.33). The
initial translational kinetic energy of the hydrogen molecules is much larger than in
the transition state. In contrast, the kinetic energy of the vibrational and rotational
degrees of freedom vary negligibly. This implies that the major part of the free energy
necessary to bring the system to activated state concentrated in the translational
degree of H2.

The instantaneous temperature distribution shows the same picture (Fig 2.34).
Indeed the temperature of the translation becomes approximately three times higher
than the temperatures of the other degrees of freedom.

In summary we have explored the mechanism of the hydrogen activation of three
FLP systems in finite temperature picture. The free energy exploration has supported
the single-step mechanistic picture from previous static calculations. Statistical analysis
of the structural parameters of the committor calculations has shown that the IRC
configurations are relevant in the finite temperature as well. The velocity evolution of
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Figure 2.33: Kinetic energy distribution between the different degrees of freedom of the

H2 molecule with respect to the reaction coordinate: total (orange), translational (red),

vibrational (green) and rotational (blue). The shaded area corresponds to the 90% confidence

interval calculated from the standard error of the mean. All data sets are depicted in 10−20

J unit.

the committor trajectories provided additional informations about the reactions. The
product side heat increase of the proton was significant in all systems. In addition
the reaction side decomposition of the kinetic energy revealed the importance of the
translational kinetic energy in hydrogen activation.
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Figure 2.34: Temperature distribution between different degrees of freedom of the H2

molecule along the reaction coordinate: total (orange), translational (red), vibrational (green)

and rotational (blue). The shaded area corresponds to the 90% confidence interval calculated

from the standard error of the mean.
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Methodological development
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This chapter presents the methodological developments we have done recently.
First a rate theory [5] is presented, then the development of a new reaction coordinate
optimizing method is discussed. [6]

3.1 Divided Saddle Theory – new method for calcu-

lating rate constants [5]

3.1.1 Introduction

As it was pointed out in Section 1.6.2, most methods for rate constant calculation are
based on the assumption that the dividing surface (defined by the half-half splitting
probability) is known, a priori. Methods such as the Bennett-Chandler [68,69], the
EPF [71], or the expression from Hummer [73] use trajectory calculations that have
been initiated from the dividing surface. The corresponding initial structures can be
harvested from constrained molecular dynamics simulations if the reaction coordinate
and its value corresponding for the dividing surface are known. However searching
for the right reaction coordinate might include committor calculations as explained
in section 1.4.3. Even if the proper reaction coordinate is known searching for the
dividing surface itself implies expensive committor calculations along the reaction
coordinate. Even if both the reaction coordinate and the dividing surface are known,
generating equilibrium ensemble of the dividing surface is a challenging computational
task. As it was already mentioned for transition path sampling simulations, transition
pathways between reactant and product states might be divided by large barriers.
In such cases equilibration with an additional constrain bounds the system into a
particular reaction channel. Additionally, constrained simulation in CV space is not
always available in molecular dynamics codes.

One way to overcome these problems is to generate geometries by umbrella sampling
instead of constrains especially by the Hamiltonian exchange or parallel tempering
variants. If umbrella potential is applied the geometries can be sampled by choosing
the configurations in the vicinity of the dividing surface. Besides the arbitrariness
of considering a configuration close or far from the surface, this approach is rather
inefficient. It includes only a small portion of the generated configurations into the
sample. Naturally the efficiency of the configuration generation can be enhanced by
applying larger force constant. However, it also requires smaller time-step.

Beside the technical difficulties, there is an inconsistency behind the physical
picture of the methods that are based on the dividing surface ensemble. This aspect
can be enlightened by the example of an out-of-equilibrium reaction. Forward rate
constant is calculated in BC-like methods from the assumption of equilibrium between
reactant state and the dividing surface. The backward rate constant is calculated
from the equilibrium assumption between the product state and the dividing surface.
For an out-of-equilibrium reaction, the assumed equilibrium relations are against the
zeroth law of thermodynamics, which defines equilibrium as a reflexive and transitive
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relation. Namely the RS should be in equilibrium with PS if RS is in equilibrium
with ds and PS is in equilibrium with ds.

The difficulties and inconsistency of the BC-like methods and the computational
difficulties of other methods (e.g. TPS) encouraged us to develop a new theory for
rare events that can facilitate the development of new methods for rate constant
calculations.

3.1.2 The theory

Our theory is based on the assumption, that the reaction coordinate λ is known. We
define the reactant and product states as adjoint ranges of the reaction coordinate.
The two regions meet at the dividing surface. We assume that the system is in
equilibrium within the reactant state. If the backward rate constant is also desired,
the same assumption for the product state is also necessary. An equilibrium between
the reactant and product states is not required.

We have started the derivation of the rate constant similarly to the Bennett-
Chandler [68, 69] procedure by obtaining the microscopic rate constant from a suf-
ficiently long equilibrium simulation. For such a long trajectory the macroscopic
rate constant (inverse of mean life time (τ)) can be calculated in a straightforward
approach:

k = 1/τ =
N t

ttRS

=
1

〈tRS〉
, (3.1)

where ttRS is the total time spent by the system in the reactant state (RS) and N t is
the total number of forward reactions. In order to define reactions we have introduced
the definition of stable reactant and stable product regions similarly to EPF [71] and
the method of Hummer [73]. We have divided the trajectory into segments at its
crossing points with the borderlines of the stable reactant and product states (see Fig.
3.1). We consider a trajectory segment forward reactive if it leaves the stable reactant
region and enters to the stable product region without revisiting the stable reactant
region. Time reversion converts any forward reactive event to a backward reactive
event and vice versa. Eq. 3.1 is a proper definition for the rate constant. However,
it is only efficient for fast reactions. τ is frequently many orders of magnitude larger
than the typical time scale of simulations. Therefore calculation of Eq. 3.1 with proper
statistics is not generally possible.

In order to derive a computationally feasible method for rate constant calculations
we have factorized expression 3.1. To this end we have introduced an auxiliary region,
the saddle domain (SD) (See Fig. 3.1). The saddle domain extends from the dividing
surface into the reactant state to arbitrary length. The same region can be defined for
the backward region likewise. The factorization is performed as:
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Figure 3.1: Top: definition of reactant state (RS) and Saddle Domain SD on a typical

free energy profile. Both RS and SD extends from the dividing surface ds. The stable

reactant and product regions are defined by green and blue dashed lines. Bottom: typical

time evolution of the reaction coordinate for a two state system. Forward reactive trajectory

segments are green, while non reactive trajectory segments are indicated with red lines. Note,

that some of the red segments can be reactive in the backward direction. tiSD and t
j
SD denotes

the total time spent in the SD by the i-th and j-th trajectory segments respectively. These

visits are indicated by dashed green lines.
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k =
N t

ttRS

(3.2)

kDST =
N t

ttSD

· t
t
SD

ttRS

(3.3)

= kSD · αSD
RS . (3.4)

In Eq. 3.4 we have introduced kSD, the rate constant from the SD which is defined
analogously to the forward rate constant in Eq. 3.2:

kSD =
N t

ttSD

(3.5)

The remaining function is the conversion factor, which often appears in chemistry:

αSD
RS =

ttSD

ttRS

(3.6)

=
PSD

PRS
(3.7)

=
cSD

cRS
(3.8)

So far the equilibrium assumption has not been employed. The equations above
remain unchanged even in the case of steady state kinetics of a catalytic cycle. If
equilibrium within the reactant state is assumed, αSD

RS can be calculated by applying
the definition of the free energy surface:

αSD
RS =

∫

λ∈SD

e−βF (λ)dλ

∫

λ∈RS

e−βF (λ)dλ
(3.9)

3.1.3 The method

The remaining task is to find an efficient algorithm to evaluate Eq. 3.5. To this end
we have expressed it as an ensemble average on the trajectory segments.

kSD =
N t

ttSD

(3.10)

=

∑
N i

∑
tiSD

(3.11)

=
〈N〉segments

〈tSD〉segments

(3.12)

The reactivity of the ith segment is denoted with N i, which is unity for reactive
segments, and zero for non-reactive segments. The time spent by a particular segment
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in SD is denoted with tiSD. The trajectory segments can be generated by sampling
configurations in SD and initiating trajectories with random velocities, integrating
the equations of motion for each random initial velocity forward and backward in
time until they reach one of the stable states. Note, that trajectories with longer
residence time in SD are more likely to be sampled. Therefore this bias needs to be
compensated. This can be analytically accomplished by reweighting each segment
with the factor of 1/tSD:

kSD =
〈N〉segments

〈tSD〉segments

(3.13)

=
〈N/tSD〉NV T

〈tSD/tSD〉NV T

(3.14)

=

〈
N

tSD

〉

NV T

. (3.15)

Naturally, if the sampling is generated using other biases, additional reweighting is
necessary for calculating the expressions correctly. The final expression for kDST can
be obtained by including the definitions in Eqs. 3.15, and 3.9 into Eq. 3.4:

kDST =

〈
N

tSD

〉

NV T

∫

λ∈SD

e−βF (λ)dλ

∫

λ∈RS

e−βF (λ)dλ
. (3.16)

3.1.4 Comparison with other methods

The clear advantage of our method is that it is not necessary to know the dividing
surface a priori. One can sample the geometries around the approximate position
of the dividing surface with any biased sampling method. One of the most natural
choices is to apply umbrella sampling. The committor or the average reactivity along
the reaction coordinate can be calculated from the short dynamical trajectories. In
this way the dividing surface defined by the isocommittor or the maximal reactivity
can be localised.

All trajectories can be utilized in the calculation of the rate constant through
Eq. 3.16. Once the position of ds is determined the rate constant can be calculated
by a simple postprocessing of the trajectories. At this point the width of the SD is
arbitrary. We emphasize that although the width of SD might affect the efficiency, its
variation does not change the calculated rate constant. According to our experience
the SD can be chosen to cover a λ-range within 1-2 kT from the ds.

It is interesting to examine our theory and the method in the limits of the SD

width. First let us extend it to infinity. αSD
RS becomes unity, and kSD will be equal to

k. In this case our method will recover the brute force calculation of the rate constant.
However the efficiency still depends on the applied bias potential for sampling. If the
bias potential is constant, the efficiency will be the same as performing undisturbed
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long simulations and counting the rare events. With a moderate strength umbrella
potential the efficiency can be enhanced.
In the zero SD-width limit our rate expression transforms:

kDST =

〈
N

tSD

〉

NV T

· dλ · e−βF (λ=ds)

∫

λ∈RS

e−βF (λ)dλ
(3.17)

Since the total time spent in the SD can be expressed as the sum of the individual
visits of SD by a given segment, our expression now recovers the expression of
Hummer [73]:

kDST =

〈
N

tSD

〉

NV T

· dλ · e−βF (λ=ds)

∫

λ∈RS

e−βF (λ)dλ
(3.18)

=

〈
N
∑

i ti

〉

NV T

· dλ · e−βF (λ=ds)

∫

λ∈RS

e−βF (λ)dλ
(3.19)

=

〈
N

∑

i |vi|−1

〉

NV T,ds

feq(λds) (3.20)

The last line is the same expression as in Eq. 1.105. One can recognize the unnormalized
transmission coefficient from the equations above:

RDST =

〈
N

tSD

〉

NV T

· dλ, (3.21)

which can be compared with the corresponding equation of EPF in Eq.1.104. By
taking into account the non-vanishing terms only, the EPF expression can be rewritten
as:

REPF =

〈

χEPF

tfSD

〉

NV T

· dλ (3.22)

Here tfSD denotes the infinitesimal time period spent by a reactive trajectory with
velocity dλ/tfSD during the first crossing of the SD with dλ width.

The two expressions are very similar and indeed equivalent in infinite sampling.
Note, that DST accumulates the true dynamical information from a reactive segment
irrespectively which configuration of the reactive trajectory segment has been
sampled. In contrast EPF provides the same information from a specific reactive
segment, if it has been sampled repetitively in all ds crossing points. EPF gives
non-zero contribution only at the first crossing point of a given trajectory, where
the contribution is 1/tfSD. In contrast DST gives 1/tSD contribution with tSD/tfSD

higher probability for a given trajectory. This means that DST is more efficient
in terms of the number of simulations (for example if the trajectories are already
available from a committor analysis). However, if one intends to calculate only rate
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constant without calculating the committor, EPF is more efficient. The efficiency
is obtained by the termination of the trajectories that attempt a recrossing during
backward integration. It is worth emphasizing, that in this comparison we neglected
the simulations and computational cost necessary to find the ds, which is itself in
the order of a DST calculation. In terms of overall computational time DST is
at least as effective as EPF. In the most favourable case DST is twice as efficient as EPF.

3.1.5 Numerical tests

In order to assess the performance of our method we have performed long unbiased
simulations and DST calculations for two systems and then compared the calculated
rate constants. All calculations have been performed by employing the CP2K simu-
lation package [136]. The first system was the equilibrium of the alanine-dipeptide
between the C5 and the C7 equatorial conformations. The PES was described by the
Amber forcefield [97], and all NVT simulations have been carried out with Nose-Hoover
global thermostat at 300 K and with 0.3 fs time-steps.

This transformation is known to be sufficiently described by the two torsional
angles Φ and Ψ. The free energy with respect to these two CVs was explored by
multiple-walker metadynamics simulation. A linear combination of these two CVs was
chosen as an approximate reaction coordinate (λ):

λ = a · Φ+ b · Φ+ c (3.23)

where a, b and c were chosen to yield a vector (see Fig.3.2 ) that connects the minima
of the reactant and product and to provide continuous transition from 0 to 1 from
reactant to product (a =0.30, b =-0.36, c = 1.79). λ is simply the projection of the
(Φ,Ψ) points to this vector (See Fig. 3.2). As a reference we have performed a 500 ns
unbiased simulation. The free energy along the reaction coordinate has been calculated
through Boltzmann inversion.

In order to identify the true dividing surface, DST calculation has been carried out.
1167 configurations have been sampled from the region λ ∈ [0.4, 0.67], which encloses
the top of the barrier on the estimated free energy surface. The committor along λ

has been calculated from the DST calulations, and the dividing surface was assigned
to the λ = 0.57 value. The definitions of the reactant side saddle domain and product
side saddle domain are: dsR = λ ∈ [0.4, 0.57] and dsP = λ ∈ [0.57, 0.67]. With the
definition of ds and SD-s in hand, we have calculated the rate constant from both
the unbiased simulations and from DST trajectories. Moreover, as the free energy
barrier heights are often used for TST expression (Eq. 1.114) in the literature (See
eg. [140–146]), we calculated the rate constant in this manner as well. The results of
the different approaches have been summarized in Table 3.1.

The rate constants calculated in the framework of DST are in excellent agreement
with the unbiased simulation results. Moreover, the equilibrium constants from the
reference and DST are also in perfect agreement. However it must be noted, that the
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Figure 3.2: Top: Defintion of the collective variables (Φ, Ψ) describing the C5 ⇀↽ C7eq

transformation of alanine dipeptide. Bottom: Definition of the reaction coordinate λ and the

free energy surface. Contours are depicted in kcal/mol units.

standard error of the mean is consistently larger for our technique than for the direct
calculations. At variance, applying the TST expression in Eq. 1.114 for free energy
barrier heights resulted in discouraging results. The rate constants are 5-7 times larger
than the reference values, and their ratio also show the limitations of this approach.

In order to provide quantitative assessment of the efficiency of DST, we compare it
numerically with the very efficient EPF method, employing the alanine-dipeptide
test system. We have performed a new set of simulations for DST and a separate set
for EPF with NVT ensemble of shooting points at SD and ds (determined from our
previous calculation) respectively. Fig. 3.3 shows, that DST provides a slightly faster
convergence in terms of necessary configurations. Within the performed number of
computations EPF’s convergence is even problematic. However EPF uses a magnitude
smaller computational effort as it follows only a small portion of trajectories until
they reach one of the stable states. Nevertheless we should bear in mind that
the proper estimation of the overall efficiency of the rate constant calculations
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Table 3.1: Comparison of rate constants and equilibrium constants from unbiased simula-

tions, and DST calculations. Rate constants are in 1011 s−1 units. Standard error is given in

parenthesis.

Alanine-dipeptide direct present method TST
k1 0.266 (0.011) 0.257 (0.014) 1.474 (0.063)
k−1 1.629 (0.033) 1.564 (0.068) 11.866 (0.464)
K 0.163 (0.006) 0.164 (0.011) 0.124 (0.007)
Barbaralene direct present method TST
k 19.26 (0.51) 18.63 (1.65) 49.63 (6.25)

of different methods should include the cost of the identification of the dividing surface.

Figure 3.3: The convergence of the calculated rate constants for the C5 → C7eq transfor-

mation in terms of relative error from best estimate from direct MD. (dashed line). Inset:

estimated rate constants (in 1011 1/s units) as a function of the number of the generated

trajectory segments. Values for DST and EPF are depicted in green and red respectively.

The convergence of our method is surprisingly fast, as approximately 2000 sim-
ulations and 1 ns of total simulation time were necessary for the converged results.
This amount of computation is feasible with the present-day simulation techniques,
especially bearing in mind that the trajectory calculations can be trivially parallelized.
These results encouraged us to perform similar calculations with a much more CPU
demanding forcefield.
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Our next example is the Cope rearrangement of barbaralene at 1000 K. The
high temperature was necessary to obtain sufficient statistics with direct calculation.
The BLYP functional have been chosen for the description of the PES. The solution
for the electronic structure problem has been performed with a double ζ basis sets
with additional set of polarization functions. The Goedecker-Teter-Hutter [137]
pseudopotentials have been applied and plane-wave basis set an with energy cutoff
of 300 Ry has been employed to expand the electron densities. The periodic cubic
simulation cell parameter was 20.8 bohr. The interaction between periodic images has
been decoupled with the Martyna-Tuckermann method [147]. Since the reaction is
degenerate, the choice of proper reaction coordinate did not require preliminary free
energy exploration. We have chosen an anti-symmetric reaction coordinate:

λ = (d1 − d2), (3.24)

where d1 and d2 denote the forming and breaking C–C bonds lengths (see Fig. 3.4).
The SD region has been defined as λ ∈ [−0.20 bohr, 0.00 bohr]. 200 configurations
have been collected from SD. The short trajectory simulations took 16.3 ps and their
result compares well with the values of the unbiased MD with 1 ns long simulation
time. The results of the simulations are presented ion Table 3.1. The rate constant
calculated in the DST framework and that by the unbiased simulations compare well.
The difference between the two approaches is approximately 3.3%. Similarly to the
case of the alanine dipeptide, the application of the TST formula for the barrier heights
resulted in an overestimated rate constant.

In summary we have developed a theory and and method for the calculation of rate
constants from molecular dynamics simulations. The method employs a free energy
profile along an appropriate reaction coordinate and short committor calculations.
The method has been validated by numerical simulations. We have analitically showed
how our theory relates to Bennett-Chandler type methods.
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Figure 3.4: Top: Definition of the distances (d1 and d2) for barbaralene. Bottom free

energy surface corresponding to d1 and d2 and the definition of reaction coordinate for the

Cope rearrangement of barbaralene. Units are kcal/mol and bohr.
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3.2 Committor map collective variable [6]

3.2.1 Introduction

We have emphasized in Section 1.4.3, finding appropriate CVs and representing the
reaction coordinate is a complex computational challenge. We have already pointed
out, the description of a reaction can be validated through committor calculations.
This is the state-of-the-art approach to decide whether our set of coordinates is suitable
for the description. Often the number of important coordinates is too large to explore
the free energy surface in their space. Therefore, in practice dimensional reduction
techniques such as path CV, property maps or linear combinations of CVs are applied.
Even if the right set of CVs are in use, dimension reduction techniques might lead
to insufficient description of the reactive event. For example, it is possible that the
committor distribution at the dividing surface is not singly peaked at the φ = 0.5

value. If a committor calculation provides unsatisfactory results, there is no general
procedure to utilise the enormous amount of information to find a better reaction
coordinate.

In this project we aimed to develop a methodology to find a suitable reaction
coordinate as a function of CVs. Naturally, if the set of coordinates used for
the description is incomplete, this approach will not be able to find the proper
coordinate. Therefore we assume that a set of CVs is available which describes
properly the rare event in question. Our simple approach follows the work of Ma
and Dinner [49]. The attractive features from their work are the followings: i) the
committor is mapped onto the space of the CVs on the basis of previous committor
calculations. ii) As the same quantity (committor) is represented that is used to
validate the dividing surface, the quality of this coordinate only depend on the
set of CVs that are in use for the mathematical construction. Since a committor
calculation is a simulation technique with the full configuration as an input, the
committor can also be represented with respect to any set of CVs. iii) If the initial
configurations are stored, the committor can be mapped onto a new set of CVs
as well by simple post processing. The approach of Ma and Dinner also suffers
from serious drawbacks. Firstly they apply neural networks for the representation
of the committor function. This approach requires strong parametrization and
careful testing. In their approach they have used 2000-2700 configurations for
the description of the alanine dipeptide system and the method required precise
committor value for each selected configuration. This has been achieved by the
calculation of 100-400 committor trajectories per configurations. Moreover, the initial
configurations were generated from expensive transition path sampling algorithm. The
authors also emphasized the importance of uniform sampling density for the initial
configurations. Their complicated, transition path sampling based algorithm only
meets this requirement along the committor. The uniform sampling in orthogonal
degrees of freedom is not guaranteed by their approach. Another disadvantage of
the method is that it employs a complicated functional form for the representation.
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They applied a multilevel neural network, which employs the Fermi-like (Eq. 1.10)
function at each level. Due to the complex functional form they could not apply
simple umbrella sampling with respect to this coordinate. They had to apply in-
stead multidimensional umbrella sampling simulations with respect to the original CVs.

3.2.2 Description of the method

In order to keep the advantages of Ma and Dinner’s approach but to overcome
the difficulties of their method we applied a different flexible representation for the
committor. We chose the property-map (Eq. 1.13) function for this purpose. The
property-map provides numerous advantageous features for this application. First,
it is an interpolation formula. The advantages of an interplation formula can be
demonstrated by the following set-up. Let us suppose that 0 committor values are
assigned for configurations at the stable reactant state and 1 committor values are
assigned for the molecules at the stable product state. With such a set-up every
molecule that is different from both reactant and product states according to the
distance metric will be assigned with a value between zero and one. If a molecule is
characterised by the same similarity (a distance value according to the metric) for
the stable reactant state and for the stable product state, it will be assigned with
the value of 0.5. This aspect of the function is very close to the chemical intuition,
which attempts to assign characteristics for new molecules on the basis of similarity or
dissimilarity to known substances.

Another interesting property of the functional form is that it performs local
averaging and smoothing. The function gives similar results irrespective of averaged
committor values or the individual zero and one committor values are employed
as represented properties. If the same number of committor analyses have been
performed for each configuration, the individual and averaged committors provide the
same function. The function performs averaging, with weights that depend on the
vicinity of the points. This aspect of the property map turns it a sort of smoothing
method. Therefore it is not important to feed the function with converged committor
values. This facilitates a better exploration of the configurational space, since only
limited number of simulations is necessary for an initial configuration.

Previously we have defined the representation of the reaction coordinate as the
property-map representation of a dictionary of committor results and the corresponding
vectors of the CV space. In order to design an efficient method we need to define an
algorithm for the generation of the starting configurations for committor calculations.
We intend to keep this part of the algorithm flexible to meet the various needs of
molecular simulations. We assume that the property map is initialized by zero and
one values from the reactant and product stable states with the application of distance
metric based on CVs. At this point the CV space is mapped with a simple interpolation.
Alternatively the function initialization might be performed with additional committor
values from the vicinity of the free energy saddle. This feature is especially useful if the
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committor analysis of a preliminary reaction coordinate has not provided satisfactory
results.

After the initialization of the coordinate any continuous biasing technique can be
used for the generation of new configurations. Any static or adaptive biasing potential
or force method is suitable for this purpose that applies potentials or forces instead
of constrains. Afterwards a histogram is calculated along the trial coordinate (f(λ)).
By assigning 1/f(λ) sampling probability for each saved configuration, the equal
sampling with respect to λ can be ensured. However, this sampling cannot balance the
uneven sampling from the initialization from the previous iterations. The sampling of
unexplored regions of the CV space would be advantageous. It can be accomplished
by the calculation of the number of neighbours from the dictionary of the previous
committor calculations and CV results for each possible configuration. The number of
the neighbours are calculated as follows:

Nn(q
′) =

∑

i

exp (−γDi(qi, q
′)) (3.25)

Note that this quantity is simple function of the distance function of the property map
(Z(q′) in Eq. 1.14):

Nn(q
′) = exp (−γZ(q′)) (3.26)

Our final equation for the weights of the configurations to be sampled is:

w(q′) =
1

Nn(q
′) · f(λ(q′))

. (3.27)

Each iteration of our method consists of the foregoing generation of the new configu-
rations, random sampling according to the w(q′) weights and committor calculations
from each configurations. Finally the dictionary of the committor results and the corre-
sponding initial CV values are updated. Accordingly, the definition of the approximate
reaction coordinate is also updated.

3.2.3 Numerical tests

In order to assess the applicability of our methodology, we have performed numerical
test simulations for the C5 ⇀↽ C7eq conformational equilibrium of alanine dipeptide.
For this work we have applied the Gromacs 4.6.5 [148–152] simulation package in
combination with Plumed 2.0. [10] The simulations have used the Amber forcefield [97]
with 0.3 fs time step. The simulation temperature of 300 K was provided by the CSVR
thermostat [22] with a 100 fs time constant.

As a first step of the validation of our method we have to calculate a reference
mapping of the committor for the Ψ,Φ plane corresponding to the C5 ⇀↽ C7eq. To this
end we have performed metadynamics simulation with the two CVs. The two valleys
have been filled up with 20000 hills with dimensions of 0.1·0.1 rad2 and height of
0.05 kJ/mol. The surface has been further smoothed with additional 20000 hills with
0.05·0.05 rad2 dimensions and 0.025 kJ/mol height. The biasing potential hills have
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Figure 3.5: Comparison of the cubic spline represented reference data (left) and the property

map representation (right) for the same data set

been deposited at every 500 steps. Afterwards the system was equilibrated without
further bias deposition for an additional 12 ns. The CV range has been divided into
a 50 x 50 grid, and each grid with higher than 20 geometries has been randomly
sampled. In total 1090 grids with 20 geometries in each has been sampled. From each
geometry 40 committor calculations have been initiated with random velocities. The
results of each grid have been averaged. The corresponding mapping from the over
800000 committor calculations has been plotted through two dimensional cubic spline
interpolation and with the suggested property map representation (applying γ = 20)
on Fig. 3.5.

The comparison of the two representations shows promising results. The committor
map (i.e. the property map representation of comittor) provides excellent agreement
with the two dimensional spline representation. The commitor map is able to describe
each important feature of the committor function. The mapping of commitor onto
these two CVs show an interesting feature. Namely that the committor range between
0.2 and 0.3 is mapped into two disjunct regions of the CV space. This feature is due
to the high potential energy region at (-0.5π,π). It is remarkable that the committor
map also describes this feature of the committor function. It is important to note, that
generation of the coordinates with multiple dimension free energy exploration, and
such a large number of committor calculations are very is computationally demanding
for realistic systems. Therefore we studied the applicability of our algorithm with two
different biasing techniques for configuration generation.
First we have applied replica exchange umbrealla sampling simulations for the



3.2. Committor map collective variable • 87

configuration generation. The umbrella sampling simulations were performed for 15
ps, at 300 K, with 0.3 fs simulation timestep. The umbrella potentials were applied at
the following committor map values: 0.2, 0.35, 0.5, 0.65, 0.8. The force constants
for the simulations have been set as 350 kJ/mol, while γ was kept at the value of
20. Random exchange between the neighbouring simulations were applied at every
2000 MD step. In each iteration 100 configurations were chosen, and from each
configuration 5 committor calculations were performed. Fig. 3.6 presents the results
of this simulation. The important qualitative features of the reference committor
function appear after 5 iterations. However the interesting feature of the 0.2-0.3
committor region appears only at the 20th iteration.

Then we have tested our algorithm in combination with multiple worker metady-
namics simulation. Similarly to the replica exchange umbrella sampling simulations,
the geometries were generated by 5 simulations with an overall 75 ps simulation time.
The metadynamics employed the committor map as a CV and used hill potentials
with 0.1 width and 0.05 kJ/mol height. The hills were deposited at every 100 MD
steps.

The results of this simulation is depicted in Fig. 3.7. Interestingly the results
converge significantly faster with this geometry generation technique. All important
qualitative features of the committor function appear already in the 5th iteration.
Both the reactant and the product regions and the transition state region is sufficiently
described. Moreover, the interesting disjunct nature of the 0.2-0.3 committor range
is also captured by this method. In the following 25 iterations the function remains
considerably stable with small oscillations.

In summary we have introduced a new dimensionality reduction approach by
representing the committor of the system by property map. In order to achieve
an efficient mapping, we have developed an algorithm for the initial configuration
generation and iterative reaction coordinate optimization. The algorithm can be
combined with different free energy methods. As a test of the approach two free
energy methods have been tested in combination with our algorithm. Our method
provided proper mapping of the committor with both Hamiltonian replica exchange
and metadynamics, with a faster convergence for the latter.
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Figure 3.6: Convergence of the committor map CV with configuration generation through

Hamiltonian-replica exchange molecular dynamics simulations. Angles are in radian.
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Figure 3.7: Convergence of the committor map CV with configuration generation through

multiple-worker metadynamics simulations. Angles are in radian.





Summary

The present thesis addresses reaction mechanisms by theoretical methods. The thesis
can be divided into two thematically distinct directions: applications and method
development. Along the first direction the thesis summarizes our mechanistic studies on
four reaction families which are very important and promising from synthetic point of
view. In these studies we have employed density functional methods which are essential
to describe the bond breaking and bond formation processes. Regarding the second
directions we have developed a theory for rate constants and a new method to efficiently
calculate them. In general, rate constant calculations require the knowledge of the
reaction coordinate. We also developed a protocol to optimize reaction coordinate
employing dynamical information.

Our mechanistic studies provided a deeper understanding of palladium catalyzed
C–H activation reaction and revealed the role of an interesting bimetallic catalytic
species in the subsequent C–C coupling. The reaction path identified by our calculations
is the rate-determining C–H activation step followed by a C–C coupling via a bimetallic
complex and a Pd(III)-Pd(I) reductive elimination.

Silver catalysis is an emerging field in synthetic heterocyclic chemistry. Our
theoretical exploration of a recently developed silver-mediated oxidative C-H/C-H
functionalization could help to elucidate the mechanism of an efficient synthetic route
toward substituted furans. The calculations have pointed out the dual role of silver in
the mechanism: it is a reactant to initiate the reaction in a radical route and a catalyst
in the later stages of the path to drive the reaction to the furan-ring formation. Some
of our findings have also been verified experimentally.

The predictive power of our computation has been nicely confirmed in a joint
experimental-theoretical study of direct trifluoro-ethylation of indoles. The calculations
have identified not only the the reaction channel leading to C3 trifluoro-ethylation of
indoles, but also explained the side reactions observed in experiment and the important
role of the bases. On the basis of the results we have shown that the efficiency of a
given substrate-base combination can be assessed by comparing the activation barriers
of the competing N- and C-alkylations.

In the study of H2 activation by Frustrated Lewis Pairs we compared two mech-
anistic pictures: a static and a dynamic view of the cooperative hydrogen splitting
by FLPs. Combination of enhanced sampling methods with molecular dynamics has
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been proved to be successful and yielded new mechanistic insights. On one hand, we
could confirm the cooperative, concerted heterolytic H2 picture emerged from earlier,
static calculations. However, new, remarkable aspects of the reaction paths have been
identified from the reactive trajectories. In particular, the temperature distributions
at the reactant and product states disclosed new features of the reactions. At the
reactant state the temperature distribution pointed out the role of H2 translation
energy in the activation. The thermally highly excited P–H unit at the product state
is a strong confirmation of the asynchronity in the activation and may have crucial
role in subsequent reactions.

We have developed a new and efficient method to calculate rate constants. The
method uses information from the free energy profile along a suitable reaction coordi-
nate and dynamical information from short unbiased trajectories. The main idea of
the underlying theory is to introduce the concept of Saddle Domain and a factorization
of the rate constant expression accordingly. We have shown that the method has good
convergence properties and provides accurate rate constant values.

We have also developed a new approach to obtain an efficient CV where we represent
the committor of the system by property map. The method is based on an efficient
initial geometry generation algorithm and an iterative optimization. Combination
of the method with enhanced sampling techniques has been shown to provide very
promising results. A natural continuation of this direction is the application of the
this new reaction coordinate in a rate constant calculation employing our new method
for realistic systems.
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